

Via SharePoint

October 31, 2024

WADE Toxics Cleanup Program Department of Ecology PO Box 47000 Lacey, Washington 98504-7600

Attn: Mr. Frank Winslow, LHG

Re: Additional Remedial Investigation Report

NWMS Puyallup 400 River Road Puyallup, Washington

WADE Cleanup ID 17046 H&H Job No. SAI-413

Dear Mr. Winslow

Hart & Hickman, PC (H&H) on behalf of Sonic Automotive Inc. (Sonic), parent company of Northwest Motorsports (NWMS) is submitting the attached Additional Remedial Investigation Report for the Northwest Motorsports facility located at 400 River Road in Puyallup, Washington.

Please contact us if you have any questions or require additional information.

Sincerely,

Hart & Hickman, PC

Nathan O'Leary, PG, CHMM

Project Manager

ADDITIONAL REMEDIAL INVESTIGATION REPORT

H&H JOB NO. SAI-413 OCTOBER 30, 2024

NORTHWEST MOTORSPORTS PUYALLUP

400 River Road Puyallup, Washington

Additional Remedial Investigation Report Northwest Motorsports Puyallup 400 River Road Puyallup, Washington H&H Job No. SAI.413

Table of Contents

1.0 Introduction	1
2.0 General Site Information	3
2.1 Current and Historical Site Use	3
2.2 Topographic Setting	4
2.3 Geologic and Hydrogeologic Setting	5
2.4 Summary of Previous Assessment Activities	6
2.4.1 UST and Hydraulic Lift Removals	6
2.4.2 Focused Phase II Subsurface Investigation	6
2.4.3 Previous Phase I Environmental Site Assessments	7
Groundwater Analytical Results	9
Sub-Slab Vapor Analytical Results	9
3.0 Additional Remedial Investigation	10
3.1 Soil Assessment	10
3.2 Groundwater Assessment	12
3.3 Sub-Slab Vapor Assessment	13
3.4 Indoor Air Assessment	14
3.5 Investigation Derived Waste	15
4.0 Additional Remedial Investigation Results	16
4.1 Soil Analytical Results	16
4.2 Groundwater Elevation	16
4.3 Groundwater Analytical Results	17
4.4 Sub-Slab Vapor Analytical Results	17
4.5 Indoor Air Analytical Results	18
4.6 Vapor Intrusion Evaluation	18
5.0 Preliminary Conceptual Site Model	20

5.1 Med	ia and Contaminants of Concern	20
5.2 Conf	rmed and Suspected Sources	21
5.3 Expo	osure Pathways and Potential Receptors	21
5.3.1 \$	Soil-to-Groundwater Pathway	22
5.3.2 I	Direct-Contact Pathway	22
5.3.3 A	Air/Soil Vapor Pathway	23
5.4 Prop	osed Cleanup Standards	23
5.4.1 I	Points of Compliance	23
5.4.2 I	Preliminary Cleanup Levels	24
6.0 Summ	ary and Conclusions	25
7.0 Refere	nces	27
	<u>List of Tables</u>	
Table 1	Summary of Soil Analytical Data	
Table 2	Summary of Monitoring Well Construction and Depth to Groundwater Data	
Table 3	Summary of Groundwater Analytical Data	
Table 4	Summary of Sub-Slab Vapor Analytical Data	
Table 5	Summary of Indoor Air Analytical Data	
	<u>List of Figures</u>	
Figure 1	Site Location Map	
Figure 2	Site Map	
Figure 3	Soil Boring Location Map	
Figure 4	Monitoring Well Location Map	
Figure 5	Sub-Slab Vapor Monitoring Point Location Map	
Figure 6	Indoor Air Sampling Location Map	

List of Appendices

Appendix A Previous Assessment Reports

Appendix B Soil Boring Logs

Appendix C Field Sampling Forms

Appendix D Laboratory Analytical Reports

Appendix E EPA VISL Calculator Results

Additional Remedial Investigation Report
Northwest Motorsports Puyallup
400 River Road
Puyallup, Washington
H&H Job No. SAI.413

1.0 Introduction

Hart & Hickman, PC (H&H) has prepared this Additional Remedial Investigation Report on behalf of EP Realty WA LLC, a subsidiary of Sonic Automotive, Inc. (Sonic), for the former Northwest Motorsports Puyallup facility located at 400 River Road in Puyallup, Pierce County, Washington (Site or subject Site). A Site location map is provided as Figure 1 and a Site map is provided as Figure 2.

The purpose of the Remedial Investigation (RI) was to collect additional data to further evaluate the nature and extent of impacts identified at the Site during previous assessment activities. To address environmental concerns associated with the Site, Sonic entered the Site into the Washington State Department of Ecology (Ecology) Voluntary Cleanup Program (VCP) in February 2024 (VCP No. XS0017). The RI activities documented herein, were conducted in general accordance with Washington State Model Toxics Control Act (MTCA) Cleanup Regulation as established in Chapter 173-340 of the Washington Administrative Code (WAC).

Project Contacts

Current Owner

Mr. Tim Hallice EP Realty WA LLC 4401 Colwick Road Charlotte, North Carolina 28211 (704) 566-2414 tim.hallice@sonicautomotive.com

Environmental Consulting Firm

Mr. Nathan O'Leary, PG, CHMM Hart & Hickman, PC 2923 South Tryon Street, Suite 100 Charlotte, North Carolina 28203 (704) 586-0007 noleary@harthickman.com

Ecology Site Manager

Mr. Frank Winslow, LHG
Department of Ecology – Toxics Cleanup Program
1250 W. Alder Street
Union Gap, Washington 98903
(509) 424-0543
Frank.winslow@ecy.wa.gov

2.0 General Site Information

The Site is comprised of three parcels of land totaling approximately 3.9-acres (Pierce County Parcel IDs 0420214807, 0420214014, and 0420281170) located southwest of the intersection of River Road and 4th Street NW. The Site is improved with four commercial buildings that are currently vacant, but were previously occupied by Northwest Motorsports (NWMS) for automotive and motorsport vehicle sales and service operations. The main Site building consists of an approximately 17,000-square foot (sq ft) single-story automotive dealership building that includes showrooms, offices, parts storage, two service garages (identified as North and South Shops), and a basement. An approximately 3,800-sq ft office building with basement-level service department and wash bays is located on the southern portion of the Site, an approximately 3,700-sq ft service department and tire shop is located on the southwestern portion of the Site, and an approximately 600-sq ft buying center with a basement is located to the west of the north service bay. Additional improvements include asphalt-paved parking, covered wash bays, and perimeter fencing. The Site is covered by buildings or asphalt-pavement with little to no pervious surfaces present.

The subject Site is located in a commercial corridor along River Road, approximately one mile north of downtown Puyallup. The Site and surrounding properties to the west, south, and east are zoned General Commercial (CG). Surrounding properties to the north (beyond River Road) are zoned River Road Mixed Use (RMX). The anticipated future land use of the Site is expected to remain commercial, and no significant changes in zoning are expected to occur.

2.1 Current and Historical Site Use

Historical topographic maps from the early 1940s indicate that a portion of the Site was developed with a small commercial structure or residence with remaining portions of the Site wooded land. By the early 1950s, the small structure was removed and portions of the existing main dealership building were constructed, including the North Shop. By 1968, several building additions were completed that included construction of the South Shop.

The Site has been used for automotive sales and service activities since the early 1950s and has operated under various names since that time. Previous Site occupants have included Grant's Chevrolet in the 1950s and 1960s, Service Chevrolet in the 1970s through the mid-1980s, Ken Parks Chevrolet in mid-1980s through the mid-1990s, Puyallup Chevrolet in the mid-1990s through the early 2000s, and Friendly Chevrolet in the 2000s through the early 2010s. NWMS has operated at the Site since 2011.

Routine automotive maintenance and repair operations include the use of petroleum products and the generation of various waste fluids (e.g., used motor oil, used antifreeze, spent degreasers, etc.) that require management and proper disposal. In addition, historical automotive service operations commonly included the use of various chlorinated solvents as degreasers, which if released, have the potential to persist in the environment.

Automotive sales and service activities at the Site historically included the use of in-ground hydraulic lifts. The in-ground hydraulic lifts were located within the North and South Shops, and were removed in 1987 and 2004 (Partner, 2013). Two waste oil USTs (reportedly 500-gallon and 650-gallon in capacity) were previously located in a tank basin along the southern exterior wall of the South Shop, and were removed in 1996 and 2004, respectively. One 5,000-gallon gasoline UST was located south of the dealership building and was removed in 1996. Soil assessment activities were completed at the former gasoline UST location in 2003. Based on the results of the assessment activities, approximately 26 tons of petroleum-impacted soil were subsequently excavated from this location (Robinson Noble, 2016). Additionally, one 500-gallon heating oil UST, located southeast of the dealership building, was closed-in-place in 1996. Current Site operations include the use of aboveground hydraulic lifts and aboveground storage tanks (ASTs).

2.2 Topographic Setting

The Site is located approximately 1,200 ft south of the Puyallup River, in an area of relatively little topographic relief. The Site ranges in elevation from approximately 40 ft above mean sea level (msl) along River Road to the north and 4th Street NW to the east, to approximately 35 ft

msl near the southwestern portion of the Site.

2.3 Geologic and Hydrogeologic Setting

The Site is located within the Puyallup River Valley of the Puget Lowland physiographic region of Washington (Schuster, 2005). The Puget Lowland region is a wide low-lying area between the Cascade Range to the east and Olympic Mountains to the west. The Site is underlain by Quaternary-aged alluvium deposited by the Puyallup River during a number of glacial episodes (Jones, 1999). Alluvium deposition occurred during glacial advances and retreats, which created the region's subsurface conditions. Outwash sediments were deposited by rivers, streams, and post-glacial lakes during the glacial episodes. Regionally, these sediments generally consist of interlayered and/or sequential deposits of alluvial clays, silts, and sands situated over deposits of glacial till (commonly consisting of silty sand to sandy silt with gravels).

Soil encountered beneath the Site during the RI generally consisted of well graded sands and clayey sands to depths of approximately 10 feet below ground surface (ft bgs), which are underlain by poorly graded sands and gravels to approximately 22 ft bgs, and followed by a stiff silt layer to depths of up to 25 ft bgs, the greatest depth encountered during the assessment activities.

According to the Geologic Framework for the Puget Sound Aquifer System, the Site is underlain by the Puyallup River aquifer (Jones, 1999). Groundwater within the upper Puyallup River aquifer occurs primarily within alluvial deposits and glacial outwash deposits, and is generally unconfined. The depth of this upper alluvial aquifer unit is typically less than 100 ft thick, but can exceed 240 ft thick along the Puyallup River (Welch et al., 2015). The Puyallup River, located approximately 1,200 feet north of the Site at its closest point, exerts regional control on groundwater flow within the shallow or uppermost groundwater bearing unit, with flow being towards the river (north) and its downgradient (northwesterly) direction.

During the additional RI, groundwater was encountered at depths ranging from approximately 12 ft below top of casing (bTOC) south of the dealership building to approximately 19 ft bTOC

along street level to the north and east of the dealership building. The primary flow direction of shallow groundwater measured in the Site wells during the additional RI was to the north towards the Puyallup River, which is consistent with area topography.

2.4 Summary of Previous Assessment Activities

Summaries of previous assessment activities completed at the Site are provided below. Copies of the reports summarized below are provided in Appendix A.

2.4.1 UST and Hydraulic Lift Removals

Environmental Management Service, LLC (EMS) completed UST and in-ground hydraulic lift removal activities at the Site in April 2004 (EMS, 2004). The report indicates that one 650-gallon waste oil UST located along the south side of the South Shop and one two-piston inground hydraulic lift in the South Shop were removed. The 650-gallon waste oil UST was reportedly installed in the location of a previous waste oil UST which was removed in 1987. Following removal of the UST and hydraulic lift, impacted soil was excavated for off-Site disposal. Soil samples were collected from sidewalls and bases of the excavations for laboratory analysis of total petroleum hydrocarbons diesel range organics (TPH-DRO) and total petroleum hydrocarbons oil range organics (TPH-ORO). Analytical results did not indicate impacts above the MTCA cleanup levels. The Tacoma-Pierce County Health Department issued a No Further Action (NFA) letter for the 650-gallon waste oil UST in September 2004.

2.4.2 Focused Phase II Subsurface Investigation

The Riley Group, Inc. (Riley Group) complete soil and groundwater assessment activities at an oil/water separator (OWS) located along the southern Site boundary in April 2011 (Riley Group, 2011). The assessment included the advancement of one soil boring along the OWS influent line. Shallow groundwater was reported in the boring at approximately 11 ft bgs. Two soil samples and a grab groundwater sample were collected from the boring for laboratory analysis of TPH and VOCs. Laboratory analytical results did not indicate the presence of analyzed

compounds at concentrations above laboratory reporting limits.

2.4.3 Previous Phase I Environmental Site Assessments

Several Phase I Environmental Site Assessments (ESAs) have been completed in relation to the subject Site by others in 2013, 2016, and 2020 (Partner, 2013; Robinson Noble, 2016; and AECOM, 2020). The previous Phase I ESA reports summarize a prior Phase II ESA completed at the Site by Encore Environmental (Encore) in 2003. Encore reportedly advanced 18 borings across the Site to evaluate the potential for impacts associated with 11 former and one active inground hydraulic lifts, a former gasoline UST (removed in 1987), a closed-in-place heating oil UST, storm drains, and an adjacent off-Site property. One soil sample and one groundwater sample (if encountered) were collected from each of the borings for laboratory analysis of total petroleum hydrocarbons gasoline range organics (TPH-GRO), TPH-DRO, TPH-ORO, and VOCs.

Soil analytical results from the 2003 Encore assessment indicated the presence of xylenes near the former gasoline UST basin and TPH-DRO/TPH-GRO near the 650-gallon waste oil UST at concentrations above the MTCA Model A soil screening levels. No other compounds were detected in the soil samples above MTCA Model A soil screening levels, and no compounds were detected at concentrations above laboratory method detection limits in the collected groundwater samples. EMS reportedly conducted excavation activities in the vicinity of the former gasoline UST in September 2003 resulting in the removal and disposal of approximately 26 tons of petroleum-impacted soil (Partner, 2013). Soil impacts associated with the former 650-gallon waste oil UST were removed during UST closure activities conducted by EMS in April 2004 (as discussed above in Section 2.4.1). Confirmation samples collected by EMS from the sidewalls and bases of the UST excavations did not indicate residual impacts above MTCA Method A cleanup levels.

Based on the results of the Phase I ESA activities, the following environmental concerns were identified in connection with the Site:

2.4.5 Remedial Investigation

H&H completed remedial investigation (RI) activities at the Site in October 2022 (H&H, 2022). During the RI activities, H&H advanced seven soil borings around and within the North and South Shops (SB-6 through SB-12), converted six of the soil boring locations into shallow permanent monitoring wells (MW-1 through MW-6). Additionally, H&H installed eight subslab vapor points (SSV-1 through SSV-8) in the service areas, showroom, office areas, and parts storage areas of the main building, as well as within the basement level of the main building and southern office building.

One soil sample was collected from each boring and was analyzed for VOCs by EPA Method 8260D, PAHs by EPA Method 8270E, and TPH by the NWTPH Method. One groundwater sample was collected from each permanent monitoring well and analyzed for VOCs by EPA 8260D, PAHs by EPA Method 8270E, and TPH by the NWTPH Method. Due to access restrictions associated with the collection of samples from inside an active automotive service facility during business hours, and time constraints of the project, sub-slab vapor samples were only collected for laboratory analysis from three of the eight sub-slab vapor points during the October 2022 RI activities. Sub-slab soil vapor samples were collected from the showroom floor (SSV-1), customer lounge (SSV-4), and parts department (SSV-7) of the main dealership building were analyzed for VOCs by EPA Method TO-15.

Soil Analytical Results

Laboratory analytical results indicate the presence of methylene chloride in the soil sample collected from soil boring SB-6 (South Shop) at an estimated concentration of 0.82 mg/kg, which is above the Method A unrestricted and commercial/industrial soil cleanup levels (SCLs) of 0.02 mg/kg, and the protection of groundwater (POG) SCL of 0.22 mg/kg. Note that methylene chloride, a common laboratory contaminant, was also detected in the blank sample associated with SB-6, and the laboratory control sample result was outside of the acceptable range indicating that the SB-6 sample results may be biased high. As such, the methylene chloride detection reported in soil sample SB-6 may not be representative of actual soil conditions at the Site.

No other VOCs, PAHs, or TPHs were detected during the October 2022 soil assessment at concentrations above the MTCA screening levels.

Groundwater Analytical Results

Laboratory analytical results did not indicate the presence of VOCs, PAHs, or TPH in the groundwater samples at concentrations above laboratory method detection limits.

Sub-Slab Vapor Analytical Results

Laboratory analytical did not indicate the presence of VOCs in the sub-slab vapor samples at concentrations above the MTCA Method B screening levels. However, several VOCs were detected at low concentrations at concentrations above laboratory method detection limits, but below the MTCA Method B screening levels.

3.0 Additional Remedial Investigation

H&H completed additional RI activities at the Site between August 12 and 16, 2024. H&H contracted with Steadfast Services Northwest, LLC (Steadfast), a licensed Washington drilling contractor, to provide environmental drilling services. The additional RI activities included the collection of soil, groundwater, sub-slab vapor, and indoor air samples for laboratory analysis. A brief summary of the additional RI activities documented herein is provided below.

- Advancement of four soil borings in the North Shop in the area of SB-5 (advanced during the 2022 assessment activities) and four soil borings in the South Shop in the area of SB-3 (advanced during the 2022 assessment activities).
- Collection of groundwater samples from six previously installed permanent monitoring wells.
- Collection of eight sub-slab vapor samples from previously installed sub-slab vapor points.
- Collection of five indoor air samples within the main Site building in the North and South Shops, Business Center, Showroom, and Basement Office Area.

Prior to conducting field activities, H&H contacted Washington 811, the public utility locating service, to mark subsurface utilities located on the Site. H&H also contracted with Ground Penetrating Radar Systems, LLC (GPRS), a private utility locator, to screen proposed boring locations for subgrade utilities which were not identified by the public locator, using ground penetrating radar (GPR) and electromagnetic (EM) scanning methods. In addition, in areas where surface conditions allowed, a decontaminated stainless-steel hand auger was advanced to a depth of approximately 5 ft bgs prior to utilizing mechanical drilling equipment at each boring location to clear the boring of potential subsurface utilities.

3.1 Soil Assessment

H&H advanced eight soil borings within the North and South Shops. The purpose of the soil assessment activities was to further evaluate the horizontal and vertical extent of impacts to soil

at previous boring locations SB-3 and SB-5. The boring locations are detailed below and are presented on Figure 3.

- Soil boring SB-5R was advanced inside the North Shop, near the location of previous boring SB-5, where PCE and TPH-RRO were detected at concentrations above MTCA Method A SCLs. were detected in the subsurface. The purpose of the SB-5R boring was to evaluate the vertical extent of impacts in this area.
- Soil borings SB-13 through SB-15 were advanced at distances ranging from approximately 7.5 ft to 12.5 ft from the SB-5R soil boring. The purpose of these borings was to evaluate the horizontal extent of impacts in the area of former soil boring SB-5.
- Soil boring SB-3R was advanced inside the South Shop, near the location of previous soil sample SB-3, where PCE was detected at a concentration above MTCA Method A SCLs.
 The purpose of boring SB-3R was to evaluate the vertical extent of impacts to soil in this area.
- Soil borings SB-16 through SB-18 were advanced approximately 3 ft to 14 ft from the previous SB-3 boring location, due to the presence of subsurface utilities. The purpose of these borings was to evaluate the horizontal extent of impacts to soil in this area.

The initial 5 ft of each soil boring was advanced with a decontaminated stainless-steel hand auger to clear for subsurface utilities. Beyond the initial 5 ft, where feasible, soil borings were advanced with a track-mounted direct push technology (DPT) drill rig to 20 ft bgs. Note that due to low ceiling constraints within the North Shop, a DPT rig could not be utilized. As such, the soil borings in the North Shop were advance with a hand augur to depths ranging from 4.5 to 6 ft bgs. During boring advancement, soil was recovered in 5-ft cores using an acetate sleeve-lined Macro-Core® sampler or in approximate two-ft intervals from the hand auger bucket. The recovered soil was logged for lithological description, and field screened for indications of potential impacts by visual observation of staining and the presence of organic vapors using a calibrated photoionization detector (PID). In an attempt to delineate the vertical extent of VOC and/or TPH impacts in these areas, two to three soil samples were collected from each boring location for laboratory analysis. Field screening results did not indicate the likely presence of significant impacts at the boring locations. Soil boring logs including lithological descriptions

and field screening results are provided in Appendix B.

Soil samples selected for laboratory analysis were placed directly into dedicated laboratory supplied sample containers, labeled with the sample identification, date, and requested analysis, and placed in a laboratory supplied cooler with ice. The soil samples were submitted to Eurofins, USA (Eurofins) – Seattle, a Washington-certified laboratory under standard chain of custody protocols for analysis of VOCs by EPA Method 8260D, and TPH-DRO and TPH-RRO by the NWTPH Method.

Following the soil sampling activities, the soil borings were properly abandoned and the surface was patched to match surrounding ground surface.

3.2 Groundwater Assessment

Between August 13 and 15, 2024, H&H collected groundwater samples from the six permanent on-Site monitoring wells. Prior to sample collection, H&H purged each of the wells using low flow/low stress techniques with a peristaltic pump and dedicated polyethylene tubing. The intake point of the tubing was placed in the approximate mid-point of the well screen. While purging, field measurements of pH, specific conductivity, temperature, dissolved oxygen (DO), and oxidation reduction potential (ORP) were measured with a YSI Pro Plus water quality meter equipped with a flow-through cell. Turbidity was measured using a Hach 2100Q turbidity meter. Additionally, water levels were measured during the purging process to minimize drawdown of the water column in the monitoring wells. Groundwater was purged from each monitoring well until the field parameters of pH, conductivity, and temperature stabilized and turbidity was near 10 NTU. Copies of the groundwater sampling forms are provided in Appendix C.

Once field parameters stabilized, the groundwater samples were collected directly into laboratory supplied sample containers using the "soda-straw" method to minimize volatilization. The sample containers were then labeled with the sample identification, date, and requested analysis, placed in a laboratory supplied cooler with ice, and shipped via courier under chain-of-custody protocol to Eurofins.

It should be noted that the groundwater samples were submitted to the laboratory "on-hold" with extraction pending soil analytical results. Following receipt of the soil analytical data, H&H directed the laboratory to analyze the groundwater samples collected from MW-1 (located within the South Shop), MW-3 (located downgradient of the North Shop soil borings), and MW-4 (located downgradient of the South Shop). The locations of the monitoring wells are depicted on Figure 4.

3.3 Sub-Slab Vapor Assessment

To evaluate the vapor intrusion potential at the Site building, H&H collected samples from the eight interior sub-slab vapor sampling points (SSV-1 through SSV-8). The sub-slab vapor point locations are depicted on Figure 5.

Each sub-slab vapor sample was collected utilizing a laboratory supplied batch-certified 1.4-liter Summa[®] canister connected to an air-flow regulator calibrated by the laboratory to collect the samples at a rate of approximately 100 milliliters per minute (mL/min). Soil gas sampling forms completed by field personnel are included in Appendix C.

The sub-slab vapor samples were collected by connecting the regulator to the Summa[®] canister. Vacuum readings on the Summa[®] canister were recorded prior to, during, and following the sampling period to ensure adequate sample volume was collected. A vacuum of approximately 5 inches of mercury or more was maintained within the canisters at the conclusion of the sampling event.

Following sample collection, the Summa canisters were shipped to Pace Analytical (Pace) – Bakersfield, California under standard chain-of-custody protocols for analysis of VOCs by EPA Method TO-15. Upon receipt of the samples, the laboratory recorded the final vacuum measurements for each Summa canister which is documented in the laboratory analytical report provided in Appendix D. It should be noted that sub-slab sample SSV-4, was received at the laboratory with no vacuum remaining, and therefore, was not analyzed. However, the duplicate

sample (SSV-DUP-1) collected from the SSV-4 location, was received with adequate vacuum, and was analyzed by the laboratory. The sub-slab vapor sample locations are shown on Figure 5.

3.4 Indoor Air Assessment

To further evaluate the potential for vapor intrusion, H&H collected five indoor air samples (IAS-1 through IAS-5) in the main Site building. The indoor air sample locations are depicted on Figure 6.

Each indoor air sample was collected utilizing a laboratory supplied batch-certified 6-liter Summa[®] canister connected to an air-flow regulator calibrated by the laboratory to collect the indoor air samples over an 8-hr period at a rate of approximately 12 milliliters per minute (mL/min). Indoor air sampling forms completed by field personnel are included in Appendix C.

The indoor air samples were collected by connecting the regulator to the Summa[®] canister. Vacuum readings on the Summa[®] canister were recorded prior to, during, and following the sampling period to ensure adequate sample volume was collected. A vacuum of approximately 5 inches of mercury or more was maintained within the canisters at the conclusion of the sampling event.

Following sample collection, the Summa canisters were shipped to Pace under standard chain-of-custody protocols for analysis of VOCs by EPA Method TO-15. Upon receipt of the samples, the laboratory recorded the final received vacuum pressure for each Summa canister which is documented in the laboratory analytical report provided in Appendix D.

3.5 Investigation Derived Waste

Investigation derived waste (IDW) including soil cuttings, purge water, and decontamination fluids were containerized in 55-gallon drums and staged in a secure location on-Site. One drum of soil, purged groundwater, and decontamination water was generated during the assessment activities. The IDW profile is being prepared and the IDW drums will be properly disposed at an off-Site facility.

4.0 Additional Remedial Investigation Results

4.1 Soil Analytical Results

A summary of soil analytical results is provided as Table 1. Soil analytical results were compared to Washington's MTCA Method A Soil Cleanup Levels (SCLs) for unrestricted and industrial/commercial use, and the Protection of Groundwater [Vadose Zone] (POG-SCLs) dated July 2024 (CLARC 2024). A discussion of the soil laboratory analytical results is provided below. Laboratory analytical reports are provided in Appendix D.

VOCs

Laboratory analytical results indicate the presence of PCE in several soil samples at concentrations ranging from 0.00079 J mg/kg to 0.014 mg/kg, which are below the Method A unrestricted and commercial/industrial SCLs of 0.05 mg/kg, and the POG SCL of 0.05 mg/kg. Additionally, 1,1,1-trichloroethane was detected in soil samples SB-5R (2-4) and SB-5R (4-6) at estimated concentrations (J flag) of 0.002 mg/kg and 0.0015 mg/kg, respectively. The estimated concentrations are below the Method A unrestricted and commercial/industrial SCLs of 2.0 mg/kg, and the POG-SCL of 1.5 mg/kg. No other VOCs were detected at concentrations above laboratory method detection limits during the August 2024 soil assessment activities.

<u>TPH</u>

Analytical results indicate the presence of TPH-RRO in soil samples SB-5R (2-4) and SB-5R (4-6) at concentrations above the Method A unrestricted and commercial/industrial SCLs of 2,000 mg/kg. TPH-DRO and TPH-RRO were detected in several other soil samples collected in the North and South Shops at concentrations above laboratory method detection limits, but below the Method A unrestricted and commercial/industrial SCLs of 2,000 mg/kg.

4.2 Groundwater Elevation

The monitoring well top of casing (TOC) elevations were professionally surveyed by Sadler Barnard & Associates, Inc. of Puyallup, Washington on September 11, 2023. The monitoring

wells were surveyed for elevation, northing, and easting using the North American Vertical Datum of 1988 and Washington State Plan Coordinate System of 1983/2011. A summary of TOC data, well construction, and groundwater elevation data is provided in Table 2.

Prior to collection of the groundwater samples during the August 13 through 15, 2024 monitoring event, depth to groundwater measurements were collected using a decontaminated electronic water level. During the 2024 monitoring event, groundwater elevations ranged from 21.75 ft msl at MW4 to 21.84 ft msl at MW-6. In general, groundwater elevations were approximately one to two ft lower when compared to the groundwater elevation data collected in October 2022.

4.3 Groundwater Analytical Results

Based on the analytical results of the soil samples, H&H instructed the laboratory to analyze the groundwater samples collected from MW-1 (within the South Shop), MW-3 (downgradient of the South Shop), and MW-4 (downgradient of the North Shop). These groundwater samples were selected for analysis based on the proximity of the monitoring wells to known impacts to soil. Groundwater analytical results were compared to Washington's MTCA Method A Groundwater Cleanup Levels (GCLs) dated July 2024 (CLARC 2024). Groundwater analytical data is summarized on Table 3. A copy of the laboratory analytical report and chain of custody record is included as Appendix D.

VOCs

Analytical results indicate the presence of the VOC 1,1,1-trichloroethane in the groundwater sample collected from MW-4 at an estimated concentration of 0.18 μ g/L, which is below the Method A SCL of 200 μ g/L. Laboratory analytical results did not indicate the presence of other VOCs in the groundwater samples at concentrations above laboratory method detection limits.

4.4 Sub-Slab Vapor Analytical Results

Sub-slab vapor analytical data is summarized on Table 4. A copy of the laboratory analytical

report and chain of custody record is included as Appendix C. Sub-slab vapor analytical results were compared to Washington's MTCA Commercial Worker Sub-Slab Soil Gas Screening Levels (SSGLs) for carcinogenic and non-carcinogenic effects dated July 2024 (CLARC 2024).

Laboratory analytical results of the sub-slab vapor samples indicate the presence of several VOCs at concentrations above laboratory method detection limits, but below the MTCA Commercial Worker Cancer and Non-Cancer screening levels. Notably, PCE was detected at a high concentration of 1,200 μ g/m³ in the sample collected from SSV-6 which is below the MTCA Commercial Worker Cancer and Non-Cancer screening levels of 1,500 μ g/m³ and 5,200 μ g/m³, respectively.

4.5 Indoor Air Analytical Results

Analytical results of the indoor air samples are summarized on Table 5. A copy of the laboratory analytical report and chain of custody record is included as Appendix D. Indoor air sample analytical results were compared to Washington's MTCA Commercial Worker Air Screening Levels for carcinogenic and non-carcinogenic effects dated July 2024 (CLARC 2024).

Based on the sub-slab vapor sampling results, H&H directed the laboratory to analyze the indoor air samples collected in the South Shop (IAS-1), North Shop (IAS-2), and the Business Center (IAS-3). Laboratory analytical results indicate that multiple VOCs were detected in each of the three indoor air samples analyzed. However, no VOCs were detected at concentrations above the Commercial Worker Indoor Air Screening Levels for carcinogenic and noncarcinogenic effects.

4.6 Vapor Intrusion Evaluation

To further evaluate the potential vapor intrusion risk, H&H utilized the EPA Vapor Intrusion Screening Level (VISL) Calculator (June 2024 Version) to calculate the cumulative carcinogenic and non-carcinogenic risks for the soil vapor to indoor air and indoor air exposure scenarios for the main Site building. To model the potential for vapor intrusion under a hypothetical "worst-

case" scenario, H&H conservatively calculated the cumulative risks by using the highest detected concentration of each compound in the sub-slab vapor and indoor air samples. The VISL was run using the default commercial use parameters.

Vapor intrusion mitigation or additional assessment is not typically warranted if the calculated cumulative lifetime incremental carcinogenic risk (LICR) is 1×10^{-4} or less and the acceptable level for non-carcinogenic risk is a calculated cumulative hazard index (HI) of 1.0 or less.

Copies of the calculations are provided in Appendix E and a summary of the calculated LICR and HI values for a cumulative worst-case scenario is provided below:

Evaluation Area	Land Use Scenario	Calculated Cumulative LICR	Calculated Cumulative HI	Exceedance of Acceptable Levels?	
Sub-Slab Soil Gas	Commercial	5.24 x 10 ⁻⁶	0.267	No	
Indoor Air	Commercial	5.70 x 10 ⁻⁷	0.124	No	

As shown in the table above, VISL results indicate that under a hypothetical worst-case scenario for the sub-slab soil gas to indoor air vapor intrusion pathway for the commercial use exposure scenario, the cumulative LICR and the cumulative HI are within acceptable threshold limits. Similarly, VISL results for the commercial indoor air exposure scenario, the cumulative LICR and the cumulative HI are within acceptable threshold limits. Based on the results sub-slab vapor and indoor air analytical results and the results of the VISL risk evaluation, there does not appear to be an unacceptable risk to Site users under the current commercial exposure scenario.

5.0 Preliminary Conceptual Site Model

Based upon the results of the additional RI activities and previous assessment activities, H&H has prepared a preliminary Conceptual Site Model (CSM) for the Site. The primary CSM provides a framework of the current understanding of the Site conditions and is used for a basis for developing technically feasible cleanup action alternatives and selecting a final cleanup action in accordance with MTCA regulations.

5.1 Media and Contaminants of Concern

Soil

Based on the results of previous assessment in 2022, the following primary compounds of concern (COCs) have been identified in soil at the Site at concentrations above applicable MTCA Method A SCLs:

- PCE; and
- TPH-RRO (C25 C36).

PCE was detected at concentrations up to 1.8 mg/kg in two shallow soil samples (ranging in depth from 1 to 3 ft bgs) that were collected from the interior of the North and South Shops. Additionally, TPH-RRO was detected in one shallow soil sample (1 to 2 ft bgs) collected from the North Shop at a concentration of 4,900 mg/kg.

During the additional assessment activities completed in August 2024, PCE was not detected at concentrations above MTCA Method A SCLs in the soil samples collected from the step out borings in the areas of the previous PCE detections in the North and South Shops. TPH-RRO was detected in the North Shop in soil samples collected from 2 to 4 ft bgs and 4 to 6 ft bgs at concentrations of 2,800 mg/kg and 3,900 mg/kg, respectively.

Groundwater

The results of previous groundwater assessment and the additional RI did not identify impacts to groundwater at the Site at concentrations above MTCA Method A screening levels.

Soil Gas

The results of previous RI and additional RI soil gas assessment activities did not identify the presence of VOCs in sub-slab vapor samples collected from below the slab of the main Site building at concentrations above MTCA Vapor Intrusion Commercial Worker Cancer and Non-Cancer screening levels.

Indoor Air

The results of the indoor air assessment did not identify the presence of VOCs in indoor air samples collected from the interior of the main Site building at concentrations above MTCA Commercial Worker Indoor Air Commercial Worker Cancer and Non-Cancer screening levels.

5.2 Confirmed and Suspected Sources

The presence of PCE and TPH-RRO in shallow soil below the concrete slab of the North and South shops does not appear to be the result of a singular event. Rather, the presence of these compounds in shallow soil at the Site appears to be the result of the use of petroleum products and PCE-containing substances during routine automotive maintenance and repair activities over time. The North and South Shops have been in operation since at least the late-1950s and late-1960s, respectively.

No primary Site COCs were detected in the additional soil samples or in the groundwater samples collected during the 2022 RI. Analytical results of the soil samples collected from the North and South shops during the August 2024 assessment activities suggest that impacts to soil are limited in extent and depth. No Site COCs were detected in the groundwater samples collected during the 2022 or 2024 RI activities. As such, the COCs do not appear to be present in soil at concentrations that represent a Site-specific leaching concern.

5.3 Exposure Pathways and Potential Receptors

This section discusses potential human health and ecological exposure pathways identified for

the Site with the goal of applying the findings to the development of potentially feasible remedial alternatives. Possible receptors include those who visit or work on the Site, including wildlife.

5.3.1 Soil-to-Groundwater Pathway

VOCs and PAHs were not detected in the groundwater samples collected from the six monitoring wells installed and sampled during the October 2022 RI activities. TPH-GRO was detected at estimated concentrations ranging from 32 J μ g/L (MW-5) to 38 J μ g/L (MW-4) and TPH-RRO was detected at an estimated concentration of 150 J μ g/L (MW-3) in the groundwater samples collected during the October 2022 RI activities. None of the detections of TPH were at concentrations above the MTCA Method A GCLs. Additionally, no VOCs were detected at concentrations above the MTCA Method A GCLs in the groundwater samples collected during the August 2024 RI activities.

Based on the absence of PCE in groundwater and the limited low-level presence of TPH-GRO and TPH-RRO in groundwater at the Site, the current soil-to-groundwater pathway appears to be incomplete. Because the detections of PCE are below an existing building which limits contract with stormwater and other forms of precipitation, the potential for PCE to leach to groundwater is minimized. However, because PCE has been detected in soil at concentrations above the MTCA Method A Protection of Groundwater (Vadose Zone) SCL, the soil-to-groundwater pathway could be completed in the future if the existing buildings and/or paved parking and drive areas are removed or if pervious ground surface is increased at the Site.

5.3.2 Direct-Contact Pathway

Soil impacts identified at the Site appear to be limited to shallow soils immediately underlying the concrete slab of the North and South shops. The concrete floor slabs that cover the entire extent of the service departments, are approximately 6-inches thick, and act as a barrier to limit direct-contact with impacted soil. Because the Site is capped with buildings and paved parking lots, the direct-contact exposure pathway (i.e., incidental ingestion, dermal contact, and inhalation of impacted dust) under the current Site conditions appears to be incomplete based on

the presence of physical barriers to exposure.

5.3.3 Air/Soil Vapor Pathway

Sub-slab vapor samples collected during the October 2022 RI activities and the August additional RI activities did not indicate the presence of VOCs at concentrations above the Commercial Worker Cancer and Non-Cancer Sub-Slab Soil Gas Screening Levels. Additionally, analytical results of the indoor air samples collected during the August 2024 additional RI activities did not indicate the presence of VOCs at concentrations above the Commercial Worker Cancer and Non-Cancer Indoor Air Screening Levels. As such, the vapor intrusion exposure pathway does not appear to be a completed pathway based on the current commercial use of the Site. The vapor intrusion exposure pathway should be re-evaluated if the use of the Site changes in the future.

5.4 Proposed Cleanup Standards

This section presents the proposed preliminary cleanup levels and points of compliance for the COCs in soil at the Site. In accordance with WAC 173-340-700, the cleanup levels may be refined as additional information is collected. Final proposed cleanup levels for Site COCs will be presented to and approved by Ecology as part of the development of the cleanup action alternatives selected for the Site.

5.4.1 Points of Compliance

In accordance with MTCA, the point of compliance for direct contact with soil extends to 15 ft bgs, based on a reasonable maximum depth of excavation and assumed placement of excavated soils at the surface where contact occurs. For soil cleanup levels based on leaching to groundwater and the protection of surface water, the soil point of compliance is all depths, above and below the water table. The point of compliance for soil is defined as all soil at the Site where COCs have been detected at concentrations above MTCA soil cleanup levels.

5.4.2 Preliminary Cleanup Levels

The proposed cleanup levels are the concentrations of COCs that are to be met for each medium of concern at the points of compliance defined for the Site. MTCA Method A cleanup levels for Industrial/Commercial land use are appropriate for COCs in soil and groundwater at the Site. The Commercial Worker Indoor Air Screening Levels and the Commercial Worker Sub-Slab Soil Gas Screening Levels are appropriate for COCs in air and vapor at the Site.

6.0 Summary and Conclusions

H&H completed additional RI activities at the Northwest Motorsports Puyallup facility located at 400 River Road in Puyallup, Pierce County, Washington. The additional RI activities were completed between August 12 to 16, 2024, and included the collection of soil, groundwater, subslab soil gas, and indoor air samples for laboratory analysis. Based on the results of previous assessment activities, including the August 2024 additional RI assessment activities, H&H has concluded the following:

- PCE is present at concentrations above MTCA Method A cleanup levels in shallow soil
 underlying the North and South Shops. The PCE impacts appear to be limited in extent
 and have not been identified in soil outside of the service areas or in groundwater at the
 Site.
- TPH-RRO is present at concentrations above MTCA Method A cleanup levels in shallow soil underlying the North Shop. No other soil samples collected at the Site contained TPH-RRO at concentrations above MTCA Method A cleanup levels. Based on the assessment activities and the nature of TPH-RRO, the extent of impacted soil appears to be limited in extent and has not migrated outside the footprint of the North Shop.
- The presence of PCE and TPH-RRO in shallow soil located below the concrete slab of the North and South shops appear to be the result of the use of PCE-containing products such as degreasers and petroleum products during routine automotive maintenance and repair activities over time. The North and South Shops have been in operation since at least the late-1950s and late-1960s, respectively.
- Results of the previous assessment activities and the RI activities indicate that groundwater at the Site has not been impacted. As such, the presence of PCE and TPH-RRO in Site soil does not appear to be a Site-specific leaching concern.

- Sub-slab soil vapor samples collected in August 2024 did not indicate the presence of Site COCs above MTCA Commercial Worker Cancer and Non-Cancer Sub-Slab-Soil Gas screening levels.
- Indoor air samples collected from the North Shop, South Shop, and Business Center did
 not identify COCs above MTCA Commercial Worker Indoor Air screening levels.
 Therefore, the vapor intrusion exposure pathway is considered incomplete.
- Based on the analytical data and the current use of the Site for commercial purposes, the direct exposure, soil leaching to groundwater, and the vapor intrusion exposure pathways to not appear to be completed pathways. However, the vapor intrusion exposure pathway should be re-evaluated in the future if the use of the Site changes.

Based on the conclusions above, there are no completed exposure pathways given current Site conditions and commercial use of the Site. However, the soil to groundwater pathway could be completed if the existing buildings and/or paved parking and driveways are altered. Additionally, the vapor intrusion exposure pathway could be completed if the use of the Site changes in the future. As such, H&H is recommending that PCE and TPH-RRO impacted soil be excavated to minimize the future soil to groundwater pathway and that environmental covenants be recorded on the property deed restricting use of the Site for commercial and industrial purposes to minimize the future vapor intrusion exposure pathway in the future. A Remedial Action Work Plan will be submitted under separate cover.

7.0 References

Schuster, J. E. (2005). *Geologic Map of Washington State*, Washington Division of Geology and Earth Resources, Geologic Map GM-53.

Jones, M. A. (1999). Geologic Framework for the Puget Sound Aquifer System, Washington & British Columbia, U.S. Geological Survey.

Welch, W. B., Johnson, K. H., Savoca, M. E., Lane, R. C., Fasser, E. T., Gendaszek, A. S., Marshall, C. E., Clothier, B. G., & Knoedler, E. N. (2015). *Hydrogeologic Framework, Groundwater Movement, and Water Budget in the Puyallup River Watershed and Vicinity, Pierce and King Counties, Washington*, U.S. Department of Interior, U.S. Geological Survey. Scientific Investigations Report 2015-5068.

EMS (2004). *Underground Storage Tank – Decommissioning Project*, prepared for Friendly Chevrolet by Environmental Management Services, LLC, 400 River Road, Puyallup Washington, April, 5, 2004.

Riley Group (2011). *Focused Phase II Subsurface Investigation*, prepared for NW Motorsport by The Riley Group, Inc., 400 River Road, Puyallup, Washington, April 25, 2011.

Partner (2013). *Phase I Environmental Site Assessment Report*, prepared for Sterling Bank by Partner Engineering and Science, Inc., K&A Holdings, LLC, 400 River Road, Puyallup, Washington, November 7, 2013.

Robinson Noble (2016). *Phase I Environmental Site Assessment*, prepared for HILT Investments Holdings, LLC by Robinson Noble, Inc., 400 River Road, Puyallup, Washington, September 13, 2016.

AECOM (2020). Phase I Environmental Site Assessment – Northwest Motor Sport (Site #3), prepared for RFJ Partner Group by AECOM, 400 River Road, Puyallup, Washington, February 4, 2020.

H&H (2021). Phase II Environmental Site Assessment – Northwest Motorsports, prepared for Sonic Automotive, Inc. by Hart & Hickman, PC, 400 River Road, Puyallup, Washington, November 5, 2021.

H&H (2022). *Remedial Investigation*, prepared for prepared for Sonic Automotive, Inc. by Hart & Hickman, PC, 400 River Road, Puyallup, Washington, May 24, 2024.

Tables

Table 1 Summary of Soil Analytical Data Northwest Motorsports 400 River Road Puyallup, Washington H&H Project No. SAI-413

Sample Location	Prior SB-5 Sample Location	Prior SB-5 Sample Location	Northwest of SB-5R	Northwest of SB-5R	Northeast of SB-5R	Northeast of SB-5R	Regulatory Screening Levels		
Sample ID	SB-5R (2-4)	SB-5R (4-6)	SB-13 (2-4)	SB-13 (4-6)	SB-14 (2-4)	SB-14 (4-6)	Method A Soil Cleanup Levels		Protective of
Depth (ft bgs)	2-4	4-6	2-4	4-6	2-4	4-6		Industrial/	Groundwater (Vadose Zone) ⁽¹⁾
Sample Date			8/14	/2024			Unrestricted Use ⁽¹⁾		
PID Reading (ppm)	0.3	0.1	1.5	1.6	1.2	0.9			
TPH (NWTPH) mg/kg									
Diesel Range Organics (C ₁₀ -C ₂₅)	680	1,000	65	130	<13	<13	2,000	2,000	NE
Residual Range Organics (C ₂₅ -C ₃₆)	2,800	3,900	91	150	<18	18 J	2,000	2,000	NE
VOCs (8260D) mg/kg									
Tetrachloroethene 1,1,1-Trichloroethane	0.014 0.0020 J	0.0069 0.0015 J	0.0016 J <0.0014	0.0032 < 0.0013	0.0019 J <0.0012	0.0022 J <0.0012	0.05 2.0	0.05 2.0	0.05 1.5

Notes:

Orange highlighting indicates concentration exceeds the Method A Residential and Industrial Properties Soil Cleanup Levels.

Blue highlighting and bolding indicates the concentration exceeds both the Method A Soil Cleanup Levels and the Protective of Groundwater (Vadose Zone) Standard.

Only compounds detected in at least one sample are shown above; refer to laboratory report for full list of analyzed compounds

Results shown in milligrams per kilogram (mg/kg).

VOCs = volatile organic compounds; TPH = total petroleum hydrocarbons

ft bgs = feet below ground surface; NE = not established; ppm = parts per million

J = compound detected above the method detection limit but below the reporting limit and is considered an estimated value; NE= not established

NA = not analyzed; -- = not applicable; H = exceeded hold time; + = lab control sample recovery above 100%, value may be biased high.

⁽¹⁾ State of Washington Department of Ecology Cleanup Levels and Risk Calculation (CLARC), dated July 2024, for Method A Soil Cleanup Levels and Protective of Groundwater (Vadose Zone).

Table 1 Summary of Soil Analytical Data Northwest Motorsports 400 River Road Puyallup, Washington H&H Project No. SAI-413

Sample Location	South of SB-5R	South of SB-5R	Northeast of MW-1 Location	Northeast of MW-1 Location	Southeast of MW-1 Location	Southeast of MW-1 Location	Regulatory Screening Levels		
Sample ID	SB-15 (2-4)	SB-15 (4-6)	SB-3R (6-8)	SB-3R (10-12)	SB-16 (6-8)	SB-16 (10-12)	Method A Soil Cleanup Levels		Protective of
Depth (ft bgs)	2-4	4-6						Industrial/	Groundwater (Vadose Zone) ⁽¹⁾
Sample Date	8/14/	2024		8/15	/2024		Unrestricted Use ⁽¹⁾	Commercial ⁽¹⁾	
PID Reading (ppm)	1.5	1.7	1.0	1.2	1.3	1.3		Oommercial	(Vadoo 20110)
TPH (NWTPH) mg/kg									
Diesel Range Organics (C ₁₀ -C ₂₅)	<14	<12	41 J	170	42 J	230	2,000	2,000	NE
Residual Range Organics (C ₂₅ -C ₃₆)	<19	<17	43 J	160	45 J	210	2,000	2,000	NE
VOCs (8260D) mg/kg									
Tetrachloroethene 1,1,1-Trichloroethane	<0.00051 <0.0012	<0.00047 <0.0011	0.0013 J <0.0012	0.00079 J 0.0012	0.0047 <0.0011	<0.00052 <0.0013	0.05 2.0	0.05 2.0	0.05 1.5

Notes:

Orange highlighting indicates concentration exceeds the Method A Residential and Industrial Properties Soil Cleanup Levels.

Blue highlighting and bolding indicates the concentration exceeds both the Method A Soil Cleanup Levels and the Protective of Groundwater (Vadose Zone) Standard.

Only compounds detected in at least one sample are shown above; refer to laboratory report for full list of analyzed compounds

Results shown in milligrams per kilogram (mg/kg).

VOCs = volatile organic compounds; PAHs = polynuclear aromatic hydrocarbons; TPH = total petroleum hydrocarbons

ft bgs = feet below ground surface; NE = not established; OWS = oil-water separator; ppm = parts per million

J = compound detected above the method detection limit but below the reporting limit and is considered an estimated value; NE= not established

NA = not analyzed; -- = not applicable; H = exceeded hold time; B = compound was found in blank and sample; + = lab control sample recovery above 100%, value may be biased high.

⁽¹⁾ State of Washington Department of Ecology Cleanup Levels and Risk Calculation (CLARC), dated February 2024, for Method A Soil Cleanup Levels and Protective of Groundwater (Vadose Zone).

Table 1 Summary of Soil Analytical Data Northwest Motorsports 400 River Road Puyallup, Washington H&H Project No. SAI-413

Sample Location	Southwest of MW-1 Location	Southwest of MW-1 Location	Northwest of MW-1 Location	Northwest of MW-1 Location	Regulatory Screening Levels		
Sample ID	SB-17 (6-8)	SB-17 (10-12)	SB-18 (10-12)	SB-18 (12-14)	Method A Soil Cleanup Levels Protective of		
Depth (ft bgs)						Industrial/	Groundwater (Vadose Zone) ⁽¹⁾
Sample Date		8/15/	2024		Unrestricted Use ⁽¹⁾	Commercial ⁽¹⁾	
PID Reading (ppm)	1.2	1.5	0.8	0.8		Oommercial	
TPH (NWTPH) mg/kg							
Diesel Range Organics (C ₁₀ -C ₂₅)	79	120	180	38 J	2,000	2,000	NE
Residual Range Organics (C ₂₅ -C ₃₆)	80	110	150	47 J	2,000	2,000	NE
VOCs (8260D) mg/kg							
Tetrachloroethene 1,1,1-Trichloroethane	0.0023 J <0.0013	<0.00039 <0.00095	<0.00048 <0.0012	<0.00048 <0.0012	0.05 2.0	0.05 2.0	0.05 1.5

Notes:

Blue highlighting and bolding indicates the concentration exceeds both the Method A Soil Cleanup Levels and the Protective of Groundwater (Vadose Zone) Standard.

Only compounds detected in at least one sample are shown above; refer to laboratory report for full list of analyzed compounds Results shown in milligrams per kilogram (mg/kg).

VOCs = volatile organic compounds; PAHs = polynuclear aromatic hydrocarbons; TPH = total petroleum hydrocarbons

ft bgs = feet below ground surface; NE = not established; OWS = oil-water separator; ppm = parts per million

J = compound detected above the method detection limit but below the reporting limit and is considered an estimated value; NE= not established

NA = not analyzed; -- = not applicable; H = exceeded hold time; B = compound was found in blank and sample; + = lab control sample recovery above 100%, value may be biased high.

⁽¹⁾ State of Washington Department of Ecology Cleanup Levels and Risk Calculation (CLARC), dated February 2024, for Method A Soil Cleanup Levels and Protective of Groundwater (Vadose Zor Orange highlighting indicates concentration exceeds the Method A Residential and Industrial Properties Soil Cleanup Levels.

Table 2 Summary of Monitoring Well Construction and Depth to Groundwater Data **Northwest Motorsports** 400 River Road Puyallup, Washington H&H Project No. SAI-413

		Well C	onstruction Info	Groundwater Elevation Data				
Well ID	Date Installed	TOC Elevation ⁽¹⁾ (ft)	Well Diameter (in)	Total Well Depth (ft bTOC)	Screen Interval (ft bTOC)	Date Measured	Depth to Groundwater (ft bTOC)	Groundwater Elevation (ft)
						10/7/2022	15.60	22.99
MW-1	10/3/2022	38.59	2.0	19.25	10 - 20	8/13/2024	16.83	21.76
						10/7/2022	15.15	23.08
MW-2	10/4/2022	38.23	2.0	19.10	10 - 20	8/14/2024	16.40	21.83
						40/7/0000	10.01	00.11
					7 - 22	10/7/2022	10.81	23.14
MW-3	10/5/2022	33.95	2.0	20.90		8/13/2024	12.17	21.78
						10/7/2022	16.22	23.03
MW-4	10/5/2022	39.25	2.0	22.10	7 - 22	8/14/2024	17.50	21.75
						10/7/2022	17.67	22.89
MW-5	10/5/2022	40.56	2.0	23.31	15 - 25	8/14/2024	18.80	21.76
					8 - 23	10/7/2022	17.50	23.04
MW-6	10/7/2022	40.54	2.0	22.55		8/15/2024	18.70	21.84

ft bTOC = feet below top of casing

Table 3 Summary of Groundwater Analytical Data Northwest Motorsports 400 River Road Puyallup, Washington H&H Project No. SAI-413

Sample Location	Ground	lwater Monitoring I	Regulatory Screening Level		
Sample ID	MW-1	MW-3	MW-4	- Regulatory Screening Level	
Sample Date	8/13/2024		8/14/2024	Groundwater Method A ⁽¹⁾	
VOCs (8260D)					
1,1,1-Trichloroethane	<0.025	<0.025 H	0.18 J	200	

Notes:

⁽¹⁾ State of Washington Department of Ecology Cleanup Levels and Risk Calculation (CLARC), dated February 2021, for Method A Groundwater Cleanup Levels.

Only compounds detected in at least one sample are shown above;

refer to laboratory report for full list of analyzed compounds

Results shown in micrograms per liter (ug/L); <(0.22) indicates non-detect at method detection limit

VOCs = volatile organic compounds

J = compound detected above the method detection limit but below the reporting limit and is considered an estimated value H = sample was prepped or analyzed beyond the specified holing time;

Table 4 Summary of Sub-Slab Vapor Analytical Data Northwest Motorsports 400 River Road Puyallup, Washington H&H Project No. SAI-413

Sample Location	Showroom	North Shop	North Shop	Busines	s Center	South Shop	South Shop	Basement	Outbuilding Service Bay	Regulatory Sc	reening Levels
Sample ID	SSV-1	SSV-2	SSV-3	SSV-4	SSV-DUP-1	SSV-5	SSV-6	SSV-7	SSV-8	Commerc	ial Worker
Sample Date	8/16/2024								Noncancer ⁽¹⁾	Cancer ⁽¹⁾	
VOCs (8260D) ug/m ³											
Acetone	2.3 J	3.6 J	2.9 J	NA	29	4.5 J	6.9 J	2.6 J	5.0 J	NE	NE
Benzene	< 0.42	<0.42	<0.42	NA	<0.42	<0.42	<2.1	<0.42	0.85 J	3,900	50
Carbon Disulfide	1.7 J	2.3 J	<0.38	NA	<0.38	<0.38	<1.9	< 0.38	<0.38	91,000	NE
Chloroform	<1.1	1.2 J	<1.1	NA	<1.1	<1.1	<5.4	<1.1	<1.1	13,000	17
Chloromethane	< 0.42	< 0.42	<0.42	NA	1.1 J	< 0.42	<2.1	< 0.42	0.73 J	12,000	NE
1,2-Dibromoethane	<1.2	<1.2	<1.2	NA	<1.2	<1.2	<5.8	<1.2	2.7 J	NE	NE
Dichlorodifluoromethane	6.0 J	3.5 J	16	NA	2.4 J	3.1 J	9.5 J	53	2.5 J	13,000	NE
1,1-Dichloroethene	< 0.62	2.2 J	< 0.62	NA	< 0.62	< 0.62	<2.3	< 0.62	< 0.62	26,000	NE
1,4-Dioxane	< 0.66	< 0.66	< 0.66	NA	22	< 0.66	<3.3	< 0.66	< 0.66	3,900	78
Ethanol	100	89	92	NA	230	180	190	74	120	NE	NE
Ethylbenzene	< 0.64	1.0 J	1.4 J	NA	< 0.64	< 0.64	<3.2	5.6 J	2.5 J	130,000	NE
1-ethyl-4-methylbenzene	<0.60	<0.60	2.7 J	NA	2.0 J	1.7 J	<3.0	3.1 J	2.6 J	NE	NE
Isopropyl alcohol	0.98 J	1.1 J	0.96 J	NA	10	1.9 J	<3.2	< 0.64	1.2 J	NE	NE
Methyl ethyl ketone	<0.38	< 0.38	< 0.38	NA	4.2	< 0.38	<1.9	< 0.38	< 0.38	650,000	NE
Methyl isobutyl ketone	< 0.52	< 0.52	< 0.52	NA	2.0 J	< 0.52	<2.6	< 0.52	< 0.52	390,000	NE
Tetrachloroethene	9.8	430	170	NA	<1.0	560	1,200	21	8.4	5,200	1,500
Toluene	< 0.54	1.6 J	2.3 J	NA	3.4 J	2.5 J	<2.7	2.2 J	6.8	650,000	NE
1,1,1-Trichloroethane	180	43	96	NA	<0.78	10	130	1.4 J	17	650,000	NE
Trichloroethene	<1.1	13	<1.1	NA	<1.1	<1.1	<5.4	<1.1	<1.1	250	95
Trichlorofluoromethane	2.7 J	5.1 J	6.7 J	NA	1.6 J	6.9 J	7.2 J	2.0 J	2.8 J	91,000	NE
1,2,4-Trimethylbenzene	<0.80	<0.80	5.3 J	NA	3.8 J	<0.80	<4.0	6.0 J	3.7 J	7,800	NE
1,3,5-Trimethylbenzene	<0.80	<0.80	1.5 J	NA	1.3 J	<0.80	<4.0	1.2 J	1.2 J	7,800	NE
m&p-Xylene	<1.2	2.8 J	5.8 J	NA	2.7 J	3.3 J	<6.1	6.3 J	9.2 J	NE	NE
o-Xylene	<0.60	<0.60	1.4 J	NA	1.1 J	1.0 J	<3.0	<0.60	3.2 J	13,000	NE

Notes:

Orange highlighting indicates concentration exceeds the Commercial Worker Cancer Screening Levels.

Blue highlighting and bolding indicates the concentration exceeds both the Commercial Worker Noncancer and Cancer Screening Levels.

Only compounds detected in at least one sample are shown above; refer to laboratory report for full list of analyzed compounds

Results shown in micrograms per cubic meter (ug/m³).

VOCs = volatile organic compounds

SSV-4 not analyzed due to no vacuum remaining at time of laboratory arrival

NE = not established; NA = not analyzed

⁽¹⁾ State of Washington Department of Ecology Cleanup Levels and Risk Calculation (CLARC), dated July 2024, for Vapor Intrusion Commercial Worker Sub-Slab Soil Gas Screening Levels.

Table 5 Summary of Indoor Air Analytical Data Northwest Motorsports 400 River Road Puyallup, Washington H&H Project No. SAI-413

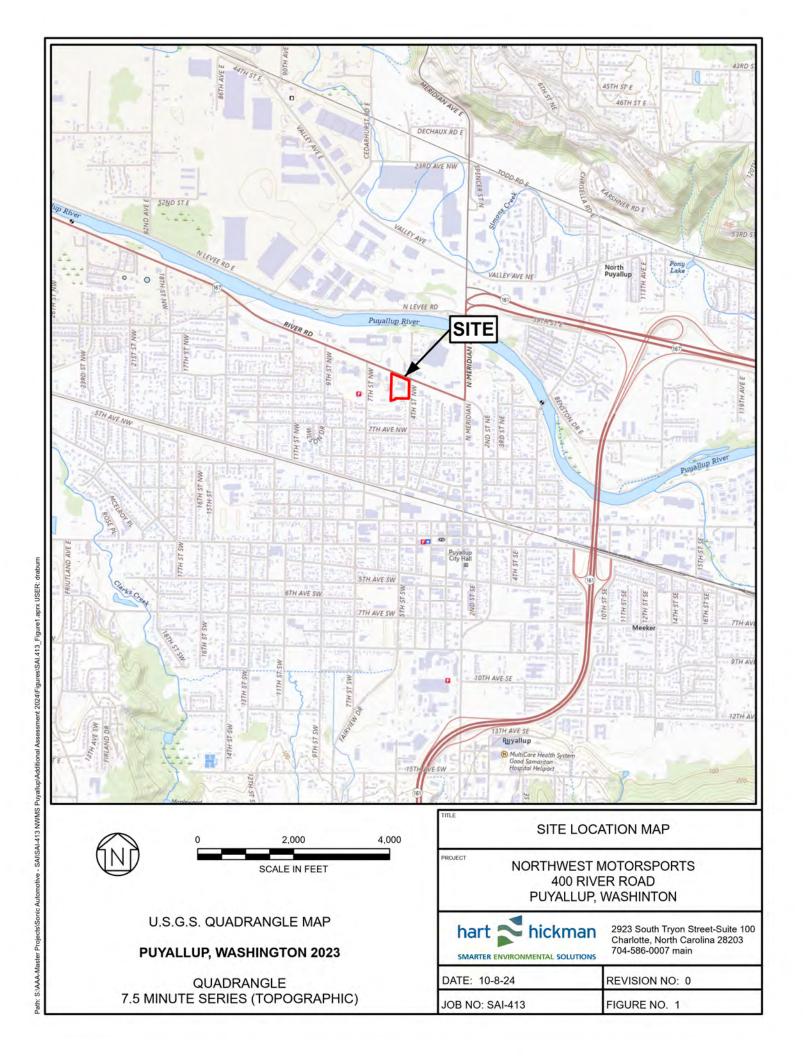
Sample Location	South Service Bay	North Serivce Bay	Business Center	Regulatory Scr	eening Levels	
Sample ID	IAS-1	IAS-2	IAS-3	Commercial Worker		
Sample Date		8/16/2024		Noncancer ⁽¹⁾	Cancer ⁽¹⁾	
VOCs (8260D) ug/m ³						
Acetone	10	11	10	NE	NE	
Chlorodifluoromethane	< 0.53	0.84 J	< 0.53	195,000	NE	
Chloromethane	1.1 J	1.1 J	1.1 J	350	NE	
Dichlorodifluoromethane	2.0 J	2.2 J	2.2 J	389	NE	
1,1-Difluoroethane	3.8 J	<2.0	3.5 J	156,000	NE	
Ethanol	510	130	470	NE	NE	
Ethylbenzene	< 0.32	2.7 J	0.44 J	3,890	NE	
1-ethyl-4-methylbenzene	< 0.30	9.9	1.4 J	NE	NE	
n-Heptane	0.55 J	4.8	0.82 J	1,560	NE	
Isopropyl alcohol	6.1	3.3	5.6	NE	NE	
Methylene chloride	1.0 J	1.3 J	< 0.40	2,340	1,170	
Methyl ethyl ketone	0.73 J	0.91 J	< 0.19	19,500	NE	
Styrene	0.51 J	<0.24	<0.24	3,890	NE	
Tetrachloroethene	0.87 J	< 0.50	< 0.50	156	44.9	
Toluene	1.9 J	6.8	2.2	19,500	NE	
Trichlorofluoromethane	1.1 J	1.6 J	1.7 J	2,730	NE	
1,2,4-Trimethylbenzene	0.58 J	12	1.8 J	234	NE	
1,3,5-Trimethylbenzene	< 0.40	3.5 J	0.61 J	234	NE	
m&p-Xylene	1.1 J	12	1.9 J	NE	NE	
o-Xylene	< 0.30	5.3	0.81 J	NE	NE	
Total Xylenes	1.1 J	18	2.7 J	390	NE	

Notes:

Orange highlighting indicates concentration exceeds the Commercial Worker Cancer Screening Levels.

Blue highlighting and bolding indicates the concentration exceeds both the Commercial Worker Noncancer and Cancer Screening Levels.

Only compounds detected in at least one sample are shown above; refer to laboratory report for full list of analyzed compounds Results shown in micrograms per cubic meter (ug/m³).


VOCs = volatile organic compounds

NE = not established; NA = not analyzed

⁽¹⁾ State of Washington Department of Ecology Cleanup Levels and Risk Calculation (CLARC), dated July 2024, for Commercial Worker Indoor Air Screening Levels

Figures

Vlaster Projects/Sonic Automotive - SAI/SAI-413 NWM/S Puyallup/Additional Assessment 2024/Figures/SAI.413_20241008 dwg, FIG 2, 10/9/2024 3:27:57 PM, drabum

A-Master Projects/Sonic Automotive - SAI/SAI-413 NWMS Puyallup/Additional Assessment 2024/Figures/SAI.413_20241008.dwg, FIG 3, 10/9/2024 3:28:25 PM, drabu

vA-Master Projects/Sonic Automotive - SANSA1-413 NWMS Puyallup/Additional Assessment 2024/Figures/SA1.413_20241008.dwg, FIG 4, 10/9/2024 3:28:53 PM, drs

JOB NO. SAI-413

FIGURE NO. 5

A-Master Projects|Sonic Automotive - SAI\SAI-413 NWMS Puyallup'Additional Assessment 2024/Figures\SAI.413_20241008.dwg, FIG 5, 10/9/2024 3:29:17 PM, drab

JOB NO. SAI-413

FIGURE NO. 6

VA-Master Projects/Sonic Automotive - SAI/SAL413 NWMS Puyallup/Additional Assessment 2024/Figures/SAL413_20241008.dwg, FIG 6, 10/9/2024 3:29:57 PM, drabum

Appendix A Previous Assessment Reports

Via Sharepoint

May 24, 2024

WADE Toxics Cleanup Program Department of Ecology PO Box 47000 Lacey, Washington 98504-7600

Attn: Ms. Sarah Wollwage

Re: Expedited VCP Application

NWMS Puyallup 400 River Road

Puyallup, Washington H&H Job No. SAI-413

Dear Ms. Wollwage:

Hart & Hickman, PC (H&H) on behalf of Sonic Automotive Inc. (Sonic), parent company of Northwest Motorsports (NWMS) is submitting the attached Remedial Investigation Report and Expedited Voluntary Cleanup Program Application for the Northwest Motorsports facility located at 400 River Road in Puyallup, Washington.

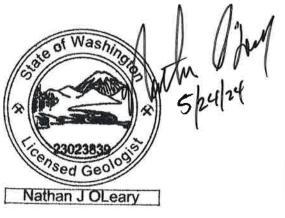
Please contact us if you have any questions or require additional information.

Sincerely,

Hart & Hickman, PC

Nathan O'Leary, PG, CHMM

Project Manager


REMEDIAL INVESTIGATION REPORT

H&H JOB NO. SAI-413 MAY 24, 2024

NORTHWEST MOTORSPORTS PUYALLUP

400 River Road Puyallup, Washington

SMARTER ENVIRONMENTAL SOLUTIONS

Remedial Investigation Report Northwest Motorsports Puyallup 400 River Road Puyallup, Washington H&H Job No. SAI.413

Table of Contents

1.0 Introduction	1
1.1 Project Contacts	1
2.0 General Site Information	2
2.1 Current and Historical Site Use	2
2.2 Topographic Setting	3
2.3 Geologic and Hydrogeologic Setting	2
2.4 Summary of Previous Assessment Activities	5
2.4.1 UST Decommissioning Project	5
2.4.2 Focused Phase II Subsurface Investigation	5
2.4.3 Previous Phase I Environmental Site Assessments	<i>.</i>
2.4.4 Phase II ESA	
3.0 Remedial Investigation	8
3.1 Soil Assessment	8
3.2 Groundwater Assessment	10
3.3 Sub-Slab Vapor Assessment	11
3.4 Investigation Derived Waste	13
4.0 Remedial Investigation Results	15
4.1 Soil Analytical Results	15
4.2 Groundwater Flow and Hydraulic Gradient	16
4.3 Groundwater Analytical Results	16
4.4 Sub-Slab Vapor Analytical Results	17
5.0 Preliminary Conceptual Site Model	19
5.1 Media and Contaminants of Concern	19
5.2 Confirmed and Suspected Sources	20
5.3 Exposure Pathways and Potential Receptors	20

5.3.1	Soil-to-Groundwater Pathway20
5.3.2	Direct-Contact Pathway
5.3.3	Air/Soil Vapor Pathway21
5.4 Pro	posed Cleanup Standards
5.4.1	Points of Compliance
5.4.2	Preliminary Cleanup Levels
6.0 Sum	mary and Conclusions23
7.0 Refer	rences
	<u>List of Tables</u>
Table 1	Summary of Soil Analytical Data
Table 2	Summary of Monitoring Well Construction and Depth to Groundwater Data
Table 3	Summary of Groundwater Analytical Data
Table 4	Summary of Sub-Slab Vapor Analytical Data
	<u>List of Figures</u>
Figure 1	Site Location Map
Figure 2	Site Map
Figure 3	Soil Boring Location Map
Figure 4	Monitoring Well Location Map
Figure 5	Sub-Slab Vapor Monitoring Point Location Map
Figure 6	Groundwater Potentiometric Surface Map

List of Appendices

Appendix A	Previous Assessment Reports
Appendix B	Soil Boring and Monitoring Well Construction Logs
Appendix C	Field Sampling Forms
Appendix D	Laboratory Analytical Reports
Appendix E	EPA VISL Calculator Results

Remedial Investigation Report Northwest Motorsports Puyallup 400 River Road Puyallup, Washington <u>H&H Job No. SAI.413</u>

1.0 Introduction

Hart & Hickman, PC (H&H) has prepared this Remedial Investigation Report on behalf of EP Realty WA LLC, a subsidiary of Sonic Automotive, Inc. (Sonic), for the Northwest Motorsports Puyallup facility located at 400 River Road in Puyallup, Pierce County, Washington (Site or subject Site). A Site location map is provided as Figure 1 and a Site map is provided as Figure 2.

The purpose of the Remedial Investigation (RI) was to collect additional data to further characterize the nature and extent of impacts at the Site. To address environmental concerns associated with the Site, Sonic entered the Site into the Washington State Department of Ecology (Ecology) Voluntary Cleanup Program (VCP) in February 2024. Currently, the VCP Application is pending and no VCP Identification No. has been assigned. The RI activities documented herein were conducted in general accordance with Washington State Model Toxics Control Act (MTCA) Cleanup Regulation as established in Chapter 173-340 of the Washington Administrative Code (WAC).

1.1 Project Contacts

Current Owner

Mr. Tim Hallice EP Realty WA LLC 4401 Colwick Road Charlotte, North Carolina 28211 (704) 566-2414 tim.hallice@sonicautomotive.com

Ecology Site Manager

Pending/TBD

Environmental Consulting Firm

Mr. Nathan O'Leary, PG, CHMM Hart & Hickman, PC 2923 South Tryon Street, Suite 100 Charlotte, North Carolina 28203 (704) 586-0007 noleary@harthickman.com

2.0 General Site Information

The Site is comprised of three parcels of land totaling approximately 3.9-acres (Parcel IDs 0420214807, 0420214014, and 0420281170) located southwest of the intersection of River Road and 4th Street NW. The Site is improved with three commercial buildings that are currently occupied by Northwest Motorsports (NWMS) for automotive and motorsport vehicle sales and service operations. The main Site building consists of an approximately 17,000-square foot (sq ft) two-story automotive dealership building that includes showrooms, offices, parts storage, and two service garages (identified as North and South Shops). An approximately 3,800-sq ft office building with basement-level service/wash bays is located in the southern portion of the Site, and an approximately 3,700-sq ft service and tire shop is located in the southwestern portion of the Site. Additional improvements include asphalt-paved parking, covered wash bays, and perimeter fencing. The entire Site is covered by buildings or asphalt-pavement.

The subject Site is located within a commercial corridor along River Road, approximately one-mile north of downtown Puyallup. The Site and surrounding properties to the west, south, and east are zoned General Commercial (CG). Surrounding properties to the north (beyond River Road) are zoned River Road Mixed Use (RMX). The anticipated future land use of the Site is expected to remain commercial, and no significant changes in zoning are expected to occur.

2.1 Current and Historical Site Use

Historical topographic maps from the early 1940s indicate that the Site contained one small structure or residence and wooded land. By the early 1950s, the small structure was removed and portions of the existing main dealership building were constructed, including the North Shop. By 1968, several building additions were completed that included construction of the South Shop.

The Site has been used for automotive sales and service activities since the early 1950s and has operated under various names since that time. Previous Site occupants have included Grant's Chevrolet in the 1950s and 1960s, Service Chevrolet in the 1970s through the mid-1980s, Ken

Parks Chevrolet in mid-1980s through the mid-1990s, Puyallup Chevrolet in the mid-1990s through the early 2000s, and Friendly Chevrolet in the 2000s through the early 2010s. NWMS has operated at the Site since 2011.

Routine automotive maintenance and repair operations include the use of petroleum products and the generation of various waste fluids (e.g., used motor oil, used antifreeze, spent degreasers, etc.) that require special management and disposal. In addition, historical automotive service operations commonly included the use of various chlorinated solvents as degreasers, which if released have the potential to persist in the environment.

Automotive sales and service activities at the Site historically included the use of in-ground hydraulic lifts and the operation of four underground storage tanks (USTs). The in-ground hydraulic lifts were located within the north and south shops, and were decommissioned and removed in 1987 and 2004 (Partner, 2013). Two waste oil USTs (reportedly 500-gallon and 650-gallon in capacity) were situated within a single tank basin located outside the southern exterior wall of the South Shop, and were removed in 1996 and 2004, respectively. One 5,000-gallon gasoline UST was located south of the dealership building and was removed in 1996. Subsequent sampling was performed at the former gasoline UST location in 2003, and approximately 26 tons of petroleum-impacted soil was reportedly excavated from this location (Robinson Noble, 2016). Additionally, one 500-gallon heating oil UST, located southeast of the dealership building, was closed-in-place in 1996. Current Site operations include the use of aboveground hydraulic lifts and aboveground storage tanks (ASTs).

2.2 Topographic Setting

The Site is located approximately 1,200 ft south of the Puyallup River, in an area of relatively flat topography. The Site ranges in elevation from approximately 40 ft above mean sea level (msl) along River Road to the north and 4th Street NW to the east, to approximately 35 ft msl near the southwestern portion of the Site.

2.3 Geologic and Hydrogeologic Setting

The Site is located within the Puyallup River Valley of the Puget Lowland physiographic region of Washington (Schuster, 2005). The Puget Lowland region is a wide low-lying area between the Cascade Range to the east and Olympic Mountains to the west. The Site is underlain by Quaternary-aged alluvium deposited by the Puyallup River during a number of glacial episodes (Jones, 1999). Alluvium deposition occurred during glacial advances and retreats, which created the region's subsurface conditions. Outwash sediments were deposited by rivers, streams, and post-glacial lakes during the glacial episodes. Regionally, these sediments generally consist of interlayered and/or sequential deposits of alluvial clays, silts, and sands situated over deposits of glacial till (commonly consisting of silty sand to sandy silt with gravels).

Soil encountered beneath the Site during the RI generally consisted of well graded sands and clayey sands to depths of approximately 10 feet below ground surface (ft bgs), which are underlain by poorly graded sands and gravels to approximately 22 ft bgs, and followed by a stiff silt layer to depths of up to 25 ft bgs, the greatest depth encountered during the assessment activities.

According to the *Geologic Framework for the Puget Sound Aquifer System*, the Site is underlain by the Puyallup River aquifer (Jones, 1999). Groundwater within the upper Puyallup River aquifer occurs primarily within alluvial deposits and glacial outwash deposits, and is generally unconfined. The depth of this upper alluvial aquifer unit is typically less than 100 ft thick, but can exceed 240 ft thick along the Puyallup River (Welch et al., 2015). The Puyallup River, located approximately 1,200 feet north of the Site at its closest point, exerts regional control on groundwater flow within the shallow or uppermost groundwater bearing unit, with flow being towards the river (north) and its downgradient (northwesterly) direction.

During the RI, groundwater was encountered at depths ranging from approximately 11 ft below top of casing (BTOC) south of the dealership building to approximately 18 ft BTOC along street level to the north and east of the dealership building. The primary flow direction of shallow

groundwater measured in the Site wells during the RI was to the north towards the Puyallup River, which is consistent with area topography.

2.4 Summary of Previous Assessment Activities

Copies of the reports summarized below are provided in Appendix A.

2.4.1 UST Decommissioning Project

Environmental Management Service, LLC (EMS) completed UST and in-ground hydraulic lift removal activities at the Site in April 2004 (EMS, 2004). The report documents the removal of one 650-gallon waste oil UST located along the south exterior wall of the South Shop and one two-piston in-ground hydraulic lift from the interior of the South Shop. The 650-gallon waste oil tank reportedly replaced an older waste oil tank in the same location that was removed in 1987. Following the UST and lift removals, impacted soils were excavated for off-Site disposal, and soil samples were collected from the excavation sidewalls and bases for laboratory analysis of diesel and oil-range petroleum hydrocarbons. Analytical results did not indicate impacts above the MTCA cleanup levels. The Tacoma-Pierce County Health Department issued a No Further Action (NFA) letter for the 650-gallon waste oil UST in September 2004.

2.4.2 Focused Phase II Subsurface Investigation

The Riley Group, Inc. (Riley Group) evaluated soil and groundwater conditions at an oil/water separator (OWS) located along the southern Site boundary in April 2011 (Riley Group, 2011). The assessment included the advancement of one soil boring along the OWS influent line. Shallow groundwater was reported in the boring at approximately 11 ft bgs. Two soil samples and a grab groundwater sample were collected from the boring for laboratory analysis of TPH and VOCs. Laboratory analytical results did not indicate the presence of analyzed compounds at concentrations above laboratory reporting limits.

2.4.3 Previous Phase I Environmental Site Assessments

Previous Phase I Environmental Site Assessments (ESAs) were completed by others in 2013, 2016, and 2020 (Partner, 2013; Robinson Noble, 2016; and AECOM, 2020). The previous Phase I ESA reports summarize a prior Phase II ESA completed at the Site by Encore Environmental (Encore) in 2003. Encore reportedly advanced 18 borings across the Site to evaluate the potential for impacts associated with 11 former and one active in-ground hydraulic lift locations, a former gasoline UST (removed in 1987), a closed-in-place heating oil UST, storm drains, and an adjacent off-Site property. One soil sample and one groundwater sample (if encountered) was collected from each of the borings for laboratory analysis of gasoline, diesel, and/or oil-range TPH and VOCs.

Soil analytical results from the 2003 Encore assessment indicated the presence of xylenes near the former gasoline UST basin and TPH-DRO/TPH-GRO near the 650-gallon waste oil UST at concentrations above the MTCA Model A soil screening levels. No other compounds were detected in the soil samples above MTCA Model A soil screening levels, and no analytes were detected in the groundwater samples collected. EMS reportedly conducted excavation activities in the vicinity of the former gasoline UST in September 2003 resulting in the removal and disposal of approximately 26 tons of petroleum-impacted soil (Partner, 2013). Soil impacts associated with the former 650-gallon waste oil UST were removed during UST closure activities conducted by EMS in April 2004 (as discussed above in Section 2.4.1). Confirmation samples collected by EMS from the sidewalls and bases of the UST excavations did not indicate residual impacts above MTCA Method A cleanup levels.

Based on the results of the Phase I ESA activities, the following environmental concerns were identified in connection with the Site:

- The long-term use of the Site for automotive repair and service activities dating back to the 1950s;
- An OWS with aboveground skimmer that services a wash bay in the southern portion of the Site;

- Former in-ground hydraulic lifts in the service departments;
- A catch basin located adjacent to the southeast corner of the main dealership building, which is pumped to another catch basin located within close proximity during significant rain events; and
- Surrounding properties used for automotive sales and service activities, including the property to the east, which was identified as a gas station in the early 1970s.

2.4.4 Phase II ESA

H&H completed a Phase II ESA at the subject Site in October 2021 (H&H, 2021). During the on-Site activities, H&H on the southern portion of the Site adjacent to a metal scrap bin located between the shops (SB-4), and in the central portion of the South Shop (SB-3) and North Shop (SB-5). Based on field screening results, H&H collected one soil sample from each boring for laboratory analysis of VOCs, polynuclear aromatic hydrocarbons (PAHs), and TPH by Northwest Volatile Petroleum Products (NWTPH) Method.

Laboratory results indicated the presence of tetrachloroethene (PCE) in the soil samples collected from SB-3 (1.3 mg/kg) and SB-5 (1.8 mg/kg) at concentrations above the MTCA Method A cleanup level of 0.5 mg/kg. Additionally, TPH residual oil-range organics (TPH-RRO) was detected in soil sample SB-5 at a concentration of 4,900 mg/kg which is above the MTCA Method A cleanup level of 2,000 mg/kg. No other compounds or TPH fractions were detected in the soil samples at concentrations above MTCA Method A cleanup levels.

3.0 Remedial Investigation

H&H completed RI activities at the Site between October 3 and 7, 2022. H&H contracted with Steadfast Services Northwest, LLC (Steadfast), a licensed Washington drilling contractor, to provide environmental drilling services during the assessment. The RI activities included the collection of soil, groundwater, and sub-slab soil gas samples for laboratory analysis. A brief summary of the RI activities documented herein is provided below.

- Advancement of seven soil borings around and within the North and South Shops to further delineate impacts within, and adjacent to, the service areas;
- Conversion of six of the soil boring locations to shallow permanent monitoring wells; and
- Installation of eight sub-slab vapor points within the service areas, showroom floor, office areas, and parts storage areas of the main building, as well as within the basement level of the southern office building.

Prior to conducting field activities, H&H contacted Washington 811, the public utility locating service, to mark subsurface utilities located on the Site. H&H also contracted with Ground Penetrating Radar Systems, LLC (GPRS), a private utility locator, to screen proposed boring locations for subgrade utilities which were not identified by the public locator, using ground penetrating radar (GPR) and electromagnetic (EM) scanning methods. In addition, in areas where surface conditions allowed, a decontaminated stainless-steel hand auger was advanced to a depth of approximately 5 ft bgs prior to utilizing mechanical drilling equipment at each boring location to clear the boring of potential subsurface utilities.

3.1 Soil Assessment

H&H advanced seven (7) soil borings (SB-6 through SB-12) within and surrounding the service shops. At each boring location, a concrete core drill was used to penetrate the concrete slab. The soil boring locations are depicted on Figure 3 and are described below:

• Soil boring SB-6 was advanced inside the Southern Shop, near the location of previous

- soil sample SB-3, where an elevated concentration of PCE was detected in the subsurface.
- Soil borings SB-7, 8, 10, and 11 were advanced generally surrounding the shops to the east, west, north, and south, respectively.
- Soil boring SB-9 was advanced immediately outside of the North Shop, near the location
 of previous sample SB-5, where elevated PCE and TPH-RRO concentrations were
 detected in the subsurface. Please note that SB-5 was moved outside of the North Shop
 due to low ceiling constraints within that portion of the Shop that prevented drill rig
 access.
- Soil boring SB-12 was advanced inside the western portion of the North Shop.

At each soil boring location, the initial 5 ft was advanced with a decontaminated stainless-steel hand auger to clear for subsurface utilities. Beyond the initial 5 ft, soil borings were advanced with a track-mounted direct push technology (DPT) drill rig to 10 ft bgs. During boring advancement, soil was recovered in 5-ft cores using an acetate sleeve-lined Macro-Core® sampler or in approximate one-ft intervals from the hand auger bucket. The recovered soil was logged for lithological description and field screened for indications of potential impacts by visual observation of staining and the presence of organic vapors using a calibrated photoionization detector (PID). Based upon field screening results, H&H collected one soil sample from each boring for laboratory analysis. Field screening results did not indicate the likely presence of significant impacts at the boring locations, and PID readings for each boring were less than 5 parts per million by volume (ppm-v). Soil boring logs including lithological descriptions and field screening results are provided in Appendix B.

Soil samples selected for laboratory analysis were placed directly into dedicated laboratory supplied sample containers, labeled with the sample identification, date, and requested analysis, and placed in a laboratory supplied cooler with ice. The soil samples were submitted to Eurofins, USA (Eurofins) – Spokane, a Washington-certified laboratory under standard chain of custody protocols for analysis of VOCs by EPA Method 8260D, PAHs by EPA Method 8270E, and TPH by the NWTPH Method. For quality assurance/quality control (QA/QC) purposes, one duplicate soil sample (labeled DUP-1) was collected from soil boring SB-12.

Following the soil sampling activities, any soil boring which was not converted into a monitoring well was properly abandoned and the surface was patched. Additionally, the horizontal locations of the soil borings were estimated using a sub-meter global positioning system (GPS) unit.

3.2 Groundwater Assessment

To evaluate the potential for impacts to groundwater associated with historical Site operations, six (6) shallow Type II monitoring wells (MW-1 through MW-6) were installed at the Site. Upon completion of the advancement of each soil boring, with exception of SB-12, the DPT boreholes were over-drilled using 4.25" inner diameter hollow stem auger (HSA) methods. The HSAs were advanced to the terminal depths reached during the DPT activities and the monitoring well was installed. The locations of the monitoring wells are shown on Figure 4, and a potentiometric surface map is provided as Figure 5.

The monitoring wells are constructed with 2-inch diameter PVC casing with 15 ft of 0.010-inch slotted well screen set to bracket the shallow water table. A sand filter pack was placed around the well screen in the borehole annulus and extended to approximately two ft above the top of the well screen. A bentonite seal was placed above the sand pack and hydrated. The remaining portion of the borehole annulus was filled with cement grout to grade. The wells were completed with a lockable steel flush-mount cover set inside a two ft by two ft concrete pad. Well construction information is summarized in Table 2. Well construction records are provided in Appendix B.

Following installation, the six monitoring wells were developed by the drilling contractor to remove fine suspended colloidal material and improve the hydraulic connection between the aquifer and screened interval. At least 24 hours after development of the new monitoring wells occurred, H&H purged each of the wells using low flow/low stress techniques until the field parameters of pH, conductivity, temperature, and turbidity stabilized.

H&H collected groundwater samples for laboratory analysis on October 6 and 7, 2022 using low

flow purging techniques with a peristaltic pump and dedicated polyethylene tubing. Samples for VOC analysis were collected using the "soda-straw" method. The intake point of the pump tubing was placed in the approximate mid-portion of the submerged well screen. During purging, field measurements of pH, specific conductivity, temperature, dissolved oxygen (DO), and oxidation reduction potential (ORP) were measured with a YSI Pro Plus water quality meter equipped with a flow-through cell, and turbidity was measured using a Hach 2100Q turbidity meter. Water levels were measured during the purging process to ensure the pump rate did not cause significant drawdown of the water column, and samples were collected following stabilization of field parameters and when turbidity readings were below 10 nephelometric turbidity units (NTUs), when possible. Copies of the groundwater sampling forms are provided in Appendix C.

The groundwater samples were collected directly into laboratory supplied sample containers, labeled with the sample identification, date, and requested analysis, placed in a laboratory supplied cooler with ice, and shipped via courier under chain-of-custody protocol to Eurofins. Groundwater samples were collected from all six of the newly installed wells for laboratory analysis of VOCs by EPA 8260D, PAHs by EPA Method 8270E, and TPH by the NWTPH Method. For QA/QC purposes, one duplicate groundwater sample (labeled DUP-1) was collected from monitoring well MW-4.

3.3 Sub-Slab Vapor Assessment

To evaluate the potential for structural vapor intrusion at the Site, H&H installed eight (8) interior sub-slab vapor sampling points (SSV-1 through SSV-8) below the existing slabs within the main dealership building and southern office building. Note that due to access restrictions associated with the collection of samples from inside an active automotive service facility during business hours and time constraints of the project, sub-slab vapor samples were only collected for laboratory analysis from three (3) of the eight (8) sub-slab vapor points during the October 2022 RI activities. Sub-slab soil vapor samples were collected from the showroom floor (SSV-1), customer lounge (SSV-4), and parts department (SSV-7) of the main dealership building. The sub-slab vapor point locations are shown on Figure 5.

The sampling points were installed using a rotary hammer drill and 1½-inch diameter drill bit to advance a pilot hole into the concrete slab to a depth of approximately 1¾ inches below the surface. A drill guide was then placed in the pilot hole, and a 5/8-inch diameter drill bit was utilized to advance the boring through the concrete slab and approximately 6 inches into the underlying soil. Following concrete borehole advancement, loose concrete cuttings were removed from each boring, and a Cox-Colvin Vapor PinTM (vapor pin) assembly (brass sampling point and silicone sleeve) were seated in the borehole using an installation/extraction tool and dead blow hammer.

Each sub-slab vapor sample was collected utilizing a laboratory supplied batch-certified 1-liter Summa[®] canister connected to an air-flow regulator calibrated by the laboratory to collect the soil gas sample at a rate of no greater than approximately 100 milliliters per minute (mL/min). Prior to collection of the soil gas samples, "shut-in" tests were conducted on the sampling train and helium leak checks were conducted at each soil gas sampling point. A description of the shut-in test and helium leak testing procedures is provided below.

The shut-in test was conducted by connecting the flow regulator with the vacuum gauge to the Summa[®] canister and sealing the flow regulator with the laboratory provided brass cap. Once the sampling train was "closed", the sample valve on the Summa[®] canister was opened and the reading on the vacuum gauge was recorded. The Summa[®] canister sample valve was then closed and the vacuum gauge was observed to ensure no vacuum loss occurred. If the vacuum reading remained the same for at least 30 seconds, the shut-in test was considered successful, and the regulator and Summa[®] could be used for sampling. If vacuum loss occurred, the flow regulator and/or brass cap was removed and re-seated and the shut-in test was repeated until the vacuum reading remained stable.

Following the shut-in test, the Summa[®] canister was connected to the sample point via Teflon[®] sample tubing using a brass nut and ferrule assembly to create an airtight seal and a leak check was performed. The leak check was performed by constructing a shroud over the sampling train and flooding the shroud with helium gas. Helium concentrations inside the shroud were

measured using a helium gas detector and maintained at concentrations of approximately 20%. Once helium concentrations stabilized within the shroud, the sample tubing was purged outside of the shroud using an air pump and a three-way valve to collect purged soil gas into a Tedlar® bag. The purged soil gas was then analyzed using the helium gas detector to ensure that helium concentrations in the soil gas sample were less than 5% of the helium concentrations measured within the shroud. Each soil gas sampling point passed the helium leak check criteria. Soil gas sampling forms completed by field personnel are included in Appendix C.

Following successful leak checks, the sub-slab vapor samples were collected by opening the intake valve on the Summa[®] canister. Vacuum readings on the Summa[®] canister were recorded prior to and following the sampling period to ensure adequate sample volume was collected. A vacuum of approximately 5 inches of mercury or more was maintained within the canisters at the conclusion of the sampling event.

Following sample collection, the Summa canisters were shipped to Pace Analytical (Pace) under standard chain-of-custody protocols for analysis of VOCs by EPA Method TO-15. Upon receipt of the samples, the laboratory recorded the final received vacuum pressure for each Summa canister which is documented in the laboratory analytical report provided in Appendix C.

Following collection of the sub-slab vapor samples, the vapor pins were left in place and secured under a stainless-steel flush-mounted cap. The sub-slab vapor sample locations were estimated by measuring from known benchmarks within the facility (e.g., doors, windows, exterior walls, etc.), and are shown on Figure 5.

3.4 Investigation Derived Waste

Investigation derived waste (IDW) including soil cuttings, purge water, and decontamination fluids were containerized in 55-gallon drums and staged in a secure location on-Site. Six drums of soil, one drum of purged groundwater, and one drum of decontamination water were generated during the assessment activities. The IDW profile is being prepared and the IDW drums will be disposed of at an off-Site permitted facility in the near future. Based on the RI

assessment results, the drums can be disposed of as non-hazardous waste.

4.0 Remedial Investigation Results

4.1 Soil Analytical Results

A tabular summary of the soil sample laboratory analytical results is provided as Table 1, and a copy of the laboratory analytical report and chain of custody record is included as Appendix C. Soil analytical results were compared to Washington's MTCA Method A Soil Cleanup Levels (SCLs) for unrestricted and industrial/commercial use, and the Protection of Groundwater [Vadose Zone] (POG-SCLs) dated February 2024 (CLARC 2024). A discussion of the soil laboratory analytical results is provided below. Laboratory analytical reports are provided in Appendix D.

VOCs

Laboratory analytical results indicate the presence of methylene chloride in the soil sample collected from soil boring SB-6 (South Shop) at an estimated concentration of 0.82 mg/kg, which is above the Method A unrestricted and commercial/industrial SCLs of 0.02 mg/kg, and the POG-SCL of 0.22 mg/kg. Note that methylene chloride, a common laboratory contaminant, was also detected in the blank sample associated with SB-6, and the laboratory control sample result was outside of the acceptable range indicating that the SB-6 sample results may be biased high. As such, the methylene chloride detection reported in soil sample SB-6 may not be representative of actual soil conditions at the Site.

No other VOCs were detected during the October 2022 soil assessment at concentrations above the MTCA screening levels.

PAHs

Analytical results do not indicate the presence of PAHs in the collected soil samples at concentrations above the MTCA screening levels. Several PAHs were detected at trace levels in the soil samples collected east (SB-8) and south (SB-11) of the service shops.

TPH

Analytical results indicate that TPH was not detected in the soil samples at concentrations above the MTCA screening levels. TPH-GRO, DRO, and RRO were detected in SB-8 (east of service shops) at concentrations above the laboratory method detection limits, but below their respective MTCA screening levels. No other TPH fractions were detected in the soil samples collected during the additional assessment activities.

4.2 Groundwater Flow and Hydraulic Gradient

The monitoring well top of casing (TOC) elevations were professionally surveyed by Sadler Barnard & Associates, Inc. of Puyallup, Washington on September 11, 2023. The monitoring wells were surveyed for elevation, northing, and easting using the North American Vertical Datum of 1988 and Washington State Plan Coordinate System of 1983/2011. A summary of TOC data, well construction, and groundwater elevation data is provided in Table 2.

A shallow aquifer potentiometric map generated from the October 7, 2022 depth to water measurements is provided as Figure 6. As indicated on Figure 6, the primary direction of shallow groundwater flow at the Site is to the north-northeast towards the Puyallup River, which is consistent with area topography. The calculated hydraulic gradient across the Site is approximately 0.001 feet per foot (ft/ft).

4.3 Groundwater Analytical Results

A tabular summary of the soil sample laboratory analytical results is provided as Table 3, and a copy of the laboratory analytical report and chain of custody record is included as Appendix C. Groundwater analytical results were compared to Washington's MTCA Method A Groundwater Cleanup Levels (GCLs) dated February 2024 (CLARC 2024).

VOCs

Laboratory analytical results did not indicate the presence of VOCs in the groundwater samples at concentrations above laboratory method detection limits.

PAHs

Analytical results do not indicate the presence of PAHs in the groundwater samples at concentrations above laboratory method detection limits.

TPH

Analytical results do not indicate the presence of TPH in the groundwater samples at concentrations above the MTCA screening levels. Low levels of TPH (primarily TPH-GRO) were detected in several of the groundwater samples collected at the Site at concentrations below the MTCA screening levels.

4.4 Sub-Slab Vapor Analytical Results

A tabular summary of the sub-slab vapor sample laboratory analytical results is provided as Table 4, and a copy of the laboratory analytical report and chain of custody record is included as Appendix C. Sub-slab vapor analytical results were compared to Washington's MTCA Method B Soil Gas Screening Levels (SSGLs) for carcinogenic and non-carcinogenic effects dated February 2024 (CLARC 2024).

Laboratory analytical results indicate that no VOCs were detected in the sub-slab soil gas samples at concentrations above the MTCA Method B screening levels. Multiple low-level VOCs were detected in the sub-slab vapor samples at concentrations above laboratory method detection limits, but below the MTCA Method B screening levels.

4.5 Vapor Intrusion Evaluation

H&H utilized the EPA Vapor Intrusion Screening Level (VISL) Calculator (June 2023 Version) assuming a commercial land use scenario to further evaluate potential cumulative risks for the soil gas to indoor air vapor intrusion pathway associated with the existing auto dealership building. To model the potential for vapor intrusion under a hypothetical "worst-case" scenario, H&H conservatively calculated the cumulative risks using the highest compound concentrations

detected in any sub-slab vapor sample to model hypothetical "worst-case" risks from the sub-slab soil gas to indoor air vapor intrusion pathway under a commercial use scenario.

Vapor intrusion mitigation or additional assessment is not typically warranted if the calculated cumulative lifetime incremental carcinogenic risk (LICR) is 1×10^{-4} or less and the acceptable level for non-carcinogenic risk is a calculated cumulative hazard index (HI) of 1.0 or less.

Copies of the calculations are provided in Appendix D and a summary of the calculated LICR and HI values for a cumulative worst-case scenario is provided below:

Evaluation Area	Land Use Scenario	Calculated Cumulative LICR	Calculated Cumulative HI	Exceedance of Acceptable Levels?
Dealership Building – Worst Case	Commercial	1.94 x 10 ⁻⁸	0.00898	No

As shown in the table above, risk calculator results indicate that under a hypothetical worst-case scenario for the sub-slab soil gas to indoor air vapor intrusion pathway for commercial use, the cumulative LICR and the cumulative HI are within acceptable threshold limits. Based on the results of the risk calculations, sub-slab soil gas concentrations identified within the interior of the existing main dealership building do not pose an unacceptable risk to Site users under the current commercial exposure scenario.

5.0 Preliminary Conceptual Site Model

Based upon the collective results of the RI activities and previous investigations, H&H has prepared a preliminary Conceptual Site Model (CSM) for the Site. The primary CSM provides a framework of the current understanding of the Site conditions and is used for a basis for developing technically feasible cleanup action alternatives and selecting a final cleanup action in accordance with MTCA regulations.

5.1 Media and Contaminants of Concern

Soil

Based on the results of previous assessment, the following primary contaminants of concern (COCs) have been identified in soil at the Site at concentrations above applicable MTCA Method A screening levels:

- PCE; and
- TPH-RRO (C25 C36).

PCE was detected at concentrations up to 1.8 mg/kg in two shallow soil samples (ranging in depth from 1 to 3 ft bgs) that were collected from the interior of the North and South Shops. Additionally, TPH-RRO was detected in one shallow soil sample (1 to 2 ft bgs) collected from the North Shop at a concentration of 4,900 mg/kg.

Groundwater

The results of previous groundwater assessment did not identify impacts to groundwater at the Site at concentrations above MTCA Method A screening levels.

Soil Gas

The results of previous soil gas assessment did not identify the presence of VOCs in sub-slab vapor samples collected from the interior of the existing main dealership building at concentrations above MTCA Method B vapor intrusion screening levels.

5.2 Confirmed and Suspected Sources

The presence of PCE and TPH-RRO in shallow soil located below the poured-concrete slab floors of the automotive service shops does not appear to be the result of a singular event. Rather, the presence of these compounds in shallow soil at the Site appears to be the result of the use of petroleum products and PCE-containing substances during routine automotive maintenance and repair activities over time. The North and South Shops have been in operation since at least the late-1950s and late-1960s, respectively.

No primary Site COCs were detected in the additional soil samples or in the groundwater samples collected during the RI. As such, the extent of COC impacts at the Site appears to be limited to soil immediately underlying the automotive service shops.

5.3 Exposure Pathways and Potential Receptors

This section discusses potential human health and ecological exposure pathways identified for the Site with the goal of applying the findings to the development of potentially feasible remedial alternatives. Possible receptors include those who visit or work on the Site, including wildlife.

5.3.1 Soil-to-Groundwater Pathway

PCE was not detected in the groundwater samples collected from the six monitoring wells installed and sampled as part of the October 2022 RI activities. TPH-RRO was detected in one groundwater sample collected from MW-3 located south of the South Shop at an estimated concentration below the MTCA Method A screening level. TPH-RRO was not detected in any other groundwater samples collected during the October 2022 RI activities. Based on the absence of PCE in groundwater and the limited low-level presence of TPH-RRO in groundwater at the Site, the current soil-to-groundwater pathway appears to be incomplete. However, because PCE has been detected in soil at concentrations above the MTCA Method A Protection of Groundwater (Vadose Zone) screening level, the soil-to-groundwater pathway could be completed in the future through direct leaching of COCs in Site soil to Site groundwater.

However, because the detections of PCE are below an existing building, stormwater and other precipitation likely does not come in contact with the impacted soil which minimizes the potential for PCE to leach to groundwater.

5.3.2 Direct-Contact Pathway

Soil impacts identified at the Site appear to be limited to shallow soils immediately underlying the concrete floors of the service shops. The concrete floor slabs that cover the entire extent of the service departments, are approximately 6-inches thick, and act as a barrier to limit direct-contact with the impacts to soil. Being that the entire Site is capped with buildings and paved parking lots, the direct-contact exposure pathway (i.e., incidental ingestion and dermal contact) under the current Site conditions appears to be incomplete based on the presence of physical barriers to exposure.

5.3.3 Air/Soil Vapor Pathway

The RI included the collection of three sub-slab soil gas samples from below the existing main dealership building. The results of the sub-slab vapor sampling did not indicate the presence of compounds at concentrations above the MTCA Method B vapor intrusion screening levels. Because soil gas concentrations directly below the building were found to be below MTCA Method B screening levels, the vapor intrusion exposure pathway to the dealership building is considered incomplete. However, additional soil vapor samples may be needed to fully evaluate this pathway.

5.4 Proposed Cleanup Standards

This section presents the proposed preliminary cleanup levels and points of compliance for the COCs in soil at the Site. In accordance with WAC 173-340-700, the cleanup levels may be refined as additional information is collected. Final proposed cleanup levels for Site COCs will be presented to and approved by Ecology as part of the development of the cleanup action alternatives selected for the Site.

5.4.1 Points of Compliance

In accordance with MTCA, the point of compliance for direct contact with soil extends to 15 ft bgs, based on a reasonable maximum depth of excavation and assumed placement of excavated soils at the surface where contact occurs. For soil cleanup levels based on leaching to groundwater and the protection of surface water, the soil point of compliance is all depths, above and below the water table. The point of compliance for soil is defined as all soil at the Site where COCs have been detected at concentrations above MTCA soil cleanup levels.

5.4.2 Preliminary Cleanup Levels

The proposed cleanup levels are the concentrations of COCs that are to be met for each medium of concern at the points of compliance defined for the Site. MTCA Method A cleanup levels for Unrestricted or Industrial/Commercial land use are appropriate for COCs in soil and groundwater at the Site. MTCA Method B soil gas screening levels for carcinogenic and non-carcinogenic effects are appropriate for COCs in soil gas at the Site.

PCE and TPH-RRO in soil are the only compounds that have been identified at the Site at concentrations above MTCA Method A cleanup levels.

6.0 Summary and Conclusions

H&H completed RI activities at the Northwest Motorsports Puyallup facility located at 400 River Road in Puyallup, Pierce County, Washington. The RI activities were completed between October 3 to 7, 2022, and included the collection of soil, groundwater, and sub-slab soil gas samples for laboratory analysis. Based on the results of previous assessment activities, including the October 2022 RI assessment activities, H&H has concluded the following:

- PCE is present at concentrations above MTCA Method A cleanup levels in shallow soil
 underlying the North and South Shops. The PCE impacts appear to be limited in extent
 and have not been identified in soil outside of the service areas or in groundwater at the
 Site.
- TPH-RRO is present at a concentration above MTCA Method A cleanup levels in shallow soil underlying the North Shop. No other soil samples collected at the Site by H&H contained TPH-RRO at concentrations above MTCA Method A cleanup levels. TPH-RRO was detected in one monitoring well located south of the South Shop at a low-level estimated concentration below the MTCA Method A screening level.
- The presence of PCE and TPH-RRO in shallow soil located below the concrete slab floors of the automotive service departments appear to be the result of the use of PCE-containing substances and petroleum products during routine automotive maintenance and repair activities over time. The North and South Shops have been in operation since at least the late-1950s and late-1960s, respectively.
- No primary Site COCs were detected in the additional soil samples or in the groundwater samples collected during the RI. As such, the extent of COC impacts at the Site appears to be limited to soil immediately underlying the automotive service shops.

Apart from the leaching to groundwater pathway, no other exposure pathways appear to be complete at the Site based on the currently available data. However, additional sub-slab vapor

assessment may be needed to further evaluate this pathway. Although the soil leaching to groundwater pathway is considered complete, impacted soil considered capped due to the presence of building slabs and the minimal pervious surfaces present at the Site which minimizes the potential for impacts to migrate to groundwater.

7.0 References

Schuster, J. E. (2005). *Geologic Map of Washington State*, Washington Division of Geology and Earth Resources, Geologic Map GM-53.

Jones, M. A. (1999). Geologic Framework for the Puget Sound Aquifer System, Washington & British Columbia, U.S. Geological Survey.

Welch, W. B., Johnson, K. H., Savoca, M. E., Lane, R. C., Fasser, E. T., Gendaszek, A. S., Marshall, C. E., Clothier, B. G., & Knoedler, E. N. (2015). *Hydrogeologic Framework, Groundwater Movement, and Water Budget in the Puyallup River Watershed and Vicinity, Pierce and King Counties, Washington*, U.S. Department of Interior, U.S. Geological Survey. Scientific Investigations Report 2015-5068.

EMS (2004). *Underground Storage Tank – Decommissioning Project*, prepared for Friendly Chevrolet by Environmental Management Services, LLC, 400 River Road, Puyallup Washington, April, 5, 2004.

Riley Group (2011). Focused Phase II Subsurface Investigation, prepared for NW Motorsport by The Riley Group, Inc., 400 River Road, Puyallup, Washington, April 25, 2011.

Partner (2013). *Phase I Environmental Site Assessment Report*, prepared for Sterling Bank by Partner Engineering and Science, Inc., K&A Holdings, LLC, 400 River Road, Puyallup, Washington, November 7, 2013.

Robinson Noble (2016). *Phase I Environmental Site Assessment*, prepared for HILT Investments Holdings, LLC by Robinson Noble, Inc., 400 River Road, Puyallup, Washington, September 13, 2016.

AECOM (2020). Phase I Environmental Site Assessment – Northwest Motor Sport (Site #3), prepared for RFJ Partner Group by AECOM, 400 River Road, Puyallup, Washington, February 4, 2020.

H&H (2021). *Phase II Environmental Site Assessment – Northwest Motorsports*, prepared for Sonic Automotive, Inc. by Hart & Hickman, PC, 400 River Road, Puyallup, Washington, November 5, 2021.

Tables

Table 1 Summary of Soil Analytical Data Northwest Motorsports 400 River Road Puyallup, Washington H&H Project No. SAI-413

Sample Location	Wash Bay Drain	ows	South Shop Aboveground Lift	Metal Scrap Bin	North Shop Aboveground Lift	South Shop Aboveground Shop	East of North & South Shops	Regulatory Screening Levels		evels	
Sample ID	SB-1 (2-3)	SB-2 (4-5)	SB-3 (2-3)	SB-4 (2-3)	SB-5 (1-2)	SB-6 (6-7)	SB-7 (6-7)	Method A Soil Cleanup Levels		Protective of	
Depth (ft bgs)	2-3	4-5	2-3	2-3	1-2	6-7	6-7		Industrial/	Groundwater	
Sample Date			10/22/2021		•	10/3/		Unrestricted Use ⁽¹⁾	Commercial ⁽¹⁾	(Vadose Zone) ⁽¹⁾	
PID Reading (ppm)	0.2	0.3	3.9	0.8	0.5	3.5	2.8		Oommercial	(Vadoo 20110)	
TPH (NWTPH) mg/kg											
Gasoline	<4.1	<7.1	10 J	<4.6	4.7 J	<4.4	<4.1	30	30	NE	
Diesel Range Organics (C ₁₀ -C ₂₅)	34	<5.9	84	<4.7	1,700	<4.5	<4.2	2,000	2,000	NE	
Residual Range Organics (C ₂₅ -C ₃₆)	280	<7.1	240	<5.6	4,900	<5.3	<5.1	2,000	2,000	NE	
VOCs (8260D) mg/kg											
Tetrachloroethene	< 0.040	< 0.070	1.3	< 0.045	1.8	< 0.043	<0.040	0.05	0.05	0.05	
1,1,1-Trichloroethane	< 0.040	< 0.069	<0.040	< 0.044	0.10 J	<0.043	<0.039	2.0	2.0	1.5	
Toluene	< 0.031	< 0.053	< 0.031	< 0.034	0.038 J	< 0.033	<0.030	7.0	7.0	4.5	
1,2,4-Trimethylbenzene	< 0.073	< 0.093	0.12 J	<0.060	<0.056	<0.058	<0.053	NE	NE	1.3	
Xylenes (total)	< 0.119	<0.201	<0.121	<1.51	<0.123	<0.128	< 0.117	9.0	9.0	14	
Methylene Chloride	< 0.46	< 0.79	< 0.47	< 0.51	<0.48	0.82 J,H,B,+	< 0.46	0.02	0.02	0.022	
Naphthalene	< 0.064	< 0.11	<0.065	< 0.072	< 0.067	<0.069	< 0.064	NE	NE	NE	
Trichlorofluoromethane	<0.075	<0.13	<0.077	<0.084	<0.078	<0.081	<0.075	NE	NE	NE NE	
PAHs (8270E) mg/kg											
Naphthalene	<0.024	<0.0030	0.0079 J	<0.0024	<0.012	< 0.0023	<0.0022	5.0	5.0	4.5	
2-Methylnaphthalene	< 0.035	< 0.0044	0.013	< 0.0035	< 0.017	< 0.0033	<0.0032	NE	NE	1.7	
1-Methylnaphthalene	<0.025	< 0.0031	0.0088 J	<0.0025	<0.012	< 0.0024	<0.0023	NE	NE	0.082	
Phenanthrene	< 0.041	< 0.0051	0.014	< 0.0041	<0.020	0.0046 J	< 0.0037	NE	NE	NE	
Anthracene	<0.022	<0.0028	0.0022 J	<0.0022	<0.011	<0.0021	<0.0021	NE	NE	2,300	
Fluoranthene	<0.028	< 0.0035	0.0050 J	<0.0028	<0.014	<0.0026	<0.0026	NE	NE	630	
Pyrene	<0.043	< 0.0054	0.01 J	<0.0043	<0.021	<0.0040	<0.0039	NE	NE	650	
Benzo[a]anthracene	<0.024	<0.0030	0.0037 J	<0.0024	<0.012	<0.0023	<0.0022	0.1*	2*	3.9*	
Chrysene	<0.017	<0.0021	0.0045 J	<0.0017	<0.0084	<0.0016	<0.0016	0.1*	- 2*	3.9*	
Benzo[b]fluoranthene	<0.039	<0.0050	0.0045 J	<0.0039	<0.019	<0.0037	<0.0036	0.1*	2*	3.9*	
Benzo[g,h,i]perylene	<0.026	<0.0033	0.0037 J	<0.0026	<0.013	<0.0025	<0.0024	NE	NE	NE	
Benzo[g,n,n]perylene	70.020	<0.0000	0.0037 3	₹0.0020	40.013	VO.0023	₹0.0024	INL	INL	INC.	

Notes:

Blue highlighting and bolding indicates the concentration exceeds both the Method A Soil Cleanup Levels and the Protective of Groundwater (Vadose Zone) Standard.

Only compounds detected in at least one sample are shown above; refer to laboratory report for full list of analyzed compounds Results shown in milligrams per kilogram (mg/kg).

VOCs = volatile organic compounds; PAHs = polynuclear aromatic hydrocarbons; TPH = total petroleum hydrocarbons

ft bgs = feet below ground surface; NE = not established; OWS = oil-water separator; ppm = parts per million

⁽¹⁾ State of Washington Department of Ecology Cleanup Levels and Risk Calculation (CLARC), dated February 2024, for Method A Soil Cleanup Levels and Protective of Groundwater (Vadose Zone).

Orange highlighting indicates concentration exceeds the Method A Residential and Industrial Properties Soil Cleanup Levels.

^{*} Soil cleanup level is based upon the total toxic equivalent concentration of carcinogenic PAHs

J = compound detected above the method detection limit but below the reporting limit and is considered an estimated value; NE= not established

NA = not analyzed; -- = not applicable; H = exceeded hold time; B = compound was found in blank and sample; + = lab control sample recovery above 100%, value may be biased high.

Table 1 Summary of Soil Analytical Data Northwest Motorsports 400 River Road Puyallup, Washington H&H Project No. SAI-413

South of South Shop	South of North Shop	North of Showroom	West of North Shop	Western Abovegro	und Lift North Shop	Regulatory Screening Levels			
SB-8 (2-3)	SB-9 (2-3)	SB-10 (2-3)	SB-11 (2-3)	SB-12 (2-	3) / DUP-1	Method A Soil Cleanup Levels		Protective of	
2-3	2-3	2-3	2-3	2-3	2-3		Industrial/	Groundwater (Vadose Zone) ⁽¹⁾	
10/4/2022				10/6/2022		Unrestricted Use ⁽¹⁾			
3.3	2.4	1.2	2.1	2.7			Commercial	(**************************************	
12 JB	<4.4	<4.5	<3.9	<4.5	<4.6	30	30	NE	
15	<4.6	<4.5	<4.5	<4.5	<4.4	2,000	2,000	NE	
13 J	<5.5	<5.3	<5.3	<5.4	<5.3	2,000	2,000	NE	
< 0.054	< 0.043	<0.044	< 0.039	< 0.044	< 0.045	0.05	0.05	0.05	
<0.054	<0.042	<0.043	<0.038	<0.044				1.5	
< 0.041	< 0.032	< 0.033	<0.029	< 0.034				4.5	
				<0.059				1.3	
· ·				<0.130				14	
•				< 0.50				0.022	
			_					NE	
<0.10	<0.080	<0.082	<0.072	<0.083	0.12 J,H	NE	NE	NE	
<0.0024	<0.0024	< 0.0023	<0.0023	<0.0023	<0.0023	5.0	5.0	4.5	
0.0043 J	< 0.0035	< 0.0033	< 0.0033	< 0.0033	< 0.0033	NE	NE	1.7	
0.0044 J	< 0.0025	<0.0024	< 0.0023	< 0.0023	< 0.0024	NE	NE	0.082	
0.014	< 0.0041	< 0.0039	<0.0038	< 0.0038	< 0.0039	NE	NE	NE	
<0.0022	< 0.0022	<0.0022	<0.0021	< 0.0021	< 0.0021	NE	NE	2,300	
0.0029 J	<0.0028	<0.0027	0.0056 J	< 0.0026	< 0.0026	NE	NE	630	
0.0046 J	< 0.0043	< 0.0041	0.0052 J	< 0.0040	< 0.0040	NE	NE	650	
0.0025 J	< 0.0024	< 0.0023	0.0024 J	< 0.0022	< 0.0023	0.1*		3.9*	
0.0039 J	< 0.0017	< 0.0016	0.0033 J	< 0.0016	< 0.0016	0.1*	2*	3.9*	
<0.0039	< 0.0039	<0.0038	0.0068 J	< 0.0037	< 0.0037	0.1*		3.9*	
<0.0026	<0.0026	<0.0025	<0.0025	<0.0025	<0.0025	NE	NE	NE	
	SB-8 (2-3) 2-3 10/4/2022 3.3 12 JB 15 13 J <0.054 <0.054 <0.041 0.14 J,H 0.222 J,H <0.62 0.21 J,H <0.10 <0.0024 0.0043 J 0.0044 J 0.014 <0.0022 0.0029 J 0.0046 J 0.0025 J 0.0039 J <0.0039	SB-8 (2-3) 2-3 2-3 10/4/2022 10/5/3.3 2-4 12 JB 15 4.6 13 J <-5.5 <-0.054 <-0.041 <-0.032 0.14 J,H -0.057 0.222 J,H -0.62 0.21 J,H -0.126 -0.62 0.21 J,H -0.10 <-0.080 <-0.0024 0.0043 J -0.0080 <-0.0024 0.0044 J -0.0025 0.014 -0.0022 0.0029 J -0.0025 0.0043 0.0025 J -0.0039 -0.0039 -0.0039 -0.0039 -0.0039	2-3 2-3 2-3 2-3 10/4/2022 3.3 2-4 1.2 1.2 12 JB 4.6 4.6 4.5 15 4.6 4.5 13 J 5.5 5.5 5.3 13 J 5.5 5.3 15 13 J 5.5 5 5 5.3 15 13 J 5.5 5 5.3 15 13 J 5.5 5 5 5 5 5.3 15 13 J 5.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	SB-8 (2-3) SB-9 (2-3) SB-10 (2-3) SB-11 (2-3) 2-3 2-3 2-3 2-3 10/4/2022 10/5/2022 3.3 2.4 1.2 2.1 12 JB <4.4	SB-8 (2-3) SB-9 (2-3) SB-10 (2-3) SB-11 (2-3) SB-12 (2-2-3) 2-3	SB-8 (2-3) SB-9 (2-3) SB-10 (2-3) SB-11 (2-3) SB-12 (2-3) / DUP-1	SB-8 (2-3) SB-9 (2-3) SB-10 (2-3) SB-11 (2-3) SB-12 (2-3) / DUP-1 Method A Soil C	SB-8 (2-3) SB-9 (2-3) SB-10 (2-3) SB-11 (2-3) SB-12 (2-3) / DUP-1 Method A Soil Cleanup Levels	

Notos:

Blue highlighting and bolding indicates the concentration exceeds both the Method A Soil Cleanup Levels and the Protective of Groundwater (Vadose Zone) Standard.

Only compounds detected in at least one sample are shown above; refer to laboratory report for full list of analyzed compounds Results shown in milligrams per kilogram (mg/kg).

VOCs = volatile organic compounds; PAHs = polynuclear aromatic hydrocarbons; TPH = total petroleum hydrocarbons

ft bgs = feet below ground surface; NE = not established; OWS = oil-water separator; ppm = parts per million

⁽¹⁾ State of Washington Department of Ecology Cleanup Levels and Risk Calculation (CLARC), dated February 2024, for Method A Soil Cleanup Levels and Protective of Groundwater (Vadose Zone).

Orange highlighting indicates concentration exceeds the Method A Residential and Industrial Properties Soil Cleanup Levels.

^{*} Soil cleanup level is based upon the total toxic equivalent concentration of carcinogenic PAHs

J = compound detected above the method detection limit but below the reporting limit and is considered an estimated value; NE= not established

NA = not analyzed; -- = not applicable; H = exceeded hold time; B = compound was found in blank and sample; + = lab control sample recovery above 100%, value may be biased high.

Table 2 Summary of Monitoring Well Construction and Depth to Groundwater Data Northwest Motorsports 400 River Road Puyallup, Washington H&H Project No. SAI-413

		Well C	onstruction Info	Grour	ndwater Elevatior	n Data		
Well ID	Date Installed	TOC Elevation ⁽¹⁾ (ft)	Well Diameter (in)	Total Well Depth (ft bTOC)	Screen Interval (ft bTOC)	Date Measured	Depth to Groundwater (ft bTOC)	Groundwater Elevation (ft)
MW-1	10/3/2022	38.59	2.0	19.25	10 - 20	10/7/2022	15.60	22.99
MW-2	10/4/2022	38.23	2.0	19.10	10 - 20	10/7/2022	15.15	23.08
MW-3	10/5/2022	33.95	2.0	20.90	7 - 22	10/7/2022	10.81	23.14
MW-4	10/5/2022	39.25	2.0	22.10	7 - 22	10/7/2022	16.22	23.03
MW-5	10/5/2022	40.56	2.0	23.31	15 - 25	10/7/2022	17.67	22.89
MW-6	10/7/2022	40.54	2.0	22.55	8 - 23	10/7/2022	17.50	23.04

Notes:

(1) TOC elevations were surveyed by Sadler Barnard & Associates, Inc on 9/11/2023.

ft bTOC = feet below top of casing

Table 3 Summary of Groundwater Analytical Data Northwest Motorsports 400 River Road Puyallup, Washington H&H Project No. SAI-413

Sample Location			Demulatery Careening Level					
Sample ID	MW-1	W-1 MW-2 MW-3 MW-4 / DUP-1 N		MW-5	MW-6	Regulatory Screening Level		
Sample Date	10/6/2022	0/6/2022 10/7/2022						Groundwater Method A ⁽¹⁾
TPH (NWTPH)								
Gasoline Range Organics (C ₆ -C ₁₀)	<31	36 J	33 J	<31	38 J	32 J	33 J	1,000
Diesel Range Organics (C ₁₀ -C ₂₅)	<110	<110	<110	<110	<110	<110	<110	500
Residual Range Organics (C ₂₅ -C ₃₆)	<120	<120	150 J	<120	<120	<120	<120	NE
VOCs (8260D)								
No VOCs Detected								
PAHs (8270E)								
No PAHs Detected								

Notes:

Only compounds detected in at least one sample are shown above; refer to laboratory report for full list of analyzed compounds Results shown in micrograms per liter (ug/L).

VOCs = volatile organic compounds; PAHs = polynuclear aromatic hydrocarbons; TPH = total petroleum hydrocarbons

J = compound detected above the method detection limit but below the reporting limit and is considered an estimated value; NE= not established; -- = not applicable

⁽¹⁾ State of Washington Department of Ecology Cleanup Levels and Risk Calculation (CLARC), dated February 2021, for Method A Groundwater Cleanup Levels.

Table 4 Summary of Sub-Slab Vapor Analytical Data Northwest Motorsports 400 River Road Puyallup, Washington H&H Project No. SAI-413

Sample Location	Showroom Floor	Customer Lounge Area	Parts Department	Regulatory Screening Levels		
Sample ID	SSV-1	SSV-4	SSV-7	Method B Sub-Slab Screening Level		
Sample Date		10/7/2022		Noncancer ⁽¹⁾	Cancer ⁽¹⁾	
VOCs (8260D) ug/m ³						
Acetone	32.3	133	16.7	NE	NE	
Benzene	0.77	2.2	< 0.64	460	11	
2-Butanone (MEK)	<5.5	15.2	< 5.9	76,000	NE	
Carbon Disulfide	17.1	<1.2	<1.3	11,000	NE	
Chloromethane	< 0.77	1.1	< 0.83	1,400	NE	
Dichlorodifluoromethane	6.4	2.2	53.3	1,500	NE	
Ethanol	95.4	164	261	NE	NE	
Ethylbenzene	2.3	2.6	<1.7	15,000	NE	
n-Heptane	5.6	18.8	2.1	6,100	NE	
n-Hexane	<1.3	4.1	<1.4	11,000	NE	
4-Methyl-2-pentanone (MIBK)	<7.6	8.4	<8.2	46,000	NE	
2-Propanol	8.4	34.2	10.6	NE	NE	
Styrene	<1.6	1.7	2.0	15,000	NE	
Tetrachloroethene	2.8	<2.7	5.5	610	320	
Toluene	7.1	25.6	3.2	76,000	NE	
1,1,1-Trichloroethane	125	<2.2	<2.2	76,000	NE	
Trichlorofluoromethane	12.9	<2.2	<2.3	11,000	NE	
1,2,4-Trimethylbenzene	<1.8	6.4	<2.0	910	NE	
1,3,5-Trimethylbenzene	<1.8	2.8	<2.0	910	NE	
m&p-Xylene	10.7	7.6	<3.5	1,500	NE	
o-Xylene	7.9	2.8	<1.7	1,500	NE	

Notes:

Orange highlighting indicates concentration exceeds the Method B Cancer Screening Levels.

Blue highlighting and bolding indicates the concentration exceeds both the Method B Noncancer and Cancer Screening Levels.

Only compounds detected in at least one sample are shown above; refer to laboratory report for full list of analyzed compounds Results shown in milligrams per kilogram (ug/m³).

VOCs = volatile organic compounds

NE = not established

Hart & Hickman, PC

⁽¹⁾ State of Washington Department of Ecology Cleanup Levels and Risk Calculation (CLARC), dated August 2022, for Vapor Intrusion Method B Sub-Slab Screening Levels.

Figures

Path: S:AAA-Master Projects/Sonic Automotive - SAI/SAI-384 Project Octane/Task 13 - Northwest Motorsports Payallup WA - Phase II ESAIFigure-1.mxd

U.S.G.S. QUADRANGLE MAP

PUYALLUP, WASHINGTON 2020

QUADRANGLE 7.5 MINUTE SERIES (TOPOGRAPHIC)

SITE LOCATION MAP

NORTHWEST MOTORSPORTS 400 RIVER ROAD PUYALLUP, WASHINGTON

2923 South Tryon Street - Suite 100 Charlotte, North Carolina 28203 704-586-0007 (p) 704-586-0373 (f) License # C-1269 / # C-245 Geology

DATE: 4-25-2024 REVISION NO: 0 JOB NO: SAI-413 FIGURE NO: 1

A-Master Projects/Sonic Automotive - SAI/SAI-413 NWMS Puyallup/Additional Assessment 2022/Figures/SITE MAP-013 dwg, FIG 2, 4/26/2024 1:31:50 PM, dra

Aaster Projectis/Sonic Automotive - SAI/SAI-413 NWM/S Puyallup/Additional Assessment 2022/Figures/SAI.413-1_FIGURES.dwg, FIG 3, 4/26/2024 1:33:06 PM, drabum

A-Waster Projects/Sonic Automotive - SAI/SAL413 NWMS Puyallup/Additional Assessment 2022/Figures/SAI.413-1_FIGURES.dwg, FIG 4, 4/26/2024 1:33:31 PM, drabum

APPROXIMATE EXTENT OF BASEMENT

- 2. AERIAL IMAGERY OBTAINED FROM BING SERVICES.

SUB-SLAB VAPOR MONITORING

NORTHWEST MOTORSPORTS

Charlotte, North Carolina 28203 704-586-0007(p) 704-586-0373(f) License # C-1269 / #C-245 Geology

FIGURE NO. 5

JOB NO. SAI-413-1

AAA-Waster Projects/Sonic Automotive - SANSAL-413 NWMS Puyallup/Additional Assessment 2022/Figures/SAI.413-1_FIGURES.dwg, FIG 6, 4/26/2024 1:34.21 PM, d

Appendix A Previous Assessment Reports

Phase II ESA Northwest Motorsports

400 River Road Puyallup, Washington

Sonic Job No. Corporate-009997-00026-001 H&H Job No. SAI-384-13 November 5, 2021

Phase II Environmental Site Assessments Northwest Motorsports 400 River Road Puyallup, Washington Sonic Job No. Corporate-009997-00026-001 H&H Job No. SAI-384-13

Table of Contents

1.0 Introduct	tion	1
2.0 Phase II	ESA Activities	3
	Clearance and GPR Survey Activities	
2.2 Soil Sar	mpling Activities	3
2.3 Soil An	alytical Results	5
2.6 Quality	Assurance/Quality Control	6
2.7 Investig	gation Derived Waste	6
3.0 Phase II	Conclusions and Recommendations	7
Table 1	<u>List of Tables</u> Summary of Soil Analytical Data	
	<u>List of Figures</u>	
Figure 1	Site Location Map	
Figure 2	Site Map	
Figure 3	Sample Location Map	
	List of Appendices	
Appendix A	Site Photographs	
Appendix B	Soil Boring Logs	
Appendix C	Laboratory Analytical Report	

Phase II Environmental Site Assessments
Northwest Motorsports
400 River Road
Puyallup, Washington
Sonic Job No. Corporate-009997-00026-001
H&H Job No. SAI-384-13

1.0 Introduction

Hart & Hickman, PC (H&H) performed a Phase II Environmental Site Assessment (ESA) on the Northwest Motorsports automotive sales and service facility located at 400 River Road in Puyallup, Pierce County, Washington (Site or subject Site). A Site location map is provided as Figure 1.

The Site is comprised of two parcels of land totaling approximately 3.2-acres (Parcel IDs 0420214807 and 0420281170) and is improved with two commercial buildings that are currently leased by Northwest Motorsport (NWMS) for automotive sales and service operations. The approximately 17,000 square foot (sq ft) two-story main Site building was originally constructed in 1953 and was expanded in the late 1970s and mid-1980s. An approximately 3,600-sq ft service and tire shop, referred to as the Lower Shop, is located to the southwest of the main Site building. The Lower Shop building was constructed in 1966 and was expanded in the late 1970s. Historical automotive sales and service activities have been performed at the Site since at least 1959 when the Site was utilized as Grant's Chevrolet, Inc. but automotive service activities likely date back to Site development in the early 1950s.

A Phase I ESA was completed by others in 2020 identified the following recognized environmental conditions (RECs) in connection with the Site:

- Historical automotive service activities since at least the 1970s, which were known to use and store hazardous chemicals and petroleum products.
- Former in-ground hydraulic lifts in the service departments.

Additionally, the following potential environmental concerns were identified with the Site:

- A catch basin located adjacent to the southeast corner of the main building, which would be pumped out to another catch basin in close proximity during significant rain events.
- Surrounding properties used for automotive sales and service activities, including the property to the east, which was listed as a gas station in the early 1970s.

2.0 Phase II ESA Activities

Based on the results of the Phase I ESA, H&H completed Phase II ESA activities on October 22, 2021. The Phase II ESA activities were performed in general accordance with the most recent version of the United States Environmental Protection Agency (USEPA) Region IV Science and Ecosystem Support (SESD) *Field Branches Quality System and Technical Procedures* guidance. Photographs of the Site and the assessment activities are provided in Appendix A.

2.1 Utility Clearance and GPR Survey Activities

Prior to conducting Phase II ESA activities, H&H contacted Washington 811, the public utility locator, to mark subsurface utilities located on the Site. H&H also contracted with Ground Penetrating Radar Services (GPRS), a private utility locator to screen proposed boring locations for subgrade utilities which were not identified by the public locator.

In addition, prior to advancing the soil borings with mechanical drilling equipment, H&H directed the drilling contractor, Steadfast Services Northwest, LLC (Steadfast) to hand clear each boring to a depth of approximately 5 ft below ground surface (ft bgs) with a decontaminated stainless-steel hand auger to further screen boring locations for the potential presence of subsurface utilities prior to utilizing mechanical drilling techniques.

2.2 Soil Sampling Activities

H&H and Steadfast advanced 5 soil borings (SB-1 through SB-5) adjacent to the wash bay drain, oil/water separator (OWS), metal scrap bin, and aboveground hydraulic lifts at the Site. The soil boring locations are depicted on Figure 3 and are described below.

• Soil boring SB-1 was advanced to a depth of 15 ft bgs adjacent to the wash bay drain on the southern portion of the Site;

- SB-2 was advanced to a depth of 15 ft bgs adjacent to the west of the OWS located on the southern portion of the Site;
- Soil boring SB-3 was advanced to a depth of 15 ft bgs in an area of heavy staining in the southern service department in the main Site building;
- Soil boring SB-4 was advanced to a depth approximately 15 ft bgs to the south of the northern service department in the main Site building; and
- Soil boring SB-5 was advanced to 4.5 ft bgs in the vicinity of heavy staining in the northern service department in the main Site building.

Once soil borings were cleared to 5 ft bgs with a hand auger (where possible) a track-mounted Geoprobe direct-push technology (DPT) drill rig was used to advance the soil borings to completion depths between 4.5 and 15 ft bgs. Soil boring SB-5 was advanced to 4.5 ft bgs using a hand auger where refusal was encountered. During boring advancement, soil was recovered from either the hand auger bucket or acetate-lined macrocore sampler and logged for lithological description and field screened for the visual presence of staining and the presence of organic vapors using a calibrated photoionization detector (PID). Based on field screening results, H&H collected at least one soil sample from each boring for laboratory analysis. If H&H did not observe indications of potential impacts based on field screening results, a soil sample was collected from the depth interval with the highest potential for impacts based on the source area.

Soil was primarily silty sand from below surface covering to a depth of approximately 3 ft bgs. From approximately 3 ft bgs to 9 ft bgs, poorly graded loose sand was encountered. The poorly graded sand was underlain by well graded fine to course grained sand to depth of 15 ft bgs which was the maximum depth encountered during the assessment activities. Soil were generally wet at depth between 6 ft and 9 ft bgs and may be indicative of water table. Boring logs with lithological descriptions and field screening results are provided in Appendix B.

Following collection, the soil samples were placed in dedicated laboratory-supplied sample containers and labeled with the sample identification, date, and requested analysis. Soil samples collected during the Phase II ESA activities were submitted to Eurofins USA (Eurofins) under standard chain-of-custody protocols for analysis of volatile organic compounds (VOCs) by US EPA Method 8260D, polynuclear aromatic hydrocarbons (PAHs) by US EPA Method 8270E, and total petroleum hydrocarbons (TPH) by Northwest Volatile Petroleum Products (NWTPH) Method.

2.3 Soil Analytical Results

Soil analytical results (SB-1 to SB-5) were compared to the State of Washington Department of Ecology (WDE) Cleanup Levels and Risk Calculation (CLARC), dated February 2021, for Unrestricted Use and Commercial/Industrial Use Method A Soil Cleanup Levels (SCLs) and Protection of Groundwater screening levels. Soil analytical results are summarized on Table 1. The laboratory analytical data report is included in Appendix C.

Laboratory analytical results indicate the presence of tetrachloroethene (PCE) in the soil samples collected from SB-3 (1.3 mg/kg) and SB-5 (1.8 mg/kg) at concentrations above the Unrestricted Use and Commercial/Industrial Use SCLs and the Protection of Groundwater screening levels. No other VOCs were detected at concentrations above Unrestricted Use SCLs, Commercial/Industrial Use SCLs or the Protection of Groundwater screening levels.

TPH residual range organics (TPH-RRO) was detected at a concentration of 4,900 mg/kg which is above the Unrestricted Use and Commercial/Industrial Use SCLs and the Protection of Groundwater screening levels in the soil sample collected from SB-5. No other TPH factions were detected in the soil samples collected during the Phase II ESA activities.

PAHs at concentrations above Unrestricted Use SCLs, Commercial/Industrials SCLs, or Protective of Groundwater screening levels in any of the soil samples collected during the Phase II ESA activities.

2.6 Quality Assurance/Quality Control

Non-dedicated sampling equipment was used during the Phase II ESA activities, including DPT tooling and hand auger, which were decontaminated prior to use at each boring or sampling location or following exposure to soil or groundwater using Liquinox detergent and rinsing with fresh tap water. H&H and the drilling subcontractors wore nitrile gloves while handling soil samples and collected soil samples in laboratory-provided containers and placed on ice immediately upon collection. In addition, a trip blank accompanied the VOC samples to ensure that outside contaminants were not introduced during transport. No analytes were detected in the trip blank sample.

2.7 Investigation Derived Waste

Upon completion of the assessment activities, the soil borings were properly abandoned using hydrated bentonite and capped with concrete. Soil cuttings generated during soil sampling activities were spread on-Site due to lack of obvious impacts.

3.0 Phase II Conclusions and Recommendations

Based on the results of the soil assessment activities completed at the Site, H&H has concluded the following:

- PCE is present in soil below the northern and southern service departments in the main Site building at concentrations above Unrestricted Use SCLs, Commercial/Industrial SCLs, and Protective of Groundwater screening levels.
- TPH-RRO is present at a concentration above Unrestricted Use and Commercial/Industrial SCLs below the northern service department of the main Site building.
- Groundwater appears to be present at shallow depths of less than 10 ft bgs at the Site.
- The presence of PCE at concentrations above the Protective of Groundwater screening level and in close proximity to the water table, it is possible that groundwater may be impacted with PCE.
- PCE and daughter compounds such as trichloroethene (TCE) vapors may be present in Site soil and may be a vapor intrusion concern to the interior portions of the Site buildings.

In accordance with Washington Administrative Code (WAC) 173-340.300 indicates that owners or operators with knowledge of a release of a potentially hazardous substance to the environment should report the release to WDE within 90 days. As such, H&H recommends that the presence of impacts be reported in a timely manner. However, because PCE is present in soil below the building slab, H&H recommends that additional assessment activities be completed in a timely manner, to evaluate the potential for the migration of PCE and daughter compound vapors to the interior portions of the Site buildings.

Table 1
Summary of Soil Analytical Data
Northwest Motorsports
400 River Road
Puyallup, Washington
H&H Project No. SAI-384.13

Sample Location	Wash Bay Drain	ows	South Shop Aboveground Lift	Metal Scrap Bin	North Shop Aboveground Lift	Regulatory Screening Levels			
Sample ID	SB-1 (2-3)	SB-2 (4-5)	SB-3 (2-3)	SB-4 (2-3)	SB-5 (1-2)	Method A Soil Cleanup Levels		5	
Depth (ft bgs)	2-3	4-5	2-3	2-3	1-2	Unrestricted Use ⁽¹⁾ Industrial/ Commercial ⁽¹⁾		Protective of Groundwater (Vadose Zone) ⁽¹⁾	
Sample Date			10/22/2021						
PID Reading (ppm)	0.2	0.3	3.9	0.8	0.5			(vadose zone)	
TPH (NWTPH) mg/kg									
Gasoline	<4.1	<7.1	10 J	<4.6	4.7 J	30	30	NE	
Diesel Range Organics (C ₁₀ -C ₂₅)	34	<5.9	84	<4.7	1,700	2,000	2,000	NE	
Residual Range Organics (C ₂₅ -C ₃₆)	280	<7.1	240	<5.6	4,900	2,000	2,000	NE	
VOCs (8260D) mg/kg									
Tetrachloroethene	<0.040	<0.070	1.3	< 0.045	1.8	0.05	0.05	0.05	
1,1,1-Trichloroethane	<0.040	<0.069	<0.040	<0.044	0.10 J	2.0	2.0	1.5	
Toluene	<0.031	<0.053	<0.031	< 0.034	0.038 J	7.0	7.0	4.5	
1,2,4-Trimethylbenzene	<0.073	<0.093	0.12 J	<0.060	<0.056	NE	NE	1.3	
PAHs (8270E) mg/kg									
Naphthalene	<0.024	<0.0030	0.0079 J	<0.0024	< 0.012	5.0	5.0	4.5	
2-Methylnaphthalene	<0.035	< 0.0044	0.013	< 0.0035	< 0.017	NE	NE	1.7	
1-Methylnaphthalene	< 0.025	< 0.0031	0.0088 J	< 0.0025	< 0.012	NE	NE	0.082	
Phenanthrene	< 0.041	< 0.0051	0.014	< 0.0041	<0.020	NE	NE	NE	
Anthracene	<0.022	<0.0028	0.0022 J	< 0.0022	< 0.011	NE	NE	2,300	
Fluoranthene	<0.028	< 0.0035	0.0050 J	<0.0028	< 0.014	NE	NE	630	
Pyrene	< 0.043	< 0.0054	0.01 J	< 0.0043	< 0.021	NE	NE	650	
Benzo[a]anthracene	<0.024	< 0.0030	0.0037 J	< 0.0024	< 0.012	0.1*	2*	3.9*	
Chrysene	< 0.017	< 0.0021	0.0045 J	< 0.0017	<0.0084	0.1*	2*	3.9*	
Benzo[b]fluoranthene	<0.039	< 0.0050	0.0045 J	< 0.0039	< 0.019	0.1*	2*	3.9*	
Benzo[g,h,i]perylene	<0.026	< 0.0033	0.0037 J	< 0.0026	< 0.013	NE	NE	NE	

Notes:

(1) State of Washington Department of Ecology Cleanup Levels and Risk Calculation (CLARC), dated February 2021, for Method A Soil Cleanup Levels and Protective of Groundwater (Vadose Zone).

Orange highlighting indicates concentration exceeds the Method A Residential and Industrial Properties Soil Cleanup Levels.

Blue highlighting and bolding indicates the concentration exceeds both the Method A Soil Cleanup Levels and the Protective of Groundwater (Vadose Zone) Standard.

Only compounds detected in at least one sample are shown above; refer to laboratory report for full list of analyzed compounds Results shown in milligrams per kilogram (mg/kg).

VOCs = volatile organic compounds; PAHs = polynuclear aromatic hydrocarbons; TPH = total petroleum hydrocarbons


ft bgs = feet below ground surface; NE = not established; OWS = oil-water separator; ppm = parts per million

J = compound detected above the method detection limit but below the reporting limit and is considered an estimated value; NE= not established

^{*} Soil cleanup level is based upon the total toxic equivalent concentration of carcinogenic PAHs

Projects/Sonic Automotive - SAI/SAI-384 Project Octane/Task 13 - Northwest Motorsports Payallup WA - Phase II ESAIFigures/Figure-1.mxd

U.S.G.S. QUADRANGLE MAP

PUYALLUP, WASHINGTON 2020

QUADRANGLE 7.5 MINUTE SERIES (TOPOGRAPHIC)

SITE LOCATION MAP

PROJEC

NORTHWEST MOTORSPORTS 400 RIVER ROAD PUYALLUP, WASHINGTON

2923 South Tryon Street - Suite 100 Charlotte, North Carolina 28203 704-586-0007 (p) 704-586-0373 (f) License # C-1269 / # C-245 Geology

DATE: 10-26-21 JOB NO: SAI-384-13 REVISION NO: 0
FIGURE NO: 1

<u>LEGEND</u>

SUMP

SITE PROPERTY BOUNDARY

ABOVEGROUND STORAGE TANK (AST) FORMER UNDERGROUND STORAGE TANK

PARCEL BOUNDARY

ABOVEGROUND LIFT PARTS WASHER

OIL/WATER SEPARATOR SOIL BORING LOCATION

(N

APPROXIMATE

SCALE IN FEET

400 RIVER ROAD

160

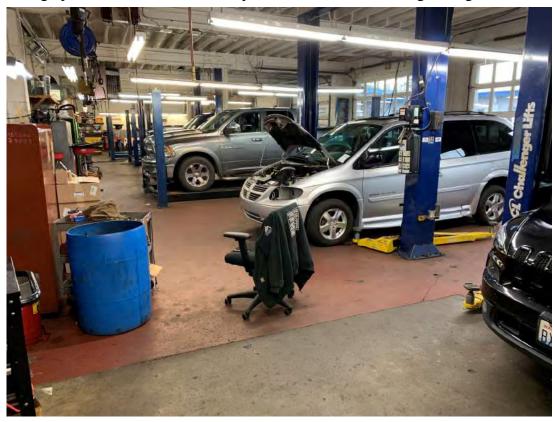
2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 704-586-0007(p) 704-586-0373(f) License # C-1269 / #C-245 Geology

REVISION NO. 0

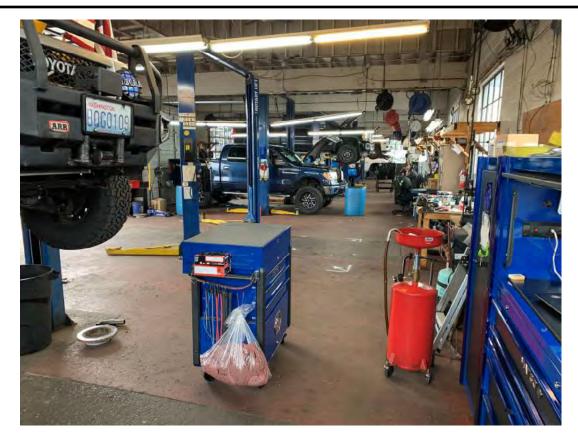
FIGURE NO. 3

Appendix A
Site Photographs

Photograph 1: Northern exterior of the automotive building, viewed facing west.


Photograph 2: View of the North Shop of the automotive building, viewed facing north.

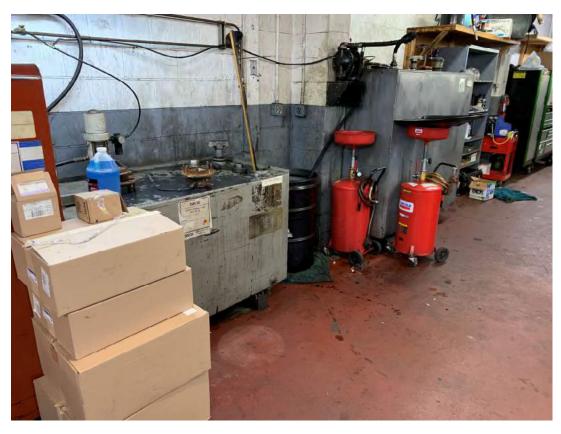
SAI-384-3



Photograph 3: View of the South Shop of the automotive building, facing southeast.

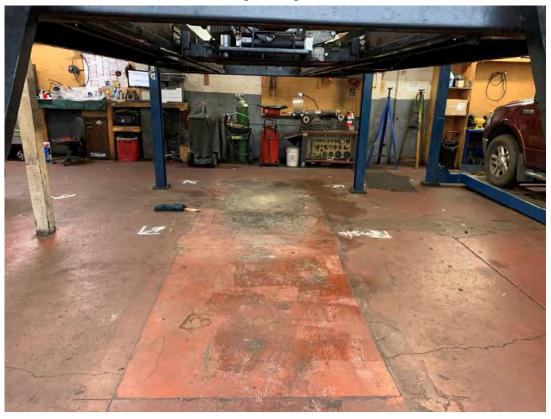
Photograph 4: General view of North Shop, facing east.

Photograph 5: General view of South Shop, facing east.


Photograph 6: View of wash bay at southern extent of property, facing south.

SAI-384-3

Photograph 7: Secondary wash area with select chemical storage, view facing east.


Photograph 8: Used and fresh oil ASTs located in the middle of the North Shop's northern wall.

SAI-384-3

Photograph 9: Scrap metal car parts bin with observed staining, located at the southern extent of the North Shop, facing east.

Photograph 10: Patched floor in North Shop with some observed staining in lift area, location of SB-5, facing north.

Photograph 11: View of OWS and skimmer shed at southern edge of wash bay, facing northeast.

Photograph 12: Interior view of the OWS vault.

Appendix B
Soil Boring Logs

Project: SAI-384-13

Address: 400 River Road, Puyallup, WA

BORING LOG

Boring No. SB-1

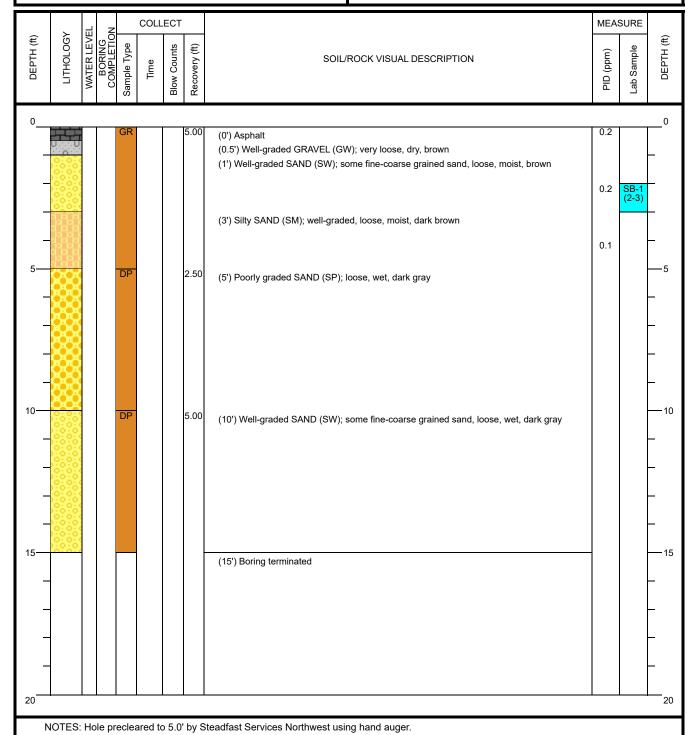
Page: 1 of 1

Drilling Start Date: 10/22/2021
Drilling End Date: 10/22/2021

Drilling Company: Steadfast Services Northwest

Drilling Method: Direct Push
Drilling Equipment: Geoprobe 7720DT

Driller:


Logged By: ABM

Boring Depth (ft): 15.0
Boring Diameter (in): 2.25

Sampling Method(s): Direct Push, Grab

DTW During Drilling (ft):
DTW After Drilling (ft):

Ground Surface Elev. (ft):

Project: SAI-384-13

Address: 400 River Road, Puyallup, WA

BORING LOG

Boring No. SB-2

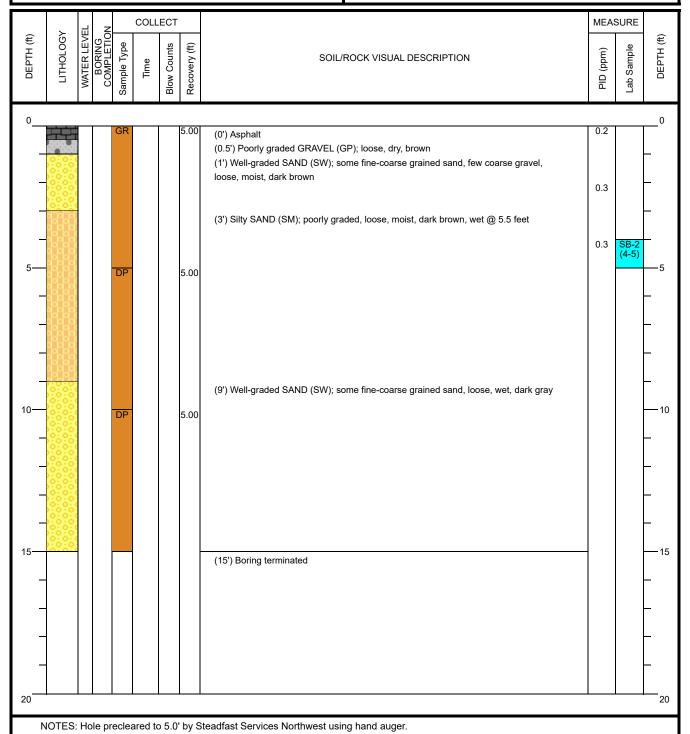
Page: 1 of 1

Drilling Start Date: 10/22/2021
Drilling End Date: 10/22/2021

Drilling Company: Steadfast Services Northwest

Drilling Method: Direct Push
Drilling Equipment: Geoprobe 7720DT

Driller:


Logged By: ABM

Boring Depth (ft): **15.0**Boring Diameter (in): **2.25**

Sampling Method(s): Direct Push, Grab

DTW During Drilling (ft):
DTW After Drilling (ft):

Ground Surface Elev. (ft):

Project: SAI-384-13

Address: 400 River Road, Puyallup, WA

BORING LOG

Boring No. SB-3

Page: 1 of 1

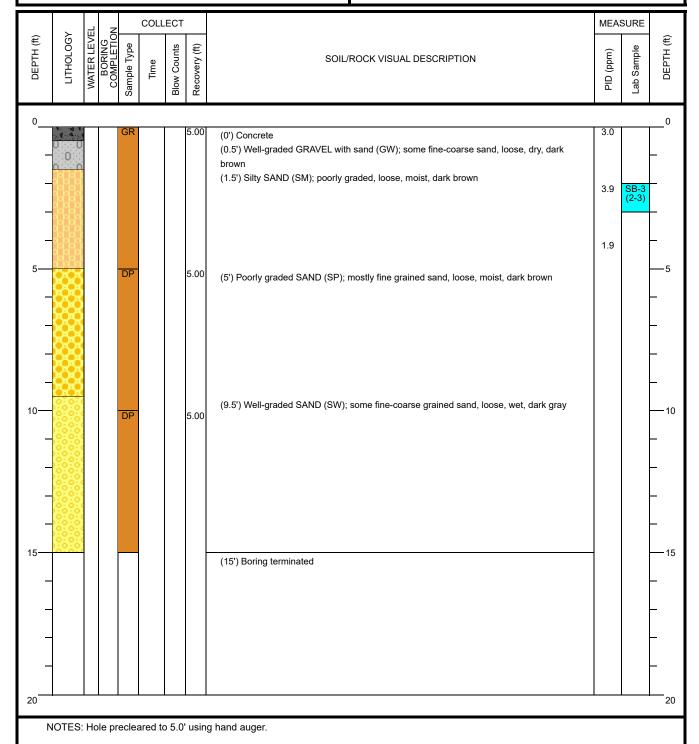
Drilling Start Date: 10/22/2021
Drilling End Date: 10/22/2021

Drilling Company: Steadfast Services Northwest

Drilling Method: Direct Push
Drilling Equipment: Geoprobe 7720DT

Driller:

Logged By: ABM


Boring Depth (ft): **15.0**Boring Diameter (in): **2.25**

Sampling Method(s): Direct Push, Grab

DTW During Drilling (ft):

DTW After Drilling (ft):

Ground Surface Elev. (ft):

Project: SAI-384-13

Address: 400 River Road, Puyallup, WA

BORING LOG

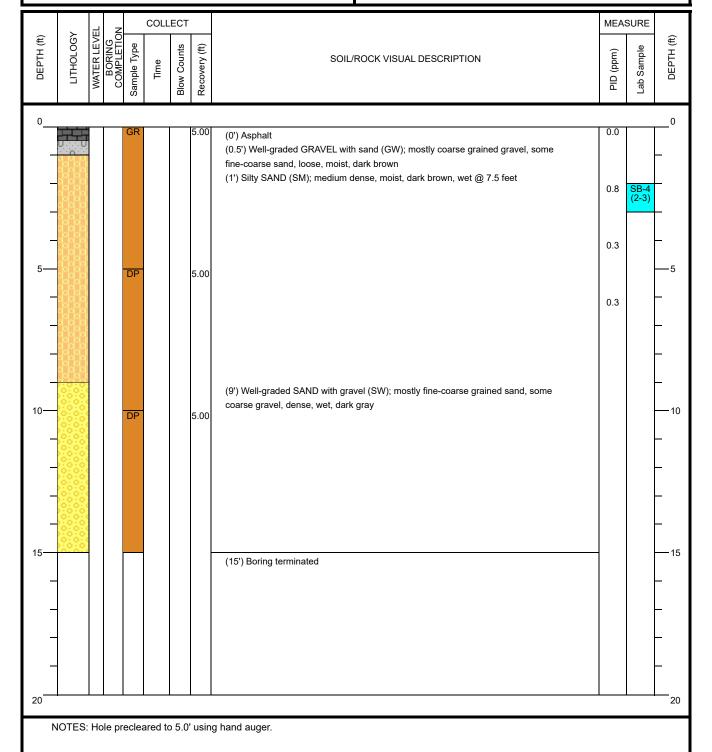
Boring No. SB-4
Page: 1 of 1

Drilling Start Date: 10/22/2021
Drilling End Date: 10/22/2021

Drilling Company: Steadfast Services Northwest

Drilling Method: Direct Push
Drilling Equipment: Geoprobe 7720DT

Driller:


Logged By: ABM

Boring Depth (ft): 15.0

Boring Diameter (in): 2.25

Sampling Method(s): Direct Push, Grab

DTW During Drilling (ft):
DTW After Drilling (ft):
Ground Surface Elev. (ft):

Project: SAI-384-13

Address: 400 River Road, Puyallup, WA

BORING LOG

Boring No. SB-5

Page: 1 of 1

Drilling Start Date: 10/22/2021
Drilling End Date: 10/22/2021

Drilling Company: Steadfast Services Northwest

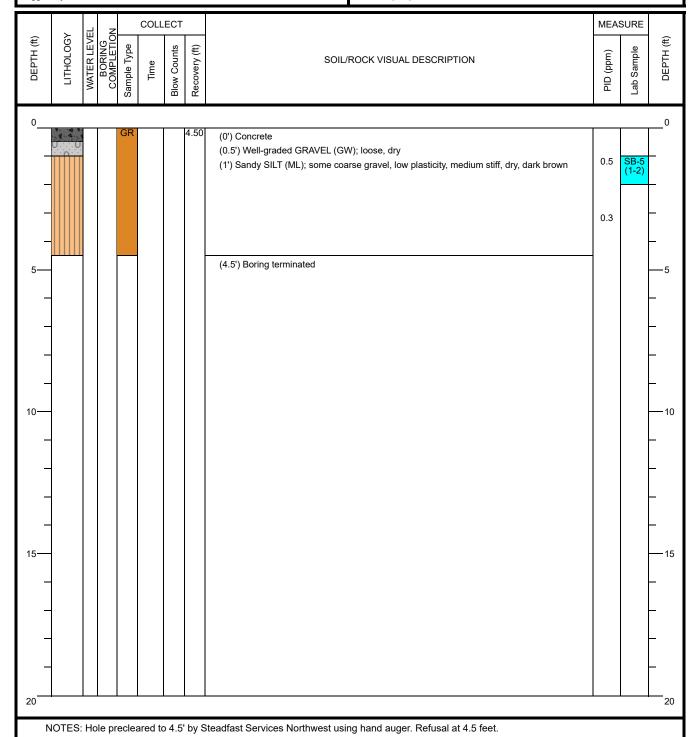
Drilling Method: Other

Drilling Equipment: Hand Auger

Driller:

Logged By: ABM

Boring Depth (ft): 4.5


Boring Diameter (in): 2.25

Sampling Method(s): Grab

DTW During Drilling (ft):

DTW After Drilling (ft):

Ground Surface Elev. (ft):

Appendix C Laboratory Analytical Report

ANALYTICAL REPORT

Eurofins TestAmerica, Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

Laboratory Job ID: 590-16195-1

Client Project/Site: Northwest Motorsports - Puyallup

For:

Hart & Hickman, PC 3921 Sunset Ridge Rd Suite 301 Raleigh, North Carolina 27607

Attn: Carlin Slusher

Landu Arrington

Authorized for release by: 10/28/2021 5:36:23 PM

Randee Arrington, Lab Director (509)924-9200

Randee.Arrington@Eurofinset.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Hart & Hickman, PC Project/Site: Northwest Motorsports - Puyallup Laboratory Job ID: 590-16195-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	
Definitions	5
Client Sample Results	6
QC Sample Results	19
Chronicle	32
Certification Summary	35
Method Summary	36
Chain of Custody	37
Receint Checklists	38

Case Narrative

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Job ID: 590-16195-1

Job ID: 590-16195-1

Laboratory: Eurofins TestAmerica, Spokane

Narrative

Receipt

The samples were received on 10/25/2021 11:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.1° C.

GC/MS VOA

Method 8260D: The continuing calibration verification (CCV) associated with batch 590-33784 recovered above the upper control limit for 2,2-Dichloropropane, Chloroform, 1,1,2-Trichloro-1,2,2-Trifluoroethane, Methylene Chloride and Carbon tetrachloride. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Method 8260D: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for preparation batch 590-33778 and 590-33778 and analytical batch 590-33784 recovered outside control limits for the following analytes: 1,2-Dichlorobenzene, 1.2-Dichloropropane, Dibromomethane, Methyl tert-butyl ether, 2.2-Dichloropropane, cis-1.2-Dichloroethene and cis-1.3-Dichloropropene. . These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA

Method NWTPH-Dx: Detected hydrocarbons in the diesel range appear to be due to oil overlap in the following samples: SB-1 (2-3) (590-16195-1), SB-3 (2-3) (590-16195-3) and SB-5 (1-2) (590-16195-5).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Sample Summary

Client: Hart & Hickman, PC Job ID: 590-16195-1

Project/Site: Northwest Motorsports - Puyallup

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
590-16195-1	SB-1 (2-3)	Solid	10/22/21 10:35	10/25/21 11:00
590-16195-2	SB-2 (4-5)	Solid	10/22/21 12:45	10/25/21 11:00
590-16195-3	SB-3 (2-3)	Solid	10/22/21 13:30	10/25/21 11:00
590-16195-4	SB-4 (2-3)	Solid	10/22/21 14:15	10/25/21 11:00
590-16195-5	SB-5 (1-2)	Solid	10/22/21 15:00	10/25/21 11:00
590-16195-6	Trip Blank	Solid	10/22/21 10:00	10/25/21 11:00

1

3

4

10

Definitions/Glossary

Client: Hart & Hickman, PC Job ID: 590-16195-1

Project/Site: Northwest Motorsports - Puyallup

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

*+ LCS and/or LCSD is outside acceptance limits, high biased.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS Semi VOA

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

101001

3

4

J

7

8

46

11

46

Eurofins TestAmerica, Spokane

Client Sample Results

Client: Hart & Hickman, PC Job ID: 590-16195-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-1 (2-3)

Date Received: 10/25/21 11:00

Lab Sample ID: 590-16195-1 Date Collected: 10/22/21 10:35

Matrix: Solid

Percent Solids: 88.6

Method: 8260D - Volatile Or Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		0.23	0.064	mg/Kg	— <u></u>	10/28/21 09:19	10/28/21 12:49	
Chloromethane	ND		1.1	0.096	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
Vinyl chloride	ND		0.14	0.046	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
Bromomethane	ND		1.1	0.076	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
Chloroethane	ND		0.46	0.13	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
Trichlorofluoromethane	ND		0.46	0.075	mg/Kg	₽	10/28/21 09:19	10/28/21 12:49	
1,1-Dichloroethene	ND		0.23	0.078	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	1
Methylene Chloride	ND		0.80	0.46	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
trans-1,2-Dichloroethene	ND		0.23	0.053	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
1,1-Dichloroethane	ND		0.23	0.061	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
2,2-Dichloropropane	ND	*+	0.23	0.056	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
cis-1,2-Dichloroethene	ND	*+	0.23	0.048	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
Bromochloromethane	ND		0.23	0.092	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
Chloroform	ND		0.23	0.054	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	1
1,1,1-Trichloroethane	ND		0.23		mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
Carbon tetrachloride	ND		0.23		mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
1,1-Dichloropropene	ND		0.23	0.040	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
Benzene	ND		0.046	0.023	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
1,2-Dichloroethane	ND		0.23	0.016	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
Trichloroethene	ND		0.057	0.017	mg/Kg	₽	10/28/21 09:19	10/28/21 12:49	
1,2-Dichloropropane	ND	*+	0.28	0.069	mg/Kg	₽	10/28/21 09:19	10/28/21 12:49	
Dibromomethane	ND	*+	0.23	0.051	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
Bromodichloromethane	ND		0.23	0.14	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	1
cis-1,3-Dichloropropene	ND	*+	0.23	0.047	mg/Kg	₽	10/28/21 09:19	10/28/21 12:49	1
Toluene	ND		0.23		mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	1
trans-1,3-Dichloropropene	ND		0.23		mg/Kg	☼	10/28/21 09:19	10/28/21 12:49	
1,1,2-Trichloroethane	ND		0.23		mg/Kg	₽	10/28/21 09:19	10/28/21 12:49	
Tetrachloroethene	ND		0.092		mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
1,3-Dichloropropane	ND		0.23		mg/Kg	₽	10/28/21 09:19	10/28/21 12:49	
Dibromochloromethane	ND		0.46	0.037	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
1,2-Dibromoethane (EDB)	ND		0.23		mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
Chlorobenzene	ND		0.23		mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
Ethylbenzene	ND		0.23		mg/Kg	₽	10/28/21 09:19	10/28/21 12:49	1
1,1,1,2-Tetrachloroethane	ND		0.23		mg/Kg		10/28/21 09:19	10/28/21 12:49	
1,1,2,2-Tetrachloroethane	ND		0.23	0.067	mg/Kg	₽	10/28/21 09:19	10/28/21 12:49	
m,p-Xylene	ND		0.92	0.066	mg/Kg	☼	10/28/21 09:19	10/28/21 12:49	1
o-Xylene	ND		0.46		mg/Kg		10/28/21 09:19	10/28/21 12:49	
Styrene	ND		0.23		mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
Bromoform	ND		0.46		mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
Isopropylbenzene	ND		0.23		mg/Kg		10/28/21 09:19	10/28/21 12:49	
Bromobenzene	ND		0.23		mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
N-Propylbenzene	ND		0.23		mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
1,2,3-Trichloropropane	ND		0.46		mg/Kg		10/28/21 09:19	10/28/21 12:49	
2-Chlorotoluene	ND		0.23		mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
1,3,5-Trimethylbenzene	ND		0.23		mg/Kg	₽	10/28/21 09:19	10/28/21 12:49	
4-Chlorotoluene	ND		0.23		mg/Kg		10/28/21 09:19	10/28/21 12:49	
tert-Butylbenzene	ND		0.23		mg/Kg		10/28/21 09:19	10/28/21 12:49	
1,2,4-Trimethylbenzene	ND		0.23		mg/Kg	☼	10/28/21 09:19	10/28/21 12:49	
sec-Butylbenzene	ND		0.23		mg/Kg		10/28/21 09:19	10/28/21 12:49	,

Eurofins TestAmerica, Spokane

10/28/2021

Page 6 of 38

Client: Hart & Hickman, PC Job ID: 590-16195-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-1 (2-3)

Date Collected: 10/22/21 10:35 Date Received: 10/25/21 11:00 Lab Sample ID: 590-16195-1

Matrix: Solid

Percent Solids: 88.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3-Dichlorobenzene	ND		0.23	0.029	mg/Kg	<u></u>	10/28/21 09:19	10/28/21 12:49	1
p-Isopropyltoluene	ND		0.23	0.047	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	1
1,4-Dichlorobenzene	ND		0.23	0.047	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	1
n-Butylbenzene	ND		0.23	0.063	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	1
1,2-Dichlorobenzene	ND	*+	0.23	0.053	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	1
1,2-Dibromo-3-Chloropropane	ND		1.1	0.14	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	1
1,2,4-Trichlorobenzene	ND		0.23	0.042	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	1
1,2,3-Trichlorobenzene	ND		0.23	0.077	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	1
Hexachlorobutadiene	ND		0.23	0.038	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	1
Naphthalene	ND		0.46	0.064	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	1
Methyl tert-butyl ether	ND	*+	0.11	0.069	mg/Kg	☼	10/28/21 09:19	10/28/21 12:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)			80 - 120				10/28/21 09:19	10/28/21 12:49	1
4-Bromofluorobenzene (Surr)	103		76 - 122				10/28/21 09:19	10/28/21 12:49	1
Dibromofluoromethane (Surr)	96		80 - 120				10/28/21 09:19	10/28/21 12:49	1
1.2-Dichloroethane-d4 (Surr)	103		75 - 129				10/28/21 09:19	10/28/21 12:49	1

Method: NWTPH-Gx - North			•	,		_	_		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		11	4.1	mg/Kg	☼	10/28/21 09:19	10/28/21 12:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		41.5 - 162				10/28/21 09:19	10/28/21 12:49	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		110	24	ug/Kg	<u></u>	10/26/21 09:51	10/26/21 17:40	10
2-Methylnaphthalene	ND		110	35	ug/Kg	☼	10/26/21 09:51	10/26/21 17:40	10
1-Methylnaphthalene	ND		110	25	ug/Kg	₩	10/26/21 09:51	10/26/21 17:40	10
Acenaphthylene	ND		110	37	ug/Kg	₩	10/26/21 09:51	10/26/21 17:40	10
Acenaphthene	ND		110	28	ug/Kg	☼	10/26/21 09:51	10/26/21 17:40	10
Fluorene	ND		110	25	ug/Kg	₩	10/26/21 09:51	10/26/21 17:40	10
Phenanthrene	ND		110	41	ug/Kg	₩	10/26/21 09:51	10/26/21 17:40	10
Anthracene	ND		110	22	ug/Kg	☼	10/26/21 09:51	10/26/21 17:40	10
Fluoranthene	ND		110	28	ug/Kg	₩	10/26/21 09:51	10/26/21 17:40	10
Pyrene	ND		110	43	ug/Kg	₩	10/26/21 09:51	10/26/21 17:40	10
Benzo[a]anthracene	ND		110	24	ug/Kg	₩	10/26/21 09:51	10/26/21 17:40	10
Chrysene	ND		110	17	ug/Kg	₩	10/26/21 09:51	10/26/21 17:40	10
Benzo[b]fluoranthene	ND		110	39	ug/Kg	₩	10/26/21 09:51	10/26/21 17:40	10
Benzo[k]fluoranthene	ND		110	28	ug/Kg	₩	10/26/21 09:51	10/26/21 17:40	10
Benzo[a]pyrene	ND		110	47	ug/Kg	₩	10/26/21 09:51	10/26/21 17:40	10
Indeno[1,2,3-cd]pyrene	ND		110	33	ug/Kg	≎	10/26/21 09:51	10/26/21 17:40	10
Dibenz(a,h)anthracene	ND		110	32	ug/Kg	₩	10/26/21 09:51	10/26/21 17:40	10
Benzo[g,h,i]perylene	ND		110	26	ug/Kg	₩	10/26/21 09:51	10/26/21 17:40	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	87		33 - 120				10/26/21 09:51	10/26/21 17:40	10
2-Fluorobiphenyl (Surr)	78		47 - 120				10/26/21 09:51	10/26/21 17:40	10
p-Terphenyl-d14	93		74 - 120				10/26/21 09:51	10/26/21 17:40	10

Eurofins TestAmerica, Spokane

Page 7 of 38

2

4

6

8

10

11

Client Sample Results

Client: Hart & Hickman, PC Job ID: 590-16195-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-1 (2-3)

Lab Sample ID: 590-16195-1

Date Collected: 10/22/21 10:35

Matrix: Solid
Date Received: 10/25/21 11:00

Percent Solids: 88.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	34		11	4.6	mg/Kg	<u></u>	10/27/21 10:00	10/27/21 14:14	1
Residual Range Organics (RRO) (C25-C36)	280		27	5.4	mg/Kg	₩	10/27/21 10:00	10/27/21 14:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	94		50 - 150				10/27/21 10:00	10/27/21 14:14	1
n-Triacontane-d62	114		50 - 150				10/27/21 10:00	10/27/21 14:14	1

Client Sample ID: SB-2 (4-5)

Date Collected: 10/22/21 12:45

Date Received: 10/25/21 11:00

Lab Sample ID: 590-16195-2

Matrix: Solid

Percent Solids: 69.9

Oate Received: 10/25/21 11:0	10							Percent Solid	15: 69.5
Method: 8260D - Volatile Or Analyte		unds by GO Qualifier	C/MS RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		0.40	0.11	mg/Kg	— <u></u>	10/28/21 09:19	10/28/21 13:31	1
Chloromethane	ND		2.0	0.17	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
Vinyl chloride	ND		0.24		mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
Bromomethane	ND		2.0		mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
Chloroethane	ND		0.79		mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
Trichlorofluoromethane	ND		0.79		mg/Kg	₽	10/28/21 09:19	10/28/21 13:31	1
1,1-Dichloroethene	ND		0.40	0.14	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
Methylene Chloride	ND		1.4	0.79	mg/Kg	₽	10/28/21 09:19	10/28/21 13:31	1
trans-1,2-Dichloroethene	ND		0.40	0.091	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
1,1-Dichloroethane	ND		0.40	0.10	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
2,2-Dichloropropane	ND	*+	0.40	0.096	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
cis-1,2-Dichloroethene	ND	*+	0.40	0.083	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
Bromochloromethane	ND		0.40	0.16	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
Chloroform	ND		0.40	0.093	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
1,1,1-Trichloroethane	ND		0.40	0.069	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
Carbon tetrachloride	ND		0.40	0.044	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
1,1-Dichloropropene	ND		0.40	0.069	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
Benzene	ND		0.079	0.040	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
1,2-Dichloroethane	ND		0.40	0.028	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
Trichloroethene	ND		0.099	0.030	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
1,2-Dichloropropane	ND	*+	0.48	0.12	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
Dibromomethane	ND	*+	0.40	0.089	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
Bromodichloromethane	ND		0.40	0.25	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
cis-1,3-Dichloropropene	ND	*+	0.40	0.081	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
Toluene	ND		0.40	0.053	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
trans-1,3-Dichloropropene	ND		0.40	0.10	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
1,1,2-Trichloroethane	ND		0.40	0.14	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
Tetrachloroethene	ND		0.16	0.070	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
1,3-Dichloropropane	ND		0.40	0.12	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
Dibromochloromethane	ND		0.79	0.064	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
1,2-Dibromoethane (EDB)	ND		0.40	0.13	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
Chlorobenzene	ND		0.40	0.082	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
Ethylbenzene	ND		0.40	0.064	mg/Kg	₽	10/28/21 09:19	10/28/21 13:31	1
1,1,1,2-Tetrachloroethane	ND		0.40		mg/Kg	₽	10/28/21 09:19	10/28/21 13:31	1
1,1,2,2-Tetrachloroethane	ND		0.40	0.12	mg/Kg	₽	10/28/21 09:19	10/28/21 13:31	1
m,p-Xylene	ND		1.6		mg/Kg	₽	10/28/21 09:19	10/28/21 13:31	1

Eurofins TestAmerica, Spokane

Page 8 of 38 10/28/2021

2

3

5

7

10

Client Sample Results

Client: Hart & Hickman, PC Job ID: 590-16195-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-2 (4-5)

Date Collected: 10/22/21 12:45 Date Received: 10/25/21 11:00 Lab Sample ID: 590-16195-2

Matrix: Solid

Percent Solids: 69.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	ND		0.79	0.091	mg/Kg	-	10/28/21 09:19	10/28/21 13:31	1
Styrene	ND		0.40	0.094	mg/Kg	₽	10/28/21 09:19	10/28/21 13:31	1
Bromoform	ND		0.79	0.076	mg/Kg	☼	10/28/21 09:19	10/28/21 13:31	1
Isopropylbenzene	ND		0.40	0.12	mg/Kg	₽	10/28/21 09:19	10/28/21 13:31	1
Bromobenzene	ND		0.40	0.089	mg/Kg	☼	10/28/21 09:19	10/28/21 13:31	1
N-Propylbenzene	ND		0.40	0.10	mg/Kg	☼	10/28/21 09:19	10/28/21 13:31	1
1,2,3-Trichloropropane	ND		0.79	0.15	mg/Kg	₽	10/28/21 09:19	10/28/21 13:31	1
2-Chlorotoluene	ND		0.40	0.065	mg/Kg	₽	10/28/21 09:19	10/28/21 13:31	1
1,3,5-Trimethylbenzene	ND		0.40	0.13	mg/Kg	☼	10/28/21 09:19	10/28/21 13:31	1
4-Chlorotoluene	ND		0.40	0.035	mg/Kg	₽	10/28/21 09:19	10/28/21 13:31	1
tert-Butylbenzene	ND		0.40	0.077	mg/Kg	≎	10/28/21 09:19	10/28/21 13:31	1
1,2,4-Trimethylbenzene	ND		0.40	0.093	mg/Kg	≎	10/28/21 09:19	10/28/21 13:31	1
sec-Butylbenzene	ND		0.40	0.074	mg/Kg	₽	10/28/21 09:19	10/28/21 13:31	1
1,3-Dichlorobenzene	ND		0.40	0.050	mg/Kg	≎	10/28/21 09:19	10/28/21 13:31	1
p-Isopropyltoluene	ND		0.40	0.081	mg/Kg	☼	10/28/21 09:19	10/28/21 13:31	1
1,4-Dichlorobenzene	ND		0.40	0.082	mg/Kg	≎	10/28/21 09:19	10/28/21 13:31	1
n-Butylbenzene	ND		0.40	0.11	mg/Kg	☼	10/28/21 09:19	10/28/21 13:31	1
1,2-Dichlorobenzene	ND	*+	0.40	0.093	mg/Kg	☼	10/28/21 09:19	10/28/21 13:31	1
1,2-Dibromo-3-Chloropropane	ND		2.0	0.24	mg/Kg	₽	10/28/21 09:19	10/28/21 13:31	1
1,2,4-Trichlorobenzene	ND		0.40	0.073	mg/Kg	☼	10/28/21 09:19	10/28/21 13:31	1
1,2,3-Trichlorobenzene	ND		0.40	0.13	mg/Kg	≎	10/28/21 09:19	10/28/21 13:31	1
Hexachlorobutadiene	ND		0.40	0.065	mg/Kg	₽	10/28/21 09:19	10/28/21 13:31	1
Naphthalene	ND		0.79	0.11	mg/Kg	☼	10/28/21 09:19	10/28/21 13:31	1
Methyl tert-butyl ether	ND	*+	0.20	0.12	mg/Kg	☼	10/28/21 09:19	10/28/21 13:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		80 - 120				10/28/21 09:19	10/28/21 13:31	1
4-Bromofluorobenzene (Surr)	97		76 - 122				10/28/21 09:19	10/28/21 13:31	1
Dibromofluoromethane (Surr)	99		80 - 120				10/28/21 09:19	10/28/21 13:31	1
1,2-Dichloroethane-d4 (Surr)	103		75 - 129				10/28/21 09:19	10/28/21 13:31	1

Method: NWTPH-Gx - Northy	vest - Volatile	e Petroleu	m Products (GC/MS)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		20	7.1	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		41.5 - 162				10/28/21 09:19	10/28/21 13:31	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND ND	14	3.0	ug/Kg	<u></u>	10/26/21 09:51	10/26/21 18:04	1
2-Methylnaphthalene	ND	14	4.4	ug/Kg	☼	10/26/21 09:51	10/26/21 18:04	1
1-Methylnaphthalene	ND	14	3.1	ug/Kg	☼	10/26/21 09:51	10/26/21 18:04	1
Acenaphthylene	ND	14	4.7	ug/Kg	₩	10/26/21 09:51	10/26/21 18:04	1
Acenaphthene	ND	14	3.6	ug/Kg	☼	10/26/21 09:51	10/26/21 18:04	1
Fluorene	ND	14	3.1	ug/Kg	☼	10/26/21 09:51	10/26/21 18:04	1
Phenanthrene	ND	14	5.1	ug/Kg	₩	10/26/21 09:51	10/26/21 18:04	1
Anthracene	ND	14	2.8	ug/Kg	☼	10/26/21 09:51	10/26/21 18:04	1
Fluoranthene	ND	14	3.5	ug/Kg	☼	10/26/21 09:51	10/26/21 18:04	1
Pyrene	ND	14	5.4	ug/Kg	₽	10/26/21 09:51	10/26/21 18:04	1

Eurofins TestAmerica, Spokane

Page 9 of 38

2

6

8

10

11

12

Job ID: 590-16195-1

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-2 (4-5)

Date Collected: 10/22/21 12:45 Date Received: 10/25/21 11:00

Lab Sample ID: 590-16195-2 **Matrix: Solid**

Percent Solids: 69.9

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	ND ND	14	3.0	ug/Kg	₽	10/26/21 09:51	10/26/21 18:04	1
Chrysene	ND	14	2.1	ug/Kg	≎	10/26/21 09:51	10/26/21 18:04	1
Benzo[b]fluoranthene	ND	14	5.0	ug/Kg	₽	10/26/21 09:51	10/26/21 18:04	1
Benzo[k]fluoranthene	ND	14	3.5	ug/Kg	≎	10/26/21 09:51	10/26/21 18:04	1
Benzo[a]pyrene	ND	14	6.0	ug/Kg	☼	10/26/21 09:51	10/26/21 18:04	1
Indeno[1,2,3-cd]pyrene	ND	14	4.2	ug/Kg	≎	10/26/21 09:51	10/26/21 18:04	1
Dibenz(a,h)anthracene	ND	14	4.0	ug/Kg	≎	10/26/21 09:51	10/26/21 18:04	1
Benzo[g,h,i]perylene	ND	14	3.3	ug/Kg	₩	10/26/21 09:51	10/26/21 18:04	1
Surrogate	%Recovery Qualifier	l imits				Prenared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	63		33 - 120	10/26/21 09:51	10/26/21 18:04	1
2-Fluorobiphenyl (Surr)	65		47 - 120	10/26/21 09:51	10/26/21 18:04	1
p-Terphenyl-d14	95		74 - 120	10/26/21 09:51	10/26/21 18:04	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

				•				
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND	14	5.9	mg/Kg	<u></u>	10/27/21 10:00	10/27/21 14:34	1
(C10-C25)								
Residual Range Organics (RRO)	ND	35	7.1	mg/Kg	☼	10/27/21 10:00	10/27/21 14:34	1
(C25-C36)								

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	92		50 - 150	10/27/21 10:00	10/27/21 14:34	1
n-Triacontane-d62	106		50 ₋ 150	10/27/21 10:00	10/27/21 14:34	1

Lab Sample ID: 590-16195-3 Client Sample ID: SB-3 (2-3)

Date Collected: 10/22/21 13:30 **Matrix: Solid** Date Received: 10/25/21 11:00 Percent Solids: 90.5

l	Method: 8260D - \	Volatile Organic Compounds by GC/MS
ı	Amalusta	Beaut Ovelities

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		0.23	0.066	mg/Kg	*	10/28/21 09:19	10/28/21 14:56	1
Chloromethane	ND		1.2	0.098	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
Vinyl chloride	ND		0.14	0.047	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
Bromomethane	ND		1.2	0.077	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
Chloroethane	ND		0.47	0.13	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
Trichlorofluoromethane	ND		0.47	0.077	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
1,1-Dichloroethene	ND		0.23	0.080	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
Methylene Chloride	ND		0.82	0.47	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
trans-1,2-Dichloroethene	ND		0.23	0.054	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
1,1-Dichloroethane	ND		0.23	0.062	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
2,2-Dichloropropane	ND	*+	0.23	0.057	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
cis-1,2-Dichloroethene	ND	*+	0.23	0.049	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
Bromochloromethane	ND		0.23	0.093	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
Chloroform	ND		0.23	0.055	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
1,1,1-Trichloroethane	ND		0.23	0.040	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
Carbon tetrachloride	ND		0.23	0.026	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
1,1-Dichloropropene	ND		0.23	0.041	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
Benzene	ND		0.047	0.023	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
1,2-Dichloroethane	ND		0.23	0.016	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
Trichloroethene	ND		0.058	0.018	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1

Eurofins TestAmerica, Spokane

Page 10 of 38

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-3 (2-3)

Date Collected: 10/22/21 13:30 Date Received: 10/25/21 11:00

Lab Sample ID: 590-16195-3

Matrix: Solid

Percent Solids: 90.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloropropane	ND	*+	0.28	0.071	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
Dibromomethane	ND	*+	0.23	0.052	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
Bromodichloromethane	ND		0.23	0.15	mg/Kg	☼	10/28/21 09:19	10/28/21 14:56	1
cis-1,3-Dichloropropene	ND	*+	0.23	0.048	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
Toluene	ND		0.23	0.031	mg/Kg	₽	10/28/21 09:19	10/28/21 14:56	1
trans-1,3-Dichloropropene	ND		0.23	0.062	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
1,1,2-Trichloroethane	ND		0.23	0.083	mg/Kg	☼	10/28/21 09:19	10/28/21 14:56	1
Tetrachloroethene	1.3		0.094	0.041	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
1,3-Dichloropropane	ND		0.23	0.069	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
Dibromochloromethane	ND		0.47	0.038	mg/Kg	☼	10/28/21 09:19	10/28/21 14:56	1
1,2-Dibromoethane (EDB)	ND		0.23	0.078	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
Chlorobenzene	ND		0.23	0.048	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
Ethylbenzene	ND		0.23	0.038	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
1,1,1,2-Tetrachloroethane	ND		0.23	0.045	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
1,1,2,2-Tetrachloroethane	ND		0.23	0.068	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
m,p-Xylene	ND		0.94	0.067	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
o-Xylene	ND		0.47	0.054	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
Styrene	ND		0.23	0.055	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
Bromoform	ND		0.47	0.045	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
Isopropylbenzene	ND		0.23	0.072	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
Bromobenzene	ND		0.23	0.052	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
N-Propylbenzene	ND		0.23	0.062	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
1,2,3-Trichloropropane	ND		0.47	0.086	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
2-Chlorotoluene	ND		0.23	0.038	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
1,3,5-Trimethylbenzene	ND		0.23	0.075	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
4-Chlorotoluene	ND		0.23	0.020	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
tert-Butylbenzene	ND		0.23	0.046	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
1,2,4-Trimethylbenzene	0.12	J	0.23	0.055	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
sec-Butylbenzene	ND		0.23	0.043	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
1,3-Dichlorobenzene	ND		0.23	0.029	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
p-Isopropyltoluene	ND		0.23	0.048	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
1,4-Dichlorobenzene	ND		0.23	0.048	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
n-Butylbenzene	ND		0.23	0.064	mg/Kg	☼	10/28/21 09:19	10/28/21 14:56	1
1,2-Dichlorobenzene	ND	*+	0.23	0.054	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
1,2-Dibromo-3-Chloropropane	ND		1.2	0.14	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
1,2,4-Trichlorobenzene	ND		0.23	0.043	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
1,2,3-Trichlorobenzene	ND		0.23	0.078	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
Hexachlorobutadiene	ND		0.23	0.038	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
Naphthalene	ND		0.47	0.065	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
Methyl tert-butyl ether	ND	*+	0.12		mg/Kg	₽	10/28/21 09:19	10/28/21 14:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surroyate	/orvectorery	Quanner	Liiiits	riepaieu	Allalyzeu	Dillac
Toluene-d8 (Surr)	98		80 - 120	10/28/21 09:19	10/28/21 14:56	1
4-Bromofluorobenzene (Surr)	100		76 - 122	10/28/21 09:19	10/28/21 14:56	1
Dibromofluoromethane (Surr)	103		80 - 120	10/28/21 09:19	10/28/21 14:56	1
1,2-Dichloroethane-d4 (Surr)	112		75 - 129	10/28/21 09:19	10/28/21 14:56	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)									
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac		
Gasoline	10 J	12	4.2 mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1		

Eurofins TestAmerica, Spokane

Job ID: 590-16195-1

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-3 (2-3)

Date Collected: 10/22/21 13:30

Date Received: 10/25/21 11:00

Lab Sample ID: 590-16195-3

Matrix: Solid

Percent Solids: 90.5

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100	41.5 - 162	10/28/21 09:19 10	0/28/21 14:56	1

Nitroborosonal	70		22 400				10/00/04 00:54	40/00/04 40:00	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Benzo[g,h,i]perylene	3.7	J	11	2.5	ug/Kg	₽	10/26/21 09:51	10/26/21 18:28	1
Dibenz(a,h)anthracene	ND		11	3.0	ug/Kg	₩	10/26/21 09:51	10/26/21 18:28	1
Indeno[1,2,3-cd]pyrene	ND		11	3.2	ug/Kg	₩	10/26/21 09:51	10/26/21 18:28	1
Benzo[a]pyrene	ND		11	4.5	ug/Kg	₩	10/26/21 09:51	10/26/21 18:28	1
Benzo[k]fluoranthene	ND		11	2.7	ug/Kg	₩	10/26/21 09:51	10/26/21 18:28	1
Benzo[b]fluoranthene	4.5	J	11	3.7	ug/Kg	₩	10/26/21 09:51	10/26/21 18:28	1
Chrysene	4.5	J	11	1.6	ug/Kg	₩	10/26/21 09:51	10/26/21 18:28	1
Benzo[a]anthracene	3.7	J	11	2.3	ug/Kg	₩	10/26/21 09:51	10/26/21 18:28	1
Pyrene	10	J	11	4.0	ug/Kg	₩	10/26/21 09:51	10/26/21 18:28	1
Fluoranthene	5.0	J	11	2.6	ug/Kg	₩	10/26/21 09:51	10/26/21 18:28	1
Anthracene	2.2	J	11	2.1	ug/Kg	₩	10/26/21 09:51	10/26/21 18:28	1
Phenanthrene	14		11	3.9	ug/Kg	₩	10/26/21 09:51	10/26/21 18:28	1
Fluorene	ND		11	2.3	ug/Kg	₩	10/26/21 09:51	10/26/21 18:28	1
Acenaphthene	ND		11	2.7	ug/Kg	☼	10/26/21 09:51	10/26/21 18:28	1
Acenaphthylene	ND		11	3.5	ug/Kg	₩	10/26/21 09:51	10/26/21 18:28	1
1-Methylnaphthalene	8.8	J	11	2.4	ug/Kg	☼	10/26/21 09:51	10/26/21 18:28	1
2-Methylnaphthalene	13		11	3.3	ug/Kg	☼	10/26/21 09:51	10/26/21 18:28	1
Naphthalene	7.9		11 -	2.3	ug/Kg	— <u></u>	10/26/21 09:51	10/26/21 18:28	1
Method: 8270E SIM - Sem Analyte	_	c Compou	inds (GC/MS RL	SIM) MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		41.5 - 162				10/28/21 09:19	10/28/21 14:56	1
1 Promofluorobonzono (C)	400		11 E 160				10/20/21 00:10	10/20/21 11:56	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	72	33 - 120	10/26/21 09:51	10/26/21 18:28	1
2-Fluorobiphenyl (Surr)	71	47 - 120	10/26/21 09:51	10/26/21 18:28	1
p-Terphenyl-d14	78	74 - 120	10/26/21 09:51	10/26/21 18:28	1

Method: NWTPH-Dx - Northw	est - Semi-V	olatile Pet	roleum Prod	ucts (G	C)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	84		11	4.5	mg/Kg	*	10/27/21 10:00	10/27/21 15:14	1
Residual Range Organics (RRO) (C25-C36)	240		27	5.3	mg/Kg	₩	10/27/21 10:00	10/27/21 15:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	97		50 - 150				10/27/21 10:00	10/27/21 15:14	1
n-Triacontane-d62	109		50 - 150				10/27/21 10:00	10/27/21 15:14	1

Client Sample ID: SB-4 (2-3) Lab Sample ID: 590-16195-4 Date Collected: 10/22/21 14:15 **Matrix: Solid**

Date Received: 10/25/21 11:00 Percent Solids: 86.0

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND ND	0.26	0.072	mg/Kg	*	10/28/21 09:19	10/28/21 15:17	1
Chloromethane	ND	1.3	0.11	mg/Kg	₩	10/28/21 09:19	10/28/21 15:17	1
Vinyl chloride	ND	0.15	0.052	mg/Kg	₩	10/28/21 09:19	10/28/21 15:17	1
Bromomethane	ND	1.3	0.085	mg/Kg	₩	10/28/21 09:19	10/28/21 15:17	1
Chloroethane	ND	0.51	0.14	mg/Kg	₩	10/28/21 09:19	10/28/21 15:17	1
Trichlorofluoromethane	ND	0.51	0.084	mg/Kg	₩	10/28/21 09:19	10/28/21 15:17	1
1,1-Dichloroethene	ND	0.26	0.087	mg/Kg	₽	10/28/21 09:19	10/28/21 15:17	1

Eurofins TestAmerica, Spokane

Client Sample Results

Client: Hart & Hickman, PC Job ID: 590-16195-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-4 (2-3)

Date Collected: 10/22/21 14:15

Date Received: 10/25/21 11:00

Lab Sample ID: 590-16195-4

Matrix: Solid

Percent Solids: 86.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Methylene Chloride	ND		0.90	0.51	mg/Kg	<u></u>	10/28/21 09:19	10/28/21 15:17	
trans-1,2-Dichloroethene	ND		0.26	0.059	mg/Kg	₩	10/28/21 09:19	10/28/21 15:17	
1,1-Dichloroethane	ND		0.26	0.068	mg/Kg	₩	10/28/21 09:19	10/28/21 15:17	
2,2-Dichloropropane	ND	*+	0.26	0.062	mg/Kg	₩	10/28/21 09:19	10/28/21 15:17	
cis-1,2-Dichloroethene	ND	*+	0.26	0.053	mg/Kg	₩	10/28/21 09:19	10/28/21 15:17	
Bromochloromethane	ND		0.26	0.10	mg/Kg	₩	10/28/21 09:19	10/28/21 15:17	
Chloroform	ND		0.26	0.060	mg/Kg	₩	10/28/21 09:19	10/28/21 15:17	
1,1,1-Trichloroethane	ND		0.26	0.044	mg/Kg	₩	10/28/21 09:19	10/28/21 15:17	
Carbon tetrachloride	ND		0.26	0.028	mg/Kg	₩	10/28/21 09:19	10/28/21 15:17	
1,1-Dichloropropene	ND		0.26	0.045	mg/Kg	₩	10/28/21 09:19	10/28/21 15:17	
Benzene	ND		0.051	0.026	mg/Kg	₩	10/28/21 09:19	10/28/21 15:17	
1,2-Dichloroethane	ND		0.26	0.018	mg/Kg	₽	10/28/21 09:19	10/28/21 15:17	
Trichloroethene	ND		0.064	0.019	mg/Kg	☼	10/28/21 09:19	10/28/21 15:17	
1,2-Dichloropropane	ND	*+	0.31	0.078	mg/Kg	₩	10/28/21 09:19	10/28/21 15:17	
Dibromomethane	ND	*+	0.26		mg/Kg		10/28/21 09:19	10/28/21 15:17	
Bromodichloromethane	ND		0.26	0.16	mg/Kg	₩	10/28/21 09:19	10/28/21 15:17	
cis-1,3-Dichloropropene	ND	*+	0.26		mg/Kg	₩	10/28/21 09:19	10/28/21 15:17	
Toluene	ND		0.26		mg/Kg		10/28/21 09:19	10/28/21 15:17	
trans-1,3-Dichloropropene	ND		0.26		mg/Kg	₩	10/28/21 09:19	10/28/21 15:17	
1,1,2-Trichloroethane	ND		0.26	0.090	mg/Kg	₩	10/28/21 09:19	10/28/21 15:17	
Tetrachloroethene	ND		0.10	0.045	mg/Kg	∴	10/28/21 09:19	10/28/21 15:17	
1,3-Dichloropropane	ND		0.26		mg/Kg	₩	10/28/21 09:19	10/28/21 15:17	
Dibromochloromethane	ND		0.51		mg/Kg	₩	10/28/21 09:19	10/28/21 15:17	
1,2-Dibromoethane (EDB)	ND		0.26		mg/Kg	∴	10/28/21 09:19	10/28/21 15:17	
Chlorobenzene	ND		0.26		mg/Kg	₩	10/28/21 09:19	10/28/21 15:17	
Ethylbenzene	ND		0.26		mg/Kg	₩	10/28/21 09:19	10/28/21 15:17	
1,1,1,2-Tetrachloroethane	ND		0.26		mg/Kg		10/28/21 09:19	10/28/21 15:17	
1,1,2,2-Tetrachloroethane	ND		0.26		mg/Kg	₩	10/28/21 09:19	10/28/21 15:17	
m,p-Xylene	ND		1.0		mg/Kg	₩	10/28/21 09:19	10/28/21 15:17	
o-Xylene	ND		0.51		mg/Kg	∴	10/28/21 09:19	10/28/21 15:17	
Styrene	ND		0.26		mg/Kg	₩	10/28/21 09:19	10/28/21 15:17	
Bromoform	ND		0.51		mg/Kg	₩.	10/28/21 09:19	10/28/21 15:17	
Isopropylbenzene	ND		0.26		mg/Kg		10/28/21 09:19		
Bromobenzene	ND		0.26	0.057		Ď.	10/28/21 09:19	10/28/21 15:17	
N-Propylbenzene	ND		0.26		mg/Kg	Ď.		10/28/21 15:17	
1,2,3-Trichloropropane	ND		0.51		mg/Kg	∵	10/28/21 09:19	10/28/21 15:17	
2-Chlorotoluene	ND		0.26		mg/Kg	~ ☆			
1,3,5-Trimethylbenzene	ND		0.26		mg/Kg			10/28/21 15:17	
4-Chlorotoluene	ND		0.26		mg/Kg			10/28/21 15:17	
tert-Butylbenzene	ND		0.26		mg/Kg	~ ☆		10/28/21 15:17	
1,2,4-Trimethylbenzene	ND		0.26		mg/Kg	~ ☆		10/28/21 15:17	
sec-Butylbenzene	ND		0.26		mg/Kg			10/28/21 15:17	
1,3-Dichlorobenzene	ND		0.26		mg/Kg	₩		10/28/21 15:17	
p-Isopropyltoluene	ND ND		0.26		mg/Kg	₩		10/28/21 15:17	
1,4-Dichlorobenzene								10/28/21 15:17	
•	ND		0.26		mg/Kg	‡		10/28/21 15:17	
n-Butylbenzene	ND	*	0.26		mg/Kg	*			
1,2-Dichlorobenzene	ND	.	0.26		mg/Kg	· · · · · · · · · · · · · · · · ·		10/28/21 15:17	
1,2-Dibromo-3-Chloropropane 1,2,4-Trichlorobenzene	ND ND		1.3 0.26		mg/Kg mg/Kg	₩		10/28/21 15:17 10/28/21 15:17	

Eurofins TestAmerica, Spokane

10/28/2021

Page 13 of 38

9

3

5

6

0

Client: Hart & Hickman, PC Job ID: 590-16195-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-4 (2-3)

Date Collected: 10/22/21 14:15 Date Received: 10/25/21 11:00 Lab Sample ID: 590-16195-4

Matrix: Solid

Percent Solids: 86.0

Method: 8260D - Volatile Or	rganic Compo	unds by G	C/MS (Conti	nued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3-Trichlorobenzene	ND		0.26	0.086	mg/Kg	<u></u>	10/28/21 09:19	10/28/21 15:17	1
Hexachlorobutadiene	ND		0.26	0.042	mg/Kg	☆	10/28/21 09:19	10/28/21 15:17	1
Naphthalene	ND		0.51	0.072	mg/Kg	☆	10/28/21 09:19	10/28/21 15:17	1
Methyl tert-butyl ether	ND	*+	0.13	0.077	mg/Kg	₩	10/28/21 09:19	10/28/21 15:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		80 - 120				10/28/21 09:19	10/28/21 15:17	1
4-Bromofluorobenzene (Surr)	99		76 - 122				10/28/21 09:19	10/28/21 15:17	1
Dibromofluoromethane (Surr)	99		80 - 120				10/28/21 09:19	10/28/21 15:17	1
1,2-Dichloroethane-d4 (Surr)	105		75 - 129				10/28/21 09:19	10/28/21 15:17	1

Method: NWTPH-Gx - Nor	thwest - Volatile Petrole	eum Products (GC/MS)					
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND ND	13	4.6	mg/Kg	— <u></u>	10/28/21 09:19	10/28/21 15:17	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorohenzene (Surr)	99	41.5 162				10/28/21 09:19	10/28/21 15:17	

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND ND		2.4	ug/Kg	<u></u>	10/26/21 09:51	10/26/21 18:52	1
2-Methylnaphthalene	ND	11	3.5	ug/Kg	₩	10/26/21 09:51	10/26/21 18:52	1
1-Methylnaphthalene	ND	11	2.5	ug/Kg	₩	10/26/21 09:51	10/26/21 18:52	1
Acenaphthylene	ND	11	3.7	ug/Kg	₽	10/26/21 09:51	10/26/21 18:52	1
Acenaphthene	ND	11	2.8	ug/Kg	₩	10/26/21 09:51	10/26/21 18:52	1
Fluorene	ND	11	2.5	ug/Kg	₩	10/26/21 09:51	10/26/21 18:52	1
Phenanthrene	ND	11	4.1	ug/Kg	₩	10/26/21 09:51	10/26/21 18:52	1
Anthracene	ND	11	2.2	ug/Kg	≎	10/26/21 09:51	10/26/21 18:52	1
Fluoranthene	ND	11	2.8	ug/Kg	₩	10/26/21 09:51	10/26/21 18:52	1
Pyrene	ND	11	4.3	ug/Kg	₽	10/26/21 09:51	10/26/21 18:52	1
Benzo[a]anthracene	ND	11	2.4	ug/Kg	₩	10/26/21 09:51	10/26/21 18:52	1
Chrysene	ND	11	1.7	ug/Kg	☼	10/26/21 09:51	10/26/21 18:52	1
Benzo[b]fluoranthene	ND	11	3.9	ug/Kg	₽	10/26/21 09:51	10/26/21 18:52	1
Benzo[k]fluoranthene	ND	11	2.8	ug/Kg	₩	10/26/21 09:51	10/26/21 18:52	1
Benzo[a]pyrene	ND	11	4.7	ug/Kg	☼	10/26/21 09:51	10/26/21 18:52	1
Indeno[1,2,3-cd]pyrene	ND	11	3.3	ug/Kg	₩	10/26/21 09:51	10/26/21 18:52	1
Dibenz(a,h)anthracene	ND	11	3.2	ug/Kg	☼	10/26/21 09:51	10/26/21 18:52	1
Benzo[g,h,i]perylene	ND	11	2.6	ug/Kg	₩	10/26/21 09:51	10/26/21 18:52	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	67	33 - 120	10/26/21 09:51	10/26/21 18:52	1
2-Fluorobiphenyl (Surr)	68	47 - 120	10/26/21 09:51	10/26/21 18:52	1
p-Terphenyl-d14	91	74 - 120	10/26/21 09:51	10/26/21 18:52	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND —	11	4.7	mg/Kg	*	10/27/21 10:00	10/27/21 15:34	1
Residual Range Organics (RRO) (C25-C36)	ND	28	5.6	mg/Kg	₩	10/27/21 10:00	10/27/21 15:34	1

Eurofins TestAmerica, Spokane

Client Sample Results

Client: Hart & Hickman, PC Job ID: 590-16195-1

Project/Site: Northwest Motorsports - Puyallup

Lab Sample ID: 590-16195-4 Client Sample ID: SB-4 (2-3) Date Collected: 10/22/21 14:15

Matrix: Solid

Date Received: 10/25/21 11:00 Percent Solids: 86.0

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	96		50 - 150	10/27/21 10:00	10/27/21 15:34	1
n-Triacontane-d62	104		50 - 150	10/27/21 10:00	10/27/21 15:34	1

Client Sample ID: SB-5 (1-2) Lab Sample ID: 590-16195-5

Date Collected: 10/22/21 15:00 **Matrix: Solid** Date Received: 10/25/21 11:00 Percent Solids: 88.0

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND ND	0.24	0.067	mg/Kg	<u></u>	10/28/21 09:19	10/28/21 15:38	1
Chloromethane	ND	1.2	0.10	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
Vinyl chloride	ND	0.14	0.048	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
Bromomethane	ND	1.2	0.079	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
Chloroethane	ND	0.48	0.13	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
Trichlorofluoromethane	ND	0.48	0.078	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
1,1-Dichloroethene	ND	0.24	0.081	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
Methylene Chloride	ND	0.84	0.48	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
trans-1,2-Dichloroethene	ND	0.24	0.055	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
1,1-Dichloroethane	ND	0.24	0.063	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
2,2-Dichloropropane	ND *+	0.24	0.058	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
cis-1,2-Dichloroethene	ND *+	0.24		mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
Bromochloromethane	ND	0.24		mg/Kg		10/28/21 09:19	10/28/21 15:38	1
Chloroform	ND	0.24		mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
1,1,1-Trichloroethane	0.10 J	0.24	0.041	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
Carbon tetrachloride	ND	0.24	0.026	mg/Kg		10/28/21 09:19	10/28/21 15:38	1
1,1-Dichloropropene	ND	0.24		mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
Benzene	ND	0.048		mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
1,2-Dichloroethane	ND	0.24		mg/Kg	 ☆	10/28/21 09:19	10/28/21 15:38	1
Trichloroethene	ND	0.060		mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
1,2-Dichloropropane	ND *+	0.29		mg/Kg	₩	10/28/21 09:19		1
Dibromomethane	ND *+	0.24		mg/Kg			10/28/21 15:38	1
Bromodichloromethane	ND	0.24		mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
cis-1,3-Dichloropropene	ND *+	0.24		mg/Kg	₩		10/28/21 15:38	1
Toluene	0.038 J	0.24		mg/Kg			10/28/21 15:38	1
trans-1,3-Dichloropropene	ND	0.24		mg/Kg	₩	10/28/21 09:19		1
1,1,2-Trichloroethane	ND	0.24		mg/Kg	₩		10/28/21 15:38	1
Tetrachloroethene	1.8	0.095		mg/Kg		10/28/21 09:19		1
1,3-Dichloropropane	ND	0.24		mg/Kg	₩		10/28/21 15:38	1
Dibromochloromethane	ND	0.48		mg/Kg	₩		10/28/21 15:38	1
1,2-Dibromoethane (EDB)	ND	0.24		mg/Kg			10/28/21 15:38	1
Chlorobenzene	ND	0.24		mg/Kg	₩		10/28/21 15:38	1
Ethylbenzene	ND	0.24		mg/Kg	₩		10/28/21 15:38	1
1,1,1,2-Tetrachloroethane	ND	0.24		mg/Kg			10/28/21 15:38	1
1,1,2,2-Tetrachloroethane	ND	0.24		mg/Kg		10/28/21 09:19		1
m,p-Xylene	ND	0.95		mg/Kg	ť.	10/28/21 09:19		1
o-Xylene	ND	0.48		mg/Kg	T.	10/28/21 09:19		
Styrene	ND	0.24		mg/Kg	~ ☆		10/28/21 15:38	1
Bromoform	ND	0.48		mg/Kg	₩	10/28/21 09:19		1
Isopropylbenzene	ND	0.40		mg/Kg			10/28/21 15:38	
Bromobenzene	ND	0.24		mg/Kg			10/28/21 15:38	1

Eurofins TestAmerica, Spokane

10/28/2021

Page 15 of 38

Job ID: 590-16195-1

Client: Hart & Hickman, PC Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-5 (1-2)

Date Collected: 10/22/21 15:00 Date Received: 10/25/21 11:00 Lab Sample ID: 590-16195-5

Matrix: Solid

Percent Solids: 88.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
N-Propylbenzene	ND		0.24	0.063	mg/Kg	<u></u>	10/28/21 09:19	10/28/21 15:38	1
1,2,3-Trichloropropane	ND		0.48	0.087	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
2-Chlorotoluene	ND		0.24	0.039	mg/Kg	☼	10/28/21 09:19	10/28/21 15:38	1
1,3,5-Trimethylbenzene	ND		0.24	0.076	mg/Kg	☼	10/28/21 09:19	10/28/21 15:38	1
4-Chlorotoluene	ND		0.24	0.021	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
tert-Butylbenzene	ND		0.24	0.047	mg/Kg	☼	10/28/21 09:19	10/28/21 15:38	1
1,2,4-Trimethylbenzene	ND		0.24	0.056	mg/Kg	☼	10/28/21 09:19	10/28/21 15:38	1
sec-Butylbenzene	ND		0.24	0.044	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
1,3-Dichlorobenzene	ND		0.24	0.030	mg/Kg	☼	10/28/21 09:19	10/28/21 15:38	1
p-Isopropyltoluene	ND		0.24	0.049	mg/Kg	☼	10/28/21 09:19	10/28/21 15:38	1
1,4-Dichlorobenzene	ND		0.24	0.049	mg/Kg	☼	10/28/21 09:19	10/28/21 15:38	1
n-Butylbenzene	ND		0.24	0.066	mg/Kg	☼	10/28/21 09:19	10/28/21 15:38	1
1,2-Dichlorobenzene	ND	*+	0.24	0.056	mg/Kg	☼	10/28/21 09:19	10/28/21 15:38	1
1,2-Dibromo-3-Chloropropane	ND		1.2	0.14	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
1,2,4-Trichlorobenzene	ND		0.24	0.044	mg/Kg	☼	10/28/21 09:19	10/28/21 15:38	1
1,2,3-Trichlorobenzene	ND		0.24	0.080	mg/Kg	☼	10/28/21 09:19	10/28/21 15:38	1
Hexachlorobutadiene	ND		0.24	0.039	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
Naphthalene	ND		0.48	0.067	mg/Kg	☼	10/28/21 09:19	10/28/21 15:38	1
Methyl tert-butyl ether	ND	*+	0.12	0.072	mg/Kg	☼	10/28/21 09:19	10/28/21 15:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	102		80 - 120				10/28/21 09:19	10/28/21 15:38	1
4-Bromofluorobenzene (Surr)	102		76 - 122				10/28/21 09:19	10/28/21 15:38	1
Dibromofluoromethane (Surr)	91		80 - 120				10/28/21 09:19	10/28/21 15:38	1
1,2-Dichloroethane-d4 (Surr)	93		75 - 129				10/28/21 09:19	10/28/21 15:38	1

Method: NWTPH-Gx - North	west - Volatile	e Petroleu	m Products (GC/MS)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	4.7	J	12	4.3	mg/Kg	_	10/28/21 09:19	10/28/21 15:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		41.5 - 162				10/28/21 09:19	10/28/21 15:38	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		56	12	ug/Kg	<u></u>	10/26/21 09:51	10/26/21 19:16	5
2-Methylnaphthalene	ND		56	17	ug/Kg	₩	10/26/21 09:51	10/26/21 19:16	5
1-Methylnaphthalene	ND		56	12	ug/Kg	₩	10/26/21 09:51	10/26/21 19:16	5
Acenaphthylene	ND		56	18	ug/Kg	₩	10/26/21 09:51	10/26/21 19:16	5
Acenaphthene	ND		56	14	ug/Kg	₩	10/26/21 09:51	10/26/21 19:16	5
Fluorene	ND		56	12	ug/Kg	₩	10/26/21 09:51	10/26/21 19:16	5
Phenanthrene	ND		56	20	ug/Kg	₩	10/26/21 09:51	10/26/21 19:16	5
Anthracene	ND		56	11	ug/Kg	₩	10/26/21 09:51	10/26/21 19:16	5
Fluoranthene	ND		56	14	ug/Kg	₩	10/26/21 09:51	10/26/21 19:16	5
Pyrene	ND		56	21	ug/Kg	₩	10/26/21 09:51	10/26/21 19:16	5
Benzo[a]anthracene	ND		56	12	ug/Kg	₩	10/26/21 09:51	10/26/21 19:16	5
Chrysene	ND		56	8.4	ug/Kg	₩	10/26/21 09:51	10/26/21 19:16	5
Benzo[b]fluoranthene	ND		56	19	ug/Kg	₩	10/26/21 09:51	10/26/21 19:16	5
Benzo[k]fluoranthene	ND		56	14	ug/Kg	₩	10/26/21 09:51	10/26/21 19:16	5
Benzo[a]pyrene	ND		56	23	ug/Kg	☼	10/26/21 09:51	10/26/21 19:16	5

Eurofins TestAmerica, Spokane

Job ID: 590-16195-1

Client: Hart & Hickman, PC Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-5 (1-2)

Date Collected: 10/22/21 15:00

Date Received: 10/25/21 11:00

Lab Sample ID: 590-16195-5

Matrix: Solid

Percent Solids: 88.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	ND		56	16	ug/Kg	-	10/26/21 09:51	10/26/21 19:16	5
Dibenz(a,h)anthracene	ND		56	16	ug/Kg	₽	10/26/21 09:51	10/26/21 19:16	5
Benzo[g,h,i]perylene	ND		56	13	ug/Kg	₩	10/26/21 09:51	10/26/21 19:16	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	88		33 - 120				10/26/21 09:51	10/26/21 19:16	5
2-Fluorobiphenyl (Surr)	81		47 - 120				10/26/21 09:51	10/26/21 19:16	5
p-Terphenyl-d14	81		74 - 120				10/26/21 09:51	10/26/21 19:16	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	1700		110	46	mg/Kg	₩	10/27/21 10:00	10/28/21 07:42	10
Residual Range Organics (RRO) (C25-C36)	4900		280	55	mg/Kg	☼	10/27/21 10:00	10/28/21 07:42	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	103		50 - 150				10/27/21 10:00	10/28/21 07:42	10
n-Triacontane-d62	103		50 ₋ 150				10/27/21 10:00	10/28/21 07:42	10

Client Sample ID: Trip Blank Lab Sample ID: 590-16195-6 Date Collected: 10/22/21 10:00 **Matrix: Solid**

Date Received: 10/25/21 11:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		0.097	0.027	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
Chloromethane	ND		0.48	0.040	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
Vinyl chloride	ND		0.058	0.020	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
Bromomethane	ND		0.48	0.032	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
Chloroethane	ND		0.19	0.055	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
Trichlorofluoromethane	ND		0.19	0.032	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
1,1-Dichloroethene	ND		0.097	0.033	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
Methylene Chloride	ND		0.34	0.19	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
trans-1,2-Dichloroethene	ND		0.097	0.022	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
1,1-Dichloroethane	ND		0.097	0.026	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
2,2-Dichloropropane	ND	*+	0.097	0.024	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
cis-1,2-Dichloroethene	ND	*+	0.097	0.020	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
Bromochloromethane	ND		0.097	0.039	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
Chloroform	ND		0.097	0.023	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
1,1,1-Trichloroethane	ND		0.097	0.017	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
Carbon tetrachloride	ND		0.097	0.011	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
1,1-Dichloropropene	ND		0.097	0.017	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
Benzene	ND		0.019	0.0097	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
1,2-Dichloroethane	ND		0.097	0.0068	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
Trichloroethene	ND		0.024	0.0074	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
1,2-Dichloropropane	ND	*+	0.12	0.029	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
Dibromomethane	ND	*+	0.097	0.022	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
Bromodichloromethane	ND		0.097	0.060	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
cis-1,3-Dichloropropene	ND	*+	0.097	0.020	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
Toluene	ND		0.097		mg/Kg		10/28/21 09:19	10/28/21 15:59	1

Eurofins TestAmerica, Spokane

Page 17 of 38

MDL Unit

D

Prepared

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Result Qualifier

ND

ND

ND

ND

ND

ND

ND *+

ND *+

Client Sample ID: Trip Blank

Date Collected: 10/22/21 10:00 Date Received: 10/25/21 11:00

Analyte

n-Butylbenzene

1,2-Dichlorobenzene

1,2,4-Trichlorobenzene

1,2,3-Trichlorobenzene

Hexachlorobutadiene

Methyl tert-butyl ether

Naphthalene

1,2-Dibromo-3-Chloropropane

Lab Sample ID: 590-16195-6

Analyzed

Matrix: Solid

Dil Fac

- 3							
trans-1,3-Dichloropropene	ND	0.097	0.026	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
1,1,2-Trichloroethane	ND	0.097	0.034	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
Tetrachloroethene	ND	0.039	0.017	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
1,3-Dichloropropane	ND	0.097	0.029	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
Dibromochloromethane	ND	0.19	0.016	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
1,2-Dibromoethane (EDB)	ND	0.097	0.032	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
Chlorobenzene	ND	0.097	0.020	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
Ethylbenzene	ND	0.097	0.016	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
1,1,1,2-Tetrachloroethane	ND	0.097	0.019	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
1,1,2,2-Tetrachloroethane	ND	0.097	0.028	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
m,p-Xylene	ND	0.39	0.028	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
o-Xylene	ND	0.19	0.022	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
Styrene	ND	0.097	0.023	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
Bromoform	ND	0.19	0.019	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
Isopropylbenzene	ND	0.097	0.030	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
Bromobenzene	ND	0.097	0.022	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
N-Propylbenzene	ND	0.097	0.026	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
1,2,3-Trichloropropane	ND	0.19	0.035	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
2-Chlorotoluene	ND	0.097	0.016	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
1,3,5-Trimethylbenzene	ND	0.097	0.031	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
4-Chlorotoluene	ND	0.097	0.0084	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
tert-Butylbenzene	ND	0.097	0.019	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
1,2,4-Trimethylbenzene	ND	0.097	0.023	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
sec-Butylbenzene	ND	0.097	0.018	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
1,3-Dichlorobenzene	ND	0.097	0.012	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
p-Isopropyltoluene	ND	0.097	0.020	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
1,4-Dichlorobenzene	ND	0.097	0.020	mg/Kg	10/28/21 09:19	10/28/21 15:59	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		80 - 120	10/28/21 09:19	10/28/21 15:59	1
4-Bromofluorobenzene (Surr)	94		76 - 122	10/28/21 09:19	10/28/21 15:59	1
Dibromofluoromethane (Surr)	100		80 - 120	10/28/21 09:19	10/28/21 15:59	1
1,2-Dichloroethane-d4 (Surr)	108		75 - 129	10/28/21 09:19	10/28/21 15:59	1

0.097

0.097

0.48

0.097

0.097

0.097

0.19

0.048

0.027 mg/Kg

0.023 mg/Kg

0.058 mg/Kg

0.018 mg/Kg

0.032 mg/Kg

0.016 mg/Kg

0.027 mg/Kg

0.029 mg/Kg

	est - Volatile	Petroleu	m Products ((GC/MS)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		4.8	1.7	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		41.5 - 162				10/28/21 09:19	10/28/21 15:59	1

Eurofins TestAmerica, Spokane

10/28/21 09:19 10/28/21 15:59

10/28/21 09:19 10/28/21 15:59

10/28/21 09:19 10/28/21 15:59

10/28/21 09:19 10/28/21 15:59 10/28/21 09:19 10/28/21 15:59

10/28/21 09:19 10/28/21 15:59

10/28/21 09:19 10/28/21 15:59

10/28/21 09:19 10/28/21 15:59

Client: Hart & Hickman, PC Job ID: 590-16195-1

RL

MDL Unit

Project/Site: Northwest Motorsports - Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS

MB MB

Result Qualifier

Lab Sample ID: MB 590-33778/1-A

Matrix: Solid

Analyte

Analysis Batch: 33784

Client Sample ID: Method Blank **Prep Type: Total/NA**

Analyzed

Prepared

Prep Batch: 33778

Dil Fac

11:03
14.00
11:03
11:03
11:03
11:03
11:03
11:03
11:03
11:03
11:03
11:03
11:03
1 1 1 1 1 1

1 Bromochloromethane ND 0.10 0.040 mg/Kg 10/28/21 09:16 10/28/21 11:03 0.024 mg/Kg Chloroform ND 0.10 10/28/21 09:16 10/28/21 11:03 1,1,1-Trichloroethane ND 0.10 0.017 mg/Kg 10/28/21 09:16 10/28/21 11:03 Carbon tetrachloride ND 0.10 0.011 mg/Kg 10/28/21 09:16 10/28/21 11:03 10/28/21 09:16 10/28/21 11:03 1,1-Dichloropropene ND 0.10 0.017 mg/Kg ND 0.020 0.010 mg/Kg 10/28/21 09:16 10/28/21 11:03 Benzene 1,2-Dichloroethane ND 0.10 0.0070 mg/Kg 10/28/21 09:16 10/28/21 11:03 Trichloroethene ND 0.025 0.0076 mg/Kg 10/28/21 09:16 10/28/21 11:03 1,2-Dichloropropane 0.030 mg/Kg 10/28/21 09:16 10/28/21 11:03 ND 0.12 ND 0.10 10/28/21 11:03 Dibromomethane 0.022 mg/Kg 10/28/21 09:16 Bromodichloromethane ND 0.10 0.062 mg/Kg 10/28/21 09:16 10/28/21 11:03 ND 0.10 0.020 10/28/21 09:16 10/28/21 11:03 cis-1,3-Dichloropropene mg/Kg Toluene ND 0.10 0.013 mg/Kg 10/28/21 09:16 10/28/21 11:03 trans-1,3-Dichloropropene ND 0.10 0.026 mg/Kg 10/28/21 09:16 10/28/21 11:03 1,1,2-Trichloroethane ND 0.10 0.035 mg/Kg 10/28/21 09:16 10/28/21 11:03 Tetrachloroethene ND 0.040 0.018 mg/Kg 10/28/21 09:16 10/28/21 11:03 1,3-Dichloropropane ND 0.10 0.030 mg/Kg 10/28/21 09:16 10/28/21 11:03 Dibromochloromethane ND 0.20 0.016 mg/Kg 10/28/21 09:16 10/28/21 11:03 1,2-Dibromoethane (EDB) ND 0.10 0.034 mg/Kg 10/28/21 09:16 10/28/21 11:03 ND 0.10 0.021 mg/Kg 10/28/21 09:16 10/28/21 11:03 Chlorobenzene Ethylbenzene ND 0.10 0.016 mg/Kg 10/28/21 09:16 10/28/21 11:03 1,1,1,2-Tetrachloroethane ND 0.10 0.019 mg/Kg 10/28/21 09:16 10/28/21 11:03 1,1,2,2-Tetrachloroethane ND 0.10 10/28/21 09:16 10/28/21 11:03 0.029 mg/Kg m,p-Xylene ND 0.40 0.029 mg/Kg 10/28/21 09:16 10/28/21 11:03 o-Xylene ND 0.20 0.023 mg/Kg 10/28/21 09:16 10/28/21 11:03 Styrene ND 0.10 0.024 mg/Kg 10/28/21 09:16 10/28/21 11:03 Bromoform ND 0.20 0.019 mg/Kg 10/28/21 09:16 10/28/21 11:03 Isopropylbenzene ND 0.10 0.031 mg/Kg 10/28/21 09:16 10/28/21 11:03 Bromobenzene ND 0.10 0.022 mg/Kg 10/28/21 09:16 10/28/21 11:03 ND 0.10 0.026 mg/Kg 10/28/21 09:16 10/28/21 11:03 N-Propylbenzene 10/28/21 11:03 1,2,3-Trichloropropane ND 0.20 0.037 mg/Kg 10/28/21 09:16 2-Chlorotoluene ND 0.10 0.016 mg/Kg 10/28/21 09:16 10/28/21 11:03 1,3,5-Trimethylbenzene ND 0.10 0.032 mg/Kg 10/28/21 09:16 10/28/21 11:03 ND 4-Chlorotoluene 0.10 0.0087 mg/Kg 10/28/21 11:03 10/28/21 09:16 tert-Butylbenzene ND 0.10 0.020 mg/Kg 10/28/21 09:16 10/28/21 11:03 1,2,4-Trimethylbenzene ND 0.10 0.023 mg/Kg 10/28/21 09:16 10/28/21 11:03

Eurofins TestAmerica, Spokane

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Job ID: 590-16195-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 590-33778/1-A

Matrix: Solid

Analysis Batch: 33784

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 33778

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac sec-Butylbenzene ND 0.10 0.019 mg/Kg 10/28/21 09:16 10/28/21 11:03 1,3-Dichlorobenzene ND 0.10 0.013 mg/Kg 10/28/21 09:16 10/28/21 11:03 p-Isopropyltoluene ND 10/28/21 09:16 10/28/21 11:03 0.10 0.020 mg/Kg 1,4-Dichlorobenzene ND 0.10 0.021 mg/Kg 10/28/21 09:16 10/28/21 11:03 ND 0.028 mg/Kg 10/28/21 09:16 10/28/21 11:03 n-Butylbenzene 0.10 1,2-Dichlorobenzene ND 0.10 0.023 mg/Kg 10/28/21 09:16 10/28/21 11:03 1,2-Dibromo-3-Chloropropane ND 0.50 0.060 mg/Kg 10/28/21 09:16 10/28/21 11:03 ND 0.019 mg/Kg 1,2,4-Trichlorobenzene 0.10 10/28/21 09:16 10/28/21 11:03 ND 0.033 mg/Kg 1,2,3-Trichlorobenzene 0.10 10/28/21 09:16 10/28/21 11:03 Hexachlorobutadiene ND 0.10 0.016 mg/Kg 10/28/21 09:16 10/28/21 11:03 Naphthalene ND 0.20 0.028 mg/Kg 10/28/21 09:16 10/28/21 11:03 ND 0.050 0.030 mg/Kg 10/28/21 09:16 10/28/21 11:03 Methyl tert-butyl ether

MB MB

Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	93	80 - 120	10/28/21 09:16	10/28/21 11:03	1
4-Bromofluorobenzene (Surr)	100	76 - 122	10/28/21 09:16	10/28/21 11:03	1
Dibromofluoromethane (Surr)	99	80 - 120	10/28/21 09:16	10/28/21 11:03	1
1,2-Dichloroethane-d4 (Surr)	99	75 - 129	10/28/21 09:16	10/28/21 11:03	1

Lab Sample ID: LCS 590-33778/2-A

Matrix: Solid

Analysis Batch: 33784

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 33778

•	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Dichlorodifluoromethane	0.500	0.332		mg/Kg		66	34 - 120
Chloromethane	0.500	0.452	J	mg/Kg		90	63 - 120
Vinyl chloride	0.500	0.540		mg/Kg		108	66 - 129
Bromomethane	0.500	0.554		mg/Kg		111	56 - 138
Chloroethane	0.500	0.521		mg/Kg		104	50 - 142
Trichlorofluoromethane	0.500	0.577		mg/Kg		115	64 - 143
1,1-Dichloroethene	0.500	0.614		mg/Kg		123	73 - 135
Methylene Chloride	0.500	0.628		mg/Kg		126	30 - 150
trans-1,2-Dichloroethene	0.500	0.585		mg/Kg		117	80 - 126
1,1-Dichloroethane	0.500	0.591		mg/Kg		118	80 - 129
2,2-Dichloropropane	0.500	0.685		mg/Kg		137	80 - 138
cis-1,2-Dichloroethene	0.500	0.619		mg/Kg		124	80 - 124
Bromochloromethane	0.500	0.607		mg/Kg		121	75 - 135
Chloroform	0.500	0.609		mg/Kg		122	80 - 130
1,1,1-Trichloroethane	0.500	0.621		mg/Kg		124	80 - 130
Carbon tetrachloride	0.500	0.622		mg/Kg		124	72 - 138
1,1-Dichloropropene	0.500	0.632		mg/Kg		126	78 - 132
Benzene	0.500	0.625		mg/Kg		125	76 - 129
1,2-Dichloroethane	0.500	0.633		mg/Kg		127	80 - 129
Trichloroethene	0.500	0.602		mg/Kg		120	79 - 133
1,2-Dichloropropane	0.500	0.634	*+	mg/Kg		127	75 - 121
Dibromomethane	0.500	0.632	*+	mg/Kg		126	80 - 123
Bromodichloromethane	0.500	0.617		mg/Kg		123	80 - 128
cis-1,3-Dichloropropene	0.500	0.614		mg/Kg		123	80 - 126

Eurofins TestAmerica, Spokane

Page 20 of 38

9

3

_

a

10

11

1 2

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 590-33778/2-A

Matrix: Solid

Analysis Batch: 33784

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 33778

Job ID: 590-16195-1

Analysis Batch. 33704	Spike	LCS LCS			%Rec.
Analyte	Added	Result Qualific		D %Rec	Limits
Toluene	0.500	0.604	mg/Kg	121	77 - 131
trans-1,3-Dichloropropene	0.500	0.601	mg/Kg	120	80 - 124
1,1,2-Trichloroethane	0.500	0.598	mg/Kg	120	80 - 125
Tetrachloroethene	0.500	0.623	mg/Kg	125	77 ₋ 134
1,3-Dichloropropane	0.500	0.582	mg/Kg	116	76 - 125
Dibromochloromethane	0.500	0.610	mg/Kg	122	78 - 127
1,2-Dibromoethane (EDB)	0.500	0.562	mg/Kg	112	80 - 121
Chlorobenzene	0.500	0.609	mg/Kg	122	80 - 129
Ethylbenzene	0.500	0.625	mg/Kg	125	77 - 126
1,1,1,2-Tetrachloroethane	0.500	0.624	mg/Kg	125	80 - 128
1,1,2,2-Tetrachloroethane	0.500	0.604	mg/Kg	121	75 - 128
m,p-Xylene	0.500	0.625	mg/Kg	125	78 - 130
o-Xylene	0.500	0.623	mg/Kg	125	77 - 129
Styrene	0.500	0.616	mg/Kg	123	80 - 128
Bromoform	0.500	0.593	mg/Kg	119	72 - 133
Isopropylbenzene	0.500	0.632	mg/Kg	126	78 - 139
Bromobenzene	0.500	0.638	mg/Kg	128	75 - 129
N-Propylbenzene	0.500	0.632	mg/Kg	126	77 - 131
1,2,3-Trichloropropane	0.500	0.640	mg/Kg	128	67 - 131
2-Chlorotoluene	0.500	0.602	mg/Kg	120	77 - 135
1,3,5-Trimethylbenzene	0.500	0.622	mg/Kg	124	76 - 133
4-Chlorotoluene	0.500	0.618	mg/Kg	124	77 - 133
tert-Butylbenzene	0.500	0.632	mg/Kg	126	76 - 130
1,2,4-Trimethylbenzene	0.500	0.654	mg/Kg	131	76 - 132
sec-Butylbenzene	0.500	0.623	mg/Kg	125	76 - 130
1,3-Dichlorobenzene	0.500	0.612	mg/Kg	122	80 - 123
p-Isopropyltoluene	0.500	0.638	mg/Kg	128	80 - 130
1,4-Dichlorobenzene	0.500	0.610	mg/Kg	122	80 - 125
n-Butylbenzene	0.500	0.614	mg/Kg	123	80 - 131
1,2-Dichlorobenzene	0.500	0.635 *+	mg/Kg	127	80 - 124
1,2-Dibromo-3-Chloropropane	0.500	0.608	mg/Kg	122	49 - 139
1,2,4-Trichlorobenzene	0.500	0.608	mg/Kg	122	79 - 126
1,2,3-Trichlorobenzene	0.500	0.625	mg/Kg	125	66 - 130
Hexachlorobutadiene	0.500	0.672	mg/Kg	134	80 - 136
Naphthalene	0.500	0.603	mg/Kg	121	53 - 144
Methyl tert-butyl ether	0.500	0.626 *+	mg/Kg	125	80 - 123
I and the second se			=		

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	96		80 - 120
4-Bromofluorobenzene (Surr)	100		76 - 122
Dibromofluoromethane (Surr)	98		80 - 120
1.2-Dichloroethane-d4 (Surr)	110		75 - 129

10/28/2021

6

3

5

7

9

10

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 590-33778/18-A

Matrix: Solid

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analysis Batch: 33784							Prep ly	Batch:	
Analysis Daten. 33704	Spike	LCSD	LCSD				%Rec.	Jaton. v	RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	0.500	0.350		mg/Kg		70	34 - 120	5	24
Chloromethane	0.500	0.424	J	mg/Kg		85	63 - 120	6	22
Vinyl chloride	0.500	0.518		mg/Kg		104	66 - 129	4	20
Bromomethane	0.500	0.504		mg/Kg		101	56 - 138	9	21
Chloroethane	0.500	0.513		mg/Kg		103	50 - 142	2	25
Trichlorofluoromethane	0.500	0.568		mg/Kg		114	64 - 143	2	25
1,1-Dichloroethene	0.500	0.612		mg/Kg		122	73 - 135	0	18
Methylene Chloride	0.500	0.623		mg/Kg		125	30 - 150	1	40
trans-1,2-Dichloroethene	0.500	0.585		mg/Kg		117	80 - 126	0	25
1,1-Dichloroethane	0.500	0.580		mg/Kg		116	80 - 129	2	25
2,2-Dichloropropane	0.500	0.696	*+	mg/Kg		139	80 - 138	2	22
cis-1,2-Dichloroethene	0.500	0.642		mg/Kg		128	80 - 124	4	23
Bromochloromethane	0.500	0.597		mg/Kg		119	75 - 135	2	25
Chloroform	0.500	0.632		mg/Kg		126	80 - 130	4	25
1,1,1-Trichloroethane	0.500	0.610		mg/Kg		122	80 - 130	2	19
Carbon tetrachloride	0.500	0.631		mg/Kg		126	72 - 138	- 1	25
1,1-Dichloropropene	0.500	0.633		mg/Kg		127	78 - 132	0	24
Benzene	0.500	0.616		mg/Kg		123	76 - 129	1	25
1,2-Dichloroethane	0.500	0.629		mg/Kg		126	80 - 129	· · · · · · · · · · · · · · · · · · ·	25
Trichloroethene	0.500	0.610		mg/Kg		122	79 - 133	1	25
1,2-Dichloropropane	0.500	0.558		mg/Kg		112	75 - 121	13	20
Dibromomethane	0.500	0.598		mg/Kg		120	80 - 123	¹³ 5	24
Bromodichloromethane	0.500	0.636		mg/Kg		127	80 - 128	3	26
cis-1,3-Dichloropropene	0.500	0.633	*_	mg/Kg		127	80 - 126	3	24
Toluene	0.500	0.587		mg/Kg		117	77 - 131	3	25
trans-1,3-Dichloropropene	0.500	0.587		mg/Kg		117	80 - 124	2	28
1,1,2-Trichloroethane	0.500	0.568		mg/Kg		114	80 - 125	5	31
Tetrachloroethene	0.500	0.609		mg/Kg		122	77 - 134	2	24
1,3-Dichloropropane	0.500	0.586		mg/Kg		117	76 - 125	1	16
Dibromochloromethane	0.500	0.599		mg/Kg		120	78 - 127	2	25
1,2-Dibromoethane (EDB)	0.500	0.560		mg/Kg		112	80 - 121	0	18
Chlorobenzene	0.500	0.600		mg/Kg		120	80 - 129	1	25
Ethylbenzene	0.500	0.610		mg/Kg		122	77 - 126	2	25
1,1,1,2-Tetrachloroethane	0.500	0.561		mg/Kg		112	80 - 128	11	25
1,1,2,2-Tetrachloroethane	0.500	0.597		mg/Kg		119	75 - 128	1	22
m,p-Xylene	0.500	0.596		mg/Kg		119	78 - 130	5	23
o-Xylene	0.500	0.595		mg/Kg		119	77 - 129	5	25
Styrene	0.500	0.590		mg/Kg		118	80 - 128	4	25
Bromoform	0.500	0.579		mg/Kg		116	72 - 133	2	34
Isopropylbenzene	0.500	0.588				118	78 - 139	7	24
Bromobenzene	0.500	0.568		mg/Kg			76 - 139 75 - 129	3	
	0.500	0.617		mg/Kg		124	75 - 129 77 - 131	2	25 25
N-Propylbenzene	0.500			mg/Kg		123	67 - 131		27
1,2,3-Trichloropropane 2-Chlorotoluene	0.500	0.628 0.576		mg/Kg		126 115		2 4	20
				mg/Kg		115 123	77 ₋ 135	1	20
1,3,5-Trimethylbenzene	0.500	0.617		mg/Kg		123	76 - 133		
4-Chlorotoluene tert-Butylbenzene	0.500 0.500	0.612 0.616		mg/Kg		122 123	77 ₋ 133 76 ₋ 130	1	25 16
				mg/Kg				3	
1,2,4-Trimethylbenzene	0.500	0.638		mg/Kg		128	76 - 132	2	21

Eurofins TestAmerica, Spokane

10/28/2021

Job ID: 590-16195-1

3

4

7

0

10

Client: Hart & Hickman, PC Job ID: 590-16195-1

Project/Site: Northwest Motorsports - Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 590-33778/18-A

Matrix: Solid

Analysis Batch: 33784

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 33778

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
sec-Butylbenzene	0.500	0.619		mg/Kg		124	76 - 130	1	34
1,3-Dichlorobenzene	0.500	0.601		mg/Kg		120	80 - 123	2	18
p-Isopropyltoluene	0.500	0.638		mg/Kg		128	80 - 130	0	26
1,4-Dichlorobenzene	0.500	0.602		mg/Kg		120	80 - 125	1	16
n-Butylbenzene	0.500	0.611		mg/Kg		122	80 - 131	0	20
1,2-Dichlorobenzene	0.500	0.608		mg/Kg		122	80 - 124	4	25
1,2-Dibromo-3-Chloropropane	0.500	0.625		mg/Kg		125	49 - 139	3	40
1,2,4-Trichlorobenzene	0.500	0.616		mg/Kg		123	79 - 126	1	25
1,2,3-Trichlorobenzene	0.500	0.621		mg/Kg		124	66 - 130	1	25
Hexachlorobutadiene	0.500	0.653		mg/Kg		131	80 - 136	3	25
Naphthalene	0.500	0.586		mg/Kg		117	53 - 144	3	36
Methyl tert-butyl ether	0.500	0.638	*+	mg/Kg		128	80 - 123	2	25

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	93		80 - 120
4-Bromofluorobenzene (Surr)	103		76 - 122
Dibromofluoromethane (Surr)	101		80 - 120
1,2-Dichloroethane-d4 (Surr)	112		75 - 129

Lab Sample ID: 590-16195-2 MS

Matrix: Solid

Analysis Batch: 33784

Client Sample ID: SB-2 (4-5)

Prep Type: Total/NA Prep Batch: 33778

_	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dichlorodifluoromethane	ND		1.99	1.81		mg/Kg	-	91	34 - 120	_
Chloromethane	ND		1.99	1.88	J	mg/Kg	₩	95	63 - 120	
Vinyl chloride	ND		1.99	2.34		mg/Kg	☼	118	66 - 129	
Bromomethane	ND		1.99	2.13		mg/Kg	₽	107	56 - 138	
Chloroethane	ND		1.99	2.11		mg/Kg	☼	106	50 - 142	
Trichlorofluoromethane	ND		1.99	2.33		mg/Kg	☼	117	64 - 143	
1,1-Dichloroethene	ND		1.99	2.34		mg/Kg	₽	118	73 - 135	
Methylene Chloride	ND		1.99	2.20		mg/Kg	☼	111	30 - 150	
trans-1,2-Dichloroethene	ND		1.99	2.32		mg/Kg	☼	117	80 - 126	
1,1-Dichloroethane	ND		1.99	2.16		mg/Kg	₽	109	80 - 129	
2,2-Dichloropropane	ND	*+	1.99	2.36		mg/Kg	☼	119	80 - 138	
cis-1,2-Dichloroethene	ND	*+	1.99	2.35		mg/Kg	☼	118	80 - 124	
Bromochloromethane	ND		1.99	2.18		mg/Kg	₩	110	75 - 135	
Chloroform	ND		1.99	2.35		mg/Kg	☼	118	80 - 130	
1,1,1-Trichloroethane	ND		1.99	2.36		mg/Kg	☼	119	80 - 130	
Carbon tetrachloride	ND		1.99	2.37		mg/Kg	₽	119	72 - 138	
1,1-Dichloropropene	ND		1.99	2.43		mg/Kg	☼	122	78 - 132	
Benzene	ND		1.99	2.33		mg/Kg	☼	117	76 - 129	
1,2-Dichloroethane	ND		1.99	2.19		mg/Kg	₽	110	80 - 129	
Trichloroethene	ND		1.99	2.38		mg/Kg	☼	120	79 - 133	
1,2-Dichloropropane	ND	*+	1.99	2.14		mg/Kg	☼	108	75 - 121	
Dibromomethane	ND	*+	1.99	2.18		mg/Kg	₽	110	80 - 123	
Bromodichloromethane	ND		1.99	2.19		mg/Kg	☼	110	80 - 128	
cis-1,3-Dichloropropene	ND	*+	1.99	2.27		mg/Kg	☼	115	80 - 126	

Eurofins TestAmerica, Spokane

Page 23 of 38

2

3

5

7

8

10

11

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 590-16195-2 MS

Matrix: Solid

Analysis Batch: 33784

Client Sample ID: SB-2 (4-5) **Prep Type: Total/NA**

Prep Batch: 33778

Job ID: 590-16195-1

Analysis Batch. 33704	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	-	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Toluene	ND		1.99	2.24		mg/Kg	— <u>—</u>	113	77 - 131
trans-1,3-Dichloropropene	ND		1.99	2.09		mg/Kg	☼	105	80 - 124
1,1,2-Trichloroethane	ND		1.99	2.20		mg/Kg	₩	111	80 - 125
Tetrachloroethene	ND		1.99	2.37		mg/Kg	≎	119	77 - 134
1,3-Dichloropropane	ND		1.99	2.18		mg/Kg	≎	110	76 - 125
Dibromochloromethane	ND		1.99	2.14		mg/Kg	☼	108	78 - 127
1,2-Dibromoethane (EDB)	ND		1.99	2.07		mg/Kg	☼	104	80 - 121
Chlorobenzene	ND		1.99	2.32		mg/Kg	☼	117	80 - 129
Ethylbenzene	ND		1.99	2.29		mg/Kg	₩	115	77 - 126
1,1,1,2-Tetrachloroethane	ND		1.99	2.08		mg/Kg	☼	105	80 - 128
1,1,2,2-Tetrachloroethane	ND		1.99	2.16		mg/Kg	☼	109	75 - 128
m,p-Xylene	ND		1.99	2.33		mg/Kg	☼	117	78 - 130
o-Xylene	ND		1.99	2.25		mg/Kg	☼	113	77 - 129
Styrene	ND		1.99	2.27		mg/Kg	☼	114	80 - 128
Bromoform	ND		1.99	2.06		mg/Kg	☼	104	72 - 133
Isopropylbenzene	ND		1.99	2.27		mg/Kg	☼	114	78 - 139
Bromobenzene	ND		1.99	2.30		mg/Kg	☼	116	75 - 129
N-Propylbenzene	ND		1.99	2.32		mg/Kg	☼	117	77 - 131
1,2,3-Trichloropropane	ND		1.99	2.22		mg/Kg	≎	112	67 - 131
2-Chlorotoluene	ND		1.99	2.15		mg/Kg	☼	108	77 - 135
1,3,5-Trimethylbenzene	ND		1.99	2.28		mg/Kg	₩	115	76 - 133
4-Chlorotoluene	ND		1.99	2.30		mg/Kg	☼	116	77 - 133
tert-Butylbenzene	ND		1.99	2.35		mg/Kg	₩	118	76 - 130
1,2,4-Trimethylbenzene	ND		1.99	2.40		mg/Kg	☼	121	76 - 132
sec-Butylbenzene	ND		1.99	2.42		mg/Kg	☼	122	76 - 130
1,3-Dichlorobenzene	ND		1.99	2.26		mg/Kg	☼	114	80 - 123
p-Isopropyltoluene	ND		1.99	2.44		mg/Kg	₩	123	80 - 130
1,4-Dichlorobenzene	ND		1.99	2.23		mg/Kg	☼	113	80 - 125
n-Butylbenzene	ND		1.99	2.41		mg/Kg	☼	121	80 - 131
1,2-Dichlorobenzene	ND	*+	1.99	2.19		mg/Kg	☼	110	80 - 124
1,2-Dibromo-3-Chloropropane	ND		1.99	2.03		mg/Kg	≎	102	49 - 139
1,2,4-Trichlorobenzene	ND		1.99	2.27		mg/Kg	₩	114	79 - 126
1,2,3-Trichlorobenzene	ND		1.99	2.23		mg/Kg	☼	112	66 - 130
Hexachlorobutadiene	ND		1.99	2.62		mg/Kg	≎	132	80 - 136
Naphthalene	ND		1.99	2.19		mg/Kg	₩	110	53 - 144
Methyl tert-butyl ether	ND	*+	1.99	2.22		mg/Kg	≎	112	80 - 123

MS MS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	95		80 - 120
4-Bromofluorobenzene (Surr)	98		76 - 122
Dibromofluoromethane (Surr)	98		80 - 120
1,2-Dichloroethane-d4 (Surr)	100		75 - 129

Client: Hart & Hickman, PC Job ID: 590-16195-1

Project/Site: Northwest Motorsports - Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 590-16195-2 MSD

Matrix: Solid

Client Sample ID: SB-2 (4-5) **Prep Type: Total/NA**

	33778	Prep Batch: 33778											
K	RPD		%Rec.										
	Limit	RPD	Limits										
	24	4	34 - 120										
	22	4	63 - 120										
5	20	8	66 - 129										
	21	6	56 - 138										
	25	3	50 - 142										
	25	4	64 - 143										
	18	4	73 - 135										
	40	29	30 - 150										
	25	3	80 - 126										
	25	3	80 - 129										

Analysis Batch: 33784										atch:	
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	ND		1.99	1.75		mg/Kg	*	88	34 - 120	4	24
Chloromethane	ND		1.99	1.80	J	mg/Kg	₩	91	63 - 120	4	22
Vinyl chloride	ND		1.99	2.16		mg/Kg	₩	109	66 - 129	8	20
Bromomethane	ND		1.99	2.01		mg/Kg	₩	101	56 - 138	6	21
Chloroethane	ND		1.99	2.16		mg/Kg	₩	109	50 - 142	3	25
Trichlorofluoromethane	ND		1.99	2.23		mg/Kg	₩	112	64 - 143	4	25
1,1-Dichloroethene	ND		1.99	2.25		mg/Kg	₩	113	73 - 135	4	18
Methylene Chloride	ND		1.99	1.65		mg/Kg	₩	83	30 - 150	29	40
trans-1,2-Dichloroethene	ND		1.99	2.26		mg/Kg	₩	114	80 - 126	3	25
1,1-Dichloroethane	ND		1.99	2.23		mg/Kg	₩	112	80 - 129	3	25
2,2-Dichloropropane	ND	*+	1.99	2.36		mg/Kg	₩	119	80 - 138	0	22
cis-1,2-Dichloroethene	ND	*+	1.99	2.38		mg/Kg	₩	120	80 - 124	1	23
Bromochloromethane	ND		1.99	2.41		mg/Kg		121	75 - 135	10	25
Chloroform	ND		1.99	2.41		mg/Kg	₩	122	80 - 130	3	25
1,1,1-Trichloroethane	ND		1.99	2.23		mg/Kg	.⇔	112	80 - 130	6	19
Carbon tetrachloride	ND		1.99	2.37		mg/Kg	 ☆	119	72 - 138	0	25
1,1-Dichloropropene	ND		1.99	2.38		mg/Kg	- ☆-	120	78 - 132	2	24
Benzene	ND		1.99	2.41		mg/Kg	☼	121	76 - 129	4	25
1.2-Dichloroethane	ND		1.99	2.41		mg/Kg		121	80 - 129	9	25
Trichloroethene	ND		1.99	2.28		mg/Kg	☆	115	79 - 133	4	25
1,2-Dichloropropane	ND	*+	1.99	2.20		mg/Kg	₩	111	75 - 133 75 - 121	3	20
Dibromomethane	ND		1.99	2.40		mg/Kg	*	121	80 - 123	10	24
Bromodichloromethane	ND	•	1.99	2.31		mg/Kg	₩	116	80 - 128	5	26
cis-1,3-Dichloropropene	ND ND	*_	1.99	2.34		mg/Kg	₩ ₩	118	80 - 126	3	24
Toluene	ND		1.99	2.25		mg/Kg		113	77 - 131	1	25
trans-1,3-Dichloropropene	ND		1.99	2.20		mg/Kg	₩	111	80 - 124	5	28
1,1,2-Trichloroethane	ND ND		1.99	2.20				110	80 - 124 80 - 125	1	31
Tetrachloroethene	ND		1.99	2.19		mg/Kg	.		77 - 134	4	24
1,3-Dichloropropane	ND		1.99	2.27		mg/Kg mg/Kg	≎	114 112	77 - 134 76 - 125	2	16
Dibromochloromethane	ND		1.99	2.22			≎	112	78 - 123 78 - 127	4	25
						mg/Kg	 .				
1,2-Dibromoethane (EDB)	ND		1.99	2.00		mg/Kg	≎	101	80 - 121	4	18
Chlorobenzene	ND		1.99	2.23		mg/Kg	#	112	80 - 129	4	25
Ethylbenzene	ND		1.99	2.24		mg/Kg		113	77 - 126		25
1,1,1,2-Tetrachloroethane	ND		1.99	2.16		mg/Kg	₽	109	80 - 128	4	25
1,1,2,2-Tetrachloroethane	ND		1.99	2.37		mg/Kg	☆	119	75 - 128	9	22
m,p-Xylene	ND		1.99	2.25		mg/Kg		113	78 - 130	4	23
o-Xylene	ND		1.99	2.19		mg/Kg	₩	110	77 - 129	3	25
Styrene	ND		1.99	2.27		mg/Kg	₩	114	80 - 128	0	25
Bromoform	ND		1.99	2.24		mg/Kg		113	72 - 133	8	34
Isopropylbenzene	ND		1.99	2.25		mg/Kg	₩	113	78 - 139	1	24
Bromobenzene	ND		1.99	2.32		mg/Kg	₩	117	75 - 129	1	25
N-Propylbenzene	ND		1.99	2.39		mg/Kg		120	77 - 131	3	25
1,2,3-Trichloropropane	ND		1.99	2.32		mg/Kg	₩	117	67 - 131	4	27
2-Chlorotoluene	ND		1.99	2.22		mg/Kg	☼	112	77 - 135	3	20
1,3,5-Trimethylbenzene	ND		1.99	2.41		mg/Kg	₩	121	76 - 133	5	20
4-Chlorotoluene	ND		1.99	2.33		mg/Kg	₩	117	77 - 133	1	25
tert-Butylbenzene	ND		1.99	2.42		mg/Kg	₩	122	76 - 130	3	16
1,2,4-Trimethylbenzene	ND		1.99	2.50		mg/Kg	₩	126	76 - 132	4	21

Client: Hart & Hickman, PC Job ID: 590-16195-1

Project/Site: Northwest Motorsports - Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 590-16195-2 MSD

Matrix: Solid

Analysis Batch: 33784

Client Sample ID: SB-2 (4-5) **Prep Type: Total/NA**

Prep Batch: 33778

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
sec-Butylbenzene	ND		1.99	2.46		mg/Kg	₩	124	76 - 130	2	34
1,3-Dichlorobenzene	ND		1.99	2.30		mg/Kg	☼	116	80 - 123	2	18
p-Isopropyltoluene	ND		1.99	2.51		mg/Kg	☼	127	80 - 130	3	26
1,4-Dichlorobenzene	ND		1.99	2.29		mg/Kg	☼	116	80 - 125	3	16
n-Butylbenzene	ND		1.99	2.35		mg/Kg	☼	119	80 - 131	2	20
1,2-Dichlorobenzene	ND	*+	1.99	2.32		mg/Kg	☼	117	80 - 124	5	25
1,2-Dibromo-3-Chloropropane	ND		1.99	2.11		mg/Kg	☼	106	49 - 139	4	40
1,2,4-Trichlorobenzene	ND		1.99	2.27		mg/Kg	☼	114	79 - 126	0	25
1,2,3-Trichlorobenzene	ND		1.99	2.29		mg/Kg	☼	115	66 - 130	3	25
Hexachlorobutadiene	ND		1.99	2.58		mg/Kg	☼	130	80 - 136	2	25
Naphthalene	ND		1.99	2.26		mg/Kg	☼	114	53 - 144	3	36
Methyl tert-butyl ether	ND	*+	1.99	2.29		mg/Kg	≎	115	80 - 123	3	25

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	94		80 - 120
4-Bromofluorobenzene (Surr)	102		76 - 122
Dibromofluoromethane (Surr)	97		80 - 120
1,2-Dichloroethane-d4 (Surr)	105		75 - 129

Lab Sample ID: 590-16195-1 DU

Matrix: Solid

Analysis Batch: 33784

Client Sample ID: SB-1 (2-3)

Prep Type: Total/NA

Prep Batch: 33778

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Dichlorodifluoromethane	ND		ND		mg/Kg	<u> </u>	NC	24
Chloromethane	ND		ND		mg/Kg	₩	NC	22
Vinyl chloride	ND		ND		mg/Kg	₩	NC	20
Bromomethane	ND		ND		mg/Kg	*	NC	21
Chloroethane	ND		ND		mg/Kg	₩	NC	25
Trichlorofluoromethane	ND		ND		mg/Kg	₩	NC	25
1,1-Dichloroethene	ND		ND		mg/Kg	₩	NC	18
Methylene Chloride	ND		ND		mg/Kg	₩	NC	40
trans-1,2-Dichloroethene	ND		ND		mg/Kg	₩	NC	25
1,1-Dichloroethane	ND		ND		mg/Kg	₩	NC	25
2,2-Dichloropropane	ND	*+	ND	*+	mg/Kg	₩	NC	22
cis-1,2-Dichloroethene	ND	*+	ND	*+	mg/Kg	₩	NC	23
Bromochloromethane	ND		ND		mg/Kg		NC	25
Chloroform	ND		ND		mg/Kg	₩	NC	25
1,1,1-Trichloroethane	ND		ND		mg/Kg	₩	NC	19
Carbon tetrachloride	ND		ND		mg/Kg	*	NC	25
1,1-Dichloropropene	ND		ND		mg/Kg	₩	NC	24
Benzene	ND		ND		mg/Kg	₩	NC	25
1,2-Dichloroethane	ND		ND		mg/Kg	*	NC	25
Trichloroethene	ND		ND		mg/Kg	₩	NC	25
1,2-Dichloropropane	ND	*+	ND	*+	mg/Kg	₩	NC	20
Dibromomethane	ND	*+	ND	*+	mg/Kg		NC	24
Bromodichloromethane	ND		ND		mg/Kg	₩	NC	26
cis-1,3-Dichloropropene	ND	*+	ND	*+	mg/Kg	₩	NC	24

Eurofins TestAmerica, Spokane

Page 26 of 38

QC Sample Results

Client: Hart & Hickman, PC Job ID: 590-16195-1

Project/Site: Northwest Motorsports - Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 590-16195-1 DU

Matrix: Solid

Analysis Batch: 33784

Client Sample ID: SB-1 (2-3)

Prep Type: Total/NA Prep Batch: 33778

Allalysis Datcii. 33704	Sample	Sample	DU	DU			r rep baten.	RPD
Analyte	-	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Toluene	ND		ND		mg/Kg	— <u> </u>		25
trans-1,3-Dichloropropene	ND		ND		mg/Kg	₩	NC	28
1,1,2-Trichloroethane	ND		ND		mg/Kg	₩	NC	31
Tetrachloroethene	ND		ND		mg/Kg		NC	24
1,3-Dichloropropane	ND		ND		mg/Kg	₩	NC	16
Dibromochloromethane	ND		ND		mg/Kg	₩	NC	25
1,2-Dibromoethane (EDB)	ND		ND		mg/Kg	₩	NC	18
Chlorobenzene	ND		ND		mg/Kg	₩	NC	25
Ethylbenzene	ND		ND		mg/Kg	₩	NC	25
1,1,1,2-Tetrachloroethane	ND		ND		mg/Kg	₩	NC	25
1,1,2,2-Tetrachloroethane	ND		ND		mg/Kg	₩	NC	22
m,p-Xylene	ND		ND		mg/Kg	₩	NC	23
o-Xylene	ND		ND		mg/Kg	₩	NC	25
Styrene	ND		ND		mg/Kg	₩	NC	25
Bromoform	ND		ND		mg/Kg	₩	NC	34
Isopropylbenzene	ND		ND		mg/Kg	₩	NC	24
Bromobenzene	ND		ND		mg/Kg	₩	NC	25
N-Propylbenzene	ND		ND		mg/Kg	₩	NC	25
1,2,3-Trichloropropane	ND		ND		mg/Kg	₩	NC	27
2-Chlorotoluene	ND		ND		mg/Kg	₩	NC	20
1,3,5-Trimethylbenzene	ND		ND		mg/Kg	₩	NC	20
4-Chlorotoluene	ND		ND		mg/Kg	₩	NC	25
tert-Butylbenzene	ND		ND		mg/Kg	₩	NC	16
1,2,4-Trimethylbenzene	ND		ND		mg/Kg	₩	NC	21
sec-Butylbenzene	ND		ND		mg/Kg	₩	NC	34
1,3-Dichlorobenzene	ND		ND		mg/Kg	₩	NC	18
p-Isopropyltoluene	ND		ND		mg/Kg	₩	NC	26
1,4-Dichlorobenzene	ND		ND		mg/Kg	₩	NC	16
n-Butylbenzene	ND		ND		mg/Kg	₩	NC	20
1,2-Dichlorobenzene	ND	*+	ND	*+	mg/Kg	₩	NC	25
1,2-Dibromo-3-Chloropropane	ND		ND		mg/Kg	₩	NC	40
1,2,4-Trichlorobenzene	ND		ND		mg/Kg	₩	NC	25
1,2,3-Trichlorobenzene	ND		ND		mg/Kg	₽	NC	25
Hexachlorobutadiene	ND		ND		mg/Kg		NC	25
Naphthalene	ND		ND		mg/Kg	₩	NC	36
Methyl tert-butyl ether	ND	*+	ND	*+	mg/Kg	☼	NC	25

DU DU

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	98		80 - 120
4-Bromofluorobenzene (Surr)	101		76 - 122
Dibromofluoromethane (Surr)	99		80 - 120
1,2-Dichloroethane-d4 (Surr)	98		75 - 129

5

3

5

7

Q

10

1

12

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Job ID: 590-16195-1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

Lab Sample ID: MB 590-33778/1-A

Matrix: Solid

Analyte

Gasoline

Analyte

Gasoline

Analysis Batch: 33783

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 33778

MB MB Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared 5.0 10/28/21 09:16 10/28/21 11:03 ND 1.8 mg/Kg

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 41.5 - 162 10/28/21 09:16 10/28/21 11:03 4-Bromofluorobenzene (Surr) 100

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 590-33778/3-A

Matrix: Solid

Analysis Batch: 33783

Lab Sample ID: LCSD 590-33778/19-A

Spike Added

50.2

Limits

41.5 - 162

Added

50.2

LCS LCS

58.6

Result Qualifier Unit

mg/Kg

D %Rec 117

Limits

Prep Type: Total/NA Prep Batch: 33778

%Rec.

74.4 - 124

LCS LCS

Surrogate 4-Bromofluorobenzene (Surr) %Recovery Qualifier 103

Client Sample ID: Lab Control Sample Dup

%Rec

124

Matrix: Solid

Analyte

Gasoline

Analysis Batch: 33783

Spike LCSD LCSD

62.0

Result Qualifier

DU DU

Unit

mg/Kg

%Rec

74.4 - 124

Prep Batch: 33778 RPD

Limits RPD Limit

Prep Type: Total/NA

LCSD LCSD

Surrogate 4-Bromofluorobenzene (Surr) %Recovery Qualifier Limits 100 41.5 - 162

Lab Sample ID: 590-16195-1 DU

Matrix: Solid

Analysis Batch: 33783

Client Sample ID: SB-1 (2-3)

Prep Type: Total/NA

Prep Batch: 33778

RPD

Sample Sample Analyte Result Qualifier RPD Limit Result Qualifier Unit Gasoline ND ND mg/Kg 32.3

DU DU

%Recovery Qualifier Surrogate Limits

4-Bromofluorobenzene (Surr) 41.5 - 162 101 Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: MB 590-33735/1-A

Matrix: Solid

Analysis Batch: 33742

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 33735

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		10	2.2	ug/Kg		10/26/21 09:51	10/26/21 15:15	1
2-Methylnaphthalene	ND		10	3.1	ug/Kg		10/26/21 09:51	10/26/21 15:15	1
1-Methylnaphthalene	ND		10	2.2	ug/Kg		10/26/21 09:51	10/26/21 15:15	1
Acenaphthylene	ND		10	3.3	ug/Kg		10/26/21 09:51	10/26/21 15:15	1
Acenaphthene	ND		10	2.5	ug/Kg		10/26/21 09:51	10/26/21 15:15	1
Fluorene	ND		10	2.2	ug/Kg		10/26/21 09:51	10/26/21 15:15	1

Eurofins TestAmerica, Spokane

Page 28 of 38

10/28/2021

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: MB 590-33735/1-A

Matrix: Solid

Analysis Batch: 33742

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 590-16195-1

Prep Batch: 33735

	IVIB IV	NB .							
Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenanthrene	ND ND		10	3.6	ug/Kg		10/26/21 09:51	10/26/21 15:15	1
Anthracene	ND		10	2.0	ug/Kg		10/26/21 09:51	10/26/21 15:15	1
Fluoranthene	ND		10	2.5	ug/Kg		10/26/21 09:51	10/26/21 15:15	1
Pyrene	ND		10	3.8	ug/Kg		10/26/21 09:51	10/26/21 15:15	1
Benzo[a]anthracene	ND		10	2.1	ug/Kg		10/26/21 09:51	10/26/21 15:15	1
Chrysene	ND		10	1.5	ug/Kg		10/26/21 09:51	10/26/21 15:15	1
Benzo[b]fluoranthene	ND		10	3.5	ug/Kg		10/26/21 09:51	10/26/21 15:15	1
Benzo[k]fluoranthene	ND		10	2.5	ug/Kg		10/26/21 09:51	10/26/21 15:15	1
Benzo[a]pyrene	ND		10	4.2	ug/Kg		10/26/21 09:51	10/26/21 15:15	1
Indeno[1,2,3-cd]pyrene	ND		10	3.0	ug/Kg		10/26/21 09:51	10/26/21 15:15	1
Dibenz(a,h)anthracene	ND		10	2.8	ug/Kg		10/26/21 09:51	10/26/21 15:15	1
Benzo[g,h,i]perylene	ND		10	2.4	ug/Kg		10/26/21 09:51	10/26/21 15:15	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	63		33 - 120	10/26/21 09:51	10/26/21 15:15	1
2-Fluorobiphenyl (Surr)	70		47 - 120	10/26/21 09:51	10/26/21 15:15	1
p-Terphenyl-d14	96		74 - 120	10/26/21 09:51	10/26/21 15:15	1

Lab Sample ID: LCS 590-33735/2-A

Matrix: Solid

Analysis Batch: 33742

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 33735

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Naphthalene	267	204		ug/Kg		76	45 - 120	
2-Methylnaphthalene	267	223		ug/Kg		83	48 - 120	
1-Methylnaphthalene	267	219		ug/Kg		82	44 - 120	
Acenaphthylene	267	207		ug/Kg		78	52 - 120	
Acenaphthene	267	234		ug/Kg		88	53 - 120	
Fluorene	267	236		ug/Kg		88	55 - 120	
Phenanthrene	267	265		ug/Kg		99	57 - 121	
Anthracene	267	263		ug/Kg		99	60 - 120	
Fluoranthene	267	229		ug/Kg		86	63 - 127	
Pyrene	267	285		ug/Kg		107	61 - 125	
Benzo[a]anthracene	267	266		ug/Kg		100	61 - 131	
Chrysene	267	268		ug/Kg		100	67 - 127	
Benzo[b]fluoranthene	267	236		ug/Kg		89	61 - 127	
Benzo[k]fluoranthene	267	221		ug/Kg		83	63 - 127	
Benzo[a]pyrene	267	223		ug/Kg		84	60 - 126	
Indeno[1,2,3-cd]pyrene	267	266		ug/Kg		100	63 - 128	
Dibenz(a,h)anthracene	267	243		ug/Kg		91	60 - 121	
Benzo[g,h,i]perylene	267	254		ug/Kg		95	58 - 129	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	76		33 - 120
2-Fluorobiphenyl (Surr)	80		47 - 120
p-Terphenvl-d14	98		74 - 120

Eurofins TestAmerica, Spokane

Page 29 of 38

10/28/2021

Job ID: 590-16195-1

Project/Site: Northwest Motorsports - Puyallup

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCSD 590-33735/3-A

Matrix: Solid

Analysis Batch: 33762

Client: Hart & Hickman, PC

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 33735

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Naphthalene	267	211		ug/Kg		79	45 - 120	3	20
2-Methylnaphthalene	267	222		ug/Kg		83	48 - 120	0	20
1-Methylnaphthalene	267	229		ug/Kg		86	44 - 120	4	15
Acenaphthylene	267	224		ug/Kg		84	52 - 120	8	20
Acenaphthene	267	222		ug/Kg		83	53 - 120	5	15
Fluorene	267	223		ug/Kg		84	55 - 120	5	21
Phenanthrene	267	260		ug/Kg		98	57 - 121	2	18
Anthracene	267	267		ug/Kg		100	60 - 120	2	18
Fluoranthene	267	228		ug/Kg		86	63 - 127	0	18
Pyrene	267	285		ug/Kg		107	61 - 125	0	26
Benzo[a]anthracene	267	265		ug/Kg		99	61 - 131	0	16
Chrysene	267	263		ug/Kg		99	67 - 127	2	15
Benzo[b]fluoranthene	267	237		ug/Kg		89	61 - 127	0	16
Benzo[k]fluoranthene	267	238		ug/Kg		89	63 - 127	7	16
Benzo[a]pyrene	267	230		ug/Kg		86	60 - 126	3	20
Indeno[1,2,3-cd]pyrene	267	236		ug/Kg		89	63 - 128	12	18
Dibenz(a,h)anthracene	267	212		ug/Kg		80	60 - 121	14	18

267

228

ug/Kg

LCSD LCSD

Surrogate	%Recovery Qualified	r Limits
Nitrobenzene-d5	77	33 - 120
2-Fluorobiphenyl (Surr)	81	47 - 120
p-Terphenyl-d14	97	74 - 120

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

MR MR

Lab Sample ID: MB 590-33761/1-A

Matrix: Solid

Benzo[g,h,i]perylene

Analysis Batch: 33769

Client Sample ID: Method Blank

58 - 129

Prep Type: Total/NA

Prep Batch: 33761

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		10	4.2	mg/Kg		10/27/21 10:00	10/27/21 13:34	1
Residual Range Organics (RRO) (C25-C36)	ND		25	5.0	mg/Kg		10/27/21 10:00	10/27/21 13:34	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	93		50 - 150	10/27/21 10:00	10/27/21 13:34	1
n-Triacontane-d62	104		50 - 150	10/27/21 10:00	10/27/21 13:34	1

Lab Sample ID: LCS 590-33761/2-A

Matrix: Solid

Analysis Batch: 33769

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 33761

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Diesel Range Organics (DRO)	66.7	62.7		mg/Kg		94	50 - 150
(C10-C25)							
Residual Range Organics (RRO)	66.7	71.0		mg/Kg		107	50 - 150
(C25-C36)							

Eurofins TestAmerica, Spokane

Page 30 of 38

17

QC Sample Results

Client: Hart & Hickman, PC Job ID: 590-16195-1

Project/Site: Northwest Motorsports - Puyallup

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: LCS 590-33761/2-A

Matrix: Solid

Analysis Batch: 33769

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 33761

LCS LCS

%Recovery Qualifier Surrogate Limits o-Terphenyl 109 50 - 150 n-Triacontane-d62 121 50 - 150

Lab Sample ID: 590-16195-2 DU Client Sample ID: SB-2 (4-5)

Matrix: Solid

Analysis Batch: 33769

Residual Range Organics (RRO)

Prep Type: Total/NA

Prep Batch: 33761

NC

40

DU DU RPD Sample Sample Analyte Result Qualifier Result Qualifier Unit RPD Limit <u>~</u> Diesel Range Organics (DRO) ND ND mg/Kg NC 40 (C10-C25)

ND

mg/Kg

₩

(C25-C36)

DU DU

ND

Surrogate	%Recovery Qualifier	r Limits
o-Terphenyl	91	50 - 150
n-Triacontane-d62	103	50 ₋ 150

10/28/2021

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-1 (2-3)

Date Collected: 10/22/21 10:35

Lab Sample ID: 590-16195-1

Matrix: Solid

Date Received: 10/25/21 11:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			33755	10/26/21 15:55	KBZ	TAL SPK

Client Sample ID: SB-1 (2-3)

Date Collected: 10/22/21 10:35 Date Received: 10/25/21 11:00

Lab Sample ID: 590-16195-1

Matrix: Solid Percent Solids: 88.6

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.214 g	10 mL	33778	10/28/21 09:19	JSP	TAL SPK
Total/NA	Analysis	8260D		1	0.86 mL	43 mL	33784	10/28/21 12:49	JSP	TAL SPK
Total/NA	Prep	5035			5.214 g	10 mL	33778	10/28/21 09:19	JSP	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	0.86 mL	43 mL	33783	10/28/21 12:49	JSP	TAL SPK
Total/NA	Prep	3550C			15.16 g	2 mL	33735	10/26/21 09:51	KBZ	TAL SPK
Total/NA	Analysis	8270E SIM		10			33742	10/26/21 17:40	NMI	TAL SPK
Total/NA	Prep	3550C			15.59 g	5 mL	33761	10/27/21 10:00	KBZ	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			33769	10/27/21 14:14	REA	TAL SPK

Client Sample ID: SB-2 (4-5)

Date Collected: 10/22/21 12:45

Date Received: 10/25/21 11:00

Lab Sample ID: 590-16195-2

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			33755	10/26/21 15:55	KBZ	TAL SPK

Client Sample ID: SB-2 (4-5)

Date Collected: 10/22/21 12:45

Date Received: 10/25/21 11:00

Lab Sample ID: 590-16195-2 **Matrix: Solid**

Percent Solids: 69.9

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.038 g	10 mL	33778	10/28/21 09:19	JSP	TAL SPK
Total/NA	Analysis	8260D		1	0.86 mL	43 mL	33784	10/28/21 13:31	JSP	TAL SPK
Total/NA	Prep	5035			4.038 g	10 mL	33778	10/28/21 09:19	JSP	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	0.86 mL	43 mL	33783	10/28/21 13:31	JSP	TAL SPK
Total/NA	Prep	3550C			15.18 g	2 mL	33735	10/26/21 09:51	KBZ	TAL SPK
Total/NA	Analysis	8270E SIM		1			33742	10/26/21 18:04	NMI	TAL SPK
Total/NA	Prep	3550C			15.11 g	5 mL	33761	10/27/21 10:00	KBZ	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			33769	10/27/21 14:34	REA	TAL SPK

Client Sample ID: SB-3 (2-3)

Date Collected: 10/22/21 13:30

Date Received: 10/25/21 11:00

Lab Sample	ID:	590-16	195-3	

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			33755	10/26/21 15:55	KBZ	TAL SPK

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-3 (2-3)

Date Collected: 10/22/21 13:30 Date Received: 10/25/21 11:00

Lab Sample ID: 590-16195-3

Matrix: Solid

Percent Solids: 90.5

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.945 g	10 mL	33778	10/28/21 09:19	JSP	TAL SPK
Total/NA	Analysis	8260D		1	0.86 mL	43 mL	33784	10/28/21 14:56	JSP	TAL SPK
Total/NA	Prep	5035			4.945 g	10 mL	33778	10/28/21 09:19	JSP	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	0.86 mL	43 mL	33783	10/28/21 14:56	JSP	TAL SPK
Total/NA	Prep	3550C			15.61 g	2 mL	33735	10/26/21 09:51	KBZ	TAL SPK
Total/NA	Analysis	8270E SIM		1			33742	10/26/21 18:28	NMI	TAL SPK
Total/NA	Prep	3550C			15.55 g	5 mL	33761	10/27/21 10:00	KBZ	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			33769	10/27/21 15:14	REA	TAL SPK

Client Sample ID: SB-4 (2-3)

Date Collected: 10/22/21 14:15 Date Received: 10/25/21 11:00

Lab Sample ID: 590-16195-4

Matrix: Solid

Batch Batch Dil Initial Batch Final Prepared Method or Analyzed **Prep Type** Type Run **Factor** Amount **Amount** Number Analyst Lab Total/NA Analysis Moisture 33755 10/26/21 15:55 KBZ TAL SPK

Client Sample ID: SB-4 (2-3)

Date Collected: 10/22/21 14:15 Date Received: 10/25/21 11:00

Lab Sample ID: 590-16195-4

Matrix: Solid Percent Solids: 86.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.844 g	10 mL	33778	10/28/21 09:19	JSP	TAL SPK
Total/NA	Analysis	8260D		1	0.86 mL	43 mL	33784	10/28/21 15:17	JSP	TAL SPK
Total/NA	Prep	5035			4.844 g	10 mL	33778	10/28/21 09:19	JSP	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	0.86 mL	43 mL	33783	10/28/21 15:17	JSP	TAL SPK
Total/NA	Prep	3550C			15.62 g	2 mL	33735	10/26/21 09:51	KBZ	TAL SPK
Total/NA	Analysis	8270E SIM		1			33742	10/26/21 18:52	NMI	TAL SPK
Total/NA	Prep	3550C			15.47 g	5 mL	33761	10/27/21 10:00	KBZ	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			33769	10/27/21 15:34	REA	TAL SPK

Client Sample ID: SB-5 (1-2)

Date Collected: 10/22/21 15:00 Date Received: 10/25/21 11:00

Lab Sample ID: 590-16195-5

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			33755	10/26/21 15:55	KBZ	TAL SPK

Client Sample ID: SB-5 (1-2)

Date Collected: 10/22/21 15:00

Lab Sample ID: 590-16195-5

Matrix: Solid Date Received: 10/25/21 11:00 Percent Solids: 88.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.053 g	10 mL	33778	10/28/21 09:19	JSP	TAL SPK
Total/NA	Analysis	8260D		1	0.86 mL	43 mL	33784	10/28/21 15:38	JSP	TAL SPK
Total/NA	Prep	5035			5.053 g	10 mL	33778	10/28/21 09:19	JSP	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	0.86 mL	43 mL	33783	10/28/21 15:38	JSP	TAL SPK

Eurofins TestAmerica, Spokane

Lab Chronicle

Client: Hart & Hickman, PC Job ID: 590-16195-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-5 (1-2)

Date Collected: 10/22/21 15:00 Date Received: 10/25/21 11:00 Lab Sample ID: 590-16195-5

Matrix: Solid

Percent Solids: 88.0

Prep Type Total/NA Total/NA	Batch Type Prep Analysis	Batch Method 3550C 8270E SIM	Run	Dil Factor	Amount 15.36 g	Final Amount 2 mL	Batch Number 33735 33742	Prepared or Analyzed 10/26/21 09:51 10/26/21 19:16	Analyst KBZ NMI	Lab TAL SPK TAL SPK
Total/NA Total/NA	Prep Analysis	3550C NWTPH-Dx		10	15.49 g	5 mL	33761 33769	10/27/21 10:00 10/28/21 07:42		TAL SPK TAL SPK

Client Sample ID: Trip Blank

Date Collected: 10/22/21 10:00

Lab Sample ID: 590-16195-6

Matrix: Solid

Date Received: 10/25/21 11:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			10.31 g	10 mL	33778	10/28/21 09:19	JSP	TAL SPK
Total/NA	Analysis	8260D		1	0.86 mL	43 mL	33784	10/28/21 15:59	JSP	TAL SPK
Total/NA	Prep	5035			10.31 g	10 mL	33778	10/28/21 09:19	JSP	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	0.86 mL	43 mL	33783	10/28/21 15:59	JSP	TAL SPK

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

2

Eurofins TestAmerica, Spokane

Accreditation/Certification Summary

Client: Hart & Hickman, PC Job ID: 590-16195-1

Project/Site: Northwest Motorsports - Puyallup

Laboratory: Eurofins TestAmerica, Spokane

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		Program	Identification Number	Expiration Date
Washington		State	C569	01-06-22
The following analyte the agency does not Analysis Method		eport, but the laboratory is	not certified by the governing authority. Analyte	This list may include analytes for which
Moisture	Frep Metriod	Solid	Percent Moisture	
			Percent Moisture	
Moisture		Solid	Percent Solids	
NWTPH-Dx	3550C	Solid	Residual Range Organics (R	RO) (C25-C36)

Method Summary

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	TAL SPK
NWTPH-Gx	Northwest - Volatile Petroleum Products (GC/MS)	NWTPH	TAL SPK
8270E SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	TAL SPK
NWTPH-Dx	Northwest - Semi-Volatile Petroleum Products (GC)	NWTPH	TAL SPK
Moisture	Percent Moisture	EPA	TAL SPK
3550C	Ultrasonic Extraction	SW846	TAL SPK
5035	Closed System Purge and Trap	SW846	TAL SPK

Protocol References:

EPA = US Environmental Protection Agency

NWTPH = Northwest Total Petroleum Hydrocarbon

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Job ID: 590-16195-1

3

4

5

8

3

10

11

19

Eurofins TestAmerica, Spokane

11922 East 1st Ave Spokane. WA 99206

Chain of Custody Record

die eurofins

Environment Testing America

Phone: 509-924-9200 Fax: 509-924-9290 Carrier Tracking No(s): COC No: Adam Mithele Client Information Arrington, Randee E 590-6947-2037.1 Client Contact: State of Origin: Carlin Slusher Randee.Arrington@Eurofinset.com Page 1 of 1 Company: Hart & Hickman, PC **Analysis Requested** Address: Due Date Requested: Preservation Codes: 3921 Sunset Ridge Rd Suite 301 A - HCL M - Hexane TAT Requested (days): B - NaOH Raleigh C - Zn Acetate 4 44 O - AsNaO2 State, Zip D - Nitric Acid P - Na2O4S NC, 27607 Compliance Project: A Yes A No E - NaHSO4 Q - Na2SO3 F - MeOH R - Na2S2O3 Phone: G - Amchlor S - H2SO4 919-723-2517(Tel) Purchase Order not required T - TSP Dodecahydrate H - Ascorbic Acid WO# Email I - Ice U - Acetone V - MCAA cslusher@harthickman.com J - DI Water 8260C - Standard Analyte List K - EDTA W - pH 4-5 L - EDA Z - other (specify) Northwest MotorSports - Puyallup 59002274 Gx by C SIM, NWTPH_Dx SSOW#: Other ō NWTPH Matrix NWTPH_Gx_ Sample (W=water, Type S=solid. 8260D, Total Sample (C=comp, O=waste/oil. Sample Identification Sample Date Time G=grab) | BT=TBSUG, A=Ab) Special Instructions/Note: Preservation Code: 15/25/01 1035 Solid 1245 Solid 1330 Solid Solid 1500 VIV Solid 10/14/2 Solid X Solid Solid Solid Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client

Disposal By Lab

Archive For ______ Mont Possible Hazard Identification Non-Hazard Flammable Skin Irritant Poison B Unknown Archive For Deliverable Requested: I, VI, III, IV, Other (specify) Special Instructions/QC Requirements: Empty Kit Relinquished by: Date: Time: Method of Shipment: Received by Date/Time: Company adammidal. fed 6x 10/24/21 Relinquished by: Date/Time: Company Received by Relinquished by: Date/Time: Company Received by Custody Seals Intact: Custody Seal No. Cooler Temperature(s) °C and Other Remarks A Yes A No

Page 37 of 38

2005

Ver: 06 08 2110/28/2021

Client: Hart & Hickman, PC Job Number: 590-16195-1

Login Number: 16195 List Source: Eurofins TestAmerica, Spokane

List Number: 1

Creator: Arrington, Randee E

Creator. Armigton, Randee E		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	False	Not present
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Prepared by: AECOM Seattle, Washington Job No. 60620698 February 4, 2020

Phase I Environmental Site Assessment Northwest Motor Sport (Site #3) 400 and 506 River Road, and 4th St NW Puyallup, Washington

February 4, 2020

Mr. Rick Ford, President/CEO RFJ Automotive Partners Inc. 500 N Central Expressway, Ste 320 Plano, TX 75074

> Phase I Environmental Site Assessment Northwest Motor Sports (Site #3) 400 and 506 River Road Puyallup, WA

Dear Mr. Ford:

This report presents AECOM's Phase I Environmental Site Assessment (ESA) of the Northwest Motor Sports (NWMS) property located at 400 and 506 River Road in Puyallup, Washington (Site #3). The report presents pertinent information obtained by documentary review, a site reconnaissance, as well as our findings regarding environmental conditions of the property. This work was conducted in accordance with our proposal dated December 12, 2019. To facilitate RFJ review of the NW Motorsport portfolio of sites, each site was assigned with a specific site number.

We trust this report meets your current requirements. AECOM appreciates the opportunity to assist you on this project. Please do not hesitate to contact us if you have any questions regarding this report or require additional assistance.

Sincerely,

URS Corporation

Al Thatcher

Senior Environmental Scientist

David Raubvogel,

Senior Geologist, LHG

TABLE OF CONTENTS

1.0	INTR	ODUCTION	
	1.1	PURPOSE AND SCOPE OF WORK	1
2.0	SITE	LOCATION AND DESCRIPTION	4
	2.1	SITE LOCATION	4
	2.2	SITE DESCRIPTION	
3.0	TOP	DGRAPHY AND HYDROGEOLOGY	5
	3.1	TOPOGRAPHIC SETTING	
	3.2	HYDROGEOLOGIC SETTING	
4.0		NT PROVIDED INFORMATION	
5.0		HISTORY AND LAND USE	
	5.1	HISTORICAL RESOURCES	6
	5.2	PREVIOUS ENVIRONMENTAL DOCUMENTS	8
		5.2.1 Focused Phase II Subsurface Investigation (Riley Group	
		2011)	8
		5.2.2 Phase I Environmental Site Assessment Report (Partner	_
		2013)	8
		5.2.3 Phase I Environmental Site Assessment (Robinson Noble	4.0
	5 0	2016)	10
~ ^	5.3	INTERVIEWS AND QUESTIONNAIRES	
6.0		OBSERVATIONSGENERAL CONDITIONS	
	6.1 6.2	HAZARDOUS SUBSTANCES AND PETROLEUM PRODUCTS	
	6.2 6.1	VEHICLE LIFTS/ HOISTS	
	6.2	POLYCHLORINATED BIPHENYLS (PCB)	
	6.3	UNDERGROUND AND ABOVEGROUND STORAGE TANKS	12 13
	6.4	SOLID WASTE	
	6.5	UTILITIES	
	6.6	WATER SUPPLY AND MONITORING WELLS	
	6.7	WASTEWATER AND STORMWATER	
	6.8	DRAINS, SUMPS AND SEPARATORS	
7.0		HBORING PROPERTIES	
8.0		NCY DATABASE REVIEW AND CONTACTS	
		AGENCY DATABASE REVIEW	
		8.1.1 Subject Property	19
		8.1.2 Adjacent Sites	
		8.1.3 Surrounding Sites	21
	8.2	VAPOR ENCROACHMENT SCREENING	22
		8.2.1 Subject Property	22
		8.2.2 Offsite Properties	
	8.3	AGENCY CONTACTS	
9.0	FIND	INGS	
	9.1	SUBJECT PROPERTY	
	9.2	PROPERTY VICINITY	26

TABLE OF CONTENTS (Continued)

10.0	CONCLUSIONS	27
	10.1 RECOGNIZED ENVIRONMENTAL CONDITIONS	27
	10.2 CONTROLLED RECOGNIZED ENVIRONMENTAL CONDITIONS	
	10.3 HISTORICAL RECOGNIZED ENVIRONMENTAL CONDITIONS	28
	10.4 DE MINIMIS CONDITIONS	28
11.0	LIMITATIONS	29
	11.1 SITE-RELATED LIMITING CONDITIONS	31
	11.2 DATA GAPS / DATA FAILURE	31
12.0	PROJECT PERSONNEL	32
13.0	DECLARATION OF ENVIRONMENTAL PROFESSIONALS	32
14.0	REFERENCES	34

FIGURES

Figure 1 - Site Location Map

Figure 2 - Site Plan

Figure 3 – Building Details

APPENDICES

Appendix A – Historical Documents

Appendix B – Previous Environmental Report and Other Documents

Appendix C – Photographs

Appendix D – EDR Environmental Database Review Report

1.0 INTRODUCTION

AECOM was retained by RFJ Automotive Partners, Inc. (RFJ) to perform a Phase I Environmental Site Assessment (ESA) of the Northwest Motor Sport (NWMS) property (Site #3), consisting of three parcels located at 400 River Road (Pierce County Parcel #04214-807), 506 River Road (Pierce County Parcel #04214-014), and 4th Street NW (Pierce County Parcel #04214-057) in Puyallup, Washington (subject property). The 3.9-acre property is developed with four buildings occupied by automotive sales, repair and maintenance operations, and offices. This Phase I ESA was conducted in accordance with the scope of work presented in our proposal to RFJ Automotive Partners, Inc. (RFJ) dated December 12, 2019.

1.1 PURPOSE AND SCOPE OF WORK

It is our understanding that RFJ is considering purchase of the subject property and desires a Phase I ESA. The purpose of this Phase I ESA is to provide the client with information for use in evaluating recognized environmental conditions (RECs) associated with the subject property. The scope of work was conducted in general accordance with the ASTM International (ASTM) Standard Practice for Environmental Site Assessments (Standard E1527-13). Adherence to a particular financial or other institution's protocols or guidelines was not requested.

Per the ASTM standard a REC is defined by the ASTM standard as:

 The presence or likely presence of any hazardous substances or petroleum products in, on, or at a property: (1) due to any release to the environment; (2) under conditions indicative of a release to the environment; or (3) under conditions that pose a material threat of a future release to the environment." The term includes hazardous substances or petroleum products even under conditions in compliance with laws.

The ASTM Standard E1527-13 also includes the evaluation of environmental conditions comprising a controlled REC (CREC), a historical REC (HREC), or as a *de minimis* condition.

- HRECs are a past release of any hazardous substances or petroleum products that has occurred in connection with the property and has been addressed to the satisfaction of the applicable regulatory authority or meeting unrestricted use criteria established by a regulatory authority, without subjecting the property to any required controls.
- CRECs are a recognized environmental condition resulting from a past release of hazardous substances or petroleum products that has been addressed to the satisfaction of the applicable regulatory authority, with hazardous substances or petroleum products allowed to remain in place subject to the implementation of required controls.

 De minimis conditions are conditions that generally do not present a material risk of harm to public health or the environment and generally would not be subject of an enforcement action if brought to the attention of the appropriate governmental agency.

The assessment reviewed past and present land use practices and site operations related to the use, storage, generation, manufacture, and disposal of hazardous substances and petroleum products at the subject property.

This assessment was accomplished by, and limited to, a reconnaissance of the site, a drive-by survey of the site vicinity, a review of publicly available records, interviews of pertinent individuals and regulatory and public agency personnel, and a review of pertinent documentation provided by Holland and readily available through AECOM' standard information sources. The site vicinity is defined as the neighboring properties and facilities within an approximate distance of 1/8 mile of the subject property, the nature of which may adversely affect or have affected environmental conditions at the subject property due to the presence and/or release of hazardous substances or petroleum products to the environment.

AECOM's scope of work included the following elements:

- Review of pertinent, available documents and maps concerning local geologic and hydrogeologic conditions
- Review and interpretation of historical aerial photographs of the subject property and the site vicinity for selected years back to the property's first developed use or 1940, whichever is earlier, from readily available sources
- Review and interpretation of available archival topographic maps, historical land use maps (e.g., Metsker, Kroll, and Sanborn Fire Insurance maps) and business directories (e.g., Cole's and Polk's) covering the subject property and the site vicinity for information about historical site land use that could have involved the manufacture, generation, use, storage and disposal of petroleum products and hazardous substances
- Performance of a reconnaissance survey of the subject property to make visual observations of existing site conditions and activities
- Review of current local, state, and federal lists of known or potentially
 hazardous waste sites and landfills, and sites currently under investigation for
 environmental violations located within ASTM-specified search distances of the
 subject property (ranging from the subject property itself up to a 1-mile radius
 depending on the nature of the list reviewed) including:
 - U.S. Environmental Protection Agency (EPA) National Priorities ("Federal Superfund") List
 - EPA Delisted NPL List

- EPA Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) and CERCLIS No Further Remedial Action Planned (NFRAP) Lists
- EPA Emergency Response Notification System (ERNS) List
- EPA Resource Conservation and Recovery Act (RCRA) List
- EPA RCRA Corrective Action (CORRACTS) Treatment, Storage, and Disposal (TSD) Facilities List
- EPA Institutional and Engineering Controls databases
- EPA Brownfields Sites
- State and Tribal lists of hazardous waste sites
- State and Tribal

 equivalent NPL sites list
- State and Tribal-equivalent CERCLIS sites list
- State and Tribal Leaking Underground Storage Tank (LUST) Sites List
- State and Tribal Listing of Registered Underground Storage Tanks (USTs)
- State and Tribal Institutional and Engineering Controls databases
- State and Tribal Voluntary Cleanup Sites
- State and Tribal List of Active Landfills and/or Solid Waste Disposal Sites
- State and Tribal Brownfields Sites
- Interview of the property owner, or other persons identified as knowledgeable
 of the property history, for information about the land use history of the subject
 property and past and present practices regarding use, storage, and disposal
 of petroleum products and hazardous substances
- Request and review information from the report "User" as outlined in the "User's Responsibilities" section of the ASTM E1527–13 guidelines
- Inquire with selected state and local regulatory agencies by submitting a request for information regarding environmental permits, environmental violations or incidents, and status of potential enforcement actions at the property
- Preparation of this report describing the research performed and presenting AECOM' findings about the potential for environmental contamination at the site

The scope of services was limited to that stated in AECOM' proposal and did not include 1) sampling and analysis of environmental media, 2) seismic hazards / structural integrity, 3) environmental compliance, or 4) other activities not expressly described in the written scope of services.

2.0 SITE LOCATION AND DESCRIPTION

2.1 SITE LOCATION

The subject property is located at 400 and 506 River Road, and an unspecified address on 4th Street NW in Puyallup, Washington (Figure 1). The site is bordered to the north by River Road, to the east by 4th Street NW, to the south by a moving and storage operation and to the west by another NWMS vehicle sales and repair operation. Land use in the site vicinity consists primarily of retail, car dealerships, professional service and commercial/consumer service operations such as, retail stores and restaurants.

2.2 SITE DESCRIPTION

The majority of the 3.90-acre property is asphalt paved parking used for the car and truck inventory parking. The main showroom and shops building (400 River Road) and building adjacent to the wash bay are located on the northeastern portion of the property (Figure 2). A small building (Buying Center - 506 River Road) is present on the northwestern portion of the property and another building (Lower Shop building) is present on the southwest portion of the property. A fourth building is located on the southeastern corner of the property and is used to stored vehicle wash chemicals and has an office area. Additional details regarding the subject property parcels is provided below:

Address	Building Occupancy	Parcel	Acres	Building Sq. Feet
400	Main Building –car sales showroom, north & south service shops, offices, parts Wash Bay Adjacent	0420214-807	2.74	17,259 400
	Building			
506	Buying Center - Very small building for customer interactions	0420214-014	0.75	600
4 th St NW	Automobile Repair - Lower Shop	0420214-057	0.41	4,000

Access to the property is from River Road and along 4th St NW which has a driveway ramp to the interior of the site. The Pierce County assessor web site indicates that the property is owned by HILT Investment Holdings.

3.0 TOPOGRAPHY AND HYDROGEOLOGY

3.1 TOPOGRAPHIC SETTING

The subject property is located in the southeast quarter of Section 20, Township 20 North, Range 4 East, Puyallup, Pierce County, Washington. Topographic coverage of the site vicinity is provided by the U.S. Geological Survey, Puyallup, Washington, 7½- minute quadrangle (Figure 1). The property ranges in elevation from approximately 27 to 38 feet above mean sea level (msl) and has a southerly slope. The northern and eastern halves of the property are at street level. The area south of the 400 River Road building has an approximate 10-foot difference in grade (Google Earth, 2020). A retaining wall runs along the eastern portion of the site separating the upper parking areas from the lower parking areas. The area topography slopes generally northeasterly towards the Puyallup River, the nearest surface water body, which is located approximately 1000 feet to the north.

3.2 HYDROGEOLOGIC SETTING

The site is underlain by quaternary alluvium deposited by the Puyallup River. These deposits consist of unconsolidated sand and gravels with silty sand and clay layers. An investigation (CDM 2011) conducted in the property vicinity identified overbank and point bar deposits to approximately 40 feet below ground surface (bgs). This unit is characterized by alternating poorly and well-graded sand layers, with some clay interbeds. A boring completed at the property encountered silty fine to medium sands at approximately 11 feet bgs and gravel was noted to 12 feet the total depth of the boring (The Riley Group, 2011). During removal of a 650-gallon UST, medium to course sand was noted to 10 feet bgs (EMS, 2004).

Groundwater was encountered at approximately 10 feet bgs in a boring completed near the southern property boundary. (The Riley Group, 2011). Groundwater in the subject property vicinity is inferred to flow southwesterly consistent with the site topography. The regional groundwater flow is inferred to be northerly towards the Puyallup River.

4.0 CLIENT PROVIDED INFORMATION

As specified in ASTM E 1527-13, Section 6 - User's Responsibilities, the report User is required to assist with identifying possible RECs. In an effort to meet this requirement, AECOM requested the following information:

- Environmental liens or activity and use limitations associated with the subject property
- Specialized knowledge or experience regarding the subject property
- Commonly known or reasonably ascertainable information regarding the subject property
- Whether the purchase price may reflect a valuation reduction for environmental issues; if applicable
- Reason for performing the Phase I ESA

RFJ did not provide responses to the AAI questionnaire that requested responses on the above information. RFJ reported that they have no knowledge of environmental liens or activity and use limitations (AULs) on the subject property. No AULs or environmental liens related to hazardous materials on the subject property were identified by AECOM' agency database review. RFJ reported they are not aware of specialized information that would indicate the presence of RECs related to the subject property. Northwest Motor Sport provided three reports for our review, as summarized in Section 5.2. RFJ reported they have not compared the proposed purchase price of the property to the fair market value for non-contaminated sites. AECOM understands that the Phase I ESA was conducted because RFJ is considering purchasing the property and desired this assessment to document current environmental conditions.

5.0 SITE HISTORY AND LAND USE

5.1 HISTORICAL RESOURCES

Historical information for the subject property and surrounding properties is based on AECOM's review and analysis of the following historical sources, provided by Environmental Data Resources, Inc. (EDR) of Milford, Connecticut; and Google Earth:

- <u>Aerial photographs</u> dated 1957, 1968, 1972, 1980, 1990, 2006, 2009, 2013 and 2017;
- City Directories for various years between 1959 and 2014.
- Sanborn Fire Insurance maps dated 1927, 1945 and 1964.
- <u>Topographic Maps</u> dated 1897, 1900, 1941, 1944, 1949, 1961, 1968, 1973, 1981, 1994, 1997 and 2014.

Copies of these documents are provided as Appendix A. AECOM also reviewed documents related to the subject property from local sources including from the Pierce County Tax Assessor/ GIS web page. In addition, an interview was conducted with Mr.

Rick Schatz, Facilities Director for NWMS, who has been associated with the subject property for the past nine years, and with Mr. Paul Russell, Parts Director for NWMS.

For purposes of evaluating the information reviewed as detailed in this section of the report, the presence or absence of "significant change(s)" noted during the review refers to changes that are considered to be a change in land use with the potential to adversely affect the environment with regard to the use, generation, storage, or disposal of hazardous substances or petroleum products. Examples of changes termed "significant" include the appearance of a building, the devegetation of land, and/or ownership of property by entities appearing commercial and/or industrial in nature. The general locations of significant historical features summarized below are depicted on Figure 3.

Subject Property

Historical topographic maps indicate the subject property was occupied by one small building and woodlands by the 1940s. By the 1950s, the historical aerial photographs showed the small building was replaced with the main site building located on the central and northeastern portion of the subject property. By the late 1960s, the southwestern portion of the subject property was developed with a large building, a service garage similar in configuration to the present day. In addition, two smaller buildings were developed, one on the northwest side of the subject property, one being located on the 506 River Road parcel, and one small building, an office building, on the southeast side of the subject property, similar in configuration to the present day wash chemical storage area. The 1972 aerial photograph shows the building at 506 River Road was removed, as well as a portion of the main large site building. An addition to the main large site building is noted on the 1990 historical aerial photograph. By the 2013 historical aerial photograph, an additional small building was constructed in the southeast corner of the subject property.

The Pierce County Tax Assessor/ GIS website indicated that the large building located on the central and northeastern portion of the subject property was a showroom, office and two service garages constructed in 1953 with building additions in 1978 and 1986. The service garage on the southwest corner of the subject property is listed to have been built in 1966, with renovations in 1978. The small office building on the northwest side of the subject property is listed as being constructed in 1965, with a basement and storage additions in 1978. There were no listings for the service garage on the southeastern side of the subject property or the small office building on the northwestern side of the subject property.

The subject property address, 400 River Road, was listed in the 1959, 1964 and 1969 historical city directories as being occupied by Grant's Chevrolet Inc. The address was listed 1974, 1979 and 1984 as being occupied by Service Chevrolet Inc. The address was listed in 1989, 1992 and 1995 as Parks Ken Chevrolet-Subaru Inc. The city directories listed the subject property for the year 2000 as being occupied by Bulletproof LLC and Puyallup Chevrolet-Geo-Subaru, 2005 as Bulletproof LLC., Friendly Chevrolet Inc, Greg Carters Puyallup Chevrolet and Ken Parks Chevrolet, in 2010 as Bulletproof LLC., and in 2014 as Bulletproof LLC. and Northwest Motorsport. The Subject property address, 506

River Road, was listed as being occupied by the US Department of Agriculture—Agriculture Stabilization and Conservation, US Department of Agriculture-Farmers, US Department of Natural Resources in 1964 and 1969. The 1974 historical city directories list 506 River Road as being vacant. There were no further listings for 506 River Road.

Off-Site Properties

The historical aerial photographs and topographic maps show the surrounding properties consisting mostly of undeveloped woodlands and fields until the early 1960s. The 1957 aerial photograph shows residential development south of the subject property. By the late 1960s, the adjacent northern, eastern and western properties were developed with commercial properties. The city directories list the adjacent properties to be commercial properties, largely vehicle sales from 1969 to 2014. The adjacent west parcel was first developed in the 1960s and listed as Puyallup Tractors. The adjacent southern parcel was developed in the 1960s and listed as Boush Moving & Storage and Grants Insurance Agency. The adjacent north parcel across River Road is first listed as Puyallup Chrysler Plymouth Auto Dealers in 1974. The 1969 city directory lists River Road Gulf Station at 324 River Road, east of 4th Street NW.

5.2 PREVIOUS ENVIRONMENTAL DOCUMENTS

Previous Phase I ESA reports and a Focused Ph II Subsurface Investigation were provided for our review by NWMS. AECOM inquired with the Washington State Department of Ecology (Ecology), and the City of Puyallup regarding additional environmental information on file, and none was provided. The previous environmental documents are summarized below, and selected portions are provided in Appendix B.

5.2.1 Focused Phase II Subsurface Investigation (Riley Group 2011)

The Riley Group (RG) evaluated the soil and groundwater conditions at an oil/water (OWS) located along the southern property. The RG report indicated that a Phase I ESA had been recently completed by Adapt Engineering (Adapt) and Adapt indicated that a feed line to the OWS may have leaked and was a possible risk to soil and groundwater. Although it was later determined that the line connection was intact. RG performed a limited Phase II that included one boring, SP1 advanced to a total depth of 12 feet bgs immediately downgradient of the OWS. Two soil samples and a grab groundwater sample were collected from the boring. Groundwater was encountered approximately 10 to 11 feet bgs in the borehole. No petroleum odors or staining were noted in the soils and the two soil samples (collected at 4 and 12 feet bgs) analyzed did not detect gasoline-range, diesel-, and oil-range total petroleum hydrocarbons in addition to benzene, toluene, ethylbenzene and totally xylenes (BTEX), or select volatile organic compounds (VOCs). None of the analytes were detected in the one groundwater sample.

5.2.2 Phase I Environmental Site Assessment Report (Partner 2013)

A 2013 Phase I ESA conducted by Partner indicated that the subject property had been vacant land until 1953, at which point the property was developed with a car dealership.

Since circa 1953, the subject property has continued to be occupied by automotive dealerships. At the time of this Phase I report, the subject property was reported by Partner as surrounded by current or former automotive dealerships to the north, east, and west, as well as Boush Moving & Storage to the south.

Partner observed circular cut-outs and concrete patches indicative of former in-ground hydraulic lifts in the current service bays. The lifts were purported to be removed in 1987 but one active in-ground hoist was located in the southernmost service bay. A 2003 Phase II Environmental Site Assessment investigation performed by Encore Environmental Consortium (Encore) included advancement of 11 soil borings in this area. These samples were tested for diesel- and gasoline-range total petroleum hydrocarbons. A total of 18 borings were advanced on the subject property as part of this investigation. Soil borings were also completed near the assumed location of a former gasoline UST, a closed-in-place heating-oil UST, and near the east property boundary. Two borings were placed near a waste-oil UST, and three were drilled near storm drains.

The soil analytical results indicated that various petroleum hydrocarbons and VOCs exceeded applicable Washington State Model Toxic Control Act (MTCA) cleanup levels; xylenes near the former gasoline UST; and gasoline and diesel range near the waste oil UST. No contamination was reported in the groundwater samples. The waste-oil tank was subsequently decommissioned and removed, with confirmation soil sampling results confirming the contamination was eliminated. A no-further-action (NFA) was then issued by the Tacoma-Pierce County Health Department.

Previous reports referenced from 2003 stated there was one active in-ground hydraulic lift housed in the southern-most service bay area that still contained hydraulic fluid. Partner stated that the previous consultant had recommended draining and removing the active lift, but Partner was unable to confirm whether this action properly took place through available documentation. This lift was not observed during Partner's site visit. The report indicated that the gasoline UST was removed in 1996, and two generations of waste oil USTs were removed from the same location, the first in 1987 and second in 2004. The heating oil UST was closed in place.

The Partner Phase I ESA reported two RECs, and an additional historical REC

- The lack of PCB analytical testing from the area near the former in-ground hydraulic lifts.
- The potential continued presence of the in-ground hydraulic lift located in the southern-most auto service bay area. Its removal was recommended in 2003, Partner was unable to locate documentation detailing removal and confirmation sampling. During preparation of this current AECOM Phase I ESA, records from April 2004 of the decommissioning of this hydraulic lift were located and are detailed in Section 8.3.

 A historic gasoline, heating oil, and two waste oil tanks located on the subject property are considered historical RECs, as there was documented removal and closure of each tank with confirmation sampling and soil remediation analytical results indicating proper regulatory closure.

5.2.3 Phase I Environmental Site Assessment (Robinson Noble 2016)

The 2016 Phase I ESA conducted at the property by Robinson Noble reported one REC at the subject property relating to potential soil and groundwater contamination from an emptied combination diesel and gasoline UST located on the southern adjacent property (Boush Moving & Storage). This adjacent property is inferred upgradient from the subject property, so if contamination did exist from the UST it could potentially migrate to the subject property.

The Robinson Noble Phase I report summarized the 2003 Phase II ESA performed by Encore based on the description from the Partner Phase I ESA (2013). The report indicated that since the xylene impacted soils at the former gasoline UST had been excavated in 2004 and approximately 26 tons of impacted soils were removed and subsequent soil sampling were below cleanup levels, this area was considered to represent a low risk. It should be noted that Robinson Noble and AECOM were unable to acquire the actual 2003 Encore Phase II report for review. This represents a data gap.

5.3 INTERVIEWS AND QUESTIONNAIRES

Representatives of the property owners and occupant were interviewed by AECOM. A Phase I ESA Questionnaire regarding the environmental conditions and current operations for the subject property, with respect to hazardous substances and petroleum products was completed by representatives of the parcels owned by HILT Investment Holdings, LLC. The property owner representatives reported that the property was previously occupied by Friendly Chevrolet, for an unknown period of time. They are not aware of historic releases or any soil or groundwater contamination associated with hazardous substances or petroleum products at the property, and not aware of environmental liens relating to violations of environmental laws. Hazardous substances or petroleum products are stored onsite, and hazardous wastes are not currently generated. The representatives reported the NWMS facility has occupied this location since 2011, and they are not aware of septic tanks or water supply wells currently or historically present on their property. Details of information from the property owner representatives are provided throughout the report.

6.0 SITE OBSERVATIONS

Messrs. Al Thatcher and Anders Utter of AECOM's Seattle, Washington office visited the subject property on December 20, 2019 and was accompanied for portions of the site visit

by Mr. Rick Schatz and Mr. Paul Russell of NWMS. Messrs. Schatz and Russell provided current and historic operations information during interviews. Site-related limiting conditions encountered during this assessment are summarized in Section 11.1. Photographs taken during the site visit are provided in Appendix C. The site visit methodology consisted of walking accessible areas of the subject property, the property perimeter, and viewing publicly accessible portions of the adjacent / surrounding area. The following sections summarize the results of the site visit.

6.1 GENERAL CONDITIONS

The subject property consists of three parcels located at 400 (2.74 acres) and 506 (0.75 acres) River Road, and an unnumbered parcel on 4th St NW (0.41 acre), that are owned by HILT. The majority of the property is covered by paved parking. The approximately 17,000 SF two-story main building and the 600 SF Buying Center are situated on the north portion of the property; the approximately 4,000 SF one-story lower shop building is in the southwest portion of the property; and a 300 SF two-story wash bay is present on the southeast portion of the property (Figure 2).

The main building includes a customer showroom, north and south vehicle service repair/shop areas, office spaces and a parts room (Figure 3); and the southwest building is primarily occupied by vehicle repair bays and a tire bay (Figure 2). The Buying Center building is reportedly occupied by office area, and the building adjacent to the covered vehicle wash bay is used for storage of wash bay chemicals and as office space and meeting room. The buildings are reportedly heated by natural gas heaters, some roof-mounted and some ceiling mounted units.

6.2 HAZARDOUS SUBSTANCES AND PETROLEUM PRODUCTS

Various automotive related hazardous substances and petroleum products were observed in all buildings except the Buying Center building, including motor oil, coolant, automatic transmission fluid (ATF), parts washer solvent, vehicle washing chemicals, windshield washer fluid and brake fluid (Figures 2 and 3). The largest volumes of new chemicals were stored in aboveground storage tanks (ASTs) as detailed in Section 6.3, and the next greatest volume consisted of vehicle washing chemicals stored in 55-gallon drums in the southeast corner building.

Waste fluids, such as used oil, were stored in ASTs and in 55-gallon drums. One 55-gallon drum reportedly containing used coolant was observed in the southwest corner of the north shop. Numerous reportedly empty 55-gallon drums formerly containing vehicle undercoat were observed stacked on the southwest corner of the property (Figure 2).

The southeast corner building currently houses the vehicle wash chemicals used at the adjacent wash bay, a covered area of pavement utilized for washing vehicles. Vehicle engines are reportedly not washed. A portion of the concrete floor in the southeast corner building was observed to be deeply etched down to and around the aggregate of the concrete, apparently from releases of the vehicle washing chemicals.

The condition of the concrete floors in the remaining chemical use and storage areas was generally good to fair, with some cracks and expansion joints that could provide a pathway into the subsurface soils. However, staining was not observed that would have indicated significant chronic releases of hazardous materials/petroleum products or wastes. Generalized staining was observed that appeared typical for buildings the vintage of those on the subject property.

An accumulation of 55- and 25-gallon steel drums was observed on the southwest portion of the subject property, reportedly drums that formerly contained vehicle undercoat, from a historic vehicle undercoating operation that took place in the tire bay (north) portion of the lower shop. Staining or sheen was not observed on the pavement around these drums, and the undercoating operation reportedly stopped two years ago. Historic releases of chemicals from the vehicle maintenance and repair operations were not reported.

Hazardous wastes generation or storage was not observed or reported. Parts washing solvent utilized in two onsite parts washers uses an aqueous-based solvent. The parts washer solvent is changed out periodically by Emerald Services, and the spent solvent transported offsite. Used automobile batteries and tires are returned to the providers of new batteries and tires.

6.3 VEHICLE LIFTS/ HOISTS

Vehicle service hoists are currently all aboveground, and each equipped with approximately 3-gallon reservoirs of hydraulic fluid. Based on the apparent age of these hoists, the potential is low for the fluid to contain PCBs, and evidence of significant releases of the hydraulic fluid were not observed.

Numerous patched areas were noted on the concrete floor in the north and south shop areas (Figure 3) which appear to be former in-ground vehicle hoists locations. In ground hydraulic hoist systems were noted in the previous reports as summarized in Section 5.2, and documentation included the removal of this equipment and assessment of subsurface conditions.

6.4 POLYCHLORINATED BIPHENYLS (PCB)

Fluid-filled transformers were not observed on the subject property. Although some electric utilities around the property are aboveground, the closest fluid-filled transformers were observed on a pole along River Road near the northwest corner of the property, and apparently outside the subject property, and are believed to be owned by the electric utility. Hydraulic fluid associated with vehicle hoists is discussed in Section 6.1.

AECOM did not note additional equipment suspect of being PCB-containing, such as hydraulic elevators.

6.5 UNDERGROUND AND ABOVEGROUND STORAGE TANKS

No USTs are presently known to remain at the property, and no indications of USTs such as vent or fill pipes were observed during our walkthrough. Seven ASTs were observed at the subject property as shown on Figures 2 and 3, including:

- North Shop Area Two new oil ASTs (465- and 250-gallon capacity; and one 500-gallon used oil AST;
- South Shop Area two 200-gallon ASTs containing new oil; and
- Lower Shop Building two approximately 150-gallon ASTs are located in the south end of the building in a separate room adjacent to the south of vehicle service Bay 19.

The floor in the area of the tanks had various degrees of oily staining and residue, sometimes extending to areas of the floor not accessible, e.g. behind the ASTs.

Based on the existing site information, four former USTs were previously in use at the property at the locations shown on Figure 2. Two generations of waste oil tanks (reportedly 1000 and 500 gallon) were present at the same location and both have been removed. A 5,000-gallon gasoline UST was removed in 1996. Information regarding the removals was summarized in Section 5.2. A 500-gallon heating oil UST located near the southeast corner of the showroom building was apparently closed-in-place.

Two capped pipes in the configuration of heating fuel oil UST supply and return pipes were observed in the basement level along the main building interior west wall, likely associated with the closed in place heating oil UST. The furnace in the current boiler room was natural gas-fired.

6.6 SOLID WASTE

Solid waste generated onsite is reportedly primarily cardboard, paper and plastic packaging, and includes some food waste. Solid waste is accumulated in several dumpsters observed on the property, and reportedly transported for offsite disposal by Waste Management. AECOM did not observe staining on the pavement around the dumpsters that would have indicated significant releases of chemicals to the subject property.

6.7 UTILITIES

Electrical service is provided by Pacific Power, and natural gas is provided by Puget Sound Energy. Potable water supply and sanitary and storm sewer services are reportedly provided by the City of Puyallup.

6.8 WATER SUPPLY AND MONITORING WELLS

AECOM did not observe, nor were water supply or monitoring wells reported, at the subject property.

6.9 WASTEWATER AND STORMWATER

Process wastewater currently generated at the subject property is primarily wash water generated by the vehicle wash operation on the southeast portion of the property (Figure 2). An aboveground oil-water separator (OWS) is present in a shed located adjacent west of the covered vehicle wash area. Two catch basins were observed in this area, one under the wash bay cover, the other adjacent to the southwest corner of the covered area. The catch basin to the southwest was observed to have two hoses running beneath the manhole cover, an apparent sump pump in the catch basin vault, and a hand cartmounted pump used for pumping the wash water up to the municipal sewer system on 4th Street NW. These features are located beneath the south end of the covered wash area. The wastewater is reportedly pumped from this manhole to the east to a catch basin along 4th Street NW, and the hand cart-mounted pump is use during precipitation events when the sump pump in the manhole cannot keep up with the volume flowing. Connection of the OWS to the stormwater system was not confirmed. The separator was observed to have apparent coalescing plates and is reportedly pumped-out by a vendor for offsite disposal of the contents, on an as-needed basis. A copy of an invoice was provided for our review, from Emerald Services, Inc. dated November 4, 2019 for pumping out the oil-water separator, and disposal of oily waste.

Most of the precipitation that reaches the subject property discharges to stormwater catch basins in paved areas at the property. These catch basins reportedly discharge to the City of Puyallup municipal sewer system in 4th St NW. One stormwater catch basin was observed adjacent to the southeast corner of the main building and was reported to discharge into soils to the south of the drain.

One additional grate-covered catch basin/sump was observed in the area beneath the parking deck located along the east side of the building. This catch basin was equipped with a sump pump and piping leading up to the ceiling of this area. It is believed that this sump discharges storm water that makes it into his area, up to the municipal sewer system in 4th St NW.

The subject buildings are equipped with rest rooms generating sanitary sewerage, that discharge to the municipal sewer system.

Although a sheen was noted in some catch basins, AECOM did not observe staining or sheen, or note suspicious odors, that would have indicated significant hazardous substance/ petroleum product discharges in or around the catch basins.

6.10 DRAINS, SUMPS AND SEPARATORS

Other separators or sumps were not observed additional to those mentioned in Section 6.7. Other drains were observed such as in restrooms/showers, however, evidence was not observed that would have indicated discharge of chemicals to the drains.

7.0 NEIGHBORING PROPERTIES

Land use in the site vicinity consists primarily of vehicle sales dealerships, single-family residences, commercial/consumer service operations such as a hotels, restaurants, and retail stores (Figure 2).

A summary of the neighboring properties is provided below:

- North –River Road beyond which is a Key Bank and a Look Larson Motors car dealership
- Northeast the intersection of River Road and 4th Street NW, beyond which is a City of Puyallup storm sewer pump station, a strip mall with consumer service operations, and a parking lot associated with a Fred Meyer department store.
- East 4th St NW beyond which is a Look Larson Motors car dealership.
- South a Boush Moving & Storage facility.
- West buildings and paved parking associated with another Northwest Motor Sport dealership.

The adjacent car dealerships include vehicle repair operations similar to those observed in the subject property. Other current adjacent operations were not observed that would have indicated significant potential for releases of hazardous substances or petroleum products to the environment.

8.0 AGENCY DATABASE REVIEW AND CONTACTS

AECOM reviewed databases and contacted agencies to identify potential concerns related to hazardous materials/wastes or petroleum products.

8.1 AGENCY DATABASE REVIEW

In accordance with the scope of work and ASTM Standard E1527-13, a search of various governmental databases was conducted. The site-specific environmental database report was reviewed to evaluate whether soil and or groundwater from an on-site and/or off-site source of concern has the potential to impact the subject property. Environmental Data Resources, Inc. (EDR) provided this information from a computerized database search for the subject property and sites within applicable ASTM radii of the subject property (Appendix D). The database abbreviations are provided in the site-specific environmental database report.

Shallow groundwater is inferred to flow southeasterly based on the site topography. For the purpose of addressing the relative hydraulic location of a facility to the subject property, properties located to the east are inferred to be potentially hydraulically upgradient. However, groundwater flow at the subject property cannot be determined

without performing onsite groundwater evaluations. A listing and description of selected databases searched, and number of sites confirmed to be located within the applicable radii are summarized below.

Type of Database	Description of Database	Radius Searched	Number of Sites Identified
	Description of Database		
National	The USEPA NPL identifies uncontrolled	1 mile	0
Priorities List	or abandoned hazardous waste sites.		
(NPL)	To appear on the NPL, sites must have		
	met or surpassed a predetermined		
	hazard ranking system score, been		
	chosen as a state's top priority site,		
	pose a significant health or		
	environmental threat, or be a site where		
	the Environmental Protection Agency		
	(EPA) has determined that remedial action is more cost-effective than		
	removal action.		
Proposed NDI	The USEPA Delisted NPL database	1 mile	0
Proposed NPL List	identifies NPL sites that have been	i iiile	U
LIST	delisted when "no further response is		
	appropriate" under the Superfund		
	program.		
Delisted NPL List	The USEPA Delisted NPL database	1 mile	0
Delisted Will Elist	identifies NPL sites that have been	Titilic	O
	delisted when "no further response is		
	appropriate" under the Superfund		
	program.		
Corrective Action	The USEPA CORRACTS database	1 mile	0
(CORRACTS)	identifies hazardous waste handlers	1 111110	· ·
List	with Resource Conservation &		
	Recovery Act (RCRA) Corrective Action		
	activity.		
Federal	The CERCLIS database identifies	0.5 mile	1
Comprehensive	hazardous waste sites that require		
Environmental	investigation and possible remedial		
Response,	action to mitigate potential negative		
Compensation,	impacts on human health or the		
and Liability	environment. CERCLIS NFRAP sites		
Information	are also included on the new SEMS-		
System	ARCHIVE list.		
(CERCLIS)/No			
Further			
Remedial Action			
Planned			
(NFRAP)			

Type of Database	Description of Database	Radius Searched	Number of Sites Identified
Federal RCRA treatment, storage, or disposal (TSD) sites	RCRA TSD sites	0.5 mile	0
Federal RCRA Generators	RCRA-regulated hazardous waste generator notifier list; large quantity generators (LQG), small quantity generators (SQG), conditionally-exempt generators (VSQG) and facilities that are no longer generators (NonGen) are included in this list.	0.25 mile	1
Federal institutional and engineering controls databases	EPA's listing of sites with engineering or institutional controls in place.	0.5 mile	0
Federal Emergency Response Notification System (ERNS)	EPA's ERNS list contains reported spill records of oil and hazardous substances.	Subject property	0
Federal Brownfields Sites	Sites identified by the EPA as addressed by Targeted Brownfield Assessments and as recipients of Brownfields Cleanup Revolving Loan Fund (BCRLF) cooperative agreements.	0.5 mile	0
Confirmed and Suspected Contaminated Sites List (CSCL)	Washington State hazardous waste site records. State equivalent of CERCLIS.	1 mile	30
Hazardous Sites List (HSL)	Washington State equivalent of NPL	1 mile	5
State solid waste disposal and landfill (SWLF/LF)	State inventory of solid waste disposal and landfill sites.	0.5 mile	1
State leaking underground storage tanks (LUST)	List of information pertaining to all reported LUST.	0.5 mile	10

Type of Database	Description of Database	Radius Searched	Number of Sites Identified
State underground storage tank (UST)	State UST sites listing.	0.25 mile	13
State Institutional Controls	State list of sites with institutional controls.	0.5 mile	7
State Brownfields	Listing of Brownfields included in the CSCSL listings.	0.5 mile	0
Voluntary Cleanup Program (VCP)	Sites that have entered into the Voluntary Cleanup Program or its predecessor Independent Remedial Action Program.	0.5 mile	7
Manufactured Gas Plants	An EDR proprietary listing of manufactured gas plants	1 mile	0
Historical Auto Stations	An EDR proprietary listing of potential gas stations	0.25 mile	1
Historical Cleaners	An EDR proprietary listing of potential dry cleaners	0.25 mile	0
Unmapped "Orphan" sites	Sites that have not been plotted on a map due to lack of sufficient data regarding their exact location within the general area.	-	5

8.1.1 Subject Property

One listing for the subject property address of 400 River Road was identified by the database review report.

• Friendly Chevrolet of Puyallup – EDR Site ID 1 This listing places 400 River Road on the UST, ALLSITES, RCRA NonGen/NLR, FINDS, and ECHO databases. According to information from the EDR report and Ecology's online databases, four USTs have been removed from this facility: a 650-gallon used oil UST which was installed in 1987 and removed in 2004; a 2,000-gallon unleaded gasoline UST and a 550-gallon used oil UST which were installed in 1964 and removed in 1996; and a 650-gallon used oil UST with an unknown installation date which was removed in 2004. These tanks likely include the three USTs that were documented as removed from the site as described in previous reports (Section 5.2), although the tank capacities are not consistent with the prior reports and one closed in place heating oil tank is reported to exist. This facility reportedly generated hazardous waste in 1993, and 1997 through 2000 with no

reported violations. The subject property addresses were not identified on databases of confirmed or suspected contaminated sites.

Listings were not identified for the 506 River Road or other current or historic subject property addresses.

8.1.2 Adjacent Sites

Addresses adjacent to the subject property were identified as follows:

- Korum Family Limited (Former Korum, current Northwest Motor Sport Site #6) EDR Site ID A2, A3 and A5 was identified adjacent to the west of the subject property at 500 and 514 River Road as Korum RV, on the UST, ALLSITES, RCRA NonGen/NLR, Facility Index System (FINDS), and Enforcement and Compliance History Online (ECHO) databases. The EDR report and Ecology's online databases, two USTs one containing unleaded gasoline and one of unreported contents were installed at the subject property in 1964 and removed in 1996. This facility was also identified as a generator of hazardous waste in 1993, and 1998 through 2002 with no reported violations. The site contact was not aware of any previous USTs at the property. In addition, the subject property was identified at 500 River Road rear building as Korum Family Limited (EDR Site IDs B4 and B5) on the RCRA NonGen/NLR, ALLSITES, and MANIFEST databases. This facility was reportedly a generator of hazardous waste in 2005 and 2006 with no reported violations. The subject property was not identified on any contamination-related databases.
- Puyallup City of, Sewage Pump Station EDR ID B4 This site is located at "4th & River Road", across the intersection adjacent to the northeast of the subject property and is listed on the UST and ALLSITES databases. According to the EDR report this property had a UST with unspecified contents closed in 1994. The ALLSITES listing for this property indicate the site in the Toxics program related to an UST.
- Puyallup Chrysler Plymouth River Rd EDR ID A6 and A7 This site is located at 401 River Rd, across River Road adjacent to the north of the subject property, and is listed on the UST and ALLSITES databases, and is listed on the RCRA NonGen/NLR, FINDS, ECHO, UST, and Allsites databases. The EDR report and Ecology's online databases, one UST was installed in 1964 was closed in place in 1996 and one gasoline UST was installed in 1964 was removed in 1996. These dates may not be accurate, as they are the default dates used by Ecology when specific installation and/or removal dates are not known. This facility may have generated hazardous waste in 1994 with no reported violations. The 401 River Road property was observed to be currently occupied by Larson Motors.
- Arthur J Boush Moving & Storage Inc EDR ID 8 This site is located at 820 4th
 Street NW, adjacent to the south of the subject property, and is listed on the UST

and ALLSITES databases. The EDR report and Ecology's online databases, a leaded gasoline UST installed in 1964 was closed in place in 1996. This facility is not identified on any contamination-related databases.

- <u>Landis, Donald EDR Site ID B9</u> This site was listed at 324 River Road, across River Road adjacent to the east across 4th Street NW from the subject property and was identified on the Historic Auto Station database as a "gasoline service station" in 1972.
- <u>Larson Motors EDR Site ID B14</u> This site was listed at 300 River Road, adjacent to the east across 4th Street NW and crossgradient of the subject property, on the UST, ALLSITES, RCRA NonGen / NLR, FINDS, ECHO and MANIFEST DATABASES. The UST listing indicated 5 USTs removed from this property. This facility was not identified on databases of confirmed or suspected contaminated sites.

8.1.3 Surrounding Sites

A total of 189 sites were identified in the environmental database report within the specified search radii of the subject property. Some of these sites appear on multiple regulatory databases, and/or multiple facilities are listed on a single address.

The database review report identified sites within ¼-mile radius, although the majority were not on databases of confirmed or suspected contaminated sites, were inferred down- to cross-gradient from the subject property and/or had a status of "Cleanup Complete" or Final Cleanup report received.

The remaining sites listed in the EDR database report are considered to have a low potential to have impacted environmental conditions at the subject property because of one or more of the following factors: the reported site status, absence of reported release, absence of reported groundwater impact from the reported release, the distance from the subject property, and/or the inferred hydrogeologic cross/downgradient location from the subject property.

Five (5) unmapped "orphan" sites were also identified in the EDR database report. Unmapped orphan sites are facilities/locations that have not been plotted on a map based on lack of sufficient data regarding their exact location within the general area. Some of these sites appear on multiple regulatory databases, and several facilities are listed without an exact address.

Orphan sites were not identified with a distance, location and status that would represent a concern to the subject property.

8.2 VAPOR ENCROACHMENT SCREENING

8.2.1 Subject Property

In order to evaluate the potential migration of hazardous substances or petroleum products in vapor, AECOM conducted a Vapor Encroachment Screening (VES). The purpose of the VES is to determine whether a potential Vapor Encroachment Condition (VEC) exists, likely exists, cannot be ruled out, or can be ruled out because a VEC does not or is not likely to exist. The VES is not an exhaustive screening and is intended to reduce, but not eliminate, uncertainty regarding whether a VEC exists in connection with a property. The VES considered whether known or suspected soil or groundwater contamination was located on the subject property or within search distances of the subject property as specified in ASTM E 2600-10 (ASTM International 2010).

No on-site or adjacent confirmed current sources of vapor encroachment (e.g. volatile organic compound (VOC) contaminated soil and groundwater) were identified by the database review during this assessment. However, automotive repair operations at the subject property may have used degreasers and solvents which if released into the subsurface, could result in a VEC.

8.2.2 Offsite Properties

The environmental database review report was evaluated with the particular focus on the following two types of sites:

- Offsite properties that are impacted by VOCs and/or semi-volatile-organic compounds (SVOCs) and are located within approximately 1,760 feet of the subject property, and
- 2. Offsite properties that are impacted by petroleum hydrocarbons and are located within approximately 530 feet of the subject property.

Sites with VOCs and/or SVOCs contamination were identified within the two categories of sites detailed above. However:

- Many of those sites can be ruled out due to their regulatory status (i.e. regulatory closure has been issued, cleanup is complete), and
- The remaining can be ruled out due to their media impacted (i.e. lack of identified groundwater contamination), the non-volatile nature of the contaminants identified, and/or topographical position from the subject property and/or presence of physical barrier impeding potential migration of vapors to the subject property.

Based on the screening information presented in the preceding sections that documented groundwater contamination at nearby and upgradient properties, it is AECOM's opinion that a potential VEC for the subject property was not indicated.

8.3 AGENCY CONTACTS

In addition to the database list search, AECOM contacted selected state and local regulatory agencies to obtain documents regarding the environmental condition of the subject property and surrounding properties. Presented below is a listing of the various public agencies contacted and a summary of relevant findings:

• Washington State Department of Ecology (Ecology) – AECOM submitted a Public Records Request to Ecology, and reviewed Ecology's web site as described in Section 8.3, The subject property addresses included a 1991 notification of dangerous waste activities for the 400 River Road address from Ken Parks Chevrolet Subaru for solvent (listed as Safety Kleen) and antifreeze. The UST Decommissioning Project report for Friendly Chevrolet at 400 River Road (dated April 5, 2004) was also provided, in addition to documents detailing previous UST tightness testing (August 2000) and retrofit/repair (December 1998). The April 2004 UST decommissioning report included a section covering the decommissioning and removal of the hydraulic lift system located in the third service stall in the southern service area.

An Ecology "Source Control Partnership Site Report for Chevrolet of Puyallup, Inc." dated 2009 was reviewed (Ecology, 2009). The one-page report documented a visit by an Ecology staff member. During the visit, the staff member confirmed that the oil-water separator located at the facility discharged wastewater to the municipal sanitary sewer via a connection in the main building.

One waste manifest on file with Ecology documented that in 1991, the Chevrolet dealer generated hazardous waste in the form of spent parts washer solvent and coolant.

- City of Puyallup AECOM submitted a Public Records Request to the City of Puyallup to ascertain whether the city has information on file related to building plans and permits for the subject property. Information provided included a building plan for the 400 River Road address for Service Chevrolet dated August 1978, in addition to numerous constructions permits and basic property diagrams showing relative locations of site features. Only one document, an April 2003 Puyallup Chevrolet wall sign permit, was provided for the 506 River Road address.
- Washington State Department of Ecology AECOM reviewed well logs available from Ecology to assess local hydrology and whether the subject property or adjacent parcels may have monitoring wells present. AECOM identified the presence of twelve boring logs for the subject property, ten of which were installed by Ruby Henderson in August 2003 with the other two installed by NWMS in April 2011. These logs indicate the presence of sand gravel to the maximum explored depth of 20 feet bgs, with groundwater at approximately 18 feet bgs.

- Tacoma-Pierce County Health Department (TPCHD) AECOM submitted a
 Public Records Request to the TPCHD to inquire whether they are aware of
 concerns at the subject property related to hazardous substances or
 petroleum products. At the time of this report AECOM is awaiting notice
 whether TPCHD has information related to the subject property.
- Puyallup Fire Prevention Division AECOM contacted the Fire Inspector's office (FIO) to inquire whether they have records of installation or removal of USTs or ASTs. At the time of this report AECOM is awaiting notice whether FIO has information related to the subject property.
- Pierce County Tax Assessor The Pierce County Tax Assessor web site
 was reviewed, and a Parcel Information Report was developed for the subject
 parcel. Information encountered on this report is provided throughout our
 report.

We have not received responses from all of the agencies contacted as part of this Phase I ESA. Should AECOM obtain additional information that would indicate the potential for a REC on the subject property, these findings would be provided in an addendum to this report.

9.0 FINDINGS

AECOM performed a Phase I ESA of the subject property in general conformance with the scope and limitations of ASTM Practice E1527-13, which meets the requirements of Title 40, Code of Federal Regulations Part 312 and is intended to constitute all appropriate inquiry for purposes of the landowner liability protections. Exceptions to, or deletions from, this practice are described within this report.

Based on the visual observations and information presented in this report, AECOM presents the following findings regarding the NWMS Site #3 property at 400 and 506 River Road, and an unspecified address on 4th Street NW, in Puyallup, Washington.

9.1 SUBJECT PROPERTY

Findings regarding current or past use, storage, handling and/or disposal practices involving hazardous substances/petroleum products at the subject property are summarized below.

• The 400 River Road portion of the subject property was occupied by a small building and woodlands in the 1940s, the earliest resource reviewed illustrating development specific to the property. The main site building consisting of service garages, a car sales showroom and office space was constructed in 1953. Additional structures with offices were constructed in 1965 and 1990, and two additional service garages were built in 1966 and in the early 2010s. The subject property has historically been occupied by car sales and service facilities since the

1950s including Chevrolet, Subaru, Friendly Chevrolet of Puyallup, Bulletproof LLC, and Northwest Motorsport.

The 506 River Road portion of the subject property was listed as occupied by the US Department of Agriculture in the 1960s. By 1970s, the US Department of Agriculture was no longer listed at the address and the building that had been located on the northwestern portion of this parcel was no longer noted on historical aerial photographs.

- Previous reports provided for our review included: A Focused Phase II Subsurface Investigation (Riley Group, 2011), a 2013 Phase I ESA (Partner, 2013), and a 2016 Phase I ESA (Robinson Noble, 2016). Partner identified the lack of PCB testing during the 2011 assessment of the soil conditions near the former inground hydraulic lifts as a REC. They also indicated that the presence of inground hydraulic lifts located in the south service bay area was also a REC. Four UST formerly in use at the site, a gasoline, heating oil, and two waste oil tanks were considered historical RECs, as there is documented removal and closure of each tank with confirmation sampling and soil remediation analytical results indicating proper regulatory closure. The 2016 Phase I ESA (Robinson Noble, 2016) did not identify any on site RECs, but indicated they considered an inferred upgradient diesel/gasoline UST on the southern adjacent property (Boush Moving & Storage) a REC, although no indication of a release was reported. A 2003 Phase II ESA performed by Encore was summarized in the previous ESAs, but AECOM was not able to obtain a copy of this report for an independent assessment of the findings. This represents a data gap.
- The subject property consists of three parcels that are owned by HILT. The majority of the property is covered by paved parking used for vehicle inventory parking. An approximately 17,000 SF two-story main building and a small Buying Center are situated on the north portion of the property; an approximately 4,000 SF lower shop building is on the southwest portion of the property; and an approximately 300 SF building is present on the southeast portion of the property (Figure 2). The main building includes a customer showroom, north and south vehicle service repair/shop areas, office spaces and a parts room (Figure 3); and the southwest building is primarily occupied by vehicle repair bays and a tire bay.
- Documents obtained from Ecology included a 1991 notification of dangerous waste activities for the 400 River Road address for Ken Parks Chevrolet Subaru. The UST Decommissioning Project report for Friendly Chevrolet at 400 River Road (2004) was also provided, in addition to documents detailing previous UST tightness testing (2000) and retrofit/repair (1998). The 2004 UST decommissioning report (EMS, 2004) included a section covering the decommissioning and removal of the two hydraulic lift system located in the third service stall in the southern service area.
- No USTs are presently in use at the subject property. Four former USTs were identified at the property including: two generations of waste oil tanks (reportedly

1000 and 500 gallons) at the same location and both were removed; a 5,000-gallon gasoline UST removed in 1996 and a closed in place 500-gallon heating oil UST (Figure 2). Two capped pipes in the configuration of a heating oil UST supply and return were observed in the basement level of the main building interior west wall. Seven ASTs were observed at the subject property in the North Shop Area, the South Shop Area and the lower shop building. The ASTs contained new and used engine oil and ranged in size from 465 to 150 gallons (Figure 3). Other smaller quantities of hazardous materials were observed throughout the building including: engine coolant; automatic transmission fluid; windshield wash; brake fluid and parts washer solvent, in quantities commensurate with onsite use in motor vehicle repair operations. The floor in the area of the tanks had various degrees of oily staining and residue, however, staining was not observed that would have indicated the potential for significant releases to the subsurface environment.

- Vehicle service bay hoists are currently all aboveground, and each equipped with approximately 3-gallon reservoirs of hydraulic fluid. Based on the apparent age of these hoists, the potential is low for the fluid to contain PCBs, and evidence of significant releases of the hydraulic fluid were not observed. The former in ground hydraulic hoist locations were evident by patches in the floor in the north and south shop areas (Figure 3). A 2004 report (EMS, 2004) documented the removal of 2 hoists in the South Shop as well as the removal of the waste oil tank (Appendix B). The other eleven in ground hoists were reportedly removed in 1987 (Partner 2013). The Phase II investigation conducted in by Encore in 2003 included ten borings in the area of the former hoists (Partner, 2013), and no significant levels of petroleum hydrocarbons were reportedly detected in soil groundwater.
- The majority of precipitation that reaches the subject property discharges to stormwater catch basins observed in paved areas at the property. These catch basins reportedly discharge to the City of Puyallup municipal sewer system in 4th St NW. One stormwater catch basin was observed adjacent to the southeast corner of the main building that is reported to discharge into the subsurface consistent with a dry well. It was also reported that during times of high rainfall, this drain backs up, possibly due to the carrying capacity of the site soils being saturated.

9.2 PROPERTY VICINITY

Findings regarding current or past use, storage, handling and/or disposal practices involving hazardous substances/petroleum products in the subject property vicinity are described below.

 In the 1950s the surrounding parcels were mostly undeveloped, with developed residential properties to the south. By the 1960s the surrounding area was developed with commercial properties. The adjacent properties consisted of vehicle sales from 1969 to 2014. The adjacent west parcel was first developed in the 1960s and was listed as Puyallup Tractors. The adjacent southern parcel was developed in the 1960s and listed as Boush Moving & Storage Inc and Grants Insurance Agency. The adjacent north parcel is first listed as Puyallup Chrysler Plymouth Auto Dealers in 1974. From approximately 1969 to mid-1970s River Road Gulf Station is listed at 324 River Road, adjacent east of the subject property, on the east side of 4th Street NW.

 Database review sites were not indicated to have created a VEC at the subject property.

10.0 CONCLUSIONS

AECOM performed a Phase I ESA at the NWMS Site #3 property at 400 and 506 River Road in Puyallup, Washington, in general conformance with the scope and limitations of ASTM Practice E1527-13.

10.1 RECOGNIZED ENVIRONMENTAL CONDITIONS

The assessment has revealed no evidence of recognized environmental conditions in connection with the subject property, except as described below:

- Historical automotive repair/maintenance operations that have occurred within
 the north, south and lower shops; and vehicle covered wash bay. These
 operations have historically used and stored hazardous chemicals and petroleum
 products as well as generating associated automotive wastes (e.g. used oil and
 coolant, parts washer fluid, spent degreasers, etc.). Inadvertent releases or poor
 waste management may have resulted in impacts to the soil and groundwater
 quality. Historic site uses are collectively considered to be a REC and other
 specific RECs are summarized below.
- In ground hydraulic hoist were formerly in use in the north and south vehicle
 maintenance shops, these former features were evident by patches in the floor.
 Diesel- and gasoline-range total petroleum hydrocarbons were not detected
 during a previous investigation in the vicinity of the hydraulic lifts. It was noted
 that this investigation did not include testing for PCBs (Partner 2013). Therefore,
 potential presence of PCB contamination associated with operation of historical
 hydraulic lifts represents a REC.

Although not a REC, the following represents a potential environmental concern:

- A catch basin located adjacent to the southeast corner of the main building was reportedly a dry well, and at times of extended high precipitation, backs up and the water is pumped to another nearby catch basin.
- Surrounding properties were identified as historically, and some currently, as
 having been occupied by vehicle sales and service operations, including adjacent
 to the east which was listed as a gas station in 1972.

A Phase II investigation should be considered to assess whether the historic site uses have affected the site soil and groundwater quality. The investigation would focus on the auto repair and former in-ground vehicle repair hoists and catch basin/sumps.

10.2 CONTROLLED RECOGNIZED ENVIRONMENTAL CONDITIONS

Based on the above-described activities, no CRECs were identified in connection with the subject property.

10.3 HISTORICAL RECOGNIZED ENVIRONMENTAL CONDITIONS

No HRECs were identified associated with the subject property.

10.4 DE MINIMIS CONDITIONS

The following DMCs were identified during this assessment:

 Staining was observed on floors in several locations in the subject buildings, including in the vehicle service shops, and in the parking areas. Staining in some areas of the building appeared generalized likely from years of incidental smallscale spills associated with vehicle maintenance and repair operations; and the staining in the parking lot appears consistent with incidental drips of motor vehicle fluids associated with years of vehicle parking.

11.0 LIMITATIONS

This Phase I ESA has been prepared for the exclusive use of RFJ in accordance with the Scope of Services described in AECOM's proposal prepared for RFJ dated December 12, 2019. The work conducted by AECOM is limited to the services agreed to with RFJ and no other services beyond those explicitly stated should be inferred or are implied.

This report describes the results of AECOM's Phase I ESA to identify the presence of contamination-related liabilities materially affecting the subject facility and/or property. In the conduct of this assessment, AECOM assessed the presence of such problems within the limits of the established scope of work as described in our proposal.

As with any due diligence assessment, there is a certain degree of dependence upon oral information provided by facility or site representatives, which is not readily verifiable through visual observations or supported by any available written documentation. AECOM shall not be held responsible for conditions or consequences arising from relevant facts that were concealed, withheld, or not fully disclosed by facility or site representatives at the time this assessment was performed. In addition, the findings and opinions expressed in this report are subject to certain conditions and assumptions, which are noted in the report. Any party reviewing the findings of the report must carefully review and consider all such conditions and assumptions.

This report and all field data and notes were gathered and/or prepared by AECOM in accordance with the agreed upon scope of work and generally accepted engineering and scientific practice in effect at the time of AECOM's assessment of the subject property. The statements, findings and opinions contained in this report are only intended to give approximations of the environmental conditions at the subject property.

As specified in the ASTM standard (referred to below as "this practice"), it is incumbent that the client and any other parties who review and rely upon this report understand the following inherent conditions surrounding any Phase I ESA:

- Uncertainty Not Eliminated No ESA can wholly eliminate uncertainty regarding
 the potential for REC in connection with a property. Performance of this practice is
 intended to reduce, but not eliminate, uncertainty regarding the potential for REC
 in connection with a property, and this practice recognizes reasonable limits of
 time and costs. (Section 4.5.1 of the ASTM standard)
- Not Exhaustive "All appropriate inquiry" does not mean an exhaustive assessment of a clean property. There is a point at which the cost of information obtained outweighs the usefulness of the information and, in fact, may be a material detriment to the orderly completion of transactions. One of the purposes of this practice is to identify a balance between the competing goals of limiting the costs and time demands inherent in performing an ESA and the reduction of uncertainty about unknown conditions resulting from additional information. (Section 4.5.2 of the ASTM Standard)

- Comparison with Subsequent Inquiry ESAs must be evaluated based on the
 reasonableness of judgments made at the time and under the circumstances in
 which they were made. Subsequent ESAs should not be considered valid
 standards to judge the appropriateness of any prior assessment based on
 hindsight, new information, use of developing technology or analytical techniques,
 or other factors. (Section 4.5.4 of the ASTM Standard)
- A similar set of inherent limitations exist in cases where the Phase I ESA included a screening-level assessment of vapor migration or vapor encroachment; such an assessment is a required part of a Phase I ESA when the ASTM E1527-13 standard is employed. According to the ASTM E2600-10 Standard Guide for Vapor Encroachment Screening on Property Involved in Real Estate Transactions, the following limitations apply:
- Uncertainty Not Eliminated in Screening No vapor encroachment screen (VES) can wholly eliminate uncertainty regarding the identifications of vapor encroachment conditions (VECs) in connection with the target property (Section 4.5.1).
- Not Exhaustive The guide is not meant to be an exhaustive screening. There is a point at which the cost of information obtained outweighs the usefulness of the information and, in fact, may be a material detriment to the orderly completion of real estate transactions. One of the purposes of this guide is to identify a balance between the competing goals of limiting the costs and time demands inherent in performing a VES and the reduction of uncertainty about unknown conditions resulting from additional information. (Section 4.5.2)
- Comparison with Subsequent Investigations It should not be concluded or assumed that an investigation was not adequate because the investigation did not identify any VECs in connection with a property. The VES must be evaluated based on the reasonableness of judgments made at the time and under the circumstances in which they were made. Subsequent VESs should not be considered valid bases to judge the appropriateness of any prior screening if based on hindsight, new information, use of developing technology or analytical techniques, or similar factors (Section 4.5.4)
- This report was prepared pursuant to an agreement between RFJ and AECOM and is for the exclusive use of the Client. No other party is entitled to rely on the conclusions, observations, specifications, or data contained herein without first obtaining AECOM's written consent and provided any such party signs an AECOM-generated Reliance Letter. A third party's signing of the AECOM Reliance Letter and AECOM's written consent are conditions precedent to any additional use or reliance on this report.
- The passage of time may result in changes in technology, economic conditions, site variations, or regulatory provisions, which would render the report inaccurate.
 Reliance on this report after the date of issuance as an accurate representation of

current site conditions shall be at the user's sole risk, per ASTM standard practice (Section 4.6).

11.1 SITE-RELATED LIMITING CONDITIONS

The following site-specific limitations were encountered during the course of this assessment:

- Access was not provided to Rick's office (upper) level of the southeast corner building, however, the lower level of this building where chemicals are stored was accessed.
- The day of our site visit a record high amount of rainfall occurred, thereby limiting our visual assessment for staining and surface conditions.
- Parked vehicles and stored items around and in the subject buildings limited the visual assessment of the surface conditions.

11.2 DATA GAPS / DATA FAILURE

The following data failure/data gaps were encountered during the course of this assessment:

- As specified in the agreed upon scope of work, a deed history search and
 environmental lien search were not conducted as part of this ESA. However,
 based upon historical data collected from other sources, this data gap is not
 expected to impact the results of this assessment. In addition, the user was not
 aware of environmental liens or activity use limitations (AULs) that have been
 placed on the subject property, and the database review did not identify AULs for
 the subject property addresses.
- Per ASTM, past owners, operators, and occupants of the subject property who are likely to have material information regarding the potential for contamination at the subject property shall be contacted to the extent that they can be identified and that the information likely to be obtained is not duplicative of information already obtained from other sources. AECOM was unable to interview past owners and/or operators at the subject property. However, based upon historical data collected from other sources, this data gap is not expected to represent a significant potential impact to the results of this assessment.
- Per ASTM, Users of the Phase I ESA report will provide specific information they
 may possess such as knowledge of environmental liens or activity and use
 limitations (AULs) on the subject property; any specialized information that would
 indicate the presence of RECs related to the subject property, and whether they
 have not compared the proposed purchase price of the property to the fair market
 value for non-contaminated sites. Northwest Motor Sport provided three reports for
 our review, as summarized in Section 5.2. AECOM did not receive such
 information from RFJ.

Opinions and recommendations presented herein apply to the subject property conditions existing at the time of our investigations and cannot necessarily apply to subject property changes of which AECOM is not aware and has not had the opportunity to evaluate. Changes in the conditions of this property may occur with time due to natural processes or the works of man on the subject property or adjacent properties. Changes in applicable standards may also occur as a result of legislation or the broadening of knowledge. Accordingly, the findings of this report may be invalidated, wholly or in part, by changes beyond our control.

AECOM's objective is to perform our work exercising the customary standard of care, in accordance with the standard for professional services for a national consulting firm at the time these services are provided. It is important to recognize that even the most comprehensive scope of services may fail to detect environmental liability on a particular site. Therefore, AECOM cannot act as insurers and cannot "certify or underwrite" that a site is free of environmental contamination, and no expressed or implied representation or warranty is included or intended in our reports except that our work was performed, within the limits prescribed by our client, in accordance with the customary and professional standard of care described herein.

12.0 PROJECT PERSONNEL

The Phase I ESA reported herein was conducted, and the report prepared, by Mr. Al Thatcher, Sr. Environmental Scientist of the Seattle, Washington office. Technical direction and review was provided by Mr. David Raubvogel, Sr. Geologist of our Seattle office. A brief description of their qualifications is presented below.

Mr. Thatcher has a Bachelor's degree in Natural Resource Studies and more than 35 years of experience working with hazardous / regulated materials, including conducting and managing over 1,000 ESAs, environmental assessments at manufacturing and industrial facilities, automobile repair facilities, power plants, military facilities, scrap yards and undeveloped parcels of land.

Mr. Raubvogel has a Bachelors and a Master's degree in geology and more than 36 years' experience conducting and managing Phase I ESAs and soil/groundwater remedial investigations and remedial actions. He is a Licensed Geologist in Washington and Wyoming.

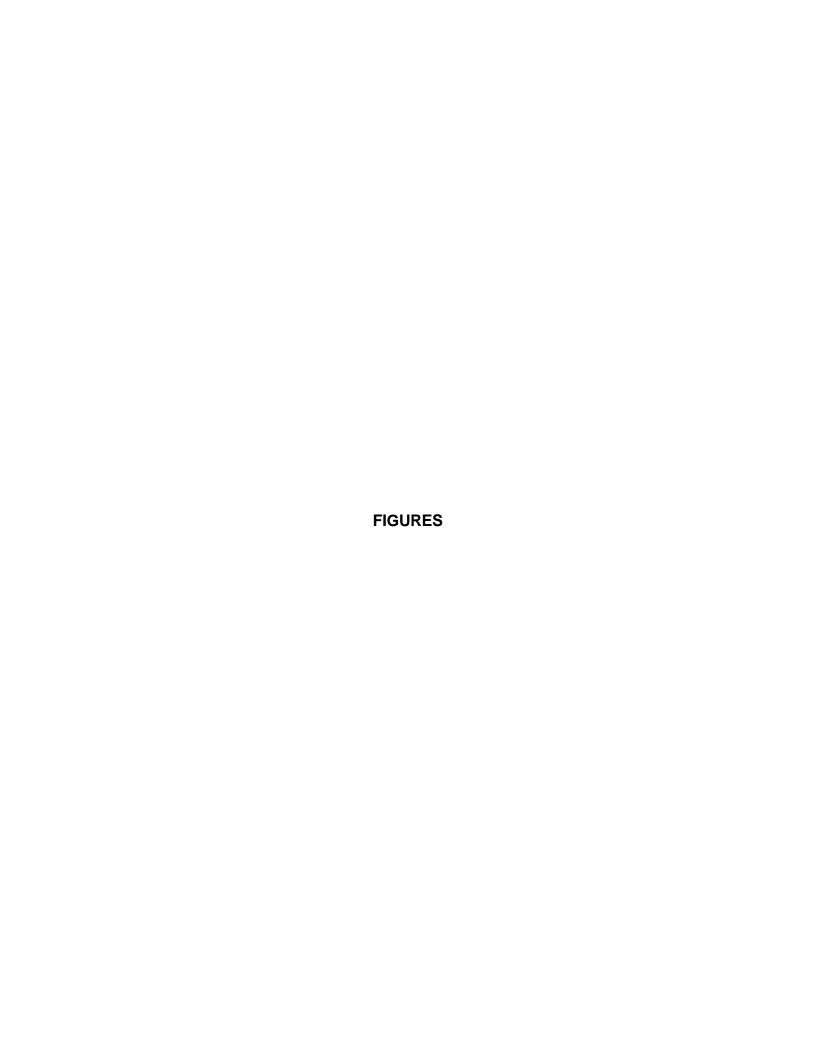
13.0 DECLARATION OF ENVIRONMENTAL PROFESSIONALS

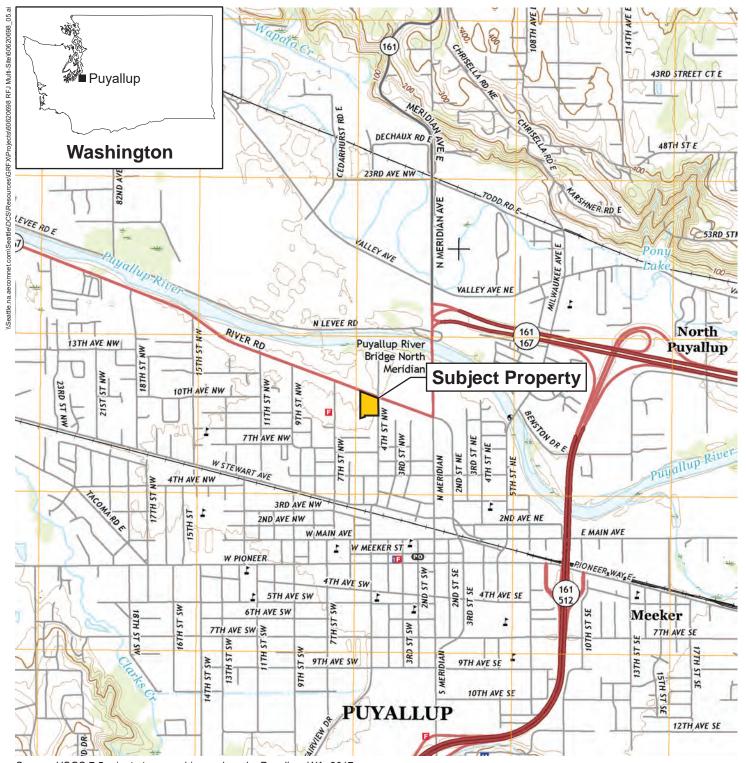
We declare that to the best of our professional knowledge and belief, we meet the definition of Environmental Professional as defined in 40 CFR 312.10. We have the specific qualifications based on education, training, and experience to assess a property

of the nature, history, and setting of the subject property. We have developed and performed all appropriate inquiries in general conformance with the standards and practices set forth in 40 CFR Part 312 subject to the limitations as described in this report and authorized scope of work.

Al Thatcher

Senior Environmental Scientist


David Raubvogel


Senior Geologist, LHG, PG

14.0 REFERENCES

- ASTM International (ASTM), 2013. Standard E1527-13, "Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process."
- CDM, 2011. Remedial Investigation Report, USG Interiors Puyallup Site, Puyallup, Washington. June 13.
- Central Pierce Fire and Rescue, 2019. Public records request completed at: https://centralpiercefire.org/Content.aspx?ID=35
- City of Puyallup Development Services, 2019. Request for public records completed at: https://cityofpuyallup.nextrequest.com/requests/new
- Environmental Data Resources, Inc. (EDR), 2019. *The EDR Aerial Photo Decade Package*, RFJ Site #3, 400 River Road, Puyallup, WA 98371. Inquiry Number: 5909224.8. December 17.
- EDR, 2019a. *The EDR City Directory Abstract,* RFJ Site #3, 400 River Road, Puyallup, WA 98371. Inquiry Number: 5909224.5. December 20.
- EDR, 2019b. *The EDR-Radius Map with Geocheck*, RFJ Site #3, 400 River Road, Puyallup, WA 98371. Inquiry Number: 5909224.2s. December 17.
- EDR, 2019c. *The EDR Certified Sanborn Map Report*, RFJ Site #3, 400 River Road, Puyallup, WA 98371. Inquiry Number: 5909224.3. December 18.
- EDR, 2019d. *Historical Topographic Map Report*, RFJ Site #3, 400 River Road, Puyallup, WA 98371. Inquiry Number: 5909224.4. December 17.
- Environmental Management Services, 2004. UST Decommissioning Project Friendly Chevrolet, 400 River Rd Puyallup, WA. April 5.
- Google Earth. 2019. Aerial Photograph. December 26.
- Partner, 2013. Phase I Environmental Site Assessment, 400 River Road, Puyallup, Washington 98371. November 7.
- Pierce County Assessor-Treasurer electronic Property Information Profile (ePIP) online database: https://epip.co.pierce.wa.us/CFApps/atr/ePIP/search.cfm

- Robinson Noble, 2016. Phase I Environmental Site Assessment, HILT Investment Holdings, LLC, 400 River Road, Puyallup, Washington. September 13.
- Tacoma-Pierce County Health Department, 2019. Public records request completed at: https://www.tpchd.org/i-want-to/request/public-records
- The Riley Group, Inc, 2011. Focused Phase II Subsurface Investigation, NW Motorsport Property, 400 River Road, Puyallup, Washington. April 25.
- Washington State Department of Ecology (Ecology), 2020. Well Log Query. Available from:
 https://appswr.ecology.wa.gov/wellconstruction/map/WCLSWebMap/default.aspx
- Ecology, 2009. Source Control Partnership Site Report for Chevrolet of Puyallup, Inc. April 18.
- Ecology, 2020. Online database search conducted at http://www.ecy.wa.gov/fs/
- United Sates Geological Survey (USGS), 2014. 7.5-Minute Series Topographical Map, 1:24,000 scale, Puyallup, Washington Quadrangle.

Source: USGS 7.5-minute topographic quadrangle, Puyallup, WA, 2017

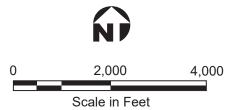
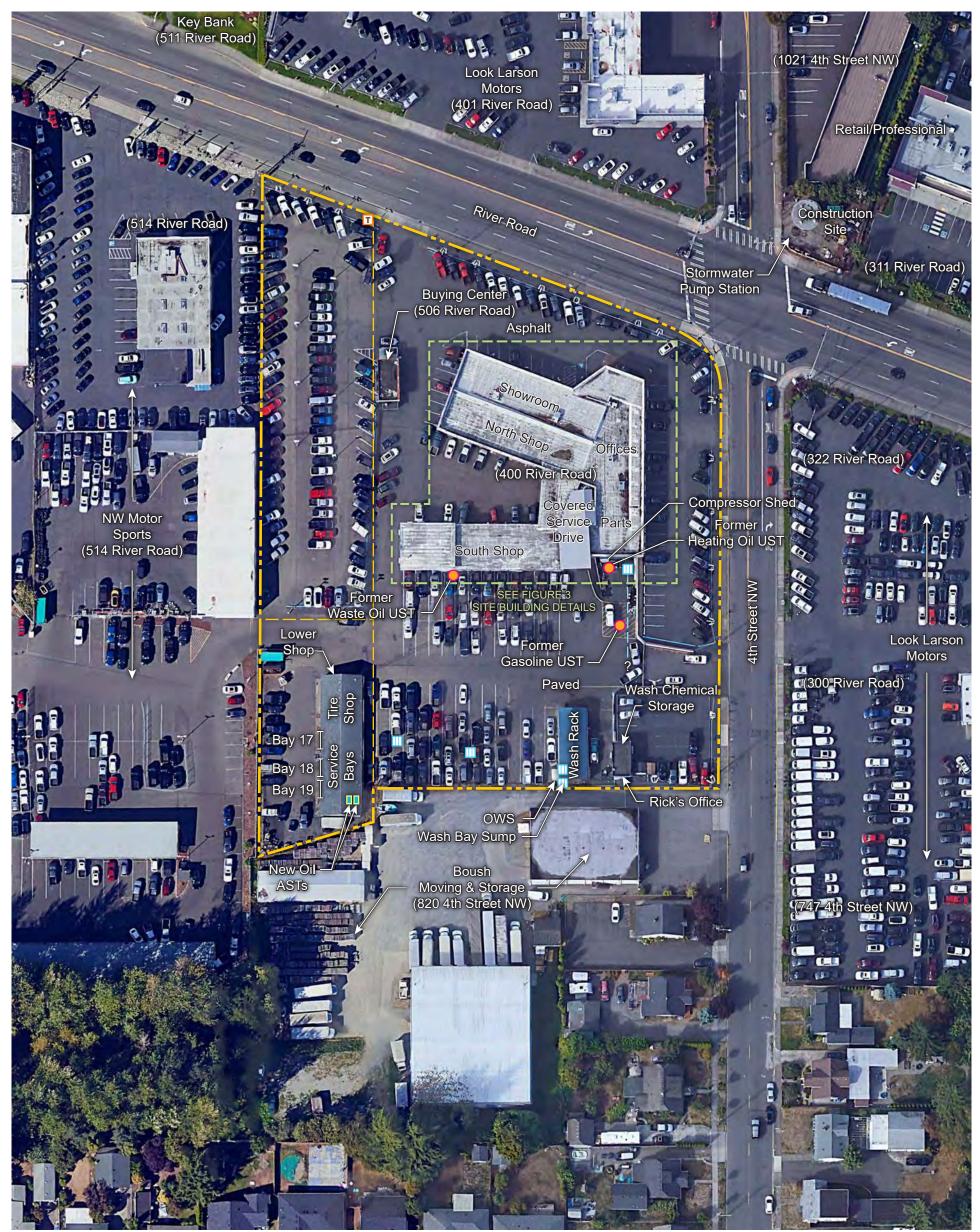



Figure 1

Site Location

Source: Google Earth Pro, imagery dated 7/1/2018

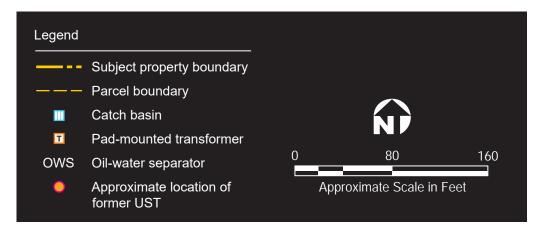


Figure 2
Site Plan

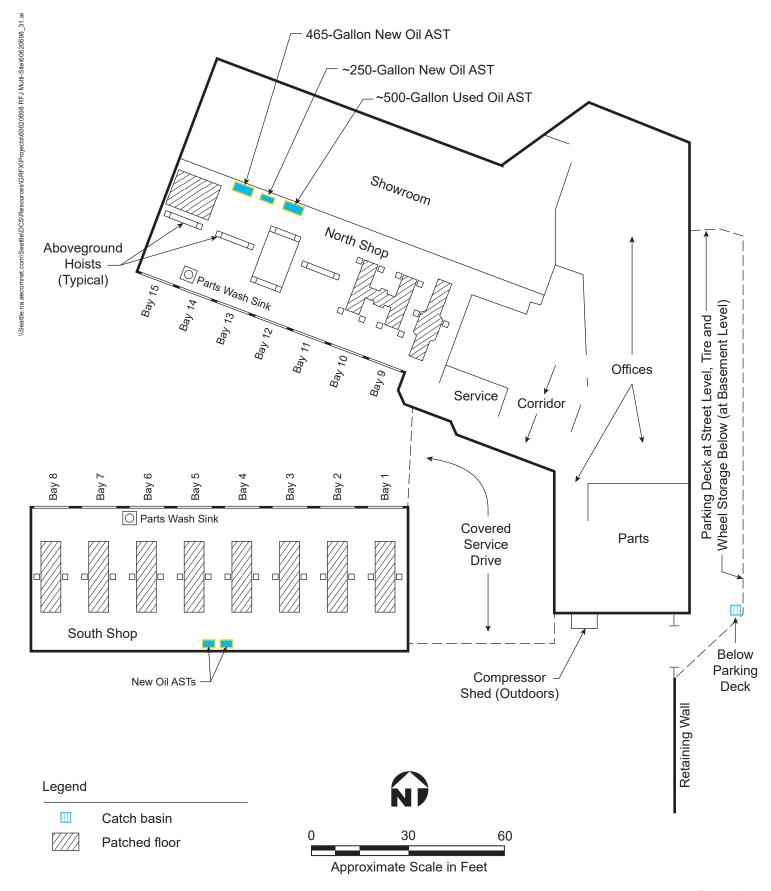


Figure 3 **400 River Road Building Details**

APPENDIX A HISTORICAL DOCUMENTS

RFJ - Site #3 400 River Road Puyallup, WA 98371

Inquiry Number: 5909224.4

December 17, 2019

EDR Historical Topo Map Report

with QuadMatch™

EDR Historical Topo Map Report

12/17/19

Site Name: Client Name:

RFJ - Site #3 AECOM

400 River Road 1111 Third Avenue Suite 1600

Puyallup, WA 98371 Seattle, WA 98101

EDR Inquiry # 5909224.4 Contact: AL THATCHER

EDR Topographic Map Library has been searched by EDR and maps covering the target property location as provided by AECOM were identified for the years listed below. EDR's Historical Topo Map Report is designed to assist professionals in evaluating potential liability on a target property resulting from past activities. EDRs Historical Topo Map Report includes a search of a collection of public and private color historical topographic maps, dating back to the late 1800s.

Search Results:		Coordinates:	
P.O.#	60620698	Latitude:	47.19938 47° 11' 58" North
Project:	RFJ Auto - Site #3	Longitude:	-122.299189 -122° 17' 57" West
		UTM Zone:	Zone 10 North
		UTM X Meters:	553080.94
		UTM Y Meters:	5227559.07
		Elevation:	34.17' above sea level
Mans Provid	ded:		

Maps Provided:

2014	1944
1997	1941
1994	1900
1981	1897
1973	
1968	
1961	
1949	

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2019 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

Topo Sheet Key

This EDR Topo Map Report is based upon the following USGS topographic map sheets.

2014 Source Sheets

Puyallup 2014 7.5-minute, 24000

1997 Source Sheets

Puyallup 1997 7.5-minute, 24000 Aerial Photo Revised 1990

1994 Source Sheets

Puyallup 1994 7.5-minute, 24000 Aerial Photo Revised 1990

1981 Source Sheets

Puyallup 1981 7.5-minute, 24000 Aerial Photo Revised 1978

Topo Sheet Key

This EDR Topo Map Report is based upon the following USGS topographic map sheets.

1973 Source Sheets

Puyallup 1973 7.5-minute, 24000 Aerial Photo Revised 1973

1968 Source Sheets

Puyallup 1968 7.5-minute, 24000 Aerial Photo Revised 1968

1961 Source Sheets

Puyallup 1961 7.5-minute, 24000 Aerial Photo Revised 1957

1949 Source Sheets

PUYALLUP 1949 7.5-minute, 25000

Topo Sheet Key

This EDR Topo Map Report is based upon the following USGS topographic map sheets.

1944 Source Sheets

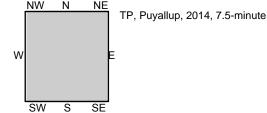
TACOMA SOUTH 1944 15-minute, 50000

1941 Source Sheets

Tacoma South 1941 15-minute, 62500

1900 Source Sheets

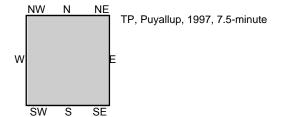
Tacoma 1900 30-minute, 125000


1897 Source Sheets

Tacoma 1897 30-minute, 125000

This report includes information from the following map sheet(s).

0 Miles 0.25 0.5 1



SITE NAME: RFJ - Site #3
ADDRESS: 400 River Road

Puyallup, WA 98371

CLIENT: AECOM

1.5

SITE NAME: RFJ - Site #3
ADDRESS: 400 River Road

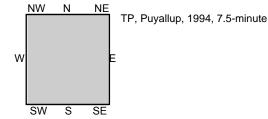
Puyallup, WA 98371

CLIENT: AECOM

page 7

This report includes information from the following map sheet(s).

SITE NAME: RFJ - Site #3


0.25

0 Miles

400 River Road ADDRESS: Puyallup, WA 98371

0.5

AECOM CLIENT:

1.5

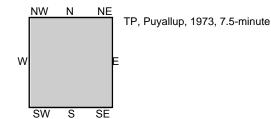
page 8

This report includes information from the following map sheet(s).

SW

S

NW N NE TP, Puyallup, 1981, 7.5-minute
W

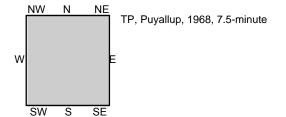

0 Miles 0.25 0.5 1 1.5

SITE NAME: RFJ - Site #3
ADDRESS: 400 River Road

Puyallup, WA 98371

CLIENT: AECOM

SITE NAME: RFJ - Site #3


ADDRESS: 400 River Road

Puyallup, WA 98371

CLIENT: AECOM

page 10

This report includes information from the following map sheet(s).

0 Miles 0.25 0.5 1 1.5

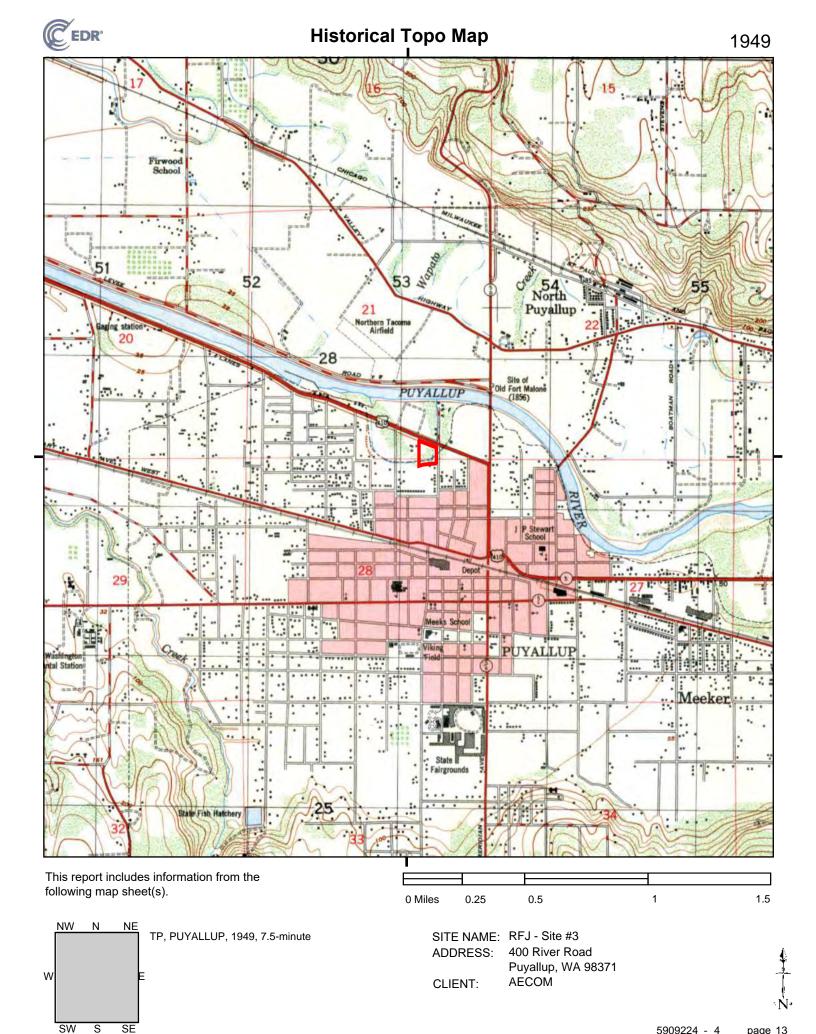
SITE NAME: RFJ - Site #3 ADDRESS: 400 River Road

Puyallup, WA 98371

CLIENT: AECOM

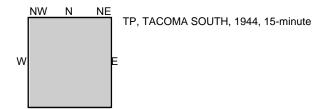
NW N NE
TP, Puyallup, 1961, 7.5-minute

W
SW S SE


SITE NAME: RFJ - Site #3
ADDRESS: 400 River Road

S: 400 River Road Puyallup, WA 98371

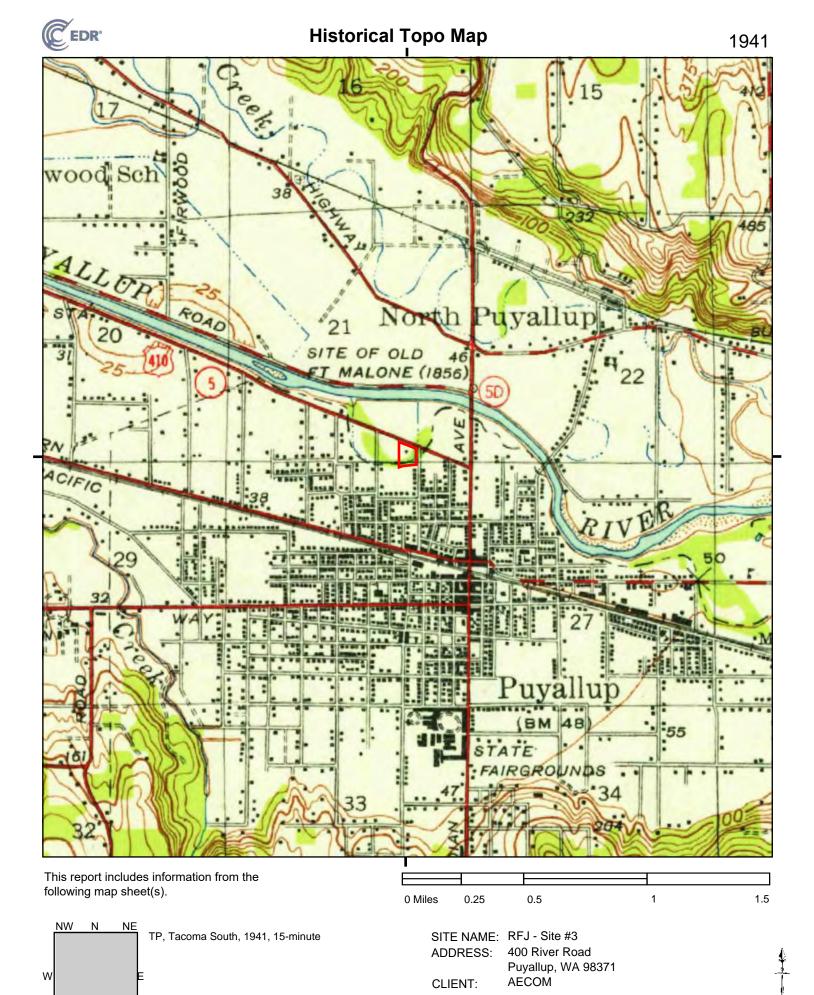
CLIENT: AECOM



page 12

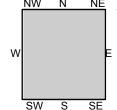
S

This report includes information from the following map sheet(s).


0 Miles 0.25 0.5 1.5

SITE NAME: RFJ - Site #3 400 River Road ADDRESS:

Puyallup, WA 98371


AECOM CLIENT:

page 14

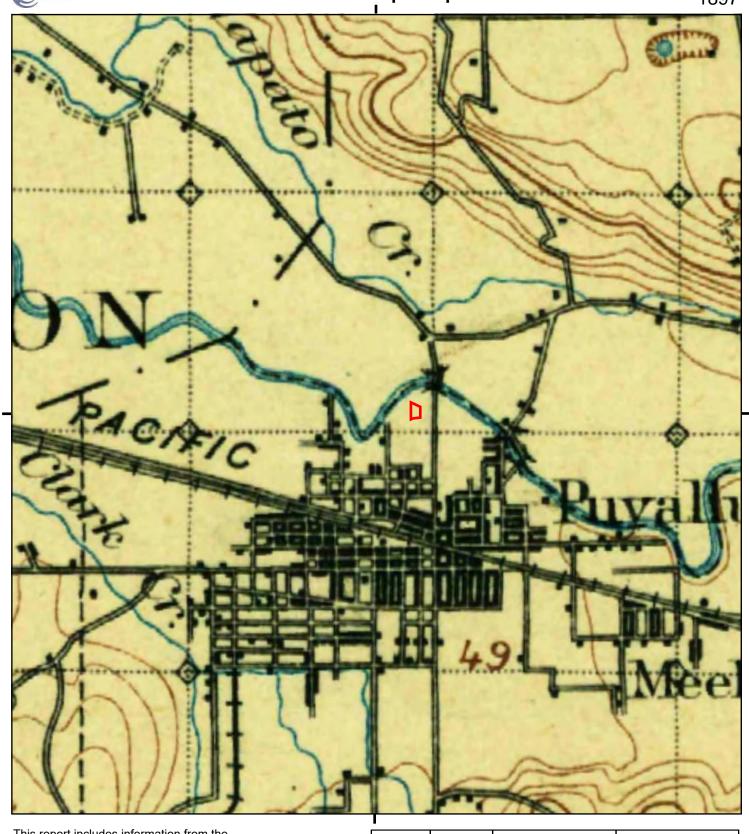
This report includes information from the following map sheet(s).

TP, Tacoma, 1900, 30-minute

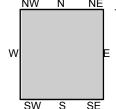
SITE NAME: RFJ - Site #3
ADDRESS: 400 River Road

0.5

Puyallup, WA 98371


CLIENT: AECOM

0.25


0 Miles

1.5

This report includes information from the following map sheet(s).

TP, Tacoma, 1897, 30-minute

SITE NAME: RFJ - Site #3
ADDRESS: 400 River Road

0.5

Puyallup, WA 98371

CLIENT: AECOM

0.25

0 Miles

1.5

RFJ - Site #3 400 River Road Puyallup, WA 98371

Inquiry Number: 5909224.3

December 18, 2019

Certified Sanborn® Map Report

Certified Sanborn® Map Report

12/18/19

Site Name: Client Name:

RFJ - Site #3 AECOM

1111 Third Avenue Suite 1600 400 River Road

Puyallup, WA 98371 Seattle, WA 98101

EDR Inquiry # 5909224.3 Contact: AL THATCHER

The Sanborn Library has been searched by EDR and maps covering the target property location as provided by AECOM were identified for the years listed below. The Sanborn Library is the largest, most complete collection of fire insurance maps. The collection includes maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow, and others. Only Environmental Data Resources Inc. (EDR) is authorized to grant rights for commercial reproduction of maps by the Sanborn Library LLC, the copyright holder for the collection. Results can be authenticated by visiting www.edrnet.com/sanborn.

The Sanborn Library is continually enhanced with newly identified map archives. This report accesses all maps in the collection as of the day this report was generated.

Certified Sanborn Results:

Certification # A424-4720-AD37

PO# 60620698

RFJ Auto - Site #3 **Project**

Maps Provided:

1964

1945

1927

Sanborn® Library search results

Certification #: A424-4720-AD37

The Sanborn Library includes more than 1.2 million fire insurance maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow and others which track historical property usage in approximately 12,000 American cities and towns. Collections searched:

Library of Congress

University Publications of America

EDR Private Collection

The Sanborn Library LLC Since 1866™

Limited Permission To Make Copies

AECOM (the client) is permitted to make up to FIVE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2019 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

page 2

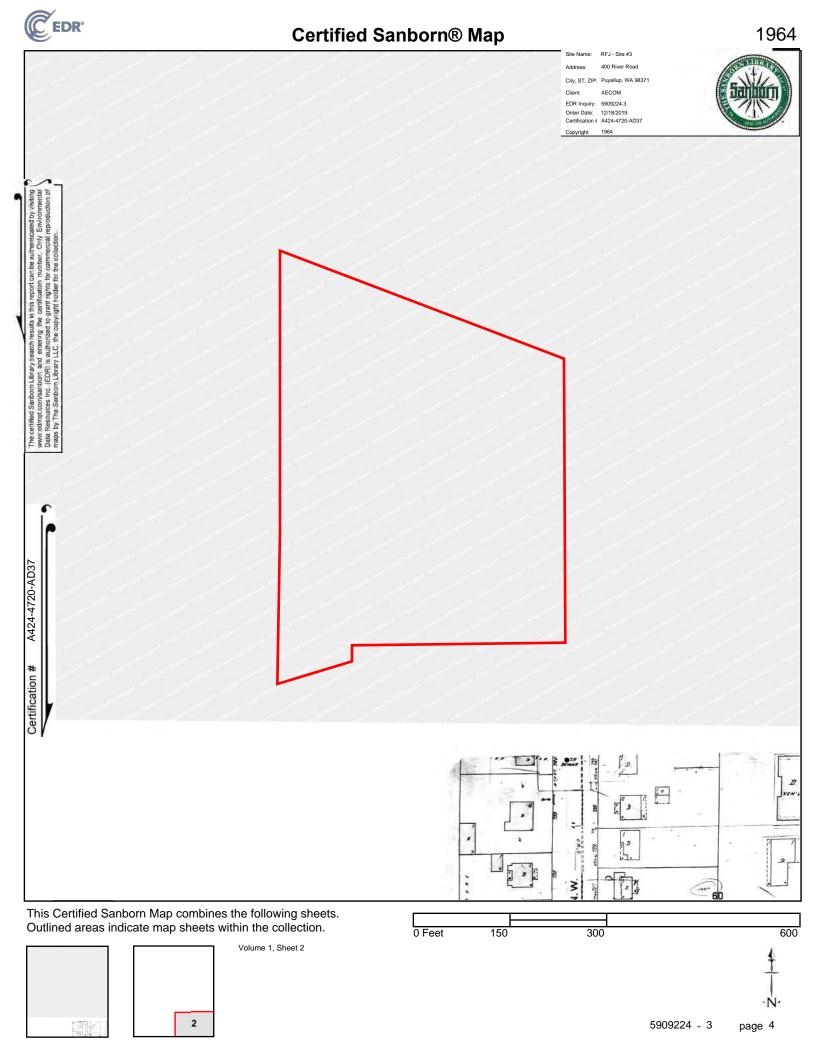
Sanborn Sheet Key

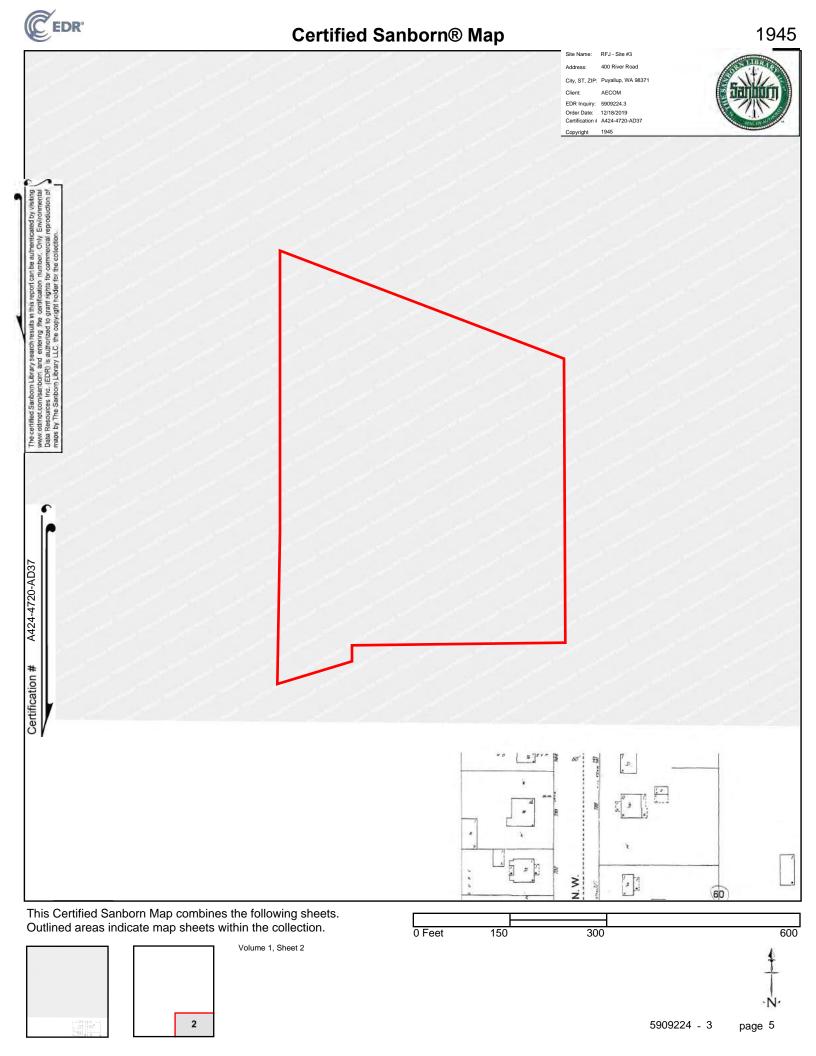
This Certified Sanborn Map Report is based upon the following Sanborn Fire Insurance map sheets.

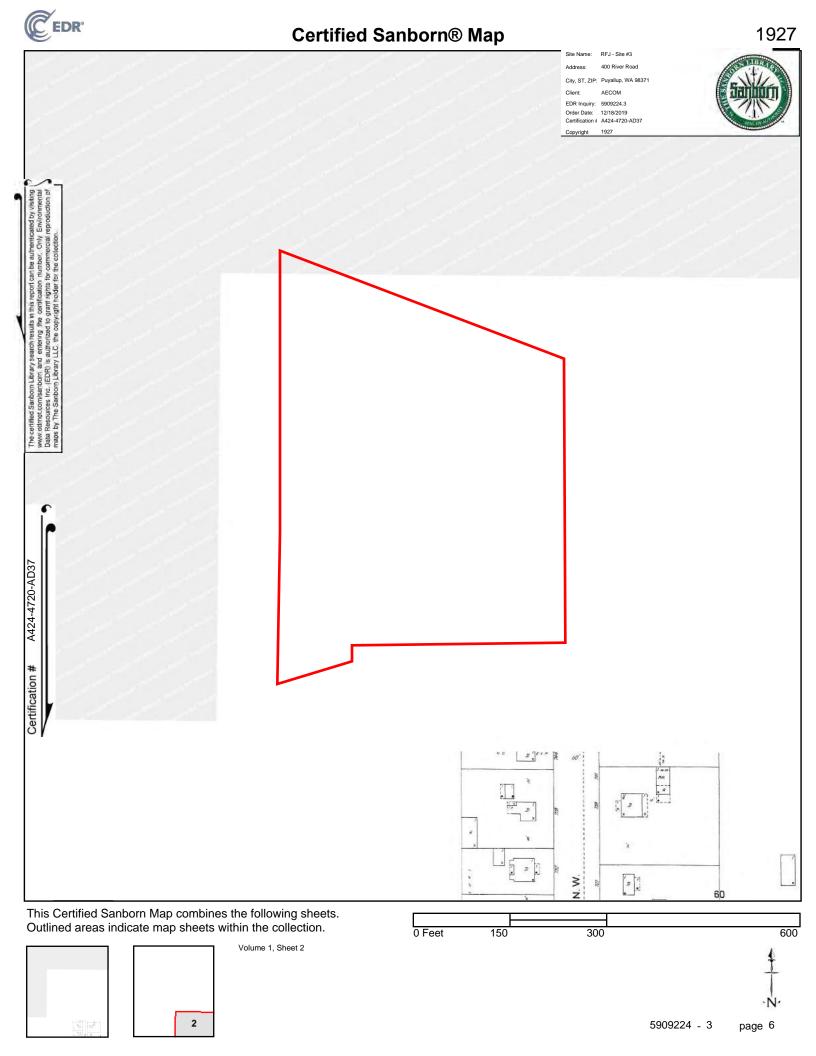
1964 Source Sheets

Volume 1, Sheet 2 1964

1945 Source Sheets




Volume 1, Sheet 2 1945


1927 Source Sheets

Volume 1, Sheet 2 1927

RFJ - Site #3

400 River Road Puyallup, WA 98371

Inquiry Number: 5909224.8

December 17, 2019

The EDR Aerial Photo Decade Package

EDR Aerial Photo Decade Package

12/17/19

Site Name: Client Name:

RFJ - Site #3 AECOM

400 River Road 1111 Third Avenue Suite 1600

Puyallup, WA 98371 Seattle, WA 98101

EDR Inquiry # 5909224.8 Contact: AL THATCHER

Environmental Data Resources, Inc. (EDR) Aerial Photo Decade Package is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDR's professional researchers provide digitally reproduced historical aerial photographs, and when available, provide one photo per decade.

Search Results:

<u>Year</u>	<u>Scale</u>	<u>Details</u>	Source
2017	1"=500'	Flight Year: 2017	USDA/NAIP
2013	1"=500'	Flight Year: 2013	USDA/NAIP
2009	1"=500'	Flight Year: 2009	USDA/NAIP
2006	1"=500'	Flight Year: 2006	USDA/NAIP
1990	1"=500'	Acquisition Date: July 10, 1990	USGS/DOQQ
1980	1"=500'	Flight Date: July 08, 1980	USDA
1972	1"=500'	Flight Date: September 04, 1972	USGS
1968	1"=500'	Flight Date: September 02, 1968	USGS
1957	1"=500'	Flight Date: May 28, 1957	USGS
1943	1"=500'	Flight Date: March 05, 1943	DIA
1941	1"=500'	Flight Date: July 10, 1941	USDA

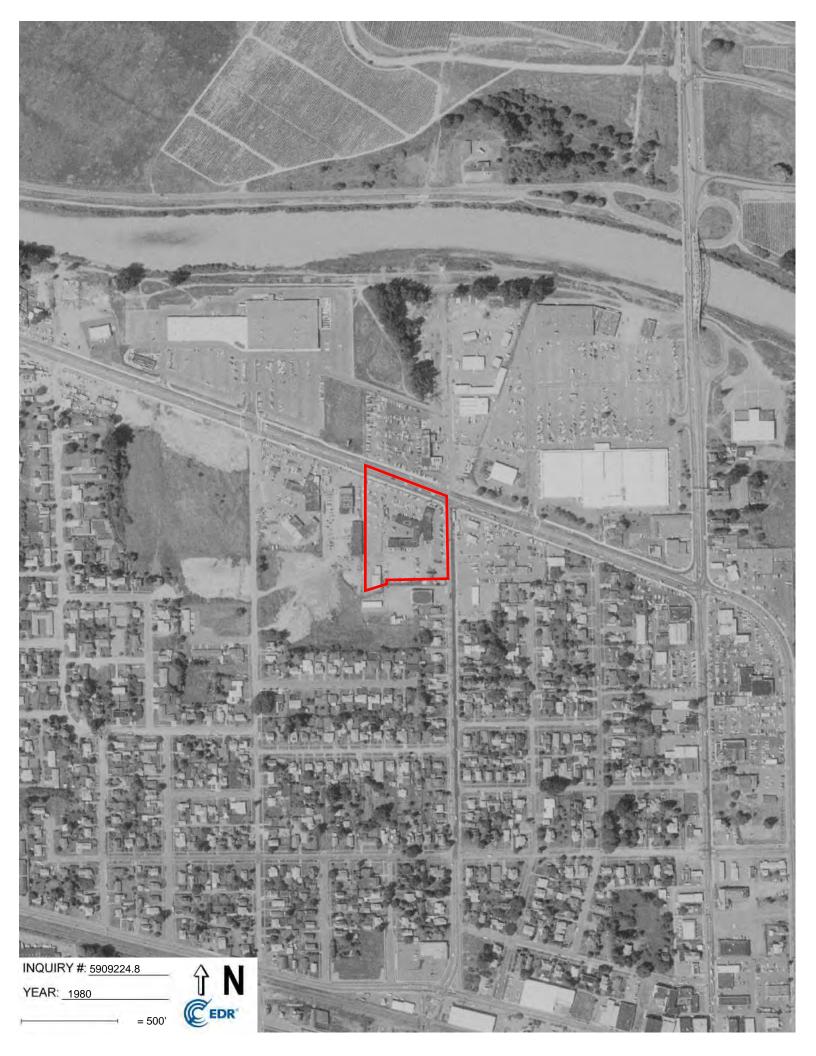
When delivered electronically by EDR, the aerial photo images included with this report are for ONE TIME USE ONLY. Further reproduction of these aerial photo images is prohibited without permission from EDR. For more information contact your EDR Account Executive.

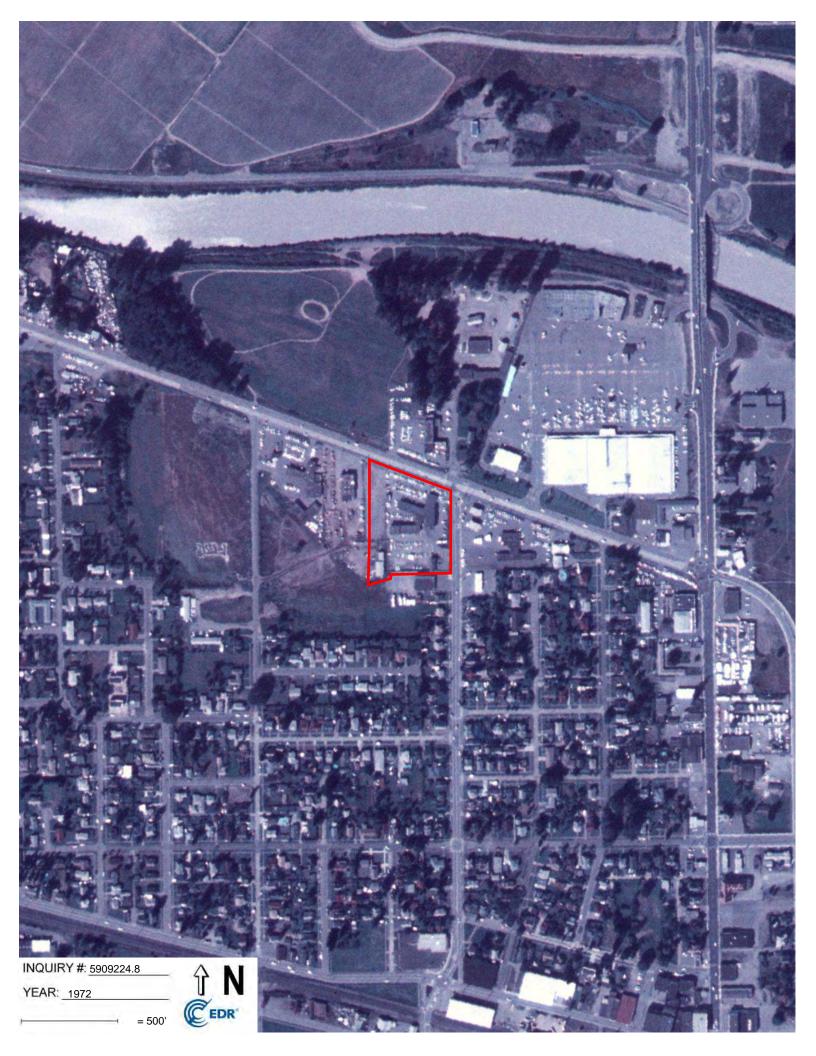
Disclaimer - Copyright and Trademark Notice

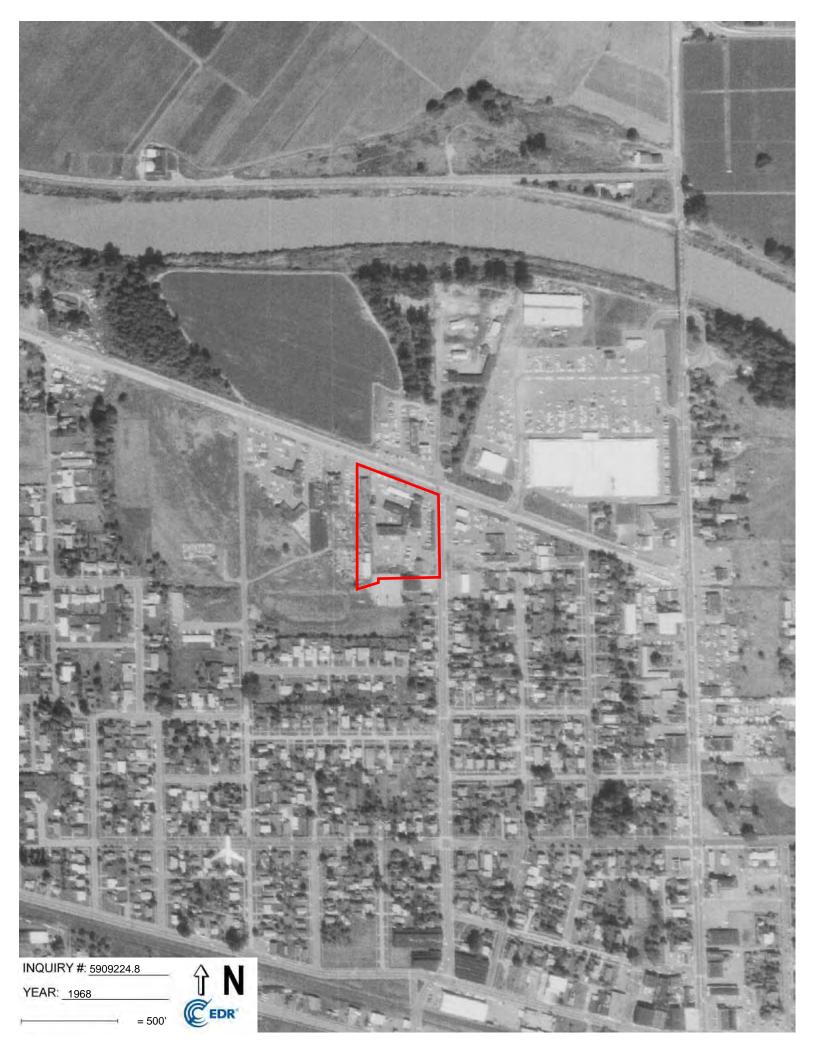
This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

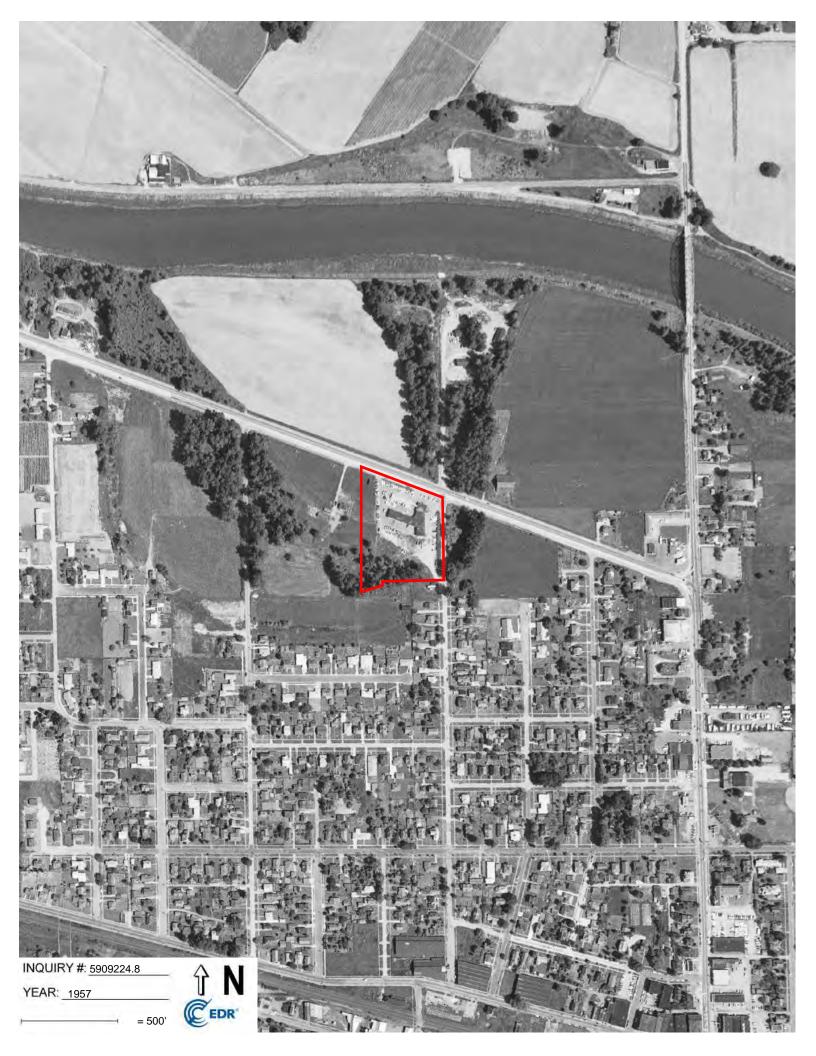
Copyright 2019 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.









RFJ - Site #3 400 River Road Puyallup, WA 98371

Inquiry Number: 5909224.5

December 20, 2019

The EDR-City Directory Image Report

TABLE OF CONTENTS

SECTION

Executive Summary

Findings

City Directory Images

Thank you for your business.Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OR DAMAGE, INCLUDING. WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction orforecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2017 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc. or its affiliates is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

EXECUTIVE SUMMARY

DESCRIPTION

Environmental Data Resources, Inc.'s (EDR) City Directory Report is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDR's City Directory Report includes a search of available city directory data at 5 year intervals.

RECORD SOURCES

EDR's Digital Archive combines historical directory listings from sources such as Cole Information and Dun & Bradstreet. These standard sources of property information complement and enhance each other to provide a more comprehensive report.

EDR is licensed to reproduce certain City Directory works by the copyright holders of those works. The purchaser of this EDR City Directory Report may include it in report(s) delivered to a customer. Reproduction of City Directories without permission of the publisher or licensed vendor may be a violation of copyright.

RESEARCH SUMMARY

The following research sources were consulted in the preparation of this report. A check mark indicates where information was identified in the source and provided in this report.

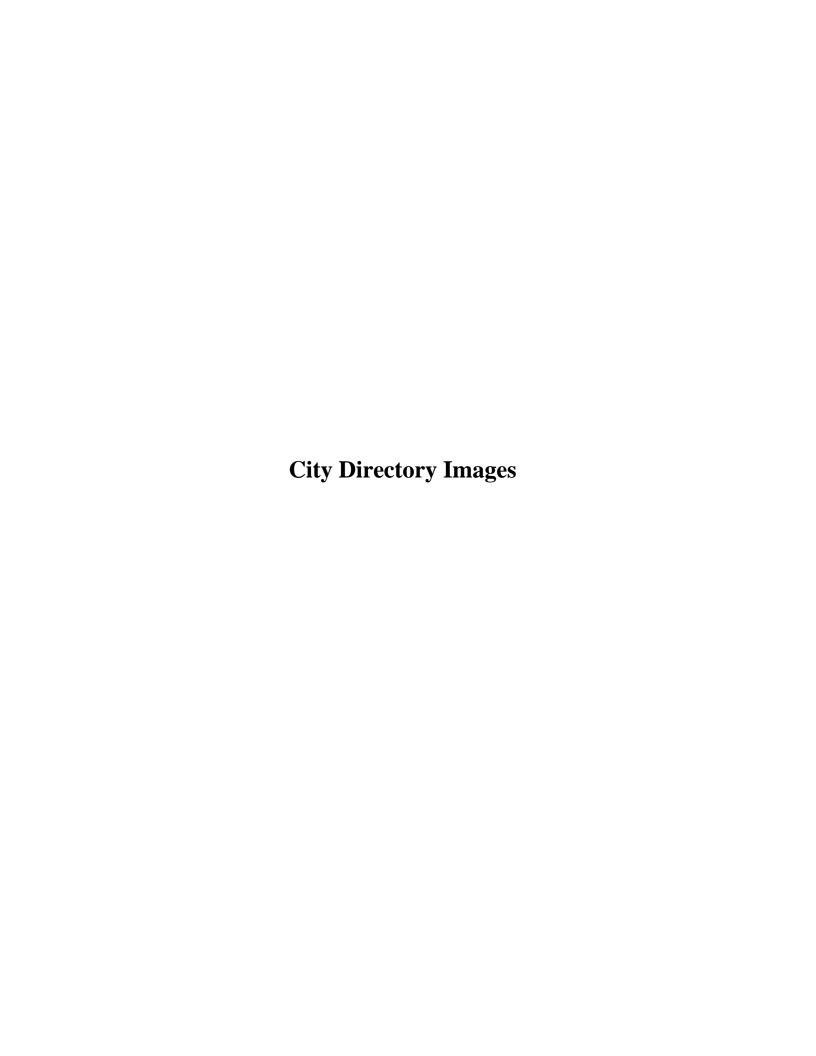
<u>Year</u>	Target Street	Cross Street	<u>Source</u>
2014	$\overline{\checkmark}$		EDR Digital Archive
2010	$\overline{\checkmark}$		EDR Digital Archive
2005	$\overline{\checkmark}$		EDR Digital Archive
2000	$\overline{\checkmark}$	$\overline{\checkmark}$	EDR Digital Archive
1995	$\overline{\checkmark}$		EDR Digital Archive
1992	$\overline{\checkmark}$		EDR Digital Archive
1989	$\overline{\checkmark}$		Polk's City Directory
1984	$\overline{\checkmark}$	$\overline{\checkmark}$	Polk's City Directory
1979	$\overline{\checkmark}$		Polk's City Directory
1974	$\overline{\checkmark}$	$\overline{\checkmark}$	Polk's City Directory
1969	$\overline{\checkmark}$		Polk's City Directory
1964		$\overline{\checkmark}$	Polk's City Directory
1959		$\overline{\checkmark}$	Polk's City Directory

FINDINGS

TARGET PROPERTY STREET

400 River Road Puyallup, WA 98371

Voor	CD Image	Carrea
<u>Year</u>	<u>CD Image</u>	<u>Source</u>
RIVER RD		
2014	pg A2	EDR Digital Archive
2010	pg A4	EDR Digital Archive
2005	pg A6	EDR Digital Archive
2000	pg A8	EDR Digital Archive
1995	pg A10	EDR Digital Archive
1992	pg A12	EDR Digital Archive
1989	pg A14	Polk's City Directory
1989	pg A15	Polk's City Directory
1984	pg A17	Polk's City Directory
1984	pg A18	Polk's City Directory
1979	pg A20	Polk's City Directory
1979	pg A21	Polk's City Directory
1974	pg A23	Polk's City Directory
1974	pg A24	Polk's City Directory
1969	pg A26	Polk's City Directory
1964	pg A28	Polk's City Directory
1959	pg A30	Polk's City Directory


5909224-5 Page 3

FINDINGS

CROSS STREETS

<u>Year</u>	<u>CD Image</u>	<u>Source</u>
4TH ST NW		
2014	pg. A1	EDR Digital Archive
2010	pg. A3	EDR Digital Archive
2005	pg. A5	EDR Digital Archive
2000	pg. A7	EDR Digital Archive
1995	pg. A9	EDR Digital Archive
1992	pg. A11	EDR Digital Archive
1989	pg. A13	Polk's City Directory
1984	pg. A16	Polk's City Directory
1979	pg. A19	Polk's City Directory
1974	pg. A22	Polk's City Directory
1969	pg. A25	Polk's City Directory
1964	pg. A27	Polk's City Directory
1959	pg. A29	Polk's City Directory

5909224-5 Page 4

<u>Target Street</u> <u>Cross Street</u>

<u>Source</u>

EDR Digital Archive

4TH ST NW 2014

317	GARY A CARLINGTON CPA INC PS
317	ROBERT L MAY ASSOCIATES
320	SHANNON, KIM J
402	SCHROEDER, THOMAS D
406	BOISVERT, STEVEN C
	BROWN, WILLIAM R
411	FISHER, TIMOTHY W
	GATES ETCLLC
415	KUCHNSKY, JAMES A
416	WILLIAMSON, DAVID
421	CHESLEY, DAVID J
423	ZUEIRLEIN, RENAE L
438	WAITS-SULFRIDGE, BILLY J
511	REDMOND, VAUGHAN L
514	OCCUPANT UNKNOWN,
516	HOLCOMB, LISA A
517	MARKHAM, ROSE M
520	NAMASTE YOGA CENTER & CHIROPR
	OHAVER, ALISA B
	WENDY NOFFKE DC LLC
602	FILER, ELLIS
610	DIVINA, RAYMOND D
704	BOCZAR, THOMAS
710	BUTLER, RICHARD M
714	LANDON, WILLIAM J
720	MATTHEWS, KENNETH L
721	ESSMAN, TODD C
	SHAUNA S ESSMAN
722	INCREDIBLE EDIBLES
	KAISER, SCOTT R
723	OCCUPANT UNKNOWN,
726	SILLER, RUDOLPH S
727	SINGINGLIGHTNING, SKY
729	RICE, PAULINE A
732	OCCUPANT UNKNOWN,
738	WILLIAMS, STEPHEN
739 740	IHLEN, MARTIN L
740 741	SHILEY, RICK A ELLIS, KYLE O
741 744	OCCUPANT UNKNOWN,
744	RITZY ROVER PET STYLING BTQ
820	BOUSH MOVING & STORAGE INC
1200	GOODWILL OF OLYMPICS RNIER REG
1200	STOREHOUSE CHURCH
1206	SEYLER, GERI E
1200	OLILLIN, OLINI L

Target Street Cross Street Source

→ EDR Digital Archive

RIVER RD 2014

100	6050 TACOMA MALL BOULEVARD LLC
	KORUM AUTOMOTIVE GROUP INC
	KORUM FORD INC
	KORUM MOTORS INC
111	KORUM HYUNDAI
300	JMS DETAIL & AUTO ACCESSORIES
	LARSON MOTORS PREOWNED
303	STARBUCKS CORPORATION
311	ACE CASH EXPRESS INC
	CELLCO PARTNERSHIP
	JUST FOR KIDS DENTISTRY
	KEVIN H SAKAI DDS PLLC
	SMARTCUTS
	SONUS-USA INC
	TD SALON LLC
315	G & L ENTERPRISES INC
400	BULLETPROOF LLC
	NORTHWEST MOTORSPORT
401	PUYALLUP CHRYSLER INC
511	KEYBANK NATIONAL ASSOCIATION
608	MILAM OLDSMOBILE MAZDA JEEP
621	KMART CORPORATION
711	PAPA MURPHYS PIZZA
	TITUS WILL ENTERPRISES
715	LOOSE WHEEL BAR AND GRILL

Target Street Cross Street Source
- Source EDR Digital Archive

4TH ST NW 2010

312	TAPIA, MELISSA	
317	DOMINION CAPITAL LLC	
	EDWARD & LOIS MCLEARY CHAR FDN	
	GARY A CARLINGTON CPA INC PS	
	MAY & CO	
	MAY & CO P S	
	US ALLOY CO	
320	WARD, RICKARD	
401	, -	
402	SCHROEDER, THOMAS D	
405	ARMSTRONG, JEANEEN	
406	BOISVERT, STEVEN C	
	CROWDER, JAMES W	
407	,	
411	- ,	
416	,	
42	,	
438	,	
511	·	
514	•	
516	•	
517	,	
520		
	NOFFKE, WENDY J	
000	WENDY NOFFKE DC LLC	
602	,	
610	•	
702	•	
710	•	
712 714	•	
712 72	,	
722	•	
723	•	
726		
727		
729	*	
732		
738	•	
739	•	
740	·	
7 - 10	HENRY, NEIL W	
74		
744	•	
. 1	RITZY ROVER PET STYLING BTQ	
820		
120		
12		

Target Street Cross Street Source

→ EDR Digital Archive

RIVER RD 2010

100	KORUM AUTOMOTIVE GROUP INC
	KORUM FORD INC
	KORUM MOTORS INC
300	K & D AUTO WERKS
303	STARBUCKS CORPORATION
311	BEN CONNER INSURANCE AGENCY
	LUTZ LAW
	SMARTCUTS
315	G & L ENTERPRISES INC
400	BULLETPROOF LLC
401	MOCERI LEASING INC
	PUYALLUP CHRYSLER INC
500	LARSON DODGE
	PUYALLUP POWER SPORTS
511	KEYBANK NATIONAL ASSOCIATION
514	JMS DETAIL & AUTO ACCESSORIES
608	MILAM OLDSMOBILE MAZDA JEEP
621	KMART CORPORATION
	MELDISCO K-M PUYALLUP WASH INC
	OLAN MILLS INC
707	BARGAIN STORES INC
709	BOONTHAM TALBOT
	FAME NUMBER 1 HAIR STUDIO SPA
711	PAPA MURPHYS PIZZA
	TITUS WILL ENTERPRISES
715	ARNALDI ENTERPRISES LLC
	JENNIFER HALL
	OHENRY SPORTS BAR

Target Street Cross Street Source
- Source EDR Digital Archive

4TH ST NW 2005

317	ARIES ENTERTAINMENT SYSTEMS LT
	CARLINGTON GARY A CPA INC PS
	NORTHWEST CONVERSIONS INC
320	KNESAL, TREVOR A
402	MISKAR, SANDY J
406	BOISVERT, STEVEN C
	HUBER, JAMIE
411	VERMEERSCH, DAVID A
511	REDMOND, SHARYN M
514	BRADFORD, STEVEN G
516	CURRAH, MARK E
517	MARKHAM, JACK A
520	NAMASTE YOGA CENTER & CHIROPR
	NOFFKE, WENDY
	WENDY NOFFKE DC LLC
602	HAUCK, JEREMY D
	IMAGEBASICS
610	DIVINA, LACI R
702	APODACA, RICARDO
710	ZWANG, TERI L
714	PLUMMER, HAROLD N
720	MATTHEWS, KENNETH L
721	ESSMAN, TODD C
722	WENGER, CATHY M
723	OCCUPANT UNKNOWN,
725	CGRAGGEN, CHRIS
	GORSKI, A
	HARRISON, MARIE
	PORTER, DANIELLE
726	SILLER, RUDOLPH S
727	OCCUPANT UNKNOWN,
729	RICE, PAULINE A
732	ONEILL, AARON K
738	WILLIAMS, MARK M
740	HENRY, NEIL W
741	MATHIESON, MARK W
744	BRIDGES, DONOVAN
820	BOUSH MOVING & STORAGE INC
1200	SOUND PROPERTIES

Target Street Cross Street Source

→ EDR Digital Archive

RIVER RD 2005

100	KORUM FORD INC
	KORUM MOTORS INC
208	RADIOSHACK CORPORATION
300	LARSON MOTORS INC
315	ALLSTATE INSURANCE COMPANY
	DETURK PHILIP H
	ENTERPRISE RENT-A-CAR COMPANY
	G & L ENTERPRISES INC
400	BULLETPROOF LLC
	FRIENDLY CHEVROLET INC
	GREG CARTERS PUYALLUP CHEVRO
	KEN PARKS CHEVROLET INC
401	UNIVERSAL AUTO GROUP INC
500	KORUM FORD INC
	TURNBULL MIKE
511	KEYBANK NATIONAL ASSOCIATION
608	MILAM OLDSMOBILE MAZDA JEEP
621	KMART CORPORATION
	MELDISCO K-M PUYALLUP WASH INC
	OLAN MILLS INC
707	BARGAIN STORES INC
709	ACTIVE HAIR
711	PAPA MURPHYS PIZZA
715	AMUSEMENT ENTERPRISES INC
	OHENRY SPORTS BAR

Target Street Cross Street Source
- Cross Street EDR Digital Archive

4TH ST NW 2000

317	CARLINGTON GARY A CPA INC PS
	GUSTAFSON GREG INSURANCE INC
320	OCCUPANT UNKNOWN,
400	OCCUPANT UNKNOWN,
402	BOURNE, GEORGE C
406	BROWN, W R
411	MCKUNE, KRISTIN
430	OCCUPANT UNKNOWN,
511	OCCUPANT UNKNOWN,
514	FOSTER, CLINT
516	MERCILL, MITCH
517	MARKHAM, JACK A
520	BRADFORD, STEVEN G
602	VANKIRK, J
604	OCCUPANT UNKNOWN,
702	MOGAVERO, ANNA L
710	WHEELER, BRETT
714	PLUMMER, H N
720	MATTHEWS, KEN L
721	ESSMAN, TODD
722	KAISER, SCOTT R
	WENGER, CATHY M
723	DUMOULIN, J
725	CGRAGGEN, CHRIS
	HARRISON, M
726	SILLER, RUDOLPH
729	RICE, EARL D
732	KENT, RON
740	MAXEY, SHAWN
741	OCCUPANT UNKNOWN,
744	ABC RELOCATION
	FUESTON, ADAM
820	BOUSH MOVING & STORAGE INC

Target Street Cross Street Source

→ EDR Digital Archive

RIVER RD 2000

100	KORUM FORD INC
103	DAVCO ENTERPRISES INC
125	A & R MOTORS INC
208	RADIOSHACK CORPORATION
300	LARSON MOTORS INC
	LARSON ROBERT CHRYSLER
315	ALLSTATE INSURANCE COMPANY
	DETURK PHILIP H
	ENTERPRISE RENT-A-CAR COMPANY
	G & L ENTERPRISES INC
	SOURCE FINANCIAL
	WEIGHT LOSS PLUS COST MEDCL WE
400	BULLETPROOF LLC
	PUYALLUP CHEVROLET-GEO-SUBARU
401	PUYALLUP COLLISION CENTER INC
	UNIVERSAL AUTO GROUP INC
500	KORUM FORD INC
	KORUM MOTORS INC
511	KEYBANK NATIONAL ASSOCIATION
608	MILAM OLDSMOBILE INC
621	KMART CORPORATION
	OLAN MILLS INC
707	BARGAIN STORES INC
715	VANS AMUSEMENT CENTER INC

Target Street Cross Street Source
- Source EDR Digital Archive

4TH ST NW 1995

317	CARLINGTON GARY A CPA INC PS
317	
400	GUSTAFSON, GREG A
400	GHATTAS, NAGUIB
402	BOURNE, GEORGE C
406	BAKER, JAMES S
411	OCCUPANT UNKNOWNN
421	OCCUPANT UNKNOWNN
427	FREED, ART
514	OCCUPANT UNKNOWNN
520	BRADFORD, STEVEN G
702	OCCUPANT UNKNOWNN
703	GOODWIN, ALAN M
710	WHEELER, BRETT
714	PLUMMER, H N
721	MCFARLAND, ERIN
722	KAISER, SCOTT R
	WENGER, CATHY M
723	DUMOULIN, J
726	NELSON, JOSEPH C
727	YOUNG, RHONDA
729	RICE, EARL D
732	OCCUPANT UNKNOWNN
738	OHONDT, DAVE
739	OCCUPANT UNKNOWNN
740	MAXEY, SHAWN
741	MATHIESON, MARK W
820	BOUSH MOVING & STORAGE INC
-	

Target Street Cross Street Source

→ EDR Digital Archive

RIVER RD 1995

100	KORUM FORD INC
103	DAVCO ENTERPRISES INC
	PYRAMID TIRE OF PUYALLUP INC
111	R J B RESTAURANTS INC
208	TANDY CORPORATION DEL
300	LARSON MOTORS INC
315	ALLSTATE INSURANCE COMPANY
	ALOHA CHIROPRACTIC CENTER
	AMERICAN GENERAL FINANCE
400	KEN PARKS PUYALLUP SUBARU INC
	PUYALLUP CHEVROLET GEO SUBARU
401	MOCERI LEASING INC
	PUYALLUP CHRYSLER-PLYMOUTH
	SNAPPY CAR RENTAL INC
500	KORUM FORD INC
608	MILAM OLDSMBILE JEEP EGLE MZDA
	MILAM OLDSMOBILE INC
621	KMART CORPORATION
707	PICWAY SHOES
709	GRAVERSEN MARKETING CO
711	HI HO MUSIC CENTER
715	BJ 1 HOUR PHOTO
	VANS AMUSEMENT CENTER INC

Target Street Cross Street Source
- Source EDR Digital Archive

4TH ST NW 1992

317	CARLINGTON GISMERVIG & CO P S
	GUSTAFSON, GREG A
	KNIGHT, GREGORY
402	URLOCKER, ARNOLD L
406	SJOSTROM, TIMOTHY
411	VANBAALE, MARVIN
520	WREN, STEVEN G
710	WHEELER, BRETT
714	PLUMMER, H N
721	AKERS, HOWARD
723	DUMOULIN, J
725	KETNER, STEVE
726	NELSON, JOSEPH C
727	NICKERT, JAMIE
729	RICE, EARL D
732	BLUMENTHAL, DANIEL L
741	MATHIESON, MARK A
744	HORTON, PAT
820	BOUSH MOVING & STORAGE INC

Target Street Cross Street Source

- EDR Digital Archive

RIVER RD 1992

100	KORUM FORD INC
103	PYRAMID TIRE OF BURIEN INC
111	R J B RESTAURANTS INC
208	TANDY CORPORATION DEL
300	LARSON MOTORS INC
315	ALLSTATE INSURANCE COMPANY
	DOTTERS COUNSELING SERVICE
400	PARKS KEN CHEVROLET INC
401	MOCERI LEASING INC
	PUYALLUP CHRYSLER-PLYMOUTH
511	PUGET SOUND NATIONAL BANK
514	PUYALLUP MOTOR CO INC
608	MILAM OLDSMOBILE INC
621	KMART CORPORATION
715	ARCADE

Source
Polk's City Directory

4TH ST NW 1989

740 No Return 741 O'Kelly Eugenie I @ 744 Horton Pat J @ 845-4908 820 Boush Moving & Storage Inc 845-8829 RIVER RD INTERSECTS 1200 Puyallup Cinema theatre 848-6999 1201 Puyallup City Animal Shelter 845-6622 Puyallup City Public Works Dept 841-5508 Puyallup City Weed Control 841-5508 Puyallup City Street Dept 841-5508 Puyallup City Public Works Dept (Tool Rm) 848-5508 Puyallup City Public Works Dept (Purch & Rec) 848-5508 Puyallup City Public Works Dept (Mtr Pool) 848-5508 Puyallup City Public Works Dept (Sign Shop) 848-5508 Puyallup City Public Works Dept (Refueling Sta) 848-5508

Source Polk's City Directory

RIVER RD 1989

125 Hoagy's Corner Delicatessen 841-0231

2D ST NW INTERSECTS 208 Radio Shack electrn prts & equip 848-1501 3D ST NW INTERSECTS 300 Larson Motors 845-1725 315 Plaza West ofc bldg Suites A Allstate Insurance 845-3841 B Credithrift Of America loans

840-0055

C Vacant

D Farm Credit Services 845-9332

E Aloha Chiropractc Center 848-2244

RIVER RD 1989

4TH ST NW INTERSECTS 400 Parks Ken Chevrolet-Subaru Inc 845-9566 401 Moceri Leasing Inc car rental 845-7100 Puyallup Chrysler-Plymouth Inc auto dirs 848-4511 500 Korum R V Center dealership 845-6600 511 Puget Sound National Bank 593-3970 Puget Sound National Bank (Consumer Credit Dept) 593-3550 608 Milam Oldsmobile Jeep-Eagle & Mazda Inc auto dirs 845-1766 621 K-Mart dept store 848-8751 7TH ST NW INTERSECTS 707 Picway Shoes shoes ret 840-1721 711 Vacant

Target Street

Cross Street

<u>Source</u>

Polk's City Directory

4TH ST NW 1984

738★Silverwood Larry C ⊚ 848-7016

739 Flink Kenneth L @

740 Vacant

741 Vacant

744 Urwin Dale N @ 845-7867

820 Boush Moving & Storage Inc 845-8829

905 Quick Way Self Service Car Wash

906 P M P Security Service 845-8665

RIVER RD INTERSECTS

1022 Puyallup Animal Shelter 845-6622

1201 City Public Works Dept 4200 Puyallup Cinema 848-6999

Polk's City Directory

RIVER RD 1984

900

MERIDIAN ST N NORTHWESTERLY

ZIF CODE 98371

103 Pyramid Tire Co sls & serv
848-3538

111 Puyallup Dairy Queen
845-5064

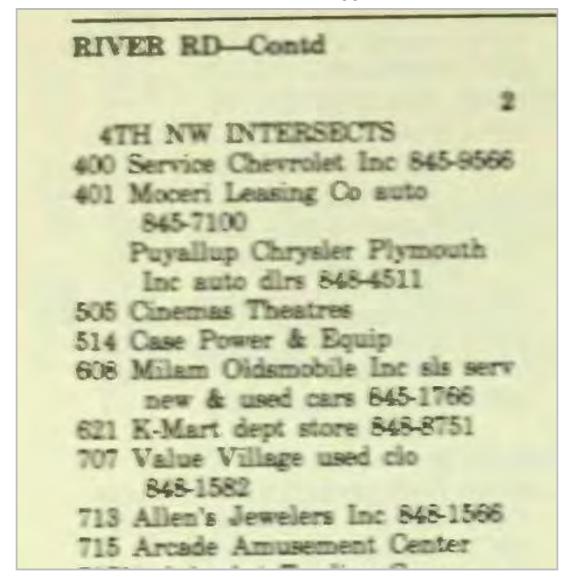
125 Knutson Harold © 841-4630

208 Radio Shack electrn prts &
equip 848-1501

2D ST NW INTERSECTS

300 Larson Motors 845-1725

315 Puget Sound National Bank
593-3970


Puget Sound National Bank
(consumer credit div)
593-3550

Target Street

Cross Street

Source
Polk's City Directory

RIVER RD 1984

5909224.5 Page: A18

Source
Polk's City Directory

4TH ST NW 1979

722*Burdick Barbara @ 848-1957 723*Harrison Thom B 725 Harrison Alene M 845-5890 725 ** Schurebert Kusins 726 Nelson Joseph C @ 845-4956 727*Liberty Terry J @ 848-3627 729 Rice Earl @ 863-1567 732 Maass Inez A Mrs @ 845-1963 738*Hill James V 848-0010 739 Flink Kenneth L @ 740 * Umber Walter A 741 O'Kelly Eugenie Mrs © 845-1820 744 Urwin Dale N 845-7867 820 Boush Moving & Storage Inc 845-8829 905 Quick Way Self Service Car Wash 906 Service Chev (Stge Bldg) RIVER RD INTERSECTS 1022 Puyallup Animal Shelter

Polk's City Directory

RIVER RD

1979

900

RIVER RD —FROM 900 MERIDIAN ST N NORTHWESTERLY

ZIP CODE 98371

103 Pyramid Tire Co sls & serv
848-3538

111 Gary's Dairy Queen 845-5064

125 No Return

208 Radio Shack electrn prts &
equip 848-1501

2D ST NW INTERSECTS

300 Larson Motors Inc 845-1725

315 Puget Sound National Bank
593-3970

Puget Sound Natl Bk
(consumer credit div)
593-3550

2

4TH NW INTERSECTS 400 Service Chevrolet Inc 845-9566

Polk's City Directory

RIVER RD 1979

401	Moceri Leasing Co auto
	845-7100 Puyallup Chrysler Plymouth
	auto dlrs 848-4511
514	Puyallup Tractors Inc 848-2375
608	Milam Oldsmobile Inc sls serv new & used cars 845-1766
621	K-Mart dept store 848-8751
	Payless Shoes 845-8608
	Rupert's Clocks & Watches 848-4601
729	Sandman Waterbeds 841-2431
	Valley Fabricare self serv Indry 848-8154
733	Melody T V & Appliance tv
	& appls sls 848-0325

4TH ST NW 1974

7TH	AV	NW	INTERSECTS

702 * Repp Mark S TH5-4777

710 + Motoelf Charles I @

710 * Metcalf Charles L @

714 Plummer Nora D Mrs © TH5-1321

720 Clement Frank J @ TH5-6741

721 Akers Howard J @ TH5-8263

722 Ferro Leonard @ 848-1957

723 * Davenport Ronald

725 * Harrison Alene M 845-5890

7251/2 * Leeker Debra J

726 Nelson Joseph C @ TH5-4956

727 Johnson Arth J @

729 Covert Gordon L @ TH5-9135

732 Maass Inez A Mrs © TH5-1963

738 Boush Johanna M Mrs © TH5-5465

739 Flink Kenneth L @

740 Kuehn Karl @ TH5-1245

741 O'Kelly Eugenie Mrs © TH5-1820

743 Sorenson Gordon G 845-9369

744 Urwin Dale N TH5-7867

820 Boush Moving & Storage Inc TH5-8829

905 Quick Way Self Service Car Wash RIVER RD

1974

900

MERIDIAN ST N NORTHWESTERLY

ZIP CODE 98371

103 Goodrich B F Co 848-3538

111 Gary's Dairy Queen TH5-5064

125 Salzsieder Gary A © TH5-5578

208 Radio Shack electronics parts 848-1501

2D ST NW INTERSECTS

300 Larson Motors Inc TH5-1725

315 Puget Sound National Bank 593-3972

324 Vacant

2

4TH NW INTERSECTS 400 Service Chevrolet Inc 845-9566 RIVER RD 1974

401 Puyallup Chrysler Plymouth auto dlrs 848-4511 5TH NW INTERSECTS

506 Vacant

514 Puyallup Tractors Inc 848-2375

608 Milam Oldsmobile Inc sls serv new & used cars TH5-1766

4

7TH ST NW INTERSECTS

823 Herb's Towing TH5-6750

825 Independent Auto Repair Herb's Trucks TH5-1412

826 Andy The Welder 848-9957 No Return Steve's Used Cars TH5-9957

4TH ST NW 1969

720 Clement Frank J ©	100 110
TH5-6741	
721 Akers Howard J ©	
TH5-8263	
722 Cobb Darrell E @ TH5-2178	
723 Hardie Merle	
725 No Return	
725½ Vacant	
726 Nelson Joseph C ©	
TH5-4956	
727 Johnson Arth J @ TH5-6435	
729 Covert Gordon L @	
TH5-9135	
732 Maass Inez A Mrs ©	
TH5-1963	
738 Boush Johanna M Mrs ©	
TH5-5465	
739 Scheyer Robt J @ TH5-6491	
740 Turnbow Barney B	
TH5-4548	
741 O'Kelley Eugenie Mrs ©	
TH5-1820	
743 Sorenson Gordon G	
TH5-9369	
744 Urwin Dale N TH5-7867	
820 Boush Moving & Storage Inc	
TH5-8829	
905 Quick Way Self Service Car	
Wash	
906 Grant's Insurance Agency	
Inc TH5-8856	

Source
Polk's City Directory

RIVER RD 1969

208 Radio Shack electronics parts 848-1501 2D ST NW INTERSECTS

300 Larson Rambler Inc TH5-1725

324 River Road Gulf Station TH5-9865

2

4TH NW INTERSECTS 400 Grant's Chevrolet Inc TH5-9566

401 Puyallup Chrysler Plymouth auto dlrs TH5-8853

5TH NW INTERSECTS 506 U S Agrl Stabilization &

Conservation TH5-2255

U S Soil Conservation Serv

TH5-5533

State Dept Of Natural Resources TH5-9464

514 Puyallup Tractors Inc TH5-9575

608 Grant-Milam Oldsmobile Inc sls serv new &used cars TH5-1766

4

7TH ST NW INTERSECTS 825 Herb's Towing auto TH5-6750 <u>Target Street</u> <u>Cross Street</u>

<u>Source</u> Polk's City Directory

4TH ST NW 1964

520	Custerd Alvina @ TH5-2256
The second secon	av NW intersects
	Simpson Earl S @ TH5-2378
	Ammerman Alva C @ TH5-2995
102	Brown Lucy C Mrs ® TH5-4169
710	Nish Joe Y @
	Plummer Nora D Mrs @
	TH5-1321
720	Clement Frank J @ TH5-6741
	Akers Howard J @ TH5-8263
	Cobb Darrell E @ TH5-2178
The second second second	Vacant
-	Perry Richd M TH5-2821
The second secon	Nelson Jos C @ TH5-4956
The state of the s	Johnson Arth J @ TH5-6435
	Covert Gordon L @ TH5-9135
And the second of the second	Maass Inez A Mrs @
102	TH5-1963
738	Boush Robt F @ TH5-5465
	Scheyer Robt J @ TH5-6491
The second second	Fletcher Robt C TH5-2792
741	O'Kelly Eugenie Mrs @
	TH5-1820
743	Westover Jos
744	Parker Marvin E TH5-5881
745	Kenna Winifred @ TH5-2042

7th NW intersects

825 Herb's Used Cars TH5-6750

Source

Polk's City Directory

RIVER RD 1964

RAYDE ROAD — From 900 Meri-
dian N northwesterly
103 Bob & Ray's Serv gas sta
TH5-9982
111 Gary's Dairy Queen
TH5-5064
124 Elburg Vincent @ TH5-6740
125 Salzie Gary A @ TH5-5578
2d NW intersects
315 First Union National Bank
TH5-6606
4th NW intersects
400 Grant's Chevrolet Inc
TH5-9566
5th NW intersects
506 US Dept of Agrl-Agrl Stabil-
ization and Conservation
TH5-2255
US Dept of Agrl-Farmers
Home Admn TH5-5262
US Dept of Agrl-Soil Conser-
vation Serv TH5-5533
US Dept of Natural Resources TH5-9464
608 Grant-Milam Oldsmobile Inc
used cars TH5-1766
4

5909224.5 Page: A28

4TH ST NW 1959

610 Ammerman Al C ®
△ TH5-2995
702 Brown Lucy C Mrs ①
Δ TH5-4169
710 Nish Joe Y @ A TH5-6216
714 Plummer Nora D Mrs ®
△ TH5-1321
720 Clement Frank J ①
△ TH5-6741
721 Akers Howard J ① 4 TH5-8263
722 Vacant
723 Bailey Geo
723½ Vacnant
725 Jane's Guest House lodgings
Ф TH5-6361
Esget Danl W @ A TH5-6361
726 Nelson Jos C @
727 Johnson Arth J @
Д TH5-6435
729 Covert Gordon L A TH5-9135
732 Maass Reinhart A @
Ф TH5-1963
738 Boush Robt F @ A TH5-5465
739 Scheyer Robt J ◎ △ TH5-6491
740 Coty Jerry M A TH5-9209
741 Grant Howard I @
△ TH5-2786
743 Miller Gary L @ A TH5-4128
744 Parker Marvin E
745 Kenna Winifred ©
↑ TH5-2042

RIVER RD 1959

2
RIMER ROAD—From 900 Meridian
N northwesterly
103 B & K Serv gas sta
△ TH5-6777
B & K Oil Serv fuel
♦ TH5-6777
111 Gary's Dairy Queen
△ TH5-5064
124 Dorsey Claire @ 4 TH5-6915
125 Bischoff Fred B ®
♦ TH5-2437
2d NW intersects
4th NW intersects
400 Grant's Chevrolet Inc
△ TH5-6693
5th NW intersects
515 Vacant
4
7th NW intersects
825 Herb's Used Cars A TH5-1609
827 Montana Cabins
Emmel Peter R @ A TH5-6458
9th NW intersects
920-23 Ted's Used Cars
Δ TH5-1609
1017 Ted's Car Barn used cars
Δ TH5-1609
- 110 1000

APPENDIX B

PREVIOUS ENVIRONMENTAL REPORT AND OTHER DOCUMENTS SELECTED PORTIONS

HILT INVESTMENT HOLDINGS, LLC 400 RIVER ROAD PUYALLUP, WASHINGTON

PHASE I ENVIRONMENTAL SITE ASSESSMENT SEPTEMBER 13, 2016

by

Kari A. Thomas Project Geologist John F. Hildenbrand Principal Environmental Scientist Environmental Services Manager

Phase | Environmental Site Assessment

400 River Road Puyallup, Washington

September 13, 2016

Prepared for:

HiLT Investment Holdings, LLC 819 River Road Puyallup, WA 98371

Attention: Don Fleming

Prepared by:

Robinson Noble, Inc. 2105 South C Street Tacoma, WA 98402 (253) 475-7711

DECLARATIONS

- "I declare that, to the best of my professional knowledge and belief, I meet the definition of Environmental Professional* as defined in "312.21 of 40 CFR part 312."
- "I have the specific qualifications based on education, training, and experience to assess a property of the nature, history, and setting of the subject property. I performed and/or developed the all appropriate inquiries in conformance with the standards and practices set forth in 40 CFR part 312."
- *A person who does not qualify as an Environmental Professional may assist in the conduct of all appropriate inquiries in accordance with ASTM E1527-13 if such person is under the supervision or responsible charge of a person meeting the definition of an environmental professional when conducting such activities.

John F. Hildenbrand

Principal Environmental Scientist Environmental Services Manager

HILT Investment Holdings, LLC 400 River Road, Puyallup, Washington Phase I Environmental Site Assessment September 13, 2016

Executive Summary	iii
1.0 Introduction	
1.1 Scope of Services and Purpose of Report	1
1.2 CONDITIONS AND LIMITATIONS	
1.3 CLIENT AND RIGHT OF RELIANCE	2
2.0 Previous Reports	2
3.0 Physical Setting	4
3.1 SITE DESCRIPTION	4
3.1.1 Legal and Location	4
3.1.2 Current Property Use	4
3.1.3 Structures and Improvements	4
3.2 REGIONAL CHARACTERISTICS	4
3.2.1 Current Adjoining Land Uses	4
3.2.2 Topography, Geology, and Soils	4
3.2.3 Surface Water and Groundwater	5
3.3 SITE AND SURROUNDING AREA RECONNAISSANCE	5
3.3.1 Interior Observations	5
3.3.2 Exterior Observations	7
3.3.3 Roads	7
3.3.4 Utilities	7
3.3.5 Adjoining Properties	7
3.3.6 Data Gaps	7
3.3.7 Site and Surrounding Area Summary	7
4.0 Government Agency Information	8
4.1 EDR Databash Sharch	8
4.2 WASHINGTON STATE DEPARTMENT OF ECOLOGY FILE REVIEW INFORMATION	
4.3 LOCAL GOVERNMENT RECORDS	9
4.3.1 Health Department Records	5
4.3.2 County Assessor Records	10
4.3.3 County Auditor Records	
4.3.4 Title Records and Environmental Liens or Activity and Use Limitations	10
4.4 Tribal Records	10
4.5 Data Gaps	
5.0 Historical Research	10
5.1 AFRIAL PHOTOGRAPHS	
5.2 USGS TOPOGRAPHIC MAPS	
5.3 SANBORN FIRE INSURANCH MAPS	
5.4 CITY, COUNTY, AND SUBURBAN DIRECTORIES	
5.5 ADDITIONAL HISTORICAL SOURCES	
5.5.1 Fire Department/Fire Marshal	
5.5.2 Building Permits	12

5.5.3 Other Historical Sources	13
5.6 Summary of Historical Findings	13
5.7 HISTORICAL DATA FAILURE SUMMARY	13
3.0 Client and Owner Provided Information and Interviews	13
6.1 Reason for Conducting the Phase LESA	13
6.2 Valuation Reduction for Environmental Issues	13
6.3 Interviews	13
6.3.1 Agencies	
6.3.2 Site Tenant(s)	13
6.3.3 Current Owners	14
6.3.4 Previous Owners	14
6.3.5 Others	14
6.4 Data Gaps	14
7.0 Findings, Conclusions, and Recommendations	14
7.1 FINDINGS	14
7.2 Data Gap Summary	19
7.3 Conci usions	19
7.4 RECOMMENDATIONS	19
3.0 References	16
9.0 Closing	16
APPENDICES – (APPENDICES B THRU E ON ATTACHED CD)	
APPENDIX A SITE DIAGRAMS, SITE PHOTOGRAPHS	
APPENDIX B GOVERNMENT AGENCIES DATABASE SEARCH, HISTORICAL RESEARCH	
APPENDIX C Property Profiles	
APPENDIX D QUESTIONNAIRE, PREVIOUS REPORTS, PERMITS, ETC.	
APPENDIX E Professional Services Agreement/Scope of Services and SOQ	

Executive Summary

Robinson Noble, Inc. has prepared a Phase I Environmental Site Assessment of tax parcels 0420214807, 0420214808, 0420214014, and 0420214057 located in Pierce County, Washington. The address assigned to the property is 400 River Road, Puyallup, Washington.

This Phase I Environmental Site Assessment (ESA) was prepared in general accordance with ASTM Standard E1527-13. It was prepared using generally accepted professional practices, and observations and findings generated for this project are based on information limited to "reasonably ascertainable sources." This ESA is not intended to be an exhaustive search for all possible environmental issues. It was designed to utilize reasonably ascertainable information in order to determine whether recognized environmental conditions (as defined by ASTM) warranting additional investigation are present. The Phase I ESA is intended as a step to qualify the report's user for the innocent landowner, contiguous property owner, or bona fide prospective purchaser limitations on CERCLA liability. The scope of services for the ESA included reviewing the physical setting of the property, reviewing government databases for potential environmental risks to the property, conducting historical research concerning the property, and conducting interviews with people knowledgeable about the property. The work was completed by, or under the direction, of an environmental professional as defined in ASTM E1527-13.

The current land use of the subject property is commercial. The property is currently occupied by Northwest Motorsport, a car dealership. Neighboring and adjoining parcels include public roads, car dealerships with repair and maintenance shops, and a moving and storage business. We inspected the subject and found no recognized environmental conditions on the property. No recognized environmental conditions were found on adjoining properties during the inspection.

Aerial photographs and topographic maps indicate the subject property was developed with agricultural land and a small building, likely an outbuilding, prior to 1941. Following that time, previous reports suggest the subject was developed as a car dealership by 1953.

A database search was conducted to identify known sites within a radius of up to one mile from the subject property that may have the potential to impact the subject with contamination. The subject property is listed on the Underground Storage Tank (UST), ALLSITES, Resource Conservation and Recovery Act (RCRA) Non-generator (Nongen)/No Longer Regulated (NLR), Finds, and Enforcement and Compliance History Online (ECHO) databases. One listed site off the subject property was further investigated to determine the level of concern to the subject. This site, Boush Moving and Storage, does appear to impact the subject property and is described in more detail below.

Robinson Noble performed this Phase I Environmental Site Assessment in conformance with the scope and limitations of ASTM Practice E1527-13. Any exceptions to, or deletions from, this practice are described in Section 1.2 of this document. This assessment has not revealed evidence of recogonized environmental conditions except for:

The potential for soil and groundwater contamination on the subject from an underground storage tank on the neighboring property, Boush Moving and Storage, represents a recognized environmental condition. Boush Moving and Storage, located at 820 4th Street Northwest, adjoins the subject property to the south. The property contains a combination gas and diesel underground storage tank that is abandoned on the property. Records show that the tank has been emptied. Details of the underground-storage tank are discussed in Section 4.1. Since the

underground-storage tank is upgradient of the subject, it is possible for contamination, if it exists, to have migrated to the subject. The previous borings were not in an optimal position to identify contamination from the adjoining property to the south. However, the contamination, if it exists, is likely not extensive since contamination associated with the off-site tank was not identified in soil borings that were advanced on the subject property during previous environmental investigations.

As described in Section 2.0, we were unable to review the complete history of environmental investigations conducted on the property. We recommend obtaining the previous reports, if possible, for further review to determine if previous investigations are sufficient to resolve the recognized environmental condition identified above and the significant data gaps. If not, we recommend a subsurface investigation be conducted near the southern boundary of the subject property to identify if soil or groundwater contamination potentially associated with the adjoining property is present on the subject site.

HILT Investment Holdings, LLC 400 River Road, Puyallup, Washington Phase I Environmental Site Assessment September 13, 2016

1.0 Introduction

1.1 Scope of Services and Purpose of Report

This Phase I Environmental Site Assessment (ESA) was prepared in general accordance with ASTM Standard E1527-13 and the professional services agreement (PSA) between Robinson Noble and HILT Investment Holdings, LLC executed on August 10, 2016. The PSA and a detailed scope of services are attached as Appendix E of this report. The noted scope of services was developed based on standard industry practices and ASTM Standard E1527-13. Unless an item is specifically addressed in the noted scope of services and discussed herein, it should be assumed that it was not included in the scope of work for this project. This Phase I ESA was prepared for the subject site located at 400 River Road, Puyallup, Washington.

1.2 Conditions and Limitations

This project was generally completed within the standard scope defined by ASTM. The contractual agreement between the client and Robinson Noble did not contain any special conditions or limitations. As outlined in ASTM E1527-13, the observations and findings generated for this project were based on information limited to "reasonably ascertainable sources."

This report was prepared using generally accepted professional practices. The nature of the ESA process requires that information generated, managed, and/or controlled by third parties is utilized. We believe that the sources utilized are accurate; however, we cannot guarantee that the third-party information is free of error. While we warrant that the opinions and conclusions drawn from information gathered during this study are based on sound professional judgment, we reserve the right to modify any opinion, conclusion, and/or recommendation in the event new, revised or different information becomes available. Unless specifically stated herein, no other warranty, expressed or implied, is made.

This ESA is not intended to be an exhaustive search for all possible environmental issues. It was designed to utilize reasonably ascertainable information in order to determine whether recognized environmental conditions (as defined by ASTM) warranting additional investigation are present. However, according to ASTM 1527-13 "no environmental site assessment can wholly eliminate uncertainty regarding the potential for recognized environmental conditions in connection with a property." This ESA is intended to reduce uncertainty regarding recognized environmental conditions for the subject property, but it cannot eliminate all uncertainty.

The Phase I ESA is intended as a step to qualify the report's user for the innocent landowner, contiguous property owner, or bona fide prospective purchaser limitations on CERCLA liability. It constitutes a portion of the "all appropriate inquiry into the previous ownership and uses of the property consistent with good commercial or customary practice" as defined by 42 U.S.C. §9601. The scope of services noted in Section 1.1 was completed by, or under the direction of, an environmental professional as defined in ASTM E1527-13.

1.3 Client and Right of Reliance

As outlined in the PSA governing this project, the client is HILT Investment Holdings, LLC. An additional right of reliance is granted to Columbia Bank. This report was prepared for the use of the client for the purposes outlined herein and in contract documents under which the project was completed.

Reliance by any party other than HILT Investment Holdings, LLC or Columbia Bank is strictly at their own risk. Additional entities may be granted the right to rely on this report, subject to the approval of the client and agreement by the relying party regarding the scope of services under which this report was prepared. Such additional rights-of-reliance may only be granted in writing either by specific mention in this section or in a letter of reliance prepared and signed by Robinson Noble

2.0 Previous Reports

We reviewed a previous Phase I ESA produced by Partner Engineering and Science, Inc (Partner) for Sterling Bank in 2013 that was provided by HILT Investment Holdings, LLC. Partner's report stated that the city directories included in thier Phase I ESA show that the subject was listed as Grant's Auto Sales and Service in the 1953 directory. The report indicates that Mrs. Amy Jackson with the Central Pierce Fire and Rescue Prevention and Education division stated that she had no fire incident records for the subject property. Permits obtained from the City of Puyallup Building Department for the phase I ESA contain building permits for signs on the subject and for replacing gas furnaces. The Partner report also references a previous Phase I ESA completed by Environmental Associated, Inc. in 2003. We were unable to obtain a copy of this older Phase I ESA. However, the Phase I report completed by Partner summarizes some of the report details from the older Environmental Associated Phase I ESA.

We have labeled the subject property buildings, former underground-storage tank locations, and the location of the above-ground storage tank on an aerial map of the site which is attached as Figure 2 in Appendix A. The Partner Phase I ESA indicates that the Environmental Associated, Inc. ESA suggests that the subject building (Building 1) had been heated in the past with heating oil stored in an underground-storage tank. The report suggests that the closed-in-place heating-oil tank is located beneath the southern margin of the parts offices (southeastern portion of Building 1). The report also identified that a gasoline UST was formerly located on the subject property near the southeastern driveway.

The Partner Phase I ESA also references a Phase II ESA that was conducted by Encore Environmenal Consortium, LLC (Encore) in 2003 for Argonaut Holdings, LLC. We were not able to acquire this report. The description below is based off of a summary of the report findings from the Phase I ESA completed by Partner. The purpose of the Phase II was to investigatie recognized environmental conditions found in the Environmental Associated, Inc. Phase I ESA conducted in 2003, described above.

The assessment reportedly consisted of 18 direct-push soil borings advanced on the subject property. Soil borings were advanced near storm drains at the request of Argonaut, one of which was in the vicinity of an above-ground oil-water separator on the subject. One soil boring was located near the assumed location of a former gasoline UST and one boring was advanced near the east side of the subject property to investigate potential impacts from the adjacent property to the east. A single boring was advanced near the closed-in-place heating-oil underground storage tank and two soil borings were placed near a waste-oil tank that was active at the time of the investigation. Eleven soil borings were advanced to investigate

locations of former underground hydraulic vehicle hoists. Soil and groundwater samples were collected at each boring location.

The soil results for samples collected near the waste-oil tank (active at the time) were found to contain gasoline-range and diesel-range petroleum hydrocarbons above applicable Washington State Model Toxic Control Act (MTCA) cleanup levels. In addition, previous reports and health department records indicate that the waste-oil tank was previously replaced and that the former tank was located in the same area. The previous waste-oil tank was reportedly removed in 1987. Ecology and health department records describe the decomissioning and removal of contamination regarding the waste-oil tank which was active at the time of the previous investigations in 2003, as described in Section 4.2 and 4.3.1. Confirmation samples collected from the excavation confirmed that the contamination was removed. The Tacoma-Pierce County Health Department (with authority from the Washington State Department of Ecology) issued a no-further-action (NFA) determination for the tank area indicating that the contamination was removed to the satisfaction of the health department. Since the tank was removed, contaminated soils were removed, and since the health department provided a NFA determination for the tank area, we have determined that the former waste-oil underground storage tanks do not represent a significant risk to the subject.

The Partner report indicates that no constituents were detected in soil samples collected from the borings along the eastern boundary of the property, near the closed-in-place heating-oil tank, near the storm drains, or near the hydraulic hoists. No groundwater contamination was found during the 2003 investigation completed by Encore. Since contamination was not identified near the location of the closed-in-place heating-oil tank, we have determined that the risk to the subject is likely low.

Since health department records, discussed in Section 4.3.1 describe the removal of two hydraulic hoists, and because the investigation by Encore did not identify any contamination near the former hoist locations, we opine that the hydraulic hoists likely do not represent a significant risk to the subject.

The site previously had a gasoline underground-storage tank, which previous reports indicate was located on the subject near the southeastern driveway. Records indicate the tank was removed in 1987. The boring advanced by Encore, revealed Xylene at a concentration of 15.8 mg/kg in soil sampled from the assumed location of the former gasoline UST, which is above the MTCA Method A cleanup level of 9 mg/kg. Due to the exceedance, the area of the gasoline UST was excavated by Environmental Management Services, LLC. (EMS) on September 2, 2004 and 26.37 tons of impacted soil was excavated and transported off site. Soil samples were collected from the excavation and analyzed for gasoline-range total petroluem hydrocarbons, benzene, toluene, ethyl benzene, and xylene (BTEX). Two additional samples were analyzed for total hydrocarbons by HCID method. The confirmation samples collected from the excavation were reported below the MTCA method A cleanup levels for the applicable constituents. No groundwater was encountered during the excavation. Since the area was excavated, contaminated soil was removed, and confirmation samples verified that the contamination was removed, we have determined that the former gasoline UST represents a low risk for the subject property.

We were unable to review a complete history of the environmental reports that exist for the subject property. Therefore, we are unable to verify the accuracy of some of the findings and conclusions within the previous reports. This is a significant data gap.

Available previous reports are included in Appendix D.

3.0 Physical Setting

3.1 Site Description

3.1.1 Legal and Location

The subject site is comprised of four parcels identified by Pierce County records as parcel numbers 0420214807, 0420214808, 0420214014, and 0420214057. The address assigned to the property is 400 River Road, Puyallup, Washington. A general location map is provided as Figure 1 in Appendix A. Five buildings are located on the subject property which have been numbered (Building 1 through Building 5) for clarity. Building numbers are labeled on Figure 1. A site diagram, indicating approximate parcel boundaries, is included in Appendix A as Figure 2. The subject consists of approximately 3.87 acres.

3.1.2 Current Property Use

The land use of the subject is commercial. The property is currently occupied by Northwest Motorsport, a car dealership.

3.1.3 Structures and Improvements

The subject property includes five commercial buildings, two large canopies, and asphalt parking lots and driveways.

3.2 Regional Characteristics

3.2.1 Current Adjoining Land Uses

The subject is situated in an area that is generally developed with commercial land uses. The directly adjoining parcels are occupied by the following:

- North: River Road and a car dealership
- Northeast: River Road, service center (repair shop) for car dealership, and a commercial building containing a restaurant, an investment company, a payday loan business, a hearing medical office, hair salon, a tax-services business, Verizon wireless store, and a dentist's office
- East and southeast: Fourth Street Northwest and a car dealership
- South: Boush Moving and Storage
- Southwest and west: A car dealership
- · Northwest: River Road and Key Bank

3.2.2 Topography, Geology, and Soils

The subject property is at an elevation of between 35 to 40 feet above sea level, sloping gently to the south. The subject property is located in the Puyallup River valley approximately 1,200 feet south of the river.

Troost (in press) maps the surface geology of the subject and surrounding area as alluvium. These sediments are generally composed of silt, sand, and gravel. This unit is generally very permeable.

Soils in the area of the subject have been classified as xerorthents, Puyallup fine sandy loam, and Pilchuck fine sand by the USDA (2015). Xerorthents is associated with fill material. Puyallup fine sandy loam and Pilchuck fine sand are generally associated with flood plains. These soils are typically well drained to excessively drained, respectively.

The soil survey map identified fill material in the central portion of the subject property. Although fill may exist, multiple soil borings have been advanced on the subject property as described in Section 2.0. Our review of previous work did not describe unsuitable fill material and analytical results did not identify contamination associated with fill materials. Therefore, we opine that fill material that may exist on the subject property is likely not a significant risk to the subject property.

3.2.3 Surface Water and Groundwater

There is no surface water on the subject. The nearest surface water body is the Puyallup River, located approximately 1,200 feet north of the subject.

Based upon well logs obtained from the Department of Ecology for sites near to the subject, the depth to groundwater is generally 15 to 20 feet. Shallow groundwater flow directions and depths are likely influenced by proximity to the Puyallup River. Groundwater flow directions in the vicinity of the subject site are presumed to be toward the north. Given that the groundwater gradient is relatively flat (at the scale of the subject property), the groundwater flow direction may vary from this presumed direction. However, the actual groundwater flow direction and depth cannot be fully characterized without performing work beyond the scope of this study.

3.3 Site and Surrounding Area Reconnaissance

Kari Thomas, a Robinson Noble geologist, completed a site reconnaissance (inspection) on August 19. The purpose of the reconnaissance was to obtain readily apparent indications of potential recognized environmental conditions as defined by ASTM Standard E1527-13. Selected photographs from the reconnaissance are attached in Appendix A. The inspection included a walkthrough of the site and a review of the surrounding properties. Also included was an inspection for possible contamination sources, including those noted below, on the site and from adjoining properties.

- storage tanks (underground and above ground)
- wells (water wells, dry wells, irrigation wells, monitor wells, etc.)
- drums or chemical storage areas
- hazardous substances, petroleum products, and unidentified containers
- pools of liquid, ponds, and surface impoundments
- maintenance or shop areas
- waste water systems

- · sumps or storm drains
- interior stains or corrosion
- stained soil or pavement
- potentially PCB-containing equipment
- piles of waste or trash; solid waste
- dead or dying vegetation
- unusual odors
- other observations that in the opinion of the field investigator indicate the possible presence of conditions of concern

As described in Section 3.1, the site is currently occupied by a Northwest Motorsport car dealership.

3.3.1 Interior Observations

The main building (Building 1) on the subject property contains multiple uses. The building contains a sales floor and offices, the parts and service department office, a waiting room, a parts-and tire- storage area, and maintenance and vehicle repair bays. The sales floor contains cubicle spaces and offices, and a showroom for a few vehicles. The sales area consists of typical office building materials and furnishings. The service center area contains offices, cashier, ordering

counters, and a waiting room for customers. The tire-storage area located in building one has a concrete floor and stacks of vehicle tires and boxes of vehicle parts. Small propane tanks are stored in the tire-storage area, which are used as forklift fuel. Rooms off the tire-storage area provide additional storage of wheels, and other various auto parts. Building 1 also contains a break room with a small kitchenette, tables and chairs, and gym equipment. The shop bays include above-ground-storage bins, which contain new motor oil. The shop floor is concrete and patched areas are visible on the floor, presumably from the removal of previous underground hoists. The current vehicle hoists in building 1 are above ground and are mounted onto the concrete floor. We did not observe any underground hoists in the repair bays. We did not observe floor drains in the maintenance and repair shops areas of building 1. Although dry stains were observed on the floor of the shop, we opine that the stains are confined to the concrete floor and do not likely impacted soils on the subject property. The parts department area includes a sales counter, racks of auto parts, and an area of Northwest Motorsport brand merchandise for sale. No environmental concerns or recognized environmental conditions were identified in Building 1.

Building 2 consists of vehicle repair and maintenance bays. The building contains a concrete floor and pad-mounted vehicle hoists. The shop contains above-ground storage containers for motor oil. We did not observe evidence of underground vehicle hoists remaining in place. Concrete patches and cuts, presumably associated with former underground hoists were observed on the shop floor. Above-ground storage bins containing new oil were observed in building two. No significant staining associated with the oil bins was observed. Although dry stains were observed on the floor of the shop, we opine that the stains are confined to the concrete floor and do not likely impacted soils on the subject property. We did not observe floor drains in building 2.

The wholesale office and balloon shed (Building 3) includes an office area and a storage shed for compressed helium tanks for filling balloons. The building consists of typical office building materials and furnishings.

Building 4 appeared to be primarily used for painting and auto body repair and also had a customizing shop. Building 4 has a concrete floor. Pad-mounted vehicle hoists are located in building 4. The southern-most room in building 4 contains two above-ground storage tanks for used oil. Various floor mats are layered on the floor in this room. Oil staining was observed on the exterior of the storage tanks, on floor mats, on compressor equipment, and on other surfaces in this room, indicating that spills, drips, and other releases of oil have occurred. However, the spills likely do not impact soils beneath the building since the building has a concrete floor and mats above the concrete floor likely captured any spills that have occurred. We recommend that best management practices be used regarding minimizing spills, containing spills, and cleanup of spills.

A washing machine and dryer, for washing laundry, are located in Building 5. Uniforms, anti-freeze, transmission fluid, and other vehicle fluids, wheels, tires, and an all-terrain vehicle are stored in building 5. Building 5 has an older concrete floor. Vehicle fluid containers that appeared to be in use were located on floor mats. We opine that spills from vehicle fluids would be contained on the concrete surface or be captured by floor mats. Therefore, we opine that the risk from spills from vehicle fluid storage containers is likely low.

Some building materials observed in the subject buildings, including surfacing materials on walls and ceilings and floor tiles, are suspect asbestos-containing building materials. Asbestos surveying and sampling are not included as part of this Phase I ESA. We recommend that an

asbestos survey be completed by a certified building inspector in accordance with all local and federal requirements prior to any renovation, demolition, or disturbance of building materials on the subject property.

3.3.2 Exterior Observations

A canopy is located at the south end of the subject property, west of building 5. We observed car-washing activities occurring under the canopy. An above-ground oil-water separator (OWS) was observed near the car-washing station. Interviews with Northwest Motorsport employees indicate that water from the stormwater system on the subject property is pumped up to the oil-water separator and is then pumped underground into the sewer system on 4th Avenue. They also indicated that the OWS is cleaned out every six months. The OWS appeared to have secondary containment in the event of an overflow. Since the OWS appears to be routinely maintained, is above ground, and is equipped with a secondary containment system, and because previous evaluations, discussed in Section 2.0, did not identify contamination surrounding the OWS, we opine that the oil-water separator does not represent a significant risk to the subject property.

A second canopy is located in the southwest corner of the property, west of building 4. The canopy appeared to function as an area for vehicle detailing and painting. A metal shipping container is located on the south side of building 4. The shipping container appeared to contain storage of empty steel drums and empty 5-gallon containers, which previously contained paints and other various products.

3.3.3 Roads

River Road and 4th Street Northwest adjoin the subject property to the north and east, respectively.

3.3.4 Utilities

Public water and sewer serve the site. Heating and cooling of the occupied buildings appear to be accomplished by electricity.

3.3.5 Adjoining Properties

Adjoining properties were inspected from the adjoining right-of-ways during the site visit. Adjoining properties include car dealerships, public roads, a moving and storage business, and public roads. The interiors of buildings on the adjoining properties were not inspected.

3.3.6 Data Gaps

The interiors of neighboring buildings were not inspected. However, based on the observed uses of these properties, we interpret this data gap is not significant. There are no other data gaps to the site and area reconnaissance.

3.3.7 Site and Surrounding Area Summary

The visual inspection of the subject property did not reveal any recognized environmental conditions.

The visual inspection of the adjoining properties did not reveal any concerns defined by ASTM as a recognized environmental condition.

4.0 Government Agency Information

4.1 EDR Database Search

A database search was conducted through a private, third-party firm, Environmental Data Resources, Inc. (EDR), to identify sites of known or potential contamination within varying radii as defined by ASTM. These radii range from the target property only to up to one mile from the subject property. The database search results, including the search radii, are included in the EDR report, which is attached as Appendix B. A complete list and descriptions of the databases searched may be found in the Government Records Search/Data Currency Section of the EDR report. The absence of records should not be used as conclusive evidence that conditions do not exist. Sites may not have been reported or registered and/or may pre-date the requirement to report or register.

The subject site is located at 400 River Road, Puyallup, Washington. The EDR report lists the subject site on the Underground Storage Tank (UST), ALLSITES, Resource Conservation and Recovery Act (RCRA) Non-generator (Nongen)/ No Longer Regulated (NLR), Finds, and Enforcement and Compliance History Online (ECHO)databases. The subject property is listed on the UST regarding four underground storage tanks previously used on the subject property, including two waste-oil USTs, a gasoline UST, and a heating-oil UST. The USTs are described in more detail in Section 2.0, 4.2, and 4.3.1. The subject is listed on the remaining databases as a result of handling petroleum products and previous compliance assistance visits and local source control inspections. Based on previous environmental assessments described in Section 2.0, and based on health department and Ecology records described in Section 4.3.1 and 4.2, respectively, we have determined that the risk to the subject from the USTs is low.

The EDR report lists 109 properties/businesses with a total of 166 listed conditions falling within the ASTM standard search radii. In addition, the EDR report lists seven unmappable (orphan) sites with listed conditions. As part of this study, where reasonably ascertainable, we determined the locations of the unmapped listed sites.

We assessed the risk to the subject property from both the mapped and unmapped listed sites. We were able to determine without further research that all but one of the listed sites pose little risk to the subject. We made this determination by reviewing site locations in relation to the estimated groundwater flow direction, reviewing the types of listings, and reviewing the reported status of the listed sites. As described below, one site was researched in more detail to determine its level of risk to the subject.

Boush Moving and Storage (EDR map ID # 8) at 820 4th Street Northwest adjoins the subject property to the south. The property is listed in the UST and ALLSITES databases. The property is listed in the UST database for a combination gas and diesel underground storage tank that is abandoned on the property. The Department of Ecology provided records for the tank, however, minimal records exist. A letter from Boush Moving and Storage to the Department of Ecology indicated that the tank was last used in 1982 and that the tank was emptied. The tank records are described below in Section 4.2. Brad Costello with the Tacoma-Pierce County Health Department indicated that they do not have tank records and that the tank pre-dates their regulations. We opine that the tank may not be closed-in-place in accordance with current regulations.

The records also indicate that there was no leak detection, cathodic protection, or internal lining for the tank system. The location of the tank on the property is not described in the records provided by the Department of Ecology. If the tank has leaked, there is potential for

contamination to surrounding soil and groundwater. Since the property is located upgradient of the subject, it is possible that contamination may have migrated to the subject through a groundwater pathway and possibly soil contamination if the tank was in close proximity to the southern subject property boundary. The potential for soil and groundwater contamination on the subject from the underground storage tank on the neighboring property represents a recognized environmental condition. Previous soil borings were not placed in optimal locations to identify contamination from the adjoining property to the south. However, the contamination, if it exists, is likely not extensive since contamination associated with the off-site tank was not identified in soil borings that were advanced on the subject property during previous environmental investigations.

4.2 Washington State Department of Ecology File Review Information

Ecology records include a decommissioning report for the previous waste-oil underground storage tanks, located near the south side of building 2, which is also included in health department records and is discussed in Section 4.3.1. The records also include a letter from Ecology to Ken Parks Chevrolet in 1998 indicating that the subject tank system had not been upgraded to current standards and would not be issued a compliance tag.

A checklist included in Ecology records indicate that the subject previously contained a 550-gallon waste-oil tank and a 2,000-gallon unleaded-gasoline fuel tank on the subject property. The record indicates that the fuel tank and the oil tank were removed in 1987. The checklist indicates that contamination was not found and that a site assessment was not completed.

Ecology records include a records indicating that the gasoline UST on the subject property was removed in 1987. The records also indicate that the tank had been in place approximately fifteen years before it was removed and that the tank did not have a leak detection system or cathodic protection and that the tank was unlined.

Ecology also provided tank records for the adjoining property to the south, Boush Moving and Storage. Ecology records indicate that a leaded gasoline and diesel tank was installed on the property in 1977 and was last used in 1982. A letter from Boush Moving and Storage to Ecology indicates that they had the remaining fuel pumped out of the tank, but there are no records that the tank was removed. The records suggest that the piping associated with the tank is above ground and that the tank was between 500 and 1,000 gallons in capacity. Ecology records are included in Appendix D.

4.3 Local Government Records

4.3.1 Health Department Records

Brad Costello with the Tacoma-Pierce County Health Department provided records for the subject property regarding decomissioning of underground storage tanks that were previously located on the subject property and removal of former underground hydraulic vehicle hoists.

The records provided include a decomissioning project completed by Environmental Management Service, LLC for Friendly Chevrolet in 2004. A 650-gallon underground waste-oil tank, located on the subject property along the southern wall of building 2, was removed and confirmation soil samples were collected from the excavation area. The report states that the soil sample results were below the MTCA cleanup Limits of 2,000 mg/kg for diesel and oil-range petroleum hydrocarbons. The waste-oil tank is also described in Section 2.0.

The report also describes that two hydraulic-oil cylinders associated with the hoist system in a stall in the service shop (Building 2) were removed in 2004. The report details that soil samples were collected from the excavation and that no contamination was found above MTCA cleanup levels. The records include a NFA determination letter from the Tacoma-Pierce County Health Department regarding the removal of the underground waste-oil tank previously described. Health department records are included in Appendix D.

4.3.2 County Assessor Records

According to Pierce County Assessor's records, the owner of tax parcels 0420214807, 0420214808, 0420214014, and 0420214057 is K & A Holdings, LLC. These records indicate previous owners include CMW Investments, LLC and Parks Family, LLC. Parcel information was reviewed on the Assessor website and is attached in Appendix C.

4.3.3 County Auditor Records

We reviewed Pierce County Auditor records for the subject property. No environmental liens or activity and use limitations were identified in the records, nor did we find other information on potential recognized environmental conditions.

4.3.4 Title Records and Environmental Liens or Activity and Use Limitations

HILT Investment Holdings, LLC did not provide a copy of title records for the property. Title records can provide information on past owners and can potentially contain environmental liens or activity and use limitations not revealed by other sources. Without provided records, we did not review title records for the property.

4.4 Tribal Records

This property is not located within the historical boundary of an Indian reservation. Therefore, tribal records most likely do not exist. However, the inability to review tribal records is a data gap.

4.5 Data Gaps

Neither title nor tribal records were reviewed for this assessment. However, the owner has indicated that they have reviewed title documents and found no liens or encumbrances related to environmental conditions existing on the subject. Our review of County records also found no concerns. Also, the subject is not within the historic boundary of an Indian reservation, so tribal records likely do not exist. Therefore, we interpret both of these data gaps to be insignificant.

5.0 Historical Research

A critical part of the ESA process is the consultation of historical sources to develop a history of the previous uses of the subject property and surrounding area. The purpose is to identify the likelihood of past uses causing recognized environmental conditions that could potentially impact the subject property. According to ASTM, the goal of historical research is to develop an assessment of chronological site and area land use from the first development. The historical information reviewed includes available sources that are reasonably ascertainable and relevant (as defined in ASTM E1527-13). Aerial photographs, fire-insurance maps, USGS 7.5-minute topographic maps, local street directories, County records, Polk's directories, and historical atlases were reviewed for this project. Relevant historical findings are given below.

5.1 Aerial Photographs

Aerial photographs (aerials) were searched through a third-party firm, EDR. A copy of the EDR Aerial Photo Decade Package is attached in Appendix B. Aerials dated from 1941, 1943, 1957, 1968, 1972, 1980, 1986, 1990, 1991, 2006, 2009, and 2011were reviewed.

The subject property appears developed with agricultural land on the subject property on the 1941 map. The subject also includes timberland and vegetation associated with an oxbow lake. River Road adjoins the subject property to the north and 4th Street Northwest adjoins the subject property to the east. Agricultural land and a road are located on the adjoining property to the west. The properties adjoining the subject to the south appear to be residential and agricultural land. The 1943 map appears relatively similar to the 1941 map.

The subject property appears developed with a large commercial building (Building 1) on the 1957 map. The subject also contains a paved parking lot. The adjoining property to the west appears developed with a driveway and approximately three small buildings, likely a single-family residence and outbuildings.

Two additional commercial buildings (Buildings 2 and 5) appear developed on the subject property on the 1968 aerial. The properties north and northeast of the subject and River Road appear developed with commercial buildings on the aerial. The adjoining property to the south appears developed with a commercial building on the aerial. The adjoining property to the west appears redeveloped with an asphalt-paved lot and appears used as storage of items or possibly vehicles. The property east of the subject and 4th Street Northwest appears developed with two small commercial buildings.

A commercial building is shown on the adjoining property to the west on the 1972 map. A second large commercial building has been added to the adjoining property to the west on the 1980 aerial. A second commercial building is located on the adjoining property to the south on the aerial. The 1986 aerial is of poor clarity. However, it appears similar to the 1980 aerial. The 1990 and 1991 aerials appear similar to the 1980 aerial. The adjoining property southwest of the subject appears developed with commercial buildings on the 2006 aerial. Subsequent aerials appear similar to the 2006 aerial.

We did not find any historical environmental conditions from the aerial photo review.

5.2 USGS Topographic Maps

A topographic (topo) map search was completed through a third-party firm, EDR. A copy of the EDR Historical Topographic Map Report is attached in Appendix B. Coverage was available for years

The earliest topo, dated 1897, Shows the Puyallup River in the area of the subject and surrounding area. The city of Puyallup appears developed in the surrounding area south of the subject. A small building is shown on the the subject property on the 1941 map. The building may be an outbuilding. The map shows an intermittent stream travelling through the subject property from east to southwest. Two commercial buildings are shown on the subject property on the 1961 map. Two additional commercial buildings are shown on the subject property on the 1968 map, as shown by structure symbols on the map. The adjoining properties to the north, east, and west appear developed with commercial buildings, as shown by structure symbols on the map.

The 1973 map appears relatively similar to the 1968 map. Additional development in the surrounding area is shown on the 1981 map as indicated by shading on the map. The 1994 map and subsequent maps do not show details at the scale of the subject.

No specific historical recognized environmental conditions were revealed through the topographic map search.

5.3 Sanborn Fire Insurance Maps

A Sanborn map search was completed through a third-party firm, EDR. A copy of the EDR Sanborn Map Report is attached in Appendix B. Sanborn fire-insurance map coverage is not available for the subject and surrounding area.

5.4 City, County, and Suburban Directories

A directory search was completed through a third party, EDR. Their report, EDR City Directory Abstract, is attached in Appendix B. This source shows available directory coverage for the area surrounding the subject property. Pertinent results of the directory research are detailed below.

The subject address, 400 River Road, is listed in the 1959, 1964 city directory as Grant's Chevrolet, Inc. (auto sales). The address is listed as Service Chevrolet, Inc in the 1970, 1975, and 1981 directories. Ken Parks Chevrolet Inc. is listed at the subject propery address in the 1986, 1992, 1995, and 1999 directories. The 1999 directory also lists Puyallup Chevrolet and Subaru at the subject property address. The 2003 and 2008 directories lists Bullet Proof Bedliners and Puyallup Chevrolet and Subaru on the subject property address. Northwest Motorsport and Bullet Proof Bedliners are listed at the subject property address in the 2013 directory.

The adjoining property to the west, located at 500 River Road, is listed in the 1992 city directory as Korum Motors (auto sales).

The property east of the subject and 4th Street Northwest is listed in the 1970, 1975, 1981, and 1986 directories as Larson Motors Inc. (auto sales), Daihatsu of Puyallup and Larson Dodge are listed at the address in the 1992 and 1999 directories. The property is listed as Larson Dodge in the 1995 directory and as Larson Motors Inc in the 2003 and 2008 directories. The property is listed as JMS Detail & Auto Accessories and Larson Motoros Chrysler Puyallup in the 2013 directory.

The adjoining property to the south, located at 820 4th Street Northwest is listed in the 1970, 1975, 1981, 1986, 1992, 1995, 1999, 2003, 2008, and 2013 directories as Boush Moving and Storage Inc. The address is also listed as Olympic Moving & Storage in the 2013 directory.

No specific historical recognized environmental conditions were revealed through the directory research.

5.5 Additional Historical Sources

5.5.1 Fire Department/Fire Marshal

We submitted a public records request for fire records to the City of Puyallup. However, we have not yet received any records.

5.5.2 Building Permits

We submitted a public records request to the City of Puyallup for building permits. However, we have not yet received any records.

5.5.3 Other Historical Sources

No specific historical recognized environmental conditions were revealed through the research of these other historical sources.

5.6 Summary of Historical Findings

The historical research indicates the subject property was first developed prior to 1941 as agricultural land with an outbuilding. Following this initial development, city directories from the previous Phase I (Partner 2013) indicate that the subject was developed with a car dealership by 1954. The car dealership was expanded over time to include additional buildings.

Historically, the surrounding area was largely agricultural land and residences with outbuildings. While the surrounding area south of the subject property has remained predominantly residential, the remaining area was largely redeveloped with commercial uses in the 1960's.

No specific historical recognized environmental conditions were revealed through historical research.

5.7 Historical Data Failure Summary

We were unable to determine the first developed use. This is a historical data failure. However, aerials and topographic maps suggest that the subject was developed with a small building, likely an outbuilding, and agricultural land by 1941, which we opine is likely the first developed use. Because the first use was for agriculture, this data failure is not considered significant.

6.0 Client and Owner Provided Information and Interviews

6.1 Reason for Conducting the Phase I ESA

HILT Investment Holdings, LLC stated the purpose of this Phase I ESA is financing.

6.2 Valuation Reduction for Environmental Issues

Debbie Cupples, a representative of the current property owner, indicated the value of the property has not been reduced due to environmental issues.

6.3 Interviews

Interviews, both actual and attempted, for this Phase I ESA were conducted by Kari Thomas, a Robinson Noble geologist.

6.3.1 Agencies

Based on the information researched for this study, agency interviews were determined unnecessary and were not conducted.

6.3.2 Site Tenant(s)

We conducted an interview with Chase Malloy, a representative of Northwest Motorsport, at the time of the site visit. He provided information regarding uses of the subject buildings. He indicated that waste oil is removed from the above-ground storage tanks on the subject property by a contractor approximately once a week. He also indicated that storm drains on the subject property go through an above-ground oil-water separator located on the subject property. He stated that to his knowledge water on the site goes into the sewer system on 4th Street Northwest after it passes through the oil-water separator. Mr. Malloy indicated that the maintenance and repair shops currently utilize above-ground, pad-mounted vehicle lifts. Mr. Malloy

stated that they generally store less than 500 tires on the subject property. Our interview with Mr. Malloy did not reveal any significant environmental issues or recognized environmental conditions.

6.3.3 Current Owners

We conducted an interview with Debbie Cupples, a representative of the current property owner. However, the interview did not reveal any significant environmental issues or recognized environmental conditions. We also conducted an interview with Chase Malloy, a representative of the current property owner, described above in Section 6.3.2. Ms. Cupples provided previous reports and documentation for the subject property.

We also submitted a detailed questionnaire to Debbie Cupples. The questionnaire includes questions concerning the subject property's current use and history; whether the person answering the questionnaire has any specialized knowledge or experience, or are aware of any "commonly known information," in connection with potential environmental conditions; whether they have any actual knowledge of environmental liens or activity use limitations (AULs) for the subject; whether the value of the property has been affected by environmental issues; and concerning the reason why the Phase I ESA is needed. The answers to the questionnaire state that used oil and used oil filters are removed by Emerald Services and that batteries are recycled by Seattle Automotive Distributing. The questionnaire also suggests that all of the vehicle hoists were above ground at the time that the property was purchased on behalf of Northwest Motorsport. The questionnaire is attached in Appendix D. The answers to the questionnaire did not reveal any significant environmental issues or recognized environmental conditions.

6.3.4 Previous Owners

Through our research on this project, we were able to identify at three previous owner of the subject property. The previous owers are businesses and we were unable to obtain anyone knowlegable about the property.

6.3.5 Others

No other interviews were conducted for this report.

6.4 Data Gaps

We were unable to interview previous owners. This is a data gap. However, we opine that the interviews, had they occurred, would not likely alter the findings of this report. Therefore, we have determined this data gap to be insignificant.

7.0 Findings, Conclusions, and Recommendations

7.1 Findings

The subject site is comprised of four parcels identified by Pierce County records as parcel numbers 0420214807, 0420214808, 0420214014, and 0420214057. The address assigned to the property is 400 River Road, Puyallup, Washington. These parcels are currently used primarily for commercial uses, and are occupied by Northwest Motorsport, a car dealership. The surrounding properties include public roads, car dealerships and maintenance and repair shops associated with the dealerships, and a moving and storage facility.

The historical research indicates the subject property was developed by 1941 with agricultural land and a small building, likely an outbuilding. Following this development, the subject was

redeveloped with a car dealership by 1953. The site was developed into its current configuration in 1968.

We reviewed standard environmental databases and found the subject property on the UST, ALLSITES, RCRA Nongen/ NLR, Finds, and ECHO databases. The subject property is listed on the UST regarding four underground storage tanks previously used on the subject property, including two waste-oil USTs, a gasoline UST, and a heating-oil UST. The subject is listed on the remaining databases as a result of handling petroleum products and previous compliance assistance visits and local source control inspections. The database search did indicate a number of nearby properties listed. We further investigated the only site that appeared to be of concern. Our additional investigation found evidence of a recognized environmental condition, which is described below in Section 7.3.

We submitted a questionnaire to the subject property owner and interviewed people knowledgable about the property. This information did not provide evidence of any recognized environmental conditions.

7.2 Data Gap Summary

Significant data gaps affect an environmental professional's ability to identify recognized environmental conditions. However, data gaps in and of themselves are not inherently significant. We identified one significant data gap through this study. We were unable to review a complete history of the environmental reports that exist for the subject property (see Section 2.0). Therefore, we are unable to verify the accuracy of some of the findings and conclusions within the previous reports. This is a significant data gap.

7.3 Conclusions

We have performed a Phase I Environmental Site Assessment in general conformance with the scope and limitations of ASTM Practice E1527-13 of 400 River Road, Puyallup, Washington. Any exceptions to, or deletions from, this practice are described in Section 1.2 of this document. This assessment has not revealed evidence of recogonized environmental conditions except for:

The potential for soil and groudwater contamination on the subject property from an abandoned underground-storage tank located on the adjoining property to the south. Since the underground-storage tank is upgradient of the subject, it is possible for contamination, if it exists, to have migrated to the subject.

7.4 Recommendations

We opine that the contamination, if it exists, is likely not extensive since contamination associated with the off-site tank was not identified in soil borings that were advanced on the subject property during previous environmental investigations. As previously described, we were unable to review the complete history of environmental investigations conducted on the property. We recommend obtaining the previous reports, if possible, for further review to determine if previous investigations are sufficient to resolve the recognized environmental condition identified above and the significant data gaps. If not, we recommend a subsurface investigation be conducted near the southern boundary of the subject property to identify if soil or groundwater contamination exists from the adjoining property.

8.0 References

Federal, State, and Local Agency Records

Pierce County Assessor's Office

Tacoma-Pierce County Health Department

U.S. Geological Survey - 7.5 - Minute Series - Puyallup quadrangle

U. S. Department of Agriculture - Soil Survey, 2015 Pierce County, Washington

Washington State Department of Ecology, Southwest Region

Library Research Tools

Metsker's Historical Atlas

Polk's City Directory

Sanborn Fire Insurance Maps

Other Sources

Environmental Data Resources Inc., 2016:

EDR Radius Map™ Report with GeoCheck®, August18

EDR Historical Topographic Map Report, August 11

EDR Aerial Photo Decade Package, August 12

EDR City Directory Image Report, August 15

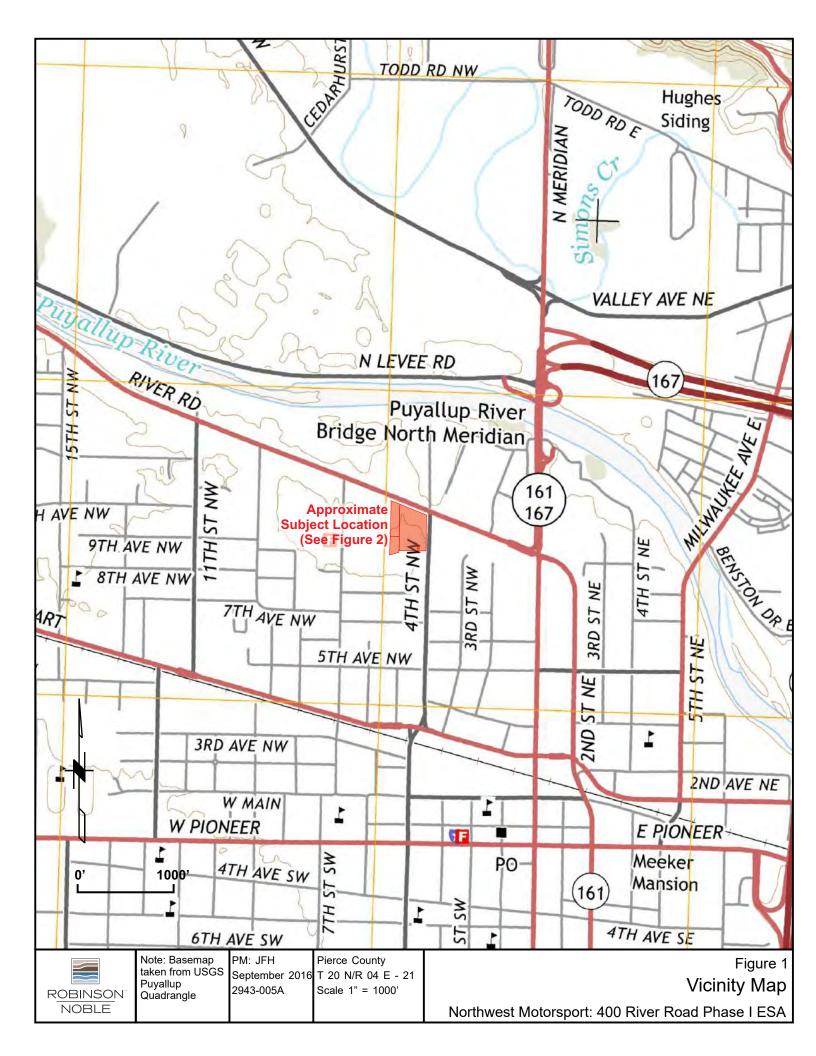
EDR Certified Sanborn® Map Report, August 12

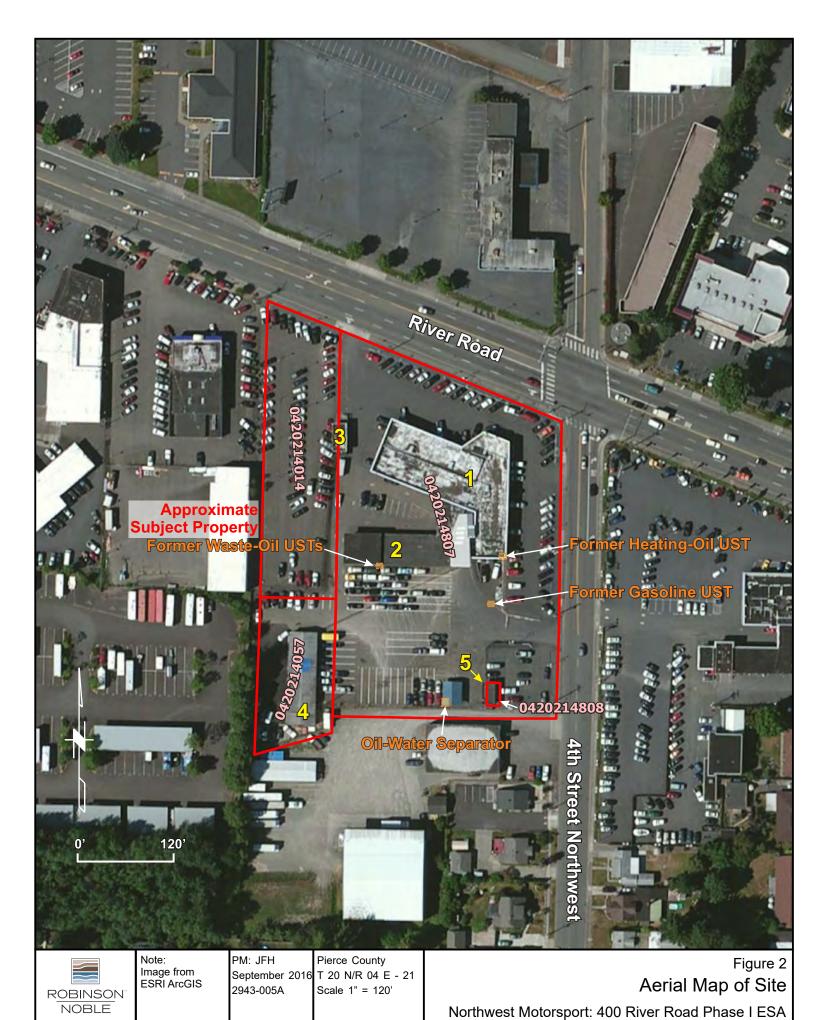
Google Maps: http://maps.google.com/

Google Earth: http://www.google.com/earth/

Partner Engineering and Science, Inc., 2013, Phase I Environmental Site Assessment Report, 400 River Road Puyallup, Washington, prepared for Sterling Bank

The Riley Group, Inc, 2011, Focused Phase II Subsurface Investigation NW Motorsport Property, 400 River Road Puyallup, Washington, prepared for Northwest Motorsport

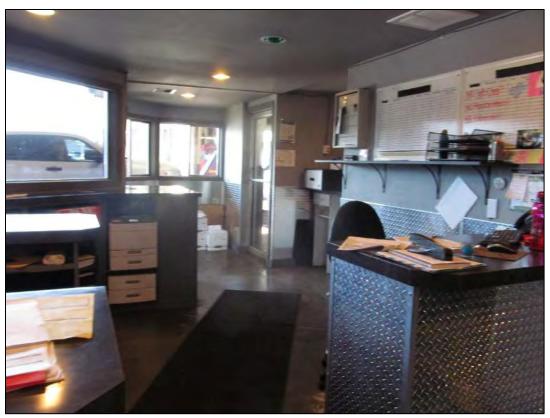

Troost, K.G, Booth, D.B., and Borden, R.K., in press, Geologic map of the Puyallup 7.5-minute quadrangle, Washington: U.S. Geological Survey Miscellaneous Field Investigation, scale 1:24,000


9.0 Closing

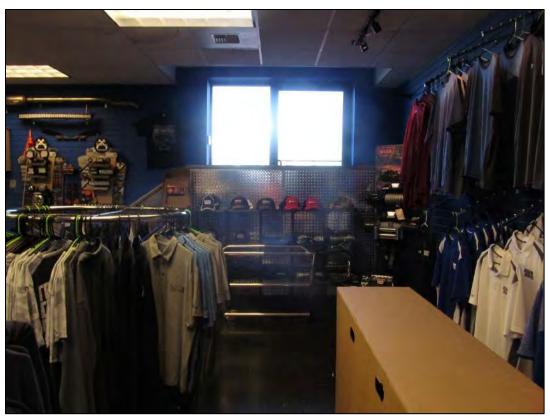
Questions regarding the contents of this report should be addressed to the project manager. The professional qualifications of the preparers of the report are listed in Appendix E to this document. If you have questions regarding this report or require further discussion of any portion of this project, please contact Robinson Noble.

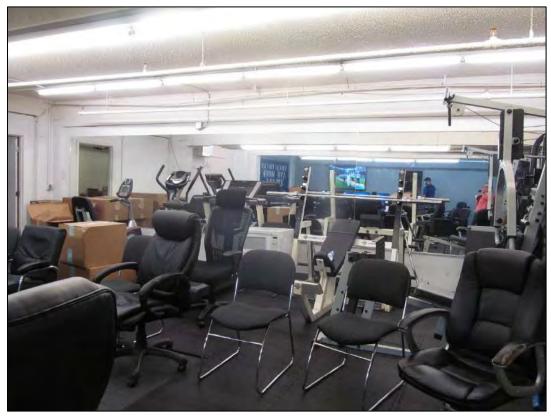
The statements, conclusions, and recommendations provided in this report are to be exclusively used within the context of this document. They are based upon generally accepted environmental and hydrogeologic practices and are the result of analysis by Robinson Noble, Inc. staff. This report, and any attachments to it, is for the exclusive use of HILT Investment Holdings, LLC, Northwest Motorsport, and Columbia Bank. Unless specifically stated in the document, no warranty, expressed or implied, is made.

APPENDIX A



Building 1 on the subject property, view facing east


Interior of sales area of building 1


Service center office in building 1

Parts department area in building 1

Parts department in building 1

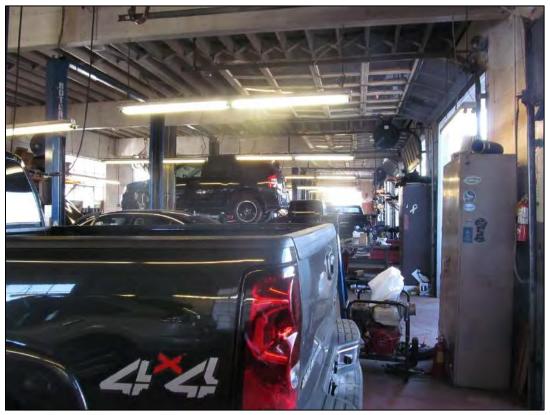
Break room area in building 1

Parts storage in building 1

Tire and parts storage building 1

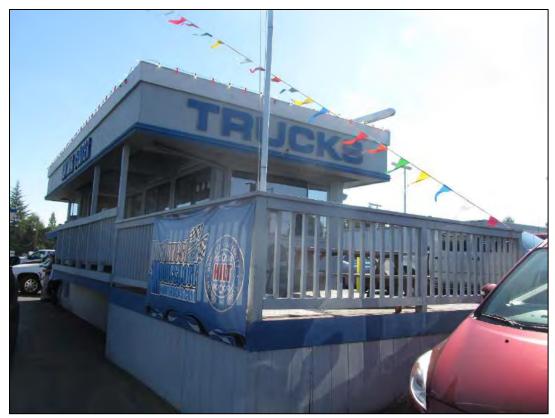
Service entrance of building 1, view facing north

Service bays in building 1


Oil storage containers in service bays in building 1

Service bays for building 2

Oil storage containers in service bays in building 2


Service bays in building 2

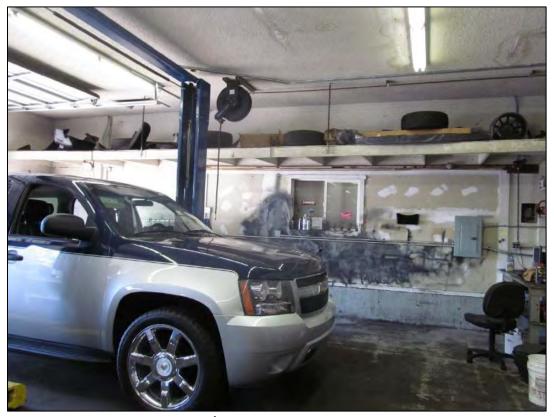
Containerized wastes in building 2

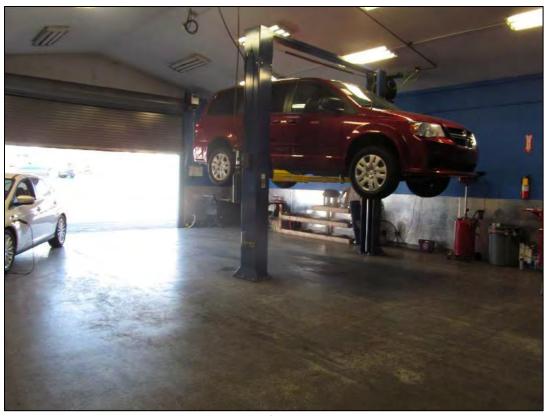
Awning between building 1 and building 2, view facing south toward car wash area

Wholesale office and balloon shed (building 3), view facing southwest

Interior of wholesale office (building 3)

Helium tanks in balloon shed (building 3)


Paint and service shop in building 4


Interior of southern bay of building 4

Above-ground storage tanks of waste oil in building 4

Interior of building 4 paint service area

Interior of building 4

Canopy near building 4, view facing southwest

Interior of shipping container near building 4

Laundry and storage building (building 5), view facing north

Interior of building 5

Interior of building 5

Vehicle fluid containers in building 5

Interior of building 5

Car wash area, view facing northeast

Above-ground oil-water separator

Parcel Summary for 0420214014

08/19/2016 02:17 PM

K & A HOLDINGS LLC

PUYALLUP WA 98371-3875

1502 RIVER RD

Property Details

Parcel Number: 0420214014 Site Address: 506 RIVER RD

Account Type: Real Property

Category: Land and Improvements

Use Code: 5515-AUTO DLR NEW AND USED RETAIL

Appraisal Details

Value Area: PI2
Appr Acct Type: Commercial

Business Name:

Last Inspection: 05/20/2015 - Physical Inspection

Assessment Details

Taxpayer Details

Taxpayer Name:

Mailing Address:

2016 Values for 2017 Tax

Taxable Value: 577,200

Assessed Value: 577,200

Related Parcels

Group Account Number: 434
Mobile/MFG Home and Personal Property n/a

parcel(s) located on this parcel:

Real parcel on which this parcel is located: n/a

Tax Description

Section 21 Township 20 Range 04 Quarter 43: COM AT A STONE MON AT INTER OF 7TH AVE NW & 4TH ST NW TH N 1040.33 FT TO CENT OF HWY TH N 20 DEG 21 MIN W 332 FT TH S 53.33 FT TO IRON PIPE & POB TH S 325 FT TH W 93.76 FT TH N 359.78 FT TH S 69 DEG 39 MIN E 100 FT TO POB

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

Pierce County Assessor-Treasurer Mike Lonergan 2401 South 35th St Room 142

2401 South 35th St Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2016 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

1 of 1 8/19/2016 2:17 PM

Taxes / Values for 0420214014

08/19/2016 02:18 PM

Property Details
Parcel Number:

Site Address:

0420214014 506 RIVER RD

Account Type: Real Property

Weed Control Principal

Category: Land and Improvements

Use Code: 5515-AUTO DLR NEW AND USED RETAIL

Taxpayer Details

Taxpayer Name: K & A HOLDINGS LLC
Mailing Address: 1502 RIVER RD

PUYALLUP WA 98371-3875

Assessed Values											
Val Yea		Taxable Value	Assessed Total	Assessed Land	Assessed Improvements	Current Use Land	Personal Property	Notice of Value Mailing Date			
201	16 2017	577,200	577,200	572,600	4,600		0	0 06/23/2016			
201	5 2016	577,400	577,400	572,600	4,800		0	0 07/06/2015			
201	2015	485,200	485,200	467,400	17,800		0	0 06/27/2014			
201	2014	485,200	485,200	467,400	17,800		0	0 06/24/2013			
201	2013	485,200	485,200	467,400	17,800		0	0 06/22/2012			
201	1 2012	534,900	534,900	518,000	16,900		0	0 06/27/2011			
201	.0 2011	562,400	562,400	543,200	19,200		0	0 06/21/2010			
200	9 2010	622,200	622,200	600,100	22,100		0	0 07/17/2009			
200	08 2009	652,300	652,300	631,700	20,600		0	0 06/13/2008			

Current Charges

Balance Due: 0.00 Minimum Due: 0.00

as of 08/19/2016

Exemptions

No exemptions

Tax Code Areas **Paid Charges** Tax For questions regarding any electronic payments you may have made, please contact Point & Pay at TCA Rate Year 1-877-765-4112 0.000000 2017 096 Year Charge Type **Amount Paid** 2016 <u>096</u> 13.947331 2015 14.253921 2016 Property Tax Principal 8.053.19 096 2014 14.003008 1.70 096 Weed Control Principal 2013 14.365513 Pierce Conservation District Principal 4.73 096 Total 2016 8,059.62 2012 096 12.775261 096 12.347762 2015 Property Tax Principal 6,916.00 2011 2010 <u>096</u> 11.255588 Weed Control Principal 1.70 Pierce Conservation District Principal 2009 <u>090</u> 10.173927 4.73 Total 2015 6,922.43 6,794.26 **Receipts** 2014 Property Tax Principal Weed Control Principal 1.64 Amount Pierce Conservation District Principal Date Number Applied 4.74 8,059.62 Total 2014 6,800.64 05/12/2016 8965114 04/27/2016 8895988 0.00 2013 Property Tax Principal 6.970.15 3,461.22 Weed Control Principal 1.64 10/27/2015 8479402 Pierce Conservation District Principal 4.72 04/17/2015 8179562 3,461.21 **6,976.51** 10/23/2014 3,400.32 Total 2013 7874020 2012 Property Tax Principal 04/21/2014 7567910 3,400.32 6,833.49 1.64 10/17/2013 3,488.26 Weed Control Principal 7260539 Pierce Conservation District Principal 5.00 04/30/2013 7120625 3,488,25 **6,840.13** 10/19/2012 3,420.07 Total 2012 6674330 6,944.38 04/24/2012 3,420.06 2011 Property Tax Principal 6435121 01/11/2012 3,475.51 Weed Control Principal 1.64 6281151 Pierce Conservation District Principal 5.00 04/25/2011 <u>5805219</u> 3,475.51 Total 2011 **6,951.02** 10/29/2010 5593608 3,504.81 7,003.22 04/22/2010 <u>5178577</u> 3,504.80 2010 Property Tax Principal 1.39 10/29/2009 3,321.43 Weed Control Principal <u>4996948</u> 5.00 04/30/2009 3,321,42 Pierce Conservation District Principal <u>4766159</u> Total 2010 **7.009.61** 11/03/2008 4476295 2.616.55 2009 Property Tax Principal 6,636.46 05/05/2008 4214813 2,616.54

1 of 2 8/19/2016 2:18 PM

1.39

10/19/2007

3710785

2,168.42

Click here for ULID information

Pierce Conservation District Principal	5.00	05/04/2007	<u>3609339</u>	2,168.4
Total 2009	6,642.85	10/27/2006	3246067	1,173.6
		04/24/2006	<u>2905958</u>	1,173.
		10/21/2005	<u>2633444</u>	1,299.
		04/22/2005	2388771	1,299.
		11/01/2004	2142358	1,169.
		05/05/2004	1898548	1,169.

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

Pierce County Assessor-Treasurer Mike Lonergan 2401 South 35th St Room 142

Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2016 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

2 of 2

Land Characteristics for 0420214014

08/19/2016 02:19 PM

Property Details		Taxpayer Details	
Parcel Number:	0420214014	Taxpayer Name:	K & A HOLDINGS LLC
Site Address:	506 RIVER RD	Mailing Address:	1502 RIVER RD
Account Type:	Real Property		PUYALLUP WA 98371-3875
Category:	Land and Improvements		
Use Code:	5515-AUTO DLR NEW AND USED RETAIL		
Location:		Size	
LEA:	2052	SF:	30,197
RTSQQ:	04-20-21-43	Acres:	0.69
		Front Ft:	392
Amenities		Utilities	
WF Type:	n/a	Electric:	Power Installed
View Quality:	n/a	Sewer:	Sewer/Septic Installed
Street Type:	Paved	Water:	Water Installed

Warning: Appraisal data provided is for informational purposes only and is incomplete for determination of value.

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

Pierce County Assessor-Treasurer Mike Lonergan
2401 South 35th St Room 142
Tacoma, Washington 98409
(253)798-6111 or Fax (253)798-3142

www.piercecountywa.org/atr

Copyright © 2016 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

8/19/2016 2:19 PM 1 of 1

Building Characteristics for 0420214014

08/19/2016 02:19 PM

Property Details						Тахра	ayer Deta	ils							
Parcel Number:	0420214014					Тахра	yer Name	: K	& A HOLDI	INGS LLC					
Site Address:	ite Address: 506 RIVER RD					Mailing Address:			: 1502 RIVER RD						
Account Type:	count Type: Real Property							PU	PUYALLUP WA 98371-3875						
Category:	: Land and Improvements														
Use Code: 5515-AUTO DLR NEW AND USE				D RETAIL											
Building ID: 1											1 bui	lding(s)	on this parc		
General Characteri	stics														
Property Type:	Commercial		SF:			1		F	in. Attic S	SF:		0			
Condition:	Average			Net SF:		1	1 Total Bsmnt. SF:			nt. SF:	0				
Quality:	Average		Atch. Garage SF:		0	0 Fin. Bsmnt. SF:		t. SF:	0						
Neighborhood: 502 / 710		Det. Garage SF:		0	0 Bsmr		smnt. Gar. Door: 0			0					
Occupancy:	Occupancy: Addon Only Comm		Carport SF:		0	Fireplaces:		:	0						
Built-As															
Description	Year Built	Adj. Year I	Built	SF	Stories	Bed- rooms	Bath- rooms	Exterior	Class	Roof	HVAC	Units	Sprinkler SF		
Addon Only Comm	1990	0		1	1	n/a	n/a	n/a	n/a	n/a	None	0	0		
Improvement Deta	ils														
Detail Type	Detail Description								Units						
Add On		Asphalt (LC)							11,000						

Warning: Appraisal data provided is for informational purposes only and is incomplete for determination of value.

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

Pierce County Assessor-Treasurer Mike Lonergan 2401 South 35th St Room 142

2401 South 35th St Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright @ 2016 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

1 of 1 8/19/2016 2:19 PM

Recent Sales Activity for 0420214014

08/19/2016 02:19 PM

Property Details

Parcel Number: 0420214014 Site Address: 506 RIVER RD Account Type: Real Property

Category: Land and Improvements

Use Code: 5515-AUTO DLR NEW AND USED RETAIL **Taxpayer Details**

Taxpayer Name: K & A HOLDINGS LLC Mailing Address: 1502 RIVER RD

PUYALLUP WA 98371-3875

Sales

Sales from 1997 to date are displayed here. However, the sales listed on this site are not complete and do not include all property transfer types. Recorded documents, accessed by name and date, can be found using the Pierce County Auditor's Recorded Document Search.

ETN	Parcel Count	Grantor	Grantee	Sale Price	Sale Date	Deed Type	Sale Notes	Confirmation
4261216	4	CMW INVESTMENTS LLC	K & A HOLDINGS LLC	3,200,000	05/24/2011	Statutory Warranty Deed	I	Unconfirmed
4164418	4	PARKS FAMILY LLC	CMW INVESTMENTS LLC	3.500.000	06/01/2007	Statutory Warranty Deed	I	Unconfirmed

Sales history records current through 5/16/2003 are available on CD. These records were maintained as general information regarding property transfer for tax purposes only and are not an official record of sales transactions. A public records request form and the cost to copy of \$66.10 are required to obtain the records on CD. You may return the signed form and payment by mail or in person to the Assessor-Treasurer's Office at the address listed below.

For additional information on this issue, contact the Pierce County Assessor-Treasurer's Office Records Manager at 253-798-3134.

Sales Search

Search Search for sales with characteristics similar to this property.

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

> Pierce County Assessor-Treasurer Mike Lonergan 2401 South 35th St Room 142

> Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2016 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

8/19/2016 2:20 PM 1 of 1

Parcel Summary for 0420214807

08/19/2016 02:21 PM

Property Details

Parcel Number: 0420214807 Site Address: 400 RIVER RD

Account Type: Real Property

Category: Land and Improvements

Use Code: 5515-AUTO DLR NEW AND USED RETAIL

Appraisal Details

PI2 Value Area: Appr Acct Type: Commercial

Business Name:

Last Inspection: 05/16/2015 - Physical Inspection **Taxpayer Details**

Taxpayer Name: K & A HOLDINGS LLC Mailing Address:

1502 RIVER RD

PUYALLUP WA 98371-3875

Assessment Details

2016 Values for 2017 Tax

Taxable Value: 3,005,600

Assessed Value: 3,005,600

Related Parcels

Group Account Number:

Mobile/MFG Home and Personal Property 2000203421 2818070636

parcel(s) located on this parcel:

Real parcel on which this parcel is located: n/a

Section 21 Township 20 Range 04 Quarter 43: COM AT MON AT INTER OF 4TH ST NW & 7TH AVE NW IN NE OF SEC 28 20 4E TH N 00 DEG 21 MIN E 636 FT ALG C/L OF SD 4TH ST TH N 89 DEG 39 MIN W 30 FT TO WLY R/W OF SD 4TH ST & POB TH CONT N 89 DEG 39 MIN W 281.28 FT TH N 00 DEG 21 MIN E 465.75 FT M/L PAR TO SD C/L OF 4TH ST TO S R/W LI OF STATE HWY # 5 TH S 69 DEG 18 MIN 10 SEC E 300 FT TO WLY R/W OF 4TH ST TH S 00 DEG 21 MIN W 361.44 FT TO POB ENCLO ED IN THE ABOVE IS L 13 B 19 J P STEWARTS 7TH ADD SEG F 0740

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

> Pierce County Assessor-Treasurer Mike Lonergan

> 2401 South 35th St Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2016 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

8/19/2016 2:21 PM 1 of 1

Taxes / Values for 0420214807

08/19/2016 02:21 PM

Property Details

Parcel Number: 0420214807 400 RIVER RD Site Address:

Account Type: Real Property

Category: Land and Improvements

5515-AUTO DLR NEW AND USED RETAIL Use Code:

Taxpayer Details

Taxpayer Name: K & A HOLDINGS LLC Mailing Address: 1502 RIVER RD

PUYALLUP WA 98371-3875

Assess	Assessed Values												
Value Year	Tax Year	Taxable Value	Assessed Total	Assessed Land	Assessed Improvements	Current Use Land	Personal Property	Notice of Value Mailing Date					
2016	2017	3,005,600	3,005,600	2,290,500	715,100		0	0 06/23/2016					
2015	2016	3,052,000	3,052,000	2,290,500	761,500		0	0 07/06/2015					
2014	2015	2,529,200	2,529,200	1,869,700	659,500		0	0 06/27/2014					
2013	2014	2,529,200	2,529,200	1,869,700	659,500		0	0 06/24/2013					
2012	2013	2,521,000	2,521,000	1,869,700	651,300		0	0 06/22/2012					
2011	2012	2,705,500	2,705,500	2,071,900	633,600		0	0 06/27/2011					
2010	2011	2,930,900	2,930,900	2,173,000	757,900		0	0 06/21/2010					
2009	2010	3,249,700	3,249,700	2,400,400	849,300		0	0 07/17/2009					
2008	2009	3,353,800	3,353,800	2,526,700	827,100		0	0 09/19/2008					

Current Charges as of 08/19/2016 No exemptions Balance Due: 0.00 Minimum Due: 0.00

Exemptions

Balance Due: 0.00	Minimum Due: 0.00	as of 08/19/2016	NO CAC	приопз		
Paid Charges			Tax Co	ode Are	eas	
	onic payments you may have made, please co	ntact Point & Pay at	Tax			
1-877-765-4112		•	Year	TCA	Rate	
Тах			2017	<u>096</u>	0.0000	00
Year Charge Type		Amount Paid	2016	<u>096</u>	13.947	331
2016 Property Tax Principal		42,567.26	2015	<u>096</u>	14.253	921
Weed Control Principal		2.12	2014	<u>096</u>	14.003	800
Fire Benefit Charge Principal		2,612.44	2013	<u>096</u>	14.365	513
Pierce Conservation District	Principal	4.73	2012	<u>096</u>	12.775	261
Total 2016		45,186.55	2011	<u>096</u>	12.347	762
2015 Property Tax Principal		36,051.02	2010	<u>096</u>	11.255	588
Weed Control Principal		2.12	2009	<u>090</u>	10.173	927
Fire Benefit Charge Principal		2,734.54				
Pierce Conservation District	Principal	4.73	Receip	ots		
Total 2015		38,792.41				Amount
2014 Property Tax Principal		35,416.41	Date		Number	Applied
Weed Control Principal		1.92	05/12/	2016	<u>8965115</u>	45,186.5
Fire Benefit Charge Principal		2,613.18	04/27/	2016	<u>8896169</u>	0.0
Pierce Conservation District	Principal	4.74	10/27/	2015	8479333	19,396.2
Total 2014		38,036.25	04/17/	2015	8179564	19,396.2
2013 Property Tax Principal		36,215.46	10/23/	2014	7874022	19,018.1
Weed Control Principal		1.92	04/21/	2014	<u>7567912</u>	19,018.1
Fire Benefit Charge Principal		2,534.30	10/17/	2013	<u>7260541</u>	19,378.2
Pierce Conservation District	Principal	4.72	04/30/	2013	7120627	19,378.2
Total 2013		38,756.40	10/19/	2012	<u>6674328</u>	18,334.2
2012 Property Tax Principal		34,563.47	04/24/	2012	6435119	18,334.1
Weed Control Principal		1.92	01/11/	2012	<u>6281150</u>	19,115.4
Fire Benefit Charge Principal		2,098.00	04/25/	2011	<u>5805192</u>	19,115.4
Pierce Conservation District	Principal	5.00	10/29/	2010	<u>5593607</u>	19,308.9
Total 2012		36,668.39	04/22/	2010	<u>5178555</u>	19,308.9
2011 Property Tax Principal		36,190.06	10/29/	2009	<u>4996925</u>	17,063.9
Weed Control Principal		1.92	04/30/	2009	<u>4766156</u>	17,063.9
Fire Benefit Charge Principal		2,033.96	11/03/	2008	4476294	13,565.1
Pierce Conservation District	Principal	5.00	05/05/	2008	<u>4214816</u>	13,565.1
Total 2011		38,230.94	10/19/	2007	3710788	11,864.0

8/19/2016 2:21 PM 1 of 2

		Click here for ULID information			
Total 2009	34,127.93	ULID Inform	ULID Information		
Pierce Conservation District Principal	5.00				
Weed Control Principal	1.61	05/05/2004	<u>1898547</u>	7,655.49	
2009 Property Tax Principal	34,121.32	11/01/2004	2142200	7,655.49	
Total 2010	38,617.85	04/22/2005	<u>2389069</u>	8,284.90	
Pierce Conservation District Principal	5.00	10/21/2005	<u>2633459</u>	8,284.90	
Fire Benefit Charge Principal	2,033.96	04/24/2006	<u>2905940</u>	8,573.23	
Weed Control Principal	1.61	10/27/2006	<u>3245918</u>	8,573.24	
2010 Property Tax Principal	36,577.28	05/04/2007	<u>3609277</u>	11,864.07	

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

Pierce County Assessor-Treasurer Mike Lonergan 2401 South 35th St Room 142

Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2016 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

2 of 2

Land Characteristics for 0420214807

08/19/2016 02:21 PM

Property Details		Taxpayer Details	
Parcel Number:	0420214807	Taxpayer Name:	K & A HOLDINGS LLC
Site Address:	400 RIVER RD	Mailing Address:	1502 RIVER RD
Account Type:	Real Property		PUYALLUP WA 98371-3875
Category:	Land and Improvements		
Use Code:	5515-AUTO DLR NEW AND USED RETAIL		
Location:		Size	
LEA:	2052	SF:	120,788
RTSQQ:	04-20-21-43	Acres:	2.77
		Front Ft:	392
Amenities		Utilities	
WF Type:	n/a	Electric:	Power Installed
View Quality:	n/a	Sewer:	Sewer/Septic Installed
Street Type:	Paved	Water:	Water Installed

Warning: Appraisal data provided is for informational purposes only and is incomplete for determination of value.

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

Pierce County Assessor-Treasurer

Mike Lonergan

2401 South 35th St Room 142
Tacoma, Washington 98409
(253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2016 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

8/19/2016 2:21 PM 1 of 1

Building Characteristics for 0420214807

08/19/2016 02:22 PM

Property Details Taxpayer Details Parcel Number: 0420214807 Taxpayer Name: K & A HOLDINGS LLC Site Address: 400 RIVER RD Mailing Address: 1502 RIVER RD PUYALLUP WA 98371-3875 **Account Type:** Real Property Category: Land and Improvements 5515-AUTO DLR NEW AND USED RETAIL Use Code: **Building ID:** 2 building(s) on this parcel **1** 2 **General Characteristics** Property Type: SF: Fin. Attic SF: Commercial 12,882 0 Total Bsmnt. SF: Condition: Average Net SF: 21,681 Quality: Fair Atch. Garage SF: 0 Fin. Bsmnt. SF: 0 0 Neighborhood: 502 / 710 Det. Garage SF: 0 Bsmnt. Gar. Door: Carport SF: New Auto Dealer 0 Fireplaces: 0 Occupancy: **Built-As** Bed-Bath-Sprinkler Adj. Year Built Description Year Built SF Stories rooms rooms Exterior Class Roof HVAC Units SF Showroom 1953 1986 5.800 1 n/a n/a n/a Masonry n/a Package Unit 0 0 Office Building 1953 1986 3,962 1 n/a n/a n/a Masonry Package Unit 0 0 1978 0 Service Garage 1953 3,120 1 n/a n/a n/a Masonry n/a Space Heater

Improvement Details								
Detail Type	Detail Description	Units						
Add On	Asphalt (LC)	91,700						
Add On	Canopies WD FR (Gd)	1,900						
Basement	Storage	6,262						

Warning: Appraisal data provided is for informational purposes only and is incomplete for determination of value.

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

Pierce County Assessor-Treasurer Mike Lonergan

2401 South 35th St Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2016 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

1 of 1 8/19/2016 2:22 PM

Recent Sales Activity for 0420214807

08/19/2016 02:22 PM

Property Details

Parcel Number: 0420214807 Site Address: 400 RIVER RD

Account Type: Real Property Category: Land and Improvements

Use Code:

5515-AUTO DLR NEW AND USED RETAIL

Taxpayer Details

Taxpayer Name: K & A HOLDINGS LLC Mailing Address: 1502 RIVER RD

PUYALLUP WA 98371-3875

Sales

Sales from 1997 to date are displayed here. However, the sales listed on this site are not complete and do not include all property transfer types. Recorded documents, accessed by name and date, can be found using the Pierce County Auditor's Recorded Document Search.

ETN	Parcel Count	Grantor	Grantee	Sale Price	Sale Date	Deed Type	Sale Notes	Confirmation
4261216	4	CMW INVESTMENTS LLC	K & A HOLDINGS LLC	3,200,000	05/24/2011	Statutory Warranty Deed	I	Unconfirmed
4164418	4	PARKS FAMILY LLC	CMW INVESTMENTS LLC	3.500.000	06/01/2007	Statutory Warranty Deed	I	Unconfirmed

Sales history records current through 5/16/2003 are available on CD. These records were maintained as general information regarding property transfer for tax purposes only and are not an official record of sales transactions. A public records request form and the cost to copy of \$66.10 are required to obtain the records on CD. You may return the signed form and payment by mail or in person to the Assessor-Treasurer's Office at the address listed below.

For additional information on this issue, contact the Pierce County Assessor-Treasurer's Office Records Manager at 253-798-3134.

Sales Search

Search Search for sales with characteristics similar to this property.

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

> Pierce County Assessor-Treasurer Mike Lonergan 2401 South 35th St Room 142

Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2016 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

8/19/2016 2:22 PM 1 of 1

Parcel Summary for 0420214808

08/19/2016 02:23 PM

K & A HOLDINGS LLC

PUYALLUP WA 98371-3875

1502 RIVER RD

Property Details

Parcel Number: 0420214808 Site Address: 400 RIVER RD

Account Type: Structures

Category: Leased Land and/or Structure

Use Code: 5515-AUTO DLR NEW AND USED RETAIL

Appraisal Details

Value Area: PI2
Appr Acct Type: Commercial

Business Name:

Last Inspection: 05/20/2015 - Physical Inspection

Assessment Details

Taxpayer Details

Taxpayer Name:

Mailing Address:

2016 Values for 2017 Tax

Taxable Value: 19,100

Assessed Value: 19,100

Related Parcels

Group Account Number: 434
Mobile/MFG Home and Personal Property 1200127008

parcel(s) located on this parcel:

Real parcel on which this parcel is located: n/a

Tax Description

Section 28 Township 20 Range 04 Quarter 11: COM AT MON AT INTER OF 4TH ST NW & 7TH AVE NW IN NE OF SEC 28 20 4E TH N 00 DEG 21 MIN E 636 FT ALG C/L OF SD 4TH ST TH N 89 DEG 39 MIN W 30 FT TO WLY R/W OF SD 4TH ST & POB TH CONT N 89 DEG 39 MIN W 281.28 FT TH N 00 DEG 21 MIN E 465.75 FT M/L PAR TO SD C/L OF 4TH ST TO S R/W LI OF STATE HWY # 5 TH S 69 DEG 18 MIN 10 SEC E 300 FT TO WLY R/W OF 4TH ST TH S 00 DEG 21 MIN W 361.44 FT TO POB ENCLOSED IN THE ABOVE IS L 13 B 19 J P STEWARTS 7TH ADD BLDG ONLY SEG F 0740

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

Pierce County Assessor-Treasurer Mike Lonergan

2401 South 35th St Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2016 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

1 of 1 8/19/2016 2:23 PM

Taxes / Values for 0420214808

08/19/2016 02:23 PM

Property Details

Parcel Number: 0420214808 Site Address: 400 RIVER RD

Account Type: Structures

Category: Leased Land and/or Structure

Use Code: 5515-AUTO DLR NEW AND USED RETAIL

Taxpayer Details

Taxpayer Name: K & A HOLDINGS LLC **Mailing Address:** 1502 RIVER RD

PUYALLUP WA 98371-3875

Assesse	Assessed Values													
Value Year	Tax Year	Taxable Value	Assessed Total	Assessed Land	Assessed Improvements	Current Use Land	Personal Property	Notice of Value Mailing Date						
2016	2017	19,100	19,100	(0 19,100)	0	0 06/23/2016						
2015	2016	20,700	20,700	(20,700)	0	0 07/06/2015						
2014	2015	7,700	7,700	(7,700)	0	0 06/27/2014						
2013	2014	7,700	7,700	(7,700)	0	0 06/24/2013						
2012	2013	7,900	7,900	(7,900)	0	0 06/22/2012						
2011	2012	7,900	7,900	(7,900)	0	0 06/27/2011						
2010	2011	8,400	8,400	(0 8,400)	0	0 06/21/2010						
2009	2010	9,400	9,400	(9,400)	0	0 07/17/2009						
2008	2009	9,500	9,500	(9,500)	0	0 06/13/2008						

Current Charges Exemptions

Balance Due: 0.00 Minimum Due: 0.00 as of 08/19/2016 No exemptions

Paid Charges		Tax Code Areas			
For questions regarding any electronic payments you may have made, ple	ease contact Point & Pay at	Tax Year	TCA	Rate	
1-877-765-4112		2017	096	0.0000	00
Tax	A	2017	096	13.947	
Year Charge Type	Amount Paid 288.71	2015	096	14.253	
2016 Property Tax Principal	=	2013	096	14.233	
Fire Benefit Charge Principal	120.92 409.63	2014	096	14.365	
Total 2016	109.63	2013	096	12.775	
2015 Property Tax Principal		2012	096	12.773	
Fire Benefit Charge Principal	211.92	2011	096	11.255	
Total 2015	321.67	2010	090	10.173	
2014 Property Tax Principal	107.82	2009	<u>090</u>	10.173	927
Fire Benefit Charge Principal	202.52	B :			
Pierce Conservation District Principal	4.99	Receip	ts		
Total 2014	315.33	D-4-		Normalian	Amount
2013 Property Tax Principal	113.49	Date	2016	Number	Applied
Fire Benefit Charge Principal	196.40	05/12/2		8965115	409.6
Total 2013	309.89	04/27/2		<u>8896211</u>	0.0
2012 Property Tax Principal	100.92	04/17/2		<u>8179565</u>	321.6
Fire Benefit Charge Principal	188.96	10/23/2		<u>7874023</u>	157.6
Total 2012	289.88	04/21/2		<u>7567913</u>	157.6
2011 Property Tax Principal	103.72	10/17/2		<u>7260542</u>	154.9
Property Tax Interest	1.03	04/30/2		<u>7120628</u>	154.9
Property Tax Penalty	4.15	10/19/2		<u>6674327</u>	144.9
Fire Benefit Charge Principal	183.18	04/24/2	2012	<u>6435118</u>	144.9
Fire Benefit Charge Interest	1.83	12/14/2	2011	<u>6277754</u>	162.7
Fire Benefit Charge Penalty	7.33	04/25/2	2011	<u>5805191</u>	143.4
Distraint Costs	5.00	10/29/2	2010	<u>5593610</u>	144.4
Total 2011	306.24	04/22/2	2010	<u>5178576</u>	144.4
2010 Property Tax Principal	105.80	10/29/2	2009	4996923	48.3
Fire Benefit Charge Principal	183.18	04/30/2	2009	<u>4766157</u>	48.3
Total 2010	288.98	11/03/2	2008	4476292	56.4
2009 Property Tax Principal	96.65	05/05/2	2008	<u>4214815</u>	56.4
Total 2009	96.65	10/19/2	2007	<u>3710787</u>	79.5
		05/04/2	2007	3609342	79.5

1 of 2 8/19/2016 2:24 PM

10/27/2006	<u>3245920</u>	125.64
04/24/2006	<u>2905970</u>	125.64
10/21/2005	<u>2633402</u>	100.21
04/22/2005	<u>2389068</u>	100.20
11/01/2004	2142531	96.54
05/05/2004	<u>1898551</u>	96.53

ULID Information

Click here for ULID information

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

Pierce County Assessor-Treasurer Mike Lonergan 2401 South 35th 5t Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2016 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

2 of 2

Building Characteristics for 0420214808

08/19/2016 02:24 PM

Property Detail	s					Taxpay	er Details					
Parcel Number:	0420214	808				Taxpaye	r Name:	K & A HOLDINGS LLC				
Site Address:	400 RIVE	R RD				Mailing A	Address:	1502 RIVER RD				
Account Type:	Structure	es						PUYALLUP	WA 9837	71-3875		
Category:	Leased L	and and/or Structure	:									
Use Code:	5515-AU	TO DLR NEW AND US	SED RET	AIL								
Building ID:										1 build	ling(s)	on this parc
General Charac	teristics											
Property Type:	Comr	Commercial				216		Fin. Attic SF:		0		
Condition:	Avera	age	Net SF:		216	Total Bsmnt. SF:		0				
Quality:	Low		Atch. Garage SF:		0		Fin. Bsmnt. SF:		0			
Neighborhood:	502 /	710	Det. Garage SF:		0		Bsmnt. Gar. Door:		0			
Occupancy:	New .	Auto Dealer	Carport SF:		0		Fireplaces:		0			
Built-As												
Description	Year Built	Adj. Year Built	SF	Stories	Bed- rooms	Bath- rooms	Exterior	Class	Roof	HVAC	Units	Sprinkler SF
Office Building	1965	1978	216	1	n/a	n/a	n/a	Wood Frame	n/a	Electric	0	0
Improvement D	etails											
Detail Type			Detail	Description	on					U	nits	
Add On			WD 10	0 Sq Ft						1	05	
Basement			Storage	e						1	,632	

Warning: Appraisal data provided is for informational purposes only and is incomplete for determination of value.

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

Pierce County Assessor-Treasurer Mike Lonergan 2401 South 35th St Room 142

2401 South 35th St Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2016 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

1 of 1 8/19/2016 2:24 PM

Recent Sales Activity for 0420214808

08/19/2016 02:24 PM

Property Details

Parcel Number: 0420214808
Site Address: 400 RIVER RD
Account Type: Structures

Category: Leased Land and/or Structure

Use Code: 5515-AUTO DLR NEW AND USED RETAIL

Taxpayer Details

Taxpayer Name: K & A HOLDINGS LLC **Mailing Address:** 1502 RIVER RD

PUYALLUP WA 98371-3875

Sales

Sales from 1997 to date are displayed here. However, the sales listed on this site are not complete and do not include all property transfer types. Recorded documents, accessed by name and date, can be found using the Pierce County Auditor's <u>Recorded Document Search</u>.

ETN	Parcel Count	Grantor	Grantee	Sale Price	Sale Date	Deed Type	Sale Notes	Confirmation
4261216	4	CMW INVESTMENTS LLC	K & A HOLDINGS LLC	3,200,000	05/24/2011	Statutory Warranty Deed	I	Unconfirmed
4164418	4	PARKS FAMILY LLC	CMW INVESTMENTS LLC	3.500.000	06/01/2007	Statutory Warranty Deed	I	Unconfirmed

Sales history records current through 5/16/2003 are available on CD. These records were maintained as general information regarding property transfer for tax purposes only and are not an official record of sales transactions. A public records request form and the cost to copy of \$66.10 are required to obtain the records on CD. You may return the signed form and payment by mail or in person to the Assessor-Treasurer's Office at the address listed below.

For additional information on this issue, contact the Pierce County Assessor-Treasurer's Office Records Manager at 253-798-3134.

Sales Search

Search Search for sales with characteristics similar to this property.

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

Pierce County Assessor-Treasurer Mike Lonergan 2401 South 35th St Room 142

2401 South 35th St Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2016 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

1 of 1 8/19/2016 2:24 PM

Parcel Summary for 0420214057

08/19/2016 02:27 PM

K & A HOLDINGS LLC

PUYALLUP WA 98371-3875

1502 RIVER RD

Property Details

Parcel Number: 0420214057 Site Address: XXX 4TH ST NW

Account Type: Real Property

Category: Land and Improvements

Use Code: 5515-AUTO DLR NEW AND USED RETAIL

Appraisal Details

PI2 Value Area: Appr Acct Type: Commercial

Business Name:

Last Inspection: 05/18/2015 - Physical Inspection **Assessment Details**

Taxpayer Details

Taxpayer Name:

Mailing Address:

2016 Values for 2017 Tax

Taxable Value: 378,200

Assessed Value:

378,200

Related Parcels

Group Account Number: <u>434</u>

Mobile/MFG Home and Personal Property parcel(s) located on this parcel:

Real parcel on which this parcel is located: n/a

Tax Description

Section 28 Township 20 Range 04 Quarter 12: TR OF LD IN SEC 21 & 28 DESC AS FOLL BEG AT SW COR OF PROP CYD TO BRUCE A MERCER POST #67 OF AMERICAN LEGION #1855113 TH E ALG S LI OF SD AMERICAN LEGION PROP 93.76 FT M/L TO PROP CYD TO LLOYD L GRAND #1653368 TH S ALG W LI OF SD GRANT PROP 172.57 FT M/L TO SW COR THEREOF TH S 72 DEG 27 MIN 20 SEC W TO INTER W LI OF ABOVE MENTIONED AMERICAN LEGION PROP EXTENDED S TH N ALG W LI OF SD AMERICAN LEGION PROP EXTENDED TO POB SUBJ TO EASE #1926238 OUT OF 4-106 SEG M-1294 GD JES

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

> Pierce County Assessor-Treasurer Mike Lonergan

> 2401 South 35th St Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2016 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

8/19/2016 2:27 PM 1 of 1

Taxes / Values for 0420214057

08/19/2016 02:27 PM

Property Details

Parcel Number: 0420214057 Site Address: XXX 4TH ST NW

Account Type: Real Property

Category: Land and Improvements

Use Code: 5515-AUTO DLR NEW AND USED RETAIL

Taxpayer Details

Taxpayer Name: K & A HOLDINGS LLC **Mailing Address:** 1502 RIVER RD

PUYALLUP WA 98371-3875

Assess	ed Value	es						
Value Year	Tax Year	Taxable Value	Assessed Total	Assessed Land	Assessed Improvements	Current Use Land	Personal Property	Notice of Value Mailing Date
2016	2017	378,200	378,200	338,300	39,900		0	0 06/23/2016
2015	2016	379,200	379,200	338,300	40,900		0	0 07/06/2015
2014	2015	301,800	301,800	276,200	25,600		0	0 06/27/2014
2013	2014	301,800	301,800	276,200	25,600		0	0 06/24/2013
2012	2013	300,900	300,900	276,200	24,700		0	0 06/22/2012
2011	2012	329,600	329,600	306,000	23,600		0	0 06/27/2011
2010	2011	346,400	346,400	321,000	25,400		0	0 06/21/2010
2009	2010	382,800	382,800	354,600	28,200		0	0 07/17/2009
2008	2009	400,000	400,000	373,200	26,800		0	0 06/13/2008

Current Charges Exemptions

Balance Due: 0.00 Minimum Due: 0.00 as of 08/19/2016

No exemptions

Paid Charges		Tax Co	de Are	as	
or questions regarding any electronic payments you may have made	e, please contact Point & Pay at	Tax			
-877-765-4112		Year	TCA	Rate	
Тах		2017	096	0.0000	
Year Charge Type	Amount Paid	2016	<u>096</u>	13.947	
2016 Property Tax Principal	5,288.84	2015	096	14.253	
Weed Control Principal	1.70	2014	<u>096</u>	14.003	
Fire Benefit Charge Principal	873.46	2013	<u>096</u>	14.365	
Pierce Conservation District Principal	4.73	2012	<u>096</u>	12.775	
Total 2016	6,168.73	2011	<u>096</u>	12.347	
2015 Property Tax Principal	4,301.83	2010	<u>096</u>	11.255	
Weed Control Principal	1.70	2009	<u>090</u>	10.173	927
Fire Benefit Charge Principal	638.00		_		
Pierce Conservation District Principal	4.73	Receip	ts		
Total 2015	4,946.26				Amount
2014 Property Tax Principal	4,226.11	Date		Number	Applied
Weed Control Principal	1.64	05/12/2		<u>8965111</u>	6,168.
Fire Benefit Charge Principal	609.68	04/27/2		<u>8896424</u>	0.
Pierce Conservation District Principal	4.74	10/27/2		<u>8479384</u>	2,473.
Total 2014	4,842.17	04/17/2		<u>8179563</u>	2,473.
2013 Property Tax Principal	4,322.58	10/23/2		<u>7874021</u>	2,421.
Weed Control Principal	1.64	04/21/2		<u>7567911</u>	2,421.
Fire Benefit Charge Principal	591.28	10/17/2		<u>7260540</u>	2,460.
Pierce Conservation District Principal	4.72	04/30/2	2013	<u>7120626</u>	2,460.
Total 2013	4,920.22	10/19/2	2012	6674329	2,393.
2012 Property Tax Principal	4,210.72	04/24/2	2012	6435120	2,393.
Weed Control Principal	1.64	01/11/2	2012	<u>6281152</u>	2,417.
Fire Benefit Charge Principal	568.84	04/25/2	2011	<u>5805190</u>	2,417.
Pierce Conservation District Principal	5.00	10/29/2	2010	<u>5593609</u>	2,433.
Total 2012	4,786.20	04/22/2	2010	<u>5178578</u>	2,433.
2011 Property Tax Principal	4,277.27	10/29/2	2009	<u>4996924</u>	2,037.
Weed Control Principal	1.64	04/30/2	2009	<u>4766158</u>	2,037.
Fire Benefit Charge Principal	551.48	11/03/2	2008	4476939	1,567.
Pierce Conservation District Principal	5.00	05/05/2	2008	<u>4214822</u>	1,567.

1 of 2 8/19/2016 2:27 PM

		Click here for	ULID information	
Total 2009	4,075.96	ULID Inform	nation	
Pierce Conservation District Principal	5.00			
Weed Control Principal	1.39	05/05/2004	<u>1898550</u>	633.81
2009 Property Tax Principal	4,069.57	11/01/2004	2142530	633.82
Total 2010	4,866.51	04/22/2005	2388770	706.06
Pierce Conservation District Principal	5.00	10/21/2005	<u>2633460</u>	706.07
Fire Benefit Charge Principal	551.48	04/24/2006	<u>2905957</u>	662.61
Weed Control Principal	1.39	10/27/2006	3245919	662.62
2010 Property Tax Principal	4,308.64	05/04/2007	<u>3609336</u>	1,328.82

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

Pierce County Assessor-Treasurer Mike Lonergan 2401 South 35th St Room 142

Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2016 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

2 of 2

Land Characteristics for 0420214057

08/19/2016 02:27 PM

Property Details		Taxpayer Details	
Parcel Number:	0420214057	Taxpayer Name:	K & A HOLDINGS LLC
Site Address:	XXX 4TH ST NW	Mailing Address:	1502 RIVER RD
Account Type:	Real Property		PUYALLUP WA 98371-3875
Category:	Land and Improvements		
Use Code:	5515-AUTO DLR NEW AND USED RETAIL		
Location:		Size	
LEA:	2052	SF:	17,841
RTSQQ:	04-20-28-12	Acres:	0.41
		Front Ft:	0
Amenities		Utilities	
WF Type:	n/a	Electric:	Power Installed
View Quality:	n/a	Sewer:	Sewer/Septic Installed
Street Type:	Paved	Water:	Water Installed

Warning: Appraisal data provided is for informational purposes only and is incomplete for determination of value.

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

Pierce County Assessor-Treasurer Mike Lonergan
2401 South 35th St Room 142
Tacoma, Washington 98409
(253)798-6111 or Fax (253)798-3142

www.piercecountywa.org/atr

Copyright © 2016 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

8/19/2016 2:28 PM 1 of 1

Building Characteristics for 0420214057

08/19/2016 02:28 PM

Property Detail	s					Тахра	yer Detail	s				
Parcel Number:	0420214	1057				Taxpa	yer Name:	K & A H	OLDING	S LLC		
Site Address:	XXX 4TH	ST NW				Mailing Address:		1502 RI	1502 RIVER RD			
Account Type:	Real Pro	perty						PUYALL	UP WA	98371-3875		
Category:	Land an	d Improvements										
Use Code:	5515-AL	JTO DLR NEW AND U	JSED RE	TAIL								
Building ID: 1										1 bu	ilding(s)	on this parce
General Charac	teristics											
Property Type:	Com	Commercial		SF:		3,680	3,680 Fin. A		n. Attic SF: 0		0	
Condition:	Aver	age	Net SF:		3,680 Tc		Total	Total Bsmnt. SF: 0		0		
Quality:	Low		Atch. Garage SF:		0 Fin.		Fin. B	Fin. Bsmnt. SF: 0		0		
Neighborhood:	502	/ 710	Det. Garage SF:		F:	0		Bsmn	Bsmnt. Gar. Door:		0	
Occupancy:	Auto	Related	Car	Carport SF:		0		Firepl	Fireplaces:		0	
Built-As												
Description	Year Built	Adj. Year Built	SF	Stories	Bed- rooms	Bath- rooms	Exterior	Class	Roof	HVAC	Units	Sprinkler SF
Service Garage	1966	1978	3,680	1	n/a	n/a	n/a	Wood Frame	n/a	Space Heat	er 0	0
Improvement D	Details											
Detail Type		Detail Description	n								Uni	ts
Add On		Asphalt (LC)									11,0	000
Add On		Concrete (Reinford	ed) (1,0	00 - 3000	Sq Ft)						700	

Warning: Appraisal data provided is for informational purposes only and is incomplete for determination of value.

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

Pierce County Assessor-Treasurer

Mike Lonergan 2401 South 35th St Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2016 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

8/19/2016 2:28 PM 1 of 1

Recent Sales Activity for 0420214057

08/19/2016 02:28 PM

Property Details

Parcel Number: 0420214057 Site Address: XXX 4TH ST NW Account Type: Real Property

Category: Land and Improvements

Use Code: 5515-AUTO DLR NEW AND USED RETAIL **Taxpayer Details**

Taxpayer Name: K & A HOLDINGS LLC Mailing Address: 1502 RIVER RD

PUYALLUP WA 98371-3875

Sales

Sales from 1997 to date are displayed here. However, the sales listed on this site are not complete and do not include all property transfer types. Recorded documents, accessed by name and date, can be found using the Pierce County Auditor's Recorded Document Search.

ETN	Parcel Count	Grantor	Grantee	Sale Price	Sale Date	Deed Type	Sale Notes	Confirmation
4261216	4	CMW INVESTMENTS LLC	K & A HOLDINGS LLC	3,200,000	05/24/2011	Statutory Warranty Deed	I	Unconfirmed
4164418	4	PARKS FAMILY LLC	CMW INVESTMENTS LLC	3.500.000	06/01/2007	Statutory Warranty Deed	I	Unconfirmed

Sales history records current through 5/16/2003 are available on CD. These records were maintained as general information regarding property transfer for tax purposes only and are not an official record of sales transactions. A public records request form and the cost to copy of \$66.10 are required to obtain the records on CD. You may return the signed form and payment by mail or in person to the Assessor-Treasurer's Office at the address listed below.

For additional information on this issue, contact the Pierce County Assessor-Treasurer's Office Records Manager at 253-798-3134.

Sales Search

Search Search for sales with characteristics similar to this property.

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

> Pierce County Assessor-Treasurer Mike Lonergan 2401 South 35th St Room 142

> Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2016 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

8/19/2016 2:28 PM 1 of 1

April 25, 2011

Mr. Don Fleming NW Motorsport 400 River Road Puyallup, Washington 98371

Re: Focused Phase II Subsurface Investigation

NW Motorsport Property

400 River Road

Puyallup, Washington RGI Project #T2011-022

Dear Mr. Fleming:

This letter report summarizes The Riley Group, Inc.'s (RGI's) Focused Phase II Subsurface Investigation (Phase II) findings for the NW Motorsport property located at 400 River Road in Puyallup, Washington (Figure 1).

The Focused Phase II investigation was performed at the request of Mr. Don Fleming and authorized by Ms. Nikki Bley, of NW Motorsport (Client). The scope of work for this project was performed in accordance with our *Focused Phase II Subsurface Investigation Proposal* dated March 30, 2011.

SCOPE OF SERVICES

The scope of services performed for this project included the following tasks:

- > Performed public and private utility locating in an attempt to locate privately owned metallic utilities (such as water, electric, etc) and clear the proposed boring location.
- Advanced one direct-push test probe at the Site to a total maximum depth of 12 feet below ground surface (bgs).
- > Collected soil samples from the test probe location for laboratory analysis of potential contaminants of concern.
- > Groundwater was encountered in and collected from the test probe advanced at the Site.
- Compared analytical results to the routine Washington State Department of Ecology (Ecology) Model Toxics Control Act (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Use and MTCA Method A Cleanup Levels for Groundwater (WAC 173-340).
- Prepared this letter report presenting our findings, observations and conclusions.

PROJECT BACKGROUND

A Phase I Environmental Site Assessment (ESA) was recently completed for the Site by Adapt Engineering, Inc. (Adapt). According to its Phase I ESA, previous investigations had been performed at the Site. The reader is referred to Adapt's report for the complete details of the previous onsite investigations. Based on its Phase I ESA findings, the feed line to the onsite oil/water separator was thought to have been disconnected and, therefore, represented a possible risk to soil and/or groundwater quality of the Site. Although it was later determined that the aboveground oil/water separator was still connected, a limited Phase II Subsurface Investigation was recommended by Adapt in the vicinity of the unit.

On April 6, 2011, the Client authorized RGI to perform this Focused Phase II Subsurface Investigation.

REGULATORY ANALYSIS OF SITE CONDITIONS UNDER MODEL TOXICS CONTROL ACT (MTCA)

Washington's hazardous release cleanup law, the Model Toxics Control Act (RCW 70.105D) mandates that site cleanups protect human health and the environment. The MTCA Cleanup Regulation (WAC173-340) defines the approach for establishing cleanup requirements for individual sites, including the establishment of cleanup standards and selection of cleanup actions.

The MTCA regulation provides three options for establishing generic and site-specific cleanup levels for soil and groundwater. Method A cleanup levels have been adopted for specific purposes and are intended to provide conservative cleanup levels for sites undergoing routine site characterization or cleanup actions or those sites with relatively few hazardous substances. Method B and C cleanup levels are set using a site risk assessment, which focus on the use of "reasonable maximum exposure" assumptions based on site-specific characteristics and toxicity of the contaminants of concern.

For purposes of comparison, analytical laboratory data for this project are compared to the MTCA Method A Soil Cleanup Levels for Unrestricted Land Use (considered protective of drinking water) and the MTCA Method A Cleanup Levels for Groundwater.

FOCUSED PHASE II SUBSURFACE INVESTIGATION

On April 11, 2011, RGI advanced test probe SP1 to a total depth of 12 feet bgs (Figure 2). The test probe was located immediately adjacent to and inferred downgradient of the onsite, aboveground oil/water separator.

The test probe was advanced using a truck-mounted direct push probe rig owned and operated by Pacific Northwest Probe and Drilling, Inc. under subcontract to RGI. All probing and sampling equipment were cleaned prior to commencing probing and in between sampling locations. All field sampling and decontamination procedures were performed in accordance with RGI's standard sampling and decontamination protocols.

All soil cuttings and purge and decontamination water were contained on the Site in a 30-gallon drum. Disposal of the drum is not included in the scope of work.

Soil Sampling

During drilling activities, soil samples were collected, inspected, and classified by RGI's field personnel. Soil conditions encountered were described using the Unified Soil Classification System (USCS). Soils beneath the Site generally consisted of poorly graded, silty, fine to medium sand to the maximum depth explored (12 feet bgs). Gravel was also noted at approximately 12 feet bgs. The loose sands resulted in no recovery from four to eight feet bgs and limited recovery from 10 to 12 feet bgs.

A total of two discrete soil samples were collected during this project; at the three- to four-foot and 10- to 12-foot depth intervals. Due to a photoionization detector (PID) malfunction, soil samples were not screened in the field for the presence of volatile organic compounds (VOCs). Since the indicator contaminant of concern is oil, a standard water sheen test was considered sufficient. No suspect sheen, visual staining, or suspect odors were noted in the collected soil samples.

Based on our field observations, the shallowest soil sample (collected from three to four feet bgs) was submitted for laboratory analyses of potential contaminants of concern, listed below. Samples collected for analysis of volatile compounds were collected using the Ecology-mandated 5035 sample collection method.

Groundwater Sampling

Shallow groundwater was encountered in the test probe at approximately 10 to 11 feet bgs. Groundwater was purged until visually clear. No suspect sheen was noted in the purge water. A groundwater grab sample was collected from the test probe following purging and submitted for laboratory analysis of select contaminants of concern listed below.

Analytical Laboratory Analysis

Soil and groundwater grab samples collected during this project were submitted to Libby Environmental, Inc. of Olympia, Washington, for one or more of the following laboratory analyses:

- Gasoline-range total petroleum hydrocarbons (TPH) using Ecology Method NWTPH-G.
- Diesel- and oil-range TPH using Ecology Method NWTPH-Dx.
- > Benzene, toluene, ethylbenzene and total xylenes (BTEX) via EPA Method 8260c.
- Volatile organic compounds (VOCs) via EPA Method 8260c.

Laboratory Analytical Results

Analytical results and field screening data, summarized in the attached Figure 2, are discussed below. Copies of the analytical laboratory report and associated sample chain-of-custody forms are included in Appendix A.

No gasoline-, diesel- or oil-range TPHs or VOCs (BTEX and/or chlorinated solvents) were detected in the soil or groundwater samples submitted from the Site.

CONCLUSIONS AND RECOMMENDATIONS

Based on our subsurface investigation findings, soil and groundwater intercepted in the test probe advanced at the Site are in full compliance with MTCA. No additional investigation is recommended at this time.

LIMITATIONS

This report is the property of The Riley Group, Inc., NW Motorsport, US Bank, and their authorized representatives or affiliates and was prepared in a manner consistent with the level of skill and care ordinarily exercised by members of the profession currently practicing in the same locality and under similar conditions. This report is intended for specific application to the NW Motorsport property located at 400 River Road, Puyallup, Washington. No other warranty, expressed or implied, is made.

The analyses and recommendations presented in this report are based upon data obtained from our review of available information at the time of preparing this report, our test pits excavated or test borings drilled on-site, or other noted data sources. Conditional changes may occur through time by natural or man-made process on this or adjacent properties. Additional changes may occur in legislative standards, which may or may not be applicable to this report. These changes, beyond RGI's control, may render this report invalid, partially or wholly. If variations appear evident, The Riley Group, Inc. should be requested to reevaluate the recommendations in this report.

We trust that this letter report meets your current project needs and appreciate the opportunity to be of service. Please contact us at (253) 565-0552, or by email at lsmith@riley-group.com, if you have any questions or need additional information.

Sincerely,

THE RILEY GROUP, INC.

Senior Project Manager

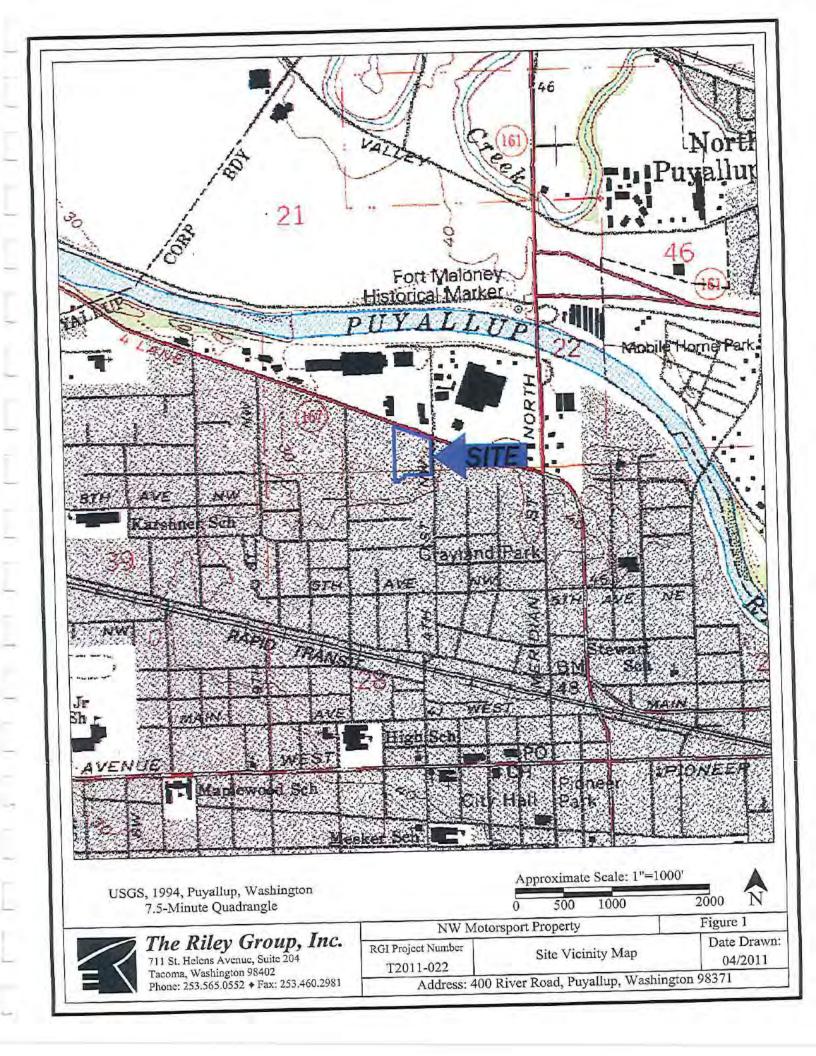
Elizabeth Ann Uchison

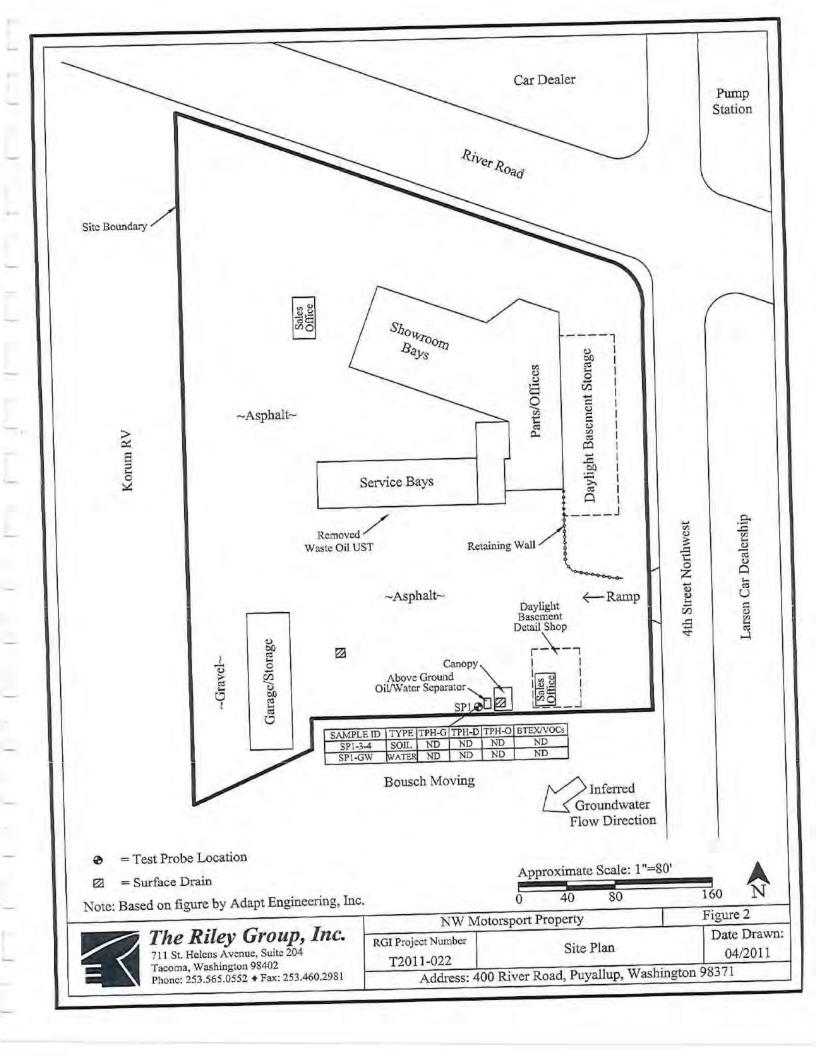
Elizabeth Uchison, L.G., L.H.G.

Senior Hydrogeologist

Attachments

Figure 1 - Site Vicinity Map


Figure 2 - Site Plan


Appendix A - Analytical Laboratory Report & Chain of Custody

Report Distribution

Mr. Don Fleming, NW Motorsport (two bound copies and electronic PDF)

Mr. Albert Kim, US Bank (electronic PDF)

NW MOTORSPORT PROJECT Puyallup, Washington The Riley Group, Inc. Client Project # T2011-022 Libby Project No. L110411-4

Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Water

Sample	Date	Surrogate	Diesel	Mineral Oil	Oil
Number	Analyzed	Recovery (%)	(ug/l)	(ug/l)	(ug/l)
Method Blank	4/12/11	101	nd	nd	nd
SP1-G	4/12/11	80	nd	nd	nd
Practical Quantitat	ion Limit		200	400	400

"nd" Indicates not detected at the listed detection limits.

"int" Indicates that interference prevents determination

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Jamie Hart

NW MOTORSPORT PROJECT Puyallup, Washington The Riley Group, Inc. Client Project # T2011-022 Libby Project No. L110411-4

Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Soil

Sample	Date	Surrogate	Diesel	Mineral Oil	Oil
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)	(mg/kg)
Method Blank	4/12/11	100	nd	nd	nd
SP1-3-4	4/12/11	101	nd	nd	nd
Practical Quantitat	ion Limit		25	40	40

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Jamie Hart

[&]quot;int" Indicates that interference prevents determination.

NW MOTORSPORT PROJECT Puyallup, Washington The Riley Group, Inc. Client Project # T2011-022 Libby Project No. L110411-4

Analyses of Gasoline (NWTPH-Gx) in Water

Sample	Date	Surrogate	Gasoline (ug/l)
Number	Analyzed	Recovery (%)	
Method Blank	4/14/11	98	nd
SP1-G	4/14/11	98	nd
Practical Quantitation	n Limit		100

"nd" Indicates not detected at the listed detection limits.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Trifluorotoluene): 65% TO 135%

ANALYSES PERFORMED BY: Sherry Chilcutt

NW MOTORSPORT PROJECT Puyallup, Washington The Riley Group, Inc. Client Project # T2011-022 Libby Project No. L110411-4

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD 8260C IN WATER

Sample Description		Method	SP1-GW	
The state of the s		Blank		
Date Sampled	Reporting	N/A	4/12/11	
Date Analyzed	Limits	4/14/11	4/14/11	
	(ug/l)	(ug/l)	(ug/l)	
Bromoform	1.0	nd	nd	
Isopropylbenzene	4.0	nd	nd	
1,2,3-Trichloropropane	1.0	nd	nd	
Bromobenzene	1.0	nd	nd	
1,1,2,2-Tetrachloroethane	1.0	nd	nd	
n-Propylbenzene	1.0	nd	nd	
2-Chlorotoluene	1.0	nd	nd	
4-Chlorotoluene	1.0	nd	nd	
1,3,5-Trimethylbenzene	1.0	nd	nd	
tert-Butylbenzene	1.0	nd	nd	
1,2,4-Trimethylbenzene	1.0	nd	nd	
sec-Butylbenzene	1.0	nd	nd	
1,3-Dichlorobenzene	1.0	nd	nd	
Isopropyltoluene	1.0	nd	nd	
1,4-Dichlorobenzene	1.0	nd	nd	
1,2-Dichlorobenzene	1.0	nd	nd	
n-Butylbenzene	1.0	nd	nd	
1,2-Dibromo-3-Chloropropane	1.0	nd	nd	
1,2,4-Trichlorolbenzene	2.0	nd	nd	
Hexachloro-1,3-butadiene	5.0	nd	nd	
Naphthalene	5.0	nd	nd	
1,2,3-Trichlorobenzene	5.0	nd	nd	
Surrogate Recovery				
Dibromofluoromethane		112	104	
1,2-Dichloroethane-d4		95.4	85.9	
Toluene-d8		98.1	98.1	
4-Bromofluorobenzene		106	104	

[&]quot;nd" Indicates not detected at listed detection limit.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

ANALYSES PERFORMED BY: Sherry Chilcutt

[&]quot;int" Indicates that interference prevents determination.

^{*} INSTRUMENT DETECTION LIMIT

NW MOTORSPORT PROJECT Puyallup, Washington The Riley Group, Inc. Client Project # T2011-022 Libby Project No. L110411-4

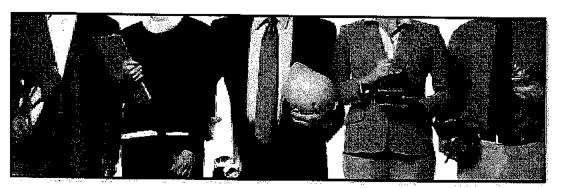
QA/QC Data - EPA 8260C Analyses

		Sample Ide	ntification:	L110413-2	2		
	Matrix Spike			Matr	RPD		
	Spiked Conc. (ug/l)	Measured Conc. (ug/l)	Spike Recovery (%)	Spiked Conc. (ug/l)	Measured Conc. (ug/l)	Spike Recovery (%)	
1,1-Dichloroethene	10	8.7	87	10	9.1	91	4.5
Benzene	10	7.8	78	10	9.1	91	15.4
Toluene	10	9.0	90	10	10.1	101	11.5
Chlorobenzene	10	10.2	102	10	11.8	118	14.5
Trichloroethene (TCE)	10	8.0	80	10	9.1	91	12.9
Surrogate Recovery						¥01	
Dibromofluoromethane			109			101	
1,2-Dichloroethane-d4			78.6			87.5	
Toluene-d8			95.8			95.1	
4-Bromofluorobenzene			98.7			108	

	Laborator	Laboratory Control Sample						
	Spiked Conc. (ug/l)	Measured Conc. (ug/I)	Spike Recovery (%)					
1,1-Dichloroethene	10	11.6	116					
Benzene	10	9.0	90					
Toluene	10	10.5	105					
Chlorobenzene	10	11.4	114					
Trichloroethene (TCE)	10	9.0	90					
Surrogate Recovery								
Dibromofluoromethane			109					
1,2-Dichloroethane-d4			88.3					
Toluene-d8			100					
4-Bromofluorobenzene			107					

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Sherry Chilcutt



PHASE I ENVIRONMENTAL SITE ASSESSMENT REPORT

K&A HOLDINGS, LLC 400 River Road Puyallup, Washington 98371

November 7, 2013 Partner Project No. 13-111058.1 RIMS Project No. 13-011142-01-3

Prepared for

STERLING BANK 111 North Wall Street, 2nd Floor Spokane, WA 99201

November 7, 2013

Mr. Michael Pereira, CHMM Sterling Bank 111 North Wall Street, 2nd Floor Spokane, WA 99201

Subject:

Phase I Environmental Site Assessment

400 River Road

Puyallup, Washington 98371 Partner Project No. 13-111058.1

Dear Mr. Pereira:

Partner Engineering and Science, Inc. (Partner) is pleased to provide the results of the *Phase I Environmental Site Assessment* (Phase I ESA) report of the abovementioned address (the "subject property"). This assessment was performed in general conformance with the scope and limitations as detailed in the ASTM Practice E1527-05 Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process.

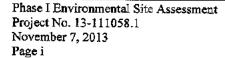
This assessment included a site reconnaissance as well as research and interviews with representatives of the public, property ownership, site manager, and regulatory agencies. An assessment was made, conclusions stated, and recommendations outlined.

We appreciate the opportunity to provide environmental services to Sterling Bank. If you have any questions concerning this report, or if we can assist you in any other matter, please contact me at (310) 765-7242.

Sincerely,

Arcie Propster Principal

(Dreis Proporter


EXECUTIVE SUMMARY

Partner Engineering and Science, Inc. (Partner) has performed a Phase I Environmental Site Assessment (ESA) in general accordance with the scope of work and limitations of ASTM Standard Practice E1527-05, the Environmental Protection Agency Standards and Practices for All Appropriate Inquiries (AAI) (40 CFR Part 312) and set forth by Sterling Bank for the property located at 400 River Road in the City of Puyallup, Pierce County, Washington (the "subject property"). The Phase I Environmental Site Assessment is designed to provide Sterling Bank with an assessment concerning environmental conditions (limited to those issues identified in the report) as they exist at the subject property.

Property Description

The subject property is located at the southwest quadrant of the intersection of River Road (SR167) and 4th Street NW in Puyallup, Pierce County, Washington. Please refer to the table below for further description of the subject property:

Address:	400 River Road
Assessor's Parcel Number (APN):	0420214014, 0420214057, 0420214807 & 0420214808
Nature of Use:	Commercial-Full Service Automotive Dealership
Number of Buildings:	5
Number of Floors:	1
Type of Construction:	CMU Main Building
	CMU/Wood Frame Salesman's Hut
	Wood Frame Salesman's Hut
	CMU Service Garage
	Wood Frame Detail Shop
Building Square Footage (SF):	12,611 SF Main Building
	4,160 SF Service Shop
	2,720 SF Detail Shop
	721 SF Salesman's Hut
	329 SF Salesman's Hut
Land Acreage (Ac):	3.30 Ac Cumulative
Date of Construction:	Main Building-1953
	Service Shop-1961
	Salesman's Huts-1965
	Detail Shop-1966
Current Tenants:	Northwest Motorsports

The subject property is currently occupied by Northwest Motorsports for use as a full service automotive dealership. Onsite operations consist of new automobile sales and full automotive maintenance, customization, repair and detailing activities. In addition to the current structures, the subject property is also improved with asphalt-paved parking areas.

According to available historical sources, the subject property was vacant land from as early as 1939 to circa 1953, when the subject property was first improved with an automotive dealership. The subject property has since been occupied by various automotive dealerships.

The subject property is bound to the north by River Road (SR167), beyond which is an abandoned commercial property (401 River Road-formerly an automotive dealership known as Puyallup Chrysler/Plymouth and R/V); to the south by a commercial property (820 4th Street-Boush Moving & Storage); to the east by 4th Street NW, beyond which is an automotive dealership (Larson Motors-300 River Road); and to the west by a commercial automotive dealership (Milam Truck Country-500 River Road).

According to well logs for the subject property address that were submitted to the Washington Department of Ecology (WADOE) in April of 2011, the depth of groundwater at the subject property is present at approximately 18-feet below ground surface (bgs) and based on topography, is inferred to flow to the north, towards the Puyallup River.

Findings

A recognized environmental condition (REC) refers to the presence or likely presence of any hazardous substance or petroleum product on a property under conditions that indicate an existing release, a past release, or a material threat of a release of any hazardous substances or petroleum products into structures on the property or into the ground, groundwater, or surface water of the property. The term REC includes hazardous substances and petroleum products even under conditions that might be in compliance with laws. The term is not intended to include "de minimis" conditions that do not present a threat to human health and/or the environment and that would not be subject to an enforcement action if brought to the attention of appropriate governmental agencies. The following was identified during the course of this assessment:

• Partner observed evidence of former in-ground hydraulic lifts in the current above ground service bays as evidenced by circular cut-outs and concrete patches indicative of in-ground lift cylinders. The lifts were reportedly installed in the 1950s and removed in 1987. To address subsurface environmental conditions related to the former hydraulic lifts, a Phase II Environmental Site Assessment investigation was performed by Encore Environmental Consortium, LLC (EEC) in 2003. The subsurface investigation included the advancement of eleven borings identified as the locations of former-in ground hydraulic lifts in the service bays. However, review of the laboratory analysis from this report indicated that soils collected from the service bays were only analyzed for diesel and gas range petroleum hydrocarbons. The testing did not include analysis of polychlorinated biphenyls (PCBs), which is a target chemical of concern associated with older hydraulic lifts. Therefore, it is Partner's opinion that the 2003 investigation was not sufficient to determine the absence or

presence of PCB contamination in soils from the areas of the former in-ground lifts. Based on the potential for PCB-containing hydraulic fluid within the lifts to have impacted the subsurface and on the lack of any documented sampling conducted after removal of the lifts which targeted PCBs as a contaminant, specifically, the former presence of in-ground lifts onsite is a Recognized Environmental Condition.

• According to previous environmental reports prepared in 2003, the southern-most auto service bay area housed one active in-ground hydraulic lift which contained hydraulic fluid in a reservoir within the lift. The previous consultant recommended that the lift be drained and decommissioned in accordance with applicable regulatory requirements to prevent potential future releases. The reported lift was not observed during Partner's site reconnaissance, and no information pertaining to the status of the lift was found during Partner's assessment. Therefore, it is unclear whether the lift was properly removed and/or subsurface sampling was conducted. Based on this information, the former in-ground lift represents a REC.

A historical recognized environmental condition (HREC) refers to an environmental condition which would have been considered a REC in the past, but which is no longer considered a REC based on subsequent assessment or regulatory closure. The following was identified during the course of this assessment:

• The subject property was historically equipped with four underground storage tanks (USTs): one gasoline tank, one heating oil tank and two waste oil tanks. Three of the tanks have been closed and removed, and one has been closed in-place. Based on the documented removal and/or closure of the tanks, the subsequent analytical results and soil remediation, and the regulatory closure, the former USTs and associated onsite contamination are considered a historic recognized environmental condition.

An environmental issue refers to environmental concerns identified by Partner, which do not qualify as RECs; however, require discussion. The following was identified during the course of this assessment:

- Due to the age of the subject property buildings, there is a potential that ACMs and/or LBP are present. Overall, all suspect ACMs and painted surfaces were observed in good condition and do not pose a health and safety concern to the occupants of the subject property at this time. A few ceiling tiles, however, were noted during the inspection to be broken, chipped, and/or have signs of water damage. Should the ceiling tiles (or their glue dots) be replaced, the identified suspect ACMs would need to be sampled to confirm the presence or absence of asbestos prior to any renovation or demolition activities to prevent potential exposure to workers and/or building occupants.
- A previous subsurface investigation was performed in the area of the existing oil/water separator in 2011 to evaluate the site for potential subsurface impacts related to auto repair operations. Analytical results of the investigation revealed no constituents of concern were detected in soil or groundwater samples collected near the oil/water separator. Based on the

results, the presence of the oil/water separator is not a concern at this time. However, the oil/water separator continues to be used by the current tenant. The user should be aware that environmental risks associated with use of the oil/water separator in connection with auto repair activities increases over time.

Conclusions, Opinions and Recommendations

Partner has performed a Phase I Environmental Site Assessment in conformance with the scope and limitations of ASTM Practice E1527-05 of 400 River Road in the City of Puyallup, Pierce County, Washington (the "subject property"). Any exceptions to or deletions from this practice are described in Section 1.5 of this report.

This assessment has revealed evidence of recognized environmental conditions and environmental issues in connection with the subject property. Based on the conclusions of this assessment, Partner recommends the following:

- A limited subsurface investigation should be conducted in order to determine the presence or absence of PCB contamination in the areas of the former in-ground lifts.
- Obtain and review records pertaining to removal/decommissioning activities of the active inground lift.
- Periodic maintenance of the existing oil/water separator to prevent future releases.

TABLE OF CONTENTS

EXE	CUT	IVE SUMMARY	
TABI	E C	OF CONTENTS	•
1.0	IN	TRODUCTION	1
1.1		Purpose	
1.2	•	Scope of Work	J 1
1.3]	Limitations	•• 1 ••
1.4	Į	Jser Reliance	2 7
1.5	I	Limiting Conditions	2
2.0		TE DESCRIPTION	
2.1	5	Site Location and Legal Description	'' '' A
2.2	(Current Property Use	. 5
2.3	(Current Use of Adjoining Properties	5
2.4	F	Physical Setting Sources	5
	.4.1	Topography	5
	.4.2	Hydrology	6
	.4.3	Geology/Soils	. 6
2	.4.4	Flood Zone Information	6
3.0	H	STORICAL INFORMATION	. 7
3.1		Aerial Photograph Review	
3.2	5	Sanborn Fire Insurance Maps	. , a
3.3	(City Directories	ر.
3.4	F	Historical Topographic Maps	10
4.0	RI	EGULATORY RECORDS REVIEW	12
4.1	F	Regulatory Agencies	12
4	.1.1	State Department	12
4	.1.2	Health Department	12
4	.1.3	Fire Department	$\frac{12}{12}$
4	.1.4	Air Quality Management District	13
4	.1.5	Regional Water Quality Control Board	13
	.1.6	Building Department	13
	.1.7	Planning Department	14
	.1.8	Oil & Gas Exploration	14
4.2		Mapped Database Records Search	14
5.0	US	ER PROVIDED INFORMATION AND INTERVIEWS	21
5.1	L	nterviews	22
5	.1 .1	Interview with Owner	 22
	.1.2	Interview with Report User	22
	.1.3	Interview with Key Site Manager	22
	.1.4	Interviews with Past Owners, Operators and Occupants	22
	.1.5	Interview with Others	22
5.2	J	Jser Provided Information	23
5.	2.1	Title Records	23

	The form what The control of the state of the state of	
5.2.2	···	
5.2.3	1	
5.2.4		
5.2.5 5.2.6	The state of the s	
	ITE RECONNAISSANCE	
6.1	General Site Characteristics	
6.2	Potential Environmental Hazards	
	Non-ASTM Services	
6.3.1 6.3.2	122000000000000000000000000000000000000	
6.3.2	()	
6.3.4		34
6.3.5		34
6.4	MoldAdjacent Property Reconnaissance	55
	INDINGS AND CONCLUSIONS	
	IGNATURES OF ENVIRONMENTAL PROFESSIONALS	
9.0 R	EFERENCES	40
FIGURES		
Figure 1	Site Location Map	
Figure 2	Topographic Map	
Figure 3		
	u nu	
APPEND	CES	
Annardi	x A Site Photographs	
whheng		
Appendi	x B Historical/Regulatory Documentation	
	,	
	Bl Aerial Photographs	
	B1 Aerial Photographs B2 Fire Insurance Maps	
	B1 Aerial Photographs B2 Fire Insurance Maps B3 City Directories	
	B1 Aerial Photographs B2 Fire Insurance Maps B3 City Directories B4 Regulatory Agency Responses	
	B1 Aerial Photographs B2 Fire Insurance Maps B3 City Directories	

Appendix D Qualifications

1.0 INTRODUCTION

Partner Engineering and Science, Inc. (Partner) has performed a Phase I Environmental Site Assessment (ESA) in general conformance with the scope and limitations of ASTM Standard Practice E1527-05 and the Environmental Protection Agency Standards and Practices for All Appropriate Inquiries (AAI) (40 CFR Part 312) for the property located at 400 River Road in the City of Puyallup, Pierce County, Washington (the "subject property"). Any exceptions to, or deletions from, this scope of work are described in the report.

1.1 Purpose

The purpose of this ESA is to identify existing or potential Recognized Environmental Conditions (as defined by ASTM Standard E-1527-05) affecting the subject property that: 1) constitute or result in a material violation or a potential material violation of any applicable environmental law; 2) impose any material constraints on the operation of the subject property or require a material change in the use thereof; 3) require clean-up, remedial action or other response with respect to Hazardous Substances or Petroleum Products on or affecting the subject property under any applicable environmental law; 4) may affect the value of the subject property; and 5) may require specific actions to be performed with regard to such conditions and circumstances. The information contained in the ESA Report will be used by Client to: 1) evaluate its legal and financial liabilities for transactions related to foreclosure, purchase, sale, loan origination, loan workout or seller financing; 2) evaluate the subject property's overall development potential, the associated market value and the impact of applicable laws that restrict financial and other types of assistance for the future development of the subject property; and/or 3) determine whether specific actions are required to be performed prior to the foreclosure, purchase, sale, loan origination, loan workout or seller financing of the subject property.

This ESA was performed to permit the *User* to satisfy one of the requirements to qualify for the innocent landowner, contiguous property owner, or bona fide prospective purchaser limitations on scope of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) (42 U.S.C. §9601) liability (hereinafter, the "landowner liability protections," or "LLPs"). ASTM Standard E-1527-05 constitutes "all appropriate inquiry into the previous ownership and uses of the property consistent with good commercial or customary practice" as defined at 42 U.S.C. §9601(35)(B).

1.2 Scope of Work

The scope of work for this ESA is in general accordance with the requirements of ASTM Standard E 1527-05. This assessment included: 1) a property and adjacent site reconnaissance; 2) interviews with key personnel; 3) a review of historical sources; 4) a review of regulatory agency records; and 5) a review of a regulatory database report provided by a third-party vendor.

If requested by Client, this report may also include the identification, discussion of, and/or limited sampling of asbestos-containing materials (ACMs), lead-based paint (LBP), mold, and/or radon.

1.3 Limitations

Partner warrants that the findings and conclusions contained herein were accomplished in accordance with the methodologies set forth in the Scope of Work. These methodologies are described as representing good commercial and customary practice for conducting an ESA of a property for the purpose of identifying recognized environmental conditions. There is a possibility that even with the proper application of these methodologies there may exist on the subject property conditions that could not be identified within the scope of the assessment or which were not reasonably identifiable from the available information. Partner believes that the information obtained from the record review and the interviews concerning the subject property is reliable. However, Partner cannot and does not warrant or guarantee that the information provided by these other sources is accurate or complete. The conclusions and findings set forth in this report are strictly limited in time and scope to the date of the evaluations. The conclusions presented in the report are based solely on the services described therein, and not on scientific tasks or procedures beyond the scope of agreed-upon services or the time and budgeting restraints imposed by the Client. No other warranties are implied or expressed.

Some of the information provided in this report is based upon personal interviews, and research of available documents, records, and maps held by the appropriate government and private agencies. This report is subject to the limitations of historical documentation, availability, and accuracy of pertinent records and the personal recollections of those persons contacted.

This practice does not address requirements of any state or local laws or of any federal laws other than the all appropriate inquiry provisions of the LLPs. Further, this report does not intend to address all of the safety concerns, if any, associated with the subject property.

Environmental concerns, which are beyond the scope of a Phase I ESA as defined by ASTM include the following: ACMs, LBP, radon, and lead in drinking water. These issues may affect environmental risk at the subject property and may warrant discussion and/or assessment; however, are considered non-scope issues. If specifically requested by the Client, these non-scope issues are discussed in Section 6.3.

1.4 User Reliance

Sterling Bank engaged Partner to perform this assessment in accordance with an agreement governing the nature, scope and purpose of the work as well as other matters critical to the engagement. All reports, both verbal and written, are for the sole use and benefit of Sterling Bank. Either verbally or in writing, third parties may come into possession of this report or all or part of the information generated as a result of this work. In the absence of a written agreement with Partner granting such rights, no third parties shall have rights of recourse or recovery whatsoever under any course of action against Partner, its officers, employees, vendors, successors or assigns. Any such unauthorized user shall be responsible to protect, indemnify and

hold Partner, Client and their respective officers, employees, vendors, successors and assigns harmless from any and all claims, damages, losses, liabilities, expenses (including reasonable attorneys' fees) and costs attributable to such Use. Unauthorized use of this report shall constitute acceptance of and commitment to these responsibilities, which shall be irrevocable and shall apply regardless of the cause of action or legal theory pled or asserted. Additional legal penalties may apply.

1.5 Limiting Conditions

The findings and conclusions contain all of the limitations inherent in these methodologies that are referred to in ASTM E1527-05.

Specific limitations and exceptions to this ESA are more specifically set forth below:

- Interviews with past owners, operators and occupants were not reasonably ascertainable and thus constitute a data gap. Based on information obtained from other historical sources (as discussed in Section 3.0), this data gap is not expected to alter the findings of this assessment.
- Information relative to deed restrictions, environmental liens, and a title search from the Report User was not provided at the time of the assessment. Based on information obtained from other historical sources (as discussed in Section 3.0), this data gap is not expected to alter the findings of this assessment.
- Partner submitted Freedom of Information Act (FOIA) requests to the Pierce County Health Department (PCHD) and Washington Department of Environmental Quality (WADOE) for information pertaining to hazardous substances, underground storage tanks, releases, inspection records, etc. for the subject property. As of this writing, these agencies have not responded to Partner's request. Based on information obtained from the WADOE online database and from other historical sources, this limitation is not expected to alter the overall findings of this assessment.
- Partner's view of the ground surface was obstructed by parked cars in several areas
 throughout the subject property. Based on previous subsurface investigations provided to
 Partner for review, this limitation is not expected to alter the overall findings of this
 assessment.

2.0 SITE DESCRIPTION

2.1 Site Location and Legal Description

The subject property is located at the southwest quadrant of the intersection of River Road (SR167) and 4th Street NW in Puyallup, Pierce County, Washington. Please refer to the table below for further description of the subject property:

Address:	400 River Road
Assessor's Parcel Number (APN):	0420214014, 0420214057, 0420214807 & 0420214808
Nature of Use:	Commercial-Full Service Automotive Dealership
Number of Buildings:	5
Number of Floors:	1
Type of Construction:	CMU Main Building
	CMU/Wood Frame Salesman's Hut
	Wood Frame Salesman's Hut
	CMU Service Garage
	Wood Frame Detail Shop
Building Square Footage (SF):	12,611 SF Main Building
	4,160 SF Service Shop
	2,720 SF Detail Shop
	721 SF Salesman's Hut
	329 SF Salesman's Hut
Land Acreage (Ac):	3.30 Ac Cumulative
Date of Construction:	Main Building-1953
	Service Shop-1961
	Salesman's Huts-1965
	Detail Shop-1966
Current Tenants:	Northwest Motorsports

In addition to the current structures, the subject property is also improved with asphalt-paved parking areas.

According to the Pierce County Assessor, the subject property is legally described as community parcels 0420214014, 0420214057, 0420214807 & 0420214808 and ownership is currently vested in K&A Holdings, LLC. A complete legal description for each of the four parcels is included in the Pierce County Assessor's property cards, which are included in Appendix B.

Please refer to Figure 1: Site Location Map, Figure 2: Topographic Map, Figure 3: Site Plan and Appendix A: Site Photographs for the location and site characteristics of the subject property.

2.2 Current Property Use

The subject property is currently occupied by Northwest Motorsports for commercial use. Onsite operations consist of new automobile sales and full automotive maintenance, customization, repair and detailing activities

The subject property is designated for commercial development by the City of Puyallup and is considered a legal use in its current configuration.

The subject property was identified as an ALLSITES, RCRA Non-Gen, UST and FINDS site in the regulatory database report of Section 4.2.

2.3 Current Use of Adjoining Properties

The subject property is located within a mixed commercial area of Puyallup, Washington. During the vicinity reconnaissance, Partner observed the following land use on properties in the immediate vicinity of the subject property:

Immediately surrounding properties

ATTOTAL CONTINUES OF SOM	romment properties
North:	The subject property is bound to the north by River Road (SR167). Land area to the
	north of River Road supports an abandoned commercial property (401 River Road)
	formerly an automotive dealership known as Puyallup Chrysler/Plymouth).
South:	The subject property is bound to the south by a commercial property (820 4th Street-
	Boush Moving & Storage).
East:	The subject property is bound to the east by 4th Street NW. Land area to the east of the
	street supports an automotive dealership (Larson Motors-300 River Road).
West:	The subject property is bound to the west by land area that supports a commercial
	automotive dealership (Milam Truck Country-500 River Road).

Adjacent properties located in each direction from the subject property were identified in the regulatory database report of Section 4.2.

2.4 Physical Setting Sources

2.4.1 Topography

The United States Geological Survey (USGS), *Puyallup, Washington* Quadrangle 7.5-minute series topographic map was reviewed for this ESA. According to the contour lines on the topographic map, the subject property is located at approximately 34-feet above mean sea level (MSL). The contour lines in the area of the subject property indicate the area is sloping gently toward the north. The subject property is shaded to represent urban land area.

Please refer to Figure 2: Topographic Map.

2.4.2 Hydrology

According to topographic map interpretation, the direction of groundwater in the vicinity of the subject property is inferred to flow toward the north. The nearest surface water in the vicinity of the subject property is the Puyallup River located approximately 850-feet to the north of the subject property. No settling ponds, lagoons, surface impoundments, wetlands or natural catch basins were observed at the subject property during this assessment.

According to available information, a public water system operated by the Puyallup Department of Public Works and Engineering serves the subject property vicinity. According to a representative of the department, shallow groundwater directly beneath the subject property is not utilized for domestic purposes. According to the department's 2012 Water Quality Report (WQR), the City of Puyallup obtains its drinking water from two natural springs (Maplewood Springs and Salmon Springs), from five deep wells and from the City of Tacoma.

According to well logs for the subject property address that were submitted to the Washington Department of Ecology (WADOE) in April of 2011, the depth of groundwater at the subject property is present at approximately 18-feet below ground surface (bgs).

2.4.3 Geology/Soils

Information concerning the geology of the Subject Property was obtained from the USGS Map of the Physical Divisions of the United States (1946). The Subject Property is located within the Pugent Trough section of the Pacific Border physiographic province, which consists of partially submerged lowlands with diverse character.

Based on information obtained from the USDA Natural Resources Conservation Service Web Soil Survey online database, the subject property is mapped as Pilchuck fine sand, Puyallup fine sandy loam and Xerorthents fill areas. The Pilchuck series consists of very deep, excessively drained and somewhat excessively drained soils that formed in gravelly and sandy alluvium. Pilchuck soils are on flood plains. The Puyallup series consists of very deep, well drained soils formed in recent alluvium. Puyallup soils are on floodplains and low terraces.

2.4.4 Flood Zone Information

Partner performed a review of the Flood Insurance Rate Map, published by the Federal Emergency Management Agency. According to Community Panel Number 5301440005B, dated August 15, 1980, the central and west portions of the subject property appear to be located in Zone AO, which is defined by FEMA as an area that is subject to a one percent or greater annual chance of shallow flooding in any given year. Flooding is usually in the form of sheet flow with average depths between one and three feet.

3.0 HISTORICAL INFORMATION

Partner obtained historical use information about the subject property from a variety of sources. A chronological listing of the historical data found is summarized in the table below:

Historical Use Information

Ì	Period/Date	Source	Description/Use
	1939-1952	Aerial Photographs, City Directories	Undeveloped
	1953-Present	Aerial Photographs, City Directories, Building Records,	Commercial-Automotive
		Interviews, Previous Reports, Historic Topographic Maps,	Dealership
		Onsite observations	

Potential environmental concerns were identified in association with the current and historic use of the subject property, as further discussed in Sections 4.0, 5.2, and 6.0.

3.1 Aerial Photograph Review

On October 21, 2013, Partner obtained available aerial photographs of the subject property and surrounding area from Environmental Data Resources (EDR). The aerial photographs were reviewed for indications of previous uses, as discussed below:

Date: 1941 Scale: 1"=750"

The subject property appears to be undeveloped land.

River Road is depicted to the immediate north of the subject property. Land area to the north of the road appears to support pastureland and woodland. 4th Street is depicted to the east of the subject property. Land area to the east of the street appears to support woodland and pastureland. Land area to the south of the subject property appears to support woodland vegetation and a small building that is similar in size and shape to a single-family residence. Land area to the west of the subject property appears to support pastureland.

Date: 1957 Scale: 1"=500"

The central portion of the subject property appears to be developed with a building or foundation that is similar in size and orientation to the present day main building. Areas of the subject property to the north and to the south of the building appear to be graded or paved.

River Road is depicted to the immediate north of the subject property. Land area to the north of the road appears to support pastureland and woodland. 4th Street is depicted to the east of the subject property. Land area to the east of the street appears to support woodland and pastureland. Land area to the south of the subject property appears to support woodland vegetation and a small building. Land area to the west of the subject property appears to support pastureland.

Date: 1968 Scale: 1"=750"

The central portion of the subject property appears to be developed with two buildings that are similar in size and orientation to the present day main building and service garage.

River Road is depicted to the immediate north of the subject property. Land area to the north of the road appears to be graded for commercial development. 4th Street is depicted to the east of the subject property. Land area to the east of the street appears to support paved parking lots and at least two commercial buildings. Land area to the south of the subject property appears to support at least two commercial buildings. Land area to the west of the subject property appears to support paved parking and a small commercial building.

Date: 1972, 1986 Scale: 1"=1,000"

The subject property generally appears to have been developed in a manner that is consistent with the conditions that were observed on the day of the site visit. The scale and clarity 1972 and 1986 aerial photography is of low quality and inhibits detailed analysis of the site structures.

River Road is depicted to the immediate north of the subject property. Land area to the north of the road appears to have been developed in a manner that is consistent with the conditions observed on the day of the site visit. Land areas to the east and to the west of the subject property appear to support commercial developments that are consistent with the conditions observed on the day of the site visit. Land area to the south of the subject property is depicted as developed with commercial buildings and paved parking. The scale and clarity 1972 and 1986 aerial photography is of low quality and inhibits detailed analysis of the off-site structures.

Date: 1990, 1991 Scale: 1"=500"

The subject property generally appears to have been developed in a manner that is consistent with the conditions that were observed on the day of the site visit.

River Road is depicted to the immediate north of the subject property. Land area to the north of the road appears to have been developed in a manner that is consistent with the conditions observed on the day of the site visit. Land areas to the east and to the west of the subject property appear to support commercial developments that are consistent with the conditions observed on the day of the site visit. Land area to the south of the subject property is depicted as developed with commercial buildings and paved parking.

Date: 2006, 2009, 2011 Scale: 1"=500"

The subject property appears to have been developed in a manner that is consistent with the conditions that were observed on the day of the site visit.

River Road is depicted to the immediate north of the subject property. Land area to the north of the road appears to have been developed in a manner that is consistent with the conditions observed on the day of the site visit. Land areas to the east and to the west of the subject property appear to support commercial developments that are consistent with the conditions observed on the day of the site visit. Land area to the south of the subject property is depicted as developed with commercial buildings and paved parking

Copies of select aerial photographs are included in Appendix B of this report.

3.2 Sanborn Fire Insurance Maps

Sanborn maps were originally created in the late 1800s and early 1900s for assessing fire insurance liability in urbanized areas of the United States. These maps include detailed town and building information.

Partner reviewed Sanborn Fire insurance maps obtained from EDR's collection on November 4, 2013. Sanborn maps dated 1927, 1945 and 1964 were examined. None of the maps that were reviewed provided coverage of the subject property or immediately surrounding properties. The maps depicted development in the form of residential dwellings, beginning approximately 250-feet to the south of the subject property, along the east and west sides of 4th Street NW. No commercial development is depicted in the coverage area.

Copies of reviewed Sanborn Maps are included in Appendix B of this report.

3.3 City Directories

City directories have been produced for most urban and some rural areas since the late 1800s. The directories are generally not comprehensive and may contain gaps in time periods.

Partner reviewed historical city directories obtained from the City of Tacoma Public Library for past names and businesses that were listed for the subject property and adjacent properties. The findings are presented in the following table:

City Directory Search for 400 River Road (Subject Property)

Year(s)	Occupant Listed
1939	No Listing
1947	No Listing
1953-54	Grant's Auto Sales and Service
1961	Grant's Oldsmobile
1965	Grant's Chevrolet
1970	Grant's Service Chevrolet
1975	Service Chevrolet, Inc.
1980-81	Service Chevrolet, Inc.
1985	Service Chevrolet, Inc.
1990	Ken Parks Chevrolet-Subaru
2003	Carter's Puyallup Chevrolet

According to the city directory review, the subject property was occupied by Grant's Auto Sales and Service in 1954, later becoming Grant's Oldsmobile by approximately 1961 and Grant's Chevrolet by approximately 1969. By approximately 1975, the subject property was occupied by Service Chevrolet, Inc. By approximately 1990, the subject property was occupied by Ken Parks Chevrolet and by 2003 was occupied by Carter's Puyallup Chevrolet. The former Greg Carter's Chevrolet is identified in the regulatory database as a RCRA Non Generator and UST site and is cross referenced in the FINDS and ALLSITES databases as discussed in Section 4.2.

City Directory Search for Adjacent Properties

Year(s)	Occupant Listed				
1939	North: 401 River Road-No Listing, South: 820 4th Street-Martin B. Baskovitch				
	East: 300 River Road- No Listing, West: 500 River Road-No Listing				
1947	North: 401 River Road-No Listing, South: 820 4th Street-No Listing				
	East: 300 River Road- No Listing, West: 500 River Road-No Listing				
1953-54	North: 401 River Road-No Listing, South: 820 4th Street-No Listing				
	East: 300 River Road- No Listing, West: 500 River Road-No Listing (515 Residence)				
1961	North: 401 River Road-No Listing, South: 820 4th Street-No Listing				
	East: 300 River Road- No Listing, West: 500 River Road-No Listing				
1965	North: 401 River Road-No Listing, South: 820 4th Street-No Listing				
	East: 300 River Road- No Listing, 315 River Road-First Union National Bank, West: 500				
	River Road-No Listing, 506 River Road-USDA				
1970	North: 401 River Road-Puyallup Chrysler, South: 820 4th Street-Boush Moving & Storage				
	East: 300 River Road-Larson Motors Inc., West: 500 River Road-No Listing, 506 River				
	Road-USDA				
1975	North: 401 River Road- Puyallup Chrysler, South: 820 4th Street- Boush Moving &				
	Storage, East: 300 River Road-Larson Motors Inc., 324 River Road-River Road Gulf				
	Station, 315 River Road-Peugeot Sound National Bank, West: 500 River Road-No				
 .	Listing, 506 River Road-USDA				
1980-81	North: 401 River Road-Moceri Leasing Inc., South: 820 4th Street-Moving & Storage				
	East: 300 River Road-Larson Motors, West: 500 River Road-No Listing				
1985	North: 401 River Road-Moceri Leasing Inc., South: 820 4th Street-Bouch Moving &				
	Storage, East: 300 River Road-Larson Motors, West: 500 River Road-No Listing				
1990	North: 401 River Road-Moceri Leasing Inc., South: 820 4th Street- Boush Moving &				
	Storage, East: 300 River Road-Larson Motors, West: 500 River Road-Korum RV				

According to the city directory review, the adjacent property to the east has been occupied a commercial automotive dealership since at least 1970. Land area to the northeast of the subject property, across the 4th Street and River Road intersection, was occupied by River Road Golf Gasoline Service Station in approximately 1975. The gas station listing was no longer apparent by 1980-81. Based on the inferred direction of groundwater flow (hydrologically cross- to downgradient) of the subject property, this former gas station is not expected to be a significant environmental concern for the subject property. A commercial moving and storage facility has occupied the south adjacent property since at least 1970.

3.4 Historical Topographic Maps

Partner reviewed historical topographic maps obtained from the United Stated Geological Survey's online collection on October 31, 2013. Topographic maps were available and reviewed for the years 1961, 1968, 1973. 1981, 1994 and 1997 as discussed below:

Date: 1961

The subject property appears to support a commercial building that is similar in orientation the main building currently located on the subject property.

River Road is depicted to the north of the subject property. Land area to the north of the road is shaded to represent woodland area. Land area to the south of the subject property is shaded to represent urban land use. 4th Street is depicted to the east of the subject property. Land area to the east of the street is shaded to represent woodland area. Land area to the west of the subject property is shaded to represent woodland area.

Date: 1968 and 1973

The subject property appears to support three buildings.

River Road is depicted to the north of the subject property. Land area to the north of the road appears to support one building. Land area to the south of the subject property appears to support one building. 4th Street is depicted to the east of the subject property. Land area to the east of the subject property appears to support two buildings. Land area to the west of the subject property appears to support four buildings.

Date: 1981

The subject property appears to support five buildings.

River Road is depicted to the north of the subject property. Land area to the north of the road appears to support two buildings. Land area to the south of the subject property appears to support three buildings. 4th Street is depicted to the east of the subject property. Land area to the east of the subject property appears to support three buildings. Land area to the west of the subject property appears to support four buildings.

Date: 1994 and 1997

The subject property is shaded to represent urban land use. There are no buildings depicted on the subject property.

River Road is depicted to the north of the subject property. Land area to the north of the road appears to support two buildings. Land area to the south, to the east and to the west of the subject property is shaded to represent urban land use. There are no buildings depicted on these adjoining properties.

4.0 REGULATORY RECORDS REVIEW

4.1 Regulatory Agencies

Partner contacted local agencies, such as environmental health departments, fire departments and building departments in order to determine any current and/or historic hazardous materials usage, storage and/or releases of hazardous substances on the subject property. Additionally, Partner researched information on the presence of activity and use limitations (AULs) at these agencies. As defined by ASTM E1527-05, AULs are the legal or physical restrictions or limitations on the use of, or access to, a site or facility: 1) to reduce or eliminate potential exposure to hazardous substances or petroleum products in the soil or groundwater on the subject property; or 2) to prevent activities that could interfere with the effectiveness of a response action, in order to ensure maintenance of a condition of no significant risk to public health or the environment. These legal or physical restrictions, which may include institutional and/or engineering controls (IC/ECs), are intended to prevent adverse impacts to individuals or populations that may be exposed to hazardous substances and petroleum products in the soil or groundwater on the property.

4.1.1 State Department

Partner requested records from the Washington Department of Ecology (WADOE) on October 25, 2013 for the subject property. These records may contain evidence indicating current and/or historical hazardous materials usage, storage or releases, as well as the presence of underground storage tanks (USTs).

As of the date of this report, Partner has not received a response from the WADOE for inclusion in this report.

4.1.2 Health Department

Partner requested records from the Pierce County Health Department (PCHD) on October 25, 2013 for the subject property. These records may contain evidence indicating current and/or historical hazardous materials usage, storage or releases, as well as the presence of USTs.

As of the date of this report, Partner has not received a response from the PCHD for inclusion in this report.

4.1.3 Fire Department

Partner requested records from the Puyallup Fire Department (PFD), Fire District No. 9 on October 25, 2013 for the subject property. These records may contain evidence indicating current and/or historical hazardous materials usage, storage or releases, as well as the presence of USTs.

Partner received a response from Mrs. Amy Jackson of the Central Pierce Fire & Rescue Prevention and Education Division on November 5, 2013. Mrs. Jackson stated that she had no fire incident records or any hazardous material use/storage permits of file for the subject property address.

4.1.4 Air Quality Management District

The State of Washington does not maintain an Air Quality Management District. These records are maintained by the Washington Department of Ecology (WADOE).

WADOE Air Quality records identified the subject property as Facility/Site No. 68989278 and listed the occupants as Friendly Chevrolet of Puyallup, Friendly Chevrolet, Puyallup Chevrolet-Geo-Subaru, Inc. and Greg Carter's Puyallup Chevrolet-Subaru.

No PTOs, NOVs, NTCs or the presence of AULs were on file for the subject property address within the WADOE Air Quality Records. The agencies records cross-referenced the subject property address to the WADOE HAZWASTE program file No. WAD988484598 and to the WADOE UST program file No. 97772. Neither of these case files was fully accessible through the WADOE Air Quality Records Database or local WADOE office. However, available information indicated that the subject property had three closed underground storage tanks (one gasoline tank, one heating oil tank and one waste oil tank).

4.1.5 Regional Water Quality Control Board

The State of Washington does not maintain a Regional Water Quality Control Board. These records are maintained by the Washington Department of Ecology (WADOE). Partner researched the WADOE online database on October 29, 2013 for information regarding any releases to the subsurface which may have impacted or threatened a body of water.

No records regarding a release or the presence of AULs on the subject property were on file within the WADOE water quality database.

4.1.6 Building Department

Partner visited the Puyallup Building Department (PBD) on October 24, 2013 for information regarding historical tenants and property use of the subject property. The following table contains a listing of permits reviewed:

Building Records Reviewed for 400 River Road (Subject Property)

Year(s)	Owner/Applicant	Description
1999	Plumb Signs, Inc.	Installation of Facade
2001	Plumb Signs, Inc.	Construct Sign Pole
2002	I-5 Signs, Inc.	Relocate Wali
2003	Plumb Signs, Inc.	Remove Damaged Directional
2006	Olympic Sign Services, Inc.	Wall Sign-Chevrolet
2007	Alpha Steel Building, Inc	Stop Work-Canopy Over Service Drive

2011 CMW Investments, LLC Commercial/Mechanical-Replace Three Gas Furnaces, A Gas Piping	Year(s)	Owner/Applicant	Description
Gas Piping			Commercial/Mechanical-Replace Three Gas Furnaces, Add
2013 K&A Holdings, LLC Wall Sign-NW Motorsports 4x4 Parts			
	2013	K&A Holdings, LLC	Wall Sign-NW Motorsports 4x4 Parts

PBD's records of permits related to the subject property address dated back to 1999 and identified several signage changes between 1999 and 2013. Shell building permits and/or Certificates of Occupancy were not available at the building department.

4.1.7 Planning Department

Partner contacted the Puyallup Planning Department (PPD) on October 25, 2013 for information on the subject property in order to identify AULs associated with the subject property.

According to records reviewed, the subject property is zoned G-C (General Commercial) for commercial development by the City of Puyallup and is considered a legal use in its current configuration.

4.1.8 Oil & Gas Exploration

The State of Washington does not maintain records of oil and gas exploration. Partner accessed the National Pipeline Mapping System (NPMS) through this agency's website. The NPMS is a geographic information system (GIS) created by the U.S. Department of Transportation, Pipeline and Hazardous Materials Safety Administration (PHMSA), Office of Pipeline Safety (OPS) in cooperation with other federal and state governmental agencies and the pipeline industry. The NPMS consists of geospatial data, attribute data, public contact information, and metadata pertaining to the interstate and intrastate gas and hazardous liquid transmission pipelines, liquefied natural gas (LNG) plants, and hazardous liquid breakout tanks jurisdictional to PHMSA. The nominal accuracy of geospatial data in the NPMS is +/-500 feet.

Based on a review of the NPMS map, no hazardous liquid transmission pipelines, liquefied natural gas (LNG) plants, and hazardous liquid breakout tanks are located in the immediate vicinity of the subject property.

4.2 Mapped Database Records Search

Information from standard federal, state, county, and city environmental record sources was provided by Environmental Data Resources, Inc. (EDR). Data from governmental agency lists are updated and integrated into one database, which is updated as these data are released. The information contained in this report was compiled from publicly available sources and the locations of the sites are plotted utilizing a geographic information system, which geocodes the site addresses. The accuracy of the geocoded locations is approximately +/-300 feet. Please refer to the radius map for a complete listing (Appendix C).

The subject property was identified as a RCRA Non Gen, UST, FINDS and ALLSITES site in the regulatory database report. The adjacent properties were identified as RCRA Non Gen, UST, ALLSITES, MANIFEST and FINDS sites in the regulatory database report.

Federal NPL

The National Priorities List (NPL) is the Environmental Protection Agency (EPA) database of uncontrolled or abandoned hazardous waste sites identified for priority remedial actions under the Superfund Program.

No NPL sites are located within 1-mile of the subject property.

Federal CERCLIS List

The Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS) list is a compilation of sites that the EPA has investigated or is currently investigating for a release or threatened release of hazardous substances.

No CERCLIS sites are listed within ½-mile of the subject property.

Federal CERCLIS-NFRAP Sites List

The CERCLIS No Further Remedial Action Planned (NFRAP) List is a compilation of sites that the EPA has investigated, and has determined that the facility does not pose a threat to human health or the environment, under the CERCLA framework.

One CERCLIS-NFRAP site is listed within $^{1}/_{2}$ -mile of the subject property. The site is located more than $^{1}/_{8}$ -mile of the subject property and situated hydrologically cross- to down-gradient. Based on the relative distance, regulatory status, and inferred direction of groundwater flow; this site is not expected to represent a significant environmental concern.

Federal RCRA Generator List

The EPA Resource Conservation and Recovery Act (RCRA) Program RCRA program identifies and tracks hazardous waste from the point of generation to the point of disposal. The RCRA Generators database is a compilation by the EPA of reporting facilities that generate hazardous waste.

Greg Carter's Puyallup Chevrolet-Subaru, a former occupant of the subject property, is listed as a RCRA Non-Gen facility. RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Non-Generators do not presently generate hazardous waste. Based on the analytical results of previous subsurface investigations conducted onsite; this listing is not expected to represent a significant environmental concern.

Phase I Environmental Site Assessment Project No. 13-111058.1 November 7, 2013 Page 15

Puyallup Chrysler-Plymouth R/V, Inc. is located at 401 River Road is located adjacent to the north (hydrologically down gradient) of the subject property. This site was reported in 1994 as a non-RCRA generator with no violations. Based on the regulatory status and inferred direction of groundwater flow, this site is not expected to represent a significant environmental concern.

Federal RCRA CORRACTS Facilities List

The RCRA CORRACTS database is the EPA's list of TSD facilities subject to corrective action under RCRA.

No RCRA CORRACTS facilities are listed within 1-mile of the subject property.

Federal Resource Conservation and Recovery Act (RCRA) TSD Facilities List

The RCRA Treatment, Storage and Disposal (TSD) database is a compilation by the EPA of reporting facilities that treat, store or dispose of hazardous waste.

No RCRA TSD sites are listed within ½-mile of the subject property.

Federal Institutional Controls/Engineering Controls (IC/EC)

The Federal IC/EC database is designed to assist the EPA in collecting, tracking, and updating information, as well as reporting on the major activities and accomplishments of the various Brownfield grant programs. The IC/EC sites are superfund sites that have either engineering or an institutional control in place. The data includes the control and the media contaminated.

No Federal IC/EC sites were found within 1/2-mile of the subject property.

Federal Emergency Notification System (ERNS)

The Emergency Response Notification System (ERNS) is a national database used to collect information or reported release of oil or hazardous substances.

No ERNS sites are listed on or adjacent to the subject property.

State/Tribal Sites (HSL)

The Washington Department of Ecology maintains a State Priority List (HSL) of sites considered to be actually or potentially contaminated.

Six HSL sites are reported within 1-mile of the subject property. Each of the six HSL sites are located more than \(^{1}/_{8}\)-mile of the subject property and situated hydrologically cross- to downgradient. Based on the relative distance, regulatory status, and/or inferred direction of groundwater flow; these sites are not expected to represent a significant environmental concern.

State/Tribal Equivalent CERCLIS (CSCSL) Sites

The Washington Department of Ecology compiles a list of state hazardous waste sites equivalent to CERCLIS. These sites may or may not already be listed on the federal CERCLIS list.

Twenty-four CSCSL sites are listed within 1-mile of the subject property. Each of the 24 CSCSL sites are located more than \(^{1}\)8-mile of the subject property and situated hydrologically cross- to down-gradient. Based on the relative distance, regulatory status, and/or inferred direction of groundwater flow; these sites are not expected to represent a significant environmental concern.

Solid Waste/Landfill Facilities (SWLF)

A database of SWLF is prepared by the Washington Department of Ecology.

No SWLF facilities are listed within 1/2-mile of the subject property.

State Leaking Underground Storage Tank List (LUST)

The Washington Department of Ecology compiles lists of all leaks of hazardous substances from underground storage tanks.

Three LUST sites are listed within ½-mile of the subject property. Each of the three LUST sites is located more than \$^{1}_{8}\$-mile of the subject property and situated hydrologically cross- to downgradient. Based on the relative distance, regulatory status, and/or inferred direction of groundwater flow; these sites are not expected to represent a significant environmental concern.

State Underground Storage Tank/Aboveground Storage Tank List (UST/AST)

The Washington Department of Ecology compiles a list of UST and AST locations.

Greg Carter's Puyallup Chevrolet-Subaru, a former occupant of the subject property, is listed as a UST facility (Facility ID 68989278). Available information indicates that a 5,000-gallon capacity UST and 1,100 gallon capacity UST were installed in 1964. Both USTs were reportedly closed/removed in 1996. Additionally, a 1,100-gallon capacity fiberglass reinforced plastic (FRP) UST was reportedly installed in 1987 and was reportedly closed/removed on April 4, 2004.

Additionally, eight registered UST/AST facilities are listed within ¼-mile of the subject property. Four sites are located within ½-mile of the subject property as discussed below:

• Arthur J Boush Moving & Storage at 820 4th Street is adjacent to south (hydrologically upgradient) of the subject property. This site reportedly operated one Underground Storage Tank, which was installed in 1964 and closed-in place in 1996. No releases have been reported for this site. Based on the regulatory status, this site is not expected to represent a significant environmental concern.

- City of Puyallup Sewage Pump South at the northeast corner of 4th Street and River Road is approximately 150-feet to the northeast (hydrologically down-gradient) of the subject property. This site reportedly operated one Underground Storage Tank, which was reportedly removed/closed in 1994. No releases have been reported for this site. Based on the regulatory status and inferred direction of groundwater flow, this site is not expected to represent a significant environmental concern.
- Puyallup Chrysler-Plymouth R/V, Inc. is located at 401 River Road is located adjacent to the
 north (hydrologically down gradient) of the subject property. This site reportedly operated one
 Underground Storage Tank, which was installed in 1964 and removed/closed in 1996. No
 releases have been reported for this site. Based on the relative distance, regulatory status, and
 inferred direction of groundwater flow, this site is not expected to represent a significant
 environmental concern.
- Korum RV at 514 River Road is located approximately 500-feet to the northwest (hydrologically down-gradient) of the subject property. This site reportedly operated one Underground Storage Tank, which was installed in 1964 and removed/closed in 1996. No releases have been reported for this site. Based on the relative distance, regulatory status, and inferred direction of groundwater flow, this site is not expected to represent a significant environmental concern.

The remaining four sites are located more than \$1/8\$-mile of the subject property and situated hydrologically cross- to down-gradient. Based on the relative distance, regulatory status, and/or inferred direction of groundwater flow; these sites are not expected to represent a significant environmental concern.

State/Tribal VCP Sites

The Washington Department of Ecology compiles a list of Voluntary Cleanup Program (VCP) sites.

Six State/Tribal VCP sites were found within ½-mile of the subject property. Each of the six sites is located more than ½-mile of the subject property and situated hydrologically cross- to downgradient. Based on the relative distance, regulatory status, and/or inferred direction of groundwater flow; these sites are not expected to represent a significant environmental concern.

State/Tribal Brownfield Sites

The Washington Department of Ecology has developed an electronic database system with information about sites that are known to be contaminated with hazardous substances as well as information on uncharacterized properties where further studies may reveal problems.

No State/Tribal Brownfield sites were found within 1/2-mile of the subject property.

US Brownfield Sites

The EPA Brownfield database was reviewed to identify facilities that qualify for federal remediation funding under the Small Business Liability Relief and Brownfield Revitalization Act (the "Brownfield" amendment to CERCLA).

No US Brownfield sites were noted within ½-mile of the subject property.

State Spills Sites (SPILLS)

The Washington Department of Ecology maintains reports of sites that have records of spills, leaks, investigations and cleanups.

No SPILLS sites are listed on or adjacent to the subject property.

Tribal Records

The EPA maintains a database of Indian administered lands of the United States that total 640 acres or more.

The Puyallup Indian Reservation is located approximately ½-mile to the northwest of the subject property. Based on the regulatory status, and inferred direction of groundwater flow, this site is not expected to represent a significant environmental concern. No other Tribal sites were found within 1-mile of the subject property.

MANIFEST Sites

The Washington Department of Ecology maintains a Manifest database which lists and tracks hazardous waste from the generator through transporters to a TSD facility.

The subject property is not listed as a MANIFEST site. Two MANIFEST sites are listed adjacent to the subject property as discussed below:

- Korum Family Limited Partnership at 500 River Road is located adjacent to the west (hydrologically cross-gradient) of the subject property. Based on the regulatory status, and inferred direction of groundwater flow, this site is not expected to represent a significant environmental concern.
- Larson Motors at 300 River Road is located adjacent to the east (east of 4th Street) (hydrologically cross-gradient) of the subject property. Based on the regulatory status, and inferred direction of groundwater flow, this site is not expected to represent a significant environmental concern.

Dry Cleaners

The Washington Department of Ecology maintains a list of registered dry cleaning facilities.

No Dry Cleaners are listed on or adjacent to the subject property.

Facility Index System/ Facility Registry System (Finds)

FINDS contains both facility information and 'pointers' to other sources that contain more detail. EDR includes the following FINDS databases in this report: PCS (Permit Compliance System), AIRS (Aerometric Information Retrieval System), DOCKET (Enforcement Docket used to manage and track information on civil judicial enforcement cases for all environmental statutes), FURS (Federal Underground Injection Control), C-DOCKET (Criminal Docket System used to track criminal enforcement actions for all environmental statutes), FFIS (Federal Facilities Information System), STATE (State Environmental Laws and Statutes), and PADS (PCB Activity Data System).

The subject property was identified as a FINDS site. FINDS listings are a pointer to other sources which included databases maintained by the WADOE. This FINDS listing is likely associated with the UST listing discussed above in the UST/AST Segment.

ALLSITES

Information on facilities and sites of interest to the WADOE.

The subject property and adjacent properties were identified as ALLSITES. These listings are likely associated with the NON-RCRA Gen, UST and MANIFEST listings discussed above.

5.0 USER PROVIDED INFORMATION AND INTERVIEWS

In order to qualify for one of the Landowner Liability Protections (LLPs) offered by the Small Business Liability Relief and Brownfields Revitalization Act of 2001 (the Brownfields Amendments), the User must provide the following information (if available) to the environmental professional. Failure to provide this information could result in a determination that all appropriate inquiry is not complete. The user is asked to provide information or knowledge of the following:

- Environmental cleanup liens that are filed or recorded against the site.
- Activity and land use limitations that are in place on the site or that have been filed or recorded in a registry.
- Specialized knowledge or experience of the person seeking to qualify for the LLPs.
- Relationship of the purchase price to the fair market value of the *property* if it were not contaminated.
- Commonly known or reasonably ascertainable information about the property.
- The degree of obviousness of the presence or likely presence of contamination at the property, and the ability to detect the contamination by appropriate investigation.
- The reason for preparation of this Phase I ESA.

Fulfillment of these user responsibilities is key to qualification for the identified defenses to CERCLA liability. Partner requested our Client to provide information to satisfy User Responsibilities as identified in Section 6 of the ASTM guidance.

Pursuant to ASTM E 1527-05, Partner requested the following site information from Sterling Bank (User of this report).

Item	Provided By User	Not Provided By User	Discussed Below	Does Not
Environmental Pre-Survey Questionnaire	X		man talaketan di Padila	and hinds
Title Records		X		
Environmental Liens or Activity and Use Limitation		x		
Specialized Knowledge			X	
Valuation Reduction for Environmental Issues	····		X	
Identification of Key Site Manager	X			·
Reason for Performing Phase I ESA	Yes, See Section 1.1			
Prior Environmental Reports			X	
Other	_	X		

Phase I Environmental Site Assessment Project No. 13-111058.1 November 7, 2013 Page 21

5.1 Interviews

5.1.1 Interview with Owner

The owner of the subject property was not available to be interviewed at the time of the assessment.

5.1.2 Interview with Report User

Please refer to Section 5.2 below for information requested from the Report User.

5.1.3 Interview with Key Site Manager

Mrs. Nicola Bley, key site manager, indicated that she had no information pertaining to any pending, threatened, or past litigation relevant to hazardous substances or petroleum products in, on, or from the subject property; any pending, threatened, or past administrative proceedings relevant to hazardous substances or petroleum products in, on, or from the subject property; or any notices from a governmental entity regarding any possible violation of environmental laws or possible liability relating to hazardous substances or petroleum products.

According to Mrs. Bley, the subject property has been occupied by various automotive dealerships since its original development in the 1950s. She stated that there are currently no inground hydraulic lifts in any of the service bays. She stated that the in-round lifts were all removed and decommissioned prior to the current dealership's occupancy of the subject property in 2011. Mrs. Bley stated that there are no active USTs located on the property and that all waste automotive fluids are accumulated in the double walled above ground tanks that are located in the service bays. The waste fluids are reportedly removed by a licensed waste handler on an as needed basis. She stated that she understood that former USTs associated with the subject property were historically decommissioned and closed. Further, Ms. Bley was not aware of any existing underground storage tanks located on the subject property. She stated that the property is equipped with an oil water separation system which prevents automotive fluids from entering the municipal sewer and storm water systems. She stated that the area of the oil water separator was previously investigated and found to be free of contamination.

5.1.4 Interviews with Past Owners, Operators and Occupants

Interviews with past owners, operators and occupants were not reasonably ascertainable and thus constitute a data gap.

5.1.5 Interview with Others

As the subject property is not an abandoned property as defined in ASTM 1527-05, interview with others were not performed.

5.2 User Provided Information

5.2.1 Title Records

Partner was not provided with title records for review as part of this assessment.

5.2.2 Environmental Liens or Activity and Use Limitation

Partner requested information from the User regarding knowledge of environmental liens and activity and use limitations (AULs) for the subject property.

No environmental lien or activity and use limitation information was provided by the User at the time of the assessment.

5.2.3 Specialized Knowledge

The User was unaware of any specialized knowledge of environmental conditions associated with the subject property.

5.2.4 Commonly Known or Reasonably Ascertainable Information

The User was unaware of commonly known or reasonably ascertainable information within the local community about the subject property that is material to recognized environmental conditions in connection with the subject property.

5.2.5 Valuation Reduction for Environmental Issues

The User was unaware of knowledge of reductions in property value due to environmental issues.

5.2.6 Previous Reports and Other Provided Documentation

The following information was provided to Partner for review during the course of this assessment:

Phase I Environmental Audit, Environmental Associates, Inc. (July 31, 2003)

Consultant (Environmental Associates, Inc.) prepared this report on behalf of Puyallup Chevrolet.

According to the July 2003 Environmental Associates, Inc. report, the following recognized environmental conditions for the subject property were identified.

• The subject site building has been heated with a heating-oil burning unit in the past, and a "closed-in place" heating oil underground storage tank (UST) reportedly resides beneath the southern margin of the office/parts portion of the building near the basement parking garage entrance. An in-use waste-oil UST (approximately 500 to 1,000 gallon capacity) currently resides along the southern wall of the southern-most service bay building in the location of a

previously removed (in 1987) waste oil tank. An unleaded gasoline UST (approximately 2,000 to 5000 gallon capacity) which existed near the rear (southern) driveway portion of the site was apparently removed in approximately 1987. Subsurface environmental conditions proximal to these tank localities have apparently not been evaluated through means of subsurface sampling and laboratory analytical testing.

• Portions of the site including the northern-most and southern-most automobile service bay buildings have been used as automobile service and repair shops for approximately the past 50 and 43 years respectively, with the storage and use of automobile-related fluids (petroleum substances, solvents, anti-freeze, etc.). The southern-most auto service bay area currently houses one buried hydraulic lift which contains hydraulic fluid in a reservoir within the lift, and several former buried hydraulic lifts were removed from both service bay areas in approximately 1987 and replaced with above-floor hydraulic lifts. Subsurface environmental conditions related to these past and current uses of the site and current and former buried hydraulic lifts have apparently not been evaluated through means of subsurface sampling and analytical testing.

<u>Phase II Environmental Site Assessment</u>, Encore Environmental Consortium, LLC. (August 21, 2003) Encore Environmental Consortium, LLC (EEC) prepared this report on behalf of Argonaut Holdings, LLC.

The purpose of the Phase II subsurface activity was to assess potential impact to the subsurface from areas of potential site recognized environmental conditions (RECs) identified during the July 2003 Phase I ESA. EEC's Phase II ESA was conducted to address the following items from the Environmental Associates, Inc 2003 Phase I ESA:

- Active Waste Oil Underground Storage Tank (UST): An active waste oil UST with a reported 500 to 1,000-gallon capacity is located along the southern wall of the service bay building.
- Closed in Place Heating Oil UST: A "closed in place" heating oil UST is reportedly located along the southern margin of the office/parts portion of the building near the basement parking garage entrance.
- Former Gasoline UST: A former unleaded gasoline UST with a reported 2,000 to 5,000-gallon capacity was situated near the rear (southern) driveway portion of the Site.
- Active Hydraulic Hoist: One active in-ground hydraulic hoist is located in the southernmost service bay area of the Site.
- Former Hydraulic Hoists: Several former in-ground hydraulic hoists were reportedly removed from both service bay areas in 1987. During the Phase II ESA, EEC investigated eleven locations of former in-ground hydraulic hoists in these service bays.

- Former Gas Station: A former gas station was reportedly associated with an adjacent property to the east of the Site. Various Drainage Utilities: At the request of Argonaut, EEC investigated drainage facilities observed during the Phase II ESA, if any, that have the potential to impact the subsurface. Two storm drains, one of which is in the vicinity of an aboveground oil/water separator, were investigated by EEC during the Phase II ESA.
- During subsurface assessment activities, field personnel performed an investigation to evaluate the Site for potential subsurface impacts to the areas of concern presented above by advancing a total of 18 direct push soil borings. Soil borings SB-1 and SB-3 were advanced in the vicinity of two storm drains; soil boring SB-2 was advanced to investigate potential impacts from the adjacent property to the east of the Site; soil boring SB-4 was advanced to investigate the former unleaded gasoline UST; soil boring SB-5 was advanced to investigate the "closed in place" heating oil UST; soil borings 58-6 and SB-7 were advanced to investigate the active waste oil UST; and soil borings SB-8 through SB-18 were advanced to investigate the locations of the 11 former in-ground hydraulic hoists. One soil sample and one groundwater sample, if encountered, were collected from each boring location.

2003 Soil Analytical Results

- According to this 2003 Phase II Report, Xylene was detected in soils sampled from the
 assumed location of the former unleaded gasoline UST at a total concentration of 15.8
 mg/kg, which exceeds the WAC MTCA Method A soil criterion for xylene of 9 mg/kg.
- TPH-GRO was detected in soil from the location of the active waste oil UST at a concentration of 128 mg/kg, which exceeds the WAC MTCA Model A soil criterion for TPH-GRO of 100 mg/kg.
- TPHDRO was detected in two soil samples from the location of the active waste oil UST at concentrations of 2,050 mg/kg to 3,320 mg/kg, respectively, which exceed the WAC MTCA Model A soil criterion for TPH-DRO of 2,000 mg/kg.
- Based on the analytical results, no other constituents were detected in soil samples collected from any of the remaining areas of concern at concentrations exceeding the applicable WAC MTCA Model A soil criteria.

2003 Groundwater Analytical Results

Based on the analytical results, no constituents were detected in groundwater samples
collected from the areas of concern at concentrations exceeding the applicable WAC MTCA
Model A cleanup levels for groundwater.

The 2003 Phase II ESA recommended the following:

- Active Waste Oil UST: The release associated with the active waste oil UST should be investigated and confirmed in accordance with WAC Chapter 173-360 UST Regulations. Subsequently, the active waste oil UST should either be removed or closed in place.
- Former Gasoline UST: The release associated with the former gasoline UST should be further investigated and remediated in accordance with applicable requirements.
- The Active in-ground hoist should be drained and decommissioned in accordance with applicable regulatory requirements to prevent potential future releases.

<u>Tank Closure Assessment Report.</u> Friedman & Bruya, Inc. (April 13, 2004) Friedman & Bruya, Inc. (FBI) prepared this report on behalf of Environmental Management Services, LLC. (EMS).

- The 2004 FBI report stated that in March 2004, EMS was hired by the property owner to close by removal one 500- gallon waste oil underground storage tank (UST) from the property located at 400 Rivers Road, Puyallup, Washington. Soil samples collected during the UST closure were reported below Model Toxic Control Act Method A Cleanup Levels for site specific contaminates of concern (waste oil range hydrocarbons). Previous work completed at the site in August 2003 identified levels of waste oil hydrocarbons in the form of gasoline and oil range hydrocarbons. Unfortunately, this soil sampling data was not available to EMS at the time of the UST closure. Based on the data provided to EMS on samples collected at both 58-6 and SB-7, excavation of the impacted areas adjacent to the former UST location was warranted. Each of the two boring locations was outside the March 2004 UST excavation perimeter. Soil samples 56 through 59 collected by EMS in September 2004 were analyzed on site by method HCID and diesel oil range petroleum hydrocarbons. Sample results for SO through S8 were reported below laboratory detection limits. Sample results for 39 were reported 1010 mg/kg below the MTCA cleanup level of 2000 mg/kg.
- The 2004 FBI report stated that during the August 2003 site investigation, an area located on the southeast end of the property was identified as a former gasoline UST location. The size and configuration of the former gasoline USTs is unknown. It is known that the USTs were closed by removal in approximately 1988. Soil boring SP-4 competed in August 2003 identified xylene levels (15.81 mg/kg) exceeding the MTCA method A cleanup level of 9 mg/kg. Over excavation of this area was completed by EMS on September 2, 200/. Soil samples were collected following excavation activities and analyzed for gasoline range hydrocarbons including benzene, toluene, ethyl benzene and xylene. Samples 51 and 52 were also analyzed for total hydrocarbons by method HCID. Each of the five samples collected from within the excavation were reported below the MTCA method A cleanup for unrestricted land use.
- The 2004 FBI report stated that based on field observations and laboratory analytical results, EMS completed excavations of impacted soil on September 2, 2004. A total of 26.37 tons of impacted soil was excavated and transported to Rabanco / Allied Waste a state licensed

disposal facility. Confirmation soil samples collected from each excavation were reported by the laboratory as below the unrestricted MTCA Method A cleanup level. No groundwater was encountered during contaminated soil excavation activities.

- The 2004 FBI report stated that during a site investigation completed in August 2003, three areas were identified as containing impacted soil exceeding MTCA method A cleanup levels. The areas were divided into two locations, the former waste oil UST location and the former gasoline UST location. Soil samples were collected from each location following the removal of impacted soil. Each discrete soil sample was analyzed and reported below the MTCA method A cleanup levels.
- The 2004 FBI report stated that based on field observations and laboratory analytical results, remediation of the impacted soils at 400 River Road Puyallup, Washington identified in the August 2003 subsurface investigation has been successfully completed. All excavation activities were completed under the supervision of Ecology licensed UST Site Assessor.
- The 2004 FBI report stated that no further action regarding the, impacted soil identified in the August 2003 subsurface sampling event was warranted.

Focused Phase II Subsurface Investigation. The Riley Group, Inc. (April 25, 2011) The Riley Group, Inc. (RGI) prepared this report on behalf of Northwest Motorsport.

- According to the report, a Phase I Environmental Site Assessment (ESA) was completed for the site by Adapt Engineering, Inc. (Adapt) in 2011. (Partner was not provided with a copy of the 2011 Adapt Engineering Phase I ESA for review). The 2011 Adapt Engineering Phase I ESA reportedly stated that the feed line to the onsite oil/water separator was thought to have been disconnected and, therefore, represented a possible risk to soil and/or groundwater quality of the site. However, although further investigation revealed that aboveground oil/water separator was still connected, a limited Phase II Subsurface Investigation was recommended by Adapt in the vicinity of the unit.
- On April 11, 2011, RGI advanced test probe to a total depth of 12 feet bgs. The test probe was located immediately adjacent to and inferred downgradient of the onsite, aboveground oil/water separator. A total of two discrete soil samples were collected during this project; at the three- to four-foot and 10- to 12-foot depth intervals. Shallow groundwater was encountered in the test probe at approximately 10 to 11 feet bgs and was collected for analysis. The report stated that laboratory analysis indicated that no gasoline-, diesel- or oil-range TPHs or VOCs (BTEX and/or chlorinated solvents) were detected in the soil or groundwater samples submitted from the site.

6.0 SITE RECONNAISSANCE

The subject property was inspected by Daniel Stallings of Partner on October 24, 2013. The weather at the time of the site visit was overcast and raining. The Property Manager was identified as Nicola Bley. Nicola Bley accompanied Partner during field reconnaissance activities and provided information pertaining to the current operations and maintenance of the subject property.

All areas of the subject property were accessible at the time of the site inspection. However, parked cars resulted in visual obstructions of the ground surface in many areas of the subject property.

The subject property is currently occupied by Northwest Motorsports, Inc. for commercial use. On-site operations consist of new automobile sales and full automotive maintenance, customization, repair and detailing activities. Environmental concerns were identified during the onsite reconnaissance related to former in-ground lifts, as further discussed in Section 6.2. Non-ASTM issues are discussed in Section 6.3.

6.1 General Site Characteristics

6.1.1 Solid Waste Disposal

Solid waste generated at the subject property is disposed of in commercial dumpsters located at the southeast portion of the subject property. An independent solid waste disposal contractor removes solid waste from the subject property.

6.1.2 Sewage Discharge and Disposal

Sanitary discharges on the subject property are directed into the municipal sanitary sewer system. The City of Puyallup services the subject property vicinity. No wastewater treatment facilities or septic systems are located on the subject property.

6.1.3 Surface Water Drainage

Storm water is removed from the subject property primarily by sheet flow action across the paved surfaces towards storm water drains located throughout the subject property. Site storm water from roofs and paved areas is directed to on-site storm water drains. The subject property is connected to a municipal owned and maintained sewer system.

The subject property does not appear to be a designated wetland area, based on information obtained from the United States Department of Agriculture; however, a comprehensive wetlands survey would be required in order to formally determine actual wetlands on the subject property. No surface impoundments, wetlands, natural catch basins, settling ponds, or lagoons are located on the subject property. No drywells were identified on the subject property.

6.1.4 Source of Heating and Cooling

Heating and cooling systems as well as domestic hot water equipment are fueled by electricity and natural gas provided by Peugeot Sound Energy. The mechanical system is comprised of a split system with a central unit and interior air-handler and an exterior condenser. Hot water is provided by central natural gas boiler units.

6.1.5 Wells and Cisterns

No aboveground evidence of wells or cisterns was observed during the site reconnaissance.

6.1.6 Wastewater

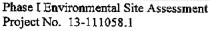
Domestic wastewater generated at the subject property is disposed by means of the sanitary sewer system. No industrial process is currently performed at the subject property.

6.1.7 Septic Systems

No septic systems were observed or reported on the subject property.

6.1.8 Additional Site Observations

No additional general site characteristics were observed.


6.2 Potential Environmental Hazards

6.2.1 Hazardous Materials and Petroleum Products Used or Stored at the Site

Partner identified hazardous materials and/or hazardous wastes to be used, stored, or generated on the subject property as noted in the following table:

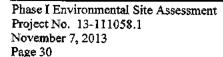
Hazardous Substances/Wastes Noted Onsite

Substance	Container Size	Location	Nature of Use	Disposal Method
Virgin Automotive Oils	55-Gallon Drums	Service Bays	Automotive Service	None
Waste Oil	500-gallon AST	Service Bays	Automotive Service	Contractor
Used Oil Filters	55-gallon Drums	Service Bays	Automotive Service	Contractor
Virgin Anti-Freeze	55-gallon Drums	Service Bays	Automotive Service	None
Used Anti-Freeze	55-gallon Drums	Service Bays	Automotive Service	Contractor
Synthetic Gear Oil	55-gallon Drums	Service Bays	Automotive Service	None
Compressed Gasses	Various	Service Bays	Automotive Service	None
Used Batteries	Containment Pallet	Service Bays	Automotive Service	Contractor
Parts Cleaner	25-gallon Drums	Service Bays	Automotive Service	Contractor
Automotive Undercoating	55-gallon Drums	Detail Shop	Automotive Service	None

November 7, 2013

Page 29

The materials were found to be properly labeled and stored at the time of the assessment with no signs of leaks, stains, or spills. Secondary containment is provided and appears to be in accordance with acceptable containment methods.


6.2.2 Aboveground & Underground Hazardous Substance or Petroleum Product Storage Tanks (ASTs/USTs)

Partner observed three aboveground storage tanks (ASTs) for the storage of waste oil on the subject property. The ASTs are located in the service bays of the subject property. According to Mrs. Bley, the ASTs have been in use since at least 2011 and were likely there before then. The ASTs are of double-walled construction and are equipped with secondary overfill protection. No staining, leaks or spills were noted in the vicinity of the ASTs, and according to available information, no releases have been reported to the Washington Department of Ecology (WADOE).

According to the property manager and available regulatory information, there are currently no active USTs located on the subject property. The subject property was historically equipped with four underground storage tanks (USTs). Three of the tanks have been closed and removed and one has been closed in place. Please refer to the table below for information pertaining to the former USTs located on the subject property:

Underground Storage Tank (UST) for the subject property

	UST No. 1	UST No. 2	UST No. 3	UST No. 4
Tank ID Number:	NA	NA	NA	NA
Tank Capacity (Gallons):	5,000	1,000	500	500
Tank Contents:	Gasoline	Waste Oil	Heating Oil	Waste Oil
Installation Date:	1964	1987	1964	1987
Tank Status	Removed	Removed	Closed In-Place	Removed
Removal Date:	August 1996	March 2004	Not Applicable	March 2004
Tank Construction:	Steel	Fiberglass Reinforced Plastic (FRP)	Steel	Unknown
Tank Secondary Containment:	Single-walled	Unknown	Unknown	Unknown
Piping Construction:	Unknown	Unknown	Unknown	Unknown
Piping Secondary Containment:	Unknown	Unknown	Unknown	Unknown
Type of Corrosion Protection:	Unknown	Unknown	Unknown	Unknown

Type of Leaking Detection Equipment:	Unknown	Unknown	Unknown	Unknown
Type of Overfill Protection:	Unknown	Unknown	Unknown	Unknown
Evidence of Leaks, Stains, or Spills:	Yes, See Section 5.2	Yes, See Section 5.2	No	Yes, See Section 5.2
Reported Release(s):	Yes, See Section 5.2	Yes, See Section 5.2	No	Yes, See Section 5.2
Compliance with UST Regulations:	Yes	Yes	Yes	Yes

Note: This information was obtained from Mrs. Nicola Bley, during the site inspection, the regulatory database report, and client-provided documentation.

6.2.3 Evidence of Releases

No spills, stains or other indications that a surficial release has occurred at the subject property were observed.

6.2.4 Polychlorinated Biphenyls (PCBs)

Partner observed evidence of former in-ground lifts in the current above ground service bays as evidenced by circular cut-outs and concrete patches that are similar to the size of in-ground lift cylinders. As discussed in Section 5.2.6, a 2003 Phase II Environmental Site Assessment investigation was performed in the areas of the former lifts.

The 2003 Phase II Investigation concluded that contaminants in soils collected from the areas of the former lifts did not exceed regulatory concentration criteria for gasoline or diesel range petroleum hydrocarbons. However, review of the laboratory analysis from this report only indicated that soils collected from the service bays were analyzed for petroleum hydrocarbons within gasoline and diesel range. The testing did not include analysis for PCBs, specifically. Therefore it is Partner's opinion that this testing was not sufficient to determine the absence or presence of PCB contamination in the soils from the areas of the former in-ground lifts.

Based on the potential for PCB-containing hydraulic fluid within the lifts to have impacted the subsurface and on the lack of any documented sampling conducted after removal of the lifts which targeted PCBs, specifically, the former presence of the former in-ground lifts onsite is a Recognized Environmental Condition.

All lifts at the subject property are currently above ground. Based on the age, good condition, and above ground nature of the current hydraulic fluid reservoirs, the current lifts are not likely to contain PCB fluid and are not expected to represent a significant environmental concern. No staining or other evidence of a release of hydraulic fluid or oil was observed in the vicinity of this equipment.

No other potential PCB-containing equipment (interior transformers, oil-filled switches, hoists, lifts, dock levelers, hydraulic elevators, balers, etc.) was observed on the subject property during Partner's reconnaissance.

6.2.5 Strong, Pungent or Noxious Odors

No strong, pungent or noxious odors were evident during the site reconnaissance.

6.2.6 Pools of Liquid

No pools of liquid were observed on the subject property.

6.2.7 Drains, Sumps and Clarifiers

The service area floor drain systems for each building reportedly discharge to an oil-water separator, prior to discharge to the municipal storm water sewerage system operated by the Puyallup Public Works Department. The oil-water separator is located in the paved parking area immediately adjacent to a canopy at the southeast portion of the subject property. According to Mrs. Nicola Bley, Facility Manager, the oil-water separator is serviced as needed by a licensed contractor.

Based on the findings of the 2011 focused subsurface investigation (discussed in Section 5.2.6, the oil/water separator is not expected to represent a significant environmental concern at this time.

No other drains, sumps or clarifiers were observed on the subject property.

6.2.8 Pits, Ponds and Lagoons

No pits, ponds or lagoons were observed on the subject property.

6.2.9 Stressed Vegetation

No stressed vegetation was observed on the subject property.

6.2.10 Additional Potential Environmental Hazards

No additional environmental hazards, including landfill activities or radiological hazards, were observed.

Based on visual observations no oil well, monitoring well, USTs, or other sources of possible vapor intrusion were observed.

6.3 Non-ASTM Services

6.3.1 Asbestos-Containing Materials (ACMs)

Asbestos is the name given to a number of naturally occurring, fibrous silicate minerals mined for their useful properties such as thermal insulation, chemical and thermal stability, and high tensile strength. Asbestos is commonly used as an acoustic insulator, thermal insulation, fire proofing and in other building materials. Exposure to airborne friable asbestos may result in a potential health risk because persons breathing the air may breathe in asbestos fibers. Continued exposure can increase the amount of fibers that remain in the lung. Fibers embedded in lung tissue over time may cause serious lung diseases including: asbestosis, lung cancer, or mesothelioma.

The Occupational Safety and Health Administration (OSHA) regulation 29 CFR 1926.1101 requires certain construction materials to be *presumed* to contain asbestos, for purposes of this regulation. All thermal system insulation (TSI), surfacing material, and asphalt/vinyl flooring that are present in a building constructed prior to 1980 and have not been appropriately tested are "presumed asbestos-containing material" (PACM).

The subject property buildings were constructed between 1953 and 1966. Partner has conducted a limited, visual evaluation of accessible areas for the presence of suspect asbestos containing materials (ACMs) at the subject property. The objective of this visual survey was to note the presence and condition of suspect ACM observed. Please refer to the table below for identified suspect ACMs:

Suspect ACMs

Suspect ACM	Location	Friable Yes/No	Physical Condition
Drywaii Systems	Throughout Building Interiors	No	Good
Floor Tiles	Throughout Building Interiors	No	Good
1x1 Ceiling Tiles & Glue Dots	Basement/Storage	Yes	Good
Spray-Applied Acoustical Material	Internet Sales Office	Yes	Good

The limited visual survey consisted of noting observable materials (materials which were readily accessible and visible during the course of the site reconnaissance) that are commonly known to potentially contain asbestos. This activity was not designed to discover all sources of suspect ACM, PACM, or asbestos at the site; or to comply with any regulations and/or laws relative to planned disturbance of building materials such as renovation or demolition, or any other regulatory purpose. Rather, it is intended to give the User an indication if significant (significant due to quantity, accessibility, or condition) potential sources of ACM or PACM are present at the subject property. Additional sampling, inspection, and evaluation will be warranted for any other use.

Partner was not provided building plans or specifications for review, which may have been useful in determining areas likely to have used ACM.

According to the US EPA, ACM and PACM that is intact and in good condition can, in general, be managed safely in-place under an Operations and Maintenance (O&M) Program until removal is dictated by renovation, demolition, or deteriorating material condition. Prior to any disturbance of the construction materials within this facility, a comprehensive ACM survey is recommended.

6.3.2 Lead-Based Paint (LBP)

Due to the commercial nature of use of the subject property, lead-based paint was not considered within the scope of this assessment.

6.3.3 Radon

Radon is a colorless, odorless, naturally occurring, radioactive, inert, gaseous element formed by radioactive decay of radium (Ra) atoms. The US EPA has prepared a map to assist National, State, and local organizations to target their resources and to implement radon-resistant building codes. The map divides the country into three Radon Zones; Zone 1 being those areas with the average predicted indoor radon concentration in residential dwellings exceeding the US EPA Action Limit of 4.0 PicoCuries per Liter (pCi/L). It is important to note that the EPA has found homes with elevated levels of radon in all three zones, and the US EPA recommends site-specific testing in order to determine radon levels at a specific location. However, the map does give a valuable indication of the propensity of radon gas accumulation in structures.

Radon sampling was not conducted as part of this assessment. Review of the US EPA Map of Radon Zones places the subject property in Zone 3, where average predicted radon levels are less than 2.0 pCi/L.

Based upon the radon zone classification, radon is not considered to be a significant environmental concern.

6.3.4 Lead in Drinking Water

According to available information, a public water system operated by the Puyallup Department of Public Works and Engineering serves the subject property vicinity. According to a representative of the department, shallow groundwater directly beneath the subject property is not utilized for domestic purposes. According to the department's 2012 Water Quality Report (WQR), the City of Puyallup obtains its drinking water from two natural springs (Maplewood Springs and Salmon Springs), from five deep wells and from the City of Tacoma. According to the City of Puyallup and the 2012 Annual Water Quality Report, water supplied to the subject property is in compliance with all State and Federal regulations pertaining to drinking water standards, including lead and copper. Water sampling was not conducted to verify water quality.

6.3.5 Mold

Molds are microscopic organisms found virtually everywhere, indoors and outdoors. Mold will grow and multiply under the right conditions, needing only sufficient moisture (e.g. in the form of very high humidity, condensation, or water from a leaking pipe, etc.) and organic material (e.g., ceiling tile, drywall, paper, or natural fiber carpet padding). Mold growths often appear as discoloration, staining, or fuzzy growth on building materials or furnishings and are varied colors of white, gray, brow, black, yellow, and green. In large quantities, molds can cause allergic symptoms when inhaled or through the toxins the molds emit.

Partner observed accessible, interior areas for the subject property buildings for significant evidence of mold growth; however, this ESA should not be used as a mold survey or inspection. Additionally, this inspection was not designed to assess all areas of potential mold growth that may be affected by mold growth on the subject property. Rather, it is intended to give the client an indication as to whether or not conspicuous (based on observed areas) mold growth is present at the subject property. This evaluation did not include a review of pipe chases, mechanical systems, or areas behind enclosed walls and ceilings.

No obvious indications of water damage or mold growth were observed during Partner's visual inspection.

6.4 Adjacent Property Reconnaissance

The adjacent property reconnaissance consisted of observing the adjacent properties from the subject property premises. No items of environmental concern were identified on the adjacent properties during the site inspection, including hazardous materials, petroleum products, ASTs, USTs, evidence of releases, PCBs, strong or noxious odors, pools of liquids, sumps or clarifiers, pits or lagoons, stressed vegetation, or any other potential environmental hazards.

7.0 FINDINGS AND CONCLUSIONS

Findings

A recognized environmental condition (REC) refers to the presence or likely presence of any hazardous substance or petroleum product on a property under conditions that indicate an existing release, a past release, or a material threat of a release of any hazardous substances or petroleum products into structures on the property or into the ground, groundwater, or surface water of the property. The term REC includes hazardous substances and petroleum products even under conditions that might be in compliance with laws. The term is not intended to include "de minimis" conditions that do not present a threat to human health and/or the environment and that would not be subject to an enforcement action if brought to the attention of appropriate governmental agencies. The following was identified during the course of this assessment:

- Partner observed evidence of former in-ground hydraulic lifts in the current above ground service bays as evidenced by circular cut-outs and concrete patches indicative of in-ground lift cylinders. The lifts were reportedly installed in the 1950s and removed in 1987. To address subsurface environmental conditions related to the former hydraulic lifts, a Phase II Environmental Site Assessment investigation was performed by Encore Environmental Consortium, LLC (EEC) in 2003. The subsurface investigation included the advancement of eleven borings identified as the locations of former-in ground hydraulic lifts in the service bays. However, review of the laboratory analysis from this report indicated that soils collected from the service bays were only analyzed for diesel and gas range petroleum hydrocarbons. The testing did not include analysis of polychlorinated biphenyls (PCBs), which is a target chemical of concern associated with older hydraulic lifts. Therefore, it is Partner's opinion that the 2003 investigation was not sufficient to determine the absence or presence of PCB contamination in soils from the areas of the former in-ground lifts. Based on the potential for PCB-containing hydraulic fluid within the lifts to have impacted the subsurface and on the lack of any documented sampling conducted after removal of the lifts which targeted PCBs as a contaminant, specifically, the former presence of in-ground lifts onsite is a Recognized Environmental Condition.
- According to previous environmental reports prepared in 2003, the southern-most auto service bay area housed one active in-ground hydraulic lift which contained hydraulic fluid in a reservoir within the lift. The previous consultant recommended that the lift be drained and decommissioned in accordance with applicable regulatory requirements to prevent potential future releases. The reported lift was not observed during Partner's site reconnaissance, and no information pertaining to the status of the lift was found during Partner's assessment. Therefore, it is unclear whether the lift was properly removed and/or subsurface sampling was conducted. Based on this information, the former in-ground lift represents a REC.

A historical recognized environmental condition (HREC) refers to an environmental condition which would have been considered a REC in the past, but which is no longer considered a REC based on subsequent assessment or regulatory closure. The following was identified during the course of this assessment:

• The subject property was historically equipped with four underground storage tanks (USTs): one gasoline tank, one heating oil tank and two waste oil tanks. Three of the tanks have been closed and removed, and one has been closed in-place. Based on the documented removal and/or closure of the tanks, the subsequent analytical results and soil remediation, and the regulatory closure, the former USTs and associated onsite contamination are considered a historic recognized environmental condition.

An environmental issue refers to environmental concerns identified by Partner, which do not qualify as RECs; however, require discussion. The following was identified during the course of this assessment:

- Due to the age of the subject property buildings, there is a potential that ACMs and/or LBP are present. Overall, all suspect ACMs and painted surfaces were observed in good condition and do not pose a health and safety concern to the occupants of the subject property at this time. A few ceiling tiles, however, were noted during the inspection to be broken, chipped, and/or have signs of water damage. Should the ceiling tiles (or their glue dots) be replaced, the identified suspect ACMs would need to be sampled to confirm the presence or absence of asbestos prior to any renovation or demolition activities to prevent potential exposure to workers and/or building occupants.
- A previous subsurface investigation was performed in the area of the existing oil/water separator in 2011 to evaluate the site for potential subsurface impacts related to auto repair operations. Analytical results of the investigation revealed no constituents of concern were detected in soil or groundwater samples collected near the oil/water separator. Based on the results, the presence of the oil/water separator is not a concern at this time. However, the oil/water separator continues to be used by the current tenant. The user should be aware that environmental risks associated with use of the oil/water separator in connection with auto repair activities increases over time.

Conclusions, Opinions and Recommendations

Partner has performed a Phase I Environmental Site Assessment in conformance with the scope and limitations of ASTM Practice E1527-05 of 400 River Road in the City of Puyallup, Pierce County, Washington (the "subject property"). Any exceptions to or deletions from this practice are described in Section 1.5 of this report.

This assessment has revealed evidence of recognized environmental conditions and environmental issues in connection with the subject property. Based on the conclusions of this assessment, Partner recommends the following:

- A limited subsurface investigation should be conducted in order to determine the presence or absence of PCB contamination in the areas of the former in-ground lifts.
- Obtain and review records pertaining to removal/decommissioning activities of the active inground lift.
- Periodic maintenance of the existing oil/water separator to prevent future releases.

8.0 SIGNATURES OF ENVIRONMENTAL PROFESSIONALS

Partner has performed a Phase I Environmental Site Assessment of the property located at 400 River Road in the City of Puyallup, Pierce County, Washington in general conformance with the scope and limitations of the protocol and the limitations stated earlier in this report. Exceptions to or deletions from this protocol are discussed earlier in this report.

By signing below, Partner declares that, to the best of our professional knowledge and belief, the undersigned meet the definition of an *Environmental Professional* as defined in §312.10 of 40 CFR 312 and have the specific qualifications based on education, training, and experience to assess a *property* of the nature, history, and setting of the subject *property*. Partner has developed and performed the all appropriate inquiries in conformance with the standards and practices set forth in 40 CFR Part 312.

Prepared By:

Daniel S. Stallings, REPA, EP Environmental Professional

Vaniel S. Stelling

Reviewed By:

Lyly Churchill, MA Senior Author

Aly Church

9.0 REFERENCES

Contact List

City of Puyallup Building Department 333 S. Meridian, 2nd Floor Puyallup, WA 98371 (253)

City of Puyallup Engineering 333 S. Meridian, 2nd Floor Puyallup, WA 98371 (253) 864-4165

City of Puyallup Fire Department 333 South Meridian, Puyallup, WA 98371 Fire Prevention Line: (253) 864-4182

City of Puyallup Planning Department 333 S. Meridian, 2nd Floor Puyallup, WA 98371 253-

City of Puyallup Public Works 333 S. Meridian, 2nd Floor Puyallup, WA 98371 (253) 864-4165

City of Tacoma Library 1102 Tacoma Avenue South Tacoma, WA 98402

Pierce County Assessment and Taxation (253) 798-6111

Pierce County Health Department 955 Building Tacoma Avenue South, Tacoma, WA 98402

United States Environmental Protection Agency accessed via the Internet, October, 2013

United States Geological Survey, accessed via the Internet, October, 2013

Washington Department of Ecology Public Records Officer PO Box 47600 Olympia WA 98504

Reference Documents

American Society for Testing and Materials, Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process, ASTM Designation: E 1527-05.

EDR Aerial Photo Decade Package; Inquiry Number 3762993.2s, dated October 21, 2013

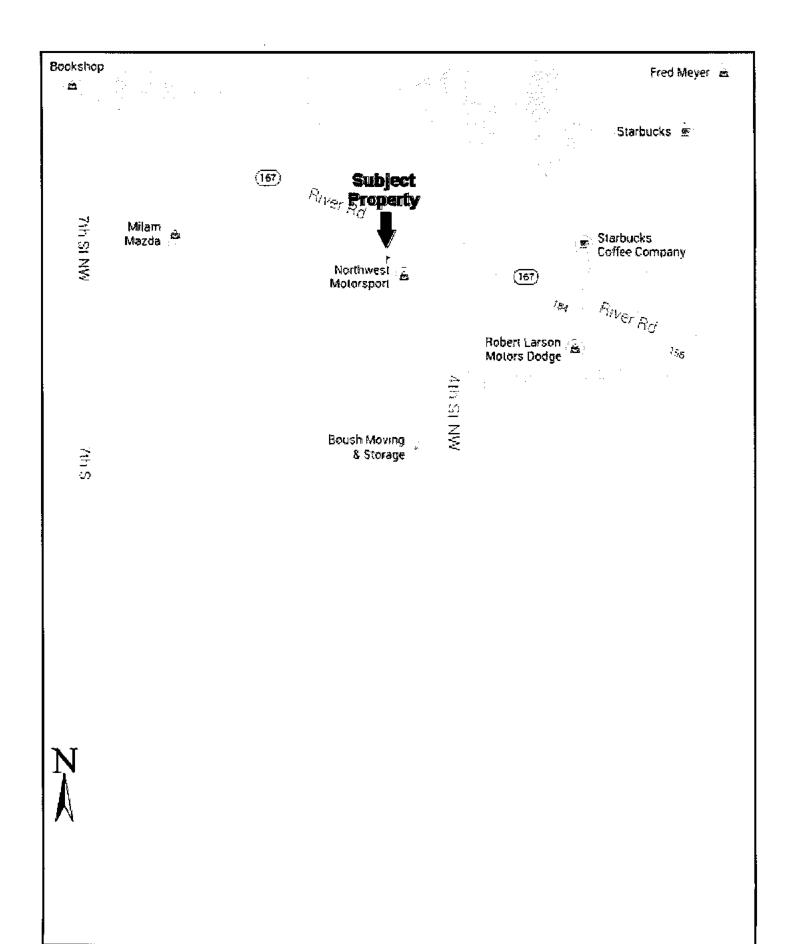
EDR Radius Map Data Package; Inquiry Number 3762993.2s, dated October 21, 2013

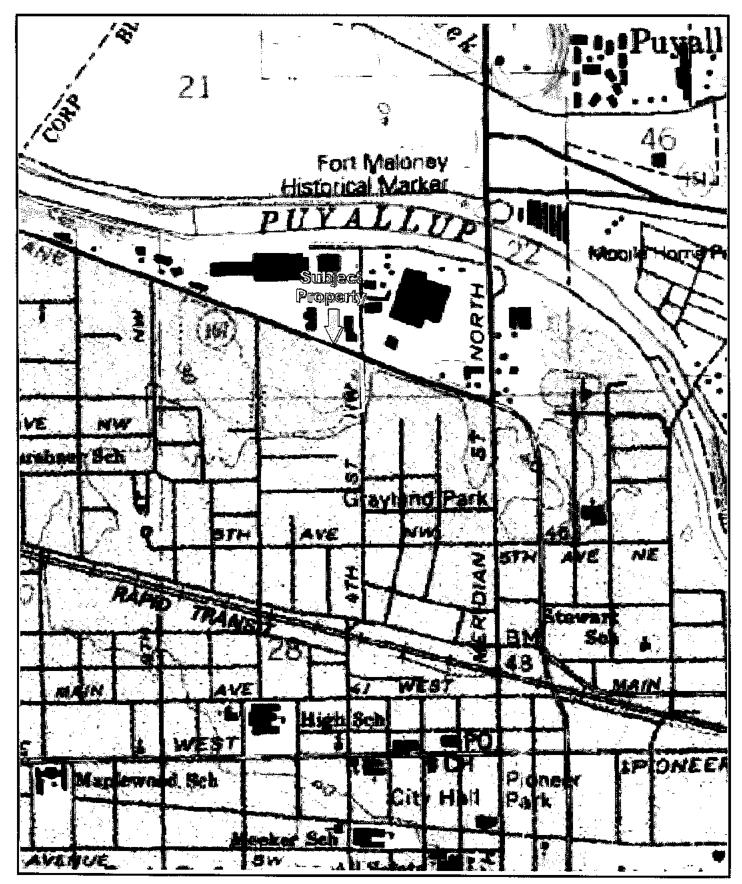
EDR Sanborn Map Package; Inquiry Number 3762993.2s, dated October 21, 2013

Federal Emergency Management Agency, Federal Insurance Administration, National Flood Insurance Program, Flood Insurance Map, Community Panel Number 5301440005B, Flood Map dated August 15, 1980

Phase I Environmental Audit, Environmental Associates, Inc. (July 31, 2003) Consultant (Environmental Associates, Inc.) prepared this report on behalf of Puyallup Chevrolet.

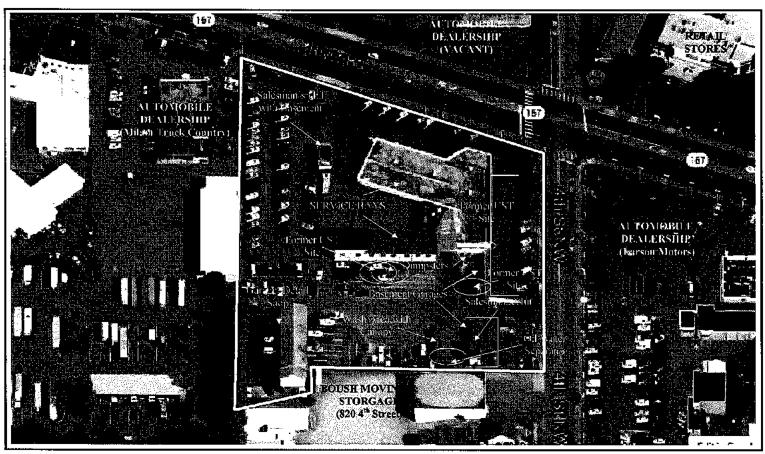
Phase II Environmental Site Assessment, Encore Environmental Consortium, LLC. (August 21, 2003) Consultant Encore Environmental Consortium, LLC (EEC) prepared this report on behalf of Argonaut Holdings, LLC.


Tank Closure Assessment Report, Friedman & Bruya, Inc. (April 13, 2004) Friedman & Bruya, Inc. (FBI) prepared this report on behalf of Environmental Management Services, LLC. (EMS).


- U.S. Department of Agriculture, Natural Resources Conservation Service, Web Soil Survey, accessed via the Internet, October, 2013
- U.S. Department of the Interior, Fish & Wildlife Service's National Wetland Inventory (NWI) Map accessed via the Internet, October, 2013
- U.S. Environmental Protection Agency, EPA Map of Radon Zones (Document EPA-402-R-93-071), accessed via the Internet, October, 2013
- U.S. Geological Survey Topographic Map accessed via the Internet, October, 2013

FIGURES

- 1- SITE LOCATION MAP
- 2- TOPOGRAPHIC MAP
- 3- SITE PLAN



USGS 7.5 Minute Puyallup, Washington Quadrangle

Created: 1994

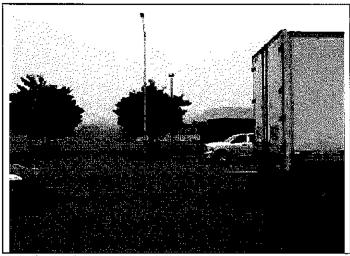

GROUNDWATER FLOW

KEY: Subject Site

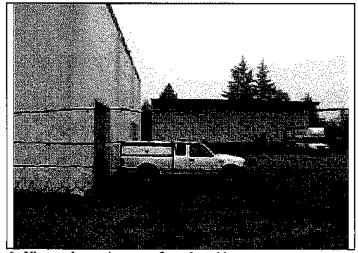

FIGURE 3: SITE PLAN Project No. 13-111058.1 **PARTNER**

APPENDIX A: SITE PHOTOGRAPHS

PARTNER

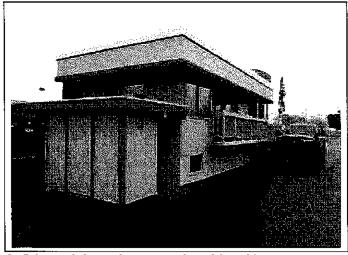

1. Subject property as seen from the east.

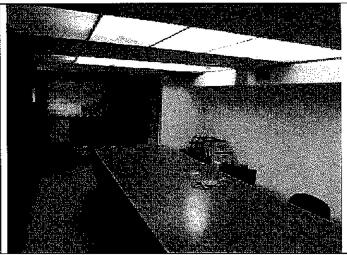
2. View to the east as seen from the subject property.

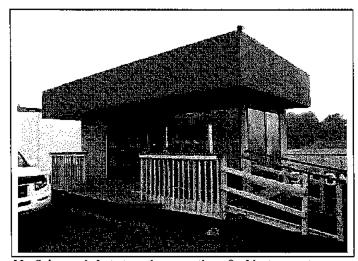

3. Subject property as seen from the north.

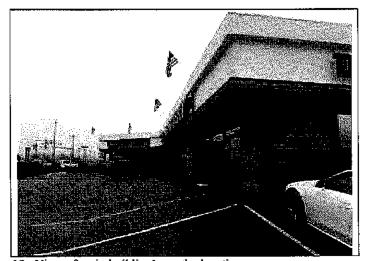
4. View to the north as seen from the subject property.

5. Subject property as seen from the south.


6. View to the south as seen from the subject property.

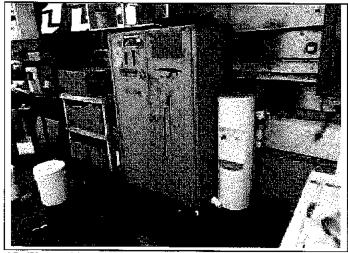

7. Subject property as seen from the west.

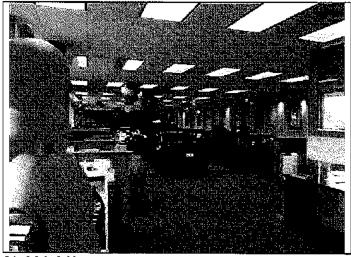

8. View to the west as seen from the subject property.


9. Salesman's hut at the west portion of the subject property.

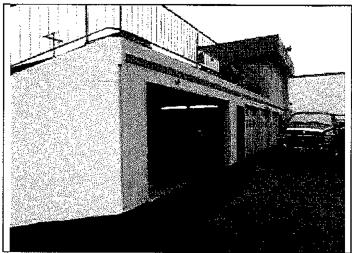
10. Employee lounge in the basement of the salesman's hut.

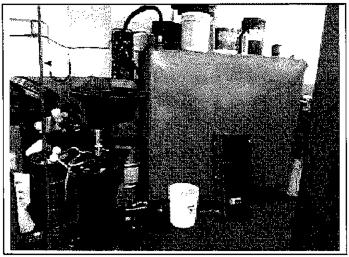
11. Salesman's hut at southeast portion of subject property.

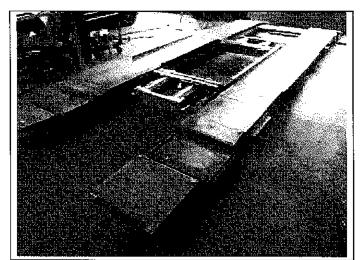

12. View of main building's north elevation.


13. Service entrance.

15. Automotive detailing shop.

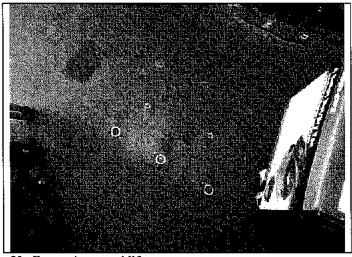

17. Flammable materials storage cabinet.

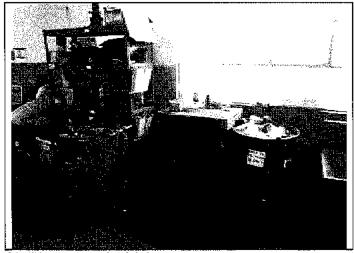

14. Main lobby.


16. Internet sales office.

18. Service bay

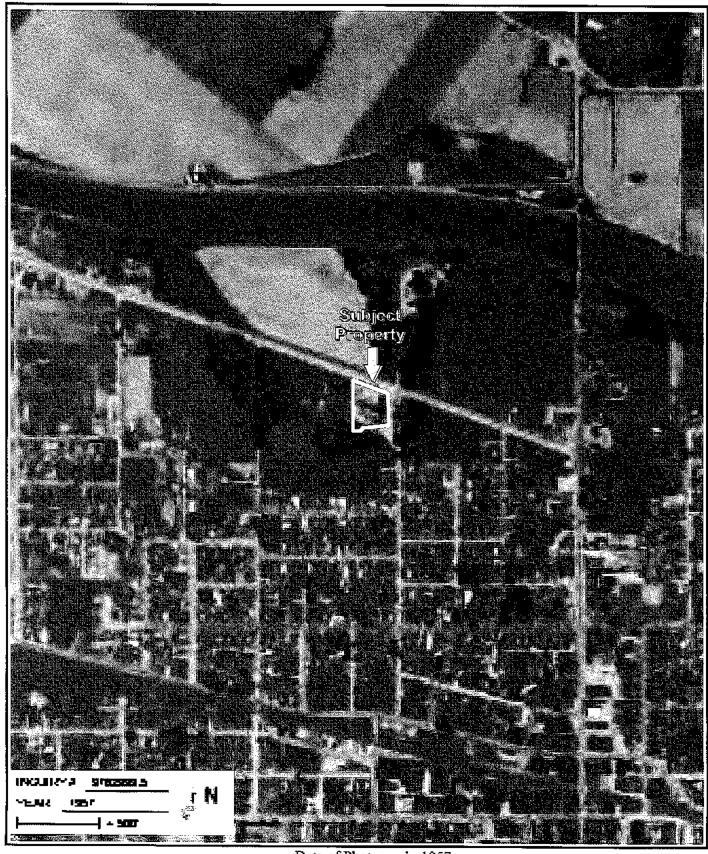
19. Waste automotive lubricants.


21. Current above-ground lifts.


23. Former in-ground lifts.

20. Parts washer

22. Former in-ground lifts.


24. Waste automotive lubricants.

APPENDIX B: HISTORICAL/REGULATORY DOCUMENTATION

PARTNER

Date of Photograph: 1941

Date of Photograph: 1957

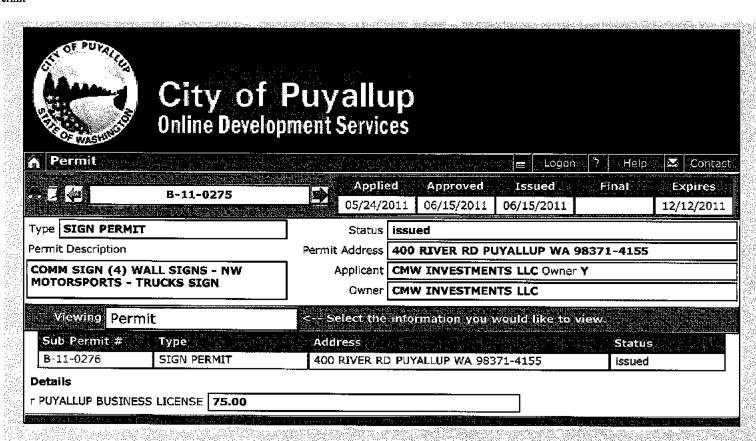
Date of Photograph: 1968

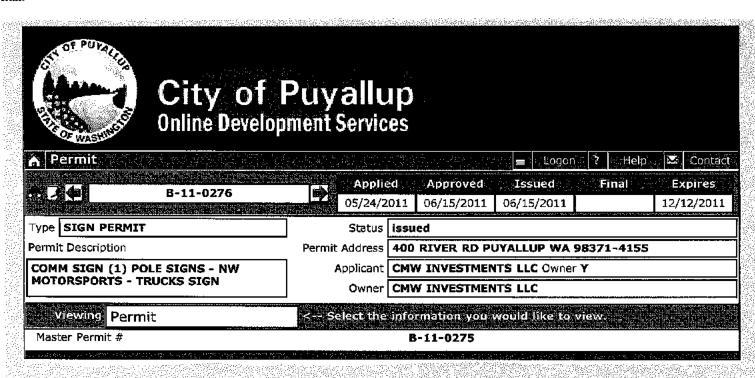
Date of Photograph: 1972

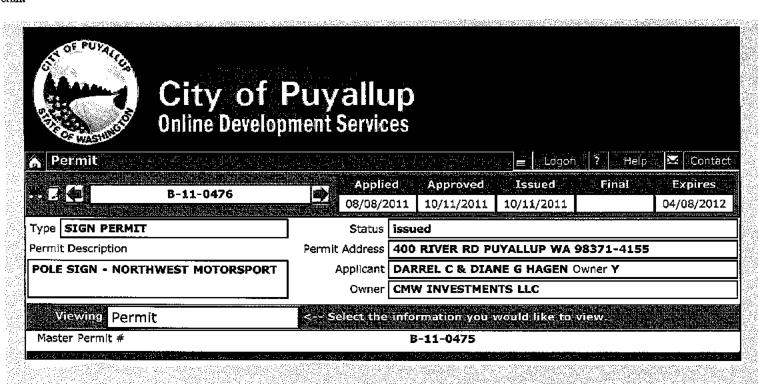
Date of Photograph: 1986

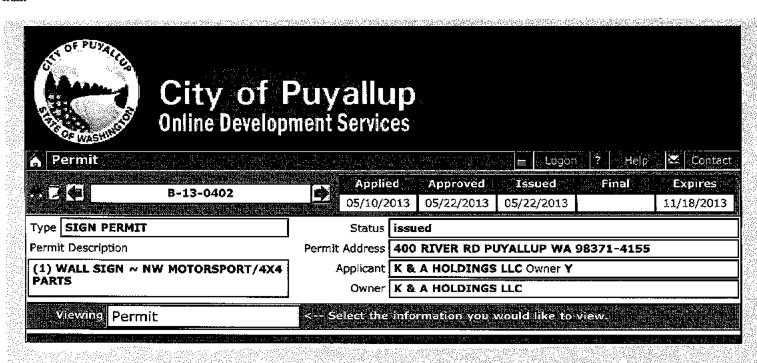
Date of Photograph: 1990

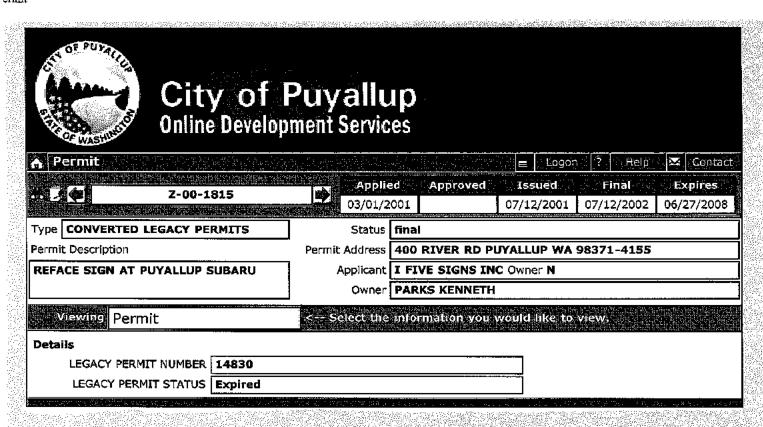
Date of Photograph: 1991


Date of Photograph: 2006




Date of Photograph: 2009




Date of Photograph: 2011

K & A HOLDINGS LLC

PUYALLUP WA 98371-3875

1502 RIVER RD

2014

2,529,200

2,529,200

Taxpayer Details

Taxpaver Name:

Mailing Address:

Tax/Assessment

Current Tax Year:

Taxable Value:

Assessed Value:

Pierce County Home Assessor-Treasurer Home Parcel Search Sales Search Recorded Documents

Summary Taxes/Values Land Buildings Sales Map

Parcel Summary for 0420214807

10/23/2013 07:02 PM

Property Details

Parcel Number: Site Address:

0420214807

Account Type:

400 RIVER RD Real Property

Category:

Land and Improvements

Use Code:

5515-AUTO DLR NEW AND USED RETAIL

Appraisal Details

Value Area:

PT2

Appr Acct Type:

Commercial

Business Name: Last Inspection: FRIENDLY CHEVROLET

06/16/2008 - New Construction

Related Parcels

Group Account Number:

434

Mobile/MFG Home and Personal Property

2000203421 2818070636

parcel(s) located on this parcel:

Real parcel on which this parcel is located: n/a

Tax Description

Section 21 Township 20 Range 04 Quarter 44: COM AT MON AT INTER OF 4TH ST NW & 7TH AVE NW IN NE OF SEC 28 20 4E TH N 00 DEG 21 MIN E 636 FT ALG C/L OF SD 4TH ST TH N 89 DEG 39 MIN W 30 FT TO WLY R/W OF SD 4TH ST & POB TH CONT N 89 DEG 39 MIN W 281.28 FT TH N 00 DEG 21 MIN E 465.75 FT M/L PAR TO SD C/L OF 4TH ST TO S R/W LI OF STATE HWY # S TH S 69 DEG 18 MIN 10 SEC E 300 FT TO WLY R/W OF 4TH ST TH S 00 DEG 21 MIN W 361.44 FT TO POB ENCLO ED IN THE ABOVE IS L 13 B 19 J P STEWARTS 7TH ADD SEG F 0740

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

> Pierce County Assessor-Treasurer Mike Lonergan

2401 South 35th St Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2013 Pierce County Washington, All rights reserved.

WEBSITE INFORMATION Эпуасу Ројку

K & A HOLDINGS LLC

PUYALLUP WA 98371-3875

1502 RIVER RD

2014

485,200

485,200

Taxpayer Details

Taxpayer Name:

Mailing Address:

Tax/Assessment

Current Tax Year:

Taxable Value:

Assessed Value:

Pierce County Home | Assessor-Treasurer Home | Parcel Search | Sales Search | Recorded Documents | Permits Summary Taxes/Values Land Buildings Sales Map

Parcel Summary for 0420214014

11/04/2013 03:32 PM

Property Details

Parcel Number: 0420214014 Site Address: 506 RIVER RD Account Type: Real Property

Category:

Land and Improvements

Use Code:

5515-AUTO DLR NEW AND USED RETAIL

Appraisal Details

Value Area: PI2

Appr Acct Type:

Commercial

Business Name:

Last Inspection: 04/10/2008 - Physical Inspection

Related Parcels

Group Account Number:

434 Mobile/MFG Home and Personal Property

parcel(s) located on this parcel:

Real parcel on which this parcel is located: n/a

Tax Description

Section 21 Township 20 Range 04 Quarter 43: COM AT A STONE MON AT INTER OF 7TH AVE NW & 4TH ST NW TH N 1040.33 FT TO CENT OF HWY TH N 20 DEG 21 MIN W 332 FT TH S 53.33 FT TO IRON PIPE & POB TH S 325 FT TH W 93.76 FT TH N 359.78 FT TH S 69 DEG 39 MIN E 100 FT TO POB

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

> Pierce County Assessor-Treasurer Mike Lonergan 2401 South 35th St Room 142 Tacoma, Washington 98409

(253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright @ 2013 Pierce County Washington. All rights reserved.

WEBSITE IMPORMATION

Taxpayer Details

Taxpayer Name:

Mailing Address:

Tax/Assessment

Taxable Value:

Assessed Value:

Current Tax Year:

Pierce County Home Assessor-Treasurer Home Parcel Search Sales Search Recorded Documents Summary Taxes/Values Land Buildings Sales Map

Parcel Summary for 0420214057

11/04/2013 03:34 PM

K & A HOLDINGS LLC

PUYALLUP WA 98371-3875

1502 RIVER RD

2014

301,800

301,800

Property Details

Parcel Number:

0420214057

Site Address: XXX 4TH ST NW Account Type: Real Property

Category: Use Code: Land and Improvements

6310-GEN WAREHOUSING STORAGE

Appraisal Details

Value Area: PI7

Appr Acct Type: Business Name:

Commercial

Last Inspection:

Related Parcels

04/10/2008 - Physical Inspection

Group Account Number:

434 Mobile/MFG Home and Personal Property parcel(s) located on this parcel:

Real parcel on which this parcel is located: n/a

Tax Description

Section 21 Township 20 Range 04 Quarter 43: TR OF LD IN SEC 21 & 28 DESC AS FOLL BEG AT SW COR OF PROP CYD TO BRUCE A MERCER POST #67 OF AMERICAN LEGION #1855113 TH E ALG S LI OF SD AMERICAN LEGION PROP 93.76 FT M/L TO PROP CYD TO LLCYD L GRAND #1653368 TH S ALG W LI OF SD GRANT PROP 172.57 FT M/L TO SW COR THEREOF TH S 72 DEG 27 MIN 20 SEC W TO INTER W LI OF ABOVE MENTIONED AMERICAN LEGION PROP EXTENDED S TH N ALG W LI OF SD AMERICAN LEGION PROP EXTENDED TO POB SUBJ TO EASE #1926238 OUT OF 4-106 SEG M-1294 GD JES

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

> Pierce County Assessor-Treasurer Mike Lonergan 2401 South 35th St Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.orc/atr

Copyright © 2013 Pierce County Washington. All rights reserved.

WESSELD INFORMATION Privacy Policy Copyright Notices

Pierce County Home Assessor-Treasurer Home Parcel Search | Sales Search | Recorded Documents | Permits

Summary Taxes/Values Land Buildings Sales Map

Taxes / Values for 0420214807

10/23/2013 07:03 PM

Parcel Number: 0420214807

Site Address: 400 RIVER RD Account Type: Real Property

Property Details Taxpayer Details

Taxpayer Name: Mailing Address:

K & A HOLDINGS LLC

1502 RIVER RD PUYALLUP WA 98371-3875

Categor	*	Land and Improvements								
Use Cod	le: 5515	-AUTO DLR NEW A	ND USED RETAIL				aya dayaa ahaya daya ahaya garay			
Assess	ed Values									
Tax Year	Taxable Value	Assessed Total	Assessed Land	Assessed Improvements		rsonal operty	Notice of Value Mailing Date			
2014	2,529,200	2,529,200	1,869,700	659,500	0	0	0 06/24/2013			
2013	2,521,000	2,521,000	1,869,700	651,300	0	C	0 06/22/2012			
2012	2,705,500	2,705,500	2,071,900	633,600	0	0	0 06/27/2011			
2011	2,930,900	2,930,900	2,173,000	757,900	a	C	0 06/21/2010			
2010	3,249,700	3,249,700	2,400,400	849,300	0	C	07/17/2009			
2009	3,353,800	3,353,800	2,526,700	827,100	0	C	0 09/19/2008			
2008	2,594,200	2,5 94 ,200	1,999,400	594,800	a	0	06/22/2007			
2007	2,103,500	2,103,500	1,536,100	567,400	a	C	0 06/12/2006			
2006	1,316,500	1,316,500	718,900	597,600	0	Ç	0 10/07/2005			
Current	Charges					Exempti	ions			
Balance Due: 0.00		Mi	Minimum Due: 0.00		as of 10/23/2013		No exemptions			
Paid Ch	arges			· Vijevija 148 (7008).		Tax Cod	le Areas			
	tions regarding any officer at 1-800-487-		you may have ma	de, please contact (Official Payments	Tax Year	TCA Rate			
Tax Year C	harge Type			uri uniterate	Amount Paid	2014 2013	096 0.000000 096 14.365513			

For questions regarding any electronic payments you may have made, please contact Official Payments Corporation at 1-809-487-4567			Tax Year TCA Rate			
Tax		2014	<u>096</u>	0.000000		
Year Charge Type	Amount Paid	2013	096	14.365513		
2013 Property Tax Principal	36,215.46	2012	<u>096</u>	12.77 5 261		
Weed Control Principal	1.92	2011	<u>096</u>	12.347762		
Fire Benefit Charge Principal	2,534.30	2010	<u>095</u>	11.255588		
Pierce Conservation District Principal	4.72	2009	<u>090</u>	10.173927		
Total 2013	38,756.40	2008	<u>090</u>	10,455517		
2012 Property Tax Principal	34,563.47	2007	090	11.277173		
Weed Control Principal	1.92	2006	<u>090</u>	13.019260		
Fire Benefit Charge Principal	2,098.00			* * * * * * * * * * * * * * * * * * * *	•	
Pierce Conservation District Principal	5.00	Receip	rts	Štálova a kalón		
Total 2012	36,668.39	111111111111111111111111111111111111111			Amount	
2011 Property Tax Principal	36,190.06	Date			Applied	
Weed Control Principal	1.92	10/17/	2013	7260541	19,378.20	
Fire Benefit Charge Principal	2,033.96	04/30/	2013	7120627	19,378.20	
Pierce Conservation District Principal	5.00	10/19/	2012	<u>6674328</u>	18,334.20	
Total 2011	38,230.94	04/24/	2012	6435119	18,334.19	
2010 Property Tax Principal	36,577.28	01/11/	2012	6281150	19,115.47	
Weed Control Principal	1.61	04/25/	2011	5805192	19,115.47	
Fire Benefit Charge Principal	2,033.96	6 10/29/2010		5593607	19,308.93	
Pierce Conservation District Principal	5.00	0 04/22/2010		<u>5178555</u>	19,308.92	
Total 2010	38,617.85	10/29/	2009	4996925	17,063.97	
2009 Property Tax Principal	34,121.32	04/30/	2009	4766156	17,063.96	
Weed Control Principal	1.61	11/03/	2008	<u>4475294</u>	13,565.16	
Pierce Conservation District Principal	5.00			<u>4214816</u>	13,565.15	
Total 2009	34,127.93	10/19/	2007	<u>3710788</u>	11,864.07	
2008 Property Tax Principal	27,123.70	05/04/		3609277	11,864.07	
Weed Control Principal	1.61	10/27/		3245918	8,573.24	
Pierce Conservation District Principal	5.00	04/24/		2905940	8,573.23	
Total 2008	27,130.31	10/21/	2005	2633459	8,284.90	

Pierce County Assessor-Treasurer ePIP

2007	Property Tax Principal	23,721.53	04/22/2005	2389069	8,284.90			
	Weed Control Principal	1.61	11/01/2004	2142200	7,655.49			
	Plerce Conservation District Principal	5.00	05/05/2004	1898547	7,655.49			
	Total 2007	23,728.14						
2006	Property Tax Principal	17,139.86 ULID Information						
	Weed Control Principal	1.61						
	Pierce Conservation District Principal	5.00						
	Total 2006	17,146.47						
	the state of the s							

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

Pierce County Assessor-Treasurer Mike Lonergan 2401 South 35th St Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.prg/atr

Copyright @ 2013 Pierce County Washington. All rights reserved.

WESSITE LUECEMPTICA Privaty Policy

Pierce County Home | Assessor-Treasurer Home | Parcel Search | Sales Search | Recorded Documents | Permits

Summary Taxes/Values Land Buildings Sales Hap

Land Characteristics for 0420214807

10/23/2013 07:04 PM

Parcel Number:

0420214807 400 RIVER RD

Site Address: Account Type:

Real Property

Category: Use Code: Land and Improvements

5515-AUTO DLR NEW AND USED RETAIL

Location:

LEA: 2052

RTSQQ:

04-20-21-44

Amenities

WF Type: View Quality:

n/a n/a Street Type: Paved

Property Details Taxpayer Details

Taxpayer Name:

Mailing Address:

K & A HOLDINGS LLC

1502 RIVER RD

PUYALLUP WA 98371-3875

SF: Acres:

Size

120,788 2.77

Front Ft: 392

Utilities

Electric: Sewer:

Power Installed Sewer/Septic Installed

Water: Water Installed

Warning: Appraisal data provided is for informational purposes only and is incomplete for determination of value.

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be field liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

> Pierce County Assessor-Treasurer Mike Lonergan 2401 South 35th St Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright @ 2013 Pierce County Washington. All rights reserved.

WERSITE INFORMATION

Pierce County Home | Assessor-Treasurer Home | Parcel Search | Sales Search | Recorded Documents | Permits Summary Taxes/Values Land Buildings Sales Map

Building Characteristics for 0420214807

10/23/2013 07:04 PM

Property Details Taxpayer Details

Parcel Number: Site Address:

0420214807 400 RIVER RD Real Property

Account Type: Category:

Use Code:

Land and Improvements

5515-AUTO DLR NEW AND USED RETAIL

2 building(s) on this parcel 1 2

General Characteristics

Property Type: Condition: Quality: Neighborhood: Occupancy:

Built-As

Description

Service Garage

Average Fair 502 / 710

Commercial

New Auto Dealer

Net SF: Atch. Garage SF:

Det. Garage SF: Carport SF:

SF:

12.611 21,581 0

Taxpayer Name:

Mailing Address:

D ۵

Bath-

rooms

Fin. Attic SF: Total Bannt, SF: Fin. Bsmnt. SF:

K & A HOLDINGS LLC

PUYALLUP WA 98371-3875

1502 RIVER RD

Bsmnt. Gar. Door: Fireplaces:

Units

74,700

1,900

7,790

0

0

Ò

Sprinkler SE Ô

Showroom Improvement Details

Detail Type Add On Add On

Basement

1953

Year Built

1953 1990

1978

Adj. Year Built

6,706 1 5,905 1

Detail Description

Canopies WD FR (Gd)

Stories

Bed-

rooms

n/a n/a n/a n/a

Masonry Masonry

Class

n/a

Space Heater Forced Air

n

n

Storage Warning: Appraisal data provided is for informational purposes only and is incomplete for determination of value.

Asphalt (LC)

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this Information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

> Pierce County Assessor-Treasurer Mike Lonergan

> 2401 South 35th St Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2013 Pierce County Washington. All rights reserved.

WESSITE INFORMATION Privacy Policy Copyright Nethres

Taxpayer Details

K & A HOLDINGS LLC

PUYALLUP WA 98371-3875

1502 RIVER RD

Taxpayer Name:

Mailing Address:

Pierce County Home | Assessor-Treasurer Home | Parcel Search | Sales Search | Recorded Documents | Permits Summary Taxes/Values Land Buildings Sales Map

Building Characteristics for 0420214807

10/23/2013 07:05 PM

Property Details

Parcel Number: Site Address:

0420214807 400 RIVER RD

Account Type: Category:

Real Property Land and Improvements

lise Code:

5515-AUTO DLR NEW AND USED RETAIL

Building ID:

1 2

2 building(s) on this parcel

General Characterist	ics				
Property Type:	Commercial	Sf:	4.160	Fin. Attic SF:	n
Condition:	Average	Net SF:	4,160	Total Bsmnt. SF:	o o
Quality:	Fair	Atch. Garage SF:	0	Fin. Bsmnt. SF:	Ô
Neighborhood:	502 / 710	Det. Garage SF:	0	Bsmnt. Gar. Door:	o o
Occupancy:	Auto Related	Carport SF:	0	Fireplaces:	o

Description	Year Built	Adj. Year Built	SF	Stories	Bed- rooms	Bath- rooms	Exterior	Class	Roof	HVAC		Units	Sprinkler SF
Service Garage	1953	1961	2,880	1	n/a	n/a	n/a	Masonry	n/a	Space He	ater	0	0
Service Garage	1961	1961	1,280	1	n/a	n/a	n/a	Masonry	n/a	Space He	ater	0	0

Improvement Details

Detail Type Detail Description Units Add On Garage D Cls AV SF 3,552

onstiller Frankr

Warning: Appraisal data provided is for informational purposes only and is incomplete for determination of value.

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

> Pierce County Assessor-Treasurer Mike Lonergan 2401 South 35th St Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright @ 2013 Pierce County Washington. All rights reserved.

WEBSITE IMPORMATION Privacy Policy Obeynant Notices

K & A HOLDINGS LLC

PUYALLUP WA 98371-3875

1502 RIVER RD

Pierce County Home Assessor-Treasurer Home Parcel Search Sales Search Recorded Documents Permits

Summary Taxes/Values Land Buildings Sales Map

Recent Sales Activity for 0420214807

10/23/2013 07:05 PM

Property Details Taxpayer Details

Parcel Number:

0420214807

Site Address: Account Type: 400 RIVER RD Real Property

Category:

Land and Improvements

Use Code:

5515-AUTO DLR NEW AND USED RETAIL

Sales

Sales from 1997 to date are displayed here. However, the sales listed on this site are not complete and do not include all property transfer types. Recorded documents, accessed by name and date, can be found using the Pierce County Auditor's Recorded Document Search.

ETN Parcel Count Grantor

Grantee

Sale Price Sale Date Deed Type Sale Notes Confirmation

Taxpayer Name:

Mailing Address:

<u>4251216</u> 4

CMW INVESTMENTS LLC K & A HOLDINGS LLC 3,200,000 05/24/2011 Statutory Warranty Deed

Unconfirmed

4164418 4

PARKS FAMILY LLC

CMW INVESTMENTS LLC 3,500,000 06/01/2007 Statutory Warranty Deed

Unconfirmed

Sales history records current through 5/16/2003 are available on CD. These records were maintained as general information regarding property transfer for tax purposes only and are not an official record of sales transactions. A public records request form and the cost to copy of \$65.10 are required to obtain the records on CD. You may return the signed form and payment by mail or in person to the Assessor-Treasurer's Office at the address listed below.

For additional information on this issue, contact the Pierce County Assessor-Treasurer's Office Records Manager at 253-798-3134.

Search for sales with characteristics similar to this property.

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

Pierce County Assessor-Treasurer Mike Lonergan

2401 South 35th St Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2013 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Priciacy Follow Copyright Nations

Taxpayer Details

K & A HOLDINGS LLC

PUYALLUP WA 98371-3875

1502 RIVER RD

2014

7,700

7,700

Taxpayer Name:

Mailing Address:

Tax/Assessment

Current Tax Year:

Taxable Value:

Assessed Value:

Pierce County Home | Assessor-Treasurer Home | Parcel Search | Sales Search | Recorded Documents | Permits |
Summary | Taxes/Values | Büldings | Sales

Parcel Summary for 0420214808

11/04/2013 03:26 PM

Property Details

Parcel Number:

0420214808

Site Address: Account Type:

Use Code:

400 RIVER RD Structures

Account Type: Category:

Leased Land and/or Structure

entermone • Les es Antonoments.

5515-AUTO DLR NEW AND USED RETAIL

Appraisal Details

Value Area:

PI2

Appr Acct Type: Commercial

Business Name:

Last Inspection:

04/10/2008 - Physical Inspection

Related Parcels

Group Account Number:

<u>434</u>

Mobile/MFG Home and Personal Property 1200127008

parcel(s) located on this parcel:

Real parcel on which this parcel is located: n/a

Tax Description

Section 21 Township 20 Range 04 Quarter 44: COM AT MON AT INTER OF 4TH ST NW & 7TH AVE NW IN NE OF SEC 28 20 4E TH N 00 DEG 21 MIN E 636 FT ALG C/L OF SD 4TH ST TH N 89 DEG 39 MIN W 30 FT TO WLY R/W OF SD 4TH ST & POB TH CONT N 89 DEG 39 MIN W 281.28 FT TH N 00 DEG 21 MIN E 465.75 FT M/L PAR TO SD C/L OF 4TH ST TO S R/W LI OF STATE HWY # 5 TH S 69 DEG 18 MIN 10 SEC E 300 FT TO WLY R/W OF 4TH ST TH S 00 DEG 21 MIN W 361.44 FT TO POB ENCLOSED IN THE ABOVE IS L 13 B 19 J P STEWARTS 7TH ADD BLDG ONLY SEG F 0740

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

Pierce County Assessor-Treasurer Mike Lonergan 2401 South 35th St Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2013 Pierce County Washington. All rights reserved.

WERSTIE DIFORMATION Privady Polity Construct Material

Pierce County Home | Assessor-Treasurer Home | Parcel Search | Sales Search | Recorded Documents Summary Taxes/Values Buildings Sales **Building Characteristics for 0420214808** 11/04/2013 03:27 PM Property Details Taxpayer Details Parcel Number: 0420214808 Taxpayer Name: K & A HOLDINGS LLC Site Address: 400 RIVER RD Mailing Address: 1502 RIVER RD Account Type: PUYALLUP WA 98371-3875 Structures Category: Leased Land and/or Structure Use Code: 5515-AUTO DLR NEW AND USED RETAIL Bullding ID: 1 building(s) on this parcel General Characteristics Property Type: Commercial SF: 329 Fin. Attic SF: 0 Condition: Average Net SF: 329 Total Bennt, SF: 392 **Ouality:** Low Atch. Garage SF: ٥ Fin. Bsmnt, SF: Ω Neighborhood: 502 / 710 Det. Garage SF: Ď Bsmnt Gar. Door: ٥ Occupancy: New Auto Dealer Carport SE: a Fireplaces: o Built-As Bath-Sprinkler Description Adj. Year Built Year Built SF **Stories** rooms rooms Office Building 1965 1965 Wood Frame Forced Air Improvement Details Detail Type **Detail Description** Units Add On WD 100 Sq Ft 105 Basement Unfinished 392

Warning: Appraisal data provided is for informational purposes only and is incomplete for determination of value.

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

Pierce County Assessor-Treasurer Mike Lonergan

2401 South 35th St Room 142
Tacoma, Washington 98409
(253)798-6111 or Fax (253)798-3142
www.piercecountywa.org/afr

Copyright © 2013 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION
Privacy Policy
Codycools Notices

K & A HOLDINGS LLC

PUYALLUP WA 98371-3875

1502 RIVER RD

Pierce County Home | Assessor-Treasurer Home | Parcel Search | Sales Search | Recorded Documents | Permits Summary Taxes/Values Buildings Sales

Recent Sales Activity for 0420214808

11/04/2013 03:30 PM

Property Details

Parcel Number:

0420214808

Site Address: Account Type:

400 RIVER RD Structures

Category:

Leased Land and/or Structure

Use Code:

5515-AUTO DLR NEW AND USED RETAIL

Sales from 1997 to date are displayed here. However, the sales listed on this site are not complete and do not include all property transfer types. Recorded documents, accessed by name and date, can be found using the Pierce County Auditor's Recorded Document Search.

Taxpayer Details

4261216 4

Parcel Count Grantor

Grantee

Sale Price Sale Date Deed Type

Taxpayer Name:

Mailing Address:

Sale Notes Confirmation

CMW INVESTMENTS LLC K & A HOLDINGS LLC 3,200,000 05/24/2011 Statutory Warranty Deed

Unconfirmed

4164418 4

PARKS FAMILY LLC

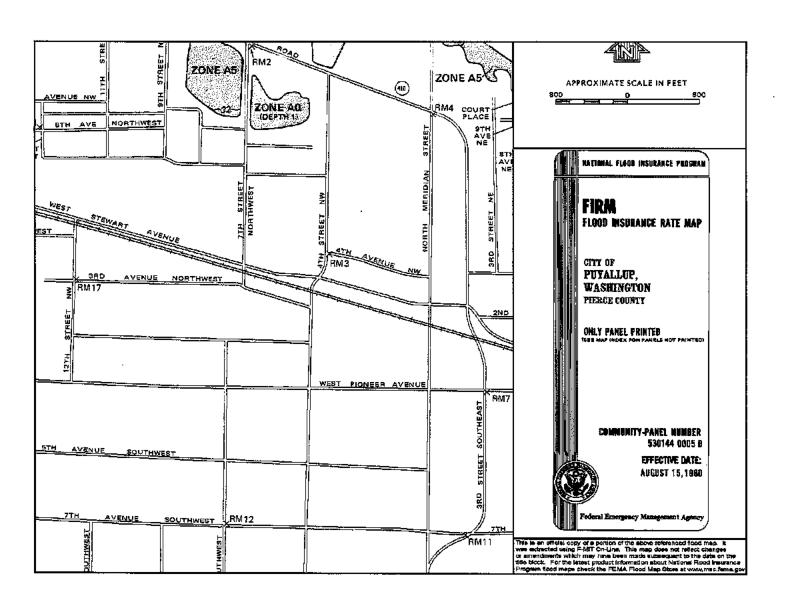
CMW INVESTMENTS LLC 3,500,000 06/01/2007 Statutory Warranty Deed

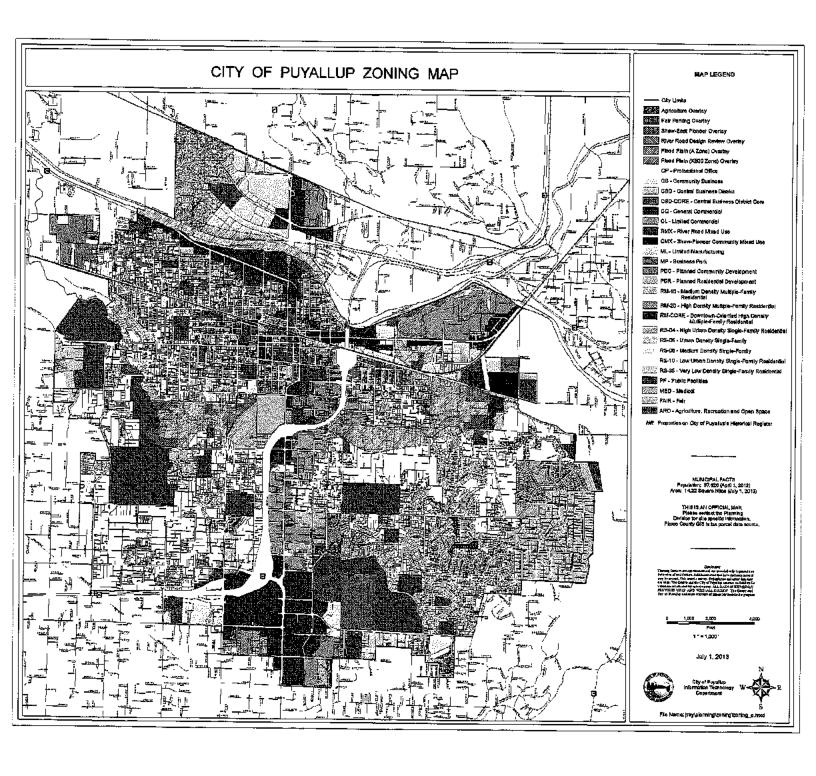
Unconfirmed

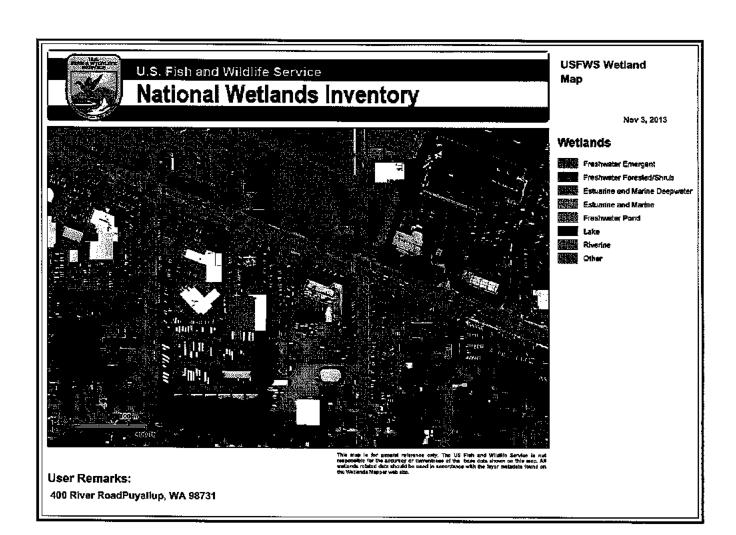
Sales history records current through 5/16/2003 are available on CD. These records were maintained as general information regarding property transfer for tax purposes only and are not an official record of sales transactions. A public records request form and the cost to copy of \$66.10 are required to obtain the records on CD. You may return the signed form and payment by mail or in person to the Assessor-Treasurer's Office at the address listed below.

For additional information on this issue, contact the Pierce County Assessor-Treasurer's Office Records Manager at 253-798-3134.

Sales Search

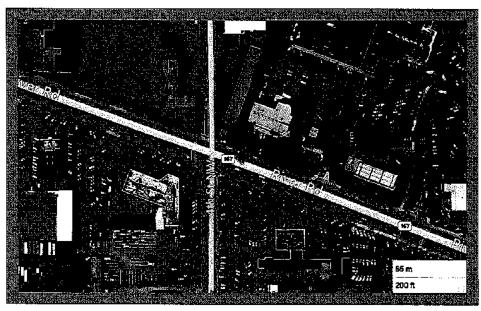

Search for sales with characteristics similar to this property.


I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.


> Pierce County Assessor-Treasurer Mike Lonergan 2401 South 35th St Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright @ 2013 Pierce County Washington. All rights reserved.

AFREME INFORMATION Privacy Policy.



Facility/Site: 68989278

Greg Carters Puyallup Chev Subaru

FRIENDLY CHEV OF PUYALLUP, Friendly Chevrolet, PUYALLUP CHEVROLET GEO SUBARU INC Also known as:

Address

400 RIVER RD

Decimal Coordinates

Latitude: 47,19994

Longitude: -122.29846

PUYALLUP WA 98371

Geographic Information

Ecology Region: SWRO

Legislative District: 25

WRIA: 10

County: Pierce

Congressional District: 10

Tribal Land: No

Ecology Interactions

Interaction Description	Ecology Program	Ecology Program Phone	Program ID	Start Date	End Date:
Local Source Control	HAZWASTE	(360) 407-6850		3/4/2009	4/29/2010
Underground Storage Tank	TOXICS	(360) 407-7224	97772	3/20/2000	5/6/2004
Hazardous Waste Generator	HAZWASTE	(360) 407-6023	WAD988484598	4/2/1991	12/31/2002

Industrial Codes (External Links Below)

NATCS Code	NAICS Description
<u>44111</u>	New Car Dealers

Code

<u>5511</u>

NEW AND USED CAR DEALERS

PHASE I ENVIRONMENTAL SITE ASSESSMENT QUESTIONNAIRE

The following questionnaire is required by the new ASTM Standard E 1527-05, which adheres to the new All Appropriate Inquiries (AAI) Rule (United States Environmental Protection Agency) (40 CFR 312).

As defined by ASTM, the User of the report is the "party seeking to use Practice E 1527 to complete an environmental site assessment of the property. A user may include, without limitation, a potential purchaser of property, a potential tenant of property, an owner of property, a lender, or a property manager."

ונוס	BLECT PROPERTY CITY, STATE ZIP: PUTALLUP, WA 98371
١.	Environmental cleanup liens that are filed or recorded against the site (40 CFR 312.25)
	Are you aware of any environmental cleanup liens against the Subject Property that are filed or recorded under federal, tribal, state or local law? YES NO
2.	Activity and land use limitations that are in place on the site or that have been filed or records in a registry (40 CFR 312.26)
	Are you aware of any activity and land use limitations (AULs), such as engineering controls, land use restrictions or institutional controls that are in place at the Subject Property and/or have been filed or recorded in a registry under federal, tribal, state or local law? YES NO
3.	Specialized knowledge or experience of the person seeking to qualify for the LLP (40 CFR 312.28) As the User of this report, do you have any specialized knowledge or experience related to the Subject Property or nearby properties? For example, are you involved in the same line of business as the current or former occupants of the Subject Property or adjoining property? YES NO
i.	Relationship of the purchase price to the fair market value of the Subject Property if it were not contaminated (40 CFR 312.29) Does the purchase price being paid for the Subject Property reasonably reflect the fair market value of the Subject Property? If so, why? YES NO
Pha	se I ESA Questionnaire

Page 1 of 3

Do you know the past uses of the Subject Property? YES NO Do you know of specific chemicals that are present or once were present at the Subject Property? YES NO Are you aware of any spills or other chemical releases that have taken place at the Subject Property? YES NO
Property? YES NO Are you aware of any spills or other chemical releases that have taken place at the Subject Property?
Subject Property?
·
Do you have any prior knowledge that the Subject Property was developed as a gas station, dry cleaner, manufacturing/industrial facility in the past? YES NO
Are you aware of historical use of hazardous materials or petroleum products used or present on the Subject Property? YES NO
Do you know if the property is currently or was formerly equipped with underground storage tanks (USTs) or septic tanks? YES NO
Do you know of any past, threatened or pending lawsuits or administrative proceedings concerning a release or threatened release of any hazardous substance or petroleum products involving the Subject Property by any owner or occupant of the Subject Property?

Phase I ESA Questionnaire Page 2 of 3

Subject Property, and the ability to detect the contamination by appropriate investigation (40 CFR 312.31)						
As the User of this report, are there any obvious indicators that point to the presence or likely presence of contamination at the Subject Property based on your knowledge and experience						
related to the Subject Property?						
YES YES NO						
/						
NOW						
Signature of User/Person Interviewed: Name of User/Person Interviewed:						
Title/Relationship to Subject Property: OR WYOR						
Phone Number/Email: 253 - 2560 4600						
Date: 10 24 (27						
(,						
Contact for additional information:						
Name:						
Relationship to Subject Property:						
Phone Number/Email:						

Page 3 of 3

PARTNER

ENVIRONMENTAL SITE ASSESSMENT QUESTIONNAIRE

Please complete to the best of your knowledge. For those questions that are not applicable, please respond with an "N/A". For those questions that are unknown, please respond with "unknown".

1. Property Information:
Property Name:
Property Address: 400 RIUTR RCAD
City PUYALLUP State WA Zip 98371
Assessor's Parcel Number 0420214808 2 0420214807
Property Owner & Contact Information:
Date Property Owner Purchased:
Key Site Manager & Contact Information:
2. COMPLETED BY
Signature Name 10 2413
Printed Name N 7014 Relation to Subject Property
3. Previous Investigations
Have any previous environmental investigations been performed at the property, including Phase I ESAs, Phase II Subsurface Investigations, Remediation, Asbestos or Lead-Based Paint surveys?
(If yes, please provide copies)
4. Property Description
Property Size: 21,68 Number of Building(s): 5 - Size of Building(s): 5705 ±
Date of Construction: 1953
Property Type: (please circle)
Multi-Family Hotel Mobile Home Park Retail Commercial Industrial Office
Other: AUTOMOTIVE DEALERSHIP
Please provide Rent Roll if Applicable.
Historical Use of Property: Owito deather >

Partner Pre-Survey Questionnaire

Page 1 of 2

5. SURROUNDING PROPERTY USES

DIRECTION	$\mathbf{U}_{\mathbf{SL}}$							
North								
South	Maring & Storage							
East	Actemotics Declars							
West								
<u></u>								
are you awa	are of any potential environme YES	ntal concerns ass	Ociated with surround	ling properties?				
f yes, pleas	e describe:							
		<u> </u>						
6. Uti	LITIES & SERVICES							
Please provi	ide the name of the utility or c	ontractor providi:	ng the following:					
Elect	ric PSE		Bio-hazardous Waste	LOVE				
Gas	PSE		Elevator Maintenance	LENE				
	Potable Water (FT) Di Pu yold Hazardous Waste Environmental							
Sanitary Sewer Comments Hazardous Waste 400 Comments								
7. ON	SITE OPERATIONS	_		() MI ()				
	vare of any of the following o							
Condition		Response	If yes, please de					
	Chemicals	☐ Yes ☐ No	Semedition	f + unce oil which				
	round Storage Tanks	☐ Yes ☐ To						
	ground Storage Tanks	☐ Yes ©No						
	r Releases	□ Yes ©No						
	Areas/Landfills	☐ Yes Sa No						
	Treatment Systems	XYes □ No						
	ers/Separators	☐ Yes ☐ No						
8. Vents/0		□ Yes 5 No						
	Orains/Sumps	Yes WNo						
10. Stained		□ Yes ☑ No	<u> </u>					
	etrical Transformers	D Yes ⊠ No						
	raulic Lifts/Elevators	S≠Yes □ No						
	Cleaning Operations	☐ Yes ⊋No	-					
	Gas/Water/Monitoring Wells ironmental Permits	☐ Yes ☐ No		<u>. </u>				
IJ. ENV	MORRIEMENT FERRIES	INIYes □ No	i					

Partner Pre-Survey Questionnaire

Page 2 of 2

APPENDIX D: QUALIFICATIONS

Daniel Stallings, REPA

Project Manager

Education

CSWK Project Management-American Intercontinental University
B.S. Environmental Science-Regis University
Certificate Meteorology/Oceanography- Naval Technical Training Unit Keesler
ASF Military Sciences- US Naval ASF Academy at University of Maryland

Registrations

Registered Environmental Property Assessor-National Registry of Environmental Professionals Certified Testing Specialist-Environmental Assessment Association Certified Environmental Inspector-Environmental Assessment Association AHERA Certified Building Inspector-AHERA

Licensed Asbestos Abatement Consultant-NV Occupational Safety & Health Administration Certified Ultra Trace Element Analyst-FL Department of Environmental Protection OSHA Certifications Hazardous Materials Operations Certified-OSHA (29CFR1910.120 & 1926.65 HAZWOPER)

Registered Environmental Assessor-CA Department of Toxic Substance Control EPA Lead Paint Inspector-U.S. Environmental Protection Agency SLAC50 Safety Certified Contractor

Summary of Professional Experience

Mr. Stallings has 14 years of experience in the environmental, engineering, and/or industrial hygiene service industries. He has significant experience in due diligence assessments for a variety of property types and the needs and requirements of varied number of reporting standards, including ASTM standards, EPA's All Appropriate Inquiry (AAI), and customized client formats. Specifically, Mr. Stallings has performed Phase I Environmental Site Assessments, Environmental Transaction Screens, Phase II and III Subsurface Investigations, Remediation Projects, Regulatory Compliance Assessments, Asbestos Surveys, Lead-based Paint Surveys, Radon Studies, Mold Assessments, and Lead-in-water sampling and analysis.

Mr. Stallings has completed numerous ASTM Environmental Site Assessments for a diverse variety of properties and purposes across the United States. These properties have included communications facilities, military and government facilities, vacant lots, industrial facilities, commercial agricultural tracts, commercial properties, retail facilities, educational facilities and multi-family residential properties.

Mr. Stallings has served as a project scientist on multiple environmental projects involving dredging and turbidity, regulatory permitting, flood water diversion and wetland assessment. He has worked on Florida Everglades restoration/reclamation projects, coastal erosion assessments and engineered wetland projects.

Mr. Stallings served as a project scientist on multiple projects across the United States involving soil and ground water remediation for industrial facilities including several Federal and State

managed remediation projects. He has provided expertise in monitoring well design, environmental drilling, contamination plume delineation, free product and vapor recovery, site specific testing plans, analytical data interpretation and quality control.

Mr. Stallings served as an environmental consultant and environmental work site supervisor on multiple commercial construction projects across the United States involving the dewatering of impacted groundwater and the excavation of impacted soils. He has provided expertise in site worker health and safety and in impacted soil & groundwater management.

In addition to environmental assessments, Mr. Stallings has prepared and managed numerous NEPA consultation projects, compliance audits, biological assessments and other various environmental assessments for telecommunications sites. Mr. Stallings has helped various clients facilitate the Section 106 / environmental review process to ensure compliance with Federal Communications Commission (FCC) requirements under the National Environmental Policy Act (NEPA).

Mr. Stallings served as a senior field technician, an analytical chemist, a data quality officer and a laboratory manager at a NELAP certified facility for over five years. He specialized in long-term soil and ground water monitoring, agrichemical, petrochemical and metals analysis. Mr. Stallings has extensive academic and hands on training and is certified as an Environmental Field Technician by the Florida Department of Environmental Protection. Additionally, he is certified in ultra-trace sampling procedures and analysis.

Mr. Stallings served in the United States Navy as a member of the U.S. Mobile Environmental Team and on the United States Armed Forces Expeditionary Team as an active duty scientist for over five years. During this period, he responded to the Navy's environmental emergencies both nationally and abroad containing hazardous materials spills associated with military activity in accordance with NAVOSH. Additionally, Mr. Stallings installed, monitored & maintained remote meteorological, geological & oceanographic monitoring equipment. Mr. Stallings continued military service in the U.S. Naval Reserve as a Meteorologist for the USS John F. Kennedy Carrier Group for an additional three years.

Finally, Mr. Stallings' diversity across residential, agricultural, industrial, natural, municipal, and commercial environments is a major contribution to Partner Engineering and Science's team in the Pacific Northwest region of the United States.

Lyly Churchill, REA Senior Project Manager

Education

M.A. Environmental Studies, Brown University
 B.S. Biology, University of California, Los Angeles - Emphasis in Ecology, Behavior and Evolution

Registrations

California Registered Environmental Assessor (REA I –08070) EPA Accredited Asbestos Inspector California Underground Storage Tank Inspector

Summary of Professional Experience

Ms. Churchill has eight years of experience in the environmental service industry. Ms. Churchill's background in environmental science and direct experience in environmental consulting and enforcement allow her to offer the most effective means of regulatory compliance.

Ms. Churchill has project experience in Phase I Environmental Site Assessments (ESAs), Environmental Transaction Screens, radon screening, asbestos inspections, and lead-based paint inspections. In addition, Ms. Churchill has project management experience in Property Condition Assessments, Physical Needs Assessments, seismic evaluations and ALTA surveys. Ms. Churchill is familiar with all aspects of Due Diligence Property Assessments and the needs and requirements of a varied number of reporting standards, including ASTM, EPA's All Appropriate Inquiry (AAI), U.S. Small Business Administration's (SBA) SOP 50 10, Fannie Mae DUS, Freddie Mac, HUD, and customized client formats.

Ms. Churchill has performed and supervised over 1,000 Phase I Environmental Site Assessments and Environmental Transaction Screens for lenders and buyers. As a senior member of the Due Diligence staff, Ms. Churchill provides senior review expertise to ensure ASTM compliance and satisfaction of client requirements for Phase I Environmental Site Assessments and Environmental Transaction Screens.

Furthermore, Ms. Churchill has working experience in performing biological and noise assessments, and in preparing and reviewing environmental documentation in support of CEPA and NEPA.

While in graduate school, Ms. Churchill's Masters Thesis research focused on evaluating the potential of Japanese Knotweed (an invasive plant species) as an effective phytoremediator of heavy metal contaminated soils along a historically polluted river in Rhode Island. Phytoremediation refers to the natural ability of certain plants called hyperaccumulators to

bioaccumulate contaminants in soil. Hyperaccumulators can be grown and harvested economically, leaving the soil with a greatly reduced level of toxic contamination.

Project experience for Ms. Churchill includes:

- Completed hundreds of Phase I Environmental Site Assessments and Environmental Transaction Screens on multi-family properties, commercial office buildings, retail shopping centers, gasoline service stations, hotels, dry cleaning plants, auto repair and auto body shops, industrial warehouse buildings, aerospace manufacturers, plating facilities, and various manufacturing operations throughout the U.S.
- Reviewed and evaluated hundreds of third-party Phase I, Phase II and Phase III reports
- Managed Phase I and PCA portfolio projects involving properties throughout the United States, including large apartment complexes and shopping malls
- Assisted on several Phase II investigations of gasoline service stations, dry cleaning facilities and industrial sites
- Conducted several asbestos and lead-based paint inspections of commercial and residential properties
- Performed water sampling on several residential properties to detect the presence of lead in water
- Conducted radon testing at several residential properties throughout Southern California and Nevada
- Conducted biological surveys including endangered species surveys, and performed research on historical, physical and cultural resources in support of Environmental Impact Reports

Ms. Churchill worked for the City of El Segundo, where she regularly collaborated with other local CUPAs to ensure compliance with State and Federal regulations. Ms. Churchill's responsibilities included implementing and enforcing elements of the CUPA program including the following: hazardous waste generator program; underground storage tank program; Hazardous Material Release Response Plan (Business Plan) Program and the California Accidental Release Response Plan (CalARP) Programs. Ms. Churchill also worked on enforcing city specific environmental programs such as Stormwater Pollution Prevention and Industrial Wastewater Discharge. As the Principal Environmental Specialist for the City, Ms. Churchill worked with large industries such as Chevron, Northrop Grumman, Boeing and International Rectifier to ensure regulatory compliance pertaining to business operations and remedial activities.

Ms. Churchill has technical experience working for the following financial institutions:

- JPMorgan Chase
- Citigroup Global Markets
- Wells Fargo Bank
- California Bank and Trust
- Union Bank of California
- East West Bank

- Comerica Bank
- Northmarq Capital
- Morgan Stanley Mortgage Capital, Inc.
- Bank of America

APPENDIX C PHOTOGRAPHS

RFJ Auto Partners

Site #3 – 400 & 500 River Road Puyallup, Washington

AECOM Project No.: 60620698 **Date:** 12/20/2019

Photo No.

Date: 12/20/2019

Direction Photo Taken:

Southeast

Description:

Main Building - Showroom area.

Photo No. 2

Date: 12/20/2019

Direction Photo Taken:

General View

Description:

North Shop- 7 Service bays currently with above ground hoists, and three ASTs containing new and used engine oil. Services include general vehicle maintenance.

RFJ Auto Partners

Site #3 – 400 & 500 River Road Puyallup, Washington

AECOM Project No.: 60620698 **Date:** 12/20/2019

Photo No.

Date: 12/20/2019

Direction Photo Taken:

West

Description:

South Shop, includes 8 services bays, currently with above ground hoists, and two ASTs containing engine oil. Services include general vehicle maintenance and repair. Patches on floor represent former in ground hydraulic hoist locations.

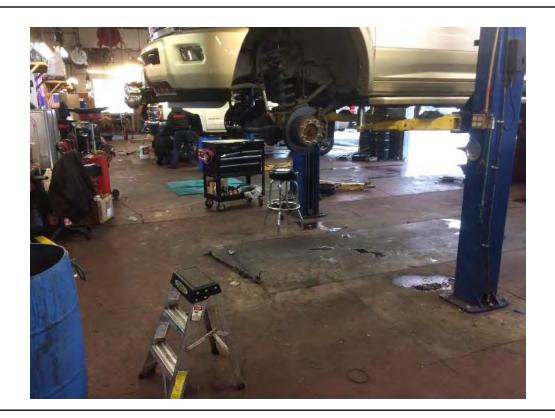


Photo No. 4

Date: 12/20/2019

Direction Photo Taken:

Northwest

Description:

Lower Shop, includes 3 vehicle services bays, a tire bay on the north end, and a room on the south end containing two oil ASTs and a compressor.

RFJ Auto Partners

Site #3 – 400 & 500 River Road Puyallup, Washington

AECOM Project No.: 60620698 **Date:** 12/20/2019

Photo No. **5**

Date: 12/20/2019

Direction Photo Taken:

South

Description:

Covered vehicle wash bay area. Surrounding wash bay includes sump pump, Oil-Water- Separator, and some chemicals for cleaning vehicles.

Photo No.

6

Date: 12/20/2019

Direction Photo Taken:

East

Description:

Building adjacent to the wash bay, containing multiple drums of vehicle washing chemicals.

RFJ Auto Partners

Site #3 - 400 & 500 River Road Puyallup, Washington

AECOM Project No.: 60620698 Date: 12/20/2019

Photo No. 7

Date: 12/20/2019

Direction Photo Taken:

Northwest

Description:

North Shop, Bay 15, large floor cut may be associated with former in ground hoists.

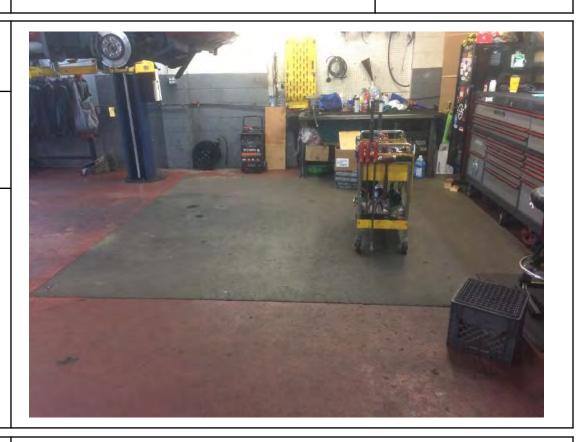
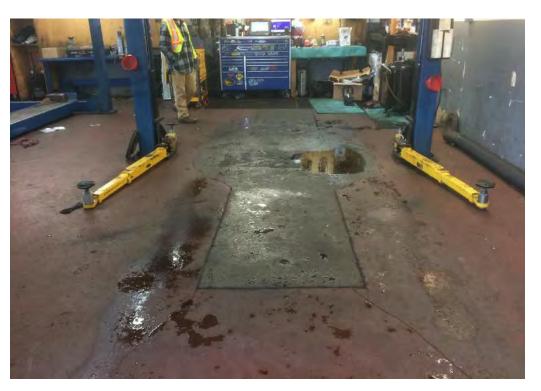


Photo No.


Date: 8 12/20/2019

Direction Photo Taken:

North

Description:

North Shop, Bay 9, floor cut which is indicative of apparent former In-ground Hoist.

RFJ Auto Partners

Site #3 – 400 & 500 River Road Puyallup, Washington

AECOM Project No.: 60620698 **Date:** 12/20/2019

Photo No. 9

Date: 12/20/2019

Direction Photo Taken:

Northwest

Description:

North Shop, near bay 12 is a used oil AST, approximately 465 gallons

Photo No. 10

Date: 12/20/2019

Direction Photo Taken:

North

Description:

North Shop, near bay 12 is a new oil AST, approximately 465 gallons

RFJ Auto Partners

Site #3 – 400 & 500 River Road Puyallup, Washington

AECOM Project No.: 60620698 **Date:** 12/20/2019

Photo No.

Date: 12/20/2019

Direction Photo Taken:

North

Description:

South Shop, bay 7, patched floor from where former in-ground hoist system was reportedly removed.

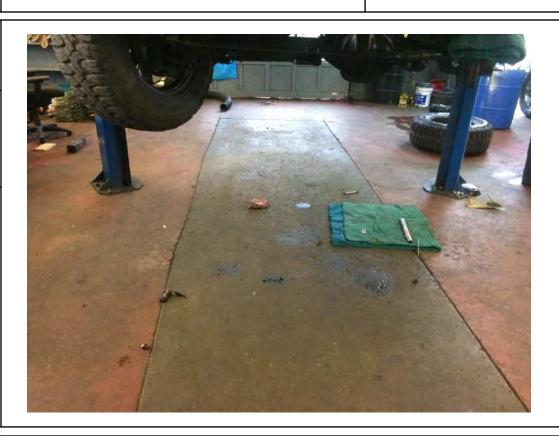
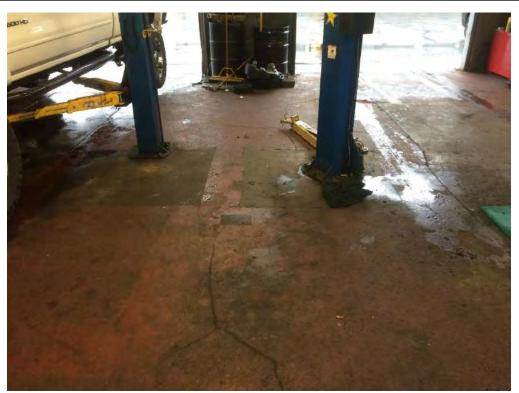


Photo No. 12


Date: 12/20/2019

Direction Photo Taken:

North

Description:

South Shop, in-between bay 5 and bay 6 has patched floors where hoist systems presumably were located in the past. Interview with employee noted this shop historically had in-ground hoist systems for vehicle maintenance.

RFJ Auto Partners

Site #3 – 400 & 500 River Road Puyallup, Washington

AECOM Project No.: 60620698 **Date:** 12/20/2019

Photo No.

Date: 12/20/2019

Direction Photo Taken:

Southwest

Description:

South Shop, ASTS containing new motor oil, approximately 465 gallons each.

Photo No. 14

Date: 12/20/2019

Direction Photo Taken:

South

Description:

South Shop, near bay 1 which has the widest floor crack noted in shops.
Multiple cracks this size near bay 1.

RFJ Auto Partners

Site #3 – 400 & 500 River Road Puyallup, Washington

AECOM Project No.: 60620698 **Date:** 12/20/2019

Photo No. 15

Date: 12/20/2019

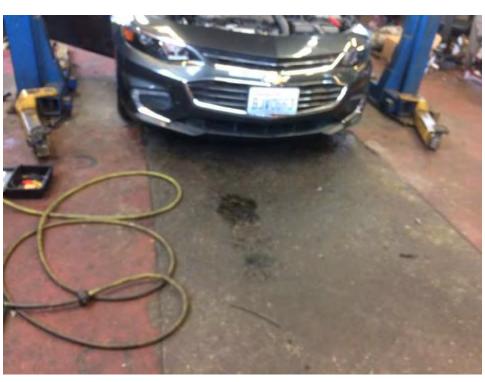
Direction Photo Taken:

East

Description:

South Shop, near bay 1 there is an apparent exhaust duct in northeast corner.

Photo No. 16


Date: 12/20/2019

Direction Photo Taken:

North

Description:

South Shop, bay 8, patched floor from where former in-ground hoist system was reportedly removed.

RFJ Auto Partners

Site #3 – 400 & 500 River Road Puyallup, Washington

AECOM Project No.: 60620698 **Date:** 12/20/2019

Photo No. 17

Date: 12/20/2019

Direction Photo Taken:

South

Description:

Lower shop general overview of service bays.

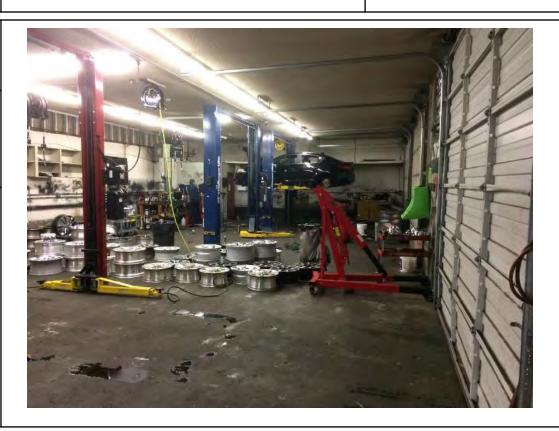


Photo No. 18


Date: 12/20/2019

Direction Photo Taken:

South

Description:

Lower shop furthest south service bay. Noteably stained and cluttered. Unable to discern whether heavily stained or just wet from vehicle recently moved indoors and dripping from rain.

RFJ Auto Partners

Site #3 – 400 & 500 River Road Puyallup, Washington

AECOM Project No.: 60620698 **Date:** 12/20/2019

Photo No. 19

Date: 12/20/2019

Direction Photo Taken:

East

Description:

Lower Shop, south room where ASTs for new motor oil are located. Back room is used as miscellaneous storage and for ASTs and Compressors. Equipment is used for service bays in connecting building.

Photo No. **20**

Date: 12/20/2019

Direction Photo Taken:

East

Description:

Lower shop, back room where compressors for service bays are located. Compressors are across the room from ASTs.

RFJ Auto Partners

Site #3 – 400 & 500 River Road Puyallup, Washington

AECOM Project No.: 60620698 **Date:** 12/20/2019

Photo No. 21

Date: 12/20/2019

Direction Photo Taken:

South

Description:

Lower Shop - Tire bay located in north portion of building. No hose supplied oil coming to this bay, only compressed air for tires.

Photo No. 22

Date: 12/20/2019

Direction Photo Taken:

Southeast

Description:

West wall of wash area where OWS shed and sump pump are located.

RFJ Auto Partners

Site #3 – 400 & 500 River Road Puyallup, Washington

AECOM Project No.: 60620698 **Date:** 12/20/2019

Photo No. 23

Date: 12/20/2019

Direction Photo Taken:

South

Description:

OWS with coalescing plates. Electrical plug in heater presumably on at all times in the back right corner of shed.

Photo No. 24

Date: 12/20/2019

Direction Photo Taken:

East

Description:

West side of wash area, where a manhole with a sump pump is located and actively running pumping water out to the sewer system. Unknown whether bypassing OWS.

RFJ Auto Partners

Site #3 – 400 & 500 River Road Puyallup, Washington

AECOM Project No.: 60620698 **Date:** 12/20/2019

Photo No. 25

Date: 12/20/2019

Direction Photo Taken:

N/A

Description:

Sump pump interior on west side of wash area.

Photo No. 26

Date: 12/20/2019

Direction Photo Taken:

East

Description:

Assortment of drums containing washing chemicals.

RFJ Auto Partners

Site #3 – 400 & 500 River Road Puyallup, Washington

AECOM Project No.: 60620698 **Date:** 12/20/2019

Photo No. 27

Date: 12/20/2019

Direction Photo Taken:

Northeast

Description:

Vehicle wash chemical storage area, heavily stained concrete floor.

Photo No. 28

Date: 12/20/2019

Direction Photo Taken:

West

Description:

Vehicle wash chemical storage area showing heavily etched concrete floor from exposure to wash chemicals.

RFJ Auto Partners

Site #3 – 400 & 500 River Road Puyallup, Washington

AECOM Project No.: 60620698 **Date:** 12/20/2019

Photo No. 29

Date: 12/20/2019

Direction Photo Taken:

Northeast

Description:

Storm catch basin that reportedly is a dry well and not connected to the storm sewer. Located at SE corner of main building, in front of entrance to storage area beneath the parking deck on east side of main building.

Photo No. 30

Date: 12/20/2019

Direction Photo Taken:

North

Description:

View from approximate location to which storm catch basin discharges. Retaining wall separating the upper eastern parking lot from the lower lot.

RFJ Auto Partners

Site #3 – 400 & 500 River Road Puyallup, Washington

AECOM Project No.: 60620698 **Date:** 12/20/2019

Photo No. 31

Date: 12/20/2019

Direction Photo Taken:

Northeast

Description:

South wall of South Shop. Area of former waste-oil USTs located adjacent to the south shop, which is now used for parking vehicles and is asphalt.

Photo No. 32

Date: 12/20/2019

Direction Photo Taken:

North

Description:

Suspected location of closed in place heating-oil UST. Records indicate a UST was located approximately where the compressors are underneath the awning.

RFJ Auto Partners

Site #3 – 400 & 500 River Road Puyallup, Washington

AECOM Project No.: 60620698 **Date:** 12/20/2019

Photo No. 33

Date: 12/20/2019

Direction Photo Taken:

N/A

Description:

Inside main building north of current compressor location. Two apparent fuel oil pipes that were possibly previously connected to former heating-oil UST underneath compressor awning.

Photo No. 34

Date: 12/20/2019

Direction Photo Taken:

N/A

Description:

Inside main building north of current compressor location. General view of piping associated with former heating oil UST. Records indicate a UST was located approximately where the compressors are underneath the awning.

APPENDIX D EDR ENVIRONMENTAL DATABASE REVIEW REPORT

Appendix B Soil Boring and Monitoring Well Construction Logs

Project: SAI-384-13

Boring Depth (ft):

Address: 400 River Road, Puyallup, WA **WELL LOG**

Well No. SB-6/MW-1

Page: 1 of 2

Drilling Start Date: 10/3/22

Drilling End Date: 10/3/22

Drilling Company: Steadfast Services NW

Drilling Method: **Hollow Stem Auger** Drilling Equipment: Geoprobe 7720DT

Driller: Vance Brewer

Logged By:

Adam Michalak

25.0

Boring Diameter (in): 6.25

DP, GR Sampling Method(s):

DTW During Drilling (ft):

DTW After Drilling (ft):

Top of Casing Elev. (ft):

Location (X,Y):

Well Depth (ft): 20.0

Well Diameter (in): 2.0

Screen Slot (in): 0.010

Riser Material: Sch 40 PVC

Screen Material: Sch 40 PVC Slotted Bent.-Cement Grout/Bent. Chips

Seal Material(s):

Filter Type: Sand Pack

COLLECT MEASURE WELL COMPLETION WATER LEVEL LITHOLOGY DEPTH (ft) Sample Type Blow Counts Recovery (ft) Lab Sample PID (ppm) SOIL/ROCK VISUAL DESCRIPTION Time 0 (0') Concrete (0.5') River cobbles 2.6 (1') Poorly graded SAND with gravel (SP); mostly fine-coarse grained sand, some fine-coarse gravel, loose, dry, dark brown 2.9 3.4 1.00 3.2 (4.5') Silty SAND (SM); mostly fine grained sand, some silt, loose, dry, dark brown -5 3.75 3.5 3.1 -10 10-3.75 2.7 (10') As Above: moist 2.2 (12') Well-graded GRAVEL (GW); mostly coarse grained gravel, few fine sand, 0 dense, moist, dark brown (13') Well-graded SAND with gravel (SW); mostly coarse grained sand, some fine gravel, loose, moist, dark brown with gray 2.0 15 15 NOTES: Hole precleared to 4' on 10/3/22 by Steadfast Services NW using hand auger, refusal on large river cobble.

Project: SAI-384-13

Boring Depth (ft):

Address: 400 River Road, Puyallup, WA **WELL LOG**

Well No. SB-6/MW-1

Page: 2 of 2

Drilling Start Date: 10/3/22

Drilling End Date: 10/3/22

Drilling Company: Steadfast Services NW

Drilling Method: **Hollow Stem Auger**

Drilling Equipment: Geoprobe 7720DT

Driller: Vance Brewer

Adam Michalak Logged By:

25.0

Boring Diameter (in): 6.25

Sampling Method(s): DP, GR

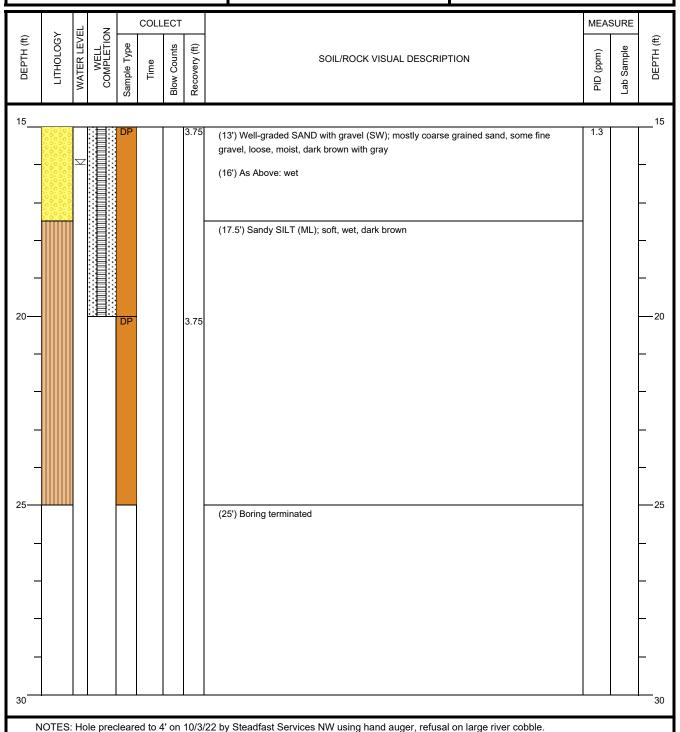
DTW During Drilling (ft):

DTW After Drilling (ft):

Top of Casing Elev. (ft):

Location (X,Y):

Well Depth (ft): 20.0


Well Diameter (in): 2.0

Screen Slot (in): 0.010

Riser Material: Sch 40 PVC

Sch 40 PVC Slotted Screen Material: Bent.-Cement Grout/Bent. Chips

Seal Material(s):

Project: SAI-384-13

Address: 400 River Road, Puyallup, WA **WELL LOG**

Well No. SB-7/MW-2

Page: 1 of 2

Drilling Start Date: 10/3/22 Drilling End Date: 10/4/22

Drilling Company: Steadfast Services NW

Drilling Method: **Hollow Stem Auger** Drilling Equipment: Geoprobe 7720DT

Driller: Vance Brewer

Adam Michalak Logged By:

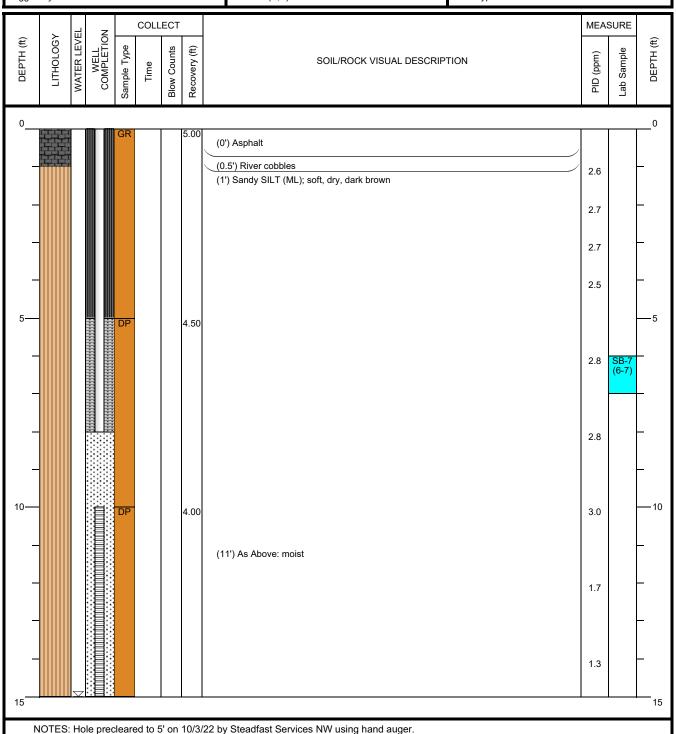
Boring Depth (ft): 20.0

6.25 Boring Diameter (in): Sampling Method(s): DP, GR

DTW During Drilling (ft):

DTW After Drilling (ft):

Top of Casing Elev. (ft): Location (X,Y):


Well Depth (ft): 20.0

Well Diameter (in): 2.0 Screen Slot (in): 0.010

Riser Material: Sch 40 PVC

Screen Material: Sch 40 PVC Slotted Bent.-Cement Grout/Bent. Chips

Seal Material(s):

Project: SAI-384-13

Boring Depth (ft):

Address: 400 River Road, Puyallup, WA

WELL LOG

Well No. SB-7/MW-2

Page: 2 of 2

Drilling Start Date: 10/3/22

Drilling End Date: 10/4/22

Drilling Company: Steadfast Services NW

Drilling Method: Hollow Stem Auger

Drilling Equipment: Geoprobe 7720DT

Driller: Vance Brewer

Logged By: Adam Michalak

20.0

Boring Diameter (in): 6.25

Sampling Method(s): DP, GR

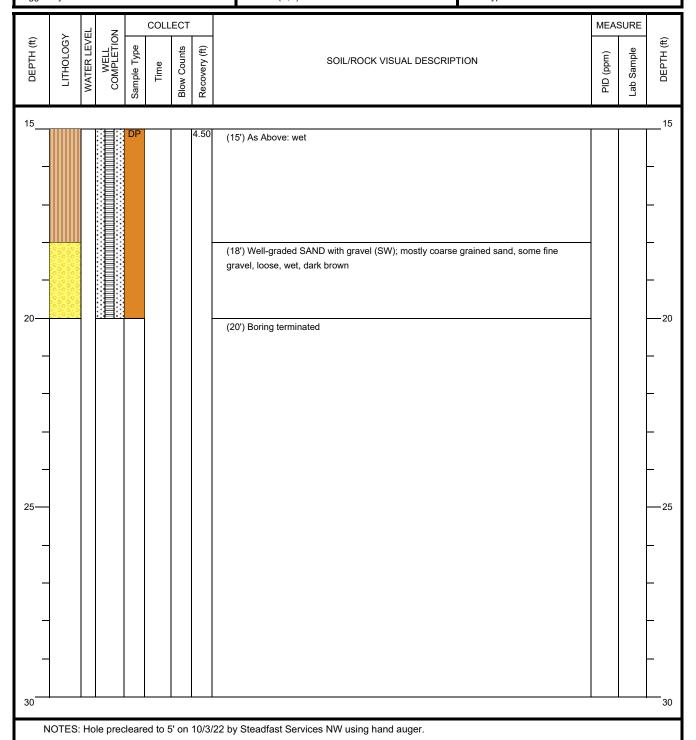
DTW During Drilling (ft): 15.0

DTW After Drilling (ft):

Top of Casing Elev. (ft):

Location (X,Y):

Well Depth (ft): 20.0


Well Diameter (in): 2.0

Screen Slot (in): 0.010

Riser Material: Sch 40 PVC

Screen Material: Sch 40 PVC Slotted

Seal Material(s): Bent.-Cement Grout/Bent. Chips

Project: SAI-384-13

Address: 400 River Road, Puyallup, WA **WELL LOG**

Well No. SB-8/MW-3 1 of 2

Drilling Start Date: 10/4/22

Drilling End Date: 10/5/22

Drilling Company: Steadfast Services NW

Drilling Method: **Hollow Stem Auger**

Drilling Equipment: Geoprobe 7720DT

Driller: Vance Brewer

Adam Michalak Logged By:

22.0

Boring Depth (ft): Boring Diameter (in): 6.25

DP, GR Sampling Method(s):

DTW During Drilling (ft):

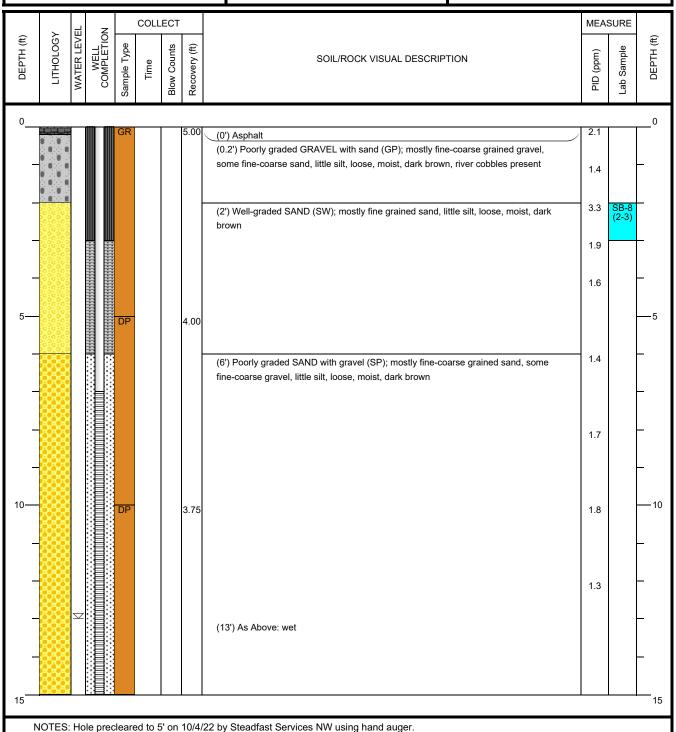
DTW After Drilling (ft):

Top of Casing Elev. (ft):

Location (X,Y):

Well Depth (ft): 22.0

Well Diameter (in): 2.0


Page:

Screen Slot (in): 0.010

Riser Material: Sch 40 PVC

Screen Material: Sch 40 PVC Slotted Bent.-Cement Grout/Bent. Chips

Seal Material(s):

Project: SAI-384-13

Address: 400 River Road, Puyallup, WA **WELL LOG**

Well No. SB-8/MW-3

Page: 2 of 2

Drilling Start Date: 10/4/22

Drilling End Date: 10/5/22

Drilling Company: Steadfast Services NW

Drilling Method: **Hollow Stem Auger**

Drilling Equipment: Geoprobe 7720DT

Driller: Vance Brewer

Adam Michalak Logged By:

22.0

Boring Depth (ft): Boring Diameter (in): 6.25

Sampling Method(s): DP, GR

DTW During Drilling (ft):

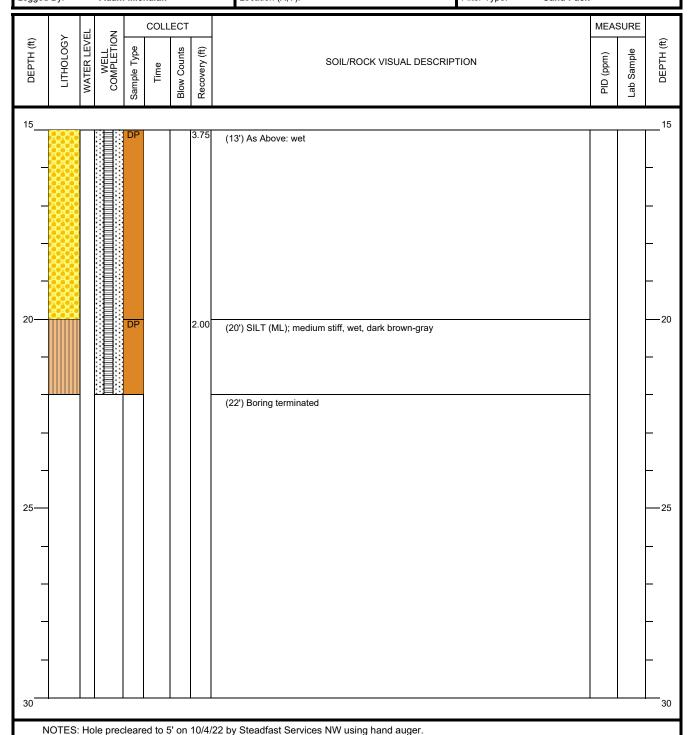
DTW After Drilling (ft):

Top of Casing Elev. (ft):

Location (X,Y):

Well Depth (ft): 22.0

Well Diameter (in): 2.0


Screen Slot (in): 0.010

Riser Material: Sch 40 PVC

Screen Material: Sch 40 PVC Slotted Bent.-Cement Grout/Bent. Chips

Seal Material(s):

Sand Pack Filter Type:

Project: SAI-384-13

Boring Depth (ft):

Address: 400 River Road, Puyallup, WA **WELL LOG**

Well No. SB-9/MW-4

Page: 1 of 2

Drilling Start Date: 10/5/22

Drilling End Date: 10/5/22

Drilling Company: Steadfast Services NW

Drilling Method: **Hollow Stem Auger**

Drilling Equipment: Geoprobe 7720DT

Driller: Vance Brewer

Adam Michalak Logged By:

22.0

Boring Diameter (in): 6.25

Sampling Method(s): DP, GR

DTW During Drilling (ft):

DTW After Drilling (ft):

Top of Casing Elev. (ft): Location (X,Y):

Well Depth (ft): 22.0

Well Diameter (in): 2.0

Screen Slot (in): 0.010

Riser Material: Sch 40 PVC

Sch 40 PVC Slotted Screen Material: Bent.-Cement Grout/Bent. Chips

Seal Material(s):

Filter Type: Sand Pack

COLLECT MEASURE WELL COMPLETION WATER LEVEL LITHOLOGY DEPTH (ft) Sample Type Blow Counts Recovery (ft) _ab Sample PID (ppm) SOIL/ROCK VISUAL DESCRIPTION Time 0 0 1.8 (0.2') Poorly graded GRAVEL with sand (GP); mostly fine-coarse grained gravel, some fine-coarse sand, loose, dry, medium-dark brown 1.4 2.4 (2') Well-graded SAND (SW); mostly fine grained sand, little silt, loose, moist, dark brown 1.7 1.9 -5 4.00 1.4 1.8 --10 10-3.75 1.4 1.0 1.1 (14') Poorly graded SAND (SP); mostly fine-coarse grained sand, some silt, loose, moist, dark brown 15 15 NOTES: Hole precleared to 5' on 10/5/22 by Steadfast Services NW using hand auger.

Project: SAI-384-13

Boring Depth (ft):

Address: 400 River Road, Puyallup, WA

WELL LOG

Well No. SB-9/MW-4

Page: 2 of 2

Drilling Start Date: 10/5/22

Drilling End Date: 10/5/22

Drilling Company: Steadfast Services NW

Drilling Method: Hollow Stem Auger

Drilling Equipment: Geoprobe 7720DT

Driller: Vance Brewer

Logged By: Adam Michalak

22.0

Boring Diameter (in): 6.25

Sampling Method(s): DP, GR

DTW During Drilling (ft): 16.5

DTW After Drilling (ft):

Top of Casing Elev. (ft):

Location (X,Y):

Well Depth (ft): 22.0

Well Diameter (in): 2.0

Screen Slot (in): 0.010

Riser Material: Sch 40 PVC

Screen Material: Sch 40 PVC Slotted

Seal Material(s): Bent.-Cement Grout/Bent. Chips

Filter Type: Sand Pack

COLLECT **MEASURE** WELL COMPLETION WATER LEVEL LITHOLOGY DEPTH (ft) Sample Type Blow Counts Recovery (ft) _ab Sample PID (ppm) SOIL/ROCK VISUAL DESCRIPTION Time 15 15 (14') Poorly graded SAND (SP); mostly fine-coarse grained sand, some silt, loose, moist, dark brown (16.5') As Above: wet (17') Poorly graded SAND with gravel (SP); mostly fine-coarse grained sand, some fine-coarse gravel, loose, wet, dark brown 20--20 (20') SILT (ML); stiff, wet, light gray, putty-like (22') Boring terminated 25--25 30 30 NOTES: Hole precleared to 5' on 10/5/22 by Steadfast Services NW using hand auger.

Project: SAI-384-13

Boring Depth (ft):

Address: 400 River Road, Puyallup, WA **WELL LOG**

SB-10/MW-5

Page: 1 of 2

Drilling Start Date: 10/5/22

Drilling End Date: 10/5/22

Drilling Company: Steadfast Services NW

Drilling Method: **Hollow Stem Auger**

Drilling Equipment: Geoprobe 7720DT

Driller: Vance Brewer

Adam Michalak Logged By:

25.0

Boring Diameter (in): 6.25

DP, GR Sampling Method(s):

DTW During Drilling (ft):

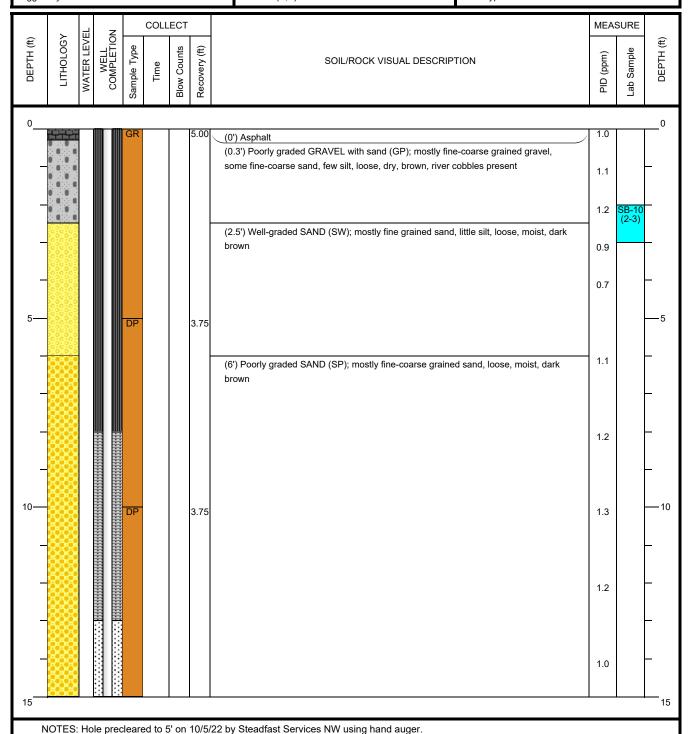
DTW After Drilling (ft):

Top of Casing Elev. (ft):

Location (X,Y):

Well Depth (ft): 25.0

Well Diameter (in): 2.0


Well No.

Screen Slot (in): 0.010

Riser Material: Sch 40 PVC

Screen Material: Sch 40 PVC Slotted Bent.-Cement Grout/Bent. Chips

Seal Material(s):

Project: SAI-384-13

Boring Depth (ft):

Address: 400 River Road, Puyallup, WA **WELL LOG**

Well No. SB-10/MW-5

Page: 2 of 2

Drilling Start Date: 10/5/22

Drilling End Date: 10/5/22

Drilling Company: Steadfast Services NW

Drilling Method: **Hollow Stem Auger**

Drilling Equipment: Geoprobe 7720DT

Driller: Vance Brewer

Adam Michalak Logged By:

25.0

Boring Diameter (in): 6.25

Sampling Method(s): DP, GR

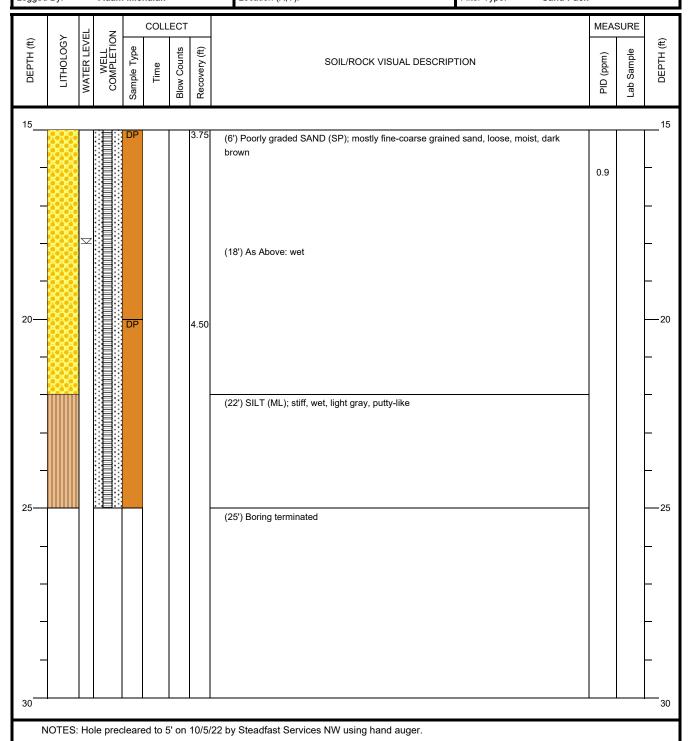
DTW During Drilling (ft):

DTW After Drilling (ft):

Top of Casing Elev. (ft):

Location (X,Y):

Well Depth (ft): 25.0


Well Diameter (in): 2.0

Screen Slot (in): 0.010

Riser Material: Sch 40 PVC

Sch 40 PVC Slotted Screen Material: Bent.-Cement Grout/Bent. Chips

Seal Material(s):

Project: SAI-384-13

Boring Diameter (in):

Sampling Method(s):

DTW During Drilling (ft):

DTW After Drilling (ft):

Top of Casing Elev. (ft):

Address: 400 River Road, Puyallup, WA

6.25

DP, GR

WELL LOG

Well No. SB-11/MW-6

1 of 2

Drilling Start Date: 10/6/22 Boring Depth (ft): 25.0

Drilling End Date: 10/7/22

Drilling Company: Steadfast Services NW Drilling Method: **Hollow Stem Auger**

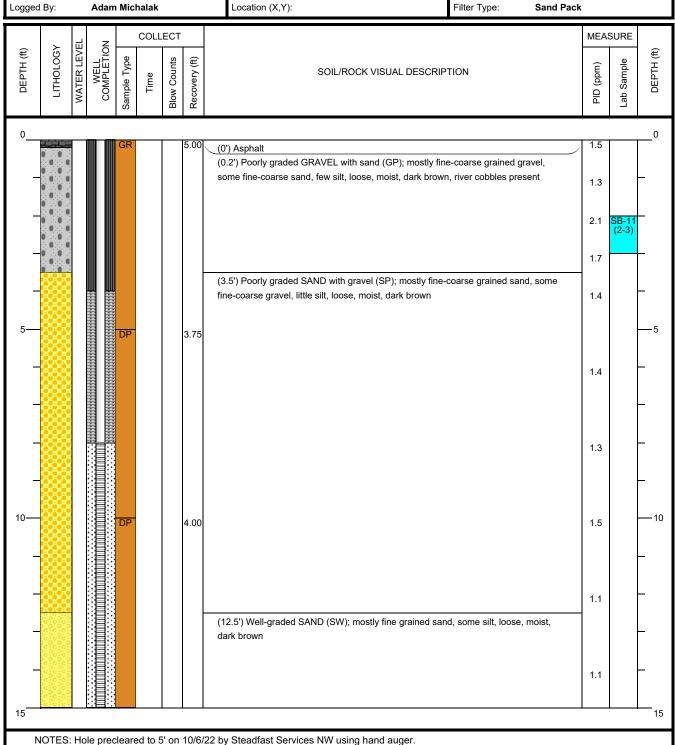
Drilling Equipment: Geoprobe 7720DT

Driller: Vance Brewer

Adam Michalak Logged By:

Well Depth (ft): 23.0

Well Diameter (in): 2.0


Page:

Screen Slot (in): 0.010

Riser Material: Sch 40 PVC

Screen Material: Sch 40 PVC Slotted

Bent.-Cement Grout/Bent. Chips Seal Material(s):

Project: SAI-384-13

Address: 400 River Road, Puyallup, WA **WELL LOG**

Well No. SB-11/MW-6

Page: 2 of 2

Drilling Start Date: 10/6/22

Drilling End Date: 10/7/22

Drilling Company: Steadfast Services NW

Drilling Method: **Hollow Stem Auger**

Drilling Equipment: Geoprobe 7720DT

Driller: Vance Brewer

Adam Michalak Logged By:

25.0

Boring Depth (ft): Boring Diameter (in): 6.25

DP, GR Sampling Method(s):

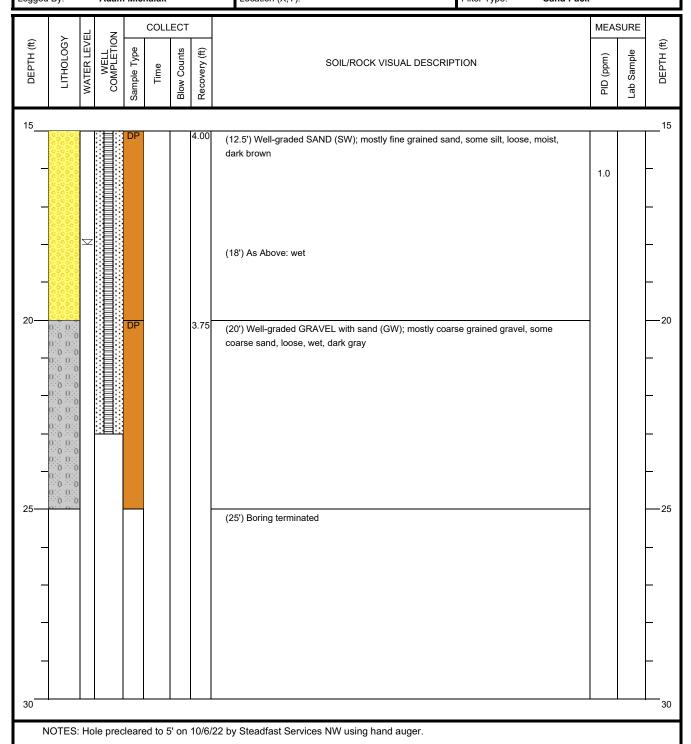
DTW During Drilling (ft):

DTW After Drilling (ft):

Top of Casing Elev. (ft):

Location (X,Y):

Well Depth (ft): 23.0


Well Diameter (in): 2.0

Screen Slot (in): 0.010

Riser Material: Sch 40 PVC

Sch 40 PVC Slotted Screen Material:

Bent.-Cement Grout/Bent. Chips Seal Material(s):

Project: SAI-384-13

Address: 400 River Road, Puyallup, WA

BORING LOG

Boring No. SB-12

Page: 1 of 1

Drilling Start Date: 10/6/22
Drilling End Date: 10/6/22

Drilling Company: Steadfast Services NW

Drilling Method: Other

Drilling Equipment: Hand auger

Driller: Vance Brewer

Logged By: Adam Michalak

Boring Depth (ft): 6.0

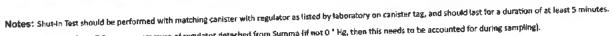
Boring Diameter (in): 3.25
Sampling Method(s): Grab

DTW During Drilling (ft):
DTW After Drilling (ft):
Ground Surface Elev. (ft):

Location (X,Y):

Logged By:	Adam Michalak	Location (X,Y):			
DEРТН (ft) LITHOLOGY	MATER LEVEL BORING COMPLETION Sample Type Time Blow Counts Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTION	MEA (mdd) OId	Lab Sample BA	DEPTH (ft)
5	GR 5.00	(0') Concrete (0.5') Poorly graded GRAVEL with sand (GP); mostly fine-coarse grained gravel, some fine-coarse sand, few silt, loose, moist, dark brown, river cobbles present (2') Well-graded SAND (SW); mostly fine grained sand, little silt, loose, moist, dark brown (6') Boring terminated	2.6 1.8 2.7 2.3 2.1	SB-12 (2-3)	0

Appendix C
Field Sampling Forms



Summa Canister Shut-in Test Field Form

Project No.: 3AI 389-B Sampler: ABM 10/6/22

roject No.: 3AL,			Obest I			Shut-in Test			Shut	in Retest (if nee	ded)	
. 1.15	Date	Initial	Pass? (>-25.0 " Hg)		Time	Canister Pressure	Pass?	Regulator "Zero" Pressure	Time	Camister Pressure	Pass?	Notes
Sample ID	mm/dd/yy	Pressure "Hg	Yes/Na	Test Pelod	24-hr	* Hg	Yes/No	"Hg	24-hr	"Hg	Yes/No	
	ilitii/OE333			Start	1230	-30	VAR	a				
2265	35/30/01	-30	Yes	Middle	1232	-30	yes	0				
FC 2879	- 6		1	End	1235	-29	1					
				Start	1539	-29	4	0			1	
a 4044		-29		Middle	1335	-29	4	0				
R: FC 3146				End	1235	-29	1					
c 3252		-27		Start	1233	-27	-	0				
		127		Middle	1238	-27	1					
R: FC 1334		-	-	End Start	1233	-29						
c 4076		-29		Middle	1235	-29	7 1	0			1	
R: FC3300				End	1238	-29						
		1 . ~		Start	1240	-58		1				
c: 1136		85-		Middle	1245	-58	41	0				
R: FC 3157				End	1542	-27	-	1				
21150	111	1 50	V	Start	1240	-29	11	0				
C 2721	V	1-29		Middle	1245	13-	- "					
R: FC 2881				End	1245	1-01	5		_			Last updated:

C = canister ID; R = regulator ID; " Hg = inches of mercury

Regulator "Zero" Pressure = pressure of regulator detached from Summa (if not 0 " Hg, then this needs to be accounted for during sampling).

Summa Initial Pressure = pressure of Summa immediately after closing valve (pressure likely to decrease slightly once valve is closed).

Summa Canister Shut-in Test Field Form

10/6/22 Project No.: SAI SAY -13 Sampler: ABM

oject No.: SAL.						Shut-in Test			Shut-	in Retest (if nee	ded)	
Comple ID	Date	Initial Pressure	Pass? (>-25.0 " Hg)		Time	Canister Pressure	Pass?	Regulator "Zero" Pressure	Time	Canister Pressure	Pass?	Notes
Sample ID	mm/dd/yy	"Ha	Yes/No	Test Pelod	24-hr	"Hg	Yes/No	# Hg	24-hr	* Hg	Yes/No	
	напискуу			Start	1247	-29	VOR	/m				
1930	10/06/27	-29	Yes	Middle	1299	-29	Yes	0		-	1	
FC 1281	10/08/56	-1	, ,	End	1252	-24			1259	-29	1.0	Capied Pace Lab PM for
		- ~	116	Start	1247	-29	M	0	1301	0	NO	called Pace Lab FM for troubleshooting - unable nesolve
2849/0887	V	-58	NO	Middle End	1299	0	100		1304	0		resolve
FC 2992				Start	1030		11					
				Middle		1000					-	
e .				End			-					
				Start	γ		1					
				Middle	1		-					
				End Start	-	+						
2:				Middle							1	
tt				End								
				Start						100	-	*
2			(W	Middle			4				-	
R:				End		-				_	_	Last updated: 6/16/2020

C = canister ID; R = regulator ID; "Hg = inches of mercury

Notes: Shut-In Test should be performed with matching canister with regulator as listed by laboratory on canister tag, and should last for a duration of at least 5 minutes.

Regulator "Zero" Pressure = pressure of regulator detached from Summa (if not 0 " Hg, then this needs to be accounted for during sampling).

Summa Initial Pressure = pressure of Summa immediately after closing valve (pressure likely to decrease slightly once valve is closed).

Sub-Slab / Soil Gas Vapor Sampling Field Form

			Sa	mpling Informat	ion		Outdoor Pa	arameters	Indoor Par	rameters
	Sample ID	Date	Proposed Sampling Duration	Sampling	Time	Canister Pressure	Outdoor Temperature	Outdoor Hurnidity	Indoor Temperature	Indoor Humidity
		mm/dd/yy	Minutes	Period	24-hr	* Hg	°F	%	°F	%
260.1	a sell			Beginning	1426	-29	7.	CU		
SSV-1 1430	Size: 1.4L	10/7/22	10	Middle	1433	-17	76	54		
1281	Flow Rate: Dom L/min	9		End	1440	-5				
554-4				Beginning	1454	-29	76	55		
2459	Size: / L		10	Middle	1459	-17		22		
1885	Flow Rate: 100 mL/min		10	End	1504	-5				
554-7			10	Beginning	1517	85-	70	55		
1136	Size: /L	177		Middle	1522	-17	76	ر د		
3157	Flow Rate: OO mL/min	V		End	1527	-5				
				Beginning) =	1				
	Size:			Middle						
	Flow Rate:			End						
				Beginning			1)			
	Size:			Middle						
	Flow Rate:			End						
				Beginning						
	Size:			Middle						
Ŀ	Flow Rate:			End						pdated: 6/16

[&]quot; Hg = inches of mercury

Note:

Per NC DEQ DWM Vapor Intrusion Guidance, shut-in test and helium leak check must be passed before sampling.

S = sample ID; C = canister ID; R = regulator ID; SS = sub-slab; SG = soil gas; Perm = permanent; Temp = temporary

Sub-Slab / Soil Gas Vapor Installation Field Form

Project No.: SAJ-384-13	Sampler	ABM	Weather:	Sunny	
Project No 110 33 3			= 200000000	,	

			Vapor Moi	nitorir	ng Point Con	struction					Helium Lesi	Test			
Sample ID		уре	Surfac Mater	ice	Slab Thickness (if appl.)	Material Below Slab (if sopt.)	Depth of Screen (d appl.)	Туре	Date & Time	Ambient Temp.	Purge Method	Volume Purged	Shroud Helium Conc.	Purge Heljum Conc.	Leak Tes Pass? (see note)
Jumpio II	\$\$, \$G	Perm., Temp.	Concrete gravel, at		Inches	Gravel, sand, clay, etc.	ft bgs	Full sample train or point-only	mm/dd/yy 24-hr	°F	Syringe, pump	Liters (see notes for calc.)	%	% or ppm (indicate units below)	Yes / Ne
(SV-1	SS	perm	concr	refe	~9-60	GW/ FNE	-	full	1915	76	pump	3.5L	21%	250ppm	Yes
3-v2)							_								
[[A-3							_								
72A-A							_	full	10/7/22	76	Pump	3.56	20.90	275pm)es
SS 4-2_							-								
3-V22	1	V	1	1	V	V									

S = sample ID; C = canister ID; R = regulator ID; SS = sub-slab; SG = soil gas; Perm = permanent; Temp = temporary;

Volume Purged = x3 purge volumes = 3*L*a

Note: Leak Test Requirements

Per NC DEQ DWM Vapor Intrusion Guidance, leak test passes if helium concentration in purge air is less than 10% of helium concentration in shroud.

[&]quot; Hg = inches of mercury, ppm = parts per million

L = length of tubing/pipe (ft) a = 0.163 for 2" diameter (L/ft)

^{= 0.010} for 0.25" diameter (L/ft)

Sub-Slab / Soil Gas Vapor Installation Field Form

Project No.: SAI 384-13	Sampler:_	ABM	Weather:	Sunny	
-------------------------	-----------	-----	----------	-------	--

			/apor Monitorii	na Polat Con	struction					Helium Leal	t Test			
Sample ID	Т	уре	Surface Material	Slab Thickness (if	Material Below	Depth of Screen (if appl.)	Тура	Date & Time	Ambient Temp.	Purge Method	Volume Purged	Shroud Helium Conc.	Purge Helium Conc.	Leak Tes Pass? (see nota)
Campio II	\$S, \$G	Perm., Temp,	Concrete, soil, gravel, asphalt	Inches	Gravel, sand, day, etc.	ft bgs	Full sample train or point-only	mm/dd/yy 24-hr	٥F	Syringe, pump	Liters (see notes for calc.)	%	% or ppm (indicate units below)	Yes / No
SSV-7	SS	perme	Contrele	~4-8"	G.4/F-V.C. SA-	-	full	1514	76	Pump	3,5	20%	Oppm	yes
SSV-8	V	V	V	V	Ŷ									
												2		
	-													7
										Purged ≈ x3 purg				dated: 6/18

S = sample ID; C = canister ID; R = regulator ID; SS = sub-slab; SG = soil gas; Perm = permanent; Temp = temporary;

" Hg = inches of mercury; ppm = parts per million

L = length of tubing/pipe (ft) a = 0.163 for 2" diameter (L/ft) = 0.010 for 0.25" diameter (L/ft)

Note: Leak Test Requirements

Per NC DEQ DWM Vapor Intrusion Guidance, leak test passes if helium concentration in purge air is less than 10% of helium concentration in shroud.

LOW-FLOW GROUNDWATER SAMPLING RECORD

Stabilization Criteria

Primary: Secondary:

pH +/- 0.1 unit S. Cond. +/- 5% ORP +/- 10mV

DO +/- 0.2 mg/L

Turb +/- 10% (<10 NTUs for metals)

Water Level: slight or stable drawdown during purging

Well Location:

Facility Name:				Di.	Ly>		e: <u>10/0/22</u>		
	Elevation (ft m	- 44	Casing Ma			olume of Water P	-		
Total Well Deg	oth (ft):	1.25	Depth to Wate	er (ft):15	60		Well Diameter:	2	
Sampling Pers	sonnel:	ABM				Screen Interval	(ft bgs)		9
Type of Pump	: pertstal	HC	Tubing Mat	erial: Poly		Pu	mp/Tubing set at:	17.5	ft.
Weather Cond	ditions: Sum	y 705				NOTES:			
			GROUNI	OWATER SAM	IPLING PARA	AMETERS			
	Water	Volume	Pumping	DQ	Temp.	S. Cond.	рН	ORP	Turbidity
Time	Level	Pumped	Rate	(mg/l)	(°C)	(µS/cm)	(SU)	(mV)	(NTU)
1700	15.60	1.50L	150mUmin	0.37	15.6	15505	6-17	20.7	7.30
1705	15.60	2,256	W H	0631	15.6	154.7	6.17	21.5	4036
1710	15.60	3e08L	- W 11	0:30	1500	15401	_6,17	2009	15.8
						-			
									-
							-		-
									_
									-
Other Sample	Parameters								
Sampled at:	2		Parameter	s taken with:	YCT PAR	Plus, Hack	210+B		
		Feel EX		_	414	ins , itali			
Sample Delive				by			at		
Field Filtration	: OYes 💽) No If	yes, which sampl	e parameters	were field filte	red			
Sample Paran	neter Containe	rs (Types, Num	ber of Containers	, Preservative	s)				

LOW-FLOW GROUNDWATER SAMPLING RECORD

Stabilization Criteria

Primary: Secondary:

pH +/- 0.1 unil

DO +/- 0/2 mg/L S. Cond. +/- 5% ORP +/- 10mV

Turb. +/- 10% (<10 NTUs for metals)

Water Level: slight or stable drawdown during purging

		C	AT.	200	< ئىدا
Job	No:	0	479	10	

Well ID: MWZ

Welf Location:

me: 0+62 gal meter: 2 9 - 19 set at: 17e5	
9 - 19 set at: 17.5	
set at: 17.5	
	T
(mV) (N) (6) (6) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	urbidit NTU) 6.81 7.12 1.96 3.92
	6.8

LOW-FLOW GROUNDWATER SAMPLING RECORD

Stabilization Criteria

Primary:

Secondary:

pH +/- 0.1 unit

DO +/- 0.2 mg/L S. Cond. +/- 5% ORP +/- 10mV

Turb +/- 10% (<10 NTUs for metals)

Water Level: slight or stable drawdown during purging

	CN 200 .	15
Job No:	SA1.384-	13

Well ID: MW-3

Well Location:

Total Well Depth (ft): 20	Facility Name: NWMS Top of Casing Elevation (ft ms	12/2/11/2	Casing Mat	erial: PV	C Vol	Date; Jume of Water Pe	1-111-		
Sampling Personnel: ABIM Screen Interval (ft bgs.): 6 - 2			-	LA M			_	٤	
Type of Pump: PEATS IT		-		(11/1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		Screen Interval (fi	Α -	_ 2	Ī
NOTES: SUMMY 60 5 NOTES: NOTES: NOTES: NOTES: NOTES: NOTES: NOTES			Tubing Mate	rial: POTY		Pun	np/Tubing set at:_	17.5	ft.
Water Volume Pumping DO Temp. S. Cond. pH ORP Turbidity 1220 10:82 0:751 150mUmin 0:15 17:0 142.8 6:29 7:0 63.5 1225 10:82 1:50t 1:11 0:19 17:1 143.9 6:29 7:0 63.5 1235 10:82 2:25t 1:11 0:23 17:1 143.8 6:20 -7:9 42:6 1235 10:82 3:40t 1:10 0:26 17:2 143.8 6:20 -7:9 42:6		41				NOTES:			
Time			GROUND	VATER SAME	LING PARA	METERS			
Other Sample Parameters:	Time Level	Pumped 0.751 1.50 L 2.25 L	Rate ISOMUMIA IN 17	(mg/l) 0+15 0+19 0+23	(°C) 17.0 17.1 17.1	(µS/cm) 142.8 143.4 143.8	(SU) 6.29 6.28	(mV) 7.0 -0.1	94.8
Sampled at: 1235 Parameters taken with: YSJ Pro Plus , Hach 2008 Sample Delivered to: Fed Ex by ABM at		Cal				ius, Hach 21			

LOW-FLOW	GROUNDWATER	
SAMPLI	NG RECORD	

Stabilization Criteria

Primary:

Secondary:

pH +/- 0 1 unit

DO +/- 0.2 mg/L S Cond. +/- 5% ORP +/- 10mV

Turb +/- 10% (<10 NTUs for metals)

Water Level: slight or stable drawdown during purging

Job No: SAI384-1)

Well ID: MW-4

Well Location:

			57.5		_		
Facility Name:	NWMS Payallap			Date:	10/7/22		
Top of Casing Eleva	ation (ft msl):	Casing Material:	PVC	Volume of Water Pe	r Well Volume	5.	
Total Well Depth (ft)	22.10	Depth to Water (ft):	75.31		Well Diamete	er: 🐧	
Sampling Personne	ABM	1		Screen interval (ft	bgs):	7 -	22
Type of Pump:	Penistal HT	Tubing Material:	poly	Pun	np/Tubing set a	at: 19.5	ft.
Weather Conditions	Sunny, SU'S			NOTES: DV		11-8,	purged ~ gelp in
47				con	heeting rea	dings	
		GROUNDWATE	R SAMPLING	G PARAMETERS			
V	Vater Volume	Pumping DO) Te	emp S. Cond	На	ORP	Turbidity

			GROUN	DWATER SAM	IPLING PARA		meeting 1 ou		
Time 0735 0740 0745 0750	Water <u>Level</u> [6.22 16.22 16.22 16.22	Volume Pumped 0.75L 1.50L 2-25C 3.00L	Pumping Rate ISU mulmin II	DO (mg/l) a. SS 0. So a. 48 0. 41	Temp. (°C) 13.9 13.9 13.9 13.9	S. Cond. (µS/cm) /29.5 /22.2 //8.7 //28.1	pH (SU) 6.05 6.17 6.20	ORP (mV) 3.2 -3.9 -11.0 -12.3	Turbidity (NTU) 6.68 5.78 5.99 6.12
Other Sample Sampled at: Sample Delive	Parameters:	eol EX	Parameter	s taken with:	YSI prapio 13H	us, Hech Zie	90 &		

Field Filtration: Yes • No If yes, which sample parameters were field filtered: _____ Sample Parameter Containers (Types, Number of Containers, Preservatives):

LOW-FLOW GROUNDWATER SAMPLING RECORD

Stabilization Criteria

Primary:

Secondary:

pH +/- 0.1 unit S. Cond, +/- 5%

DO +/- 0.2 mg/L ORP +/- 10mV

Turb_+/- 10% (<10 NTUs for metals)

Water Level: slight or stable drawdown during purging

	CAT 300 13
lob No:	SAI.384-13

Well ID: MW-5

Well Location:

Facility Name: NWMS fuy & II	ир	Date: 18/7/22
Top of Casing Elevation (ft msl):	Casing Material: PVC	Volume of Water Per Well Volume: 0-92 9al
Total Weil Depth (ft):2头	Depth to Water (ft): 17.67	Well Diameter: 2
Sampling Personnel: ABN		Screen Interval (ft bgs): 8 - 23
Type of Pump: Perities HTC	Tubing Material: P019	Pump/Tubing set at: 20
Weather Conditions: Sunny, 60'S		NOTES: well partially set in putty-like silts - continue to have elevated turbtelity
	GROUNDWATER SAMPLING PA	,
Water Volume		S. Cond. pH ORP Turbi (uS/cm) (SU) (mV) (NT 196.7 6.36 -34.2 6.2 194.4 6.42 -45.6 35 196.1 6.38 -45.1 3.2
Other Sample Parameters:	- VCT D	44 DI. c. 1 / 3 a
Sampled at: 1035	(1)	roplus, hach zive a
Sample Delivered to: Feb &x	by H&H	at
Field Filtration: Yes 💿 No	If yes, which sample parameters were field fi	filtered:
Sample Parameter Containers (Types, N	umber of Containers, Preservatives):	

LOW-FLOW GROUNDWATER SAMPLING RECORD

Stabilization Criteria

Primary:

Secondary:

pH +/- 0_1 unit S. Cond. +/- 5% ORP +/- 10mV

DO +/- 0.2 mg/L

Turb. +/- 10% (<10 NTUs for metals)

Water Level: slight or stable drawdown during purging

Job No: <u>SAI-389-13</u>
Well ID: MW-6

Well Location:

Facility Name: NWTNS Payallug		Date	1017/22	
Top of Casing Elevation (ft msl):	Casing Material PV		er Well Volume:	0.92 gal
Total Well Depth (ft): <u> 2と55</u>	Depth to Water (ft):17.4	50	_ Well Diameter:	ک
Sampling Personnel: ABM		Screen Interval (1	t bgs):	3.55
Type of Pump: Penistelite	Tubing Material:Pel	Y Pui	mp/Tubing set at:	20 ft.
Weather Conditions: Samy, 2015		NOTES:		
	GROUNDWATER SAM	IPLING PARAMETERS		
Time Level Pumped	Pumping DO Rate (mg/l) JSENLIMIN (0.3) 11 (0.30) 11 (0.24)	Temp. S. Cond. (°C) (μS/cm) 298.9 18.3 302.8 307.1	(SU) (6.23 10	DRP Turbidity mV) (NTU) 11.5 11.2 1.9 9.99 1.0 8.72
Other Sample Parameters:		NOT Bend had	New G	
Sampled at: 1335	Parameters taken with:	711 Proples, HELL	2100 Q	
Sample Delivered to: Feel EX	by	<i>[]</i>	at	
Field Filtration: O Yes No If y	es, which sample parameters	were field filtered:		
Sample Parameter Containers (Types, Numb	er of Containers, Preservatives	s):		

Well Development Form Hart & Hickman, PC

Job No.: SAI.	84-13	Well No	.:_ MW-	1	Date:	35/2
Site Name://W	MS fuyallu	P		_ Location: _	Payallup, WX	
Equipment () Material Decontamination Met	Ι (χ) Ρ\	/C () Sta	ainless Steel	() Teflon () Other	_
			LL INFORM	,		
Coordinates:			Top of	Casing (TOC) Ele	vationf	t msl
Material (X) P	VC () Ca	arbon Steel	() Stainles	s Steel () O	ther:	
Measurements from (
		DEVELO	PMENT INF	ORMATION		
Method () Bailing	g (X) Pump					
Volume	Rate	pH (SU)	Temp. (°C)	S. Cond. (umhos/cm)	Redox	Turbidity (NTU)
1.35 901	400 milmin	5.98	15.5	154.5	67.7	357
1.99 92	400 mL/min	6.08	15.3	154.4	40.4 33.5	15,9
Weather Conditions:	Sunny.	70's				
Final Water Condition			/ () Othe	ar-	Odor	_
	() ()	(, 5.544)	() 000		Oddi	
Comments:						
Performed by: A	3M			Date: 10/6/22 Ti	ime: 1650	
		x 7				

Well Development Form Hart & Hickman, PC

Job No.: SA	I.384-B	Well No	MW-	<u>د</u>	Date: 10/	7122
Site Name: NW						
Equipment () Material Decontamination Met	I (X) PV	C () Sta	ainless Steel	() Teflon () Other	
			LL INFORM			
Coordinates:			Top of	Casing (TOC) Elev	rationf	t msl
Material (X) P	VC () Cai	bon Steel	() Stainles	s Steel () Ot	her:	
Measurements from (TOC) Ris	er ft	Water Leve	elISISft Bott	tom 19.10 ft	
Method () Bailing	J (★) Pumpii			ORMATION		
Volume	Rate	pH (SU)	Temp.	S. Cond.	Redox	Turbidity
0.68 gal	Sumulata	6.42	19.2	(umhos/cm)	523	(NTU) > (,000
1.49	10-11	6.30	14.2	193.6	24.7	48.0
1111	F - 11	1.423	The	192.4	14.7	5. 8
Woothes Conditions	Cumpu	cale				
Weather Conditions:					_	
Final Water Condition	: (X) Clear	() Cloudy	() Othe	r:	Odor:	_
Comments:						
Performed by:	ABM.			Date: <u> </u>	ne:_0850	

Well Development Form Hart & Hickman, PC

Job No.: SAI	.381	Well No.	MW-	3	Date:	7/22
Site Name:	Ms Puyall	ир		Location:		
Equipment () Material Decontamination Met	(') () PV	C () Sta	inless Steel	() Teflon () Other	
	-	WEL	L INFORM	IATION		
Coordinates:			Top of	Casing (TOC) Elev	ation fi	msl
Material (火) P\	/C () Ca	rbon Steel () Stainles	s Steel () Oti	ner:	
Measurements from (TOC) Ris	er ft	Water Leve	el <u>[0.8]</u> ft Bott	om <u>20.40</u> ft	
		DEVELOR	MENT INF	ORMATION		
Method () Bailing	(X) Pumpii	ng () Othe	r			
Volume	Rate	pH (SU)	Temp.	S. Cond. (umhos/cm)	Redox	Turbidity (NTU)
1.6790	800 mymin	6.39	1Col	159.1	11.0	>1000
3.34 gel 5.01 sel	W II	6.29	16.7	143.8	18.2	125
Weather Conditions:	Sunny 6	95				
Final Water Condition:	() Clear	(X) Cloudy	() Othe	or;	Odor:	
Comments:						
Performed by:	48M	HE		Date: <u>Jの7/2と</u> Tin	ne: /2/5	

Well Development Form Hart & Hickman, PC

Job No.: SA	1.384.13	Well No	o: MW~		Date: 1016	'R?
Job No.: SA	Ms Puyally	p		Location:	Puyallup, Wy	1
Equipment ()	Dedicated ((X) PV) Decontan	ninated () Bailer (X) Po () Teflon (ump	
	÷	WE	LL INFORM	MATION		
Coordinates:			Top of	Casing (TOC) Ele	evationf	t msl
Material (X) P	VC () Car	bon Steel	() Stainles	ss Steel () C	other:	
Measurements from (
Method () Bailing	(X) Pumpir			FORMATION		
Volume	Rate	pH (SU)	Temp.	S. Cond. (umhos/cm)	Redox	Turbidity
1.08101	900m L/mil	640	14.4	3.251	31.2	(NTU) 7 1,000
7.00 fel 3.00 fel	SOOMUMI	5.96	14.2	116.8	23.2	97.1
	C 411 C	,				
Weather Conditions:	,					-
Final Water Condition:	(X) Clear	() Cloudy	/ () Othe	r:	_ Odor:	
Comments:						
Performed by: AP	1	10		Date: <u>10/6/22</u> Ti	me: <u>1815</u>	

Well Development Form Hart & Hickman, PC

Job No.:	384-13	Well No.	: MW	-5-	Date:	75171
Site Name:	15 Puyallay)		Location:		
Equipment () Material Decontamination Meth	(X) PV	C () Sta	ninless Steel	() Teflon () Other	
		WEI	LL INFORM	MATION		
Coordinates:			Top of	Casing (TOC) Ele	evation f	t msl
Material (X) P\	/C () Car	bon Steel	() Stainles	ss Steel () O	ther:	_3
Measurements from (1	ΓΟC) Rise	erft	Water Leve	el <u> 17-67</u> ft Bo	ttom 23.3/ ft	
		DEVELO	PMENT INF	ORMATION		
Method () Bailing	(X) Pumpir	ng () Othe	er			
Volume	Rate	pH (SU)	Temp.	S. Cond. (umhos/cm)	Redox	Turbidity (NTU)
2.00 90	Soo mUnit	6.28	15.4	1965	~8.3 -17.8	71000
3.00 94	* (/	6.32	15.3	190.6	-37.4	6D
Weather Conditions:	Sunny	60 4			•	
Final Water Condition:	,		() Othe	er;	_ Odor:	
Comments: Serve	t partall	. n	puffy-18h		bottom cou	plessor
Performed by: 🔥	Μ .	4		Date: <u>ΙΟ Γ 7/22</u> Τί	ime:_ <i>1015</i>	

Well Development Form Hart & Hickman, PC

GENERAL INFORMATION

Job No SAI	384-13	Well No	Mur	6	Date: 10/	7/22
Site Name: NW1	15 Payallup			_ Location: _		
Equipment ()	Dedicated () Decontam	inated ()	Bailer (❤) Pu	mp) Other	
	•	WE	LL INFORM	MATION		
Coordinates:			Top of	Casing (TOC) Elev	/ation ft	msl
Material (X) P	VC () Ca	rbon Steel	() Stainles	s Steel () Ot	her:	
Measurements from (TOC) Ris	er ft	Water Leve	el_17.50 ft Bot	tom 22.55 ft	
		DEVELO	PMENT INF	ORMATION		
Method () Bailing	Pumpi	ng () Oth	er			
Volume	Rate	pH (SU)	Temp.	S. Cond.	Redox	Turbidity
0.92 901	Soonlinn	5.49	(°C)	(umhos/cm)	34.7	(NTU) 2207
1.84 901	10 11	Cole	17.6	29/24	26.0	2205
2.76 jal	N (1	622	17.6	294.0	12.2	2009
Weather Conditions:	Sunny,	7015				
Final Water Condition:	: (Ⅺ) Clear	() Cloudy	() Othe)r;	Odor:	
Comments:						
Performed by:	¥8M	+		Date: <u> 10 7 22</u> Tir	ne: [}2Ø_	

Appendix D Laboratory Analytical Reports

Environment Testing America

ANALYTICAL REPORT

Eurofins Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

Laboratory Job ID: 590-18915-1 Client Project/Site: NWMS Puyallup

For:

Hart & Hickman, PC 3921 Sunset Ridge Rd Suite 301 Raleigh, North Carolina 27607

Attn: Carlin Slusher

taraut trington

Authorized for release by: 10/25/2022 4:06:41 PM

Randee Arrington, Lab Director (509)924-9200

Randee.Arrington@et.eurofinsus.com

LINKS

Review your project results through

Have a Question?

Visit us at: www.eurofinsus.com/Env This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Client: Hart & Hickman, PC Project/Site: NWMS Puyallup Laboratory Job ID: 590-18915-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	
Definitions	6
Client Sample Results	7
QC Sample Results	45
Chronicle	67
Certification Summary	73
Method Summary	74
Chain of Custody	75
Receint Checklists	79

5

4

9

10

Case Narrative

Client: Hart & Hickman, PC

Project/Site: NWMS Puyallup

Job ID: 590-18915-1

Job ID: 590-18915-1

Laboratory: Eurofins Spokane

Narrative

Receipt

The samples were received on 10/10/2022 9:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.1° C.

Receipt Exceptions

The following samples were submitted for analysis; however, it was not listed on the Chain-of-Custody (COC): MW-1 (590-18915-17).

GC/MS VOA

Method 8260D: The continuing calibration verification (CCV) associated with batch 590-38486 recovered above the upper control limit for Dichlorodifluoromethane, Chloromethane, Vinyl chloride, Chloroethane, n-Butylbenzene, 1,2-Dichlorobenzene, 1,2,4-Trichlorobenzene, 1,2,3-Trichlorobenzene, Hexachlorobutadiene and Naphthalene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Method 8260D: The continuing calibration verification (CCV) associated with batch 590-38562 recovered above the upper control limit for Chlorobromomethane, Chlorodibromomethane, Ethylene Dibromide, 1,1,2-Trichloroethane, Tetrachloroethene, 1,2,4-Trichlorobenzene, 1,2,3-Trichlorobenzene, Hexachlorobutadiene and Naphthalene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Method 8260D: The laboratory control sample duplicate (LCSD) for analytical batch 590-38562 recovered outside control limits for the following analytes: Ethylene Dibromide and Tetrachloroethene. These analytes were biased high in the LCSD and were not detected in the associated samples; therefore, the data have been reported.

Method 8260D: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for analytical batch 590-38562 recovered outside control limits for the following analytes: Trichlorofluoromethane, Tetrachloroethene and 1,2,3-Trichlorobenzene.

Method 8260D: Surrogate recovery for the following samples were outside control limits: MW-2 (590-18915-10), DUP-1 (590-18915-15) and TB-1 (590-18915-16). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8260D: The continuing calibration verification (CCV) associated with batch 590-38731 recovered outside acceptance criteria, low biased, for 2,2-Dichloropropane. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported.

Method 8260D: The continuing calibration verification (CCV) associated with batch 590-38731 recovered above the upper control limit for Dichlorodifluoromethane, Chloromethane, Bromomethane and Methylene Chloride. The samples associated with this CCV were non-detects or detected below the reporting limit for the affected analytes; therefore, the data have been reported.

Method 8260D: The laboratory control sample (LCS) for preparation batch 590-38494 and analytical batch 590-38731 recovered outside control limits for the following analytes: Chloromethane and Methylene Chloride. These analytes were biased high in the LCS and were not detected or detected below the reporting limit in the associated samples; therefore, the data have been reported.

Method 8260D: The following samples were analyzed outside of analytical holding time due to system outages. SB-6 (6-7) (590-18915-1), SB-7 (6-7) (590-18915-2), SB-8 (2-3) (590-18915-3), SB-9 (2-3) (590-18915-4), SB-10 (2-3) (590-18915-5), SB-11 (2-3) (590-18915-6), SB-12 (2-3) (590-18915-7), DUP-1 (590-18915-8) and TB-1 (590-18915-9)

Method 8260D: The initial calibration verification (ICV) result for batch 590-38740 was above the upper control limit for Bromomethane, Butadiene, Chloroethane, Chloromethane, Dichlorodifluoromethane, Trichlorofluoromethane, and Vinyl chloride. Sample results were non-detects, and have been reported as qualified data.

Method 8260D: The continuing calibration verification (CCV) associated with batch 590-38740 recovered above the upper control limit for Methylene Chloride. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

4

8

9

10

Case Narrative

Client: Hart & Hickman, PC
Project/Site: NWMS Puyallup

Job ID: 590-18915-1

Job ID: 590-18915-1 (Continued)

Laboratory: Eurofins Spokane (Continued)

Method NWTPH-Gx: The method blank for preparation batch 590-38494 and analytical batch 590-38487 contained Gasoline above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method NWTPH-Gx: Surrogate recovery for the following sample was outside control limits: DUP-1 (590-18915-15). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270E SIM: The matrix spike / matrix spike duplicate (MS/MSD) precision for preparation batch 590-38541 and analytical batch 590-38542 was outside control limits. Sample matrix interference is suspected.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

5

6

9

10

11

Sample Summary

Client: Hart & Hickman, PC
Project/Site: NWMS Puyallup
Job ID: 590-18915-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
590-18915-1	SB-6 (6-7)	Solid	10/03/22 12:15	10/10/22 09:00
590-18915-2	SB-7 (6-7)	Solid	10/03/22 14:45	10/10/22 09:00
590-18915-3	SB-8 (2-3)	Solid	10/04/22 16:30	10/10/22 09:00
590-18915-4	SB-9 (2-3)	Solid	10/05/22 10:00	10/10/22 09:00
590-18915-5	SB-10 (2-3)	Solid	10/05/22 16:50	10/10/22 09:00
590-18915-6	SB-11 (2-3)	Solid	10/06/22 10:30	10/10/22 09:00
590-18915-7	SB-12 (2-3)	Solid	10/06/22 13:45	10/10/22 09:00
590-18915-8	DUP-1	Solid	10/06/22 00:00	10/10/22 09:00
590-18915-9	TB-1	Solid	10/03/22 00:00	10/10/22 09:00
590-18915-10	MW-2	Water	10/07/22 09:10	10/10/22 09:00
590-18915-11	MW-3	Water	10/07/22 12:35	10/10/22 09:00
590-18915-12	MW-4	Water	10/07/22 07:50	10/10/22 09:00
590-18915-13	MW-5	Water	10/07/22 10:35	10/10/22 09:00
590-18915-14	MW-6	Water	10/07/22 13:35	10/10/22 09:00
590-18915-15	DUP-1	Water	10/07/22 00:00	10/10/22 09:00
590-18915-16	TB-1	Water	10/07/22 00:00	10/10/22 09:00
590-18915-17	MW-1	Water	10/06/22 17:10	10/10/22 09:00

Definitions/Glossary

Client: Hart & Hickman, PC
Project/Site: NWMS Puyallup

Job ID: 590-18915-1

Qualifiers

GC/MS VOA

 Qualifier
 Qualifier Description

 *+
 LCS and/or LCSD is outside acceptance limits, high biased.

*1 LCS/LCSD RPD exceeds control limits.

B Compound was found in the blank and sample.
F1 MS and/or MSD recovery exceeds control limits.

H Sample was prepped or analyzed beyond the specified holding time

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

S1- Surrogate recovery exceeds control limits, low biased.
S1+ Surrogate recovery exceeds control limits, high biased.

GC/MS Semi VOA

Qualifier Qualifier Description

F2 MS/MSD RPD exceeds control limits

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC Semi VOA

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)
LOD Limit of Detection (DoD/DOE)
LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Spokane

Page 6 of 79 10/25/2022

Client: Hart & Hickman, PC Job ID: 590-18915-1 Project/Site: NWMS Puyallup

Client Sample ID: SB-6 (6-7)

Lab Sample ID: 590-18915-1 Date Collected: 10/03/22 12:15

Matrix: Solid Date Received: 10/10/22 09:00 Percent Solids: 93.6

Analyte		Qualifier	RL _	MDL		D	Prepared	Analyzed	Dil Fa
Dichlorodifluoromethane	ND		0.25		mg/Kg	₩		10/22/22 03:57	
Chloromethane		H *+	1.2		mg/Kg	₩		10/22/22 03:57	
Vinyl chloride	ND		0.15		mg/Kg			10/22/22 03:57	
Bromomethane	ND		1.2	0.081	mg/Kg	₩		10/22/22 03:57	
Chloroethane	ND	Н	0.49	0.14	mg/Kg	☆	10/10/22 15:46	10/22/22 03:57	
Trichlorofluoromethane	ND	Н	0.49		mg/Kg	≎	10/10/22 15:46	10/22/22 03:57	
1,1-Dichloroethene	ND	Н	0.25	0.084	mg/Kg	≎	10/10/22 15:46	10/22/22 03:57	
Methylene Chloride	0.82	J H B *+	0.86		mg/Kg	≎	10/10/22 15:46	10/22/22 03:57	
trans-1,2-Dichloroethene	ND	Н	0.25		mg/Kg	₩	10/10/22 15:46	10/22/22 03:57	
1,1-Dichloroethane	ND	Н	0.25	0.065	mg/Kg	₩	10/10/22 15:46	10/22/22 03:57	
2,2-Dichloropropane	ND	Н	0.25	0.060	mg/Kg	≎	10/10/22 15:46	10/22/22 03:57	
cis-1,2-Dichloroethene	ND	Н	0.25	0.051	mg/Kg	☼	10/10/22 15:46	10/22/22 03:57	
Bromochloromethane	ND	Н	0.25	0.098	mg/Kg	₽	10/10/22 15:46	10/22/22 03:57	
Chloroform	ND	Н	0.25	0.058	mg/Kg	≎	10/10/22 15:46	10/22/22 03:57	
1,1,1-Trichloroethane	ND	Н	0.25	0.043	mg/Kg	☼	10/10/22 15:46	10/22/22 03:57	
Carbon tetrachloride	ND	Н	0.25	0.027	mg/Kg	₩	10/10/22 15:46	10/22/22 03:57	
1,1-Dichloropropene	ND	Н	0.25	0.043	mg/Kg	₩	10/10/22 15:46	10/22/22 03:57	
Benzene	ND	Н	0.049	0.025	mg/Kg	₩	10/10/22 15:46	10/22/22 03:57	
1,2-Dichloroethane	ND	Н	0.25	0.017	mg/Kg	₩	10/10/22 15:46	10/22/22 03:57	
Trichloroethene	ND	Н	0.061	0.019	mg/Kg	₩	10/10/22 15:46	10/22/22 03:57	
1,2-Dichloropropane	ND	Н	0.29	0.074	mg/Kg	≎	10/10/22 15:46	10/22/22 03:57	
Dibromomethane	ND	Н	0.25	0.055	mg/Kg	₩	10/10/22 15:46	10/22/22 03:57	
Bromodichloromethane	ND	Н	0.25		mg/Kg	₩	10/10/22 15:46	10/22/22 03:57	
cis-1,3-Dichloropropene	ND	Н	0.25		mg/Kg	₩	10/10/22 15:46	10/22/22 03:57	
Toluene	ND	Н	0.25		mg/Kg	₩	10/10/22 15:46	10/22/22 03:57	
trans-1,3-Dichloropropene	ND	Н	0.25		mg/Kg	≎	10/10/22 15:46	10/22/22 03:57	
1,1,2-Trichloroethane	ND		0.25		mg/Kg	☼		10/22/22 03:57	
Tetrachloroethene	ND	Н	0.098		mg/Kg	 ∰	10/10/22 15:46	10/22/22 03:57	
1,3-Dichloropropane	ND		0.25		mg/Kg	☆		10/22/22 03:57	
Dibromochloromethane	ND		0.49		mg/Kg	₩		10/22/22 03:57	
1,2-Dibromoethane (EDB)	ND		0.25		mg/Kg	∷		10/22/22 03:57	
Chlorobenzene	ND	H	0.25		mg/Kg			10/22/22 03:57	
Ethylbenzene		Н	0.25		mg/Kg			10/22/22 03:57	
1,1,1,2-Tetrachloroethane		. :': . H	0.25		mg/Kg			10/22/22 03:57	
1,1,2,2-Tetrachloroethane	ND	н	0.25		mg/Kg	☆		10/22/22 03:57	
m,p-Xylene	ND		0.98		mg/Kg	☆		10/22/22 03:57	
o-Xylene	ND		0.49		mg/Kg	**		10/22/22 03:57	
Styrene	ND		0.49		mg/Kg	₩		10/22/22 03:57	
Bromoform	ND ND		0.23		mg/Kg			10/22/22 03:57	
Isopropylbenzene	ND		0.49		mg/Kg			10/22/22 03:57	
Bromobenzene	ND ND		0.25		mg/Kg	\$		10/22/22 03:57	
N-Propylbenzene	ND ND		0.25 0.25		mg/Kg	ф ж		10/22/22 03:57	
	ND ND							10/22/22 03:57	
1,2,3-Trichloropropane			0.49		mg/Kg	*			
2-Chlorotoluene	ND		0.25		mg/Kg	*		10/22/22 03:57	
1,3,5-Trimethylbenzene	ND		0.25		mg/Kg	₽		10/22/22 03:57	
4-Chlorotoluene	ND		0.25		mg/Kg	*		10/22/22 03:57	
tert-Butylbenzene	ND		0.25		mg/Kg	*		10/22/22 03:57	
1,2,4-Trimethylbenzene	ND	Н	0.25	0.058	mg/Kg	-77-	10/10/22 15:46	10/22/22 03:57	

Eurofins Spokane

10/25/2022

Client: Hart & Hickman, PC Job ID: 590-18915-1 Project/Site: NWMS Puyallup

Client Sample ID: SB-6 (6-7) Lab Sample ID: 590-18915-1

Date Collected: 10/03/22 12:15 **Matrix: Solid** Date Received: 10/10/22 09:00 Percent Solids: 93.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3-Dichlorobenzene	ND	Н	0.25	0.031	mg/Kg	<u></u>	10/10/22 15:46	10/22/22 03:57	1
p-Isopropyltoluene	ND	Н	0.25	0.050	mg/Kg	₩	10/10/22 15:46	10/22/22 03:57	1
1,4-Dichlorobenzene	ND	Н	0.25	0.051	mg/Kg	₩	10/10/22 15:46	10/22/22 03:57	1
n-Butylbenzene	ND	Н	0.25	0.068	mg/Kg	₩	10/10/22 15:46	10/22/22 03:57	1
1,2-Dichlorobenzene	ND	Н	0.25	0.057	mg/Kg	₩	10/10/22 15:46	10/22/22 03:57	1
1,2-Dibromo-3-Chloropropane	ND	Н	1.2	0.15	mg/Kg	₩	10/10/22 15:46	10/22/22 03:57	1
1,2,4-Trichlorobenzene	ND	Н	0.25	0.045	mg/Kg	₩	10/10/22 15:46	10/22/22 03:57	1
1,2,3-Trichlorobenzene	ND	Н	0.25	0.082	mg/Kg	₩	10/10/22 15:46	10/22/22 03:57	1
Hexachlorobutadiene	ND	Н	0.25	0.040	mg/Kg	₩	10/10/22 15:46	10/22/22 03:57	1
Naphthalene	ND	Н	0.49	0.069	mg/Kg	₩	10/10/22 15:46	10/22/22 03:57	1
Methyl tert-butyl ether	ND	Н	0.12	0.074	mg/Kg	≎	10/10/22 15:46	10/22/22 03:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	106		80 - 120				10/10/22 15:46	10/22/22 03:57	1
4-Bromofluorobenzene (Surr)	101		76 - 122				10/10/22 15:46	10/22/22 03:57	1
Dibromofluoromethane (Surr)	101		80 - 120				10/10/22 15:46	10/22/22 03:57	1
1,2-Dichloroethane-d4 (Surr)	105		75 - 129				10/10/22 15:46	10/22/22 03:57	1

Method: NWTPH-Gx - North	west - Volatile	Petroleu	m Products (GC/MS)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		12	4.4	mg/Kg		10/10/22 15:46	10/10/22 20:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		41.5 - 162				10/10/22 15:46	10/10/22 20:55	1

Method: SW846 8270E S		_			•	_	B	A l	D!! E
Analyte		Qualifier	RL _	MDL		<u>D</u>	Prepared	Analyzed	Dil Fac
Naphthalene	ND		11	2.3	ug/Kg	≎	10/12/22 11:20	10/12/22 15:05	1
2-Methylnaphthalene	ND		11	3.3	ug/Kg	₽	10/12/22 11:20	10/12/22 15:05	1
1-Methylnaphthalene	ND		11	2.4	ug/Kg	☼	10/12/22 11:20	10/12/22 15:05	1
Acenaphthylene	ND		11	3.5	ug/Kg	☼	10/12/22 11:20	10/12/22 15:05	1
Acenaphthene	ND		11	2.7	ug/Kg	☼	10/12/22 11:20	10/12/22 15:05	1
Fluorene	ND		11	2.3	ug/Kg	☼	10/12/22 11:20	10/12/22 15:05	1
Phenanthrene	4.6	J	11	3.9	ug/Kg	☼	10/12/22 11:20	10/12/22 15:05	1
Anthracene	ND		11	2.1	ug/Kg	₩	10/12/22 11:20	10/12/22 15:05	1
Fluoranthene	ND		11	2.6	ug/Kg	₩	10/12/22 11:20	10/12/22 15:05	1
Pyrene	ND	F2	11	4.0	ug/Kg	₩	10/12/22 11:20	10/12/22 15:05	1
Benzo[a]anthracene	ND		11	2.3	ug/Kg	₩	10/12/22 11:20	10/12/22 15:05	1
Chrysene	ND		11	1.6	ug/Kg	₩	10/12/22 11:20	10/12/22 15:05	1
Benzo[b]fluoranthene	ND		11	3.7	ug/Kg	₩	10/12/22 11:20	10/12/22 15:05	1
Benzo[k]fluoranthene	ND		11	2.7	ug/Kg	₩	10/12/22 11:20	10/12/22 15:05	1
Benzo[a]pyrene	ND		11	4.5	ug/Kg	₩	10/12/22 11:20	10/12/22 15:05	1
Indeno[1,2,3-cd]pyrene	ND		11	3.2	ug/Kg	₩	10/12/22 11:20	10/12/22 15:05	1
Dibenz(a,h)anthracene	ND		11	3.0	ug/Kg	₩	10/12/22 11:20	10/12/22 15:05	1
Benzo[g,h,i]perylene	ND		11	2.5	ug/Kg	≎	10/12/22 11:20	10/12/22 15:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	63		44 - 120				10/12/22 11:20	10/12/22 15:05	1
2-Fluorobiphenyl (Surr)	68		47 - 120				10/12/22 11:20	10/12/22 15:05	1
p-Terphenyl-d14	76		54 - 132				10/12/22 11:20	10/12/22 15:05	1

Page 8 of 79

Client: Hart & Hickman, PC Job ID: 590-18915-1 Project/Site: NWMS Puyallup

Client Sample ID: SB-6 (6-7)

Lab Sample ID: 590-18915-1

Date Collected: 10/03/22 12:15

Matrix: Solid Percent Solids: 93.6

Date Received: 10/10/22 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND		11	4.5	mg/Kg	— <u> </u>	10/11/22 10:42	10/11/22 16:12	1
(C10-C25)									
Residual Range Organics (RRO)	ND		27	5.3	mg/Kg	≎	10/11/22 10:42	10/11/22 16:12	1
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	93		50 - 150				10/11/22 10:42	10/11/22 16:12	1
n-Triacontane-d62	95		50 - 150				10/11/22 10:42	10/11/22 16:12	1

Client Sample ID: SB-7 (6-7) Lab Sample ID: 590-18915-2 Date Collected: 10/03/22 14:45 **Matrix: Solid**

Method: SW846 8260D - Vo	otilo Organia	Compound	o by CC/MS						
Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND	H F1	0.23	0.064	mg/Kg	— <u></u>	10/10/22 15:46	10/22/22 04:38	1
Chloromethane	ND	H F1 *+	1.1	0.095	mg/Kg	☼	10/10/22 15:46	10/22/22 04:38	1
Vinyl chloride	ND	Н	0.14	0.046	mg/Kg	₩	10/10/22 15:46	10/22/22 04:38	
Bromomethane	ND	H	1.1	0.075	mg/Kg	₩	10/10/22 15:46	10/22/22 04:38	1
Chloroethane	ND	Н	0.46		mg/Kg	₩	10/10/22 15:46	10/22/22 04:38	1
Trichlorofluoromethane	ND	Н	0.46	0.075	mg/Kg	₩	10/10/22 15:46	10/22/22 04:38	
1,1-Dichloroethene	ND	H	0.23	0.078	mg/Kg	₩	10/10/22 15:46	10/22/22 04:38	
Methylene Chloride	ND	Н	0.80	0.46	mg/Kg	₩	10/10/22 15:46	10/24/22 21:11	
trans-1,2-Dichloroethene	ND	Н	0.23	0.052	mg/Kg	₩	10/10/22 15:46	10/22/22 04:38	1
1,1-Dichloroethane	ND	Н	0.23	0.060	mg/Kg	₩	10/10/22 15:46	10/22/22 04:38	1
2,2-Dichloropropane	ND	Н	0.23		mg/Kg	₩	10/10/22 15:46	10/22/22 04:38	1
cis-1,2-Dichloroethene	ND	Н	0.23		mg/Kg	₩	10/10/22 15:46	10/22/22 04:38	1
Bromochloromethane	ND	Н	0.23	0.091			10/10/22 15:46	10/22/22 04:38	
Chloroform	ND	Н	0.23	0.054	mg/Kg	₩	10/10/22 15:46	10/22/22 04:38	
1,1,1-Trichloroethane	ND	Н	0.23		mg/Kg	₩	10/10/22 15:46	10/22/22 04:38	
Carbon tetrachloride	ND	Н	0.23	0.025	mg/Kg		10/10/22 15:46	10/22/22 04:38	1
1,1-Dichloropropene	ND	Н	0.23		mg/Kg	₩	10/10/22 15:46	10/22/22 04:38	
Benzene	ND	Н	0.046		mg/Kg	₩	10/10/22 15:46	10/22/22 04:38	1
1,2-Dichloroethane	ND	Н	0.23		mg/Kg		10/10/22 15:46	10/22/22 04:38	1
Trichloroethene	ND	Н	0.057		mg/Kg	₩	10/10/22 15:46	10/22/22 04:38	
1,2-Dichloropropane	ND	Н	0.27	0.069	mg/Kg	₩	10/10/22 15:46	10/22/22 04:38	
Dibromomethane	ND	Н	0.23	0.051	7 7	₩.	10/10/22 15:46	10/22/22 04:38	1
Bromodichloromethane	ND	Н	0.23	0.14	mg/Kg	₩	10/10/22 15:46	10/22/22 04:38	1
cis-1,3-Dichloropropene	ND	Н	0.23		mg/Kg	₩	10/10/22 15:46	10/22/22 04:38	1
Toluene	ND		0.23		mg/Kg	∴	10/10/22 15:46	10/22/22 04:38	
trans-1,3-Dichloropropene	ND		0.23		mg/Kg	₩		10/22/22 04:38	
1,1,2-Trichloroethane		Н	0.23		mg/Kg	₩		10/22/22 04:38	
Tetrachloroethene	ND		0.091		mg/Kg	∴		10/22/22 04:38	
1,3-Dichloropropane	ND		0.23		mg/Kg	₩		10/22/22 04:38	
Dibromochloromethane	ND		0.46		mg/Kg	Ď.		10/22/22 04:38	
1,2-Dibromoethane (EDB)	ND		0.23		mg/Kg			10/22/22 04:38	,
Chlorobenzene	ND		0.23		mg/Kg	₩.		10/22/22 04:38	
Ethylbenzene		Н	0.23		mg/Kg			10/22/22 04:38	
1,1,1,2-Tetrachloroethane	ND		0.23		mg/Kg			10/22/22 04:38	
1,1,2,2-Tetrachloroethane		Н	0.23		mg/Kg	₩		10/22/22 04:38	,
m,p-Xylene	ND ND		0.23		mg/Kg			10/22/22 04:38	,

Eurofins Spokane

Page 9 of 79 10/25/2022

Client: Hart & Hickman, PC Job ID: 590-18915-1 Project/Site: NWMS Puyallup

Client Sample ID: SB-7 (6-7)

Lab Sample ID: 590-18915-2

Date Collected: 10/03/22 14:45 **Matrix: Solid** Date Received: 10/10/22 09:00 Percent Solids: 96.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	ND	Н	0.46	0.052	mg/Kg	<u></u>	10/10/22 15:46	10/22/22 04:38	1
Styrene	ND	Н	0.23	0.054	mg/Kg	₩	10/10/22 15:46	10/22/22 04:38	1
Bromoform	ND	Н	0.46	0.043	mg/Kg	≎	10/10/22 15:46	10/22/22 04:38	1
Isopropylbenzene	ND	Н	0.23	0.070	mg/Kg	₩	10/10/22 15:46	10/22/22 04:38	1
Bromobenzene	ND	Н	0.23	0.051	mg/Kg	☆	10/10/22 15:46	10/22/22 04:38	1
N-Propylbenzene	ND	Н	0.23	0.060	mg/Kg	☆	10/10/22 15:46	10/22/22 04:38	1
1,2,3-Trichloropropane	ND	Н	0.46	0.083	mg/Kg	☆	10/10/22 15:46	10/22/22 04:38	1
2-Chlorotoluene	ND	Н	0.23	0.037	mg/Kg	☆	10/10/22 15:46	10/22/22 04:38	1
1,3,5-Trimethylbenzene	ND	Н	0.23	0.073	mg/Kg	☆	10/10/22 15:46	10/22/22 04:38	1
4-Chlorotoluene	ND	Н	0.23	0.020	mg/Kg	₩	10/10/22 15:46	10/22/22 04:38	1
tert-Butylbenzene	ND	Н	0.23	0.044	mg/Kg	≎	10/10/22 15:46	10/22/22 04:38	1
1,2,4-Trimethylbenzene	ND	Н	0.23	0.053	mg/Kg	☆	10/10/22 15:46	10/22/22 04:38	1
sec-Butylbenzene	ND	Н	0.23	0.042	mg/Kg	☆	10/10/22 15:46	10/22/22 04:38	1
1,3-Dichlorobenzene	ND	Н	0.23	0.029	mg/Kg	≎	10/10/22 15:46	10/22/22 04:38	1
p-Isopropyltoluene	ND	Н	0.23	0.046	mg/Kg	☆	10/10/22 15:46	10/22/22 04:38	1
1,4-Dichlorobenzene	ND	Н	0.23	0.047	mg/Kg	₩	10/10/22 15:46	10/22/22 04:38	1
n-Butylbenzene	ND	Н	0.23	0.063	mg/Kg	≎	10/10/22 15:46	10/22/22 04:38	1
1,2-Dichlorobenzene	ND	Н	0.23	0.053	mg/Kg	☆	10/10/22 15:46	10/22/22 04:38	1
1,2-Dibromo-3-Chloropropane	ND	Н	1.1	0.14	mg/Kg	☆	10/10/22 15:46	10/22/22 04:38	1
1,2,4-Trichlorobenzene	ND	Н	0.23	0.042	mg/Kg	☆	10/10/22 15:46	10/22/22 04:38	1
1,2,3-Trichlorobenzene	ND	Н	0.23	0.076	mg/Kg	☆	10/10/22 15:46	10/22/22 04:38	1
Hexachlorobutadiene	ND	Н	0.23	0.037	mg/Kg	₩	10/10/22 15:46	10/22/22 04:38	1
Naphthalene	ND	Н	0.46	0.064	mg/Kg	₩	10/10/22 15:46	10/22/22 04:38	1
Methyl tert-butyl ether	ND	Н	0.11	0.068	mg/Kg	₩	10/10/22 15:46	10/22/22 04:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		80 - 120				10/10/22 15:46	10/22/22 04:38	1
Toluene-d8 (Surr)	110		80 - 120				10/10/22 15:46	10/24/22 21:11	1
4-Bromofluorobenzene (Surr)	98		76 - 122				10/10/22 15:46	10/22/22 04:38	1
4-Bromofluorobenzene (Surr)	95		76 - 122				10/10/22 15:46	10/24/22 21:11	1
Dibromofluoromethane (Surr)	100		80 - 120				10/10/22 15:46	10/22/22 04:38	1
Dibromofluoromethane (Surr)	100		80 - 120				10/10/22 15:46	10/24/22 21:11	1
1,2-Dichloroethane-d4 (Surr)	105		75 - 129				10/10/22 15:46	10/22/22 04:38	1
1,2-Dichloroethane-d4 (Surr)	102		75 - 129				10/10/22 15:46	10/24/22 21:11	1
Method: NWTPH-Gx - Nort	hwest - Volatile	e Petroleu	m Products (GC/MS)					
Analyte		Qualifier	RL	MDĹ	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		11	4.1	mg/Kg	-	10/10/22 15:46	10/10/22 21:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		41.5 - 162				10/10/22 15:46	10/10/22 21:17	1

	Gasonine	ND		11	4.1	ilig/ixg	244	10/10/22 13.40	10/10/22 21.17	'
	Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
١	4-Bromofluorobenzene (Surr)	104		41.5 - 162				10/10/22 15:46	10/10/22 21:17	1
	Method: SW846 8270E SIM -		_	•		•				
١	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Naphthalene	ND		10		ug/Kg		10/12/22 11:20	10/12/22 16:14	

* 10/12/22 11:20 10/12/22 16:14 ND 10 2-Methylnaphthalene 3.2 ug/Kg 1-Methylnaphthalene ND 10 2.3 ug/Kg ☼ 10/12/22 11:20 10/12/22 16:14 Acenaphthylene ND 10 3.4 ug/Kg # 10/12/22 11:20 10/12/22 16:14 Acenaphthene ND 2.6 ug/Kg * 10/12/22 11:20 10/12/22 16:14 10 Fluorene ND 10 2.3 ug/Kg ☼ 10/12/22 11:20 10/12/22 16:14

Eurofins Spokane

Job ID: 590-18915-1

Client: Hart & Hickman, PC Project/Site: NWMS Puyallup

Date Received: 10/10/22 09:00

Client Sample ID: SB-7 (6-7) Date Collected: 10/03/22 14:45

Lab Sample ID: 590-18915-2

10/12/22 11:20 10/12/22 16:14

10/12/22 11:20 10/12/22 16:14

Matrix: Solid

Percent Solids: 96.5

│ Method: SW846 8270F SIM - Semivolatile Or	ganic Compounds (GC/MS SIM) (Continued)
Michiga. Offoto off of olim - Ocimitolatile Of	gaine compounds (commo chin) (commuca)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenanthrene	ND		10	3.7	ug/Kg	<u></u>	10/12/22 11:20	10/12/22 16:14	1
Anthracene	ND		10	2.1	ug/Kg	₩	10/12/22 11:20	10/12/22 16:14	1
Fluoranthene	ND		10	2.6	ug/Kg	₩	10/12/22 11:20	10/12/22 16:14	1
Pyrene	ND		10	3.9	ug/Kg	≎	10/12/22 11:20	10/12/22 16:14	1
Benzo[a]anthracene	ND		10	2.2	ug/Kg	₩	10/12/22 11:20	10/12/22 16:14	1
Chrysene	ND		10	1.6	ug/Kg	₩	10/12/22 11:20	10/12/22 16:14	1
Benzo[b]fluoranthene	ND		10	3.6	ug/Kg	≎	10/12/22 11:20	10/12/22 16:14	1
Benzo[k]fluoranthene	ND		10	2.6	ug/Kg	₩	10/12/22 11:20	10/12/22 16:14	1
Benzo[a]pyrene	ND		10	4.4	ug/Kg	₩	10/12/22 11:20	10/12/22 16:14	1
Indeno[1,2,3-cd]pyrene	ND		10	3.1	ug/Kg	≎	10/12/22 11:20	10/12/22 16:14	1
Dibenz(a,h)anthracene	ND		10	2.9	ug/Kg	₩	10/12/22 11:20	10/12/22 16:14	1
Benzo[g,h,i]perylene	ND		10	2.4	ug/Kg	₩	10/12/22 11:20	10/12/22 16:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	62		44 - 120				10/12/22 11:20	10/12/22 16:14	1

68

Analyte	Regult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Allalyte	Nesuit	Qualifier		IVIDE	OTITE		Fiepaieu	Allalyzeu	Dillac
Diesel Range Organics (DRO)	ND		10	4.2	mg/Kg	₩	10/11/22 10:42	10/11/22 16:53	1
(C10-C25)									
Residual Range Organics (RRO)	ND		25	5.1	mg/Kg	₩	10/11/22 10:42	10/11/22 16:53	1
(C25-C36)									
,									

47 - 120

54 - 132

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	102		50 - 150	10/11/22 10:42	10/11/22 16:53	1
n-Triacontane-d62	100		50 - 150	10/11/22 10:42	10/11/22 16:53	1

Client Sample ID: SB-8 (2-3)

2-Fluorobiphenyl (Surr)

p-Terphenyl-d14

Lab Sample ID: 590-18915-3 Date Collected: 10/04/22 16:30 **Matrix: Solid** Date Received: 10/10/22 09:00 Percent Solids: 88.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND	H	0.31	0.087	mg/Kg	<u></u>	10/10/22 15:46	10/22/22 05:41	1
Chloromethane	ND	H *+	1.5	0.13	mg/Kg	₩	10/10/22 15:46	10/22/22 05:41	1
Vinyl chloride	ND	Н	0.19	0.063	mg/Kg	₩	10/10/22 15:46	10/22/22 05:41	1
Bromomethane	ND	Н	1.5	0.10	mg/Kg	₩	10/10/22 15:46	10/22/22 05:41	1
Chloroethane	ND	Н	0.62	0.17	mg/Kg	₩	10/10/22 15:46	10/22/22 05:41	1
Trichlorofluoromethane	ND	Н	0.62	0.10	mg/Kg	₩	10/10/22 15:46	10/22/22 05:41	1
1,1-Dichloroethene	ND	Н	0.31	0.11	mg/Kg	₩	10/10/22 15:46	10/22/22 05:41	1
Methylene Chloride	ND	H *+	1.1	0.62	mg/Kg	₩	10/10/22 15:46	10/22/22 05:41	1
trans-1,2-Dichloroethene	ND	Н	0.31	0.071	mg/Kg	₩	10/10/22 15:46	10/22/22 05:41	1
1,1-Dichloroethane	ND	Н	0.31	0.082	mg/Kg	₩	10/10/22 15:46	10/22/22 05:41	1
2,2-Dichloropropane	ND	Н	0.31	0.075	mg/Kg	₩	10/10/22 15:46	10/22/22 05:41	1
cis-1,2-Dichloroethene	ND	Н	0.31	0.064	mg/Kg	₩	10/10/22 15:46	10/22/22 05:41	1
Bromochloromethane	ND	Н	0.31	0.12	mg/Kg	₩	10/10/22 15:46	10/22/22 05:41	1
Chloroform	ND	Н	0.31	0.073	mg/Kg	₩	10/10/22 15:46	10/22/22 05:41	1
1,1,1-Trichloroethane	ND	Н	0.31	0.054	mg/Kg	₩	10/10/22 15:46	10/22/22 05:41	1
Carbon tetrachloride	ND	Н	0.31	0.034	mg/Kg	₩	10/10/22 15:46	10/22/22 05:41	1

Eurofins Spokane

Page 11 of 79

Client: Hart & Hickman, PC Job ID: 590-18915-1 Project/Site: NWMS Puyallup

Client Sample ID: SB-8 (2-3)

1,2-Dichloroethane-d4 (Surr)

Lab Sample ID: 590-18915-3

Date Collected: 10/04/22 16:30 **Matrix: Solid** Date Received: 10/10/22 09:00 Percent Solids: 88.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1-Dichloropropene	ND	H	0.31	0.054	mg/Kg	— <u></u>	10/10/22 15:46	10/22/22 05:41	
Benzene	ND	Н	0.062	0.031	mg/Kg	₩	10/10/22 15:46	10/22/22 05:41	
1,2-Dichloroethane	ND	Н	0.31		mg/Kg	₩	10/10/22 15:46	10/22/22 05:41	
Trichloroethene	ND	Н	0.077		mg/Kg	₩	10/10/22 15:46	10/22/22 05:41	
1,2-Dichloropropane	ND	Н	0.37		mg/Kg	₩	10/10/22 15:46	10/22/22 05:41	
Dibromomethane	ND		0.31		mg/Kg	∴	10/10/22 15:46	10/22/22 05:41	
Bromodichloromethane	ND	Н	0.31		mg/Kg	₩		10/22/22 05:41	
cis-1,3-Dichloropropene	ND	Н	0.31		mg/Kg	₩	10/10/22 15:46	10/22/22 05:41	
Toluene	ND		0.31		mg/Kg	 ☆	10/10/22 15:46	10/22/22 05:41	
trans-1,3-Dichloropropene	ND	Н	0.31		mg/Kg	₩		10/22/22 05:41	
1,1,2-Trichloroethane	ND		0.31		mg/Kg	Ď.		10/22/22 05:41	
Tetrachloroethene	ND	. : : H	0.12		mg/Kg			10/22/22 05:41	
1,3-Dichloropropane	ND	Η	0.31		mg/Kg			10/22/22 05:41	
Dibromochloromethane	ND		0.62		mg/Kg			10/22/22 05:41	
1,2-Dibromoethane (EDB)	ND	. '.' H	0.31		mg/Kg			10/22/22 05:41	
Chlorobenzene	ND	н	0.31		mg/Kg	₩		10/22/22 05:41	
Ethylbenzene	ND		0.31		mg/Kg	~ \$		10/22/22 05:41	
1,1,1,2-Tetrachloroethane	ND	. '.' H	0.31		mg/Kg	· · · · · · · · · · · · · · · · · · ·		10/22/22 05:41	
1,1,2,2-Tetrachloroethane	ND	Н	0.31	0.090		₩		10/22/22 05:41	
	0.13		1.2	0.089	0 0	₩		10/22/22 05:41	
m,p-Xylene		JH	0.62	0.009	mg/Kg			10/22/22 05:41	
o-Xylene Styrono	0.092 ND		0.02		mg/Kg	☆			
Styrene Bromoform	ND ND	Н	0.62		0 0	☆		10/22/22 05:41 10/22/22 05:41	
					mg/Kg	· · · · ·			
Isopropylbenzene	ND		0.31		mg/Kg	φ.		10/22/22 05:41	
Bromobenzene	ND	Н	0.31		mg/Kg	*		10/22/22 05:41	
N-Propylbenzene	ND	H	0.31		mg/Kg			10/22/22 05:41	
1,2,3-Trichloropropane	ND	Η	0.62		mg/Kg	*		10/22/22 05:41	
2-Chlorotoluene	ND	Н	0.31		mg/Kg	*		10/22/22 05:41	
1,3,5-Trimethylbenzene	ND	H	0.31		mg/Kg	<u>.</u> .		10/22/22 05:41	
4-Chlorotoluene	ND	Η	0.31		mg/Kg	₽		10/22/22 05:41	
tert-Butylbenzene	ND	H	0.31		mg/Kg	*		10/22/22 05:41	
1,2,4-Trimethylbenzene	0.14		0.31		mg/Kg	<u>.</u> .		10/22/22 05:41	
sec-Butylbenzene	ND		0.31		mg/Kg	☼		10/22/22 05:41	
1,3-Dichlorobenzene	ND	Н	0.31		mg/Kg	☼		10/22/22 05:41	
p-Isopropyltoluene	ND		0.31		mg/Kg	.		10/22/22 05:41	
1,4-Dichlorobenzene	ND		0.31		mg/Kg	₩	10/10/22 15:46		
n-Butylbenzene	ND		0.31		mg/Kg	₩		10/22/22 05:41	
1,2-Dichlorobenzene	ND		0.31		mg/Kg			10/22/22 05:41	
1,2-Dibromo-3-Chloropropane	ND		1.5		mg/Kg	₩		10/22/22 05:41	
1,2,4-Trichlorobenzene	ND	Н	0.31		mg/Kg	₩		10/22/22 05:41	
1,2,3-Trichlorobenzene	ND	Н	0.31	0.10	mg/Kg	₩		10/22/22 05:41	
Hexachlorobutadiene	ND	Н	0.31	0.051	mg/Kg	₽	10/10/22 15:46	10/22/22 05:41	
Naphthalene	0.21	JH	0.62		mg/Kg	☼	10/10/22 15:46	10/22/22 05:41	
Methyl tert-butyl ether	ND	Н	0.15	0.093	mg/Kg	☼	10/10/22 15:46	10/22/22 05:41	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	106		80 - 120					10/22/22 05:41	
4-Bromofluorobenzene (Surr)	92		76 - 122				10/10/22 15:46	10/22/22 05:41	
Dibromofluoromethane (Surr)	102		80 - 120				10/10/22 15:46	10/22/22 05:41	
								10/00/00 05.11	

Eurofins Spokane

10/25/2022

10/10/22 15:46 10/22/22 05:41

75 - 129

2

Job ID: 590-18915-1

Client: Hart & Hickman, PC
Project/Site: NWMS Puyallup

Client Sample ID: SB-8 (2-3)

Lab Sample ID: 590-18915-3

Method: NWTPH-Gx - North	west - Volatile	e Petroleu	m Products (GC/MS)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	12	JB	15	5.6	mg/Kg	*	10/10/22 15:46	10/10/22 21:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	84		41.5 - 162				10/10/22 15:46	10/10/22 21:38	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		11	2.4	ug/Kg	— <u>~</u>	10/12/22 11:20	10/12/22 16:38	1
2-Methylnaphthalene	4.3	J	11	3.5	ug/Kg	₩	10/12/22 11:20	10/12/22 16:38	1
1-Methylnaphthalene	4.4	J	11	2.5	ug/Kg	☼	10/12/22 11:20	10/12/22 16:38	1
Acenaphthylene	ND		11	3.7	ug/Kg	₩	10/12/22 11:20	10/12/22 16:38	1
Acenaphthene	ND		11	2.8	ug/Kg	₩	10/12/22 11:20	10/12/22 16:38	1
Fluorene	ND		11	2.5	ug/Kg	☼	10/12/22 11:20	10/12/22 16:38	1
Phenanthrene	14		11	4.0	ug/Kg	⊅	10/12/22 11:20	10/12/22 16:38	1
Anthracene	ND		11	2.2	ug/Kg	₩	10/12/22 11:20	10/12/22 16:38	1
Fluoranthene	2.9	J	11	2.8	ug/Kg	☼	10/12/22 11:20	10/12/22 16:38	1
Pyrene	4.6	J	11	4.2	ug/Kg	⊅	10/12/22 11:20	10/12/22 16:38	1
Benzo[a]anthracene	2.5	J	11	2.4	ug/Kg	☼	10/12/22 11:20	10/12/22 16:38	1
Chrysene	3.9	J	11	1.7	ug/Kg	☼	10/12/22 11:20	10/12/22 16:38	1
Benzo[b]fluoranthene	ND		11	3.9	ug/Kg	⊅	10/12/22 11:20	10/12/22 16:38	1
Benzo[k]fluoranthene	ND		11	2.8	ug/Kg	☼	10/12/22 11:20	10/12/22 16:38	1
Benzo[a]pyrene	ND		11	4.7	ug/Kg	☼	10/12/22 11:20	10/12/22 16:38	1
Indeno[1,2,3-cd]pyrene	ND		11	3.3	ug/Kg	₩	10/12/22 11:20	10/12/22 16:38	1
Dibenz(a,h)anthracene	ND		11	3.2	ug/Kg	☼	10/12/22 11:20	10/12/22 16:38	1
Benzo[g,h,i]perylene	ND		11	2.6	ug/Kg	₩	10/12/22 11:20	10/12/22 16:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	DII Fac
Nitrobenzene-d5	60		44 - 120	10/12/22 11:20	10/12/22 16:38	1
2-Fluorobiphenyl (Surr)	66		47 - 120	10/12/22 11:20	10/12/22 16:38	1
p-Terphenyl-d14	74		54 - 132	10/12/22 11:20	10/12/22 16:38	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) Result Qualifier **MDL** Unit Analyte RL D Prepared Analyzed Dil Fac **Diesel Range Organics (DRO)** 11 4.7 mg/Kg 15 (C10-C25) **Residual Range Organics (RRO)** 28 10/11/22 10:42 10/11/22 17:13 5.6 mg/Kg 13 J

(C25-C36)

 Surrogate
 %Recovery Oualifier
 Limits
 Prepared
 Analyzed
 Dil Factoria

 o-Terphenyl
 100
 50 - 150
 10/11/22 10:42
 10/11/22 17:13
 1

 n-Triacontane-d62
 104
 50 - 150
 10/11/22 10:42
 10/11/22 17:13
 1

Client Sample ID: SB-9 (2-3)

Date Collected: 10/05/22 10:00

Date Received: 10/10/22 09:00

Lab Sample ID: 590-18915-4

Matrix: Solid

Percent Solids: 89.2

Method: SW846 8260D - Vo	latile Organic	Compounds	by GC/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND	H	0.24	0.068	mg/Kg	₽	10/10/22 15:46	10/22/22 06:02	1
Chloromethane	ND	H *+	1.2	0.10	mg/Kg	₩	10/10/22 15:46	10/22/22 06:02	1
Vinyl chloride	ND	Н	0.15	0.049	mg/Kg	₩	10/10/22 15:46	10/22/22 06:02	1
Bromomethane	ND	Н	1.2	0.080	mg/Kg	₩	10/10/22 15:46	10/22/22 06:02	1

Eurofins Spokane

Client: Hart & Hickman, PC Job ID: 590-18915-1 Project/Site: NWMS Puyallup

Client Sample ID: SB-9 (2-3) Date Collected: 10/05/22 10:00

Date Received: 10/10/22 09:00

Bromoform

Isopropylbenzene

N-Propylbenzene

2-Chlorotoluene

4-Chlorotoluene

tert-Butylbenzene

sec-Butylbenzene

p-Isopropyltoluene

n-Butylbenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2,3-Trichloropropane

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

Bromobenzene

Lab Sample ID: 590-18915-4

Matrix: Solid

Percent Solids: 89.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloroethane	ND	H	0.49		mg/Kg	*	10/10/22 15:46	10/22/22 06:02	1
Trichlorofluoromethane	ND	Н	0.49	0.080	mg/Kg	₩	10/10/22 15:46	10/22/22 06:02	1
1,1-Dichloroethene	ND	Н	0.24	0.083	mg/Kg	₩	10/10/22 15:46	10/22/22 06:02	1
Methylene Chloride	ND	H *+	0.85	0.49	mg/Kg	₩	10/10/22 15:46	10/22/22 06:02	1
trans-1,2-Dichloroethene	ND	Н	0.24	0.056	mg/Kg	₩	10/10/22 15:46	10/22/22 06:02	1
1,1-Dichloroethane	ND	Н	0.24	0.064	mg/Kg	₩	10/10/22 15:46	10/22/22 06:02	1
2,2-Dichloropropane	ND	Н	0.24	0.059	mg/Kg	₩	10/10/22 15:46	10/22/22 06:02	1
cis-1,2-Dichloroethene	ND	Н	0.24	0.050	mg/Kg	₩	10/10/22 15:46	10/22/22 06:02	1
Bromochloromethane	ND	Н	0.24	0.097	mg/Kg	₩	10/10/22 15:46	10/22/22 06:02	1
Chloroform	ND	Н	0.24	0.057	mg/Kg	₩	10/10/22 15:46	10/22/22 06:02	1
1,1,1-Trichloroethane	ND	Н	0.24	0.042	mg/Kg	₩	10/10/22 15:46	10/22/22 06:02	1
Carbon tetrachloride	ND	Н	0.24	0.027	mg/Kg	₩	10/10/22 15:46	10/22/22 06:02	1
1,1-Dichloropropene	ND	Н	0.24	0.042	mg/Kg	₩	10/10/22 15:46	10/22/22 06:02	1
Benzene	ND	Н	0.049	0.024	mg/Kg	₩	10/10/22 15:46	10/22/22 06:02	1
1,2-Dichloroethane	ND	Н	0.24	0.017	mg/Kg	₩	10/10/22 15:46	10/22/22 06:02	1
Trichloroethene	ND	Н	0.061	0.018	mg/Kg	₩	10/10/22 15:46	10/22/22 06:02	1
1,2-Dichloropropane	ND	Н	0.29	0.073	mg/Kg	₩	10/10/22 15:46	10/22/22 06:02	1
Dibromomethane	ND	Н	0.24	0.054	mg/Kg	₽	10/10/22 15:46	10/22/22 06:02	1
Bromodichloromethane	ND	Н	0.24	0.15	mg/Kg	₩	10/10/22 15:46	10/22/22 06:02	1
cis-1,3-Dichloropropene	ND	Н	0.24	0.049	mg/Kg	₩	10/10/22 15:46	10/22/22 06:02	1
Toluene	ND	Н	0.24	0.032	mg/Kg	₩	10/10/22 15:46	10/22/22 06:02	1
trans-1,3-Dichloropropene	ND	Н	0.24	0.064	mg/Kg	₩	10/10/22 15:46	10/22/22 06:02	1
1,1,2-Trichloroethane	ND	Н	0.24	0.086	mg/Kg	₩	10/10/22 15:46	10/22/22 06:02	1
Tetrachloroethene	ND	Н	0.097	0.043	mg/Kg	₩	10/10/22 15:46	10/22/22 06:02	1
1,3-Dichloropropane	ND	Н	0.24	0.072	mg/Kg	₩	10/10/22 15:46	10/22/22 06:02	1
Dibromochloromethane	ND	Н	0.49	0.039	mg/Kg	₩	10/10/22 15:46	10/22/22 06:02	1
1,2-Dibromoethane (EDB)	ND	H	0.24	0.081	mg/Kg	₩	10/10/22 15:46	10/22/22 06:02	1
Chlorobenzene	ND	Н	0.24	0.050	mg/Kg	₩	10/10/22 15:46	10/22/22 06:02	1
Ethylbenzene	ND	Н	0.24	0.039	mg/Kg	₩	10/10/22 15:46	10/22/22 06:02	1
1,1,1,2-Tetrachloroethane	ND		0.24	0.047	mg/Kg	₽	10/10/22 15:46	10/22/22 06:02	1
1,1,2,2-Tetrachloroethane	ND	Н	0.24	0.071		₩	10/10/22 15:46	10/22/22 06:02	1
m,p-Xylene	ND	Н	0.97	0.070	mg/Kg	₩	10/10/22 15:46	10/22/22 06:02	1
o-Xylene	ND	Н	0.49		mg/Kg	₩	10/10/22 15:46	10/22/22 06:02	1
Styrene	ND	Н	0.24		mg/Kg	₩	10/10/22 15:46	10/22/22 06:02	1

0.49

0.24

0.24

0.24

0.49

0.24

0.24

0.24

0.24

0.24

0.24

0.24

0.24

0.24

0.24

0.046 mg/Kg

0.075 mg/Kg

0.054 mg/Kg

0.064 mg/Kg

0.089 mg/Kg

0.040 mg/Kg

0.078 mg/Kg

0.021 mg/Kg

0.047 mg/Kg

0.045 mg/Kg

0.031 mg/Kg

0.049 mg/Kg

0.050 mg/Kg

0.067 mg/Kg

mg/Kg

0.057

Eurofins Spokane

10/10/22 15:46 10/22/22 06:02

10/10/22 15:46 10/22/22 06:02

10/10/22 15:46 10/22/22 06:02

10/10/22 15:46 10/22/22 06:02

10/10/22 15:46 10/22/22 06:02

10/10/22 15:46 10/22/22 06:02

10/10/22 15:46 10/22/22 06:02

10/10/22 15:46 10/22/22 06:02

10/10/22 15:46 10/22/22 06:02

10/10/22 15:46 10/22/22 06:02

10/10/22 15:46 10/22/22 06:02

10/10/22 15:46 10/22/22 06:02

10/10/22 15:46 10/22/22 06:02

10/10/22 15:46 10/22/22 06:02

10/10/22 15:46 10/22/22 06:02

ND H

ND H

ND H ND H

ND H

ND H

ND H

ND H

ND H

ND H

ND H

ND H

ND H

ND H

ND

Job ID: 590-18915-1

Client: Hart & Hickman, PC Project/Site: NWMS Puyallup

2-Fluorobiphenyl (Surr)

p-Terphenyl-d14

Lab Sample ID: 590-18915-4 Client Sample ID: SB-9 (2-3)

Date Collected: 10/05/22 10:00 **Matrix: Solid** Date Received: 10/10/22 09:00

Percent Solids: 89.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene	ND	Н	0.24	0.057	mg/Kg	<u></u>	10/10/22 15:46	10/22/22 06:02	1
1,2-Dibromo-3-Chloropropane	ND	Н	1.2	0.15	mg/Kg	₩	10/10/22 15:46	10/22/22 06:02	1
1,2,4-Trichlorobenzene	ND	Н	0.24	0.045	mg/Kg	₩	10/10/22 15:46	10/22/22 06:02	1
1,2,3-Trichlorobenzene	ND	Н	0.24	0.081	mg/Kg	₩	10/10/22 15:46	10/22/22 06:02	1
Hexachlorobutadiene	ND	Н	0.24	0.040	mg/Kg	₩	10/10/22 15:46	10/22/22 06:02	1
Naphthalene	ND	Н	0.49	0.068	mg/Kg	₩	10/10/22 15:46	10/22/22 06:02	1
Methyl tert-butyl ether	ND	Н	0.12	0.073	mg/Kg	≎	10/10/22 15:46	10/22/22 06:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	104		80 - 120				10/10/22 15:46	10/22/22 06:02	1
4-Bromofluorobenzene (Surr)	95		76 - 122				10/10/22 15:46	10/22/22 06:02	1
Dibromofluoromethane (Surr)	98		80 - 120				10/10/22 15:46	10/22/22 06:02	1
1,2-Dichloroethane-d4 (Surr)	101		75 - 129				10/10/22 15:46	10/22/22 06:02	1

Method. NWTPH-GX - Northw	est - voiatile	Pelroleu	iii Products	(GC/IVIS)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		12	4.4	mg/Kg	≎	10/10/22 15:46	10/10/22 22:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	116		41.5 - 162				10/10/22 15:46	10/10/22 22:00	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		11	2.4	ug/Kg	*	10/12/22 11:20	10/12/22 17:01	1
2-Methylnaphthalene	ND		11	3.5	ug/Kg	≎	10/12/22 11:20	10/12/22 17:01	1
1-Methylnaphthalene	ND		11	2.5	ug/Kg	₽	10/12/22 11:20	10/12/22 17:01	1
Acenaphthylene	ND		11	3.7	ug/Kg	₽	10/12/22 11:20	10/12/22 17:01	1
Acenaphthene	ND		11	2.8	ug/Kg	₩	10/12/22 11:20	10/12/22 17:01	1
Fluorene	ND		11	2.5	ug/Kg	₩	10/12/22 11:20	10/12/22 17:01	1
Phenanthrene	ND		11	4.1	ug/Kg	☼	10/12/22 11:20	10/12/22 17:01	1
Anthracene	ND		11	2.2	ug/Kg	₩	10/12/22 11:20	10/12/22 17:01	1
Fluoranthene	ND		11	2.8	ug/Kg	☼	10/12/22 11:20	10/12/22 17:01	1
Pyrene	ND		11	4.3	ug/Kg	₩	10/12/22 11:20	10/12/22 17:01	1
Benzo[a]anthracene	ND		11	2.4	ug/Kg	₽	10/12/22 11:20	10/12/22 17:01	1
Chrysene	ND		11	1.7	ug/Kg	₽	10/12/22 11:20	10/12/22 17:01	1
Benzo[b]fluoranthene	ND		11	3.9	ug/Kg	₽	10/12/22 11:20	10/12/22 17:01	1
Benzo[k]fluoranthene	ND		11	2.8	ug/Kg	₽	10/12/22 11:20	10/12/22 17:01	1
Benzo[a]pyrene	ND		11	4.7	ug/Kg	₩	10/12/22 11:20	10/12/22 17:01	1
Indeno[1,2,3-cd]pyrene	ND		11	3.3	ug/Kg	₩	10/12/22 11:20	10/12/22 17:01	1
Dibenz(a,h)anthracene	ND		11	3.2	ug/Kg	₩	10/12/22 11:20	10/12/22 17:01	1
Benzo[g,h,i]perylene	ND		11	2.6	ug/Kg	☼	10/12/22 11:20	10/12/22 17:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	68		44 - 120				10/12/22 11:20	10/12/22 17:01	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Diesel Range Organics (DRO)	ND		11	4.6	mg/Kg	<u></u>	10/11/22 10:42	10/11/22 17:34	1
	(C10-C25)									

47 - 120

54 - 132

69

79

Eurofins Spokane

10/12/22 11:20 10/12/22 17:01

10/12/22 11:20 10/12/22 17:01

Client: Hart & Hickman, PC Job ID: 590-18915-1 Project/Site: NWMS Puyallup

Client Sample ID: SB-9 (2-3)

Lab Sample ID: 590-18915-4

Date Collected: 10/05/22 10:00 **Matrix: Solid** Date Received: 10/10/22 09:00 Percent Solids: 89.2

Method: NWTPH-Dx - North	west - Semi-V	olatile Pet	roleum Prod	ucts (G0	C) (Conti	nued)			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Residual Range Organics (RRO) (C25-C36)	ND		28	5.5	mg/Kg	_	10/11/22 10:42	10/11/22 17:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	97		50 - 150				10/11/22 10:42	10/11/22 17:34	1
n-Triacontane-d62	97		50 - 150				10/11/22 10:42	10/11/22 17:34	1

Client Sample ID: SB-10 (2-3) Lab Sample ID: 590-18915-5 Date Collected: 10/05/22 16:50 **Matrix: Solid** Date Received: 10/10/22 09:00 Percent Solids: 93.0

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND	Н	0.25	0.071	mg/Kg	<u></u>	10/10/22 15:46	10/22/22 06:22	1
Chloromethane	ND	H *+	1.3	0.10	mg/Kg	☼	10/10/22 15:46	10/22/22 06:22	1
Vinyl chloride	ND	Н	0.15	0.051	mg/Kg	₩	10/10/22 15:46	10/22/22 06:22	1
Bromomethane	ND	Н	1.3	0.083	mg/Kg	₽	10/10/22 15:46	10/22/22 06:22	1
Chloroethane	ND	Н	0.50	0.14	mg/Kg	₩	10/10/22 15:46	10/22/22 06:22	1
Trichlorofluoromethane	ND	Н	0.50	0.082	mg/Kg	₩	10/10/22 15:46	10/22/22 06:22	1
1,1-Dichloroethene	ND	Н	0.25	0.086	mg/Kg	₩	10/10/22 15:46	10/22/22 06:22	1
Methylene Chloride	ND	H *+	0.88	0.50	mg/Kg	₩	10/10/22 15:46	10/22/22 06:22	1
trans-1,2-Dichloroethene	ND	Н	0.25	0.058	mg/Kg	₩	10/10/22 15:46	10/22/22 06:22	1
1,1-Dichloroethane	ND	Н	0.25	0.066	mg/Kg	₩	10/10/22 15:46	10/22/22 06:22	1
2,2-Dichloropropane	ND	Н	0.25	0.061	mg/Kg	₩	10/10/22 15:46	10/22/22 06:22	1
cis-1,2-Dichloroethene	ND	Н	0.25	0.052	mg/Kg	₩	10/10/22 15:46	10/22/22 06:22	1
Bromochloromethane	ND	Н	0.25	0.10	mg/Kg	₩	10/10/22 15:46	10/22/22 06:22	1
Chloroform	ND	Н	0.25	0.059	mg/Kg	₩	10/10/22 15:46	10/22/22 06:22	1
1,1,1-Trichloroethane	ND	Н	0.25	0.043	mg/Kg	₩	10/10/22 15:46	10/22/22 06:22	1
Carbon tetrachloride	ND	Н	0.25		mg/Kg	₩	10/10/22 15:46	10/22/22 06:22	1
1,1-Dichloropropene	ND	Н	0.25		mg/Kg	₩	10/10/22 15:46	10/22/22 06:22	1
Benzene	ND	Н	0.050	0.025	mg/Kg	₩	10/10/22 15:46	10/22/22 06:22	1
1,2-Dichloroethane	ND	Н	0.25	0.018	mg/Kg		10/10/22 15:46	10/22/22 06:22	1
Trichloroethene	ND	Н	0.063		mg/Kg	₩	10/10/22 15:46	10/22/22 06:22	1
1,2-Dichloropropane	ND	Н	0.30		mg/Kg	₩	10/10/22 15:46	10/22/22 06:22	1
Dibromomethane	ND	Н	0.25		mg/Kg			10/22/22 06:22	1
Bromodichloromethane	ND	Н	0.25		mg/Kg	₩	10/10/22 15:46	10/22/22 06:22	1
cis-1,3-Dichloropropene	ND	Н	0.25	0.051	mg/Kg	₩	10/10/22 15:46	10/22/22 06:22	1
Toluene	ND		0.25		mg/Kg	₩	10/10/22 15:46	10/22/22 06:22	1
trans-1,3-Dichloropropene	ND	Н	0.25		mg/Kg	₩		10/22/22 06:22	1
1,1,2-Trichloroethane	ND	Н	0.25		mg/Kg	₩	10/10/22 15:46	10/22/22 06:22	1
Tetrachloroethene	ND		0.10		mg/Kg	∴	10/10/22 15:46	10/22/22 06:22	1
1,3-Dichloropropane	ND	Н	0.25		mg/Kg	₩	10/10/22 15:46	10/22/22 06:22	1
Dibromochloromethane	ND	Н	0.50		mg/Kg	₩	10/10/22 15:46	10/22/22 06:22	1
1,2-Dibromoethane (EDB)	ND		0.25		mg/Kg			10/22/22 06:22	1
Chlorobenzene	ND	Н	0.25		mg/Kg	₩	10/10/22 15:46	10/22/22 06:22	1
Ethylbenzene	ND		0.25		mg/Kg	₩.		10/22/22 06:22	1
1,1,1,2-Tetrachloroethane	ND		0.25		mg/Kg			10/22/22 06:22	
1,1,2,2-Tetrachloroethane	ND.		0.25		mg/Kg	Ď.		10/22/22 06:22	1
m,p-Xylene	ND.	Н	1.0		mg/Kg	Ď.		10/22/22 06:22	1
o-Xylene	ND		0.50		mg/Kg			10/22/22 06:22	· · · · · · · · · · · · · · · · · · ·

Eurofins Spokane

Page 16 of 79

Client: Hart & Hickman, PC Job ID: 590-18915-1 Project/Site: NWMS Puyallup

Client Sample ID: SB-10 (2-3)

Pyrene

Benzo[a]anthracene

Lab Sample ID: 590-18915-5 Date Collected: 10/05/22 16:50 **Matrix: Solid**

Date Received: 10/10/22 09:00 Percent Solids: 93.0

Analyte	latile Organic Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Styrene	ND	H	0.25	0.059	mg/Kg	— <u></u>	10/10/22 15:46	10/22/22 06:22	
3 Bromoform	ND	Н	0.50	0.048		₽	10/10/22 15:46	10/22/22 06:22	
sopropylbenzene			0.25		mg/Kg			10/22/22 06:22	
Bromobenzene	ND	Н	0.25		mg/Kg	₩	10/10/22 15:46	10/22/22 06:22	
N-Propylbenzene	ND	Н	0.25		mg/Kg	₩		10/22/22 06:22	
1,2,3-Trichloropropane	ND		0.50		mg/Kg			10/22/22 06:22	
2-Chlorotoluene	ND	Н	0.25	0.041	mg/Kg	₩	10/10/22 15:46		
I,3,5-Trimethylbenzene	ND		0.25		mg/Kg	₩	10/10/22 15:46		
I-Chlorotoluene		. : : . H	0.25		mg/Kg		10/10/22 15:46		
ert-Butylbenzene		Η	0.25		mg/Kg	₩		10/22/22 06:22	
I,2,4-Trimethylbenzene		Η	0.25		mg/Kg		10/10/22 15:46		
ec-Butylbenzene	ND	. : : H	0.25		mg/Kg		10/10/22 15:46		
,3-Dichlorobenzene	ND	Н	0.25		mg/Kg	☆		10/22/22 06:22	
p-Isopropyltoluene	ND	н	0.25			₩		10/22/22 06:22	
,4-Dichlorobenzene	ND	. '.' H	0.25		mg/Kg			10/22/22 06:22	
n-Butylbenzene	ND	Н	0.25		mg/Kg	₩		10/22/22 06:22	
,2-Dichlorobenzene	ND ND	Н	0.25		mg/Kg	₩		10/22/22 06:22	
,2-Dibromo-3-Chloropropane	ND	. ''' H	1.3		mg/Kg			10/22/22 06:22	
,2,4-Trichlorobenzene	ND	н	0.25		mg/Kg	₩		10/22/22 06:22	
,2,3-Trichlorobenzene	ND	Η	0.25		mg/Kg	₩		10/22/22 06:22	
lexachlorobutadiene		. '.' H	0.25	0.041	mg/Kg		10/10/22 15:46		
laphthalene	ND ND	Н	0.50		mg/Kg	₩		10/22/22 06:22	
Methyl tert-butyl ether	ND		0.13		mg/Kg	₽	10/10/22 15:46		
	0/5		,						
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed 10/22/22 06:22	Dil I
oluene-d8 (Surr)	103		80 - 120 76 - 122				10/10/22 15:46		
l-Bromofluorobenzene (Surr)	99		76 - 122					10/22/22 06:22	
Dibromofluoromethane (Surr) 1,2-Dichloroethane-d4 (Surr)	97 101		80 - 120 75 - 129					10/22/22 06:22 10/22/22 06:22	
Method: NWTPH-Gx - North	Result	Petroleui Qualifier	m Products (MDĹ		<u>D</u>	Prepared 10/10/22 15:46	Analyzed 10/10/22 22:22	Dil I
Gasoline	ND		13	4.5	ma/Ka	₩			
		0		4.5	mg/Kg	₽	D		5.77
Gurrogate	%Recovery	Qualifier	Limits	4.5	mg/Kg	₩	Prepared 10/10/22 15:46	Analyzed	Dil
Surrogate		Qualifier		4.5	mg/Kg	₩.	<u> </u>		Dil
Surrogate -Bromofluorobenzene (Surr) Method: SW846 8270E SIM	%Recovery 89 - Semivolatile	Organic (Limits 41.5 - 162 Compounds (GC/MS	SIM)		10/10/22 15:46	Analyzed 10/10/22 22:22	
surrogate -Bromofluorobenzene (Surr) Method: SW846 8270E SIM a	%Recovery 89 - Semivolatile Result		Limits 41.5 - 162 Compounds (GC/MS	SIM) Unit	<u>D</u>	10/10/22 15:46 Prepared	Analyzed 10/10/22 22:22 Analyzed	
Surrogate -Bromofluorobenzene (Surr) Method: SW846 8270E SIM - Inalyte Inaphthalene	%Recovery 89 - Semivolatile Result ND	Organic (Limits 41.5 - 162 Compounds (RL 11	GC/MS MDL	SIM) Unit ug/Kg		10/10/22 15:46 Prepared 10/12/22 11:20	Analyzed 10/10/22 22:22 Analyzed 10/12/22 17:24	
Gurrogate -Bromofluorobenzene (Surr) Method: SW846 8270E SIM Analyte Iaphthalene -Methylnaphthalene	- Semivolatile Result ND ND	Organic (Limits 41.5 - 162 Compounds (RL 11 11	GC/MS (MDL 2.3 3.3	SIM) Unit ug/Kg ug/Kg	<u>D</u>	Prepared 10/12/22 11:20 10/12/22 11:20	Analyzed 10/10/22 22:22 Analyzed 10/12/22 17:24 10/12/22 17:24	
Surrogate -Bromofluorobenzene (Surr) Method: SW846 8270E SIM - Analyte Iaphthalene -Methylnaphthalene -Methylnaphthalene	- Semivolatile Result ND ND ND	Organic (Limits 41.5 - 162 Compounds (RL 11	GC/MS : MDL 2.3 3.3 2.4	SIM) Unit ug/Kg ug/Kg ug/Kg	D	Prepared 10/12/22 11:20 10/12/22 11:20 10/12/22 11:20	Analyzed 10/10/22 22:22 Analyzed 10/12/22 17:24 10/12/22 17:24 10/12/22 17:24	
Surrogate L-Bromofluorobenzene (Surr) Method: SW846 8270E SIM Analyte Japhthalene L-Methylnaphthalene L-Methylnaphthalene L-Methylnaphthylene	%Recovery 89 - Semivolatile Result ND ND ND ND	Organic (Limits 41.5 - 162 Compounds (RL 11 11 11	GC/MS: MDL 2.3 3.3 2.4 3.6	SIM) Unit ug/Kg ug/Kg ug/Kg ug/Kg		Prepared 10/12/22 11:20 10/12/22 11:20 10/12/22 11:20 10/12/22 11:20 10/12/22 11:20	Analyzed 10/10/22 22:22 Analyzed 10/12/22 17:24 10/12/22 17:24 10/12/22 17:24 10/12/22 17:24	
Surrogate -Bromofluorobenzene (Surr) Method: SW846 8270E SIM Analyte Ilaphthalene -Methylnaphthalene -Methylnaphthalene Acenaphthylene	%Recovery 89 - Semivolatile Result ND ND ND ND ND ND	Organic (Limits 41.5 - 162 Compounds (RL 11 11 11 11 11	GC/MS: MDL 2.3 3.3 2.4 3.6 2.7	SIM) Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	— D **	Prepared 10/12/22 11:20 10/12/22 11:20 10/12/22 11:20 10/12/22 11:20 10/12/22 11:20 10/12/22 11:20	Analyzed 10/10/22 22:22 Analyzed 10/12/22 17:24 10/12/22 17:24 10/12/22 17:24 10/12/22 17:24 10/12/22 17:24	
Gurrogate -Bromofluorobenzene (Surr) Method: SW846 8270E SIM analyte laphthalene -Methylnaphthalene -Methylnaphthalene -Cenaphthylene ccenaphthene luorene	%Recovery 89 - Semivolatile Result ND ND ND ND	Organic (Limits 41.5 - 162 Compounds (RL 11 11 11	GC/MS: MDL 2.3 3.3 2.4 3.6 2.7	SIM) Unit ug/Kg ug/Kg ug/Kg ug/Kg		Prepared 10/12/22 11:20 10/12/22 11:20 10/12/22 11:20 10/12/22 11:20 10/12/22 11:20	Analyzed 10/10/22 22:22 Analyzed 10/12/22 17:24 10/12/22 17:24 10/12/22 17:24 10/12/22 17:24	
Sasoline Surrogate L-Bromofluorobenzene (Surr) Method: SW846 8270E SIM Analyte Ilaphthalene L-Methylnaphthalene L-Methylnaphthalene Lacenaphthylene Lacenaphthene Cluorene Phenanthrene	%Recovery 89 - Semivolatile Result ND ND ND ND ND ND	Organic (Limits 41.5 - 162 Compounds (RL 11 11 11 11 11	GC/MS MDL 2.3 3.3 2.4 3.6 2.7 2.4	SIM) Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		Prepared 10/12/22 11:20 10/12/22 11:20 10/12/22 11:20 10/12/22 11:20 10/12/22 11:20 10/12/22 11:20 10/12/22 11:20	Analyzed 10/10/22 22:22 Analyzed 10/12/22 17:24 10/12/22 17:24 10/12/22 17:24 10/12/22 17:24 10/12/22 17:24	Dil I
Surrogate -Bromofluorobenzene (Surr) Method: SW846 8270E SIM Analyte Iaphthalene -Methylnaphthalene -Methylnaphthalene Acenaphthylene Acenaphthene Fluorene	- Semivolatile Result ND	Organic (Limits 41.5 - 162 Compounds (RL 11 11 11 11 11 11 11	GC/MS MDL 2.3 3.3 2.4 3.6 2.7 2.4 3.9	SIM) Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		Prepared 10/12/22 11:20 10/12/22 11:20 10/12/22 11:20 10/12/22 11:20 10/12/22 11:20 10/12/22 11:20 10/12/22 11:20 10/12/22 11:20	Analyzed 10/10/22 22:22 Analyzed 10/12/22 17:24 10/12/22 17:24 10/12/22 17:24 10/12/22 17:24 10/12/22 17:24 10/12/22 17:24	

Eurofins Spokane

10/12/22 11:20 10/12/22 17:24

* 10/12/22 11:20 10/12/22 17:24

11

11

4.1 ug/Kg

2.3 ug/Kg

ND

ND

Client: Hart & Hickman, PC Job ID: 590-18915-1

Project/Site: NWMS Puyallup

Client Sample ID: SB-10 (2-3) Lab Sample ID: 590-18915-5

Date Collected: 10/05/22 16:50 **Matrix: Solid** Date Received: 10/10/22 09:00 Percent Solids: 93.0

Analyte	Result Quali	ifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chrysene	ND ND		1.6	ug/Kg	<u></u>	10/12/22 11:20	10/12/22 17:24	1
Benzo[b]fluoranthene	ND	11	3.8	ug/Kg	₩	10/12/22 11:20	10/12/22 17:24	1
Benzo[k]fluoranthene	ND	11	2.7	ug/Kg	₩	10/12/22 11:20	10/12/22 17:24	1
Benzo[a]pyrene	ND	11	4.5	ug/Kg	≎	10/12/22 11:20	10/12/22 17:24	1
Indeno[1,2,3-cd]pyrene	ND	11	3.2	ug/Kg	₩	10/12/22 11:20	10/12/22 17:24	1
Dibenz(a,h)anthracene	ND	11	3.1	ug/Kg	≎	10/12/22 11:20	10/12/22 17:24	1
Benzo[g,h,i]perylene	ND	11	2.5	ug/Kg	☼	10/12/22 11:20	10/12/22 17:24	1
Surrogate	%Recovery Quali	lifier Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	57		44 - 120	10/12/22 11:20	10/12/22 17:24	1
2-Fluorobiphenyl (Surr)	59		47 - 120	10/12/22 11:20	10/12/22 17:24	1
p-Terphenyl-d14	74		54 - 132	10/12/22 11:20	10/12/22 17:24	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

					,				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND		11	4.5	mg/Kg	<u></u>	10/11/22 10:42	10/11/22 17:54	1
(C10-C25)									
Residual Range Organics (RRO)	ND		27	5.3	mg/Kg	₩	10/11/22 10:42	10/11/22 17:54	1
(C25-C36)									

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	98		50 - 150	10/11/22 10:42	10/11/22 17:54	1
n-Triacontane-d62	96		50 - 150	10/11/22 10:42	10/11/22 17:54	1

Client Sample ID: SB-11 (2-3) Lab Sample ID: 590-18915-6 Date Collected: 10/06/22 10:30 **Matrix: Solid** Date Received: 10/10/22 09:00 Percent Solids: 93.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND	H	0.22	0.062	mg/Kg	<u></u>	10/10/22 15:46	10/22/22 06:43	1
Chloromethane	ND	H *+	1.1	0.091	mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
Vinyl chloride	ND	Н	0.13	0.044	mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
Bromomethane	ND	Н	1.1	0.073	mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
Chloroethane	ND	Н	0.44	0.12	mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
Trichlorofluoromethane	ND	Н	0.44	0.072	mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
1,1-Dichloroethene	ND	Н	0.22	0.075	mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
Methylene Chloride	ND	H *+	0.77	0.44	mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
trans-1,2-Dichloroethene	ND	Н	0.22	0.050	mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
1,1-Dichloroethane	ND	Н	0.22	0.058	mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
2,2-Dichloropropane	ND	Н	0.22	0.053	mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
cis-1,2-Dichloroethene	ND	Н	0.22	0.046	mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
Bromochloromethane	ND	Н	0.22	0.088	mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
Chloroform	ND	Н	0.22	0.052	mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
1,1,1-Trichloroethane	ND	Н	0.22	0.038	mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
Carbon tetrachloride	ND	Н	0.22	0.024	mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
1,1-Dichloropropene	ND	Н	0.22	0.038	mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
Benzene	ND	Н	0.044	0.022	mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
1,2-Dichloroethane	ND	Н	0.22	0.015	mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
Trichloroethene	ND	Н	0.055	0.017	mg/Kg	☼	10/10/22 15:46	10/22/22 06:43	1
1,2-Dichloropropane	ND	Н	0.26	0.066	mg/Kg	≎	10/10/22 15:46	10/22/22 06:43	1

Eurofins Spokane

10/25/2022

Client: Hart & Hickman, PC Job ID: 590-18915-1 Project/Site: NWMS Puyallup

Client Sample ID: SB-11 (2-3)

Lab Sample ID: 590-18915-6

Date Collected: 10/06/22 10:30 **Matrix: Solid** Date Received: 10/10/22 09:00 Percent Solids: 93.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibromomethane	ND	Н	0.22	0.049	mg/Kg	— <u></u>	10/10/22 15:46	10/22/22 06:43	1
Bromodichloromethane	ND	Н	0.22	0.14	mg/Kg	≎	10/10/22 15:46	10/22/22 06:43	1
cis-1,3-Dichloropropene	ND	Н	0.22	0.045	mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
Toluene	ND	Н	0.22	0.029	mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
trans-1,3-Dichloropropene	ND	Н	0.22	0.058	mg/Kg	≎	10/10/22 15:46	10/22/22 06:43	1
1,1,2-Trichloroethane	ND	Н	0.22	0.077	mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
Tetrachloroethene	ND	Н	0.088	0.039	mg/Kg	☼	10/10/22 15:46	10/22/22 06:43	1
1,3-Dichloropropane	ND	Н	0.22	0.065	mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
Dibromochloromethane	ND	Н	0.44	0.036	mg/Kg	≎	10/10/22 15:46	10/22/22 06:43	1
1,2-Dibromoethane (EDB)	ND	Н	0.22	0.073	mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
Chlorobenzene	ND	Н	0.22	0.045	mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
Ethylbenzene	ND	Н	0.22	0.036	mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
1,1,1,2-Tetrachloroethane	ND	Н	0.22	0.042	mg/Kg	≎	10/10/22 15:46	10/22/22 06:43	1
1,1,2,2-Tetrachloroethane	ND	Н	0.22	0.064	mg/Kg	≎	10/10/22 15:46	10/22/22 06:43	1
m,p-Xylene	ND	Н	0.88	0.063	mg/Kg	≎	10/10/22 15:46	10/22/22 06:43	1
o-Xylene	ND	Н	0.44	0.050	mg/Kg	≎	10/10/22 15:46	10/22/22 06:43	1
Styrene	ND	Н	0.22	0.052	mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
Bromoform	ND	Н	0.44	0.042	mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
Isopropylbenzene	ND	Н	0.22	0.068	mg/Kg		10/10/22 15:46	10/22/22 06:43	1
Bromobenzene	ND	Н	0.22	0.049	mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
N-Propylbenzene	ND	Н	0.22	0.058	mg/Kg	₽	10/10/22 15:46	10/22/22 06:43	1
1,2,3-Trichloropropane	ND	Н	0.44	0.080	mg/Kg		10/10/22 15:46	10/22/22 06:43	1
2-Chlorotoluene	ND	Н	0.22	0.036	mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
1,3,5-Trimethylbenzene	ND	Н	0.22	0.070	mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
4-Chlorotoluene	ND	Н	0.22	0.019	mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
tert-Butylbenzene	ND	Н	0.22	0.043	mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
1,2,4-Trimethylbenzene	ND	Н	0.22	0.051	mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
sec-Butylbenzene	ND	Н	0.22	0.041	mg/Kg	☼	10/10/22 15:46	10/22/22 06:43	1
1,3-Dichlorobenzene	ND	Н	0.22	0.028	mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
p-Isopropyltoluene	ND	Н	0.22	0.045	mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
1,4-Dichlorobenzene	ND	Н	0.22	0.045	mg/Kg		10/10/22 15:46	10/22/22 06:43	1
n-Butylbenzene	ND	Н	0.22	0.060	mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
1,2-Dichlorobenzene	ND	Н	0.22		mg/Kg	₽	10/10/22 15:46	10/22/22 06:43	1
1,2-Dibromo-3-Chloropropane	ND	Н	1.1		mg/Kg		10/10/22 15:46	10/22/22 06:43	1
1,2,4-Trichlorobenzene	ND	Н	0.22	0.041	mg/Kg	₽	10/10/22 15:46	10/22/22 06:43	1
1,2,3-Trichlorobenzene	ND	Н	0.22	0.073	mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
Hexachlorobutadiene	ND	Н	0.22	0.036	mg/Kg	₽	10/10/22 15:46	10/22/22 06:43	1
Naphthalene	ND	Н	0.44		mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
Methyl tert-butyl ether	ND	Н	0.11		mg/Kg	₩	10/10/22 15:46	10/22/22 06:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	107		80 - 120				10/10/22 15:46	10/22/22 06:43	1
4-Bromofluorobenzene (Surr)	96		76 - 122				10/10/22 15:46	10/22/22 06:43	1
Dibromofluoromethane (Surr)	96		80 - 120				10/10/22 15:46	10/22/22 06:43	1
1,2-Dichloroethane-d4 (Surr)	100		75 - 129				10/10/22 15:46	10/22/22 06:43	1
Method: NWTPH-Gx - North			n Products (GC/MS)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Eurofins Spokane

Job ID: 590-18915-1

Client: Hart & Hickman, PC

Project/Site: NWMS Puyallup

Lab Sample ID: 590-18915-6 Client Sample ID: SB-11 (2-3)

Date Collected: 10/06/22 10:30 **Matrix: Solid** Date Received: 10/10/22 09:00

Percent Solids: 93.3

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	DII Fac
4-Bromofluorobenzene (Surr)	100		41.5 - 162	10/10/22 15:46	10/10/22 23:05	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		11	2.3	ug/Kg	₩	10/12/22 11:20	10/12/22 17:47	1
2-Methylnaphthalene	ND		11	3.3	ug/Kg	₽	10/12/22 11:20	10/12/22 17:47	1
1-Methylnaphthalene	ND		11	2.3	ug/Kg	₽	10/12/22 11:20	10/12/22 17:47	1
Acenaphthylene	ND		11	3.5	ug/Kg	☆	10/12/22 11:20	10/12/22 17:47	1
Acenaphthene	ND		11	2.7	ug/Kg	☆	10/12/22 11:20	10/12/22 17:47	1
Fluorene	ND		11	2.3	ug/Kg	₽	10/12/22 11:20	10/12/22 17:47	1
Phenanthrene	ND		11	3.8	ug/Kg	₩	10/12/22 11:20	10/12/22 17:47	1
Anthracene	ND		11	2.1	ug/Kg	₽	10/12/22 11:20	10/12/22 17:47	1
Fluoranthene	5.6	J	11	2.6	ug/Kg	☆	10/12/22 11:20	10/12/22 17:47	1
Pyrene	5.2	J	11	4.0	ug/Kg	₽	10/12/22 11:20	10/12/22 17:47	1
Benzo[a]anthracene	2.4	J	11	2.2	ug/Kg	☆	10/12/22 11:20	10/12/22 17:47	1
Chrysene	3.3	J	11	1.6	ug/Kg	₽	10/12/22 11:20	10/12/22 17:47	1
Benzo[b]fluoranthene	6.8	J	11	3.7	ug/Kg	₽	10/12/22 11:20	10/12/22 17:47	1
Benzo[k]fluoranthene	ND		11	2.6	ug/Kg	☆	10/12/22 11:20	10/12/22 17:47	1
Benzo[a]pyrene	ND		11	4.5	ug/Kg	☆	10/12/22 11:20	10/12/22 17:47	1
Indeno[1,2,3-cd]pyrene	ND		11	3.1	ug/Kg	☆	10/12/22 11:20	10/12/22 17:47	1
Dibenz(a,h)anthracene	ND		11	3.0	ug/Kg	☆	10/12/22 11:20	10/12/22 17:47	1
Benzo[g,h,i]perylene	ND		11	2.5	ug/Kg	₽	10/12/22 11:20	10/12/22 17:47	1
Commo mode	0/ 🗖	O !!!!	l inside				Duamanad	A	D:// E

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	59		44 - 120	10/12/22 11:20	10/12/22 17:47	1
2-Fluorobiphenyl (Surr)	65		47 - 120	10/12/22 11:20	10/12/22 17:47	1
p-Terphenyl-d14	81		54 - 132	10/12/22 11:20	10/12/22 17:47	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Analyte	Result Qualifi	ier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND	11	4.5	mg/Kg		10/11/22 10:42	10/11/22 18:14	1
Residual Range Organics (RRO) (C25-C36)	ND	27	5.3	mg/Kg	₩	10/11/22 10:42	10/11/22 18:14	1
Surrogate	%Recovery Qualif	ior Limite				Prepared	Analyzod	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	96		50 - 150	10/11/22 10:42	10/11/22 18:14	1
n-Triacontane-d62	98		50 - 150	10/11/22 10:42	10/11/22 18:14	1

Client Sample ID: SB-12 (2-3) Lab Sample ID: 590-18915-7 Date Collected: 10/06/22 13:45 **Matrix: Solid** Date Received: 10/10/22 09:00 Percent Solids: 92.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND	H	0.25	0.071	mg/Kg	₩	10/10/22 15:46	10/22/22 07:04	1
Chloromethane	ND	H *+	1.3	0.11	mg/Kg	☼	10/10/22 15:46	10/22/22 07:04	1
Vinyl chloride	ND	Н	0.15	0.051	mg/Kg	₩	10/10/22 15:46	10/22/22 07:04	1
Bromomethane	ND	Н	1.3	0.083	mg/Kg	₩	10/10/22 15:46	10/22/22 07:04	1
Chloroethane	ND	Н	0.50	0.14	mg/Kg	₩	10/10/22 15:46	10/22/22 07:04	1
Trichlorofluoromethane	ND	Н	0.50	0.083	mg/Kg	₩	10/10/22 15:46	10/22/22 07:04	1
1,1-Dichloroethene	ND	Н	0.25	0.086	mg/Kg	₩	10/10/22 15:46	10/22/22 07:04	1

Page 20 of 79

Client: Hart & Hickman, PC
Project/Site: NWMS Puyallup
Job ID: 590-18915-1

Client Sample ID: SB-12 (2-3)

Lab Sample ID: 590-18915-7

Date Collected: 10/06/22 13:45 Matrix: Solid
Date Received: 10/10/22 09:00 Percent Solids: 92.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Methylene Chloride	ND	H *+	0.88	0.50	mg/Kg	— <u></u>	10/10/22 15:46	10/22/22 07:04	-
trans-1,2-Dichloroethene	ND	Н	0.25	0.058	mg/Kg	₩	10/10/22 15:46	10/22/22 07:04	
1,1-Dichloroethane	ND	Н	0.25	0.067			10/10/22 15:46	10/22/22 07:04	
2,2-Dichloropropane	ND	Н	0.25	0.061	mg/Kg	₩	10/10/22 15:46	10/22/22 07:04	
cis-1,2-Dichloroethene	ND	Н	0.25	0.052	mg/Kg	₩	10/10/22 15:46	10/22/22 07:04	
Bromochloromethane	ND	Н	0.25	0.10	mg/Kg		10/10/22 15:46	10/22/22 07:04	
Chloroform	ND	Н	0.25	0.059	mg/Kg	₩	10/10/22 15:46	10/22/22 07:04	
1,1,1-Trichloroethane	ND	Н	0.25	0.044	mg/Kg	₩	10/10/22 15:46	10/22/22 07:04	
Carbon tetrachloride	ND	Н	0.25	0.028	mg/Kg		10/10/22 15:46	10/22/22 07:04	
1,1-Dichloropropene	ND	Н	0.25		mg/Kg	₩	10/10/22 15:46	10/22/22 07:04	
Benzene	ND	Н	0.050		mg/Kg	₩	10/10/22 15:46	10/22/22 07:04	
1,2-Dichloroethane	ND		0.25		mg/Kg		10/10/22 15:46	10/22/22 07:04	
, Trichloroethene	ND	Н	0.063	0.019		₩	10/10/22 15:46	10/22/22 07:04	
1,2-Dichloropropane		Н	0.30			.;;	10/10/22 15:46	10/22/22 07:04	
Dibromomethane	ND		0.25		mg/Kg	∷	10/10/22 15:46	10/22/22 07:04	· · · · · · · · ·
Bromodichloromethane	ND	н	0.25		mg/Kg		10/10/22 15:46	10/22/22 07:04	
cis-1,3-Dichloropropene	ND	H	0.25	0.051		₩	10/10/22 15:46	10/22/22 07:04	
Toluene	ND	 H	0.25	0.034			10/10/22 15:46	10/22/22 07:04	
trans-1,3-Dichloropropene	ND	Н	0.25	0.066	mg/Kg	₩.	10/10/22 15:46	10/22/22 07:04	
1,1,2-Trichloroethane	ND	н	0.25	0.089	mg/Kg	₩	10/10/22 15:46	10/22/22 07:04	
Tetrachloroethene		. : : : H	0.10	0.044			10/10/22 15:46	10/22/22 07:04	
1,3-Dichloropropane	ND	H	0.25	0.075	0 0	₩	10/10/22 15:46	10/22/22 07:04	
Dibromochloromethane		н	0.50	0.041	mg/Kg	₩			
1,2-Dibromoethane (EDB)	ND		0.25		mg/Kg		10/10/22 15:46	10/22/22 07:04	
Chlorobenzene	ND	н	0.25		mg/Kg	₩			
Ethylbenzene	ND	H	0.25	0.041		₩		10/22/22 07:04	
1,1,1,2-Tetrachloroethane	ND ND	. '.' H	0.25	0.048			10/10/22 15:46		
1,1,2,2-Tetrachloroethane	ND	H	0.25	0.073		₩	10/10/22 15:46	10/22/22 07:04	
m,p-Xylene		H	1.0	0.072		₩	10/10/22 15:46	10/22/22 07:04	
o-Xylene		. '.' H	0.50		mg/Kg		10/10/22 15:46	10/22/22 07:04	
Styrene	ND	H	0.25	0.060	mg/Kg	₩	10/10/22 15:46	10/22/22 07:04	
Bromoform	ND ND	Н	0.50	0.048	mg/Kg	₩	10/10/22 15:46	10/22/22 07:04	
Isopropylbenzene		. '.' H	0.25		mg/Kg				
Bromobenzene	ND ND	Н	0.25		mg/Kg	☆	10/10/22 15:46	10/22/22 07:04	
N-Propylbenzene	ND		0.25		mg/Kg	₩		10/22/22 07:04	
1,2,3-Trichloropropane	ND		0.50		mg/Kg		10/10/22 15:46	10/22/22 07:04	
2-Chlorotoluene	ND ND		0.30		mg/Kg	₩		10/22/22 07:04	
1,3,5-Trimethylbenzene	ND ND		0.25		mg/Kg	₩		10/22/22 07:04	
4-Chlorotoluene	ND ND		0.25		mg/Kg			10/22/22 07:04	
tert-Butylbenzene	ND ND		0.25		mg/Kg	☆		10/22/22 07:04	
•						*			
1,2,4-Trimethylbenzene	ND		0.25		mg/Kg	 **	10/10/22 15:46 10/10/22 15:46		
sec-Butylbenzene 1,3-Dichlorobenzene	ND		0.25 0.25		mg/Kg	☆		10/22/22 07:04	
	ND				mg/Kg	☆		10/22/22 07:04	
p-Isopropyltoluene	ND		0.25		mg/Kg	. .		10/22/22 07:04	
1,4-Dichlorobenzene	ND		0.25		mg/Kg			10/22/22 07:04	
n-Butylbenzene	ND		0.25		mg/Kg				
1,2-Dichlorobenzene	ND		0.25		mg/Kg			10/22/22 07:04	
1,2-Dibromo-3-Chloropropane	ND	Н	1.3	() 15	mg/Kg	344	10/10/22 15:46	コロノンンノンン ハフ・ハム	•

Eurofins Spokane

4

6

8

10

11

1/2

Client: Hart & Hickman, PC
Project/Site: NWMS Puyallup
Job ID: 590-18915-1

Client Sample ID: SB-12 (2-3)

Lab Sample ID: 590-18915-7

Date Collected: 10/06/22 13:45

Date Received: 10/10/22 09:00

Percent Solids: 92.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3-Trichlorobenzene	ND	Н	0.25	0.084	mg/Kg	— <u></u>	10/10/22 15:46	10/22/22 07:04	1
Hexachlorobutadiene	ND	Н	0.25	0.041	mg/Kg	₩	10/10/22 15:46	10/22/22 07:04	1
Naphthalene	ND	Н	0.50	0.071	mg/Kg	₩	10/10/22 15:46	10/22/22 07:04	1
Methyl tert-butyl ether	ND	Н	0.13	0.076	mg/Kg	₽	10/10/22 15:46	10/22/22 07:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		80 - 120				10/10/22 15:46	10/22/22 07:04	1
4-Bromofluorobenzene (Surr)	99		76 - 122				10/10/22 15:46	10/22/22 07:04	1
Dibromofluoromethane (Surr)	99		80 - 120				10/10/22 15:46	10/22/22 07:04	1
1,2-Dichloroethane-d4 (Surr)	103		75 - 129				10/10/22 15:46	10/22/22 07:04	

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)										
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline	ND		13	4.5	mg/Kg	*	10/10/22 15:46	10/10/22 23:26	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene (Surr)	100		41.5 - 162				10/10/22 15:46	10/10/22 23:26	1	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		11	2.3	ug/Kg	<u></u>	10/12/22 11:20	10/12/22 18:11	1
2-Methylnaphthalene	ND		11	3.3	ug/Kg	₽	10/12/22 11:20	10/12/22 18:11	1
1-Methylnaphthalene	ND		11	2.3	ug/Kg	☼	10/12/22 11:20	10/12/22 18:11	1
Acenaphthylene	ND		11	3.5	ug/Kg	₩	10/12/22 11:20	10/12/22 18:11	1
Acenaphthene	ND		11	2.7	ug/Kg	≎	10/12/22 11:20	10/12/22 18:11	1
Fluorene	ND		11	2.3	ug/Kg	☼	10/12/22 11:20	10/12/22 18:11	1
Phenanthrene	ND		11	3.8	ug/Kg	≎	10/12/22 11:20	10/12/22 18:11	1
Anthracene	ND		11	2.1	ug/Kg	☼	10/12/22 11:20	10/12/22 18:11	1
Fluoranthene	ND		11	2.6	ug/Kg	≎	10/12/22 11:20	10/12/22 18:11	1
Pyrene	ND		11	4.0	ug/Kg	₩	10/12/22 11:20	10/12/22 18:11	1
Benzo[a]anthracene	ND		11	2.2	ug/Kg	☼	10/12/22 11:20	10/12/22 18:11	1
Chrysene	ND		11	1.6	ug/Kg	≎	10/12/22 11:20	10/12/22 18:11	1
Benzo[b]fluoranthene	ND		11	3.7	ug/Kg	₩	10/12/22 11:20	10/12/22 18:11	1
Benzo[k]fluoranthene	ND		11	2.6	ug/Kg	☼	10/12/22 11:20	10/12/22 18:11	1
Benzo[a]pyrene	ND		11	4.5	ug/Kg	≎	10/12/22 11:20	10/12/22 18:11	1
Indeno[1,2,3-cd]pyrene	ND		11	3.1	ug/Kg	₩	10/12/22 11:20	10/12/22 18:11	1
Dibenz(a,h)anthracene	ND		11	3.0	ug/Kg	☼	10/12/22 11:20	10/12/22 18:11	1
Benzo[g,h,i]perylene	ND		11	2.5	ug/Kg	₩	10/12/22 11:20	10/12/22 18:11	1
Surrogato	%Pocovory	Qualifier	l imite				Propared	Analyzod	Dil Eac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	64		44 - 120	10/12/22 11:20	10/12/22 18:11	1
2-Fluorobiphenyl (Surr)	66		47 - 120	10/12/22 11:20	10/12/22 18:11	1
p-Terphenyl-d14	79		54 - 132	10/12/22 11:20	10/12/22 18:11	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND	11	4.5	mg/Kg	₩	10/11/22 10:42	10/11/22 18:35	1
Residual Range Organics (RRO) (C25-C36)	ND	27	5.4	mg/Kg	₩	10/11/22 10:42	10/11/22 18:35	1

Eurofins Spokane

Page 22 of 79

2

3

5

6

9

10

19

10/25/2022

Client: Hart & Hickman, PC
Project/Site: NWMS Puyallup
Job ID: 590-18915-1

Client Sample ID: SB-12 (2-3)

Lab Sample ID: 590-18915-7

 Date Collected: 10/06/22 13:45
 Matrix: Solid

 Date Received: 10/10/22 09:00
 Percent Solids: 92.1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	94		50 - 150	10/11/22 10:42	10/11/22 18:35	1
n-Triacontane-d62	96		50 - 150	10/11/22 10:42	10/11/22 18:35	1

Client Sample ID: DUP-1 Lab Sample ID: 590-18915-8

 Date Collected: 10/06/22 00:00
 Matrix: Solid

 Date Received: 10/10/22 09:00
 Percent Solids: 92.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND	H	0.25	0.071	mg/Kg	<u></u>	10/10/22 15:46	10/22/22 07:25	1
Chloromethane	ND	H *+	1.3	0.11	mg/Kg	₩	10/10/22 15:46	10/22/22 07:25	1
Vinyl chloride	ND	Н	0.15	0.051	mg/Kg	☆	10/10/22 15:46	10/22/22 07:25	1
Bromomethane	ND	Н	1.3	0.084	mg/Kg	☆	10/10/22 15:46	10/22/22 07:25	1
Chloroethane	ND	Н	0.51	0.14	mg/Kg	☆	10/10/22 15:46	10/22/22 07:25	1
Trichlorofluoromethane	0.12	JH	0.51	0.083	mg/Kg	☆	10/10/22 15:46	10/22/22 07:25	1
1,1-Dichloroethene	ND	Н	0.25	0.086	mg/Kg	☆	10/10/22 15:46	10/22/22 07:25	1
Methylene Chloride	ND	H *+	0.89	0.51	mg/Kg	☼	10/10/22 15:46	10/22/22 07:25	1
trans-1,2-Dichloroethene	ND	Н	0.25	0.058	mg/Kg	₩	10/10/22 15:46	10/22/22 07:25	1
1,1-Dichloroethane	ND	Н	0.25	0.067	mg/Kg	₩	10/10/22 15:46	10/22/22 07:25	1
2,2-Dichloropropane	ND	Н	0.25	0.061	mg/Kg	☆	10/10/22 15:46	10/22/22 07:25	1
cis-1,2-Dichloroethene	ND	Н	0.25	0.053	mg/Kg	☆	10/10/22 15:46	10/22/22 07:25	1
Bromochloromethane	ND	Н	0.25	0.10	mg/Kg	₩	10/10/22 15:46	10/22/22 07:25	1
Chloroform	ND	Н	0.25	0.059	mg/Kg	☆	10/10/22 15:46	10/22/22 07:25	1
1,1,1-Trichloroethane	ND	Н	0.25	0.044	mg/Kg	≎	10/10/22 15:46	10/22/22 07:25	1
Carbon tetrachloride	ND	Н	0.25		mg/Kg	₩	10/10/22 15:46	10/22/22 07:25	1
1,1-Dichloropropene	ND	Н	0.25		mg/Kg	₩	10/10/22 15:46	10/22/22 07:25	1
Benzene	ND	Н	0.051		mg/Kg	≎	10/10/22 15:46	10/22/22 07:25	1
1,2-Dichloroethane	ND	Н	0.25		mg/Kg	 ☆	10/10/22 15:46	10/22/22 07:25	1
Trichloroethene	ND	Н	0.063		mg/Kg	₩	10/10/22 15:46	10/22/22 07:25	1
1,2-Dichloropropane	ND	Н	0.30		mg/Kg	₩	10/10/22 15:46	10/22/22 07:25	1
Dibromomethane	ND		0.25		mg/Kg		10/10/22 15:46	10/22/22 07:25	1
Bromodichloromethane	ND	Н	0.25		mg/Kg	₩	10/10/22 15:46	10/22/22 07:25	1
cis-1,3-Dichloropropene	ND	Н	0.25		mg/Kg	☆	10/10/22 15:46	10/22/22 07:25	1
Toluene	ND		0.25		mg/Kg		10/10/22 15:46	10/22/22 07:25	1
trans-1,3-Dichloropropene	ND	Н	0.25		mg/Kg	☆	10/10/22 15:46	10/22/22 07:25	1
1,1,2-Trichloroethane	ND	Н	0.25		mg/Kg	₩	10/10/22 15:46	10/22/22 07:25	1
Tetrachloroethene	ND		0.10		mg/Kg	∴	10/10/22 15:46	10/22/22 07:25	1
1,3-Dichloropropane	ND	Н	0.25		mg/Kg	☆	10/10/22 15:46	10/22/22 07:25	1
Dibromochloromethane	ND		0.51	0.041	mg/Kg	☆		10/22/22 07:25	1
1,2-Dibromoethane (EDB)	ND		0.25	0.085	mg/Kg		10/10/22 15:46	10/22/22 07:25	1
Chlorobenzene	ND	Н	0.25		mg/Kg	☆	10/10/22 15:46	10/22/22 07:25	1
Ethylbenzene	ND		0.25	0.041	mg/Kg	☆	10/10/22 15:46	10/22/22 07:25	1
1,1,1,2-Tetrachloroethane	ND		0.25		mg/Kg		10/10/22 15:46	10/22/22 07:25	1
1.1.2.2-Tetrachloroethane	ND		0.25		mg/Kg	☆	10/10/22 15:46		1
m,p-Xylene	ND		1.0		mg/Kg		10/10/22 15:46		1
o-Xylene	ND		0.51		mg/Kg	<u>T</u> .	10/10/22 15:46		
Styrene	ND		0.25		mg/Kg	~ ☆		10/22/22 07:25	1
Bromoform	ND		0.51		mg/Kg	~ ☆		10/22/22 07:25	1
Isopropylbenzene	ND		0.25		mg/Kg			10/22/22 07:25	
Bromobenzene	ND		0.25		mg/Kg			10/22/22 07:25	1

Eurofins Spokane

Page 23 of 79

iiu

0

10

1

Client: Hart & Hickman, PC
Project/Site: NWMS Puyallup
Job ID: 590-18915-1

Client Sample ID: DUP-1
Date Collected: 10/06/22 00:00

Date Received: 10/10/22 09:00

Lab Sample ID: 590-18915-8

Matrix: Solid

Percent Solids: 92.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
N-Propylbenzene	MD	H	0.25	0.067	mg/Kg	-	10/10/22 15:46	10/22/22 07:25	1
1,2,3-Trichloropropane	ND	Н	0.51	0.093	mg/Kg	₩	10/10/22 15:46	10/22/22 07:25	1
2-Chlorotoluene	ND	Н	0.25	0.041	mg/Kg	☼	10/10/22 15:46	10/22/22 07:25	1
1,3,5-Trimethylbenzene	ND	Н	0.25	0.081	mg/Kg	₩	10/10/22 15:46	10/22/22 07:25	1
4-Chlorotoluene	ND	Н	0.25	0.022	mg/Kg	₩	10/10/22 15:46	10/22/22 07:25	1
tert-Butylbenzene	ND	Н	0.25	0.049	mg/Kg	₩	10/10/22 15:46	10/22/22 07:25	1
1,2,4-Trimethylbenzene	ND	Н	0.25	0.059	mg/Kg	₩	10/10/22 15:46	10/22/22 07:25	1
sec-Butylbenzene	ND	Н	0.25	0.047	mg/Kg	₩	10/10/22 15:46	10/22/22 07:25	1
1,3-Dichlorobenzene	ND	Н	0.25	0.032	mg/Kg	☼	10/10/22 15:46	10/22/22 07:25	1
p-Isopropyltoluene	ND	Н	0.25	0.052	mg/Kg	☼	10/10/22 15:46	10/22/22 07:25	1
1,4-Dichlorobenzene	ND	Н	0.25	0.052	mg/Kg	₩	10/10/22 15:46	10/22/22 07:25	1
n-Butylbenzene	ND	Н	0.25	0.070	mg/Kg	☼	10/10/22 15:46	10/22/22 07:25	1
1,2-Dichlorobenzene	ND	Н	0.25	0.059	mg/Kg	₩	10/10/22 15:46	10/22/22 07:25	1
1,2-Dibromo-3-Chloropropane	ND	Н	1.3	0.15	mg/Kg	⊅	10/10/22 15:46	10/22/22 07:25	1
1,2,4-Trichlorobenzene	ND	Н	0.25	0.047	mg/Kg	₩	10/10/22 15:46	10/22/22 07:25	1
1,2,3-Trichlorobenzene	ND	Н	0.25	0.084	mg/Kg	☼	10/10/22 15:46	10/22/22 07:25	1
Hexachlorobutadiene	ND	Н	0.25	0.041	mg/Kg	⊅	10/10/22 15:46	10/22/22 07:25	1
Naphthalene	ND	Н	0.51	0.071	mg/Kg	☼	10/10/22 15:46	10/22/22 07:25	1
Methyl tert-butyl ether	ND	Н	0.13	0.076	mg/Kg	☼	10/10/22 15:46	10/22/22 07:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	104		80 - 120				10/10/22 15:46	10/22/22 07:25	1
4-Bromofluorobenzene (Surr)	91		76 - 122				10/10/22 15:46	10/22/22 07:25	1
Dibromofluoromethane (Surr)	100		80 - 120				10/10/22 15:46	10/22/22 07:25	1
1,2-Dichloroethane-d4 (Surr)	102		75 - 129				10/10/22 15:46	10/22/22 07:25	1

Method: NWTPH-GX - Northwo	est - volatile	Petroleur	n Products	(GC/NS)					
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		13	4.6	mg/Kg	<u> </u>	10/10/22 15:46	10/10/22 23:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		41.5 - 162				10/10/22 15:46	10/10/22 23:48	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		11	2.3	ug/Kg	<u></u>	10/12/22 11:20	10/12/22 18:34	1
2-Methylnaphthalene	ND		11	3.3	ug/Kg	₩	10/12/22 11:20	10/12/22 18:34	1
1-Methylnaphthalene	ND		11	2.4	ug/Kg	☆	10/12/22 11:20	10/12/22 18:34	1
Acenaphthylene	ND		11	3.5	ug/Kg	₩	10/12/22 11:20	10/12/22 18:34	1
Acenaphthene	ND		11	2.7	ug/Kg	₩	10/12/22 11:20	10/12/22 18:34	1
Fluorene	ND		11	2.3	ug/Kg	₩	10/12/22 11:20	10/12/22 18:34	1
Phenanthrene	ND		11	3.9	ug/Kg	₩	10/12/22 11:20	10/12/22 18:34	1
Anthracene	ND		11	2.1	ug/Kg	₩	10/12/22 11:20	10/12/22 18:34	1
Fluoranthene	ND		11	2.6	ug/Kg	₩	10/12/22 11:20	10/12/22 18:34	1
Pyrene	ND		11	4.0	ug/Kg	☆	10/12/22 11:20	10/12/22 18:34	1
Benzo[a]anthracene	ND		11	2.3	ug/Kg	₩	10/12/22 11:20	10/12/22 18:34	1
Chrysene	ND		11	1.6	ug/Kg	₩	10/12/22 11:20	10/12/22 18:34	1
Benzo[b]fluoranthene	ND		11	3.7	ug/Kg	☆	10/12/22 11:20	10/12/22 18:34	1
Benzo[k]fluoranthene	ND		11	2.7	ug/Kg	₩	10/12/22 11:20	10/12/22 18:34	1
Benzo[a]pyrene	ND		11	4.5	ug/Kg	₩	10/12/22 11:20	10/12/22 18:34	1

Eurofins Spokane

Page 24 of 79

4

6

8

10

11

Job ID: 590-18915-1

Client: Hart & Hickman, PC Project/Site: NWMS Puyallup

Client Sample ID: DUP-1 Date Collected: 10/06/22 00:00

Date Received: 10/10/22 09:00

Lab Sample ID: 590-18915-8

Matrix: Solid

Percent Solids: 92.3

Mothodi	CIMO AC COZOE CIM	Comivolatile Organie Co	ompounds (GC/MS SIM) (Continue	۱۵.
ivietiiou.	377040 02/UE 31IVI ·	· Semivolatile Ordanic G	ombounds (GC/N3 3M) (Commue	u)

WELLIOU. 344040 02/0E 3	ilvi - Selllivolatile C	organic C	ompounds (GC/IVIS	SIIVI) (CO	IIIIIIII	≠u)		
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	ND		11	3.2	ug/Kg	— <u></u>	10/12/22 11:20	10/12/22 18:34	1
Dibenz(a,h)anthracene	ND		11	3.0	ug/Kg	₽	10/12/22 11:20	10/12/22 18:34	1
Benzo[g,h,i]perylene	ND		11	2.5	ug/Kg	₩	10/12/22 11:20	10/12/22 18:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	70		44 - 120				10/12/22 11:20	10/12/22 18:34	1
2-Fluorobiphenyl (Surr)	73		47 - 120				10/12/22 11:20	10/12/22 18:34	1
p-Terphenyl-d14	86		54 - 132				10/12/22 11:20	10/12/22 18:34	1
, , ,									

Method: NWTPH-Dx - North	west - Semi-Vol	latile Peti	roleum Prodi	ucts (GC	C)				
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		11	4.4	mg/Kg	*	10/11/22 10:42	10/11/22 18:55	1
Residual Range Organics (RRO) (C25-C36)	ND		26	5.3	mg/Kg	☼	10/11/22 10:42	10/11/22 18:55	1
Surrogate	%Recovery G	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	86		50 - 150				10/11/22 10:42	10/11/22 18:55	1
n-Triacontane-d62	88		50 - 150				10/11/22 10:42	10/11/22 18:55	1

Client Sample ID: TB-1 Lab Sample ID: 590-18915-9

Date Collected: 10/03/22 00:00 **Matrix: Solid** Date Received: 10/10/22 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND	H	0.10	0.028	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
Chloromethane	ND	H *+	0.50	0.042	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
Vinyl chloride	ND	Н	0.060	0.020	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
Bromomethane	ND	Н	0.50	0.033	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
Chloroethane	ND	Н	0.20	0.056	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
Trichlorofluoromethane	ND	Н	0.20	0.033	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
1,1-Dichloroethene	ND	Н	0.10	0.034	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
Methylene Chloride	ND	H *+	0.35	0.20	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
trans-1,2-Dichloroethene	ND	Н	0.10	0.023	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
1,1-Dichloroethane	ND	Н	0.10	0.026	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
2,2-Dichloropropane	ND	Н	0.10	0.024	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
cis-1,2-Dichloroethene	ND	Н	0.10	0.021	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
Bromochloromethane	ND	Н	0.10	0.040	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
Chloroform	ND	Н	0.10	0.023	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
1,1,1-Trichloroethane	ND	Н	0.10	0.017	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
Carbon tetrachloride	ND	Н	0.10	0.011	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
1,1-Dichloropropene	ND	Н	0.10	0.017	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
Benzene	ND	Н	0.020	0.010	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
1,2-Dichloroethane	ND	Н	0.10	0.0070	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
Trichloroethene	ND	Н	0.025	0.0076	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
1,2-Dichloropropane	ND	Н	0.12	0.030	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
Dibromomethane	ND	Н	0.10	0.022	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
Bromodichloromethane	ND	Н	0.10	0.062	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
cis-1,3-Dichloropropene	ND	Н	0.10	0.020	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
Toluene	ND		0.10	0.013	mg/Kg		10/10/22 15:46	10/22/22 07:45	1

Eurofins Spokane

Job ID: 590-18915-1

Client: Hart & Hickman, PC Project/Site: NWMS Puyallup

Lab Sample ID: 590-18915-9 **Client Sample ID: TB-1** Date Collected: 10/03/22 00:00

Matrix: Solid

Date Received: 10/10/22 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	ND	Н	0.10	0.026	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
1,1,2-Trichloroethane	ND	Н	0.10	0.035	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
Tetrachloroethene	ND	Н	0.040	0.018	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
1,3-Dichloropropane	ND	Н	0.10	0.030	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
Dibromochloromethane	ND	Н	0.20	0.016	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
1,2-Dibromoethane (EDB)	ND	Н	0.10	0.033	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
Chlorobenzene	ND	Н	0.10	0.021	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
Ethylbenzene	ND	Н	0.10	0.016	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
1,1,1,2-Tetrachloroethane	ND	Н	0.10	0.019	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
1,1,2,2-Tetrachloroethane	ND	Н	0.10	0.029	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
m,p-Xylene	ND	Н	0.40	0.029	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
o-Xylene	ND	Н	0.20	0.023	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
Styrene	ND	Н	0.10	0.024	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
Bromoform	ND	Н	0.20	0.019	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
Isopropylbenzene	ND	Н	0.10	0.031	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
Bromobenzene	ND	Н	0.10	0.022	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
N-Propylbenzene	ND	Н	0.10	0.026	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
1,2,3-Trichloropropane	ND	Н	0.20	0.036	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
2-Chlorotoluene	ND	Н	0.10	0.016	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
1,3,5-Trimethylbenzene	ND	Н	0.10	0.032	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
4-Chlorotoluene	ND	Н	0.10	0.0087	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
tert-Butylbenzene	ND	Н	0.10	0.019	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
1,2,4-Trimethylbenzene	ND	Н	0.10	0.023	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
sec-Butylbenzene	ND	Н	0.10	0.019	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
1,3-Dichlorobenzene	ND	Н	0.10	0.013	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
p-Isopropyltoluene	ND	Н	0.10	0.020	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
1,4-Dichlorobenzene	ND	Н	0.10	0.021	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
n-Butylbenzene	ND	Н	0.10	0.027	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
1,2-Dichlorobenzene	ND	Н	0.10	0.023	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
1,2-Dibromo-3-Chloropropane	ND	Н	0.50	0.060	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
1,2,4-Trichlorobenzene	ND	Н	0.10	0.018	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
1,2,3-Trichlorobenzene	ND	Н	0.10	0.033	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
Hexachlorobutadiene	ND	Н	0.10	0.016	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
Naphthalene	ND	Н	0.20	0.028	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
Methyl tert-butyl ether	ND	Н	0.050	0.030	mg/Kg		10/10/22 15:46	10/22/22 07:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		80 - 120				10/10/22 15:46	10/22/22 07:45	1
4-Bromofluorobenzene (Surr)	98		76 - 122				10/10/22 15:46	10/22/22 07:45	1
Dibromofluoromethane (Surr)	99		80 - 120				10/10/22 15:46	10/22/22 07:45	1

Client Sample ID: MW-2 Lab Sample ID: 590-18915-10 Date Collected: 10/07/22 09:10 **Matrix: Water**

75 - 129

102

Date Received: 10/10/22 09:00

1,2-Dichloroethane-d4 (Surr)

Method: SW846 8260D - Ve	olatile Organic Compounds	by GC/MS						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND ND	2.0	0.64	ug/L			10/13/22 12:08	1
Chloromethane	ND	3.0	0.50	ua/L			10/13/22 12:08	1

Eurofins Spokane

10/10/22 15:46 10/22/22 07:45

Page 26 of 79

10/25/2022

Client: Hart & Hickman, PC Job ID: 590-18915-1

Project/Site: NWMS Puyallup

Client Sample ID: MW-2 Lab Sample ID: 590-18915-10

Date Collected: 10/07/22 09:10 Matrix: Water Date Received: 10/10/22 09:00

Vinyl chloride ND 0.40 0.13 ug/L Bromomethane ND 5.0 0.76 ug/L Chloroethane ND 5.0 0.76 ug/L Trichlorofluoromethane ND 1.0 0.20 ug/L I.1-Dichloroethene ND 1.0 0.20 ug/L Methylene Chloride ND 1.0 0.20 ug/L I.1-Dichloroethene ND 1.0 0.29 ug/L I.1-Dichloroptopropane ND 1.0 0.29 ug/L Seromochloromethane ND 1.0 0.23 ug/L Bromochloromethane ND 1.0 0.24 ug/L Chloroform ND 1.0 0.24 ug/L Chloroform ND 1.0 0.44 ug/L Chloroform ND 1.0 0.40 ug/L 1.1-Inchloroethane ND 1.0 0.40 ug/L 1.1-Dichloropropene ND 1.0 0.21	Prepared Analyzed Dil Fac
Chloroethane ND 2.0 0.40 ug/L Trichlorofluoromethane ND 1 1.0 0.20 ug/L Methylene Chloride ND 5.0 2.2 ug/L trans-1,2-Dichloroethene ND 1.0 0.20 ug/L 1,1-Dichloroethane ND 1.0 0.29 ug/L 2,2-Dichloroethane ND 1.0 0.29 ug/L Bromochloromethane ND 1.0 0.23 ug/L Bromochloromethane ND 1.0 0.24 ug/L Carbon tetrachloride ND 1.0 0.24 ug/L 1,1-I-Trichloroethane ND 1.0 0.40 ug/L 1,1-Dichloropropene ND 1.0 0.40 ug/L Benzene ND 1.0 0.50 ug/L Benzene ND 1.0 0.23 ug/L 1,2-Dichloropropane ND 1.0 0.23 ug/L 1,2-Dichloropropane ND <td< td=""><td>10/13/22 12:08</td></td<>	10/13/22 12:08
Trichlorofluoromethane ND *1	10/13/22 12:08 1
1,1-Dichloroethene ND 1.0 0.20 ug/L Methylene Chloride ND 5.0 2.2 ug/L trans-1,2-Dichloroethene ND 1.0 0.29 ug/L 1,1-Dichloroethane ND 1.0 0.29 ug/L 2,2-Dichloroethane ND 1.0 0.23 ug/L Bromochloromethane ND 1.0 0.23 ug/L Chloroform ND 1.0 0.24 ug/L Chloroform ND 1.0 0.17 ug/L 1,1-Trichloroethane ND 1.0 0.10 ug/L 1,1-Dichloropropene ND 1.0 0.50 ug/L Benzene ND 1.0 0.03 ug/L 1,1-Dichloropropene ND 1.0 0.03 ug/L Trichloroethane ND 1.0 0.03 ug/L Trichloroethane ND 1.0 0.23 ug/L Dibromodichloromethane ND 1.0 0.25 <td>10/13/22 12:08 1</td>	10/13/22 12:08 1
Methylene Chloride ND 5.0 2.2 ug/L trans-1,2-Dichloroethene ND 1.0 0.20 ug/L 1,1-Dichloroethane ND 1.0 0.29 ug/L 2,2-Dichloropropane ND 2.0 0.66 ug/L cis-1,2-Dichloroethane ND 1.0 0.23 ug/L Bromochloromethane ND 1.0 0.24 ug/L Chloroform ND 1.0 0.44 ug/L Chloroform ND 1.0 0.42 ug/L 1,1-1-Trichloroethane ND 1.0 0.40 ug/L 1,1-Dichloropropene ND 1.0 0.40 ug/L Benzene ND 1.0 0.40 ug/L 1,2-Dichloropropene ND 1.0 0.33 ug/L 1,2-Dichloropropane ND 1.0 0.23 ug/L 1,2-Dichloropropane ND 1.0 0.23 ug/L Dibromodthane ND 1.0 0	10/13/22 12:08 1
trans-1,2-Dichloroethene ND 1.0 0.20 ug/L 1,1-Dichloroethane ND 1.0 0.29 ug/L 2,2-Dichloroethane ND 1.0 0.29 ug/L cis-1,2-Dichloroethene ND 1.0 0.23 ug/L Bromochloromethane ND 1.0 0.24 ug/L Chloroform ND 1.0 0.44 ug/L 1,1-Dichloroethane ND 1.0 0.40 ug/L Carbon tetrachloride ND 1.0 0.40 ug/L 1,1-Dichloropropene ND 1.0 0.50 ug/L 1,2-Dichloropropene ND 1.0 0.50 ug/L 1,2-Dichloroethane ND 1.0 0.23 ug/L 1,2-Dichloropropane ND 1.0 0.23 ug/L 1,2-Dichloropropane ND 1.0 0.29 ug/L 1,2-Dichloropropane ND 1.0 0.29 ug/L 1,2-Dichloropropene ND <	10/13/22 12:08 1
1,1-Dichloroethane ND 1.0 0.29 ug/L 2,2-Dichloroethene ND 2.0 0.66 ug/L Bromochloromethane ND 1.0 0.23 ug/L Bromochloromethane ND 2.0 0.44 ug/L Chloroform ND 1.0 0.24 ug/L 1,1-Trichloroethane ND 1.0 0.017 ug/L Carbon tetrachloride ND 1.0 0.040 ug/L 1,1-Dichloropropene ND 1.0 0.50 ug/L 1,1-Dichloropropene ND 1.0 0.031 ug/L Benzene ND 1.0 0.031 ug/L 1,2-Dichloroptopane ND 1.0 0.31 ug/L 1,2-Dichloroptopane ND 1.0 0.20 ug/L Dibromoethane ND 1.0 0.25 ug/L Toluene ND 1.0 0.25 ug/L Tetrachloropropene ND 1.0 0.45 ug/L Tetrachloropropane ND 1.0 0.43 <t< td=""><td>10/13/22 12:08 1</td></t<>	10/13/22 12:08 1
2,2-Dichloropropane ND 2.0 0.66 ug/L cis-1,2-Dichloroethene ND 1.0 0.23 ug/L Bromochloromethane ND 2.0 0.44 ug/L Chloroform ND 1.0 0.24 ug/L 1,1,1-Trichloroethane ND 1.0 0.40 ug/L 1,1-Dichloropropene ND 1.0 0.40 ug/L Benzene ND 1.0 0.50 ug/L 1,2-Dichloroethane ND 1.0 0.31 ug/L Trichloroethane ND 1.0 0.20 ug/L 1,2-Dichloropropane ND 1.0 0.20 ug/L Dibromomethane ND 1.0 0.20 ug/L Bromodichloromethane ND 1.0 0.29 ug/L Toluene ND 1.0 0.29 ug/L Toluene ND 1.0 0.45 ug/L trans-1,3-Dichloropropene ND 1.0 0.43	10/13/22 12:08 1
cis-1,2-Dichloroethene ND 1.0 0.23 ug/L Bromochloromethane ND 2.0 0.44 ug/L Chloroform ND 1.0 0.24 ug/L 1,1-1-Tichloroethane ND 1.0 0.40 ug/L 1,1-Dichloropropene ND 1.0 0.50 ug/L Benzene ND 1.0 0.50 ug/L 1,2-Dichloroethane ND 1.0 0.31 ug/L Trichloroethene ND 1.0 0.20 ug/L 1,2-Dichloroptopene ND 1.0 0.23 ug/L 1,2-Dichloropropane ND 1.0 0.23 ug/L Dibromoethane ND 1.0 0.23 ug/L Bromodichloromethane ND 1.0 0.25 ug/L Toluene ND 1.0 0.25 ug/L Toluene ND 1.0 0.45 ug/L Tatrachloroethane ND 2.0 0.43 ug/	10/13/22 12:08 1
Bromochloromethane ND 2.0 0.44 ug/L Chloroform ND 1.0 0.24 ug/L Carbon tetrachloride ND 1.0 0.17 ug/L Carbon tetrachloride ND 1.0 0.40 ug/L 1,1-Dichloropropene ND 1.0 0.50 ug/L Benzene ND 0.40 0.093 ug/L 1,2-Dichloroethane ND 1.0 0.31 ug/L Trichloroethane ND 1.0 0.20 ug/L Dibromomethane ND 1.0 0.23 ug/L Dibromomethane ND 1.0 0.29 ug/L Bromodichloromethane ND 1.0 0.29 ug/L Tollorene ND 1.0 0.25 ug/L Tollorence ND 1 0 0.25 ug/L Tollorepropene ND 1 0 0.22 ug/L Tetrachloroethane ND ***1	10/13/22 12:08 1
Chloroform ND 1.0 0.24 ug/L 1,1,1-Trichloroethane ND 1.0 0.17 ug/L Carbon tetrachloride ND 1.0 0.40 ug/L 1,1-Dichloropropene ND 1.0 0.50 ug/L Benzene ND 0.40 0.093 ug/L 1,2-Dichloropthane ND 1.0 0.31 ug/L Trichloroethene ND 1.0 0.20 ug/L Dibromomethane ND 1.0 0.23 ug/L Bromodichloromethane ND 1.0 0.29 ug/L Bromodichloromethane ND 1.0 0.29 ug/L Bromodichloromethane ND 1.0 0.29 ug/L Bromodichloromethane ND 1.0 0.25 ug/L Toluene ND 1.0 0.25 ug/L Toluene ND 1.0 0.45 ug/L Talas-1,2-Dichloropropene ND 1.0 0.45	10/13/22 12:08 1
1,1,1-Trichloroethane ND 1.0 0.17 ug/L Carbon tetrachloride ND 1.0 0.40 ug/L 1,1-Dichloropropene ND 1.0 0.50 ug/L Benzene ND 0.40 0.093 ug/L 1,2-Dichloroethane ND 1.0 0.20 ug/L Trichloroethene ND 1.0 0.23 ug/L 1,2-Dichloropropane ND 1.0 0.23 ug/L Dibromoethane ND 1.0 0.23 ug/L Bromodichloromethane ND 1.0 0.29 ug/L Bromodichloromethane ND 1.0 0.29 ug/L Tolluene ND 1 0 0.25 ug/L Tolluene ND 1 0 0.21 ug/L Tetrachloropropene ND 1.0 0.45 ug/L 1,1,2-Trichloroethane ND 2.0 0.43 ug/L 1,1,2-Tichloropropane ND 2.0 0.33 ug/L Dibromochloromethane ND 1	10/13/22 12:08 1
Carbon tetrachloride ND 1.0 0.40 ug/L 1,1-Dichloropropene ND 1.0 0.50 ug/L Benzene ND 0.40 0.093 ug/L 1,2-Dichloroethane ND 1.0 0.31 ug/L Trichloroethene ND 1.0 0.20 ug/L 1,2-Dichloropropane ND 1.0 0.23 ug/L Dibromomethane ND 1.0 0.23 ug/L Bromodichloromethane ND 1.0 0.25 ug/L Bromodichloropropene ND 1.0 0.25 ug/L Toluene ND 1.0 0.25 ug/L ternas-1,3-Dichloropropene ND 1.0 0.25 ug/L Tetrachloroethane ND 1.0 0.22 ug/L	10/13/22 12:08 1
Carbon tetrachloride ND 1.0 0.40 ug/L 1,1-Dichloropropene ND 1.0 0.50 ug/L Benzene ND 0.40 0.093 ug/L 1,2-Dichloroethane ND 1.0 0.31 ug/L Trichloroethene ND 1.0 0.20 ug/L 1,2-Dichloropropane ND 1.0 0.23 ug/L Dibromomethane ND 1.0 0.23 ug/L Bromodichloromethane ND 1.0 0.25 ug/L Bromodichloropropene ND 1.0 0.25 ug/L Toluene ND 1.0 0.25 ug/L ternas-1,3-Dichloropropene ND 1.0 0.25 ug/L Tetrachloroethane ND 1.0 0.22 ug/L	10/13/22 12:08 1
1,1-Dichloropropene ND 1.0 0.50 ug/L Benzene ND 0.40 0.093 ug/L 1,2-Dichloroethane ND 1.0 0.31 ug/L Trichloroethene ND 1.0 0.20 ug/L 1,2-Dichloropropane ND 1.0 0.23 ug/L Dibromomethane ND 1.0 0.29 ug/L Bromodichloromethane ND 1.0 0.29 ug/L cis-1,3-Dichloropropene ND 1.0 0.25 ug/L Toluene ND 1 1.0 0.25 ug/L trans-1,3-Dichloropropene ND 1.0 0.45 ug/L 1,1,2-Trichloroethane ND 1.0 0.45 ug/L 1,1,2-Tichloropropane ND 2.0 0.43 ug/L 1,2-Dibromochloromethane ND 2.0 0.33 ug/L 1,2-Dibromochlaromethane (EDB) ND * 1.0 0.20 ug/L Chlorobenzene ND 1.0 0.20 ug/L Ethylbenzene	10/13/22 12:08 1
Benzene ND 0.40 0.093 ug/L 1,2-Dichloroethane ND 1.0 0.31 ug/L Trichloroethene ND 1.0 0.20 ug/L 1,2-Dichloropropane ND 1.0 0.23 ug/L Dibromomethane ND 1.0 0.29 ug/L Bromodichloromethane ND 1.0 0.29 ug/L cis-1,3-Dichloropropene ND 1.0 0.25 ug/L Toluene ND 1.1 0.025 ug/L Toluene ND 1.0 0.45 ug/L Toluene ND 1.0 0.45 ug/L Toluene ND 1.0 0.45 ug/L Itaras-1,3-Dichloropropene ND 1.0 0.45 ug/L Itaras-1,3-Dichloropropene ND 2.0 0.43 ug/L Tetrachloroethane ND 2.0 0.43 ug/L Tetrachloroethane ND 2.0 0.21 u	10/13/22 12:08 1
1,2-Dichloroethane ND 1.0 0.31 ug/L Trichloroethene ND 1.0 0.20 ug/L 1,2-Dichloropropane ND 1.0 0.23 ug/L Dibromomethane ND 1.0 0.23 ug/L Bromodichloromethane ND 1.0 0.29 ug/L cis-1,3-Dichloropropene ND 1.0 0.25 ug/L Toluene ND 1 1.0 0.31 ug/L trans-1,3-Dichloropropene ND 1.0 0.45 ug/L 1,1-2-Trichloroethane ND 2.0 0.43 ug/L 1,1-2-Trichloroethane ND **1 1.0 0.22 ug/L 1,3-Dichloropropane ND **1 1.0 0.22 ug/L 1,3-Dichloromethane ND **2.0 0.33 ug/L 1,2-Dibromoethane (EDB) ND **1 0 0.20 ug/L 1,1,1,2-Tetrachloroethane ND 1.0 0.48 ug/L<	10/13/22 12:08 1
Trichloroethene ND 1.0 0.20 ug/L 1,2-Dichloropropane ND 1.0 0.23 ug/L Dibromomethane ND 2.0 0.50 ug/L Bromodichloromethane ND 1.0 0.29 ug/L cis-1,3-Dichloropropene ND 1.0 0.25 ug/L Toluene ND *1 1.0 0.31 ug/L trans-1,3-Dichloropropene ND 1.0 0.45 ug/L 1,1,2-Trichloroethane ND 2.0 0.43 ug/L 1,1,2-Trichloroethane ND 2.0 0.43 ug/L 1,3-Dichloropropane ND 2.0 0.21 ug/L 1,3-Dichloropropane ND 2.0 0.23 ug/L 1,2-Dibromoethane (EDB) ND *+ 1.0 0.20 ug/L Chlorobenzene ND 1.0 0.20 ug/L Ethylbenzene ND 1.0 0.24 ug/L 1,1,1,2-Tetrachloroethan	10/13/22 12:08 1
1,2-Dichloropropane ND 1.0 0.23 ug/L Dibromomethane ND 2.0 0.50 ug/L Bromodichloromethane ND 1.0 0.29 ug/L cis-1,3-Dichloropropene ND 1.0 0.25 ug/L Toluene ND 1 1.0 0.31 ug/L trans-1,3-Dichloropropene ND 1.0 0.45 ug/L 1,1,2-Trichloroethane ND 2.0 0.43 ug/L Tetrachloroethene ND 2.0 0.43 ug/L 1,3-Dichloropropane ND 2.0 0.21 ug/L 1,3-Dichloropropane ND 2.0 0.23 ug/L 1,3-Dichloropropane ND 1.0 0.20 ug/L 1,2-Dibromochane ND 1.0 0.20 ug/L Ethylbenzene ND	10/13/22 12:08 1
Dibromomethane ND 2.0 0.50 ug/L Bromodichloromethane ND 1.0 0.29 ug/L cis-1,3-Dichloropropene ND 1.0 0.25 ug/L Toluene ND *1 1.0 0.31 ug/L trans-1,3-Dichloropropene ND 1.0 0.45 ug/L 1,1,2-Trichloroethane ND 2.0 0.43 ug/L 1,1,2-Trichloroethane ND 2.0 0.43 ug/L Tetrachloroethane ND 2.0 0.21 ug/L 1,3-Dichloropropane ND 2.0 0.21 ug/L 1,3-Dichloropropane ND 2.0 0.21 ug/L 1,3-Dichloropropane ND 2.0 0.33 ug/L 1,2-Dibromoethane (EDB) ND ** 1.0 0.20 ug/L Chlorobenzene ND 1.0 0.20 ug/L Ethylbenzene ND 1.0 0.22 ug/L 1,1,1,2-Tetrachloroeth	10/13/22 12:08 1
Bromodichloromethane ND 1.0 0.29 ug/L cis-1,3-Dichloropropene ND 1.0 0.25 ug/L Toluene ND *1 1.0 0.31 ug/L trans-1,3-Dichloropropene ND 1.0 0.45 ug/L 1,1,2-Trichloroethane ND 2.0 0.43 ug/L Tetrachloroethane ND 2.0 0.43 ug/L 1,3-Dichloropropane ND 2.0 0.21 ug/L 1,3-Dichloropropane ND 2.0 0.21 ug/L 1,3-Dichloropropane ND 2.0 0.21 ug/L 1,3-Dichloropropane ND 2.0 0.33 ug/L 1,2-Dibromoethane ND 2.0 0.33 ug/L 1,2-Dibromoethane (EDB) ND 1.0 0.22 ug/L Ethylbenzene ND 1.0 0.24 ug/L Ethylbenzene ND 1.0 0.24 ug/L 1,1,2,2-Tetrachloroethane <td< td=""><td>10/13/22 12:08 1</td></td<>	10/13/22 12:08 1
cis-1,3-Dichloropropene ND 1.0 0.25 ug/L Toluene ND *1 1.0 0.31 ug/L trans-1,3-Dichloropropene ND 1.0 0.45 ug/L 1,1,2-Trichloroethane ND 2.0 0.43 ug/L Tetrachloroethene ND *** *1 1.0 0.22 ug/L 1,3-Dichloropropane ND 2.0 0.21 ug/L Dibromochloromethane ND 2.0 0.33 ug/L L)2-Dibromoethane (EDB) ND *+ 1.0 0.20 ug/L Chlorobenzene ND 1.0 0.20 ug/L Ethylbenzene ND 1.0 0.20 ug/L Ethylbenzene ND 1.0 0.24 ug/L 1,1,2,2-Tetrachloroethane ND 2.0 0.32 ug/L n,p-Xylene ND 1.0 0.24 ug/L o-Xylene ND 1.0 0.24 ug/L <td< td=""><td>10/13/22 12:08 1</td></td<>	10/13/22 12:08 1
Toluene ND *1 1.0 0.31 ug/L trans-1,3-Dichloropropene ND 1.0 0.45 ug/L 1,1,2-Trichloroethane ND 2.0 0.43 ug/L Tetrachloroethene ND **1 1.0 0.22 ug/L 1,3-Dichloropropane ND 2.0 0.21 ug/L Dibromochloromethane ND 2.0 0.33 ug/L 1,2-Dibromoethane (EDB) ND **+ 1.0 0.20 ug/L Chlorobenzene ND 1.0 0.32 ug/L Ethylbenzene ND 1.0 0.32 ug/L Ethylbenzene ND 1.0 0.20 ug/L 1,1,1,2-Tetrachloroethane ND 1.0 0.48 ug/L 1,1,2,2-Tetrachloroethane ND 2.0 0.32 ug/L m,p-Xylene ND 1.0 0.24 ug/L Styrene ND 1.0 0.24 ug/L Bromoform	10/13/22 12:08 1
trans-1,3-Dichloropropene ND 1.0 0.45 ug/L 1,1,2-Trichloroethane ND 2.0 0.43 ug/L Tetrachloroethene ND ++ *1 1.0 0.22 ug/L 1,3-Dichloropropane ND 2.0 0.21 ug/L Dibromochloromethane ND 2.0 0.33 ug/L 1,2-Dibromoethane (EDB) ND *+ *1 1.0 0.20 ug/L Chlorobenzene ND 1.0 0.32 ug/L Ethylbenzene ND 1.0 0.32 ug/L 1,1,1,2-Tetrachloroethane ND 1.0 0.20 ug/L 1,1,1,2-Tetrachloroethane ND 1.0 0.48 ug/L 1,1,2,2-Tetrachloroethane ND 2.0 0.32 ug/L m,p-Xylene ND 2.0 0.28 ug/L O-Xylene ND 1.0 0.16 ug/L Styrene ND 1.0 0.24 ug/L Bromoform ND 5.0 0.66 ug/L Isopropylbenzene ND 1.0 0.28 ug/L N-Propylbenzene ND 1.0 0.25 ug/L 1,2,3-Trichloropropane ND 2.0 0.50 ug/L 2-Chlorotoluene ND 1.0 0.36 ug/L 1,3,5-Trimethylbenzene ND 1.0 0.32 ug/L	10/13/22 12:08 1
1,1,2-Trichloroethane ND 2.0 0.43 ug/L Tetrachloroethene ND *+*1 1.0 0.22 ug/L 1,3-Dichloropropane ND 2.0 0.21 ug/L Dibromochloromethane ND 2.0 0.33 ug/L 1,2-Dibromoethane (EDB) ND *+ 1.0 0.20 ug/L Chlorobenzene ND 1.0 0.32 ug/L Ethylbenzene ND 1.0 0.20 ug/L 1,1,1,2-Tetrachloroethane ND 1.0 0.48 ug/L 1,1,2,2-Tetrachloroethane ND 2.0 0.32 ug/L m,p-Xylene ND 2.0 0.28 ug/L o-Xylene ND 1.0 0.16 ug/L Styrene ND 1.0 0.24 ug/L Bromoform ND 1.0 0.24 ug/L Bromobenzene ND 1.0 0.24 ug/L Bromobenzene ND 1.0 0.25 ug/L N-Propylbenzene ND 1.0 0.25 ug/L 1,2,3-Trichloropropane ND 1.0 0.36 ug/L 2-Chlorotoluene ND 1.0	10/13/22 12:08 1
Tetrachloroethene ND *+ *1 1.0 0.22 ug/L 1,3-Dichloropropane ND 2.0 0.21 ug/L Dibromochloromethane ND 2.0 0.33 ug/L 1,2-Dibromoethane (EDB) ND *+ 1.0 0.20 ug/L Chlorobenzene ND 1.0 0.32 ug/L Ethylbenzene ND 1.0 0.20 ug/L 1,1,1,2-Tetrachloroethane ND 1.0 0.48 ug/L 1,1,2,2-Tetrachloroethane ND 2.0 0.32 ug/L m,p-Xylene ND 2.0 0.28 ug/L o-Xylene ND 1.0 0.16 ug/L Styrene ND 1.0 0.24 ug/L Bromoform ND 1.0 0.24 ug/L Isopropylbenzene ND 1.0 0.24 ug/L Bromobenzene ND 1.0 0.28 ug/L N-Propylbenzene ND 1.0 0.25 ug/L 1,2,3-Trichloropropane ND 1.0 0.36 ug/L 2-Chlorotoluene ND 1.0 0.32 ug	10/13/22 12:08 1
1,3-Dichloropropane ND 2.0 0.21 ug/L Dibromochloromethane ND 2.0 0.33 ug/L 1,2-Dibromoethane (EDB) ND *+ 1.0 0.20 ug/L Chlorobenzene ND 1.0 0.32 ug/L Ethylbenzene ND 1.0 0.20 ug/L 1,1,1,2-Tetrachloroethane ND 1.0 0.48 ug/L 1,1,2,2-Tetrachloroethane ND 2.0 0.32 ug/L m,p-Xylene ND 2.0 0.28 ug/L o-Xylene ND 1.0 0.16 ug/L Styrene ND 1.0 0.24 ug/L Bromoform ND 5.0 0.66 ug/L Isopropylbenzene ND 1.0 0.24 ug/L Bromobenzene ND 1.0 0.28 ug/L N-Propylbenzene ND 1.0 0.25 ug/L 1,2,3-Trichloropropane ND 1.0 0.30 ug/L 2-Chlorotoluene ND 1.0 0.32 ug/L	10/13/22 12:08 1
Dibromochloromethane ND 2.0 0.33 ug/L 1,2-Dibromoethane (EDB) ND *+ 1.0 0.20 ug/L Chlorobenzene ND 1.0 0.32 ug/L Ethylbenzene ND 1.0 0.20 ug/L 1,1,1,2-Tetrachloroethane ND 1.0 0.48 ug/L 1,1,2,2-Tetrachloroethane ND 2.0 0.32 ug/L m,p-Xylene ND 2.0 0.28 ug/L o-Xylene ND 1.0 0.16 ug/L Styrene ND 1.0 0.24 ug/L Bromoform ND 5.0 0.66 ug/L Isopropylbenzene ND 1.0 0.24 ug/L Bromobenzene ND 1.0 0.25 ug/L N-Propylbenzene ND 1.0 0.25 ug/L 1,2,3-Trichloropropane ND 1.0 0.36 ug/L 2-Chlorotoluene ND 1.0 0.32	10/13/22 12:08 1
1,2-Dibromoethane (EDB) ND *+ 1.0 0.20 ug/L Chlorobenzene ND 1.0 0.32 ug/L Ethylbenzene ND 1.0 0.20 ug/L 1,1,1,2-Tetrachloroethane ND 1.0 0.48 ug/L 1,1,2,2-Tetrachloroethane ND 2.0 0.32 ug/L m,p-Xylene ND 2.0 0.28 ug/L o-Xylene ND 1.0 0.16 ug/L Styrene ND 1.0 0.24 ug/L Bromoform ND 5.0 0.66 ug/L Isopropylbenzene ND 1.0 0.24 ug/L Bromobenzene ND 1.0 0.28 ug/L N-Propylbenzene ND 1.0 0.25 ug/L 1,2,3-Trichloropropane ND 1.0 0.36 ug/L 2-Chlorotoluene ND 1.0 0.36 ug/L 1,3,5-Trimethylbenzene ND 1.0 0.32 ug/L	10/13/22 12:08 1
Chlorobenzene ND 1.0 0.32 ug/L Ethylbenzene ND 1.0 0.20 ug/L 1,1,1,2-Tetrachloroethane ND 1.0 0.48 ug/L 1,1,2,2-Tetrachloroethane ND 2.0 0.32 ug/L m,p-Xylene ND 2.0 0.28 ug/L o-Xylene ND 1.0 0.16 ug/L Styrene ND 1.0 0.24 ug/L Bromoform ND 5.0 0.66 ug/L Isopropylbenzene ND 1.0 0.24 ug/L Bromobenzene ND 1.0 0.28 ug/L N-Propylbenzene ND 1.0 0.25 ug/L 1,2,3-Trichloropropane ND 2.0 0.50 ug/L 2-Chlorotoluene ND 1.0 0.36 ug/L 1,3,5-Trimethylbenzene ND 1.0 0.32 ug/L	10/13/22 12:08 1
Ethylbenzene ND 1.0 0.20 ug/L 1,1,1,2-Tetrachloroethane ND 1.0 0.48 ug/L 1,1,2,2-Tetrachloroethane ND 2.0 0.32 ug/L m,p-Xylene ND 2.0 0.28 ug/L o-Xylene ND 1.0 0.16 ug/L Styrene ND 1.0 0.24 ug/L Bromoform ND 5.0 0.66 ug/L Isopropylbenzene ND 1.0 0.24 ug/L Bromobenzene ND 1.0 0.28 ug/L N-Propylbenzene ND 1.0 0.25 ug/L 1,2,3-Trichloropropane ND 2.0 0.50 ug/L 2-Chlorotoluene ND 1.0 0.36 ug/L 1,3,5-Trimethylbenzene ND 1.0 0.32 ug/L	10/13/22 12:08 1
1,1,1,2-Tetrachloroethane ND 1.0 0.48 ug/L 1,1,2,2-Tetrachloroethane ND 2.0 0.32 ug/L m,p-Xylene ND 2.0 0.28 ug/L o-Xylene ND 1.0 0.16 ug/L Styrene ND 1.0 0.24 ug/L Bromoform ND 5.0 0.66 ug/L Isopropylbenzene ND 1.0 0.24 ug/L Bromobenzene ND 1.0 0.28 ug/L N-Propylbenzene ND 1.0 0.25 ug/L 1,2,3-Trichloropropane ND 2.0 0.50 ug/L 2-Chlorotoluene ND 1.0 0.36 ug/L 1,3,5-Trimethylbenzene ND 1.0 0.32 ug/L	10/13/22 12:08 1
1,1,2,2-Tetrachloroethane ND 2.0 0.32 ug/L m,p-Xylene ND 2.0 0.28 ug/L o-Xylene ND 1.0 0.16 ug/L Styrene ND 1.0 0.24 ug/L Bromoform ND 5.0 0.66 ug/L Isopropylbenzene ND 1.0 0.24 ug/L Bromobenzene ND 1.0 0.28 ug/L N-Propylbenzene ND 1.0 0.25 ug/L 1,2,3-Trichloropropane ND 2.0 0.50 ug/L 2-Chlorotoluene ND 1.0 0.36 ug/L 1,3,5-Trimethylbenzene ND 1.0 0.32 ug/L	10/13/22 12:08 1
m,p-Xylene ND 2.0 0.28 ug/L o-Xylene ND 1.0 0.16 ug/L Styrene ND 1.0 0.24 ug/L Bromoform ND 5.0 0.66 ug/L Isopropylbenzene ND 1.0 0.24 ug/L Bromobenzene ND 1.0 0.28 ug/L N-Propylbenzene ND 1.0 0.25 ug/L 1,2,3-Trichloropropane ND 2.0 0.50 ug/L 2-Chlorotoluene ND 1.0 0.36 ug/L 1,3,5-Trimethylbenzene ND 1.0 0.32 ug/L	10/13/22 12:08 1
o-Xylene ND 1.0 0.16 ug/L Styrene ND 1.0 0.24 ug/L Bromoform ND 5.0 0.66 ug/L Isopropylbenzene ND 1.0 0.24 ug/L Bromobenzene ND 1.0 0.28 ug/L N-Propylbenzene ND 1.0 0.25 ug/L 1,2,3-Trichloropropane ND 2.0 0.50 ug/L 2-Chlorotoluene ND 1.0 0.36 ug/L 1,3,5-Trimethylbenzene ND 1.0 0.32 ug/L	10/13/22 12:08
Styrene ND 1.0 0.24 ug/L Bromoform ND 5.0 0.66 ug/L Isopropylbenzene ND 1.0 0.24 ug/L Bromobenzene ND 1.0 0.28 ug/L N-Propylbenzene ND 1.0 0.25 ug/L 1,2,3-Trichloropropane ND 2.0 0.50 ug/L 2-Chlorotoluene ND 1.0 0.36 ug/L 1,3,5-Trimethylbenzene ND 1.0 0.32 ug/L	10/13/22 12:08 1
Bromoform ND 5.0 0.66 ug/L Isopropylbenzene ND 1.0 0.24 ug/L Bromobenzene ND 1.0 0.28 ug/L N-Propylbenzene ND 1.0 0.25 ug/L 1,2,3-Trichloropropane ND 2.0 0.50 ug/L 2-Chlorotoluene ND 1.0 0.36 ug/L 1,3,5-Trimethylbenzene ND 1.0 0.32 ug/L	10/13/22 12:08 1
Isopropylbenzene ND 1.0 0.24 ug/L Bromobenzene ND 1.0 0.28 ug/L N-Propylbenzene ND 1.0 0.25 ug/L 1,2,3-Trichloropropane ND 2.0 0.50 ug/L 2-Chlorotoluene ND 1.0 0.36 ug/L 1,3,5-Trimethylbenzene ND 1.0 0.32 ug/L	10/13/22 12:08 1
Bromobenzene ND 1.0 0.28 ug/L N-Propylbenzene ND 1.0 0.25 ug/L 1,2,3-Trichloropropane ND 2.0 0.50 ug/L 2-Chlorotoluene ND 1.0 0.36 ug/L 1,3,5-Trimethylbenzene ND 1.0 0.32 ug/L	10/13/22 12:08 1
N-Propylbenzene ND 1.0 0.25 ug/L 1,2,3-Trichloropropane ND 2.0 0.50 ug/L 2-Chlorotoluene ND 1.0 0.36 ug/L 1,3,5-Trimethylbenzene ND 1.0 0.32 ug/L	10/13/22 12:08 1
1,2,3-Trichloropropane ND 2.0 0.50 ug/L 2-Chlorotoluene ND 1.0 0.36 ug/L 1,3,5-Trimethylbenzene ND 1.0 0.32 ug/L	10/13/22 12:08 1
2-Chlorotoluene ND 1.0 0.36 ug/L 1,3,5-Trimethylbenzene ND 1.0 0.32 ug/L	10/13/22 12:08 1
1,3,5-Trimethylbenzene ND 1.0 0.32 ug/L	10/13/22 12:08 1
-	
	10/13/22 12:08 1
	10/13/22 12:08 1
,	10/13/22 12:08 1
1,2,4-Trimethylbenzene ND 1.0 0.31 ug/L	10/13/22 12:08 1
sec-Butylbenzene ND 1.0 0.22 ug/L	10/13/22 12:08 1
1,3-Dichlorobenzene ND 1.0 0.14 ug/L p-Isopropyltoluene ND 1.0 0.27 ug/L	10/13/22 12:08 1 10/13/22 12:08 1

Eurofins Spokane

10/25/2022

1

6

8

10

11

Client: Hart & Hickman, PC Job ID: 590-18915-1

Project/Site: NWMS Puyallup

p-Terphenyl-d14

Client Sample ID: MW-2 Lab Sample ID: 590-18915-10

Date Collected: 10/07/22 09:10 **Matrix: Water** Date Received: 10/10/22 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		1.0	0.28	ug/L			10/13/22 12:08	1
n-Butylbenzene	ND		1.0	0.20	ug/L			10/13/22 12:08	1
1,2-Dichlorobenzene	ND		1.0	0.23	ug/L			10/13/22 12:08	1
1,2-Dibromo-3-Chloropropane	ND		10	1.5	ug/L			10/13/22 12:08	1
1,2,4-Trichlorobenzene	ND		1.0	0.16	ug/L			10/13/22 12:08	1
1,2,3-Trichlorobenzene	ND	*1	1.0	0.33	ug/L			10/13/22 12:08	1
Hexachlorobutadiene	ND		2.0	0.21	ug/L			10/13/22 12:08	1
Naphthalene	ND		2.0	0.63	ug/L			10/13/22 12:08	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			10/13/22 12:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	122	S1+	80 - 120					10/13/22 12:08	1
4-Bromofluorobenzene (Surr)	92		80 - 120					10/13/22 12:08	1
Dibromofluoromethane (Surr)	107		80 - 120					10/13/22 12:08	1
1,2-Dichloroethane-d4 (Surr)	101		80 - 120					10/13/22 12:08	1

Method: NWTPH-Gx - Northwe	st - Volatile	e Petroleu	m Products (GC/MS)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	36	J	150	31	ug/L			10/13/22 12:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		68 7 - 141			•		10/13/22 12:08	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.093	0.055	ug/L		10/10/22 12:44	10/10/22 17:45	1
2-Methylnaphthalene	ND		0.093	0.046	ug/L		10/10/22 12:44	10/10/22 17:45	1
1-Methylnaphthalene	ND		0.093	0.024	ug/L		10/10/22 12:44	10/10/22 17:45	1
Acenaphthylene	ND		0.093	0.017	ug/L		10/10/22 12:44	10/10/22 17:45	1
Acenaphthene	ND		0.093	0.023	ug/L		10/10/22 12:44	10/10/22 17:45	1
Fluorene	ND		0.093	0.017	ug/L		10/10/22 12:44	10/10/22 17:45	1
Phenanthrene	ND		0.093	0.058	ug/L		10/10/22 12:44	10/10/22 17:45	1
Anthracene	ND		0.093	0.026	ug/L		10/10/22 12:44	10/10/22 17:45	1
Fluoranthene	ND		0.093	0.018	ug/L		10/10/22 12:44	10/10/22 17:45	1
Pyrene	ND		0.093	0.027	ug/L		10/10/22 12:44	10/10/22 17:45	1
Benzo[a]anthracene	ND		0.093	0.012	ug/L		10/10/22 12:44	10/10/22 17:45	1
Chrysene	ND		0.093	0.010	ug/L		10/10/22 12:44	10/10/22 17:45	1
Benzo[b]fluoranthene	ND		0.093	0.026	ug/L		10/10/22 12:44	10/10/22 17:45	1
Benzo[k]fluoranthene	ND		0.093	0.016	ug/L		10/10/22 12:44	10/10/22 17:45	1
Benzo[a]pyrene	ND		0.093	0.012	ug/L		10/10/22 12:44	10/10/22 17:45	1
Indeno[1,2,3-cd]pyrene	ND		0.093	0.023	ug/L		10/10/22 12:44	10/10/22 17:45	1
Dibenz(a,h)anthracene	ND		0.093	0.014	ug/L		10/10/22 12:44	10/10/22 17:45	1
Benzo[g,h,i]perylene	ND		0.093	0.022	ug/L		10/10/22 12:44	10/10/22 17:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	65		42 - 121				10/10/22 12:44	10/10/22 17:45	1
2-Fluorobiphenyl (Surr)	60		50 - 120				10/10/22 12:44	10/10/22 17:45	1

Eurofins Spokane

10/25/2022

10/10/22 12:44 10/10/22 17:45

51 - 121

Client: Hart & Hickman, PC Job ID: 590-18915-1

Project/Site: NWMS Puyallup

Client Sample ID: MW-2 Lab Sample ID: 590-18915-10

Date Collected: 10/07/22 09:10 **Matrix: Water** Date Received: 10/10/22 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND		0.25	0.11	mg/L		10/11/22 12:56	10/12/22 00:02	1
(C10-C25)									
Residual Range Organics (RRO)	ND		0.41	0.12	mg/L		10/11/22 12:56	10/12/22 00:02	1
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	81		50 - 150				10/11/22 12:56	10/12/22 00:02	1
n-Triacontane-d62	78		50 - 150				10/11/22 12:56	10/12/22 00:02	1

Client Sample ID: MW-3 Lab Sample ID: 590-18915-11

Date Collected: 10/07/22 12:35 **Matrix: Water**

Date Received: 10/10/22 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		2.0	0.64	ug/L			10/13/22 12:51	1
Chloromethane	ND		3.0	0.50	ug/L			10/13/22 12:51	1
Vinyl chloride	ND		0.40	0.13	ug/L			10/13/22 12:51	1
Bromomethane	ND		5.0	0.76	ug/L			10/13/22 12:51	1
Chloroethane	ND		2.0	0.40	ug/L			10/13/22 12:51	1
Trichlorofluoromethane	ND	*1	1.0	0.20	ug/L			10/13/22 12:51	1
1,1-Dichloroethene	ND		1.0	0.20	ug/L			10/13/22 12:51	1
Methylene Chloride	ND		5.0	2.2	ug/L			10/13/22 12:51	1
trans-1,2-Dichloroethene	ND		1.0	0.20	ug/L			10/13/22 12:51	1
1,1-Dichloroethane	ND		1.0	0.29	ug/L			10/13/22 12:51	1
2,2-Dichloropropane	ND		2.0	0.66	ug/L			10/13/22 12:51	1
cis-1,2-Dichloroethene	ND		1.0	0.23	ug/L			10/13/22 12:51	1
Bromochloromethane	ND		2.0	0.44	ug/L			10/13/22 12:51	1
Chloroform	ND		1.0	0.24	ug/L			10/13/22 12:51	1
1,1,1-Trichloroethane	ND		1.0	0.17	ug/L			10/13/22 12:51	1
Carbon tetrachloride	ND		1.0	0.40	ug/L			10/13/22 12:51	1
1,1-Dichloropropene	ND		1.0	0.50	ug/L			10/13/22 12:51	1
Benzene	ND		0.40	0.093	ug/L			10/13/22 12:51	1
1,2-Dichloroethane	ND		1.0	0.31	ug/L			10/13/22 12:51	1
Trichloroethene	ND		1.0	0.20	ug/L			10/13/22 12:51	1
1,2-Dichloropropane	ND		1.0	0.23	ug/L			10/13/22 12:51	1
Dibromomethane	ND		2.0	0.50	ug/L			10/13/22 12:51	1
Bromodichloromethane	ND		1.0	0.29	ug/L			10/13/22 12:51	1
cis-1,3-Dichloropropene	ND		1.0	0.25	ug/L			10/13/22 12:51	1
Toluene	ND	*1	1.0	0.31	ug/L			10/13/22 12:51	1
trans-1,3-Dichloropropene	ND		1.0	0.45	ug/L			10/13/22 12:51	1
1,1,2-Trichloroethane	ND		2.0	0.43	ug/L			10/13/22 12:51	1
Tetrachloroethene	ND	*+ *1	1.0	0.22	ug/L			10/13/22 12:51	1
1,3-Dichloropropane	ND		2.0	0.21	ug/L			10/13/22 12:51	1
Dibromochloromethane	ND		2.0	0.33	ug/L			10/13/22 12:51	1
1,2-Dibromoethane (EDB)	ND	*+	1.0	0.20	ug/L			10/13/22 12:51	1
Chlorobenzene	ND		1.0	0.32	ug/L			10/13/22 12:51	1
Ethylbenzene	ND		1.0	0.20	ug/L			10/13/22 12:51	1
1,1,1,2-Tetrachloroethane	ND		1.0	0.48	ug/L			10/13/22 12:51	1
1,1,2,2-Tetrachloroethane	ND		2.0	0.32	ug/L			10/13/22 12:51	1
m,p-Xylene	ND		2.0		ug/L			10/13/22 12:51	1

Eurofins Spokane

Client: Hart & Hickman, PC Job ID: 590-18915-1

Project/Site: NWMS Puyallup

Client Sample ID: MW-3 Lab Sample ID: 590-18915-11

Date Collected: 10/07/22 12:35

Date Received: 10/10/22 09:00

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
o-Xylene	ND		1.0	0.16	ug/L			10/13/22 12:51	
Styrene	ND		1.0	0.24	ug/L			10/13/22 12:51	
Bromoform	ND		5.0	0.66	ug/L			10/13/22 12:51	
Isopropylbenzene	ND		1.0	0.24	ug/L			10/13/22 12:51	
Bromobenzene	ND		1.0	0.28	-			10/13/22 12:51	
N-Propylbenzene	ND		1.0	0.25	-			10/13/22 12:51	
1,2,3-Trichloropropane	ND		2.0		ug/L			10/13/22 12:51	
2-Chlorotoluene	ND		1.0	0.36	-			10/13/22 12:51	
1,3,5-Trimethylbenzene	ND		1.0		ug/L			10/13/22 12:51	
4-Chlorotoluene	ND		1.0		ug/L			10/13/22 12:51	,
tert-Butylbenzene	ND		1.0		ug/L			10/13/22 12:51	
1,2,4-Trimethylbenzene	ND		1.0		ug/L			10/13/22 12:51	
sec-Butylbenzene	ND		1.0		ug/L			10/13/22 12:51	,
1,3-Dichlorobenzene	ND		1.0	0.14	-			10/13/22 12:51	
p-Isopropyltoluene	ND		1.0	0.17	-			10/13/22 12:51	
1,4-Dichlorobenzene	ND		1.0	0.28				10/13/22 12:51	
n-Butylbenzene	ND		1.0	0.20	-			10/13/22 12:51	
1,2-Dichlorobenzene	ND		1.0		ug/L			10/13/22 12:51	
1,2-Dibromo-3-Chloropropane	ND		10		ug/L			10/13/22 12:51	,
1,2,4-Trichlorobenzene	ND ND		1.0		ug/L			10/13/22 12:51	,
1,2,3-Trichlorobenzene	ND ND	*1	1.0		ug/L ug/L			10/13/22 12:51	,
Hexachlorobutadiene	ND			0.33				10/13/22 12:51	
			2.0		-				
Naphthalene	ND		2.0	0.63	Ū			10/13/22 12:51	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			10/13/22 12:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	88		80 - 120					10/13/22 12:51	
4-Bromofluorobenzene (Surr)	100		80 - 120					10/13/22 12:51	1
Dibromofluoromethane (Surr)	106		80 - 120					10/13/22 12:51	
1,2-Dichloroethane-d4 (Surr)	104		80 - 120					10/13/22 12:51	
	707		00-120					10/10/22 12:01	
Method: NWTPH-Gx - Nortl	hwest - Volatile	Petroleu	m Products	(GC/MS)					
Analyte		Qualifier	RL	` MDĹ	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	33	J	150	31	ug/L			10/13/22 12:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		68.7 - 141					10/13/22 12:51	1
				(00/110					
Method: SW846 8270E SIM						_	_		
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.094	0.056	-		10/10/22 12:44	10/10/22 18:09	1
2-Methylnaphthalene	ND		0.094	0.046	-		10/10/22 12:44		1
1-Methylnaphthalene	ND		0.094	0.024				10/10/22 18:09	
Acenaphthylene	ND		0.094	0.017	-		10/10/22 12:44	10/10/22 18:09	•
Acenaphthene	ND		0.094	0.023	ug/L		10/10/22 12:44	10/10/22 18:09	•
Fluorene	ND		0.094	0.017	ug/L		10/10/22 12:44	10/10/22 18:09	
Phenanthrene	ND		0.094	0.059	ug/L		10/10/22 12:44	10/10/22 18:09	
	ND		0.094	0.026	ua/L		10/10/22 12:44	10/10/22 18:09	1
Anthracene	שוו		0.00.						
Anthracene Fluoranthene	ND ND		0.094	0.018	-			10/10/22 18:09	1

Eurofins Spokane

10/25/2022

2

3

5

7

9

4 4

Client: Hart & Hickman, PC Job ID: 590-18915-1 Project/Site: NWMS Puyallup

1,1,1-Trichloroethane

Carbon tetrachloride

1,1-Dichloropropene

1,2-Dichloroethane

Trichloroethene

Benzene

Client Sample ID: MW-3 Lab Sample ID: 590-18915-11

Date Collected: 10/07/22 12:35 **Matrix: Water** Date Received: 10/10/22 09:00

Method: SW846 8270E SIM - Semivolatile O	ganic Compounds (GC/MS SIM) (Continued)
	3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	ND		0.094	0.013	ug/L		10/10/22 12:44	10/10/22 18:09	1
Chrysene	ND		0.094	0.010	ug/L		10/10/22 12:44	10/10/22 18:09	1
Benzo[b]fluoranthene	ND		0.094	0.026	ug/L		10/10/22 12:44	10/10/22 18:09	1
Benzo[k]fluoranthene	ND		0.094	0.016	ug/L		10/10/22 12:44	10/10/22 18:09	1
Benzo[a]pyrene	ND		0.094	0.013	ug/L		10/10/22 12:44	10/10/22 18:09	1
Indeno[1,2,3-cd]pyrene	ND		0.094	0.023	ug/L		10/10/22 12:44	10/10/22 18:09	1
Dibenz(a,h)anthracene	ND		0.094	0.014	ug/L		10/10/22 12:44	10/10/22 18:09	1
Benzo[g,h,i]perylene	ND		0.094	0.022	ug/L		10/10/22 12:44	10/10/22 18:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	76		42 - 121				10/10/22 12:44	10/10/22 18:09	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	76		42 - 121	10/10/22 12:44	10/10/22 18:09	1
2-Fluorobiphenyl (Surr)	67		50 - 120	10/10/22 12:44	10/10/22 18:09	1
p-Terphenyl-d14	80		51 - 121	10/10/22 12:44	10/10/22 18:09	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Method: SW846 8260D - Volatile Organic Compounds by GC/MS

ND

ND

ND

ND

ND

ND

					-,				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND		0.24	0.11	mg/L		10/11/22 12:56	10/12/22 00:22	1
(C10-C25)									
Residual Range Organics (RRO)	0.15	J	0.40	0.12	mg/L		10/11/22 12:56	10/12/22 00:22	1
(C25-C36)									

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	90		50 - 150	10/11/22 12:56	10/12/22 00:22	1
n-Triacontane-d62	90		50 - 150	10/11/22 12:56	10/12/22 00:22	1

Lab Sample ID: 590-18915-12 Client Sample ID: MW-4

Date Collected: 10/07/22 07:50 Date Received: 10/10/22 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		2.0	0.64	ug/L			10/13/22 13:13	1
Chloromethane	ND		3.0	0.50	ug/L			10/13/22 13:13	1
Vinyl chloride	ND		0.40	0.13	ug/L			10/13/22 13:13	1
Bromomethane	ND		5.0	0.76	ug/L			10/13/22 13:13	1
Chloroethane	ND		2.0	0.40	ug/L			10/13/22 13:13	1
Trichlorofluoromethane	ND	*1	1.0	0.20	ug/L			10/13/22 13:13	1
1,1-Dichloroethene	ND		1.0	0.20	ug/L			10/13/22 13:13	1
Methylene Chloride	ND		5.0	2.2	ug/L			10/13/22 13:13	1
trans-1,2-Dichloroethene	ND		1.0	0.20	ug/L			10/13/22 13:13	1
1,1-Dichloroethane	ND		1.0	0.29	ug/L			10/13/22 13:13	1
2,2-Dichloropropane	ND		2.0	0.66	ug/L			10/13/22 13:13	1
cis-1,2-Dichloroethene	ND		1.0	0.23	ug/L			10/13/22 13:13	1
Bromochloromethane	ND		2.0	0.44	ug/L			10/13/22 13:13	1
Chloroform	ND		1.0	0.24	ug/L			10/13/22 13:13	1

1.0

1.0

1.0

0.40

1.0

1.0

0.17 ug/L

0.40 ug/L

0.50 ug/L

0.093 ug/L

0.31 ug/L

0.20 ug/L

Eurofins Spokane

10/13/22 13:13

10/13/22 13:13

10/13/22 13:13

10/13/22 13:13

10/13/22 13:13

10/13/22 13:13

Matrix: Water

Client: Hart & Hickman, PC Job ID: 590-18915-1

Project/Site: NWMS Puyallup

1,2-Dichloroethane-d4 (Surr)

Client Sample ID: MW-4 Lab Sample ID: 590-18915-12

Date Collected: 10/07/22 07:50 Matrix: Water Date Received: 10/10/22 09:00

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,2-Dichloropropane	ND		1.0	0.23	ug/L			10/13/22 13:13	1
Dibromomethane	ND		2.0	0.50	ug/L			10/13/22 13:13	1
Bromodichloromethane	ND		1.0	0.29	ug/L			10/13/22 13:13	1
cis-1,3-Dichloropropene	ND		1.0	0.25	ug/L			10/13/22 13:13	1
Toluene	ND	*1	1.0	0.31	ug/L			10/13/22 13:13	1
trans-1,3-Dichloropropene	ND		1.0	0.45	ug/L			10/13/22 13:13	1
1,1,2-Trichloroethane	ND		2.0	0.43	ug/L			10/13/22 13:13	1
Tetrachloroethene	ND	*+ *1	1.0	0.22	ug/L			10/13/22 13:13	1
1,3-Dichloropropane	ND		2.0	0.21	ug/L			10/13/22 13:13	1
Dibromochloromethane	ND		2.0	0.33	ug/L			10/13/22 13:13	1
1,2-Dibromoethane (EDB)	ND	*+	1.0	0.20	ug/L			10/13/22 13:13	1
Chlorobenzene	ND		1.0	0.32	ug/L			10/13/22 13:13	1
Ethylbenzene	ND		1.0	0.20	ug/L			10/13/22 13:13	1
1,1,1,2-Tetrachloroethane	ND		1.0	0.48	ug/L			10/13/22 13:13	1
1,1,2,2-Tetrachloroethane	ND		2.0	0.32	ug/L			10/13/22 13:13	1
m,p-Xylene	ND		2.0	0.28	ug/L			10/13/22 13:13	1
o-Xylene	ND		1.0	0.16	ug/L			10/13/22 13:13	1
Styrene	ND		1.0	0.24	ug/L			10/13/22 13:13	1
Bromoform	ND		5.0	0.66	ug/L			10/13/22 13:13	1
Isopropylbenzene	ND		1.0	0.24	ug/L			10/13/22 13:13	1
Bromobenzene	ND		1.0	0.28	ug/L			10/13/22 13:13	1
N-Propylbenzene	ND		1.0		ug/L			10/13/22 13:13	1
1,2,3-Trichloropropane	ND		2.0		ug/L			10/13/22 13:13	1
2-Chlorotoluene	ND		1.0		ug/L			10/13/22 13:13	1
1,3,5-Trimethylbenzene	ND		1.0		ug/L			10/13/22 13:13	1
4-Chlorotoluene	ND		1.0		ug/L			10/13/22 13:13	1
tert-Butylbenzene	ND		1.0		ug/L			10/13/22 13:13	1
1,2,4-Trimethylbenzene	ND		1.0		ug/L			10/13/22 13:13	1
sec-Butylbenzene	ND		1.0		ug/L			10/13/22 13:13	1
1,3-Dichlorobenzene	ND		1.0		ug/L			10/13/22 13:13	1
p-Isopropyltoluene	ND		1.0		ug/L			10/13/22 13:13	1
1,4-Dichlorobenzene	ND		1.0		ug/L			10/13/22 13:13	1
n-Butylbenzene	ND		1.0		ug/L			10/13/22 13:13	1
1,2-Dichlorobenzene	ND		1.0		ug/L			10/13/22 13:13	1
1,2-Dibromo-3-Chloropropane	ND		10		ug/L			10/13/22 13:13	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			10/13/22 13:13	1
1,2,3-Trichlorobenzene	ND	*1	1.0		ug/L			10/13/22 13:13	1
Hexachlorobutadiene	ND		2.0		ug/L			10/13/22 13:13	1
Naphthalene	ND		2.0		ug/L			10/13/22 13:13	1
Methyl tert-butyl ether	ND		1.0		ug/L			10/13/22 13:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	87		80 - 120			-		10/13/22 13:13	1
4-Bromofluorobenzene (Surr)	84		80 - 120					10/13/22 13:13	1
Dibromofluoromethane (Surr)	106		80 - 120					10/13/22 13:13	1
1.2 Dichloroothono d4 (Surr)	104		90 400					10/12/22 12:12	

Method: NWTPH-Gx - Northwe	st - Volatile	Petroleun	n Products	(GC/MS)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		150	31	ug/L			10/13/22 13:13	1

80 - 120

104

Eurofins Spokane

10/13/22 13:13

Page 32 of 79

2

3

6

8

10

Job ID: 590-18915-1

Analyzed

10/10/22 12:44 10/10/22 18:32

10/10/22 12:44 10/10/22 18:32

10/11/22 12:56 10/12/22 00:43

Prepared

Client: Hart & Hickman, PC Project/Site: NWMS Puyallup

Surrogate

Client Sample ID: MW-4 Lab Sample ID: 590-18915-12

Date Collected: 10/07/22 07:50 Matrix: Water Date Received: 10/10/22 09:00

Limits

%Recovery Qualifier

ND

ND

81

4-Bromofluorobenzene (Surr)	84	68.7 - 141					10/13/22 13:13	1
Method: SW846 8270E SIM	- Semivolatile Organic	Compounds ((GC/MS	SIM)				
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND ND	0.093	0.055	ug/L		10/10/22 12:44	10/10/22 18:32	1
2-Methylnaphthalene	ND	0.093	0.045	ug/L		10/10/22 12:44	10/10/22 18:32	1
1-Methylnaphthalene	ND	0.093	0.024	ug/L		10/10/22 12:44	10/10/22 18:32	1
Acenaphthylene	ND	0.093	0.017	ug/L		10/10/22 12:44	10/10/22 18:32	1

2 Modifyiliaphalaione	.,,,	0.000	0.010 49/2	10/10/22 12:11 10/10/22 10:02	
1-Methylnaphthalene	ND	0.093	0.024 ug/L	10/10/22 12:44 10/10/22 18:32	1
Acenaphthylene	ND	0.093	0.017 ug/L	10/10/22 12:44 10/10/22 18:32	1
Acenaphthene	ND	0.093	0.023 ug/L	10/10/22 12:44 10/10/22 18:32	1
Fluorene	ND	0.093	0.017 ug/L	10/10/22 12:44 10/10/22 18:32	1
Phenanthrene	ND	0.093	0.058 ug/L	10/10/22 12:44 10/10/22 18:32	1
Anthracene	ND	0.093	0.026 ug/L	10/10/22 12:44 10/10/22 18:32	1
Fluoranthene	ND	0.093	0.018 ug/L	10/10/22 12:44 10/10/22 18:32	1
Pyrene	ND	0.093	0.027 ug/L	10/10/22 12:44 10/10/22 18:32	1
Benzo[a]anthracene	ND	0.093	0.012 ug/L	10/10/22 12:44 10/10/22 18:32	1
Chrysene	ND	0.093	0.010 ug/L	10/10/22 12:44 10/10/22 18:32	1
Benzo[b]fluoranthene	ND	0.093	0.026 ug/L	10/10/22 12:44 10/10/22 18:32	1
Benzo[k]fluoranthene	ND	0.093	0.015 ug/L	10/10/22 12:44 10/10/22 18:32	1
Benzo[a]pyrene	ND	0.093	0.012 ug/L	10/10/22 12:44 10/10/22 18:32	1
Indeno[1,2,3-cd]pyrene	ND	0.093	0.023 ug/L	10/10/22 12:44 10/10/22 18:32	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	72	42 - 121	10/10/22 12:44	10/10/22 18:32	1
2-Fluorobiphenyl (Surr)	62	50 - 120	10/10/22 12:44	10/10/22 18:32	1
p-Terphenyl-d14	73	51 - 121	10/10/22 12:44	10/10/22 18:32	1

0.093

0.093

0.013 ug/L

0.022 ug/L

Method: NWTPH-Dx - Nor	thwest - Semi-Volatile Pet	roleum Prod	ucts (GC	c)				
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND -	0.24	0.11	mg/L		10/11/22 12:56	10/12/22 00:43	1
Residual Range Organics (RRO) (C25-C36)	ND	0.40	0.12	mg/L		10/11/22 12:56	10/12/22 00:43	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	85	50 - 150				10/11/22 12:56	10/12/22 00:43	1

Client Sample ID: MW-5

Date Collected: 10/07/22 10:35

Lab Sample ID: 590-18915-13

Matrix: Water

50 - 150

Date Received: 10/10/22 09:00

Dibenz(a,h)anthracene

Benzo[g,h,i]perylene

n-Triacontane-d62

Method: SW846 8260D - Vo	olatile Organic Com	pounds by GC/MS						
Analyte	Result Qual	ifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND ND	2.0	0.64	ug/L			10/13/22 13:35	1
Chloromethane	ND	3.0	0.50	ug/L			10/13/22 13:35	1
Vinyl chloride	ND	0.40	0.13	ug/L			10/13/22 13:35	1
Bromomethane	ND	5.0	0.76	ug/L			10/13/22 13:35	1
Chloroethane	ND	2.0	0.40	ug/L			10/13/22 13:35	1
Trichlorofluoromethane	ND *1	1.0	0.20	ug/L			10/13/22 13:35	1
1,1-Dichloroethene	ND	1.0	0.20	ug/L			10/13/22 13:35	1

Eurofins Spokane

Page 33 of 79

2

3

5

Dil Fac

7

9

10

11

17

10/25/2022

Client: Hart & Hickman, PC Job ID: 590-18915-1 Project/Site: NWMS Puyallup

Lab Sample ID: 590-18915-13 **Client Sample ID: MW-5** Date Collected: 10/07/22 10:35

Date Received: 10/10/22 09:00

Matrix: Water

Analyte	Result Qualifier	RL _		Unit	D	Prepared	Analyzed	Dil Fa
Methylene Chloride	ND	5.0		ug/L			10/13/22 13:35	
trans-1,2-Dichloroethene	ND	1.0	0.20	ug/L			10/13/22 13:35	
1,1-Dichloroethane	ND	1.0	0.29	ug/L			10/13/22 13:35	
2,2-Dichloropropane	ND	2.0	0.66	ug/L			10/13/22 13:35	
cis-1,2-Dichloroethene	ND	1.0	0.23	ug/L			10/13/22 13:35	
Bromochloromethane	ND	2.0	0.44	ug/L			10/13/22 13:35	
Chloroform	ND	1.0	0.24	ug/L			10/13/22 13:35	
1,1,1-Trichloroethane	ND	1.0	0.17	ug/L			10/13/22 13:35	
Carbon tetrachloride	ND	1.0	0.40	ug/L			10/13/22 13:35	
1,1-Dichloropropene	ND	1.0	0.50	ug/L			10/13/22 13:35	
Benzene	ND	0.40	0.093	ug/L			10/13/22 13:35	
1,2-Dichloroethane	ND	1.0	0.31	ug/L			10/13/22 13:35	
Trichloroethene	ND	1.0	0.20	ug/L			10/13/22 13:35	
1,2-Dichloropropane	ND	1.0	0.23	ug/L			10/13/22 13:35	
Dibromomethane	ND	2.0		ug/L			10/13/22 13:35	
Bromodichloromethane	ND	1.0		ug/L			10/13/22 13:35	
cis-1,3-Dichloropropene	ND	1.0		ug/L			10/13/22 13:35	
Toluene	ND *1	1.0		ug/L			10/13/22 13:35	
trans-1,3-Dichloropropene	ND	1.0		ug/L			10/13/22 13:35	
1,1,2-Trichloroethane	ND	2.0		ug/L			10/13/22 13:35	
Tetrachloroethene	ND *+ *1	1.0		ug/L			10/13/22 13:35	
1,3-Dichloropropane	ND	2.0		ug/L			10/13/22 13:35	
Dibromochloromethane	ND	2.0		ug/L			10/13/22 13:35	
1,2-Dibromoethane (EDB)	ND *+	1.0		ug/L			10/13/22 13:35	
Chlorobenzene	ND	1.0		ug/L			10/13/22 13:35	
Ethylbenzene	ND	1.0		ug/L			10/13/22 13:35	
1,1,1,2-Tetrachloroethane	ND	1.0		ug/L			10/13/22 13:35	
1,1,2,2-Tetrachloroethane	ND	2.0		ug/L			10/13/22 13:35	
m,p-Xylene	ND	2.0		ug/L			10/13/22 13:35	
o-Xylene	ND	1.0		ug/L			10/13/22 13:35	
Styrene	ND	1.0		ug/L			10/13/22 13:35	
Bromoform	ND	5.0		ug/L			10/13/22 13:35	
Isopropylbenzene	ND	1.0		ug/L			10/13/22 13:35	
Bromobenzene	ND	1.0		ug/L			10/13/22 13:35	
N-Propylbenzene	ND	1.0		ug/L			10/13/22 13:35	
1,2,3-Trichloropropane	· · · · · · · · · · · · · · · · · · ·	2.0		ug/L			10/13/22 13:35	
2-Chlorotoluene	ND ND	1.0		ug/L ug/L			10/13/22 13:35	
1,3,5-Trimethylbenzene	ND	1.0		ug/L ug/L			10/13/22 13:35	
4-Chlorotoluene	ND	1.0		ug/L			10/13/22 13:35	
tert-Butylbenzene	ND	1.0		ug/L ug/L			10/13/22 13:35	
1,2,4-Trimethylbenzene	ND	1.0					10/13/22 13:35	
	ND	1.0		ug/L				
sec-Butylbenzene 1,3-Dichlorobenzene	ND ND	1.0		ug/L			10/13/22 13:35 10/13/22 13:35	
	ND			ug/L				
p-Isopropyltoluene		1.0		ug/L			10/13/22 13:35	
1,4-Dichlorobenzene	ND ND	1.0		ug/L			10/13/22 13:35	
n-Butylbenzene	ND	1.0		ug/L			10/13/22 13:35	
1,2-Dichlorobenzene	ND ND	1.0		ug/L			10/13/22 13:35	
1,2-Dibromo-3-Chloropropane 1,2,4-Trichlorobenzene	ND ND	10 1.0		ug/L ug/L			10/13/22 13:35 10/13/22 13:35	

Eurofins Spokane

10/25/2022

Client: Hart & Hickman, PC Job ID: 590-18915-1

Project/Site: NWMS Puyallup

Client Sample ID: MW-5 Lab Sample ID: 590-18915-13

Date Collected: 10/07/22 10:35 **Matrix: Water** Date Received: 10/10/22 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3-Trichlorobenzene	ND	*1	1.0	0.33	ug/L			10/13/22 13:35	1
Hexachlorobutadiene	ND		2.0	0.21	ug/L			10/13/22 13:35	1
Naphthalene	ND		2.0	0.63	ug/L			10/13/22 13:35	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			10/13/22 13:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	83		80 - 120					10/13/22 13:35	1
4-Bromofluorobenzene (Surr)	90		80 - 120					10/13/22 13:35	1
Dibromofluoromethane (Surr)	106		80 - 120					10/13/22 13:35	1
1,2-Dichloroethane-d4 (Surr)	106		80 - 120					10/13/22 13:35	1

Method: NWTPH-Gx - Northw	est - Volatile	e Petroleu	m Products (GC/MS)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	32	J	150	31	ug/L			10/13/22 13:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		68.7 - 141			•		10/13/22 13:35	1

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.091	0.053	ug/L		10/10/22 12:44	10/10/22 18:55	1
2-Methylnaphthalene	ND		0.091	0.044	ug/L		10/10/22 12:44	10/10/22 18:55	1
1-Methylnaphthalene	ND		0.091	0.023	ug/L		10/10/22 12:44	10/10/22 18:55	1
Acenaphthylene	ND		0.091	0.016	ug/L		10/10/22 12:44	10/10/22 18:55	1
Acenaphthene	ND		0.091	0.022	ug/L		10/10/22 12:44	10/10/22 18:55	1
Fluorene	ND		0.091	0.016	ug/L		10/10/22 12:44	10/10/22 18:55	1
Phenanthrene	ND		0.091	0.056	ug/L		10/10/22 12:44	10/10/22 18:55	1
Anthracene	ND		0.091	0.025	ug/L		10/10/22 12:44	10/10/22 18:55	1
Fluoranthene	ND		0.091	0.017	ug/L		10/10/22 12:44	10/10/22 18:55	1
Pyrene	ND		0.091	0.026	ug/L		10/10/22 12:44	10/10/22 18:55	1
Benzo[a]anthracene	ND		0.091	0.012	ug/L		10/10/22 12:44	10/10/22 18:55	1
Chrysene	ND		0.091	0.010	ug/L		10/10/22 12:44	10/10/22 18:55	1
Benzo[b]fluoranthene	ND		0.091	0.025	ug/L		10/10/22 12:44	10/10/22 18:55	1
Benzo[k]fluoranthene	ND		0.091	0.015	ug/L		10/10/22 12:44	10/10/22 18:55	1
Benzo[a]pyrene	ND		0.091	0.012	ug/L		10/10/22 12:44	10/10/22 18:55	1
Indeno[1,2,3-cd]pyrene	ND		0.091	0.022	ug/L		10/10/22 12:44	10/10/22 18:55	1
Dibenz(a,h)anthracene	ND		0.091	0.013	ug/L		10/10/22 12:44	10/10/22 18:55	1
Benzo[g,h,i]perylene	ND		0.091	0.021	ug/L		10/10/22 12:44	10/10/22 18:55	1
Surrogate	%Recovery G	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	68		42 - 121				10/10/22 12:44	10/10/22 18:55	1
2-Fluorobiphenyl (Surr)	64		50 - 120				10/10/22 12:44	10/10/22 18:55	1

Method: NWTPH-Dx - Northwe	est - Semi-Volatile Petro	oleum Prod	ucts (GC	C)				
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND	0.25	0.11	mg/L		10/11/22 12:56	10/12/22 01:03	1
Residual Range Organics (RRO)	ND	0.41	0.12	mg/L		10/11/22 12:56	10/12/22 01:03	1

51 - 121

73

p-Terphenyl-d14

10/10/22 12:44 10/10/22 18:55

Client: Hart & Hickman, PC
Project/Site: NWMS Puyallup
Job ID: 590-18915-1

Client Sample ID: MW-5

Lab Sample ID: 590-18915-13

Date Collected: 10/07/22 10:35

Date Received: 10/10/22 09:00

Matrix: Water

 Surrogate
 %Recovery o-Terphenyl
 Qualifier
 Limits
 Prepared
 Analyzed
 Dil Fac

 0-Terphenyl
 84
 50 - 150
 10/11/22 12:56
 10/12/22 01:03
 1

 n-Triacontane-d62
 79
 50 - 150
 10/11/22 12:56
 10/12/22 01:03
 1

Client Sample ID: MW-6 Lab Sample ID: 590-18915-14

Date Collected: 10/07/22 13:35

Matrix: Water

Date Received: 10/10/22 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		2.0	0.64	ug/L			10/13/22 13:56	1
Chloromethane	ND		3.0	0.50	ug/L			10/13/22 13:56	1
Vinyl chloride	ND		0.40	0.13	ug/L			10/13/22 13:56	1
Bromomethane	ND		5.0	0.76	ug/L			10/13/22 13:56	1
Chloroethane	ND		2.0	0.40	ug/L			10/13/22 13:56	1
Trichlorofluoromethane	ND	*1	1.0	0.20	ug/L			10/13/22 13:56	1
1,1-Dichloroethene	ND		1.0	0.20	ug/L			10/13/22 13:56	1
Methylene Chloride	ND		5.0	2.2	ug/L			10/13/22 13:56	1
trans-1,2-Dichloroethene	ND		1.0	0.20	ug/L			10/13/22 13:56	1
1,1-Dichloroethane	ND		1.0	0.29	ug/L			10/13/22 13:56	1
2,2-Dichloropropane	ND		2.0	0.66	ug/L			10/13/22 13:56	1
cis-1,2-Dichloroethene	ND		1.0	0.23	ug/L			10/13/22 13:56	1
Bromochloromethane	ND		2.0	0.44	ug/L			10/13/22 13:56	1
Chloroform	ND		1.0	0.24	ug/L			10/13/22 13:56	1
1,1,1-Trichloroethane	ND		1.0	0.17	ug/L			10/13/22 13:56	1
Carbon tetrachloride	ND		1.0	0.40	ug/L			10/13/22 13:56	1
1,1-Dichloropropene	ND		1.0	0.50	ug/L			10/13/22 13:56	1
Benzene	ND		0.40	0.093	ug/L			10/13/22 13:56	1
1,2-Dichloroethane	ND		1.0	0.31	ug/L			10/13/22 13:56	1
Trichloroethene	ND		1.0	0.20	ug/L			10/13/22 13:56	1
1,2-Dichloropropane	ND		1.0	0.23	ug/L			10/13/22 13:56	1
Dibromomethane	ND		2.0	0.50	ug/L			10/13/22 13:56	1
Bromodichloromethane	ND		1.0	0.29	ug/L			10/13/22 13:56	1
cis-1,3-Dichloropropene	ND		1.0	0.25	ug/L			10/13/22 13:56	1
Toluene	ND	*1	1.0	0.31	ug/L			10/13/22 13:56	1
trans-1,3-Dichloropropene	ND		1.0	0.45	ug/L			10/13/22 13:56	1
1,1,2-Trichloroethane	ND		2.0	0.43	ug/L			10/13/22 13:56	1
Tetrachloroethene	ND	*+ *1	1.0	0.22	ug/L			10/13/22 13:56	1
1,3-Dichloropropane	ND		2.0	0.21	ug/L			10/13/22 13:56	1
Dibromochloromethane	ND		2.0	0.33	ug/L			10/13/22 13:56	1
1,2-Dibromoethane (EDB)	ND	*+	1.0	0.20	ug/L			10/13/22 13:56	1
Chlorobenzene	ND		1.0	0.32	ug/L			10/13/22 13:56	1
Ethylbenzene	ND		1.0	0.20	ug/L			10/13/22 13:56	1
1,1,1,2-Tetrachloroethane	ND		1.0	0.48	ug/L			10/13/22 13:56	1
1,1,2,2-Tetrachloroethane	ND		2.0	0.32	ug/L			10/13/22 13:56	1
m,p-Xylene	ND		2.0	0.28	ug/L			10/13/22 13:56	1
o-Xylene	ND		1.0	0.16	ug/L			10/13/22 13:56	1
Styrene	ND		1.0	0.24	ug/L			10/13/22 13:56	1
Bromoform	ND		5.0	0.66	ug/L			10/13/22 13:56	1
Isopropylbenzene	ND		1.0	0.24	ug/L			10/13/22 13:56	1
Bromobenzene	ND		1.0	0.28	ug/L			10/13/22 13:56	1

Eurofins Spokane

10/25/2022

2

3

5

6

8

10

4.0

Client: Hart & Hickman, PC Job ID: 590-18915-1

Project/Site: NWMS Puyallup

Client Sample ID: MW-6 Lab Sample ID: 590-18915-14

Date Collected: 10/07/22 13:35 **Matrix: Water** Date Received: 10/10/22 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
N-Propylbenzene	ND		1.0	0.25	ug/L			10/13/22 13:56	1
1,2,3-Trichloropropane	ND		2.0	0.50	ug/L			10/13/22 13:56	1
2-Chlorotoluene	ND		1.0	0.36	ug/L			10/13/22 13:56	1
1,3,5-Trimethylbenzene	ND		1.0	0.32	ug/L			10/13/22 13:56	1
4-Chlorotoluene	ND		1.0	0.26	ug/L			10/13/22 13:56	1
tert-Butylbenzene	ND		1.0	0.12	ug/L			10/13/22 13:56	1
1,2,4-Trimethylbenzene	ND		1.0	0.31	ug/L			10/13/22 13:56	1
sec-Butylbenzene	ND		1.0	0.22	ug/L			10/13/22 13:56	1
1,3-Dichlorobenzene	ND		1.0	0.14	ug/L			10/13/22 13:56	1
p-Isopropyltoluene	ND		1.0	0.27	ug/L			10/13/22 13:56	1
1,4-Dichlorobenzene	ND		1.0	0.28	ug/L			10/13/22 13:56	1
n-Butylbenzene	ND		1.0	0.20	ug/L			10/13/22 13:56	1
1,2-Dichlorobenzene	ND		1.0	0.23	ug/L			10/13/22 13:56	1
1,2-Dibromo-3-Chloropropane	ND		10	1.5	ug/L			10/13/22 13:56	1
1,2,4-Trichlorobenzene	ND		1.0	0.16	ug/L			10/13/22 13:56	1
1,2,3-Trichlorobenzene	ND	*1	1.0	0.33	ug/L			10/13/22 13:56	1
Hexachlorobutadiene	ND		2.0	0.21	ug/L			10/13/22 13:56	1
Naphthalene	ND		2.0	0.63	ug/L			10/13/22 13:56	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			10/13/22 13:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	88		80 - 120			-		10/13/22 13:56	1
4-Bromofluorobenzene (Surr)	103		80 - 120					10/13/22 13:56	1
Dibromofluoromethane (Surr)	109		80 - 120					10/13/22 13:56	1
1,2-Dichloroethane-d4 (Surr)	106		80 - 120					10/13/22 13:56	1

Method: NWTPH-Gx - Northw	est - Volatile	Petroleu	m Products (GC/MS)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	33	J	150	31	ug/L			10/13/22 13:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		68.7 - 141			-		10/13/22 13:56	1

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.093	0.055	ug/L		10/10/22 12:44	10/10/22 19:19	1
2-Methylnaphthalene	ND		0.093	0.046	ug/L		10/10/22 12:44	10/10/22 19:19	1
1-Methylnaphthalene	ND		0.093	0.024	ug/L		10/10/22 12:44	10/10/22 19:19	1
Acenaphthylene	ND		0.093	0.017	ug/L		10/10/22 12:44	10/10/22 19:19	1
Acenaphthene	ND		0.093	0.023	ug/L		10/10/22 12:44	10/10/22 19:19	1
Fluorene	ND		0.093	0.017	ug/L		10/10/22 12:44	10/10/22 19:19	1
Phenanthrene	ND		0.093	0.058	ug/L		10/10/22 12:44	10/10/22 19:19	1
Anthracene	ND		0.093	0.026	ug/L		10/10/22 12:44	10/10/22 19:19	1
Fluoranthene	ND		0.093	0.018	ug/L		10/10/22 12:44	10/10/22 19:19	1
Pyrene	ND		0.093	0.027	ug/L		10/10/22 12:44	10/10/22 19:19	1
Benzo[a]anthracene	ND		0.093	0.012	ug/L		10/10/22 12:44	10/10/22 19:19	1
Chrysene	ND		0.093	0.010	ug/L		10/10/22 12:44	10/10/22 19:19	1
Benzo[b]fluoranthene	ND		0.093	0.026	ug/L		10/10/22 12:44	10/10/22 19:19	1
Benzo[k]fluoranthene	ND		0.093	0.016	ug/L		10/10/22 12:44	10/10/22 19:19	1
Benzo[a]pyrene	ND		0.093	0.012	ug/L		10/10/22 12:44	10/10/22 19:19	1

Eurofins Spokane

Page 37 of 79

Client: Hart & Hickman, PC
Project/Site: NWMS Puyallup
Job ID: 590-18915-1

Client Sample ID: MW-6 Date Collected: 10/07/22 13:35 Lab Sample ID: 590-18915-14

Matrix: Water

Date Received: 10/10/22 09:00

Method: SW846 8270E S	IM - Semivolatile	Organic (compounds	(GC/MS	SIM) (Co	ontinue	ed)		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	ND		0.093	0.023	ug/L		10/10/22 12:44	10/10/22 19:19	1
Dibenz(a,h)anthracene	ND		0.093	0.013	ug/L		10/10/22 12:44	10/10/22 19:19	1
Benzo[g,h,i]perylene	ND		0.093	0.022	ug/L		10/10/22 12:44	10/10/22 19:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	72		42 - 121				10/10/22 12:44	10/10/22 19:19	1
2-Fluorobiphenyl (Surr)	65		50 - 120				10/10/22 12:44	10/10/22 19:19	1
n Tornhonyl d11	72		E1 101				10/10/22 12:11	10/10/22 10:10	1

- p- rerprierryi-u 14	73		31 - 121				10/10/22 12.44	10/10/22 19.19	,
Method: NWTPH-Dx - Northy	vest - Semi-V	olatile Pet	roleum Prod	ucts (G0	S)				
Analyte		Qualifier	RL	MDL	•	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		0.25	0.11	mg/L		10/11/22 12:56	10/12/22 01:24	1
Residual Range Organics (RRO) (C25-C36)	ND		0.41	0.12	mg/L		10/11/22 12:56	10/12/22 01:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	81		50 - 150				10/11/22 12:56	10/12/22 01:24	1
n-Triacontane-d62	76		50 - 150				10/11/22 12:56	10/12/22 01:24	1

Client Sample ID: DUP-1

Date Collected: 10/07/22 00:00

Lab Sample ID: 590-18915-15

Matrix: Water

Date Collected: 10/07/22 00:00 Matrix: Water Date Received: 10/10/22 09:00

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		2.0	0.64	ug/L			10/13/22 14:18	1
Chloromethane	ND		3.0	0.50	ug/L			10/13/22 14:18	1
Vinyl chloride	ND		0.40	0.13	ug/L			10/13/22 14:18	1
Bromomethane	ND		5.0	0.76	ug/L			10/13/22 14:18	1
Chloroethane	ND		2.0	0.40	ug/L			10/13/22 14:18	1
Trichlorofluoromethane	ND	*1	1.0	0.20	ug/L			10/13/22 14:18	1
1,1-Dichloroethene	ND		1.0	0.20	ug/L			10/13/22 14:18	1
Methylene Chloride	ND		5.0	2.2	ug/L			10/13/22 14:18	1
trans-1,2-Dichloroethene	ND		1.0	0.20	ug/L			10/13/22 14:18	1
1,1-Dichloroethane	ND		1.0	0.29	ug/L			10/13/22 14:18	1
2,2-Dichloropropane	ND		2.0	0.66	ug/L			10/13/22 14:18	1
cis-1,2-Dichloroethene	ND		1.0	0.23	ug/L			10/13/22 14:18	1
Bromochloromethane	ND		2.0	0.44	ug/L			10/13/22 14:18	1
Chloroform	ND		1.0	0.24	ug/L			10/13/22 14:18	1
1,1,1-Trichloroethane	ND		1.0	0.17	ug/L			10/13/22 14:18	1
Carbon tetrachloride	ND		1.0	0.40	ug/L			10/13/22 14:18	1
1,1-Dichloropropene	ND		1.0	0.50	ug/L			10/13/22 14:18	1
Benzene	ND		0.40	0.093	ug/L			10/13/22 14:18	1
1,2-Dichloroethane	ND		1.0	0.31	ug/L			10/13/22 14:18	1
Trichloroethene	ND		1.0	0.20	ug/L			10/13/22 14:18	1
1,2-Dichloropropane	ND		1.0	0.23	ug/L			10/13/22 14:18	1
Dibromomethane	ND		2.0	0.50	ug/L			10/13/22 14:18	1
Bromodichloromethane	ND		1.0	0.29	ug/L			10/13/22 14:18	1
cis-1,3-Dichloropropene	ND		1.0	0.25	ug/L			10/13/22 14:18	1
Toluene	ND	*1	1.0	0.31	ug/L			10/13/22 14:18	1

Eurofins Spokane

Page 38 of 79

2

3

0

<u>.</u> 8

3

11

12

Client: Hart & Hickman, PC

Job ID: 590-18915-1

Project/Site: NWMS Puyallup

Client Sample ID: DUP-1 Lab Sample ID: 590-18915-15

Date Collected: 10/07/22 00:00 Matrix: Water Date Received: 10/10/22 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	ND		1.0	0.45	ug/L			10/13/22 14:18	1
1,1,2-Trichloroethane	ND		2.0	0.43	ug/L			10/13/22 14:18	1
Tetrachloroethene	ND	*+ *1	1.0	0.22	ug/L			10/13/22 14:18	1
1,3-Dichloropropane	ND		2.0	0.21	ug/L			10/13/22 14:18	1
Dibromochloromethane	ND		2.0	0.33	ug/L			10/13/22 14:18	1
1,2-Dibromoethane (EDB)	ND	*+	1.0	0.20	ug/L			10/13/22 14:18	1
Chlorobenzene	ND		1.0	0.32	ug/L			10/13/22 14:18	1
Ethylbenzene	ND		1.0	0.20	ug/L			10/13/22 14:18	1
1,1,1,2-Tetrachloroethane	ND		1.0	0.48	ug/L			10/13/22 14:18	1
1,1,2,2-Tetrachloroethane	ND		2.0	0.32	ug/L			10/13/22 14:18	1
m,p-Xylene	ND		2.0	0.28	ug/L			10/13/22 14:18	1
o-Xylene	ND		1.0	0.16	ug/L			10/13/22 14:18	1
Styrene	ND		1.0	0.24	ug/L			10/13/22 14:18	1
Bromoform	ND		5.0	0.66	ug/L			10/13/22 14:18	1
Isopropylbenzene	ND		1.0	0.24	ug/L			10/13/22 14:18	1
Bromobenzene	ND		1.0	0.28	ug/L			10/13/22 14:18	1
N-Propylbenzene	ND		1.0	0.25	ug/L			10/13/22 14:18	1
1,2,3-Trichloropropane	ND		2.0	0.50	ug/L			10/13/22 14:18	1
2-Chlorotoluene	ND		1.0	0.36	ug/L			10/13/22 14:18	1
1,3,5-Trimethylbenzene	ND		1.0	0.32	ug/L			10/13/22 14:18	1
4-Chlorotoluene	ND		1.0	0.26	ug/L			10/13/22 14:18	1
tert-Butylbenzene	ND		1.0	0.12	ug/L			10/13/22 14:18	1
1,2,4-Trimethylbenzene	ND		1.0	0.31	ug/L			10/13/22 14:18	1
sec-Butylbenzene	ND		1.0	0.22	ug/L			10/13/22 14:18	1
1,3-Dichlorobenzene	ND		1.0	0.14	ug/L			10/13/22 14:18	1
p-Isopropyltoluene	ND		1.0	0.27	ug/L			10/13/22 14:18	1
1,4-Dichlorobenzene	ND		1.0	0.28	ug/L			10/13/22 14:18	1
n-Butylbenzene	ND		1.0	0.20	ug/L			10/13/22 14:18	1
1,2-Dichlorobenzene	ND		1.0	0.23	ug/L			10/13/22 14:18	1
1,2-Dibromo-3-Chloropropane	ND		10	1.5	ug/L			10/13/22 14:18	1
1,2,4-Trichlorobenzene	ND		1.0	0.16	ug/L			10/13/22 14:18	1
1,2,3-Trichlorobenzene	ND	*1	1.0	0.33	ug/L			10/13/22 14:18	1
Hexachlorobutadiene	ND		2.0	0.21	ug/L			10/13/22 14:18	1
Naphthalene	ND		2.0	0.63	ug/L			10/13/22 14:18	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			10/13/22 14:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	82		80 - 120			-		10/13/22 14:18	1
4-Bromofluorobenzene (Surr)	68	S1-	80 - 120					10/13/22 14:18	1
Dibromofluoromethane (Surr)	110		80 - 120					10/13/22 14:18	1
1,2-Dichloroethane-d4 (Surr)	106		80 - 120					10/13/22 14:18	1

Method: NWTPH-Gx - Northw	est - Volatile	Petroleui	m Products (GC/MS)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	38	J	150	31	ug/L			10/13/22 14:18	1
Surrogate 4 Promofiliorophonzono (Surr)	%Recovery		Limits			-	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)		S1-	68.7 - 141			-		10/13/22 14:18	

Eurofins Spokane

_

Л

6

8

10

11

12

Client: Hart & Hickman, PC Project/Site: NWMS Puyallup

Client Sample ID: DUP-1 Date Collected: 10/07/22 00:00 Lab Sample ID: 590-18915-15

Matrix: Water

Date Received: 10/10/22 09:00

Method: SW846 8270E S	IM - Semivolatile	Organic (Compounds	(GC/MS	SIM)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.096	0.056	ug/L		10/10/22 12:44	10/10/22 19:42	1
2-Methylnaphthalene	ND		0.096	0.047	ug/L		10/10/22 12:44	10/10/22 19:42	1
1-Methylnaphthalene	ND		0.096	0.024	ug/L		10/10/22 12:44	10/10/22 19:42	1
Acenaphthylene	ND		0.096	0.017	ug/L		10/10/22 12:44	10/10/22 19:42	1
Acenaphthene	ND		0.096	0.023	ug/L		10/10/22 12:44	10/10/22 19:42	1
Fluorene	ND		0.096	0.017	ug/L		10/10/22 12:44	10/10/22 19:42	1
Phenanthrene	ND		0.096	0.060	ug/L		10/10/22 12:44	10/10/22 19:42	1
Anthracene	ND		0.096	0.027	ug/L		10/10/22 12:44	10/10/22 19:42	1
Fluoranthene	ND		0.096	0.018	ug/L		10/10/22 12:44	10/10/22 19:42	1
Pyrene	ND		0.096	0.028	ug/L		10/10/22 12:44	10/10/22 19:42	1
Benzo[a]anthracene	ND		0.096	0.013	ug/L		10/10/22 12:44	10/10/22 19:42	1
Chrysene	ND		0.096	0.011	ug/L		10/10/22 12:44	10/10/22 19:42	1
Benzo[b]fluoranthene	ND		0.096	0.027	ug/L		10/10/22 12:44	10/10/22 19:42	1
Benzo[k]fluoranthene	ND		0.096	0.016	ug/L		10/10/22 12:44	10/10/22 19:42	1
Benzo[a]pyrene	ND		0.096	0.013	ug/L		10/10/22 12:44	10/10/22 19:42	1
Indeno[1,2,3-cd]pyrene	ND		0.096	0.023	ug/L		10/10/22 12:44	10/10/22 19:42	1
Dibenz(a,h)anthracene	ND		0.096	0.014	ug/L		10/10/22 12:44	10/10/22 19:42	1
Benzo[g,h,i]perylene	ND		0.096	0.022	ug/L		10/10/22 12:44	10/10/22 19:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	75		42 - 121				10/10/22 12:44	10/10/22 19:42	1
2-Fluorobiphenyl (Surr)	68		50 - 120				10/10/22 12:44	10/10/22 19:42	1
p-Terphenyl-d14	69		51 - 121				10/10/22 12:44	10/10/22 19:42	1

Method: NWTPH-Dx - Northy	west - Semi-V	olatile Pet	roleum Prod	ucts (G0	C)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		0.25	0.11	mg/L		10/11/22 12:56	10/12/22 01:44	1
Residual Range Organics (RRO) (C25-C36)	ND		0.41	0.12	mg/L		10/11/22 12:56	10/12/22 01:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	82		50 - 150				10/11/22 12:56	10/12/22 01:44	1
n-Triacontane-d62	78		50 - 150				10/11/22 12:56	10/12/22 01:44	1

Client Sample ID: TB-1 Lab Sample ID: 590-18915-16 Date Collected: 10/07/22 00:00 **Matrix: Water**

Date Received: 10/10/22 09:00

olatile Organic	Compounds	s by GC/MS						
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		2.0	0.64	ug/L			10/13/22 14:39	1
ND		3.0	0.50	ug/L			10/13/22 14:39	1
ND		0.40	0.13	ug/L			10/13/22 14:39	1
ND		5.0	0.76	ug/L			10/13/22 14:39	1
ND		2.0	0.40	ug/L			10/13/22 14:39	1
ND	*1	1.0	0.20	ug/L			10/13/22 14:39	1
ND		1.0	0.20	ug/L			10/13/22 14:39	1
ND		5.0	2.2	ug/L			10/13/22 14:39	1
ND		1.0	0.20	ug/L			10/13/22 14:39	1
ND		1.0	0.29	ug/L			10/13/22 14:39	1
	Result ND	Result Qualifier ND ND ND ND ND ND ND ND ND N	ND 2.0 ND 3.0 ND 0.40 ND 5.0 ND 2.0 ND 1.0 ND 1.0 ND 5.0 ND 1.0	Result Qualifier RL MDL ND 2.0 0.64 ND 3.0 0.50 ND 0.40 0.13 ND 5.0 0.76 ND 2.0 0.40 ND *1 1.0 0.20 ND 1.0 0.20 ND 5.0 2.2 ND 1.0 0.20	Result Qualifier RL MDL Unit ND 2.0 0.64 ug/L ND 3.0 0.50 ug/L ND 0.40 0.13 ug/L ND 5.0 0.76 ug/L ND 2.0 0.40 ug/L ND *1 1.0 0.20 ug/L ND 1.0 0.20 ug/L ND 5.0 2.2 ug/L ND 1.0 0.20 ug/L	Result Qualifier RL MDL ug/L Unit D ND 2.0 0.64 ug/L ug/L ND 3.0 0.50 ug/L ND 0.40 0.13 ug/L ND 5.0 0.76 ug/L ND 2.0 0.40 ug/L ND *1 1.0 0.20 ug/L ND 1.0 0.20 ug/L ND 5.0 2.2 ug/L ND 1.0 0.20 ug/L	Result Qualifier RL MDL ug/L Unit D Prepared ND 2.0 0.64 ug/L Uug/L Uug/L </td <td>Result Qualifier RL MDL unit D Prepared Analyzed ND 2.0 0.64 ug/L 10/13/22 14:39 ND 3.0 0.50 ug/L 10/13/22 14:39 ND 0.40 0.13 ug/L 10/13/22 14:39 ND 5.0 0.76 ug/L 10/13/22 14:39 ND 2.0 0.40 ug/L 10/13/22 14:39 ND *1 1.0 0.20 ug/L 10/13/22 14:39 ND 1.0 0.20 ug/L 10/13/22 14:39 ND 5.0 2.2 ug/L 10/13/22 14:39 ND 1.0 0.20 ug/L 10/13/22 14:39 ND 1.0 0.20 ug/L 10/13/22 14:39</td>	Result Qualifier RL MDL unit D Prepared Analyzed ND 2.0 0.64 ug/L 10/13/22 14:39 ND 3.0 0.50 ug/L 10/13/22 14:39 ND 0.40 0.13 ug/L 10/13/22 14:39 ND 5.0 0.76 ug/L 10/13/22 14:39 ND 2.0 0.40 ug/L 10/13/22 14:39 ND *1 1.0 0.20 ug/L 10/13/22 14:39 ND 1.0 0.20 ug/L 10/13/22 14:39 ND 5.0 2.2 ug/L 10/13/22 14:39 ND 1.0 0.20 ug/L 10/13/22 14:39 ND 1.0 0.20 ug/L 10/13/22 14:39

Eurofins Spokane

Page 40 of 79

Client: Hart & Hickman, PC
Project/Site: NWMS Puyallup
Job ID: 590-18915-1

Client Sample ID: TB-1

Lab Sample ID: 590-18915-16

Matrix: Water

Date Collected: 10/07/22 00:00 Date Received: 10/10/22 09:00

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
2,2-Dichloropropane	ND		2.0	0.66	ug/L			10/13/22 14:39	
cis-1,2-Dichloroethene	ND		1.0		ug/L			10/13/22 14:39	
Bromochloromethane	ND		2.0	0.44	ug/L			10/13/22 14:39	
Chloroform	ND		1.0	0.24	ug/L			10/13/22 14:39	
1,1,1-Trichloroethane	ND		1.0	0.17	ug/L			10/13/22 14:39	
Carbon tetrachloride	ND		1.0	0.40	ug/L			10/13/22 14:39	
1,1-Dichloropropene	ND		1.0	0.50	ug/L			10/13/22 14:39	
Benzene	ND		0.40	0.093	ug/L			10/13/22 14:39	
1,2-Dichloroethane	ND		1.0	0.31	ug/L			10/13/22 14:39	
Trichloroethene	ND		1.0	0.20	ug/L			10/13/22 14:39	
1,2-Dichloropropane	ND		1.0	0.23	ug/L			10/13/22 14:39	
Dibromomethane	ND		2.0	0.50	ug/L			10/13/22 14:39	
Bromodichloromethane	ND		1.0	0.29	ug/L			10/13/22 14:39	
cis-1,3-Dichloropropene	ND		1.0		ug/L			10/13/22 14:39	
Toluene	ND	*1	1.0		ug/L			10/13/22 14:39	
trans-1,3-Dichloropropene	ND		1.0		ug/L			10/13/22 14:39	
1,1,2-Trichloroethane	ND		2.0		ug/L			10/13/22 14:39	
Tetrachloroethene	ND	*+ *1	1.0		ug/L			10/13/22 14:39	
1,3-Dichloropropane	ND		2.0		ug/L			10/13/22 14:39	
Dibromochloromethane	ND		2.0		ug/L			10/13/22 14:39	
1,2-Dibromoethane (EDB)	ND	*+	1.0		ug/L			10/13/22 14:39	
Chlorobenzene	ND		1.0		ug/L			10/13/22 14:39	
Ethylbenzene	ND		1.0	0.20	-			10/13/22 14:39	
1,1,1,2-Tetrachloroethane	ND		1.0		ug/L			10/13/22 14:39	
1,1,2,2-Tetrachloroethane	ND		2.0		ug/L			10/13/22 14:39	
m,p-Xylene	ND		2.0		ug/L			10/13/22 14:39	
o-Xylene	ND		1.0		ug/L			10/13/22 14:39	
Styrene	ND		1.0		ug/L			10/13/22 14:39	
Bromoform	ND		5.0		ug/L			10/13/22 14:39	
Isopropylbenzene	ND		1.0		ug/L			10/13/22 14:39	
Bromobenzene	ND ND		1.0	0.24	-			10/13/22 14:39	
N-Propylbenzene	ND ND		1.0		ug/L			10/13/22 14:39	
1,2,3-Trichloropropane	ND		2.0		ug/L ug/L			10/13/22 14:39	
2-Chlorotoluene	ND ND		1.0	0.36	-			10/13/22 14:39	
1,3,5-Trimethylbenzene	ND ND		1.0		-			10/13/22 14:39	
<u> </u>					ug/L			10/13/22 14:39	
4-Chlorotoluene	ND ND		1.0		ug/L ug/L			10/13/22 14:39	
tert-Butylbenzene	ND ND		1.0 1.0					10/13/22 14:39	
1,2,4-Trimethylbenzene					ug/L				
sec-Butylbenzene	ND		1.0		ug/L			10/13/22 14:39	
1,3-Dichlorobenzene	ND		1.0		ug/L			10/13/22 14:39	
p-Isopropyltoluene	ND		1.0		ug/L			10/13/22 14:39	
1,4-Dichlorobenzene	ND		1.0		ug/L			10/13/22 14:39	
n-Butylbenzene	ND		1.0		ug/L			10/13/22 14:39	
1,2-Dichlorobenzene	ND		1.0		ug/L			10/13/22 14:39	
1,2-Dibromo-3-Chloropropane	ND		10		ug/L			10/13/22 14:39	
1,2,4-Trichlorobenzene	ND	**	1.0		ug/L			10/13/22 14:39	
1,2,3-Trichlorobenzene	ND	*1	1.0		ug/L			10/13/22 14:39	
Hexachlorobutadiene	ND		2.0	0.21	ug/L			10/13/22 14:39	

Eurofins Spokane

10/25/2022

3

5

6

0

10

Client: Hart & Hickman, PC Job ID: 590-18915-1 Project/Site: NWMS Puyallup

Client Sample ID: TB-1

Lab Sample ID: 590-18915-16

Date Collected: 10/07/22 00:00 Date Received: 10/10/22 09:00

Matrix: Water

Method: SW846 8260D - Vo	latile Organic	Compoun	ds by GC/MS	(Contir	iued)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			10/13/22 14:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	86		80 - 120			•		10/13/22 14:39	1
4-Bromofluorobenzene (Surr)	131	S1+	80 - 120					10/13/22 14:39	1
Dibromofluoromethane (Surr)	112		80 - 120					10/13/22 14:39	1
1,2-Dichloroethane-d4 (Surr)	109		80 - 120					10/13/22 14:39	1

Lab Sample ID: 590-18915-17

Matrix: Water

Date Collected: 10/06/22 17:10 Date Received: 10/10/22 09:00

m,p-Xylene

Client Sample ID: MW-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		2.0	0.64	ug/L			10/13/22 15:01	1
Chloromethane	ND		3.0	0.50	ug/L			10/13/22 15:01	1
Vinyl chloride	ND		0.40	0.13	ug/L			10/13/22 15:01	1
Bromomethane	ND		5.0	0.76	ug/L			10/13/22 15:01	1
Chloroethane	ND		2.0	0.40	ug/L			10/13/22 15:01	1
Trichlorofluoromethane	ND	*1	1.0	0.20	ug/L			10/13/22 15:01	1
1,1-Dichloroethene	ND		1.0	0.20	ug/L			10/13/22 15:01	1
Methylene Chloride	ND		5.0	2.2	ug/L			10/13/22 15:01	1
trans-1,2-Dichloroethene	ND		1.0	0.20	ug/L			10/13/22 15:01	1
1,1-Dichloroethane	ND		1.0	0.29	ug/L			10/13/22 15:01	1
2,2-Dichloropropane	ND		2.0	0.66	ug/L			10/13/22 15:01	1
cis-1,2-Dichloroethene	ND		1.0	0.23	ug/L			10/13/22 15:01	1
Bromochloromethane	ND		2.0	0.44	ug/L			10/13/22 15:01	1
Chloroform	ND		1.0	0.24	ug/L			10/13/22 15:01	1
1,1,1-Trichloroethane	ND		1.0	0.17	ug/L			10/13/22 15:01	1
Carbon tetrachloride	ND		1.0	0.40	ug/L			10/13/22 15:01	1
1,1-Dichloropropene	ND		1.0	0.50	ug/L			10/13/22 15:01	1
Benzene	ND		0.40	0.093	ug/L			10/13/22 15:01	1
1,2-Dichloroethane	ND		1.0	0.31	ug/L			10/13/22 15:01	1
Trichloroethene	ND		1.0	0.20	ug/L			10/13/22 15:01	1
1,2-Dichloropropane	ND		1.0	0.23	ug/L			10/13/22 15:01	1
Dibromomethane	ND		2.0	0.50	ug/L			10/13/22 15:01	1
Bromodichloromethane	ND		1.0	0.29	ug/L			10/13/22 15:01	1
cis-1,3-Dichloropropene	ND		1.0	0.25	ug/L			10/13/22 15:01	1
Toluene	ND	*1	1.0	0.31	ug/L			10/13/22 15:01	1
trans-1,3-Dichloropropene	ND		1.0	0.45	ug/L			10/13/22 15:01	1
1,1,2-Trichloroethane	ND		2.0	0.43	ug/L			10/13/22 15:01	1
Tetrachloroethene	ND	*+ *1	1.0	0.22	ug/L			10/13/22 15:01	1
1,3-Dichloropropane	ND		2.0	0.21	ug/L			10/13/22 15:01	1
Dibromochloromethane	ND		2.0		ug/L			10/13/22 15:01	1
1,2-Dibromoethane (EDB)	ND	*+	1.0		ug/L			10/13/22 15:01	1
Chlorobenzene	ND		1.0		ug/L			10/13/22 15:01	1
Ethylbenzene	ND		1.0		ug/L			10/13/22 15:01	1
1,1,2-Tetrachloroethane	ND		1.0		ug/L			10/13/22 15:01	1
1,1,2,2-Tetrachloroethane	ND		2.0		ug/L			10/13/22 15:01	1

Eurofins Spokane

10/13/22 15:01

2.0

0.28 ug/L

ND

Client: Hart & Hickman, PC
Project/Site: NWMS Puyallup
Job ID: 590-18915-1

Client Sample ID: MW-1 Lab Sample ID: 590-18915-17

Date Collected: 10/06/22 17:10

Date Received: 10/10/22 09:00

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
o-Xylene	MD		1.0	0.16	ug/L			10/13/22 15:01	
Styrene	ND		1.0	0.24	ug/L			10/13/22 15:01	
Bromoform	ND		5.0	0.66	ug/L			10/13/22 15:01	
Isopropylbenzene	ND		1.0	0.24	ug/L			10/13/22 15:01	
Bromobenzene	ND		1.0	0.28	ug/L			10/13/22 15:01	
N-Propylbenzene	ND		1.0	0.25	ug/L			10/13/22 15:01	
1,2,3-Trichloropropane	ND		2.0	0.50	ug/L			10/13/22 15:01	
2-Chlorotoluene	ND		1.0	0.36	ug/L			10/13/22 15:01	
1,3,5-Trimethylbenzene	ND		1.0	0.32	ug/L			10/13/22 15:01	
4-Chlorotoluene	ND		1.0	0.26	ug/L			10/13/22 15:01	
tert-Butylbenzene	ND		1.0		ug/L			10/13/22 15:01	
1,2,4-Trimethylbenzene	ND		1.0		ug/L			10/13/22 15:01	
sec-Butylbenzene	ND		1.0		ug/L			10/13/22 15:01	
1,3-Dichlorobenzene	ND		1.0		ug/L			10/13/22 15:01	
p-Isopropyltoluene	ND		1.0		ug/L			10/13/22 15:01	
1.4-Dichlorobenzene	ND		1.0		ug/L			10/13/22 15:01	
n-Butylbenzene	ND		1.0		ug/L			10/13/22 15:01	
1,2-Dichlorobenzene	ND		1.0		ug/L			10/13/22 15:01	
1,2-Dibromo-3-Chloropropane	ND		10		ug/L			10/13/22 15:01	
1,2,4-Trichlorobenzene	ND		1.0		ug/L			10/13/22 15:01	
1,2,3-Trichlorobenzene	ND	*1	1.0		ug/L			10/13/22 15:01	
Hexachlorobutadiene	ND	· · · · · · · · · · · · · · · · · · ·	2.0		ug/L			10/13/22 15:01	
Naphthalene	ND		2.0		ug/L			10/13/22 15:01	
Methyl tert-butyl ether	ND		1.0		ug/L			10/13/22 15:01	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	91		80 - 120					10/13/22 15:01	
4-Bromofluorobenzene (Surr)	114		80 - 120					10/13/22 15:01	
Dibromofluoromethane (Surr)	103		80 - 120					10/13/22 15:01	
1,2-Dichloroethane-d4 (Surr)	103		80 - 120					10/13/22 15:01	
Method: NWTPH-Gx - Nortl	hwest - Volatile	Petroleu	m Products (GC/MS)					
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Gasoline	ND		150	31	ug/L			10/13/22 15:01	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	114		68.7 - 141					10/13/22 15:01	
Method: SW846 8270E SIM	l - Semivolatile	Organic (Compounds (GC/MS	SIM)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Naphthalene	ND		0.088	0.052	ug/L		10/10/22 12:44	10/10/22 20:05	
2-Methylnaphthalene	ND		0.088	0.043	ug/L		10/10/22 12:44	10/10/22 20:05	•
1-Methylnaphthalene	ND		0.088	0.023	ug/L		10/10/22 12:44	10/10/22 20:05	
Acenaphthylene	ND		0.088	0.016	ug/L		10/10/22 12:44	10/10/22 20:05	
Acenaphthene	ND		0.088	0.022				10/10/22 20:05	
Fluorene	ND		0.088	0.016	_		10/10/22 12:44	10/10/22 20:05	
Phenanthrene	ND		0.088	0.055				10/10/22 20:05	
Anthracene	ND		0.088	0.025	-			10/10/22 20:05	
	ND		0.088		-			10/10/22 20:05	
Fluoranthene	IND		0.000	0.017	ug/L		10/10/22 12.44	10/10/22 20.03	•

Eurofins Spokane

10/25/2022

10/10/22 12:44 10/10/22 20:05

0.088

0.026 ug/L

ND

Pyrene

3

2

8

10

11

12

Client: Hart & Hickman, PC Job ID: 590-18915-1

Project/Site: NWMS Puyallup

Lab Sample ID: 590-18915-17 Client Sample ID: MW-1

Date Collected: 10/06/22 17:10 **Matrix: Water** Date Received: 10/10/22 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	ND		0.088	0.012	ug/L		10/10/22 12:44	10/10/22 20:05	1
Chrysene	ND		0.088	0.0098	ug/L		10/10/22 12:44	10/10/22 20:05	1
Benzo[b]fluoranthene	ND		0.088	0.025	ug/L		10/10/22 12:44	10/10/22 20:05	1
Benzo[k]fluoranthene	ND		0.088	0.015	ug/L		10/10/22 12:44	10/10/22 20:05	1
Benzo[a]pyrene	ND		0.088	0.012	ug/L		10/10/22 12:44	10/10/22 20:05	1
Indeno[1,2,3-cd]pyrene	ND		0.088	0.022	ug/L		10/10/22 12:44	10/10/22 20:05	1
Dibenz(a,h)anthracene	ND		0.088	0.013	ug/L		10/10/22 12:44	10/10/22 20:05	1
Benzo[g,h,i]perylene	ND		0.088	0.021	ug/L		10/10/22 12:44	10/10/22 20:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	74		42 - 121				10/10/22 12:44	10/10/22 20:05	1
2-Fluorobiphenyl (Surr)	68		50 - 120				10/10/22 12:44	10/10/22 20:05	1
p-Terphenyl-d14	73		51 - 121				10/10/22 12:44	10/10/22 20:05	1
Method: NWTPH-Dx - North	nwest - Semi-V	olatile Pet	roleum Prod	lucts (G0	C)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND		0.24	0.11	mg/L		10/11/22 13:00	10/12/22 03:06	1

Method: MAALLIPPY - Motth	iwest - Seiiii-void	aule reut	Jieuiii Fiou	ucis (G	<i>)</i>				
Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		0.24	0.11	mg/L		10/11/22 13:00	10/12/22 03:06	1
Residual Range Organics (RRO) (C25-C36)	ND		0.40	0.12	mg/L		10/11/22 13:00	10/12/22 03:06	1
Surrogate	%Recovery Q	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	89		50 - 150				10/11/22 13:00	10/12/22 03:06	1
n-Triacontane-d62	89		50 - 150				10/11/22 13:00	10/12/22 03:06	1

Client: Hart & Hickman, PC Job ID: 590-18915-1

Project/Site: NWMS Puyallup Method: 8260D - Volatile Organic Compounds by GC/MS

MB MB

Lab Sample ID: MB 590-38494/1-A

Matrix: Solid

Analysis Batch: 38731

Client Sample ID: Method Blank **Prep Type: Total/NA** Prep Batch: 38494

Dil Fac Analyzed

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil I
Dichlorodifluoromethane	ND		0.10	0.028	mg/Kg		10/10/22 15:46	10/22/22 03:15	
Chloromethane	ND		0.50	0.042	mg/Kg		10/10/22 15:46	10/22/22 03:15	
Vinyl chloride	ND		0.060	0.020	mg/Kg		10/10/22 15:46	10/22/22 03:15	
Bromomethane	ND		0.50	0.033	mg/Kg		10/10/22 15:46	10/22/22 03:15	
Chloroethane	ND		0.20	0.056	mg/Kg		10/10/22 15:46	10/22/22 03:15	
Trichlorofluoromethane	ND		0.20	0.033	mg/Kg		10/10/22 15:46	10/22/22 03:15	
1,1-Dichloroethene	ND		0.10	0.034	mg/Kg		10/10/22 15:46	10/22/22 03:15	
Methylene Chloride	0.363		0.35	0.20	ma/Ka		10/10/22 15:46	10/22/22 03:15	

Dichlorodifluoromethane	ND	0.10	0.028 m	ng/Kg	10/10/22 15:46	10/22/22 03:15	1
Chloromethane	ND	0.50	0.042 m	ng/Kg	10/10/22 15:46	10/22/22 03:15	1
Vinyl chloride	ND	0.060	0.020 m	ng/Kg	10/10/22 15:46	10/22/22 03:15	1
Bromomethane	ND	0.50	0.033 m	ng/Kg	10/10/22 15:46	10/22/22 03:15	1
Chloroethane	ND	0.20	0.056 m	ng/Kg	10/10/22 15:46	10/22/22 03:15	1
Trichlorofluoromethane	ND	0.20	0.033 m	ng/Kg	10/10/22 15:46	10/22/22 03:15	1
1,1-Dichloroethene	ND	0.10	0.034 m	ng/Kg	10/10/22 15:46	10/22/22 03:15	1
Methylene Chloride	0.363	0.35	0.20 m	ng/Kg	10/10/22 15:46	10/22/22 03:15	1
trans-1,2-Dichloroethene	ND	0.10	0.023 m	ng/Kg	10/10/22 15:46	10/22/22 03:15	1
1,1-Dichloroethane	ND	0.10	0.026 m	ng/Kg	10/10/22 15:46	10/22/22 03:15	1
2,2-Dichloropropane	ND	0.10	0.024 m	ng/Kg	10/10/22 15:46	10/22/22 03:15	1
cis-1,2-Dichloroethene	ND	0.10	0.021 m	ng/Kg	10/10/22 15:46	10/22/22 03:15	1
Bromochloromethane	ND	0.10	0.040 m	ng/Kg	10/10/22 15:46	10/22/22 03:15	1
Chloroform	ND	0.10	0.024 m	ng/Kg	10/10/22 15:46	10/22/22 03:15	1
1,1,1-Trichloroethane	ND	0.10	0.017 m	ng/Kg	10/10/22 15:46	10/22/22 03:15	1
Carbon tetrachloride	ND	0.10	0.011 m	ng/Kg	10/10/22 15:46	10/22/22 03:15	1
1,1-Dichloropropene	ND	0.10	0.017 m		10/10/22 15:46	10/22/22 03:15	1
Benzene	ND	0.020	0.010 m		10/10/22 15:46	10/22/22 03:15	1
1,2-Dichloroethane	ND	0.10	0.0070 m	ng/Kg	10/10/22 15:46	10/22/22 03:15	1
Trichloroethene	ND	0.025	0.0076 m	ng/Kg	10/10/22 15:46	10/22/22 03:15	1
1,2-Dichloropropane	ND	0.12	0.030 m	ng/Kg	10/10/22 15:46	10/22/22 03:15	1
Dibromomethane	ND	0.10	0.022 m		10/10/22 15:46	10/22/22 03:15	1
Bromodichloromethane	ND	0.10	0.062 m		10/10/22 15:46	10/22/22 03:15	1
cis-1,3-Dichloropropene	ND	0.10	0.020 m	ng/Kg	10/10/22 15:46	10/22/22 03:15	1
Toluene	ND	0.10	0.013 m		10/10/22 15:46	10/22/22 03:15	1
trans-1,3-Dichloropropene	ND	0.10	0.026 m		10/10/22 15:46	10/22/22 03:15	1
1,1,2-Trichloroethane	ND	0.10	0.035 m		10/10/22 15:46	10/22/22 03:15	1
Tetrachloroethene	ND	0.040	0.018 m		10/10/22 15:46	10/22/22 03:15	1
1,3-Dichloropropane	ND	0.10	0.030 m		10/10/22 15:46	10/22/22 03:15	1
Dibromochloromethane	ND	0.20	0.016 m		10/10/22 15:46	10/22/22 03:15	1
1,2-Dibromoethane (EDB)	ND	0.10	0.034 m	ng/Kg	10/10/22 15:46	10/22/22 03:15	1
Chlorobenzene	ND	0.10	0.021 m		10/10/22 15:46	10/22/22 03:15	1
Ethylbenzene	ND	0.10	0.016 m		10/10/22 15:46	10/22/22 03:15	1
1,1,1,2-Tetrachloroethane	ND	0.10	0.019 m	ng/Kg	10/10/22 15:46	10/22/22 03:15	1
1,1,2,2-Tetrachloroethane	ND	0.10	0.029 m		10/10/22 15:46	10/22/22 03:15	1
m,p-Xylene	ND	0.40	0.029 m		10/10/22 15:46	10/22/22 03:15	1
o-Xylene	ND	0.20	0.023 m		10/10/22 15:46	10/22/22 03:15	1
Styrene	ND	0.10	0.024 m		10/10/22 15:46	10/22/22 03:15	1
Bromoform	ND	0.20	0.019 m		10/10/22 15:46	10/22/22 03:15	1
Isopropylbenzene	ND	0.10	0.031 m		10/10/22 15:46		1
Bromobenzene	ND	0.10	0.022 m		10/10/22 15:46	10/22/22 03:15	1
N-Propylbenzene	ND	0.10	0.026 m		10/10/22 15:46	10/22/22 03:15	1
1,2,3-Trichloropropane	ND	0.20	0.037 m			10/22/22 03:15	1
2-Chlorotoluene	ND	0.10	0.016 m		10/10/22 15:46		1
1,3,5-Trimethylbenzene	ND	0.10	0.032 m		10/10/22 15:46		1
4-Chlorotoluene	ND	0.10	0.0087 m		10/10/22 15:46	10/22/22 03:15	1
tert-Butylbenzene	ND	0.10	0.020 m		10/10/22 15:46		1
1,2,4-Trimethylbenzene	ND	0.10	0.023 m		10/10/22 15:46		1

Eurofins Spokane

Client: Hart & Hickman, PC Job ID: 590-18915-1 Project/Site: NWMS Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 590-38494/1-A

Matrix: Solid

Analysis Batch: 38731

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 38494

	MB	INIR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	ND		0.10	0.019	mg/Kg		10/10/22 15:46	10/22/22 03:15	1
1,3-Dichlorobenzene	ND		0.10	0.013	mg/Kg		10/10/22 15:46	10/22/22 03:15	1
p-Isopropyltoluene	ND		0.10	0.020	mg/Kg		10/10/22 15:46	10/22/22 03:15	1
1,4-Dichlorobenzene	ND		0.10	0.021	mg/Kg		10/10/22 15:46	10/22/22 03:15	1
n-Butylbenzene	ND		0.10	0.028	mg/Kg		10/10/22 15:46	10/22/22 03:15	1
1,2-Dichlorobenzene	ND		0.10	0.023	mg/Kg		10/10/22 15:46	10/22/22 03:15	1
1,2-Dibromo-3-Chloropropane	ND		0.50	0.060	mg/Kg		10/10/22 15:46	10/22/22 03:15	1
1,2,4-Trichlorobenzene	ND		0.10	0.019	mg/Kg		10/10/22 15:46	10/22/22 03:15	1
1,2,3-Trichlorobenzene	ND		0.10	0.033	mg/Kg		10/10/22 15:46	10/22/22 03:15	1
Hexachlorobutadiene	ND		0.10	0.016	mg/Kg		10/10/22 15:46	10/22/22 03:15	1
Naphthalene	ND		0.20	0.028	mg/Kg		10/10/22 15:46	10/22/22 03:15	1
Methyl tert-butyl ether	ND		0.050	0.030	mg/Kg		10/10/22 15:46	10/22/22 03:15	1
I and the second se									

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		80 - 120	10/10/22 15:46	10/22/22 03:15	1
4-Bromofluorobenzene (Surr)	101		76 - 122	10/10/22 15:46	10/22/22 03:15	1
Dibromofluoromethane (Surr)	102		80 - 120	10/10/22 15:46	10/22/22 03:15	1
1,2-Dichloroethane-d4 (Surr)	107		75 - 129	10/10/22 15:46	10/22/22 03:15	1

Lab Sample ID: LCS 590-38494/2-B

Matrix: Solid

Analysis Batch: 38731

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 38494

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits 0.409 Dichlorodifluoromethane 0.500 82 34 - 120 mg/Kg Chloromethane 0.500 0.622 *+ mg/Kg 124 42 - 120 Vinyl chloride 0.500 0.573 66 - 129 mg/Kg 115 Bromomethane 0.500 0.630 126 56 - 138 mg/Kg 0.500 Chloroethane 0.606 mg/Kg 121 50 - 150 Trichlorofluoromethane 0.500 0.572 mg/Kg 114 64 - 143 mg/Kg 1,1-Dichloroethene 0.500 0.557 111 63 - 150Methylene Chloride 0.500 0.855 *+ 171 47 - 150 mg/Kg 0.500 0.585 117 trans-1,2-Dichloroethene mg/Kg 80 - 1381,1-Dichloroethane 0.500 0.570 mg/Kg 114 80 - 136 2,2-Dichloropropane 0.500 0.447 89 73 - 150 mg/Kg 0.500 cis-1,2-Dichloroethene 0.562 mg/Kg 112 80 - 144 Bromochloromethane 0.500 0.554 mg/Kg 111 75 - 148 Chloroform 0.500 0.553 mg/Kg 111 80 - 150 1.1.1-Trichloroethane 0.500 0.501 mg/Kg 100 80 - 150 Carbon tetrachloride 0.500 0.505 mg/Kg 101 72 - 150 1,1-Dichloropropene 0.500 0.562 mg/Kg 112 78 - 145 115 0.500 0.574 Benzene mg/Kg 76 - 139 1,2-Dichloroethane 0.500 0.531 106 73 - 150 mg/Kg Trichloroethene 0.500 0.557 mg/Kg 111 79 - 144 1,2-Dichloropropane 0.500 0.566 mg/Kg 113 75 - 135 0.500 102 Dibromomethane 0.510 mg/Kg 80 - 140 Bromodichloromethane 0.500 0.489 mg/Kg 98 80 - 146 cis-1,3-Dichloropropene 0.500 0.475 mg/Kg 95 80 - 136

Eurofins Spokane

Page 46 of 79

Client: Hart & Hickman, PC
Project/Site: NWMS Puyallup
Job ID: 590-18915-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 590-38494/2-B

Matrix: Solid

Analysis Batch: 38731

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 38494

Analysis Batch. 30731	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Toluene	0.500	0.557		mg/Kg		111	77 - 131
trans-1,3-Dichloropropene	0.500	0.506		mg/Kg		101	80 - 124
1,1,2-Trichloroethane	0.500	0.538		mg/Kg		108	80 - 132
Tetrachloroethene	0.500	0.605		mg/Kg		121	77 - 149
1,3-Dichloropropane	0.500	0.535		mg/Kg		107	76 - 125
Dibromochloromethane	0.500	0.499		mg/Kg		100	78 ₋ 136
1,2-Dibromoethane (EDB)	0.500	0.533		mg/Kg		107	75 - 129
Chlorobenzene	0.500	0.547		mg/Kg		109	80 - 136
Ethylbenzene	0.500	0.562		mg/Kg		112	77 ₋ 135
1,1,1,2-Tetrachloroethane	0.500	0.527		mg/Kg		105	80 - 128
1,1,2,2-Tetrachloroethane	0.500	0.531		mg/Kg		106	75 - 137
m,p-Xylene	0.500	0.556		mg/Kg		111	78 - 130
o-Xylene	0.500	0.551		mg/Kg		110	77 - 129
Styrene	0.500	0.544		mg/Kg		109	80 - 128
Bromoform	0.500	0.449		mg/Kg		90	72 - 133
Isopropylbenzene	0.500	0.569		mg/Kg		114	78 - 139
Bromobenzene	0.500	0.537		mg/Kg		107	75 - 142
N-Propylbenzene	0.500	0.584		mg/Kg		117	77 - 140
1,2,3-Trichloropropane	0.500	0.530		mg/Kg		106	67 - 144
2-Chlorotoluene	0.500	0.560		mg/Kg		112	77 - 135
1,3,5-Trimethylbenzene	0.500	0.576		mg/Kg		115	76 - 133
4-Chlorotoluene	0.500	0.565		mg/Kg		113	77 - 133
tert-Butylbenzene	0.500	0.569		mg/Kg		114	76 - 130
1,2,4-Trimethylbenzene	0.500	0.571		mg/Kg		114	76 - 139
sec-Butylbenzene	0.500	0.575		mg/Kg		115	76 - 139
1,3-Dichlorobenzene	0.500	0.532		mg/Kg		106	80 - 133
p-Isopropyltoluene	0.500	0.558		mg/Kg		112	80 - 140
1,4-Dichlorobenzene	0.500	0.537		mg/Kg		107	80 - 133
n-Butylbenzene	0.500	0.535		mg/Kg		107	80 - 131
1,2-Dichlorobenzene	0.500	0.522		mg/Kg		104	80 - 135
1,2-Dibromo-3-Chloropropane	0.500	0.474	J	mg/Kg		95	65 - 139
1,2,4-Trichlorobenzene	0.500	0.515		mg/Kg		103	67 - 140
1,2,3-Trichlorobenzene	0.500	0.495		mg/Kg		99	66 - 143
Hexachlorobutadiene	0.500	0.522		mg/Kg		104	59 - 150
Naphthalene	0.500	0.499		mg/Kg		100	67 - 129
Methyl tert-butyl ether	0.500	0.528		mg/Kg		106	80 - 144

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	104		80 - 120
4-Bromofluorobenzene (Surr)	104		76 - 122
Dibromofluoromethane (Surr)	99		80 - 120
1,2-Dichloroethane-d4 (Surr)	101		75 - 129

2

Л

5

7

9

10

12

Client: Hart & Hickman, PC Job ID: 590-18915-1 Project/Site: NWMS Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 590-18915-2 MS

Client Sample ID: SB-7 (6-7)
Prep Type: Total/NA
Pren Batch: 38494

Analysis Batch: 38731									Prep Type: Total/NA Prep Batch: 38494	
-	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Disklans difference at lane	- ND	11.54		4.50	Ε4			424	24 400	-

Analysis Batch: 38731									Prep Batch: 38494
	•	Sample	Spike		MS		_		%Rec
Analyte		Qualifier	Added		Qualifier	Unit	_ D	%Rec	Limits
Dichlorodifluoromethane		H F1	1.14	1.53		mg/Kg	₩	134	34 - 120
Chloromethane		H F1 *+	1.14	1.47	F1	mg/Kg	☼	129	42 - 120
Vinyl chloride	ND		1.14	1.29		mg/Kg		113	66 - 129
Bromomethane	ND		1.14	1.36		mg/Kg	☼	119	56 - 138
Chloroethane	ND	Н	1.14	1.29		mg/Kg	₩	113	50 - 150
Trichlorofluoromethane	ND	Н	1.14	1.27		mg/Kg	☼	111	64 - 143
1,1-Dichloroethene	ND	Н	1.14	1.18		mg/Kg	☼	104	63 - 150
Methylene Chloride	0.83	H B *+	1.14	1.79		mg/Kg	₩	84	47 - 150
trans-1,2-Dichloroethene	ND	Н	1.14	1.26		mg/Kg	☼	111	80 - 138
1,1-Dichloroethane	ND	Н	1.14	1.29		mg/Kg	₽	113	80 - 136
2,2-Dichloropropane	ND	Н	1.14	0.909		mg/Kg	₩	80	73 - 150
cis-1,2-Dichloroethene	ND	Н	1.14	1.23		mg/Kg	₩	108	80 - 144
Bromochloromethane	ND	Н	1.14	1.24		mg/Kg	₩	109	75 - 148
Chloroform	ND	Н	1.14	1.24		mg/Kg	₩	109	80 - 150
1,1,1-Trichloroethane	ND	Н	1.14	1.07		mg/Kg	₩	94	80 - 150
Carbon tetrachloride	ND	Н	1.14	1.09		mg/Kg	∴	96	72 - 150
1,1-Dichloropropene	ND	Н	1.14	1.26		mg/Kg	☼	110	78 - 145
Benzene	ND	Н	1.14	1.24		mg/Kg	₩	109	76 - 139
1,2-Dichloroethane	ND	H	1.14	1.19		mg/Kg		104	73 - 150
Trichloroethene	ND		1.14	1.17		mg/Kg	⊅	102	79 - 144
1,2-Dichloropropane	ND		1.14	1.23		mg/Kg	⊅	108	75 - 135
Dibromomethane	ND		1.14	1.11		mg/Kg		97	80 - 140
Bromodichloromethane	ND		1.14	1.02		mg/Kg	☆	89	80 - 146
cis-1,3-Dichloropropene	ND		1.14	1.02		mg/Kg	☆	90	80 - 136
Toluene	ND		1.14	1.22		mg/Kg		107	77 - 131
trans-1,3-Dichloropropene	ND		1.14	1.12		mg/Kg	☆	98	80 - 124
1,1,2-Trichloroethane	ND ND		1.14	1.12		mg/Kg	☆	105	80 - 124 80 - 132
Tetrachloroethene	ND		1.14	1.29				113	77 - 149
						mg/Kg	‡		
1,3-Dichloropropane	ND		1.14	1.18		mg/Kg	ψ.	104	76 - 125
Dibromochloromethane	ND		1.14	1.05		mg/Kg		92	78 - 136
1,2-Dibromoethane (EDB)	ND		1.14	1.16		mg/Kg	‡	101	75 <u>-</u> 129
Chlorobenzene	ND		1.14	1.16		mg/Kg	‡	102	80 - 136
Ethylbenzene	ND		1.14	1.18		mg/Kg		103	77 - 135
1,1,1,2-Tetrachloroethane	ND		1.14	1.12		mg/Kg	₽	98	80 - 128
1,1,2,2-Tetrachloroethane	ND		1.14	1.13		mg/Kg	₩	99	75 - 137
m,p-Xylene	ND		1.14	1.18		mg/Kg		104	78 - 130
o-Xylene	ND		1.14	1.16		mg/Kg	₩	102	77 - 129
Styrene	ND		1.14	1.15		mg/Kg	☼	101	80 - 128
Bromoform	ND		1.14	0.964		mg/Kg		85	72 - 133
Isopropylbenzene	ND		1.14	1.21		mg/Kg	₩	107	78 ₋ 139
Bromobenzene	ND	Н	1.14	1.15		mg/Kg	₩	101	75 - 142
N-Propylbenzene	ND	Н	1.14	1.22		mg/Kg	₩	107	77 - 140
1,2,3-Trichloropropane	ND	Н	1.14	1.31		mg/Kg	₽	115	67 - 144
2-Chlorotoluene	ND	Н	1.14	1.19		mg/Kg	☼	104	77 - 135
1,3,5-Trimethylbenzene	ND	Н	1.14	1.21		mg/Kg	₽	106	76 - 133
4-Chlorotoluene	ND	Н	1.14	1.17		mg/Kg	☼	103	77 - 133
tert-Butylbenzene	ND	Н	1.14	1.18		mg/Kg	☼	104	76 - 130
1,2,4-Trimethylbenzene	ND	Н	1.14	1.20		mg/Kg	☆	105	76 - 139

Client: Hart & Hickman, PC Project/Site: NWMS Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 590-18915-2 MS

Matrix: Solid

Analysis Batch: 38731

Client Sample ID: SB-7 (6-7)

Prep i	ype:	iotai/NA
Prep	Batc	h: 38494
%Rec		
	Batc	h: 38494

	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
sec-Butylbenzene	ND	H	1.14	1.19		mg/Kg	<u></u>	104	76 - 139
1,3-Dichlorobenzene	ND	Н	1.14	1.13		mg/Kg	☼	99	80 - 133
p-Isopropyltoluene	ND	Н	1.14	1.18		mg/Kg	≎	104	80 - 140
1,4-Dichlorobenzene	ND	Н	1.14	1.13		mg/Kg	☼	100	80 - 133
n-Butylbenzene	ND	Н	1.14	1.15		mg/Kg	₩	101	80 - 131
1,2-Dichlorobenzene	ND	Н	1.14	1.14		mg/Kg	≎	100	80 - 135
1,2-Dibromo-3-Chloropropane	ND	Н	1.14	0.976	J	mg/Kg	₩	86	65 - 139
1,2,4-Trichlorobenzene	ND	Н	1.14	1.15		mg/Kg	≎	101	67 - 140
1,2,3-Trichlorobenzene	ND	Н	1.14	1.13		mg/Kg	≎	100	66 - 143
Hexachlorobutadiene	ND	Н	1.14	1.18		mg/Kg	☼	104	59 - 150
Naphthalene	ND	Н	1.14	1.12		mg/Kg	₩	98	67 - 129
Methyl tert-butyl ether	ND	Н	1.14	1.16		mg/Kg	☼	102	80 - 144

MS MS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	103		80 - 120
4-Bromofluorobenzene (Surr)	103		76 - 122
Dibromofluoromethane (Surr)	101		80 - 120
1,2-Dichloroethane-d4 (Surr)	104		75 - 129

Lab Sample ID: 590-18915-2 MSD

Matrix: Solid

Analysis Batch: 38731

Client	Sam	nle	ID:	SB-7	(6-7)
Onchie	Oulli				U 1 1

Prep Type: Total/NA Prep Batch: 38494

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	ND	H F1	1.14	1.44	F1	mg/Kg	-	126	34 - 120	6	13
Chloromethane	ND	H F1 *+	1.14	1.40	F1	mg/Kg	☼	123	42 - 120	5	12
Vinyl chloride	ND	Н	1.14	1.31		mg/Kg	☼	115	66 - 129	2	20
Bromomethane	ND	Н	1.14	1.32		mg/Kg	₽	116	56 - 138	3	14
Chloroethane	ND	Н	1.14	1.22		mg/Kg	☼	107	50 - 150	6	17
Trichlorofluoromethane	ND	Н	1.14	1.29		mg/Kg	☼	113	64 - 143	2	10
1,1-Dichloroethene	ND	Н	1.14	1.19		mg/Kg	₽	104	63 - 150	0	40
Methylene Chloride	0.83	H B *+	1.14	1.78		mg/Kg	☼	83	47 - 150	1	40
trans-1,2-Dichloroethene	ND	Н	1.14	1.31		mg/Kg	☼	115	80 - 138	4	16
1,1-Dichloroethane	ND	Н	1.14	1.27		mg/Kg	☼	111	80 - 136	2	16
2,2-Dichloropropane	ND	Н	1.14	0.847		mg/Kg	☼	74	73 - 150	7	13
cis-1,2-Dichloroethene	ND	Н	1.14	1.24		mg/Kg	☼	109	80 - 144	1	15
Bromochloromethane	ND	Н	1.14	1.24		mg/Kg	☼	109	75 - 148	0	32
Chloroform	ND	Н	1.14	1.24		mg/Kg	₩	109	80 - 150	0	15
1,1,1-Trichloroethane	ND	Н	1.14	1.04		mg/Kg	☼	92	80 - 150	2	10
Carbon tetrachloride	ND	Н	1.14	1.09		mg/Kg	₽	95	72 - 150	1	17
1,1-Dichloropropene	ND	Н	1.14	1.25		mg/Kg	☼	110	78 - 145	0	14
Benzene	ND	Н	1.14	1.21		mg/Kg	☼	106	76 - 139	3	14
1,2-Dichloroethane	ND	Н	1.14	1.15		mg/Kg	₽	101	73 - 150	3	25
Trichloroethene	ND	Н	1.14	1.14		mg/Kg	☼	100	79 - 144	2	13
1,2-Dichloropropane	ND	Н	1.14	1.22		mg/Kg	☼	107	75 - 135	0	20
Dibromomethane	ND	Н	1.14	1.05		mg/Kg	☼	92	80 - 140	6	24
Bromodichloromethane	ND	Н	1.14	1.04		mg/Kg	☼	91	80 - 146	2	19
cis-1,3-Dichloropropene	ND	Н	1.14	1.00		mg/Kg	☼	88	80 - 136	3	17

Eurofins Spokane

Page 49 of 79

Client: Hart & Hickman, PC Job ID: 590-18915-1

Project/Site: NWMS Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 590-18915-2 MSD

Matrix: Solid

Analysis Batch: 38731

Client Sample ID: SB-7 (6-7)

Prep Type: Total/NA

Prep Batch: 38494

Analyte	•	Sample Qualifier	Spike Added	MSD Result	MSD Qualifier	Unit	D	%Rec	%Rec Limits	RPD	RPD Limit
Toluene	ND	Η	1.14	1.16		mg/Kg	— <u>→</u>	102	77 - 131	5	14
trans-1,3-Dichloropropene	ND	Н	1.14	1.04		mg/Kg	₩	92	80 - 124	7	14
1,1,2-Trichloroethane	ND	Н	1.14	1.16		mg/Kg	₩	101	80 - 132	4	12
Tetrachloroethene	ND	Н	1.14	1.24		mg/Kg	₩	109	77 - 149	3	10
1,3-Dichloropropane	ND	Н	1.14	1.12		mg/Kg	₩	98	76 - 125	6	24
Dibromochloromethane	ND	Н	1.14	1.04		mg/Kg	₩	91	78 - 136	1	18
1,2-Dibromoethane (EDB)	ND	Н	1.14	1.07		mg/Kg	₩	94	75 - 129	8	18
Chlorobenzene	ND	Н	1.14	1.13		mg/Kg	₩	99	80 - 136	3	10
Ethylbenzene	ND	Н	1.14	1.14		mg/Kg	₩	100	77 - 135	3	13
1,1,1,2-Tetrachloroethane	ND	Н	1.14	1.12		mg/Kg	₩	98	80 - 128	0	25
1,1,2,2-Tetrachloroethane	ND	Н	1.14	1.10		mg/Kg	₩	96	75 - 137	3	15
m,p-Xylene	ND	Н	1.14	1.12		mg/Kg	₩	99	78 - 130	5	23
o-Xylene	ND	Н	1.14	1.10		mg/Kg	₩	96	77 - 129	6	15
Styrene	ND	Н	1.14	1.07		mg/Kg	₩	94	80 - 128	7	25
Bromoform	ND	Н	1.14	0.906		mg/Kg	₩	80	72 - 133	6	10
Isopropylbenzene	ND	Н	1.14	1.17		mg/Kg	₩	103	78 - 139	4	10
Bromobenzene	ND	Н	1.14	1.10		mg/Kg	₩	97	75 - 142	5	25
N-Propylbenzene	ND	Н	1.14	1.14		mg/Kg	₩	100	77 - 140	6	25
1,2,3-Trichloropropane	ND	Н	1.14	1.25		mg/Kg	₩	110	67 - 144	5	40
2-Chlorotoluene	ND	Н	1.14	1.11		mg/Kg	₩	97	77 - 135	7	35
1,3,5-Trimethylbenzene	ND	Н	1.14	1.17		mg/Kg	₩	103	76 - 133	3	20
4-Chlorotoluene	ND	Н	1.14	1.11		mg/Kg	₩	98	77 - 133	5	17
tert-Butylbenzene	ND	Н	1.14	1.13		mg/Kg	₩	100	76 - 130	4	16
1,2,4-Trimethylbenzene	ND	Н	1.14	1.15		mg/Kg	₩	101	76 - 139	4	21
sec-Butylbenzene	ND	Н	1.14	1.18		mg/Kg	₩	103	76 - 139	1	18
1,3-Dichlorobenzene	ND	Н	1.14	1.10		mg/Kg	₩	97	80 - 133	3	18
p-Isopropyltoluene	ND	Н	1.14	1.15		mg/Kg	₩	101	80 - 140	3	19
1,4-Dichlorobenzene	ND	Н	1.14	1.11		mg/Kg	₩	98	80 - 133	2	16
n-Butylbenzene	ND	Н	1.14	1.10		mg/Kg	₩	97	80 - 131	4	20
1,2-Dichlorobenzene	ND	Н	1.14	1.09		mg/Kg	₩	96	80 - 135	5	17
1,2-Dibromo-3-Chloropropane	ND	Н	1.14	1.00	J	mg/Kg	₩	88	65 - 139	3	27
1,2,4-Trichlorobenzene	ND	Н	1.14	1.04		mg/Kg	₩	91	67 - 140	10	25
1,2,3-Trichlorobenzene	ND	Н	1.14	1.04		mg/Kg	₩	91	66 - 143	9	16
Hexachlorobutadiene	ND	Н	1.14	1.06		mg/Kg	₩	93	59 - 150	11	19
Naphthalene	ND	Н	1.14	1.05		mg/Kg	₩	92	67 - 129	7	15
Methyl tert-butyl ether	ND	Н	1.14	1.16		mg/Kg	₩	102	80 - 144	0	17

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	105		80 - 120
4-Bromofluorobenzene (Surr)	98		76 - 122
Dibromofluoromethane (Surr)	104		80 - 120
1,2-Dichloroethane-d4 (Surr)	105		75 - 129

Client: Hart & Hickman, PC Job ID: 590-18915-1

Project/Site: NWMS Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 590-18915-1 DU **Matrix: Solid**

4-Chlorotoluene

tert-Butylbenzene

1,2,4-Trimethylbenzene

Client Sample ID: SB-6 (6-7)
Prep Type: Total/NA
Prep Batch: 38494

Analysis Batch: 38731 Sample Sample DU DU **RPD** Result Qualifier Result Qualifier RPD Limit Analyte Unit D Dichlorodifluoromethane ND Н ND mg/Kg ₩ NC 24 Chloromethane ND H*+ ND mg/Kg ₩ NC 22 ND H ND NC 20 Vinyl chloride mg/Kg ₩ 21 Bromomethane ND Н ND mg/Kg ₿ NC 25 Chloroethane ND Н ND mg/Kg 24 NC Trichlorofluoromethane ND ND NC 25 Н mg/Kg 1,1-Dichloroethene ND Н ND NC 18 mg/Kg ť Methylene Chloride 0.82 J H B *+ 0.920 mg/Kg ₿ 11 40 trans-1,2-Dichloroethene ND H ND mg/Kg NC 25 ά 1,1-Dichloroethane ND Н ND mg/Kg ₩ NC 25 ND NC 22 2,2-Dichloropropane ND H mg/Kg ₿ cis-1,2-Dichloroethene ND Н ND mg/Kg ₩ NC 23 Bromochloromethane ND Η ND NC 25 mg/Kg Ö ND 25 Chloroform ND Η mg/Kg ₿ NC ND NC 1,1,1-Trichloroethane ND Н mg/Kg ₩ 19 Carbon tetrachloride ND ND NC 25 Н mg/Kg ά 1,1-Dichloropropene ND Н ND mg/Kg ₿ 24 25 ND Н ND NC Benzene mg/Kg ₿ 1,2-Dichloroethane ND Н ND mg/Kg ₩ NC 25 Trichloroethene ND H ND NC 25 mg/Kg ť 1,2-Dichloropropane Н ND NC 20 ND mg/Kg ND NC Dibromomethane ND Н mg/Kg Ö 24 Bromodichloromethane ND Н ND ₩ NC 26 mg/Kg ND ND NC 24 cis-1,3-Dichloropropene Н mg/Kg ₿ ND NC Toluene ND Н mg/Kg ₿ 25 trans-1,3-Dichloropropene ND Н ND mg/Kg ₩ NC 28 ND 1,1,2-Trichloroethane ND Н mg/Kg ₿ NC 31 Tetrachloroethene ND H ND ₩ NC 24 mg/Kg ND NC 1,3-Dichloropropane ND H mg/Kg ά 16 Dibromochloromethane ND Н ND mg/Kg ₿ NC 25 ND 1,2-Dibromoethane (EDB) Н NC 18 ND mg/Kg ť Chlorobenzene ND Н ND ₩ NC 25 mg/Kg Ethylbenzene ND Н ND mg/Kg 24 NC 25 1,1,1,2-Tetrachloroethane ND Н ND ₩ NC 25 mg/Kg 1,1,2,2-Tetrachloroethane ND mg/Kg ₩ NC 22 ND Н m,p-Xylene ND Н ND mg/Kg ₩ NC 23 o-Xylene ND H ND mg/Kg ₩ NC 25 Styrene ND Н ND mg/Kg ₩ NC 25 Bromoform ND Н ND mg/Kg ₩ NC 34 Isopropylbenzene ND Н ND mg/Kg Ö NC 24 Bromobenzene ND H ND ₩ NC 25 mg/Kg ND NC 25 N-Propylbenzene ND Н mg/Kg ά 27 1,2,3-Trichloropropane ND Н ND mg/Kg Ö NC 2-Chlorotoluene ND H ND ť NC 20 mg/Kg 1,3,5-Trimethylbenzene ND H ND ₩ NC 20 mg/Kg ND NC

Eurofins Spokane

NC

NC

ND

ND

mg/Kg

mg/Kg

mg/Kg

ά

₿

ť

ND H

ND H

ND Н

25

16

21

Client: Hart & Hickman, PC Job ID: 590-18915-1 Project/Site: NWMS Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 590-18915-1 DU

Matrix: Solid

Analysis Batch: 38731

Client Sample ID: SB-6 (6-7)

Prep Type: Total/NA Prep Batch: 38494

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
sec-Butylbenzene	ND	H	ND		mg/Kg	— * — — —	NC	34
1,3-Dichlorobenzene	ND	Н	ND		mg/Kg	*	NC	18
p-Isopropyltoluene	ND	Н	ND		mg/Kg	≎	NC	26
1,4-Dichlorobenzene	ND	Н	ND		mg/Kg	*	NC	16
n-Butylbenzene	ND	Н	ND		mg/Kg	₩	NC	20
1,2-Dichlorobenzene	ND	Н	ND		mg/Kg	₩	NC	25
1,2-Dibromo-3-Chloropropane	ND	Н	ND		mg/Kg	₩	NC	40
1,2,4-Trichlorobenzene	ND	Н	ND		mg/Kg	₩	NC	25
1,2,3-Trichlorobenzene	ND	Н	ND		mg/Kg	₩	NC	25
Hexachlorobutadiene	ND	Н	ND		mg/Kg	₩	NC	25
Naphthalene	ND	Н	ND		mg/Kg	₩	NC	36
Methyl tert-butyl ether	ND	Н	ND		mg/Kg	☆	NC	25

DU DU

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	99		80 - 120
4-Bromofluorobenzene (Surr)	99		76 - 122
Dibromofluoromethane (Surr)	101		80 - 120
1,2-Dichloroethane-d4 (Surr)	108		75 - 129

Lab Sample ID: MB 590-38562/7

MB MB

ND

ND

ND

ND

ND

ND

ND

ND

Matrix: Water

1,1-Dichloropropene

1,2-Dichloroethane

1,2-Dichloropropane

Bromodichloromethane

cis-1,3-Dichloropropene

Dibromomethane

Trichloroethene

Benzene

Analysis Batch: 38562

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte Result Qualifier RL **MDL** Unit D Dil Fac Prepared Analyzed Dichlorodifluoromethane ND 2.0 0.64 10/13/22 11:46 ug/L Chloromethane ND 3.0 0.50 ug/L 10/13/22 11:46 Vinyl chloride ND 0.40 0.13 ug/L 10/13/22 11:46 Bromomethane ND 5.0 0.76 ug/L 10/13/22 11:46 Chloroethane ND 2.0 0.40 ug/L 10/13/22 11:46 Trichlorofluoromethane ND 1.0 0.20 ug/L 10/13/22 11:46 1,1-Dichloroethene ND 1.0 0.20 ug/L 10/13/22 11:46 Methylene Chloride ND 5.0 2.2 ug/L 10/13/22 11:46 ND 1.0 trans-1,2-Dichloroethene 0.20 ug/L 10/13/22 11:46 1,1-Dichloroethane ND 1.0 0.29 ug/L 10/13/22 11:46 2,2-Dichloropropane ND 2.0 0.66 ug/L 10/13/22 11:46 cis-1,2-Dichloroethene ND 1.0 0.23 ug/L 10/13/22 11:46 Bromochloromethane ND 2.0 0.44 ug/L 10/13/22 11:46 Chloroform ND 1.0 0.24 ug/L 10/13/22 11:46 1.1.1-Trichloroethane ND 1.0 0.17 ug/L 10/13/22 11:46 Carbon tetrachloride ND 1.0 0.40 ug/L 10/13/22 11:46

1.0

0.40

1.0

1.0

1.0

2.0

1.0

1.0

0.50 ug/L

0.093 ug/L

0.31 ug/L

0.20 ug/L

0.23 ug/L

0.50 ug/L

0.29 ug/L

0.25 ug/L

Eurofins Spokane

10/13/22 11:46

10/13/22 11:46

10/13/22 11:46

10/13/22 11:46

10/13/22 11:46

10/13/22 11:46

10/13/22 11:46 10/13/22 11:46

Page 52 of 79

Client: Hart & Hickman, PC Job ID: 590-18915-1 Project/Site: NWMS Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

MB MB

Lab Sample ID: MB 590-38562/7

Matrix: Water

Methyl tert-butyl ether

Analysis Batch: 38562

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	ND		1.0	0.31	ug/L			10/13/22 11:46	1
trans-1,3-Dichloropropene	ND		1.0	0.45	ug/L			10/13/22 11:46	1
1,1,2-Trichloroethane	ND		2.0	0.43	ug/L			10/13/22 11:46	1
Tetrachloroethene	ND		1.0	0.22	ug/L			10/13/22 11:46	1
1,3-Dichloropropane	ND		2.0	0.21	ug/L			10/13/22 11:46	1
Dibromochloromethane	ND		2.0	0.33	ug/L			10/13/22 11:46	1
1,2-Dibromoethane (EDB)	ND		1.0	0.20	ug/L			10/13/22 11:46	1
Chlorobenzene	ND		1.0	0.32	ug/L			10/13/22 11:46	1
Ethylbenzene	ND		1.0	0.20	ug/L			10/13/22 11:46	1
1,1,1,2-Tetrachloroethane	ND		1.0	0.48	ug/L			10/13/22 11:46	1
1,1,2,2-Tetrachloroethane	ND		2.0	0.32	ug/L			10/13/22 11:46	1
m,p-Xylene	ND		2.0	0.28	ug/L			10/13/22 11:46	1
o-Xylene	ND		1.0	0.16	ug/L			10/13/22 11:46	1
Styrene	ND		1.0	0.24	ug/L			10/13/22 11:46	1
Bromoform	ND		5.0	0.66	ug/L			10/13/22 11:46	1
Isopropylbenzene	ND		1.0	0.24	ug/L			10/13/22 11:46	1
Bromobenzene	ND		1.0	0.28	ug/L			10/13/22 11:46	1
N-Propylbenzene	ND		1.0	0.25	ug/L			10/13/22 11:46	1
1,2,3-Trichloropropane	ND		2.0	0.50	ug/L			10/13/22 11:46	1
2-Chlorotoluene	ND		1.0	0.36	ug/L			10/13/22 11:46	1
1,3,5-Trimethylbenzene	ND		1.0	0.32	ug/L			10/13/22 11:46	1
4-Chlorotoluene	ND		1.0	0.26	ug/L			10/13/22 11:46	1
tert-Butylbenzene	ND		1.0	0.12	ug/L			10/13/22 11:46	1
1,2,4-Trimethylbenzene	ND		1.0	0.31	ug/L			10/13/22 11:46	1
sec-Butylbenzene	ND		1.0	0.22	ug/L			10/13/22 11:46	1
1,3-Dichlorobenzene	ND		1.0	0.14	ug/L			10/13/22 11:46	1
p-Isopropyltoluene	ND		1.0	0.27	ug/L			10/13/22 11:46	1
1,4-Dichlorobenzene	ND		1.0	0.28	ug/L			10/13/22 11:46	1
n-Butylbenzene	ND		1.0	0.20	ug/L			10/13/22 11:46	1
1,2-Dichlorobenzene	ND		1.0	0.23	ug/L			10/13/22 11:46	1
1,2-Dibromo-3-Chloropropane	ND		10	1.5	ug/L			10/13/22 11:46	1
1,2,4-Trichlorobenzene	ND		1.0	0.16	ug/L			10/13/22 11:46	1
1,2,3-Trichlorobenzene	ND		1.0	0.33	ug/L			10/13/22 11:46	1
Hexachlorobutadiene	ND		2.0	0.21	ug/L			10/13/22 11:46	1
Naphthalene	ND		2.0	0.63	ug/L			10/13/22 11:46	1

ND

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	114		80 - 120		10/13/22 11:46	1
4-Bromofluorobenzene (Surr)	93		80 - 120		10/13/22 11:46	1
Dibromofluoromethane (Surr)	103		80 - 120		10/13/22 11:46	1
1,2-Dichloroethane-d4 (Surr)	105		80 - 120		10/13/22 11:46	1

1.0

0.16 ug/L

10/13/22 11:46

Client: Hart & Hickman, PC Job ID: 590-18915-1 Project/Site: NWMS Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 590-38562/5

Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 38562	Spike	LCS	LCS			%Rec	
Analyte	Added			Unit	D %Rec	Limits	
Dichlorodifluoromethane	10.0	7.71		ug/L	$\frac{2}{77}$	31 - 150	
Chloromethane	10.0	9.48		ug/L	95	40 - 150	
Vinyl chloride	10.0	8.53		ug/L	85	47 - 150	
Bromomethane	10.0	7.48		ug/L	75	54 - 143	
Chloroethane	10.0	7.38		ug/L	74	56 - 145	
Trichlorofluoromethane	10.0	8.32		ug/L	83	60 - 150	
1,1-Dichloroethene	10.0	9.61		ug/L	96	75 - 140	
Methylene Chloride	10.0	9.13		ug/L	91	57 ₋ 150	
trans-1,2-Dichloroethene	10.0	10.5		ug/L	105	75 ₋ 132	
1,1-Dichloroethane	10.0	10.7		ug/L	107	79 - 121	
2,2-Dichloropropane	10.0	8.48		ug/L	85	69 - 143	
cis-1,2-Dichloroethene	10.0	11.0		ug/L ug/L	110	80 - 121	
Bromochloromethane	10.0	11.1		ug/L	111	70 - 140	
Chloroform	10.0	10.6			106	80 ₋ 126	
1,1,1-Trichloroethane	10.0	8.93		ug/L	89	80 - 120 80 - 130	
				ug/L	95	75 - 126	
Carbon tetrachloride	10.0	9.47		ug/L			
1,1-Dichloropropene	10.0	10.1		ug/L	101	76 - 125	
Benzene	10.0	10.2		ug/L	102	80 - 126	
1,2-Dichloroethane	10.0	10.3		ug/L	103	76 - 127	
Trichloroethene	10.0	9.90		ug/L	99	75 - 129	
1,2-Dichloropropane	10.0	9.73		ug/L	97	80 - 121	
Dibromomethane	10.0	10.3		ug/L	103	70 - 126	
Bromodichloromethane	10.0	9.52		ug/L	95	73 - 135	
cis-1,3-Dichloropropene	10.0	9.36		ug/L	94	72 - 129	
Toluene	10.0	8.48		ug/L	85	80 - 129	
trans-1,3-Dichloropropene	10.0	10.4		ug/L	104	74 - 120	
1,1,2-Trichloroethane	10.0	11.2		ug/L	112	80 - 126	
Tetrachloroethene	10.0	10.4		ug/L	104	77 - 124	
1,3-Dichloropropane	10.0	10.5		ug/L	105	73 - 126	
Dibromochloromethane	10.0	11.1		ug/L	111	72 - 122	
1,2-Dibromoethane (EDB)	10.0	11.1		ug/L	111	74 - 120	
Chlorobenzene	10.0	9.87		ug/L	99	79 - 125	
Ethylbenzene	10.0	9.77		ug/L	98	80 - 128	
1,1,1,2-Tetrachloroethane	10.0	9.68		ug/L	97	75 - 125	
1,1,2,2-Tetrachloroethane	10.0	10.3		ug/L	103	75 - 121	
m,p-Xylene	10.0	9.40		ug/L	94	80 - 127	
o-Xylene	10.0	8.66		ug/L	87	80 - 126	
Styrene	10.0	10.2		ug/L	102	75 - 136	
Bromoform	10.0	10.1		ug/L	101	46 - 134	
Isopropylbenzene	10.0	8.71		ug/L	87	77 - 123	
Bromobenzene	10.0	10.1		ug/L	101	77 - 128	
N-Propylbenzene	10.0	9.44		ug/L	94	67 - 138	
1,2,3-Trichloropropane	10.0	10.8		ug/L	108	72 - 128	
2-Chlorotoluene	10.0	9.14		ug/L	91	76 - 131	
1,3,5-Trimethylbenzene	10.0	9.17		ug/L	92	69 - 134	
4-Chlorotoluene	10.0	8.62		ug/L	86	70 - 132	
tert-Butylbenzene	10.0	9.51		ug/L	95	68 - 122	
1,2,4-Trimethylbenzene	10.0	9.71		ug/L	97	78 - 123	

Eurofins Spokane

Page 54 of 79

Spike

Added

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

Client: Hart & Hickman, PC Job ID: 590-18915-1 Project/Site: NWMS Puyallup

LCS LCS

9.62

9.78

8.89

9.60

9.35

9.54

11.1

12.0

9.21

13.1

9.99

10.7

Result Qualifier

Unit

ug/L

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 590-38562/5

Matrix: Water

sec-Butylbenzene

p-Isopropyltoluene

n-Butylbenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2-Dichlorobenzene

1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene

Hexachlorobutadiene

Methyl tert-butyl ether

Naphthalene

1,2-Dibromo-3-Chloropropane

Analyte

Analysis Batch: 38562

Client Sample ID: Lab Control Sample

%Rec

Prep Type: Total/NA

D	%Rec	Limits	
	96	67 - 131	
	98	74 - 128	
	89	72 - 127	
	96	74 - 121	
	94	71 - 127	
	95	73 - 127	
	111	47 - 136	
	120	75 - 136	
	92	74 135	

65 - 150

60 - 130

77 - 128

131

100

107

LCS	LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	85		80 - 120
4-Bromofluorobenzene (Surr)	100		80 - 120
Dibromofluoromethane (Surr)	101		80 - 120
1,2-Dichloroethane-d4 (Surr)	105		80 - 120

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Lab Sample ID: LCSD 590-38562/1004 **Matrix: Water**

Analysis Batch: 38562

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	10.0	8.51		ug/L		85	31 - 150	10	25
Chloromethane	10.0	8.22		ug/L		82	40 - 150	14	28
Vinyl chloride	10.0	8.36		ug/L		84	47 - 150	2	18
Bromomethane	10.0	8.59		ug/L		86	54 - 143	14	25
Chloroethane	10.0	8.04		ug/L		80	56 - 145	9	25
Trichlorofluoromethane	10.0	10.3	*1	ug/L		103	60 - 150	22	19
1,1-Dichloroethene	10.0	10.4		ug/L		104	75 - 140	8	24
Methylene Chloride	10.0	9.68		ug/L		97	57 - 150	6	24
trans-1,2-Dichloroethene	10.0	11.3		ug/L		113	75 - 132	8	17
1,1-Dichloroethane	10.0	11.0		ug/L		110	79 - 121	3	16
2,2-Dichloropropane	10.0	9.20		ug/L		92	69 - 143	8	25
cis-1,2-Dichloroethene	10.0	11.0		ug/L		110	80 - 121	0	18
Bromochloromethane	10.0	12.7		ug/L		127	70 - 140	14	18
Chloroform	10.0	10.9		ug/L		109	80 - 126	3	18
1,1,1-Trichloroethane	10.0	9.26		ug/L		93	80 - 130	4	18
Carbon tetrachloride	10.0	8.77		ug/L		88	75 - 126	8	17
1,1-Dichloropropene	10.0	10.5		ug/L		105	76 - 125	4	15
Benzene	10.0	10.1		ug/L		101	80 - 126	1	18
1,2-Dichloroethane	10.0	10.4		ug/L		104	76 - 127	1	16
Trichloroethene	10.0	9.53		ug/L		95	75 - 129	4	17
1,2-Dichloropropane	10.0	9.68		ug/L		97	80 - 121	1	18
Dibromomethane	10.0	9.97		ug/L		100	70 - 126	3	21
Bromodichloromethane	10.0	11.5		ug/L		115	73 - 135	19	19
cis-1,3-Dichloropropene	10.0	11.4		ug/L		114	72 - 129	19	20

Eurofins Spokane

Client: Hart & Hickman, PC Job ID: 590-18915-1

Project/Site: NWMS Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 590-38562/1004

Matrix: Water

Analysis Batch: 38562

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch. 30302	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene	10.0	11.9	*1	ug/L		119	80 - 129	34	18
trans-1,3-Dichloropropene	10.0	11.9		ug/L		119	74 - 120	13	17
1,1,2-Trichloroethane	10.0	12.1		ug/L		121	80 - 126	8	16
Tetrachloroethene	10.0	13.2	*+ *1	ug/L		132	77 - 124	24	22
1,3-Dichloropropane	10.0	11.6		ug/L		116	73 - 126	9	23
Dibromochloromethane	10.0	12.1		ug/L		121	72 - 122	8	19
1,2-Dibromoethane (EDB)	10.0	12.3	*+	ug/L		123	74 - 120	10	17
Chlorobenzene	10.0	10.3		ug/L		103	79 - 125	4	17
Ethylbenzene	10.0	9.82		ug/L		98	80 - 128	0	18
1,1,1,2-Tetrachloroethane	10.0	11.1		ug/L		111	75 - 125	14	15
1,1,2,2-Tetrachloroethane	10.0	12.0		ug/L		120	75 - 121	15	21
m,p-Xylene	10.0	10.1		ug/L		101	80 - 127	7	18
o-Xylene	10.0	9.38		ug/L		94	80 - 126	8	17
Styrene	10.0	9.26		ug/L		93	75 - 136	10	17
Bromoform	10.0	10.0		ug/L		100	46 - 134	1	20
Isopropylbenzene	10.0	9.45		ug/L		94	77 - 123	8	17
Bromobenzene	10.0	9.67		ug/L		97	77 - 128	5	18
N-Propylbenzene	10.0	9.15		ug/L		91	67 - 138	3	18
1,2,3-Trichloropropane	10.0	10.7		ug/L		107	72 - 128	1	25
2-Chlorotoluene	10.0	9.45		ug/L		95	76 - 131	3	25
1,3,5-Trimethylbenzene	10.0	8.96		ug/L		90	69 - 134	2	17
4-Chlorotoluene	10.0	9.16		ug/L		92	70 - 132	6	18
tert-Butylbenzene	10.0	8.59		ug/L		86	68 - 122	10	19
1,2,4-Trimethylbenzene	10.0	8.77		ug/L		88	78 - 123	10	17
sec-Butylbenzene	10.0	9.06		ug/L		91	67 - 131	6	19
1,3-Dichlorobenzene	10.0	9.88		ug/L		99	74 - 128	1	17
p-Isopropyltoluene	10.0	9.07		ug/L		91	72 - 127	2	18
1,4-Dichlorobenzene	10.0	10.5		ug/L		105	74 - 121	9	18
n-Butylbenzene	10.0	9.45		ug/L		95	71 - 127	1	19
1,2-Dichlorobenzene	10.0	10.0		ug/L		100	73 - 127	5	16
1,2-Dibromo-3-Chloropropane	10.0	11.9		ug/L		119	47 - 136	8	34
1,2,4-Trichlorobenzene	10.0	12.9		ug/L		129	75 - 136	8	26
1,2,3-Trichlorobenzene	10.0	12.8	*1	ug/L		128	74 - 135	33	27
Hexachlorobutadiene	10.0	13.9		ug/L		139	65 - 150	6	22
Naphthalene	10.0	12.2		ug/L		122	60 - 130	20	32
Methyl tert-butyl ether	10.0	11.3		ug/L		113	77 - 128	6	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	114		80 - 120
4-Bromofluorobenzene (Surr)	93		80 - 120
Dibromofluoromethane (Surr)	104		80 - 120
1,2-Dichloroethane-d4 (Surr)	100		80 - 120

Client: Hart & Hickman, PC Job ID: 590-18915-1 Project/Site: NWMS Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 590-18915-10 DU

Matrix: Water

Client Sample ID: MW-2 Prep Type: Total/NA

	Sample	Sample	DU	DU				RPD
Analyte		Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Dichlorodifluoromethane	ND		ND		ug/L		NC NC	25
Chloromethane	ND		ND		ug/L		NC	21
Vinyl chloride	ND		ND		ug/L		NC	25
Bromomethane	ND		ND		ug/L		NC	25
Chloroethane	ND		ND		ug/L		NC	25
Trichlorofluoromethane	ND	*1	ND	*1	ug/L		NC	19
1,1-Dichloroethene	ND		ND		ug/L		NC	24
Methylene Chloride	ND		ND		ug/L		NC	32
trans-1,2-Dichloroethene	ND		ND		ug/L		NC	17
1,1-Dichloroethane	ND		ND		ug/L		NC	16
2,2-Dichloropropane	ND		ND		ug/L		NC	25
cis-1,2-Dichloroethene	ND		ND		ug/L		NC	18
Bromochloromethane	ND		ND		ug/L		NC	25
Chloroform	ND		ND		ug/L		NC	18
1,1,1-Trichloroethane	ND		ND		ug/L		NC	18
Carbon tetrachloride	ND		ND		ug/L		NC	17
1,1-Dichloropropene	ND		ND		ug/L		NC	24
Benzene	ND		ND		ug/L		NC	18
1,2-Dichloroethane	ND		ND		ug/L		NC	16
Trichloroethene	ND		ND		ug/L		NC	17
1,2-Dichloropropane	ND		ND		ug/L		NC	18
Dibromomethane	ND		ND		ug/L		NC	21
Bromodichloromethane	ND		ND		ug/L		NC	19
cis-1,3-Dichloropropene	ND		ND		ug/L		NC	20
Toluene	ND	*1	ND	*1	ug/L		NC	18
trans-1,3-Dichloropropene	ND		ND		ug/L		NC	35
1,1,2-Trichloroethane	ND		ND		ug/L		NC	16
Tetrachloroethene	ND	*+ *1	ND	*+ *1	ug/L		NC	22
1,3-Dichloropropane	ND		ND	·	ug/L		NC	23
Dibromochloromethane	ND		ND		ug/L		NC	19
1,2-Dibromoethane (EDB)	ND	*+	ND	*+	ug/L		NC	17
Chlorobenzene	ND		ND		ug/L		NC	17
Ethylbenzene	ND		ND		ug/L		NC	18
1,1,1,2-Tetrachloroethane	ND		ND		ug/L		NC	23
1,1,2,2-Tetrachloroethane	ND		ND		ug/L		NC	21
m,p-Xylene	ND		ND		ug/L		NC	18
o-Xylene	ND		ND		ug/L		NC	17
Styrene	ND		ND		ug/L		NC	17
Bromoform	ND		ND ND		ug/L ug/L		NC NC	20
Isopropylbenzene	ND		ND		ug/L		NC	17
Bromobenzene	ND ND		ND ND				NC NC	18
					ug/L			
N-Propylbenzene	ND		ND		ug/L		NC	18
1,2,3-Trichloropropane	ND		ND		ug/L		NC NC	32
2-Chlorotoluene	ND		ND		ug/L		NC	25
1,3,5-Trimethylbenzene	ND		ND		ug/L		NC	17
4-Chlorotoluene	ND		ND		ug/L		NC	18
tert-Butylbenzene	ND		ND		ug/L		NC	19
1,2,4-Trimethylbenzene	ND		ND		ug/L		NC	17

Eurofins Spokane

10/25/2022

Page 57 of 79

Client: Hart & Hickman, PC Project/Site: NWMS Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 590-18915-10 DU Client Sample ID: MW-2 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 38562

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
sec-Butylbenzene	ND		ND		ug/L		NC	19
1,3-Dichlorobenzene	ND		ND		ug/L		NC	17
p-Isopropyltoluene	ND		ND		ug/L		NC	18
1,4-Dichlorobenzene	ND		ND		ug/L		NC	18
n-Butylbenzene	ND		ND		ug/L		NC	19
1,2-Dichlorobenzene	ND		ND		ug/L		NC	16
1,2-Dibromo-3-Chloropropane	ND		ND		ug/L		NC	34
1,2,4-Trichlorobenzene	ND		ND		ug/L		NC	26
1,2,3-Trichlorobenzene	ND	*1	ND	*1	ug/L		NC	35
Hexachlorobutadiene	ND		ND		ug/L		NC	22
Nanhthalene	ND		ND		ua/l		NC.	32

ND

ug/L

DU DU

ND

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	87		80 - 120
4-Bromofluorobenzene (Surr)	93		80 - 120
Dibromofluoromethane (Surr)	102		80 - 120
1,2-Dichloroethane-d4 (Surr)	101		80 - 120

Lab Sample ID: MB 590-38663/1-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 38740

Methyl tert-butyl ether

MB MB

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methylene Chloride	ND —	0.35	0.20 mg/Kg		10/18/22 17:15	10/24/22 19:04	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	110		80 - 120	10/18/22 17:15	10/24/22 19:04	1
4-Bromofluorobenzene (Surr)	100		76 - 122	10/18/22 17:15	10/24/22 19:04	1
Dibromofluoromethane (Surr)	101		80 - 120	10/18/22 17:15	10/24/22 19:04	1
1,2-Dichloroethane-d4 (Surr)	102		75 - 129	10/18/22 17:15	10/24/22 19:04	1

Lab Sample ID: LCS 590-38663/2-A

Matrix: Solid

Analysis Batch: 38740

Client Sample ID: Lab Control Sample	
Prep Type: Total/NA	

Prep Batch: 38663

	Spik	e LCS	LCS				%Rec	
Analyte	Adde	d Result	Qualifier	Unit	D	%Rec	Limits	
Methylene Chloride	0.50	0.627		mg/Kg	_	125	47 - 150	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits	
Toluene-d8 (Surr)	99		80 - 120	
4-Bromofluorobenzene (Surr)	100		76 - 122	
Dibromofluoromethane (Surr)	101		80 - 120	
1,2-Dichloroethane-d4 (Surr)	102		75 - 129	

Eurofins Spokane

20

NC

Prep Batch: 38663

Client: Hart & Hickman, PC Project/Site: NWMS Puyallup Job ID: 590-18915-1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

Lab Sample ID: MB 590-38494/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Prep Batch: 38494

Analysis Batch: 38487

Analyte

Gasoline

Gasoline

MB MB Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared 5.0 10/10/22 15:46 10/10/22 15:52 2.04 J 1.8 mg/Kg

mg/Kg

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 10/10/22 15:46 10/10/22 15:52 4-Bromofluorobenzene (Surr) 99 41.5 - 162

61.6

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 590-38494/3-B

Matrix: Solid

Analysis Batch: 38487

Prep Type: Total/NA

123

Prep Batch: 38494

LCS LCS Spike Analyte Added Result Qualifier Unit D %Rec Limits

50.2

%Rec

74.4 - 124

LCS LCS

Surrogate 4-Bromofluorobenzene (Surr)

Lab Sample ID: MB 590-38563/7

%Recovery Qualifier Limits 41.5 - 162 98

Client Sample ID: Method Blank

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 38563

MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 150 Gasoline $\overline{\mathsf{ND}}$ 31 ug/L 10/13/22 11:46

MB MB

Surrogate %Recovery Qualifier Dil Fac Limits Prepared Analyzed 4-Bromofluorobenzene (Surr) 93 68.7 - 141 10/13/22 11:46

Lab Sample ID: LCS 590-38563/1006

Matrix: Water

Analysis Batch: 38563

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike LCS LCS %Rec Added Result Qualifier Limits Analyte Unit D %Rec Gasoline 1000 897 ug/L 89 80 - 120

LCS LCS

%Recovery Qualifier Limits Surrogate 4-Bromofluorobenzene (Surr) 68.7 - 141 104

Lab Sample ID: LCSD 590-38563/1017

Matrix: Water

Analysis Batch: 38563

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Spike LCSD LCSD %Rec **RPD** Added RPD Analyte Result Qualifier Unit %Rec Limits Limit 1000 Gasoline 1010 ug/L 101 80 - 120 20

LCSD LCSD

Surrogate %Recovery Qualifier Limits 68 7 - 141 4-Bromofluorobenzene (Surr) 94

Eurofins Spokane

Client: Hart & Hickman, PC Project/Site: NWMS Puyallup

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS) (Continued)

Lab Sample ID: 590-18915-10 DU

Matrix: Water

Analyte

Gasoline

Analysis Batch: 38563

Client Sample ID: MW-2 Prep Type: Total/NA

DU DU RPD Sample Sample Result Qualifier Result Qualifier Unit D RPD Limit 36 J ND ug/L NC 35

DU DU

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 68.7 - 141 93

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: MB 590-38484/1-A Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 38485								Prep Batch:	38484
-	MB	MB						-	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.090	0.053	ug/L		10/10/22 12:44	10/10/22 14:39	1
2-Methylnaphthalene	ND		0.090	0.044	ug/L		10/10/22 12:44	10/10/22 14:39	1
1-Methylnaphthalene	ND		0.090	0.023	ug/L		10/10/22 12:44	10/10/22 14:39	1
Acenaphthylene	ND		0.090	0.016	ug/L		10/10/22 12:44	10/10/22 14:39	1
Acenaphthene	ND		0.090	0.022	ug/L		10/10/22 12:44	10/10/22 14:39	1
Fluorene	ND		0.090	0.016	ug/L		10/10/22 12:44	10/10/22 14:39	1
Phenanthrene	ND		0.090	0.056	ug/L		10/10/22 12:44	10/10/22 14:39	1
Anthracene	ND		0.090	0.025	ug/L		10/10/22 12:44	10/10/22 14:39	1
Fluoranthene	ND		0.090	0.017	ug/L		10/10/22 12:44	10/10/22 14:39	1
Pyrene	ND		0.090	0.026	ug/L		10/10/22 12:44	10/10/22 14:39	1
Benzo[a]anthracene	ND		0.090	0.012	ug/L		10/10/22 12:44	10/10/22 14:39	1
Chrysene	ND		0.090	0.010	ug/L		10/10/22 12:44	10/10/22 14:39	1
Benzo[b]fluoranthene	ND		0.090	0.025	ug/L		10/10/22 12:44	10/10/22 14:39	1
Benzo[k]fluoranthene	ND		0.090	0.015	ug/L		10/10/22 12:44	10/10/22 14:39	1
Benzo[a]pyrene	ND		0.090	0.012	ug/L		10/10/22 12:44	10/10/22 14:39	1
Indeno[1,2,3-cd]pyrene	ND		0.090	0.022	ug/L		10/10/22 12:44	10/10/22 14:39	1
Dibenz(a,h)anthracene	ND		0.090	0.013	ug/L		10/10/22 12:44	10/10/22 14:39	1
Benzo[g,h,i]perylene	ND		0.090	0.021	ug/L		10/10/22 12:44	10/10/22 14:39	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	80	42 - 121	10/10/22 12:44	10/10/22 14:39	1
2-Fluorobiphenyl (Surr)	70	50 - 120	10/10/22 12:44	10/10/22 14:39	1
p-Terphenyl-d14	77	51 - 121	10/10/22 12:44	10/10/22 14:39	1

Lab Sample ID: LCS 590-38484/2-A

Matrix: Water

Phenanthrene

Analysis Batch: 38485							Prep Batch: 38484		
-	Spike	LCS	LCS				%Rec		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Naphthalene	1.60	1.15		ug/L		72	52 - 120		
2-Methylnaphthalene	1.60	1.10		ug/L		69	44 - 120		
1-Methylnaphthalene	1.60	1.13		ug/L		71	49 - 120		
Acenaphthylene	1.60	1.20		ug/L		75	50 - 120		
Acenaphthene	1.60	1.19		ug/L		74	54 - 120		
Fluorene	1.60	1.21		ug/L		76	53 - 120		

1.41

ug/L

Eurofins Spokane

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

55 - 120

88

1.60

Client: Hart & Hickman, PC Project/Site: NWMS Puyallup

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCS 590-38484/2-A

Matrix: Water

Analysis Batch: 38485

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 38484

	Spike	LUS	LUS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Anthracene	1.60	1.20		ug/L		75	59 - 120	
Fluoranthene	1.60	1.28		ug/L		80	61 - 120	
Pyrene	1.60	1.44		ug/L		90	61 - 126	
Benzo[a]anthracene	1.60	1.30		ug/L		81	60 - 120	
Chrysene	1.60	1.35		ug/L		84	58 - 126	
Benzo[b]fluoranthene	1.60	1.12		ug/L		70	51 - 125	
Benzo[k]fluoranthene	1.60	1.36		ug/L		85	58 - 120	
Benzo[a]pyrene	1.60	1.27		ug/L		79	54 - 120	
Indeno[1,2,3-cd]pyrene	1.60	1.35		ug/L		84	59 - 120	
Dibenz(a,h)anthracene	1.60	1.35		ug/L		84	62 - 120	
Benzo[g,h,i]perylene	1.60	1.37		ug/L		85	55 - 120	

LCS LCS

Surrogate	%Recovery (Qualifier	Limits
Nitrobenzene-d5	72		42 - 121
2-Fluorobiphenyl (Surr)	65		50 - 120
p-Terphenyl-d14	71		51 - 121

Lab Sample ID: LCSD 590-38484/3-A

Matrix: Water

Analysis Batch: 38485

Client Sample	ID: Lab	Control	Sample Dup	
---------------	---------	---------	------------	--

Prep Type: Total/NA

Prep Batch: 38484

Analysis Baton: 00400							1 TOP E	dicon.	50707
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Naphthalene	1.60	1.17		ug/L		73	52 - 120	1	21
2-Methylnaphthalene	1.60	1.08		ug/L		68	44 - 120	2	16
1-Methylnaphthalene	1.60	1.11		ug/L		69	49 - 120	2	15
Acenaphthylene	1.60	1.24		ug/L		78	50 - 120	4	15
Acenaphthene	1.60	1.19		ug/L		74	54 - 120	0	15
Fluorene	1.60	1.23		ug/L		77	53 - 120	2	15
Phenanthrene	1.60	1.44		ug/L		90	55 - 120	2	16
Anthracene	1.60	1.19		ug/L		75	59 - 120	1	15
Fluoranthene	1.60	1.29		ug/L		81	61 - 120	1	15
Pyrene	1.60	1.43		ug/L		89	61 - 126	1	15
Benzo[a]anthracene	1.60	1.32		ug/L		83	60 - 120	2	15
Chrysene	1.60	1.39		ug/L		87	58 - 126	3	15
Benzo[b]fluoranthene	1.60	1.12		ug/L		70	51 - 125	1	15
Benzo[k]fluoranthene	1.60	1.41		ug/L		88	58 - 120	4	15
Benzo[a]pyrene	1.60	1.28		ug/L		80	54 - 120	1	15
Indeno[1,2,3-cd]pyrene	1.60	1.32		ug/L		82	59 - 120	2	18
Dibenz(a,h)anthracene	1.60	1.34		ug/L		84	62 - 120	1	18
Benzo[g,h,i]perylene	1.60	1.36		ug/L		85	55 - 120	0	17

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
Nitrobenzene-d5	70	42 - 121
2-Fluorobiphenyl (Surr)	64	50 - 120
p-Terphenyl-d14	72	51 - 121

Client: Hart & Hickman, PC Job ID: 590-18915-1 Project/Site: NWMS Puyallup

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: MB 590-38541/1-A

Matrix: Solid

Analysis Batch: 38542

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 38541

	MB MB							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND -	10	2.2	ug/Kg		10/12/22 11:20	10/12/22 14:18	1
2-Methylnaphthalene	ND	10	3.1	ug/Kg		10/12/22 11:20	10/12/22 14:18	1
1-Methylnaphthalene	ND	10	2.2	ug/Kg		10/12/22 11:20	10/12/22 14:18	1
Acenaphthylene	ND	10	3.3	ug/Kg		10/12/22 11:20	10/12/22 14:18	1
Acenaphthene	ND	10	2.5	ug/Kg		10/12/22 11:20	10/12/22 14:18	1
Fluorene	ND	10	2.2	ug/Kg		10/12/22 11:20	10/12/22 14:18	1
Phenanthrene	ND	10	3.6	ug/Kg		10/12/22 11:20	10/12/22 14:18	1
Anthracene	ND	10	2.0	ug/Kg		10/12/22 11:20	10/12/22 14:18	1
Fluoranthene	ND	10	2.5	ug/Kg		10/12/22 11:20	10/12/22 14:18	1
Pyrene	ND	10	3.8	ug/Kg		10/12/22 11:20	10/12/22 14:18	1
Benzo[a]anthracene	ND	10	2.1	ug/Kg		10/12/22 11:20	10/12/22 14:18	1
Chrysene	ND	10	1.5	ug/Kg		10/12/22 11:20	10/12/22 14:18	1
Benzo[b]fluoranthene	ND	10	3.5	ug/Kg		10/12/22 11:20	10/12/22 14:18	1
Benzo[k]fluoranthene	ND	10	2.5	ug/Kg		10/12/22 11:20	10/12/22 14:18	1
Benzo[a]pyrene	ND	10	4.2	ug/Kg		10/12/22 11:20	10/12/22 14:18	1
Indeno[1,2,3-cd]pyrene	ND	10	3.0	ug/Kg		10/12/22 11:20	10/12/22 14:18	1
Dibenz(a,h)anthracene	ND	10	2.8	ug/Kg		10/12/22 11:20	10/12/22 14:18	1
Benzo[g,h,i]perylene	ND	10	2.4	ug/Kg		10/12/22 11:20	10/12/22 14:18	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	66	44 - 120	10/12/22 11:20	10/12/22 14:18	1
2-Fluorobiphenyl (Surr)	66	47 - 120	10/12/22 11:20	10/12/22 14:18	1
p-Terphenyl-d14	78	54 ₋ 132	10/12/22 11:20	10/12/22 14:18	1

Lab Sample ID: LCS 590-38541/2-A

Matrix: Solid

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 38542	Spike	LCS	LCS				Prep Batch: 38541 %Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Naphthalene	267	166		ug/Kg		62	45 - 120
2-Methylnaphthalene	267	171		ug/Kg		64	48 - 120
1-Methylnaphthalene	267	172		ug/Kg		64	52 - 120
Acenaphthylene	267	185		ug/Kg		69	52 - 120
Acenaphthene	267	186		ug/Kg		70	53 - 120
Fluorene	267	191		ug/Kg		72	55 - 120
Phenanthrene	267	215		ug/Kg		81	57 - 121
Anthracene	267	184		ug/Kg		69	51 - 120
Fluoranthene	267	215		ug/Kg		81	63 - 127
Pyrene	267	222		ug/Kg		83	50 - 125
Benzo[a]anthracene	267	218		ug/Kg		82	61 - 131
Chrysene	267	189		ug/Kg		71	57 - 127
Benzo[b]fluoranthene	267	182		ug/Kg		68	61 - 127
Benzo[k]fluoranthene	267	205		ug/Kg		77	55 - 127
Benzo[a]pyrene	267	198		ug/Kg		74	60 - 126
Indeno[1,2,3-cd]pyrene	267	195		ug/Kg		73	54 - 128
Dibenz(a,h)anthracene	267	196		ug/Kg		74	60 - 121
Benzo[g,h,i]perylene	267	212		ug/Kg		80	58 - 129

Page 62 of 79

Client: Hart & Hickman, PC Project/Site: NWMS Puyallup

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCS 590-38541/2-A

Matrix: Solid

Analysis Batch: 38542

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 38541

LCS LCS

Surrogate	%Recovery Qua	lifier Limits
Nitrobenzene-d5	61	44 - 120
2-Fluorobiphenyl (Surr)	64	47 - 120
p-Terphenyl-d14	76	54 ₋ 132

Lab Sample ID: 590-18915-1 MS Client Sample ID: SB-6 (6-7)

Matrix: Solid

Prep Type: Total/NA

Analysis Batch: 38542 Prep Batch: 38541 Sample Sample Spike MS MS Added D

Limits Analyte Result Qualifier Result Qualifier Unit %Rec 282 ₩ 45 - 120 Naphthalene ND 200 ug/Kg 71 ND 282 202 72 2-Methylnaphthalene ug/Kg 48 - 120 ₩ 282 1-Methylnaphthalene ND 203 ug/Kg ☼ 72 52 - 120 Acenaphthylene ND 282 219 ug/Kg ₩ 78 52 - 120 Acenaphthene ND 282 218 78 ug/Kg ₩ 53 - 120 Fluorene ND 282 225 80 ug/Kg 55 - 120 57 - 121 Phenanthrene 4.6 282 256 ug/Kg 89 ₩ Anthracene 282 209 74 51 - 120 ND ug/Kg 282 256 91 Fluoranthene ND Ö 63 - 127ug/Kg Pyrene ND F2 282 260 ug/Kg 92 50 - 125 Benzo[a]anthracene ND 282 257 91 61 - 131 ug/Kg ∜ 282 229 Chrysene ND ug/Kg 81 57 - 127 ND 282 206 ₩ 73 61 - 127 Benzo[b]fluoranthene ug/Kg Benzo[k]fluoranthene ND 282 236 ug/Kg ₩ 84 55 - 127 Benzo[a]pyrene ND 282 232 ug/Kg 83 60 - 126 ₩ ND 282 235 84 54 - 128 Indeno[1,2,3-cd]pyrene ug/Kg ₩ Dibenz(a,h)anthracene ND 282 237 ug/Kg ₩ 84 60 - 121

282

240

ug/Kg

MS MS

ND

Surrogate	%Recovery Qualifier	Limits
Nitrobenzene-d5	69	44 - 120
2-Fluorobiphenyl (Surr)	70	47 - 120
p-Terphenvl-d14	82	54 - 132

Lab Sample ID: 590-18915-1 MSD

Matrix: Solid

Benzo[g,h,i]perylene

Analysis Batch: 38542

Client Sample	e ID: S	B-6	(6-7)
Prep	Type:	Tota	I/NA

58 - 129

85

₩

Prep Batch: 38541

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Naphthalene	ND		283	173		ug/Kg	<u></u>	61	45 - 120	14	20
2-Methylnaphthalene	ND		283	180		ug/Kg	₩	64	48 - 120	12	20
1-Methylnaphthalene	ND		283	182		ug/Kg	₩	64	52 - 120	11	15
Acenaphthylene	ND		283	196		ug/Kg	₽	69	52 - 120	11	20
Acenaphthene	ND		283	197		ug/Kg	₩	69	53 - 120	10	15
Fluorene	ND		283	210		ug/Kg	₩	74	55 - 120	7	21
Phenanthrene	4.6	J	283	231		ug/Kg	₽	80	57 - 121	11	18
Anthracene	ND		283	186		ug/Kg	₩	66	51 - 120	12	18
Fluoranthene	ND		283	218		ug/Kg	₩	77	63 - 127	16	18
Pyrene	ND	F2	283	214	F2	ug/Kg	₽	75	50 - 125	20	18

Eurofins Spokane

Page 63 of 79

Client: Hart & Hickman, PC Project/Site: NWMS Puyallup

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: 590-18915-1 MSD

Matrix: Solid

Analysis Batch: 38542

Client Sample ID: SB-6 (6-7)

Prep Type: Total/NA

Prep Batch: 38541

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzo[a]anthracene	ND		283	222		ug/Kg	-	78	61 - 131	15	16
Chrysene	ND		283	206		ug/Kg	☼	73	57 - 127	11	15
Benzo[b]fluoranthene	ND		283	200		ug/Kg	☼	71	61 - 127	3	16
Benzo[k]fluoranthene	ND		283	225		ug/Kg	☼	80	55 - 127	5	16
Benzo[a]pyrene	ND		283	207		ug/Kg	☼	73	60 - 126	12	20
Indeno[1,2,3-cd]pyrene	ND		283	213		ug/Kg	☼	75	54 - 128	10	31
Dibenz(a,h)anthracene	ND		283	210		ug/Kg	☼	74	60 - 121	12	31
Benzo[g,h,i]perylene	ND		283	204		ug/Kg	☼	72	58 - 129	16	27

MSD MSD

Surrogate	%Recovery Qua	lifier Limits
Nitrobenzene-d5	59	44 - 120
2-Fluorobiphenyl (Surr)	63	47 - 120
p-Terphenyl-d14	68	54 - 132

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 590-38499/1-A

Matrix: Solid

Analysis Batch: 38505

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 38499

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	ND		10	4.2	mg/Kg		10/11/22 10:42	10/11/22 12:46	1
(C10-C25)									
Residual Range Organics (RRO)	ND		25	5.0	mg/Kg		10/11/22 10:42	10/11/22 12:46	1
(C25-C36)									

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	96		50 - 150	10/11/22 10:42	10/11/22 12:46	1
n-Triacontane-d62	91		50 - 150	10/11/22 10:42	10/11/22 12:46	1

Lab Sample ID: LCS 590-38499/2-A

Matrix: Solid

Analysis Batch: 38505

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 38499

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Diesel Range Organics (DRO)	66.7	64.8		mg/Kg		97	50 - 150	
(C10-C25)								
Residual Range Organics (RRO)	66.7	67.7		mg/Kg		102	50 - 150	

(C25-C36)

100	100
LCS	LCS

Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	104		50 - 150
n-Triacontane-d62	98		50 - 150

Eurofins Spokane

Client: Hart & Hickman, PC Project/Site: NWMS Puyallup

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: 590-18915-1 DU

Matrix: Solid

Analysis Batch: 38505

Client Sample ID: SB-6 (6-7)

Prep Type: Total/NA

Prep Batch: 38499

Allalysis Datell. 00000							i icp batci		0433
	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RF	D	Limit
Diesel Range Organics (DRO)	ND		 ND		mg/Kg	<u> </u>		IC	40
(C10-C25)									
Residual Range Organics (RRO)	ND		ND		mg/Kg	₩	N	IC	40
(C25-C36)									

DU DU

Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	94		50 - 150
n-Triacontane-d62	94		50 - 150

Lab Sample ID: MB 590-38507/1-A **Client Sample ID: Method Blank**

Matrix: Water

Analysis Batch: 38505

Prep Type: Total/NA

Prep Batch: 38507

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		0.24	0.11	mg/L		10/11/22 12:56	10/11/22 19:36	1
Residual Range Organics (RRO) (C25-C36)	ND		0.40	0.12	mg/L		10/11/22 12:56	10/11/22 19:36	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	79		50 - 150	10/11/22 12:56	10/11/22 19:36	1
n-Triacontane-d62	78		50 ₋ 150	10/11/22 12:56	10/11/22 19:36	1

Lab Sample ID: LCS 590-38507/2-A

Matrix: Water

Analysis Batch: 38505

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 38507 Spike LCS LCS %Rec Added Result Qualifier Unit D %Rec Limits

Analyte Diesel Range Organics (DRO) 1.60 1.21 76 50 - 150 mg/L (C10-C25) Residual Range Organics (RRO) 1.60 1.49 mg/L 93 50 - 150

(C25-C36)

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	88		50 - 150
n-Triacontane-d62	90		50 ₋ 150

Lab Sample ID: LCSD 590-38507/3-A

Matrix: Water

Analysis Batch: 38505

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 38507

Spike LCSD LCSD %Rec **RPD** Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec 50 - 150 Diesel Range Organics (DRO) 1.60 1.32 mg/L 82 8 25 (C10-C25) Residual Range Organics (RRO) 1.60 1.54 mg/L 96 50 - 150 3 25

(C25-C36)

LCSD LCSD

Surrogate %Recovery Qualifier Limits 50 - 150 o-Terphenyl 93

Eurofins Spokane

Client: Hart & Hickman, PC Job ID: 590-18915-1 Project/Site: NWMS Puyallup

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: LCSD 590-38507/3-A

Matrix: Water

Analysis Batch: 38505

LCSD LCSD

%Recovery Qualifier Limits Surrogate 50 - 150 n-Triacontane-d62 95

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 38507

Client: Hart & Hickman, PC Project/Site: NWMS Puyallup

Client Sample ID: SB-6 (6-7)

Date Collected: 10/03/22 12:15 Date Received: 10/10/22 09:00

Lab Sample ID: 590-18915-1

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			38496	10/11/22 08:56	NMI	EET SPK

Client Sample ID: SB-6 (6-7)

Date Collected: 10/03/22 12:15 Date Received: 10/10/22 09:00

Lab Sample ID: 590-18915-1

Matrix: Solid Percent Solids: 93.6

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.472 g	10 mL	38494	10/10/22 15:46	JSP	EET SPK
Total/NA	Analysis	8260D		1	0.86 mL	43 mL	38731	10/22/22 03:57	JSP	EET SPK
Total/NA	Prep	5035			4.472 g	10 mL	38494	10/10/22 15:46	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	0.86 mL	43 mL	38487	10/10/22 20:55	JSP	EET SPK
Total/NA	Prep	3550C			15.11 g	2 mL	38541	10/12/22 11:20	NMI	EET SPK
Total/NA	Analysis	8270E SIM		1	1 uL	1 uL	38542	10/12/22 15:05	NMI	EET SPK
Total/NA	Prep	3550C			15.06 g	5 mL	38499	10/11/22 10:42	NMI	EET SPK
Total/NA	Analysis	NWTPH-Dx		1	1 mL	1 mL	38505	10/11/22 16:12	NMI	EET SPK

Client Sample ID: SB-7 (6-7)

Date Collected: 10/03/22 14:45

Date Received: 10/10/22 09:00

Lab Sample ID: 590-18915-2

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			38496	10/11/22 08:56	NMI	EET SPK

Client Sample ID: SB-7 (6-7)

Date Collected: 10/03/22 14:45

Date Received: 10/10/22 09:00

Lab Sample ID: 590-18915-2 **Matrix: Solid**

Lab Sample ID: 590-18915-3

10/11/22 08:56 NMI

Percent Solids: 96.5

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.622 g	10 mL	38494	10/10/22 15:46	JSP	EET SPK
Total/NA	Analysis	8260D		1	0.86 mL	43 mL	38731	10/22/22 04:38	JSP	EET SPK
Total/NA	Prep	5035			4.622 g	10 mL	38494	10/10/22 15:46	JSP	EET SPK
Total/NA	Analysis	8260D		1	0.86 mL	43 mL	38740	10/24/22 21:11	JSP	EET SPK
Total/NA	Prep	5035			4.622 g	10 mL	38494	10/10/22 15:46	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	0.86 mL	43 mL	38487	10/10/22 21:17	JSP	EET SPK
Total/NA	Prep	3550C			15.10 g	2 mL	38541	10/12/22 11:20	NMI	EET SPK
Total/NA	Analysis	8270E SIM		1	1 uL	1 uL	38542	10/12/22 16:14	NMI	EET SPK
Total/NA	Prep	3550C			15.33 g	5 mL	38499	10/11/22 10:42	NMI	EET SPK
Total/NA	Analysis	NWTPH-Dx		1	1 mL	1 mL	38505	10/11/22 16:53	NMI	EET SPK

Client Sample ID: SB-8 (2-3)

Analysis

Moisture

Date Collected: 10/04/22 16:30

Total/NA

Date Receive	Pate Received: 10/10/22 09:00												
	Batch	Batch		Dil	Initial	Final	Batch	Prepared					
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab			

38496

Eurofins Spokane

Matrix: Solid

Page 67 of 79

10/25/2022

EET SPK

Client: Hart & Hickman, PC Project/Site: NWMS Puyallup

Client Sample ID: SB-8 (2-3)

Date Collected: 10/04/22 16:30 Date Received: 10/10/22 09:00

Lab Sample ID: 590-18915-3

Matrix: Solid

Percent Solids: 88.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			3.84 g	10 mL	38494	10/10/22 15:46	JSP	EET SPK
Total/NA	Analysis	8260D		1	0.86 mL	43 mL	38731	10/22/22 05:41	JSP	EET SPK
Total/NA	Prep	5035			3.84 g	10 mL	38494	10/10/22 15:46	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	0.86 mL	43 mL	38487	10/10/22 21:38	JSP	EET SPK
Total/NA	Prep	3550C			15.32 g	2 mL	38541	10/12/22 11:20	NMI	EET SPK
Total/NA	Analysis	8270E SIM		1	1 uL	1 uL	38542	10/12/22 16:38	NMI	EET SPK
Total/NA	Prep	3550C			15.16 g	5 mL	38499	10/11/22 10:42	NMI	EET SPK
Total/NA	Analysis	NWTPH-Dx		1	1 mL	1 mL	38505	10/11/22 17:13	NMI	EET SPK

Client Sample ID: SB-9 (2-3) Lab Sample ID: 590-18915-4

Date Collected: 10/05/22 10:00 Date Received: 10/10/22 09:00

Matrix: Solid

Dil Batch Batch Initial Final **Batch** Prepared Method or Analyzed **Prep Type** Type Run **Factor Amount Amount** Number Analyst Lab Total/NA Analysis Moisture 38496 10/11/22 08:56 NMI **EET SPK**

Client Sample ID: SB-9 (2-3) Lab Sample ID: 590-18915-4 Date Collected: 10/05/22 10:00 **Matrix: Solid**

Date Received: 10/10/22 09:00 Percent Solids: 89.2

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.864 g	10 mL	38494	10/10/22 15:46	JSP	EET SPK
Total/NA	Analysis	8260D		1	0.86 mL	43 mL	38731	10/22/22 06:02	JSP	EET SPK
Total/NA	Prep	5035			4.864 g	10 mL	38494	10/10/22 15:46	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	0.86 mL	43 mL	38487	10/10/22 22:00	JSP	EET SPK
Total/NA	Prep	3550C			15.00 g	2 mL	38541	10/12/22 11:20	NMI	EET SPK
Total/NA	Analysis	8270E SIM		1	1 uL	1 uL	38542	10/12/22 17:01	NMI	EET SPK
Total/NA	Prep	3550C			15.18 g	5 mL	38499	10/11/22 10:42	NMI	EET SPK
Total/NA	Analysis	NWTPH-Dx		1	1 mL	1 mL	38505	10/11/22 17:34	NMI	EET SPK

Client Sample ID: SB-10 (2-3) Lab Sample ID: 590-18915-5 Date Collected: 10/05/22 16:50

Date Received: 10/10/22 09:00

Dil Batch Batch Initial Final Batch Prepared **Prep Type** Method Amount Amount Number or Analyzed Type Run **Factor** Analyst Lab Total/NA Analysis Moisture 38496 10/11/22 08:56 NMI EET SPK

Lab Sample ID: 590-18915-5 Client Sample ID: SB-10 (2-3) Date Collected: 10/05/22 16:50 **Matrix: Solid**

Date Received: 10/10/22 09:00 Percent Solids: 93.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.413 g	10 mL	38494	10/10/22 15:46	JSP	EET SPK
Total/NA	Analysis	8260D		1	0.86 mL	43 mL	38731	10/22/22 06:22	JSP	EET SPK
Total/NA	Prep	5035			4.413 g	10 mL	38494	10/10/22 15:46	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	0.86 mL	43 mL	38487	10/10/22 22:22	JSP	EET SPK

Eurofins Spokane

Page 68 of 79

Matrix: Solid

Client: Hart & Hickman, PC Project/Site: NWMS Puyallup

Client Sample ID: SB-10 (2-3)

Date Collected: 10/05/22 16:50 Date Received: 10/10/22 09:00

Lab Sample ID: 590-18915-5

Matrix: Solid

Percent Solids: 93.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.00 g	2 mL	38541	10/12/22 11:20	NMI	EET SPK
Total/NA	Analysis	8270E SIM		1	1 uL	1 uL	38542	10/12/22 17:24	NMI	EET SPK
Total/NA	Prep	3550C			15.14 g	5 mL	38499	10/11/22 10:42	NMI	EET SPK
Total/NA	Analysis	NWTPH-Dx		1	1 mL	1 mL	38505	10/11/22 17:54	NMI	EET SPK

Client Sample ID: SB-11 (2-3)

Date Collected: 10/06/22 10:30

Date Received: 10/10/22 09:00

Lab Sample ID: 590-18915-6

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			38496	10/11/22 08:56	NMI	EET SPK

Client Sample ID: SB-11 (2-3)

Date Collected: 10/06/22 10:30

Date Received: 10/10/22 09:00

Lab Sample ID: 590-18915-6 **Matrix: Solid**

Lab Sample ID: 590-18915-7

Percent Solids: 93.3

Matrix: Solid

Matrix: Solid

Percent Solids: 92.1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.052 g	10 mL	38494	10/10/22 15:46	JSP	EET SPK
Total/NA	Analysis	8260D		1	0.86 mL	43 mL	38731	10/22/22 06:43	JSP	EET SPK
Total/NA	Prep	5035			5.052 g	10 mL	38494	10/10/22 15:46	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	0.86 mL	43 mL	38487	10/10/22 23:05	JSP	EET SPK
Total/NA	Prep	3550C			15.23 g	2 mL	38541	10/12/22 11:20	NMI	EET SPK
Total/NA	Analysis	8270E SIM		1	1 uL	1 uL	38542	10/12/22 17:47	NMI	EET SPK
Total/NA	Prep	3550C			15.10 g	5 mL	38499	10/11/22 10:42	NMI	EET SPK
Total/NA	Analysis	NWTPH-Dx		1	1 mL	1 mL	38505	10/11/22 18:14	NMI	EET SPK

Client Sample ID: SB-12 (2-3)

Date Collected: 10/06/22 13:45

Date Received: 10/10/22 09	:00					
_ Batch	Batch	Dil	Initial	Final	Batch	Prepared

Prep Type Method **Amount** Number or Analyzed Analyst Type Run **Factor Amount** Lab Total/NA Analysis Moisture 38496 10/11/22 08:56 NMI EET SPK Client Sample ID: SB-12 (2-3) Lab Sample ID: 590-18915-7

Date Collected: 10/06/22 13:45

Date Received: 10/10/22 09:00

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.458 g	10 mL	38494	10/10/22 15:46	JSP	EET SPK
Total/NA	Analysis	8260D		1	0.86 mL	43 mL	38731	10/22/22 07:04	JSP	EET SPK
Total/NA	Prep	5035			4.458 g	10 mL	38494	10/10/22 15:46	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	0.86 mL	43 mL	38487	10/10/22 23:26	JSP	EET SPK
Total/NA	Prep	3550C			15.47 g	2 mL	38541	10/12/22 11:20	NMI	EET SPK
Total/NA	Analysis	8270E SIM		1	1 uL	1 uL	38542	10/12/22 18:11	NMI	EET SPK
Total/NA	Prep	3550C			15.14 g	5 mL	38499	10/11/22 10:42	NMI	EET SPK
Total/NA	Analysis	NWTPH-Dx		1	1 mL	1 mL	38505	10/11/22 18:35	NMI	EET SPK

Eurofins Spokane

Page 69 of 79

Client: Hart & Hickman, PC Project/Site: NWMS Puyallup

Lab Sample ID: 590-18915-8

Matrix: Solid

Date Collected: 10/06/22 00:00 Date Received: 10/10/22 09:00

Client Sample ID: DUP-1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			38496	10/11/22 08:56	NMI	EET SPK

Client Sample ID: DUP-1

Date Collected: 10/06/22 00:00 Date Received: 10/10/22 09:00

Lab Sample ID: 590-1891	5-8
Matrix: S	olid
Percent Solids:	92.3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.43 g	10 mL	38494	10/10/22 15:46	JSP	EET SPK
Total/NA	Analysis	8260D		1	0.86 mL	43 mL	38731	10/22/22 07:25	JSP	EET SPK
Total/NA	Prep	5035			4.43 g	10 mL	38494	10/10/22 15:46	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	0.86 mL	43 mL	38487	10/10/22 23:48	JSP	EET SPK
Total/NA	Prep	3550C			15.30 g	2 mL	38541	10/12/22 11:20	NMI	EET SPK
Total/NA	Analysis	8270E SIM		1	1 uL	1 uL	38542	10/12/22 18:34	NMI	EET SPK
Total/NA	Prep	3550C			15.40 g	5 mL	38499	10/11/22 10:42	NMI	EET SPK
Total/NA	Analysis	NWTPH-Dx		1	1 mL	1 mL	38505	10/11/22 18:55	NMI	EET SPK

Client Sample ID: TB-1

Date Collected: 10/03/22 00:00 Date Received: 10/10/22 09:00

le ID: 590-18915-9

Matrix: Solid

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			10.042 g	10 mL	38494	10/10/22 15:46	JSP	EET SPK
Total/NA	Analysis	8260D		1	0.86 mL	43 mL	38731	10/22/22 07:45	JSP	EET SPK

Client Sample ID: MW-2

Date Collected: 10/07/22 09:10 Date Received: 10/10/22 09:00

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	43 mL	43 mL	38562	10/13/22 12:08	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	38563	10/13/22 12:08	JSP	EET SPK
Total/NA	Prep	3510C			240.7 mL	2 mL	38484	10/10/22 12:44	NMI	EET SPK
Total/NA	Analysis	8270E SIM		1	1 uL	1 uL	38485	10/10/22 17:45	NMI	EET SPK
Total/NA	Prep	3510C			242 mL	2 mL	38507	10/11/22 12:56	NMI	EET SPK
Total/NA	Analysis	NWTPH-Dx		1	1 mL	1 mL	38505	10/12/22 00:02	NMI	EET SPK

Client Sample ID: MW-3

Date Collected: 10/07/22 12:35

Date Received: 10/10/22 09:00

Lab	Sample	ID:	590-18915-11
			Matrix: Water

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	43 mL	43 mL	38562	10/13/22 12:51	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	38563	10/13/22 12:51	JSP	EET SPK
Total/NA	Prep	3510C			238.7 mL	2 mL	38484	10/10/22 12:44	NMI	EET SPK
Total/NA	Analysis	8270E SIM		1	1 uL	1 uL	38485	10/10/22 18:09	NMI	EET SPK

Eurofins Spokane

Page 70 of 79

Job ID: 590-18915-1

Client: Hart & Hickman, PC Project/Site: NWMS Puyallup

Client Sample ID: MW-3 Date Collected: 10/07/22 12:35 Lab Sample ID: 590-18915-11

Matrix: Water

Date Received: 10/10/22 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			250.2 mL	2 mL	38507	10/11/22 12:56	NMI	EET SPK
Total/NA	Analysis	NWTPH-Dx		1	1 mL	1 mL	38505	10/12/22 00:22	NMI	EET SPK

Lab Sample ID: 590-18915-12 Client Sample ID: MW-4

Date Collected: 10/07/22 07:50 **Matrix: Water**

Date Received: 10/10/22 09:00

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	43 mL	43 mL	38562	10/13/22 13:13	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	38563	10/13/22 13:13	JSP	EET SPK
Total/NA	Prep	3510C			242.1 mL	2 mL	38484	10/10/22 12:44	NMI	EET SPK
Total/NA	Analysis	8270E SIM		1	1 uL	1 uL	38485	10/10/22 18:32	NMI	EET SPK
Total/NA	Prep	3510C			248.6 mL	2 mL	38507	10/11/22 12:56	NMI	EET SPK
Total/NA	Analysis	NWTPH-Dx		1	1 mL	1 mL	38505	10/12/22 00:43	NMI	EET SPK

Client Sample ID: MW-5 Lab Sample ID: 590-18915-13 Date Collected: 10/07/22 10:35 **Matrix: Water**

Date Received: 10/10/22 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	43 mL	43 mL	38562	10/13/22 13:35	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	38563	10/13/22 13:35	JSP	EET SPK
Total/NA	Prep	3510C			248.4 mL	2 mL	38484	10/10/22 12:44	NMI	EET SPK
Total/NA	Analysis	8270E SIM		1	1 uL	1 uL	38485	10/10/22 18:55	NMI	EET SPK
Total/NA	Prep	3510C			243 mL	2 mL	38507	10/11/22 12:56	NMI	EET SPK
Total/NA	Analysis	NWTPH-Dx		1	1 mL	1 mL	38505	10/12/22 01:03	NMI	EET SPK

Client Sample ID: MW-6 Lab Sample ID: 590-18915-14

Date Collected: 10/07/22 13:35 Date Received: 10/10/22 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	43 mL	43 mL	38562	10/13/22 13:56	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	38563	10/13/22 13:56	JSP	EET SPK
Total/NA	Prep	3510C			241 mL	2 mL	38484	10/10/22 12:44	NMI	EET SPK
Total/NA	Analysis	8270E SIM		1	1 uL	1 uL	38485	10/10/22 19:19	NMI	EET SPK
Total/NA	Prep	3510C			242.3 mL	2 mL	38507	10/11/22 12:56	NMI	EET SPK
Total/NA	Analysis	NWTPH-Dx		1	1 mL	1 mL	38505	10/12/22 01:24	NMI	EET SPK

Lab Sample ID: 590-18915-15 **Client Sample ID: DUP-1** Date Collected: 10/07/22 00:00 **Matrix: Water**

Date Received: 10/10/22 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260D			43 mL	43 mL	38562	10/13/22 14:18	JSP	FFT SPK	

Eurofins Spokane

Page 71 of 79

Lab Chronicle

Client: Hart & Hickman, PC Job ID: 590-18915-1 Project/Site: NWMS Puyallup

Client Sample ID: DUP-1 Date Collected: 10/07/22 00:00 Lab Sample ID: 590-18915-15

Matrix: Water

Date Received: 10/10/22 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	38563	10/13/22 14:18	JSP	EET SPK
Total/NA	Prep	3510C			235 mL	2 mL	38484	10/10/22 12:44	NMI	EET SPK
Total/NA	Analysis	8270E SIM		1	1 uL	1 uL	38485	10/10/22 19:42	NMI	EET SPK
Total/NA	Prep	3510C			243.5 mL	2 mL	38507	10/11/22 12:56	NMI	EET SPK
Total/NA	Analysis	NWTPH-Dx		1	1 mL	1 mL	38505	10/12/22 01:44	NMI	EET SPK

Lab Sample ID: 590-18915-16 **Client Sample ID: TB-1**

Matrix: Water

Date Collected: 10/07/22 00:00 Date Received: 10/10/22 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	43 mL	43 mL	38562	10/13/22 14:39	JSP	EET SPK

Client Sample ID: MW-1 Lab Sample ID: 590-18915-17

Date Collected: 10/06/22 17:10 **Matrix: Water** Date Received: 10/10/22 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	43 mL	43 mL	38562	10/13/22 15:01	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	38563	10/13/22 15:01	JSP	EET SPK
Total/NA	Prep	3510C			254.4 mL	2 mL	38484	10/10/22 12:44	NMI	EET SPK
Total/NA	Analysis	8270E SIM		1	1 uL	1 uL	38485	10/10/22 20:05	NMI	EET SPK
Total/NA	Prep	3510C			250.3 mL	2 mL	38507	10/11/22 13:00	NMI	EET SPK
Total/NA	Analysis	NWTPH-Dx		1	1 mL	1 mL	38505	10/12/22 03:06	NMI	EET SPK

Laboratory References:

EET SPK = Eurofins Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Eurofins Spokane

Accreditation/Certification Summary

Client: Hart & Hickman, PC
Project/Site: NWMS Puyallup
Job ID: 590-18915-1

Laboratory: Eurofins Spokane

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	ı	Program	Identification Number	Expiration Date
Washington		State	C569	01-06-23
The following analyte the agency does not do		port, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
Moisture		Solid	Percent Moisture	
Moisture		Solid	Percent Solids	

3

4

5

7

9

10

11

Method Summary

Client: Hart & Hickman, PC Project/Site: NWMS Puyallup Job ID: 590-18915-1

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	EET SPK
NWTPH-Gx	Northwest - Volatile Petroleum Products (GC/MS)	NWTPH	EET SPK
8270E SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	EET SPK
NWTPH-Dx	Northwest - Semi-Volatile Petroleum Products (GC)	NWTPH	EET SPK
Moisture	Percent Moisture	EPA	EET SPK
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	EET SPK
3550C	Ultrasonic Extraction	SW846	EET SPK
5030C	Purge and Trap	SW846	EET SPK
5035	Closed System Purge and Trap	SW846	EET SPK

Protocol References:

EPA = US Environmental Protection Agency

NWTPH = Northwest Total Petroleum Hydrocarbon

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SPK = Eurofins Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

6

Λ

6

R

9

10

1

Possible Hazard Identification

Custody Seals Intact.

Δ Yes Δ No

Custody Seal No.

•	eurofins	
-	Cuivilli	

11922 East 1st Ave **Environment Testing Chain of Custody Record** Spokane, WA 99206 Phone (509) 924-9200 Phone (509) 924-9290 Sampler Lab PM: Carrier TrackIng No(s): COC No: Adam Michalak Arrington, Randee E 590-7873-2297 1 Client Information Client Contact: Phone: E-Mall: State of Origin: Nathan O'Leary 916-616-7368 Randee.Arrington@et.eurofinsus.com Page 1 of 2 WA Company: PWSID: Job#: Hart & Hickman, PC Analysis Requested Address: Due Date Requested: Preservation Codes 2923 S Tyron St, STE 100 M Hexane TAT Requested (days): N None B NaOH Charlotte O AsNaO2 5 day TAT C Zn Acetate P Na2O4S State, Zip: D Nitric Acid Polycyclic Aromatic Hydrocarbons Q Na2SO3 Compliance Project: A Yes A No E NaHSO4 NC, 28203 R Na2S2O3 F MeOH Phone: PO #: S H2SO4 G Amchlor T TSP Dodecahydrate 704-887 7197 (Tel) Purchase Order not required H Ascorbic Acid U Acetone WO# 1 Ice V MCAA J DI Water noleary@harthickman.com W pH 4-5 8260D Standard Analyte List Colher Other K EDTA Project Name: Project #: Y Trizma NWTPH_Dx DRO and RRO L EDA NWMS Puyallup 59002274 Z other (specify) 8260D, NWTPH_Gx_MS SSOW#. Total Number Matrix Sample (W≖water Type 8≖soild, (C=comp, Sample O=waste/oil. Sample Identification Sample Date Time G=grab) BT=Tissue, A=Alr Special Instructions/Note Preservation Code: Report to MDLs and J flags SB-6 (6-7) 10/3/22 1215 G Solid Х Х SB-7 (6-7) 10/3/22 1445 G Solid Х Х SB-8 (2-3) 10/4/22 G Solid Х Х 1630 SB-9 (2-3) 10/5/22 1000 G Solid Х Х SB-10 (2-3) 10/5/22 1650 G Solid Х Х SB-11 (2-3) G Х Х 10/6/22 Solid 1030 SB-12 (2-3) 10/6/22 G Solid Х Х 1345 Х DUP-1 10/6/22 G Solid Х 590-18915 Chain of Custody TB-1 9/29/22 G Solid Х MW-2 Х x 10/7/22 0910 G Water Х MW-3 $x \mid x$ Х 10/7/22 G Water 1235

Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Non-Hazard Flammable Skin Irrilant Poison B Unknown Radiological Return To Client Disposal By Lab Archive For_ Months Special Instructions/QC Requirements.

mpty Kit Relinquished by:	Date:	Time	e:	Method of Shipment:	
		Company H&H	Received by:	Date/Time:	Company
	Date/Time:	Company	Received by	Date/Time: 10/10/22 01 00	Company CETUPO
elinquished by:	Date/Time:	Company	Received by:	Date/Time:	Company

Cooler Temperature(s) °C and Other Remarks:

11922 East 1st Ave Spokane, WA 99206

Chain of Custody Record

💸 eurofins

Environment Testing

Phone (509) 924-9200 Phone (509) 924-9290 Sampler Carrier Tracking No(s): COC No: Adam Michalak 590-7873-2297 1 Client Information Arrington, Randee E Client Contact: State of Origin: Phone: Page: Nathan O'Leary 916-616-7368 Randee.Arrington@et.eurofinsus.com Page 2 of 2 Company: WSID: Hart & Hickman, PC **Analysis Requested** Address: Due Date Requested: Preservation Codes: 2923 S Tyron St, STE 100 M Hexane TAT Requested (days): N None B NaOH O AsNaO2 Charlotte 5 day TAT C Zn Acetate P Na2O4S State, Zip; D Nitric Acid Polycyclic Aromatic Hydrocarbons Q Na2SO3 E NaHSO4 NC, 28203 Compliance Project: Δ Yes Δ No. R Na2S2O3 F MeOH Phone: S H2SO4 G Amchlor 704-887 7197 (Tel) T TSP Dodecahydrate Purchase Order not required H Ascorbic Acid U Acetone I ice V MCAA J DI Water noleary@harthickman.com W pH 4-5 8260D Standard Analyte List K EDTA Project Name: Project #: Y Trizma DRO and RRO L EDA NWMS Puyallup 59002274 Z other (specify) 3260D, NWTPH_Gx_MS 8260D, NWTPH_Gx_MS Site: SSOW#: Other: Total Number of Matrix Sample 8270E_SIM NWTPH_Dx (W=water Type S=solid, (C=comp, Sample O=weste/oil. Sample Identification Sample Date Time G=grab) BT=Tisaue, A=Air Special Instructions/Note: Preservation Code: Report to MDLs and J flags Х MW-4 Water Х Х 10/7/22 0750 G MW-5 Х Х Water 10/7/22 1035 G Х MW-6 Х Х 10/7/22 G Water Χ 1335 DUP-1 G Water Х Х Х 10/7/22 TB-1 10/7/22 G Water Х Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Non-Hazard Flammable Skin Irritant Poison B Unknown Radiological Archive For Return To Client Disposal By Lab Months Deliverable Requested: I, II, III, IV Other (specify) Level II Special Instructions/QC Requirements. Empty Kit Relinquished by Date: Method of Shipment: Time: Relinquished by: Date/Time: Received by: Company Date/Time: Company Adam Michalak 10/7/22 1720 FedEX н&н Relinquished by: Date/Time: Received by: Date/Time: Company Company Relinquished by: Date/Time: Received by: Company Date/Time: Custody Seals Intact: Custody Seal No. Cooler Temperature(s) °C and Other Remarks: Δ Yes Δ No

11922 East 1st Ave Spokane, WA 99206

Chain of Custody Record

	eurofins	
--	----------	--

Environment Testing

Phone (509) 924-9200 Phone (509) 924-9290 Sampler[,] Carrier Tracking No(s): COC No: Adam Michalak Arrington, Randee E 590-7873-2297 1 Client Information Client Contact: Phone: E-Mail State of Origin: Nathan O'Leary 916-616-7368 Randee.Arrington@et.eurofinsus.com W٨ Page 1 of 2 Company: PWSiD: Job#: Hart & Hickman PC **Analysis Requested** Address: Due Date Requested: Preservation Codes. 2923 S Tyron St, STE 100 M Hexane A HCL TAT Requested (days): N None B NaOH O AsNaO2 Charlotte 5 day TAT C Zn Acetate P Na2O4S State, Zip: D Nitric Acid Q Na2SO3 Compliance Project: A Yes A No E NaHSO4 NC, 28203 Polycyclic Aromatic Hydrocarbo R Na2S2O3 F MeOH S H2SO4 Phone: G Amchlor T TSP Dodecahydrate 704-887 7197 (Tel) Purchase Order not required H Ascorbic Acid **U** Acetone V MCAA DI Water noleary@harthickman.com W pH 4-5 K EDTA Project Name: Project#: Y Trizma DRO and RRO L EDA NWMS Puyaliup Z other (specify) 59002274 8260D Standard Analyte Standard Analyte 8260D, NWTPH_Gx_MS SSOW#: Matrix Sample 8270E_SIM NWTPH_Dx (W≂weter Type S=solid (C=comp, O=waste/oil, G=grab) BT-Tissue, A=Ali) Sample Sample Identification Sample Date Time Special Instructions/Note: Preservation Code: Report to MDLs and J flags SB-6 (6-7) 10/3/22 1215 G Solid Х Х SB-7 (6-7) 10/3/22 1445 G Solid Х Х SB-8 (2-3) Solid Х Х 10/4/22 1630 G Х SB-9 (2-3) G Solid Х 10/5/22 1000 SB-10 (2-3) G Solid Х Х 10/5/22 1650 SB-11 (2-3) Х Х 10/6/22 G Solid 1030 SB-12 (2-3) Х Х 10/6/22 1345 G Solid DUP-1 Х Х 10/6/22 G Solid TB-1 9/29/22 G Solid Х MW-2 $x \mid x$ 10/7/22 0910 G Water Х E-WM Х х Х 10/7/22 1235 G Water Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Possible Hazard Identification Non-Hazard Flammable Skin Irritant Poison B Unknown Radiological Archive For Return To Client Disposal By Lab Months Deliverable Requested: I, II, III IV Other (specify) Level II Special Instructions/QC Requirements: Method of Shipment: Empty Kit Relinquished by Date: Time Relinquished by: Date/Time: Received by: Date/Time: Company Company Adam Michalak 10/7/22 1720 FedEX H&H Relinquished by: Date/Time: Company Company 10/10/22 01 00 EETHO Relinquished by: Date/Time: Date/Time: Company Cooler Temperature(s) °C and Other Remarks: Custody Seal No. Custody Seals Intact: Δ Yes Δ No

11922 East 1st Ave Spokane, WA 99206

Chain of Custody Record

🗱 eurofins

Environment Testing America

Phone (509) 924-9200 Phone (509) 924-9290 Sampler Carrier Tracking No(s): COC No: 590-7873-2297 1 Adam Michalak Client Information Arrington, Randee E. Client Contact: Phone: State of Origin: Page 2 of 2 Nathan O'Leary 916-616-7368 Randee.Arrington@et.eurofinsus.com Company: PWSID: Job#: **Analysis Requested** Hart & Hickman, PC Address: Due Date Requested: Preservation Codes: 2923 S Tyron St, STE 100 M Hexane A HCL N None TAT Requested (days): B NaOH O AsNaO2 Charlotte 5 day TAT C Zn Acetate P Na2O4S D Nitric Acid State, Zip: Q Na2SO3 E NaHSO4 Compliance Project: A Yes A No NC, 28203 R Na2S2O3 F MeOH S H2SO4 Phone: G Amchior T TSP Dodecahydrate 704-887 7197 (Tel) Purchase Order not required H Ascorbic Acid U Acetone 1 Ice V MCAA Polycyclic Aromatic J DI Water noleary@harthickman.com W pH 4-5 K EDTA Project Name: Y Trizma Project#: DRO and RRO L EDA NWMS Puyallup 59002274 Z other (specify) § Other SSOW#: Site: Matrix Sample NWTPH_Dx W=water, Туре Swadid. Sample (C=comp, O=weste/off, Sample Identification Sample Date Time G=grab) BT=TISBUE, A=AIr) Special Instructions/Note: Preservation Code: Report to MDLs and J flags Х Х Х MW-4 10/7/22 0750 Water Х Х Х MW-5 G Water 10/7/22 1035 Х Х Х MW-6 10/7/22 1335 Ģ Water Х Х Х DUP-1 10/7/22 G Water Х TB-1 10/7/22 G Water Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Possible Hazard Identification Non-Hazard Flammable Skin Irritant Poison B Unknown Radiological

Deliverable Requested: I II III, IV Other (specify) Level II Disposal By Lab Archive For Return To Client Months Special Instructions/QC Requirements: Method of Shipment: Empty Kit Relinquished by Date: Time: Relinquished by: Date/Time: Company Received by: Date/Time: Company Adam Michalak 10/7/22 1720 FedEX H&H Date/Time: Relinquished by: Date/Time: Company Received by: Relinquished by: Date/Time: Company Received by: Date/Time: Company Custody Seal No. Custody Seals Intact: Cooler Temperature(s) °C and Other Remarks: Δ Yes Δ No

2

3

5

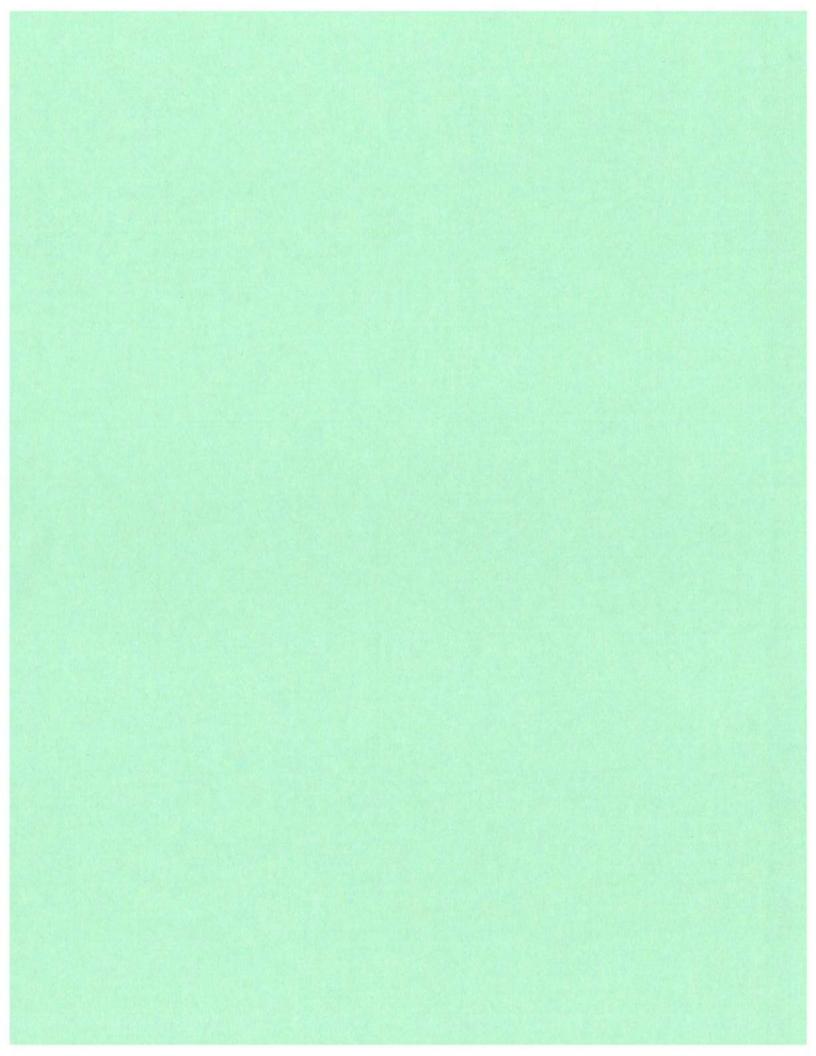
7

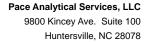
9

1 1

12

Client: Hart & Hickman, PC


Job Number: 590-18915-1


Login Number: 18915 List Source: Eurofins Spokane

List Number: 1 Creator: Fettig, Riley

Creator. Fettig, Kiley		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	Received extra samples not listed on COC.
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Eurofins Spokane

(704)875-9092

October 18, 2022

Nathan O'Leary Hart & Hickman 2923 S. Tryon St Charlotte, NC 28203

RE: Project: SAI.389-13

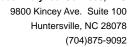
Pace Project No.: 92630655

Dear Nathan O'Leary:

Enclosed are the analytical results for sample(s) received by the laboratory on October 11, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Minneapolis


If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Taylor M Cannon taylor.cannon@pacelabs.com (704)875-9092 Project Manager

Enclosures

CERTIFICATIONS

Project: SAI.389-13 Pace Project No.: 92630655

Pace Analytical Services, LLC - Minneapolis MN

1700 Elm Street SE, Minneapolis, MN 55414

1800 Elm Street SE, Minneapolis, MN 55414--Satellite Air

Lab

A2LA Certification #: 2926.01* Alabama Certification #: 40770

Alaska Contaminated Sites Certification #: 17-009*

Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014* Arkansas DW Certification #: MN00064 Arkansas WW Certification #: 88-0680 California Certification #: 2929 Colorado Certification #: MN00064

Connecticut Certification #: PH-0256

EPA Region 8 Tribal Water Systems+Wyoming DW

Certification #: via MN 027-053-137
Florida Certification #: E87605*
Georgia Certification #: 959
Hawaii Certification #: MN00064
Idaho Certification #: MN00064
Illinois Certification #: 200011
Indiana Certification #: C-MN-01
Iowa Certification #: 368
Kansas Certification #: E-10167
Kentucky DW Certification #: 90062
Kentucky WW Certification #: 90062
Louisiana DEQ Certification #: Al-03086*

Maine Certification #: MN00064* Maryland Certification #: 322 Michigan Certification #: 9909

Minnesota Certification #: 027-053-137*

Louisiana DW Certification #: MN00064

Minnesota Dept of Ag Approval: via MN 027-053-137

Minnesota Petrofund Registration #: 1240*
Mississippi Certification #: MN00064

Missouri Certification #: 10100 Montana Certification #: CERT0092 Nebraska Certification #: NE-OS-18-06 Nevada Certification #: MN00064 New Hampshire Certification #: 2081* New Jersey Certification #: MN002 New York Certification #: 11647*

North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification (A2LA) #: R-036 North Dakota Certification (MN) #: R-036

Ohio DW Certification #: 41244 Ohio VAP Certification (1700) #: CL101 Ohio VAP Certification (1800) #: CL110*

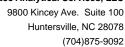
Oklahoma Certification #: 9507*
Oregon Primary Certification #: MN300001
Oregon Secondary Certification #: MN200001*
Pennsylvania Certification #: 68-00563*
Puerto Rico Certification #: MN00064
South Carolina Certification #:74003001
Tennessee Certification #: TN02818
Texas Certification #: T104704192*
Utah Certification #: MN00064*
Vermont Certification #: VT-027053137

Virginia Certification #: 460163*
Washington Certification #: C486*
West Virginia DEP Certification #: 382
West Virginia DW Certification #: 9952 C
Wisconsin Certification #: 999407970

Wyoming UST Certification #: via A2LA 2926.01

USDA Permit #: P330-19-00208

*Please Note: Applicable air certifications are denoted with


an asterisk (*).

SAMPLE SUMMARY

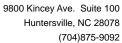
Project: SAI.389-13 Pace Project No.: 92630655

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92630655001	SSV-1	Air	10/07/22 14:40	10/11/22 09:06
92630655002	SSV-4	Air	10/07/22 15:09	10/11/22 09:06
92630655003	SSV-7	Air	10/07/22 15:27	10/11/22 09:06
92630655004	Unused Can #0887	Air	10/07/22 00:00	10/11/22 09:06
92630655005	Unused Can #2265	Air	10/07/22 00:00	10/11/22 09:06
92630655006	Unused Can #2849	Air	10/07/22 00:00	10/11/22 09:06
92630655007	Unused Can #3252	Air	10/07/22 00:00	10/11/22 09:06
92630655008	Unused Can #4044	Air	10/07/22 00:00	10/11/22 09:06
92630655009	Unused Can #4076	Air	10/07/22 00:00	10/11/22 09:06

SAMPLE ANALYTE COUNT

Project: SAI.389-13 Pace Project No.: 92630655

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92630655001	SSV-1	TO-15	SW	61	PASI-M
92630655002	SSV-4	TO-15	SW	61	PASI-M
92630655003	SSV-7	TO-15	SW	61	PASI-M


PASI-M = Pace Analytical Services - Minneapolis

Project: SAI.389-13
Pace Project No.: 92630655

Date: 10/18/2022 02:13 PM

Sample: SSV-1	Lab ID: 926	30655001	Collected: 10/07/	22 14:40	Received:	10/11/22 09:06	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Met	hod: TO-15						
	Pace Analytica	al Services -	- Minneapolis					
Acetone	32.3	ug/m3	11.1	1.83		10/17/22 21:2	7 67-64-1	
Benzene	0.77	ug/m3	0.59	1.83		10/17/22 21:2	7 71-43-2	
Benzyl chloride	ND	ug/m3	4.8	1.83		10/17/22 21:2	7 100-44-7	
Bromodichloromethane	ND	ug/m3	2.5	1.83		10/17/22 21:2	7 75-27-4	
Bromoform	ND	ug/m3	9.6	1.83		10/17/22 21:2	7 75-25-2	
Bromomethane	ND	ug/m3	1.4	1.83		10/17/22 21:2	7 74-83-9	
1,3-Butadiene	ND	ug/m3	0.82	1.83		10/17/22 21:2	7 106-99-0	
2-Butanone (MEK)	ND	ug/m3	5.5	1.83		10/17/22 21:2		
Carbon disulfide	17.1	ug/m3	1.2	1.83		10/17/22 21:2		
Carbon tetrachloride	ND	ug/m3	2.3	1.83		10/17/22 21:2		
Chlorobenzene	ND	ug/m3	1.7	1.83		10/17/22 21:2		
Chloroethane	ND	ug/m3	0.98	1.83		10/17/22 21:2		
Chloroform	ND	ug/m3	0.91	1.83		10/17/22 21:2		
Chloromethane	ND ND	_	0.77	1.83		10/17/22 21:2		
		ug/m3						
Cyclohexane	ND	ug/m3	3.2	1.83		10/17/22 21:2		
Dibromochloromethane	ND	ug/m3	3.2	1.83		10/17/22 21:2		
,2-Dibromoethane (EDB)	ND	ug/m3	2.9	1.83		10/17/22 21:2		
,2-Dichlorobenzene	ND	ug/m3	5.6	1.83		10/17/22 21:2		
,3-Dichlorobenzene	ND	ug/m3	5.6	1.83		10/17/22 21:2		
,4-Dichlorobenzene	ND	ug/m3	5.6	1.83		10/17/22 21:2		
Dichlorodifluoromethane	6.4	ug/m3	1.8	1.83		10/17/22 21:2		
,1-Dichloroethane	ND	ug/m3	1.5	1.83		10/17/22 21:2		
,2-Dichloroethane	ND	ug/m3	1.5	1.83		10/17/22 21:2		
,1-Dichloroethene	ND	ug/m3	1.5	1.83		10/17/22 21:2	7 75-35-4	
cis-1,2-Dichloroethene	ND	ug/m3	1.5	1.83		10/17/22 21:2	7 156-59-2	
rans-1,2-Dichloroethene	ND	ug/m3	1.5	1.83		10/17/22 21:2	7 156-60-5	
,2-Dichloropropane	ND	ug/m3	1.7	1.83		10/17/22 21:2	7 78-87-5	
sis-1,3-Dichloropropene	ND	ug/m3	4.2	1.83		10/17/22 21:2	7 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/m3	4.2	1.83		10/17/22 21:2	7 10061-02-6	
Dichlorotetrafluoroethane	ND	ug/m3	2.6	1.83		10/17/22 21:2	7 76-14-2	
Ethanol	95.4	ug/m3	3.5	1.83		10/17/22 21:2	7 64-17-5	
Ethyl acetate	ND	ug/m3	1.3	1.83		10/17/22 21:2	7 141-78-6	
Ethylbenzene	2.3	ug/m3	1.6	1.83		10/17/22 21:2	7 100-41-4	
I-Ethyltoluene	ND	ug/m3	4.6	1.83		10/17/22 21:2		
n-Heptane	5.6	ug/m3	1.5	1.83		10/17/22 21:2		
Hexachloro-1,3-butadiene	ND	ug/m3	9.9	1.83		10/17/22 21:2		
n-Hexane	ND	ug/m3	1.3	1.83		10/17/22 21:2		
2-Hexanone	ND	ug/m3	7.6	1.83		10/17/22 21:2		
Methylene Chloride	ND	ug/m3	6.5	1.83		10/17/22 21:2		
-Methyl-2-pentanone (MIBK)	ND ND	ug/m3	7.6	1.83		10/17/22 21:2		
Methyl-tert-butyl ether	ND ND	_	6.7	1.83		10/17/22 21:2		
, ,		ug/m3						
Naphthalene	ND	ug/m3	4.9	1.83		10/17/22 21:2		
2-Propanol	8.4	ug/m3	4.6	1.83		10/17/22 21:2		
Propylene	ND	ug/m3	1.6	1.83		10/17/22 21:2		
Styrene	ND	ug/m3	1.6	1.83		10/17/22 21:2		
1,1,2,2-Tetrachloroethane	ND	ug/m3	2.6	1.83		10/17/22 21:2	7 79-34-5	

Project: SAI.389-13 Pace Project No.: 92630655

Date: 10/18/2022 02:13 PM

Sample: SSV-1	Lab ID: 926	30655001	Collected: 10/07/2	22 14:40	Received: 10/11/22 0	9:06 N	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared Ana	alyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Met	hod: TO-15						
	Pace Analytica	al Services -	Minneapolis					
Tetrachloroethene	2.8	ug/m3	2.5	1.83	10/17/2	22 21:27	127-18-4	
Tetrahydrofuran	ND	ug/m3	1.1	1.83	10/17/2	22 21:27	109-99-9	
Toluene	7.1	ug/m3	1.4	1.83	10/17/2	22 21:27	108-88-3	
1,2,4-Trichlorobenzene	ND	ug/m3	13.8	1.83	10/17/2	22 21:27	120-82-1	
1,1,1-Trichloroethane	125	ug/m3	2.0	1.83	10/17/2	22 21:27	71-55-6	
1,1,2-Trichloroethane	ND	ug/m3	1.0	1.83	10/17/2	22 21:27	79-00-5	
Trichloroethene	ND	ug/m3	1.0	1.83	10/17/2	22 21:27	79-01-6	
Trichlorofluoromethane	12.9	ug/m3	2.1	1.83	10/17/2	22 21:27	75-69-4	
1,1,2-Trichlorotrifluoroethane	ND	ug/m3	2.9	1.83	10/17/2	22 21:27	76-13-1	
1,2,4-Trimethylbenzene	ND	ug/m3	1.8	1.83	10/17/2	22 21:27	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/m3	1.8	1.83	10/17/2	22 21:27	108-67-8	
Vinyl acetate	ND	ug/m3	1.3	1.83	10/17/2	22 21:27	108-05-4	
Vinyl chloride	ND	ug/m3	0.48	1.83	10/17/2	22 21:27	75-01-4	
m&p-Xylene	10.7	ug/m3	3.2	1.83	10/17/2	22 21:27	179601-23-1	
o-Xylene	7.9	ug/m3	1.6	1.83	10/17/2	22 21:27	95-47-6	

Project: SAI.389-13
Pace Project No.: 92630655

Date: 10/18/2022 02:13 PM

Sample: SSV-4	Lab ID: 926	30655002	Collected: 10/07/2	22 15:09	Received:	10/11/22 09:06	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Metl	hod: TO-15						
	Pace Analytica	al Services -	Minneapolis					
Acetone	133	ug/m3	11.7	1.94		10/15/22 21:2	7 67-64-1	
Benzene	2.2	ug/m3	0.63	1.94		10/15/22 21:2	7 71-43-2	
Benzyl chloride	ND	ug/m3	5.1	1.94		10/15/22 21:2	7 100-44-7	
Bromodichloromethane	ND	ug/m3	2.6	1.94		10/15/22 21:2	7 75-27-4	
Bromoform	ND	ug/m3	10.2	1.94		10/15/22 21:2	7 75-25-2	
Bromomethane	ND	ug/m3	1.5	1.94		10/15/22 21:2	7 74-83-9	
1,3-Butadiene	ND	ug/m3	0.87	1.94		10/15/22 21:2		
2-Butanone (MEK)	15.2	ug/m3	5.8	1.94		10/15/22 21:2		
Carbon disulfide	ND	ug/m3	1.2	1.94		10/15/22 21:2		
Carbon tetrachloride	ND	ug/m3	2.5	1.94		10/15/22 21:2		
Chlorobenzene	ND	ug/m3	1.8	1.94		10/15/22 21:2		
Chloroethane	ND	ug/m3	1.0	1.94		10/15/22 21:2		
Chloroform	ND ND	-	0.96	1.94		10/15/22 21:2		
		ug/m3						
Chloromethane	1.1	ug/m3	0.81	1.94		10/15/22 21:2		
Cyclohexane	ND	ug/m3	3.4	1.94		10/15/22 21:2		
Dibromochloromethane	ND	ug/m3	3.4	1.94		10/15/22 21:2		
,2-Dibromoethane (EDB)	ND	ug/m3	3.0	1.94		10/15/22 21:2		
,2-Dichlorobenzene	ND	ug/m3	5.9	1.94		10/15/22 21:2		
1,3-Dichlorobenzene	ND	ug/m3	5.9	1.94		10/15/22 21:2		
,4-Dichlorobenzene	ND	ug/m3	5.9	1.94		10/15/22 21:2		
Dichlorodifluoromethane	2.2	ug/m3	2.0	1.94		10/15/22 21:2	7 75-71-8	
1,1-Dichloroethane	ND	ug/m3	1.6	1.94		10/15/22 21:2	7 75-34-3	
1,2-Dichloroethane	ND	ug/m3	1.6	1.94		10/15/22 21:2	7 107-06-2	
1,1-Dichloroethene	ND	ug/m3	1.6	1.94		10/15/22 21:2	7 75-35-4	
cis-1,2-Dichloroethene	ND	ug/m3	1.6	1.94		10/15/22 21:2	7 156-59-2	
rans-1,2-Dichloroethene	ND	ug/m3	1.6	1.94		10/15/22 21:2	7 156-60-5	
1,2-Dichloropropane	ND	ug/m3	1.8	1.94		10/15/22 21:2	7 78-87-5	
cis-1,3-Dichloropropene	ND	ug/m3	4.5	1.94		10/15/22 21:2	7 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/m3	4.5	1.94		10/15/22 21:2	7 10061-02-6	
Dichlorotetrafluoroethane	ND	ug/m3	2.8	1.94		10/15/22 21:2	7 76-14-2	
Ethanol	164	ug/m3	3.7	1.94		10/15/22 21:2	7 64-17-5	
Ethyl acetate	ND	ug/m3	1.4	1.94		10/15/22 21:2	7 141-78-6	
- Ethylbenzene	2.6	ug/m3	1.7	1.94		10/15/22 21:2		
1-Ethyltoluene	ND	ug/m3	4.8	1.94		10/15/22 21:2		
n-Heptane	18.8	ug/m3	1.6	1.94		10/15/22 21:2		
Hexachloro-1,3-butadiene	ND	ug/m3	10.5	1.94		10/15/22 21:2		
n-Hexane	4.1	ug/m3	1.4	1.94		10/15/22 21:2		
2-Hexanone	ND	ug/m3	8.1	1.94		10/15/22 21:2		
		-						
Methylene Chloride	ND	ug/m3	6.8	1.94		10/15/22 21:2		
I-Methyl-2-pentanone (MIBK)	8.4	ug/m3	8.1	1.94		10/15/22 21:2		
Methyl-tert-butyl ether	ND	ug/m3	7.1	1.94		10/15/22 21:2		
Naphthalene	ND	ug/m3	5.2	1.94		10/15/22 21:2		
2-Propanol	34.2	ug/m3	4.8	1.94		10/15/22 21:2		
Propylene	ND	ug/m3	1.7	1.94		10/15/22 21:2		
Styrene	1.7	ug/m3	1.7	1.94		10/15/22 21:2		
1,1,2,2-Tetrachloroethane	ND	ug/m3	2.7	1.94		10/15/22 21:2	7 79-34-5	

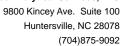
REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: SAI.389-13 Pace Project No.: 92630655

Date: 10/18/2022 02:13 PM

Sample: SSV-4	Lab ID: 926	30655002	Collected: 10/07/2	22 15:09	Received: 10/11/22 09:06	Matrix: Air
Parameters	Results	Units	Report Limit	DF	Prepared Analyzed	CAS No. Qu
TO15 MSV AIR	Analytical Met	hod: TO-15				
	Pace Analytica	al Services -	Minneapolis			
Tetrachloroethene	ND	ug/m3	2.7	1.94	10/15/22 21:2	27 127-18-4
Tetrahydrofuran	ND	ug/m3	1.2	1.94	10/15/22 21:2	27 109-99-9
Toluene	25.6	ug/m3	1.5	1.94	10/15/22 21:2	27 108-88-3
1,2,4-Trichlorobenzene	ND	ug/m3	14.6	1.94	10/15/22 21:2	27 120-82-1
1,1,1-Trichloroethane	ND	ug/m3	2.2	1.94	10/15/22 21:2	27 71-55-6
1,1,2-Trichloroethane	ND	ug/m3	1.1	1.94	10/15/22 21:2	27 79-00-5
Trichloroethene	ND	ug/m3	1.1	1.94	10/15/22 21:2	27 79-01-6
Trichlorofluoromethane	ND	ug/m3	2.2	1.94	10/15/22 21:2	27 75-69-4
1,1,2-Trichlorotrifluoroethane	ND	ug/m3	3.0	1.94	10/15/22 21:2	27 76-13-1
1,2,4-Trimethylbenzene	6.4	ug/m3	1.9	1.94	10/15/22 21:2	27 95-63-6
1,3,5-Trimethylbenzene	2.8	ug/m3	1.9	1.94	10/15/22 21:2	27 108-67-8
Vinyl acetate	ND	ug/m3	1.4	1.94	10/15/22 21:2	27 108-05-4
Vinyl chloride	ND	ug/m3	0.50	1.94	10/15/22 21:2	27 75-01-4
m&p-Xylene	7.6	ug/m3	3.4	1.94	10/15/22 21:2	27 179601-23-1
o-Xylene	2.8	ug/m3	1.7	1.94	10/15/22 21:2	27 95-47-6

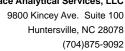

Project: SAI.389-13
Pace Project No.: 92630655

Date: 10/18/2022 02:13 PM

Sample: SSV-7	Lab ID: 926	30655003	Collected: 10/07/2	22 15:27	Received: 1	0/11/22 09:06	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Metl	hod: TO-15						
	Pace Analytica	al Services -	Minneapolis					
Acetone	16.7	ug/m3	12.0	1.98		10/15/22 22:03	3 67-64-1	
Benzene	ND	ug/m3	0.64	1.98		10/15/22 22:03	3 71-43-2	
Benzyl chloride	ND	ug/m3	5.2	1.98		10/15/22 22:03	3 100-44-7	
Bromodichloromethane	ND	ug/m3	2.7	1.98		10/15/22 22:0	3 75-27-4	
Bromoform	ND	ug/m3	10.4	1.98		10/15/22 22:03	3 75-25-2	
Bromomethane	ND	ug/m3	1.6	1.98		10/15/22 22:03	3 74-83-9	
1,3-Butadiene	ND	ug/m3	0.89	1.98		10/15/22 22:03	3 106-99-0	
2-Butanone (MEK)	ND	ug/m3	5.9	1.98		10/15/22 22:03	3 78-93-3	
Carbon disulfide	ND	ug/m3	1.3	1.98		10/15/22 22:03		
Carbon tetrachloride	ND	ug/m3	2.5	1.98		10/15/22 22:03		
Chlorobenzene	ND	ug/m3	1.9	1.98		10/15/22 22:00		
Chloroethane	ND	ug/m3	1.1	1.98		10/15/22 22:03		
Chloroform	ND	ug/m3	0.98	1.98		10/15/22 22:03		
Chloromethane	ND	ug/m3	0.83	1.98		10/15/22 22:00		
Cyclohexane	ND	ug/m3	3.5	1.98		10/15/22 22:03		
Dibromochloromethane	ND ND	ug/m3	3.4	1.98		10/15/22 22:03		
,2-Dibromoethane (EDB)	ND ND	ug/m3	3.4	1.98		10/15/22 22:0		
,2-Dichlorobenzene	ND ND	-	6.1	1.98		10/15/22 22:03		
		ug/m3				10/15/22 22:0		
1,3-Dichlorobenzene	ND	ug/m3	6.1	1.98				
,4-Dichlorobenzene	ND	ug/m3	6.1	1.98		10/15/22 22:03		
Dichlorodifluoromethane	53.3	ug/m3	2.0	1.98		10/15/22 22:03		
I,1-Dichloroethane	ND	ug/m3	1.6	1.98		10/15/22 22:03		
1,2-Dichloroethane	ND	ug/m3	1.6	1.98		10/15/22 22:03		
I,1-Dichloroethene	ND	ug/m3	1.6	1.98		10/15/22 22:03		
cis-1,2-Dichloroethene	ND	ug/m3	1.6	1.98		10/15/22 22:03		
rans-1,2-Dichloroethene	ND	ug/m3	1.6	1.98		10/15/22 22:0		
1,2-Dichloropropane	ND	ug/m3	1.9	1.98		10/15/22 22:0		
cis-1,3-Dichloropropene	ND	ug/m3	4.6	1.98		10/15/22 22:03		
rans-1,3-Dichloropropene	ND	ug/m3	4.6	1.98		10/15/22 22:03		
Dichlorotetrafluoroethane	ND	ug/m3	2.8	1.98		10/15/22 22:03		
Ethanol	261	ug/m3	3.8	1.98		10/15/22 22:03		
Ethyl acetate	ND	ug/m3	1.5	1.98		10/15/22 22:03	3 141-78-6	
Ethylbenzene	ND	ug/m3	1.7	1.98		10/15/22 22:03	3 100-41-4	
1-Ethyltoluene	ND	ug/m3	5.0	1.98		10/15/22 22:03	3 622-96-8	
n-Heptane	2.1	ug/m3	1.6	1.98		10/15/22 22:03	3 142-82-5	
Hexachloro-1,3-butadiene	ND	ug/m3	10.7	1.98		10/15/22 22:03	3 87-68-3	
n-Hexane	ND	ug/m3	1.4	1.98		10/15/22 22:03	3 110-54-3	
2-Hexanone	ND	ug/m3	8.2	1.98		10/15/22 22:03	3 591-78-6	
Methylene Chloride	ND	ug/m3	7.0	1.98		10/15/22 22:03	3 75-09-2	
I-Methyl-2-pentanone (MIBK)	ND	ug/m3	8.2	1.98		10/15/22 22:03		
Methyl-tert-butyl ether	ND	ug/m3	7.2	1.98		10/15/22 22:03		
Naphthalene	ND	ug/m3	5.3	1.98		10/15/22 22:03		
2-Propanol	10.6	ug/m3	5.0	1.98		10/15/22 22:03		
Propylene	ND	ug/m3	1.7	1.98		10/15/22 22:03		
Styrene	2.0	ug/m3	1.7	1.98		10/15/22 22:03		
1,1,2,2-Tetrachloroethane	ND	ug/m3	2.8	1.98		10/15/22 22:03		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



Project: SAI.389-13 Pace Project No.: 92630655

Date: 10/18/2022 02:13 PM

Sample: SSV-7	Lab ID: 926	30655003	Collected: 10/07/2	22 15:27	Received: 10/11/22 09:	06 Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared Analy	zed CAS No.	Qua
TO15 MSV AIR	Analytical Met	hod: TO-15					
	Pace Analytica	al Services -	Minneapolis				
Tetrachloroethene	5.5	ug/m3	2.7	1.98	10/15/22	22:03 127-18-4	
Tetrahydrofuran	ND	ug/m3	1.2	1.98	10/15/22	22:03 109-99-9	
Toluene	3.2	ug/m3	1.5	1.98	10/15/22	22:03 108-88-3	
1,2,4-Trichlorobenzene	ND	ug/m3	14.9	1.98	10/15/22	22:03 120-82-1	
1,1,1-Trichloroethane	ND	ug/m3	2.2	1.98	10/15/22	22:03 71-55-6	
1,1,2-Trichloroethane	ND	ug/m3	1.1	1.98	10/15/22	22:03 79-00-5	
Trichloroethene	ND	ug/m3	1.1	1.98	10/15/22	22:03 79-01-6	
Trichlorofluoromethane	ND	ug/m3	2.3	1.98	10/15/22	22:03 75-69-4	
1,1,2-Trichlorotrifluoroethane	ND	ug/m3	3.1	1.98	10/15/22	22:03 76-13-1	
1,2,4-Trimethylbenzene	ND	ug/m3	2.0	1.98	10/15/22	22:03 95-63-6	
1,3,5-Trimethylbenzene	ND	ug/m3	2.0	1.98	10/15/22	22:03 108-67-8	
Vinyl acetate	ND	ug/m3	1.4	1.98	10/15/22	22:03 108-05-4	
Vinyl chloride	ND	ug/m3	0.51	1.98	10/15/22	22:03 75-01-4	
m&p-Xylene	ND	ug/m3	3.5	1.98	10/15/22	22:03 179601-23-1	
o-Xylene	ND	ug/m3	1.7	1.98	10/15/22	22:03 95-47-6	

Project: SAI.389-13 Pace Project No.: 92630655

Date: 10/18/2022 02:13 PM

QC Batch: 847092 Analysis Method: TO-15

QC Batch Method: TO-15 Analysis Description: TO15 MSV AIR Low Level

> Laboratory: Pace Analytical Services - Minneapolis

Associated Lab Samples: 92630655002, 92630655003

METHOD BLANK: 4482400 Matrix: Air

Associated Lab Samples: 92630655002, 92630655003

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND	1.1	10/15/22 11:56	
1,1,2,2-Tetrachloroethane	ug/m3	ND	1.4	10/15/22 11:56	
1,1,2-Trichloroethane	ug/m3	ND	0.56	10/15/22 11:56	
1,1,2-Trichlorotrifluoroethane	ug/m3	ND	1.6	10/15/22 11:56	
1,1-Dichloroethane	ug/m3	ND	0.82	10/15/22 11:56	
1,1-Dichloroethene	ug/m3	ND	0.81	10/15/22 11:56	
1,2,4-Trichlorobenzene	ug/m3	ND	7.5	10/15/22 11:56	
1,2,4-Trimethylbenzene	ug/m3	ND	1.0	10/15/22 11:56	
1,2-Dibromoethane (EDB)	ug/m3	ND	1.6	10/15/22 11:56	
1,2-Dichlorobenzene	ug/m3	ND	3.1	10/15/22 11:56	
1,2-Dichloroethane	ug/m3	ND	0.82	10/15/22 11:56	
1,2-Dichloropropane	ug/m3	ND	0.94	10/15/22 11:56	
1,3,5-Trimethylbenzene	ug/m3	ND	1.0	10/15/22 11:56	
1,3-Butadiene	ug/m3	ND	0.45	10/15/22 11:56	
1,3-Dichlorobenzene	ug/m3	ND	3.1	10/15/22 11:56	
1,4-Dichlorobenzene	ug/m3	ND	3.1	10/15/22 11:56	
2-Butanone (MEK)	ug/m3	ND	3.0	10/15/22 11:56	
2-Hexanone	ug/m3	ND	4.2	10/15/22 11:56	
2-Propanol	ug/m3	ND	2.5	10/15/22 11:56	
4-Ethyltoluene	ug/m3	ND	2.5	10/15/22 11:56	
4-Methyl-2-pentanone (MIBK)	ug/m3	ND	4.2	10/15/22 11:56	
Acetone	ug/m3	ND	6.0	10/15/22 11:56	
Benzene	ug/m3	ND	0.32	10/15/22 11:56	
Benzyl chloride	ug/m3	ND	2.6	10/15/22 11:56	
Bromodichloromethane	ug/m3	ND	1.4	10/15/22 11:56	
Bromoform	ug/m3	ND	5.2	10/15/22 11:56	
Bromomethane	ug/m3	ND	0.79	10/15/22 11:56	
Carbon disulfide	ug/m3	ND	0.63	10/15/22 11:56	
Carbon tetrachloride	ug/m3	ND	1.3	10/15/22 11:56	
Chlorobenzene	ug/m3	ND	0.94	10/15/22 11:56	
Chloroethane	ug/m3	ND	0.54	10/15/22 11:56	
Chloroform	ug/m3	ND	0.50	10/15/22 11:56	
Chloromethane	ug/m3	ND	0.42	10/15/22 11:56	
cis-1,2-Dichloroethene	ug/m3	ND	0.81	10/15/22 11:56	
cis-1,3-Dichloropropene	ug/m3	ND	2.3	10/15/22 11:56	
Cyclohexane	ug/m3	ND	1.8	10/15/22 11:56	
Dibromochloromethane	ug/m3	ND	1.7	10/15/22 11:56	
Dichlorodifluoromethane	ug/m3	ND	1.0	10/15/22 11:56	
Dichlorotetrafluoroethane	ug/m3	ND	1.4	10/15/22 11:56	
Ethanol	ug/m3	ND	1.9	10/15/22 11:56	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: SAI.389-13 Pace Project No.: 92630655

Date: 10/18/2022 02:13 PM

METHOD BLANK: 4482400 Matrix: Air

Associated Lab Samples: 92630655002, 92630655003

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Ethyl acetate	ug/m3	ND	0.73	10/15/22 11:56	
Ethylbenzene	ug/m3	ND	0.88	10/15/22 11:56	
Hexachloro-1,3-butadiene	ug/m3	ND	5.4	10/15/22 11:56	
m&p-Xylene	ug/m3	ND	1.8	10/15/22 11:56	
Methyl-tert-butyl ether	ug/m3	ND	3.7	10/15/22 11:56	
Methylene Chloride	ug/m3	ND	3.5	10/15/22 11:56	
n-Heptane	ug/m3	ND	0.83	10/15/22 11:56	
n-Hexane	ug/m3	ND	0.72	10/15/22 11:56	
Naphthalene	ug/m3	ND	2.7	10/15/22 11:56	
o-Xylene	ug/m3	ND	0.88	10/15/22 11:56	
Propylene	ug/m3	ND	0.88	10/15/22 11:56	
Styrene	ug/m3	ND	0.87	10/15/22 11:56	
Tetrachloroethene	ug/m3	ND	1.4	10/15/22 11:56	
Tetrahydrofuran	ug/m3	ND	0.60	10/15/22 11:56	
Toluene	ug/m3	ND	0.77	10/15/22 11:56	
trans-1,2-Dichloroethene	ug/m3	ND	0.81	10/15/22 11:56	
trans-1,3-Dichloropropene	ug/m3	ND	2.3	10/15/22 11:56	
Trichloroethene	ug/m3	ND	0.55	10/15/22 11:56	
Trichlorofluoromethane	ug/m3	ND	1.1	10/15/22 11:56	
Vinyl acetate	ug/m3	ND	0.72	10/15/22 11:56	
Vinyl chloride	ug/m3	ND	0.26	10/15/22 11:56	

LABORATORY CONTROL SAMPLE:	4482401					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/m3	58	56.0	97	70-130	
1,1,2,2-Tetrachloroethane	ug/m3	72.8	71.9	99	70-132	
1,1,2-Trichloroethane	ug/m3	58.3	60.7	104	70-131	
1,1,2-Trichlorotrifluoroethane	ug/m3	81.2	76.0	94	70-130	
1,1-Dichloroethane	ug/m3	42.5	43.1	102	70-130	
1,1-Dichloroethene	ug/m3	41.9	41.6	99	70-130	
1,2,4-Trichlorobenzene	ug/m3	175	144	82	70-130	
1,2,4-Trimethylbenzene	ug/m3	52.5	49.2	94	70-137	
1,2-Dibromoethane (EDB)	ug/m3	80.5	77.9	97	70-137	
1,2-Dichlorobenzene	ug/m3	63.9	57.0	89	70-131	
1,2-Dichloroethane	ug/m3	42.4	41.4	98	70-134	
1,2-Dichloropropane	ug/m3	49.3	51.7	105	70-130	
1,3,5-Trimethylbenzene	ug/m3	52.4	49.1	94	70-131	
1,3-Butadiene	ug/m3	23.9	21.7	91	70-139	
1,3-Dichlorobenzene	ug/m3	64.2	56.6	88	70-134	
1,4-Dichlorobenzene	ug/m3	64.3	57.0	89	70-131	
2-Butanone (MEK)	ug/m3	31.3	34.5	110	70-133	
2-Hexanone	ug/m3	43.4	56.2	130	70-136	
2-Propanol	ug/m3	137	123	90	65-133	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: SAI.389-13 Pace Project No.: 92630655

Date: 10/18/2022 02:13 PM

LABORATORY CONTROL SAMPLE:	4482401	Spike	LCS	LCS	% Rec	
Parameter	Units	Spike Conc.	Result	% Rec	% Rec Limits	Qualifiers
4-Ethyltoluene	ug/m3	52.3	49.3	94	70-130	
4-Methyl-2-pentanone (MIBK)	ug/m3	43.6	54.6	125	70-130	
Acetone	ug/m3	127	116	91	60-134	
Benzene	ug/m3	33.8	37.0	110	70-130	
Benzyl chloride	ug/m3	55.6	47.7	86	70-130	
Bromodichloromethane	ug/m3	71.5	76.2	107	70-130	
Bromoform	ug/m3	110	95.4	86	70-138	
Bromomethane	ug/m3	41.4	33.2	80	68-131	
Carbon disulfide	ug/m3	33	36.5	111	70-130	
Carbon tetrachloride	ug/m3	66.7	64.6	97	70-132	
Chlorobenzene	ug/m3	49	47.5	97	70-130	
Chloroethane	ug/m3	28.1	22.7	81	70-134	
Chloroform	ug/m3	52.1	50.6	97	70-130	
Chloromethane	ug/m3	22	19.1	87	68-131	
is-1,2-Dichloroethene	ug/m3	42.1	42.5	101	70-136	
is-1,3-Dichloropropene	ug/m3	48.2	53.9	112	70-130	
Cyclohexane	ug/m3	36.4	44.7	123	70-131	
Dibromochloromethane	ug/m3	90.6	87.3	96	70-134	
ichlorodifluoromethane	ug/m3	52.5	46.1	88	70-130	
Dichlorotetrafluoroethane	ug/m3	74.4	59.2	80	70-130	
thanol	ug/m3	113	96.0	85	55-145	
thyl acetate	ug/m3	38.4	41.7	108	70-135	
thylbenzene	ug/m3	46.2	46.0	99	70-133	
lexachloro-1,3-butadiene	ug/m3	130	110	84	70-132	
n&p-Xylene	ug/m3	92.4	99.5	108	70-134	
Methyl-tert-butyl ether	ug/m3	38.3	42.2	110	70-131	
Methylene Chloride	ug/m3	36.8	36.4	99	65-132	
-Heptane	ug/m3	43.5	53.2	122	70-130	
-Hexane	ug/m3	37.7	40.7	108	70-132	
laphthalene	ug/m3	63.9	57.6	90	70-130	
-Xylene	ug/m3	46	44.9	98	70-134	
Propylene	ug/m3	18.6	21.5	115	69-133	
Styrene	ug/m3	45.3	43.8	97	70-135	
etrachloroethene	ug/m3	72	60.5	84	70-134	
etrahydrofuran	ug/m3	31.3	37.4	120	70-140	
oluene	ug/m3	40.2	47.9	119	70-136	
ans-1,2-Dichloroethene	ug/m3	42.3	42.0	99	70-134	
rans-1,3-Dichloropropene	ug/m3	48.4	45.9	95	70-131	
richloroethene	ug/m3	57.2	56.8	99	70-134	
richlorofluoromethane	ug/m3	60.3	47.6	79	63-130	
/inyl acetate	ug/m3	38.7	45.3	117	70-139	
/inyl chloride	ug/m3	27.2	22.7	83	70-132	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

QUALITY CONTROL DATA

Project: SAI.389-13 Pace Project No.: 92630655

QC Batch: 847335 Analysis Method: TO-15

QC Batch Method: TO-15 Analysis Description: TO15 MSV AIR Low Level

Laboratory: Pace Analytical Services - Minneapolis

Associated Lab Samples: 92630655001

METHOD BLANK: 4483206 Matrix: Air

Associated Lab Samples: 92630655001

Date: 10/18/2022 02:13 PM

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND	0.56	10/17/22 10:53	
1,1,2,2-Tetrachloroethane	ug/m3	ND	0.70	10/17/22 10:53	
1,1,2-Trichloroethane	ug/m3	ND	0.28	10/17/22 10:53	
1,1,2-Trichlorotrifluoroethane	ug/m3	ND	0.78	10/17/22 10:53	
1,1-Dichloroethane	ug/m3	ND	0.41	10/17/22 10:53	
1,1-Dichloroethene	ug/m3	ND	0.40	10/17/22 10:53	
1,2,4-Trichlorobenzene	ug/m3	ND	3.8	10/17/22 10:53	
1,2,4-Trimethylbenzene	ug/m3	ND	0.50	10/17/22 10:53	
1,2-Dibromoethane (EDB)	ug/m3	ND	0.78	10/17/22 10:53	MN
1,2-Dichlorobenzene	ug/m3	ND	1.5	10/17/22 10:53	
1,2-Dichloroethane	ug/m3	ND	0.41	10/17/22 10:53	
1,2-Dichloropropane	ug/m3	ND	0.47	10/17/22 10:53	
1,3,5-Trimethylbenzene	ug/m3	ND	0.50	10/17/22 10:53	
1,3-Butadiene	ug/m3	ND	0.22	10/17/22 10:53	
1,3-Dichlorobenzene	ug/m3	ND	1.5	10/17/22 10:53	
1,4-Dichlorobenzene	ug/m3	ND	1.5	10/17/22 10:53	
2-Butanone (MEK)	ug/m3	ND	1.5	10/17/22 10:53	
2-Hexanone	ug/m3	ND	2.1	10/17/22 10:53	
2-Propanol	ug/m3	ND	1.2	10/17/22 10:53	
4-Ethyltoluene	ug/m3	ND	1.2	10/17/22 10:53	
4-Methyl-2-pentanone (MIBK)	ug/m3	ND	2.1	10/17/22 10:53	
Acetone	ug/m3	ND	3.0	10/17/22 10:53	
Benzene	ug/m3	ND	0.16	10/17/22 10:53	
Benzyl chloride	ug/m3	ND	1.3	10/17/22 10:53	
Bromodichloromethane	ug/m3	ND	0.68	10/17/22 10:53	
Bromoform	ug/m3	ND	2.6	10/17/22 10:53	
Bromomethane	ug/m3	ND	0.39	10/17/22 10:53	
Carbon disulfide	ug/m3	ND	0.32	10/17/22 10:53	
Carbon tetrachloride	ug/m3	ND	0.64	10/17/22 10:53	
Chlorobenzene	ug/m3	ND	0.47	10/17/22 10:53	
Chloroethane	ug/m3	ND	0.27	10/17/22 10:53	
Chloroform	ug/m3	ND	0.25	10/17/22 10:53	
Chloromethane	ug/m3	ND	0.21	10/17/22 10:53	
cis-1,2-Dichloroethene	ug/m3	ND	0.40	10/17/22 10:53	
cis-1,3-Dichloropropene	ug/m3	ND	1.2	10/17/22 10:53	
Cyclohexane	ug/m3	ND	0.88	10/17/22 10:53	
Dibromochloromethane	ug/m3	ND	0.86	10/17/22 10:53	
Dichlorodifluoromethane	ug/m3	ND	0.50	10/17/22 10:53	
Dichlorotetrafluoroethane	ug/m3	ND	0.71	10/17/22 10:53	
Ethanol	ug/m3	ND	0.96	10/17/22 10:53	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: SAI.389-13 Pace Project No.: 92630655

Date: 10/18/2022 02:13 PM

METHOD BLANK: 4483206 Matrix: Air

Associated Lab Samples: 92630655001

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
				Arialyzeu	- — Qualifiers
Ethyl acetate	ug/m3	ND	0.37	10/17/22 10:53	
Ethylbenzene	ug/m3	ND	0.44	10/17/22 10:53	
Hexachloro-1,3-butadiene	ug/m3	ND	2.7	10/17/22 10:53	
m&p-Xylene	ug/m3	ND	0.88	10/17/22 10:53	
Methyl-tert-butyl ether	ug/m3	ND	1.8	10/17/22 10:53	
Methylene Chloride	ug/m3	ND	1.8	10/17/22 10:53	
n-Heptane	ug/m3	ND	0.42	10/17/22 10:53	
n-Hexane	ug/m3	ND	0.36	10/17/22 10:53	
Naphthalene	ug/m3	ND	1.3	10/17/22 10:53	
o-Xylene	ug/m3	ND	0.44	10/17/22 10:53	
Propylene	ug/m3	ND	0.44	10/17/22 10:53	
Styrene	ug/m3	ND	0.43	10/17/22 10:53	
Tetrachloroethene	ug/m3	ND	0.69	10/17/22 10:53	MN
Tetrahydrofuran	ug/m3	ND	0.30	10/17/22 10:53	
Toluene	ug/m3	ND	0.38	10/17/22 10:53	
trans-1,2-Dichloroethene	ug/m3	ND	0.40	10/17/22 10:53	
trans-1,3-Dichloropropene	ug/m3	ND	1.2	10/17/22 10:53	
Trichloroethene	ug/m3	ND	0.27	10/17/22 10:53	
Trichlorofluoromethane	ug/m3	ND	0.57	10/17/22 10:53	
Vinyl acetate	ug/m3	ND	0.36	10/17/22 10:53	
Vinyl chloride	ug/m3	ND	0.13	10/17/22 10:53	

LABORATORY CONTROL SAMPLE:	4483207					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/m3		57.6	99	70-130	
1,1,2,2-Tetrachloroethane	ug/m3	72.8	73.6	101	70-132	
1,1,2-Trichloroethane	ug/m3	58.3	61.6	106	70-131	
1,1,2-Trichlorotrifluoroethane	ug/m3	81.2	77.3	95	70-130	
1,1-Dichloroethane	ug/m3	42.5	44.0	104	70-130	
1,1-Dichloroethene	ug/m3	41.9	40.9	97	70-130	
1,2,4-Trichlorobenzene	ug/m3	175	147	84	70-130	
1,2,4-Trimethylbenzene	ug/m3	52.5	50.2	96	70-137	
1,2-Dibromoethane (EDB)	ug/m3	80.5	80.2	100	70-137	
1,2-Dichlorobenzene	ug/m3	63.9	58.3	91	70-131	
1,2-Dichloroethane	ug/m3	42.4	42.5	100	70-134	
1,2-Dichloropropane	ug/m3	49.3	52.4	106	70-130	
1,3,5-Trimethylbenzene	ug/m3	52.4	50.7	97	70-131	
1,3-Butadiene	ug/m3	23.9	23.4	98	70-139	
1,3-Dichlorobenzene	ug/m3	64.2	58.2	91	70-134	
1,4-Dichlorobenzene	ug/m3	64.3	58.6	91	70-131	
2-Butanone (MEK)	ug/m3	31.3	37.0	118	70-133	
2-Hexanone	ug/m3	43.4	57.4	132	70-136 C	H
2-Propanol	ug/m3	137	131	96	65-133	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: SAI.389-13 Pace Project No.: 92630655

Date: 10/18/2022 02:13 PM

LABORATORY CONTROL SAMPLE:	4483207	Spike	LCS	LCS	% Rec	
Parameter	Units	Spike Conc.	Result	% Rec	% Rec Limits	Qualifiers
4-Ethyltoluene	ug/m3		50.6	97	70-130	
1-Methyl-2-pentanone (MIBK)	ug/m3	43.6	55.5	127	70-130	
Acetone	ug/m3	127	122	96	60-134	
Benzene	ug/m3	33.8	37.7	111	70-130	
Benzyl chloride	ug/m3	55.6	50.8	91	70-130	
Bromodichloromethane	ug/m3	71.5	78.0	109	70-130	
Bromoform	ug/m3	110	97.9	89	70-138	
Bromomethane	ug/m3	41.4	36.5	88	68-131	
Carbon disulfide	ug/m3	33	37.4	113	70-130	
arbon tetrachloride	ug/m3	66.7	66.2	99	70-132	
Chlorobenzene	ug/m3	49	48.5	99	70-130	
Chloroethane	ug/m3	28.1	24.8	88	70-134	
Chloroform	ug/m3	52.1	51.7	99	70-130	
Chloromethane	ug/m3	22	20.2	92	68-131	
is-1,2-Dichloroethene	ug/m3	42.1	42.9	102	70-136	
is-1,3-Dichloropropene	ug/m3	48.2	54.9	114	70-130	
yclohexane	ug/m3	36.4	45.5	125	70-131	
Dibromochloromethane	ug/m3	90.6	89.1	98	70-134	
ochlorodifluoromethane	ug/m3	52.5	47.8	91	70-130	
Pichlorotetrafluoroethane	ug/m3	74.4	62.9	85	70-130	
thanol	ug/m3	113	104	92	55-145	
thyl acetate	ug/m3	38.4	42.6	111	70-135	
thylbenzene	ug/m3	46.2	47.2	102	70-133	
lexachloro-1,3-butadiene	ug/m3	130	111	85	70-132	
n&p-Xylene	ug/m3	92.4	102	110	70-134	
Methyl-tert-butyl ether	ug/m3	38.3	43.5	114	70-131	
Methylene Chloride	ug/m3	36.8	37.4	102	65-132	
-Heptane	ug/m3	43.5	54.0	124	70-130	
-Hexane	ug/m3	37.7	41.6	110	70-132	
laphthalene	ug/m3	63.9	58.5	92	70-130	
-Xylene	ug/m3	46	46.0	100	70-134	
Propylene	ug/m3	18.6	21.5	115	69-133	
Styrene	ug/m3	45.3	44.5	98	70-135	
etrachloroethene	ug/m3	72	62.3	87	70-134	
etrahydrofuran	ug/m3	31.3	38.2	122	70-140	
oluene	ug/m3	40.2	48.5	121	70-136	
rans-1,2-Dichloroethene	ug/m3	42.3	43.4	103	70-134	
rans-1,3-Dichloropropene	ug/m3	48.4	47.3	98	70-131	
Trichloroethene	ug/m3	57.2	57.4	100	70-134	
richlorofluoromethane	ug/m3	60.3	51.2	85	63-130	
/inyl acetate	ug/m3	38.7	46.1	119	70-139	
/inyl chloride	ug/m3	27.2	26.1	96	70-132	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: SAI.389-13 Pace Project No.: 92630655

Date: 10/18/2022 02:13 PM

SAMPLE DUPLICATE: 4484201						
		10628915001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND ND	ND		25	
1,1,2,2-Tetrachloroethane	ug/m3	ND	ND		25	
1,1,2-Trichloroethane	ug/m3	ND	ND		25	
1,1,2-Trichlorotrifluoroethane	ug/m3	ND	.58J		25	
1,1-Dichloroethane	ug/m3	ND	ND		25	
1,1-Dichloroethene	ug/m3	ND	ND		25	
1,2,4-Trichlorobenzene	ug/m3	ND	ND		25	
1,2,4-Trimethylbenzene	ug/m3	ND	ND		25	
1,2-Dibromoethane (EDB)	ug/m3	ND	ND		25	
1,2-Dichlorobenzene	ug/m3	ND	ND		25	
1,2-Dichloroethane	ug/m3	ND	ND		25	
1,2-Dichloropropane	ug/m3	ND	ND		25	
1,3,5-Trimethylbenzene	ug/m3	ND	ND		25	
1,3-Butadiene	ug/m3	ND	ND		25	
1,3-Dichlorobenzene	ug/m3	ND	ND		25	
1,4-Dichlorobenzene	ug/m3	ND	ND		25	
2-Butanone (MEK)	ug/m3	ND	.67J		25	
2-Hexanone	ug/m3	ND	ND		25	
2-Propanol	ug/m3	ND	ND		25	
4-Ethyltoluene	ug/m3	ND	ND		25	
4-Methyl-2-pentanone (MIBK)	ug/m3	ND	ND		25	
Acetone	ug/m3	ND	5.3J		25	
Benzene	ug/m3	ND	.29J		25	
Benzyl chloride	ug/m3	ND	ND		25	
Bromodichloromethane	ug/m3	ND	ND		25	
Bromoform	ug/m3	ND	ND		25	
Bromomethane	ug/m3	ND	ND		25	
Carbon disulfide	ug/m3	ND	ND		25	
Carbon tetrachloride	ug/m3	ND	ND		25	
Chlorobenzene	ug/m3	ND	ND		25	
Chloroethane	ug/m3	ND	ND		25	
Chloroform	ug/m3	ND	ND		25	
Chloromethane	ug/m3	0.66	0.65	2	25	
cis-1,2-Dichloroethene	ug/m3	ND	ND		25	
cis-1,3-Dichloropropene	ug/m3	ND	ND		25	
Cyclohexane	ug/m3	ND	ND		25	
Dibromochloromethane	ug/m3	ND	ND		25	
Dichlorodifluoromethane	ug/m3	2.2	2.2	0	25	
Dichlorotetrafluoroethane	ug/m3	ND	ND		25	
Ethanol	ug/m3	3.2	3.2	2	25	
Ethyl acetate	ug/m3	ND	ND		25	
Ethylbenzene	ug/m3	ND	.66J		25	
Hexachloro-1,3-butadiene	ug/m3	ND	ND		25	
m&p-Xylene	ug/m3	ND	ND		25	
Methyl-tert-butyl ether	ug/m3	ND	ND		25	
Methylene Chloride	ug/m3	ND	.49J		25	
n-Heptane	ug/m3	ND	ND		25	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: SAI.389-13 92630655 Pace Project No.:

Date: 10/18/2022 02:13 PM

SAMPLE DUPLICATE: 4484201						
		10628915001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
n-Hexane	 ug/m3	ND	ND		25	,
Naphthalene	ug/m3	ND	ND		25	;
o-Xylene	ug/m3	ND	.28J		25	;
Propylene	ug/m3	ND	ND		25	;
Styrene	ug/m3	ND	.89J		25	;
Tetrachloroethene	ug/m3	ND	.62J		25	;
Tetrahydrofuran	ug/m3	ND	ND		25	;
Toluene	ug/m3	ND	.51J		25	;
trans-1,2-Dichloroethene	ug/m3	ND	ND		25	;
trans-1,3-Dichloropropene	ug/m3	ND	ND		25	;
Trichloroethene	ug/m3	ND	ND		25	;
Trichlorofluoromethane	ug/m3	ND	1.2J		25	;
Vinyl acetate	ug/m3	ND	ND		25	;
Vinyl chloride	ug/m3	ND	ND		25	;

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: SAI.389-13 Pace Project No.: 92630655

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

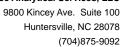
N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS


Date: 10/18/2022 02:13 PM

MN

The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased СН

The reporting limit has been raised in accordance with Minnesota Statutes 4740.2100 Subpart 8. C, D. Reporting Limit

Evaluation Rule

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: SAI.389-13 Pace Project No.: 92630655

Date: 10/18/2022 02:13 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92630655001	SSV-1	TO-15	847335		
92630655002	SSV-4	TO-15	847092		
92630655003	SSV-7	TO-15	847092		

Pace	DC#_Title: I (SCUR) - Ai	ENV-FRM-I	MIN4-011	3 v0	1_Sam	ple Cond	ition	Upon Recei	pt		
PARTICAL SERVESS	Effective Date	: 02/25/202	2								
Air Sample Condition Receipt	Upon Client Name:	Harte	Hick	ma	<u>an</u>	Project	: H:	JO# : 9			
Courier: Sed Fed English Pace Tracking Number: Custody Seal on Cooler, Seals intact? Pecking Material:	6101 Spec	eDee [Commercial 354 No	Loam Other:		Exception	9		nitials of Person	10-11-2	2 MI
Chair of Contacts Reserve	-2		1.00		-	_			Comments:		
Chain of Custody Preser			Yes		No		1.				
Chain of Custody Filled			Yes		□ No		2.				
Chain of Custody Reling Sampler Name and/or S			Yes		□ No	-	3.				
Samples Arrived within	W.		Yes		□ No	□ N/A	4.				
Short Hold Time Analys			▼ Yes	_	□ No		5.				
Rush Turn Around Time			☐ Yes		No No	-	6.				
Sufficient Volume?	requesteur		Yes				7.				
Correct Containers Used	i? able container for TO-1!	5 or APH)	▼ Yes		□ No □ No		9				-
Containers Intact? (visual inspection/no le			¥Yes		□No		10.		0		
Media: Air Can	Airbag	TOTAL CATAGOR		-	-		11. Inc	dividually Certified Ca	ins? Y N (lis	st which samples)	
Do cans need to be pres (DO NOT PRESSURIZE 3)		imples to the COC?	Yes		□ No		12.				
	-		10AIR26 1	0AIR34	10AIR	35 10 AIR17	☐ 10A	1			
	Lan	isters Flow	Initial	(FI)	-	-		Can	sters		
Sample Number	Can ID	Controller	Pressure		nal sure	Sample Nur	mber	Can ID	Flow Controller	Initial Pressure	Final Pressure
55V-1	1430	1281	- 2.5	+	10					7-7-7-1	
11-4	2459	2881	-4								
11-7	11-1		-4.5				_				
10 1		3157	1.0	*							
	887	2998	-25		-						
- 6	2265	2879	-27	-	~ -						
		2998	- 25								
	21-7	172//									1
	3252		-27								
	4044	3146	-27	-						1	
	4076	3300	-27	-							
							_				

Comments/Resolution: Project Manager Review:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e., out of hold, incorrect preservative, out of temp, incorrect containers).

Date/Time:

Dates

Qualtrax ID: 52723

CLIENT NOTIFICATION/RESOLUTION

Person Contacted:

Field Data Required? Yes

□ No

MO#: 92630655

DC#_Title: ENV-FRM-MIN4-0126 v00_Pending Log-in Checklist

PM: TMC Due Date: 10/18/22 CLIENT: 92-Hart Hick

Issue Type (check all that apply)*	e (chec	k all tha	t apply)	PM *	SR Tech (**) Date Initiated /0 - 11-39 PM MR B Issue Type (check all that apply)*	Client P	Client Name Hort Howay Profile # 44640 Pin	roject N	Hickura,	Profile #	446 iners (if	Client Name Hort & Hort المراجعة المرا	nk shelf	TH TH	7#		
Sate/Time Received 10-11-32	Receiv	30	11-02	90:6	rol											4	
EPIC Issue (check one)	(chec	(oue)			-	Resolution	uo										
J Client not in EpicJ Profile not in EpicAdd acodeJ Other	not in t not in ode	Epic													PM/Date	te	
Sample Line Item	2	RP7II	RP311	RD3C	NEGR	AGTIL	150	7636	HOW	ğ	3	i					
-	Check thi	e box to th	Check the box to the left to indicate that the container(s) received for line items	licate that	the contain	ner(s) rece	eived for lir	e items			are	-	to the container(s)	ainer(s) de	Nestra	of for line	SPSI DW
1																	
2	_																
8	_								Y								
4	,																
2	_								,								F
9	1																
7	,																
80	_																+
6																	
10																	-
11																H	
12		Š															

Page 1 of 1

WO

Date

Logged in by (initial)

Qualtrax ID: 54330

AIR: CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

	Required Project Information.	nation:		Section C involce infor	Section C Invoice Information:					Ω	53211	Page:	/ of /
Company: Harts Hickman Address 2923 1 Tryen St Stelot Email To: Wolchryf PHRT MIKMAN	Report To: Sûnne Copy To: Purchase Order No.	2)		Attention: Company Na Address: Pace Outre	Alternion: accountspayable of hur Company Name: Hart # HTCh man Address: Same	をなる	abbe	accountspayable Bruthschmen : com or Hartf HTK man	en: cord	Pro UST Superfur	man golam	Emissions	☐ Clean Air Act RCRA ☐ Other
	Project Name: NWMS Preyellup	1-186.	ellup	Pace	roject Manager/S rofile #	ales Rep.	7	Pace Project Manager/Sales Rep. 4 4 4		Location of Sampling by State Report Level 11. X	State WA	114	Reporting Units ug/m² X mg/m ppg/ ppg/ ppg/ ppg/ ppg/ ppg/ ppg/
Section D Required Client Information AIR SAMPLE ID Sample IDs MUST BE UNIOUE	Valid Media Goods ALEBES (2005) Testare Bag 78 To Care Summa Can 1LC Low Varience Part 1 UP	ing (Client only)	(fara unico) 5	COLL	COLLECTED	enusae19 1	Teld - in Hg) T Pressure (gH ni - ble)	Summa			PONIS	13/10/15	
#W=JLI	Mgn Volume Purit NVP	MEDIA CO	DAT	TE START	COUPT	پ ا	I laitini) eteineO	Number	Number	ME O SONE	July 21.0	Thous st.	
1-755		7	15/7/22	2/1/2	13/1/10		5- 52-	~ 5 -		12/2/2/2/2/	X	(2)	Pace Lab ID
4-75.5)rc		IYSY	1509	7	1 - 7	245	92881		×		793
2-7/1		7	>	1517	>		25 25	5 1 1	- 3		X		N 80
+3 U				4		1	+						190
				-		1	+						58
						t	+					Ĭ	000
													33
o 6 2				-		#	44					3	5
12 Gomments :	32	RELINQUISHED BY		/ AFFILIATION		DATE	TIME	ACCEPTED	ACCEPTED BY AFEIT ATION	IF 40	9,415		
	×	Marsh W	Adam Mirhalah	11 11 1 N			9 11					SAMPLE	NOLLIGN
	ŧ	Janes (*)	Unale			V1/122 1	1710	11/04/2	S.C	Vace 10+1-22 9:06	90:6	NA GA	ma Gr
	Ļ					H						N/A N/A	NIA NII
ORIGINAL					SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER ACT IN MICRAL (A.) SIGNATURE OF SAMPLER.	NE AND S	AM M	Adam Michalah	DATE Stored DAM: TO	DATE Stand (MM) (TO 199)		O' ni qme no baviso sol	Montant

Appendix E EPA VISL Calculator Results

Variable	Commercial Air Default Value	Site-Specific Value
AF (Attenuation Factor Groundwater) unitless	0.001	0.001
AF (Attenuation Factor Sub-Slab) unitless	0.03	0.03
AT _{com} (averaging time - composite worker)	365	365
ED (exposure duration - composite worker) yr	25	25
EF _{com} (exposure frequency - composite worker) day/yr	250	250
ET _{com} (exposure time - composite worker) hr	8	8
THQ (target hazard quotient) unitless	0.1	0.1
LT (lifetime) yr	70	70
TR (target risk) unitless	1.0E-06	1.0E-06

Commercial Vapor Intrusion Screening Levels (VISL)

Key: I = IRIS; P = PPRTV; O = OPP; A = ATSDR; C = Cal EPA; X = PPRTV Screening Level; H = HEAST; D = DWSHA; W = TEF applied; E = RPF applied; U = user provided; G = see RSL User's Guide Section 5; CA = cancer; NC = noncancer.

Chemical	CAS Number	Does the chemical meet the definition for volatility? (HLC>1E-5 or VP>1)	Does the chemical have inhalation toxicity data? (IUR and/or RfC)	Via Vapor Intrusion from Soil Source?	Is Chemical Sufficiently Volatile and Toxic to Pose Inhalation Risk Via Vapor Intrusion from Groundwater Source? (C _{hc} > C _{i,a} ,Target?)	Target Indoor Air Concentration (TCR=1E-06 or THQ=0.1) MIN(C _{ia.c} ,C _{ia.nc}) (μg/m³)	Toxicity Basis	Target Sub-Slab and Near-source Soil Gas Concentration (TCR=1E-06 or THQ=0.1) C _{sg} ,Target (μg/m³)	Target Groundwater Concentration (TCR=1E-06 or THQ=0.1) C _{gw} ,Target (μg/L)
Acetone	67-64-1	Yes	No	No Inhal. Tox. Info	No Inhal. Tox. Info	-		_	-
Benzene, Methylpropyl	28729-54-6	Indeterminate	No	No (not volatile)	No (not volatile)	-		-	-
Carbon Disulfide	75-15-0	Yes	Yes	Yes	Yes	3.07E+02	NC	1.02E+04	7.08E+02
Chloromethane	74-87-3	Yes	Yes	Yes	Yes	3.94E+01	NC	1.31E+03	1.35E+02
Dichlorodifluoromethane	75-71-8	Yes	Yes	Yes	Yes	4.38E+01	NC	1.46E+03	3.75E+00
Ethanol	64-17-5	Yes	No	No Inhal. Tox. Info	No Inhal. Tox. Info	-		-	-
Ethylbenzene	100-41-4	Yes	Yes	Yes	Yes	4.91E+00	CA	1.64E+02	2.47E+01
Heptane, N-	142-82-5	Yes	Yes	Yes	Yes	1.75E+02	NC	5.84E+03	3.26E+00
Hexane, N-	110-54-3	Yes	Yes	Yes	Yes	3.07E+02	NC	1.02E+04	5.97E+00
Isopropanol	67-63-0	Yes	Yes	Yes	Yes	8.76E+01	NC	2.92E+03	4.49E+05
Methyl Ethyl Ketone (2-Butanone)	78-93-3	Yes	Yes	Yes	Yes	2.19E+03	NC	7.30E+04	1.40E+06
Methyl Isobutyl Ketone (4-methyl-2-pentanone)	108-10-1	Yes	Yes	Yes	Yes	1.31E+03	NC	4.38E+04	3.71E+05
Styrene	100-42-5	Yes	Yes	Yes	Yes	4.38E+02	NC	1.46E+04	6.61E+03
Tetrachloroethylene	127-18-4	Yes	Yes	Yes	Yes	1.75E+01	NC	5.84E+02	3.80E+01
Toluene	108-88-3	Yes	Yes	Yes	Yes	2.19E+03	NC	7.30E+04	1.24E+04
Trichloroethane, 1,1,1-	71-55-6	Yes	Yes	Yes	Yes	2.19E+03	NC	7.30E+04	4.50E+03
Trichlorofluoromethane	75-69-4	Yes	No	No Inhal. Tox. Info	No Inhal. Tox. Info	-		-	-
Trimethylbenzene, 1,2,4-	95-63-6	Yes	Yes	Yes	Yes	2.63E+01	NC	8.76E+02	1.83E+02
Trimethylbenzene, 1,3,5-	108-67-8	Yes	Yes	Yes	Yes	2.63E+01	NC	8.76E+02	1.28E+02
Xylenes	1330-20-7	Yes	Yes	Yes	Yes	4.38E+01	NC	1.46E+03	2.62E+02

Commercial Vapor Intrusion Screening Levels (VISL)

Key: I = IRIS; P = PPRTV; O = OPP; A = ATSDR; C = Cal EPA; X = PPRTV Screening Level; H = HEAST; D = DWSHA; W = TEF applied; E = RPF applied; U = user provided; G = see RSL User's Guide Section 5; CA = cancer; NC = noncancer.

Is Target Groundwater Concentration < MCL? (C _{gw} < MCL?)	Pure Phase Vapor Concentration C _{νp} \ (16.3 °C)\ (μg/m³)	Maximum Groundwater Vapor Concentration C _{hc} \ (μg/m³)	Temperature for Maximum Groundwater Vapor Concentration (°C)	Lower Explosive Limit LEL (% by volume)	LEL Ref	IUR (ug/m³)·1	IUR Ref			Mutagenic Indicator	Carcinogenic VISL TCR=1E-06 C _{ia,c} (μg/m³)	Noncarcinogenic VISL THQ=0.1 C _{ia,nc} (µg/m³)
	7.23E+08	1.01E+09	16.3	2.50	CRC	-		-		No	-	-
	-	-	16.3	-		-		-		No	_	-
	1.47E+09	9.35E+08	16.3	1.30	CRC	-		7.00E-01	I	No	-	3.07E+02
	1.17E+10	1.56E+09	16.3	8.10	CRC	-		9.00E-02	I	No	-	3.94E+01
	3.15E+10	3.27E+09	16.3	-		-		1.00E-01	Χ	No	-	4.38E+01
	1.47E+08	1.24E+08	16.3	3.30	CRC	-		-		No	-	-
Yes (700)	5.48E+07	3.36E+07	16.3	0.80	CRC	2.50E-06	С	1.00E+00	I	No	4.91E+00	4.38E+02
	2.48E+08	1.83E+08	16.3	1.05	CRC	-		4.00E-01	Р	No	-	1.75E+02
	7.01E+08	4.88E+08	16.3	1.10	CRC	-		7.00E-01	I	No	-	3.07E+02
	1.47E+08	1.95E+08	16.3	2.00	CRC	-		2.00E-01	Р	No	-	8.76E+01
	3.51E+08	3.50E+08	16.3	1.40	CRC	-		5.00E+00	I	No	-	2.19E+03
	1.07E+08	6.74E+07	16.3	1.20	CRC	-		3.00E+00	I	No	-	1.31E+03
No (100)	3.58E+07	2.05E+07	16.3	0.90	CRC	-		1.00E+00	1	No	_	4.38E+02
No (5)	1.65E+08	9.49E+07	16.3	-		2.60E-07	1	4.00E-02	1	No	4.72E+01	1.75E+01
No (1000)	1.41E+08	9.28E+07	16.3	1.10	CRC	-		5.00E+00	- 1	No	-	2.19E+03
No (200)	8.90E+08	6.28E+08	16.3	8.00	CRC	-		5.00E+00	- 1	No	-	2.19E+03
	5.93E+09	3.30E+09	16.3	-		-		-		No	-	-
	1.36E+07	8.20E+06	16.3	0.90	CRC	-		6.00E-02	- 1	No	-	2.63E+01
	1.60E+07	9.88E+06	16.3	1.00	CRC	-		6.00E-02	- 1	No	-	2.63E+01
Yes (10000)	4.56E+07	1.77E+07	16.3	-		-		1.00E-01	- 1	No	-	4.38E+01

Chemical	CAS Number	$\begin{tabular}{ll} Site \\ Sub-Slab and \\ Exterior Soil \\ Gas \\ Concentration \\ C_{sg} \\ (\mu g/m^3) \end{tabular}$	Site Indoor Air Concentration C _{i.a} \ (µg/m³)	VI Carcinogenic Risk CDI (μg/m³)
Acetone	67-64-1	133	-	-
Benzene, Methylpropyl	28729-54-6	2.2	-	-
Carbon Disulfide	75-15-0	17.1	5.13E-01	4.18E-02
Chloromethane	74-87-3	1.1	3.30E-02	2.69E-03
Dichlorodifluoromethane	75-71-8	53.3	1.60E+00	1.30E-01
Ethanol	64-17-5	261	-	-
Ethylbenzene	100-41-4	2.6	7.80E-02	6.36E-03
Heptane, N-	142-82-5	18.8	5.64E-01	4.60E-02
Hexane, N-	110-54-3	4.1	1.23E-01	1.00E-02
Isopropanol	67-63-0	34.2	1.03E+00	8.37E-02
Methyl Ethyl Ketone (2-Butanone)	78-93-3	15.2	4.56E-01	3.72E-02
Methyl Isobutyl Ketone (4-methyl-2-pentanone)	108-10-1	8.4	2.52E-01	2.05E-02
Styrene	100-42-5	2	6.00E-02	4.89E-03
Tetrachloroethylene	127-18-4	5.5	1.65E-01	1.35E-02
Toluene	108-88-3	25.6	7.68E-01	6.26E-02
Trichloroethane, 1,1,1-	71-55-6	125	3.75E+00	3.06E-01
Trichlorofluoromethane	75-69-4	12.9	-	-
Trimethylbenzene, 1,2,4-	95-63-6	6.4	1.92E-01	1.57E-02
Trimethylbenzene, 1,3,5-	108-67-8	2.8	8.40E-02	6.85E-03
Xylenes	1330-20-7	18.6	5.58E-01	4.55E-02
*Sum		-	-	-

VI Carcinogenic Risk CR	VI Hazard CDI (mg/m³)	VI Hazard HQ	IUR (ug/m³) ⁻¹	IUR Ref	•	RfC Ref	Temperature (°C)\ for Groundwater Vapor Concentration	Mutagen?
_	-	-	-		-		16.3	No
_	-	-	-		-		16.3	No
_	1.17E-04	1.67E-04	-		7.00E-01	1	16.3	No
-	7.53E-06	8.37E-05	-		9.00E-02	ı	16.3	No
-	3.65E-04	3.65E-03	-		1.00E-01	Χ	16.3	No
-	-	-	-		-		16.3	No
1.59E-08	1.78E-05	1.78E-05	2.50E-06	С	1.00E+00	- 1	16.3	No
-	1.29E-04	3.22E-04	-		4.00E-01	Р	16.3	No
-	2.81E-05	4.01E-05	-		7.00E-01	- 1	16.3	No
-	2.34E-04	1.17E-03	-		2.00E-01	Р	16.3	No
-	1.04E-04	2.08E-05	-		5.00E+00	- 1	16.3	No
-	5.75E-05	1.92E-05	-		3.00E+00	- 1	16.3	No
-	1.37E-05	1.37E-05	-		1.00E+00	- 1	16.3	No
3.50E-09	3.77E-05	9.42E-04	2.60E-07	- 1	4.00E-02	- 1	16.3	No
-	1.75E-04	3.51E-05	-		5.00E+00	- 1	16.3	No
-	8.56E-04	1.71E-04	-		5.00E+00	- 1	16.3	No
-	-	-	-		-		16.3	No
-	4.38E-05	7.31E-04	-		6.00E-02	1	16.3	No
-	1.92E-05	3.20E-04	-		6.00E-02	- 1	16.3	No
-	1.27E-04	1.27E-03	-		1.00E-01	I	16.3	No
1.94E-08	-	8.98E-03	-		-		-	

Chemical	CAS Number	Does the chemical meet the definition for volatility? (HLC>1E-5 or VP>1)	Does the chemical have inhalation toxicity data? (IUR and/or RfC)	MW	MW Ref	S (mg/L)	S Ref	MCL (ug/L)	HLC (atm-m³/mole)		Henry's Law Constant (16.3 °C) (unitless)	Henry's Law Constant Used in Calcs (unitless)
Acetone	67-64-1	Yes	No	58.08	PHYSPROP	1.00E+06	PHYSPROP	_	3.50E-05	1.43E-03	1.01E-03	1.01E-03
Benzene, Methylpropyl	28729-54-6	Indeterminate	No	-		-		-	_	_	-	=
Carbon Disulfide	75-15-0	Yes	Yes	76.14	PHYSPROP	2.16E+03	PHYSPROP	_	1.44E-02	5.89E-01	4.33E-01	4.33E-01
Chloromethane	74-87-3	Yes	Yes	50.49	PHYSPROP	5.32E+03	PHYSPROP	_	8.82E-03	3.61E-01	2.93E-01	2.93E-01
Dichlorodifluoromethane	75-71-8	Yes	Yes	120.91	PHYSPROP	2.80E+02	PHYSPROP	_	3.43E-01	1.40E+01	1.17E+01	1.17E+01
Ethanol	64-17-5	Yes	No	46.07	PHYSPROP	1.00E+06	PHYSPROP	-	5.00E-06	2.04E-04	1.24E-04	1.24E-04
Ethylbenzene	100-41-4	Yes	Yes	106.17	PHYSPROP	1.69E+02	PHYSPROP	700	7.88E-03	3.22E-01	1.99E-01	1.99E-01
Heptane, N-	142-82-5	Yes	Yes	100.21	PHYSPROP	3.40E+00	PHYSPROP	-	2.00E+00	8.18E+01	5.37E+01	5.37E+01
Hexane, N-	110-54-3	Yes	Yes	86.18	PHYSPROP	9.50E+00	PHYSPROP	-	1.80E+00	7.36E+01	5.14E+01	5.14E+01
Isopropanol	67-63-0	Yes	Yes	60.10	PHYSPROP	1.00E+06	PHYSPROP	-	8.10E-06	3.31E-04	1.95E-04	1.95E-04
Methyl Ethyl Ketone (2-Butanone)	78-93-3	Yes	Yes	72.11	PHYSPROP	2.23E+05	PHYSPROP	-	5.69E-05	2.33E-03	1.57E-03	1.57E-03
Methyl Isobutyl Ketone (4-methyl-2-pentanone)	108-10-1	Yes	Yes	100.16	PHYSPROP	1.90E+04	PHYSPROP	-	1.38E-04	5.64E-03	3.55E-03	3.55E-03
Styrene	100-42-5	Yes	Yes	104.15	PHYSPROP	3.10E+02	PHYSPROP	100	2.75E-03	1.12E-01	6.63E-02	6.63E-02
Tetrachloroethylene	127-18-4	Yes	Yes	165.83	PHYSPROP	2.06E+02	PHYSPROP	5	1.77E-02	7.24E-01	4.60E-01	4.60E-01
Toluene	108-88-3	Yes	Yes	92.14	PHYSPROP	5.26E+02	PHYSPROP	1000	6.64E-03	2.71E-01	1.76E-01	1.76E-01
Trichloroethane, 1,1,1-	71-55-6	Yes	Yes	133.41	PHYSPROP	1.29E+03	PHYSPROP	200	1.72E-02	7.03E-01	4.87E-01	4.87E-01
Trichlorofluoromethane	75-69-4	Yes	No	137.37	PHYSPROP	1.10E+03	PHYSPROP	-	9.70E-02	3.97E+00	3.00E+00	3.00E+00
Trimethylbenzene, 1,2,4-	95-63-6	Yes	Yes	120.20	PHYSPROP	5.70E+01	PHYSPROP	-	6.16E-03	2.52E-01	1.44E-01	1.44E-01
Trimethylbenzene, 1,3,5-	108-67-8	Yes	Yes	120.20	PHYSPROP	4.82E+01	PHYSPROP	-	8.77E-03	3.59E-01	2.05E-01	2.05E-01
Xylenes	1330-20-7	Yes	Yes	106.17	PHYSPROP	1.06E+02	PHYSPROP	10000	6.63E-03	2.71E-01	1.67E-01	1.67E-01

Chemical Properties

	Enthalpy of vaporization @ groundwater temperature	at the normal boiling point		Normal Boiling Point		Exponent	Vapor Pressure		Vapor Pressure VP	Critical Temperature		Lower Explosive Limit LEL (%	
H` and HLC Ref	$\Delta H_{v,gw} \setminus $ (cal/mol)	$\Delta H_{v,b} L$ (cal/mol)	$\Delta H_{v,b} N$ Ref	BP (K)	BP Ref	for $\Delta H_{v,gw}$	VP (mm Hg)	VP Ref	(16.3 °C)\ (mm Hg)	T _c \ (K)	T _c \ Ref	by volume)	LEL Ref
PHYSPROP	7480.34 -	6955.07 -	CRC	329.15	PHYSPROP	0.36 0.30	2.32E+02 -	PHYSPROP	1.58E+02 -	5.08E+02 -	CRC	2.50	CRC
PHYSPROP	6634.80	6391.01	CRC	319.15	PHYSPROP	0.31	3.59E+02	PHYSPROP	2.56E+02	5.52E+02	CRC	1.30	CRC
PHYSPROP	4673.40	5114.72	CRC	249.15	PHYSPROP	0.33	4.30E+03	PHYSPROP	3.39E+03	4.16E+02	CRC	8.10	CRC
PHYSPROP	4182.05	4804.02	CRC	243.35	PHYSPROP	0.35	4.85E+03	PHYSPROP	3.92E+03	3.85E+02	CRC	-	
PHYSPROP	10440.54	9216.06	CRC	351.35	PHYSPROP	0.39	5.93E+01	PHYSPROP	3.49E+01	5.15E+02	CRC	3.30	CRC
PHYSPROP	10082.46	8501.43	CRC	409.25	PHYSPROP	0.37	9.60E+00	PHYSPROP	5.76E+00	6.17E+02	CRC	0.80	CRC
EPI	8877.51	7593.21	CRC	371.65	PHYSPROP	0.39	4.60E+01	PHYSPROP	2.93E+01	5.40E+02	CRC	1.05	CRC
EPI	7659.61	6895.32	CRC	341.85	PHYSPROP	0.38	1.51E+02	PHYSPROP	1.03E+02	5.08E+02	CRC	1.10	CRC
PHYSPROP	11000.67	9524.38	CRC	355.45	PHYSPROP	0.40	4.54E+01	PHYSPROP	2.60E+01	5.08E+02	CRC	2.00	CRC
PHYSPROP	8342.86	7480.88	CRC	352.65	PHYSPROP	0.37	9.06E+01	PHYSPROP	5.93E+01	5.37E+02	CRC	1.40	CRC
EPI	9733.23	8243.31	CRC	389.65	PHYSPROP	0.39	1.99E+01	PHYSPROP	1.21E+01	5.75E+02	CRC	1.20	CRC
PHYSPROP	10996.41	9249.52	CRC	418.15	PHYSPROP	0.37	6.40E+00	PHYSPROP	3.66E+00	6.35E+02	CRC	0.90	CRC
PHYSPROP	9492.52	8288.72	CRC	394.45	PHYSPROP	0.35	1.85E+01	PHYSPROP	1.14E+01	6.20E+02	YAWS	-	
PHYSPROP	9084.81	7930.21	CRC	383.75	PHYSPROP	0.36	2.84E+01	PHYSPROP	1.79E+01	5.92E+02	CRC	1.10	CRC
PHYSPROP	7816.15	7136.71	CRC	347.15	PHYSPROP	0.36	1.24E+02	PHYSPROP	8.34E+01	5.45E+02	YAWS	8.00	CRC
PHYSPROP	6087.08	5999.04	CRC	296.85	PHYSPROP	0.35	8.03E+02	PHYSPROP	5.90E+02	4.71E+02	CRC	-	
PHYSPROP	11618.58	9368.80	TOXNET	442.45	PHYSPROP	0.39	2.10E+00	PHYSPROP	1.16E+00	6.49E+02	CRC	0.90	CRC
PHYSPROP	11594.35	9321.00	TOXNET	437.85	PHYSPROP	0.39	2.48E+00	PHYSPROP	1.38E+00	6.37E+02	CRC	1.00	CRC
PHYSPROP	10132.81	8523.00	Weast	411.65	PHYSPROP	0.38	7.99E+00	PHYSPROP	4.78E+00	6.20E+02	YAWS	-	

Chemical Properties Inhalation Unit Risk Toxicity Metadata

	CAS	Chemical	IUR	Toxicity	EPA Cancer	IUR Tumor	IUR Target		
Chemical	Number	Туре	(ug/m³) ⁻¹	Source	Classification	Туре	Organ	Species	IUR Method
Acetone	67-64-1	Organics	-						
Carbon Disulfide	75-15-0	Organics	-						
Chloromethane	74-87-3	Organics	-						
	75-71-8	Organics							
Ethylbenzene	100-41-4	Organics	2.5E-6	CALEPA	NA	NA	NA	NA	NA
Heptane, N-	142-82-5	Organics	-						
Hexane, N-	110-54-3	Organics	-						
Isopropanol	67-63-0	Organics	-						
Methyl Ethyl Ketone (2-Butanone)	78-93-3	Organics	-						
Methyl Isobutyl Ketone (4-methyl-2-pentanone)	108-10-1	Organics	-						
Styrene	100-42-5	Organics	-						
Tetrachloroethylene	127-18-4	Organics	2.6E-7		likely to be carcinogenic in humans by all routes of exposure	Hepatocellular adenomas or carcinomas	liver	mouse	Multistage model with linear extrapolation from the point of departure (BMCL10), followed by extrapolation to humans using the PBPK model of Chiu and Ginsberg (2011)
Toluene	108-88-3	Organics	-						
Trichloroethane, 1,1,1-	71-55-6	Organics	-						
Trichlorofluoromethane	75-69-4	Organics	-						
Trimethylbenzene, 1,2,4-	95-63-6	Organics	-						
Trimethylbenzene, 1,3,5-	108-67-8	Organics	-						
Xylenes	1330-20-7	Organics	-						

Chemical Properties Inhalation Unit Risk Toxicity Metadata

IUR Route	IUR Treatment Duration	IUR Study Reference	IUR Notes
NA	NA	NA	NA
NA	NA	JISA 1993	NA

Chemical	CAS Number	Chemical Type	Chronic RfC (mg/m³)		Chronic RfC Basis	Chronic RfC Confidence Level	Chronic RfC Critical Effect	Chronic RfC Target Organ	Chronic RfC Modifying Factor	Chronic RfC Uncertainty Factor
Acetone	67-64-1	Organics	-							
Carbon Disulfide	75-15-0	Organics	0.7	IRIS	BMC 10 (HEC): 19.7 mg/m3	Medium	Peripheral nervous system dysfunction	Neurological	1	30
Chloromethane	74-87-3	Organics	0.09	IRIS	NOAEL (HEC): 94.6 mg/m3	Medium	Cerebellar lesions	Brain	1	1000
Dichlorodifluoromethane	75-71-8	Organics	0.1	SCREEN	LOAEL-HEC: 985 mg/m3	Low	Decreased body weight gain	Whole body	NA	10000
Ethylbenzene	100-41-4	Organics	1	IRIS	NOAEL (HEC): 434 mg/m3	Low	Developmental toxicity	Developmental	1	300
Heptane, N-	142-82-5	Organics	0.4	PPRTV	BDCL-1SD (HEC): 1170 mg/m3	Low	Loss of hearing sensitivity	Ears	NA	3000
Hexane, N-	110-54-3	Organics	0.7	IRIS	BMCL (HEC): 215 mg/m3	Medium	Peripheral neuropathy (decreased MCV at 12 weeks)	Neurological	1	300
Isopropanol	67-63-0	Organics	0.2	PPRTV	LOAEL-HEC: 221 mg/m3		Decreased absolute and relative testes weights	Testes	NA	1000
Methyl Ethyl Ketone (2-Butanone)	78-93-3	Organics	5	IRIS	LEC (HEC): 1517 mg/m3	Medium	Developmental toxicity (skeletal variations)	Developmental	1	300
Methyl Isobutyl Ketone (4-methyl-2-pentanone)	108-10-1	Organics	3	IRIS	NOAEL (HEC): 1026 mg/m3		Reduced fetal body weight, skeletal variations, and increased fetal death in mice, and skeletal variations in rats.	Developmental	1	300
Styrene	100-42-5	Organics	1	IRIS	NOAEL (HEC): 34 mg/m3	Medium	Central nervous system effects	Neurological	1	30

Chronic RfC Species	Chronic RfC Route	Chronic RfC Study Duration	Chronic RfC Study Reference	Chronic RfC Notes
Human	NA	NA	Johnson et al. 1983	NA
Mouse	NA	NA	Landry et al. 1983, Landry et al. 1985	NA
Guinea pig, Rabbit, Dog, and Monkey	Inhalation	8 hr/d, 5 d/wk, 6 weeks	Prendergast et al. 1967	NA
Rabbit and Rat	NA	NA	Andrew et al. 1981, Hardin et al. 1981	NA
Rat	Inhalation	6 hr/d, 28 days	Simonsen and Lund 1995	NA
Rat	NA	NA	Huang et al. 1989	NA
Mouse	Inhalation	6 hr/d, 5 d/wk, at least 78 weeks	Burleigh-Flayer et al. 1997	NA
Mouse	NA	NA	Schwetz et al. 1991	NA
Mouse and Rat	NA	NA	Tyl et al. 1987	NA
Human	NA	NA	Mutti et al. 1984	NA

Chemical	CAS Number	Chemical Type	Chronic RfC (mg/m³)		Chronic RfC Basis	Chronic RfC Confidence Level	Chronic RfC Critical Effect	Chronic RfC Target Organ	Chronic RfC Modifying Factor	Chronic RfC Uncertainty Factor
Tetrachloroethylene	127-18-4	Organics	0.04	IRIS	LOAEL3: Multiple	medium	Neurotoxicity (color vision) (reaction time, cognitive effects)	Nervous System	1	1000
Toluene	108-88-3	Organics	5	IRIS	NOAEL (ADJ): 46 mg/m3	High	Neurological effects in occupationally-exposed workers	Neurological	1	10
Trichloroethane, 1,1,1-	71-55-6	Organics	5	IRIS	NOEL (HEC): 1553 mg/m3	Medium	Histopathologic changes	Liver	1	100
Trichlorofluoromethane	75-69-4	Organics	-							
Trimethylbenzene, 1,2,4-	95-63-6	Organics	0.06	IRIS	BMCL1SD (HEC): 18.15 mg/m3	Low to medium	Decreased pain sensitivity	Nervous system	1	300
Trimethylbenzene, 1,3,5-	108-67-8	Organics	0.06	IRIS	BMCL1SD (HEC): 18.15 mg/m3	Low to medium	Decreased pain sensitivity	Nervous system	1	300
Xylenes	1330-20-7	Organics	0.1	IRIS	NOAEL (HEC): 39 mg/m3	Medium	Impaired motor coordination (decreased rotarod performance)	Nervous	1	300

Chronic RfC Species	Chronic RfC Route	Chronic RfC Study Duration	Chronic RfC Study Reference	Chronic RfC Notes
human	NA	NA	Echeverria et al. (1995) and Cavalleri et al. (1994)	NA
Human	NA	NA	Abbate et al. 1993, Boey et al. 1997, Cavalleri et al. 2000, Eller et al. 1999, Foo et al. 1990, Murata et al. 1993, Nakatsuka et al. 1992, Neubert et al. 2001, Vrca et al. 1995, and Zavalic et al. 1998a	NA
Rat and Mouse	NA	NA	Quast et al. 1988, 1984; McNutt et al. 1975	NA
Rat	NA	NA	Korsak and Rydzynski 1996	NA
Rat	NA	NA	Korsak and Rydzynski 1996	NA
Rat	NA	NA	Korsak et al. 1994	NA

Phase II ESA Northwest Motorsports

400 River Road Puyallup, Washington

Sonic Job No. Corporate-009997-00026-001 H&H Job No. SAI-384-13 November 5, 2021

Phase II Environmental Site Assessments Northwest Motorsports 400 River Road Puyallup, Washington Sonic Job No. Corporate-009997-00026-001 H&H Job No. SAI-384-13

Table of Contents

1.0 Introdu	ıction	1					
	I ESA Activities						
	y Clearance and GPR Survey Activities						
-	·						
	ampling Activities						
	Analytical Results						
2.6 Qualit	ty Assurance/Quality Control	6					
2.7 Invest	igation Derived Waste	6					
3.0 Phase I	II Conclusions and Recommendations	7					
	<u>List of Tables</u>						
Table 1	Summary of Soil Analytical Data						
	<u>List of Figures</u>						
Figure 1	Site Location Map						
Figure 2	Site Map						
Figure 3	Sample Location Map						
	List of Appendices						
Appendix A	Site Photographs						
Appendix B	Soil Boring Logs						
Appendix C	Laboratory Analytical Report						

Phase II Environmental Site Assessments
Northwest Motorsports
400 River Road
Puyallup, Washington
Sonic Job No. Corporate-009997-00026-001
H&H Job No. SAI-384-13

1.0 Introduction

Hart & Hickman, PC (H&H) performed a Phase II Environmental Site Assessment (ESA) on the Northwest Motorsports automotive sales and service facility located at 400 River Road in Puyallup, Pierce County, Washington (Site or subject Site). A Site location map is provided as Figure 1.

The Site is comprised of two parcels of land totaling approximately 3.2-acres (Parcel IDs 0420214807 and 0420281170) and is improved with two commercial buildings that are currently leased by Northwest Motorsport (NWMS) for automotive sales and service operations. The approximately 17,000 square foot (sq ft) two-story main Site building was originally constructed in 1953 and was expanded in the late 1970s and mid-1980s. An approximately 3,600-sq ft service and tire shop, referred to as the Lower Shop, is located to the southwest of the main Site building. The Lower Shop building was constructed in 1966 and was expanded in the late 1970s. Historical automotive sales and service activities have been performed at the Site since at least 1959 when the Site was utilized as Grant's Chevrolet, Inc. but automotive service activities likely date back to Site development in the early 1950s.

A Phase I ESA was completed by others in 2020 identified the following recognized environmental conditions (RECs) in connection with the Site:

- Historical automotive service activities since at least the 1970s, which were known to use and store hazardous chemicals and petroleum products.
- Former in-ground hydraulic lifts in the service departments.

Additionally, the following potential environmental concerns were identified with the Site:

- A catch basin located adjacent to the southeast corner of the main building, which would be pumped out to another catch basin in close proximity during significant rain events.
- Surrounding properties used for automotive sales and service activities, including the property to the east, which was listed as a gas station in the early 1970s.

2.0 Phase II ESA Activities

Based on the results of the Phase I ESA, H&H completed Phase II ESA activities on October 22, 2021. The Phase II ESA activities were performed in general accordance with the most recent version of the United States Environmental Protection Agency (USEPA) Region IV Science and Ecosystem Support (SESD) *Field Branches Quality System and Technical Procedures* guidance. Photographs of the Site and the assessment activities are provided in Appendix A.

2.1 Utility Clearance and GPR Survey Activities

Prior to conducting Phase II ESA activities, H&H contacted Washington 811, the public utility locator, to mark subsurface utilities located on the Site. H&H also contracted with Ground Penetrating Radar Services (GPRS), a private utility locator to screen proposed boring locations for subgrade utilities which were not identified by the public locator.

In addition, prior to advancing the soil borings with mechanical drilling equipment, H&H directed the drilling contractor, Steadfast Services Northwest, LLC (Steadfast) to hand clear each boring to a depth of approximately 5 ft below ground surface (ft bgs) with a decontaminated stainless-steel hand auger to further screen boring locations for the potential presence of subsurface utilities prior to utilizing mechanical drilling techniques.

2.2 Soil Sampling Activities

H&H and Steadfast advanced 5 soil borings (SB-1 through SB-5) adjacent to the wash bay drain, oil/water separator (OWS), metal scrap bin, and aboveground hydraulic lifts at the Site. The soil boring locations are depicted on Figure 3 and are described below.

• Soil boring SB-1 was advanced to a depth of 15 ft bgs adjacent to the wash bay drain on the southern portion of the Site;

- SB-2 was advanced to a depth of 15 ft bgs adjacent to the west of the OWS located on the southern portion of the Site;
- Soil boring SB-3 was advanced to a depth of 15 ft bgs in an area of heavy staining in the southern service department in the main Site building;
- Soil boring SB-4 was advanced to a depth approximately 15 ft bgs to the south of the northern service department in the main Site building; and
- Soil boring SB-5 was advanced to 4.5 ft bgs in the vicinity of heavy staining in the northern service department in the main Site building.

Once soil borings were cleared to 5 ft bgs with a hand auger (where possible) a track-mounted Geoprobe direct-push technology (DPT) drill rig was used to advance the soil borings to completion depths between 4.5 and 15 ft bgs. Soil boring SB-5 was advanced to 4.5 ft bgs using a hand auger where refusal was encountered. During boring advancement, soil was recovered from either the hand auger bucket or acetate-lined macrocore sampler and logged for lithological description and field screened for the visual presence of staining and the presence of organic vapors using a calibrated photoionization detector (PID). Based on field screening results, H&H collected at least one soil sample from each boring for laboratory analysis. If H&H did not observe indications of potential impacts based on field screening results, a soil sample was collected from the depth interval with the highest potential for impacts based on the source area.

Soil was primarily silty sand from below surface covering to a depth of approximately 3 ft bgs. From approximately 3 ft bgs to 9 ft bgs, poorly graded loose sand was encountered. The poorly graded sand was underlain by well graded fine to course grained sand to depth of 15 ft bgs which was the maximum depth encountered during the assessment activities. Soil were generally wet at depth between 6 ft and 9 ft bgs and may be indicative of water table. Boring logs with lithological descriptions and field screening results are provided in Appendix B.

Following collection, the soil samples were placed in dedicated laboratory-supplied sample containers and labeled with the sample identification, date, and requested analysis. Soil samples collected during the Phase II ESA activities were submitted to Eurofins USA (Eurofins) under standard chain-of-custody protocols for analysis of volatile organic compounds (VOCs) by US EPA Method 8260D, polynuclear aromatic hydrocarbons (PAHs) by US EPA Method 8270E, and total petroleum hydrocarbons (TPH) by Northwest Volatile Petroleum Products (NWTPH) Method.

2.3 Soil Analytical Results

Soil analytical results (SB-1 to SB-5) were compared to the State of Washington Department of Ecology (WDE) Cleanup Levels and Risk Calculation (CLARC), dated February 2021, for Unrestricted Use and Commercial/Industrial Use Method A Soil Cleanup Levels (SCLs) and Protection of Groundwater screening levels. Soil analytical results are summarized on Table 1. The laboratory analytical data report is included in Appendix C.

Laboratory analytical results indicate the presence of tetrachloroethene (PCE) in the soil samples collected from SB-3 (1.3 mg/kg) and SB-5 (1.8 mg/kg) at concentrations above the Unrestricted Use and Commercial/Industrial Use SCLs and the Protection of Groundwater screening levels. No other VOCs were detected at concentrations above Unrestricted Use SCLs, Commercial/Industrial Use SCLs or the Protection of Groundwater screening levels.

TPH residual range organics (TPH-RRO) was detected at a concentration of 4,900 mg/kg which is above the Unrestricted Use and Commercial/Industrial Use SCLs and the Protection of Groundwater screening levels in the soil sample collected from SB-5. No other TPH factions were detected in the soil samples collected during the Phase II ESA activities.

PAHs at concentrations above Unrestricted Use SCLs, Commercial/Industrials SCLs, or Protective of Groundwater screening levels in any of the soil samples collected during the Phase II ESA activities.

2.6 Quality Assurance/Quality Control

Non-dedicated sampling equipment was used during the Phase II ESA activities, including DPT tooling and hand auger, which were decontaminated prior to use at each boring or sampling location or following exposure to soil or groundwater using Liquinox detergent and rinsing with fresh tap water. H&H and the drilling subcontractors wore nitrile gloves while handling soil samples and collected soil samples in laboratory-provided containers and placed on ice immediately upon collection. In addition, a trip blank accompanied the VOC samples to ensure that outside contaminants were not introduced during transport. No analytes were detected in the trip blank sample.

2.7 Investigation Derived Waste

Upon completion of the assessment activities, the soil borings were properly abandoned using hydrated bentonite and capped with concrete. Soil cuttings generated during soil sampling activities were spread on-Site due to lack of obvious impacts.

3.0 Phase II Conclusions and Recommendations

Based on the results of the soil assessment activities completed at the Site, H&H has concluded the following:

- PCE is present in soil below the northern and southern service departments in the main Site building at concentrations above Unrestricted Use SCLs, Commercial/Industrial SCLs, and Protective of Groundwater screening levels.
- TPH-RRO is present at a concentration above Unrestricted Use and Commercial/Industrial SCLs below the northern service department of the main Site building.
- Groundwater appears to be present at shallow depths of less than 10 ft bgs at the Site.
- The presence of PCE at concentrations above the Protective of Groundwater screening level and in close proximity to the water table, it is possible that groundwater may be impacted with PCE.
- PCE and daughter compounds such as trichloroethene (TCE) vapors may be present in Site soil and may be a vapor intrusion concern to the interior portions of the Site buildings.

In accordance with Washington Administrative Code (WAC) 173-340.300 indicates that owners or operators with knowledge of a release of a potentially hazardous substance to the environment should report the release to WDE within 90 days. As such, H&H recommends that the presence of impacts be reported in a timely manner. However, because PCE is present in soil below the building slab, H&H recommends that additional assessment activities be completed in a timely manner, to evaluate the potential for the migration of PCE and daughter compound vapors to the interior portions of the Site buildings.

Table 1
Summary of Soil Analytical Data
Northwest Motorsports
400 River Road
Puyallup, Washington
H&H Project No. SAI-384.13

Sample Location	Wash Bay Drain SB-1 (2-3) 2-3	OWS SB-2 (4-5) 4-5	South Shop Aboveground Lift SB-3 (2-3) 2-3	Metal Scrap Bin SB-4 (2-3) 2-3	North Shop Aboveground Lift SB-5 (1-2) 1-2	Regulatory Screening Levels		
Sample ID						Method A Soil Cleanup Levels		
Depth (ft bgs)								Protective of Groundwater
Sample Date	10/22/2021					Unrestricted Use ⁽¹⁾	Industrial/ Commercial ⁽¹⁾	(Vadose Zone) ⁽¹⁾
PID Reading (ppm)	0.2	0.3	3.9	0.8	0.5			(vadose zone)
TPH (NWTPH) mg/kg								
Gasoline	<4.1	<7.1	10 J	<4.6	4.7 J	30	30	NE
Diesel Range Organics (C ₁₀ -C ₂₅)	34	<5.9	84	<4.7	1,700	2,000	2,000	NE
Residual Range Organics (C ₂₅ -C ₃₆)	280	<7.1	240	<5.6	4,900	2,000	2,000	NE
VOCs (8260D) mg/kg								
Tetrachloroethene	<0.040	<0.070	1.3	<0.045	1.8	0.05	0.05	0.05
1,1,1-Trichloroethane	<0.040	< 0.069	<0.040	< 0.044	0.10 J	2.0	2.0	1.5
Toluene	<0.031	< 0.053	< 0.031	< 0.034	0.038 J	7.0	7.0	4.5
1,2,4-Trimethylbenzene	<0.073	<0.093	0.12 J	<0.060	<0.056	NE	NE	1.3
PAHs (8270E) mg/kg								
Naphthalene	<0.024	< 0.0030	0.0079 J	<0.0024	<0.012	5.0	5.0	4.5
2-Methylnaphthalene	< 0.035	<0.0044	0.013	< 0.0035	< 0.017	NE	NE	1.7
1-Methylnaphthalene	< 0.025	< 0.0031	0.0088 J	< 0.0025	< 0.012	NE	NE	0.082
Phenanthrene	< 0.041	< 0.0051	0.014	< 0.0041	<0.020	NE	NE	NE
Anthracene	<0.022	<0.0028	0.0022 J	< 0.0022	< 0.011	NE	NE	2,300
Fluoranthene	<0.028	< 0.0035	0.0050 J	<0.0028	< 0.014	NE	NE	630
Pyrene	< 0.043	< 0.0054	0.01 J	< 0.0043	<0.021	NE	NE	650
Benzo[a]anthracene	< 0.024	< 0.0030	0.0037 J	< 0.0024	< 0.012	0.1*	2*	3.9*
Chrysene	< 0.017	< 0.0021	0.0045 J	< 0.0017	<0.0084	0.1*	2*	3.9*
Benzo[b]fluoranthene	< 0.039	< 0.0050	0.0045 J	< 0.0039	< 0.019	0.1*	2*	3.9*
Benzo[g,h,i]perylene	<0.026	< 0.0033	0.0037 J	< 0.0026	< 0.013	NE	NE	NE

Notes:

(1) State of Washington Department of Ecology Cleanup Levels and Risk Calculation (CLARC), dated February 2021, for Method A Soil Cleanup Levels and Protective of Groundwater (Vadose Zone).

Orange highlighting indicates concentration exceeds the Method A Residential and Industrial Properties Soil Cleanup Levels.

Blue highlighting and bolding indicates the concentration exceeds both the Method A Soil Cleanup Levels and the Protective of Groundwater (Vadose Zone) Standard.

Only compounds detected in at least one sample are shown above; refer to laboratory report for full list of analyzed compounds Results shown in milligrams per kilogram (mg/kg).

VOCs = volatile organic compounds; PAHs = polynuclear aromatic hydrocarbons; TPH = total petroleum hydrocarbons

ft bgs = feet below ground surface; NE = not established; OWS = oil-water separator; ppm = parts per million

J = compound detected above the method detection limit but below the reporting limit and is considered an estimated value; NE= not established

^{*} Soil cleanup level is based upon the total toxic equivalent concentration of carcinogenic PAHs

Path: S:AAA-Master Projects/Sonic Automotive - SAI/SAI-384 Project Octane/Task 13 - Northwest Motorsports Payallup WA - Phase II ESAIFigure-1.mxd

U.S.G.S. QUADRANGLE MAP

PUYALLUP, WASHINGTON 2020

QUADRANGLE 7.5 MINUTE SERIES (TOPOGRAPHIC)

SITE LOCATION MAP

NORTHWEST MOTORSPORTS 400 RIVER ROAD PUYALLUP, WASHINGTON

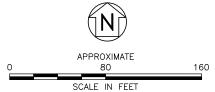
2923 South Tryon Street - Suite 100 Charlotte, North Carolina 28203 704-586-0007 (p) 704-586-0373 (f) License # C-1269 / # C-245 Geology

DATE: 10-26-21 REVISION NO: 0 JOB NO: SAI-384-13 FIGURE NO: 1

SITE PROPERTY BOUNDARY

PARCEL BOUNDARY

ABOVEGROUND STORAGE TANK (AST)


ABOVEGROUND LIFT

PARTS WASHER

OIL/WATER SEPARATOR

SOIL BORING LOCATION

- 1. PARCEL DATA OBTAINED FROM PIERCE COUNTY, 2021.
- 2. AERIAL IMAGERY OBTAINED FROM BING SERVICES.

SAMPLE LOCATION MAP

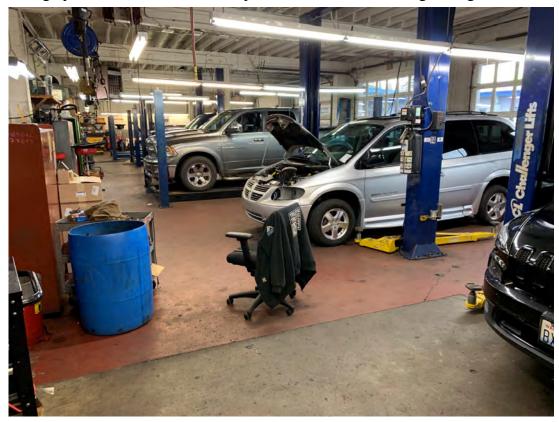
NORTHWEST MOTORSPORTS 400 RIVER ROAD PUYALLUP, WASHINGTON

2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 704-586-0007(p) 704-586-0373(f) License # C-1269 / #C-245 Geology

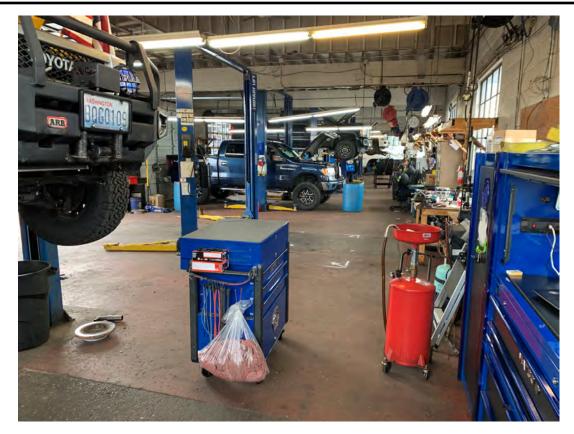
REVISION NO. 0 JOB NO. SAI-384-13 FIGURE NO. 3

Appendix A
Site Photographs

Photograph 1: Northern exterior of the automotive building, viewed facing west.



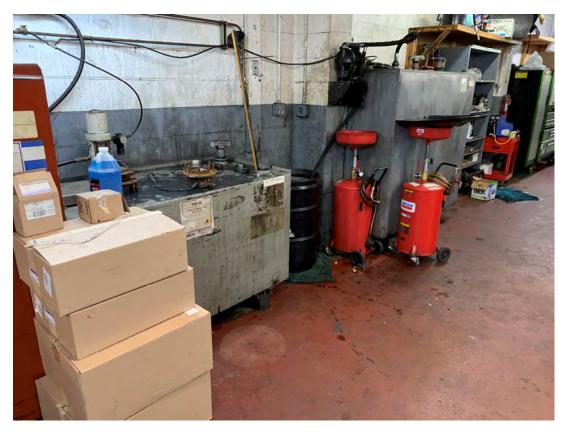
Photograph 2: View of the North Shop of the automotive building, viewed facing north.



Photograph 3: View of the South Shop of the automotive building, facing southeast.

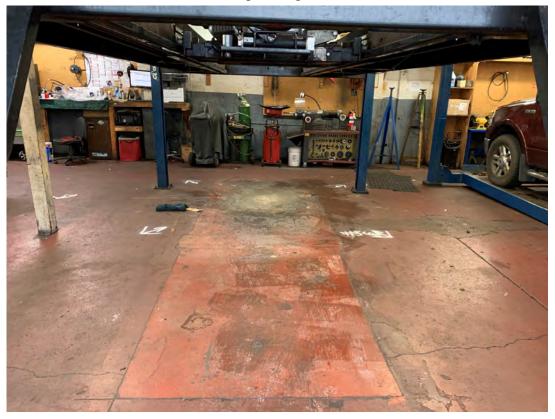
Photograph 4: General view of North Shop, facing east.

Photograph 5: General view of South Shop, facing east.



Photograph 6: View of wash bay at southern extent of property, facing south.

Photograph 7: Secondary wash area with select chemical storage, view facing east.



Photograph 8: Used and fresh oil ASTs located in the middle of the North Shop's northern wall.

Photograph 9: Scrap metal car parts bin with observed staining, located at the southern extent of the North Shop, facing east.

Photograph 10: Patched floor in North Shop with some observed staining in lift area, location of SB-5, facing north.

Photograph 11: View of OWS and skimmer shed at southern edge of wash bay, facing northeast.

Photograph 12: Interior view of the OWS vault.

Appendix B
Soil Boring Logs

Client: Sonic

Project: SAI-384-13

Address: 400 River Road, Puyallup, WA

BORING LOG

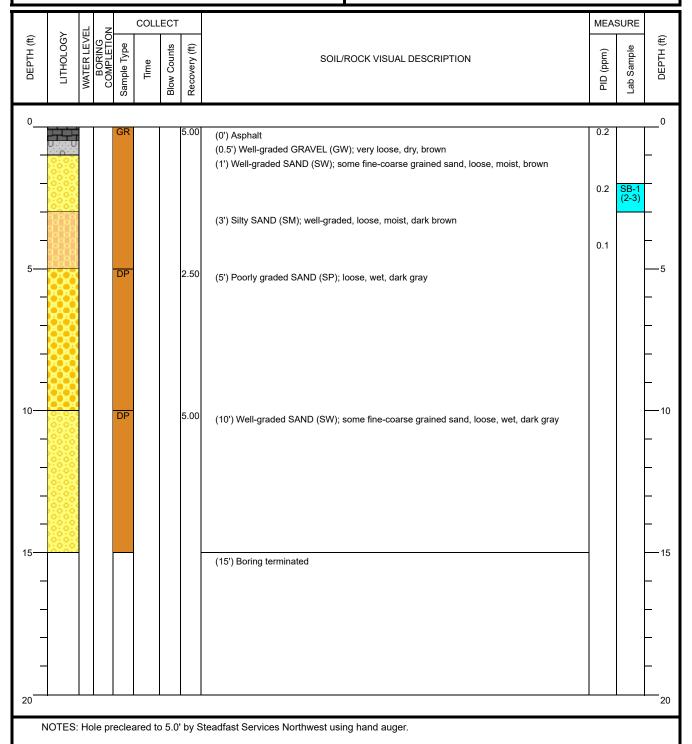
Boring No. SB-1

Page: 1 of 1

 Drilling Start Date:
 10/22/2021
 Boring Depth (ft):
 15.0

 Drilling End Date:
 10/22/2021
 Boring Diameter (in):
 2.25

Drilling Company: Steadfast Services Northwest Sampling Method(s): Direct Push, Grab


Drilling Method: Direct Push

DrW During Drilling (ft):

Drilling Equipment: Geoprobe 7720DT

Driller: Ground Surface Elev. (ft):

Logged By: ABM Location (X,Y):

Client: Sonic

Project: SAI-384-13

Address: 400 River Road, Puyallup, WA

BORING LOG

1 of 1

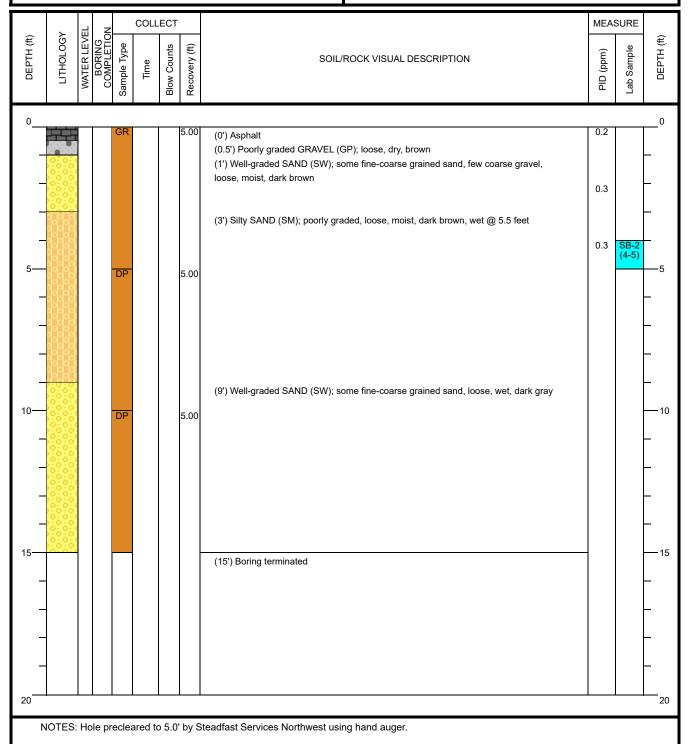
Boring No. SB-2

Page:

Boring Depth (ft): 15.0

 Drilling Start Date:
 10/22/2021
 Boring Depth (ft):
 15.0

 Drilling End Date:
 10/22/2021
 Boring Diameter (in):
 2.25


Drilling Company: Steadfast Services Northwest Sampling Method(s): Direct Push, Grab

 Drilling Method:
 Direct Push
 DTW During Drilling (ft):

 Drilling Equipment:
 Geoprobe 7720DT
 DTW After Drilling (ft):

 Driller:
 Ground Surface Elev. (ft):

Logged By: ABM Location (X,Y):

Client: Sonic

Project: SAI-384-13

Address: 400 River Road, Puyallup, WA

BORING LOG

Boring No. SB-3

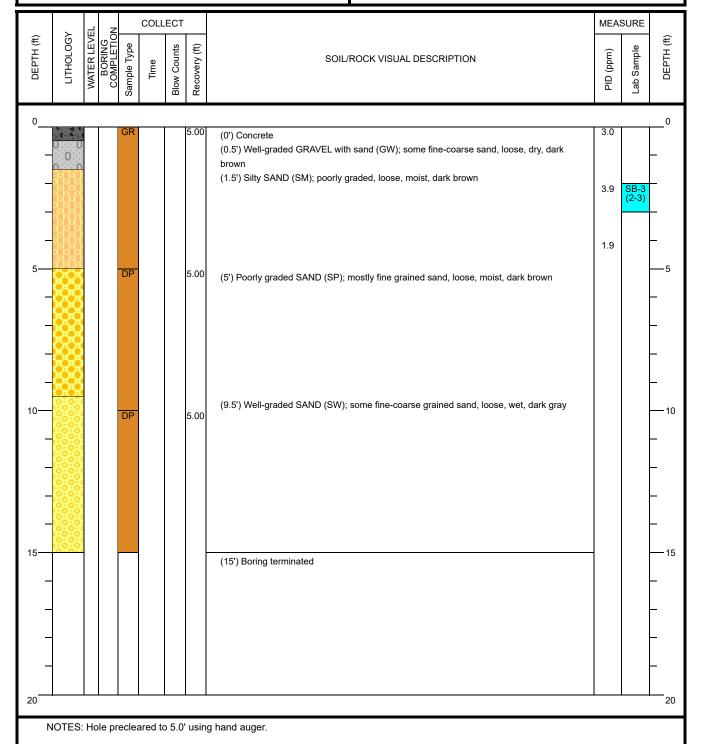
Page: 1 of 1

Drilling Start Date: 10/22/2021
Drilling End Date: 10/22/2021

Drilling Company: Steadfast Services Northwest

Drilling Method: Direct Push
Drilling Equipment: Geoprobe 7720DT

Driller:


Logged By: ABM

Boring Depth (ft): **15.0**Boring Diameter (in): **2.25**

Sampling Method(s): Direct Push, Grab

DTW During Drilling (ft):
DTW After Drilling (ft):
Ground Surface Elev. (ft):

Location (X,Y):

Client: Sonic

Project: SAI-384-13

Address: 400 River Road, Puyallup, WA

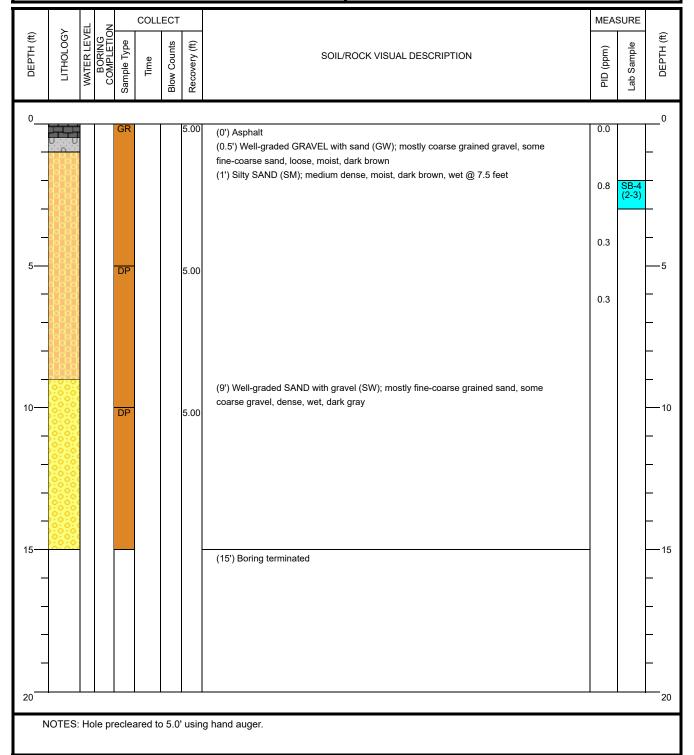
BORING LOG

Boring No. SB-4

Page: 1 of 1

15.0

2.25


Drilling Start Date: 10/22/2021 Boring Depth (ft):

Drilling End Date: 10/22/2021 Boring Diameter (in):

Drilling Company: Steadfast Services Northwest Sampling Method(s): Direct Push, Grab

Drilling Method: Direct Push DTW During Drilling (ft):
Drilling Equipment: Geoprobe 7720DT DTW After Drilling (ft):
Driller: Ground Surface Elev. (ft):

Logged By: ABM Location (X,Y):

Client: Sonic

Project: SAI-384-13

Address: 400 River Road, Puyallup, WA

BORING LOG

Boring No. SB-5

Page: 1 of 1

Drilling Start Date: 10/22/2021
Drilling End Date: 10/22/2021

Drilling Company: Steadfast Services Northwest

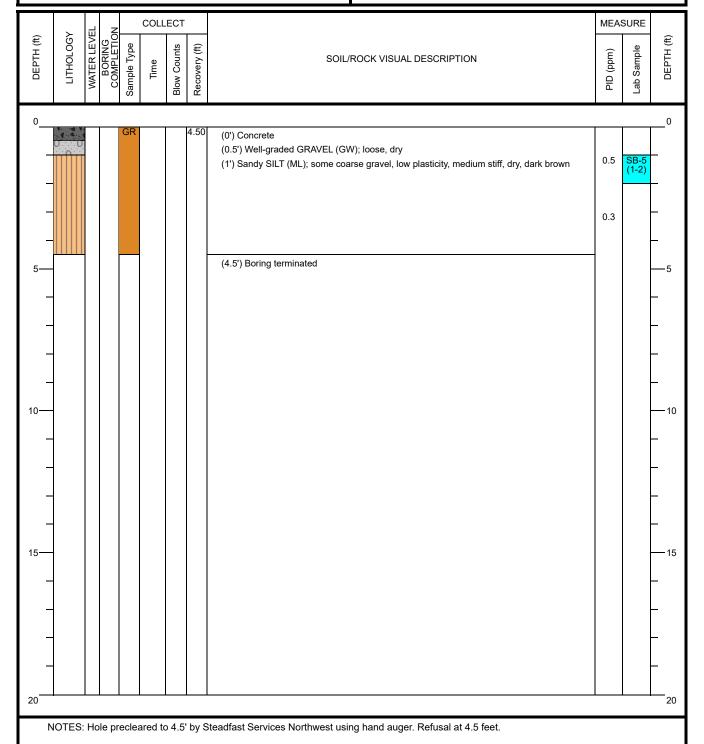
Drilling Method: Other

Drilling Equipment: Hand Auger

Driller:

Logged By: ABM

Boring Depth (ft): 4.5


Boring Diameter (in): 2.25

Sampling Method(s): Grab

DTW During Drilling (ft): DTW After Drilling (ft):

Ground Surface Elev. (ft):

Location (X,Y):

Appendix C Laboratory Analytical Report

ANALYTICAL REPORT

Eurofins TestAmerica, Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

Laboratory Job ID: 590-16195-1

Client Project/Site: Northwest Motorsports - Puyallup

For:

Hart & Hickman, PC 3921 Sunset Ridge Rd Suite 301 Raleigh, North Carolina 27607

Attn: Carlin Slusher

tandu trington

Authorized for release by: 10/28/2021 5:36:23 PM

Randee Arrington, Lab Director (509)924-9200

Randee.Arrington@Eurofinset.com

.....LINKS

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Hart & Hickman, PC Project/Site: Northwest Motorsports - Puyallup Laboratory Job ID: 590-16195-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	
Definitions	5
Client Sample Results	6
QC Sample Results	19
Chronicle	32
Certification Summary	35
Method Summary	36
Chain of Custody	37
Receint Checklists	38

Case Narrative

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Job ID: 590-16195-1

Job ID: 590-16195-1

Laboratory: Eurofins TestAmerica, Spokane

Narrative

Receipt

The samples were received on 10/25/2021 11:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.1° C.

GC/MS VOA

Method 8260D: The continuing calibration verification (CCV) associated with batch 590-33784 recovered above the upper control limit for 2,2-Dichloropropane, Chloroform, 1,1,2-Trichloro-1,2,2-Trifluoroethane, Methylene Chloride and Carbon tetrachloride. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Method 8260D: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for preparation batch 590-33778 and 590-33778 and analytical batch 590-33784 recovered outside control limits for the following analytes: 1,2-Dichlorobenzene, 1.2-Dichloropropane, Dibromomethane, Methyl tert-butyl ether, 2.2-Dichloropropane, cis-1.2-Dichloroethene and cis-1.3-Dichloropropene. . These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA

Method NWTPH-Dx: Detected hydrocarbons in the diesel range appear to be due to oil overlap in the following samples: SB-1 (2-3) (590-16195-1), SB-3 (2-3) (590-16195-3) and SB-5 (1-2) (590-16195-5).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Sample Summary

Client: Hart & Hickman, PC Job ID: 590-16195-1

Project/Site: Northwest Motorsports - Puyallup

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
590-16195-1	SB-1 (2-3)	Solid	10/22/21 10:35	10/25/21 11:00
590-16195-2	SB-2 (4-5)	Solid	10/22/21 12:45	10/25/21 11:00
590-16195-3	SB-3 (2-3)	Solid	10/22/21 13:30	10/25/21 11:00
590-16195-4	SB-4 (2-3)	Solid	10/22/21 14:15	10/25/21 11:00
590-16195-5	SB-5 (1-2)	Solid	10/22/21 15:00	10/25/21 11:00
590-16195-6	Trip Blank	Solid	10/22/21 10:00	10/25/21 11:00

1

3

4

10

11

Definitions/Glossary

Client: Hart & Hickman, PC Job ID: 590-16195-1

Project/Site: Northwest Motorsports - Puyallup

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

*+ LCS and/or LCSD is outside acceptance limits, high biased.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS Semi VOA

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

101001

3

4

J

7

8

46

11

46

Eurofins TestAmerica, Spokane

Client Sample Results

Client: Hart & Hickman, PC Job ID: 590-16195-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-1 (2-3)

Lab Sample ID: 590-16195-1 Date Collected: 10/22/21 10:35 **Matrix: Solid** Date Received: 10/25/21 11:00

Percent Solids: 88.6

Analyte	Result	Qualifier	RL _	MDL		D	Prepared	Analyzed	Dil Fa
Dichlorodifluoromethane	ND		0.23	0.064	mg/Kg	☼	10/28/21 09:19	10/28/21 12:49	
Chloromethane	ND		1.1	0.096	mg/Kg	☼	10/28/21 09:19	10/28/21 12:49	
Vinyl chloride	ND		0.14	0.046	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
Bromomethane	ND		1.1	0.076	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
Chloroethane	ND		0.46	0.13	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
Trichlorofluoromethane	ND		0.46	0.075	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
1,1-Dichloroethene	ND		0.23	0.078	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
Methylene Chloride	ND		0.80	0.46	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
trans-1,2-Dichloroethene	ND		0.23	0.053	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
1,1-Dichloroethane	ND		0.23	0.061	mg/Kg	₽	10/28/21 09:19	10/28/21 12:49	
2,2-Dichloropropane	ND	*+	0.23	0.056	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
cis-1,2-Dichloroethene	ND	*+	0.23		mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
Bromochloromethane	ND		0.23		mg/Kg		10/28/21 09:19	10/28/21 12:49	
Chloroform	ND		0.23		mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
1,1,1-Trichloroethane	ND		0.23		mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
Carbon tetrachloride	ND		0.23		mg/Kg	∴		10/28/21 12:49	
1,1-Dichloropropene	ND		0.23		mg/Kg	₩		10/28/21 12:49	
Benzene	ND		0.046		mg/Kg	₩		10/28/21 12:49	
1,2-Dichloroethane	ND		0.23		mg/Kg			10/28/21 12:49	
Trichloroethene	ND		0.057		mg/Kg	₩.		10/28/21 12:49	
1,2-Dichloropropane	ND.	*+	0.28		mg/Kg	Ď.		10/28/21 12:49	
Dibromomethane	ND		0.23		mg/Kg			10/28/21 12:49	
Bromodichloromethane	ND	·	0.23		mg/Kg	₩		10/28/21 12:49	
	ND ND	*.	0.23			₩		10/28/21 12:49	
cis-1,3-Dichloropropene Toluene	ND	.	0.23	0.047	mg/Kg mg/Kg	12t		10/28/21 12:49	
	ND ND		0.23			1,2			
trans-1,3-Dichloropropene	ND ND				mg/Kg	φ.	10/28/21 09:19	10/28/21 12:49	
1,1,2-Trichloroethane			0.23	0.081	mg/Kg			10/28/21 12:49	
Tetrachloroethene	ND		0.092		mg/Kg	*		10/28/21 12:49	
1,3-Dichloropropane	ND		0.23		mg/Kg	*		10/28/21 12:49	
Dibromochloromethane	ND		0.46		mg/Kg	. .		10/28/21 12:49	
1,2-Dibromoethane (EDB)	ND		0.23		mg/Kg	₩		10/28/21 12:49	
Chlorobenzene	ND		0.23		mg/Kg	☼		10/28/21 12:49	
Ethylbenzene	ND		0.23		mg/Kg			10/28/21 12:49	
1,1,1,2-Tetrachloroethane	ND		0.23		mg/Kg	₩		10/28/21 12:49	
1,1,2,2-Tetrachloroethane	ND		0.23	0.067	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
m,p-Xylene	ND		0.92		mg/Kg		10/28/21 09:19	10/28/21 12:49	
o-Xylene	ND		0.46		mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
Styrene	ND		0.23	0.054	mg/Kg	☼	10/28/21 09:19	10/28/21 12:49	
Bromoform	ND		0.46	0.044	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
Isopropylbenzene	ND		0.23	0.071	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
Bromobenzene	ND		0.23	0.051	mg/Kg	☼	10/28/21 09:19	10/28/21 12:49	
N-Propylbenzene	ND		0.23	0.061	mg/Kg	☼	10/28/21 09:19	10/28/21 12:49	
1,2,3-Trichloropropane	ND		0.46	0.084	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
2-Chlorotoluene	ND		0.23	0.037	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
1,3,5-Trimethylbenzene	ND		0.23	0.073	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
4-Chlorotoluene	ND		0.23	0.020	mg/Kg	₽	10/28/21 09:19	10/28/21 12:49	
tert-Butylbenzene	ND		0.23		mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
1,2,4-Trimethylbenzene	ND		0.23		mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	
sec-Butylbenzene	ND		0.23		mg/Kg			10/28/21 12:49	

Eurofins TestAmerica, Spokane

10/28/2021

Page 6 of 38

Client: Hart & Hickman, PC Job ID: 590-16195-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-1 (2-3)

Date Collected: 10/22/21 10:35

Date Received: 10/25/21 11:00

Lab Sample ID: 590-16195-1

Matrix: Solid

Percent Solids: 88.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3-Dichlorobenzene	MD		0.23	0.029	mg/Kg	-	10/28/21 09:19	10/28/21 12:49	1
p-Isopropyltoluene	ND		0.23	0.047	mg/Kg	☼	10/28/21 09:19	10/28/21 12:49	1
1,4-Dichlorobenzene	ND		0.23	0.047	mg/Kg	₽	10/28/21 09:19	10/28/21 12:49	1
n-Butylbenzene	ND		0.23	0.063	mg/Kg	₽	10/28/21 09:19	10/28/21 12:49	1
1,2-Dichlorobenzene	ND	*+	0.23	0.053	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	1
1,2-Dibromo-3-Chloropropane	ND		1.1	0.14	mg/Kg	₽	10/28/21 09:19	10/28/21 12:49	1
1,2,4-Trichlorobenzene	ND		0.23	0.042	mg/Kg	₽	10/28/21 09:19	10/28/21 12:49	1
1,2,3-Trichlorobenzene	ND		0.23	0.077	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	1
Hexachlorobutadiene	ND		0.23	0.038	mg/Kg	₽	10/28/21 09:19	10/28/21 12:49	1
Naphthalene	ND		0.46	0.064	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	1
Methyl tert-butyl ether	ND	*+	0.11	0.069	mg/Kg	₩	10/28/21 09:19	10/28/21 12:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		80 - 120				10/28/21 09:19	10/28/21 12:49	1
4-Bromofluorobenzene (Surr)	103		76 - 122				10/28/21 09:19	10/28/21 12:49	1
Dibromofluoromethane (Surr)	96		80 - 120				10/28/21 09:19	10/28/21 12:49	1
1,2-Dichloroethane-d4 (Surr)	103		75 - 129				10/28/21 09:19	10/28/21 12:49	1

Method: NWTPH-Gx - Nor	thwest - Volatile	e Petroleu	m Products	(GC/MS)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		11	4.1	mg/Kg	*	10/28/21 09:19	10/28/21 12:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		41.5 - 162				10/28/21 09:19	10/28/21 12:49	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		110	24	ug/Kg	<u></u>	10/26/21 09:51	10/26/21 17:40	10
2-Methylnaphthalene	ND		110	35	ug/Kg	☼	10/26/21 09:51	10/26/21 17:40	10
1-Methylnaphthalene	ND		110	25	ug/Kg	☼	10/26/21 09:51	10/26/21 17:40	10
Acenaphthylene	ND		110	37	ug/Kg	₩	10/26/21 09:51	10/26/21 17:40	10
Acenaphthene	ND		110	28	ug/Kg	☼	10/26/21 09:51	10/26/21 17:40	10
Fluorene	ND		110	25	ug/Kg	₩	10/26/21 09:51	10/26/21 17:40	10
Phenanthrene	ND		110	41	ug/Kg	₩	10/26/21 09:51	10/26/21 17:40	10
Anthracene	ND		110	22	ug/Kg	☼	10/26/21 09:51	10/26/21 17:40	10
Fluoranthene	ND		110	28	ug/Kg	☼	10/26/21 09:51	10/26/21 17:40	10
Pyrene	ND		110	43	ug/Kg	₩	10/26/21 09:51	10/26/21 17:40	10
Benzo[a]anthracene	ND		110	24	ug/Kg	☼	10/26/21 09:51	10/26/21 17:40	10
Chrysene	ND		110	17	ug/Kg	₩	10/26/21 09:51	10/26/21 17:40	10
Benzo[b]fluoranthene	ND		110	39	ug/Kg	☼	10/26/21 09:51	10/26/21 17:40	10
Benzo[k]fluoranthene	ND		110	28	ug/Kg	☼	10/26/21 09:51	10/26/21 17:40	10
Benzo[a]pyrene	ND		110	47	ug/Kg	☼	10/26/21 09:51	10/26/21 17:40	10
Indeno[1,2,3-cd]pyrene	ND		110	33	ug/Kg	⊅	10/26/21 09:51	10/26/21 17:40	10
Dibenz(a,h)anthracene	ND		110	32	ug/Kg	☼	10/26/21 09:51	10/26/21 17:40	10
Benzo[g,h,i]perylene	ND		110	26	ug/Kg	₩	10/26/21 09:51	10/26/21 17:40	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	87		33 - 120				10/26/21 09:51	10/26/21 17:40	10
2-Fluorobiphenyl (Surr)	78		47 - 120				10/26/21 09:51	10/26/21 17:40	10
p-Terphenyl-d14	93		74 - 120				10/26/21 09:51	10/26/21 17:40	10

Eurofins TestAmerica, Spokane

Client Sample Results

Client: Hart & Hickman, PC Job ID: 590-16195-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-1 (2-3)

Lab Sample ID: 590-16195-1 Date Collected: 10/22/21 10:35 **Matrix: Solid**

Date Received: 10/25/21 11:00 Percent Solids: 88.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	34		11	4.6	mg/Kg	-	10/27/21 10:00	10/27/21 14:14	1
Residual Range Organics (RRO) (C25-C36)	280		27	5.4	mg/Kg	≎	10/27/21 10:00	10/27/21 14:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	94		50 - 150				10/27/21 10:00	10/27/21 14:14	1
n-Triacontane-d62	114		50 - 150				10/27/21 10:00	10/27/21 14:14	1

Lab Sample ID: 590-16195-2 Client Sample ID: SB-2 (4-5) Date Collected: 10/22/21 12:45 **Matrix: Solid**

Date Received: 10/25/21 11:00 Percent Solids: 69.9

Analyte	Result Q	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND	0.40	0.11	mg/Kg	<u></u>	10/28/21 09:19	10/28/21 13:31	1
Chloromethane	ND	2.0	0.17	mg/Kg	☼	10/28/21 09:19	10/28/21 13:31	1
Vinyl chloride	ND	0.24	0.080	mg/Kg	☼	10/28/21 09:19	10/28/21 13:31	1
Bromomethane	ND	2.0	0.13	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
Chloroethane	ND	0.79	0.22	mg/Kg	☼	10/28/21 09:19	10/28/21 13:31	1
Trichlorofluoromethane	ND	0.79	0.13	mg/Kg	☼	10/28/21 09:19	10/28/21 13:31	1
1,1-Dichloroethene	ND	0.40	0.14	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
Methylene Chloride	ND	1.4	0.79	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
trans-1,2-Dichloroethene	ND	0.40	0.091	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
1,1-Dichloroethane	ND	0.40	0.10	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
2,2-Dichloropropane	ND *+	+ 0.40	0.096	mg/Kg	☼	10/28/21 09:19	10/28/21 13:31	1
cis-1,2-Dichloroethene	ND *+	+ 0.40	0.083	mg/Kg	☼	10/28/21 09:19	10/28/21 13:31	1
Bromochloromethane	ND	0.40	0.16	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
Chloroform	ND	0.40	0.093	mg/Kg	☼	10/28/21 09:19	10/28/21 13:31	1
1,1,1-Trichloroethane	ND	0.40	0.069	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
Carbon tetrachloride	ND	0.40	0.044	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
1,1-Dichloropropene	ND	0.40	0.069	mg/Kg	☼	10/28/21 09:19	10/28/21 13:31	1
Benzene	ND	0.079	0.040	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
1,2-Dichloroethane	ND	0.40	0.028	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
Trichloroethene	ND	0.099		mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
1,2-Dichloropropane	ND *+	+ 0.48	0.12	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
Dibromomethane	ND *+	+ 0.40	0.089	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
Bromodichloromethane	ND	0.40	0.25	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
cis-1,3-Dichloropropene	ND *+	+ 0.40	0.081	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
Toluene	ND	0.40	0.053	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
trans-1,3-Dichloropropene	ND	0.40	0.10	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
1,1,2-Trichloroethane	ND	0.40	0.14	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
Tetrachloroethene	ND	0.16	0.070	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
1,3-Dichloropropane	ND	0.40	0.12	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
Dibromochloromethane	ND	0.79	0.064	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
1,2-Dibromoethane (EDB)	ND	0.40	0.13	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
Chlorobenzene	ND	0.40		mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
Ethylbenzene	ND	0.40		mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
1,1,1,2-Tetrachloroethane	ND	0.40		mg/Kg		10/28/21 09:19	10/28/21 13:31	1
1,1,2,2-Tetrachloroethane	ND	0.40		mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
m,p-Xylene	ND	1.6		mg/Kg	÷	10/28/21 09:19	10/28/21 13:31	1

Eurofins TestAmerica, Spokane

Page 8 of 38 10/28/2021

Client Sample ID: SB-2 (4-5)

Date Collected: 10/22/21 12:45 Date Received: 10/25/21 11:00

Lab Sample ID: 590-16195-2

Matrix: Solid

Percent Solids: 69.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	ND		0.79	0.091	mg/Kg	-	10/28/21 09:19	10/28/21 13:31	1
Styrene	ND		0.40	0.094	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
Bromoform	ND		0.79	0.076	mg/Kg	☼	10/28/21 09:19	10/28/21 13:31	1
Isopropylbenzene	ND		0.40	0.12	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
Bromobenzene	ND		0.40	0.089	mg/Kg	☼	10/28/21 09:19	10/28/21 13:31	1
N-Propylbenzene	ND		0.40	0.10	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
1,2,3-Trichloropropane	ND		0.79	0.15	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
2-Chlorotoluene	ND		0.40	0.065	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
1,3,5-Trimethylbenzene	ND		0.40	0.13	mg/Kg	☼	10/28/21 09:19	10/28/21 13:31	1
4-Chlorotoluene	ND		0.40	0.035	mg/Kg	₽	10/28/21 09:19	10/28/21 13:31	1
tert-Butylbenzene	ND		0.40	0.077	mg/Kg	☼	10/28/21 09:19	10/28/21 13:31	1
1,2,4-Trimethylbenzene	ND		0.40	0.093	mg/Kg	☼	10/28/21 09:19	10/28/21 13:31	1
sec-Butylbenzene	ND		0.40	0.074	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
1,3-Dichlorobenzene	ND		0.40	0.050	mg/Kg	☼	10/28/21 09:19	10/28/21 13:31	1
p-Isopropyltoluene	ND		0.40	0.081	mg/Kg	☼	10/28/21 09:19	10/28/21 13:31	1
1,4-Dichlorobenzene	ND		0.40	0.082	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
n-Butylbenzene	ND		0.40	0.11	mg/Kg	☼	10/28/21 09:19	10/28/21 13:31	1
1,2-Dichlorobenzene	ND	*+	0.40	0.093	mg/Kg	☼	10/28/21 09:19	10/28/21 13:31	1
1,2-Dibromo-3-Chloropropane	ND		2.0	0.24	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
1,2,4-Trichlorobenzene	ND		0.40	0.073	mg/Kg	☼	10/28/21 09:19	10/28/21 13:31	1
1,2,3-Trichlorobenzene	ND		0.40	0.13	mg/Kg	☼	10/28/21 09:19	10/28/21 13:31	1
Hexachlorobutadiene	ND		0.40	0.065	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
Naphthalene	ND		0.79	0.11	mg/Kg	☼	10/28/21 09:19	10/28/21 13:31	1
Methyl tert-butyl ether	ND	*+	0.20	0.12	mg/Kg	₩	10/28/21 09:19	10/28/21 13:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		80 - 120				10/28/21 09:19	10/28/21 13:31	1
4-Bromofluorobenzene (Surr)	97		76 - 122				10/28/21 09:19	10/28/21 13:31	1

Toluene-d8 (Surr)	101	80 - 120	10/28/21 09:19 10/28/21 13:31	1
4-Bromofluorobenzene (Surr)	97	76 - 122	10/28/21 09:19 10/28/21 13:31	1
Dibromofluoromethane (Surr)	99	80 - 120	10/28/21 09:19 10/28/21 13:31	1
1,2-Dichloroethane-d4 (Surr)	103	75 - 129	10/28/21 09:19 10/28/21 13:31	1

Method: NWTPH-Gx - North	west - Volatile P	etroleun	n Products (GC/MS)					
Analyte	Result Q	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		20	7.1	mg/Kg	*	10/28/21 09:19	10/28/21 13:31	1
Surrogate	%Recovery Q	ualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		41.5 - 162				10/28/21 09:19	10/28/21 13:31	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND ND	14	3.0	ug/Kg	-	10/26/21 09:51	10/26/21 18:04	1
2-Methylnaphthalene	ND	14	4.4	ug/Kg	₩	10/26/21 09:51	10/26/21 18:04	1
1-Methylnaphthalene	ND	14	3.1	ug/Kg	≎	10/26/21 09:51	10/26/21 18:04	1
Acenaphthylene	ND	14	4.7	ug/Kg	⊅	10/26/21 09:51	10/26/21 18:04	1
Acenaphthene	ND	14	3.6	ug/Kg	≎	10/26/21 09:51	10/26/21 18:04	1
Fluorene	ND	14	3.1	ug/Kg	₽	10/26/21 09:51	10/26/21 18:04	1
Phenanthrene	ND	14	5.1	ug/Kg	⊅	10/26/21 09:51	10/26/21 18:04	1
Anthracene	ND	14	2.8	ug/Kg	☼	10/26/21 09:51	10/26/21 18:04	1
Fluoranthene	ND	14	3.5	ug/Kg	₽	10/26/21 09:51	10/26/21 18:04	1
Pyrene	ND	14	5.4	ug/Kg	₩	10/26/21 09:51	10/26/21 18:04	1

Eurofins TestAmerica, Spokane

10/28/21 09:19 10/28/21 13:31

Job ID: 590-16195-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-2 (4-5)

Lab Sample ID: 590-16195-2

Matrix: Solid

Percent Solids: 69.9

Date Collected: 10/22/21 12:45

Date Received: 10/25/21 11:00

Client: Hart & Hickman, PC

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	ND		14	3.0	ug/Kg	-	10/26/21 09:51	10/26/21 18:04	1
Chrysene	ND		14	2.1	ug/Kg	₽	10/26/21 09:51	10/26/21 18:04	1
Benzo[b]fluoranthene	ND		14	5.0	ug/Kg	₽	10/26/21 09:51	10/26/21 18:04	1
Benzo[k]fluoranthene	ND		14	3.5	ug/Kg	☼	10/26/21 09:51	10/26/21 18:04	1
Benzo[a]pyrene	ND		14	6.0	ug/Kg	☼	10/26/21 09:51	10/26/21 18:04	1
Indeno[1,2,3-cd]pyrene	ND		14	4.2	ug/Kg	₽	10/26/21 09:51	10/26/21 18:04	1
Dibenz(a,h)anthracene	ND		14	4.0	ug/Kg	₽	10/26/21 09:51	10/26/21 18:04	1
Benzo[g,h,i]perylene	ND		14	3.3	ug/Kg	₩	10/26/21 09:51	10/26/21 18:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	63		33 - 120				10/26/21 09:51	10/26/21 18:04	1
2-Fluorobiphenyl (Surr)	65		47 - 120				10/26/21 09:51	10/26/21 18:04	1
p-Terphenyl-d14	95		74 - 120				10/26/21 09:51	10/26/21 18:04	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		14	5.9	mg/Kg	-	10/27/21 10:00	10/27/21 14:34	1
Residual Range Organics (RRO) (C25-C36)	ND		35	7.1	mg/Kg	≎	10/27/21 10:00	10/27/21 14:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	92		50 - 150				10/27/21 10:00	10/27/21 14:34	1
n-Triacontane-d62	106		50 ₋ 150				10/27/21 10:00	10/27/21 14:34	1

Client Sample ID: SB-3 (2-3) Lab Sample ID: 590-16195-3 Date Collected: 10/22/21 13:30 **Matrix: Solid** Date Received: 10/25/21 11:00 **Percent Solids: 90.5**

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		0.23	0.066	mg/Kg	*	10/28/21 09:19	10/28/21 14:56	1
Chloromethane	ND		1.2	0.098	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
Vinyl chloride	ND		0.14	0.047	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
Bromomethane	ND		1.2	0.077	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
Chloroethane	ND		0.47	0.13	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
Trichlorofluoromethane	ND		0.47	0.077	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
1,1-Dichloroethene	ND		0.23	0.080	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
Methylene Chloride	ND		0.82	0.47	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
trans-1,2-Dichloroethene	ND		0.23	0.054	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
1,1-Dichloroethane	ND		0.23	0.062	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
2,2-Dichloropropane	ND	*+	0.23	0.057	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
cis-1,2-Dichloroethene	ND	*+	0.23	0.049	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
Bromochloromethane	ND		0.23	0.093	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
Chloroform	ND		0.23	0.055	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
1,1,1-Trichloroethane	ND		0.23	0.040	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
Carbon tetrachloride	ND		0.23	0.026	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
1,1-Dichloropropene	ND		0.23	0.041	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
Benzene	ND		0.047	0.023	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
1,2-Dichloroethane	ND		0.23	0.016	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
Trichloroethene	ND		0.058	0.018	mg/Kg	☆	10/28/21 09:19	10/28/21 14:56	1

Eurofins TestAmerica, Spokane

Page 10 of 38

Client Sample ID: SB-3 (2-3)

Date Collected: 10/22/21 13:30 Date Received: 10/25/21 11:00

Lab Sample ID: 590-16195-3 **Matrix: Solid**

Percent Solids: 90.5

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Analyte	Result Qualific		MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloropropane	ND *+	0.28	0.071	mg/Kg	<u></u>	10/28/21 09:19	10/28/21 14:56	1
Dibromomethane	ND *+	0.23	0.052	mg/Kg	₽	10/28/21 09:19	10/28/21 14:56	1
Bromodichloromethane	ND	0.23	0.15	mg/Kg	☼	10/28/21 09:19	10/28/21 14:56	1
cis-1,3-Dichloropropene	ND *+	0.23	0.048	mg/Kg	☼	10/28/21 09:19	10/28/21 14:56	1
Toluene	ND	0.23	0.031	mg/Kg	₽	10/28/21 09:19	10/28/21 14:56	1
trans-1,3-Dichloropropene	ND	0.23	0.062	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
1,1,2-Trichloroethane	ND	0.23	0.083	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
Tetrachloroethene	1.3	0.094	0.041	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
1,3-Dichloropropane	ND	0.23	0.069	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
Dibromochloromethane	ND	0.47	0.038	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
1,2-Dibromoethane (EDB)	ND	0.23	0.078	mg/Kg	₽	10/28/21 09:19	10/28/21 14:56	1
Chlorobenzene	ND	0.23	0.048	mg/Kg	₽	10/28/21 09:19	10/28/21 14:56	1
Ethylbenzene	ND	0.23	0.038	mg/Kg	₽	10/28/21 09:19	10/28/21 14:56	1
1,1,1,2-Tetrachloroethane	ND	0.23	0.045	mg/Kg	₽	10/28/21 09:19	10/28/21 14:56	1
1,1,2,2-Tetrachloroethane	ND	0.23	0.068	mg/Kg	₽	10/28/21 09:19	10/28/21 14:56	1
m,p-Xylene	ND	0.94	0.067	mg/Kg	₽	10/28/21 09:19	10/28/21 14:56	1
o-Xylene	ND	0.47	0.054	mg/Kg	₽	10/28/21 09:19	10/28/21 14:56	1
Styrene	ND	0.23	0.055	mg/Kg	₽	10/28/21 09:19	10/28/21 14:56	1
Bromoform	ND	0.47	0.045	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
Isopropylbenzene	ND	0.23	0.072	mg/Kg	₽	10/28/21 09:19	10/28/21 14:56	1
Bromobenzene	ND	0.23	0.052	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
N-Propylbenzene	ND	0.23	0.062	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
1,2,3-Trichloropropane	ND	0.47	0.086	mg/Kg	₽	10/28/21 09:19	10/28/21 14:56	1
2-Chlorotoluene	ND	0.23	0.038	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
1,3,5-Trimethylbenzene	ND	0.23	0.075	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
4-Chlorotoluene	ND	0.23	0.020	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
tert-Butylbenzene	ND	0.23	0.046	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
1,2,4-Trimethylbenzene	0.12 J	0.23	0.055	mg/Kg	₽	10/28/21 09:19	10/28/21 14:56	1
sec-Butylbenzene	ND	0.23	0.043	mg/Kg	₽	10/28/21 09:19	10/28/21 14:56	1
1,3-Dichlorobenzene	ND	0.23	0.029	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
p-Isopropyltoluene	ND	0.23	0.048	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
1,4-Dichlorobenzene	ND	0.23	0.048	mg/Kg		10/28/21 09:19	10/28/21 14:56	1
n-Butylbenzene	ND	0.23	0.064	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
1,2-Dichlorobenzene	ND *+	0.23	0.054	mg/Kg	₩	10/28/21 09:19	10/28/21 14:56	1
1,2-Dibromo-3-Chloropropane	ND	1.2		mg/Kg		10/28/21 09:19	10/28/21 14:56	1
1,2,4-Trichlorobenzene	ND	0.23	0.043	mg/Kg	≎	10/28/21 09:19	10/28/21 14:56	1
1,2,3-Trichlorobenzene	ND	0.23	0.078	mg/Kg	≎	10/28/21 09:19	10/28/21 14:56	1
Hexachlorobutadiene	ND	0.23		mg/Kg		10/28/21 09:19	10/28/21 14:56	1
Naphthalene	ND	0.47		mg/Kg	₽	10/28/21 09:19	10/28/21 14:56	1
Methyl tert-butyl ether	ND *+	0.12	0.070	0 0			10/28/21 14:56	1

Surrogate	%Recovery Qualif	ier Limits	Prepared Analyze	d Dil Fac
Toluene-d8 (Surr)	98	80 - 120	10/28/21 09:19 10/28/21 14	4:56 1
4-Bromofluorobenzene (Surr)	100	76 - 122	10/28/21 09:19 10/28/21 14	4:56 1
Dibromofluoromethane (Surr)	103	80 - 120	10/28/21 09:19 10/28/21 14	4:56 1
1.2-Dichloroethane-d4 (Surr)	112	75 - 129	10/28/21 09:19 10/28/21 14	4:56 1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	10	J	12	4.2	mg/Kg	<u></u>	10/28/21 09:19	10/28/21 14:56	1

Eurofins TestAmerica, Spokane

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-3 (2-3)

Date Collected: 10/22/21 13:30

Date Received: 10/25/21 11:00

Lab Sample ID: 590-16195-3

Matrix: Solid

Percent Solids: 90.5

Job ID: 590-16195-1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		41.5 - 162	10/28/21 09:19	10/28/21 14:56	1

4-Bromofluorobenzene (Surr)	100		41.5 - 162				10/28/21 09:19	10/28/21 14:56	1
Method: 8270E SIM - Semivo	olatile Organi	c Compo	unds (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	7.9	J	11	2.3	ug/Kg		10/26/21 09:51	10/26/21 18:28	1
2-Methylnaphthalene	13		11	3.3	ug/Kg	☼	10/26/21 09:51	10/26/21 18:28	1
1-Methylnaphthalene	8.8	J	11	2.4	ug/Kg	☼	10/26/21 09:51	10/26/21 18:28	1
Acenaphthylene	ND		11	3.5	ug/Kg	₽	10/26/21 09:51	10/26/21 18:28	1
Acenaphthene	ND		11	2.7	ug/Kg	₩	10/26/21 09:51	10/26/21 18:28	1
Fluorene	ND		11	2.3	ug/Kg	₩	10/26/21 09:51	10/26/21 18:28	1
Phenanthrene	14		11	3.9	ug/Kg	₩	10/26/21 09:51	10/26/21 18:28	1
Anthracene	2.2	J	11	2.1	ug/Kg	₩	10/26/21 09:51	10/26/21 18:28	1
Fluoranthene	5.0	J	11	2.6	ug/Kg	☼	10/26/21 09:51	10/26/21 18:28	1
Pyrene	10	J	11	4.0	ug/Kg	₽	10/26/21 09:51	10/26/21 18:28	1
Benzo[a]anthracene	3.7	J	11	2.3	ug/Kg	☼	10/26/21 09:51	10/26/21 18:28	1
Chrysene	4.5	J	11	1.6	ug/Kg	☼	10/26/21 09:51	10/26/21 18:28	1
Benzo[b]fluoranthene	4.5	J	11	3.7	ug/Kg	☼	10/26/21 09:51	10/26/21 18:28	1
Benzo[k]fluoranthene	ND		11	2.7	ug/Kg	☼	10/26/21 09:51	10/26/21 18:28	1
Benzo[a]pyrene	ND		11	4.5	ug/Kg	☼	10/26/21 09:51	10/26/21 18:28	1
Indeno[1,2,3-cd]pyrene	ND		11	3.2	ug/Kg	₩	10/26/21 09:51	10/26/21 18:28	1
Dibenz(a,h)anthracene	ND		11	3.0	ug/Kg	₩	10/26/21 09:51	10/26/21 18:28	1
Benzo[g,h,i]perylene	3.7	J	11	2.5	ug/Kg	₩	10/26/21 09:51	10/26/21 18:28	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	72	33 - 120	10/26/21 09:51	10/26/21 18:28	1
2-Fluorobiphenyl (Surr)	71	47 - 120	10/26/21 09:51	10/26/21 18:28	1
p-Terphenyl-d14	78	74 - 120	10/26/21 09:51	10/26/21 18:28	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)									
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Diesel Range Organics (DRO) (C10-C25)	84	11	4.5	mg/Kg	*	10/27/21 10:00	10/27/21 15:14	1	
Residual Range Organics (RRO) (C25-C36)	240	27	5.3	mg/Kg	☼	10/27/21 10:00	10/27/21 15:14	1	

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	97	50 - 150	10/27/21 10:00	10/27/21 15:14	1
n-Triacontane-d62	109	50 - 150	10/27/21 10:00	10/27/21 15:14	1

Client Sample ID: SB-4 (2-3) Lab Sample ID: 590-16195-4 Date Collected: 10/22/21 14:15 **Matrix: Solid** Date Received: 10/25/21 11:00 Percent Solids: 86.0

Analyte	Result Qualifier	r RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND ND	0.26	0.072	mg/Kg	☆	10/28/21 09:19	10/28/21 15:17	1
Chloromethane	ND	1.3	0.11	mg/Kg	☆	10/28/21 09:19	10/28/21 15:17	1
Vinyl chloride	ND	0.15	0.052	mg/Kg	☆	10/28/21 09:19	10/28/21 15:17	1
Bromomethane	ND	1.3	0.085	mg/Kg	☆	10/28/21 09:19	10/28/21 15:17	1
Chloroethane	ND	0.51	0.14	mg/Kg	☆	10/28/21 09:19	10/28/21 15:17	1
Trichlorofluoromethane	ND	0.51	0.084	mg/Kg	☆	10/28/21 09:19	10/28/21 15:17	1
1,1-Dichloroethene	ND	0.26	0.087	mg/Kg	₩	10/28/21 09:19	10/28/21 15:17	1

Eurofins TestAmerica, Spokane

Client Sample Results

Client: Hart & Hickman, PC Job ID: 590-16195-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-4 (2-3)

Date Collected: 10/22/21 14:15 Date Received: 10/25/21 11:00

Lab Sample ID: 590-16195-4

Matrix: Solid

Percent Solids: 86.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Methylene Chloride	MD		0.90	0.51	mg/Kg	<u></u>	10/28/21 09:19	10/28/21 15:17	
trans-1,2-Dichloroethene	ND		0.26	0.059	mg/Kg	₩	10/28/21 09:19	10/28/21 15:17	
1,1-Dichloroethane	ND		0.26	0.068	mg/Kg	₩	10/28/21 09:19	10/28/21 15:17	
2,2-Dichloropropane	ND	*+	0.26	0.062	mg/Kg	₩	10/28/21 09:19	10/28/21 15:17	
cis-1,2-Dichloroethene	ND	*+	0.26	0.053	mg/Kg	₩	10/28/21 09:19	10/28/21 15:17	
Bromochloromethane	ND		0.26	0.10	mg/Kg	₩	10/28/21 09:19	10/28/21 15:17	
Chloroform	ND		0.26	0.060	mg/Kg	₩	10/28/21 09:19	10/28/21 15:17	
1,1,1-Trichloroethane	ND		0.26	0.044	mg/Kg	₩	10/28/21 09:19	10/28/21 15:17	
Carbon tetrachloride	ND		0.26	0.028	mg/Kg	₽	10/28/21 09:19	10/28/21 15:17	

Methylene Chloride	ND	0.90	0.51 mg/Kg	□
trans-1,2-Dichloroethene	ND	0.26	0.059 mg/Kg	
1,1-Dichloroethane	ND	0.26	0.068 mg/Kg	\$\pri\$ 10/28/21 09:19 10/28/21 15:17 1
2,2-Dichloropropane	ND *+	0.26	0.062 mg/Kg	\$\pri\$ 10/28/21 09:19 10/28/21 15:17 1
cis-1,2-Dichloroethene	ND *+	0.26	0.053 mg/Kg	
Bromochloromethane	ND	0.26	0.10 mg/Kg	10/28/21 09:19 10/28/21 15:17 1
Chloroform	ND	0.26	0.060 mg/Kg	10/28/21 09:19 10/28/21 15:17 1
1,1,1-Trichloroethane	ND	0.26	0.044 mg/Kg	
Carbon tetrachloride	ND	0.26	0.028 mg/Kg	☼ 10/28/21 09:19 10/28/21 15:17 1
1,1-Dichloropropene	ND	0.26	0.045 mg/Kg	\$\pri\$ 10/28/21 09:19 10/28/21 15:17 1
Benzene	ND	0.051	0.026 mg/Kg	\$\pri\$ 10/28/21 09:19 10/28/21 15:17 1
1,2-Dichloroethane	ND	0.26	0.018 mg/Kg	\$\prim 10/28/21 09:19 10/28/21 15:17 1
Trichloroethene	ND	0.064	0.019 mg/Kg	\$ 10/28/21 09:19 10/28/21 15:17 1
1,2-Dichloropropane	ND *+	0.31	0.078 mg/Kg	\$\pri\$ 10/28/21 09:19 10/28/21 15:17 1
Dibromomethane	ND *+	0.26	0.057 mg/Kg	\$\pi\$ 10/28/21 09:19 10/28/21 15:17
Bromodichloromethane	ND	0.26	0.16 mg/Kg	
cis-1,3-Dichloropropene	ND *+	0.26	0.052 mg/Kg	
Toluene	ND	0.26	0.034 mg/Kg	\$\pri\$ 10/28/21 09:19 10/28/21 15:17 1
trans-1,3-Dichloropropene	ND	0.26	0.067 mg/Kg	10/28/21 09:19 10/28/21 15:17 1
1,1,2-Trichloroethane	ND	0.26	0.090 mg/Kg	
Tetrachloroethene	ND	0.10	0.045 mg/Kg	
1,3-Dichloropropane	ND	0.26	0.076 mg/Kg	
Dibromochloromethane	ND	0.51	0.042 mg/Kg	
1,2-Dibromoethane (EDB)	ND	0.26	0.086 mg/Kg	
Chlorobenzene	ND	0.26	0.053 mg/Kg	
Ethylbenzene	ND	0.26	0.042 mg/Kg	
1,1,1,2-Tetrachloroethane	ND	0.26	0.049 mg/Kg	
1,1,2,2-Tetrachloroethane	ND	0.26	0.075 mg/Kg	10/28/21 09:19 10/28/21 15:17 1
m,p-Xylene	ND	1.0	0.074 mg/Kg	10/28/21 09:19 10/28/21 15:17 1
o-Xylene	ND	0.51	0.059 mg/Kg	
Styrene	ND	0.26	0.060 mg/Kg	10/28/21 09:19 10/28/21 15:17 1
Bromoform	ND	0.51	0.049 mg/Kg	10/28/21 09:19 10/28/21 15:17 1
Isopropylbenzene	ND	0.26	0.079 mg/Kg	☼ 10/28/21 09:19 10/28/21 15:17 1
Bromobenzene	ND	0.26	0.057 mg/Kg	
N-Propylbenzene	ND	0.26	0.068 mg/Kg	
1,2,3-Trichloropropane	ND	0.51	0.094 mg/Kg	
2-Chlorotoluene	ND	0.26	0.042 mg/Kg	
1,3,5-Trimethylbenzene	ND	0.26	0.082 mg/Kg	\$\prim 10/28/21 09:19 10/28/21 15:17 1
4-Chlorotoluene	ND	0.26	0.022 mg/Kg	☆ 10/28/21 09:19 10/28/21 15:17 1
tert-Butylbenzene	ND	0.26	0.050 mg/Kg	\$\prim 10/28/21 09:19 10/28/21 15:17 1
1,2,4-Trimethylbenzene	ND	0.26	0.060 mg/Kg	\$\pi\$ 10/28/21 09:19 10/28/21 15:17
sec-Butylbenzene	ND	0.26	0.048 mg/Kg	
1,3-Dichlorobenzene	ND	0.26	0.032 mg/Kg	☼ 10/28/21 09:19 10/28/21 15:17 1
p-Isopropyltoluene	ND	0.26	0.052 mg/Kg	\$\pi\$ 10/28/21 09:19 10/28/21 15:17
1,4-Dichlorobenzene	ND	0.26	0.053 mg/Kg	
n-Butylbenzene	ND	0.26	0.070 mg/Kg	
1,2-Dichlorobenzene	ND *+	0.26	0.060 mg/Kg	
1,2-Dibromo-3-Chloropropane	ND	1.3	0.15 mg/Kg	
1,2,4-Trichlorobenzene	ND	0.26	0.047 mg/Kg	© 10/28/21 09:19 10/28/21 15:17 1

Client: Hart & Hickman, PC Job ID: 590-16195-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-4 (2-3)

Date Collected: 10/22/21 14:15 Date Received: 10/25/21 11:00 Lab Sample ID: 590-16195-4

Matrix: Solid

Percent Solids: 86.0

rganic Compo	unds by G	C/MS (Contii	าued)					
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		0.26	0.086	mg/Kg	-	10/28/21 09:19	10/28/21 15:17	1
ND		0.26	0.042	mg/Kg	₽	10/28/21 09:19	10/28/21 15:17	1
ND		0.51	0.072	mg/Kg	₽	10/28/21 09:19	10/28/21 15:17	1
ND	*+	0.13	0.077	mg/Kg	☼	10/28/21 09:19	10/28/21 15:17	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
100		80 - 120				10/28/21 09:19	10/28/21 15:17	1
99		76 - 122				10/28/21 09:19	10/28/21 15:17	1
99		80 - 120				10/28/21 09:19	10/28/21 15:17	1
105		75 - 129				10/28/21 09:19	10/28/21 15:17	1
	Result ND ND ND ND ND MRecovery 100 99 99	Result Qualifier ND ND ND ND ND *+	Result Qualifier RL ND 0.26 ND 0.26 ND 0.51 ND *+ 0.13 **Recovery Qualifier Limits 100 80 - 120 99 76 - 122 99 80 - 120	ND 0.26 0.086 ND 0.26 0.042 ND 0.51 0.072 ND *+ 0.13 0.077 **Recovery Qualifier Limits 100 80 - 120 99 76 - 122 99 80 - 120	Result Qualifier RL MDL Unit ND 0.26 0.086 mg/Kg ND 0.26 0.042 mg/Kg ND 0.51 0.072 mg/Kg ND *+ 0.13 0.077 mg/Kg **Recovery Qualifier Limits 100 80 - 120 99 76 - 122 99 80 - 120	Result Qualifier RL MDL mg/Kg D mg/Kg ND 0.26 0.086 mg/Kg ☆ ND 0.26 0.042 mg/Kg ☆ ND 0.51 0.072 mg/Kg ☆ ND *+ 0.13 0.077 mg/Kg ☆ ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **	Result Qualifier RL MDL mg/Kg Unit D mg/Kg Prepared ND 0.26 0.086 mg/Kg 0.042 mg/Kg 0.028/21 09:19 ND 0.51 0.072 mg/Kg 10/28/21 09:19 ND *+ 0.13 0.077 mg/Kg 10/28/21 09:19 %Recovery Qualifier Limits Prepared 100 80 - 120 10/28/21 09:19 99 76 - 122 10/28/21 09:19 99 80 - 120 10/28/21 09:19	Result Qualifier RL MDL mg/Kg Unit mg/Kg D mg/Kg Prepared mode of 10/28/21 09:19 Analyzed of 10/28/21 15:17 ND 0.26 0.042 mg/Kg □ 10/28/21 09:19 10/28/21 15:17 ND 0.51 0.072 mg/Kg □ 10/28/21 09:19 10/28/21 15:17 ND *+ 0.13 0.077 mg/Kg □ 10/28/21 09:19 10/28/21 15:17 **Recovery **Qualifier **Limits **Prepared **Analyzed 100 80 - 120 10/28/21 09:19 10/28/21 15:17 99 76 - 122 10/28/21 09:19 10/28/21 15:17 99 80 - 120 10/28/21 09:19 10/28/21 15:17

Method: NWTPH-Gx - Nort	hwest - Volatile Petrole	um Products ((GC/MS)					
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND ND	13	4.6	mg/Kg	*	10/28/21 09:19	10/28/21 15:17	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99	41.5 - 162				10/28/21 09:19	10/28/21 15:17	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		11	2.4	ug/Kg	<u></u>	10/26/21 09:51	10/26/21 18:52	1
2-Methylnaphthalene	ND		11	3.5	ug/Kg	₽	10/26/21 09:51	10/26/21 18:52	1
1-Methylnaphthalene	ND		11	2.5	ug/Kg	☼	10/26/21 09:51	10/26/21 18:52	1
Acenaphthylene	ND		11	3.7	ug/Kg	₽	10/26/21 09:51	10/26/21 18:52	1
Acenaphthene	ND		11	2.8	ug/Kg	₽	10/26/21 09:51	10/26/21 18:52	1
Fluorene	ND		11	2.5	ug/Kg	☼	10/26/21 09:51	10/26/21 18:52	1
Phenanthrene	ND		11	4.1	ug/Kg	₽	10/26/21 09:51	10/26/21 18:52	1
Anthracene	ND		11	2.2	ug/Kg	₽	10/26/21 09:51	10/26/21 18:52	1
Fluoranthene	ND		11	2.8	ug/Kg	☼	10/26/21 09:51	10/26/21 18:52	1
Pyrene	ND		11	4.3	ug/Kg	≎	10/26/21 09:51	10/26/21 18:52	1
Benzo[a]anthracene	ND		11	2.4	ug/Kg	₽	10/26/21 09:51	10/26/21 18:52	1
Chrysene	ND		11	1.7	ug/Kg	₽	10/26/21 09:51	10/26/21 18:52	1
Benzo[b]fluoranthene	ND		11	3.9	ug/Kg	₽	10/26/21 09:51	10/26/21 18:52	1
Benzo[k]fluoranthene	ND		11	2.8	ug/Kg	₽	10/26/21 09:51	10/26/21 18:52	1
Benzo[a]pyrene	ND		11	4.7	ug/Kg	☼	10/26/21 09:51	10/26/21 18:52	1
Indeno[1,2,3-cd]pyrene	ND		11	3.3	ug/Kg	₽	10/26/21 09:51	10/26/21 18:52	1
Dibenz(a,h)anthracene	ND		11	3.2	ug/Kg	₽	10/26/21 09:51	10/26/21 18:52	1
Benzo[g,h,i]perylene	ND		11	2.6	ug/Kg	₩	10/26/21 09:51	10/26/21 18:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5			33 - 120				10/26/21 09:51	10/26/21 18:52	1

Surrogate	%Recovery Qua	lifier Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	67	33 - 120	10/26/21 09:51	10/26/21 18:52	1
2-Fluorobiphenyl (Surr)	68	47 - 120	10/26/21 09:51	10/26/21 18:52	1
p-Terphenyl-d14	91	74 - 120	10/26/21 09:51	10/26/21 18:52	1

Method: NWTPH-Dx - Northwe	est - Semi-Volatile Petro	oleum Prod	ucts (G	C)				
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND ND	11	4.7	mg/Kg	₩	10/27/21 10:00	10/27/21 15:34	1
Residual Range Organics (RRO) (C25-C36)	ND	28	5.6	mg/Kg	₩	10/27/21 10:00	10/27/21 15:34	1

Eurofins TestAmerica, Spokane

Client Sample Results

Client: Hart & Hickman, PC Job ID: 590-16195-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-4 (2-3)

Lab Sample ID: 590-16195-4

Date Collected: 10/22/21 14:15

Date Received: 10/25/21 11:00

Matrix: Solid
Percent Solids: 86.0

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	96		50 - 150	10/27/21 10:00	10/27/21 15:34	1
n-Triacontane-d62	104		50 - 150	10/27/21 10:00	10/27/21 15:34	1

Client Sample ID: SB-5 (1-2)

Lab Sample ID: 590-16195-5

Date Collected: 10/22/21 15:00 Matrix: Solid
Date Received: 10/25/21 11:00 Percent Solids: 88.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		0.24	0.067	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
Chloromethane	ND		1.2	0.10	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
Vinyl chloride	ND		0.14	0.048	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
Bromomethane	ND		1.2	0.079	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
Chloroethane	ND		0.48	0.13	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
Trichlorofluoromethane	ND		0.48	0.078	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
1,1-Dichloroethene	ND		0.24	0.081	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
Methylene Chloride	ND		0.84	0.48	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
trans-1,2-Dichloroethene	ND		0.24	0.055	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
1,1-Dichloroethane	ND		0.24	0.063	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
2,2-Dichloropropane	ND	*+	0.24	0.058	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
cis-1,2-Dichloroethene	ND	*+	0.24	0.050	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
Bromochloromethane	ND		0.24	0.095	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
Chloroform	ND		0.24	0.056	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
1,1,1-Trichloroethane	0.10	J	0.24	0.041	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
Carbon tetrachloride	ND		0.24	0.026	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
1,1-Dichloropropene	ND		0.24	0.042	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
Benzene	ND		0.048	0.024	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
1,2-Dichloroethane	ND		0.24	0.017	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
Trichloroethene	ND		0.060	0.018	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
1,2-Dichloropropane	ND	*+	0.29	0.072	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
Dibromomethane	ND	*+	0.24	0.053	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
Bromodichloromethane	ND		0.24	0.15	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
cis-1,3-Dichloropropene	ND	*+	0.24	0.049	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
Toluene	0.038	J	0.24	0.032	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
trans-1,3-Dichloropropene	ND		0.24	0.063	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
1,1,2-Trichloroethane	ND		0.24	0.084	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
Tetrachloroethene	1.8		0.095	0.042	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
1,3-Dichloropropane	ND		0.24	0.071	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
Dibromochloromethane	ND		0.48	0.039	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
1,2-Dibromoethane (EDB)	ND		0.24	0.080	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
Chlorobenzene	ND		0.24	0.049	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
Ethylbenzene	ND		0.24	0.039	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
1,1,1,2-Tetrachloroethane	ND		0.24	0.046	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
1,1,2,2-Tetrachloroethane	ND		0.24	0.069	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
m,p-Xylene	ND		0.95	0.068	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
o-Xylene	ND		0.48	0.055	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
Styrene	ND		0.24	0.056	mg/Kg	☼	10/28/21 09:19	10/28/21 15:38	1
Bromoform	ND		0.48	0.046	mg/Kg	☼	10/28/21 09:19	10/28/21 15:38	1
Isopropylbenzene	ND		0.24		mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
Bromobenzene	ND		0.24		mg/Kg	Ť	10/28/21 09:19	10/28/21 15:38	1

Eurofins TestAmerica, Spokane

10/28/2021

3

5

6

8

10

11

12

Client: Hart & Hickman, PC Job ID: 590-16195-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-5 (1-2) Lab Sample ID: 590-16195-5

Date Collected: 10/22/21 15:00 **Matrix: Solid** Date Received: 10/25/21 11:00 Percent Solids: 88.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
N-Propylbenzene	ND		0.24	0.063	mg/Kg	<u></u>	10/28/21 09:19	10/28/21 15:38	1
1,2,3-Trichloropropane	ND		0.48	0.087	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
2-Chlorotoluene	ND		0.24	0.039	mg/Kg	☼	10/28/21 09:19	10/28/21 15:38	1
1,3,5-Trimethylbenzene	ND		0.24	0.076	mg/Kg	☼	10/28/21 09:19	10/28/21 15:38	1
4-Chlorotoluene	ND		0.24	0.021	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
tert-Butylbenzene	ND		0.24	0.047	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
1,2,4-Trimethylbenzene	ND		0.24	0.056	mg/Kg	☼	10/28/21 09:19	10/28/21 15:38	1
sec-Butylbenzene	ND		0.24	0.044	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
1,3-Dichlorobenzene	ND		0.24	0.030	mg/Kg	☼	10/28/21 09:19	10/28/21 15:38	1
p-Isopropyltoluene	ND		0.24	0.049	mg/Kg	☼	10/28/21 09:19	10/28/21 15:38	1
1,4-Dichlorobenzene	ND		0.24	0.049	mg/Kg	⊅	10/28/21 09:19	10/28/21 15:38	1
n-Butylbenzene	ND		0.24	0.066	mg/Kg	☼	10/28/21 09:19	10/28/21 15:38	1
1,2-Dichlorobenzene	ND	*+	0.24	0.056	mg/Kg	☼	10/28/21 09:19	10/28/21 15:38	1
1,2-Dibromo-3-Chloropropane	ND		1.2	0.14	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
1,2,4-Trichlorobenzene	ND		0.24	0.044	mg/Kg	☼	10/28/21 09:19	10/28/21 15:38	1
1,2,3-Trichlorobenzene	ND		0.24	0.080	mg/Kg	☼	10/28/21 09:19	10/28/21 15:38	1
Hexachlorobutadiene	ND		0.24	0.039	mg/Kg	₩	10/28/21 09:19	10/28/21 15:38	1
Naphthalene	ND		0.48	0.067	mg/Kg	☼	10/28/21 09:19	10/28/21 15:38	1
Methyl tert-butyl ether	ND	*+	0.12	0.072	mg/Kg	☼	10/28/21 09:19	10/28/21 15:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)			80 - 120				10/28/21 09:19	10/28/21 15:38	1
4-Bromofluorobenzene (Surr)	102		76 - 122				10/28/21 09:19	10/28/21 15:38	1
Dibromofluoromethane (Surr)	91		80 - 120				10/28/21 09:19	10/28/21 15:38	1
1,2-Dichloroethane-d4 (Surr)	93		75 - 129				10/28/21 09:19	10/28/21 15:38	1

Method: NWTPH-Gx - North	nwest - Volatile	Petroleu	m Products (GC/MS)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	4.7	J	12	4.3	mg/Kg		10/28/21 09:19	10/28/21 15:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		41.5 - 162				10/28/21 09:19	10/28/21 15:38	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		56	12	ug/Kg	<u></u>	10/26/21 09:51	10/26/21 19:16	5
2-Methylnaphthalene	ND		56	17	ug/Kg	₩	10/26/21 09:51	10/26/21 19:16	5
1-Methylnaphthalene	ND		56	12	ug/Kg	₩	10/26/21 09:51	10/26/21 19:16	5
Acenaphthylene	ND		56	18	ug/Kg	₩	10/26/21 09:51	10/26/21 19:16	5
Acenaphthene	ND		56	14	ug/Kg	₩	10/26/21 09:51	10/26/21 19:16	5
Fluorene	ND		56	12	ug/Kg	₩	10/26/21 09:51	10/26/21 19:16	5
Phenanthrene	ND		56	20	ug/Kg	₩	10/26/21 09:51	10/26/21 19:16	5
Anthracene	ND		56	11	ug/Kg	₩	10/26/21 09:51	10/26/21 19:16	5
Fluoranthene	ND		56	14	ug/Kg	₩	10/26/21 09:51	10/26/21 19:16	5
Pyrene	ND		56	21	ug/Kg	₩	10/26/21 09:51	10/26/21 19:16	5
Benzo[a]anthracene	ND		56	12	ug/Kg	₩	10/26/21 09:51	10/26/21 19:16	5
Chrysene	ND		56	8.4	ug/Kg	₩	10/26/21 09:51	10/26/21 19:16	5
Benzo[b]fluoranthene	ND		56	19	ug/Kg	₩	10/26/21 09:51	10/26/21 19:16	5
Benzo[k]fluoranthene	ND		56	14	ug/Kg	₩	10/26/21 09:51	10/26/21 19:16	5
Benzo[a]pyrene	ND		56	23	ug/Kg	≎	10/26/21 09:51	10/26/21 19:16	5

Eurofins TestAmerica, Spokane

Page 16 of 38

Job ID: 590-16195-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-5 (1-2)

Client: Hart & Hickman, PC

Lab Sample ID: 590-16195-5

Date Collected: 10/22/21 15:00 **Matrix: Solid** Date Received: 10/25/21 11:00 Percent Solids: 88.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	ND		56	16	ug/Kg	-	10/26/21 09:51	10/26/21 19:16	5
Dibenz(a,h)anthracene	ND		56	16	ug/Kg	₽	10/26/21 09:51	10/26/21 19:16	5
Benzo[g,h,i]perylene	ND		56	13	ug/Kg	₩	10/26/21 09:51	10/26/21 19:16	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	88		33 - 120				10/26/21 09:51	10/26/21 19:16	5
2-Fluorobiphenyl (Surr)	81		47 - 120				10/26/21 09:51	10/26/21 19:16	5
p-Terphenyl-d14	81		74 - 120				10/26/21 09:51	10/26/21 19:16	5

								•
est - Semi-V	olatile Pet	roleum Prod	ucts (GC	;)				
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1700		110	46	mg/Kg	*	10/27/21 10:00	10/28/21 07:42	10
4900		280	55	mg/Kg	☼	10/27/21 10:00	10/28/21 07:42	10
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
103		50 - 150				10/27/21 10:00	10/28/21 07:42	10
103		50 - 150				10/27/21 10:00	10/28/21 07:42	10
	Result 1700 4900 WRecovery 103	Result Qualifier 1700 4900 %Recovery 103	Result 1700 Qualifier Qualifier RL 110 4900 280 %Recovery 103 Qualifier Limits 50 - 150	Result 1700 Qualifier RL 110 MDL 46 4900 280 55 %Recovery 103 Qualifier Limits 50 - 150	1700 110 46 mg/Kg 4900 280 55 mg/Kg %Recovery Qualifier Limits 103 50 - 150	Result 1700 Qualifier 2110 RL 110 MDL 110 mg/Kg D mg/Kg 4900 280 55 mg/Kg □ %Recovery 103 Qualifier 250 - 150 Limits 50 - 150	Result 1700 Qualifier RL 110 MDL 46 mg/Kg mg/Kg Unit mg/Kg D 10/27/21 10:00 4900 280 55 mg/Kg ** 10/27/21 10:00 %Recovery 103 Qualifier Limits 50 - 150 Prepared 10/27/21 10:00	Result 1700 Qualifier RL 110 MDL with mg/Kg D mg/Kg Prepared 10/27/21 10:00 Analyzed 10/28/21 07:42 4900 280 55 mg/Kg 10/27/21 10:00 10/28/21 07:42 %Recovery 103 Qualifier with with miles 10/27/21 10:00 Limits 10/27/21 10:00 Analyzed 10/28/21 07:42 103 50 - 150 10/27/21 10:00 10/28/21 07:42

Client Sample ID: Trip Blank Lab Sample ID: 590-16195-6 Date Collected: 10/22/21 10:00 **Matrix: Solid**

Date Received: 10/25/21 11:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		0.097	0.027	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
Chloromethane	ND		0.48	0.040	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
Vinyl chloride	ND		0.058	0.020	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
Bromomethane	ND		0.48	0.032	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
Chloroethane	ND		0.19	0.055	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
Trichlorofluoromethane	ND		0.19	0.032	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
1,1-Dichloroethene	ND		0.097	0.033	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
Methylene Chloride	ND		0.34	0.19	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
trans-1,2-Dichloroethene	ND		0.097	0.022	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
1,1-Dichloroethane	ND		0.097	0.026	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
2,2-Dichloropropane	ND	*+	0.097	0.024	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
cis-1,2-Dichloroethene	ND	*+	0.097	0.020	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
Bromochloromethane	ND		0.097	0.039	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
Chloroform	ND		0.097	0.023	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
1,1,1-Trichloroethane	ND		0.097	0.017	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
Carbon tetrachloride	ND		0.097	0.011	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
1,1-Dichloropropene	ND		0.097	0.017	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
Benzene	ND		0.019	0.0097	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
1,2-Dichloroethane	ND		0.097	0.0068	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
Trichloroethene	ND		0.024	0.0074	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
1,2-Dichloropropane	ND	*+	0.12	0.029	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
Dibromomethane	ND	*+	0.097	0.022	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
Bromodichloromethane	ND		0.097	0.060	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
cis-1,3-Dichloropropene	ND	*+	0.097	0.020	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
Toluene	ND		0.097	0.013	mg/Kg		10/28/21 09:19	10/28/21 15:59	1

Eurofins TestAmerica, Spokane

Page 17 of 38

MDL Unit

D

Prepared

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Result Qualifier

ND

ND

ND

ND

ND

ND

ND *+

ND *+

Client Sample ID: Trip Blank

Date Collected: 10/22/21 10:00 Date Received: 10/25/21 11:00

Analyte

n-Butylbenzene

1,2-Dichlorobenzene

1,2,4-Trichlorobenzene

1,2,3-Trichlorobenzene

Hexachlorobutadiene

Methyl tert-butyl ether

Naphthalene

1,2-Dibromo-3-Chloropropane

Lab Sample ID: 590-16195-6

Analyzed

Matrix: Solid

Dil Fac

- 3							
trans-1,3-Dichloropropene	ND	0.097	0.026	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
1,1,2-Trichloroethane	ND	0.097	0.034	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
Tetrachloroethene	ND	0.039	0.017	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
1,3-Dichloropropane	ND	0.097	0.029	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
Dibromochloromethane	ND	0.19	0.016	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
1,2-Dibromoethane (EDB)	ND	0.097	0.032	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
Chlorobenzene	ND	0.097	0.020	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
Ethylbenzene	ND	0.097	0.016	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
1,1,1,2-Tetrachloroethane	ND	0.097	0.019	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
1,1,2,2-Tetrachloroethane	ND	0.097	0.028	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
m,p-Xylene	ND	0.39	0.028	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
o-Xylene	ND	0.19	0.022	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
Styrene	ND	0.097	0.023	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
Bromoform	ND	0.19	0.019	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
Isopropylbenzene	ND	0.097	0.030	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
Bromobenzene	ND	0.097	0.022	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
N-Propylbenzene	ND	0.097	0.026	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
1,2,3-Trichloropropane	ND	0.19	0.035	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
2-Chlorotoluene	ND	0.097	0.016	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
1,3,5-Trimethylbenzene	ND	0.097	0.031	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
4-Chlorotoluene	ND	0.097	0.0084	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
tert-Butylbenzene	ND	0.097	0.019	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
1,2,4-Trimethylbenzene	ND	0.097	0.023	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
sec-Butylbenzene	ND	0.097	0.018	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
1,3-Dichlorobenzene	ND	0.097	0.012	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
p-Isopropyltoluene	ND	0.097	0.020	mg/Kg	10/28/21 09:19	10/28/21 15:59	1
1,4-Dichlorobenzene	ND	0.097	0.020	mg/Kg	10/28/21 09:19	10/28/21 15:59	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		80 - 120	10/28/21 09:19	10/28/21 15:59	1
4-Bromofluorobenzene (Surr)	94		76 - 122	10/28/21 09:19	10/28/21 15:59	1
Dibromofluoromethane (Surr)	100		80 - 120	10/28/21 09:19	10/28/21 15:59	1
1,2-Dichloroethane-d4 (Surr)	108		75 - 129	10/28/21 09:19	10/28/21 15:59	1

0.097

0.097

0.48

0.097

0.097

0.097

0.19

0.048

0.027 mg/Kg

0.023 mg/Kg

0.058 mg/Kg

0.018 mg/Kg

0.032 mg/Kg

0.016 mg/Kg

0.027 mg/Kg

0.029 mg/Kg

	est - Volatile	Petroleu	m Products ((GC/MS)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		4.8	1.7	mg/Kg		10/28/21 09:19	10/28/21 15:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		41.5 - 162				10/28/21 09:19	10/28/21 15:59	1

Eurofins TestAmerica, Spokane

10/28/21 09:19 10/28/21 15:59

10/28/21 09:19 10/28/21 15:59

10/28/21 09:19 10/28/21 15:59

10/28/21 09:19 10/28/21 15:59 10/28/21 09:19 10/28/21 15:59

10/28/21 09:19 10/28/21 15:59

10/28/21 09:19 10/28/21 15:59

10/28/21 09:19 10/28/21 15:59

6

QC Sample Results

Client: Hart & Hickman, PC Job ID: 590-16195-1

Project/Site: Northwest Motorsports - Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 590-33778/1-A

Matrix: Solid

Analysis Batch: 33784

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 33778

Alialysis Balcii. 33704	MB	МВ						Prep Batch	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		0.10	0.028	mg/Kg		10/28/21 09:16	10/28/21 11:03	1
Chloromethane	ND		0.50	0.042	mg/Kg		10/28/21 09:16	10/28/21 11:03	1
Vinyl chloride	ND		0.060	0.020	mg/Kg		10/28/21 09:16	10/28/21 11:03	1
Bromomethane	ND		0.50	0.033	mg/Kg		10/28/21 09:16	10/28/21 11:03	1
Chloroethane	ND		0.20	0.056	mg/Kg		10/28/21 09:16	10/28/21 11:03	1
Trichlorofluoromethane	ND		0.20	0.033	mg/Kg		10/28/21 09:16	10/28/21 11:03	1
1,1-Dichloroethene	ND		0.10	0.034	mg/Kg		10/28/21 09:16	10/28/21 11:03	1
Methylene Chloride	ND		0.35	0.20	mg/Kg		10/28/21 09:16	10/28/21 11:03	1
trans-1,2-Dichloroethene	ND		0.10	0.023	mg/Kg		10/28/21 09:16	10/28/21 11:03	1
1,1-Dichloroethane	ND		0.10	0.026	mg/Kg		10/28/21 09:16	10/28/21 11:03	1
2,2-Dichloropropane	ND		0.10	0.024	mg/Kg		10/28/21 09:16	10/28/21 11:03	1
cis-1,2-Dichloroethene	ND		0.10	0.021	mg/Kg		10/28/21 09:16	10/28/21 11:03	1
Bromochloromethane	ND		0.10	0.040	mg/Kg		10/28/21 09:16	10/28/21 11:03	1
Chloroform	ND		0.10	0.024	mg/Kg		10/28/21 09:16	10/28/21 11:03	1
1,1,1-Trichloroethane	ND		0.10	0.017	mg/Kg		10/28/21 09:16	10/28/21 11:03	1
Carbon tetrachloride	ND		0.10	0.011	mg/Kg		10/28/21 09:16	10/28/21 11:03	1
1,1-Dichloropropene	ND		0.10	0.017	mg/Kg		10/28/21 09:16	10/28/21 11:03	1
Benzene	ND		0.020	0.010	mg/Kg		10/28/21 09:16	10/28/21 11:03	1
1,2-Dichloroethane	ND		0.10	0.0070	mg/Kg		10/28/21 09:16	10/28/21 11:03	1
Trichloroethene	ND		0.025	0.0076	mg/Kg		10/28/21 09:16	10/28/21 11:03	1
1,2-Dichloropropane	ND		0.12	0.030	mg/Kg		10/28/21 09:16	10/28/21 11:03	1
Dibromomethane	ND		0.10		mg/Kg		10/28/21 09:16	10/28/21 11:03	1
Bromodichloromethane	ND		0.10	0.062	mg/Kg		10/28/21 09:16	10/28/21 11:03	1
cis-1,3-Dichloropropene	ND		0.10		mg/Kg		10/28/21 09:16	10/28/21 11:03	1
Toluene	ND		0.10		mg/Kg		10/28/21 09:16	10/28/21 11:03	1
trans-1,3-Dichloropropene	ND		0.10	0.026	mg/Kg		10/28/21 09:16	10/28/21 11:03	1
1,1,2-Trichloroethane	ND		0.10		mg/Kg		10/28/21 09:16	10/28/21 11:03	1
Tetrachloroethene	ND		0.040		mg/Kg		10/28/21 09:16	10/28/21 11:03	1
1,3-Dichloropropane	ND		0.10		mg/Kg		10/28/21 09:16	10/28/21 11:03	1
Dibromochloromethane	ND		0.20		mg/Kg		10/28/21 09:16	10/28/21 11:03	1
1,2-Dibromoethane (EDB)	ND		0.10		mg/Kg		10/28/21 09:16	10/28/21 11:03	1
Chlorobenzene	ND		0.10		mg/Kg		10/28/21 09:16	10/28/21 11:03	1
Ethylbenzene	ND		0.10		mg/Kg			10/28/21 11:03	1
1,1,1,2-Tetrachloroethane	ND		0.10		mg/Kg		10/28/21 09:16	10/28/21 11:03	1
1,1,2,2-Tetrachloroethane	ND		0.10		mg/Kg			10/28/21 11:03	1
m,p-Xylene	ND		0.40		mg/Kg		10/28/21 09:16	10/28/21 11:03	1
o-Xylene	ND		0.20		mg/Kg			10/28/21 11:03	1
Styrene	ND		0.10		mg/Kg			10/28/21 11:03	1
Bromoform	ND		0.20		mg/Kg			10/28/21 11:03	1
Isopropylbenzene	ND		0.10		mg/Kg			10/28/21 11:03	·
Bromobenzene	ND		0.10		mg/Kg			10/28/21 11:03	1
N-Propylbenzene	ND		0.10		mg/Kg			10/28/21 11:03	1
1,2,3-Trichloropropane	ND		0.20		mg/Kg			10/28/21 11:03	· · · · · · · · · · · · · · · · · · ·
2-Chlorotoluene	ND		0.10		mg/Kg			10/28/21 11:03	1
1,3,5-Trimethylbenzene	ND		0.10		mg/Kg			10/28/21 11:03	1
4-Chlorotoluene	ND		0.10	0.0087				10/28/21 11:03	
tert-Butylbenzene	ND ND		0.10		mg/Kg			10/28/21 11:03	1
COL DUILVIDUIZUIU	IND		0.10	0.020	1119/119		1012012100.10	10/20/21 11.00	

Eurofins TestAmerica, Spokane

Page 19 of 38

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Job ID: 590-16195-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 590-33778/1-A

Matrix: Solid

Analysis Batch: 33784

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 33778

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac sec-Butylbenzene ND 0.10 0.019 mg/Kg 10/28/21 09:16 10/28/21 11:03 1,3-Dichlorobenzene ND 0.10 0.013 mg/Kg 10/28/21 09:16 10/28/21 11:03 p-Isopropyltoluene ND 10/28/21 09:16 10/28/21 11:03 0.10 0.020 mg/Kg 1,4-Dichlorobenzene ND 0.10 0.021 mg/Kg 10/28/21 09:16 10/28/21 11:03 ND 0.028 mg/Kg 10/28/21 09:16 10/28/21 11:03 n-Butylbenzene 0.10 1,2-Dichlorobenzene ND 0.10 0.023 mg/Kg 10/28/21 09:16 10/28/21 11:03 1,2-Dibromo-3-Chloropropane ND 0.50 0.060 mg/Kg 10/28/21 09:16 10/28/21 11:03 ND 0.019 mg/Kg 1,2,4-Trichlorobenzene 0.10 10/28/21 09:16 10/28/21 11:03 ND 0.033 mg/Kg 1,2,3-Trichlorobenzene 0.10 10/28/21 09:16 10/28/21 11:03 Hexachlorobutadiene ND 0.10 0.016 mg/Kg 10/28/21 09:16 10/28/21 11:03 Naphthalene ND 0.20 0.028 mg/Kg 10/28/21 09:16 10/28/21 11:03 ND 0.050 0.030 mg/Kg 10/28/21 09:16 10/28/21 11:03 Methyl tert-butyl ether

MB MB

Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	93	80 - 120	10/28/21 09:16	10/28/21 11:03	1
4-Bromofluorobenzene (Surr)	100	76 - 122	10/28/21 09:16	10/28/21 11:03	1
Dibromofluoromethane (Surr)	99	80 - 120	10/28/21 09:16	10/28/21 11:03	1
1,2-Dichloroethane-d4 (Surr)	99	75 - 129	10/28/21 09:16	10/28/21 11:03	1

Lab Sample ID: LCS 590-33778/2-A

Matrix: Solid

Analysis Batch: 33784

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 33778

•	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Dichlorodifluoromethane	0.500	0.332		mg/Kg		66	34 - 120
Chloromethane	0.500	0.452	J	mg/Kg		90	63 - 120
Vinyl chloride	0.500	0.540		mg/Kg		108	66 - 129
Bromomethane	0.500	0.554		mg/Kg		111	56 - 138
Chloroethane	0.500	0.521		mg/Kg		104	50 - 142
Trichlorofluoromethane	0.500	0.577		mg/Kg		115	64 - 143
1,1-Dichloroethene	0.500	0.614		mg/Kg		123	73 - 135
Methylene Chloride	0.500	0.628		mg/Kg		126	30 - 150
trans-1,2-Dichloroethene	0.500	0.585		mg/Kg		117	80 - 126
1,1-Dichloroethane	0.500	0.591		mg/Kg		118	80 - 129
2,2-Dichloropropane	0.500	0.685		mg/Kg		137	80 - 138
cis-1,2-Dichloroethene	0.500	0.619		mg/Kg		124	80 - 124
Bromochloromethane	0.500	0.607		mg/Kg		121	75 - 135
Chloroform	0.500	0.609		mg/Kg		122	80 - 130
1,1,1-Trichloroethane	0.500	0.621		mg/Kg		124	80 - 130
Carbon tetrachloride	0.500	0.622		mg/Kg		124	72 - 138
1,1-Dichloropropene	0.500	0.632		mg/Kg		126	78 - 132
Benzene	0.500	0.625		mg/Kg		125	76 - 129
1,2-Dichloroethane	0.500	0.633		mg/Kg		127	80 - 129
Trichloroethene	0.500	0.602		mg/Kg		120	79 - 133
1,2-Dichloropropane	0.500	0.634	*+	mg/Kg		127	75 - 121
Dibromomethane	0.500	0.632	*+	mg/Kg		126	80 - 123
Bromodichloromethane	0.500	0.617		mg/Kg		123	80 - 128
cis-1,3-Dichloropropene	0.500	0.614		mg/Kg		123	80 - 126

Eurofins TestAmerica, Spokane

Page 20 of 38

9

3

_

a

10

11

1 2

QC Sample Results

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 590-33778/2-A

Matrix: Solid

Analysis Batch: 33784

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 33778

Job ID: 590-16195-1

Analysis Batch. 33704	Spike	LCS LCS			%Rec.
Analyte	Added	Result Qualific		D %Rec	Limits
Toluene	0.500	0.604	mg/Kg	121	77 - 131
trans-1,3-Dichloropropene	0.500	0.601	mg/Kg	120	80 - 124
1,1,2-Trichloroethane	0.500	0.598	mg/Kg	120	80 - 125
Tetrachloroethene	0.500	0.623	mg/Kg	125	77 ₋ 134
1,3-Dichloropropane	0.500	0.582	mg/Kg	116	76 - 125
Dibromochloromethane	0.500	0.610	mg/Kg	122	78 - 127
1,2-Dibromoethane (EDB)	0.500	0.562	mg/Kg	112	80 - 121
Chlorobenzene	0.500	0.609	mg/Kg	122	80 - 129
Ethylbenzene	0.500	0.625	mg/Kg	125	77 - 126
1,1,1,2-Tetrachloroethane	0.500	0.624	mg/Kg	125	80 - 128
1,1,2,2-Tetrachloroethane	0.500	0.604	mg/Kg	121	75 - 128
m,p-Xylene	0.500	0.625	mg/Kg	125	78 - 130
o-Xylene	0.500	0.623	mg/Kg	125	77 - 129
Styrene	0.500	0.616	mg/Kg	123	80 - 128
Bromoform	0.500	0.593	mg/Kg	119	72 - 133
Isopropylbenzene	0.500	0.632	mg/Kg	126	78 - 139
Bromobenzene	0.500	0.638	mg/Kg	128	75 - 129
N-Propylbenzene	0.500	0.632	mg/Kg	126	77 - 131
1,2,3-Trichloropropane	0.500	0.640	mg/Kg	128	67 - 131
2-Chlorotoluene	0.500	0.602	mg/Kg	120	77 - 135
1,3,5-Trimethylbenzene	0.500	0.622	mg/Kg	124	76 - 133
4-Chlorotoluene	0.500	0.618	mg/Kg	124	77 - 133
tert-Butylbenzene	0.500	0.632	mg/Kg	126	76 - 130
1,2,4-Trimethylbenzene	0.500	0.654	mg/Kg	131	76 - 132
sec-Butylbenzene	0.500	0.623	mg/Kg	125	76 - 130
1,3-Dichlorobenzene	0.500	0.612	mg/Kg	122	80 - 123
p-Isopropyltoluene	0.500	0.638	mg/Kg	128	80 - 130
1,4-Dichlorobenzene	0.500	0.610	mg/Kg	122	80 - 125
n-Butylbenzene	0.500	0.614	mg/Kg	123	80 - 131
1,2-Dichlorobenzene	0.500	0.635 *+	mg/Kg	127	80 - 124
1,2-Dibromo-3-Chloropropane	0.500	0.608	mg/Kg	122	49 - 139
1,2,4-Trichlorobenzene	0.500	0.608	mg/Kg	122	79 - 126
1,2,3-Trichlorobenzene	0.500	0.625	mg/Kg	125	66 - 130
Hexachlorobutadiene	0.500	0.672	mg/Kg	134	80 - 136
Naphthalene	0.500	0.603	mg/Kg	121	53 - 144
Methyl tert-butyl ether	0.500	0.626 *+	mg/Kg	125	80 - 123
I and the second se			=		

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	96		80 - 120
4-Bromofluorobenzene (Surr)	100		76 - 122
Dibromofluoromethane (Surr)	98		80 - 120
1.2-Dichloroethane-d4 (Surr)	110		75 - 129

10/28/2021

6

3

5

7

9

10

111

QC Sample Results

Spike

Client: Hart & Hickman, PC Job ID: 590-16195-1

LCSD LCSD

Project/Site: Northwest Motorsports - Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 590-33778/18-A

Matrix: Solid

Analysis Batch: 33784

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 33778 RPD

Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	0.500	0.350		mg/Kg		70	34 - 120	5	24
Chloromethane	0.500	0.424	J	mg/Kg		85	63 - 120	6	22
Vinyl chloride	0.500	0.518		mg/Kg		104	66 - 129	4	20
Bromomethane	0.500	0.504		mg/Kg		101	56 - 138	9	21
Chloroethane	0.500	0.513		mg/Kg		103	50 - 142	2	25
Trichlorofluoromethane	0.500	0.568		mg/Kg		114	64 - 143	2	25
1,1-Dichloroethene	0.500	0.612		mg/Kg		122	73 - 135	0	18
Methylene Chloride	0.500	0.623		mg/Kg		125	30 - 150	1	40
trans-1,2-Dichloroethene	0.500	0.585		mg/Kg		117	80 - 126	0	25
1,1-Dichloroethane	0.500	0.580		mg/Kg		116	80 - 129	2	25
2,2-Dichloropropane	0.500	0.696	*+	mg/Kg		139	80 - 138	2	22
cis-1,2-Dichloroethene	0.500	0.642	*+	mg/Kg		128	80 - 124	4	23
Bromochloromethane	0.500	0.597		mg/Kg		119	75 - 135	2	25

			0 0				
Chloromethane	0.500	0.424 J	mg/Kg	85	63 - 120	6	22
Vinyl chloride	0.500	0.518	mg/Kg	104	66 - 129	4	20
Bromomethane	0.500	0.504	mg/Kg	101	56 - 138	9	21
Chloroethane	0.500	0.513	mg/Kg	103	50 - 142	2	25
Trichlorofluoromethane	0.500	0.568	mg/Kg	114	64 - 143	2	25
1,1-Dichloroethene	0.500	0.612	mg/Kg	122	73 - 135	0	18
Methylene Chloride	0.500	0.623	mg/Kg	125	30 - 150	1	40
trans-1,2-Dichloroethene	0.500	0.585	mg/Kg	117	80 - 126	0	25
1,1-Dichloroethane	0.500	0.580	mg/Kg	116	80 - 129	2	25
2,2-Dichloropropane	0.500	0.696 *+	mg/Kg	139	80 - 138	2	22
cis-1,2-Dichloroethene	0.500	0.642 *+	mg/Kg	128	80 - 124	4	23
Bromochloromethane	0.500	0.597	mg/Kg	119	75 - 135	2	25
Chloroform	0.500	0.632	mg/Kg	126	80 - 130	4	25
1,1,1-Trichloroethane	0.500	0.610	mg/Kg	122	80 - 130	2	19
Carbon tetrachloride	0.500	0.631	mg/Kg	126	72 - 138	1	25
1,1-Dichloropropene	0.500	0.633	mg/Kg	127	78 - 132	0	24
Benzene	0.500	0.616	mg/Kg	123	76 - 129	1	25
1,2-Dichloroethane	0.500	0.629	mg/Kg	126	80 - 129	1	25
Trichloroethene	0.500	0.610	mg/Kg	122	79 - 133	1	25
1,2-Dichloropropane	0.500	0.558	mg/Kg	112	75 - 121	13	20
Dibromomethane	0.500	0.598	mg/Kg	120	80 - 123	5	24
Bromodichloromethane	0.500	0.636	mg/Kg	127	80 - 128	3	26
cis-1,3-Dichloropropene	0.500	0.633 *+	mg/Kg	127	80 - 126	3	24
Toluene	0.500	0.587	mg/Kg	117	77 - 131	3	25
trans-1,3-Dichloropropene	0.500	0.587	mg/Kg	117	80 - 124	2	28
1,1,2-Trichloroethane	0.500	0.568	mg/Kg	114	80 - 125	5	31
Tetrachloroethene	0.500	0.609	mg/Kg	122	77 - 134	2	24
1,3-Dichloropropane	0.500	0.586	mg/Kg	117	76 - 125	1	16
Dibromochloromethane	0.500	0.599	mg/Kg	120	78 - 127	2	25
1,2-Dibromoethane (EDB)	0.500	0.560	mg/Kg	112	80 - 121	0	18
Chlorobenzene	0.500	0.600	mg/Kg	120	80 - 129	1	25
Ethylbenzene	0.500	0.610	mg/Kg	122	77 - 126	2	25
1,1,1,2-Tetrachloroethane	0.500	0.561	mg/Kg	112	80 - 128	11	25
1,1,2,2-Tetrachloroethane	0.500	0.597	mg/Kg	119	75 - 128	1	22
m,p-Xylene	0.500	0.596	mg/Kg	119	78 - 130	5	23
o-Xylene	0.500	0.595	mg/Kg	119	77 - 129	5	25
Styrene	0.500	0.590	mg/Kg	118	80 - 128	4	25
Bromoform	0.500	0.579	mg/Kg	116	72 - 133	2	34
Isopropylbenzene	0.500	0.588	mg/Kg	118	78 - 139	7	24
Bromobenzene	0.500	0.618	mg/Kg	124	75 - 129	3	25
N-Propylbenzene	0.500	0.617	mg/Kg	123	77 - 131	2	25
1,2,3-Trichloropropane	0.500	0.628	mg/Kg	126	67 - 131	2	27
2-Chlorotoluene	0.500	0.576	mg/Kg	115	77 - 135	4	20
1,3,5-Trimethylbenzene	0.500	0.617	mg/Kg	123	76 - 133	1	20
4-Chlorotoluene	0.500	0.612	mg/Kg	122	77 - 133	1	25
tert-Butylbenzene	0.500	0.616	mg/Kg	123	76 - 130	3	16
1,2,4-Trimethylbenzene	0.500	0.638	mg/Kg	128	76 - 132	2	21

Eurofins TestAmerica, Spokane

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 590-33778/18-A

Matrix: Solid

Analysis Batch: 33784

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Job ID: 590-16195-1

Prep Batch: 33778

Spike	LCSD	LCSD				%Rec.		RPD
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
0.500	0.619		mg/Kg		124	76 - 130	1	34
0.500	0.601		mg/Kg		120	80 - 123	2	18
0.500	0.638		mg/Kg		128	80 - 130	0	26
0.500	0.602		mg/Kg		120	80 - 125	1	16
0.500	0.611		mg/Kg		122	80 - 131	0	20
0.500	0.608		mg/Kg		122	80 - 124	4	25
0.500	0.625		mg/Kg		125	49 - 139	3	40
0.500	0.616		mg/Kg		123	79 - 126	1	25
0.500	0.621		mg/Kg		124	66 - 130	1	25
0.500	0.653		mg/Kg		131	80 - 136	3	25
0.500	0.586		mg/Kg		117	53 - 144	3	36
0.500	0.638	*+	mg/Kg		128	80 - 123	2	25
	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	Added Result 0.500 0.619 0.500 0.601 0.500 0.638 0.500 0.602 0.500 0.611 0.500 0.608 0.500 0.625 0.500 0.616 0.500 0.621 0.500 0.653 0.500 0.586	Added Result Qualifier 0.500 0.619 0.500 0.601 0.500 0.638 0.500 0.602 0.500 0.611 0.500 0.608 0.500 0.625 0.500 0.616 0.500 0.621 0.500 0.653 0.500 0.586	Added Result Qualifier Unit 0.500 0.619 mg/Kg 0.500 0.601 mg/Kg 0.500 0.638 mg/Kg 0.500 0.602 mg/Kg 0.500 0.611 mg/Kg 0.500 0.608 mg/Kg 0.500 0.625 mg/Kg 0.500 0.616 mg/Kg 0.500 0.621 mg/Kg 0.500 0.653 mg/Kg 0.500 0.586 mg/Kg	Added Result Qualifier Unit D 0.500 0.619 mg/Kg D 0.500 0.601 mg/Kg mg/Kg 0.500 0.638 mg/Kg mg/Kg 0.500 0.602 mg/Kg mg/Kg 0.500 0.611 mg/Kg mg/Kg 0.500 0.625 mg/Kg 0.500 0.616 mg/Kg 0.500 0.621 mg/Kg 0.500 0.653 mg/Kg 0.500 0.586 mg/Kg	Added Result Qualifier Unit D %Rec 0.500 0.619 mg/Kg 124 0.500 0.601 mg/Kg 120 0.500 0.638 mg/Kg 128 0.500 0.602 mg/Kg 120 0.500 0.611 mg/Kg 122 0.500 0.608 mg/Kg 122 0.500 0.625 mg/Kg 125 0.500 0.616 mg/Kg 123 0.500 0.621 mg/Kg 124 0.500 0.653 mg/Kg 131 0.500 0.586 mg/Kg 117	Added Result Qualifier Unit D %Rec Limits 0.500 0.619 mg/Kg 124 76 - 130 0.500 0.601 mg/Kg 120 80 - 123 0.500 0.638 mg/Kg 128 80 - 130 0.500 0.602 mg/Kg 120 80 - 125 0.500 0.611 mg/Kg 122 80 - 131 0.500 0.608 mg/Kg 122 80 - 124 0.500 0.625 mg/Kg 125 49 - 139 0.500 0.616 mg/Kg 123 79 - 126 0.500 0.621 mg/Kg 124 66 - 130 0.500 0.653 mg/Kg 131 80 - 136 0.500 0.586 mg/Kg 117 53 - 144	Added Result Qualifier Unit D %Rec Limits RPD 0.500 0.619 mg/Kg 124 76 - 130 1 0.500 0.601 mg/Kg 120 80 - 123 2 0.500 0.638 mg/Kg 128 80 - 130 0 0.500 0.602 mg/Kg 120 80 - 125 1 0.500 0.611 mg/Kg 122 80 - 131 0 0.500 0.608 mg/Kg 122 80 - 124 4 0.500 0.625 mg/Kg 125 49 - 139 3 0.500 0.616 mg/Kg 123 79 - 126 1 0.500 0.621 mg/Kg 124 66 - 130 1 0.500 0.653 mg/Kg 131 80 - 136 3 0.500 0.658 mg/Kg 131 80 - 136 3 0.500 0.653 mg/Kg 131 53 - 144 3 <

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	93		80 - 120
4-Bromofluorobenzene (Surr)	103		76 - 122
Dibromofluoromethane (Surr)	101		80 - 120
1,2-Dichloroethane-d4 (Surr)	112		75 - 129

Lab Sample ID: 590-16195-2 MS

Matrix: Solid

Analysis Batch: 33784

Client Sample ID: SB-2 (4-5)

Prep Type: Total/NA

Prep Batch: 33778

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dichlorodifluoromethane	ND		1.99	1.81		mg/Kg	☆	91	34 - 120	
Chloromethane	ND		1.99	1.88	J	mg/Kg	☼	95	63 - 120	
Vinyl chloride	ND		1.99	2.34		mg/Kg	☆	118	66 - 129	
Bromomethane	ND		1.99	2.13		mg/Kg	☆	107	56 - 138	
Chloroethane	ND		1.99	2.11		mg/Kg	☆	106	50 - 142	
Trichlorofluoromethane	ND		1.99	2.33		mg/Kg	☆	117	64 - 143	
1,1-Dichloroethene	ND		1.99	2.34		mg/Kg	☆	118	73 - 135	
Methylene Chloride	ND		1.99	2.20		mg/Kg	☆	111	30 - 150	
trans-1,2-Dichloroethene	ND		1.99	2.32		mg/Kg	☆	117	80 - 126	
1,1-Dichloroethane	ND		1.99	2.16		mg/Kg	₽	109	80 - 129	
2,2-Dichloropropane	ND	*+	1.99	2.36		mg/Kg	☆	119	80 - 138	
cis-1,2-Dichloroethene	ND	*+	1.99	2.35		mg/Kg	☼	118	80 - 124	
Bromochloromethane	ND		1.99	2.18		mg/Kg	☆	110	75 - 135	
Chloroform	ND		1.99	2.35		mg/Kg	₩	118	80 - 130	
1,1,1-Trichloroethane	ND		1.99	2.36		mg/Kg	☆	119	80 - 130	
Carbon tetrachloride	ND		1.99	2.37		mg/Kg	☆	119	72 - 138	
1,1-Dichloropropene	ND		1.99	2.43		mg/Kg	☆	122	78 - 132	
Benzene	ND		1.99	2.33		mg/Kg	☆	117	76 - 129	
1,2-Dichloroethane	ND		1.99	2.19		mg/Kg	₩	110	80 - 129	
Trichloroethene	ND		1.99	2.38		mg/Kg	☆	120	79 - 133	
1,2-Dichloropropane	ND	*+	1.99	2.14		mg/Kg	☆	108	75 - 121	
Dibromomethane	ND	*+	1.99	2.18		mg/Kg	☆	110	80 - 123	
Bromodichloromethane	ND		1.99	2.19		mg/Kg	☆	110	80 - 128	
cis-1,3-Dichloropropene	ND	*+	1.99	2.27		mg/Kg	₩	115	80 - 126	

Eurofins TestAmerica, Spokane

Page 23 of 38

QC Sample Results

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 590-16195-2 MS

Matrix: Solid

Analysis Batch: 33784

Client Sample ID: SB-2 (4-5) **Prep Type: Total/NA**

Prep Batch: 33778

Job ID: 590-16195-1

Analysis Batch. 33704	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	-	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Toluene	ND		1.99	2.24		mg/Kg	— <u></u>	113	
trans-1,3-Dichloropropene	ND		1.99	2.09		mg/Kg	☆	105	80 - 124
1,1,2-Trichloroethane	ND		1.99	2.20		mg/Kg	₩	111	80 - 125
Tetrachloroethene	ND		1.99	2.37		mg/Kg	≎	119	77 - 134
1,3-Dichloropropane	ND		1.99	2.18		mg/Kg	≎	110	76 - 125
Dibromochloromethane	ND		1.99	2.14		mg/Kg	☆	108	78 - 127
1,2-Dibromoethane (EDB)	ND		1.99	2.07		mg/Kg	☆	104	80 - 121
Chlorobenzene	ND		1.99	2.32		mg/Kg	☆	117	80 - 129
Ethylbenzene	ND		1.99	2.29		mg/Kg	₩	115	77 - 126
1,1,1,2-Tetrachloroethane	ND		1.99	2.08		mg/Kg	☆	105	80 - 128
1,1,2,2-Tetrachloroethane	ND		1.99	2.16		mg/Kg	☆	109	75 - 128
m,p-Xylene	ND		1.99	2.33		mg/Kg	☆	117	78 - 130
o-Xylene	ND		1.99	2.25		mg/Kg	☆	113	77 - 129
Styrene	ND		1.99	2.27		mg/Kg	☆	114	80 - 128
Bromoform	ND		1.99	2.06		mg/Kg	☆	104	72 - 133
Isopropylbenzene	ND		1.99	2.27		mg/Kg	☆	114	78 - 139
Bromobenzene	ND		1.99	2.30		mg/Kg	☆	116	75 - 129
N-Propylbenzene	ND		1.99	2.32		mg/Kg	☆	117	77 - 131
1,2,3-Trichloropropane	ND		1.99	2.22		mg/Kg	₽	112	67 - 131
2-Chlorotoluene	ND		1.99	2.15		mg/Kg	☆	108	77 - 135
1,3,5-Trimethylbenzene	ND		1.99	2.28		mg/Kg	₩	115	76 - 133
4-Chlorotoluene	ND		1.99	2.30		mg/Kg	☆	116	77 - 133
tert-Butylbenzene	ND		1.99	2.35		mg/Kg	₩	118	76 - 130
1,2,4-Trimethylbenzene	ND		1.99	2.40		mg/Kg	≎	121	76 - 132
sec-Butylbenzene	ND		1.99	2.42		mg/Kg	☆	122	76 - 130
1,3-Dichlorobenzene	ND		1.99	2.26		mg/Kg	≎	114	80 - 123
p-Isopropyltoluene	ND		1.99	2.44		mg/Kg	₩	123	80 - 130
1,4-Dichlorobenzene	ND		1.99	2.23		mg/Kg	₩	113	80 - 125
n-Butylbenzene	ND		1.99	2.41		mg/Kg	☆	121	80 - 131
1,2-Dichlorobenzene	ND	*+	1.99	2.19		mg/Kg	₩	110	80 - 124
1,2-Dibromo-3-Chloropropane	ND		1.99	2.03		mg/Kg	≎	102	49 - 139
1,2,4-Trichlorobenzene	ND		1.99	2.27		mg/Kg	₩	114	79 - 126
1,2,3-Trichlorobenzene	ND		1.99	2.23		mg/Kg	≎	112	66 - 130
Hexachlorobutadiene	ND		1.99	2.62		mg/Kg	≎	132	80 - 136
Naphthalene	ND		1.99	2.19		mg/Kg	₩	110	53 - 144
Methyl tert-butyl ether	ND	*+	1.99	2.22		mg/Kg	₩	112	80 - 123

MS MS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	95		80 - 120
4-Bromofluorobenzene (Surr)	98		76 - 122
Dibromofluoromethane (Surr)	98		80 - 120
1,2-Dichloroethane-d4 (Surr)	100		75 - 129

QC Sample Results

Spike

MSD MSD

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Sample Sample

ND

Lab Sample ID: 590-16195-2 MSD

Matrix: Solid

1,3-Dichloropropane

Chlorobenzene

Ethylbenzene

m,p-Xylene

Bromoform

Isopropylbenzene

N-Propylbenzene

2-Chlorotoluene

4-Chlorotoluene

tert-Butylbenzene

1,2,3-Trichloropropane

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

Bromobenzene

o-Xylene

Styrene

Dibromochloromethane

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

Analysis Batch: 33784

Client Sample ID: SB-2 (4-5)

Prep Type: Total/NA

Job ID: 590-16195-1

Prep Batch: 33778

Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Dichlorodifluoromethane	ND		1.99	1.75		mg/Kg	— <u>—</u>	88	34 - 120	4	24	
Chloromethane	ND		1.99	1.80	J	mg/Kg	☼	91	63 - 120	4	22	
Vinyl chloride	ND		1.99	2.16		mg/Kg	☼	109	66 - 129	8	20	
Bromomethane	ND		1.99	2.01		mg/Kg	☼	101	56 - 138	6	21	
Chloroethane	ND		1.99	2.16		mg/Kg	☼	109	50 - 142	3	25	
Trichlorofluoromethane	ND		1.99	2.23		mg/Kg	☼	112	64 - 143	4	25	
1,1-Dichloroethene	ND		1.99	2.25		mg/Kg	☼	113	73 - 135	4	18	
Methylene Chloride	ND		1.99	1.65		mg/Kg	☼	83	30 - 150	29	40	
trans-1,2-Dichloroethene	ND		1.99	2.26		mg/Kg	☼	114	80 - 126	3	25	
1,1-Dichloroethane	ND		1.99	2.23		mg/Kg	☼	112	80 - 129	3	25	
2,2-Dichloropropane	ND	*+	1.99	2.36		mg/Kg	₩	119	80 - 138	0	22	
cis-1,2-Dichloroethene	ND	*+	1.99	2.38		mg/Kg	☼	120	80 - 124	1	23	
Bromochloromethane	ND		1.99	2.41		mg/Kg	☼	121	75 - 135	10	25	
Chloroform	ND		1.99	2.41		mg/Kg	☼	122	80 - 130	3	25	
1,1,1-Trichloroethane	ND		1.99	2.23		mg/Kg	☼	112	80 - 130	6	19	
Carbon tetrachloride	ND		1.99	2.37		mg/Kg	☼	119	72 - 138	0	25	
1,1-Dichloropropene	ND		1.99	2.38		mg/Kg	☼	120	78 - 132	2	24	
Benzene	ND		1.99	2.41		mg/Kg	☼	121	76 - 129	4	25	
1,2-Dichloroethane	ND		1.99	2.41		mg/Kg	☼	121	80 - 129	9	25	
Trichloroethene	ND		1.99	2.28		mg/Kg	☼	115	79 - 133	4	25	
1,2-Dichloropropane	ND	*+	1.99	2.20		mg/Kg	₩	111	75 - 121	3	20	
Dibromomethane	ND	*+	1.99	2.40		mg/Kg	☼	121	80 - 123	10	24	
Bromodichloromethane	ND		1.99	2.31		mg/Kg	₩	116	80 - 128	5	26	
cis-1,3-Dichloropropene	ND	*+	1.99	2.34		mg/Kg	₩	118	80 - 126	3	24	
Toluene	ND		1.99	2.25		mg/Kg	☼	113	77 - 131	1	25	
trans-1,3-Dichloropropene	ND		1.99	2.20		mg/Kg	☼	111	80 - 124	5	28	
1,1,2-Trichloroethane	ND		1.99	2.19		mg/Kg	☼	110	80 - 125	1	31	
Tetrachloroethene	ND		1.99	2.27		mg/Kg	₩	114	77 - 134	4	24	

1.99

1.99

1.99

1.99

1.99

1.99

1.99

1.99

1.99

1.99

1.99

1.99

1.99

1.99

1.99

1.99

1.99

1.99

1.99

1.99

2.22

2.23

2.00

2.23

2.24

2.16

2.37

2.25

2.19

2.27

2.24

2.25

2.32

2.39

2.32

2.22

2.41

2.33

2.42

2.50

Eurofins TestAmerica, Spokane

112

112

101

112

113

109

119

113

110

114

113

113

117

120

117

112

121

117

122

126

₩

₩

₩

Ö

₩

₩

₩

₩

₩

☼

₩

☼

₩

₩

₩

₩

÷Ċ÷

mg/Kg

76 - 125

78 - 127

80 - 121

80 - 129

77 - 126

80 - 128

75 - 128

78 - 130

77 - 129

80 - 128

72 - 133

78 - 139

75 - 129

77 - 131

67 - 131

77 - 135

76 - 133

77 - 133

76 - 130

76 - 132

2

2

3

3

10/28/2021

16

25

18

25

25

25

22

23

25

25

34

24

25 25

27

20

20

25

16

21

Page 25 of 38

RPD

Client: Hart & Hickman, PC Job ID: 590-16195-1

Project/Site: Northwest Motorsports - Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 590-16195-2 MSD

Matrix: Solid

Analysis Batch: 33784

Client Sample ID: SB-2 (4-5) **Prep Type: Total/NA**

Prep Batch: 33778

	Sample	Sample	Бріке	M2D	MISD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
sec-Butylbenzene	ND		1.99	2.46		mg/Kg	<u></u>	124	76 - 130	2	34
1,3-Dichlorobenzene	ND		1.99	2.30		mg/Kg	☼	116	80 - 123	2	18
p-Isopropyltoluene	ND		1.99	2.51		mg/Kg	☼	127	80 - 130	3	26
1,4-Dichlorobenzene	ND		1.99	2.29		mg/Kg	∌	116	80 - 125	3	16
n-Butylbenzene	ND		1.99	2.35		mg/Kg	☼	119	80 - 131	2	20
1,2-Dichlorobenzene	ND	*+	1.99	2.32		mg/Kg	☼	117	80 - 124	5	25
1,2-Dibromo-3-Chloropropane	ND		1.99	2.11		mg/Kg	☼	106	49 - 139	4	40
1,2,4-Trichlorobenzene	ND		1.99	2.27		mg/Kg	☼	114	79 - 126	0	25
1,2,3-Trichlorobenzene	ND		1.99	2.29		mg/Kg	☼	115	66 - 130	3	25
Hexachlorobutadiene	ND		1.99	2.58		mg/Kg	☼	130	80 - 136	2	25
Naphthalene	ND		1.99	2.26		mg/Kg	☼	114	53 - 144	3	36
Methyl tert-butyl ether	ND	*+	1.99	2.29		mg/Kg	☼	115	80 - 123	3	25

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	94		80 - 120
4-Bromofluorobenzene (Surr)	102		76 - 122
Dibromofluoromethane (Surr)	97		80 - 120
1,2-Dichloroethane-d4 (Surr)	105		75 - 129

Lab Sample ID: 590-16195-1 DU

Matrix: Solid

Analysis Batch: 33784

Client Sample ID: SB-1 (2-3)

Prep Type: Total/NA

Prep Batch: 33778

Analysis Daten. 00704							i rep baten.	00110
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Dichlorodifluoromethane	ND		ND		mg/Kg	<u></u>	NC	24
Chloromethane	ND		ND		mg/Kg	₽	NC	22
Vinyl chloride	ND		ND		mg/Kg	₽	NC	20
Bromomethane	ND		ND		mg/Kg	₽	NC	21
Chloroethane	ND		ND		mg/Kg	₽	NC	25
Trichlorofluoromethane	ND		ND		mg/Kg	₽	NC	25
1,1-Dichloroethene	ND		ND		mg/Kg	₽	NC	18
Methylene Chloride	ND		ND		mg/Kg	₽	NC	40
trans-1,2-Dichloroethene	ND		ND		mg/Kg	₽	NC	25
1,1-Dichloroethane	ND		ND		mg/Kg	₽	NC	25
2,2-Dichloropropane	ND	*+	ND	*+	mg/Kg	₽	NC	22
cis-1,2-Dichloroethene	ND	*+	ND	*+	mg/Kg	₽	NC	23
Bromochloromethane	ND		ND		mg/Kg	₽	NC	25
Chloroform	ND		ND		mg/Kg	₽	NC	25
1,1,1-Trichloroethane	ND		ND		mg/Kg	₽	NC	19
Carbon tetrachloride	ND		ND		mg/Kg	₽	NC	25
1,1-Dichloropropene	ND		ND		mg/Kg	₽	NC	24
Benzene	ND		ND		mg/Kg	₽	NC	25
1,2-Dichloroethane	ND		ND		mg/Kg	₽	NC	25
Trichloroethene	ND		ND		mg/Kg	₽	NC	25
1,2-Dichloropropane	ND	*+	ND	*+	mg/Kg	₽	NC	20
Dibromomethane	ND	*+	ND	*+	mg/Kg	₽	NC	24
Bromodichloromethane	ND		ND		mg/Kg	₽	NC	26
cis-1,3-Dichloropropene	ND	*+	ND	*+	mg/Kg	≎	NC	24

Eurofins TestAmerica, Spokane

Page 26 of 38

QC Sample Results

Client: Hart & Hickman, PC Job ID: 590-16195-1

Project/Site: Northwest Motorsports - Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 590-16195-1 DU

Matrix: Solid

Analysis Batch: 33784

Client Sample ID: SB-1 (2-3)

Prep Type: Total/NA Prep Batch: 33778

Allalysis Datcii. 33704	Sample	Sample	DU	DU			r rep baten.	RPD
Analyte	-	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Toluene	ND		ND		mg/Kg	— <u> </u>		25
trans-1,3-Dichloropropene	ND		ND		mg/Kg	₩	NC	28
1,1,2-Trichloroethane	ND		ND		mg/Kg	₩	NC	31
Tetrachloroethene	ND		ND		mg/Kg		NC	24
1,3-Dichloropropane	ND		ND		mg/Kg	₩	NC	16
Dibromochloromethane	ND		ND		mg/Kg	₩	NC	25
1,2-Dibromoethane (EDB)	ND		ND		mg/Kg	₩	NC	18
Chlorobenzene	ND		ND		mg/Kg	₩	NC	25
Ethylbenzene	ND		ND		mg/Kg	₩	NC	25
1,1,1,2-Tetrachloroethane	ND		ND		mg/Kg	₩	NC	25
1,1,2,2-Tetrachloroethane	ND		ND		mg/Kg	₩	NC	22
m,p-Xylene	ND		ND		mg/Kg	₩	NC	23
o-Xylene	ND		ND		mg/Kg	₩	NC	25
Styrene	ND		ND		mg/Kg	₩	NC	25
Bromoform	ND		ND		mg/Kg	₩	NC	34
Isopropylbenzene	ND		ND		mg/Kg	₩	NC	24
Bromobenzene	ND		ND		mg/Kg	₩	NC	25
N-Propylbenzene	ND		ND		mg/Kg	₩	NC	25
1,2,3-Trichloropropane	ND		ND		mg/Kg	₩	NC	27
2-Chlorotoluene	ND		ND		mg/Kg	₩	NC	20
1,3,5-Trimethylbenzene	ND		ND		mg/Kg	₩	NC	20
4-Chlorotoluene	ND		ND		mg/Kg	₩	NC	25
tert-Butylbenzene	ND		ND		mg/Kg	₩	NC	16
1,2,4-Trimethylbenzene	ND		ND		mg/Kg	₩	NC	21
sec-Butylbenzene	ND		ND		mg/Kg	₩	NC	34
1,3-Dichlorobenzene	ND		ND		mg/Kg	₩	NC	18
p-Isopropyltoluene	ND		ND		mg/Kg	₩	NC	26
1,4-Dichlorobenzene	ND		ND		mg/Kg	₩	NC	16
n-Butylbenzene	ND		ND		mg/Kg	₩	NC	20
1,2-Dichlorobenzene	ND	*+	ND	*+	mg/Kg	₩	NC	25
1,2-Dibromo-3-Chloropropane	ND		ND		mg/Kg	₩	NC	40
1,2,4-Trichlorobenzene	ND		ND		mg/Kg	₩	NC	25
1,2,3-Trichlorobenzene	ND		ND		mg/Kg	\$	NC	25
Hexachlorobutadiene	ND		ND		mg/Kg		NC	25
Naphthalene	ND		ND		mg/Kg	₩	NC	36
Methyl tert-butyl ether	ND	*+	ND	*+	mg/Kg	☼	NC	25

DU DU

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	98		80 - 120
4-Bromofluorobenzene (Surr)	101		76 - 122
Dibromofluoromethane (Surr)	99		80 - 120
1,2-Dichloroethane-d4 (Surr)	98		75 - 129

5

3

5

7

Q

10

1

12

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Job ID: 590-16195-1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

Lab Sample ID: MB 590-33778/1-A

Matrix: Solid

Analysis Batch: 33783

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 33778

Prep Type: Total/NA

Prep Batch: 33778

MB MB

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared 5.0 10/28/21 09:16 10/28/21 11:03 Gasoline ND 1.8 mg/Kg

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 41.5 - 162 10/28/21 09:16 10/28/21 11:03 4-Bromofluorobenzene (Surr) 100

Lab Sample ID: LCS 590-33778/3-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Analysis Batch: 33783

LCS LCS Spike

%Rec. Analyte Added Result Qualifier Unit D %Rec Limits Gasoline 50.2 58.6 mg/Kg 117 74.4 - 124

LCS LCS

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 41.5 - 162 103

Lab Sample ID: LCSD 590-33778/19-A

Matrix: Solid Prep Type: Total/NA **Analysis Batch: 33783** Prep Batch: 33778 Spike LCSD LCSD %Rec RPD

Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Gasoline 50.2 62.0 mg/Kg 124 74.4 - 124

LCSD LCSD

%Recovery Qualifier Surrogate Limits 4-Bromofluorobenzene (Surr) 100 41.5 - 162

Lab Sample ID: 590-16195-1 DU

Matrix: Solid

Analysis Batch: 33783

Client Sample ID: SB-1 (2-3) **Prep Type: Total/NA**

Client Sample ID: Lab Control Sample Dup

Prep Batch: 33778

Sample Sample DU DU **RPD** Analyte Result Qualifier RPD Limit Result Qualifier Unit Gasoline ND ND mg/Kg 32.3

DU DU

%Recovery Qualifier Surrogate Limits

4-Bromofluorobenzene (Surr) 41.5 - 162 101

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: MB 590-33735/1-A

Matrix: Solid

Analysis Batch: 33742

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 33735

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		10	2.2	ug/Kg		10/26/21 09:51	10/26/21 15:15	1
2-Methylnaphthalene	ND		10	3.1	ug/Kg		10/26/21 09:51	10/26/21 15:15	1
1-Methylnaphthalene	ND		10	2.2	ug/Kg		10/26/21 09:51	10/26/21 15:15	1
Acenaphthylene	ND		10	3.3	ug/Kg		10/26/21 09:51	10/26/21 15:15	1
Acenaphthene	ND		10	2.5	ug/Kg		10/26/21 09:51	10/26/21 15:15	1
Fluorene	ND		10	2.2	ug/Kg		10/26/21 09:51	10/26/21 15:15	1

Eurofins TestAmerica, Spokane

Page 28 of 38 10/28/2021

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: MB 590-33735/1-A

Matrix: Solid

Analysis Batch: 33742

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 590-16195-1

Prep Batch: 33735

· · · · · · · · · · · · · · · · · · ·									
-	MB	MB						-	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenanthrene	ND		10	3.6	ug/Kg		10/26/21 09:51	10/26/21 15:15	1
Anthracene	ND		10	2.0	ug/Kg		10/26/21 09:51	10/26/21 15:15	1
Fluoranthene	ND		10	2.5	ug/Kg		10/26/21 09:51	10/26/21 15:15	1
Pyrene	ND		10	3.8	ug/Kg		10/26/21 09:51	10/26/21 15:15	1
Benzo[a]anthracene	ND		10	2.1	ug/Kg		10/26/21 09:51	10/26/21 15:15	1
Chrysene	ND		10	1.5	ug/Kg		10/26/21 09:51	10/26/21 15:15	1
Benzo[b]fluoranthene	ND		10	3.5	ug/Kg		10/26/21 09:51	10/26/21 15:15	1
Benzo[k]fluoranthene	ND		10	2.5	ug/Kg		10/26/21 09:51	10/26/21 15:15	1
Benzo[a]pyrene	ND		10	4.2	ug/Kg		10/26/21 09:51	10/26/21 15:15	1
Indeno[1,2,3-cd]pyrene	ND		10	3.0	ug/Kg		10/26/21 09:51	10/26/21 15:15	1
Dibenz(a,h)anthracene	ND		10	2.8	ug/Kg		10/26/21 09:51	10/26/21 15:15	1
Benzo[g,h,i]perylene	ND		10	2.4	ug/Kg		10/26/21 09:51	10/26/21 15:15	1
Dibenz(a,h)anthracene	ND		10	2.8	ug/Kg		10/26/21 09:51	10/26/21 15:15	

MB MB

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	63	33 - 120	10/26/21 09:51	10/26/21 15:15	1
2-Fluorobiphenyl (Surr)	70	47 - 120	10/26/21 09:51	10/26/21 15:15	1
p-Terphenyl-d14	96	74 - 120	10/26/21 09:51	10/26/21 15:15	1

Lab Sample ID: LCS 590-33735/2-A

Matrix: Solid

Analysis Batch: 33742

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 33735

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Naphthalene	267	204		ug/Kg		76	45 - 120	
2-Methylnaphthalene	267	223		ug/Kg		83	48 - 120	
1-Methylnaphthalene	267	219		ug/Kg		82	44 - 120	
Acenaphthylene	267	207		ug/Kg		78	52 - 120	
Acenaphthene	267	234		ug/Kg		88	53 - 120	
Fluorene	267	236		ug/Kg		88	55 - 120	
Phenanthrene	267	265		ug/Kg		99	57 - 121	
Anthracene	267	263		ug/Kg		99	60 - 120	
Fluoranthene	267	229		ug/Kg		86	63 - 127	
Pyrene	267	285		ug/Kg		107	61 - 125	
Benzo[a]anthracene	267	266		ug/Kg		100	61 - 131	
Chrysene	267	268		ug/Kg		100	67 - 127	
Benzo[b]fluoranthene	267	236		ug/Kg		89	61 - 127	
Benzo[k]fluoranthene	267	221		ug/Kg		83	63 - 127	
Benzo[a]pyrene	267	223		ug/Kg		84	60 - 126	
Indeno[1,2,3-cd]pyrene	267	266		ug/Kg		100	63 - 128	
Dibenz(a,h)anthracene	267	243		ug/Kg		91	60 - 121	
Benzo[g,h,i]perylene	267	254		ug/Kg		95	58 - 129	

LCS LCS

Surrogate	%Recovery Qualifie	r Limits
Nitrobenzene-d5	76	33 - 120
2-Fluorobiphenyl (Surr)	80	47 - 120
p-Terphenvl-d14	98	74 - 120

Eurofins TestAmerica, Spokane

Job ID: 590-16195-1

Project/Site: Northwest Motorsports - Puyallup

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCSD 590-33735/3-A

Matrix: Solid

Analysis Batch: 33762

Client: Hart & Hickman, PC

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 33735

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Naphthalene	267	211		ug/Kg		79	45 - 120	3	20
2-Methylnaphthalene	267	222		ug/Kg		83	48 - 120	0	20
1-Methylnaphthalene	267	229		ug/Kg		86	44 - 120	4	15
Acenaphthylene	267	224		ug/Kg		84	52 - 120	8	20
Acenaphthene	267	222		ug/Kg		83	53 - 120	5	15
Fluorene	267	223		ug/Kg		84	55 - 120	5	21
Phenanthrene	267	260		ug/Kg		98	57 - 121	2	18
Anthracene	267	267		ug/Kg		100	60 - 120	2	18
Fluoranthene	267	228		ug/Kg		86	63 - 127	0	18
Pyrene	267	285		ug/Kg		107	61 - 125	0	26
Benzo[a]anthracene	267	265		ug/Kg		99	61 - 131	0	16
Chrysene	267	263		ug/Kg		99	67 - 127	2	15
Benzo[b]fluoranthene	267	237		ug/Kg		89	61 - 127	0	16
Benzo[k]fluoranthene	267	238		ug/Kg		89	63 - 127	7	16
Benzo[a]pyrene	267	230		ug/Kg		86	60 - 126	3	20
Indeno[1,2,3-cd]pyrene	267	236		ug/Kg		89	63 - 128	12	18
Dibenz(a,h)anthracene	267	212		ug/Kg		80	60 - 121	14	18

267

228

ug/Kg

LCSD LCSD

Surrogate	%Recovery Qualified	r Limits
Nitrobenzene-d5	77	33 - 120
2-Fluorobiphenyl (Surr)	81	47 - 120
p-Terphenyl-d14	97	74 - 120

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

MR MR

Lab Sample ID: MB 590-33761/1-A

Matrix: Solid

Benzo[g,h,i]perylene

Analysis Batch: 33769

Client Sample ID: Method Blank

58 - 129

Prep Type: Total/NA

Prep Batch: 33761

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		10	4.2	mg/Kg		10/27/21 10:00	10/27/21 13:34	1
Residual Range Organics (RRO) (C25-C36)	ND		25	5.0	mg/Kg		10/27/21 10:00	10/27/21 13:34	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	93		50 - 150	10/27/21 10:00	10/27/21 13:34	1
n-Triacontane-d62	104		50 - 150	10/27/21 10:00	10/27/21 13:34	1

Lab Sample ID: LCS 590-33761/2-A

Matrix: Solid

Analysis Batch: 33769

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 33761

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Diesel Range Organics (DRO)	66.7	62.7		mg/Kg		94	50 - 150
(C10-C25)							
Residual Range Organics (RRO)	66.7	71.0		mg/Kg		107	50 - 150
(C25-C36)							

Eurofins TestAmerica, Spokane

Page 30 of 38

17

QC Sample Results

Client: Hart & Hickman, PC Job ID: 590-16195-1

Project/Site: Northwest Motorsports - Puyallup

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: LCS 590-33761/2-A

Matrix: Solid

Analysis Batch: 33769

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 33761

Lab Sample ID: 590-16195-2 DU

Matrix: Solid

Analysis Batch: 33769

Client Sample ID: SB-2 (4-5) Prep Type: Total/NA

Prep Batch: 33761

DU DU RPD Sample Sample Analyte Result Qualifier Result Qualifier Unit RPD Limit <u>~</u> Diesel Range Organics (DRO) ND ND mg/Kg NC 40 (C10-C25) Residual Range Organics (RRO) ND ND NC 40 mg/Kg ₩ (C25-C36)

DU DU

Surrogate	%Recovery G	Qualifier	Limits
o-Terphenyl	91		50 - 150
n-Triacontane-d62	103		50 - 150

n: 33761 5

7

8

3

11

4 0

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-1 (2-3)

Date Collected: 10/22/21 10:35

Lab Sample ID: 590-16195-1

Matrix: Solid

Date Received: 10/25/21 11:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			33755	10/26/21 15:55	KBZ	TAL SPK

Client Sample ID: SB-1 (2-3)

Date Collected: 10/22/21 10:35 Date Received: 10/25/21 11:00

Lab Sample ID: 590-16195-1

Matrix: Solid Percent Solids: 88.6

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.214 g	10 mL	33778	10/28/21 09:19	JSP	TAL SPK
Total/NA	Analysis	8260D		1	0.86 mL	43 mL	33784	10/28/21 12:49	JSP	TAL SPK
Total/NA	Prep	5035			5.214 g	10 mL	33778	10/28/21 09:19	JSP	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	0.86 mL	43 mL	33783	10/28/21 12:49	JSP	TAL SPK
Total/NA	Prep	3550C			15.16 g	2 mL	33735	10/26/21 09:51	KBZ	TAL SPK
Total/NA	Analysis	8270E SIM		10			33742	10/26/21 17:40	NMI	TAL SPK
Total/NA	Prep	3550C			15.59 g	5 mL	33761	10/27/21 10:00	KBZ	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			33769	10/27/21 14:14	REA	TAL SPK

Client Sample ID: SB-2 (4-5)

Date Collected: 10/22/21 12:45

Date Received: 10/25/21 11:00

Lab Sample ID: 590-16195-2

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			33755	10/26/21 15:55	KBZ	TAL SPK

Client Sample ID: SB-2 (4-5)

Date Collected: 10/22/21 12:45

Date Received: 10/25/21 11:00

Lab Sample ID: 590-16195-2 **Matrix: Solid**

Percent Solids: 69.9

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.038 g	10 mL	33778	10/28/21 09:19	JSP	TAL SPK
Total/NA	Analysis	8260D		1	0.86 mL	43 mL	33784	10/28/21 13:31	JSP	TAL SPK
Total/NA	Prep	5035			4.038 g	10 mL	33778	10/28/21 09:19	JSP	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	0.86 mL	43 mL	33783	10/28/21 13:31	JSP	TAL SPK
Total/NA	Prep	3550C			15.18 g	2 mL	33735	10/26/21 09:51	KBZ	TAL SPK
Total/NA	Analysis	8270E SIM		1			33742	10/26/21 18:04	NMI	TAL SPK
Total/NA	Prep	3550C			15.11 g	5 mL	33761	10/27/21 10:00	KBZ	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			33769	10/27/21 14:34	REA	TAL SPK

Client Sample ID: SB-3 (2-3)

Date Collected: 10/22/21 13:30

Date Received: 10/25/21 11:00

Lab Sample	ID:	590-16	195-3	

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			33755	10/26/21 15:55	KBZ	TAL SPK

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-3 (2-3)

Date Collected: 10/22/21 13:30 Date Received: 10/25/21 11:00

Lab Sample ID: 590-16195-3

Matrix: Solid

Percent Solids: 90.5

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.945 g	10 mL	33778	10/28/21 09:19	JSP	TAL SPK
Total/NA	Analysis	8260D		1	0.86 mL	43 mL	33784	10/28/21 14:56	JSP	TAL SPK
Total/NA	Prep	5035			4.945 g	10 mL	33778	10/28/21 09:19	JSP	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	0.86 mL	43 mL	33783	10/28/21 14:56	JSP	TAL SPK
Total/NA	Prep	3550C			15.61 g	2 mL	33735	10/26/21 09:51	KBZ	TAL SPK
Total/NA	Analysis	8270E SIM		1			33742	10/26/21 18:28	NMI	TAL SPK
Total/NA	Prep	3550C			15.55 g	5 mL	33761	10/27/21 10:00	KBZ	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			33769	10/27/21 15:14	REA	TAL SPK

Client Sample ID: SB-4 (2-3)

Date Collected: 10/22/21 14:15 Date Received: 10/25/21 11:00

Lab Sample ID: 590-16195-4

Matrix: Solid

Batch Batch Dil Initial Batch Final Prepared Method or Analyzed **Prep Type** Type Run **Factor** Amount **Amount** Number Analyst Lab Total/NA Analysis Moisture 33755 10/26/21 15:55 KBZ TAL SPK

Client Sample ID: SB-4 (2-3)

Date Collected: 10/22/21 14:15 Date Received: 10/25/21 11:00

Lab Sample ID: 590-16195-4

Matrix: Solid Percent Solids: 86.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.844 g	10 mL	33778	10/28/21 09:19	JSP	TAL SPK
Total/NA	Analysis	8260D		1	0.86 mL	43 mL	33784	10/28/21 15:17	JSP	TAL SPK
Total/NA	Prep	5035			4.844 g	10 mL	33778	10/28/21 09:19	JSP	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	0.86 mL	43 mL	33783	10/28/21 15:17	JSP	TAL SPK
Total/NA	Prep	3550C			15.62 g	2 mL	33735	10/26/21 09:51	KBZ	TAL SPK
Total/NA	Analysis	8270E SIM		1			33742	10/26/21 18:52	NMI	TAL SPK
Total/NA	Prep	3550C			15.47 g	5 mL	33761	10/27/21 10:00	KBZ	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			33769	10/27/21 15:34	REA	TAL SPK

Client Sample ID: SB-5 (1-2)

Date Collected: 10/22/21 15:00 Date Received: 10/25/21 11:00

Lab Sample ID: 590-16195-5

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			33755	10/26/21 15:55	KBZ	TAL SPK

Client Sample ID: SB-5 (1-2)

Date Collected: 10/22/21 15:00

Lab Sample ID: 590-16195-5

Matrix: Solid Date Received: 10/25/21 11:00 Percent Solids: 88.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.053 g	10 mL	33778	10/28/21 09:19	JSP	TAL SPK
Total/NA	Analysis	8260D		1	0.86 mL	43 mL	33784	10/28/21 15:38	JSP	TAL SPK
Total/NA	Prep	5035			5.053 g	10 mL	33778	10/28/21 09:19	JSP	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	0.86 mL	43 mL	33783	10/28/21 15:38	JSP	TAL SPK

Eurofins TestAmerica, Spokane

Lab Chronicle

Client: Hart & Hickman, PC Job ID: 590-16195-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-5 (1-2)

Date Collected: 10/22/21 15:00 Date Received: 10/25/21 11:00 Lab Sample ID: 590-16195-5

Matrix: Solid

Percent Solids: 88.0

Prep Type Total/NA Total/NA	Batch Type Prep Analysis	Batch Method 3550C 8270E SIM	Run	Dil Factor	Amount 15.36 g	Final Amount 2 mL	Batch Number 33735 33742	Prepared or Analyzed 10/26/21 09:51 10/26/21 19:16	Analyst KBZ NMI	Lab TAL SPK TAL SPK
Total/NA Total/NA	Prep Analysis	3550C NWTPH-Dx		10	15.49 g	5 mL	33761 33769	10/27/21 10:00 10/28/21 07:42		TAL SPK TAL SPK

Client Sample ID: Trip Blank

Date Collected: 10/22/21 10:00

Lab Sample ID: 590-16195-6

Matrix: Solid

Date Received: 10/25/21 11:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			10.31 g	10 mL	33778	10/28/21 09:19	JSP	TAL SPK
Total/NA	Analysis	8260D		1	0.86 mL	43 mL	33784	10/28/21 15:59	JSP	TAL SPK
Total/NA	Prep	5035			10.31 g	10 mL	33778	10/28/21 09:19	JSP	TAL SPK
Total/NA	Analysis	NWTPH-Gx		1	0.86 mL	43 mL	33783	10/28/21 15:59	JSP	TAL SPK

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

2

Eurofins TestAmerica, Spokane

Accreditation/Certification Summary

Client: Hart & Hickman, PC Job ID: 590-16195-1

Project/Site: Northwest Motorsports - Puyallup

Laboratory: Eurofins TestAmerica, Spokane

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		Program	Identification Number	Expiration Date
Washington		State	C569	01-06-22
The following analyte the agency does not Analysis Method		eport, but the laboratory is	not certified by the governing authority. Analyte	This list may include analytes for which
Moisture	Frep Metriod	Solid	Percent Moisture	
			Percent Moisture	
Moisture		Solid	Percent Solids	
NWTPH-Dx	3550C	Solid	Residual Range Organics (R	RO) (C25-C36)

Method Summary

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	TAL SPK
NWTPH-Gx	Northwest - Volatile Petroleum Products (GC/MS)	NWTPH	TAL SPK
8270E SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	TAL SPK
NWTPH-Dx	Northwest - Semi-Volatile Petroleum Products (GC)	NWTPH	TAL SPK
Moisture	Percent Moisture	EPA	TAL SPK
3550C	Ultrasonic Extraction	SW846	TAL SPK
5035	Closed System Purge and Trap	SW846	TAL SPK

Protocol References:

EPA = US Environmental Protection Agency

NWTPH = Northwest Total Petroleum Hydrocarbon

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Job ID: 590-16195-1

3

4

5

8

3

10

11

19

Eurofins TestAmerica, Spokane

11922 East 1st Ave Spokane. WA 99206

Chain of Custody Record

eurofins

Environment Testing America

Phone: 509-924-9200 Fax: 509-924-9290 Carrier Tracking No(s): COC No: Adam Mithele Client Information Arrington, Randee E 590-6947-2037.1 Client Contact: State of Origin: Carlin Slusher Randee.Arrington@Eurofinset.com Page 1 of 1 Company: Hart & Hickman, PC **Analysis Requested** Address: Due Date Requested: Preservation Codes: 3921 Sunset Ridge Rd Suite 301 A - HCL M - Hexane TAT Requested (days): B - NaOH Raleigh C - Zn Acetate O - AsNaO2 State, Zip D - Nitric Acid P - Na204S NC, 27607 Compliance Project: A Yes A No E - NaHSO4 Q - Na2SO3 F - MeOH R - Na2S2O3 Phone: G - Amchlor S - H2SO4 919-723-2517(Tel) Purchase Order not required T - TSP Dodecahydrate H - Ascorbic Acid WO #: Email I - Ice U - Acetone V - MCAA cslusher@harthickman.com J - DI Water 8260C - Standard Analyte List K - EDTA W - pH 4-5 L - EDA Z - other (specify) Northwest MotorSports - Puyallup 59002274 Gx by C SIM, NWTPH_Dx SSOW#: Other ō NWTPH Matrix Sample NWTPH_Gx (W=water, Type S=solid. 8260D, (C=comp, Sample O=waste/oil. Sample Identification Sample Date Time G=grab) | BT=TBsue, A=Ab) Special Instructions/Note: Preservation Code: 15/25/01 1035 Solid 1245 Solid 1330 Solid Solid 1500 VIV Solid 10/14/2 Solid Χ Solid Solid Solid Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client

Disposal By Lab

Archive For ______ Mont Possible Hazard Identification Non-Hazard Flammable Skin Irritant Poison B Unknown Archive For Deliverable Requested: I, VI, III, IV, Other (specify) Special Instructions/QC Requirements: Empty Kit Relinquished by: Date: Time: Method of Shipment: Received by Date/Time: Company adammidale fed 6x 10/22/21 Relinquished by: Date/Time: Company Received by Relinquished by: Date/Time: Company Received by Custody Seals Intact: Custody Seal No. Cooler Temperature(s) °C and Other Remarks A Yes A No

Page 37 of 38

2005

Ver: 06/08/2**1/0/28/2**021

Client: Hart & Hickman, PC Job Number: 590-16195-1

Login Number: 16195 List Source: Eurofins TestAmerica, Spokane

List Number: 1

Creator: Arrington, Randee E

Creator. Armigton, Randee E		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	False	Not present
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Prepared by: AECOM Seattle, Washington Job No. 60620698 February 4, 2020

Phase I Environmental Site Assessment Northwest Motor Sport (Site #3) 400 and 506 River Road, and 4th St NW Puyallup, Washington

February 4, 2020

Mr. Rick Ford, President/CEO RFJ Automotive Partners Inc. 500 N Central Expressway, Ste 320 Plano, TX 75074

> Phase I Environmental Site Assessment Northwest Motor Sports (Site #3) 400 and 506 River Road Puyallup, WA

Dear Mr. Ford:

This report presents AECOM's Phase I Environmental Site Assessment (ESA) of the Northwest Motor Sports (NWMS) property located at 400 and 506 River Road in Puyallup, Washington (Site #3). The report presents pertinent information obtained by documentary review, a site reconnaissance, as well as our findings regarding environmental conditions of the property. This work was conducted in accordance with our proposal dated December 12, 2019. To facilitate RFJ review of the NW Motorsport portfolio of sites, each site was assigned with a specific site number.

We trust this report meets your current requirements. AECOM appreciates the opportunity to assist you on this project. Please do not hesitate to contact us if you have any questions regarding this report or require additional assistance.

Sincerely,

URS Corporation

Al Thatcher

Senior Environmental Scientist

David Raubvogel,

Senior Geologist, LHG

TABLE OF CONTENTS

1.0	INTR	ODUCTION	1
	1.1	PURPOSE AND SCOPE OF WORK	1
2.0	SITE	LOCATION AND DESCRIPTION	4
	2.1	SITE LOCATION	4
	2.2	SITE DESCRIPTION	4
3.0	TOP	DGRAPHY AND HYDROGEOLOGY	5
	3.1	TOPOGRAPHIC SETTING	5
	3.2	HYDROGEOLOGIC SETTING	5
4.0	CLIE	NT PROVIDED INFORMATION	5
5.0	SITE	HISTORY AND LAND USE	6
	5.1	HISTORICAL RESOURCES	
	5.2	PREVIOUS ENVIRONMENTAL DOCUMENTS	8
		5.2.1 Focused Phase II Subsurface Investigation (Riley Group	
		2011)	8
		5.2.2 Phase I Environmental Site Assessment Report (Partner	
		2013)	8
		5.2.3 Phase I Environmental Site Assessment (Robinson Noble	
		2016)	10
	5.3	INTERVIEWS AND QUESTIONNAIRES	
6.0		OBSERVATIONS	
	6.1	GENERAL CONDITIONS	
	6.2	HAZARDOUS SUBSTANCES AND PETROLEUM PRODUCTS	
	6.1	VEHICLE LIFTS/ HOISTS	
	6.2	POLYCHLORINATED BIPHENYLS (PCB)	12
	6.3	UNDERGROUND AND ABOVEGROUND STORAGE TANKS	
	6.4	SOLID WASTE	
	6.5	UTILITIES	
	6.6	WATER SUPPLY AND MONITORING WELLS	
	6.7	WASTEWATER AND STORMWATER	
- ^	6.8	DRAINS, SUMPS AND SEPARATORS	
7.0		HBORING PROPERTIES	
8.0		NCY DATABASE REVIEW AND CONTACTS	
	8.1	AGENCY DATABASE REVIEW	
		8.1.1 Subject Property	
		8.1.2 Adjacent Sites	
	0.0	8.1.3 Surrounding Sites	
	8.2	VAPOR ENCROACHMENT SCREENING	
		8.2.1 Subject Property	
	0.0	8.2.2 Offsite Properties	
0.0	8.3 EIND	AGENCY CONTACTS	
9.0			
	9.1	SUBJECT PROPERTY	
	9.2	PROPERTY VICINITY	20

TABLE OF CONTENTS (Continued)

10.0	CONCLUSIONS	27
	10.1 RECOGNIZED ENVIRONMENTAL CONDITIONS	27
	10.2 CONTROLLED RECOGNIZED ENVIRONMENTAL CONDITIONS	
	10.3 HISTORICAL RECOGNIZED ENVIRONMENTAL CONDITIONS	28
	10.4 DE MINIMIS CONDITIONS	28
11.0	LIMITATIONS	29
	11.1 SITE-RELATED LIMITING CONDITIONS	31
	11.2 DATA GAPS / DATA FAILURE	31
12.0	PROJECT PERSONNEL	32
13.0	DECLARATION OF ENVIRONMENTAL PROFESSIONALS	32
14.0	REFERENCES	34

FIGURES

Figure 1 - Site Location Map

Figure 2 - Site Plan

Figure 3 – Building Details

APPENDICES

Appendix A – Historical Documents

Appendix B – Previous Environmental Report and Other Documents

Appendix C – Photographs

Appendix D – EDR Environmental Database Review Report

1.0 INTRODUCTION

AECOM was retained by RFJ Automotive Partners, Inc. (RFJ) to perform a Phase I Environmental Site Assessment (ESA) of the Northwest Motor Sport (NWMS) property (Site #3), consisting of three parcels located at 400 River Road (Pierce County Parcel #04214-807), 506 River Road (Pierce County Parcel #04214-014), and 4th Street NW (Pierce County Parcel #04214-057) in Puyallup, Washington (subject property). The 3.9-acre property is developed with four buildings occupied by automotive sales, repair and maintenance operations, and offices. This Phase I ESA was conducted in accordance with the scope of work presented in our proposal to RFJ Automotive Partners, Inc. (RFJ) dated December 12, 2019.

1.1 PURPOSE AND SCOPE OF WORK

It is our understanding that RFJ is considering purchase of the subject property and desires a Phase I ESA. The purpose of this Phase I ESA is to provide the client with information for use in evaluating recognized environmental conditions (RECs) associated with the subject property. The scope of work was conducted in general accordance with the ASTM International (ASTM) Standard Practice for Environmental Site Assessments (Standard E1527-13). Adherence to a particular financial or other institution's protocols or guidelines was not requested.

Per the ASTM standard a REC is defined by the ASTM standard as:

 The presence or likely presence of any hazardous substances or petroleum products in, on, or at a property: (1) due to any release to the environment; (2) under conditions indicative of a release to the environment; or (3) under conditions that pose a material threat of a future release to the environment." The term includes hazardous substances or petroleum products even under conditions in compliance with laws.

The ASTM Standard E1527-13 also includes the evaluation of environmental conditions comprising a controlled REC (CREC), a historical REC (HREC), or as a *de minimis* condition.

- HRECs are a past release of any hazardous substances or petroleum products that has occurred in connection with the property and has been addressed to the satisfaction of the applicable regulatory authority or meeting unrestricted use criteria established by a regulatory authority, without subjecting the property to any required controls.
- CRECs are a recognized environmental condition resulting from a past release of hazardous substances or petroleum products that has been addressed to the satisfaction of the applicable regulatory authority, with hazardous substances or petroleum products allowed to remain in place subject to the implementation of required controls.

 De minimis conditions are conditions that generally do not present a material risk of harm to public health or the environment and generally would not be subject of an enforcement action if brought to the attention of the appropriate governmental agency.

The assessment reviewed past and present land use practices and site operations related to the use, storage, generation, manufacture, and disposal of hazardous substances and petroleum products at the subject property.

This assessment was accomplished by, and limited to, a reconnaissance of the site, a drive-by survey of the site vicinity, a review of publicly available records, interviews of pertinent individuals and regulatory and public agency personnel, and a review of pertinent documentation provided by Holland and readily available through AECOM' standard information sources. The site vicinity is defined as the neighboring properties and facilities within an approximate distance of 1/8 mile of the subject property, the nature of which may adversely affect or have affected environmental conditions at the subject property due to the presence and/or release of hazardous substances or petroleum products to the environment.

AECOM's scope of work included the following elements:

- Review of pertinent, available documents and maps concerning local geologic and hydrogeologic conditions
- Review and interpretation of historical aerial photographs of the subject property and the site vicinity for selected years back to the property's first developed use or 1940, whichever is earlier, from readily available sources
- Review and interpretation of available archival topographic maps, historical land use maps (e.g., Metsker, Kroll, and Sanborn Fire Insurance maps) and business directories (e.g., Cole's and Polk's) covering the subject property and the site vicinity for information about historical site land use that could have involved the manufacture, generation, use, storage and disposal of petroleum products and hazardous substances
- Performance of a reconnaissance survey of the subject property to make visual observations of existing site conditions and activities
- Review of current local, state, and federal lists of known or potentially
 hazardous waste sites and landfills, and sites currently under investigation for
 environmental violations located within ASTM-specified search distances of the
 subject property (ranging from the subject property itself up to a 1-mile radius
 depending on the nature of the list reviewed) including:
 - U.S. Environmental Protection Agency (EPA) National Priorities ("Federal Superfund") List
 - EPA Delisted NPL List

- EPA Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) and CERCLIS No Further Remedial Action Planned (NFRAP) Lists
- EPA Emergency Response Notification System (ERNS) List
- EPA Resource Conservation and Recovery Act (RCRA) List
- EPA RCRA Corrective Action (CORRACTS) Treatment, Storage, and Disposal (TSD) Facilities List
- EPA Institutional and Engineering Controls databases
- EPA Brownfields Sites
- State and Tribal lists of hazardous waste sites
- State and Tribal

 equivalent NPL sites list
- State and Tribal-equivalent CERCLIS sites list
- State and Tribal Leaking Underground Storage Tank (LUST) Sites List
- State and Tribal Listing of Registered Underground Storage Tanks (USTs)
- State and Tribal Institutional and Engineering Controls databases
- State and Tribal Voluntary Cleanup Sites
- State and Tribal List of Active Landfills and/or Solid Waste Disposal Sites
- State and Tribal Brownfields Sites
- Interview of the property owner, or other persons identified as knowledgeable
 of the property history, for information about the land use history of the subject
 property and past and present practices regarding use, storage, and disposal
 of petroleum products and hazardous substances
- Request and review information from the report "User" as outlined in the "User's Responsibilities" section of the ASTM E1527–13 guidelines
- Inquire with selected state and local regulatory agencies by submitting a request for information regarding environmental permits, environmental violations or incidents, and status of potential enforcement actions at the property
- Preparation of this report describing the research performed and presenting AECOM' findings about the potential for environmental contamination at the site

The scope of services was limited to that stated in AECOM' proposal and did not include 1) sampling and analysis of environmental media, 2) seismic hazards / structural integrity, 3) environmental compliance, or 4) other activities not expressly described in the written scope of services.

2.0 SITE LOCATION AND DESCRIPTION

2.1 SITE LOCATION

The subject property is located at 400 and 506 River Road, and an unspecified address on 4th Street NW in Puyallup, Washington (Figure 1). The site is bordered to the north by River Road, to the east by 4th Street NW, to the south by a moving and storage operation and to the west by another NWMS vehicle sales and repair operation. Land use in the site vicinity consists primarily of retail, car dealerships, professional service and commercial/consumer service operations such as, retail stores and restaurants.

2.2 SITE DESCRIPTION

The majority of the 3.90-acre property is asphalt paved parking used for the car and truck inventory parking. The main showroom and shops building (400 River Road) and building adjacent to the wash bay are located on the northeastern portion of the property (Figure 2). A small building (Buying Center - 506 River Road) is present on the northwestern portion of the property and another building (Lower Shop building) is present on the southwest portion of the property. A fourth building is located on the southeastern corner of the property and is used to stored vehicle wash chemicals and has an office area. Additional details regarding the subject property parcels is provided below:

Address	Building Occupancy	Parcel	Acres	Building Sq. Feet
400	Main Building –car sales showroom, north & south service shops, offices, parts Wash Bay Adjacent	0420214-807	2.74	17,259 400
	Building			
506	Buying Center - Very small building for customer interactions	0420214-014	0.75	600
4 th St NW	Automobile Repair - Lower Shop	0420214-057	0.41	4,000

Access to the property is from River Road and along 4th St NW which has a driveway ramp to the interior of the site. The Pierce County assessor web site indicates that the property is owned by HILT Investment Holdings.

3.0 TOPOGRAPHY AND HYDROGEOLOGY

3.1 TOPOGRAPHIC SETTING

The subject property is located in the southeast quarter of Section 20, Township 20 North, Range 4 East, Puyallup, Pierce County, Washington. Topographic coverage of the site vicinity is provided by the U.S. Geological Survey, Puyallup, Washington, 7½- minute quadrangle (Figure 1). The property ranges in elevation from approximately 27 to 38 feet above mean sea level (msl) and has a southerly slope. The northern and eastern halves of the property are at street level. The area south of the 400 River Road building has an approximate 10-foot difference in grade (Google Earth, 2020). A retaining wall runs along the eastern portion of the site separating the upper parking areas from the lower parking areas. The area topography slopes generally northeasterly towards the Puyallup River, the nearest surface water body, which is located approximately 1000 feet to the north.

3.2 HYDROGEOLOGIC SETTING

The site is underlain by quaternary alluvium deposited by the Puyallup River. These deposits consist of unconsolidated sand and gravels with silty sand and clay layers. An investigation (CDM 2011) conducted in the property vicinity identified overbank and point bar deposits to approximately 40 feet below ground surface (bgs). This unit is characterized by alternating poorly and well-graded sand layers, with some clay interbeds. A boring completed at the property encountered silty fine to medium sands at approximately 11 feet bgs and gravel was noted to 12 feet the total depth of the boring (The Riley Group, 2011). During removal of a 650-gallon UST, medium to course sand was noted to 10 feet bgs (EMS, 2004).

Groundwater was encountered at approximately 10 feet bgs in a boring completed near the southern property boundary. (The Riley Group, 2011). Groundwater in the subject property vicinity is inferred to flow southwesterly consistent with the site topography. The regional groundwater flow is inferred to be northerly towards the Puyallup River.

4.0 CLIENT PROVIDED INFORMATION

As specified in ASTM E 1527-13, Section 6 - User's Responsibilities, the report User is required to assist with identifying possible RECs. In an effort to meet this requirement, AECOM requested the following information:

- Environmental liens or activity and use limitations associated with the subject property
- Specialized knowledge or experience regarding the subject property
- Commonly known or reasonably ascertainable information regarding the subject property
- Whether the purchase price may reflect a valuation reduction for environmental issues; if applicable
- Reason for performing the Phase I ESA

RFJ did not provide responses to the AAI questionnaire that requested responses on the above information. RFJ reported that they have no knowledge of environmental liens or activity and use limitations (AULs) on the subject property. No AULs or environmental liens related to hazardous materials on the subject property were identified by AECOM' agency database review. RFJ reported they are not aware of specialized information that would indicate the presence of RECs related to the subject property. Northwest Motor Sport provided three reports for our review, as summarized in Section 5.2. RFJ reported they have not compared the proposed purchase price of the property to the fair market value for non-contaminated sites. AECOM understands that the Phase I ESA was conducted because RFJ is considering purchasing the property and desired this assessment to document current environmental conditions.

5.0 SITE HISTORY AND LAND USE

5.1 HISTORICAL RESOURCES

Historical information for the subject property and surrounding properties is based on AECOM's review and analysis of the following historical sources, provided by Environmental Data Resources, Inc. (EDR) of Milford, Connecticut; and Google Earth:

- <u>Aerial photographs</u> dated 1957, 1968, 1972, 1980, 1990, 2006, 2009, 2013 and 2017;
- City Directories for various years between 1959 and 2014.
- Sanborn Fire Insurance maps dated 1927, 1945 and 1964.
- <u>Topographic Maps</u> dated 1897, 1900, 1941, 1944, 1949, 1961, 1968, 1973, 1981, 1994, 1997 and 2014.

Copies of these documents are provided as Appendix A. AECOM also reviewed documents related to the subject property from local sources including from the Pierce County Tax Assessor/ GIS web page. In addition, an interview was conducted with Mr.

Rick Schatz, Facilities Director for NWMS, who has been associated with the subject property for the past nine years, and with Mr. Paul Russell, Parts Director for NWMS.

For purposes of evaluating the information reviewed as detailed in this section of the report, the presence or absence of "significant change(s)" noted during the review refers to changes that are considered to be a change in land use with the potential to adversely affect the environment with regard to the use, generation, storage, or disposal of hazardous substances or petroleum products. Examples of changes termed "significant" include the appearance of a building, the devegetation of land, and/or ownership of property by entities appearing commercial and/or industrial in nature. The general locations of significant historical features summarized below are depicted on Figure 3.

Subject Property

Historical topographic maps indicate the subject property was occupied by one small building and woodlands by the 1940s. By the 1950s, the historical aerial photographs showed the small building was replaced with the main site building located on the central and northeastern portion of the subject property. By the late 1960s, the southwestern portion of the subject property was developed with a large building, a service garage similar in configuration to the present day. In addition, two smaller buildings were developed, one on the northwest side of the subject property, one being located on the 506 River Road parcel, and one small building, an office building, on the southeast side of the subject property, similar in configuration to the present day wash chemical storage area. The 1972 aerial photograph shows the building at 506 River Road was removed, as well as a portion of the main large site building. An addition to the main large site building is noted on the 1990 historical aerial photograph. By the 2013 historical aerial photograph, an additional small building was constructed in the southeast corner of the subject property.

The Pierce County Tax Assessor/ GIS website indicated that the large building located on the central and northeastern portion of the subject property was a showroom, office and two service garages constructed in 1953 with building additions in 1978 and 1986. The service garage on the southwest corner of the subject property is listed to have been built in 1966, with renovations in 1978. The small office building on the northwest side of the subject property is listed as being constructed in 1965, with a basement and storage additions in 1978. There were no listings for the service garage on the southeastern side of the subject property or the small office building on the northwestern side of the subject property.

The subject property address, 400 River Road, was listed in the 1959, 1964 and 1969 historical city directories as being occupied by Grant's Chevrolet Inc. The address was listed 1974, 1979 and 1984 as being occupied by Service Chevrolet Inc. The address was listed in 1989, 1992 and 1995 as Parks Ken Chevrolet-Subaru Inc. The city directories listed the subject property for the year 2000 as being occupied by Bulletproof LLC and Puyallup Chevrolet-Geo-Subaru, 2005 as Bulletproof LLC., Friendly Chevrolet Inc, Greg Carters Puyallup Chevrolet and Ken Parks Chevrolet, in 2010 as Bulletproof LLC., and in 2014 as Bulletproof LLC. and Northwest Motorsport. The Subject property address, 506

River Road, was listed as being occupied by the US Department of Agriculture—Agriculture Stabilization and Conservation, US Department of Agriculture-Farmers, US Department of Natural Resources in 1964 and 1969. The 1974 historical city directories list 506 River Road as being vacant. There were no further listings for 506 River Road.

Off-Site Properties

The historical aerial photographs and topographic maps show the surrounding properties consisting mostly of undeveloped woodlands and fields until the early 1960s. The 1957 aerial photograph shows residential development south of the subject property. By the late 1960s, the adjacent northern, eastern and western properties were developed with commercial properties. The city directories list the adjacent properties to be commercial properties, largely vehicle sales from 1969 to 2014. The adjacent west parcel was first developed in the 1960s and listed as Puyallup Tractors. The adjacent southern parcel was developed in the 1960s and listed as Boush Moving & Storage and Grants Insurance Agency. The adjacent north parcel across River Road is first listed as Puyallup Chrysler Plymouth Auto Dealers in 1974. The 1969 city directory lists River Road Gulf Station at 324 River Road, east of 4th Street NW.

5.2 PREVIOUS ENVIRONMENTAL DOCUMENTS

Previous Phase I ESA reports and a Focused Ph II Subsurface Investigation were provided for our review by NWMS. AECOM inquired with the Washington State Department of Ecology (Ecology), and the City of Puyallup regarding additional environmental information on file, and none was provided. The previous environmental documents are summarized below, and selected portions are provided in Appendix B.

5.2.1 Focused Phase II Subsurface Investigation (Riley Group 2011)

The Riley Group (RG) evaluated the soil and groundwater conditions at an oil/water (OWS) located along the southern property. The RG report indicated that a Phase I ESA had been recently completed by Adapt Engineering (Adapt) and Adapt indicated that a feed line to the OWS may have leaked and was a possible risk to soil and groundwater. Although it was later determined that the line connection was intact. RG performed a limited Phase II that included one boring, SP1 advanced to a total depth of 12 feet bgs immediately downgradient of the OWS. Two soil samples and a grab groundwater sample were collected from the boring. Groundwater was encountered approximately 10 to 11 feet bgs in the borehole. No petroleum odors or staining were noted in the soils and the two soil samples (collected at 4 and 12 feet bgs) analyzed did not detect gasoline-range, diesel-, and oil-range total petroleum hydrocarbons in addition to benzene, toluene, ethylbenzene and totally xylenes (BTEX), or select volatile organic compounds (VOCs). None of the analytes were detected in the one groundwater sample.

5.2.2 Phase I Environmental Site Assessment Report (Partner 2013)

A 2013 Phase I ESA conducted by Partner indicated that the subject property had been vacant land until 1953, at which point the property was developed with a car dealership.

Since circa 1953, the subject property has continued to be occupied by automotive dealerships. At the time of this Phase I report, the subject property was reported by Partner as surrounded by current or former automotive dealerships to the north, east, and west, as well as Boush Moving & Storage to the south.

Partner observed circular cut-outs and concrete patches indicative of former in-ground hydraulic lifts in the current service bays. The lifts were purported to be removed in 1987 but one active in-ground hoist was located in the southernmost service bay. A 2003 Phase II Environmental Site Assessment investigation performed by Encore Environmental Consortium (Encore) included advancement of 11 soil borings in this area. These samples were tested for diesel- and gasoline-range total petroleum hydrocarbons. A total of 18 borings were advanced on the subject property as part of this investigation. Soil borings were also completed near the assumed location of a former gasoline UST, a closed-in-place heating-oil UST, and near the east property boundary. Two borings were placed near a waste-oil UST, and three were drilled near storm drains.

The soil analytical results indicated that various petroleum hydrocarbons and VOCs exceeded applicable Washington State Model Toxic Control Act (MTCA) cleanup levels; xylenes near the former gasoline UST; and gasoline and diesel range near the waste oil UST. No contamination was reported in the groundwater samples. The waste-oil tank was subsequently decommissioned and removed, with confirmation soil sampling results confirming the contamination was eliminated. A no-further-action (NFA) was then issued by the Tacoma-Pierce County Health Department.

Previous reports referenced from 2003 stated there was one active in-ground hydraulic lift housed in the southern-most service bay area that still contained hydraulic fluid. Partner stated that the previous consultant had recommended draining and removing the active lift, but Partner was unable to confirm whether this action properly took place through available documentation. This lift was not observed during Partner's site visit. The report indicated that the gasoline UST was removed in 1996, and two generations of waste oil USTs were removed from the same location, the first in 1987 and second in 2004. The heating oil UST was closed in place.

The Partner Phase I ESA reported two RECs, and an additional historical REC

- The lack of PCB analytical testing from the area near the former in-ground hydraulic lifts.
- The potential continued presence of the in-ground hydraulic lift located in the southern-most auto service bay area. Its removal was recommended in 2003, Partner was unable to locate documentation detailing removal and confirmation sampling. During preparation of this current AECOM Phase I ESA, records from April 2004 of the decommissioning of this hydraulic lift were located and are detailed in Section 8.3.

 A historic gasoline, heating oil, and two waste oil tanks located on the subject property are considered historical RECs, as there was documented removal and closure of each tank with confirmation sampling and soil remediation analytical results indicating proper regulatory closure.

5.2.3 Phase I Environmental Site Assessment (Robinson Noble 2016)

The 2016 Phase I ESA conducted at the property by Robinson Noble reported one REC at the subject property relating to potential soil and groundwater contamination from an emptied combination diesel and gasoline UST located on the southern adjacent property (Boush Moving & Storage). This adjacent property is inferred upgradient from the subject property, so if contamination did exist from the UST it could potentially migrate to the subject property.

The Robinson Noble Phase I report summarized the 2003 Phase II ESA performed by Encore based on the description from the Partner Phase I ESA (2013). The report indicated that since the xylene impacted soils at the former gasoline UST had been excavated in 2004 and approximately 26 tons of impacted soils were removed and subsequent soil sampling were below cleanup levels, this area was considered to represent a low risk. It should be noted that Robinson Noble and AECOM were unable to acquire the actual 2003 Encore Phase II report for review. This represents a data gap.

5.3 INTERVIEWS AND QUESTIONNAIRES

Representatives of the property owners and occupant were interviewed by AECOM. A Phase I ESA Questionnaire regarding the environmental conditions and current operations for the subject property, with respect to hazardous substances and petroleum products was completed by representatives of the parcels owned by HILT Investment Holdings, LLC. The property owner representatives reported that the property was previously occupied by Friendly Chevrolet, for an unknown period of time. They are not aware of historic releases or any soil or groundwater contamination associated with hazardous substances or petroleum products at the property, and not aware of environmental liens relating to violations of environmental laws. Hazardous substances or petroleum products are stored onsite, and hazardous wastes are not currently generated. The representatives reported the NWMS facility has occupied this location since 2011, and they are not aware of septic tanks or water supply wells currently or historically present on their property. Details of information from the property owner representatives are provided throughout the report.

6.0 SITE OBSERVATIONS

Messrs. Al Thatcher and Anders Utter of AECOM's Seattle, Washington office visited the subject property on December 20, 2019 and was accompanied for portions of the site visit

by Mr. Rick Schatz and Mr. Paul Russell of NWMS. Messrs. Schatz and Russell provided current and historic operations information during interviews. Site-related limiting conditions encountered during this assessment are summarized in Section 11.1. Photographs taken during the site visit are provided in Appendix C. The site visit methodology consisted of walking accessible areas of the subject property, the property perimeter, and viewing publicly accessible portions of the adjacent / surrounding area. The following sections summarize the results of the site visit.

6.1 GENERAL CONDITIONS

The subject property consists of three parcels located at 400 (2.74 acres) and 506 (0.75 acres) River Road, and an unnumbered parcel on 4th St NW (0.41 acre), that are owned by HILT. The majority of the property is covered by paved parking. The approximately 17,000 SF two-story main building and the 600 SF Buying Center are situated on the north portion of the property; the approximately 4,000 SF one-story lower shop building is in the southwest portion of the property; and a 300 SF two-story wash bay is present on the southeast portion of the property (Figure 2).

The main building includes a customer showroom, north and south vehicle service repair/shop areas, office spaces and a parts room (Figure 3); and the southwest building is primarily occupied by vehicle repair bays and a tire bay (Figure 2). The Buying Center building is reportedly occupied by office area, and the building adjacent to the covered vehicle wash bay is used for storage of wash bay chemicals and as office space and meeting room. The buildings are reportedly heated by natural gas heaters, some roof-mounted and some ceiling mounted units.

6.2 HAZARDOUS SUBSTANCES AND PETROLEUM PRODUCTS

Various automotive related hazardous substances and petroleum products were observed in all buildings except the Buying Center building, including motor oil, coolant, automatic transmission fluid (ATF), parts washer solvent, vehicle washing chemicals, windshield washer fluid and brake fluid (Figures 2 and 3). The largest volumes of new chemicals were stored in aboveground storage tanks (ASTs) as detailed in Section 6.3, and the next greatest volume consisted of vehicle washing chemicals stored in 55-gallon drums in the southeast corner building.

Waste fluids, such as used oil, were stored in ASTs and in 55-gallon drums. One 55-gallon drum reportedly containing used coolant was observed in the southwest corner of the north shop. Numerous reportedly empty 55-gallon drums formerly containing vehicle undercoat were observed stacked on the southwest corner of the property (Figure 2).

The southeast corner building currently houses the vehicle wash chemicals used at the adjacent wash bay, a covered area of pavement utilized for washing vehicles. Vehicle engines are reportedly not washed. A portion of the concrete floor in the southeast corner building was observed to be deeply etched down to and around the aggregate of the concrete, apparently from releases of the vehicle washing chemicals.

The condition of the concrete floors in the remaining chemical use and storage areas was generally good to fair, with some cracks and expansion joints that could provide a pathway into the subsurface soils. However, staining was not observed that would have indicated significant chronic releases of hazardous materials/petroleum products or wastes. Generalized staining was observed that appeared typical for buildings the vintage of those on the subject property.

An accumulation of 55- and 25-gallon steel drums was observed on the southwest portion of the subject property, reportedly drums that formerly contained vehicle undercoat, from a historic vehicle undercoating operation that took place in the tire bay (north) portion of the lower shop. Staining or sheen was not observed on the pavement around these drums, and the undercoating operation reportedly stopped two years ago. Historic releases of chemicals from the vehicle maintenance and repair operations were not reported.

Hazardous wastes generation or storage was not observed or reported. Parts washing solvent utilized in two onsite parts washers uses an aqueous-based solvent. The parts washer solvent is changed out periodically by Emerald Services, and the spent solvent transported offsite. Used automobile batteries and tires are returned to the providers of new batteries and tires.

6.3 VEHICLE LIFTS/ HOISTS

Vehicle service hoists are currently all aboveground, and each equipped with approximately 3-gallon reservoirs of hydraulic fluid. Based on the apparent age of these hoists, the potential is low for the fluid to contain PCBs, and evidence of significant releases of the hydraulic fluid were not observed.

Numerous patched areas were noted on the concrete floor in the north and south shop areas (Figure 3) which appear to be former in-ground vehicle hoists locations. In ground hydraulic hoist systems were noted in the previous reports as summarized in Section 5.2, and documentation included the removal of this equipment and assessment of subsurface conditions.

6.4 POLYCHLORINATED BIPHENYLS (PCB)

Fluid-filled transformers were not observed on the subject property. Although some electric utilities around the property are aboveground, the closest fluid-filled transformers were observed on a pole along River Road near the northwest corner of the property, and apparently outside the subject property, and are believed to be owned by the electric utility. Hydraulic fluid associated with vehicle hoists is discussed in Section 6.1.

AECOM did not note additional equipment suspect of being PCB-containing, such as hydraulic elevators.

6.5 UNDERGROUND AND ABOVEGROUND STORAGE TANKS

No USTs are presently known to remain at the property, and no indications of USTs such as vent or fill pipes were observed during our walkthrough. Seven ASTs were observed at the subject property as shown on Figures 2 and 3, including:

- North Shop Area Two new oil ASTs (465- and 250-gallon capacity; and one 500-gallon used oil AST;
- South Shop Area two 200-gallon ASTs containing new oil; and
- Lower Shop Building two approximately 150-gallon ASTs are located in the south end of the building in a separate room adjacent to the south of vehicle service Bay 19.

The floor in the area of the tanks had various degrees of oily staining and residue, sometimes extending to areas of the floor not accessible, e.g. behind the ASTs.

Based on the existing site information, four former USTs were previously in use at the property at the locations shown on Figure 2. Two generations of waste oil tanks (reportedly 1000 and 500 gallon) were present at the same location and both have been removed. A 5,000-gallon gasoline UST was removed in 1996. Information regarding the removals was summarized in Section 5.2. A 500-gallon heating oil UST located near the southeast corner of the showroom building was apparently closed-in-place.

Two capped pipes in the configuration of heating fuel oil UST supply and return pipes were observed in the basement level along the main building interior west wall, likely associated with the closed in place heating oil UST. The furnace in the current boiler room was natural gas-fired.

6.6 SOLID WASTE

Solid waste generated onsite is reportedly primarily cardboard, paper and plastic packaging, and includes some food waste. Solid waste is accumulated in several dumpsters observed on the property, and reportedly transported for offsite disposal by Waste Management. AECOM did not observe staining on the pavement around the dumpsters that would have indicated significant releases of chemicals to the subject property.

6.7 UTILITIES

Electrical service is provided by Pacific Power, and natural gas is provided by Puget Sound Energy. Potable water supply and sanitary and storm sewer services are reportedly provided by the City of Puyallup.

6.8 WATER SUPPLY AND MONITORING WELLS

AECOM did not observe, nor were water supply or monitoring wells reported, at the subject property.

6.9 WASTEWATER AND STORMWATER

Process wastewater currently generated at the subject property is primarily wash water generated by the vehicle wash operation on the southeast portion of the property (Figure 2). An aboveground oil-water separator (OWS) is present in a shed located adjacent west of the covered vehicle wash area. Two catch basins were observed in this area, one under the wash bay cover, the other adjacent to the southwest corner of the covered area. The catch basin to the southwest was observed to have two hoses running beneath the manhole cover, an apparent sump pump in the catch basin vault, and a hand cartmounted pump used for pumping the wash water up to the municipal sewer system on 4th Street NW. These features are located beneath the south end of the covered wash area. The wastewater is reportedly pumped from this manhole to the east to a catch basin along 4th Street NW, and the hand cart-mounted pump is use during precipitation events when the sump pump in the manhole cannot keep up with the volume flowing. Connection of the OWS to the stormwater system was not confirmed. The separator was observed to have apparent coalescing plates and is reportedly pumped-out by a vendor for offsite disposal of the contents, on an as-needed basis. A copy of an invoice was provided for our review, from Emerald Services, Inc. dated November 4, 2019 for pumping out the oil-water separator, and disposal of oily waste.

Most of the precipitation that reaches the subject property discharges to stormwater catch basins in paved areas at the property. These catch basins reportedly discharge to the City of Puyallup municipal sewer system in 4th St NW. One stormwater catch basin was observed adjacent to the southeast corner of the main building and was reported to discharge into soils to the south of the drain.

One additional grate-covered catch basin/sump was observed in the area beneath the parking deck located along the east side of the building. This catch basin was equipped with a sump pump and piping leading up to the ceiling of this area. It is believed that this sump discharges storm water that makes it into his area, up to the municipal sewer system in 4th St NW.

The subject buildings are equipped with rest rooms generating sanitary sewerage, that discharge to the municipal sewer system.

Although a sheen was noted in some catch basins, AECOM did not observe staining or sheen, or note suspicious odors, that would have indicated significant hazardous substance/ petroleum product discharges in or around the catch basins.

6.10 DRAINS, SUMPS AND SEPARATORS

Other separators or sumps were not observed additional to those mentioned in Section 6.7. Other drains were observed such as in restrooms/showers, however, evidence was not observed that would have indicated discharge of chemicals to the drains.

7.0 NEIGHBORING PROPERTIES

Land use in the site vicinity consists primarily of vehicle sales dealerships, single-family residences, commercial/consumer service operations such as a hotels, restaurants, and retail stores (Figure 2).

A summary of the neighboring properties is provided below:

- North –River Road beyond which is a Key Bank and a Look Larson Motors car dealership
- Northeast the intersection of River Road and 4th Street NW, beyond which is a City of Puyallup storm sewer pump station, a strip mall with consumer service operations, and a parking lot associated with a Fred Meyer department store.
- East 4th St NW beyond which is a Look Larson Motors car dealership.
- South a Boush Moving & Storage facility.
- West buildings and paved parking associated with another Northwest Motor Sport dealership.

The adjacent car dealerships include vehicle repair operations similar to those observed in the subject property. Other current adjacent operations were not observed that would have indicated significant potential for releases of hazardous substances or petroleum products to the environment.

8.0 AGENCY DATABASE REVIEW AND CONTACTS

AECOM reviewed databases and contacted agencies to identify potential concerns related to hazardous materials/wastes or petroleum products.

8.1 AGENCY DATABASE REVIEW

In accordance with the scope of work and ASTM Standard E1527-13, a search of various governmental databases was conducted. The site-specific environmental database report was reviewed to evaluate whether soil and or groundwater from an on-site and/or off-site source of concern has the potential to impact the subject property. Environmental Data Resources, Inc. (EDR) provided this information from a computerized database search for the subject property and sites within applicable ASTM radii of the subject property (Appendix D). The database abbreviations are provided in the site-specific environmental database report.

Shallow groundwater is inferred to flow southeasterly based on the site topography. For the purpose of addressing the relative hydraulic location of a facility to the subject property, properties located to the east are inferred to be potentially hydraulically upgradient. However, groundwater flow at the subject property cannot be determined

without performing onsite groundwater evaluations. A listing and description of selected databases searched, and number of sites confirmed to be located within the applicable radii are summarized below.

Type of Database	Description of Database	Radius Searched	Number of Sites Identified
	Description of Database		
National	The USEPA NPL identifies uncontrolled	1 mile	0
Priorities List	or abandoned hazardous waste sites.		
(NPL)	To appear on the NPL, sites must have		
	met or surpassed a predetermined		
	hazard ranking system score, been		
	chosen as a state's top priority site,		
	pose a significant health or		
	environmental threat, or be a site where		
	the Environmental Protection Agency		
	(EPA) has determined that remedial action is more cost-effective than		
	removal action.		
Proposed NDI	The USEPA Delisted NPL database	1 mile	0
Proposed NPL List	identifies NPL sites that have been	i iiile	U
LIST	delisted when "no further response is		
	appropriate" under the Superfund		
	program.		
Delisted NPL List	The USEPA Delisted NPL database	1 mile	0
Delisted Will Elist	identifies NPL sites that have been	Titilic	O
	delisted when "no further response is		
	appropriate" under the Superfund		
	program.		
Corrective Action	The USEPA CORRACTS database	1 mile	0
(CORRACTS)	identifies hazardous waste handlers	1 111110	· ·
List	with Resource Conservation &		
	Recovery Act (RCRA) Corrective Action		
	activity.		
Federal	The CERCLIS database identifies	0.5 mile	1
Comprehensive	hazardous waste sites that require		
Environmental	investigation and possible remedial		
Response,	action to mitigate potential negative		
Compensation,	impacts on human health or the		
and Liability	environment. CERCLIS NFRAP sites		
Information	are also included on the new SEMS-		
System	ARCHIVE list.		
(CERCLIS)/No			
Further			
Remedial Action			
Planned			
(NFRAP)			

Type of Database	Description of Database	Radius Searched	Number of Sites Identified
Federal RCRA treatment, storage, or disposal (TSD) sites	RCRA TSD sites	0.5 mile	0
Federal RCRA Generators	RCRA-regulated hazardous waste generator notifier list; large quantity generators (LQG), small quantity generators (SQG), conditionally-exempt generators (VSQG) and facilities that are no longer generators (NonGen) are included in this list.	0.25 mile	1
Federal institutional and engineering controls databases	EPA's listing of sites with engineering or institutional controls in place.	0.5 mile	0
Federal Emergency Response Notification System (ERNS)	EPA's ERNS list contains reported spill records of oil and hazardous substances.	Subject property	0
Federal Brownfields Sites	Sites identified by the EPA as addressed by Targeted Brownfield Assessments and as recipients of Brownfields Cleanup Revolving Loan Fund (BCRLF) cooperative agreements.	0.5 mile	0
Confirmed and Suspected Contaminated Sites List (CSCL)	Washington State hazardous waste site records. State equivalent of CERCLIS.	1 mile	30
Hazardous Sites List (HSL)	Washington State equivalent of NPL	1 mile	5
State solid waste disposal and landfill (SWLF/LF)	State inventory of solid waste disposal and landfill sites.	0.5 mile	1
State leaking underground storage tanks (LUST)	List of information pertaining to all reported LUST.	0.5 mile	10

Type of Database	Description of Database	Radius Searched	Number of Sites Identified
State underground storage tank (UST)	State UST sites listing.	0.25 mile	13
State Institutional Controls	State list of sites with institutional controls.	0.5 mile	7
State Brownfields	Listing of Brownfields included in the CSCSL listings.	0.5 mile	0
Voluntary Cleanup Program (VCP)	Sites that have entered into the Voluntary Cleanup Program or its predecessor Independent Remedial Action Program.	0.5 mile	7
Manufactured Gas Plants	An EDR proprietary listing of manufactured gas plants	1 mile	0
Historical Auto Stations	An EDR proprietary listing of potential gas stations	0.25 mile	1
Historical Cleaners	An EDR proprietary listing of potential dry cleaners	0.25 mile	0
Unmapped "Orphan" sites	Sites that have not been plotted on a map due to lack of sufficient data regarding their exact location within the general area.	-	5

8.1.1 Subject Property

One listing for the subject property address of 400 River Road was identified by the database review report.

• Friendly Chevrolet of Puyallup – EDR Site ID 1 This listing places 400 River Road on the UST, ALLSITES, RCRA NonGen/NLR, FINDS, and ECHO databases. According to information from the EDR report and Ecology's online databases, four USTs have been removed from this facility: a 650-gallon used oil UST which was installed in 1987 and removed in 2004; a 2,000-gallon unleaded gasoline UST and a 550-gallon used oil UST which were installed in 1964 and removed in 1996; and a 650-gallon used oil UST with an unknown installation date which was removed in 2004. These tanks likely include the three USTs that were documented as removed from the site as described in previous reports (Section 5.2), although the tank capacities are not consistent with the prior reports and one closed in place heating oil tank is reported to exist. This facility reportedly generated hazardous waste in 1993, and 1997 through 2000 with no

reported violations. The subject property addresses were not identified on databases of confirmed or suspected contaminated sites.

Listings were not identified for the 506 River Road or other current or historic subject property addresses.

8.1.2 Adjacent Sites

Addresses adjacent to the subject property were identified as follows:

- Korum Family Limited (Former Korum, current Northwest Motor Sport Site #6) EDR Site ID A2, A3 and A5 was identified adjacent to the west of the subject property at 500 and 514 River Road as Korum RV, on the UST, ALLSITES, RCRA NonGen/NLR, Facility Index System (FINDS), and Enforcement and Compliance History Online (ECHO) databases. The EDR report and Ecology's online databases, two USTs one containing unleaded gasoline and one of unreported contents were installed at the subject property in 1964 and removed in 1996. This facility was also identified as a generator of hazardous waste in 1993, and 1998 through 2002 with no reported violations. The site contact was not aware of any previous USTs at the property. In addition, the subject property was identified at 500 River Road rear building as Korum Family Limited (EDR Site IDs B4 and B5) on the RCRA NonGen/NLR, ALLSITES, and MANIFEST databases. This facility was reportedly a generator of hazardous waste in 2005 and 2006 with no reported violations. The subject property was not identified on any contamination-related databases.
- Puyallup City of, Sewage Pump Station EDR ID B4 This site is located at "4th & River Road", across the intersection adjacent to the northeast of the subject property and is listed on the UST and ALLSITES databases. According to the EDR report this property had a UST with unspecified contents closed in 1994. The ALLSITES listing for this property indicate the site in the Toxics program related to an UST.
- Puyallup Chrysler Plymouth River Rd EDR ID A6 and A7 This site is located at 401 River Rd, across River Road adjacent to the north of the subject property, and is listed on the UST and ALLSITES databases, and is listed on the RCRA NonGen/NLR, FINDS, ECHO, UST, and Allsites databases. The EDR report and Ecology's online databases, one UST was installed in 1964 was closed in place in 1996 and one gasoline UST was installed in 1964 was removed in 1996. These dates may not be accurate, as they are the default dates used by Ecology when specific installation and/or removal dates are not known. This facility may have generated hazardous waste in 1994 with no reported violations. The 401 River Road property was observed to be currently occupied by Larson Motors.
- Arthur J Boush Moving & Storage Inc EDR ID 8 This site is located at 820 4th
 Street NW, adjacent to the south of the subject property, and is listed on the UST

and ALLSITES databases. The EDR report and Ecology's online databases, a leaded gasoline UST installed in 1964 was closed in place in 1996. This facility is not identified on any contamination-related databases.

- <u>Landis, Donald EDR Site ID B9</u> This site was listed at 324 River Road, across River Road adjacent to the east across 4th Street NW from the subject property and was identified on the Historic Auto Station database as a "gasoline service station" in 1972.
- <u>Larson Motors EDR Site ID B14</u> This site was listed at 300 River Road, adjacent to the east across 4th Street NW and crossgradient of the subject property, on the UST, ALLSITES, RCRA NonGen / NLR, FINDS, ECHO and MANIFEST DATABASES. The UST listing indicated 5 USTs removed from this property. This facility was not identified on databases of confirmed or suspected contaminated sites.

8.1.3 Surrounding Sites

A total of 189 sites were identified in the environmental database report within the specified search radii of the subject property. Some of these sites appear on multiple regulatory databases, and/or multiple facilities are listed on a single address.

The database review report identified sites within ¼-mile radius, although the majority were not on databases of confirmed or suspected contaminated sites, were inferred down- to cross-gradient from the subject property and/or had a status of "Cleanup Complete" or Final Cleanup report received.

The remaining sites listed in the EDR database report are considered to have a low potential to have impacted environmental conditions at the subject property because of one or more of the following factors: the reported site status, absence of reported release, absence of reported groundwater impact from the reported release, the distance from the subject property, and/or the inferred hydrogeologic cross/downgradient location from the subject property.

Five (5) unmapped "orphan" sites were also identified in the EDR database report. Unmapped orphan sites are facilities/locations that have not been plotted on a map based on lack of sufficient data regarding their exact location within the general area. Some of these sites appear on multiple regulatory databases, and several facilities are listed without an exact address.

Orphan sites were not identified with a distance, location and status that would represent a concern to the subject property.

8.2 VAPOR ENCROACHMENT SCREENING

8.2.1 Subject Property

In order to evaluate the potential migration of hazardous substances or petroleum products in vapor, AECOM conducted a Vapor Encroachment Screening (VES). The purpose of the VES is to determine whether a potential Vapor Encroachment Condition (VEC) exists, likely exists, cannot be ruled out, or can be ruled out because a VEC does not or is not likely to exist. The VES is not an exhaustive screening and is intended to reduce, but not eliminate, uncertainty regarding whether a VEC exists in connection with a property. The VES considered whether known or suspected soil or groundwater contamination was located on the subject property or within search distances of the subject property as specified in ASTM E 2600-10 (ASTM International 2010).

No on-site or adjacent confirmed current sources of vapor encroachment (e.g. volatile organic compound (VOC) contaminated soil and groundwater) were identified by the database review during this assessment. However, automotive repair operations at the subject property may have used degreasers and solvents which if released into the subsurface, could result in a VEC.

8.2.2 Offsite Properties

The environmental database review report was evaluated with the particular focus on the following two types of sites:

- Offsite properties that are impacted by VOCs and/or semi-volatile-organic compounds (SVOCs) and are located within approximately 1,760 feet of the subject property, and
- 2. Offsite properties that are impacted by petroleum hydrocarbons and are located within approximately 530 feet of the subject property.

Sites with VOCs and/or SVOCs contamination were identified within the two categories of sites detailed above. However:

- Many of those sites can be ruled out due to their regulatory status (i.e. regulatory closure has been issued, cleanup is complete), and
- The remaining can be ruled out due to their media impacted (i.e. lack of identified groundwater contamination), the non-volatile nature of the contaminants identified, and/or topographical position from the subject property and/or presence of physical barrier impeding potential migration of vapors to the subject property.

Based on the screening information presented in the preceding sections that documented groundwater contamination at nearby and upgradient properties, it is AECOM's opinion that a potential VEC for the subject property was not indicated.

8.3 AGENCY CONTACTS

In addition to the database list search, AECOM contacted selected state and local regulatory agencies to obtain documents regarding the environmental condition of the subject property and surrounding properties. Presented below is a listing of the various public agencies contacted and a summary of relevant findings:

• Washington State Department of Ecology (Ecology) – AECOM submitted a Public Records Request to Ecology, and reviewed Ecology's web site as described in Section 8.3, The subject property addresses included a 1991 notification of dangerous waste activities for the 400 River Road address from Ken Parks Chevrolet Subaru for solvent (listed as Safety Kleen) and antifreeze. The UST Decommissioning Project report for Friendly Chevrolet at 400 River Road (dated April 5, 2004) was also provided, in addition to documents detailing previous UST tightness testing (August 2000) and retrofit/repair (December 1998). The April 2004 UST decommissioning report included a section covering the decommissioning and removal of the hydraulic lift system located in the third service stall in the southern service area.

An Ecology "Source Control Partnership Site Report for Chevrolet of Puyallup, Inc." dated 2009 was reviewed (Ecology, 2009). The one-page report documented a visit by an Ecology staff member. During the visit, the staff member confirmed that the oil-water separator located at the facility discharged wastewater to the municipal sanitary sewer via a connection in the main building.

One waste manifest on file with Ecology documented that in 1991, the Chevrolet dealer generated hazardous waste in the form of spent parts washer solvent and coolant.

- City of Puyallup AECOM submitted a Public Records Request to the City
 of Puyallup to ascertain whether the city has information on file related to
 building plans and permits for the subject property. Information provided
 included a building plan for the 400 River Road address for Service Chevrolet
 dated August 1978, in addition to numerous constructions permits and basic
 property diagrams showing relative locations of site features. Only one
 document, an April 2003 Puyallup Chevrolet wall sign permit, was provided
 for the 506 River Road address.
- Washington State Department of Ecology AECOM reviewed well logs available from Ecology to assess local hydrology and whether the subject property or adjacent parcels may have monitoring wells present. AECOM identified the presence of twelve boring logs for the subject property, ten of which were installed by Ruby Henderson in August 2003 with the other two installed by NWMS in April 2011. These logs indicate the presence of sand gravel to the maximum explored depth of 20 feet bgs, with groundwater at approximately 18 feet bgs.

- Tacoma-Pierce County Health Department (TPCHD) AECOM submitted a
 Public Records Request to the TPCHD to inquire whether they are aware of
 concerns at the subject property related to hazardous substances or
 petroleum products. At the time of this report AECOM is awaiting notice
 whether TPCHD has information related to the subject property.
- Puyallup Fire Prevention Division AECOM contacted the Fire Inspector's office (FIO) to inquire whether they have records of installation or removal of USTs or ASTs. At the time of this report AECOM is awaiting notice whether FIO has information related to the subject property.
- Pierce County Tax Assessor The Pierce County Tax Assessor web site was reviewed, and a Parcel Information Report was developed for the subject parcel. Information encountered on this report is provided throughout our report.

We have not received responses from all of the agencies contacted as part of this Phase I ESA. Should AECOM obtain additional information that would indicate the potential for a REC on the subject property, these findings would be provided in an addendum to this report.

9.0 FINDINGS

AECOM performed a Phase I ESA of the subject property in general conformance with the scope and limitations of ASTM Practice E1527-13, which meets the requirements of Title 40, Code of Federal Regulations Part 312 and is intended to constitute all appropriate inquiry for purposes of the landowner liability protections. Exceptions to, or deletions from, this practice are described within this report.

Based on the visual observations and information presented in this report, AECOM presents the following findings regarding the NWMS Site #3 property at 400 and 506 River Road, and an unspecified address on 4th Street NW, in Puyallup, Washington.

9.1 SUBJECT PROPERTY

Findings regarding current or past use, storage, handling and/or disposal practices involving hazardous substances/petroleum products at the subject property are summarized below.

• The 400 River Road portion of the subject property was occupied by a small building and woodlands in the 1940s, the earliest resource reviewed illustrating development specific to the property. The main site building consisting of service garages, a car sales showroom and office space was constructed in 1953. Additional structures with offices were constructed in 1965 and 1990, and two additional service garages were built in 1966 and in the early 2010s. The subject property has historically been occupied by car sales and service facilities since the

1950s including Chevrolet, Subaru, Friendly Chevrolet of Puyallup, Bulletproof LLC, and Northwest Motorsport.

The 506 River Road portion of the subject property was listed as occupied by the US Department of Agriculture in the 1960s. By 1970s, the US Department of Agriculture was no longer listed at the address and the building that had been located on the northwestern portion of this parcel was no longer noted on historical aerial photographs.

- Previous reports provided for our review included: A Focused Phase II Subsurface Investigation (Riley Group, 2011), a 2013 Phase I ESA (Partner, 2013), and a 2016 Phase I ESA (Robinson Noble, 2016). Partner identified the lack of PCB testing during the 2011 assessment of the soil conditions near the former inground hydraulic lifts as a REC. They also indicated that the presence of inground hydraulic lifts located in the south service bay area was also a REC. Four UST formerly in use at the site, a gasoline, heating oil, and two waste oil tanks were considered historical RECs, as there is documented removal and closure of each tank with confirmation sampling and soil remediation analytical results indicating proper regulatory closure. The 2016 Phase I ESA (Robinson Noble, 2016) did not identify any on site RECs, but indicated they considered an inferred upgradient diesel/gasoline UST on the southern adjacent property (Boush Moving & Storage) a REC, although no indication of a release was reported. A 2003 Phase II ESA performed by Encore was summarized in the previous ESAs, but AECOM was not able to obtain a copy of this report for an independent assessment of the findings. This represents a data gap.
- The subject property consists of three parcels that are owned by HILT. The majority of the property is covered by paved parking used for vehicle inventory parking. An approximately 17,000 SF two-story main building and a small Buying Center are situated on the north portion of the property; an approximately 4,000 SF lower shop building is on the southwest portion of the property; and an approximately 300 SF building is present on the southeast portion of the property (Figure 2). The main building includes a customer showroom, north and south vehicle service repair/shop areas, office spaces and a parts room (Figure 3); and the southwest building is primarily occupied by vehicle repair bays and a tire bay.
- Documents obtained from Ecology included a 1991 notification of dangerous waste activities for the 400 River Road address for Ken Parks Chevrolet Subaru. The UST Decommissioning Project report for Friendly Chevrolet at 400 River Road (2004) was also provided, in addition to documents detailing previous UST tightness testing (2000) and retrofit/repair (1998). The 2004 UST decommissioning report (EMS, 2004) included a section covering the decommissioning and removal of the two hydraulic lift system located in the third service stall in the southern service area.
- No USTs are presently in use at the subject property. Four former USTs were identified at the property including: two generations of waste oil tanks (reportedly

1000 and 500 gallons) at the same location and both were removed; a 5,000-gallon gasoline UST removed in 1996 and a closed in place 500-gallon heating oil UST (Figure 2). Two capped pipes in the configuration of a heating oil UST supply and return were observed in the basement level of the main building interior west wall. Seven ASTs were observed at the subject property in the North Shop Area, the South Shop Area and the lower shop building. The ASTs contained new and used engine oil and ranged in size from 465 to 150 gallons (Figure 3). Other smaller quantities of hazardous materials were observed throughout the building including: engine coolant; automatic transmission fluid; windshield wash; brake fluid and parts washer solvent, in quantities commensurate with onsite use in motor vehicle repair operations. The floor in the area of the tanks had various degrees of oily staining and residue, however, staining was not observed that would have indicated the potential for significant releases to the subsurface environment.

- Vehicle service bay hoists are currently all aboveground, and each equipped with approximately 3-gallon reservoirs of hydraulic fluid. Based on the apparent age of these hoists, the potential is low for the fluid to contain PCBs, and evidence of significant releases of the hydraulic fluid were not observed. The former in ground hydraulic hoist locations were evident by patches in the floor in the north and south shop areas (Figure 3). A 2004 report (EMS, 2004) documented the removal of 2 hoists in the South Shop as well as the removal of the waste oil tank (Appendix B). The other eleven in ground hoists were reportedly removed in 1987 (Partner 2013). The Phase II investigation conducted in by Encore in 2003 included ten borings in the area of the former hoists (Partner, 2013), and no significant levels of petroleum hydrocarbons were reportedly detected in soil groundwater.
- The majority of precipitation that reaches the subject property discharges to stormwater catch basins observed in paved areas at the property. These catch basins reportedly discharge to the City of Puyallup municipal sewer system in 4th St NW. One stormwater catch basin was observed adjacent to the southeast corner of the main building that is reported to discharge into the subsurface consistent with a dry well. It was also reported that during times of high rainfall, this drain backs up, possibly due to the carrying capacity of the site soils being saturated.

9.2 PROPERTY VICINITY

Findings regarding current or past use, storage, handling and/or disposal practices involving hazardous substances/petroleum products in the subject property vicinity are described below.

 In the 1950s the surrounding parcels were mostly undeveloped, with developed residential properties to the south. By the 1960s the surrounding area was developed with commercial properties. The adjacent properties consisted of vehicle sales from 1969 to 2014. The adjacent west parcel was first developed in the 1960s and was listed as Puyallup Tractors. The adjacent southern parcel was developed in the 1960s and listed as Boush Moving & Storage Inc and Grants Insurance Agency. The adjacent north parcel is first listed as Puyallup Chrysler Plymouth Auto Dealers in 1974. From approximately 1969 to mid-1970s River Road Gulf Station is listed at 324 River Road, adjacent east of the subject property, on the east side of 4th Street NW.

 Database review sites were not indicated to have created a VEC at the subject property.

10.0 CONCLUSIONS

AECOM performed a Phase I ESA at the NWMS Site #3 property at 400 and 506 River Road in Puyallup, Washington, in general conformance with the scope and limitations of ASTM Practice E1527-13.

10.1 RECOGNIZED ENVIRONMENTAL CONDITIONS

The assessment has revealed no evidence of recognized environmental conditions in connection with the subject property, except as described below:

- Historical automotive repair/maintenance operations that have occurred within
 the north, south and lower shops; and vehicle covered wash bay. These
 operations have historically used and stored hazardous chemicals and petroleum
 products as well as generating associated automotive wastes (e.g. used oil and
 coolant, parts washer fluid, spent degreasers, etc.). Inadvertent releases or poor
 waste management may have resulted in impacts to the soil and groundwater
 quality. Historic site uses are collectively considered to be a REC and other
 specific RECs are summarized below.
- In ground hydraulic hoist were formerly in use in the north and south vehicle
 maintenance shops, these former features were evident by patches in the floor.
 Diesel- and gasoline-range total petroleum hydrocarbons were not detected
 during a previous investigation in the vicinity of the hydraulic lifts. It was noted
 that this investigation did not include testing for PCBs (Partner 2013). Therefore,
 potential presence of PCB contamination associated with operation of historical
 hydraulic lifts represents a REC.

Although not a REC, the following represents a potential environmental concern:

- A catch basin located adjacent to the southeast corner of the main building was reportedly a dry well, and at times of extended high precipitation, backs up and the water is pumped to another nearby catch basin.
- Surrounding properties were identified as historically, and some currently, as
 having been occupied by vehicle sales and service operations, including adjacent
 to the east which was listed as a gas station in 1972.

A Phase II investigation should be considered to assess whether the historic site uses have affected the site soil and groundwater quality. The investigation would focus on the auto repair and former in-ground vehicle repair hoists and catch basin/sumps.

10.2 CONTROLLED RECOGNIZED ENVIRONMENTAL CONDITIONS

Based on the above-described activities, no CRECs were identified in connection with the subject property.

10.3 HISTORICAL RECOGNIZED ENVIRONMENTAL CONDITIONS

No HRECs were identified associated with the subject property.

10.4 DE MINIMIS CONDITIONS

The following DMCs were identified during this assessment:

 Staining was observed on floors in several locations in the subject buildings, including in the vehicle service shops, and in the parking areas. Staining in some areas of the building appeared generalized likely from years of incidental smallscale spills associated with vehicle maintenance and repair operations; and the staining in the parking lot appears consistent with incidental drips of motor vehicle fluids associated with years of vehicle parking.

11.0 LIMITATIONS

This Phase I ESA has been prepared for the exclusive use of RFJ in accordance with the Scope of Services described in AECOM's proposal prepared for RFJ dated December 12, 2019. The work conducted by AECOM is limited to the services agreed to with RFJ and no other services beyond those explicitly stated should be inferred or are implied.

This report describes the results of AECOM's Phase I ESA to identify the presence of contamination-related liabilities materially affecting the subject facility and/or property. In the conduct of this assessment, AECOM assessed the presence of such problems within the limits of the established scope of work as described in our proposal.

As with any due diligence assessment, there is a certain degree of dependence upon oral information provided by facility or site representatives, which is not readily verifiable through visual observations or supported by any available written documentation. AECOM shall not be held responsible for conditions or consequences arising from relevant facts that were concealed, withheld, or not fully disclosed by facility or site representatives at the time this assessment was performed. In addition, the findings and opinions expressed in this report are subject to certain conditions and assumptions, which are noted in the report. Any party reviewing the findings of the report must carefully review and consider all such conditions and assumptions.

This report and all field data and notes were gathered and/or prepared by AECOM in accordance with the agreed upon scope of work and generally accepted engineering and scientific practice in effect at the time of AECOM's assessment of the subject property. The statements, findings and opinions contained in this report are only intended to give approximations of the environmental conditions at the subject property.

As specified in the ASTM standard (referred to below as "this practice"), it is incumbent that the client and any other parties who review and rely upon this report understand the following inherent conditions surrounding any Phase I ESA:

- Uncertainty Not Eliminated No ESA can wholly eliminate uncertainty regarding
 the potential for REC in connection with a property. Performance of this practice is
 intended to reduce, but not eliminate, uncertainty regarding the potential for REC
 in connection with a property, and this practice recognizes reasonable limits of
 time and costs. (Section 4.5.1 of the ASTM standard)
- Not Exhaustive "All appropriate inquiry" does not mean an exhaustive assessment of a clean property. There is a point at which the cost of information obtained outweighs the usefulness of the information and, in fact, may be a material detriment to the orderly completion of transactions. One of the purposes of this practice is to identify a balance between the competing goals of limiting the costs and time demands inherent in performing an ESA and the reduction of uncertainty about unknown conditions resulting from additional information. (Section 4.5.2 of the ASTM Standard)

- Comparison with Subsequent Inquiry ESAs must be evaluated based on the
 reasonableness of judgments made at the time and under the circumstances in
 which they were made. Subsequent ESAs should not be considered valid
 standards to judge the appropriateness of any prior assessment based on
 hindsight, new information, use of developing technology or analytical techniques,
 or other factors. (Section 4.5.4 of the ASTM Standard)
- A similar set of inherent limitations exist in cases where the Phase I ESA included a screening-level assessment of vapor migration or vapor encroachment; such an assessment is a required part of a Phase I ESA when the ASTM E1527-13 standard is employed. According to the ASTM E2600-10 Standard Guide for Vapor Encroachment Screening on Property Involved in Real Estate Transactions, the following limitations apply:
- Uncertainty Not Eliminated in Screening No vapor encroachment screen (VES) can wholly eliminate uncertainty regarding the identifications of vapor encroachment conditions (VECs) in connection with the target property (Section 4.5.1).
- Not Exhaustive The guide is not meant to be an exhaustive screening. There is a point at which the cost of information obtained outweighs the usefulness of the information and, in fact, may be a material detriment to the orderly completion of real estate transactions. One of the purposes of this guide is to identify a balance between the competing goals of limiting the costs and time demands inherent in performing a VES and the reduction of uncertainty about unknown conditions resulting from additional information. (Section 4.5.2)
- Comparison with Subsequent Investigations It should not be concluded or assumed that an investigation was not adequate because the investigation did not identify any VECs in connection with a property. The VES must be evaluated based on the reasonableness of judgments made at the time and under the circumstances in which they were made. Subsequent VESs should not be considered valid bases to judge the appropriateness of any prior screening if based on hindsight, new information, use of developing technology or analytical techniques, or similar factors (Section 4.5.4)
- This report was prepared pursuant to an agreement between RFJ and AECOM and is for the exclusive use of the Client. No other party is entitled to rely on the conclusions, observations, specifications, or data contained herein without first obtaining AECOM's written consent and provided any such party signs an AECOM-generated Reliance Letter. A third party's signing of the AECOM Reliance Letter and AECOM's written consent are conditions precedent to any additional use or reliance on this report.
- The passage of time may result in changes in technology, economic conditions, site variations, or regulatory provisions, which would render the report inaccurate.
 Reliance on this report after the date of issuance as an accurate representation of

current site conditions shall be at the user's sole risk, per ASTM standard practice (Section 4.6).

11.1 SITE-RELATED LIMITING CONDITIONS

The following site-specific limitations were encountered during the course of this assessment:

- Access was not provided to Rick's office (upper) level of the southeast corner building, however, the lower level of this building where chemicals are stored was accessed.
- The day of our site visit a record high amount of rainfall occurred, thereby limiting our visual assessment for staining and surface conditions.
- Parked vehicles and stored items around and in the subject buildings limited the visual assessment of the surface conditions.

11.2 DATA GAPS / DATA FAILURE

The following data failure/data gaps were encountered during the course of this assessment:

- As specified in the agreed upon scope of work, a deed history search and
 environmental lien search were not conducted as part of this ESA. However,
 based upon historical data collected from other sources, this data gap is not
 expected to impact the results of this assessment. In addition, the user was not
 aware of environmental liens or activity use limitations (AULs) that have been
 placed on the subject property, and the database review did not identify AULs for
 the subject property addresses.
- Per ASTM, past owners, operators, and occupants of the subject property who are likely to have material information regarding the potential for contamination at the subject property shall be contacted to the extent that they can be identified and that the information likely to be obtained is not duplicative of information already obtained from other sources. AECOM was unable to interview past owners and/or operators at the subject property. However, based upon historical data collected from other sources, this data gap is not expected to represent a significant potential impact to the results of this assessment.
- Per ASTM, Users of the Phase I ESA report will provide specific information they
 may possess such as knowledge of environmental liens or activity and use
 limitations (AULs) on the subject property; any specialized information that would
 indicate the presence of RECs related to the subject property, and whether they
 have not compared the proposed purchase price of the property to the fair market
 value for non-contaminated sites. Northwest Motor Sport provided three reports for
 our review, as summarized in Section 5.2. AECOM did not receive such
 information from RFJ.

Opinions and recommendations presented herein apply to the subject property conditions existing at the time of our investigations and cannot necessarily apply to subject property changes of which AECOM is not aware and has not had the opportunity to evaluate. Changes in the conditions of this property may occur with time due to natural processes or the works of man on the subject property or adjacent properties. Changes in applicable standards may also occur as a result of legislation or the broadening of knowledge. Accordingly, the findings of this report may be invalidated, wholly or in part, by changes beyond our control.

AECOM's objective is to perform our work exercising the customary standard of care, in accordance with the standard for professional services for a national consulting firm at the time these services are provided. It is important to recognize that even the most comprehensive scope of services may fail to detect environmental liability on a particular site. Therefore, AECOM cannot act as insurers and cannot "certify or underwrite" that a site is free of environmental contamination, and no expressed or implied representation or warranty is included or intended in our reports except that our work was performed, within the limits prescribed by our client, in accordance with the customary and professional standard of care described herein.

12.0 PROJECT PERSONNEL

The Phase I ESA reported herein was conducted, and the report prepared, by Mr. Al Thatcher, Sr. Environmental Scientist of the Seattle, Washington office. Technical direction and review was provided by Mr. David Raubvogel, Sr. Geologist of our Seattle office. A brief description of their qualifications is presented below.

Mr. Thatcher has a Bachelor's degree in Natural Resource Studies and more than 35 years of experience working with hazardous / regulated materials, including conducting and managing over 1,000 ESAs, environmental assessments at manufacturing and industrial facilities, automobile repair facilities, power plants, military facilities, scrap yards and undeveloped parcels of land.

Mr. Raubvogel has a Bachelors and a Master's degree in geology and more than 36 years' experience conducting and managing Phase I ESAs and soil/groundwater remedial investigations and remedial actions. He is a Licensed Geologist in Washington and Wyoming.

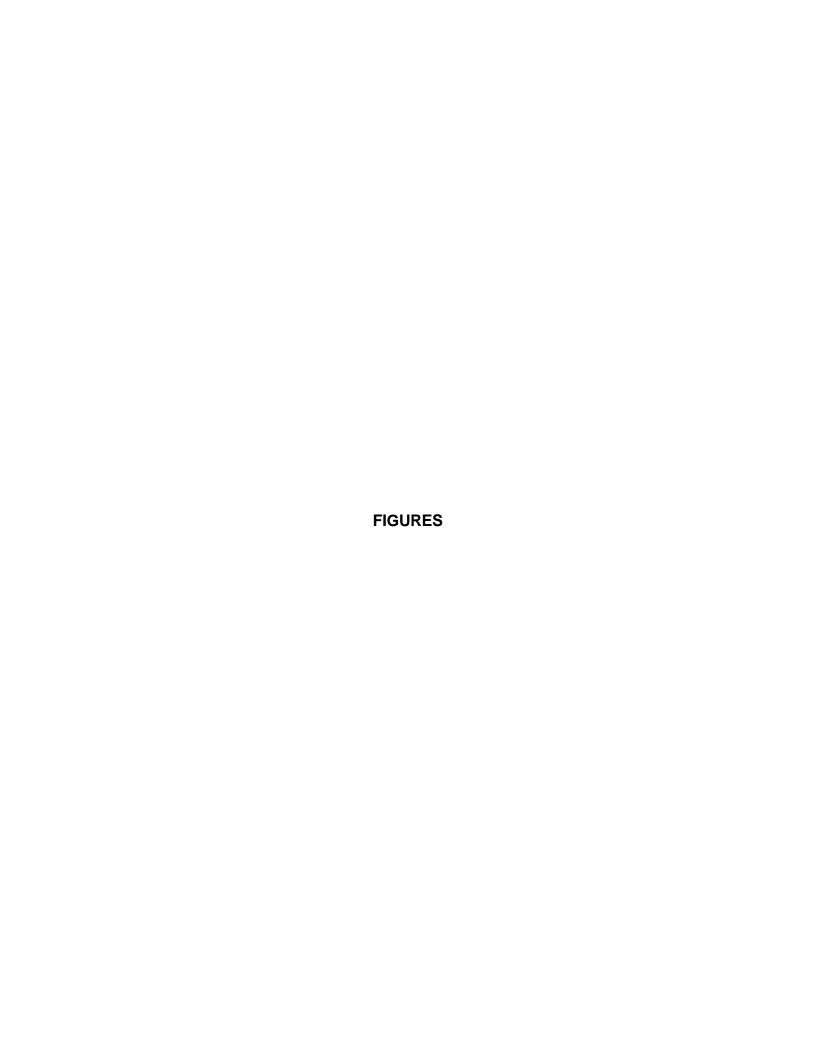
13.0 DECLARATION OF ENVIRONMENTAL PROFESSIONALS

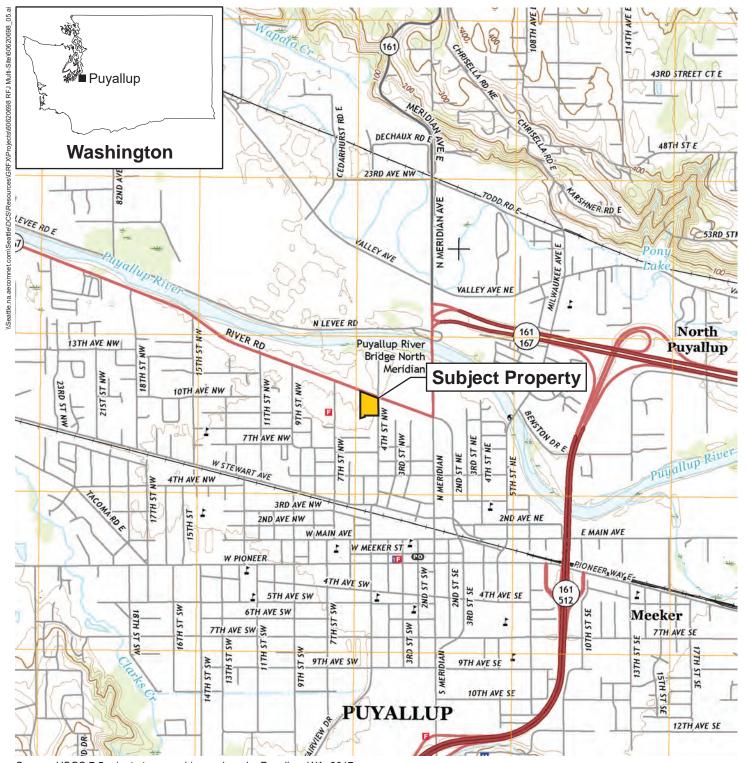
We declare that to the best of our professional knowledge and belief, we meet the definition of Environmental Professional as defined in 40 CFR 312.10. We have the specific qualifications based on education, training, and experience to assess a property

of the nature, history, and setting of the subject property. We have developed and performed all appropriate inquiries in general conformance with the standards and practices set forth in 40 CFR Part 312 subject to the limitations as described in this report and authorized scope of work.

Al Thatcher

Senior Environmental Scientist


David Raubvogel


Senior Geologist, LHG, PG

14.0 REFERENCES

- ASTM International (ASTM), 2013. Standard E1527-13, "Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process."
- CDM, 2011. Remedial Investigation Report, USG Interiors Puyallup Site, Puyallup, Washington. June 13.
- Central Pierce Fire and Rescue, 2019. Public records request completed at: https://centralpiercefire.org/Content.aspx?ID=35
- City of Puyallup Development Services, 2019. Request for public records completed at: https://cityofpuyallup.nextrequest.com/requests/new
- Environmental Data Resources, Inc. (EDR), 2019. *The EDR Aerial Photo Decade Package*, RFJ Site #3, 400 River Road, Puyallup, WA 98371. Inquiry Number: 5909224.8. December 17.
- EDR, 2019a. *The EDR City Directory Abstract,* RFJ Site #3, 400 River Road, Puyallup, WA 98371. Inquiry Number: 5909224.5. December 20.
- EDR, 2019b. *The EDR-Radius Map with Geocheck*, RFJ Site #3, 400 River Road, Puyallup, WA 98371. Inquiry Number: 5909224.2s. December 17.
- EDR, 2019c. *The EDR Certified Sanborn Map Report*, RFJ Site #3, 400 River Road, Puyallup, WA 98371. Inquiry Number: 5909224.3. December 18.
- EDR, 2019d. *Historical Topographic Map Report*, RFJ Site #3, 400 River Road, Puyallup, WA 98371. Inquiry Number: 5909224.4. December 17.
- Environmental Management Services, 2004. UST Decommissioning Project Friendly Chevrolet, 400 River Rd Puyallup, WA. April 5.
- Google Earth. 2019. Aerial Photograph. December 26.
- Partner, 2013. Phase I Environmental Site Assessment, 400 River Road, Puyallup, Washington 98371. November 7.
- Pierce County Assessor-Treasurer electronic Property Information Profile (ePIP) online database: https://epip.co.pierce.wa.us/CFApps/atr/ePIP/search.cfm

- Robinson Noble, 2016. Phase I Environmental Site Assessment, HILT Investment Holdings, LLC, 400 River Road, Puyallup, Washington. September 13.
- Tacoma-Pierce County Health Department, 2019. Public records request completed at: https://www.tpchd.org/i-want-to/request/public-records
- The Riley Group, Inc, 2011. Focused Phase II Subsurface Investigation, NW Motorsport Property, 400 River Road, Puyallup, Washington. April 25.
- Washington State Department of Ecology (Ecology), 2020. Well Log Query. Available from:
 https://appswr.ecology.wa.gov/wellconstruction/map/WCLSWebMap/default.aspx
- Ecology, 2009. Source Control Partnership Site Report for Chevrolet of Puyallup, Inc. April 18.
- Ecology, 2020. Online database search conducted at http://www.ecy.wa.gov/fs/
- United Sates Geological Survey (USGS), 2014. 7.5-Minute Series Topographical Map, 1:24,000 scale, Puyallup, Washington Quadrangle.

Source: USGS 7.5-minute topographic quadrangle, Puyallup, WA, 2017

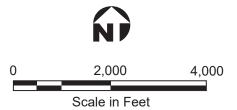
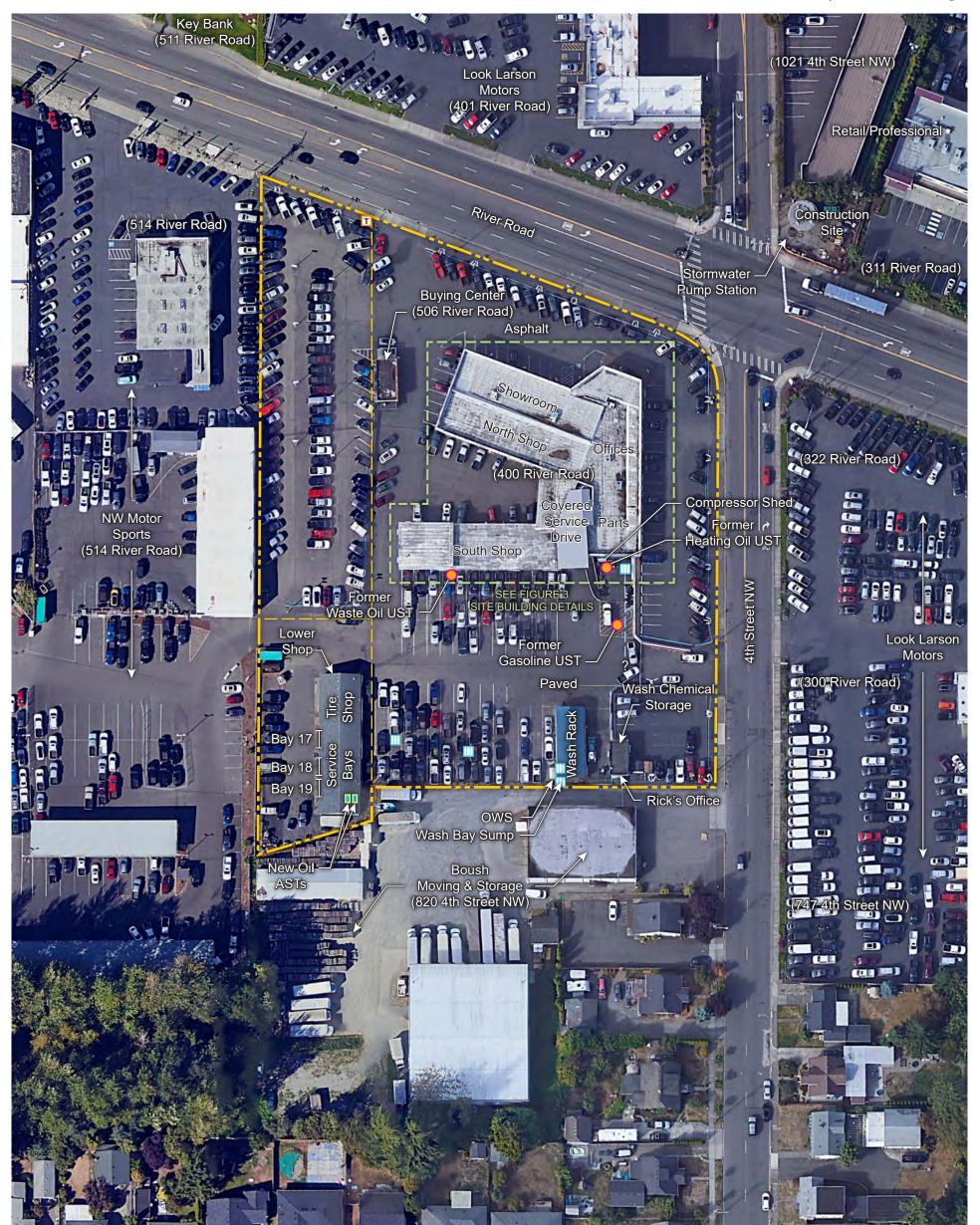



Figure 1

Site Location

Source: Google Earth Pro, imagery dated 7/1/2018

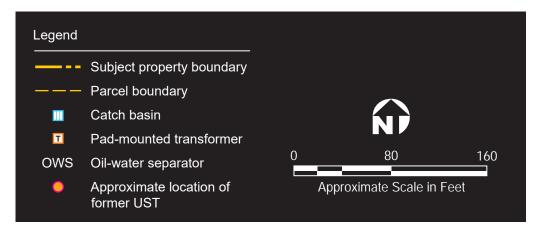


Figure 2
Site Plan

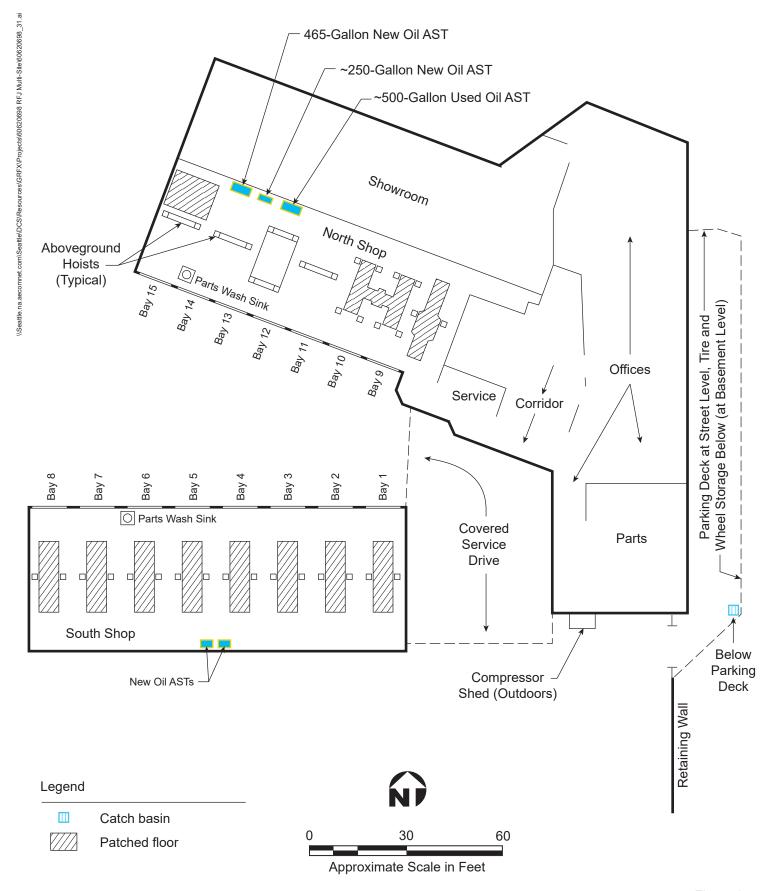


Figure 3
400 River Road Building Details

APPENDIX A HISTORICAL DOCUMENTS

RFJ - Site #3 400 River Road Puyallup, WA 98371

Inquiry Number: 5909224.4

December 17, 2019

EDR Historical Topo Map Report

with QuadMatch™

EDR Historical Topo Map Report

12/17/19

Site Name: Client Name:

RFJ - Site #3 AECOM

400 River Road 1111 Third Avenue Suite 1600

Puyallup, WA 98371 Seattle, WA 98101

EDR Inquiry # 5909224.4 Contact: AL THATCHER

EDR Topographic Map Library has been searched by EDR and maps covering the target property location as provided by AECOM were identified for the years listed below. EDR's Historical Topo Map Report is designed to assist professionals in evaluating potential liability on a target property resulting from past activities. EDRs Historical Topo Map Report includes a search of a collection of public and private color historical topographic maps, dating back to the late 1800s.

Search Results:		Coordinates:	
P.O.#	60620698	Latitude:	47.19938 47° 11' 58" North
Project:	RFJ Auto - Site #3	Longitude:	-122.299189 -122° 17' 57" West
		UTM Zone:	Zone 10 North
		UTM X Meters:	553080.94
		UTM Y Meters:	5227559.07
		Elevation:	34.17' above sea level
Mans Provid	ded:		

Maps Provided:

2014	1944
1997	1941
1994	1900
1981	1897
1973	
1968	
1961	
1949	

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2019 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

Topo Sheet Key

This EDR Topo Map Report is based upon the following USGS topographic map sheets.

2014 Source Sheets

Puyallup 2014 7.5-minute, 24000

1997 Source Sheets

Puyallup 1997 7.5-minute, 24000 Aerial Photo Revised 1990

1994 Source Sheets

Puyallup 1994 7.5-minute, 24000 Aerial Photo Revised 1990

Puyallup 1981 7.5-minute, 24000 Aerial Photo Revised 1978

Topo Sheet Key

This EDR Topo Map Report is based upon the following USGS topographic map sheets.

1973 Source Sheets

Puyallup 1973 7.5-minute, 24000 Aerial Photo Revised 1973

1968 Source Sheets

Puyallup 1968 7.5-minute, 24000 Aerial Photo Revised 1968

1961 Source Sheets

Puyallup 1961 7.5-minute, 24000 Aerial Photo Revised 1957

PUYALLUP 1949 7.5-minute, 25000

Topo Sheet Key

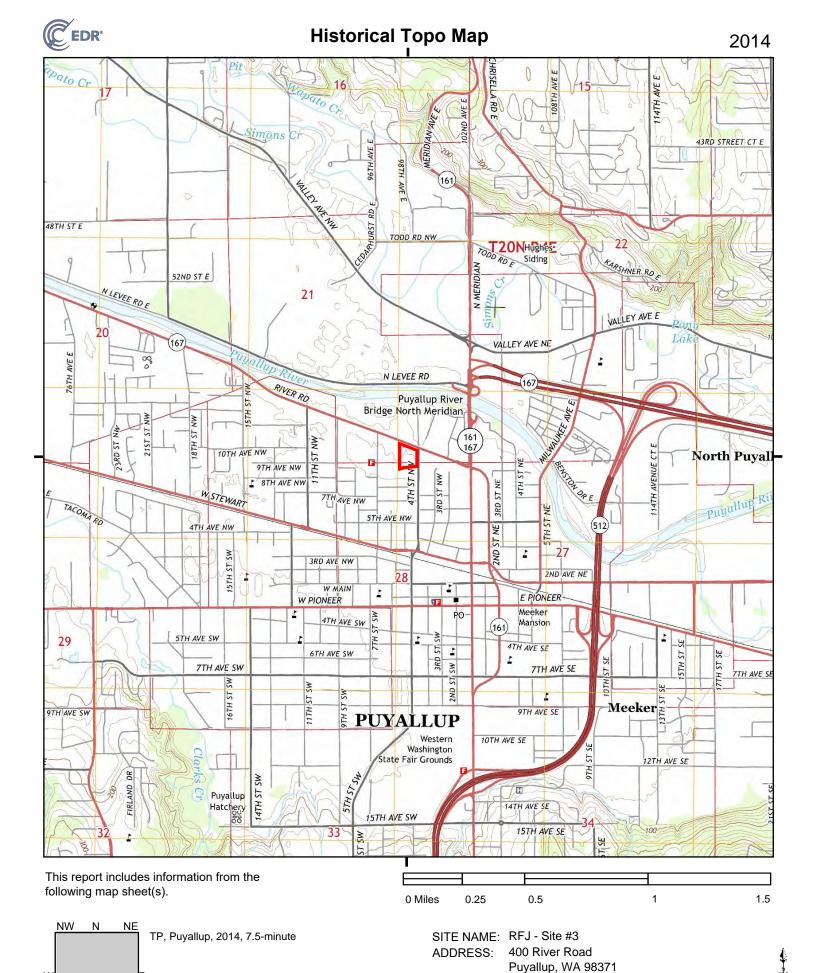
This EDR Topo Map Report is based upon the following USGS topographic map sheets.

1944 Source Sheets

TACOMA SOUTH 1944 15-minute, 50000

1941 Source Sheets

Tacoma South 1941 15-minute, 62500


1900 Source Sheets

Tacoma 1900 30-minute, 125000

Tacoma 1897 30-minute, 125000

W

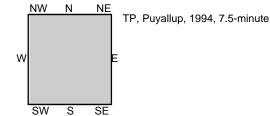
SW

S

SE

AECOM

CLIENT:


TP, Puyallup, 1997, 7.5-minute

W
SW S SE

SITE NAME: RFJ - Site #3
ADDRESS: 400 River Road

Puyallup, WA 98371

CLIENT: AECOM

SITE NAME: RFJ - Site #3
ADDRESS: 400 River Road

S: 400 River Road Puyallup, WA 98371

CLIENT: AECOM

5909224 - 4 page 9

400 River Road

AECOM

Puyallup, WA 98371

ADDRESS:

CLIENT:

W

SW

S

W

SW

S

5909224 - 4 page 10

Puyallup, WA 98371

AECOM

CLIENT:

TP, Puyallup, 1968, 7.5-minute W SW S

SITE NAME: RFJ - Site #3 400 River Road ADDRESS:

Puyallup, WA 98371

AECOM CLIENT:

page 11

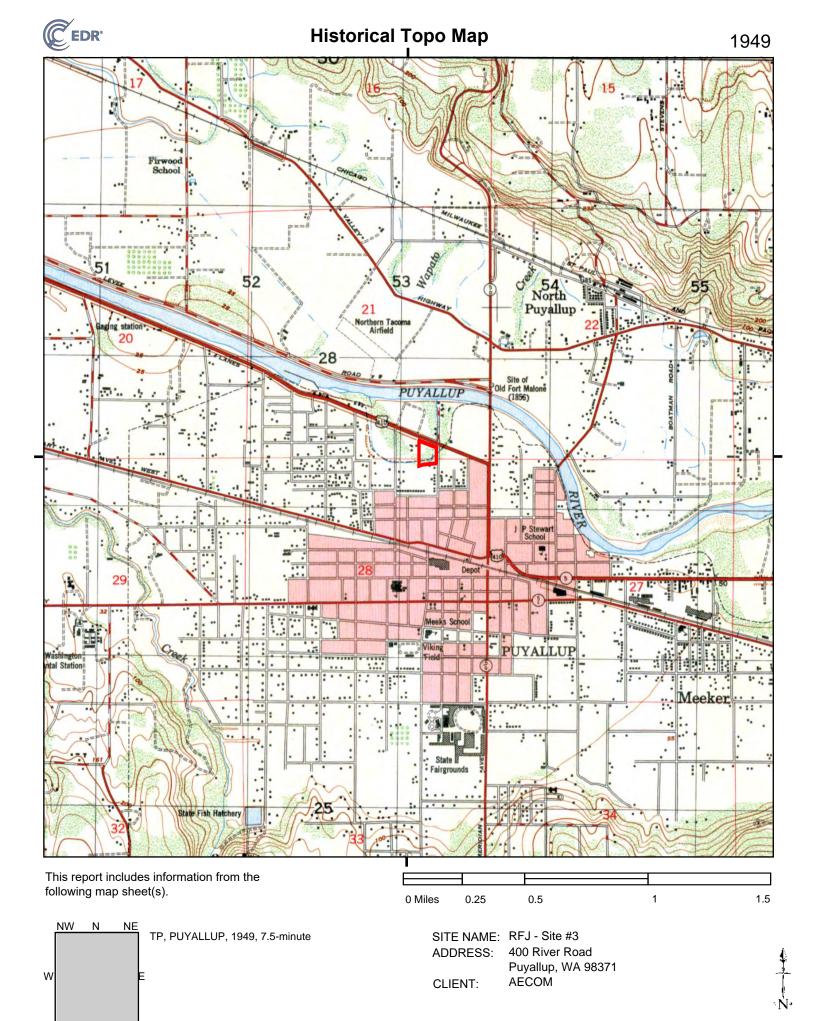
TP, Puyallup, 1961, 7.5-minute

W

SW

S

SITE NAME: RFJ - Site #3


400 River Road Puyallup, WA 98371

AECOM

ADDRESS:

CLIENT:

5909224 - 4 page 12

SW

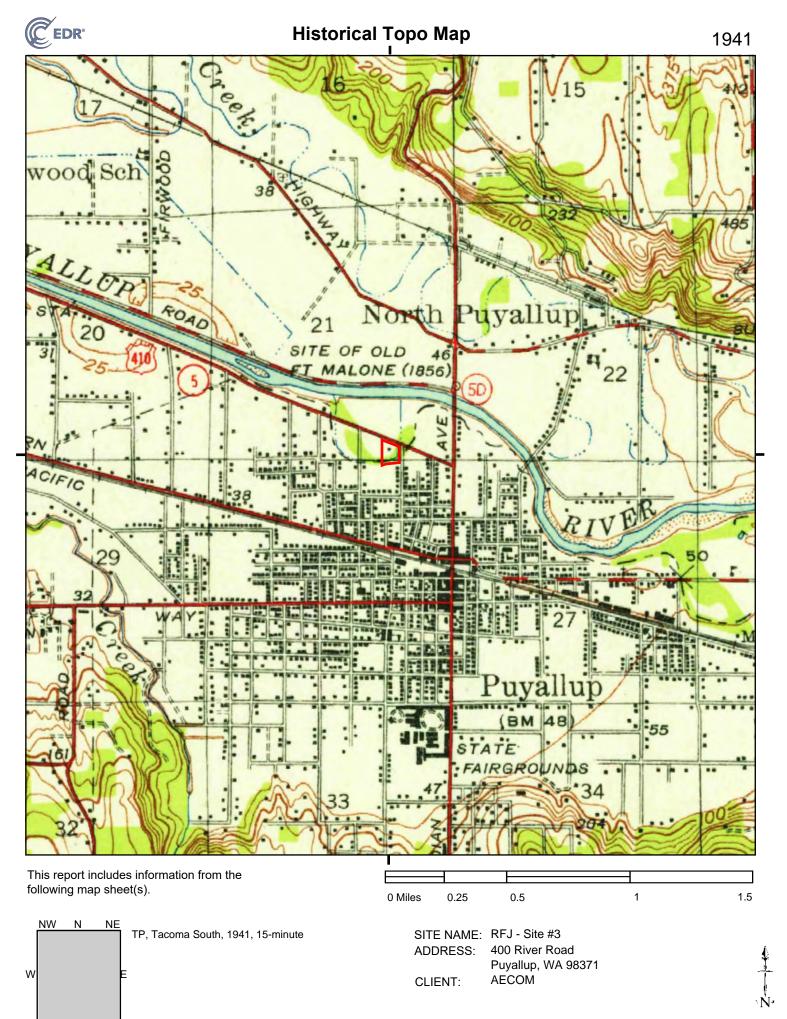
S

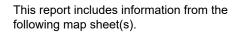
NW N NE TP, TACOMA SOUTH, 1944, 15-minute

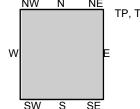
following map sheet(s).

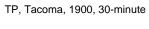
SITE NAME: RFJ - Site #3
ADDRESS: 400 River Road

0.5

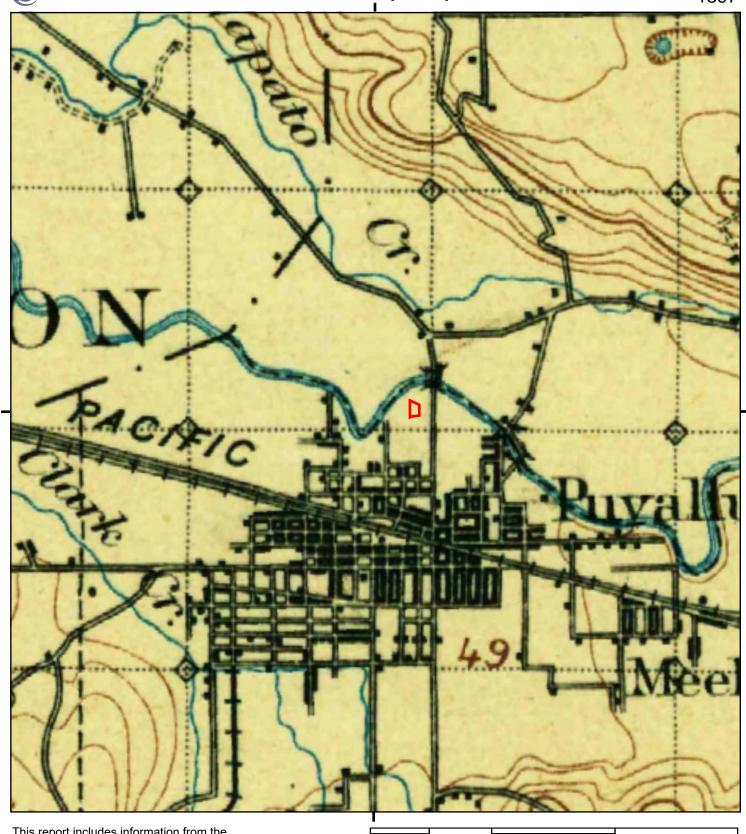

Puyallup, WA 98371


CLIENT: AECOM

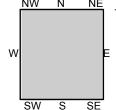

0.25


0 Miles

1.5



0 Miles 0.25 0.5 1 1.5


SITE NAME: RFJ - Site #3
ADDRESS: 400 River Road
Puyallup, WA 98371

CLIENT: AECOM

This report includes information from the following map sheet(s).

TP, Tacoma, 1897, 30-minute

SITE NAME: RFJ - Site #3
ADDRESS: 400 River Road

0.5

Puyallup, WA 98371

CLIENT: AECOM

0.25

0 Miles

1.5

RFJ - Site #3 400 River Road Puyallup, WA 98371

Inquiry Number: 5909224.3

December 18, 2019

Certified Sanborn® Map Report

Certified Sanborn® Map Report

12/18/19

Site Name: Client Name:

RFJ - Site #3 AECOM

400 River Road 1111 Third Avenue Suite 1600

Puyallup, WA 98371 Seattle, WA 98101

EDR Inquiry # 5909224.3 Contact: AL THATCHER

EDR°

The Sanborn Library has been searched by EDR and maps covering the target property location as provided by AECOM were identified for the years listed below. The Sanborn Library is the largest, most complete collection of fire insurance maps. The collection includes maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow, and others. Only Environmental Data Resources Inc. (EDR) is authorized to grant rights for commercial reproduction of maps by the Sanborn Library LLC, the copyright holder for the collection. Results can be authenticated by visiting www.edrnet.com/sanborn.

The Sanborn Library is continually enhanced with newly identified map archives. This report accesses all maps in the collection as of the day this report was generated.

Certified Sanborn Results:

Certification # A424-4720-AD37

PO # 60620698

Project RFJ Auto - Site #3

Maps Provided:

1964

1945

1927

Sanborn® Library search results

Certification #: A424-4720-AD37

The Sanborn Library includes more than 1.2 million fire insurance maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow and others which track historical property usage in approximately 12,000 American cities and towns. Collections searched:

✓ Library of Congress

University Publications of America

▼ EDR Private Collection

The Sanborn Library LLC Since 1866™

Limited Permission To Make Copies

AECOM (the client) is permitted to make up to FIVE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2019 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

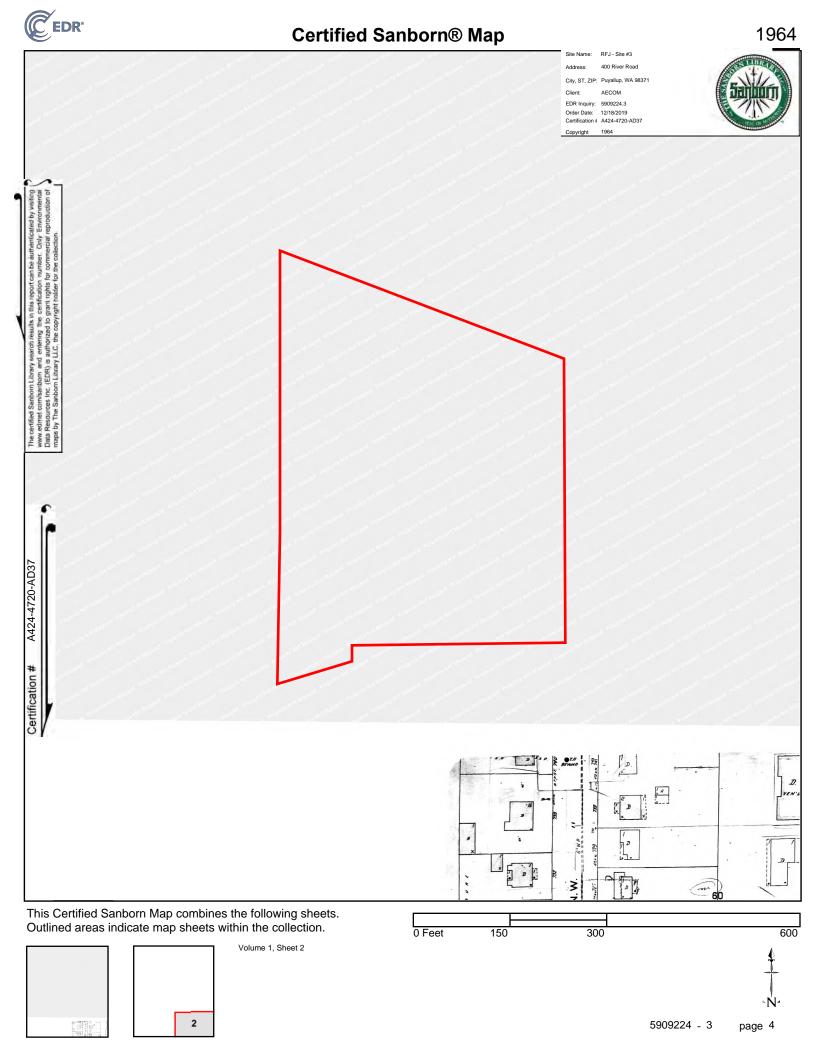
page 2

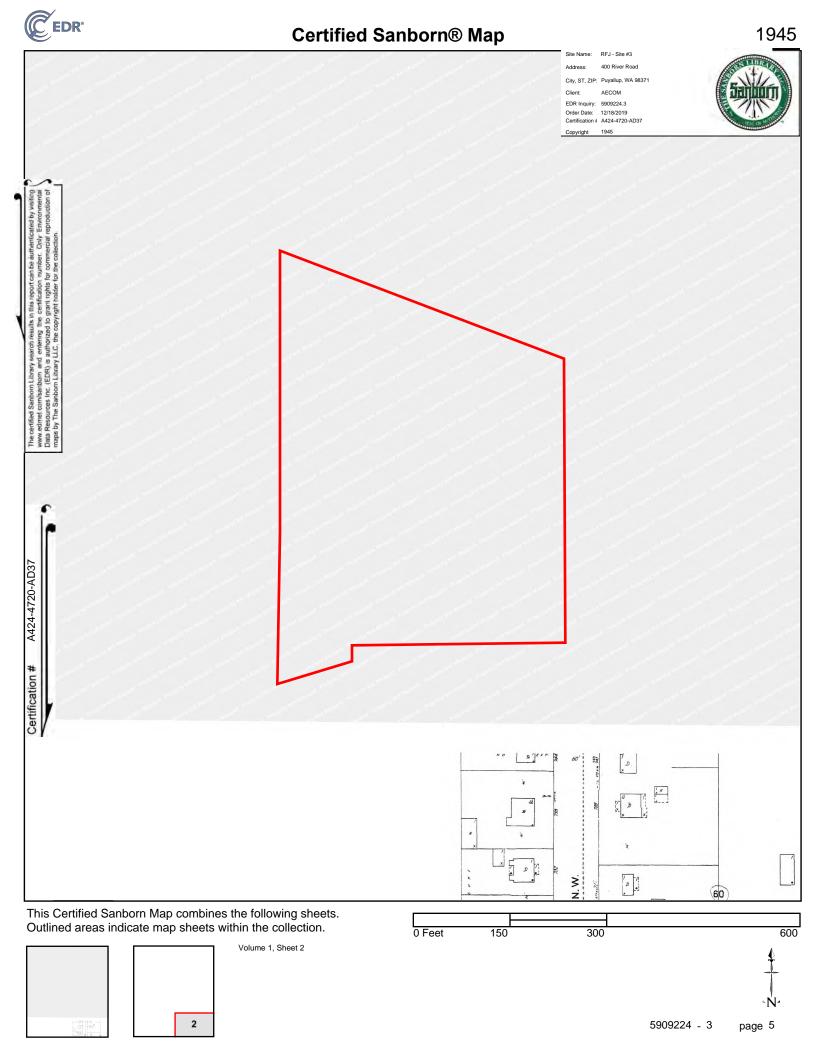
Sanborn Sheet Key

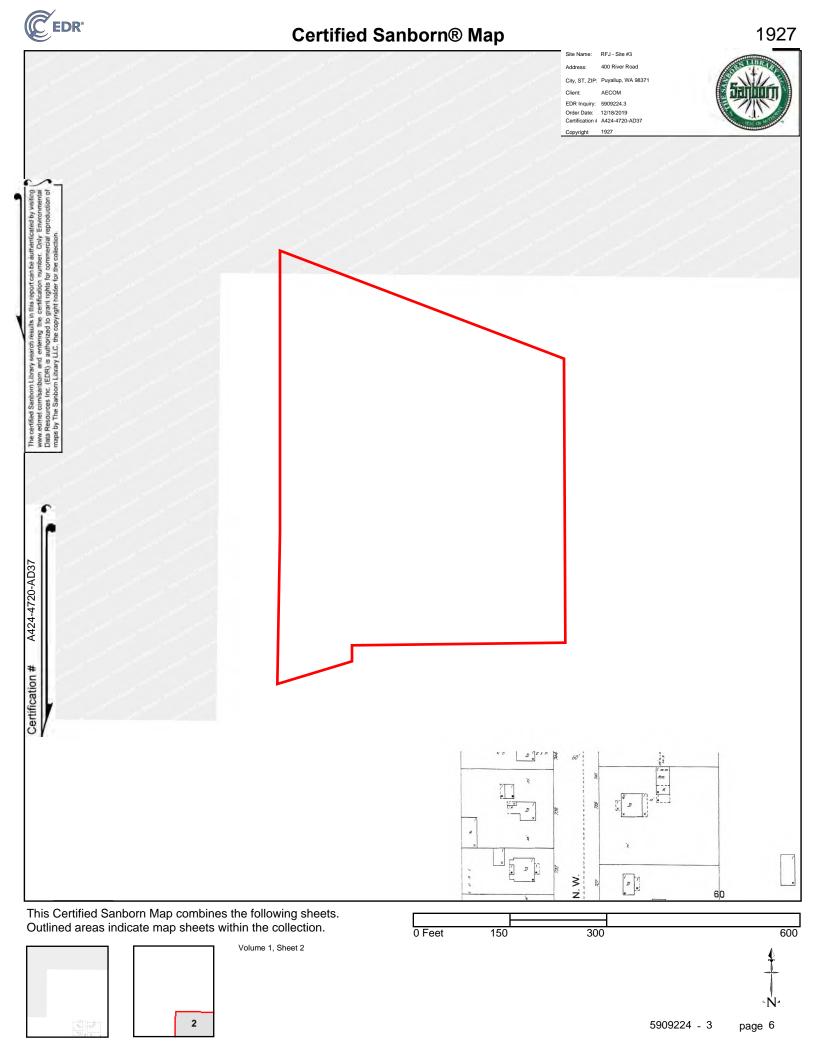
This Certified Sanborn Map Report is based upon the following Sanborn Fire Insurance map sheets.

1964 Source Sheets

Volume 1, Sheet 2 1964


1945 Source Sheets




Volume 1, Sheet 2 1945

Volume 1, Sheet 2 1927

RFJ - Site #3

400 River Road Puyallup, WA 98371

Inquiry Number: 5909224.8

December 17, 2019

The EDR Aerial Photo Decade Package

EDR Aerial Photo Decade Package

12/17/19

Site Name: Client Name:

RFJ - Site #3 AECOM

400 River Road 1111 Third Avenue Suite 1600

Puyallup, WA 98371 Seattle, WA 98101

EDR Inquiry # 5909224.8 Contact: AL THATCHER

Environmental Data Resources, Inc. (EDR) Aerial Photo Decade Package is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDR's professional researchers provide digitally reproduced historical aerial photographs, and when available, provide one photo per decade.

Search Results:

<u>Year</u>	<u>Scale</u>	<u>Details</u>	Source
2017	1"=500'	Flight Year: 2017	USDA/NAIP
2013	1"=500'	Flight Year: 2013	USDA/NAIP
2009	1"=500'	Flight Year: 2009	USDA/NAIP
2006	1"=500'	Flight Year: 2006	USDA/NAIP
1990	1"=500'	Acquisition Date: July 10, 1990	USGS/DOQQ
1980	1"=500'	Flight Date: July 08, 1980	USDA
1972	1"=500'	Flight Date: September 04, 1972	USGS
1968	1"=500'	Flight Date: September 02, 1968	USGS
1957	1"=500'	Flight Date: May 28, 1957	USGS
1943	1"=500'	Flight Date: March 05, 1943	DIA
1941	1"=500'	Flight Date: July 10, 1941	USDA

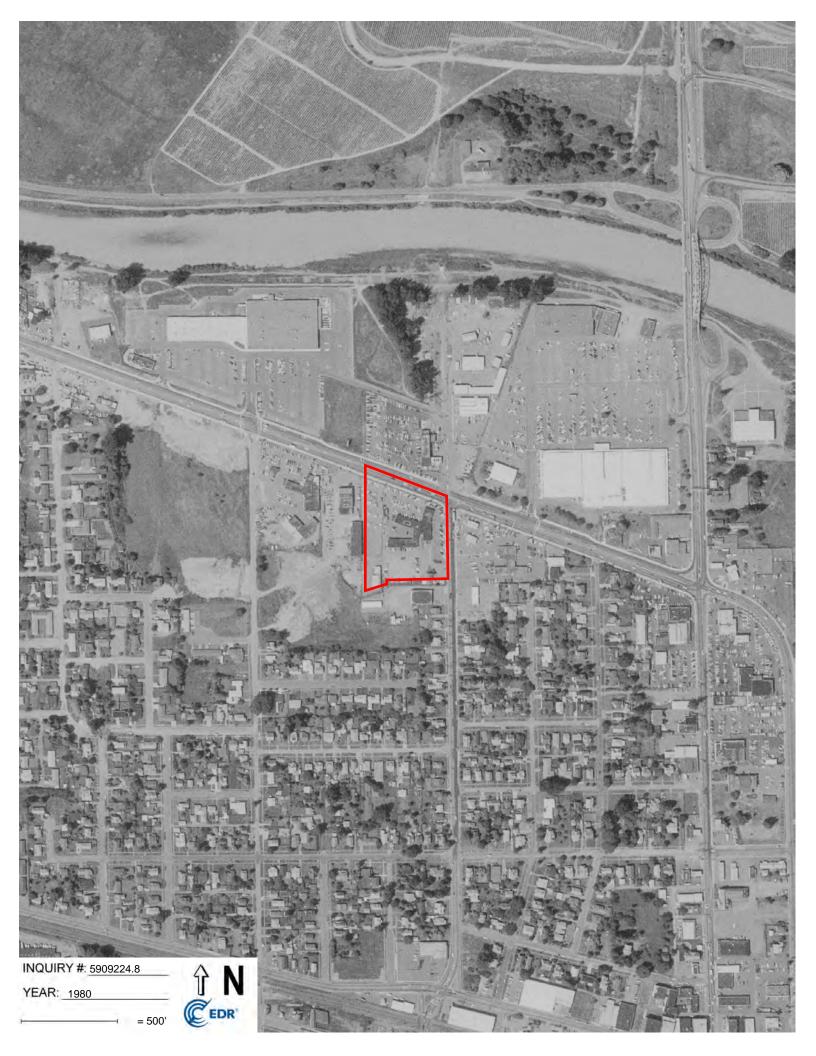
When delivered electronically by EDR, the aerial photo images included with this report are for ONE TIME USE ONLY. Further reproduction of these aerial photo images is prohibited without permission from EDR. For more information contact your EDR Account Executive.

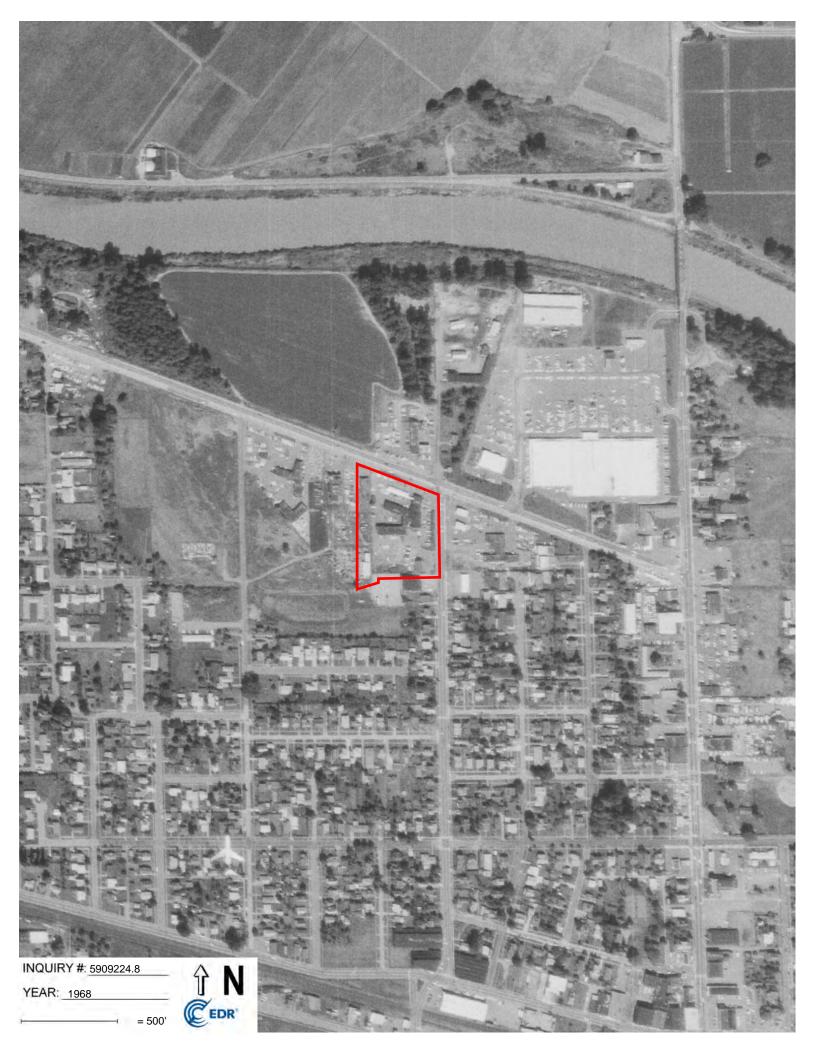
Disclaimer - Copyright and Trademark Notice

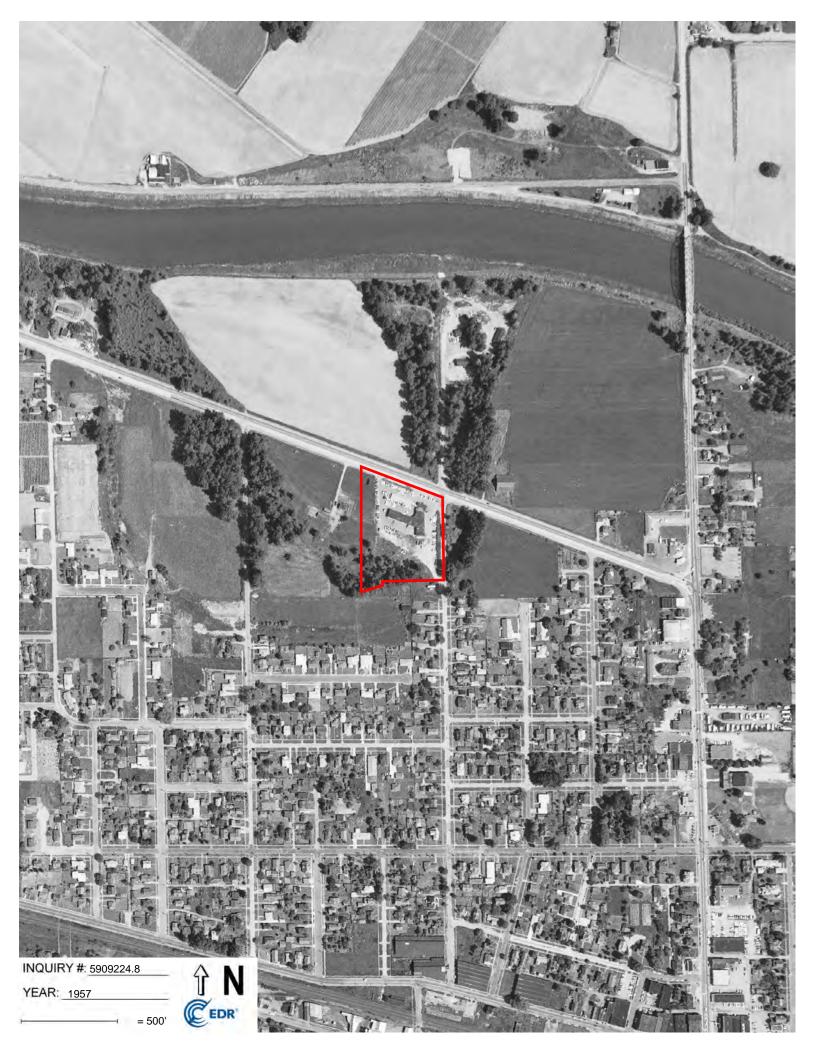
This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2019 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.







RFJ - Site #3 400 River Road Puyallup, WA 98371

Inquiry Number: 5909224.5

December 20, 2019

The EDR-City Directory Image Report

TABLE OF CONTENTS

SECTION

Executive Summary

Findings

City Directory Images

Thank you for your business.Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OR DAMAGE, INCLUDING. WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction orforecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2017 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc. or its affiliates is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

EXECUTIVE SUMMARY

DESCRIPTION

Environmental Data Resources, Inc.'s (EDR) City Directory Report is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDR's City Directory Report includes a search of available city directory data at 5 year intervals.

RECORD SOURCES

EDR's Digital Archive combines historical directory listings from sources such as Cole Information and Dun & Bradstreet. These standard sources of property information complement and enhance each other to provide a more comprehensive report.

EDR is licensed to reproduce certain City Directory works by the copyright holders of those works. The purchaser of this EDR City Directory Report may include it in report(s) delivered to a customer. Reproduction of City Directories without permission of the publisher or licensed vendor may be a violation of copyright.

RESEARCH SUMMARY

The following research sources were consulted in the preparation of this report. A check mark indicates where information was identified in the source and provided in this report.

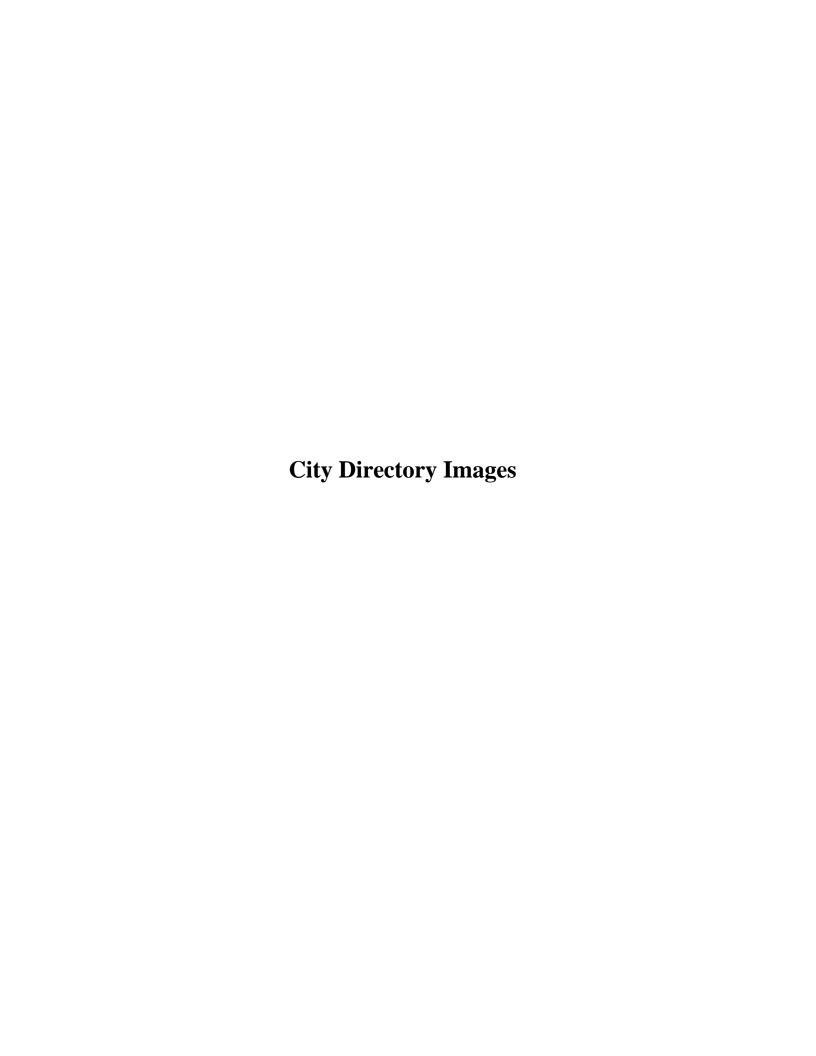
<u>Year</u>	Target Street	Cross Street	<u>Source</u>
2014	$\overline{\checkmark}$		EDR Digital Archive
2010	$\overline{\checkmark}$	$\overline{\checkmark}$	EDR Digital Archive
2005	$\overline{\checkmark}$	$\overline{\checkmark}$	EDR Digital Archive
2000	$\overline{\checkmark}$	$\overline{\checkmark}$	EDR Digital Archive
1995	$\overline{\checkmark}$	$\overline{\checkmark}$	EDR Digital Archive
1992	$\overline{\checkmark}$	$\overline{\checkmark}$	EDR Digital Archive
1989	$\overline{\checkmark}$	$\overline{\checkmark}$	Polk's City Directory
1984	$\overline{\checkmark}$	$\overline{\checkmark}$	Polk's City Directory
1979	$\overline{\checkmark}$	$\overline{\checkmark}$	Polk's City Directory
1974	$\overline{\checkmark}$	$\overline{\checkmark}$	Polk's City Directory
1969	$\overline{\checkmark}$	$\overline{\checkmark}$	Polk's City Directory
1964	$\overline{\checkmark}$	$\overline{\checkmark}$	Polk's City Directory
1959	$\overline{\checkmark}$	$\overline{\checkmark}$	Polk's City Directory

FINDINGS

TARGET PROPERTY STREET

400 River Road Puyallup, WA 98371

<u>Year</u>	<u>CD Image</u>	<u>Source</u>
RIVER RD		
2014	pg A2	EDR Digital Archive
2010	pg A4	EDR Digital Archive
2005	pg A6	EDR Digital Archive
2000	pg A8	EDR Digital Archive
1995	pg A10	EDR Digital Archive
1992	pg A12	EDR Digital Archive
1989	pg A14	Polk's City Directory
1989	pg A15	Polk's City Directory
1984	pg A17	Polk's City Directory
1984	pg A18	Polk's City Directory
1979	pg A20	Polk's City Directory
1979	pg A21	Polk's City Directory
1974	pg A23	Polk's City Directory
1974	pg A24	Polk's City Directory
1969	pg A26	Polk's City Directory
1964	pg A28	Polk's City Directory
1959	pg A30	Polk's City Directory


5909224-5 Page 3

FINDINGS

CROSS STREETS

<u>Year</u>	<u>CD Image</u>	<u>Source</u>
4TH ST NW		
2014	pg. A1	EDR Digital Archive
2010	pg. A3	EDR Digital Archive
2005	pg. A5	EDR Digital Archive
2000	pg. A7	EDR Digital Archive
1995	pg. A9	EDR Digital Archive
1992	pg. A11	EDR Digital Archive
1989	pg. A13	Polk's City Directory
1984	pg. A16	Polk's City Directory
1979	pg. A19	Polk's City Directory
1974	pg. A22	Polk's City Directory
1969	pg. A25	Polk's City Directory
1964	pg. A27	Polk's City Directory
1959	pg. A29	Polk's City Directory

5909224-5 Page 4

<u>Target Street</u> <u>Cross Street</u>

<u>Source</u>

EDR Digital Archive

317	GARY A CARLINGTON CPA INC PS
317	ROBERT L MAY ASSOCIATES
320	SHANNON, KIM J
402	SCHROEDER, THOMAS D
406	BOISVERT, STEVEN C
	BROWN, WILLIAM R
411	FISHER, TIMOTHY W
	GATES ETCLLC
415	KUCHNSKY, JAMES A
416	WILLIAMSON, DAVID
421	CHESLEY, DAVID J
423	ZUEIRLEIN, RENAE L
438	WAITS-SULFRIDGE, BILLY J
511	REDMOND, VAUGHAN L
514	OCCUPANT UNKNOWN,
516	HOLCOMB, LISA A
517	MARKHAM, ROSE M
520	NAMASTE YOGA CENTER & CHIROPR
	OHAVER, ALISA B
	WENDY NOFFKE DC LLC
602	FILER, ELLIS
610	DIVINA, RAYMOND D
704	BOCZAR, THOMAS
710	BUTLER, RICHARD M
714	LANDON, WILLIAM J
720	MATTHEWS, KENNETH L
721	ESSMAN, TODD C
	SHAUNA S ESSMAN
722	INCREDIBLE EDIBLES
	KAISER, SCOTT R
723	OCCUPANT UNKNOWN,
726	SILLER, RUDOLPH S
727	SINGINGLIGHTNING, SKY
729	RICE, PAULINE A
732	OCCUPANT UNKNOWN,
738	WILLIAMS, STEPHEN
739 740	IHLEN, MARTIN L
740 741	SHILEY, RICK A ELLIS, KYLE O
741 744	OCCUPANT UNKNOWN,
744	RITZY ROVER PET STYLING BTQ
820	BOUSH MOVING & STORAGE INC
1200	GOODWILL OF OLYMPICS RNIER REG
1200	STOREHOUSE CHURCH
1206	SEYLER, GERI E
1200	OLILLIN, OLINI L

100	6050 TACOMA MALL BOULEVARD LLC
	KORUM AUTOMOTIVE GROUP INC
	KORUM FORD INC
	KORUM MOTORS INC
111	KORUM HYUNDAI
300	JMS DETAIL & AUTO ACCESSORIES
	LARSON MOTORS PREOWNED
303	STARBUCKS CORPORATION
311	ACE CASH EXPRESS INC
	CELLCO PARTNERSHIP
	JUST FOR KIDS DENTISTRY
	KEVIN H SAKAI DDS PLLC
	SMARTCUTS
	SONUS-USA INC
	TD SALON LLC
315	G & L ENTERPRISES INC
400	BULLETPROOF LLC
	NORTHWEST MOTORSPORT
401	PUYALLUP CHRYSLER INC
511	KEYBANK NATIONAL ASSOCIATION
608	MILAM OLDSMOBILE MAZDA JEEP
621	KMART CORPORATION
711	PAPA MURPHYS PIZZA
	TITUS WILL ENTERPRISES
715	LOOSE WHEEL BAR AND GRILL

312	TAPIA, MELISSA	
317	DOMINION CAPITAL LLC	
	EDWARD & LOIS MCLEARY CHAR FDN	
	GARY A CARLINGTON CPA INC PS	
	MAY & CO	
	MAY & CO P S	
	US ALLOY CO	
320	WARD, RICKARD	
401	, -	
402	SCHROEDER, THOMAS D	
405	ARMSTRONG, JEANEEN	
406	BOISVERT, STEVEN C	
	CROWDER, JAMES W	
407	,	
411	- ,	
416	,	
42	,	
438	,	
511	·	
514	•	
516	•	
517	,	
520		
	NOFFKE, WENDY J	
000	WENDY NOFFKE DC LLC	
602	,	
610	•	
702	•	
710	•	
712 714	•	
712 72	,	
722	•	
723	•	
726		
727		
729	*	
732		
738	•	
739	•	
740	·	
7 - 10	HENRY, NEIL W	
74		
744	•	
. 1	RITZY ROVER PET STYLING BTQ	
820		
120		
12		

100	KORUM AUTOMOTIVE GROUP INC
	KORUM FORD INC
	KORUM MOTORS INC
300	K & D AUTO WERKS
303	STARBUCKS CORPORATION
311	BEN CONNER INSURANCE AGENCY
	LUTZ LAW
	SMARTCUTS
315	G & L ENTERPRISES INC
400	BULLETPROOF LLC
401	MOCERI LEASING INC
	PUYALLUP CHRYSLER INC
500	LARSON DODGE
	PUYALLUP POWER SPORTS
511	KEYBANK NATIONAL ASSOCIATION
514	JMS DETAIL & AUTO ACCESSORIES
608	MILAM OLDSMOBILE MAZDA JEEP
621	KMART CORPORATION
	MELDISCO K-M PUYALLUP WASH INC
	OLAN MILLS INC
707	BARGAIN STORES INC
709	BOONTHAM TALBOT
	FAME NUMBER 1 HAIR STUDIO SPA
711	PAPA MURPHYS PIZZA
	TITUS WILL ENTERPRISES
715	ARNALDI ENTERPRISES LLC
	JENNIFER HALL
	OHENRY SPORTS BAR

317	ARIES ENTERTAINMENT SYSTEMS LT
	CARLINGTON GARY A CPA INC PS
	NORTHWEST CONVERSIONS INC
320	KNESAL, TREVOR A
402	MISKAR, SANDY J
406	BOISVERT, STEVEN C
	HUBER, JAMIE
411	VERMEERSCH, DAVID A
511	REDMOND, SHARYN M
514	BRADFORD, STEVEN G
516	CURRAH, MARK E
517	MARKHAM, JACK A
520	NAMASTE YOGA CENTER & CHIROPR
	NOFFKE, WENDY
	WENDY NOFFKE DC LLC
602	HAUCK, JEREMY D
	IMAGEBASICS
610	DIVINA, LACI R
702	APODACA, RICARDO
710	ZWANG, TERI L
714	PLUMMER, HAROLD N
720	MATTHEWS, KENNETH L
721	ESSMAN, TODD C
722	WENGER, CATHY M
723	OCCUPANT UNKNOWN,
725	CGRAGGEN, CHRIS
	GORSKI, A
	HARRISON, MARIE
	PORTER, DANIELLE
726	SILLER, RUDOLPH S
727	OCCUPANT UNKNOWN,
729	RICE, PAULINE A
732	ONEILL, AARON K
738	WILLIAMS, MARK M
740	HENRY, NEIL W
741	MATHIESON, MARK W
744	BRIDGES, DONOVAN
820	BOUSH MOVING & STORAGE INC
1200	SOUND PROPERTIES

100	KORUM FORD INC
	KORUM MOTORS INC
208	RADIOSHACK CORPORATION
300	LARSON MOTORS INC
315	ALLSTATE INSURANCE COMPANY
	DETURK PHILIP H
	ENTERPRISE RENT-A-CAR COMPANY
	G & L ENTERPRISES INC
400	BULLETPROOF LLC
	FRIENDLY CHEVROLET INC
	GREG CARTERS PUYALLUP CHEVRO
	KEN PARKS CHEVROLET INC
401	UNIVERSAL AUTO GROUP INC
500	KORUM FORD INC
	TURNBULL MIKE
511	KEYBANK NATIONAL ASSOCIATION
608	MILAM OLDSMOBILE MAZDA JEEP
621	KMART CORPORATION
	MELDISCO K-M PUYALLUP WASH INC
	OLAN MILLS INC
707	BARGAIN STORES INC
709	ACTIVE HAIR
711	PAPA MURPHYS PIZZA
715	AMUSEMENT ENTERPRISES INC
	OHENRY SPORTS BAR

Target Street Cross Street Source
- Cross Street EDR Digital Archive

317	CARLINGTON GARY A CPA INC PS
	GUSTAFSON GREG INSURANCE INC
320	OCCUPANT UNKNOWN,
400	OCCUPANT UNKNOWN,
402	BOURNE, GEORGE C
406	BROWN, W R
411	MCKUNE, KRISTIN
430	OCCUPANT UNKNOWN,
511	OCCUPANT UNKNOWN,
514	FOSTER, CLINT
516	MERCILL, MITCH
517	MARKHAM, JACK A
520	BRADFORD, STEVEN G
602	VANKIRK, J
604	OCCUPANT UNKNOWN,
702	MOGAVERO, ANNA L
710	WHEELER, BRETT
714	PLUMMER, H N
720	MATTHEWS, KEN L
721	ESSMAN, TODD
722	KAISER, SCOTT R
	WENGER, CATHY M
723	DUMOULIN, J
725	CGRAGGEN, CHRIS
	HARRISON, M
726	SILLER, RUDOLPH
729	RICE, EARL D
732	KENT, RON
740	MAXEY, SHAWN
741	OCCUPANT UNKNOWN,
744	ABC RELOCATION
	FUESTON, ADAM
820	BOUSH MOVING & STORAGE INC

100	KORUM FORD INC
103	DAVCO ENTERPRISES INC
125	A & R MOTORS INC
208	RADIOSHACK CORPORATION
300	LARSON MOTORS INC
	LARSON ROBERT CHRYSLER
315	ALLSTATE INSURANCE COMPANY
	DETURK PHILIP H
	ENTERPRISE RENT-A-CAR COMPANY
	G & L ENTERPRISES INC
	SOURCE FINANCIAL
	WEIGHT LOSS PLUS COST MEDCL WE
400	BULLETPROOF LLC
	PUYALLUP CHEVROLET-GEO-SUBARU
401	PUYALLUP COLLISION CENTER INC
	UNIVERSAL AUTO GROUP INC
500	KORUM FORD INC
	KORUM MOTORS INC
511	KEYBANK NATIONAL ASSOCIATION
608	MILAM OLDSMOBILE INC
621	KMART CORPORATION
	OLAN MILLS INC
707	BARGAIN STORES INC
715	VANS AMUSEMENT CENTER INC

317	CARLINGTON GARY A CPA INC PS
317	
400	GUSTAFSON, GREG A
400	GHATTAS, NAGUIB
402	BOURNE, GEORGE C
406	BAKER, JAMES S
411	OCCUPANT UNKNOWNN
421	OCCUPANT UNKNOWNN
427	FREED, ART
514	OCCUPANT UNKNOWNN
520	BRADFORD, STEVEN G
702	OCCUPANT UNKNOWNN
703	GOODWIN, ALAN M
710	WHEELER, BRETT
714	PLUMMER, H N
721	MCFARLAND, ERIN
722	KAISER, SCOTT R
	WENGER, CATHY M
723	DUMOULIN, J
726	NELSON, JOSEPH C
727	YOUNG, RHONDA
729	RICE, EARL D
732	OCCUPANT UNKNOWNN
738	OHONDT, DAVE
739	OCCUPANT UNKNOWNN
740	MAXEY, SHAWN
741	MATHIESON, MARK W
820	BOUSH MOVING & STORAGE INC
-	

100	KORUM FORD INC
103	DAVCO ENTERPRISES INC
	PYRAMID TIRE OF PUYALLUP INC
111	R J B RESTAURANTS INC
208	TANDY CORPORATION DEL
300	LARSON MOTORS INC
315	ALLSTATE INSURANCE COMPANY
	ALOHA CHIROPRACTIC CENTER
	AMERICAN GENERAL FINANCE
400	KEN PARKS PUYALLUP SUBARU INC
	PUYALLUP CHEVROLET GEO SUBARU
401	MOCERI LEASING INC
	PUYALLUP CHRYSLER-PLYMOUTH
	SNAPPY CAR RENTAL INC
500	KORUM FORD INC
608	MILAM OLDSMBILE JEEP EGLE MZDA
	MILAM OLDSMOBILE INC
621	KMART CORPORATION
707	PICWAY SHOES
709	GRAVERSEN MARKETING CO
711	HI HO MUSIC CENTER
715	BJ 1 HOUR PHOTO
	VANS AMUSEMENT CENTER INC

317	CARLINGTON GISMERVIG & CO P S
	GUSTAFSON, GREG A
	KNIGHT, GREGORY
402	URLOCKER, ARNOLD L
406	SJOSTROM, TIMOTHY
411	VANBAALE, MARVIN
520	WREN, STEVEN G
710	WHEELER, BRETT
714	PLUMMER, H N
721	AKERS, HOWARD
723	DUMOULIN, J
725	KETNER, STEVE
726	NELSON, JOSEPH C
727	NICKERT, JAMIE
729	RICE, EARL D
732	BLUMENTHAL, DANIEL L
741	MATHIESON, MARK A
744	HORTON, PAT
820	BOUSH MOVING & STORAGE INC

100	KORUM FORD INC
103	PYRAMID TIRE OF BURIEN INC
111	R J B RESTAURANTS INC
208	TANDY CORPORATION DEL
300	LARSON MOTORS INC
315	ALLSTATE INSURANCE COMPANY
	DOTTERS COUNSELING SERVICE
400	PARKS KEN CHEVROLET INC
401	MOCERI LEASING INC
	PUYALLUP CHRYSLER-PLYMOUTH
511	PUGET SOUND NATIONAL BANK
514	PUYALLUP MOTOR CO INC
608	MILAM OLDSMOBILE INC
621	KMART CORPORATION
715	ARCADE

Source
Polk's City Directory

4TH ST NW 1989

740 No Return 741 O'Kelly Eugenie I @ 744 Horton Pat J @ 845-4908 820 Boush Moving & Storage Inc 845-8829 RIVER RD INTERSECTS 1200 Puyallup Cinema theatre 848-6999 1201 Puyallup City Animal Shelter 845-6622 Puyallup City Public Works Dept 841-5508 Puyallup City Weed Control 841-5508 Puyallup City Street Dept 841-5508 Puyallup City Public Works Dept (Tool Rm) 848-5508 Puyallup City Public Works Dept (Purch & Rec) 848-5508 Puyallup City Public Works Dept (Mtr Pool) 848-5508 Puyallup City Public Works Dept (Sign Shop) 848-5508 Puyallup City Public Works Dept (Refueling Sta)

848-5508

Source
Polk's City Directory

RIVER RD 1989

125 Hoagy's Corner Delicatessen 841-0231

2

2D ST NW INTERSECTS
208 Radio Shack electro prts &
equip 848-1501
3D ST NW INTERSECTS
300 Larson Motors 845-1725
315 Plaza West ofc bldg
Suites

A Allstate Insurance 845-3841

B Credithrift Of America loans 840-0055

C Vacant

D Farm Credit Services 845-9332

E Aloha Chiropractc Center 848-2244

RIVER RD 1989

4TH ST NW INTERSECTS 400 Parks Ken Chevrolet-Subaru Inc 845-9566 401 Moceri Leasing Inc car rental 845-7100 Puyallup Chrysler-Plymouth Inc auto dirs 848-4511 500 Korum R V Center dealership 845-6600 511 Puget Sound National Bank 593-3970 Puget Sound National Bank (Consumer Credit Dept) 593-3550 608 Milam Oldsmobile Jeep-Eagle & Mazda Inc auto dirs 845-1766 621 K-Mart dept store 848-8751 7TH ST NW INTERSECTS 707 Picway Shoes shoes ret 840-1721 711 Vacant

Target Street

Cross Street

<u>Source</u>

Polk's City Directory

4TH ST NW 1984

738★Silverwood Larry C ⊚ 848-7016

739 Flink Kenneth L @

740 Vacant

741 Vacant

744 Urwin Dale N @ 845-7867

820 Boush Moving & Storage Inc 845-8829

905 Quick Way Self Service Car Wash

906 P M P Security Service 845-8665

RIVER RD INTERSECTS

1022 Puyallup Animal Shelter 845-6622

1201 City Public Works Dept 4200 Puyallup Cinema 848-6999

<u>Source</u>

1984

Polk's City Directory

RIVER RD

900

MERIDIAN ST N NORTHWESTERLY

ZIF CODE 98371

103 Pyramid Tire Co sls & serv 848-3538

111 Puyallup Dairy Queen 845-5064

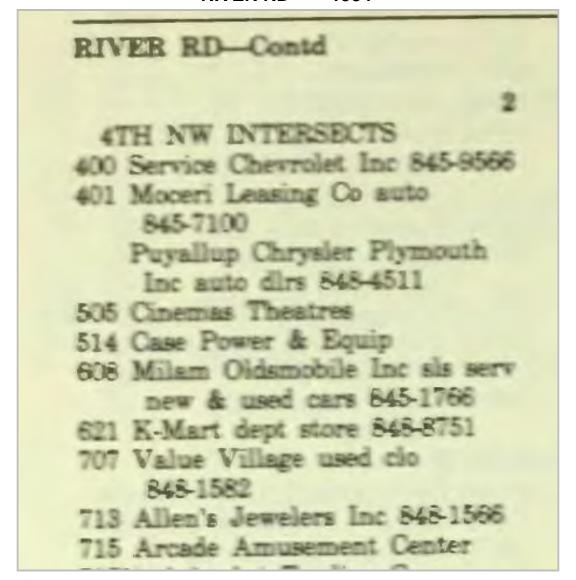
125 Knutson Harold © 841-4630

208 Radio Shack electrn prts & equip 848-1501

2D ST NW INTERSECTS

300 Larson Motors 845-1725

315 Puget Sound National Bank 593-3970


Puget Sound National Bank (consumer credit div) 593-3550

Target Street

Cross Street

Source
Polk's City Directory

RIVER RD 1984

4TH ST NW 1979

722*Burdick Barbara @ 848-1957 723*Harrison Thom B 725 Harrison Alene M 845-5890 725 ** Schurebert Kusins 726 Nelson Joseph C @ 845-4956 727*Liberty Terry J @ 848-3627 729 Rice Earl @ 863-1567 732 Maass Inez A Mrs @ 845-1963 738*Hill James V 848-0010 739 Flink Kenneth L @ 740*Umber Walter A 741 O'Kelly Eugenie Mrs @ 845-1820 744 Urwin Dale N 845-7867 820 Boush Moving & Storage Inc 845-8829 905 Quick Way Self Service Car Wash 906 Service Chev (Stge Bldg) RIVER RD INTERSECTS 1022 Puyallup Animal Shelter

Polk's City Directory

RIVER RD

1979

900

RIVER RD —FROM 900 MERIDIAN ST N NORTHWESTERLY

ZIP CODE 98371

103 Pyramid Tire Co sls & serv
848-3538

111 Gary's Dairy Queen 845-5064

125 No Return

208 Radio Shack electrn prts &
equip 848-1501

2D ST NW INTERSECTS

300 Larson Motors Inc 845-1725

315 Puget Sound National Bank
593-3970

Puget Sound Natl Bk
(consumer credit div)
593-3550

2

4TH NW INTERSECTS 400 Service Chevrolet Inc 845-9566

<u>Source</u>

Polk's City Directory

RIVER RD 1979

RIV	PR RD—Contd
401	Moceri Leasing Co auto 845-7100
	Puyallup Chrysler Plymouth auto dlrs 848-4511
514	Puyallup Tractors Inc 848-2375
608	Milam Oldsmobile Inc sls serv new & used cars 845-1766
621	K-Mart dept store 848-8751
	Payless Shoes 845-8608
	Rupert's Clocks & Watches 848-4601
729	Sandman Waterbeds 841-2431
	Valley Fabricare self serv Indry 848-8154
733	Melody T V & Appliance tv & appls sls 848-0325

4TH ST NW 1974

	The Street of		A CONTRACTOR OF THE PARTY OF TH	
TTL	AXZ	NIXII	INTER	CECTC
1111	AV	IA AA	INIER	DECLO

702 * Repp Mark S TH5-4777

710 * Metcalf Charles L @

714 Plummer Nora D Mrs © TH5-1321

720 Clement Frank J @ TH5-6741

721 Akers Howard J @ TH5-8263

722 Ferro Leonard @ 848-1957

723 * Davenport Ronald

725 * Harrison Alene M 845-5890

7251/2 * Leeker Debra J

726 Nelson Joseph C @ TH5-4956

727 Johnson Arth J @

729 Covert Gordon L @ TH5-9135

732 Maass Inez A Mrs © TH5-1963

738 Boush Johanna M Mrs © TH5-5465

739 Flink Kenneth L @

740 Kuehn Karl @ TH5-1245

741 O'Kelly Eugenie Mrs © TH5-1820

743 Sorenson Gordon G 845-9369

744 Urwin Dale N TH5-7867

820 Boush Moving & Storage Inc TH5-8829

905 Quick Way Self Service Car Wash

Polk's City Directory

RIVER RD 1974

900

MERIDIAN ST N NORTHWESTERLY

ZIP CODE 98371

103 Goodrich B F Co 848-3538

111 Gary's Dairy Queen TH5-5064

125 Salzsieder Gary A © TH5-5578

208 Radio Shack electronics parts 848-1501

2D ST NW INTERSECTS

300 Larson Motors Inc TH5-1725

315 Puget Sound National Bank 593-3972

324 Vacant

2

4TH NW INTERSECTS 400 Service Chevrolet Inc 845-9566

Polk's City Directory

RIVER RD 1974

401 Puyallup Chrysler Plymouth auto dlrs 848-4511 5TH NW INTERSECTS

506 Vacant

514 Puyallup Tractors Inc 848-2375

608 Milam Oldsmobile Inc sls serv new & used cars TH5-1766

4

7TH ST NW INTERSECTS

823 Herb's Towing TH5-6750

825 Independent Auto Repair Herb's Trucks TH5-1412

826 Andy The Welder 848-9957 No Return Steve's Used Cars TH5-9957

4TH ST NW 1969

720 Clement Frank J ©	
TH5-6741	
721 Akers Howard J ©	
TH5-8263	
722 Cobb Darrell E @ TH5-2178	
723 Hardie Merle	
725 No Return	
725½ Vacant	
726 Nelson Joseph C ©	
TH5-4956	
727 Johnson Arth J © TH5-6435	
729 Covert Gordon L ©	
TH5-9135	
732 Maass Inez A Mrs ©	
TH5-1963	
738 Boush Johanna M Mrs ©	
TH5-5465	
739 Scheyer Robt J @ TH5-6491	1
740 Turnbow Barney B	
TH5-4548	
741 O'Kelley Eugenie Mrs ©	
TH5-1820	
743 Sorenson Gordon G	
TH5-9369	
744 Urwin Dale N TH5-7867	
820 Boush Moving & Storage Inc	
TH5-8829	
905 Quick Way Self Service Car	
Wash	
906 Grant's Insurance Agency	
Inc TH5-8856	

Source Polk's City Directory

RIVER RD 1969

208 Radio Shack electronics parts 848-1501 2D ST NW INTERSECTS 300 Larson Rambler Inc

TH5-1725

324 River Road Gulf Station TH5-9865

4TH NW INTERSECTS 400 Grant's Chevrolet Inc TH5-9566

401 Puyallup Chrysler Plymouth auto dlrs TH5-8853

5TH NW INTERSECTS

506 U S Agrl Stabilization & Conservation TH5-2255 U S Soil Conservation Serv TH5-5533

> State Dept Of Natural Resources TH5-9464

514 Puyallup Tractors Inc TH5-9575

608 Grant-Milam Oldsmobile Inc sls serv new &used cars TH5-1766

7TH ST NW INTERSECTS 825 Herb's Towing auto TH5-6750

<u>Target Street</u> <u>Cross Street</u>

<u>Source</u> Polk's City Directory

4TH ST NW 1964

Ī	520 Custerd Alvina @ TH5-2256
Ĭ	6th av NW intersects
1	602 Simpson Earl S @ TH5-2378
ı	610 Ammerman Alva C @ TH5-2995
l	702 Brown Lucy C Mrs (6)
۱	TH5-4169
I	710 Nish Joe Y ®
Ì	714 Plummer Nora D Mrs
۱	TH5-1321
I	720 Clement Frank J @ TH5-6741
ı	721 Akers Howard J @ TH5-8263
ł	722 Cobb Darrell E @ TH5-2178
I	723 Vacant
ı	725 Perry Richd M TH5-2821
ł	726 Nelson Jos C @ TH5-4956
ı	727 Johnson Arth J @ TH5-6435
ı	729 Covert Gordon L @ TH5-9135
ı	732 Maass Inez A Mrs @
ı	TH5-1963
ı	738 Boush Robt F @ TH5-5465
I	739 Scheyer Robt J @ TH5-6491
1	740 Fletcher Robt C TH5-2792
ľ	741 O'Kelly Eugenie Mrs
1	TH5-1820
	743 Westover Jos
	744 Parker Marvin E TH5-5881
	745 Kenna Winifred @ TH5-2042

Source
Polk's City Directory

RIVER RD 1964

				2
AD	_	From	900	Meri-

RAYDR ROAD — From 900 Meridian N northwesterly

103 Bob & Ray's Serv gas sta TH5-9982

111 Gary's Dairy Queen TH5-5064

124 Elburg Vincent @ TH5-6740

125 Salzie Gary A @ TH5-5578

2d NW intersects

315 First Union National Bank TH5-6606

4th NW intersects

400 Grant's Chevrolet Inc TH5-9566

5th NW intersects

506 US Dept of Agrl-Agrl Stabilization and Conservation TH5-2255

> US Dept of Agrl-Farmers Home Admn TH5-5262

US Dept of Agrl-Soil Conservation Serv TH5-5533

US Dept of Natural Resources TH5-9464

608 Grant-Milam Oldsmobile Inc used cars TH5-1766

4

7th NW intersects

825 Herb's Used Cars TH5-6750

4TH ST NW 1959

610 Ammerman Al C @ △ TH5-2995 702 Brown Lucy C Mrs ① △ TH5-4169 710 Nish Joe Y @ 4 TH5-6216 714 Plummer Nora D Mrs © △ TH5-1321 720 Clement Frank J @ △ TH5-6741 721 Akers Howard J @ 4 TH5-8263 722 Vacant 723 Bailey Geo 723½ Vacnant 725 Jane's Guest House lodgings △ TH5-6361 Esget Danl W @ A TH5-6361 726 Nelson Jos C 727 Johnson Arth J @ △ TH5-6435 729 Covert Gordon L A TH5-9135 732 Maass Reinhart A @ △ TH5-1963 738 Boush Robt F @ A TH5-5465 739 Scheyer Robt J ◎ △ TH5-6491 740 Coty Jerry M A TH5-9209 741 Grant Howard I @ △ TH5-2786 743 Miller Gary L ① A TH5-4128 744 Parker Marvin E 745 Kenna Winifred @ A TH5-2042

Polk's City Directory

RIVER RD 1959

9
RIVER ROAD—From 900 Meridian
N northwesterly
103 B & K Serv gas sta
Φ TH5-6777
B & K Oil Serv fuel
Δ TH5-6777
111 Gary's Dairy Queen
△ TH5-5064
124 Dorsey Claire ⊚ △ TH5-6915
125 Bischoff Fred B ®
△ TH5-2437
2d NW intersects
4th NW intersects
400 Grant's Chevrolet Inc
△ TH5-6693
5th NW intersects
515 Vacant
4
7th NW intersects
825 Herb's Used Cars 4 TH5-1609
827 Montana Cabins
Emmel Peter R © A TH5-6458
9th NW intersects
920-23 Ted's Used Cars
4 TH5-1609
1017 Ted's Car Barn used cars
Δ TH5-1609

APPENDIX B

PREVIOUS ENVIRONMENTAL REPORT AND OTHER DOCUMENTS SELECTED PORTIONS

HILT INVESTMENT HOLDINGS, LLC 400 RIVER ROAD PUYALLUP, WASHINGTON

PHASE I ENVIRONMENTAL SITE ASSESSMENT SEPTEMBER 13, 2016

by

Kari A. Thomas Project Geologist John F. Hildenbrand Principal Environmental Scientist Environmental Services Manager

Phase | Environmental Site Assessment

400 River Road Puyallup, Washington

September 13, 2016

Prepared for:

HILT Investment Holdings, LLC 819 River Road Puyallup, WA 98371

Attention: Don Fleming

Prepared by:

Robinson Noble, Inc. 2105 South C Street Tacoma, WA 98402 (253) 475-7711

DECLARATIONS

- "I declare that, to the best of my professional knowledge and belief, I meet the definition of Environmental Professional* as defined in "312.21 of 40 CFR part 312."
- "I have the specific qualifications based on education, training, and experience to assess a property of the nature, history, and setting of the subject property. I performed and/or developed the all appropriate inquiries in conformance with the standards and practices set forth in 40 CFR part 312."
- *A person who does not qualify as an Environmental Professional may assist in the conduct of all appropriate inquiries in accordance with ASTM E1527-13 if such person is under the supervision or responsible charge of a person meeting the definition of an environmental professional when conducting such activities.

John F. Hildenbrand

Principal Environmental Scientist Environmental Services Manager

HILT Investment Holdings, LLC 400 River Road, Puyallup, Washington Phase I Environmental Site Assessment September 13, 2016

Executive Summary	iii
1.0 Introduction	
1.1 Scope of Services and Purpose of Report	1
1.2 CONDITIONS AND LIMITATIONS	1
1.3 CLIENT AND RIGHT OF RELIANCE	2
2.0 Previous Reports	2
3.0 Physical Setting	4
3.1 SITE DESCRIPTION	
3.1.1 Legal and Location	4
3.1.2 Current Property Use	4
3.1.3 Structures and Improvements	4
3.2 Regional Characteristics	
3.2.1 Current Adjoining Land Uses	
3.2.2 Topography, Geology, and Soils	4
3.2.3 Surface Water and Groundwater	
3.3 SITE AND SURROUNDING AREA RECONNAISSANCE	
3.3.1 Interior Observations	5
3.3.2 Exterior Observations	7
3.3.3 Roads	7
3.3.4 Utilities	7
3.3.5 Adjoining Properties	7
3.3.6 Data Gaps	
3.3.7 Site and Surrounding Area Summary	7
4.0 Government Agency Information	
4.1 EDR Database Search	
4.2 Washington State Department of Ecology File Review Information	
4.3 LOCAL GOVERNMENT RECORDS	
4.3.1 Health Department Records	
4.3.2 County Assessor Records	10
4.3.3 County Auditor Records	
4.3.4 Title Records and Environmental Liens or Activity and Use Limitations	
4.4 Tribal Records	
4.5 Data Gaps	
5.0 Historical Research	
5.1 Aerial Photographs	
5.2 USGS TOPOGRAPHIC MAPS	
5.3 SANBORN FIRE INSURANCE MAPS	
5.4 CITY, COUNTY, AND SUBURBAN DIRECTORIES	
5.5 Additional Historical Sources	
5.5.1 Fire Department/Fire Marshal	
5.5.2 Building Permits	12

	· Historical Sources	
5.6 SUMMARY	of Historical Findings	13
	L Data Failure Summary	
6.0 Client and (Owner Provided Information and Interviews	13
	OR CONDUCTING THE PHASE I ESA	
6.2 VALUATION	REDUCTION FOR ENVIRONMENTAL ISSUES	13
6.3 Interview	S	13
6.3.1 Agend	cies	13
6.3.2 Site T	enant(s)	13
	nt Owners	
6.3.4 Previo	ous Owners	14
	'S	
	S	
	onclusions, and Recommendations	
	SUMMARY	
	NS	
	NDATIONS	
9.0 Closing		16
ADDENIDIOSO	/A	
	(APPENDICES B THRU E ON ATTACHED CD)	
APPENDIX A	SITE DIAGRAMS, SITE PHOTOGRAPHS	
APPENDIX B	GOVERNMENT AGENCIES DATABASE SEARCH, HISTORICAL RESEARCH	
APPENDIX C	PROPERTY PROFILES	
APPENDIX D	QUESTIONNAIRE, PREVIOUS REPORTS, PERMITS, ETC.	
APPENDIX E	PROFESSIONAL SERVICES AGREEMENT/SCOPE OF SERVICES AND SOQ	

Executive Summary

Robinson Noble, Inc. has prepared a Phase I Environmental Site Assessment of tax parcels 0420214807, 0420214808, 0420214014, and 0420214057 located in Pierce County, Washington. The address assigned to the property is 400 River Road, Puyallup, Washington.

This Phase I Environmental Site Assessment (ESA) was prepared in general accordance with ASTM Standard E1527-13. It was prepared using generally accepted professional practices, and observations and findings generated for this project are based on information limited to "reasonably ascertainable sources." This ESA is not intended to be an exhaustive search for all possible environmental issues. It was designed to utilize reasonably ascertainable information in order to determine whether recognized environmental conditions (as defined by ASTM) warranting additional investigation are present. The Phase I ESA is intended as a step to qualify the report's user for the innocent landowner, contiguous property owner, or bona fide prospective purchaser limitations on CERCLA liability. The scope of services for the ESA included reviewing the physical setting of the property, reviewing government databases for potential environmental risks to the property, conducting historical research concerning the property, and conducting interviews with people knowledgeable about the property. The work was completed by, or under the direction, of an environmental professional as defined in ASTM E1527-13.

The current land use of the subject property is commercial. The property is currently occupied by Northwest Motorsport, a car dealership. Neighboring and adjoining parcels include public roads, car dealerships with repair and maintenance shops, and a moving and storage business. We inspected the subject and found no recognized environmental conditions on the property. No recognized environmental conditions were found on adjoining properties during the inspection.

Aerial photographs and topographic maps indicate the subject property was developed with agricultural land and a small building, likely an outbuilding, prior to 1941. Following that time, previous reports suggest the subject was developed as a car dealership by 1953.

A database search was conducted to identify known sites within a radius of up to one mile from the subject property that may have the potential to impact the subject with contamination. The subject property is listed on the Underground Storage Tank (UST), ALLSITES, Resource Conservation and Recovery Act (RCRA) Non-generator (Nongen)/No Longer Regulated (NLR), Finds, and Enforcement and Compliance History Online (ECHO) databases. One listed site off the subject property was further investigated to determine the level of concern to the subject. This site, Boush Moving and Storage, does appear to impact the subject property and is described in more detail below.

Robinson Noble performed this Phase I Environmental Site Assessment in conformance with the scope and limitations of ASTM Practice E1527-13. Any exceptions to, or deletions from, this practice are described in Section 1.2 of this document. This assessment has not revealed evidence of recogonized environmental conditions except for:

The potential for soil and groundwater contamination on the subject from an underground storage tank on the neighboring property, Boush Moving and Storage, represents a recognized environmental condition. Boush Moving and Storage, located at 820 4th Street Northwest, adjoins the subject property to the south. The property contains a combination gas and diesel underground storage tank that is abandoned on the property. Records show that the tank has been emptied. Details of the underground-storage tank are discussed in Section 4.1. Since the

underground-storage tank is upgradient of the subject, it is possible for contamination, if it exists, to have migrated to the subject. The previous borings were not in an optimal position to identify contamination from the adjoining property to the south. However, the contamination, if it exists, is likely not extensive since contamination associated with the off-site tank was not identified in soil borings that were advanced on the subject property during previous environmental investigations.

As described in Section 2.0, we were unable to review the complete history of environmental investigations conducted on the property. We recommend obtaining the previous reports, if possible, for further review to determine if previous investigations are sufficient to resolve the recognized environmental condition identified above and the significant data gaps. If not, we recommend a subsurface investigation be conducted near the southern boundary of the subject property to identify if soil or groundwater contamination potentially associated with the adjoining property is present on the subject site.

HILT Investment Holdings, LLC 400 River Road, Puyallup, Washington Phase I Environmental Site Assessment September 13, 2016

1.0 Introduction

1.1 Scope of Services and Purpose of Report

This Phase I Environmental Site Assessment (ESA) was prepared in general accordance with ASTM Standard E1527-13 and the professional services agreement (PSA) between Robinson Noble and HILT Investment Holdings, LLC executed on August 10, 2016. The PSA and a detailed scope of services are attached as Appendix E of this report. The noted scope of services was developed based on standard industry practices and ASTM Standard E1527-13. Unless an item is specifically addressed in the noted scope of services and discussed herein, it should be assumed that it was not included in the scope of work for this project. This Phase I ESA was prepared for the subject site located at 400 River Road, Puyallup, Washington.

1.2 Conditions and Limitations

This project was generally completed within the standard scope defined by ASTM. The contractual agreement between the client and Robinson Noble did not contain any special conditions or limitations. As outlined in ASTM E1527-13, the observations and findings generated for this project were based on information limited to "reasonably ascertainable sources."

This report was prepared using generally accepted professional practices. The nature of the ESA process requires that information generated, managed, and/or controlled by third parties is utilized. We believe that the sources utilized are accurate; however, we cannot guarantee that the third-party information is free of error. While we warrant that the opinions and conclusions drawn from information gathered during this study are based on sound professional judgment, we reserve the right to modify any opinion, conclusion, and/or recommendation in the event new, revised or different information becomes available. Unless specifically stated herein, no other warranty, expressed or implied, is made.

This ESA is not intended to be an exhaustive search for all possible environmental issues. It was designed to utilize reasonably ascertainable information in order to determine whether recognized environmental conditions (as defined by ASTM) warranting additional investigation are present. However, according to ASTM 1527-13 "no environmental site assessment can wholly eliminate uncertainty regarding the potential for recognized environmental conditions in connection with a property." This ESA is intended to reduce uncertainty regarding recognized environmental conditions for the subject property, but it cannot eliminate all uncertainty.

The Phase I ESA is intended as a step to qualify the report's user for the innocent landowner, contiguous property owner, or bona fide prospective purchaser limitations on CERCLA liability. It constitutes a portion of the "all appropriate inquiry into the previous ownership and uses of the property consistent with good commercial or customary practice" as defined by 42 U.S.C. §9601. The scope of services noted in Section 1.1 was completed by, or under the direction of, an environmental professional as defined in ASTM E1527-13.

1.3 Client and Right of Reliance

As outlined in the PSA governing this project, the client is HILT Investment Holdings, LLC. An additional right of reliance is granted to Columbia Bank. This report was prepared for the use of the client for the purposes outlined herein and in contract documents under which the project was completed.

Reliance by any party other than HILT Investment Holdings, LLC or Columbia Bank is strictly at their own risk. Additional entities may be granted the right to rely on this report, subject to the approval of the client and agreement by the relying party regarding the scope of services under which this report was prepared. Such additional rights-of-reliance may only be granted in writing either by specific mention in this section or in a letter of reliance prepared and signed by Robinson Noble

2.0 Previous Reports

We reviewed a previous Phase I ESA produced by Partner Engineering and Science, Inc (Partner) for Sterling Bank in 2013 that was provided by HILT Investment Holdings, LLC. Partner's report stated that the city directories included in thier Phase I ESA show that the subject was listed as Grant's Auto Sales and Service in the 1953 directory. The report indicates that Mrs. Amy Jackson with the Central Pierce Fire and Rescue Prevention and Education division stated that she had no fire incident records for the subject property. Permits obtained from the City of Puyallup Building Department for the phase I ESA contain building permits for signs on the subject and for replacing gas furnaces. The Partner report also references a previous Phase I ESA completed by Environmental Associated, Inc. in 2003. We were unable to obtain a copy of this older Phase I ESA. However, the Phase I report completed by Partner summarizes some of the report details from the older Environmental Associated Phase I ESA.

We have labeled the subject property buildings, former underground-storage tank locations, and the location of the above-ground storage tank on an aerial map of the site which is attached as Figure 2 in Appendix A. The Partner Phase I ESA indicates that the Environmental Associated, Inc. ESA suggests that the subject building (Building 1) had been heated in the past with heating oil stored in an underground-storage tank. The report suggests that the closed-in-place heating-oil tank is located beneath the southern margin of the parts offices (southeastern portion of Building 1). The report also identified that a gasoline UST was formerly located on the subject property near the southeastern driveway.

The Partner Phase I ESA also references a Phase II ESA that was conducted by Encore Environmenal Consortium, LLC (Encore) in 2003 for Argonaut Holdings, LLC. We were not able to acquire this report. The description below is based off of a summary of the report findings from the Phase I ESA completed by Partner. The purpose of the Phase II was to investigatie recognized environmental conditions found in the Environmental Associated, Inc. Phase I ESA conducted in 2003, described above.

The assessment reportedly consisted of 18 direct-push soil borings advanced on the subject property. Soil borings were advanced near storm drains at the request of Argonaut, one of which was in the vicinity of an above-ground oil-water separator on the subject. One soil boring was located near the assumed location of a former gasoline UST and one boring was advanced near the east side of the subject property to investigate potential impacts from the adjacent property to the east. A single boring was advanced near the closed-in-place heating-oil underground storage tank and two soil borings were placed near a waste-oil tank that was active at the time of the investigation. Eleven soil borings were advanced to investigate

locations of former underground hydraulic vehicle hoists. Soil and groundwater samples were collected at each boring location.

The soil results for samples collected near the waste-oil tank (active at the time) were found to contain gasoline-range and diesel-range petroleum hydrocarbons above applicable Washington State Model Toxic Control Act (MTCA) cleanup levels. In addition, previous reports and health department records indicate that the waste-oil tank was previously replaced and that the former tank was located in the same area. The previous waste-oil tank was reportedly removed in 1987. Ecology and health department records describe the decomissioning and removal of contamination regarding the waste-oil tank which was active at the time of the previous investigations in 2003, as described in Section 4.2 and 4.3.1. Confirmation samples collected from the excavation confirmed that the contamination was removed. The Tacoma-Pierce County Health Department (with authority from the Washington State Department of Ecology) issued a no-further-action (NFA) determination for the tank area indicating that the contamination was removed to the satisfaction of the health department. Since the tank was removed, contaminated soils were removed, and since the health department provided a NFA determination for the tank area, we have determined that the former waste-oil underground storage tanks do not represent a significant risk to the subject.

The Partner report indicates that no constituents were detected in soil samples collected from the borings along the eastern boundary of the property, near the closed-in-place heating-oil tank, near the storm drains, or near the hydraulic hoists. No groundwater contamination was found during the 2003 investigation completed by Encore. Since contamination was not identified near the location of the closed-in-place heating-oil tank, we have determined that the risk to the subject is likely low.

Since health department records, discussed in Section 4.3.1 describe the removal of two hydraulic hoists, and because the investigation by Encore did not identify any contamination near the former hoist locations, we opine that the hydraulic hoists likely do not represent a significant risk to the subject.

The site previously had a gasoline underground-storage tank, which previous reports indicate was located on the subject near the southeastern driveway. Records indicate the tank was removed in 1987. The boring advanced by Encore, revealed Xylene at a concentration of 15.8 mg/kg in soil sampled from the assumed location of the former gasoline UST, which is above the MTCA Method A cleanup level of 9 mg/kg. Due to the exceedance, the area of the gasoline UST was excavated by Environmental Management Services, LLC. (EMS) on September 2, 2004 and 26.37 tons of impacted soil was excavated and transported off site. Soil samples were collected from the excavation and analyzed for gasoline-range total petroluem hydrocarbons, benzene, toluene, ethyl benzene, and xylene (BTEX). Two additional samples were analyzed for total hydrocarbons by HCID method. The confirmation samples collected from the excavation were reported below the MTCA method A cleanup levels for the applicable constituents. No groundwater was encountered during the excavation. Since the area was excavated, contaminated soil was removed, and confirmation samples verified that the contamination was removed, we have determined that the former gasoline UST represents a low risk for the subject property.

We were unable to review a complete history of the environmental reports that exist for the subject property. Therefore, we are unable to verify the accuracy of some of the findings and conclusions within the previous reports. This is a significant data gap.

Available previous reports are included in Appendix D.

3.0 Physical Setting

3.1 Site Description

3.1.1 Legal and Location

The subject site is comprised of four parcels identified by Pierce County records as parcel numbers 0420214807, 0420214808, 0420214014, and 0420214057. The address assigned to the property is 400 River Road, Puyallup, Washington. A general location map is provided as Figure 1 in Appendix A. Five buildings are located on the subject property which have been numbered (Building 1 through Building 5) for clarity. Building numbers are labeled on Figure 1. A site diagram, indicating approximate parcel boundaries, is included in Appendix A as Figure 2. The subject consists of approximately 3.87 acres.

3.1.2 Current Property Use

The land use of the subject is commercial. The property is currently occupied by Northwest Motorsport, a car dealership.

3.1.3 Structures and Improvements

The subject property includes five commercial buildings, two large canopies, and asphalt parking lots and driveways.

3.2 Regional Characteristics

3.2.1 Current Adjoining Land Uses

The subject is situated in an area that is generally developed with commercial land uses. The directly adjoining parcels are occupied by the following:

- North: River Road and a car dealership
- Northeast: River Road, service center (repair shop) for car dealership, and a commercial building containing a restaurant, an investment company, a payday loan business, a hearing medical office, hair salon, a tax-services business, Verizon wireless store, and a dentist's office
- East and southeast: Fourth Street Northwest and a car dealership
- South: Boush Moving and Storage
- Southwest and west: A car dealership
- Northwest: River Road and Key Bank

3.2.2 Topography, Geology, and Soils

The subject property is at an elevation of between 35 to 40 feet above sea level, sloping gently to the south. The subject property is located in the Puyallup River valley approximately 1,200 feet south of the river.

Troost (in press) maps the surface geology of the subject and surrounding area as alluvium. These sediments are generally composed of silt, sand, and gravel. This unit is generally very permeable.

Soils in the area of the subject have been classified as xerorthents, Puyallup fine sandy loam, and Pilchuck fine sand by the USDA (2015). Xerorthents is associated with fill material. Puyallup fine sandy loam and Pilchuck fine sand are generally associated with flood plains. These soils are typically well drained to excessively drained, respectively.

The soil survey map identified fill material in the central portion of the subject property. Although fill may exist, multiple soil borings have been advanced on the subject property as described in Section 2.0. Our review of previous work did not describe unsuitable fill material and analytical results did not identify contamination associated with fill materials. Therefore, we opine that fill material that may exist on the subject property is likely not a significant risk to the subject property.

3.2.3 Surface Water and Groundwater

There is no surface water on the subject. The nearest surface water body is the Puyallup River, located approximately 1,200 feet north of the subject.

Based upon well logs obtained from the Department of Ecology for sites near to the subject, the depth to groundwater is generally 15 to 20 feet. Shallow groundwater flow directions and depths are likely influenced by proximity to the Puyallup River. Groundwater flow directions in the vicinity of the subject site are presumed to be toward the north. Given that the groundwater gradient is relatively flat (at the scale of the subject property), the groundwater flow direction may vary from this presumed direction. However, the actual groundwater flow direction and depth cannot be fully characterized without performing work beyond the scope of this study.

3.3 Site and Surrounding Area Reconnaissance

Kari Thomas, a Robinson Noble geologist, completed a site reconnaissance (inspection) on August 19. The purpose of the reconnaissance was to obtain readily apparent indications of potential recognized environmental conditions as defined by ASTM Standard E1527-13. Selected photographs from the reconnaissance are attached in Appendix A. The inspection included a walkthrough of the site and a review of the surrounding properties. Also included was an inspection for possible contamination sources, including those noted below, on the site and from adjoining properties.

- storage tanks (underground and above ground)
- wells (water wells, dry wells, irrigation wells, monitor wells, etc.)
- drums or chemical storage areas
- hazardous substances, petroleum products, and unidentified containers
- pools of liquid, ponds, and surface impoundments
- maintenance or shop areas
- waste water systems

- sumps or storm drains
- interior stains or corrosion
- stained soil or pavement
- potentially PCB-containing equipment
- piles of waste or trash; solid waste
- dead or dying vegetation
- unusual odors
- other observations that in the opinion of the field investigator indicate the possible presence of conditions of concern

As described in Section 3.1, the site is currently occupied by a Northwest Motorsport car dealership.

3.3.1 Interior Observations

The main building (Building 1) on the subject property contains multiple uses. The building contains a sales floor and offices, the parts and service department office, a waiting room, a parts-and tire- storage area, and maintenance and vehicle repair bays. The sales floor contains cubicle spaces and offices, and a showroom for a few vehicles. The sales area consists of typical office building materials and furnishings. The service center area contains offices, cashier, ordering

counters, and a waiting room for customers. The tire-storage area located in building one has a concrete floor and stacks of vehicle tires and boxes of vehicle parts. Small propane tanks are stored in the tire-storage area, which are used as forklift fuel. Rooms off the tire-storage area provide additional storage of wheels, and other various auto parts. Building 1 also contains a break room with a small kitchenette, tables and chairs, and gym equipment. The shop bays include above-ground-storage bins, which contain new motor oil. The shop floor is concrete and patched areas are visible on the floor, presumably from the removal of previous underground hoists. The current vehicle hoists in building 1 are above ground and are mounted onto the concrete floor. We did not observe any underground hoists in the repair bays. We did not observe floor drains in the maintenance and repair shops areas of building 1. Although dry stains were observed on the floor of the shop, we opine that the stains are confined to the concrete floor and do not likely impacted soils on the subject property. The parts department area includes a sales counter, racks of auto parts, and an area of Northwest Motorsport brand merchandise for sale. No environmental concerns or recognized environmental conditions were identified in Building 1.

Building 2 consists of vehicle repair and maintenance bays. The building contains a concrete floor and pad-mounted vehicle hoists. The shop contains above-ground storage containers for motor oil. We did not observe evidence of underground vehicle hoists remaining in place. Concrete patches and cuts, presumably associated with former underground hoists were observed on the shop floor. Above-ground storage bins containing new oil were observed in building two. No significant staining associated with the oil bins was observed. Although dry stains were observed on the floor of the shop, we opine that the stains are confined to the concrete floor and do not likely impacted soils on the subject property. We did not observe floor drains in building 2.

The wholesale office and balloon shed (Building 3) includes an office area and a storage shed for compressed helium tanks for filling balloons. The building consists of typical office building materials and furnishings.

Building 4 appeared to be primarily used for painting and auto body repair and also had a customizing shop. Building 4 has a concrete floor. Pad-mounted vehicle hoists are located in building 4. The southern-most room in building 4 contains two above-ground storage tanks for used oil. Various floor mats are layered on the floor in this room. Oil staining was observed on the exterior of the storage tanks, on floor mats, on compressor equipment, and on other surfaces in this room, indicating that spills, drips, and other releases of oil have occurred. However, the spills likely do not impact soils beneath the building since the building has a concrete floor and mats above the concrete floor likely captured any spills that have occurred. We recommend that best management practices be used regarding minimizing spills, containing spills, and cleanup of spills.

A washing machine and dryer, for washing laundry, are located in Building 5. Uniforms, anti-freeze, transmission fluid, and other vehicle fluids, wheels, tires, and an all-terrain vehicle are stored in building 5. Building 5 has an older concrete floor. Vehicle fluid containers that appeared to be in use were located on floor mats. We opine that spills from vehicle fluids would be contained on the concrete surface or be captured by floor mats. Therefore, we opine that the risk from spills from vehicle fluid storage containers is likely low.

Some building materials observed in the subject buildings, including surfacing materials on walls and ceilings and floor tiles, are suspect asbestos-containing building materials. Asbestos surveying and sampling are not included as part of this Phase I ESA. We recommend that an

asbestos survey be completed by a certified building inspector in accordance with all local and federal requirements prior to any renovation, demolition, or disturbance of building materials on the subject property.

3.3.2 Exterior Observations

A canopy is located at the south end of the subject property, west of building 5. We observed car-washing activities occurring under the canopy. An above-ground oil-water separator (OWS) was observed near the car-washing station. Interviews with Northwest Motorsport employees indicate that water from the stormwater system on the subject property is pumped up to the oil-water separator and is then pumped underground into the sewer system on 4th Avenue. They also indicated that the OWS is cleaned out every six months. The OWS appeared to have secondary containment in the event of an overflow. Since the OWS appears to be routinely maintained, is above ground, and is equipped with a secondary containment system, and because previous evaluations, discussed in Section 2.0, did not identify contamination surrounding the OWS, we opine that the oil-water separator does not represent a significant risk to the subject property.

A second canopy is located in the southwest corner of the property, west of building 4. The canopy appeared to function as an area for vehicle detailing and painting. A metal shipping container is located on the south side of building 4. The shipping container appeared to contain storage of empty steel drums and empty 5-gallon containers, which previously contained paints and other various products.

3.3.3 Roads

River Road and 4th Street Northwest adjoin the subject property to the north and east, respectively.

3.3.4 Utilities

Public water and sewer serve the site. Heating and cooling of the occupied buildings appear to be accomplished by electricity.

3.3.5 Adjoining Properties

Adjoining properties were inspected from the adjoining right-of-ways during the site visit. Adjoining properties include car dealerships, public roads, a moving and storage business, and public roads. The interiors of buildings on the adjoining properties were not inspected.

3.3.6 Data Gaps

The interiors of neighboring buildings were not inspected. However, based on the observed uses of these properties, we interpret this data gap is not significant. There are no other data gaps to the site and area reconnaissance.

3.3.7 Site and Surrounding Area Summary

The visual inspection of the subject property did not reveal any recognized environmental conditions.

The visual inspection of the adjoining properties did not reveal any concerns defined by ASTM as a recognized environmental condition.

4.0 Government Agency Information

4.1 EDR Database Search

A database search was conducted through a private, third-party firm, Environmental Data Resources, Inc. (EDR), to identify sites of known or potential contamination within varying radii as defined by ASTM. These radii range from the target property only to up to one mile from the subject property. The database search results, including the search radii, are included in the EDR report, which is attached as Appendix B. A complete list and descriptions of the databases searched may be found in the Government Records Search/Data Currency Section of the EDR report. The absence of records should not be used as conclusive evidence that conditions do not exist. Sites may not have been reported or registered and/or may pre-date the requirement to report or register.

The subject site is located at 400 River Road, Puyallup, Washington. The EDR report lists the subject site on the Underground Storage Tank (UST), ALLSITES, Resource Conservation and Recovery Act (RCRA) Non-generator (Nongen)/ No Longer Regulated (NLR), Finds, and Enforecement and Compliance History Online (ECHO)databases. The subject property is listed on the UST regarding four underground storage tanks previously used on the subject property, including two waste-oil USTs, a gasoline UST, and a heating-oil UST. The USTs are described in more detail in Section 2.0, 4.2, and 4.3.1. The subject is listed on the remaining databases as a result of handling petroleum products and previous compliance assistance visits and local source control inspections. Based on previous environmental assessments described in Section 2.0, and based on health department and Ecology records described in Section 4.3.1 and 4.2, respectively, we have determined that the risk to the subject from the USTs is low.

The EDR report lists 109 properties/businesses with a total of 166 listed conditions falling within the ASTM standard search radii. In addition, the EDR report lists seven unmappable (orphan) sites with listed conditions. As part of this study, where reasonably ascertainable, we determined the locations of the unmapped listed sites.

We assessed the risk to the subject property from both the mapped and unmapped listed sites. We were able to determine without further research that all but one of the listed sites pose little risk to the subject. We made this determination by reviewing site locations in relation to the estimated groundwater flow direction, reviewing the types of listings, and reviewing the reported status of the listed sites. As described below, one site was researched in more detail to determine its level of risk to the subject.

Boush Moving and Storage (EDR map ID # 8) at 820 4th Street Northwest adjoins the subject property to the south. The property is listed in the UST and ALLSITES databases. The property is listed in the UST database for a combination gas and diesel underground storage tank that is abandoned on the property. The Department of Ecology provided records for the tank, however, minimal records exist. A letter from Boush Moving and Storage to the Department of Ecology indicated that the tank was last used in 1982 and that the tank was emptied. The tank records are described below in Section 4.2. Brad Costello with the Tacoma-Pierce County Health Department indicated that they do not have tank records and that the tank pre-dates their regulations. We opine that the tank may not be closed-in-place in accordance with current regulations.

The records also indicate that there was no leak detection, cathodic protection, or internal lining for the tank system. The location of the tank on the property is not described in the records provided by the Department of Ecology. If the tank has leaked, there is potential for

contamination to surrounding soil and groundwater. Since the property is located upgradient of the subject, it is possible that contamination may have migrated to the subject through a groundwater pathway and possibly soil contamination if the tank was in close proximity to the southern subject property boundary. The potential for soil and groundwater contamination on the subject from the underground storage tank on the neighboring property represents a recognized environmental condition. Previous soil borings were not placed in optimal locations to identify contamination from the adjoining property to the south. However, the contamination, if it exists, is likely not extensive since contamination associated with the off-site tank was not identified in soil borings that were advanced on the subject property during previous environmental investigations.

4.2 Washington State Department of Ecology File Review Information

Ecology records include a decommissioning report for the previous waste-oil underground storage tanks, located near the south side of building 2, which is also included in health department records and is discussed in Section 4.3.1. The records also include a letter from Ecology to Ken Parks Chevrolet in 1998 indicating that the subject tank system had not been upgraded to current standards and would not be issued a compliance tag.

A checklist included in Ecology records indicate that the subject previously contained a 550-gallon waste-oil tank and a 2,000-gallon unleaded-gasoline fuel tank on the subject property. The record indicates that the fuel tank and the oil tank were removed in 1987. The checklist indicates that contamination was not found and that a site assessment was not completed.

Ecology records include a records indicating that the gasoline UST on the subject property was removed in 1987. The records also indicate that the tank had been in place approximately fifteen years before it was removed and that the tank did not have a leak detection system or cathodic protection and that the tank was unlined.

Ecology also provided tank records for the adjoining property to the south, Boush Moving and Storage. Ecology records indicate that a leaded gasoline and diesel tank was installed on the property in 1977 and was last used in 1982. A letter from Boush Moving and Storage to Ecology indicates that they had the remaining fuel pumped out of the tank, but there are no records that the tank was removed. The records suggest that the piping associated with the tank is above ground and that the tank was between 500 and 1,000 gallons in capacity. Ecology records are included in Appendix D.

4.3 Local Government Records

4.3.1 Health Department Records

Brad Costello with the Tacoma-Pierce County Health Department provided records for the subject property regarding decomissioning of underground storage tanks that were previously located on the subject property and removal of former underground hydraulic vehicle hoists.

The records provided include a decomissioning project completed by Environmental Management Service, LLC for Friendly Chevrolet in 2004. A 650-gallon underground waste-oil tank, located on the subject property along the southern wall of building 2, was removed and confirmation soil samples were collected from the excavation area. The report states that the soil sample results were below the MTCA cleanup Limits of 2,000 mg/kg for diesel and oil-range petroleum hydrocarbons. The waste-oil tank is also described in Section 2.0.

The report also describes that two hydraulic-oil cylinders associated with the hoist system in a stall in the service shop (Building 2) were removed in 2004. The report details that soil samples were collected from the excavation and that no contamination was found above MTCA cleanup levels. The records include a NFA determination letter from the Tacoma-Pierce County Health Department regarding the removal of the underground waste-oil tank previously described. Health department records are included in Appendix D.

4.3.2 County Assessor Records

According to Pierce County Assessor's records, the owner of tax parcels 0420214807, 0420214808, 0420214014, and 0420214057 is K & A Holdings, LLC. These records indicate previous owners include CMW Investments, LLC and Parks Family, LLC. Parcel information was reviewed on the Assessor website and is attached in Appendix C.

4.3.3 County Auditor Records

We reviewed Pierce County Auditor records for the subject property. No environmental liens or activity and use limitations were identified in the records, nor did we find other information on potential recognized environmental conditions.

4.3.4 Title Records and Environmental Liens or Activity and Use Limitations

HILT Investment Holdings, LLC did not provide a copy of title records for the property. Title records can provide information on past owners and can potentially contain environmental liens or activity and use limitations not revealed by other sources. Without provided records, we did not review title records for the property.

4.4 Tribal Records

This property is not located within the historical boundary of an Indian reservation. Therefore, tribal records most likely do not exist. However, the inability to review tribal records is a data gap.

4.5 Data Gaps

Neither title nor tribal records were reviewed for this assessment. However, the owner has indicated that they have reviewed title documents and found no liens or encumbrances related to environmental conditions existing on the subject. Our review of County records also found no concerns. Also, the subject is not within the historic boundary of an Indian reservation, so tribal records likely do not exist. Therefore, we interpret both of these data gaps to be insignificant.

5.0 Historical Research

A critical part of the ESA process is the consultation of historical sources to develop a history of the previous uses of the subject property and surrounding area. The purpose is to identify the likelihood of past uses causing recognized environmental conditions that could potentially impact the subject property. According to ASTM, the goal of historical research is to develop an assessment of chronological site and area land use from the first development. The historical information reviewed includes available sources that are reasonably ascertainable and relevant (as defined in ASTM E1527-13). Aerial photographs, fire-insurance maps, USGS 7.5-minute topographic maps, local street directories, County records, Polk's directories, and historical atlases were reviewed for this project. Relevant historical findings are given below.

5.1 Aerial Photographs

Aerial photographs (aerials) were searched through a third-party firm, EDR. A copy of the EDR Aerial Photo Decade Package is attached in Appendix B. Aerials dated from 1941, 1943, 1957, 1968, 1972, 1980, 1986, 1990, 1991, 2006, 2009, and 2011were reviewed.

The subject property appears developed with agricultural land on the subject property on the 1941 map. The subject also includes timberland and vegetation associated with an oxbow lake. River Road adjoins the subject property to the north and 4th Street Northwest adjoins the subject property to the east. Agricultural land and a road are located on the adjoining property to the west. The properties adjoining the subject to the south appear to be residential and agricultural land. The 1943 map appears relatively similar to the 1941 map.

The subject property appears developed with a large commercial building (Building 1) on the 1957 map. The subject also contains a paved parking lot. The adjoining property to the west appears developed with a driveway and approximately three small buildings, likely a single-family residence and outbuildings.

Two additional commercial buildings (Buildings 2 and 5) appear developed on the subject property on the 1968 aerial. The properties north and northeast of the subject and River Road appear developed with commercial buildings on the aerial. The adjoining property to the south appears developed with a commercial building on the aerial. The adjoining property to the west appears redeveloped with an asphalt-paved lot and appears used as storage of items or possibly vehicles. The property east of the subject and 4th Street Northwest appears developed with two small commercial buildings.

A commercial building is shown on the adjoining property to the west on the 1972 map. A second large commercial building has been added to the adjoining property to the west on the 1980 aerial. A second commercial building is located on the adjoining property to the south on the aerial. The 1986 aerial is of poor clarity. However, it appears similar to the 1980 aerial. The 1990 and 1991 aerials appear similar to the 1980 aerial. The adjoining property southwest of the subject appears developed with commercial buildings on the 2006 aerial. Subsequent aerials appear similar to the 2006 aerial.

We did not find any historical environmental conditions from the aerial photo review.

5.2 USGS Topographic Maps

A topographic (topo) map search was completed through a third-party firm, EDR. A copy of the EDR Historical Topographic Map Report is attached in Appendix B. Coverage was available for years .

The earliest topo, dated 1897, Shows the Puyallup River in the area of the subject and surrounding area. The city of Puyallup appears developed in the surrounding area south of the subject. A small building is shown on the the subject property on the 1941 map. The building may be an outbuilding. The map shows an intermittent stream travelling through the subject property from east to southwest. Two commercial buildings are shown on the subject property on the 1961 map. Two additional commercial buildings are shown on the subject property on the 1968 map, as shown by structure symbols on the map. The adjoining properties to the north, east, and west appear developed with commercial buildings, as shown by structure symbols on the map.

The 1973 map appears relatively similar to the 1968 map. Additional development in the surrounding area is shown on the 1981 map as indicated by shading on the map. The 1994 map and subsequent maps do not show details at the scale of the subject.

No specific historical recognized environmental conditions were revealed through the topographic map search.

5.3 Sanborn Fire Insurance Maps

A Sanborn map search was completed through a third-party firm, EDR. A copy of the EDR Sanborn Map Report is attached in Appendix B. Sanborn fire-insurance map coverage is not available for the subject and surrounding area.

5.4 City, County, and Suburban Directories

A directory search was completed through a third party, EDR. Their report, EDR City Directory Abstract, is attached in Appendix B. This source shows available directory coverage for the area surrounding the subject property. Pertinent results of the directory research are detailed below.

The subject address, 400 River Road, is listed in the 1959, 1964 city directory as Grant's Chevrolet, Inc. (auto sales). The address is listed as Service Chevrolet, Inc in the 1970, 1975, and 1981 directories. Ken Parks Chevrolet Inc. is listed at the subject propery address in the 1986, 1992, 1995, and 1999 directories. The 1999 directory also lists Puyallup Chevrolet and Subaru at the subject property address. The 2003 and 2008 directories lists Bullet Proof Bedliners and Puyallup Chevrolet and Subaru on the subject property address. Northwest Motorsport and Bullet Proof Bedliners are listed at the subject property address in the 2013 directory.

The adjoining property to the west, located at 500 River Road, is listed in the 1992 city directory as Korum Motors (auto sales).

The property east of the subject and 4th Street Northwest is listed in the 1970, 1975, 1981, and 1986 directories as Larson Motors Inc. (auto sales), Daihatsu of Puyallup and Larson Dodge are listed at the address in the 1992 and 1999 directories. The property is listed as Larson Dodge in the 1995 directory and as Larson Motors Inc in the 2003 and 2008 directories. The property is listed as JMS Detail & Auto Accessories and Larson Motoros Chrysler Puyallup in the 2013 directory.

The adjoining property to the south, located at 820 4th Street Northwest is listed in the 1970, 1975, 1981, 1986, 1992, 1995, 1999, 2003, 2008, and 2013 directories as Boush Moving and Storage Inc. The address is also listed as Olympic Moving & Storage in the 2013 directory.

No specific historical recognized environmental conditions were revealed through the directory research.

5.5 Additional Historical Sources

5.5.1 Fire Department/Fire Marshal

We submitted a public records request for fire records to the City of Puyallup. However, we have not yet received any records.

5.5.2 Building Permits

We submitted a public records request to the City of Puyallup for building permits. However, we have not yet received any records.

5.5.3 Other Historical Sources

No specific historical recognized environmental conditions were revealed through the research of these other historical sources.

5.6 Summary of Historical Findings

The historical research indicates the subject property was first developed prior to 1941 as agricultural land with an outbuilding. Following this initial development, city directories from the previous Phase I (Partner 2013) indicate that the subject was developed with a car dealership by 1954. The car dealership was expanded over time to include additional buildings.

Historically, the surrounding area was largely agricultural land and residences with outbuildings. While the surrounding area south of the subject property has remained predominantly residential, the remaining area was largely redeveloped with commercial uses in the 1960's.

No specific historical recognized environmental conditions were revealed through historical research.

5.7 Historical Data Failure Summary

We were unable to determine the first developed use. This is a historical data failure. However, aerials and topographic maps suggest that the subject was developed with a small building, likely an outbuilding, and agricultural land by 1941, which we opine is likely the first developed use. Because the first use was for agriculture, this data failure is not considered significant.

6.0 Client and Owner Provided Information and Interviews

6.1 Reason for Conducting the Phase I ESA

HILT Investment Holdings, LLC stated the purpose of this Phase I ESA is financing.

6.2 Valuation Reduction for Environmental Issues

Debbie Cupples, a representative of the current property owner, indicated the value of the property has not been reduced due to environmental issues.

6.3 Interviews

Interviews, both actual and attempted, for this Phase I ESA were conducted by Kari Thomas, a Robinson Noble geologist.

6.3.1 Agencies

Based on the information researched for this study, agency interviews were determined unnecessary and were not conducted.

6.3.2 Site Tenant(s)

We conducted an interview with Chase Malloy, a representative of Northwest Motorsport, at the time of the site visit. He provided information regarding uses of the subject buildings. He indicated that waste oil is removed from the above-ground storage tanks on the subject property by a contractor approximately once a week. He also indicated that storm drains on the subject property go through an above-ground oil-water separator located on the subject property. He stated that to his knowledge water on the site goes into the sewer system on 4th Street Northwest after it passes through the oil-water separator. Mr. Malloy indicated that the maintenance and repair shops currently utilize above-ground, pad-mounted vehicle lifts. Mr. Malloy

stated that they generally store less than 500 tires on the subject property. Our interview with Mr. Malloy did not reveal any significant environmental issues or recognized environmental conditions.

6.3.3 Current Owners

We conducted an interview with Debbie Cupples, a representative of the current property owner. However, the interview did not reveal any significant environmental issues or recognized environmental conditions. We also conducted an interview with Chase Malloy, a representative of the current property owner, described above in Section 6.3.2. Ms. Cupples provided previous reports and documentation for the subject property.

We also submitted a detailed questionnaire to Debbie Cupples. The questionnaire includes questions concerning the subject property's current use and history; whether the person answering the questionnaire has any specialized knowledge or experience, or are aware of any "commonly known information," in connection with potential environmental conditions; whether they have any actual knowledge of environmental liens or activity use limitations (AULs) for the subject; whether the value of the property has been affected by environmental issues; and concerning the reason why the Phase I ESA is needed. The answers to the questionnaire state that used oil and used oil filters are removed by Emerald Services and that batteries are recycled by Seattle Automotive Distributing. The questionnaire also suggests that all of the vehicle hoists were above ground at the time that the property was purchased on behalf of Northwest Motorsport. The questionnaire is attached in Appendix D. The answers to the questionnaire did not reveal any significant environmental issues or recognized environmental conditions

6.3.4 Previous Owners

Through our research on this project, we were able to identify at three previous owner of the subject property. The previous owers are businesses and we were unable to obtain anyone knowlegable about the property.

6.3.5 Others

No other interviews were conducted for this report.

6.4 Data Gaps

We were unable to interview previous owners. This is a data gap. However, we opine that the interviews, had they occurred, would not likely alter the findings of this report. Therefore, we have determined this data gap to be insignificant.

7.0 Findings, Conclusions, and Recommendations

7.1 Findings

The subject site is comprised of four parcels identified by Pierce County records as parcel numbers 0420214807, 0420214808, 0420214014, and 0420214057. The address assigned to the property is 400 River Road, Puyallup, Washington. These parcels are currently used primarily for commercial uses, and are occupied by Northwest Motorsport, a car dealership. The surrounding properties include public roads, car dealerships and maintenance and repair shops associated with the dealerships, and a moving and storage facility.

The historical research indicates the subject property was developed by 1941 with agricultural land and a small building, likely an outbuilding. Following this development, the subject was

redeveloped with a car dealership by 1953. The site was developed into its current configuration in 1968.

We reviewed standard environmental databases and found the subject property on the UST, ALLSITES, RCRA Nongen/ NLR, Finds, and ECHO databases. The subject property is listed on the UST regarding four underground storage tanks previously used on the subject property, including two waste-oil USTs, a gasoline UST, and a heating-oil UST. The subject is listed on the remaining databases as a result of handling petroleum products and previous compliance assistance visits and local source control inspections. The database search did indicate a number of nearby properties listed. We further investigated the only site that appeared to be of concern. Our additional investigation found evidence of a recognized environmental condition, which is described below in Section 7.3.

We submitted a questionnaire to the subject property owner and interviewed people knowledgable about the property. This information did not provide evidence of any recognized environmental conditions.

7.2 Data Gap Summary

Significant data gaps affect an environmental professional's ability to identify recognized environmental conditions. However, data gaps in and of themselves are not inherently significant. We identified one significant data gap through this study. We were unable to review a complete history of the environmental reports that exist for the subject property (see Section 2.0). Therefore, we are unable to verify the accuracy of some of the findings and conclusions within the previous reports. This is a significant data gap.

7.3 Conclusions

We have performed a Phase I Environmental Site Assessment in general conformance with the scope and limitations of ASTM Practice E1527-13 of 400 River Road, Puyallup, Washington. Any exceptions to, or deletions from, this practice are described in Section 1.2 of this document. This assessment has not revealed evidence of recogonized environmental conditions except for:

The potential for soil and groudwater contamination on the subject property from an abandoned underground-storage tank located on the adjoining property to the south. Since the underground-storage tank is upgradient of the subject, it is possible for contamination, if it exists, to have migrated to the subject.

7.4 Recommendations

We opine that the contamination, if it exists, is likely not extensive since contamination associated with the off-site tank was not identified in soil borings that were advanced on the subject property during previous environmental investigations. As previously described, we were unable to review the complete history of environmental investigations conducted on the property. We recommend obtaining the previous reports, if possible, for further review to determine if previous investigations are sufficient to resolve the recognized environmental condition identified above and the significant data gaps. If not, we recommend a subsurface investigation be conducted near the southern boundary of the subject property to identify if soil or groundwater contamination exists from the adjoining property.

8.0 References

Federal, State, and Local Agency Records

Pierce County Assessor's Office

Tacoma-Pierce County Health Department

U.S. Geological Survey - 7.5 - Minute Series - Puyallup quadrangle

U. S. Department of Agriculture - Soil Survey, 2015 Pierce County, Washington

Washington State Department of Ecology, Southwest Region

Library Research Tools

Metsker's Historical Atlas

Polk's City Directory

Sanborn Fire Insurance Maps

Other Sources

Environmental Data Resources Inc., 2016:

EDR Radius Map™ Report with GeoCheck®, August18

EDR Historical Topographic Map Report, August 11

EDR Aerial Photo Decade Package, August 12

EDR City Directory Image Report, August 15

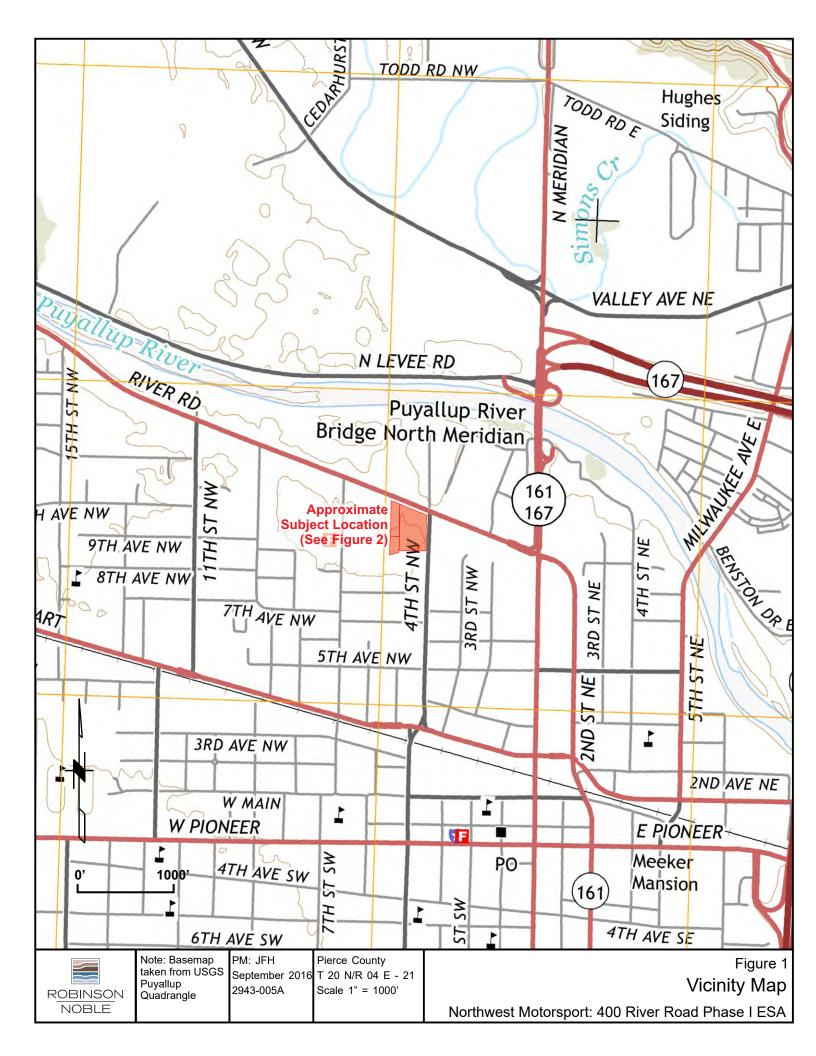
EDR Certified Sanborn® Map Report, August 12

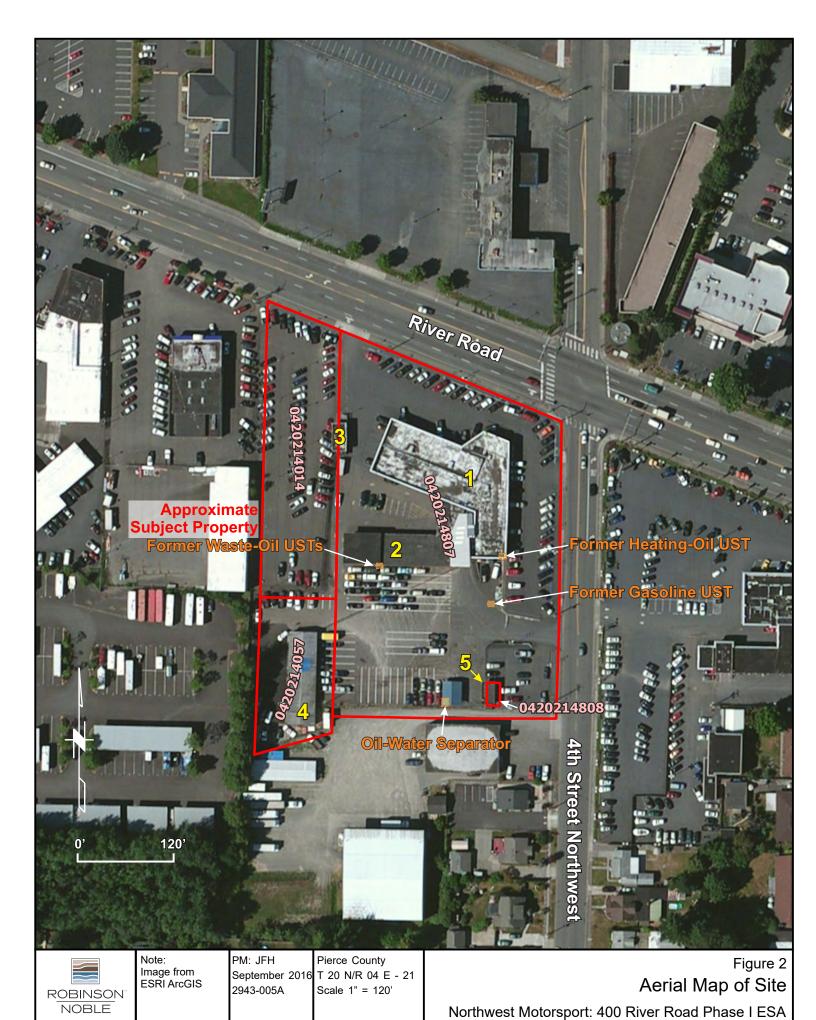
Google Maps: http://maps.google.com/

Google Earth: http://www.google.com/earth/

Partner Engineering and Science, Inc., 2013, Phase I Environmental Site Assessment Report, 400 River Road Puyallup, Washington, prepared for Sterling Bank

The Riley Group, Inc, 2011, Focused Phase II Subsurface Investigation NW Motorsport Property, 400 River Road Puyallup, Washington, prepared for Northwest Motorsport


Troost, K.G, Booth, D.B., and Borden, R.K., in press, Geologic map of the Puyallup 7.5-minute quadrangle, Washington: U.S. Geological Survey Miscellaneous Field Investigation, scale 1:24,000


9.0 Closing

Questions regarding the contents of this report should be addressed to the project manager. The professional qualifications of the preparers of the report are listed in Appendix E to this document. If you have questions regarding this report or require further discussion of any portion of this project, please contact Robinson Noble.

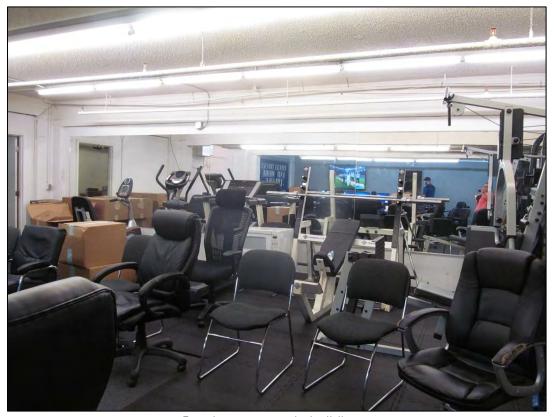
The statements, conclusions, and recommendations provided in this report are to be exclusively used within the context of this document. They are based upon generally accepted environmental and hydrogeologic practices and are the result of analysis by Robinson Noble, Inc. staff. This report, and any attachments to it, is for the exclusive use of HILT Investment Holdings, LLC, Northwest Motorsport, and Columbia Bank. Unless specifically stated in the document, no warranty, expressed or implied, is made.

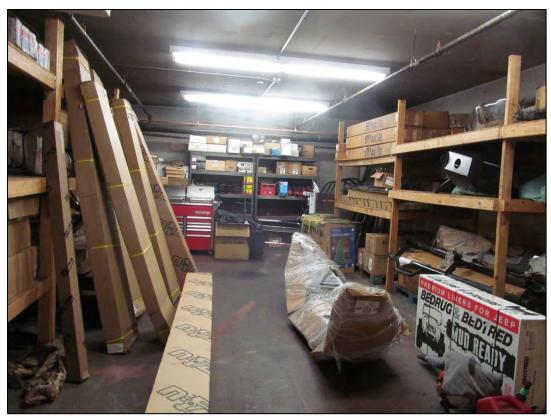
APPENDIX A



Building 1 on the subject property, view facing east

Interior of sales area of building 1


Service center office in building 1


Parts department area in building 1

Parts department in building 1

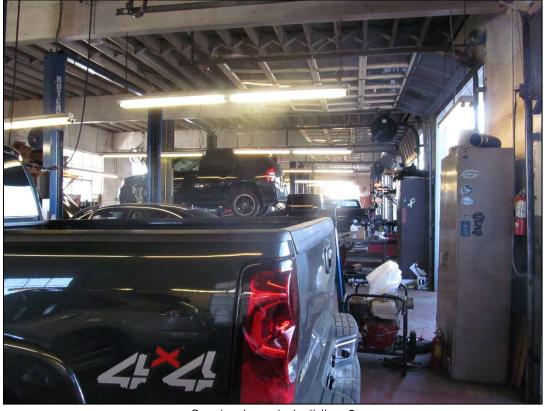
Break room area in building 1

Parts storage in building 1

Tire and parts storage building 1

Service entrance of building 1, view facing north

Service bays in building 1


Oil storage containers in service bays in building 1

Service bays for building 2

Oil storage containers in service bays in building 2

Service bays in building 2

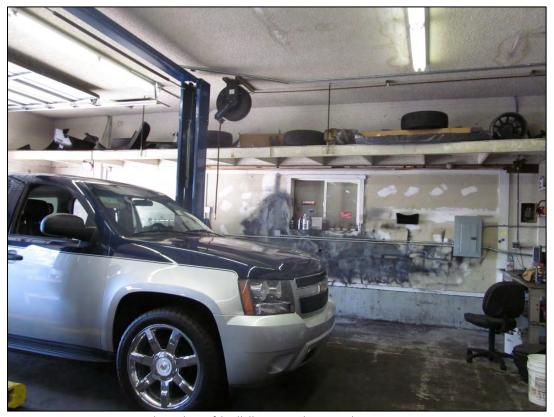
Containerized wastes in building 2

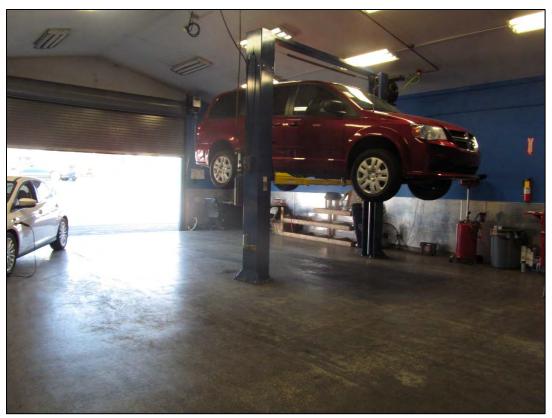
Awning between building 1 and building 2, view facing south toward car wash area

Wholesale office and balloon shed (building 3), view facing southwest

Interior of wholesale office (building 3)

Helium tanks in balloon shed (building 3)


Paint and service shop in building 4


Interior of southern bay of building 4

Above-ground storage tanks of waste oil in building 4

Interior of building 4 paint service area

Interior of building 4

Canopy near building 4, view facing southwest

Interior of shipping container near building 4

Laundry and storage building (building 5), view facing north

Interior of building 5

Interior of building 5

Vehicle fluid containers in building 5

Interior of building 5

Car wash area, view facing northeast

Above-ground oil-water separator

Parcel Summary for 0420214014

08/19/2016 02:17 PM

K & A HOLDINGS LLC

PUYALLUP WA 98371-3875

1502 RIVER RD

Property Details

Parcel Number: 0420214014 Site Address: 506 RIVER RD

Account Type: Real Property

Category: Land and Improvements

Use Code: 5515-AUTO DLR NEW AND USED RETAIL

Appraisal Details

Value Area: PI2
Appr Acct Type: Commercial

Business Name:

Last Inspection: 05/20/2015 - Physical Inspection

Assessment Details

Taxpayer Details

Taxpayer Name:

Mailing Address:

2016 Values for 2017 Tax

Taxable Value: 577,200

Assessed Value: 577,200

Related Parcels

Group Account Number: 434
Mobile/MFG Home and Personal Property n/a

parcel(s) located on this parcel:

Real parcel on which this parcel is located: n/a

Tax Description

Section 21 Township 20 Range 04 Quarter 43: COM AT A STONE MON AT INTER OF 7TH AVE NW & 4TH ST NW TH N 1040.33 FT TO CENT OF HWY TH N 20 DEG 21 MIN W 332 FT TH S 53.33 FT TO IRON PIPE & POB TH S 325 FT TH W 93.76 FT TH N 359.78 FT TH S 69 DEG 39 MIN E 100 FT TO POB

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

Pierce County Assessor-Treasurer Mike Lonergan 2401 South 35th St Room 142

2401 South 35th St Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2016 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

1 of 1 8/19/2016 2:17 PM

Taxes / Values for 0420214014

08/19/2016 02:18 PM

Property Details
Parcel Number:

Site Address:

0420214014 506 RIVER RD

Account Type: Real Property

Category: Land and Improvements

Use Code: 5515-AUTO DLR NEW AND USED RETAIL

Taxpayer Details

Taxpayer Name: K & A HOLDINGS LLC **Mailing Address:** 1502 RIVER RD

PUYALLUP WA 98371-3875

Assess	ed Value	es						
Value Year	Tax Year	Taxable Value	Assessed Total	Assessed Land	Assessed Improvements	Current Use Land	Personal Property	Notice of Value Mailing Date
2016	2017	577,200	577,200	572,600	4,600		0	0 06/23/2016
2015	2016	577,400	577,400	572,600	4,800		0	0 07/06/2015
2014	2015	485,200	485,200	467,400	17,800		0	0 06/27/2014
2013	2014	485,200	485,200	467,400	17,800		0	0 06/24/2013
2012	2013	485,200	485,200	467,400	17,800		0	0 06/22/2012
2011	2012	534,900	534,900	518,000	16,900		0	0 06/27/2011
2010	2011	562,400	562,400	543,200	19,200		0	0 06/21/2010
2009	2010	622,200	622,200	600,100	22,100		0	0 07/17/2009
2008	2009	652,300	652,300	631,700	20,600		0	0 06/13/2008

Current Charges Exemptions

Balance Due: 0.00 Minimum Due: 0.00 as of 08/19/2016

No exemptions

aid Charges		Tax Code Areas			
or questions regarding any electronic payments you may have made	e, please contact Point & Pay at	Tax			
-877-765-4112		Year	TCA	Rate	
Гах		2017	<u>096</u>	0.0000	
Year Charge Type	Amount Paid	2016	<u>096</u>	13.947	
2016 Property Tax Principal	8,053.19	2015	<u>096</u>	14.253	
Weed Control Principal	1.70	2014	<u>096</u>	14.003	
Pierce Conservation District Principal	4.73	2013	<u>096</u>	14.365	
Total 2016	8,059.62	2012	<u>096</u>	12.775	
2015 Property Tax Principal	6,916.00	2011	<u>096</u>	12.347	
Weed Control Principal	1.70	2010	<u>096</u>	11.255	588
Pierce Conservation District Principal	4.73	2009	<u>090</u>	10.173	927
Total 2015	6,922.43				
2014 Property Tax Principal	6,794.26	Receip	ts		
Weed Control Principal	1.64				Amount
Pierce Conservation District Principal	4.74	Date		Number	Applied
Total 2014	6,800.64	05/12/2	2016	8965114	8,059.6
2013 Property Tax Principal	6,970.15	04/27/2	2016	<u>8895988</u>	0.0
Weed Control Principal	1.64	10/27/2	2015	8479402	3,461.2
Pierce Conservation District Principal	4.72	04/17/2	2015	8179562	3,461.2
Total 2013	6,976.51	10/23/2	2014	<u>7874020</u>	3,400.
2012 Property Tax Principal	6,833.49	04/21/2	2014	<u>7567910</u>	3,400.
Weed Control Principal	1.64	10/17/2	2013	7260539	3,488.2
Pierce Conservation District Principal	5.00	04/30/2	2013	7120625	3,488.2
Total 2012	6,840.13	10/19/2	2012	6674330	3,420.
2011 Property Tax Principal	6,944.38	04/24/2	2012	6435121	3,420.0
Weed Control Principal	1.64	01/11/2	2012	<u>6281151</u>	3,475.
Pierce Conservation District Principal	5.00	04/25/2	2011	<u>5805219</u>	3,475.
Total 2011	6,951.02	10/29/2	2010	<u>5593608</u>	3,504.8
2010 Property Tax Principal	7,003.22	04/22/2	2010	<u>5178577</u>	3,504.
Weed Control Principal	1.39	10/29/2	2009	4996948	3,321.
Pierce Conservation District Principal	5.00	04/30/2	2009	4766159	3,321.
Total 2010	7,009.61	11/03/2	2008	4476295	2,616.
	6,636.46	05/05/2		4214813	2,616.
2009 Property Tax Principal					

1 of 2 8/19/2016 2:18 PM

Click here for ULID information

		1/01/2004 05/05/2004	2142358 1898548	1,169.9 1,169.9
	0	04/22/2005	2388771	1,299.3
	1	10/21/2005	2633444	1,299.
	0	04/24/2006	2905958	1,173.
Total 2009	6,642.85 1	10/27/2006	3246067	1,173
Pierce Conservation District Principal	5.00 0)5/04/2007	<u>3609339</u>	2,168

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

Pierce County Assessor-Treasurer Mike Lonergan 2401 South 35th St Room 142

2401 South 35th St Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2016 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

2 of 2

Land Characteristics for 0420214014

08/19/2016 02:19 PM

Property Details		Taxpayer Details	
Parcel Number:	0420214014	Taxpayer Name:	K & A HOLDINGS LLC
Site Address:	506 RIVER RD	Mailing Address:	1502 RIVER RD
Account Type:	Real Property		PUYALLUP WA 98371-3875
Category:	Land and Improvements		
Use Code:	5515-AUTO DLR NEW AND USED RETAIL		
Location:		Size	
LEA:	2052	SF:	30,197
RTSQQ:	04-20-21-43	Acres:	0.69
		Front Ft:	392
Amenities		Utilities	
WF Type:	n/a	Electric:	Power Installed
View Quality:	n/a	Sewer:	Sewer/Septic Installed
Street Type:	Paved	Water:	Water Installed

Warning: Appraisal data provided is for informational purposes only and is incomplete for determination of value.

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

Pierce County Assessor-Treasurer

Mike Lonergan

2401 South 35th St Room 142
Tacoma, Washington 98409
(253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2016 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

8/19/2016 2:19 PM 1 of 1

Building Characteristics for 0420214014

08/19/2016 02:19 PM

Property Details						Taxpa	ayer Deta	ails					
Parcel Number:	0420214014					Тахра	yer Name	e: K	& A HOLD	INGS LLO	2		
Site Address:	506 RIVER RD					Mailin	g Address	s: 15	02 RIVER	RD			
Account Type:	Real Property							PU	JYALLUP V	VA 9837	71-3875		
Category:	Land and Impro	ovements											
Use Code:	5515-AUTO DLI	R NEW AND US	ED RET	AIL									
Building ID: 1											1 bui	lding(s)	on this pare
General Character	stics												
Property Type:	Commercia	I	SF:			1			in. Attic s	SF:		0	
Condition:	Average		Net S	SF:		1		7	otal Bsm	nt. SF:		0	
Quality:	Average		Atch	. Gara	ge SF:	0		ı	in. Bsmn	t. SF:		0	
Neighborhood:	502 / 710		Det.	Garag	e SF:	0			Ssmnt. Ga	r. Door		0	
Occupancy:	Addon Only	Comm	Carp	ort SF:	•	0		ı	ireplaces	:		0	
Built-As													
Description	Year Built	Adj. Year E	Built	SF	Stories	Bed- rooms	Bath- rooms	Exterior	Class	Roof	HVAC	Units	Sprinkler SF
Addon Only Comm	1990	0		1	1	n/a	n/a	n/a	n/a	n/a	None	0	0
Improvement Deta	nils												
Detail Type		C	etail D	escrip	tion						Unit	s	
Add On		Д	sphalt ((LC)							11,0	00	

Warning: Appraisal data provided is for informational purposes only and is incomplete for determination of value.

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

Pierce County Assessor-Treasurer Mike Lonergan 2401 South 35th St Room 142

2401 South 35th St Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright @ 2016 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

1 of 1 8/19/2016 2:19 PM

Recent Sales Activity for 0420214014

08/19/2016 02:19 PM

Property Details

 Parcel Number:
 0420214014

 Site Address:
 506 RIVER RD

 Account Type:
 Real Property

Category: Land and Improvements

Use Code: 5515-AUTO DLR NEW AND USED RETAIL

Taxpayer Details

Taxpayer Name: K & A HOLDINGS LLC
Mailing Address: 1502 RIVER RD

PUYALLUP WA 98371-3875

Sales

Sales from 1997 to date are displayed here. However, the sales listed on this site are not complete and do not include all property transfer types. Recorded documents, accessed by name and date, can be found using the Pierce County Auditor's <u>Recorded Document Search</u>.

ETN	Parcel Count Grantor	Grantee	Sale Price Sale Dat	e Deed Type	Sale Notes Confirmation
4261216	4 CMW INVESTMENTS LL	C K & A HOLDINGS LLC	3,200,000 05/24/20	11 Statutory Warranty Deed	d Unconfirmed
4164418	4 PARKS FAMILY LLC	CMW INVESTMENTS LLC	3.500.000 06/01/20	07 Statutory Warranty Deed	d Unconfirmed

Sales history records current through 5/16/2003 are available on CD. These records were maintained as general information regarding property transfer for tax purposes only and are not an official record of sales transactions. A public records request form and the cost to copy of \$66.10 are required to obtain the records on CD. You may return the signed form and payment by mail or in person to the Assessor-Treasurer's Office at the address listed below.

For additional information on this issue, contact the Pierce County Assessor-Treasurer's Office Records Manager at 253-798-3134.

Sales Search

Search Search for sales with characteristics similar to this property.

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor

1 acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

Pierce County Assessor-Treasurer Mike Lonergan 2401 South 35th St Room 142

2401 South 35th St Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright $\ensuremath{\text{@}}$ 2016 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

1 of 1 8/19/2016 2:20 PM

Parcel Summary for 0420214807

08/19/2016 02:21 PM

Property Details

Parcel Number: 0420214807 Site Address: 400 RIVER RD

Account Type: Real Property Category:

Land and Improvements

Use Code: 5515-AUTO DLR NEW AND USED RETAIL

Appraisal Details

PI2 Value Area: Appr Acct Type: Commercial

Business Name:

Taxpayer Details

Taxpayer Name: K & A HOLDINGS LLC Mailing Address:

1502 RIVER RD

PUYALLUP WA 98371-3875

Last Inspection:

05/16/2015 - Physical Inspection

2000203421 2818070636

Assessment Details

2016 Values for 2017 Tax

Taxable Value: 3,005,600

Assessed Value:

3,005,600

Related Parcels

Group Account Number:

Mobile/MFG Home and Personal Property

parcel(s) located on this parcel:

Real parcel on which this parcel is located: n/a

Tax Description

Section 21 Township 20 Range 04 Quarter 43: COM AT MON AT INTER OF 4TH ST NW & 7TH AVE NW IN NE OF SEC 28 20 4E TH N 00 DEG 21 MIN E 636 FT ALG C/L OF SD 4TH ST TH N 89 DEG 39 MIN W 30 FT TO WLY R/W OF SD 4TH ST & POB TH CONT N 89 DEG 39 MIN W 281.28 FT TH N 00 DEG 21 MIN E 465.75 FT M/L PAR TO SD C/L OF 4TH ST TO S R/W LI OF STATE HWY # 5 TH S 69 DEG 18 MIN 10 SEC E 300 FT TO WLY R/W OF 4TH ST TH S 00 DEG 21 MIN W 361.44 FT TO POB ENCLO ED IN THE ABOVE IS L 13 B 19 J P STEWARTS 7TH ADD SEG F 0740

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

> Pierce County Assessor-Treasurer Mike Lonergan

> 2401 South 35th St Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2016 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

8/19/2016 2:21 PM 1 of 1

Taxes / Values for 0420214807

08/19/2016 02:21 PM

Property Details
Parcel Number:

Site Address:

0420214807 400 RIVER RD

Account Type: Real Property

Category: Land and Improvements

Use Code: 5515-AUTO DLR NEW AND USED RETAIL

Taxpayer Details

Taxpayer Name: K & A HOLDINGS LLC **Mailing Address:** 1502 RIVER RD

PUYALLUP WA 98371-3875

Assessed Values												
Value Year	Tax Year	Taxable Value	Assessed Total		Assessed Improvements	Current Use Land	Personal Property	Notice of Value Mailing Date				
2016	2017	3,005,600	3,005,600	2,290,500	715,100		0	0 06/23/2016				
2015	2016	3,052,000	3,052,000	2,290,500	761,500		0	0 07/06/2015				
2014	2015	2,529,200	2,529,200	1,869,700	659,500		0	0 06/27/2014				
2013	2014	2,529,200	2,529,200	1,869,700	659,500		0	0 06/24/2013				
2012	2013	2,521,000	2,521,000	1,869,700	651,300		0	0 06/22/2012				
2011	2012	2,705,500	2,705,500	2,071,900	633,600		0	0 06/27/2011				
2010	2011	2,930,900	2,930,900	2,173,000	757,900		0	0 06/21/2010				
2009	2010	3,249,700	3,249,700	2,400,400	849,300		0	0 07/17/2009				
2008	2009	3,353,800	3,353,800	2,526,700	827,100		0	0 09/19/2008				

Current Charges

Balance Due: 0.00 Minimum Due: 0.00 as of 08/19/2016

Exemptions

No exemptions

Paid Charges		Tax Co	de Are	as	
or questions regarding any electronic payments you may have made	e, please contact Point & Pay at	Tax			
1-877-765-4112		Year	TCA	Rate	_
Тах		2017	<u>096</u>	0.00000	
Year Charge Type	Amount Paid	2016	<u>096</u>	13.9473	
2016 Property Tax Principal	42,567.26	2015	<u>096</u>	14.2539	
Weed Control Principal	2.12	2014	<u>096</u>	14.0030	
Fire Benefit Charge Principal	2,612.44	2013	<u>096</u>	14.3655	
Pierce Conservation District Principal	4.73	2012	<u>096</u>	12.7752	
Total 2016	45,186.55	2011	<u>096</u>	12.3477	
2015 Property Tax Principal	36,051.02	2010	<u>096</u>	11.2555	
Weed Control Principal	2.12	2009	090	10.1739	27
Fire Benefit Charge Principal	2,734.54				
Pierce Conservation District Principal	4.73	Receip	ts		
Total 2015	38,792.41				Amount
2014 Property Tax Principal	35,416.41	Date		Number	Applied
Weed Control Principal	1.92	05/12/		<u>8965115</u>	45,186.
Fire Benefit Charge Principal	2,613.18	04/27/		<u>8896169</u>	0.
Pierce Conservation District Principal	4.74	10/27/		8479333	19,396.
Total 2014	38,036.25	04/17/		8179564	19,396.
2013 Property Tax Principal	36,215.46	10/23/		<u>7874022</u>	19,018.
Weed Control Principal	1.92	04/21/		<u>7567912</u>	19,018.
Fire Benefit Charge Principal	2,534.30	10/17/		<u>7260541</u>	19,378.
Pierce Conservation District Principal	4.72	04/30/		7120627	19,378.
Total 2013	38,756.40	10/19/		6674328	18,334.2
2012 Property Tax Principal	34,563.47	04/24/		6435119	18,334.
Weed Control Principal	1.92	01/11/		<u>6281150</u>	19,115.
Fire Benefit Charge Principal	2,098.00	04/25/		<u>5805192</u>	19,115.
Pierce Conservation District Principal	5.00	10/29/		<u>5593607</u>	19,308.
Total 2012	36,668.39	04/22/		<u>5178555</u>	19,308.
2011 Property Tax Principal	36,190.06	10/29/		<u>4996925</u>	17,063.
Weed Control Principal	1.92	04/30/		<u>4766156</u>	17,063.
Fire Benefit Charge Principal	2,033.96	11/03/	2008	4476294	13,565.
Pierce Conservation District Principal	5.00	05/05/		<u>4214816</u>	13,565.
Total 2011	38,230.94	10/19/	2007	<u>3710788</u>	11,864.

1 of 2 8/19/2016 2:21 PM

		Click here for	ULID information	
Total 2009	34,127.93	ULID Information		
Pierce Conservation District Principal	5.00			
Weed Control Principal	1.61	05/05/2004	<u>1898547</u>	7,655.49
2009 Property Tax Principal	34,121.32	11/01/2004	<u>2142200</u>	7,655.49
Total 2010	38,617.85	04/22/2005	2389069	8,284.90
Pierce Conservation District Principal	5.00	10/21/2005	<u>2633459</u>	8,284.90
Fire Benefit Charge Principal	2,033.96	04/24/2006	<u>2905940</u>	8,573.23
Weed Control Principal	1.61	10/27/2006	<u>3245918</u>	8,573.24
2010 Property Tax Principal	36,577.28	05/04/2007	<u>3609277</u>	11,864.07

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

Pierce County Assessor-Treasurer Mike Lonergan 2401 South 35th St Room 142

Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2016 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

2 of 2

Land Characteristics for 0420214807

08/19/2016 02:21 PM

Property Details		Taxpayer Details	
Parcel Number:	0420214807	Taxpayer Name:	K & A HOLDINGS LLC
Site Address:	400 RIVER RD	Mailing Address:	1502 RIVER RD
Account Type:	Real Property		PUYALLUP WA 98371-3875
Category:	Land and Improvements		
Use Code:	5515-AUTO DLR NEW AND USED RETAIL		
Location:		Size	
LEA:	2052	SF:	120,788
RTSQQ:	04-20-21-43	Acres:	2.77
		Front Ft:	392
Amenities		Utilities	
WF Type:	n/a	Electric:	Power Installed
View Quality:	n/a	Sewer:	Sewer/Septic Installed
Street Type:	Paved	Water:	Water Installed

Warning: Appraisal data provided is for informational purposes only and is incomplete for determination of value.

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

Pierce County Assessor-Treasurer

Mike Lonergan

2401 South 35th St Room 142
Tacoma, Washington 98409
(253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2016 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

8/19/2016 2:21 PM 1 of 1

Building Characteristics for 0420214807

1953

Service Garage

1978

08/19/2016 02:22 PM

0

Property Details Taxpayer Details Parcel Number: 0420214807 Taxpayer Name: K & A HOLDINGS LLC Site Address: 400 RIVER RD Mailing Address: 1502 RIVER RD PUYALLUP WA 98371-3875 **Account Type:** Real Property Category: Land and Improvements Use Code: 5515-AUTO DLR NEW AND USED RETAIL **Building ID:** 2 building(s) on this parcel **1** 2 **General Characteristics** Property Type: SF: Fin. Attic SF: Commercial 12,882 0 Total Bsmnt. SF: Condition: Average Net SF: 21,681 Quality: Fair Atch. Garage SF: 0 Fin. Bsmnt. SF: 0 0 Neighborhood: 502 / 710 Det. Garage SF: 0 Bsmnt. Gar. Door: Carport SF: New Auto Dealer 0 Fireplaces: 0 Occupancy: **Built-As** Bed-Bath-Sprinkler Adj. Year Built Description **Year Built** SF Stories rooms rooms Exterior Class Roof HVAC Units SF Showroom 1953 1986 5.800 1 n/a n/a n/a Masonry n/a Package Unit 0 0 Office Building 1953 1986 3,962 1 n/a n/a n/a Masonry Package Unit 0 0

Improvement Details							
Detail Type	Detail Description	Units					
Add On	Asphalt (LC)	91,700					
Add On	Canopies WD FR (Gd)	1,900					
Basement	Storage	6,262					

n/a

n/a

Masonry

n/a

Space Heater

n/a

Warning: Appraisal data provided is for informational purposes only and is incomplete for determination of value.

3,120 1

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

Pierce County Assessor-Treasurer Mike Lonergan

2401 South 35th St Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2016 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

1 of 1 8/19/2016 2:22 PM

Recent Sales Activity for 0420214807

08/19/2016 02:22 PM

Property Details

Parcel Number: 0420214807 Site Address: 400 RIVER RD

Account Type: Real Property

Category: Land and Improvements

Use Code: 5515-AUTO DLR NEW AND USED RETAIL **Taxpayer Details**

Taxpayer Name: K & A HOLDINGS LLC Mailing Address: 1502 RIVER RD

PUYALLUP WA 98371-3875

Sales

Sales from 1997 to date are displayed here. However, the sales listed on this site are not complete and do not include all property transfer types. Recorded documents, accessed by name and date, can be found using the Pierce County Auditor's Recorded Document Search.

ETN	Parcel Count	: Grantor	Grantee	Sale Price	Sale Date	Deed Type	Sale Notes	Confirmation
4261216	4	CMW INVESTMENTS LLC	K & A HOLDINGS LLC	3,200,000	05/24/2011	Statutory Warranty Deed	l	Unconfirmed
4164418	4	PARKS FAMILY LLC	CMW INVESTMENTS LLC	3.500.000	06/01/2007	Statutory Warranty Deed	l	Unconfirmed

Sales history records current through 5/16/2003 are available on CD. These records were maintained as general information regarding property transfer for tax purposes only and are not an official record of sales transactions. A public records request form and the cost to copy of \$66.10 are required to obtain the records on CD. You may return the signed form and payment by mail or in person to the Assessor-Treasurer's Office at the address listed below.

For additional information on this issue, contact the Pierce County Assessor-Treasurer's Office Records Manager at 253-798-3134.

Sales Search

Search Search for sales with characteristics similar to this property.

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

> Pierce County Assessor-Treasurer Mike Lonergan 2401 South 35th St Room 142

> Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2016 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

8/19/2016 2:22 PM 1 of 1

Parcel Summary for 0420214808

08/19/2016 02:23 PM

K & A HOLDINGS LLC

PUYALLUP WA 98371-3875

1502 RIVER RD

Property Details

Parcel Number: 0420214808 Site Address: 400 RIVER RD

Account Type: Structures

Leased Land and/or Structure Category:

Use Code: 5515-AUTO DLR NEW AND USED RETAIL

Appraisal Details

PI2 Value Area: Appr Acct Type: Commercial

Business Name:

Last Inspection: 05/20/2015 - Physical Inspection **Assessment Details**

Taxpayer Details

Taxpayer Name:

Mailing Address:

2016 Values for 2017 Tax

Taxable Value: 19,100

Assessed Value: 19,100

Related Parcels

Group Account Number:

Mobile/MFG Home and Personal Property 1200127008

parcel(s) located on this parcel:

Real parcel on which this parcel is located: n/a

Section 28 Township 20 Range 04 Quarter 11: COM AT MON AT INTER OF 4TH ST NW & 7TH AVE NW IN NE OF SEC 28 20 4E TH N 00 DEG 21 MIN E 636 FT ALG C/L OF SD 4TH ST TH N 89 DEG 39 MIN W 30 FT TO WLY R/W OF SD 4TH ST & POB TH CONT N 89 DEG 39 MIN W 281.28 FT TH N 00 DEG 21 MIN E 465.75 FT M/L PAR TO SD C/L OF 4TH ST TO S R/W LI OF STATE HWY # 5 TH S 69 DEG 18 MIN 10 SEC E 300 FT TO WLY R/W OF 4TH ST TH S 00 DEG 21 MIN W 361.44 FT TO POB ENCLOSED IN THE ABOVE IS L 13 B 19 J P STEWARTS 7TH ADD BLDG ONLY SEG F 0740

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

> Pierce County Assessor-Treasurer Mike Lonergan

> 2401 South 35th St Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2016 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

8/19/2016 2:23 PM 1 of 1

Taxes / Values for 0420214808

08/19/2016 02:23 PM

Property Details

Parcel Number: 0420214808 Site Address: 400 RIVER RD

Account Type: Structures

Category: Leased Land and/or Structure

Use Code: 5515-AUTO DLR NEW AND USED RETAIL

Taxpayer Details

Taxpayer Name: K & A HOLDINGS LLC **Mailing Address:** 1502 RIVER RD

PUYALLUP WA 98371-3875

Assess	ed Value	es						
Value Year	Tax Year	Taxable Value	Assessed Total	Assessed Land	Assessed Improvements	Current Use Land	Personal Property	Notice of Value Mailing Date
2016	2017	19,100	19,100	C	19,100)	0	0 06/23/2016
2015	2016	20,700	20,700	(20,700)	0	0 07/06/2015
2014	2015	7,700	7,700	(7,700)	0	0 06/27/2014
2013	2014	7,700	7,700	C	7,700)	0	0 06/24/2013
2012	2013	7,900	7,900	(7,900)	0	0 06/22/2012
2011	2012	7,900	7,900	(7,900)	0	0 06/27/2011
2010	2011	8,400	8,400	C	8,400)	0	0 06/21/2010
2009	2010	9,400	9,400	C	9,400)	0	0 07/17/2009
2008	2009	9,500	9,500	(9,500)	0	0 06/13/2008

Current Charges Exemptions

Balance Due: 0.00 Minimum Due: 0.00 as of 08/19/2016

No exemptions

Paid Charges		Tax Code Areas			
For questions regarding any electronic payments you may have made, pleas	se contact Point & Pay at	Tax	TCA	Data	
1-877-765-4112		Year 2017	TCA	Rate 0.0000	00
Tax		2017	<u>096</u> 096	13.947	
Year Charge Type	Amount Paid	2016	096	13.947	
2016 Property Tax Principal	288.71				
Fire Benefit Charge Principal	120.92	2014	<u>096</u>	14.003	
Total 2016	409.63	2013	<u>096</u>	14.365	
2015 Property Tax Principal	109.75	2012	<u>096</u>	12.775	
Fire Benefit Charge Principal	211.92	2011	096	12.347	
Total 2015	321.67	2010	<u>096</u>	11.255	
2014 Property Tax Principal	107.82	2009	090	10.173	927
Fire Benefit Charge Principal	202.52	I	_		
Pierce Conservation District Principal	4.99	Receip	ts		
Total 2014	315.33				Amount
2013 Property Tax Principal	113.49	Date		Number	Applied
Fire Benefit Charge Principal	196.40	05/12/2		<u>8965115</u>	409.6
Total 2013	309.89	04/27/2		<u>8896211</u>	0.0
2012 Property Tax Principal	100.92	04/17/2		<u>8179565</u>	321.6
Fire Benefit Charge Principal	188.96	10/23/2	2014	<u>7874023</u>	157.6
Total 2012	289.88	04/21/2	2014	<u>7567913</u>	157.6
2011 Property Tax Principal	103.72	10/17/2	2013	7260542	154.9
Property Tax Interest	1.03	04/30/2	2013	<u>7120628</u>	154.9
Property Tax Penalty	4.15	10/19/2	2012	<u>6674327</u>	144.9
Fire Benefit Charge Principal	183.18	04/24/2	2012	<u>6435118</u>	144.9
Fire Benefit Charge Interest	1.83	12/14/2	2011	<u>6277754</u>	162.7
Fire Benefit Charge Penalty	7.33	04/25/2	2011	<u>5805191</u>	143.4
Distraint Costs	5.00	10/29/2	2010	<u>5593610</u>	144.4
Total 2011	306.24	04/22/2	2010	<u>5178576</u>	144.4
2010 Property Tax Principal	105.80	10/29/2	2009	4996923	48.3
Fire Benefit Charge Principal	183.18	04/30/2	2009	<u>4766157</u>	48.3
Total 2010	288.98	11/03/2	2008	4476292	56.4
2009 Property Tax Principal	96.65	05/05/2	2008	<u>4214815</u>	56.4
Total 2009	96.65	10/19/2	2007	<u>3710787</u>	79.5
		05/04/2	2007	3609342	79.5

1 of 2 8/19/2016 2:24 PM

10/27/2006	<u>3245920</u>	125.64
04/24/2006	2905970	125.64
10/21/2005	2633402	100.21
04/22/2005	2389068	100.20
11/01/2004	2142531	96.54
05/05/2004	1898551	96.53

ULID Information

Click here for ULID information

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

Pierce County Assessor-Treasurer Mike Lonergan 2401 South 35th St Room 142 Tacoma, Washington 98409

(253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2016 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

2 of 2

Building Characteristics for 0420214808

08/19/2016 02:24 PM

Property Detail	s					Taxpay	er Details					
Parcel Number:	0420214	808				Taxpaye	r Name:	K & A HOLD	INGS LLC			
Site Address:	400 RIVE	R RD	Ma		Mailing A	Mailing Address: 1502 RIVER						
Account Type:	Structure	es					PUYALLUP	WA 9837	1-3875			
Category:	Leased L	and and/or Structure	re e									
Use Code:	5515-AU	TO DLR NEW AND US	SED RET	AIL								
Building ID:										1 build	ling(s)	on this parc
General Charac	teristics											
Property Type:	Comr	mercial	SF:			216		Fin. Attic	SF:	0		
Condition:	Avera	Average		Net SF:		216 Total Bsmnt. SF		nt. SF:	0			
Quality:	Low		Atch. Garage SF:		0		Fin. Bsmr	ıt. SF:	0			
Neighborhood:	502 /	710	Det. Garage SF:		=:	0		Bsmnt. Gar. Door:		0		
Occupancy:	New .	Auto Dealer	Carport SF:		0		Fireplaces:		0			
Built-As												
Description	Year Built	Adj. Year Built	SF	Stories	Bed- rooms	Bath- rooms	Exterior	Class	Roof	HVAC	Units	Sprinkler SF
Office Building	1965	1978	216	1	n/a	n/a	n/a	Wood Frame	n/a	Electric	0	0
Improvement D	Details											
Detail Type			Detail	Description	on					U	nits	
Add On			WD 10	0 Sq Ft						1	05	
Basement			Storage	e						1	,632	

Warning: Appraisal data provided is for informational purposes only and is incomplete for determination of value.

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

Pierce County Assessor-Treasurer Mike Lonergan 2401 South 35th St Room 142

2401 South 35th St Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2016 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

1 of 1 8/19/2016 2:24 PM

Recent Sales Activity for 0420214808

08/19/2016 02:24 PM

Property Details

Parcel Number: 0420214808 Site Address: 400 RIVER RD Account Type: Structures

Category: Leased Land and/or Structure

Use Code: 5515-AUTO DLR NEW AND USED RETAIL **Taxpayer Details**

Taxpayer Name: K & A HOLDINGS LLC Mailing Address: 1502 RIVER RD

PUYALLUP WA 98371-3875

Sales

Sales from 1997 to date are displayed here. However, the sales listed on this site are not complete and do not include all property transfer types. Recorded documents, accessed by name and date, can be found using the Pierce County Auditor's Recorded Document Search.

ETN	Parcel Count	: Grantor	Grantee	Sale Price	Sale Date	Deed Type	Sale Notes	Confirmation
4261216	4	CMW INVESTMENTS LLC	K & A HOLDINGS LLC	3,200,000	05/24/2011	Statutory Warranty Deed	l	Unconfirmed
4164418	4	PARKS FAMILY LLC	CMW INVESTMENTS LLC	3.500.000	06/01/2007	Statutory Warranty Deed	I	Unconfirmed

Sales history records current through 5/16/2003 are available on CD. These records were maintained as general information regarding property transfer for tax purposes only and are not an official record of sales transactions. A public records request form and the cost to copy of \$66.10 are required to obtain the records on CD. You may return the signed form and payment by mail or in person to the Assessor-Treasurer's Office at the address listed below.

For additional information on this issue, contact the Pierce County Assessor-Treasurer's Office Records Manager at 253-798-3134.

Sales Search

Search Search for sales with characteristics similar to this property.

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

> Pierce County Assessor-Treasurer Mike Lonergan 2401 South 35th St Room 142

Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2016 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

8/19/2016 2:24 PM 1 of 1

Parcel Summary for 0420214057

08/19/2016 02:27 PM

K & A HOLDINGS LLC

PUYALLUP WA 98371-3875

1502 RIVER RD

Property Details

Parcel Number: 0420214057
Site Address: XXX 4TH ST NW
Account Type: Real Property

Category: Land and Improvements

Use Code: 5515-AUTO DLR NEW AND USED RETAIL

Appraisal Details

Value Area: PI2
Appr Acct Type: Commercial

Business Name:

Last Inspection: 05/18/2015 - Physical Inspection

Assessment Details

Taxpayer Details

Taxpayer Name:

Mailing Address:

2016 Values for 2017 Tax

Taxable Value: 378,200

Assessed Value: 378,200

Related Parcels

Group Account Number: 434
Mobile/MFG Home and Personal Property n/a

parcel(s) located on this parcel:

Real parcel on which this parcel is located: n/a

Tax Description

Section 28 Township 20 Range 04 Quarter 12: TR OF LD IN SEC 21 & 28 DESC AS FOLL BEG AT SW COR OF PROP CYD TO BRUCE A MERCER POST #67 OF AMERICAN LEGION #1855113 TH E ALG S LI OF SD AMERICAN LEGION PROP 93.76 FT M/L TO PROP CYD TO LLOYD L GRAND #1653368 TH S ALG W LI OF SD GRANT PROP 172.57 FT M/L TO SW COR THEREOF TH S 72 DEG 27 MIN 20 SEC W TO INTER W LI OF ABOVE MENTIONED AMERICAN LEGION PROP EXTENDED S TH N ALG W LI OF SD AMERICAN LEGION PROP EXTENDED TO POB SUBJ TO EASE #1926238 OUT OF 4-106 SEG M-1294 GD JES

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

Pierce County Assessor-Treasurer Mike Lonergan

2401 South 35th St Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2016 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

1 of 1 8/19/2016 2:27 PM

Taxes / Values for 0420214057

08/19/2016 02:27 PM

Property Details
Parcel Number:

0420214057 XXX 4TH ST NW

Account Type: Re

Real Property

Category:

Site Address:

Land and Improvements

Use Code: 5515-AU

5515-AUTO DLR NEW AND USED RETAIL

Taxpayer Details

Taxpayer Name: Mailing Address:

K & A HOLDINGS LLC 1502 RIVER RD

PUYALLUP WA 98371-3875

Asses	sed Value	es						
Value Year	Tax Year	Taxable Value	Assessed Total	Assessed Land	Assessed Improvements	Current Use Land	Personal Property	Notice of Value Mailing Date
2016	2017	378,200	378,200	338,300	39,900		0	0 06/23/2016
2015	2016	379,200	379,200	338,300	40,900		0	0 07/06/2015
2014	2015	301,800	301,800	276,200	25,600		0	0 06/27/2014
2013	2014	301,800	301,800	276,200	25,600		0	0 06/24/2013
2012	2013	300,900	300,900	276,200	24,700		0	0 06/22/2012
2011	2012	329,600	329,600	306,000	23,600		0	0 06/27/2011
2010	2011	346,400	346,400	321,000	25,400		0	0 06/21/2010
2009	2010	382,800	382,800	354,600	28,200		0	0 07/17/2009
2008	2009	400,000	400,000	373,200	26,800		0	0 06/13/2008

Current Charges

Balance Due: 0.00

Minimum Due: 0.00

as of 08/19/2016

Exemptions

No exemptions

Paid Charges		Tax Co	de Are	as	
For questions regarding any electronic payments you may have made, pl	ease contact Point & Pay at	Tax	TC4	D-4-	
1-877-765-4112		Year 2017	TCA	Rate 0.0000	00
Tax		2017	<u>096</u>		
Year Charge Type	Amount Paid	2016	<u>096</u> 096	13.947 14.253	
2016 Property Tax Principal	5,288.84				
Weed Control Principal	1.70	2014	<u>096</u>	14.003	
Fire Benefit Charge Principal	873.46	2013	<u>096</u>	14.365	
Pierce Conservation District Principal	4.73	2012	<u>096</u>	12.775	
Total 2016	6,168.73	2011	<u>096</u>	12.347	
2015 Property Tax Principal	4,301.83	2010	<u>096</u>	11.255	
Weed Control Principal	1.70	2009	<u>090</u>	10.173	927
Fire Benefit Charge Principal	638.00	ı			
Pierce Conservation District Principal	4.73	Receip	ts		
Total 2015	4,946.26				Amount
2014 Property Tax Principal	4,226.11	Date		Number	Applied
Weed Control Principal	1.64	05/12/		8965111	6,168.7
Fire Benefit Charge Principal	609.68	04/27/		<u>8896424</u>	0.0
Pierce Conservation District Principal	4.74	10/27/		<u>8479384</u>	2,473.1
Total 2014	4,842.17	04/17/		<u>8179563</u>	2,473.1
2013 Property Tax Principal	4,322.58	10/23/	2014	<u>7874021</u>	2,421.0
Weed Control Principal	1.64	04/21/	2014	7567911	2,421.0
Fire Benefit Charge Principal	591.28	10/17/	2013	<u>7260540</u>	2,460.1
Pierce Conservation District Principal	4.72	04/30/	2013	7120626	2,460.1
Total 2013	4,920.22	10/19/	2012	6674329	2,393.1
2012 Property Tax Principal	4,210.72	04/24/	2012	6435120	2,393.1
Weed Control Principal	1.64	01/11/	2012	<u>6281152</u>	2,417.7
Fire Benefit Charge Principal	568.84	04/25/	2011	<u>5805190</u>	2,417.6
Pierce Conservation District Principal	5.00	10/29/	2010	<u>5593609</u>	2,433.2
Total 2012	4,786.20	04/22/	2010	<u>5178578</u>	2,433.2
2011 Property Tax Principal	4,277.27	10/29/	2009	<u>4996924</u>	2,037.9
Weed Control Principal	1.64	04/30/	2009	<u>4766158</u>	2,037.9
Fire Benefit Charge Principal	551.48	11/03/	2008	4476939	1,567.8
Pierce Conservation District Principal	5.00	05/05/	2008	<u>4214822</u>	1,567.8
Total 2011	4,835.39	10/19/	2007	3710786	1,328.8

1 of 2 8/19/2016 2:27 PM

		Click here for	ULID information	
Total 2009	4,075.96	ULID Inform	nation	
Pierce Conservation District Principal	5.00			
Weed Control Principal	1.39	05/05/2004	<u>1898550</u>	633.81
2009 Property Tax Principal	4,069.57	11/01/2004	2142530	633.82
Total 2010	4,866.51	04/22/2005	2388770	706.06
Pierce Conservation District Principal	5.00	10/21/2005	<u>2633460</u>	706.07
Fire Benefit Charge Principal	551.48	04/24/2006	<u>2905957</u>	662.61
Weed Control Principal	1.39	10/27/2006	3245919	662.62
2010 Property Tax Principal	4,308.64	05/04/2007	<u>3609336</u>	1,328.82

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

Pierce County Assessor-Treasurer Mike Lonergan 2401 South 35th St Room 142

Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2016 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

2 of 2

Land Characteristics for 0420214057

08/19/2016 02:27 PM

Property Details		Taxpayer Details	
Parcel Number:	0420214057	Taxpayer Name:	K & A HOLDINGS LLC
Site Address:	XXX 4TH ST NW	Mailing Address:	1502 RIVER RD
Account Type:	Real Property		PUYALLUP WA 98371-3875
Category:	Land and Improvements		
Use Code:	5515-AUTO DLR NEW AND USED RETAIL		
Location:		Size	
LEA:	2052	SF:	17,841
RTSQQ:	04-20-28-12	Acres:	0.41
		Front Ft:	0
Amenities		Utilities	
WF Type:	n/a	Electric:	Power Installed
View Quality:	n/a	Sewer:	Sewer/Septic Installed
Street Type:	Paved	Water:	Water Installed

Warning: Appraisal data provided is for informational purposes only and is incomplete for determination of value.

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

Pierce County Assessor-Treasurer

Mike Lonergan
2401 South 35th St Room 142
Tacoma, Washington 98409
(253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2016 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

8/19/2016 2:28 PM 1 of 1

Building Characteristics for 0420214057

08/19/2016 02:28 PM

Property Detail	s					Тахра	yer Detail	s				
Parcel Number:	0420214	1057				Taxpa	yer Name:	K & A H	OLDING	S LLC		
Site Address:	XXX 4TH	ST NW					Mailing Address:		VER RD			
Account Type:	Real Pro	perty						PUYALL	UP WA	98371-3875		
Category:	Land an	d Improvements										
Use Code:	5515-AL	JTO DLR NEW AND U	JSED RE	ΓAIL								
Building ID: 1										1 bui	lding(s) (on this parce
General Charac	teristics											
Property Type:	Commercial		SF:		3,680	3,680 Fin. Attic SF		ttic SF:		0		
Condition:	Aver	age	Net SF:		3,680 Total B		Bsmnt.	SF:	0			
Quality:	Low		Atch. Garage SF:		0		Fin. B	smnt. S	F:	0		
Neighborhood:	502	/ 710	Det. Garage SF:		0 Bsm		Bsmn	t. Gar. I	Door:	0		
Occupancy:	Auto	Related	Carport SF:		0		Fireplaces:			0		
Built-As												
Description	Year Built	Adj. Year Built	SF	Stories	Bed- rooms	Bath- rooms	Exterior	Class	Roof	HVAC	Units	Sprinkler SF
Service Garage	1966	1978	3,680	1	n/a	n/a	n/a	Wood Frame	n/a	Space Heate	er O	0
Improvement D	Details											
Detail Type		Detail Description	n								Uni	ts
Add On		Asphalt (LC)									11,0	000
Add On		Concrete (Reinford	ed) (1.0	00 - 3000	Sa Ft)						700	

Warning: Appraisal data provided is for informational purposes only and is incomplete for determination of value.

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

Pierce County Assessor-Treasurer Mike Lonergan 2401 South 35th St Room 142

2401 South 35th St Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2016 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

1 of 1 8/19/2016 2:28 PM

Recent Sales Activity for 0420214057

08/19/2016 02:28 PM

Property Details

Parcel Number: 0420214057 Site Address: XXX 4TH ST NW Account Type: Real Property

Category: Land and Improvements

Use Code: 5515-AUTO DLR NEW AND USED RETAIL

Taxpayer Details

Taxpayer Name: K & A HOLDINGS LLC Mailing Address: 1502 RIVER RD

PUYALLUP WA 98371-3875

Sales

Sales from 1997 to date are displayed here. However, the sales listed on this site are not complete and do not include all property transfer types. Recorded documents, accessed by name and date, can be found using the Pierce County Auditor's Recorded Document Search.

Parcel Count Grantor Grantee Sale Price Sale Date Deed Type **Sale Notes Confirmation** <u>4261216</u> 4 CMW INVESTMENTS LLC K & A HOLDINGS LLC 3,200,000 05/24/2011 Statutory Warranty Deed Unconfirmed <u>4164418</u> 4 PARKS FAMILY LLC CMW INVESTMENTS LLC 3,500,000 06/01/2007 Statutory Warranty Deed Unconfirmed

Sales history records current through 5/16/2003 are available on CD. These records were maintained as general information regarding property transfer for tax purposes only and are not an official record of sales transactions. A public records request form and the cost to copy of \$66.10 are required to obtain the records on CD. You may return the signed form and payment by mail or in person to the Assessor-Treasurer's Office at the address listed below.

For additional information on this issue, contact the Pierce County Assessor-Treasurer's Office Records Manager at 253-798-3134.

Sales Search

Search Search for sales with characteristics similar to this property.

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

> Pierce County Assessor-Treasurer Mike Lonergan 2401 South 35th St Room 142

Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2016 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

8/19/2016 2:28 PM 1 of 1

April 25, 2011

Mr. Don Fleming NW Motorsport 400 River Road Puyallup, Washington 98371

Re: Focused Phase II Subsurface Investigation NW Motorsport Property 400 River Road

Puyallup, Washington RGI Project #T2011-022

Dear Mr. Fleming:

This letter report summarizes The Riley Group, Inc.'s (RGI's) Focused Phase II Subsurface Investigation (Phase II) findings for the NW Motorsport property located at 400 River Road in Puyallup, Washington (Figure 1).

The Focused Phase II investigation was performed at the request of Mr. Don Fleming and authorized by Ms. Nikki Bley, of NW Motorsport (Client). The scope of work for this project was performed in accordance with our *Focused Phase II Subsurface Investigation Proposal* dated March 30, 2011.

SCOPE OF SERVICES

The scope of services performed for this project included the following tasks:

- > Performed public and private utility locating in an attempt to locate privately owned metallic utilities (such as water, electric, etc) and clear the proposed boring location.
- Advanced one direct-push test probe at the Site to a total maximum depth of 12 feet below ground surface (bgs).
- > Collected soil samples from the test probe location for laboratory analysis of potential contaminants of concern.
- > Groundwater was encountered in and collected from the test probe advanced at the Site.
- ➤ Compared analytical results to the routine Washington State Department of Ecology (Ecology) Model Toxics Control Act (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Use and MTCA Method A Cleanup Levels for Groundwater (WAC 173-340).
- Prepared this letter report presenting our findings, observations and conclusions.

PROJECT BACKGROUND

A Phase I Environmental Site Assessment (ESA) was recently completed for the Site by Adapt Engineering, Inc. (Adapt). According to its Phase I ESA, previous investigations had been performed at the Site. The reader is referred to Adapt's report for the complete details of the previous onsite investigations. Based on its Phase I ESA findings, the feed line to the onsite oil/water separator was thought to have been disconnected and, therefore, represented a possible risk to soil and/or groundwater quality of the Site. Although it was later determined that the aboveground oil/water separator was still connected, a limited Phase II Subsurface Investigation was recommended by Adapt in the vicinity of the unit.

On April 6, 2011, the Client authorized RGI to perform this Focused Phase II Subsurface Investigation.

REGULATORY ANALYSIS OF SITE CONDITIONS UNDER MODEL TOXICS CONTROL ACT (MTCA)

Washington's hazardous release cleanup law, the Model Toxics Control Act (RCW 70.105D) mandates that site cleanups protect human health and the environment. The MTCA Cleanup Regulation (WAC173-340) defines the approach for establishing cleanup requirements for individual sites, including the establishment of cleanup standards and selection of cleanup actions.

The MTCA regulation provides three options for establishing generic and site-specific cleanup levels for soil and groundwater. Method A cleanup levels have been adopted for specific purposes and are intended to provide conservative cleanup levels for sites undergoing routine site characterization or cleanup actions or those sites with relatively few hazardous substances. Method B and C cleanup levels are set using a site risk assessment, which focus on the use of "reasonable maximum exposure" assumptions based on site-specific characteristics and toxicity of the contaminants of concern.

For purposes of comparison, analytical laboratory data for this project are compared to the MTCA Method A Soil Cleanup Levels for Unrestricted Land Use (considered protective of drinking water) and the MTCA Method A Cleanup Levels for Groundwater.

FOCUSED PHASE II SUBSURFACE INVESTIGATION

On April 11, 2011, RGI advanced test probe SP1 to a total depth of 12 feet bgs (Figure 2). The test probe was located immediately adjacent to and inferred downgradient of the onsite, aboveground oil/water separator.

The test probe was advanced using a truck-mounted direct push probe rig owned and operated by Pacific Northwest Probe and Drilling, Inc. under subcontract to RGI. All probing and sampling equipment were cleaned prior to commencing probing and in between sampling locations. All field sampling and decontamination procedures were performed in accordance with RGI's standard sampling and decontamination protocols.

All soil cuttings and purge and decontamination water were contained on the Site in a 30-gallon drum. Disposal of the drum is not included in the scope of work.

Soil Sampling

During drilling activities, soil samples were collected, inspected, and classified by RGI's field personnel. Soil conditions encountered were described using the Unified Soil Classification System (USCS). Soils beneath the Site generally consisted of poorly graded, silty, fine to medium sand to the maximum depth explored (12 feet bgs). Gravel was also noted at approximately 12 feet bgs. The loose sands resulted in no recovery from four to eight feet bgs and limited recovery from 10 to 12 feet bgs.

A total of two discrete soil samples were collected during this project; at the three- to four-foot and 10- to 12-foot depth intervals. Due to a photoionization detector (PID) malfunction, soil samples were not screened in the field for the presence of volatile organic compounds (VOCs). Since the indicator contaminant of concern is oil, a standard water sheen test was considered sufficient. No suspect sheen, visual staining, or suspect odors were noted in the collected soil samples.

Based on our field observations, the shallowest soil sample (collected from three to four feet bgs) was submitted for laboratory analyses of potential contaminants of concern, listed below. Samples collected for analysis of volatile compounds were collected using the Ecology-mandated 5035 sample collection method.

Groundwater Sampling

Shallow groundwater was encountered in the test probe at approximately 10 to 11 feet bgs. Groundwater was purged until visually clear. No suspect sheen was noted in the purge water. A groundwater grab sample was collected from the test probe following purging and submitted for laboratory analysis of select contaminants of concern listed below.

Analytical Laboratory Analysis

Soil and groundwater grab samples collected during this project were submitted to Libby Environmental, Inc. of Olympia, Washington, for one or more of the following laboratory analyses:

- > Gasoline-range total petroleum hydrocarbons (TPH) using Ecology Method NWTPH-G.
- > Diesel- and oil-range TPH using Ecology Method NWTPH-Dx.
- > Benzene, toluene, ethylbenzene and total xylenes (BTEX) via EPA Method 8260c.
- ➤ Volatile organic compounds (VOCs) via EPA Method 8260c.

Laboratory Analytical Results

Analytical results and field screening data, summarized in the attached Figure 2, are discussed below. Copies of the analytical laboratory report and associated sample chain-of-custody forms are included in Appendix A.

No gasoline-, diesel- or oil-range TPHs or VOCs (BTEX and/or chlorinated solvents) were detected in the soil or groundwater samples submitted from the Site.

CONCLUSIONS AND RECOMMENDATIONS

Based on our subsurface investigation findings, soil and groundwater intercepted in the test probe advanced at the Site are in full compliance with MTCA. No additional investigation is recommended at this time.

LIMITATIONS

This report is the property of The Riley Group, Inc., NW Motorsport, US Bank, and their authorized representatives or affiliates and was prepared in a manner consistent with the level of skill and care ordinarily exercised by members of the profession currently practicing in the same locality and under similar conditions. This report is intended for specific application to the NW Motorsport property located at 400 River Road, Puyallup, Washington. No other warranty, expressed or implied, is made.

The analyses and recommendations presented in this report are based upon data obtained from our review of available information at the time of preparing this report, our test pits excavated or test borings drilled on-site, or other noted data sources. Conditional changes may occur through time by natural or man-made process on this or adjacent properties. Additional changes may occur in legislative standards, which may or may not be applicable to this report. These changes, beyond RGI's control, may render this report invalid, partially or wholly. If variations appear evident, The Riley Group, Inc. should be requested to reevaluate the recommendations in this report.

We trust that this letter report meets your current project needs and appreciate the opportunity to be of service. Please contact us at (253) 565-0552, or by email at lsmith@riley-group.com, if you have any questions or need additional information.

Sincerely,

THE RILEY GROUP, INC.

Senior Project Manager

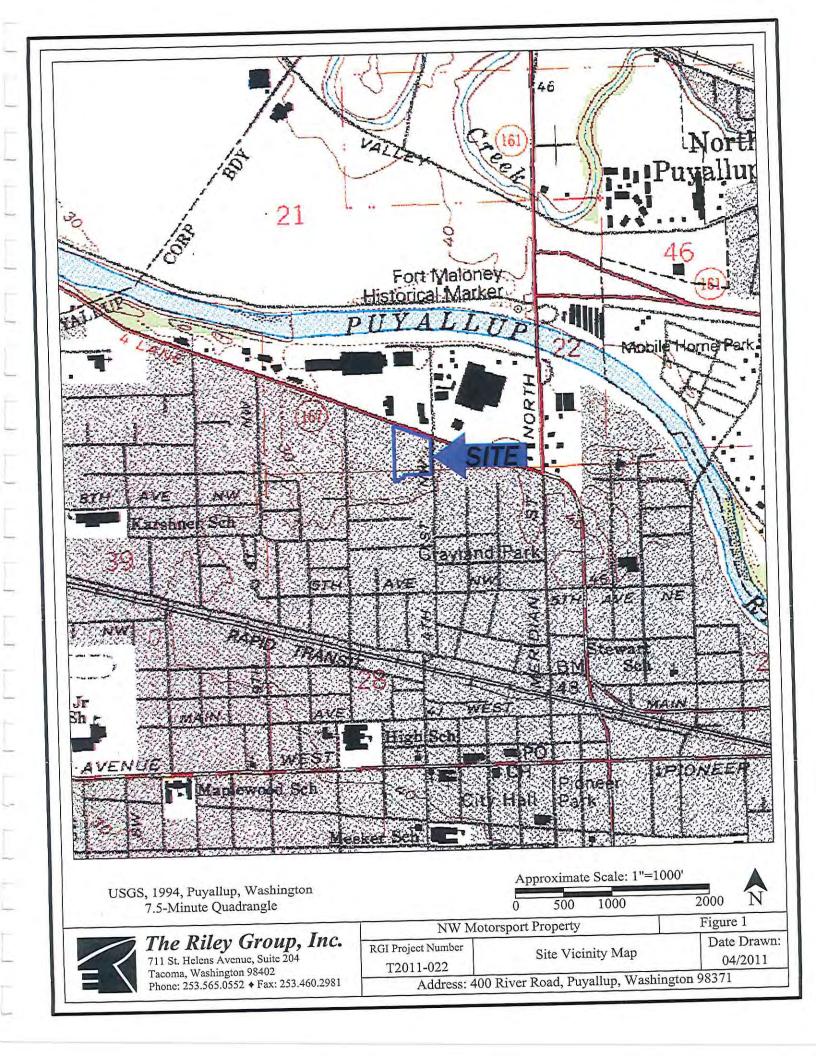
Elizabeth Ann Uchison

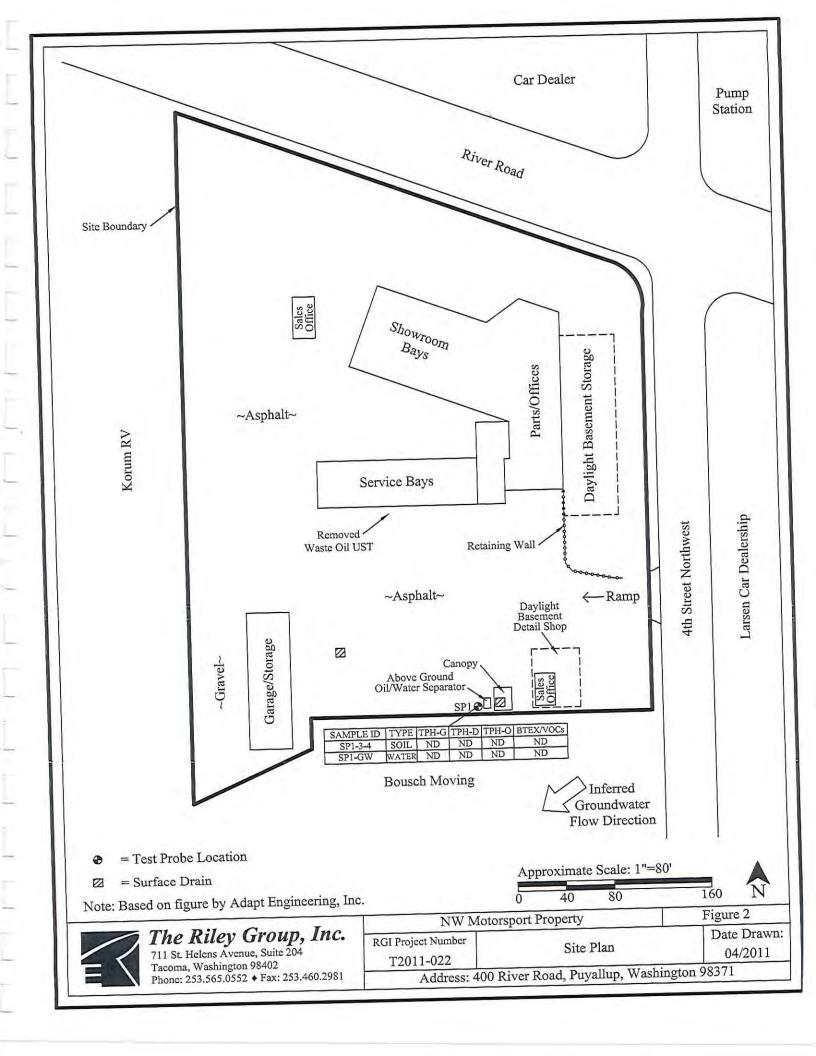
Elizabeth Uchison, L.G., L.H.G.

Senior Hydrogeologist

Attachments

Figure 1 - Site Vicinity Map


Figure 2 - Site Plan


Appendix A - Analytical Laboratory Report & Chain of Custody

Report Distribution

Mr. Don Fleming, NW Motorsport (two bound copies and electronic PDF)

Mr. Albert Kim, US Bank (electronic PDF)

NW MOTORSPORT PROJECT Puyallup, Washington The Riley Group, Inc. Client Project # T2011-022 Libby Project No. L110411-4

Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Water

Sample	Date	Surrogate	Diesel (ug/l)	Mineral Oil	Oil
Number	Analyzed	Recovery (%)		(ug/l)	(ug/l)
Method Blank	4/12/11	101	nd	nd	nd
SP1-G	4/12/11	80	nd	nd	nd
Practical Quantitat	ion Limi		200	400	400

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Jamie Hart

[&]quot;int" Indicates that interference prevents determination

NW MOTORSPORT PROJECT Puyallup, Washington The Riley Group, Inc. Client Project # T2011-022 Libby Project No. L110411-4

Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Soil

Sample	Date	Surrogate	Diesel	Mineral Oil	Oil
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)	(mg/kg)
Method Blank	4/12/11	100	nd	nd	nd
SP1-3-4	4/12/11	101	nd	nd	nd
Practical Quantitat	ion Limit		25	40	40

"nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Jamie Hart

[&]quot;int" Indicates that interference prevents determination.

NW MOTORSPORT PROJECT Puyallup, Washington The Riley Group, Inc. Client Project # T2011-022 Libby Project No. L110411-4

Analyses of Gasoline (NWTPH-Gx) in Water

Sample	Date	Surrogate	Gasoline
Number	Analyzed	Recovery (%)	(ug/l)
Method Blank	4/14/11	98	nd
SP1-G	4/14/11	98	nd
Practical Quantitation	n Limit		100

"nd" Indicates not detected at the listed detection limits.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Trifluorotoluene): 65% TO 135%

ANALYSES PERFORMED BY: Sherry Chilcutt

NW MOTORSPORT PROJECT Puyallup, Washington The Riley Group, Inc. Client Project # T2011-022 Libby Project No. L110411-4

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD 8260C IN WATER

Sample Description		Method	SP1-GW	
SANCE MANAGEMENT		Blank		
Date Sampled	Reporting	N/A	4/12/11	
Date Analyzed	Limits	4/14/11	4/14/11	
4.4	(ug/l)	(ug/l)	(ug/l)	
Bromoform	1.0	nd	nd	
Isopropylbenzene	4.0	nd	nd	
1,2,3-Trichloropropane	1.0	nd	nd	
Bromobenzene	1.0	nd	nd	
1,1,2,2-Tetrachloroethane	1.0	nd	nd	
n-Propylbenzene	1.0	nd	nd	
2-Chlorotoluene	1.0	nd	nd	
4-Chlorotoluene	1.0	nd	nd	
1,3,5-Trimethylbenzene	1.0	nd	nd	
tert-Butylbenzene	1.0	nd	nd	
1,2,4-Trimethylbenzene	1.0	nd	nd	
sec-Butylbenzene	1.0	nd	nd	
1,3-Dichlorobenzene	1.0	nd	nd	
Isopropyltoluene	1.0	nd	nd	
1,4-Dichlorobenzene	1.0	nd	nd	
1,2-Dichlorobenzene	1.0	nd	nd	
n-Butylbenzene	1.0	nd	nd	
1,2-Dibromo-3-Chloropropane	1.0	nd	nd	
1,2,4-Trichlorolbenzene	2.0	nd	nd	
Hexachloro-1,3-butadiene	5.0	nd	nd	
Naphthalene	5.0	nd	nd	
1,2,3-Trichlorobenzene	5.0	nd	nd	
Surrogate Recovery				
Dibromofluoromethane		112	104	
1,2-Dichloroethane-d4		95.4	85.9	
Toluene-d8		98.1	98.1	
4-Bromofluorobenzene		106	104	

[&]quot;nd" Indicates not detected at listed detection limit.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

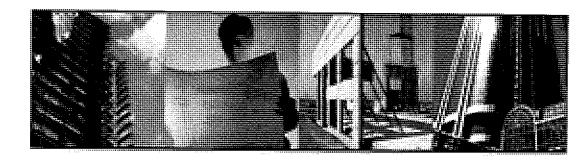
ANALYSES PERFORMED BY: Sherry Chilcutt

[&]quot;int" Indicates that interference prevents determination.

^{*} INSTRUMENT DETECTION LIMIT

NW MOTORSPORT PROJECT Puyallup, Washington The Riley Group, Inc. Client Project # T2011-022 Libby Project No. L110411-4

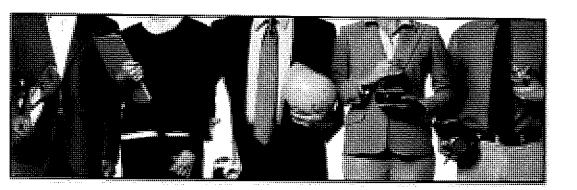
QA/QC Data - EPA 8260C Analyses


		Sample Ide	ntification:	L110413-2	2		
		Matrix Spik		Matrix Spike Duplicate		RPD	
	Spiked Conc. (ug/l)	Measured Conc. (ug/l)	Spike Recovery (%)	Spiked Conc. (ug/l)	Measured Conc. (ug/l)	Spike Recovery (%)	
1,1-Dichloroethene	10	8.7	87	10	9.1	91	4.5
Benzene	10	7.8	78	10	9.1	91	15.4
Toluene	10	9.0	90	10	10.1	101	11.5
Chlorobenzene	10	10.2	102	10	11.8	118	14.5
Trichloroethene (TCE)	10	8.0	80	10	9.1	91	12.9
Surrogate Recovery						101	
Dibromofluoromethane			109			101	
1,2-Dichloroethane-d4			78.6			87.5	
Toluene-d8			95.8			95.1	
4-Bromofluorobenzene			98.7			108	

	Laboratory Control Sample			
	Spiked Conc. (ug/l)	Measured Conc. (ug/l)	Spike Recovery (%)	
1,1-Dichloroethene	10	11.6	116	
Benzene	10	9.0	90	
Toluene	10	10.5	105	
Chlorobenzene	10	11.4	114	
Trichloroethene (TCE)	10	9.0	90	
Surrogate Recovery				
Dibromofluoromethane			109	
1,2-Dichloroethane-d4			88.3	
Toluene-d8			100	
4-Bromofluorobenzene			107	

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Sherry Chilcutt



PHASE I ENVIRONMENTAL SITE ASSESSMENT REPORT

K&A HOLDINGS, LLC 400 River Road Puyallup, Washington 98371

November 7, 2013 Partner Project No. 13-111058.1 RIMS Project No. 13-011142-01-3

Prepared for

STERLING BANK 111 North Wall Street, 2nd Floor Spokane, WA 99201

November 7, 2013

Mr. Michael Pereira, CHMM Sterling Bank 111 North Wall Street, 2nd Floor Spokane, WA 99201

Subject:

Phase I Environmental Site Assessment

400 River Road

Puyallup, Washington 98371 Partner Project No. 13-111058.1

Dear Mr. Pereira:

Partner Engineering and Science, Inc. (Partner) is pleased to provide the results of the *Phase I Environmental Site Assessment* (Phase I ESA) report of the abovementioned address (the "subject property"). This assessment was performed in general conformance with the scope and limitations as detailed in the ASTM Practice E1527-05 Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process.

This assessment included a site reconnaissance as well as research and interviews with representatives of the public, property ownership, site manager, and regulatory agencies. An assessment was made, conclusions stated, and recommendations outlined.

We appreciate the opportunity to provide environmental services to Sterling Bank. If you have any questions concerning this report, or if we can assist you in any other matter, please contact me at (310) 765-7242.

Sincerely,

Arcie Propster

(I have Proported

Principal

EXECUTIVE SUMMARY

Partner Engineering and Science, Inc. (Partner) has performed a Phase I Environmental Site Assessment (ESA) in general accordance with the scope of work and limitations of ASTM Standard Practice E1527-05, the Environmental Protection Agency Standards and Practices for All Appropriate Inquiries (AAI) (40 CFR Part 312) and set forth by Sterling Bank for the property located at 400 River Road in the City of Puyallup, Pierce County, Washington (the "subject property"). The Phase I Environmental Site Assessment is designed to provide Sterling Bank with an assessment concerning environmental conditions (limited to those issues identified in the report) as they exist at the subject property.

Property Description

The subject property is located at the southwest quadrant of the intersection of River Road (SR167) and 4th Street NW in Puyallup, Pierce County, Washington. Please refer to the table below for further description of the subject property:

Address:	400 River Road
Assessor's Parcel Number (APN):	0420214014, 0420214057, 0420214807 & 0420214808
Nature of Use:	Commercial-Full Service Automotive Dealership
Number of Buildings:	5
Number of Floors:	1
Type of Construction:	CMU Main Building
	CMU/Wood Frame Salesman's Hut
	Wood Frame Salesman's Hut
	CMU Service Garage
	Wood Frame Detail Shop
Building Square Footage (SF):	12,611 SF Main Building
	4,160 SF Service Shop
	2,720 SF Detail Shop
	721 SF Salesman's Hut
	329 SF Salesman's Hut
Land Acreage (Ac):	3.30 Ac Cumulative
Date of Construction:	Main Building-1953
	Service Shop-1961
	Salesman's Huts-1965
	Detail Shop-1966
Current Tenants:	Northwest Motorsports

The subject property is currently occupied by Northwest Motorsports for use as a full service automotive dealership. Onsite operations consist of new automobile sales and full automotive maintenance, customization, repair and detailing activities. In addition to the current structures, the subject property is also improved with asphalt-paved parking areas.

According to available historical sources, the subject property was vacant land from as early as 1939 to circa 1953, when the subject property was first improved with an automotive dealership. The subject property has since been occupied by various automotive dealerships.

The subject property is bound to the north by River Road (SR167), beyond which is an abandoned commercial property (401 River Road- formerly an automotive dealership known as Puyallup Chrysler/Plymouth and R/V); to the south by a commercial property (820 4th Street-Boush Moving & Storage); to the east by 4th Street NW, beyond which is an automotive dealership (Larson Motors-300 River Road); and to the west by a commercial automotive dealership (Milam Truck Country-500 River Road).

According to well logs for the subject property address that were submitted to the Washington Department of Ecology (WADOE) in April of 2011, the depth of groundwater at the subject property is present at approximately 18-feet below ground surface (bgs) and based on topography, is inferred to flow to the north, towards the Puyallup River.

Findings

A recognized environmental condition (REC) refers to the presence or likely presence of any hazardous substance or petroleum product on a property under conditions that indicate an existing release, a past release, or a material threat of a release of any hazardous substances or petroleum products into structures on the property or into the ground, groundwater, or surface water of the property. The term REC includes hazardous substances and petroleum products even under conditions that might be in compliance with laws. The term is not intended to include "de minimis" conditions that do not present a threat to human health and/or the environment and that would not be subject to an enforcement action if brought to the attention of appropriate governmental agencies. The following was identified during the course of this assessment:

• Partner observed evidence of former in-ground hydraulic lifts in the current above ground service bays as evidenced by circular cut-outs and concrete patches indicative of in-ground lift cylinders. The lifts were reportedly installed in the 1950s and removed in 1987. To address subsurface environmental conditions related to the former hydraulic lifts, a Phase II Environmental Site Assessment investigation was performed by Encore Environmental Consortium, LLC (EEC) in 2003. The subsurface investigation included the advancement of eleven borings identified as the locations of former-in ground hydraulic lifts in the service bays. However, review of the laboratory analysis from this report indicated that soils collected from the service bays were only analyzed for diesel and gas range petroleum hydrocarbons. The testing did not include analysis of polychlorinated biphenyls (PCBs), which is a target chemical of concern associated with older hydraulic lifts. Therefore, it is Partner's opinion that the 2003 investigation was not sufficient to determine the absence or

presence of PCB contamination in soils from the areas of the former in-ground lifts. Based on the potential for PCB-containing hydraulic fluid within the lifts to have impacted the subsurface and on the lack of any documented sampling conducted after removal of the lifts which targeted PCBs as a contaminant, specifically, the former presence of in-ground lifts onsite is a Recognized Environmental Condition.

• According to previous environmental reports prepared in 2003, the southern-most auto service bay area housed one active in-ground hydraulic lift which contained hydraulic fluid in a reservoir within the lift. The previous consultant recommended that the lift be drained and decommissioned in accordance with applicable regulatory requirements to prevent potential future releases. The reported lift was not observed during Partner's site reconnaissance, and no information pertaining to the status of the lift was found during Partner's assessment. Therefore, it is unclear whether the lift was properly removed and/or subsurface sampling was conducted. Based on this information, the former in-ground lift represents a REC.

A historical recognized environmental condition (HREC) refers to an environmental condition which would have been considered a REC in the past, but which is no longer considered a REC based on subsequent assessment or regulatory closure. The following was identified during the course of this assessment:

• The subject property was historically equipped with four underground storage tanks (USTs): one gasoline tank, one heating oil tank and two waste oil tanks. Three of the tanks have been closed and removed, and one has been closed in-place. Based on the documented removal and/or closure of the tanks, the subsequent analytical results and soil remediation, and the regulatory closure, the former USTs and associated onsite contamination are considered a historic recognized environmental condition.

An environmental issue refers to environmental concerns identified by Partner, which do not qualify as RECs; however, require discussion. The following was identified during the course of this assessment:

- Due to the age of the subject property buildings, there is a potential that ACMs and/or LBP are present. Overall, all suspect ACMs and painted surfaces were observed in good condition and do not pose a health and safety concern to the occupants of the subject property at this time. A few ceiling tiles, however, were noted during the inspection to be broken, chipped, and/or have signs of water damage. Should the ceiling tiles (or their glue dots) be replaced, the identified suspect ACMs would need to be sampled to confirm the presence or absence of asbestos prior to any renovation or demolition activities to prevent potential exposure to workers and/or building occupants.
- A previous subsurface investigation was performed in the area of the existing oil/water separator in 2011 to evaluate the site for potential subsurface impacts related to auto repair operations. Analytical results of the investigation revealed no constituents of concern were detected in soil or groundwater samples collected near the oil/water separator. Based on the

results, the presence of the oil/water separator is not a concern at this time. However, the oil/water separator continues to be used by the current tenant. The user should be aware that environmental risks associated with use of the oil/water separator in connection with auto repair activities increases over time.

Conclusions, Opinions and Recommendations

Partner has performed a Phase I Environmental Site Assessment in conformance with the scope and limitations of ASTM Practice E1527-05 of 400 River Road in the City of Puyallup, Pierce County, Washington (the "subject property"). Any exceptions to or deletions from this practice are described in Section 1.5 of this report.

This assessment has revealed evidence of recognized environmental conditions and environmental issues in connection with the subject property. Based on the conclusions of this assessment, Partner recommends the following:

- A limited subsurface investigation should be conducted in order to determine the presence or absence of PCB contamination in the areas of the former in-ground lifts.
- Obtain and review records pertaining to removal/decommissioning activities of the active inground lift.
- Periodic maintenance of the existing oil/water separator to prevent future releases.

TABLE OF CONTENTS

EXE	CUTIV	E SUMMARY	i
TABI	E OF	CONTENTS	v
1.0		RODUCTION	
1.1		rpose	
1.2	Sco	ope of Work	1
1.3	Lir	nitations	. i つ
1.4	Us	er Reliance	2
1.5	Lin	niting Conditions	.3
2.0	SITI	E DESCRIPTION	. 4
2.1	Site	e Location and Legal Description	4
2.2	Cu	rrent Property Use	· •
2.3	Cu	rrent Use of Adjoining Properties	. 5
2.4	Phy	ysical Setting Sources	. 5
	.4.1	Topography	.5
	.4.2	Hydrology	. 6
	.4.3	Geology/Soils	. 6
2	.4.4	Flood Zone Information	. 6
3.0	HIST	FORICAL INFORMATION	. 7
3.1		rial Photograph Review	
3.2	Sar	iborn Fire Insurance Maps	ģ
3.3	Cit	y Directories	9
3.4	His	torical Topographic Maps	0
4.0	REG	ULATORY RECORDS REVIEW	12
4.1		gulatory Agencies	
4.	.1.1	State Department.	2
4.	.1.2	Health Department	2
4.	.1.3	Fire Department	2
4.	.1.4	Air Quality Management District	3
	.1.5	Regional Water Quality Control Board	3
	1.6	Building Department	3
	1.7	Planning Department	4
	1.8	Oil & Gas Exploration	4
4.2	Ma	pped Database Records Search	4
5.0		R PROVIDED INFORMATION AND INTERVIEWS	
5.1	Inte	erviews	22
5.	1.1	Interview with Owner	22
	1.2	Interview with Report User	22
	1.3	Interview with Key Site Manager	22
	1.4	Interviews with Past Owners, Operators and Occupants	22
	1.5	Interview with Others	22
5.2	Use	er Provided Information	23
5.	2.1	Title Records	:3

	Environmental Liens or Activity and Use Limitation	23
	Specialized Knowledge	
	Commonly Known or Reasonably Ascertainable Information	
	Valuation Reduction for Environmental Issues	
	Previous Reports and Other Provided Documentation	
6.0 SITE	RECONNAISSANCE	28
	eral Site Characteristics	
	ntial Environmental Hazards	
	ASTM Services	
	Asbestos-Containing Materials (ACMs)	
	Lead-Based Paint (LBP)	
6.3.3 6.3.4	Radon	34
	Lead in Drinking Water	34
	Moldcent Property Reconnaissance	
	INGS AND CONCLUSIONS	
	ATURES OF ENVIRONMENTAL PROFESSIONALS	
9.0 REFE	RENCES	40
FIGURES		
Figure 1	Site Location Map	
Figure 2	Topographic Map	
Figure 3	Site Plan	
1 1541 0 5	Site I lan	
APPENDICES		
Appendix A	Site Photographs	
Appendix B	Historical/Regulatory Documentation	
	B1 Aerial Photographs	
	B2 Fire Insurance Maps	
	B3 City Directories	
	Bayanor) responses	
	B5 Supporting Documentation	

Appendix D Qualifications

Appendix C Regulatory Database Report

1.0 INTRODUCTION

Partner Engineering and Science, Inc. (Partner) has performed a Phase I Environmental Site Assessment (ESA) in general conformance with the scope and limitations of ASTM Standard Practice E1527-05 and the Environmental Protection Agency Standards and Practices for All Appropriate Inquiries (AAI) (40 CFR Part 312) for the property located at 400 River Road in the City of Puyallup, Pierce County, Washington (the "subject property"). Any exceptions to, or deletions from, this scope of work are described in the report.

1.1 Purpose

The purpose of this ESA is to identify existing or potential Recognized Environmental Conditions (as defined by ASTM Standard E-1527-05) affecting the subject property that: 1) constitute or result in a material violation or a potential material violation of any applicable environmental law; 2) impose any material constraints on the operation of the subject property or require a material change in the use thereof; 3) require clean-up, remedial action or other response with respect to Hazardous Substances or Petroleum Products on or affecting the subject property under any applicable environmental law; 4) may affect the value of the subject property; and 5) may require specific actions to be performed with regard to such conditions and circumstances. The information contained in the ESA Report will be used by Client to: 1) evaluate its legal and financial liabilities for transactions related to foreclosure, purchase, sale, loan origination, loan workout or seller financing; 2) evaluate the subject property's overall development potential, the associated market value and the impact of applicable laws that restrict financial and other types of assistance for the future development of the subject property; and/or 3) determine whether specific actions are required to be performed prior to the foreclosure, purchase, sale, loan origination, loan workout or seller financing of the subject property.

This ESA was performed to permit the *User* to satisfy one of the requirements to qualify for the innocent landowner, contiguous property owner, or bona fide prospective purchaser limitations on scope of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) (42 U.S.C. §9601) liability (hereinafter, the "landowner liability protections," or "LLPs"). ASTM Standard E-1527-05 constitutes "all appropriate inquiry into the previous ownership and uses of the property consistent with good commercial or customary practice" as defined at 42 U.S.C. §9601(35)(B).

1.2 Scope of Work

The scope of work for this ESA is in general accordance with the requirements of ASTM Standard E 1527-05. This assessment included: 1) a property and adjacent site reconnaissance; 2) interviews with key personnel; 3) a review of historical sources; 4) a review of regulatory agency records; and 5) a review of a regulatory database report provided by a third-party vendor.

If requested by Client, this report may also include the identification, discussion of, and/or limited sampling of asbestos-containing materials (ACMs), lead-based paint (LBP), mold, and/or radon.

1.3 Limitations

Partner warrants that the findings and conclusions contained herein were accomplished in accordance with the methodologies set forth in the Scope of Work. These methodologies are described as representing good commercial and customary practice for conducting an ESA of a property for the purpose of identifying recognized environmental conditions. There is a possibility that even with the proper application of these methodologies there may exist on the subject property conditions that could not be identified within the scope of the assessment or which were not reasonably identifiable from the available information. Partner believes that the information obtained from the record review and the interviews concerning the subject property is reliable. However, Partner cannot and does not warrant or guarantee that the information provided by these other sources is accurate or complete. The conclusions and findings set forth in this report are strictly limited in time and scope to the date of the evaluations. The conclusions presented in the report are based solely on the services described therein, and not on scientific tasks or procedures beyond the scope of agreed-upon services or the time and budgeting restraints imposed by the Client. No other warranties are implied or expressed.

Some of the information provided in this report is based upon personal interviews, and research of available documents, records, and maps held by the appropriate government and private agencies. This report is subject to the limitations of historical documentation, availability, and accuracy of pertinent records and the personal recollections of those persons contacted.

This practice does not address requirements of any state or local laws or of any federal laws other than the all appropriate inquiry provisions of the LLPs. Further, this report does not intend to address all of the safety concerns, if any, associated with the subject property.

Environmental concerns, which are beyond the scope of a Phase I ESA as defined by ASTM include the following: ACMs, LBP, radon, and lead in drinking water. These issues may affect environmental risk at the subject property and may warrant discussion and/or assessment; however, are considered non-scope issues. If specifically requested by the Client, these non-scope issues are discussed in Section 6.3.

1.4 User Reliance

Sterling Bank engaged Partner to perform this assessment in accordance with an agreement governing the nature, scope and purpose of the work as well as other matters critical to the engagement. All reports, both verbal and written, are for the sole use and benefit of Sterling Bank. Either verbally or in writing, third parties may come into possession of this report or all or part of the information generated as a result of this work. In the absence of a written agreement with Partner granting such rights, no third parties shall have rights of recourse or recovery whatsoever under any course of action against Partner, its officers, employees, vendors, successors or assigns. Any such unauthorized user shall be responsible to protect, indemnify and

hold Partner, Client and their respective officers, employees, vendors, successors and assigns harmless from any and all claims, damages, losses, liabilities, expenses (including reasonable attorneys' fees) and costs attributable to such Use. Unauthorized use of this report shall constitute acceptance of and commitment to these responsibilities, which shall be irrevocable and shall apply regardless of the cause of action or legal theory pled or asserted. Additional legal penalties may apply.

1.5 Limiting Conditions

The findings and conclusions contain all of the limitations inherent in these methodologies that are referred to in ASTM E1527-05.

Specific limitations and exceptions to this ESA are more specifically set forth below:

- Interviews with past owners, operators and occupants were not reasonably ascertainable and thus constitute a data gap. Based on information obtained from other historical sources (as discussed in Section 3.0), this data gap is not expected to alter the findings of this assessment.
- Information relative to deed restrictions, environmental liens, and a title search from the Report User was not provided at the time of the assessment. Based on information obtained from other historical sources (as discussed in Section 3.0), this data gap is not expected to alter the findings of this assessment.
- Partner submitted Freedom of Information Act (FOIA) requests to the Pierce County Health Department (PCHD) and Washington Department of Environmental Quality (WADOE) for information pertaining to hazardous substances, underground storage tanks, releases, inspection records, etc. for the subject property. As of this writing, these agencies have not responded to Partner's request. Based on information obtained from the WADOE online database and from other historical sources, this limitation is not expected to alter the overall findings of this assessment.
- Partner's view of the ground surface was obstructed by parked cars in several areas
 throughout the subject property. Based on previous subsurface investigations provided to
 Partner for review, this limitation is not expected to alter the overall findings of this
 assessment.

2.0 SITE DESCRIPTION

2.1 Site Location and Legal Description

The subject property is located at the southwest quadrant of the intersection of River Road (SR167) and 4th Street NW in Puyallup, Pierce County, Washington. Please refer to the table below for further description of the subject property:

Address:	400 D: D I
	400 River Road
Assessor's Parcel Number (APN):	0420214014, 0420214057, 0420214807 & 0420214808
Nature of Use:	Commercial-Full Service Automotive Dealership
Number of Buildings:	5
Number of Floors:	1
Type of Construction:	CMU Main Building
	CMU/Wood Frame Salesman's Hut
	Wood Frame Salesman's Hut
	CMU Service Garage
	Wood Frame Detail Shop
Building Square Footage (SF):	12,611 SF Main Building
	4,160 SF Service Shop
	2,720 SF Detail Shop
	721 SF Salesman's Hut
	329 SF Salesman's Hut
Land Acreage (Ac):	3.30 Ac Cumulative
Date of Construction:	Main Building-1953
	Service Shop-1961
	Salesman's Huts-1965
	Detail Shop-1966
Current Tenants:	Northwest Motorsports

In addition to the current structures, the subject property is also improved with asphalt-paved parking areas.

According to the Pierce County Assessor, the subject property is legally described as community parcels 0420214014, 0420214057, 0420214807 & 0420214808 and ownership is currently vested in K&A Holdings, LLC. A complete legal description for each of the four parcels is included in the Pierce County Assessor's property cards, which are included in Appendix B.

Please refer to Figure 1: Site Location Map, Figure 2: Topographic Map, Figure 3: Site Plan and Appendix A: Site Photographs for the location and site characteristics of the subject property.

2.2 Current Property Use

The subject property is currently occupied by Northwest Motorsports for commercial use. Onsite operations consist of new automobile sales and full automotive maintenance, customization, repair and detailing activities

The subject property is designated for commercial development by the City of Puyallup and is considered a legal use in its current configuration.

The subject property was identified as an ALLSITES, RCRA Non-Gen, UST and FINDS site in the regulatory database report of Section 4.2.

2.3 Current Use of Adjoining Properties

The subject property is located within a mixed commercial area of Puyallup, Washington. During the vicinity reconnaissance, Partner observed the following land use on properties in the immediate vicinity of the subject property:

Immediately surrounding properties

North:	The subject property is bound to the north by River Road (SR167). Land area to the
	north of River Road supports an abandoned commercial property (401 River Road)
	formerly an automotive dealership known as Puyallup Chrysler/Plymouth).
South:	The subject property is bound to the south by a commercial property (820 4th Street-
	Boush Moving & Storage).
East:	The subject property is bound to the east by 4th Street NW. Land area to the east of the
	street supports an automotive dealership (Larson Motors-300 River Road).
West:	The subject property is bound to the west by land area that supports a commercial
	automotive dealership (Milam Truck Country-500 River Road).

Adjacent properties located in each direction from the subject property were identified in the regulatory database report of Section 4.2.

2.4 Physical Setting Sources

2.4.1 Topography

The United States Geological Survey (USGS), *Puyallup, Washington* Quadrangle 7.5-minute series topographic map was reviewed for this ESA. According to the contour lines on the topographic map, the subject property is located at approximately 34-feet above mean sea level (MSL). The contour lines in the area of the subject property indicate the area is sloping gently toward the north. The subject property is shaded to represent urban land area.

Please refer to Figure 2: Topographic Map.

2.4.2 Hydrology

According to topographic map interpretation, the direction of groundwater in the vicinity of the subject property is inferred to flow toward the north. The nearest surface water in the vicinity of the subject property is the Puyallup River located approximately 850-feet to the north of the subject property. No settling ponds, lagoons, surface impoundments, wetlands or natural catch basins were observed at the subject property during this assessment.

According to available information, a public water system operated by the Puyallup Department of Public Works and Engineering serves the subject property vicinity. According to a representative of the department, shallow groundwater directly beneath the subject property is not utilized for domestic purposes. According to the department's 2012 Water Quality Report (WQR), the City of Puyallup obtains its drinking water from two natural springs (Maplewood Springs and Salmon Springs), from five deep wells and from the City of Tacoma.

According to well logs for the subject property address that were submitted to the Washington Department of Ecology (WADOE) in April of 2011, the depth of groundwater at the subject property is present at approximately 18-feet below ground surface (bgs).

2.4.3 Geology/Soils

Information concerning the geology of the Subject Property was obtained from the USGS Map of the Physical Divisions of the United States (1946). The Subject Property is located within the Pugent Trough section of the Pacific Border physiographic province, which consists of partially submerged lowlands with diverse character.

Based on information obtained from the USDA Natural Resources Conservation Service Web Soil Survey online database, the subject property is mapped as Pilchuck fine sand, Puyallup fine sandy loam and Xerorthents fill areas. The Pilchuck series consists of very deep, excessively drained and somewhat excessively drained soils that formed in gravelly and sandy alluvium. Pilchuck soils are on flood plains. The Puyallup series consists of very deep, well drained soils formed in recent alluvium. Puyallup soils are on floodplains and low terraces.

2.4.4 Flood Zone Information

Partner performed a review of the Flood Insurance Rate Map, published by the Federal Emergency Management Agency. According to Community Panel Number 5301440005B, dated August 15, 1980, the central and west portions of the subject property appear to be located in Zone AO, which is defined by FEMA as an area that is subject to a one percent or greater annual chance of shallow flooding in any given year. Flooding is usually in the form of sheet flow with average depths between one and three feet.

3.0 HISTORICAL INFORMATION

Partner obtained historical use information about the subject property from a variety of sources. A chronological listing of the historical data found is summarized in the table below:

Historical Use Information

Period/Date	Source	Description/Use
1939-1952	Aerial Photographs, City Directories	Undeveloped
1953-Present	Aerial Photographs, City Directories, Building Records, Interviews, Previous Reports, Historic Topographic Maps, Onsite observations	

Potential environmental concerns were identified in association with the current and historic use of the subject property, as further discussed in Sections 4.0, 5.2, and 6.0.

3.1 Aerial Photograph Review

On October 21, 2013, Partner obtained available aerial photographs of the subject property and surrounding area from Environmental Data Resources (EDR). The aerial photographs were reviewed for indications of previous uses, as discussed below:

Date: 1941 Scale: 1"=750"

The subject property appears to be undeveloped land.

River Road is depicted to the immediate north of the subject property. Land area to the north of the road appears to support pastureland and woodland. 4th Street is depicted to the east of the subject property. Land area to the east of the street appears to support woodland and pastureland. Land area to the south of the subject property appears to support woodland vegetation and a small building that is similar in size and shape to a single-family residence. Land area to the west of the subject property appears to support pastureland.

Date: 1957 Scale: 1"=500"

The central portion of the subject property appears to be developed with a building or foundation that is similar in size and orientation to the present day main building. Areas of the subject property to the north and to the south of the building appear to be graded or paved.

River Road is depicted to the immediate north of the subject property. Land area to the north of the road appears to support pastureland and woodland. 4th Street is depicted to the east of the subject property. Land area to the east of the street appears to support woodland and pastureland. Land area to the south of the subject property appears to support woodland vegetation and a small building. Land area to the west of the subject property appears to support pastureland.

Date: 1968 **Scale:** 1"=750"

The central portion of the subject property appears to be developed with two buildings that are similar in size and orientation to the present day main building and service garage.

River Road is depicted to the immediate north of the subject property. Land area to the north of the road appears to be graded for commercial development. 4th Street is depicted to the east of the subject property. Land area to the east of the street appears to support paved parking lots and at least two commercial buildings. Land area to the south of the subject property appears to support at least two commercial buildings. Land area to the west of the subject property appears to support paved parking and a small commercial building.

Date: 1972, 1986 Scale: 1"=1,000"

The subject property generally appears to have been developed in a manner that is consistent with the conditions that were observed on the day of the site visit. The scale and clarity 1972 and 1986 aerial photography is of low quality and inhibits detailed analysis of the site structures.

River Road is depicted to the immediate north of the subject property. Land area to the north of the road appears to have been developed in a manner that is consistent with the conditions observed on the day of the site visit. Land areas to the east and to the west of the subject property appear to support commercial developments that are consistent with the conditions observed on the day of the site visit. Land area to the south of the subject property is depicted as developed with commercial buildings and paved parking. The scale and clarity 1972 and 1986 aerial photography is of low quality and inhibits detailed analysis of the off-site structures.

Date: 1990, 1991 **Scale:** 1"=500"

The subject property generally appears to have been developed in a manner that is consistent with the conditions that were observed on the day of the site visit.

River Road is depicted to the immediate north of the subject property. Land area to the north of the road appears to have been developed in a manner that is consistent with the conditions observed on the day of the site visit. Land areas to the east and to the west of the subject property appear to support commercial developments that are consistent with the conditions observed on the day of the site visit. Land area to the south of the subject property is depicted as developed with commercial buildings and paved parking.

Date: 2006, 2009, 2011 **Scale:** 1"=500"

The subject property appears to have been developed in a manner that is consistent with the conditions that were observed on the day of the site visit.

River Road is depicted to the immediate north of the subject property. Land area to the north of the road appears to have been developed in a manner that is consistent with the conditions observed on the day of the site visit. Land areas to the east and to the west of the subject property appear to support commercial developments that are consistent with the conditions observed on the day of the site visit. Land area to the south of the subject property is depicted as developed with commercial buildings and paved parking

Copies of select aerial photographs are included in Appendix B of this report.

3.2 Sanborn Fire Insurance Maps

Sanborn maps were originally created in the late 1800s and early 1900s for assessing fire insurance liability in urbanized areas of the United States. These maps include detailed town and building information.

Partner reviewed Sanborn Fire insurance maps obtained from EDR's collection on November 4, 2013. Sanborn maps dated 1927, 1945 and 1964 were examined. None of the maps that were reviewed provided coverage of the subject property or immediately surrounding properties. The maps depicted development in the form of residential dwellings, beginning approximately 250-feet to the south of the subject property, along the east and west sides of 4th Street NW. No commercial development is depicted in the coverage area.

Copies of reviewed Sanborn Maps are included in Appendix B of this report.

3.3 City Directories

City directories have been produced for most urban and some rural areas since the late 1800s. The directories are generally not comprehensive and may contain gaps in time periods.

Partner reviewed historical city directories obtained from the City of Tacoma Public Library for past names and businesses that were listed for the subject property and adjacent properties. The findings are presented in the following table:

City Directory Search for 400 River Road (Subject Property)

Year(s)	Occupant Listed
1939	No Listing
1947	No Listing
1953-54	Grant's Auto Sales and Service
1961	Grant's Oldsmobile
1965	Grant's Chevrolet
1970	Grant's Service Chevrolet
1975	Service Chevrolet, Inc.
1980-81	Service Chevrolet, Inc.
1985	Service Chevrolet, Inc.
1990	Ken Parks Chevrolet-Subaru
2003	Carter's Puyallup Chevrolet

According to the city directory review, the subject property was occupied by Grant's Auto Sales and Service in 1954, later becoming Grant's Oldsmobile by approximately 1961 and Grant's Chevrolet by approximately 1969. By approximately 1975, the subject property was occupied by Service Chevrolet, Inc. By approximately 1990, the subject property was occupied by Ken Parks Chevrolet and by 2003 was occupied by Carter's Puyallup Chevrolet. The former Greg Carter's Chevrolet is identified in the regulatory database as a RCRA Non Generator and UST site and is cross referenced in the FINDS and ALLSITES databases as discussed in Section 4.2.

City Directory Search for Adjacent Properties

Year(s)	Occupant Listed
1939	North: 401 River Road-No Listing, South: 820 4th Street-Martin B. Baskovitch
	East: 300 River Road- No Listing, West: 500 River Road-No Listing
1947	North: 401 River Road-No Listing, South: 820 4th Street-No Listing
	East: 300 River Road- No Listing, West: 500 River Road-No Listing
1953-54	North: 401 River Road-No Listing, South: 820 4th Street-No Listing
	East: 300 River Road- No Listing, West: 500 River Road-No Listing (515 Residence)
1961	North: 401 River Road-No Listing, South: 820 4th Street-No Listing
	East: 300 River Road- No Listing, West: 500 River Road-No Listing
1965	North: 401 River Road-No Listing, South: 820 4th Street-No Listing
	East: 300 River Road- No Listing, 315 River Road-First Union National Bank, West: 500
	River Road-No Listing, 506 River Road-USDA
1970	North: 401 River Road-Puyallup Chrysler, South: 820 4th Street-Boush Moving & Storage
	East: 300 River Road-Larson Motors Inc., West: 500 River Road-No Listing, 506 River
	Road-USDA
1975	North: 401 River Road- Puyallup Chrysler, South: 820 4th Street- Boush Moving &
	Storage, East: 300 River Road-Larson Motors Inc., 324 River Road-River Road Gulf
	Station, 315 River Road-Peugeot Sound National Bank, West: 500 River Road-No
	Listing, 506 River Road-USDA
1980-81	North: 401 River Road-Moceri Leasing Inc., South: 820 4th Street-Moving & Storage
	East: 300 River Road-Larson Motors, West: 500 River Road-No Listing
1985	North: 401 River Road-Moceri Leasing Inc., South: 820 4th Street-Bouch Moving &
	Storage, East: 300 River Road-Larson Motors, West: 500 River Road-No Listing
1990	North: 401 River Road-Moceri Leasing Inc., South: 820 4th Street- Boush Moving &
	Storage, East: 300 River Road-Larson Motors, West: 500 River Road-Korum RV

According to the city directory review, the adjacent property to the east has been occupied a commercial automotive dealership since at least 1970. Land area to the northeast of the subject property, across the 4th Street and River Road intersection, was occupied by River Road Golf Gasoline Service Station in approximately 1975. The gas station listing was no longer apparent by 1980-81. Based on the inferred direction of groundwater flow (hydrologically cross- to downgradient) of the subject property, this former gas station is not expected to be a significant environmental concern for the subject property. A commercial moving and storage facility has occupied the south adjacent property since at least 1970.

3.4 Historical Topographic Maps

Partner reviewed historical topographic maps obtained from the United Stated Geological Survey's online collection on October 31, 2013. Topographic maps were available and reviewed for the years 1961, 1968, 1973. 1981, 1994 and 1997 as discussed below:

Date: 1961

The subject property appears to support a commercial building that is similar in orientation the main building currently located on the subject property.

River Road is depicted to the north of the subject property. Land area to the north of the road is shaded to represent woodland area. Land area to the south of the subject property is shaded to represent urban land use. 4th Street is depicted to the east of the subject property. Land area to the east of the street is shaded to represent woodland area. Land area to the west of the subject property is shaded to represent woodland area.

Date: 1968 and 1973

The subject property appears to support three buildings.

River Road is depicted to the north of the subject property. Land area to the north of the road appears to support one building. Land area to the south of the subject property appears to support one building. 4th Street is depicted to the east of the subject property. Land area to the east of the subject property appears to support two buildings. Land area to the west of the subject property appears to support four buildings.

Date: 1981

The subject property appears to support five buildings.

River Road is depicted to the north of the subject property. Land area to the north of the road appears to support two buildings. Land area to the south of the subject property appears to support three buildings. 4th Street is depicted to the east of the subject property. Land area to the east of the subject property appears to support three buildings. Land area to the west of the subject property appears to support four buildings.

Date: 1994 and 1997

The subject property is shaded to represent urban land use. There are no buildings depicted on the subject property.

River Road is depicted to the north of the subject property. Land area to the north of the road appears to support two buildings. Land area to the south, to the east and to the west of the subject property is shaded to represent urban land use. There are no buildings depicted on these adjoining properties.

4.0 REGULATORY RECORDS REVIEW

4.1 Regulatory Agencies

Partner contacted local agencies, such as environmental health departments, fire departments and building departments in order to determine any current and/or historic hazardous materials usage, storage and/or releases of hazardous substances on the subject property. Additionally, Partner researched information on the presence of activity and use limitations (AULs) at these agencies. As defined by ASTM E1527-05, AULs are the legal or physical restrictions or limitations on the use of, or access to, a site or facility: 1) to reduce or eliminate potential exposure to hazardous substances or petroleum products in the soil or groundwater on the subject property; or 2) to prevent activities that could interfere with the effectiveness of a response action, in order to ensure maintenance of a condition of no significant risk to public health or the environment. These legal or physical restrictions, which may include institutional and/or engineering controls (IC/ECs), are intended to prevent adverse impacts to individuals or populations that may be exposed to hazardous substances and petroleum products in the soil or groundwater on the property.

4.1.1 State Department

Partner requested records from the Washington Department of Ecology (WADOE) on October 25, 2013 for the subject property. These records may contain evidence indicating current and/or historical hazardous materials usage, storage or releases, as well as the presence of underground storage tanks (USTs).

As of the date of this report, Partner has not received a response from the WADOE for inclusion in this report.

4.1.2 Health Department

Partner requested records from the Pierce County Health Department (PCHD) on October 25, 2013 for the subject property. These records may contain evidence indicating current and/or historical hazardous materials usage, storage or releases, as well as the presence of USTs.

As of the date of this report, Partner has not received a response from the PCHD for inclusion in this report.

4.1.3 Fire Department

Partner requested records from the Puyallup Fire Department (PFD), Fire District No. 9 on October 25, 2013 for the subject property. These records may contain evidence indicating current and/or historical hazardous materials usage, storage or releases, as well as the presence of USTs.

Partner received a response from Mrs. Amy Jackson of the Central Pierce Fire & Rescue Prevention and Education Division on November 5, 2013. Mrs. Jackson stated that she had no fire incident records or any hazardous material use/storage permits of file for the subject property address.

4.1.4 Air Quality Management District

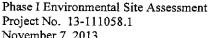
The State of Washington does not maintain an Air Quality Management District. These records are maintained by the Washington Department of Ecology (WADOE).

WADOE Air Quality records identified the subject property as Facility/Site No. 68989278 and listed the occupants as Friendly Chevrolet of Puyallup, Friendly Chevrolet, Puyallup Chevrolet-Geo-Subaru, Inc. and Greg Carter's Puyallup Chevrolet-Subaru.

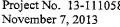
No PTOs, NOVs, NTCs or the presence of AULs were on file for the subject property address within the WADOE Air Quality Records. The agencies records cross-referenced the subject property address to the WADOE HAZWASTE program file No. WAD988484598 and to the WADOE UST program file No. 97772. Neither of these case files was fully accessible through the WADOE Air Quality Records Database or local WADOE office. However, available information indicated that the subject property had three closed underground storage tanks (one gasoline tank, one heating oil tank and one waste oil tank).

4.1.5 Regional Water Quality Control Board

The State of Washington does not maintain a Regional Water Quality Control Board. These records are maintained by the Washington Department of Ecology (WADOE). researched the WADOE online database on October 29, 2013 for information regarding any releases to the subsurface which may have impacted or threatened a body of water.


No records regarding a release or the presence of AULs on the subject property were on file within the WADOE water quality database.

4.1.6 Building Department


Partner visited the Puyallup Building Department (PBD) on October 24, 2013 for information regarding historical tenants and property use of the subject property. The following table contains a listing of permits reviewed:

Building Records Reviewed for 400 River Road (Subject Property)

Year(s)	Owner/Applicant	Description
1999	Plumb Signs, Inc.	Installation of Facade
2001	Plumb Signs, Inc.	Construct Sign Pole
2002	I-5 Signs, Inc.	Relocate Wall
2003	Plumb Signs, Inc.	Remove Damaged Directional
2006	Olympic Sign Services, Inc.	Wall Sign-Chevrolet
2007	Alpha Steel Building, Inc	Stop Work-Canopy Over Service Drive

Page 13

	Owner/Applicant	Description
2011	CMW Investments, LLC	Commercial/Mechanical-Replace Three Gas Furnaces, Add
		Gas Piping
2013 I	K&A Holdings, LLC	Wall Sign-NW Motorsports 4x4 Parts

PBD's records of permits related to the subject property address dated back to 1999 and identified several signage changes between 1999 and 2013. Shell building permits and/or Certificates of Occupancy were not available at the building department.

4.1.7 Planning Department

Partner contacted the Puyallup Planning Department (PPD) on October 25, 2013 for information on the subject property in order to identify AULs associated with the subject property.

According to records reviewed, the subject property is zoned G-C (General Commercial) for commercial development by the City of Puyallup and is considered a legal use in its current configuration.

4.1.8 Oil & Gas Exploration

The State of Washington does not maintain records of oil and gas exploration. Partner accessed the National Pipeline Mapping System (NPMS) through this agency's website. The NPMS is a geographic information system (GIS) created by the U.S. Department of Transportation, Pipeline and Hazardous Materials Safety Administration (PHMSA), Office of Pipeline Safety (OPS) in cooperation with other federal and state governmental agencies and the pipeline industry. The NPMS consists of geospatial data, attribute data, public contact information, and metadata pertaining to the interstate and intrastate gas and hazardous liquid transmission pipelines, liquefied natural gas (LNG) plants, and hazardous liquid breakout tanks jurisdictional to PHMSA. The nominal accuracy of geospatial data in the NPMS is +/-500 feet.

Based on a review of the NPMS map, no hazardous liquid transmission pipelines, liquefied natural gas (LNG) plants, and hazardous liquid breakout tanks are located in the immediate vicinity of the subject property.

4.2 Mapped Database Records Search

Information from standard federal, state, county, and city environmental record sources was provided by Environmental Data Resources, Inc. (EDR). Data from governmental agency lists are updated and integrated into one database, which is updated as these data are released. The information contained in this report was compiled from publicly available sources and the locations of the sites are plotted utilizing a geographic information system, which geocodes the site addresses. The accuracy of the geocoded locations is approximately +/-300 feet. Please refer to the radius map for a complete listing (Appendix C).

The subject property was identified as a RCRA Non Gen, UST, FINDS and ALLSITES site in the regulatory database report. The adjacent properties were identified as RCRA Non Gen, UST, ALLSITES, MANIFEST and FINDS sites in the regulatory database report.

Federal NPL

The National Priorities List (NPL) is the Environmental Protection Agency (EPA) database of uncontrolled or abandoned hazardous waste sites identified for priority remedial actions under the Superfund Program.

No NPL sites are located within 1-mile of the subject property.

Federal CERCLIS List

The Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS) list is a compilation of sites that the EPA has investigated or is currently investigating for a release or threatened release of hazardous substances.

No CERCLIS sites are listed within ½-mile of the subject property.

Federal CERCLIS-NFRAP Sites List

The CERCLIS No Further Remedial Action Planned (NFRAP) List is a compilation of sites that the EPA has investigated, and has determined that the facility does not pose a threat to human health or the environment, under the CERCLA framework.

One CERCLIS-NFRAP site is listed within \$1/2\$-mile of the subject property. The site is located more than \$1/8\$-mile of the subject property and situated hydrologically cross- to down-gradient. Based on the relative distance, regulatory status, and inferred direction of groundwater flow; this site is not expected to represent a significant environmental concern.

Federal RCRA Generator List

The EPA Resource Conservation and Recovery Act (RCRA) Program RCRA program identifies and tracks hazardous waste from the point of generation to the point of disposal. The RCRA Generators database is a compilation by the EPA of reporting facilities that generate hazardous waste.

Greg Carter's Puyallup Chevrolet-Subaru, a former occupant of the subject property, is listed as a RCRA Non-Gen facility. RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Non-Generators do not presently generate hazardous waste. Based on the analytical results of previous subsurface investigations conducted onsite; this listing is not expected to represent a significant environmental concern.

Puyallup Chrysler-Plymouth R/V, Inc. is located at 401 River Road is located adjacent to the north (hydrologically down gradient) of the subject property. This site was reported in 1994 as a non-RCRA generator with no violations. Based on the regulatory status and inferred direction of groundwater flow, this site is not expected to represent a significant environmental concern.

Federal RCRA CORRACTS Facilities List

The RCRA CORRACTS database is the EPA's list of TSD facilities subject to corrective action under RCRA.

No RCRA CORRACTS facilities are listed within 1-mile of the subject property.

Federal Resource Conservation and Recovery Act (RCRA) TSD Facilities List

The RCRA Treatment, Storage and Disposal (TSD) database is a compilation by the EPA of reporting facilities that treat, store or dispose of hazardous waste.

No RCRA TSD sites are listed within ½-mile of the subject property.

Federal Institutional Controls/Engineering Controls (IC/EC)

The Federal IC/EC database is designed to assist the EPA in collecting, tracking, and updating information, as well as reporting on the major activities and accomplishments of the various Brownfield grant programs. The IC/EC sites are superfund sites that have either engineering or an institutional control in place. The data includes the control and the media contaminated.

No Federal IC/EC sites were found within ½-mile of the subject property.

Federal Emergency Notification System (ERNS)

The Emergency Response Notification System (ERNS) is a national database used to collect information or reported release of oil or hazardous substances.

No ERNS sites are listed on or adjacent to the subject property.

State/Tribal Sites (HSL)

The Washington Department of Ecology maintains a State Priority List (HSL) of sites considered to be actually or potentially contaminated.

Six HSL sites are reported within 1-mile of the subject property. Each of the six HSL sites are located more than \$1/8\$-mile of the subject property and situated hydrologically cross- to downgradient. Based on the relative distance, regulatory status, and/or inferred direction of groundwater flow; these sites are not expected to represent a significant environmental concern.

State/Tribal Equivalent CERCLIS (CSCSL) Sites

The Washington Department of Ecology compiles a list of state hazardous waste sites equivalent to CERCLIS. These sites may or may not already be listed on the federal CERCLIS list.

Twenty-four CSCSL sites are listed within 1-mile of the subject property. Each of the 24 CSCSL sites are located more than \$^1/8\$-mile of the subject property and situated hydrologically cross- to down-gradient. Based on the relative distance, regulatory status, and/or inferred direction of groundwater flow; these sites are not expected to represent a significant environmental concern.

Solid Waste/Landfill Facilities (SWLF)

A database of SWLF is prepared by the Washington Department of Ecology.

No SWLF facilities are listed within ½-mile of the subject property.

State Leaking Underground Storage Tank List (LUST)

The Washington Department of Ecology compiles lists of all leaks of hazardous substances from underground storage tanks.

Three LUST sites are listed within ½-mile of the subject property. Each of the three LUST sites is located more than \$^{1}_{8}\$-mile of the subject property and situated hydrologically cross- to downgradient. Based on the relative distance, regulatory status, and/or inferred direction of groundwater flow; these sites are not expected to represent a significant environmental concern.

State Underground Storage Tank/Aboveground Storage Tank List (UST/AST)

The Washington Department of Ecology compiles a list of UST and AST locations.

Greg Carter's Puyallup Chevrolet-Subaru, a former occupant of the subject property, is listed as a UST facility (Facility ID 68989278). Available information indicates that a 5,000-gallon capacity UST and 1,100 gallon capacity UST were installed in 1964. Both USTs were reportedly closed/removed in 1996. Additionally, a 1,100-gallon capacity fiberglass reinforced plastic (FRP) UST was reportedly installed in 1987 and was reportedly closed/removed on April 4, 2004.

Additionally, eight registered UST/AST facilities are listed within ½-mile of the subject property. Four sites are located within ½-mile of the subject property as discussed below:

• Arthur J Boush Moving & Storage at 820 4th Street is adjacent to south (hydrologically upgradient) of the subject property. This site reportedly operated one Underground Storage Tank, which was installed in 1964 and closed-in place in 1996. No releases have been reported for this site. Based on the regulatory status, this site is not expected to represent a significant environmental concern.

- City of Puyallup Sewage Pump South at the northeast corner of 4th Street and River Road is approximately 150-feet to the northeast (hydrologically down-gradient) of the subject property. This site reportedly operated one Underground Storage Tank, which was reportedly removed/closed in 1994. No releases have been reported for this site. Based on the regulatory status and inferred direction of groundwater flow, this site is not expected to represent a significant environmental concern.
- Puyallup Chrysler-Plymouth R/V, Inc. is located at 401 River Road is located adjacent to the
 north (hydrologically down gradient) of the subject property. This site reportedly operated one
 Underground Storage Tank, which was installed in 1964 and removed/closed in 1996. No
 releases have been reported for this site. Based on the relative distance, regulatory status, and
 inferred direction of groundwater flow, this site is not expected to represent a significant
 environmental concern.
- Korum RV at 514 River Road is located approximately 500-feet to the northwest (hydrologically down-gradient) of the subject property. This site reportedly operated one Underground Storage Tank, which was installed in 1964 and removed/closed in 1996. No releases have been reported for this site. Based on the relative distance, regulatory status, and inferred direction of groundwater flow, this site is not expected to represent a significant environmental concern.

The remaining four sites are located more than \$1/8\$-mile of the subject property and situated hydrologically cross- to down-gradient. Based on the relative distance, regulatory status, and/or inferred direction of groundwater flow; these sites are not expected to represent a significant environmental concern.

State/Tribal VCP Sites

The Washington Department of Ecology compiles a list of Voluntary Cleanup Program (VCP) sites.

Six State/Tribal VCP sites were found within ½-mile of the subject property. Each of the six sites is located more than \$1/8\$-mile of the subject property and situated hydrologically cross- to downgradient. Based on the relative distance, regulatory status, and/or inferred direction of groundwater flow; these sites are not expected to represent a significant environmental concern.

State/Tribal Brownfield Sites

The Washington Department of Ecology has developed an electronic database system with information about sites that are known to be contaminated with hazardous substances as well as information on uncharacterized properties where further studies may reveal problems.

No State/Tribal Brownfield sites were found within ½-mile of the subject property.

US Brownfield Sites

The EPA Brownfield database was reviewed to identify facilities that qualify for federal remediation funding under the Small Business Liability Relief and Brownfield Revitalization Act (the "Brownfield" amendment to CERCLA).

No US Brownfield sites were noted within ½-mile of the subject property.

State Spills Sites (SPILLS)

The Washington Department of Ecology maintains reports of sites that have records of spills, leaks, investigations and cleanups.

No SPILLS sites are listed on or adjacent to the subject property.

Tribal Records

The EPA maintains a database of Indian administered lands of the United States that total 640 acres or more.

The Puyallup Indian Reservation is located approximately ½-mile to the northwest of the subject property. Based on the regulatory status, and inferred direction of groundwater flow, this site is not expected to represent a significant environmental concern. No other Tribal sites were found within 1-mile of the subject property.

MANIFEST Sites

The Washington Department of Ecology maintains a Manifest database which lists and tracks hazardous waste from the generator through transporters to a TSD facility.

The subject property is not listed as a MANIFEST site. Two MANIFEST sites are listed adjacent to the subject property as discussed below:

- Korum Family Limited Partnership at 500 River Road is located adjacent to the west (hydrologically cross-gradient) of the subject property. Based on the regulatory status, and inferred direction of groundwater flow, this site is not expected to represent a significant environmental concern.
- Larson Motors at 300 River Road is located adjacent to the east (east of 4th Street)
 (hydrologically cross-gradient) of the subject property. Based on the regulatory status, and
 inferred direction of groundwater flow, this site is not expected to represent a significant
 environmental concern.

Dry Cleaners

The Washington Department of Ecology maintains a list of registered dry cleaning facilities.

No Dry Cleaners are listed on or adjacent to the subject property.

Facility Index System/ Facility Registry System (Finds)

FINDS contains both facility information and 'pointers' to other sources that contain more detail. EDR includes the following FINDS databases in this report: PCS (Permit Compliance System), AIRS (Aerometric Information Retrieval System), DOCKET (Enforcement Docket used to manage and track information on civil judicial enforcement cases for all environmental statutes), FURS (Federal Underground Injection Control), C-DOCKET (Criminal Docket System used to track criminal enforcement actions for all environmental statutes), FFIS (Federal Facilities Information System), STATE (State Environmental Laws and Statutes), and PADS (PCB Activity Data System).

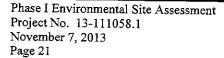
The subject property was identified as a FINDS site. FINDS listings are a pointer to other sources which included databases maintained by the WADOE. This FINDS listing is likely associated with the UST listing discussed above in the UST/AST Segment.

ALLSITES

Information on facilities and sites of interest to the WADOE.

The subject property and adjacent properties were identified as ALLSITES. These listings are likely associated with the NON-RCRA Gen, UST and MANIFEST listings discussed above.

5.0 USER PROVIDED INFORMATION AND INTERVIEWS


In order to qualify for one of the Landowner Liability Protections (LLPs) offered by the Small Business Liability Relief and Brownfields Revitalization Act of 2001 (the Brownfields Amendments), the User must provide the following information (if available) to the environmental professional. Failure to provide this information could result in a determination that all appropriate inquiry is not complete. The user is asked to provide information or knowledge of the following:

- Environmental cleanup liens that are filed or recorded against the site.
- Activity and land use limitations that are in place on the site or that have been filed or recorded in a registry.
- Specialized knowledge or experience of the person seeking to qualify for the LLPs.
- Relationship of the purchase price to the fair market value of the *property* if it were not contaminated.
- Commonly known or reasonably ascertainable information about the property.
- The degree of obviousness of the presence or likely presence of contamination at the *property*, and the ability to detect the contamination by appropriate investigation.
- The reason for preparation of this Phase I ESA.

Fulfillment of these user responsibilities is key to qualification for the identified defenses to CERCLA liability. Partner requested our Client to provide information to satisfy User Responsibilities as identified in Section 6 of the ASTM guidance.

Pursuant to ASTM E 1527-05, Partner requested the following site information from Sterling Bank (User of this report).

Îtem	Provided By User	Not Provided By User	Discussed Below	Does Not Apply
Environmental Pre-Survey Questionnaire	X			
Title Records		X		
Environmental Liens or Activity and Use Limitation		X		
Specialized Knowledge			X	
Valuation Reduction for Environmental Issues			X	<u> </u>
Identification of Key Site Manager	X			<u> </u>
Reason for Performing Phase I ESA	Yes, See Section 1.1			
Prior Environmental Reports			X	
Other		X		

5.1 Interviews

5.1.1 Interview with Owner

The owner of the subject property was not available to be interviewed at the time of the assessment.

5.1.2 Interview with Report User

Please refer to Section 5.2 below for information requested from the Report User.

5.1.3 Interview with Key Site Manager

Mrs. Nicola Bley, key site manager, indicated that she had no information pertaining to any pending, threatened, or past litigation relevant to hazardous substances or petroleum products in, on, or from the subject property; any pending, threatened, or past administrative proceedings relevant to hazardous substances or petroleum products in, on, or from the subject property; or any notices from a governmental entity regarding any possible violation of environmental laws or possible liability relating to hazardous substances or petroleum products.

According to Mrs. Bley, the subject property has been occupied by various automotive dealerships since its original development in the 1950s. She stated that there are currently no inground hydraulic lifts in any of the service bays. She stated that the in-round lifts were all removed and decommissioned prior to the current dealership's occupancy of the subject property in 2011. Mrs. Bley stated that there are no active USTs located on the property and that all waste automotive fluids are accumulated in the double walled above ground tanks that are located in the service bays. The waste fluids are reportedly removed by a licensed waste handler on an as needed basis. She stated that she understood that former USTs associated with the subject property were historically decommissioned and closed. Further, Ms. Bley was not aware of any existing underground storage tanks located on the subject property. She stated that the property is equipped with an oil water separation system which prevents automotive fluids from entering the municipal sewer and storm water systems. She stated that the area of the oil water separator was previously investigated and found to be free of contamination.

5.1.4 Interviews with Past Owners, Operators and Occupants

Interviews with past owners, operators and occupants were not reasonably ascertainable and thus constitute a data gap.

5.1.5 Interview with Others

As the subject property is not an abandoned property as defined in ASTM 1527-05, interview with others were not performed.

5.2 User Provided Information

5.2.1 Title Records

Partner was not provided with title records for review as part of this assessment.

5.2.2 Environmental Liens or Activity and Use Limitation

Partner requested information from the User regarding knowledge of environmental liens and activity and use limitations (AULs) for the subject property.

No environmental lien or activity and use limitation information was provided by the User at the time of the assessment.

5.2.3 Specialized Knowledge

The User was unaware of any specialized knowledge of environmental conditions associated with the subject property.

5.2.4 Commonly Known or Reasonably Ascertainable Information

The User was unaware of commonly known or reasonably ascertainable information within the local community about the subject property that is material to recognized environmental conditions in connection with the subject property.

5.2.5 Valuation Reduction for Environmental Issues

The User was unaware of knowledge of reductions in property value due to environmental issues.

5.2.6 Previous Reports and Other Provided Documentation

The following information was provided to Partner for review during the course of this assessment:

Phase I Environmental Audit, Environmental Associates, Inc. (July 31, 2003)

Consultant (Environmental Associates, Inc.) prepared this report on behalf of Puyallup Chevrolet.

According to the July 2003 Environmental Associates, Inc. report, the following recognized environmental conditions for the subject property were identified.

• The subject site building has been heated with a heating-oil burning unit in the past, and a "closed-in place" heating oil underground storage tank (UST) reportedly resides beneath the southern margin of the office/parts portion of the building near the basement parking garage entrance. An in-use waste-oil UST (approximately 500 to 1,000 gallon capacity) currently resides along the southern wall of the southern-most service bay building in the location of a

previously removed (in 1987) waste oil tank. An unleaded gasoline UST (approximately 2,000 to 5000 gallon capacity) which existed near the rear (southern) driveway portion of the site was apparently removed in approximately 1987. Subsurface environmental conditions proximal to these tank localities have apparently not been evaluated through means of subsurface sampling and laboratory analytical testing.

• Portions of the site including the northern-most and southern-most automobile service bay buildings have been used as automobile service and repair shops for approximately the past 50 and 43 years respectively, with the storage and use of automobile-related fluids (petroleum substances, solvents, anti-freeze, etc.). The southern-most auto service bay area currently houses one buried hydraulic lift which contains hydraulic fluid in a reservoir within the lift, and several former buried hydraulic lifts were removed from both service bay areas in approximately 1987 and replaced with above-floor hydraulic lifts. Subsurface environmental conditions related to these past and current uses of the site and current and former buried hydraulic lifts have apparently not been evaluated through means of subsurface sampling and analytical testing.

<u>Phase II Environmental Site Assessment</u>, Encore Environmental Consortium, LLC. (August 21, 2003) Encore Environmental Consortium, LLC (EEC) prepared this report on behalf of Argonaut Holdings, LLC.

The purpose of the Phase II subsurface activity was to assess potential impact to the subsurface from areas of potential site recognized environmental conditions (RECs) identified during the July 2003 Phase I ESA. EEC's Phase II ESA was conducted to address the following items from the Environmental Associates, Inc 2003 Phase I ESA:

- Active Waste Oil Underground Storage Tank (UST): An active waste oil UST with a reported 500 to 1,000-gallon capacity is located along the southern wall of the service bay building.
- Closed in Place Heating Oil UST: A "closed in place" heating oil UST is reportedly located along the southern margin of the office/parts portion of the building near the basement parking garage entrance.
- Former Gasoline UST: A former unleaded gasoline UST with a reported 2,000 to 5,000-gallon capacity was situated near the rear (southern) driveway portion of the Site.
- Active Hydraulic Hoist: One active in-ground hydraulic hoist is located in the southernmost service bay area of the Site.
- Former Hydraulic Hoists: Several former in-ground hydraulic hoists were reportedly removed from both service bay areas in 1987. During the Phase II ESA, EEC investigated eleven locations of former in-ground hydraulic hoists in these service bays.

- Former Gas Station: A former gas station was reportedly associated with an adjacent property to the east of the Site. Various Drainage Utilities: At the request of Argonaut, EEC investigated drainage facilities observed during the Phase II ESA, if any, that have the potential to impact the subsurface. Two storm drains, one of which is in the vicinity of an aboveground oil/water separator, were investigated by EEC during the Phase II ESA.
- During subsurface assessment activities, field personnel performed an investigation to evaluate the Site for potential subsurface impacts to the areas of concern presented above by advancing a total of 18 direct push soil borings. Soil borings SB-1 and SB-3 were advanced in the vicinity of two storm drains; soil boring SB-2 was advanced to investigate potential impacts from the adjacent property to the east of the Site; soil boring SB-4 was advanced to investigate the former unleaded gasoline UST; soil boring SB-5 was advanced to investigate the "closed in place" heating oil UST; soil borings 58-6 and SB-7 were advanced to investigate the active waste oil UST; and soil borings SB-8 through SB-18 were advanced to investigate the locations of the 11 former in-ground hydraulic hoists. One soil sample and one groundwater sample, if encountered, were collected from each boring location.

2003 Soil Analytical Results

- According to this 2003 Phase II Report, Xylene was detected in soils sampled from the
 assumed location of the former unleaded gasoline UST at a total concentration of 15.8
 mg/kg, which exceeds the WAC MTCA Method A soil criterion for xylene of 9 mg/kg.
- TPH-GRO was detected in soil from the location of the active waste oil UST at a concentration of 128 mg/kg, which exceeds the WAC MTCA Model A soil criterion for TPH-GRO of 100 mg/kg.
- TPHDRO was detected in two soil samples from the location of the active waste oil UST at concentrations of 2,050 mg/kg to 3,320 mg/kg, respectively, which exceed the WAC MTCA Model A soil criterion for TPH-DRO of 2,000 mg/kg.
- Based on the analytical results, no other constituents were detected in soil samples collected from any of the remaining areas of concern at concentrations exceeding the applicable WAC MTCA Model A soil criteria.

2003 Groundwater Analytical Results

Based on the analytical results, no constituents were detected in groundwater samples
collected from the areas of concern at concentrations exceeding the applicable WAC MTCA
Model A cleanup levels for groundwater.

The 2003 Phase II ESA recommended the following:

- Active Waste Oil UST: The release associated with the active waste oil UST should be investigated and confirmed in accordance with WAC Chapter 173-360 UST Regulations. Subsequently, the active waste oil UST should either be removed or closed in place.
- Former Gasoline UST: The release associated with the former gasoline UST should be further investigated and remediated in accordance with applicable requirements.
- The Active in-ground hoist should be drained and decommissioned in accordance with applicable regulatory requirements to prevent potential future releases.

<u>Tank Closure Assessment Report</u>, Friedman & Bruya, Inc. (April 13, 2004) Friedman & Bruya, Inc. (FBI) prepared this report on behalf of Environmental Management Services, LLC. (EMS).

- The 2004 FBI report stated that in March 2004, EMS was hired by the property owner to close by removal one 500- gallon waste oil underground storage tank (UST) from the property located at 400 Rivers Road, Puyallup, Washington. Soil samples collected during the UST closure were reported below Model Toxic Control Act Method A Cleanup Levels for site specific contaminates of concern (waste oil range hydrocarbons). Previous work completed at the site in August 2003 identified levels of waste oil hydrocarbons in the form of gasoline and oil range hydrocarbons. Unfortunately, this soil sampling data was not available to EMS at the time of the UST closure. Based on the data provided to EMS on samples collected at both 58-6 and SB-7, excavation of the impacted areas adjacent to the former UST location was warranted. Each of the two boring locations was outside the March 2004 UST excavation perimeter. Soil samples 56 through 59 collected by EMS in September 2004 were analyzed on site by method HCID and diesel oil range petroleum hydrocarbons. Sample results for SO through S8 were reported below laboratory detection limits. Sample results for 39 were reported 1010 mg/kg below the MTCA cleanup level of 2000 mg/kg.
- The 2004 FBI report stated that during the August 2003 site investigation, an area located on the southeast end of the property was identified as a former gasoline UST location. The size and configuration of the former gasoline USTs is unknown. It is known that the USTs were closed by removal in approximately 1988. Soil boring SP-4 competed in August 2003 identified xylene levels (15.81 mg/kg) exceeding the MTCA method A cleanup level of 9 mg/kg. Over excavation of this area was completed by EMS on September 2, 200/. Soil samples were collected following excavation activities and analyzed for gasoline range hydrocarbons including benzene, toluene, ethyl benzene and xylene. Samples 51 and 52 were also analyzed for total hydrocarbons by method HCID. Each of the five samples collected from within the excavation were reported below the MTCA method A cleanup for unrestricted land use.
- The 2004 FBI report stated that based on field observations and laboratory analytical results, EMS completed excavations of impacted soil on September 2, 2004. A total of 26.37 tons of impacted soil was excavated and transported to Rabanco / Allied Waste a state licensed

disposal facility. Confirmation soil samples collected from each excavation were reported by the laboratory as below the unrestricted MTCA Method A cleanup level. No groundwater was encountered during contaminated soil excavation activities.

- The 2004 FBI report stated that during a site investigation completed in August 2003, three areas were identified as containing impacted soil exceeding MTCA method A cleanup levels. The areas were divided into two locations, the former waste oil UST location and the former gasoline UST location. Soil samples were collected from each location following the removal of impacted soil. Each discrete soil sample was analyzed and reported below the MTCA method A cleanup levels.
- The 2004 FBI report stated that based on field observations and laboratory analytical results, remediation of the impacted soils at 400 River Road Puyallup, Washington identified in the August 2003 subsurface investigation has been successfully completed. All excavation activities were completed under the supervision of Ecology licensed UST Site Assessor.
- The 2004 FBI report stated that no further action regarding the, impacted soil identified in the August 2003 subsurface sampling event was warranted.

Focused Phase II Subsurface Investigation, The Riley Group, Inc. (April 25, 2011) The Riley Group, Inc. (RGI) prepared this report on behalf of Northwest Motorsport.

- According to the report, a Phase I Environmental Site Assessment (ESA) was completed for the site by Adapt Engineering, Inc. (Adapt) in 2011. (Partner was not provided with a copy of the 2011 Adapt Engineering Phase I ESA for review). The 2011 Adapt Engineering Phase I ESA reportedly stated that the feed line to the onsite oil/water separator was thought to have been disconnected and, therefore, represented a possible risk to soil and/or groundwater quality of the site. However, although further investigation revealed that aboveground oil/water separator was still connected, a limited Phase II Subsurface Investigation was recommended by Adapt in the vicinity of the unit.
- On April 11, 2011, RGI advanced test probe to a total depth of 12 feet bgs. The test probe was located immediately adjacent to and inferred downgradient of the onsite, aboveground oil/water separator. A total of two discrete soil samples were collected during this project; at the three- to four-foot and 10- to 12-foot depth intervals. Shallow groundwater was encountered in the test probe at approximately 10 to 11 feet bgs and was collected for analysis. The report stated that laboratory analysis indicated that no gasoline-, diesel- or oil-range TPHs or VOCs (BTEX and/or chlorinated solvents) were detected in the soil or groundwater samples submitted from the site.

6.0 SITE RECONNAISSANCE

The subject property was inspected by Daniel Stallings of Partner on October 24, 2013. The weather at the time of the site visit was overcast and raining. The Property Manager was identified as Nicola Bley. Nicola Bley accompanied Partner during field reconnaissance activities and provided information pertaining to the current operations and maintenance of the subject property.

All areas of the subject property were accessible at the time of the site inspection. However, parked cars resulted in visual obstructions of the ground surface in many areas of the subject property.

The subject property is currently occupied by Northwest Motorsports, Inc. for commercial use. On-site operations consist of new automobile sales and full automotive maintenance, customization, repair and detailing activities. Environmental concerns were identified during the onsite reconnaissance related to former in-ground lifts, as further discussed in Section 6.2. Non-ASTM issues are discussed in Section 6.3.

6.1 General Site Characteristics

6.1.1 Solid Waste Disposal

Solid waste generated at the subject property is disposed of in commercial dumpsters located at the southeast portion of the subject property. An independent solid waste disposal contractor removes solid waste from the subject property.

6.1.2 Sewage Discharge and Disposal

Sanitary discharges on the subject property are directed into the municipal sanitary sewer system. The City of Puyallup services the subject property vicinity. No wastewater treatment facilities or septic systems are located on the subject property.

6.1.3 Surface Water Drainage

Storm water is removed from the subject property primarily by sheet flow action across the paved surfaces towards storm water drains located throughout the subject property. Site storm water from roofs and paved areas is directed to on-site storm water drains. The subject property is connected to a municipal owned and maintained sewer system.

The subject property does not appear to be a designated wetland area, based on information obtained from the United States Department of Agriculture; however, a comprehensive wetlands survey would be required in order to formally determine actual wetlands on the subject property. No surface impoundments, wetlands, natural catch basins, settling ponds, or lagoons are located on the subject property. No drywells were identified on the subject property.

6.1.4 Source of Heating and Cooling

Heating and cooling systems as well as domestic hot water equipment are fueled by electricity and natural gas provided by Peugeot Sound Energy. The mechanical system is comprised of a split system with a central unit and interior air-handler and an exterior condenser. Hot water is provided by central natural gas boiler units.

6.1.5 Wells and Cisterns

No aboveground evidence of wells or cisterns was observed during the site reconnaissance.

6.1.6 Wastewater

Domestic wastewater generated at the subject property is disposed by means of the sanitary sewer system. No industrial process is currently performed at the subject property.

6.1.7 Septic Systems

No septic systems were observed or reported on the subject property.

6.1.8 Additional Site Observations

No additional general site characteristics were observed.

6.2 Potential Environmental Hazards

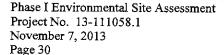
6.2.1 Hazardous Materials and Petroleum Products Used or Stored at the Site

Partner identified hazardous materials and/or hazardous wastes to be used, stored, or generated on the subject property as noted in the following table:

Hazardous Substances/Wastes Noted Onsite

Substance	Container Size	Location	Nature of Use	Disposal Method
Virgin Automotive Oils	55-Gallon Drums	Service Bays	Automotive Service	None
Waste Oil	500-gallon AST	Service Bays	Automotive Service	Contractor
Used Oil Filters	55-gallon Drums	Service Bays	Automotive Service	Contractor
Virgin Anti-Freeze	55-gallon Drums	Service Bays	Automotive Service	None
Used Anti-Freeze	55-gallon Drums	Service Bays	Automotive Service	Contractor
Synthetic Gear Oil	55-gallon Drums	Service Bays	Automotive Service	None
Compressed Gasses	Various	Service Bays	Automotive Service	None
Used Batteries	Containment Pallet	Service Bays	Automotive Service	Contractor
Parts Cleaner	25-gallon Drums	Service Bays	Automotive Service	Contractor
Automotive Undercoating	55-gallon Drums	Detail Shop	Automotive Service	None

The materials were found to be properly labeled and stored at the time of the assessment with no signs of leaks, stains, or spills. Secondary containment is provided and appears to be in accordance with acceptable containment methods.


6.2.2 Aboveground & Underground Hazardous Substance or Petroleum Product Storage Tanks (ASTs/USTs)

Partner observed three aboveground storage tanks (ASTs) for the storage of waste oil on the subject property. The ASTs are located in the service bays of the subject property. According to Mrs. Bley, the ASTs have been in use since at least 2011 and were likely there before then. The ASTs are of double-walled construction and are equipped with secondary overfill protection. No staining, leaks or spills were noted in the vicinity of the ASTs, and according to available information, no releases have been reported to the Washington Department of Ecology (WADOE).

According to the property manager and available regulatory information, there are currently no active USTs located on the subject property. The subject property was historically equipped with four underground storage tanks (USTs). Three of the tanks have been closed and removed and one has been closed in place. Please refer to the table below for information pertaining to the former USTs located on the subject property:

Underground Storage Tank (UST) for the subject property

	UST No. 1	UST No. 2	UST No. 3	UST No. 4
Tank ID Number:	NA	NA	NA	NA
Tank Capacity (Gallons):	5,000	1,000	500	500
Tank Contents:	Gasoline	Waste Oil	Heating Oil	Waste Oil
Installation Date:	1964	1987	1964	1987
Tank Status	Removed	Removed	Closed In-Place	Removed
Removal Date:	August 1996	March 2004	Not Applicable	March 2004
Tank Construction:	Steel	Fiberglass Reinforced Plastic (FRP)	Steel	Unknown
Tank Secondary Containment:	Single-walled	Unknown	Unknown	Unknown
Piping Construction:	Unknown	Unknown	Unknown	Unknown
Piping Secondary Containment:	Unknown	Unknown	Unknown	Unknown
Type of Corrosion Protection:	Unknown	Unknown	Unknown	Unknown

Type of Leaking Detection Equipment:	Unknown	Unknown	Unknown	Unknown
Type of Overfill Protection:	Unknown	Unknown	Unknown	Unknown
Evidence of Leaks, Stains, or Spills:	Yes, See Section 5.2	Yes, See Section 5.2	No	Yes, See Section 5.2
Reported Release(s);	Yes, See Section 5.2	Yes, See Section 5.2	No	Yes, See Section 5.2
Compliance with UST Regulations:	Yes	Yes	Yes	Yes

Note: This information was obtained from Mrs. Nicola Bley, during the site inspection, the regulatory database report, and client-provided documentation.

6.2.3 Evidence of Releases

No spills, stains or other indications that a surficial release has occurred at the subject property were observed.

6.2.4 Polychlorinated Biphenyls (PCBs)

Partner observed evidence of former in-ground lifts in the current above ground service bays as evidenced by circular cut-outs and concrete patches that are similar to the size of in-ground lift cylinders. As discussed in Section 5.2.6, a 2003 Phase II Environmental Site Assessment investigation was performed in the areas of the former lifts.

The 2003 Phase II Investigation concluded that contaminants in soils collected from the areas of the former lifts did not exceed regulatory concentration criteria for gasoline or diesel range petroleum hydrocarbons. However, review of the laboratory analysis from this report only indicated that soils collected from the service bays were analyzed for petroleum hydrocarbons within gasoline and diesel range. The testing did not include analysis for PCBs, specifically. Therefore it is Partner's opinion that this testing was not sufficient to determine the absence or presence of PCB contamination in the soils from the areas of the former in-ground lifts.

Based on the potential for PCB-containing hydraulic fluid within the lifts to have impacted the subsurface and on the lack of any documented sampling conducted after removal of the lifts which targeted PCBs, specifically, the former presence of the former in-ground lifts onsite is a Recognized Environmental Condition.

All lifts at the subject property are currently above ground. Based on the age, good condition, and above ground nature of the current hydraulic fluid reservoirs, the current lifts are not likely to contain PCB fluid and are not expected to represent a significant environmental concern. No staining or other evidence of a release of hydraulic fluid or oil was observed in the vicinity of this equipment.

No other potential PCB-containing equipment (interior transformers, oil-filled switches, hoists, lifts, dock levelers, hydraulic elevators, balers, etc.) was observed on the subject property during Partner's reconnaissance.

6.2.5 Strong, Pungent or Noxious Odors

No strong, pungent or noxious odors were evident during the site reconnaissance.

6.2.6 Pools of Liquid

No pools of liquid were observed on the subject property.

6.2.7 Drains, Sumps and Clarifiers

The service area floor drain systems for each building reportedly discharge to an oil-water separator, prior to discharge to the municipal storm water sewerage system operated by the Puyallup Public Works Department. The oil-water separator is located in the paved parking area immediately adjacent to a canopy at the southeast portion of the subject property. According to Mrs. Nicola Bley, Facility Manager, the oil-water separator is serviced as needed by a licensed contractor.

Based on the findings of the 2011 focused subsurface investigation (discussed in Section 5.2.6, the oil/water separator is not expected to represent a significant environmental concern at this time.

No other drains, sumps or clarifiers were observed on the subject property.

6.2.8 Pits, Ponds and Lagoons

No pits, ponds or lagoons were observed on the subject property.

6.2.9 Stressed Vegetation

No stressed vegetation was observed on the subject property.

6.2.10 Additional Potential Environmental Hazards

No additional environmental hazards, including landfill activities or radiological hazards, were observed.

Based on visual observations no oil well, monitoring well, USTs, or other sources of possible vapor intrusion were observed.

6.3 Non-ASTM Services

6.3.1 Asbestos-Containing Materials (ACMs)

Asbestos is the name given to a number of naturally occurring, fibrous silicate minerals mined for their useful properties such as thermal insulation, chemical and thermal stability, and high tensile strength. Asbestos is commonly used as an acoustic insulator, thermal insulation, fire proofing and in other building materials. Exposure to airborne friable asbestos may result in a potential health risk because persons breathing the air may breathe in asbestos fibers. Continued exposure can increase the amount of fibers that remain in the lung. Fibers embedded in lung tissue over time may cause serious lung diseases including: asbestosis, lung cancer, or mesothelioma.

The Occupational Safety and Health Administration (OSHA) regulation 29 CFR 1926.1101 requires certain construction materials to be *presumed* to contain asbestos, for purposes of this regulation. All thermal system insulation (TSI), surfacing material, and asphalt/vinyl flooring that are present in a building constructed prior to 1980 and have not been appropriately tested are "presumed asbestos-containing material" (PACM).

The subject property buildings were constructed between 1953 and 1966. Partner has conducted a limited, visual evaluation of accessible areas for the presence of suspect asbestos containing materials (ACMs) at the subject property. The objective of this visual survey was to note the presence and condition of suspect ACM observed. Please refer to the table below for identified suspect ACMs:

Suspect ACMs

Suspect ACM	Location	Friable Yes/No	Physical Condition
Drywall Systems	Throughout Building Interiors	No	Good
Floor Tiles	Throughout Building Interiors	No	Good
1x1 Ceiling Tiles & Glue Dots	Basement/Storage	Yes	Good
Spray-Applied Acoustical Material	Internet Sales Office	Yes	Good

The limited visual survey consisted of noting observable materials (materials which were readily accessible and visible during the course of the site reconnaissance) that are commonly known to potentially contain asbestos. This activity was not designed to discover all sources of suspect ACM, PACM, or asbestos at the site; or to comply with any regulations and/or laws relative to planned disturbance of building materials such as renovation or demolition, or any other regulatory purpose. Rather, it is intended to give the User an indication if significant (significant due to quantity, accessibility, or condition) potential sources of ACM or PACM are present at the subject property. Additional sampling, inspection, and evaluation will be warranted for any other use.

Partner was not provided building plans or specifications for review, which may have been useful in determining areas likely to have used ACM.

According to the US EPA, ACM and PACM that is intact and in good condition can, in general, be managed safely in-place under an Operations and Maintenance (O&M) Program until removal is dictated by renovation, demolition, or deteriorating material condition. Prior to any disturbance of the construction materials within this facility, a comprehensive ACM survey is recommended.

6.3.2 Lead-Based Paint (LBP)

Due to the commercial nature of use of the subject property, lead-based paint was not considered within the scope of this assessment.

6.3.3 Radon

Radon is a colorless, odorless, naturally occurring, radioactive, inert, gaseous element formed by radioactive decay of radium (Ra) atoms. The US EPA has prepared a map to assist National, State, and local organizations to target their resources and to implement radon-resistant building codes. The map divides the country into three Radon Zones; Zone 1 being those areas with the average predicted indoor radon concentration in residential dwellings exceeding the US EPA Action Limit of 4.0 PicoCuries per Liter (pCi/L). It is important to note that the EPA has found homes with elevated levels of radon in all three zones, and the US EPA recommends site-specific testing in order to determine radon levels at a specific location. However, the map does give a valuable indication of the propensity of radon gas accumulation in structures.

Radon sampling was not conducted as part of this assessment. Review of the US EPA Map of Radon Zones places the subject property in Zone 3, where average predicted radon levels are less than 2.0 pCi/L.

Based upon the radon zone classification, radon is not considered to be a significant environmental concern.

6.3.4 Lead in Drinking Water

According to available information, a public water system operated by the Puyallup Department of Public Works and Engineering serves the subject property vicinity. According to a representative of the department, shallow groundwater directly beneath the subject property is not utilized for domestic purposes. According to the department's 2012 Water Quality Report (WQR), the City of Puyallup obtains its drinking water from two natural springs (Maplewood Springs and Salmon Springs), from five deep wells and from the City of Tacoma. According to the City of Puyallup and the 2012 Annual Water Quality Report, water supplied to the subject property is in compliance with all State and Federal regulations pertaining to drinking water standards, including lead and copper. Water sampling was not conducted to verify water quality.

6.3.5 Mold

Molds are microscopic organisms found virtually everywhere, indoors and outdoors. Mold will grow and multiply under the right conditions, needing only sufficient moisture (e.g. in the form of very high humidity, condensation, or water from a leaking pipe, etc.) and organic material (e.g., ceiling tile, drywall, paper, or natural fiber carpet padding). Mold growths often appear as discoloration, staining, or fuzzy growth on building materials or furnishings and are varied colors of white, gray, brow, black, yellow, and green. In large quantities, molds can cause allergic symptoms when inhaled or through the toxins the molds emit.

Partner observed accessible, interior areas for the subject property buildings for significant evidence of mold growth; however, this ESA should not be used as a mold survey or inspection. Additionally, this inspection was not designed to assess all areas of potential mold growth that may be affected by mold growth on the subject property. Rather, it is intended to give the client an indication as to whether or not conspicuous (based on observed areas) mold growth is present at the subject property. This evaluation did not include a review of pipe chases, mechanical systems, or areas behind enclosed walls and ceilings.

No obvious indications of water damage or mold growth were observed during Partner's visual inspection.

6.4 Adjacent Property Reconnaissance

The adjacent property reconnaissance consisted of observing the adjacent properties from the subject property premises. No items of environmental concern were identified on the adjacent properties during the site inspection, including hazardous materials, petroleum products, ASTs, USTs, evidence of releases, PCBs, strong or noxious odors, pools of liquids, sumps or clarifiers, pits or lagoons, stressed vegetation, or any other potential environmental hazards.

7.0 FINDINGS AND CONCLUSIONS

Findings

A recognized environmental condition (REC) refers to the presence or likely presence of any hazardous substance or petroleum product on a property under conditions that indicate an existing release, a past release, or a material threat of a release of any hazardous substances or petroleum products into structures on the property or into the ground, groundwater, or surface water of the property. The term REC includes hazardous substances and petroleum products even under conditions that might be in compliance with laws. The term is not intended to include "de minimis" conditions that do not present a threat to human health and/or the environment and that would not be subject to an enforcement action if brought to the attention of appropriate governmental agencies. The following was identified during the course of this assessment:

- Partner observed evidence of former in-ground hydraulic lifts in the current above ground service bays as evidenced by circular cut-outs and concrete patches indicative of in-ground lift cylinders. The lifts were reportedly installed in the 1950s and removed in 1987. To address subsurface environmental conditions related to the former hydraulic lifts, a Phase II Environmental Site Assessment investigation was performed by Encore Environmental Consortium, LLC (EEC) in 2003. The subsurface investigation included the advancement of eleven borings identified as the locations of former-in ground hydraulic lifts in the service bays. However, review of the laboratory analysis from this report indicated that soils collected from the service bays were only analyzed for diesel and gas range petroleum hydrocarbons. The testing did not include analysis of polychlorinated biphenyls (PCBs), which is a target chemical of concern associated with older hydraulic lifts. Therefore, it is Partner's opinion that the 2003 investigation was not sufficient to determine the absence or presence of PCB contamination in soils from the areas of the former in-ground lifts. Based on the potential for PCB-containing hydraulic fluid within the lifts to have impacted the subsurface and on the lack of any documented sampling conducted after removal of the lifts which targeted PCBs as a contaminant, specifically, the former presence of in-ground lifts onsite is a Recognized Environmental Condition.
- According to previous environmental reports prepared in 2003, the southern-most auto service bay area housed one active in-ground hydraulic lift which contained hydraulic fluid in a reservoir within the lift. The previous consultant recommended that the lift be drained and decommissioned in accordance with applicable regulatory requirements to prevent potential future releases. The reported lift was not observed during Partner's site reconnaissance, and no information pertaining to the status of the lift was found during Partner's assessment. Therefore, it is unclear whether the lift was properly removed and/or subsurface sampling was conducted. Based on this information, the former in-ground lift represents a REC.

A historical recognized environmental condition (HREC) refers to an environmental condition which would have been considered a REC in the past, but which is no longer considered a REC based on subsequent assessment or regulatory closure. The following was identified during the course of this assessment:

• The subject property was historically equipped with four underground storage tanks (USTs): one gasoline tank, one heating oil tank and two waste oil tanks. Three of the tanks have been closed and removed, and one has been closed in-place. Based on the documented removal and/or closure of the tanks, the subsequent analytical results and soil remediation, and the regulatory closure, the former USTs and associated onsite contamination are considered a historic recognized environmental condition.

An environmental issue refers to environmental concerns identified by Partner, which do not qualify as RECs; however, require discussion. The following was identified during the course of this assessment:

- Due to the age of the subject property buildings, there is a potential that ACMs and/or LBP are present. Overall, all suspect ACMs and painted surfaces were observed in good condition and do not pose a health and safety concern to the occupants of the subject property at this time. A few ceiling tiles, however, were noted during the inspection to be broken, chipped, and/or have signs of water damage. Should the ceiling tiles (or their glue dots) be replaced, the identified suspect ACMs would need to be sampled to confirm the presence or absence of asbestos prior to any renovation or demolition activities to prevent potential exposure to workers and/or building occupants.
- A previous subsurface investigation was performed in the area of the existing oil/water separator in 2011 to evaluate the site for potential subsurface impacts related to auto repair operations. Analytical results of the investigation revealed no constituents of concern were detected in soil or groundwater samples collected near the oil/water separator. Based on the results, the presence of the oil/water separator is not a concern at this time. However, the oil/water separator continues to be used by the current tenant. The user should be aware that environmental risks associated with use of the oil/water separator in connection with auto repair activities increases over time.

Conclusions, Opinions and Recommendations

Partner has performed a Phase I Environmental Site Assessment in conformance with the scope and limitations of ASTM Practice E1527-05 of 400 River Road in the City of Puyallup, Pierce County, Washington (the "subject property"). Any exceptions to or deletions from this practice are described in Section 1.5 of this report.

This assessment has revealed evidence of recognized environmental conditions and environmental issues in connection with the subject property. Based on the conclusions of this assessment, Partner recommends the following:

- A limited subsurface investigation should be conducted in order to determine the presence or absence of PCB contamination in the areas of the former in-ground lifts.
- Obtain and review records pertaining to removal/decommissioning activities of the active inground lift.
- Periodic maintenance of the existing oil/water separator to prevent future releases.

8.0 SIGNATURES OF ENVIRONMENTAL PROFESSIONALS

Partner has performed a Phase I Environmental Site Assessment of the property located at 400 River Road in the City of Puyallup, Pierce County, Washington in general conformance with the scope and limitations of the protocol and the limitations stated earlier in this report. Exceptions to or deletions from this protocol are discussed earlier in this report.

By signing below, Partner declares that, to the best of our professional knowledge and belief, the undersigned meet the definition of an *Environmental Professional* as defined in §312.10 of 40 CFR 312 and have the specific qualifications based on education, training, and experience to assess a *property* of the nature, history, and setting of the subject *property*. Partner has developed and performed the all appropriate inquiries in conformance with the standards and practices set forth in 40 CFR Part 312.

Prepared By:

Daniel S. Stallings, REPA, EP Environmental Professional

Vaniel S. Stalling

Reviewed By:

Lyly Churchill, MA Senior Author

Afly Churchil

9.0 REFERENCES

Contact List

City of Puyallup Building Department 333 S. Meridian, 2nd Floor Puyallup, WA 98371 (253) 864-4165

City of Puyallup Engineering 333 S. Meridian, 2nd Floor Puyallup, WA 98371 (253) 864-4165

City of Puyallup Fire Department 333 South Meridian, Puyallup, WA 98371 Fire Prevention Line: (253) 864-4182

City of Puyallup Planning Department 333 S. Meridian, 2nd Floor Puyallup, WA 98371 253-864-4165

City of Puyallup Public Works 333 S. Meridian, 2nd Floor Puyallup, WA 98371 (253) 864-4165

City of Tacoma Library 1102 Tacoma Avenue South Tacoma, WA 98402

Pierce County Assessment and Taxation (253) 798-6111

Pierce County Health Department 955 Building Tacoma Avenue South, Tacoma, WA 98402

United States Environmental Protection Agency accessed via the Internet, October, 2013

United States Geological Survey, accessed via the Internet, October, 2013

Washington Department of Ecology Public Records Officer PO Box 47600 Olympia WA 98504

Reference Documents

American Society for Testing and Materials, Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process, ASTM Designation: E 1527-05.

EDR Aerial Photo Decade Package; Inquiry Number 3762993.2s, dated October 21, 2013

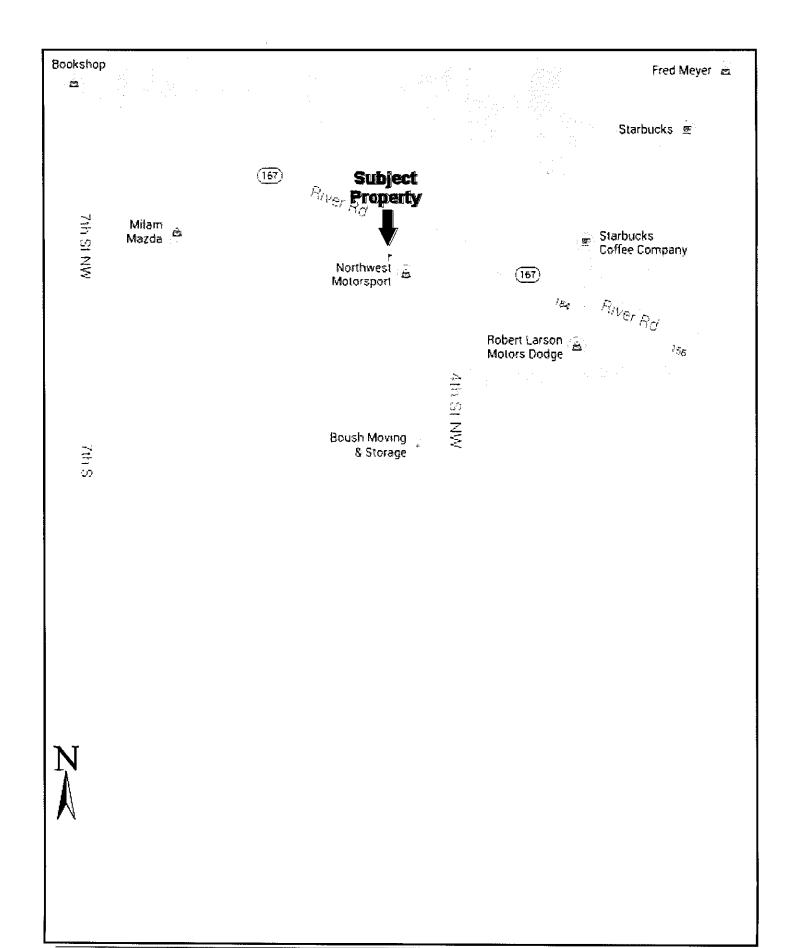
EDR Radius Map Data Package; Inquiry Number 3762993.2s, dated October 21, 2013

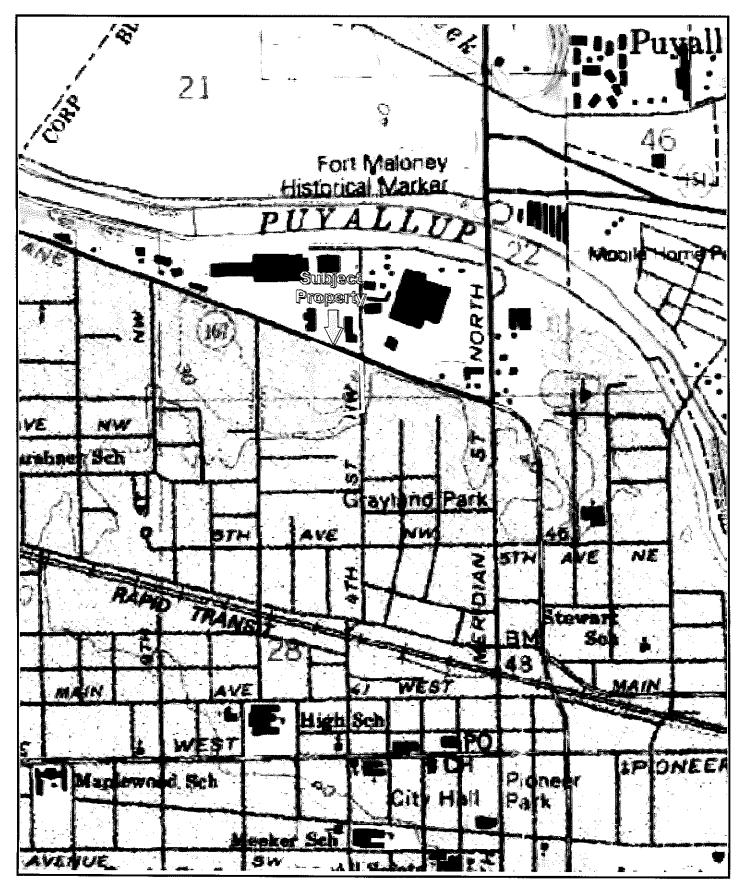
EDR Sanborn Map Package; Inquiry Number 3762993.2s, dated October 21, 2013

Federal Emergency Management Agency, Federal Insurance Administration, National Flood Insurance Program, Flood Insurance Map, Community Panel Number 5301440005B, Flood Map dated August 15, 1980

Phase I Environmental Audit, Environmental Associates, Inc. (July 31, 2003) Consultant (Environmental Associates, Inc.) prepared this report on behalf of Puyallup Chevrolet.

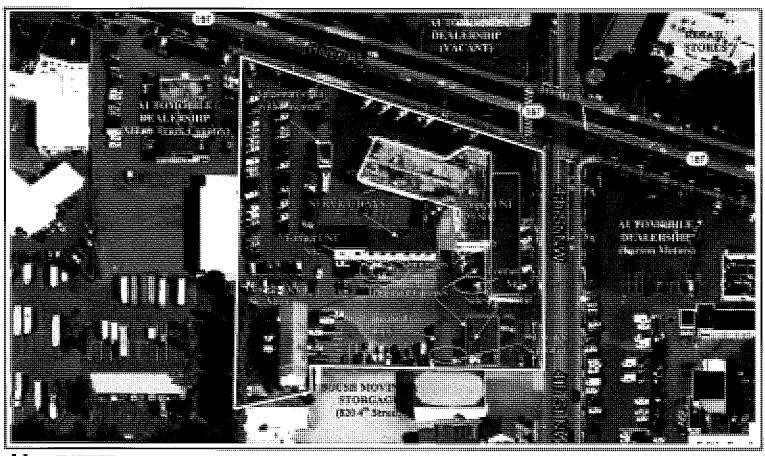
Phase II Environmental Site Assessment, Encore Environmental Consortium, LLC. (August 21, 2003) Consultant Encore Environmental Consortium, LLC (EEC) prepared this report on behalf of Argonaut Holdings, LLC.


Tank Closure Assessment Report, Friedman & Bruya, Inc. (April 13, 2004) Friedman & Bruya, Inc. (FBI) prepared this report on behalf of Environmental Management Services, LLC. (EMS).


- U.S. Department of Agriculture, Natural Resources Conservation Service, Web Soil Survey, accessed via the Internet, October, 2013
- U.S. Department of the Interior, Fish & Wildlife Service's National Wetland Inventory (NWI) Map accessed via the Internet, October, 2013
- U.S. Environmental Protection Agency, EPA Map of Radon Zones (Document EPA-402-R-93-071), accessed via the Internet, October, 2013
- U.S. Geological Survey Topographic Map accessed via the Internet, October, 2013

FIGURES

- 1- SITE LOCATION MAP
- 2- TOPOGRAPHIC MAP
- 3- SITE PLAN

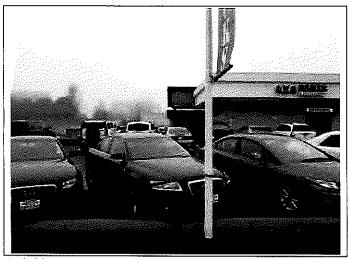


USGS 7.5 Minute Puyallup, Washington Quadrangle

Created: 1994

N

GROUNDWATER FLOW


KEY:

Subject Site

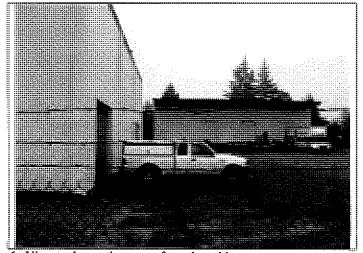
FIGURE 3: SITE PLAN Project No. 13-111058.1 PARTNER

APPENDIX A: SITE PHOTOGRAPHS



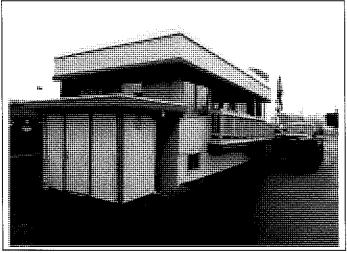
1. Subject property as seen from the east.

2. View to the east as seen from the subject property.

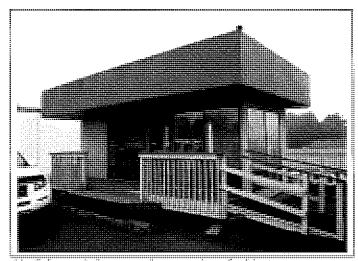

3. Subject property as seen from the north.

4. View to the north as seen from the subject property.

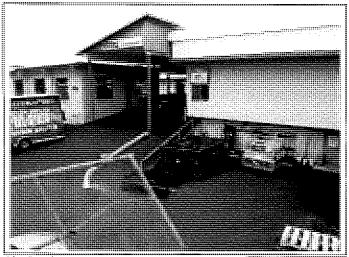
5. Subject property as seen from the south.


6. View to the south as seen from the subject property.

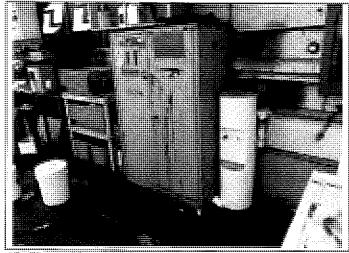
7. Subject property as seen from the west.


8. View to the west as seen from the subject property.

9. Salesman's hut at the west portion of the subject property.

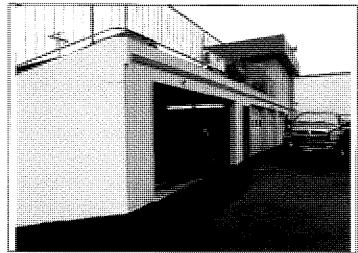

10. Employee lounge in the basement of the salesman's hut.

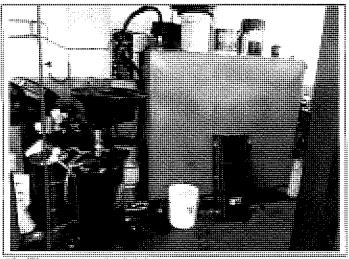
11. Subministr's hot at somithment parties of pulitiest peoperty.


12. View of main building's north elevation.

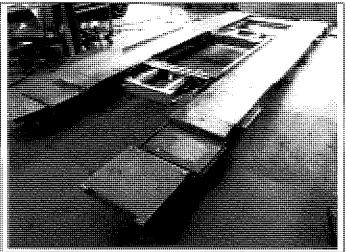

15. Service annualist.

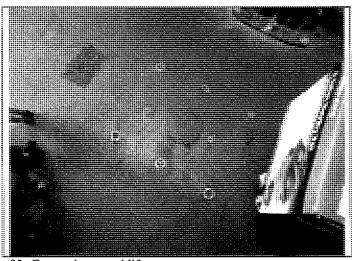
15. Automotive detailing shop.

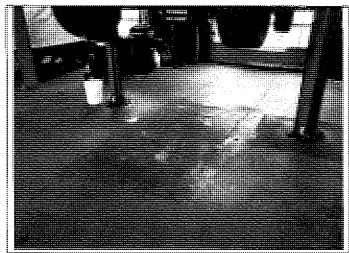

17. Flaturnabla maincida storage cablast.


14. Main lobby.

16. Internet sales office.


18. Surrius bay


tiji. Wanto aukomodiya luhrikania.


20. Parts washer

21. Current above-ground lifts.

22. Former in-ground lifts.

23. Former in-ground lifts.

24. Waste automotive lubricants.

APPENDIX B: HISTORICAL/REGULATORY DOCUMENTATION

Date of Photograph: 1941

Date of Photograph: 1957

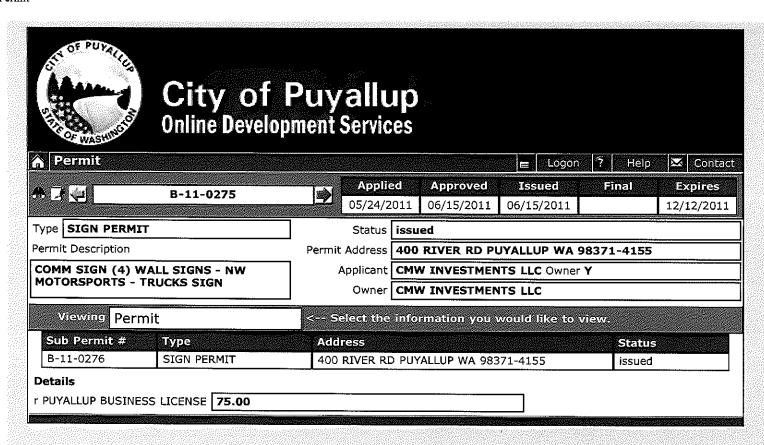
Date of Photograph: 1968

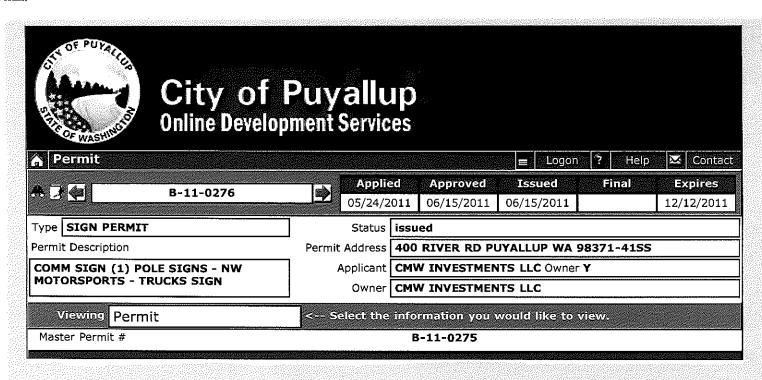
Date of Photograph: 1972

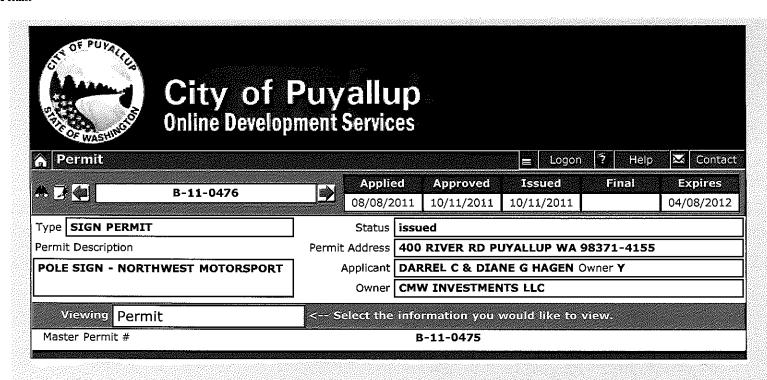
Date of Photograph: 1986

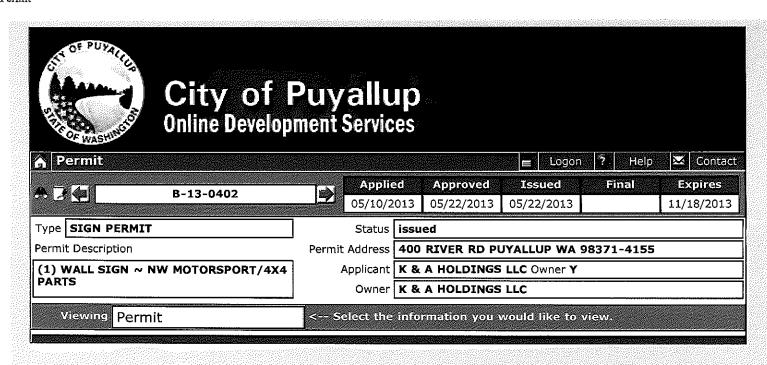
Date of Photograph: 1990

Date of Photograph: 1991

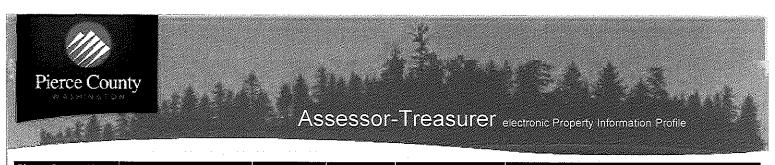

Date of Photograph: 2006




Date of Photograph: 2009



Date of Photograph: 2011



K & A HOLDINGS LLC

PUYALLUP WA 98371-3875

1502 RIVER RD

2014

2,529,200

2,529,200

Taxpayer Name:

Mailing Address:

Tax/Assessment

Current Tax Year:

Taxable Value:

Assessed Value:

Pierce County Home Assessor-Treasurer Home Parcel Search Sales Search Recorded Documents Permits

Summary Taxes/Values Land Buildings Sales Map

Parcel Summary for 0420214807

10/23/2013 07:02 PM

Property Details

Parcel Number: Site Address:

0420214807 400 RIVER RD

Account Type:

Real Property

Category: Use Code: Land and Improvements

5515-AUTO DLR NEW AND USED RETAIL

Appraisal Details

Value Area: Appr Acct Type: PI2

Commercial

Business Name: Last Inspection: FRIENDLY CHEVROLET

06/16/2008 - New Construction

Related Parcels

Group Account Number:

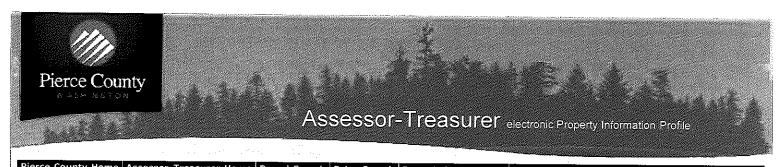
Mobile/MFG Home and Personal Property

2000203421 2818070636

parcel(s) located on this parcel:

Real parcel on which this parcel is located: n/a

Tax Description


Section 21 Township 20 Range 04 Quarter 44: COM AT MON AT INTER OF 4TH ST NW & 7TH AVE NW IN NE OF SEC 28 20 4E TH N 00 DEG 21 MIN E 636 FT ALG C/L OF SD 4TH ST TH N 89 DEG 39 MIN W 30 FT TO WLY R/W OF SD 4TH ST & POB TH CONT N 89 DEG 39 MIN W 281.28 FT TH N 00 DEG 21 MIN E 465.75 FT M/L PAR TO SD C/L OF 4TH ST TO S R/W LI OF STATE HWY # 5 TH S 69 DEG 18 MIN 10 SEC E 300 FT TO WLY R/W OF 4TH ST TH S 00 DEG 21 MIN W 361.44 FT TO POB ENCLO ED IN THE ABOVE IS L 13 B 19 J P STEWARTS 7TH ADD SEG F 0740

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

Pierce County Assessor-Treasurer Mike Lonergan

2401 South 35th St Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2013 Pierce County Washington, All rights reserved.

K & A HOLDINGS LLC

PUYALLUP WA 98371-3875

1502 RIVER RD

2014

485,200

485,200

Taxpayer Name:

Mailing Address:

Tax/Assessment

Current Tax Year:

Taxable Value:

Assessed Value:

Pierce County Home | Assessor-Treasurer Home | Parcel Search | Sales Search | Recorded Documents | Permits Summary Taxes/Values Land Buildings Sales Map

Parcel Summary for 0420214014

11/04/2013 03:32 PM

Property Details

Parcel Number: 0420214014 Site Address:

506 RIVER RD

Account Type:

Real Property Category: Land and Improvements

Use Code:

Value Area:

5515-AUTO DLR NEW AND USED RETAIL

Appraisal Details

PI2

Appr Acct Type: **Business Name:**

Commercia!

Last Inspection: Related Parcels

Group Account Number:

04/10/2008 - Physical Inspection

434

Mobile/MFG Home and Personal Property parcel(s) located on this parcel:

Real parcel on which this parcel is located: n/a

Tax Description

Section 21 Township 20 Range 04 Quarter 43: COM AT A STONE MON AT INTER OF 7TH AVE NW & 4TH ST NW TH N 1040.33 FT TO CENT OF HWY TH N 20 DEG 21 MIN W 332 FT TH S 53.33 FT TO IRON PIPE & POB TH S 325 FT TH W 93.76 FT TH N 359.78 FT TH S 69 DEG 39 MIN E 100 FT TO POB

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

> Pierce County Assessor-Treasurer Mike Lonergan

2401 South 35th St Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2013 Pierce County Washington. All rights reserved.

K & A HOLDINGS LLC

PUYALLUP WA 98371-3875

1502 RIVER RD

2014

301,800

301,800

Taxpayer Name:

Mailing Address:

Tax/Assessment

Current Tax Year:

Taxable Value:

Assessed Value:

Pierce County Home | Assessor-Treasurer Home | Parcel Search | Sales Search | Recorded Documents | Permits

Summary Taxes/Values Land Buildings Sales Map

Parcel Summary for 0420214057

11/04/2013 03:34 PM

Property Details

Parcel Number: Site Address:

0420214057 XXX 4TH ST NW

Account Type:

Real Property Category: Land and Improvements

Use Code:

6310-GEN WAREHOUSING STORAGE

Appraisal Details

Value Area: PI2

Appr Acct Type:

Commercial

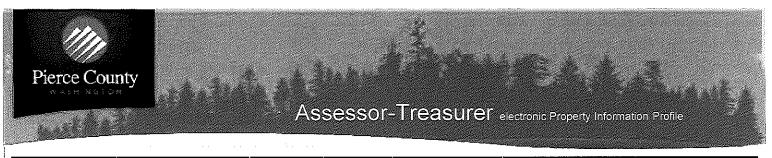
Business Name: Last Inspection:

04/10/2008 - Physical Inspection

Related Parcels Group Account Number:

434 Mobile/MFG Home and Personal Property n/a parcel(s) located on this parcel:

Real parcel on which this parcel is located: n/a


Tax Description

Section 21 Township 20 Range 04 Quarter 43: TR OF LD IN SEC 21 & 28 DESC AS FOLL BEG AT SW COR OF PROP CYD TO BRUCE A MERCER POST #67 OF AMERICAN LEGION #1855113 TH E ALG S LI OF SD AMERICAN LEGION PROP 93.76 FT M/L TO PROP CYD TO LLOYD L GRAND #1653368 TH S ALG W LI OF SD GRANT PROP 172.57 FT M/L TO SW COR THEREOF TH S 72 DEG 27 MIN 20 SEC W TO INTER W LI OF ABOVE MENTIONED AMERICAN LEGION PROP EXTENDED S TH N ALG W LI OF SD AMERICAN LEGION PROP EXTENDED TO POB SUBJ TO EASE #1926238 OUT OF 4-106 SEG M-1294 GD JES

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

> Pierce County Assessor-Treasurer Mike Lonergan 2401 South 35th St Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2013 Pierce County Washington. All rights reserved.

Taxpayer Name:

Mailing Address:

Pierce County Home | Assessor-Treasurer Home | Parcel Search | Sales Search | Recorded Documents | Permits

Summary Taxes/Values Land Buildings Sales Map

Taxes / Values for 0420214807

10/23/2013 07:03 PM

8,573.24

8,573.23

8,284.90

Property Details

Parcel Number: 0420214807

Site Address: Account Type: 400 RIVER RD Real Property

Account Type: Category:

Land and Improvements

Use Code:

5515-AUTO DLR NEW AND USED RETAIL

Property

Asse	ssec	l Val	ues
	and the second field of the		~~~~~~

Tax				Assessed	Current Use	Personal Notice of Value
Year	Taxable Value	Assessed Total	Assessed Land	Improvements	Land	Property Mailing Date
2014	2,529,200	2,529,200	1,869,700	659,500	0	0 06/24/2013
2013	2,521,000	2,521,000	1,869,700	651,300	0	0 06/22/2012
2012	2,705,500	2,705,500	2,071,900	633,600	0	0 06/27/2011
2011	2,930,900	2,930,900	2,173,000	757,900	0	0 06/21/2010
2010	3,249,700	3,249,700	2,400,400	849,300	0	0 07/17/2009
2009	3,353,800	3,353,800	2,526,700	827,100	0	0 09/19/2008
2008	2,594,200	2,594,200	1,999,400	594,800	0	0 06/22/2007
2007	2,103,500	2,103,500	1,536,100	567,400	0	0 06/12/2006
2006	1,316,500	1,316,500	718,900	597,600	0	0 10/07/2005

Current Charges

Balance Due: 0.00 Minimum Due: 0.00

as of 10/23/2013 N

Exemptions
No exemptions

1.61 10/27/2006

5.00 04/24/2006

27,130.31 10/21/2005

2905940

2633459

K & A HOLDINGS LLC

PUYALLUP WA 98371-3875

1502 RIVER RD

Paid Charges		Tax Co	de Are	eas	
For questions regarding any electronic payments you Corporation at 1-800-487-4567	may have made, please contact Official Payments	Tax Year	TCA	Rate	
Tax		2014	096	0.000000	
Year Charge Type	Amount Paid	2013	096	14.365513	
2013 Property Tax Principal	36,215.46	2012	096	12.775261	
Weed Control Principal	1.92	2011	096	12.347762	
Fire Benefit Charge Principal	2,534.30	2010	096	11.255588	
Pierce Conservation District Principal	4.72	2009	090	10.173927	
Total 2013	38,756.40	2008	090	10.455517	
2012 Property Tax Principal	34,563.47	2007	090	11.277173	
Weed Control Principal	1.92	2006	090	13.019260	
Fire Benefit Charge Principal	2,098.00				•
Pierce Conservation District Principal	5.00	Receip	ts		anagostamin entre
Total 2012	36,668.39		-	et an de la competit	\mount
2011 Property Tax Principal	36,190.06	Date			Applied
Weed Control Principal	1.92	10/17/2	2013	7260541	19,378.20
Fire Benefit Charge Principal	2,033.96	04/30/2	2013	7120627	19,378.20
Pierce Conservation District Principal	5.00	10/19/2	2012	<u>6674328</u>	18,334.20
Total 2011	38,230.94	04/24/2	2012	<u>6435119</u>	18,334.19
2010 Property Tax Principal	36,577.28	01/11/2	2012	<u>6281150</u>	19,115.47
Weed Control Principal	1.61	04/25/2	2011	5805192	19,115.47
Fire Benefit Charge Principal	2,033.96	10/29/2	2010	<u>5593607</u>	19,308.93
Pierce Conservation District Principal	5.00	04/22/2	2010	<u>5178555</u>	19,308.92
Total 2010	38,617.85	10/29/2	2009	<u>4996925</u>	17,063.97
2009 Property Tax Principal	34,121.32	04/30/3	2009	<u>4766156</u>	17,063.96
Weed Control Principal	1.61	11/03/2	2008	<u>4476294</u>	13,565.16
Pierce Conservation District Principal	5.00	05/05/2	2008	4214816	13,565.15
Total 2009	34,127.93	10/19/2	2007	<u>3710788</u>	11,864.07
2008 Property Tax Principal	27,123.70	05/04/2	2007	3509277	11,864.07

Weed Control Principal

Total 2008

Pierce Conservation District Principal

Pierce County Assessor-Treasurer ePIP

2007 Property Tax Principal	23,721.53	04/22/2005	2389069	8,284.90
Weed Control Principal	1.61	11/01/2004	2142200	7,655.49
Pierce Conservation District Principal	5.00	05/05/2004	1898547	7,655.49
Total 2007	23,728.14			
2006 Property Tax Principal	17,139.86	ULID Inform	nation	
Weed Control Principal	1.61	The wife of the party and the first of the f	ULID information	SEALL VICELINGS STORM COLORS
Pierce Conservation District Principal	5.00			
Total 2006	17,146.47			
A CONTRACTOR OF THE PROPERTY O				

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

Pierce County Assessor-Treasurer Mike Lonergan 2401 South 35th 5t Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2013 Pierce County Washington. All rights reserved.

Pierce County Home Assessor-Treasurer Home Parcel Search Sales Search Recorded Documents Permits

Summary Taxes/Values Land Buildings Sales Map

Land Characteristics for 0420214807

10/23/2013 07:04 PM

Property Details

Parcel Number:

0420214807

Site Address:

400 RIVER RD Real Property

Account Type: Category:

Land and Improvements

Use Code:

5515-AUTO DLR NEW AND USED RETAIL

Location:

LEA:

2052

n/a

04-20-21-44

RTSQQ:

Amenities WF Type:

View Quality:

n/a Street Type: Paved Taxpayer Details

Taxpayer Name:

Mailing Address:

K & A HOLDINGS LLC

1502 RIVER RD

PUYALLUP WA 98371-3875

Size SF:

120,788

Acres: 2.77 Front Ft: 392

Utilities

Electric: Sewer:

Power Installed Sewer/Septic Installed

Water: Water Installed

Warning: Appraisal data provided is for informational purposes only and is incomplete for determination of value.

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

> Pierce County Assessor-Treasurer Mike Lonergan 2401 South 35th St Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2013 Pierce County Washington. All rights reserved.

WEBSITE INFORMATION

Privacy Policy Copyright Notices

Pierce County Home | Assessor-Treasurer Home | Parcel Search | Sales Search | Recorded Documents | Permits

Summary Taxes/Values Land Buildings Sales Map

Building Characteristics for 0420214807

10/23/2013 07:04 PM

Property Details

Parcel Number: Site Address:

0420214807 400 RIVER RD

Account Type:

Category:

Use Code:

1 2

Building ID:

Real Property Land and Improvements

5515-AUTO DLR NEW AND USED RETAIL

2 building(s) on this parcel

Taxpayer Details

Taxpayer Name:

Mailing Address:

General Characteristics

Property Type: Condition: Quality:

Commercial Average Fair Neighborhood:

502 / 710

New Auto Dealer

SF: Net SF: Atch. Garage SF:

Det. Garage SF: Carport SF:

12.611 21,681 0

Λ 0 Fin. Attic SF: Total Bsmnt, SF:

Fin. Bsmnt. SF: Bsmnt. Gar. Door: Fireplaces:

K & A HOLDINGS LLC

PUYALLUP WA 98371-3875

1502 RIVER RD

0

0

0

Built-As

Occupancy:

Description	Year Built	Adj. Year Built	SF	Stories	Bed~ rooms	Bath- rooms	Exterior	Class	Roof	HVAC	Units	Sprinkler SF
Service Garage	1953	1978	6,706	1	n/a	n/a	n/a		n/a	Space Heater	0	0
Showroom	1953	1990	5,905	1	n/a	n/a	n/a	Masonry	n/a	Forced Air	0	0

Improvement Details

Detail Type	Detail Description	Units
Add On	Asphalt (LC)	74,700
Add On	Canopies WD FR (Gd)	1,900
Basement	Storage	7.790

Warning: Appraisal data provided is for informational purposes only and is incomplete for determination of value.

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

> Pierce County Assessor-Treasurer Mike Lonergan

> 2401 South 35th St Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2013 Pierce County Washington. All rights reserved.

Summary Taxes/Values Land Buildings Sales Map Building Characteristics for 0420214807 10/23/2013 07:05 PM Property Details Taxpayer Details Parcel Number: 0420214807 Taxpayer Name: K & A HOLDINGS LLC Site Address: 400 RIVER RD Mailing Address: 1502 RIVER RD Account Type: Real Property PUYALLUP WA 98371-3875 Category: Land and Improvements Use Code: 5515-AUTO DLR NEW AND USED RETAIL Building ID: 2 building(s) on this parcel 1 2 General Characteristics Property Type: Commercia! SF: 4,160 Fin. Attic SF: 0 Condition: Average Net SF: 4,160 Total Bsmnt. SF: 0 Quality: Atch. Garage SF: Fair n Fin. Bsmnt. SF: 0 Neighborhood: 502 / 710 Det. Garage SF: 0 Bsmnt. Gar. Door: Occupancy: Auto Related Carport SF: 0 Fireplaces: n **Built-As** Bed-Bath-Sprinkler Description Year Built Adj. Year Built SF Stories rooms rooms Exterior Class HVAC SF Service Garage 1953 1961 2.880 1

Improvement Details

1961

1961

Service Garage

Detail Type Detail Description Units Add On Garage D Cls AV SF 3,552

п/а

n/a

n/a

n/a

n/a

n/a

Masonry

Masonry

n/a

n/a

Space Heater

Space Heater

0

0

Warning: Appraisal data provided is for informational purposes only and is incomplete for determination of value.

1,280 1

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

> Pierce County Assessor-Treasurer Mike Lonergan 2401 South 35th St Room 142

> Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2013 Pierce County Washington. All rights reserved.

Pierce County Home | Assessor-Treasurer Home | Parcel Search | Sales Search | Recorded Documents | Permits

Summary Taxes/Values Land Buildings Sales Map

Recent Sales Activity for 0420214807

10/23/2013 07:05 PM

Property Details

Parcel Number:

Taxpayer Details 0420214807

Site Address: Account Type: 400 RIVER RD Real Property

Category:

Land and Improvements

PARKS FAMILY LLC

Use Code:

Sales

5515-AUTO DLR NEW AND USED RETAIL

Sales from 1997 to date are displayed here. However, the sales listed on this site are not complete and do not include all property transfer types. Recorded documents, accessed by name and date, can be found using the Pierce County Auditor's Recorded Document Search.

Taxpayer Name:

Mailing Address:

ETN Parcel Count Grantor Grantee Sale Price Sale Date Deed Type 4261216 4 CMW INVESTMENTS LLC K & A HOLDINGS LLC $\,$ 3,200,000 $\,$ 05/24/2011 Statutory Warranty Deed

Sale Notes Confirmation Unconfirmed CMW INVESTMENTS LLC 3,500,000 06/01/2007 Statutory Warranty Deed Unconfirmed

K & A HOLDINGS LLC

PUYALLUP WA 98371-3875

1502 RIVER RD

Sales history records current through 5/16/2003 are available on CD. These records were maintained as general information regarding property transfer for tax purposes only and are not an official record of sales transactions. A public records request form and the cost to copy of \$66.10 are required to obtain the records on CD. You may return the signed form and payment by mail or in person to the Assessor-Treasurer's Office at the address listed below.

For additional information on this issue, contact the Pierce County Assessor-Treasurer's Office Records Manager at 253-798-3134.

Sales Search

4164418 4


Search for sales with characteristics similar to this property.

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

Pierce County Assessor-Treasurer Mike Lonergan

2401 South 35th St Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2013 Pierce County Washington. All rights reserved.

K & A HOLDINGS LLC

PUYALLUP WA 98371-3875

1502 RIVER RD

2014

7,700

7,700

Taxpayer Name:

Mailing Address:

Tax/Assessment

Current Tax Year:

Taxable Value:

Assessed Value:

Pierce County Home | Assessor-Treasurer Home | Parcel Search | Sales Search | Recorded Documents | Permits

Summary Taxes/Values Buildings Sales

Parcel Summary for 0420214808

11/04/2013 03:26 PM

Property Details

Parcel Number: Site Address:

0420214808 400 RIVER RD

Account Type: Category:

Structures

Use Code:

Leased Land and/or Structure 5515-AUTO DLR NEW AND USED RETAIL

Appraisal Details Value Area:

PID

Appr Acct Type: Commercial

Business Name:

Last Inspection:

04/10/2008 - Physical Inspection

Related Parcels

Group Account Number:

434 Mobile/MFG Home and Personal Property 1200127008

parcel(s) located on this parcel:

Real parcel on which this parcel is located: n/a

Tax Description

Section 21 Township 20 Range 04 Quarter 44: COM AT MON AT INTER OF 4TH ST NW & 7TH AVE NW IN NE OF SEC 28 20 4E TH N 00 DEG 21 MIN E 636 FT ALG C/L OF SD 4TH ST TH N 89 DEG 39 MIN W 30 FT TO WLY R/W OF SD 4TH ST & POB TH CONT N 89 DEG 39 MIN W 281.28 FT TH N 00 DEG 21 MIN E 465.75 FT M/L PAR TO SD C/L OF 4TH ST TO S R/W LI OF STATE HWY # 5 TH S 69 DEG 18 MIN 10 SEC E 300 FT TO WLY R/W OF 4TH ST TH S 00 DEG 21 MIN W 361.44 FT TO POB ENCLOSED IN THE ABOVE IS L 13 B 19 J P STEWARTS 7TH ADD BLDG ONLY SEG F 0740

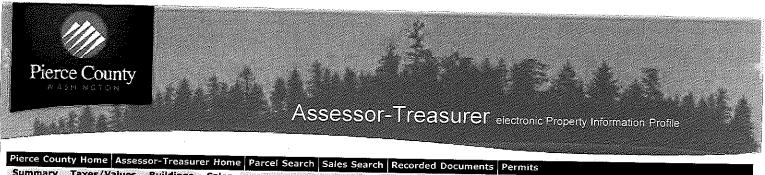
I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

> Pierce County Assessor-Treasurer Mike Lonergan

2401 South 35th St Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2013 Pierce County Washington. All rights reserved.

Assessor-Treasurer Home Parcel Search Sales Search Recorded Documents Summary Taxes/Values Buildings Sales **Building Characteristics for 0420214808** 11/04/2013 03:27 PM Property Details Taxpayer Details Parcel Number: 0420214808 Taxpayer Name: K & A HOLDINGS LLC Site Address: 400 RIVER RD Mailing Address: 1502 RIVER RD Account Type: PUYALLUP WA 98371-3875 Structures Category: Leased Land and/or Structure Use Code: 5515-AUTO DLR NEW AND USED RETAIL Building ID: 1 building(s) on this parcel General Characteristics Property Type: Commercial SF: 329 Fin. Attic SF: 0 Condition: Average Net SF: 329 Total Bsmnt. SF: 392 Quality: Low Atch. Garage SF: 0 Fin. Bsmnt. SF: ٥ Neighborhood: 502 / 710 Det. Garage SF: 0 Bsmnt. Gar. Door: 0 Occupancy: New Auto Dealer Carport SF: n Fireplaces: 0 Built-As Bed-Bath-Sprinkler Description Year Built Adj. Year Built SF Stories rooms rooms Exterior HVAC Office Building 1965 1965 329 1 n/a n/a Wood Frame Forced Air 0 Improvement Details **Detail Type Detail Description** Units Add On WD 100 Sq Ft 105 Basement Unfinished 392


Warning: Appraisal data provided is for informational purposes only and is incomplete for determination of value.

I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for isses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.

Pierce County Assessor-Treasurer Mike Lonergan 2401 South 35th St Room 142

2401 South 35th St Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2013 Pierce County Washington. All rights reserved.

K & A HOLDINGS LLC

PUYALLUP WA 98371~3875

1502 RIVER RD

Taxes/Values Buildings Sales

Recent Sales Activity for 0420214808

11/04/2013 03:30 PM

Property Details

Parcel Number: Site Address: Account Type:

0420214808

400 RIVER RD Structures

Category:

Leased Land and/or Structure

Use Code:

5515-AUTO DLR NEW AND USED RETAIL

Sales

Sales from 1997 to date are displayed here. However, the sales listed on this site are not complete and do not include all property transfer types. Recorded documents, accessed by name and date, can be found using the Pierce County Auditor's Recorded Document Search.

Taxpayer Details

Parcel Count Grantor

Grantee

Sale Price Sale Date Deed Type

Taxpayer Name:

Mailing Address:

Sale Notes Confirmation

4261216 4

CMW INVESTMENTS LLC K & A HOLDINGS LLC 3,200,000 05/24/2011 Statutory Warranty Deed

Unconfirmed

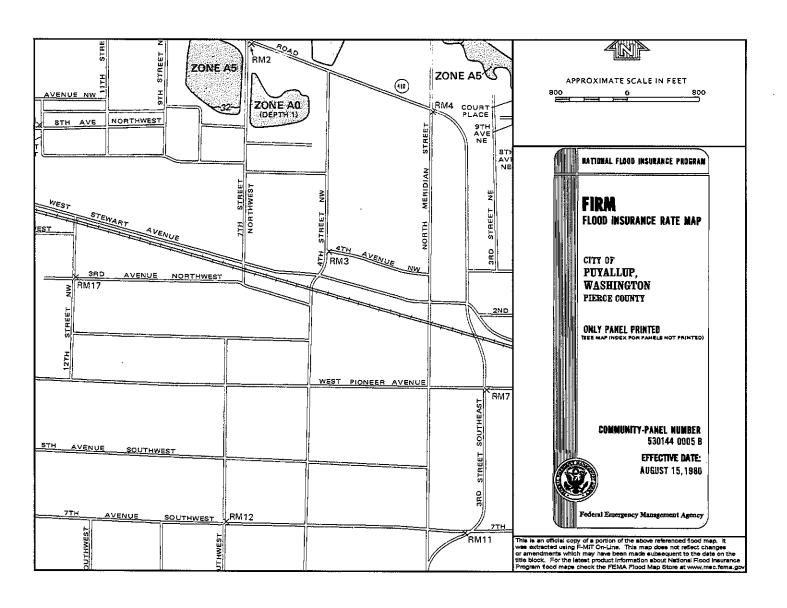
4164418 4 PARKS FAMILY LLC CMW INVESTMENTS LLC 3,500,000 06/01/2007 Statutory Warranty Deed

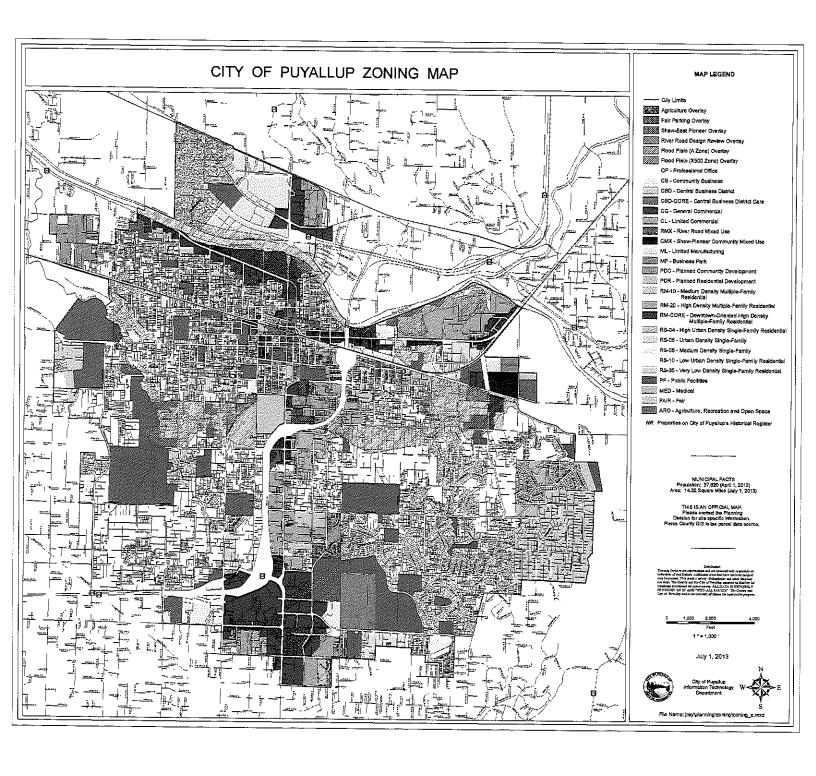
Unconfirmed

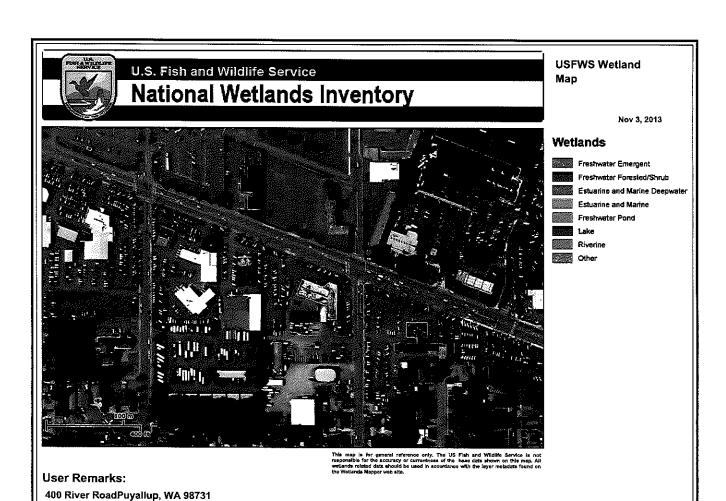
Sales history records current through 5/16/2003 are available on CD. These records were maintained as general information regarding property transfer for tax purposes only and are not an official record of sales transactions. A public records request form and the cost to copy of \$66.10 are required to obtain the records on CD. You may return the signed form and payment by mail or in person to the Assessor-Treasurer's Office at the address listed below.

For additional information on this issue, contact the Pierce County Assessor-Treasurer's Office Records Manager at 253-798-3134.

Sales Search

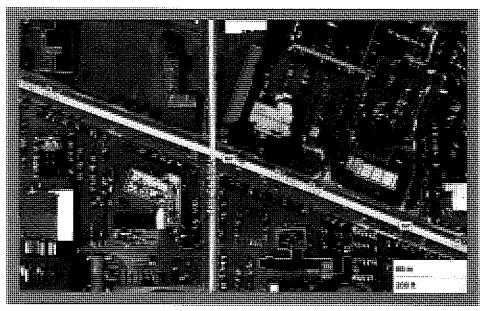

Search for sales with characteristics similar to this property.


I acknowledge and agree to the prohibitions listed in RCW 42.56.070(9) against releasing and/or using lists of individuals for commercial purposes. Neither Pierce County nor the Assessor-Treasurer warrants the accuracy, reliability or timeliness of any information in this system, and shall not be held liable for losses caused by using this information. Portions of this information may not be current or accurate. Any person or entity who relies on any information obtained from this system does so at their own risk. All critical information should be independently verified.


> Pierce County Assessor-Treasurer Mike Lonergan

> 2401 South 35th St Room 142 Tacoma, Washington 98409 (253)798-6111 or Fax (253)798-3142 www.piercecountywa.org/atr

Copyright © 2013 Pierce County Washington. All rights reserved.



Facility/Site: 68989278

Greg Carters Puyallup Chev Subaru

FRIENDLY CHEV OF PUYALLUP, Friendly Chevrolet, PUYALLUP CHEVROLET GEO SUBARU INC Also known as:

Address

400 RIVER RD

Decimal Coordinates

Latitude: 47.19994 Longitude: -122.29846

PUYALLUP WA 98371

Geographic Information

Ecology Region: SWRO

Legislative District: 25

WRIA: 10

County: Pierce

Congressional District: 10

Tribal Land: No

Ecology Interactions

Interaction Description	Ecology Program	Ecology Program Phone	Program ID	Start Date	End Date
Local Source Control	HAZWASTE	(360) 407-6850		3/4/2009	4/29/2010
Underground Storage Tank	TOXICS	(360) 407-7224	97772	3/20/2000	5/6/2004
Hazardous Waste Generator	HAZWASTE	(360) 407-6023	WAD988484598	4/2/1991	12/31/2002

Industrial Codes (External Links Below)

PHASE I ENVIRONMENTAL SITE ASSESSMENT QUESTIONNAIRE

The following questionnaire is required by the new ASTM Standard E 1527-05, which adheres to the new All Appropriate Inquiries (AAI) Rule (United States Environmental Protection Agency) (40 CFR 312).

As defined by ASTM, the User of the report is the "party seeking to use Practice E 1527 to complete an environmental site assessment of the property. A user may include, without limitation, a potential purchaser of property, a potential tenant of property, an owner of property, a lender, or a property manager."

SUBJECT PROPERTY ADDRESS: 400 RIVER READ
SUBJECT PROPERTY CITY, STATE ZIP: PUTALLUP, WA 98371
. Environmental cleanup liens that are filed or recorded against the site (40 CFR 312.25
Are you aware of any environmental cleanup liens against the Subject Property that are fil or recorded under federal, tribal, state or local law? YES NO
2. Activity and land use limitations that are in place on the site or that have been filed records in a registry (40 CFR 312.26)
Are you aware of any activity and land use limitations (AULs), such as engineering control land use restrictions or institutional controls that are in place at the Subject Property and have been filed or recorded in a registry under federal, tribal, state or local law? YES NO
3. Specialized knowledge or experience of the person seeking to qualify for the LLP (CFR 312.28) As the User of this report, do you have any specialized knowledge or experience related the Subject Property or nearby properties? For example, are you involved in the same line business as the current or former occupants of the Subject Property or adjoining property? YES NO
4. Relationship of the purchase price to the fair market value of the Subject Property if were not contaminated (40 CFR 312.29) Does the purchase price being paid for the Subject Property reasonably reflect the fair mark value of the Subject Property? If so, why? YES NO
Phase I ESA Questionnaire

Page 1 of 3

Subject Property that would help the environmental professional to identify condindicative of release or threatened release? YES NO	
a. Do you know the past uses of the Subject Property? YES NO	
b. Do you know of specific chemicals that are present or once were present at the S Property? YES NO	ubject
c. Are you aware of any spills or other chemical releases that have taken place Subject Property? YES NO	at the
d. Do you have any prior knowledge that the Subject Property was developed as station, dry cleaner, manufacturing/industrial facility in the past? YES NO	a gas
e. Are you aware of historical use of hazardous materials or petroleum products upresent on the Subject Property? YES NO	sed or
f. Do you know if the property is currently or was formerly equipped with undergestorage tanks (USTs) or septic tanks? YES NO	ground
g. Do you know of any past, threatened or pending lawsuits or administrative proce concerning a release or threatened release of any hazardous substance or pet products involving the Subject Property by any owner or occupant of the S Property? YES NO	roleum

Phase I ESA Questionnaire Page 2 of 3

6. The degree of obviousness of the presence or likely presence of contamination at the Subject Property, and the ability to detect the contamination by appropriate investigation (40 CFR 312.31) As the User of this report, are there any obvious indicators that point to the presence or likely presence of contamination at the Subject Property based on your knowledge and experience related to the Subject Property? YES NO
Signature of User/Person Interviewed: Name of User/Person Interviewed: Title/Relationship to Subject Property: Phone Number/Email: Date: 10 24 77
Contact for additional information:
Name:
Relationship to Subject Property:
Phone Number/Email:

Page 3 of 3

ENVIRONMENTAL SITE ASSESSMENT QUESTIONNAIRE

Please complete to the best of your knowledge. For those questions that are not applicable, please respond with an "N/A". For those questions that are unknown, please respond with "unknown".

1. Property Information:	
Property Name:	
Property Address:	
400 RIVER ROAD	
City PUYALUP State WA	zip
Assessor's Parcel Number 0420214808 2 (0420214807
Property Owner & Contact Information:	ings, ll
Date Property Owner Purchased:	
Key Site Manager & Contact Information:	
2. COMPLETED BY	
-	Date 10 24 3
Printed Name N DIEU R	telation to Subject Property
3. PREVIOUS INVESTIGATIONS	0011
Have any previous environmental investigations been per	• •
II Subsurface Investigations, Remediatio surveys? YES	n, Asbestos or Lead-Based Paint
	(If yes, please provide copies)
4. Property Description	
Property Size: 21,68 Number Size of Building(s): 6,706 > 5905 +	of Building(s): 5 -
Size of Building(s): 6,706 2 5905 ±	
Date of Construction: 1953	
Property Type: (please circle)	
Multi-Family Hotel Mobile Home Park Retail Comm	nercial Industrial Office
Other: AUTOMOTIUE DEALERSHIP	
Please provide Rent Roll if Applicable.	
Historical Use of Property: Owito deule	ィン

Partner Pre-Survey Questionnaire

Page 1 of 2

5. SURROUNDING PROPERTY USES

Direction Use			
Commercial/1	JACO NT	PARLOWL CET	-
Moving & Stera			
		<u></u>	
Autemotive Dec	lers	<u> </u>	
Nest Artenefue D	eders	_	
Are you aware of any potential environme YES	ntal concerns a	ussociated with surround	ling properties?
If yes, please describe:			
<u> </u>			
	<u>-</u>		
6. Utilities & Services			
Please provide the name of the utility or co	ontractor provi	ding the following:	
250	-		Lieu 15
Electric P		Bio-hazardous Waste	7000 C
Gas + OE		Elevator Maintenance	DONE
Potable Water (Used Grease	Contractor
Sanitary Sewer CF4 O	U yall	Hazardous Waste	NONE NENE Contractor Environmentai
7. On Site Operations	_		C KI M
Are you aware of any of the following o	onditions, eitl	ner past or present, on	the property?
Condition	Response	If yes, please de	scribe
1. Stored Chemicals	☐ Yes ☐ No	Somedata	f + uncol oil wint
2. Underground Storage Tanks	☐ Yes ☐��o		
Aboveground Storage Tanks	☐ Yes ♀No		
4. Spills or Releases	□ Yes ©No		
5. Dump Areas/Landfills	□ Yes ®No		
6. Waste Treatment Systems	XYes □ No		
7. Clarifiers/Separators	D; Yes □ No		
8. Vents/Odors	□ Yes ☑ No		
	Yes \$100No		
10. Stained Soil	☐ Yes ŊNo		
11. Electrical Transformers	☐ Yes ☑ No		
12. Hydraulic Lifts/Elevators	SeYes □ No		
13. Dry Cleaning Operations	□ Yes ⊮No		
14. Oil/Gas/Water/Monitoring Wells	☐ Yes ☐ No		
15. Environmental Permits	Ŋ Yes □ No		

Partner Pre-Survey Questionnaire

Page 2 of 2

APPENDIX D: QUALIFICATIONS

Daniel Stallings, REPA

Project Manager

Education

CSWK Project Management-American Intercontinental University
B.S. Environmental Science-Regis University
Certificate Meteorology/Oceanography- Naval Technical Training Unit Keesler
ASF Military Sciences- US Naval ASF Academy at University of Maryland

Registrations

Registered Environmental Property Assessor-National Registry of Environmental Professionals Certified Testing Specialist-Environmental Assessment Association Certified Environmental Inspector-Environmental Assessment Association

AHERA Certified Building Inspector-AHERA

Licensed Asbestos Abatement Consultant-NV Occupational Safety & Health Administration Certified Ultra Trace Element Analyst-FL Department of Environmental Protection OSHA Certifications Hazardous Materials Operations Certified-OSHA (29CFR1910.120 & 1926.65 HAZWOPER)

Registered Environmental Assessor-CA Department of Toxic Substance Control EPA Lead Paint Inspector-U.S. Environmental Protection Agency SLAC50 Safety Certified Contractor

Summary of Professional Experience

Mr. Stallings has 14 years of experience in the environmental, engineering, and/or industrial hygiene service industries. He has significant experience in due diligence assessments for a variety of property types and the needs and requirements of varied number of reporting standards, including ASTM standards, EPA's All Appropriate Inquiry (AAI), and customized client formats. Specifically, Mr. Stallings has performed Phase I Environmental Site Assessments, Environmental Transaction Screens, Phase II and III Subsurface Investigations, Remediation Projects, Regulatory Compliance Assessments, Asbestos Surveys, Lead-based Paint Surveys, Radon Studies, Mold Assessments, and Lead-in-water sampling and analysis.

Mr. Stallings has completed numerous ASTM Environmental Site Assessments for a diverse variety of properties and purposes across the United States. These properties have included communications facilities, military and government facilities, vacant lots, industrial facilities, commercial agricultural tracts, commercial properties, retail facilities, educational facilities and multi-family residential properties.

Mr. Stallings has served as a project scientist on multiple environmental projects involving dredging and turbidity, regulatory permitting, flood water diversion and wetland assessment. He has worked on Florida Everglades restoration/reclamation projects, coastal erosion assessments and engineered wetland projects.

Mr. Stallings served as a project scientist on multiple projects across the United States involving soil and ground water remediation for industrial facilities including several Federal and State

managed remediation projects. He has provided expertise in monitoring well design, environmental drilling, contamination plume delineation, free product and vapor recovery, site specific testing plans, analytical data interpretation and quality control.

Mr. Stallings served as an environmental consultant and environmental work site supervisor on multiple commercial construction projects across the United States involving the dewatering of impacted groundwater and the excavation of impacted soils. He has provided expertise in site worker health and safety and in impacted soil & groundwater management.

In addition to environmental assessments, Mr. Stallings has prepared and managed numerous NEPA consultation projects, compliance audits, biological assessments and other various environmental assessments for telecommunications sites. Mr. Stallings has helped various clients facilitate the Section 106 / environmental review process to ensure compliance with Federal Communications Commission (FCC) requirements under the National Environmental Policy Act (NEPA).

Mr. Stallings served as a senior field technician, an analytical chemist, a data quality officer and a laboratory manager at a NELAP certified facility for over five years. He specialized in long-term soil and ground water monitoring, agrichemical, petrochemical and metals analysis. Mr. Stallings has extensive academic and hands on training and is certified as an Environmental Field Technician by the Florida Department of Environmental Protection. Additionally, he is certified in ultra-trace sampling procedures and analysis.

Mr. Stallings served in the United States Navy as a member of the U.S. Mobile Environmental Team and on the United States Armed Forces Expeditionary Team as an active duty scientist for over five years. During this period, he responded to the Navy's environmental emergencies both nationally and abroad containing hazardous materials spills associated with military activity in accordance with NAVOSH. Additionally, Mr. Stallings installed, monitored & maintained remote meteorological, geological & oceanographic monitoring equipment. Mr. Stallings continued military service in the U.S. Naval Reserve as a Meteorologist for the USS John F. Kennedy Carrier Group for an additional three years.

Finally, Mr. Stallings' diversity across residential, agricultural, industrial, natural, municipal, and commercial environments is a major contribution to Partner Engineering and Science's team in the Pacific Northwest region of the United States.

Lyly Churchill, REA Senior Project Manager

Education

M.A. Environmental Studies, Brown University
 B.S. Biology, University of California, Los Angeles - Emphasis in Ecology, Behavior and Evolution

Registrations

California Registered Environmental Assessor (REA I –08070) EPA Accredited Asbestos Inspector California Underground Storage Tank Inspector

Summary of Professional Experience

Ms. Churchill has eight years of experience in the environmental service industry. Ms. Churchill's background in environmental science and direct experience in environmental consulting and enforcement allow her to offer the most effective means of regulatory compliance.

Ms. Churchill has project experience in Phase I Environmental Site Assessments (ESAs), Environmental Transaction Screens, radon screening, asbestos inspections, and lead-based paint inspections. In addition, Ms. Churchill has project management experience in Property Condition Assessments, Physical Needs Assessments, seismic evaluations and ALTA surveys. Ms. Churchill is familiar with all aspects of Due Diligence Property Assessments and the needs and requirements of a varied number of reporting standards, including ASTM, EPA's All Appropriate Inquiry (AAI), U.S. Small Business Administration's (SBA) SOP 50 10, Fannie Mae DUS, Freddie Mac, HUD, and customized client formats.

Ms. Churchill has performed and supervised over 1,000 Phase I Environmental Site Assessments and Environmental Transaction Screens for lenders and buyers. As a senior member of the Due Diligence staff, Ms. Churchill provides senior review expertise to ensure ASTM compliance and satisfaction of client requirements for Phase I Environmental Site Assessments and Environmental Transaction Screens.

Furthermore, Ms. Churchill has working experience in performing biological and noise assessments, and in preparing and reviewing environmental documentation in support of CEPA and NEPA.

While in graduate school, Ms. Churchill's Masters Thesis research focused on evaluating the potential of Japanese Knotweed (an invasive plant species) as an effective phytoremediator of heavy metal contaminated soils along a historically polluted river in Rhode Island. Phytoremediation refers to the natural ability of certain plants called hyperaccumulators to

bioaccumulate contaminants in soil. Hyperaccumulators can be grown and harvested economically, leaving the soil with a greatly reduced level of toxic contamination.

Project experience for Ms. Churchill includes:

- Completed hundreds of Phase I Environmental Site Assessments and Environmental Transaction Screens on multi-family properties, commercial office buildings, retail shopping centers, gasoline service stations, hotels, dry cleaning plants, auto repair and auto body shops, industrial warehouse buildings, aerospace manufacturers, plating facilities, and various manufacturing operations throughout the U.S.
- Reviewed and evaluated hundreds of third-party Phase I, Phase II and Phase III reports
- Managed Phase I and PCA portfolio projects involving properties throughout the United States, including large apartment complexes and shopping malls
- Assisted on several Phase II investigations of gasoline service stations, dry cleaning facilities and industrial sites
- Conducted several asbestos and lead-based paint inspections of commercial and residential properties
- Performed water sampling on several residential properties to detect the presence of lead in water
- Conducted radon testing at several residential properties throughout Southern California and Nevada
- Conducted biological surveys including endangered species surveys, and performed research on historical, physical and cultural resources in support of Environmental Impact Reports

Ms. Churchill worked for the City of El Segundo, where she regularly collaborated with other local CUPAs to ensure compliance with State and Federal regulations. Ms. Churchill's responsibilities included implementing and enforcing elements of the CUPA program including the following: hazardous waste generator program; underground storage tank program; Hazardous Material Release Response Plan (Business Plan) Program and the California Accidental Release Response Plan (CalARP) Programs. Ms. Churchill also worked on enforcing city specific environmental programs such as Stormwater Pollution Prevention and Industrial Wastewater Discharge. As the Principal Environmental Specialist for the City, Ms. Churchill worked with large industries such as Chevron, Northrop Grumman, Boeing and International Rectifier to ensure regulatory compliance pertaining to business operations and remedial activities.

Ms. Churchill has technical experience working for the following financial institutions:

- JPMorgan Chase
- Citigroup Global Markets
- Wells Fargo Bank
- California Bank and Trust
- Union Bank of California
- East West Bank

- Comerica Bank
- Northmarq Capital
- Morgan Stanley Mortgage Capital, Inc.
- Bank of America

APPENDIX C PHOTOGRAPHS

RFJ Auto Partners

Site #3 – 400 & 500 River Road Puyallup, Washington

AECOM Project No.: 60620698 **Date:** 12/20/2019

Photo No.

Date: 12/20/2019

Direction Photo Taken:

Southeast

Description:

Main Building - Showroom area.

Photo No. 2

Date: 12/20/2019

Direction Photo Taken:

General View

Description:

North Shop- 7 Service bays currently with above ground hoists, and three ASTs containing new and used engine oil. Services include general vehicle maintenance.

RFJ Auto Partners

Site #3 – 400 & 500 River Road Puyallup, Washington

AECOM Project No.: 60620698 **Date:** 12/20/2019

Photo No.

Date: 12/20/2019

Direction Photo Taken:

West

Description:

South Shop, includes 8 services bays, currently with above ground hoists, and two ASTs containing engine oil. Services include general vehicle maintenance and repair. Patches on floor represent former in ground hydraulic hoist locations.

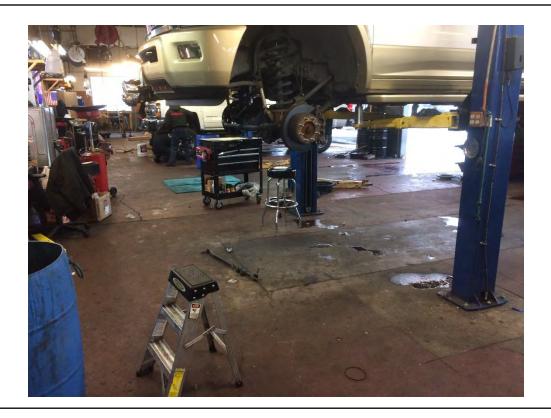


Photo No.

4

Date: 12/20/2019

Direction Photo Taken:

Northwest

Description:

Lower Shop, includes 3 vehicle services bays, a tire bay on the north end, and a room on the south end containing two oil ASTs and a compressor.

RFJ Auto Partners

Site #3 – 400 & 500 River Road Puyallup, Washington

AECOM Project No.: 60620698 **Date:** 12/20/2019

Photo No. **5**

Date: 12/20/2019

Direction Photo Taken:

South

Description:

Covered vehicle wash bay area. Surrounding wash bay includes sump pump, Oil-Water- Separator, and some chemicals for cleaning vehicles.

Photo No.

6

Date: 12/20/2019

Direction Photo Taken:

East

Description:

Building adjacent to the wash bay, containing multiple drums of vehicle washing chemicals.

RFJ Auto Partners

Site #3 - 400 & 500 River Road Puyallup, Washington

AECOM Project No.: 60620698 **Date:** 12/20/2019

Photo No. 7

Date: 12/20/2019

Direction Photo Taken:

Northwest

Description:

North Shop, Bay 15, large floor cut may be associated with former in ground hoists.

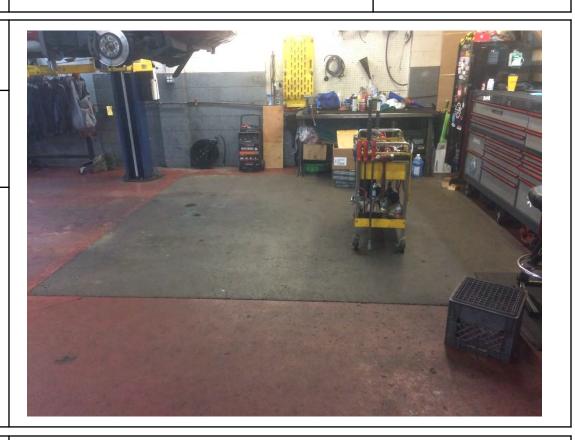
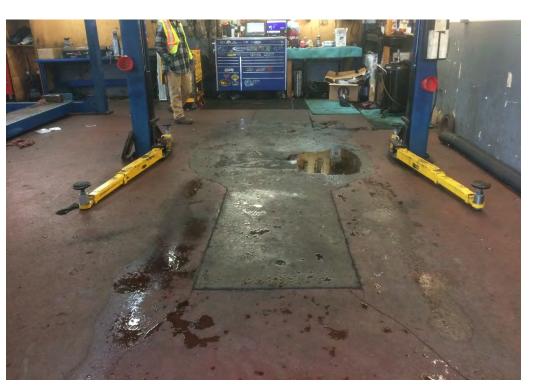


Photo No.


Date: 8 12/20/2019

Direction Photo Taken:

North

Description:

North Shop, Bay 9, floor cut which is indicative of apparent former In-ground Hoist.

RFJ Auto Partners

Site #3 – 400 & 500 River Road Puyallup, Washington

AECOM Project No.: 60620698 **Date:** 12/20/2019

Photo No. 9

Date: 12/20/2019

Direction Photo Taken:

Northwest

Description:

North Shop, near bay 12 is a used oil AST, approximately 465 gallons

Photo No. 10

Date: 12/20/2019

Direction Photo Taken:

North

Description:

North Shop, near bay 12 is a new oil AST, approximately 465 gallons

RFJ Auto Partners

Site #3 – 400 & 500 River Road Puyallup, Washington

AECOM Project No.: 60620698 **Date:** 12/20/2019

Photo No.

Date: 12/20/2019

Direction Photo Taken:

North

Description:

South Shop, bay 7, patched floor from where former in-ground hoist system was reportedly removed.

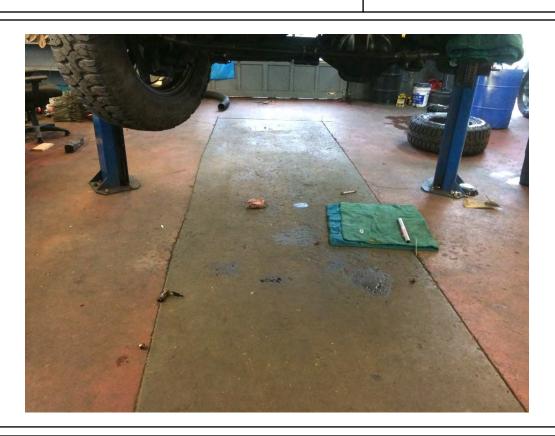
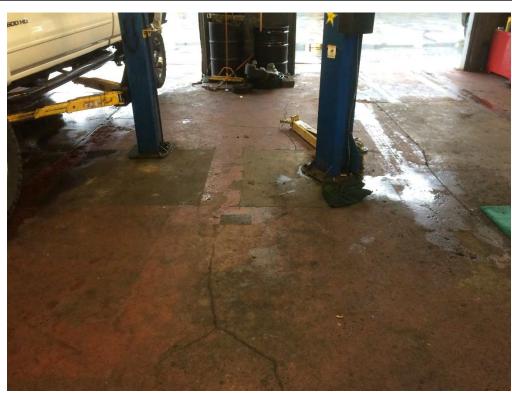


Photo No. 12


Date: 12/20/2019

Direction Photo Taken:

North

Description:

South Shop, in-between bay 5 and bay 6 has patched floors where hoist systems presumably were located in the past. Interview with employee noted this shop historically had in-ground hoist systems for vehicle maintenance.

RFJ Auto Partners

Site #3 – 400 & 500 River Road Puyallup, Washington

AECOM Project No.: 60620698 **Date:** 12/20/2019

Photo No.

Date: 12/20/2019

Direction Photo Taken:

Southwest

Description:

South Shop, ASTS containing new motor oil, approximately 465 gallons each.

Photo No. 14

Date: 12/20/2019

Direction Photo Taken:

South

Description:

South Shop, near bay 1 which has the widest floor crack noted in shops.
Multiple cracks this size near bay 1.

RFJ Auto Partners

Site #3 – 400 & 500 River Road Puyallup, Washington

AECOM Project No.: 60620698 **Date:** 12/20/2019

Photo No. 15

Date: 12/20/2019

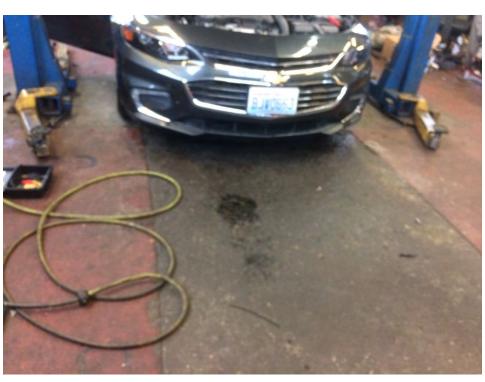
Direction Photo Taken:

East

Description:

South Shop, near bay 1 there is an apparent exhaust duct in northeast corner.

Photo No. 16


Date: 12/20/2019

Direction Photo Taken:

North

Description:

South Shop, bay 8, patched floor from where former in-ground hoist system was reportedly removed.

RFJ Auto Partners

Site #3 – 400 & 500 River Road Puyallup, Washington

AECOM Project No.: 60620698 **Date:** 12/20/2019

Photo No. 17

Date: 12/20/2019

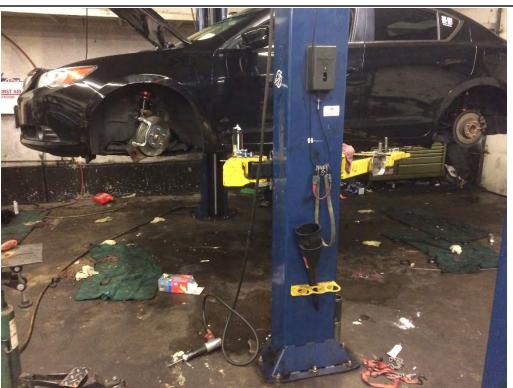
Direction Photo Taken:

South

Description:

Lower shop general overview of service bays.

Photo No. 18


Date: 12/20/2019

Direction Photo Taken:

South

Description:

Lower shop furthest south service bay. Noteably stained and cluttered. Unable to discern whether heavily stained or just wet from vehicle recently moved indoors and dripping from rain.

RFJ Auto Partners

Site #3 – 400 & 500 River Road Puyallup, Washington

AECOM Project No.: 60620698 **Date:** 12/20/2019

Photo No. 19

Date: 12/20/2019

Direction Photo Taken:

East

Description:

Lower Shop, south room where ASTs for new motor oil are located. Back room is used as miscellaneous storage and for ASTs and Compressors. Equipment is used for service bays in connecting building.

Photo No. **20**

Date: 12/20/2019

Direction Photo Taken:

East

Description:

Lower shop, back room where compressors for service bays are located. Compressors are across the room from ASTs.

RFJ Auto Partners

Site #3 – 400 & 500 River Road Puyallup, Washington

AECOM Project No.: 60620698 **Date:** 12/20/2019

Photo No. 21

Date: 12/20/2019

Direction Photo Taken:

South

Description:

Lower Shop - Tire bay located in north portion of building. No hose supplied oil coming to this bay, only compressed air for tires.

Photo No. 22

Date: 12/20/2019

Direction Photo Taken:

Southeast

Description:

West wall of wash area where OWS shed and sump pump are located.

RFJ Auto Partners

Site #3 – 400 & 500 River Road Puyallup, Washington

AECOM Project No.: 60620698 **Date:** 12/20/2019

Photo No. 23

Date: 12/20/2019

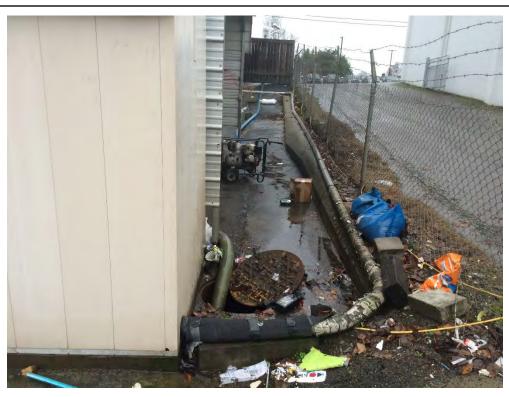
Direction Photo Taken:

South

Description:

OWS with coalescing plates. Electrical plug in heater presumably on at all times in the back right corner of shed.

Photo No. 24


Date: 12/20/2019

Direction Photo Taken:

East

Description:

West side of wash area, where a manhole with a sump pump is located and actively running pumping water out to the sewer system. Unknown whether bypassing OWS.

RFJ Auto Partners

Site #3 – 400 & 500 River Road Puyallup, Washington

AECOM Project No.: 60620698 **Date:** 12/20/2019

Photo No. 25

Date: 12/20/2019

Direction Photo Taken:

N/A

Description:

Sump pump interior on west side of wash area.

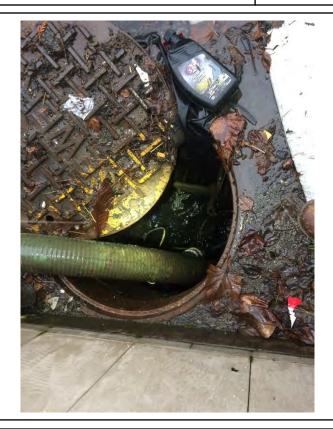


Photo No. 26

Date: 12/20/2019

Direction Photo Taken:

East

Description:

Assortment of drums containing washing chemicals.

RFJ Auto Partners

Site #3 – 400 & 500 River Road Puyallup, Washington

AECOM Project No.: 60620698 **Date:** 12/20/2019

Photo No. 27

Date: 12/20/2019

Direction Photo Taken:

Northeast

Description:

Vehicle wash chemical storage area, heavily stained concrete floor.

Photo No. 28

Date: 12/20/2019

Direction Photo Taken:

West

Description:

Vehicle wash chemical storage area showing heavily etched concrete floor from exposure to wash chemicals.

RFJ Auto Partners

Site #3 – 400 & 500 River Road Puyallup, Washington

AECOM Project No.: 60620698 **Date:** 12/20/2019

Photo No. 29

Date: 12/20/2019

Direction Photo Taken:

Northeast

Description:

Storm catch basin that reportedly is a dry well and not connected to the storm sewer. Located at SE corner of main building, in front of entrance to storage area beneath the parking deck on east side of main building.



Photo No. 30

Date: 12/20/2019

Direction Photo Taken:

North

Description:

View from approximate location to which storm catch basin discharges. Retaining wall separating the upper eastern parking lot from the lower lot.

RFJ Auto Partners

Site #3 – 400 & 500 River Road Puyallup, Washington

AECOM Project No.: 60620698 **Date:** 12/20/2019

Photo No. 31

Date: 12/20/2019

Direction Photo Taken:

Northeast

Description:

South wall of South Shop. Area of former waste-oil USTs located adjacent to the south shop, which is now used for parking vehicles and is asphalt.

Photo No. 32

Date: 12/20/2019

Direction Photo Taken:

North

Description:

Suspected location of closed in place heating-oil UST. Records indicate a UST was located approximately where the compressors are underneath the awning.

RFJ Auto Partners

Site #3 – 400 & 500 River Road Puyallup, Washington

AECOM Project No.: 60620698 **Date:** 12/20/2019

Photo No. 33

Date: 12/20/2019

Direction Photo Taken:

N/A

Description:

Inside main building north of current compressor location. Two apparent fuel oil pipes that were possibly previously connected to former heating-oil UST underneath compressor awning.

Photo No. 34

Date: 12/20/2019

Direction Photo Taken:

N/A

Description:

Inside main building north of current compressor location. General view of piping associated with former heating oil UST. Records indicate a UST was located approximately where the compressors are underneath the awning.

APPENDIX D EDR ENVIRONMENTAL DATABASE REVIEW REPORT

Appendix B Soil Boring Logs

Client: Sonic Automotive

Project: NWMS Puyallup (SAI-413)

Address: 400 River Road, Puyallup, WA

BORING LOG

Boring No. SB-3R Page: 1 of 1

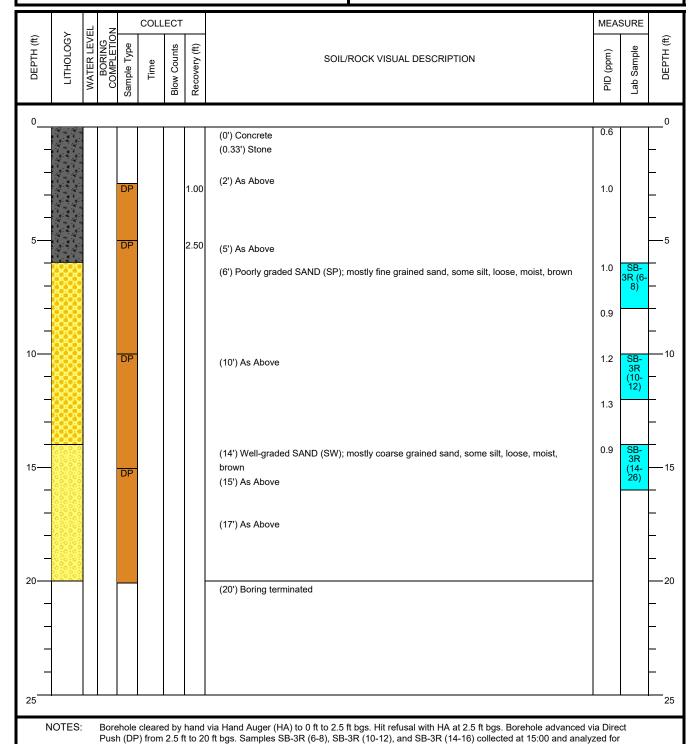
Drilling Start Date: 8/15/24

Boring Depth (ft): 20.0

Drilling End Date: 8/15/24

Boring Diameter (in): 2.25

Drilling Company: Steadfast Drilling Service Sampling Method(s): Grab, Direct Push


 Drilling Method:
 Hand Auger (HA), Direct Push (DP)
 DTW During Drilling (ft):

 Drilling Equipment:
 Hand Auger, GeoProbe
 DTW After Drilling (ft):

 Driller:
 Ground Surface Elev. (ft):

Logged By: TGS Location (X,Y):

VOCs and semi-volatile petroleum products.

Client: Sonic Automotive

Project: NWMS Puyallup (SAI-413)

Address: 400 River Road, Puyallup, WA

BORING LOG

Boring No. SB-5R Page: 1 of 1

Drilling Start Date: **8/14/24**Drilling End Date: **8/14/24**

Drilling Company: Steadfast Drilling Service

Drilling Method: Hand Auger (HA)
Drilling Equipment: Hand Auger

Driller:

Logged By: TGS

NOTES:

Boring Depth (ft): 4.5

Boring Diameter (in): 2.25

Sampling Method(s): Grab

DTW During Drilling (ft):
DTW After Drilling (ft):

Ground Surface Elev. (ft):

Location (X,Y):

_ > <u> </u>		EL	Z	z	COLL						
DEPTH (ft)	LITHOLOGY WATER LEVEL Blow Counts Sample Type Recovery (ft) Recovery (ft) Recovery (ft)		SOIL/ROCK VISUAL DESCRIPTION	PID (ppm)	Lab Sample	DEPTH (ft)					
0								(0') Concrete (0.5') River Cobbles with Sandy SILT (ML); some fine-coarse sand, mostly silt, soft, dry, dark brown	0.7		0
-	-									SB-5R (2-4) SB-5R (4-4.5)	_
5	_							(4.5') Boring terminated			 5
-										,	_
10											10

Borehole cleared by hand via Hand Auger (HA) to 4.5 ft bgs. Hit refusal at 4.5 ft bgs, so boring was terminated. Samples SB-5R (2-4) and SB-5R (4-4.5) collected at 12:30 and analyzed for VOCs and semi-volatile petroleum products.

Project: NWMS Puyallup (SAI-413)

Address: 400 River Road, Puyallup, WA

BORING LOG

Boring No. SB-13 Page: 1 of 1

Drilling Start Date: **8/14/24**Drilling End Date: **8/14/24**

Drilling Company: Steadfast Drilling Service

Drilling Method: Hand Auger (HA)
Drilling Equipment: Hand Auger

Driller:

Logged By: TGS

Boring Depth (ft): 6.0

Boring Diameter (in): 2.25
Sampling Method(s): Grab

DTW During Drilling (ft):

DTW After Drilling (ft):

Ground Surface Elev. (ft):

Location (X,Y):

Project: NWMS Puyallup (SAI-413)

Address: 400 River Road, Puyallup, WA

BORING LOG

Boring No. SB-14
Page: 1 of 1

Drilling Start Date: **8/14/24**Drilling End Date: **8/14/24**

Drilling Company: Steadfast Drilling Service

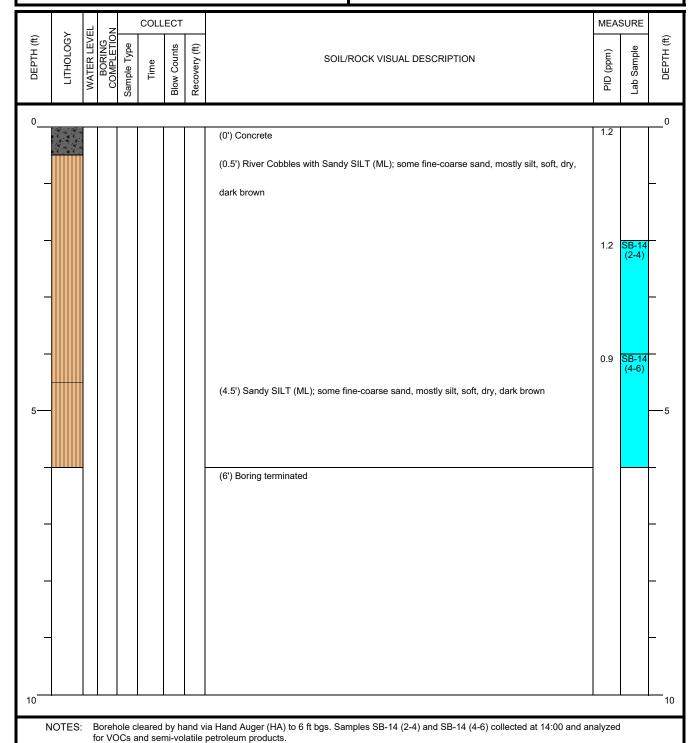
Drilling Method: Hand Auger (HA)
Drilling Equipment: Hand Auger

Driller:

Logged By: TGS

Boring Depth (ft): 6.0

Boring Diameter (in): 2.25


Sampling Method(s): Grab

DTW During Drilling (ft):

DTW After Drilling (ft):

Ground Surface Elev. (ft):

Location (X,Y):

Project: NWMS Puyallup (SAI-413)

Address: 400 River Road, Puyallup, WA

BORING LOG

Boring No. SB-15 Page: 1 of 1

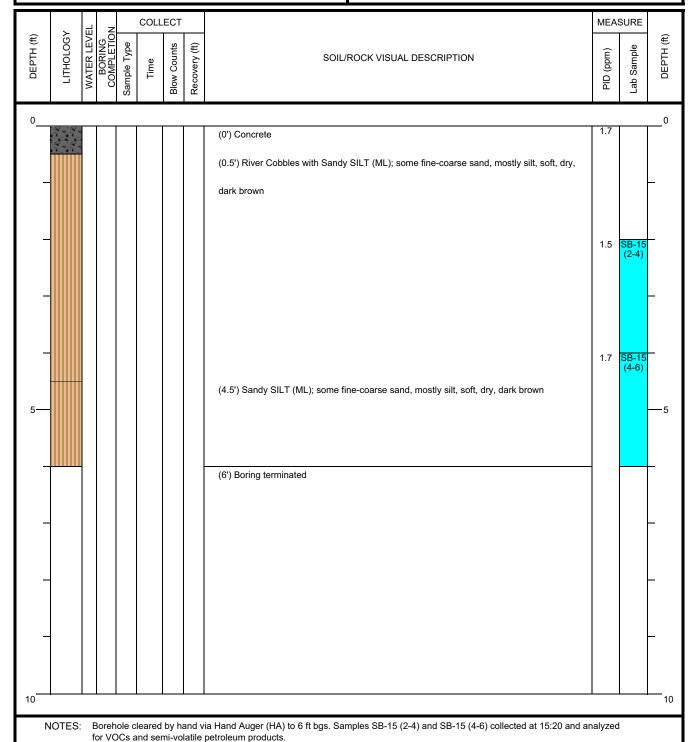
Drilling Start Date: **8/14/24**Drilling End Date: **8/14/24**

Drilling Company: Steadfast Drilling Service

Drilling Method: Hand Auger (HA)
Drilling Equipment: Hand Auger

Driller:

Logged By: TGS


Boring Depth (ft): 6.0

Boring Diameter (in): 2.25
Sampling Method(s): Grab

DTW During Drilling (ft):

DTW After Drilling (ft):
Ground Surface Elev. (ft):

Location (X,Y):

Project: NWMS Puyallup (SAI-413)

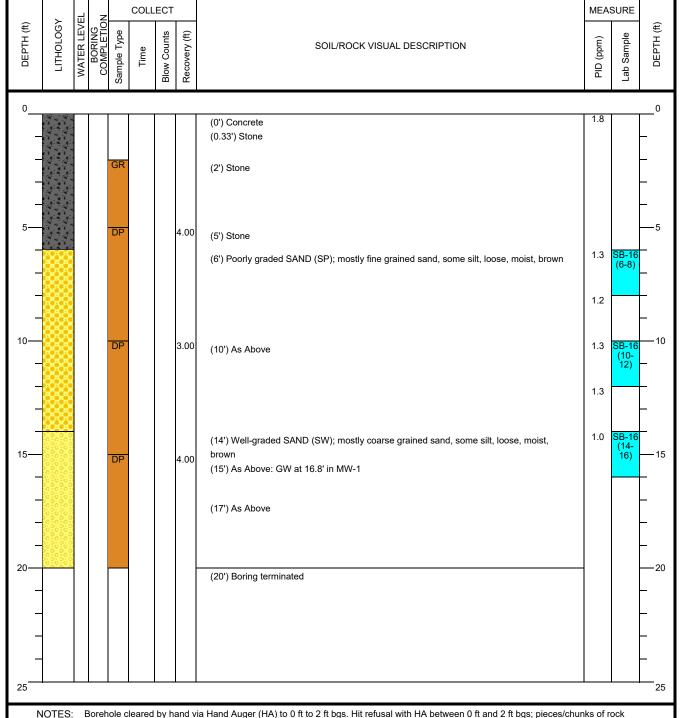
Address: 400 River Road, Puyallup, WA

BORING LOG

Boring No. SB-16 Page: 1 of 1

Drilling Start Date: 8/14/24 Boring Depth (ft): 20.0

Drilling End Date: 8/15/24 Boring Diameter (in): 2.25


Drilling Company: Steadfast Drilling Service Sampling Method(s): Grab, Direct Push

 Drilling Method:
 Hand Auger (HA), Direct Push (DP)
 DTW During Drilling (ft):

 Drilling Equipment:
 Hand Auger, GeoProbe
 DTW After Drilling (ft):

 Driller:
 Ground Surface Elev. (ft):

Logged By: TGS Location (X,Y):

: Borehole cleared by hand via Hand Auger (HA) to 0 ft to 2 ft bgs. Hit refusal with HA between 0 ft and 2 ft bgs; pieces/chunks of rock fractured and pulled out by hand down to 5 ft bgs. Borehole advanced via Direct Push (DP) from 5 ft to 20 ft bgs. Samples SB-16 (6-8), SB-16 (10-12), and SB-16 (14-16) collected at 09:00 and analyzed for VOCs and semi-volatile petroleum products.

Project: NWMS Puyallup (SAI-413)

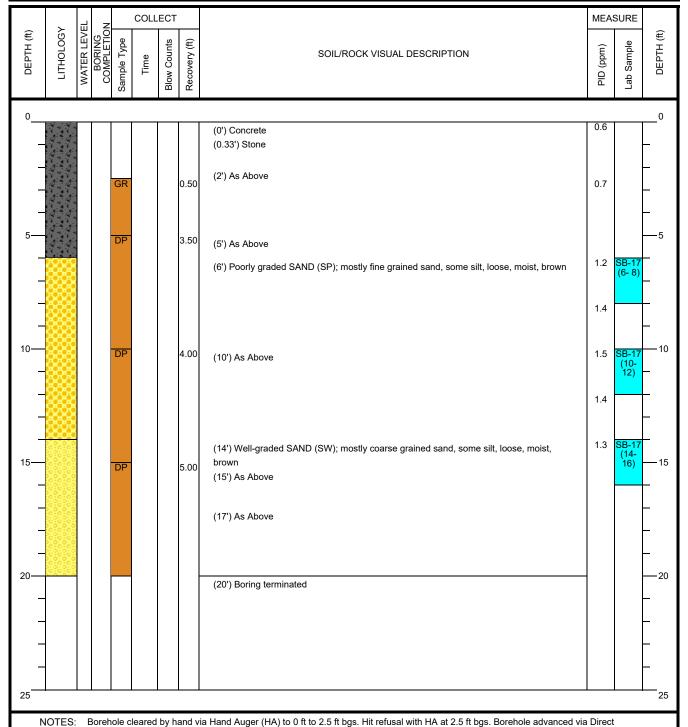
Address: 400 River Road, Puyallup, WA

BORING LOG

Boring No. SB-17
Page: 1 of 1

Drilling Start Date: 8/15/24 Boring Depth (ft): 20.0

Drilling End Date: 8/15/24 Boring Diameter (in): 2.25


Drilling Company: Steadfast Drilling Service Sampling Method(s): Grab, Direct Push

 Drilling Method:
 Hand Auger (HA) Direct Push (DP)
 DTW During Drilling (ft):

 Drilling Equipment:
 Hand Auger, GeoProbe
 DTW After Drilling (ft):

 Driller:
 Ground Surface Elev. (ft):

Logged By: TGS Location (X,Y):

Project: NWMS Puyallup (SAI-413)

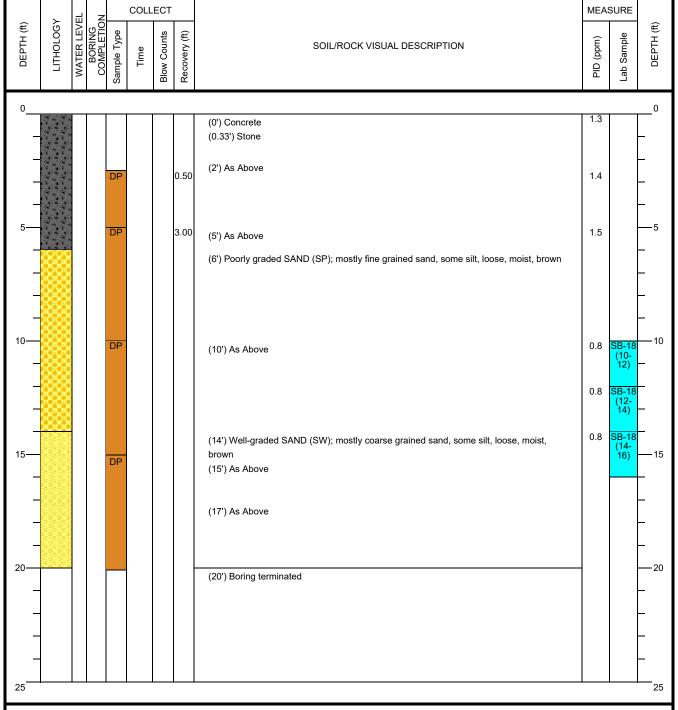
Address: 400 River Road, Puyallup, WA

BORING LOG

Boring No. SB-18 Page: 1 of 1

Drilling Start Date: 8/15/24 Boring Depth (ft): 20.0

Drilling End Date: 8/15/24 Boring Diameter (in): 2.25


Drilling Company: Steadfast Drilling Service Sampling Method(s): Grab, Direct Push

 Drilling Method:
 Hand Auger (HA) Direct Push (DP)
 DTW During Drilling (ft):

 Drilling Equipment:
 Hand Auger, GeoProbe
 DTW After Drilling (ft):

 Driller:
 Ground Surface Elev. (ft):

Logged By: TGS Location (X,Y):

NOTES: Borehole cleared by hand via Hand Auger (HA) to 0 ft to 2.5 ft bgs. Hit refusal with HA at 2.5 ft bgs. Borehole advanced via Direct Push (DP) from 2.5 ft to 20 ft bgs. Samples SB-18 (10-12), SB-18 (12-14), and SB-18 (14-16) collected at 13:30 and analyzed for VOCs and semi-volatile petroleum products.

Appendix C
Field Sampling Forms

INDOOR AIR BUILDING SURVEY and SAMPLING FORM

Site Name:	Northwest Motorsports	Site ID#:	·
Preparer's name:	Tyler Schulz	Date:	8/16/24
Preparer's affiliation:	Hart & Hickman, P.C.	Phone #:	(704) 586-0007
Part I - Occupants			
Building Address:	400 Riv	ver Road, Puyallup, WA	
Property Contact:	Tim Hallice	Owner / Renter / other:	Owner
Contact's Phone: hom	e () work	(704) <u>566-2414</u> ce	11 ()
# of Building occupants	: Children under age 130	Children age 13-18	0 Adults 0
Part II – Building Cha	racteristics		
Building type:	Commercial		
	Former Auto Dealers	ship Year co	nstructed:
Sensitive population: _	None	Other (specify):	
Number of floors below	grade:1		
Number of floors at or a	bove grade:1		
Depth of basement below	w grade surface: ft.	Basement size:	${\rm ft}^2$
Basement floor construc	etion: Concrete	other (specify):	
Foundation walls:	Cinder Blocks	other (specify):	
Basement sump present	?Yes O No O Sump pump? Y	es O No ⊙ Water in sump?	Yes O No O
Type of heating system hot air circulat heat pump 🗵 other (specify)	hot air radiation [hot water radiation	□ wood □ n □ kerosene heater □	steam radiation ☐ electric baseboard ☐
central air condition	tem (check all that apply): oning mechan litioning units kitchen		room ventilation fans ⊠ ide air intake □
	heck all that apply): ☑ fuel oil ☐ wood ☐ co s or floor sealed with waterpro		

Is there a whole house fan? Yes ○ No ○	
Septic system? Yes ♥ Yes (But not used) ♥ No ♥	
Irrigation/private well? Yes ♥ Yes(But not used) ♥ No ♥	
Type of ground cover outside of building: Asphalt	other (specify)
Existing subsurface depressurization (radon) system in place? Yes O	No ⊙ Type:
Sub-slab vapor/moisture barrier in place? Yes O No O	
Type of barrier:	
Part III - Outside Contaminant Sources	
Other stationary sources nearby (gas stations, emission stacks, etc.): _	
Heavy vehicular traffic nearby (or other mobile sources):	River Road

Part IV – Indoor Contaminant Sources

Identify all potential indoor sources found in the building (including attached garages), the location of the source (floor and room), and whether the item was removed from the building 48 hours prior to indoor air sampling event. Any ventilation implemented after removal of the items should be completed

at least 24 hours prior to the commencement of the indoor air sampling event.

Potential Sources	Location(s)	Removed (Yes / No / NA)
Gasoline storage cans	Service Bays	No
Gas-powered equipment		N/A
Kerosene storage cans		N/A
Paints / thinners / strippers		N/A
Cleaning solvents		N/A
Oven cleaners		N/A
Carpet / upholstery cleaners		N/A
Other house cleaning products		N/A
Moth balls		N/A
Polishes / waxes		N/A
Insecticides		N/A
Furniture / floor polish	Building Interior	Yes
Nail polish / polish remover		N/A
Hairspray		N/A
Cologne / perfume		N/A
Air fresheners		N/A
Fuel tank (inside building)	North Service Bay	No
Wood stove or fireplace		N/A
New furniture / upholstery		N/A
New carpeting / flooring		N/A
Hobbies - glues, paints, etc.		N/A

Part V – Miscellaneous Items Do any occupants of the building smoke? Yes ○ No ⊙ How often? hours O days O ago Last time someone smoked in the building? Does the building have an attached garage directly connected to living space? Yes • No • Two automotive service bays If so, is a car usually parked in the garage? Yes O No O Are gas-powered equipment or cans of gasoline/fuels stored in the garage? Yes **②** No **Q** Do the occupants of the building have their clothes dry cleaned? Yes O No O If yes, how often? Weekly \(\oldsymbol{O} \) Monthly \(\oldsymbol{O} \) 3-4 Times per year \(\oldsymbol{O} \) Do any of the occupants use solvents in work? Yes O No O If yes, what types of solvents are used? If yes, are their clothes washed at work? Yes O No O Have any pesticides/herbicides been applied around the building or in the yard? Yes O No • If so, when and which chemicals? Has there ever been a fire in the building? Yes ♥ No ♥ If yes, when? Has painting or staining been done in the building in the last 6 months? Yes O No O If yes, when and where? Part VI – Sampling Information Sample Technician: Tyler Schulz Phone number: (704) <u>586</u> - <u>0007</u> Sample Source (check all that apply):

If not, describe modifications:

No Occupants

Were "Instructions for Occupants" followed?

Provide Drawing of Sample Location(s) in Building

Part VII - Meteorological Conditions	
Was there significant precipitation within 12 hours prior to (or during) the sampling event? Yes O	No O
Describe the general weather conditions: Warm in the 70s, clear, sunny	_
Part VIII – General Observations	
Provide any information that may be pertinent to the sampling event and may assist in the data interpretation process (e.g., observed that drycleaner operated with door or windows propped open for ventilation).	r
Parts cleaner and used coolant drum located in each service bay.	
Three oil ASTs with surface staining and 2 5-gallon buckets of valvoline grease located within north service ba	y.

(Adapted from the NJDEP Vapor Intrusion Guidance, October 2005)

Indoor Air Sampling Field Form

Project No.:	SAI.413	Sampler:	TGS	Weather:	Clear; Sunny; 70s	
		• • • • • • • • • • • • • • • • • • •		110481011		

					Sai	mpling Informati	on			Outdoor P	arameters	Indoor Pa	rameters							
	Sample ID		Date	Proposed Samp l ing Duration	Sampling Period	Time	Canister Pressure	Differentia l Pressure	Outdoor Temperature	Outdoor Humidity	Indoor Temperature	Indoor Humidity								
				mm/dd/yy	Hours	renou	24-hr	" Hg	" H₂O	°F	%	°F	%							
S:	IAS-1	Size:	6L			Beginning	0740	-30		66	60	67	60							
C:	27732	3126.	0L	8/16/24	8 Hr	Middle	1217	-16		75	49	71	48							
R:	13691	Flow Rate:				End	1539	-5		76	49	72	51							
S:	IAS-2	Size:	6L			Beginning	0735	-30												
C:	27742	3126.	OL	8/16/24	8 Hr	Middle	1218	-16												
R:	06023	Flow Rate:				End	1539	-5												
S:	IAS-3	Size:	6L		24 8 Hr	Beginning	0742	-30												
C:	0802B	3126.	OL	8/16/24		Middle	1219	-15												
R:	8169	Flow Rate:				End	1537	-5												
S:	IAS-4/DUP	-1 Size:	6L								Beginning	0746	-30							
C:	37516/37498		OL	OL	OL	OL	OL	OL	OL	OL.	8/16/24 8	8 Hr	Middle	1220	-15					
R:	18713	Flow Rate:				End	1538	- 5												
S:	IAS-5	Size:	6L			Beginning	0750	-30												
C:	0781	3126.	OL	8/16/24	8 Hr	Middle	1221	-18												
R:	10013	Flow Rate:				End	1541	- 7												
S:	BG	Size:	6L			Beginning	0800	-30												
C:	27740	size:	OL	8/16/24	8 Hr	Middle	1223	-17												
R:	10003	Flow Rate:				End	1544	-6												

S = sample ID; C = canister ID; R = regulator ID
" Hg = inches of mercury; " H₂O = inches of water column

Note: negative differential pressure indicates that indoor pressure was lower than pressure outdoors.

Time (EST)	0810	1218	1545
Precipitation (inches)	0	0	0
Barometric Pressure (" Hg)	30.02	29.99	29.98
Wind Direction	SSW	S	SSE
Wind Speed (mph)	0	0	0

Notes:			

Last updated: 6/18/2020

LOW-FLOW GROUNDWATER SAMPLING RECORD

Generalized Stabilization Criteria (1)

pH: +/- 0.1 SU

Specific Conductivity: +/- 5%

Turbidity: <10 NTUs or stabilized Water Level: slight and stable

drawdown (<0.33 ft)

Dissolved Oxygen: +/- 0.2 mg/L

Job No:	SAI.413

Well ID: MW-1

Date: 8/13/24

Site Name: Noethwest Motorsports					Site Location: 400 River Road, Puyallup, Washington				
Sampling Per	rsonnel	TGS			Weather:	Clear; Sunny; 70s			
Casing Mater	ial: PVC		Well Diameter:		2"	Screen Interval	(ft bgs):	11 –	19
Top of Casing	g Elevation (ft m	nsl): 38.59	 Total Well Dept 	h (ft bgs): _	19.1	Depth to Water	·		3
Pump/Tubing	set at (ft):	18	_ Type of Pump:	Peristaltic			ing Material: F		
NOTES:	.,		,,,,	1 Onotatio			<u>.</u>	ory our yron o	
			GROU	NDWATER F	IELD PARAME	TERS			
	Water	Volume	Purging	Temp.	S. Cond.	 На	ORP	Turbidity	DO
<u>Time</u>	Level	Purged	<u>Rate</u>	<u>(°C)</u>	<u>(μS/cm)</u>	<u>(SU)</u>	<u>(mV)</u>	(NTU)	(mg/L
15:35	16.83	0.5 L	100mL/min	15.3	394.9	6.62	-75.3	20.6	0,22
15:40	16.83	1 L	100mL/min	14.4	326.5	6.63	-65.7	10.6	0.22
15:45	16.83	1.5 L	100mL/min	14.3	322.4	6.64	-65.0	10.9	0,20
15:50	16.83	2 L	100mL/min	14.3	322.4	6.64	-64.2	4.47	0.22
15:55	16.83	2.5 L	100mL/min	14.3	317.8	6.65	-59.7	2.54	0.39
16:00	16.83	3 L	100mL/min	14.3	318.1	6.65	-59.5	1.94	0.34
Other Field Par	ameters:								
Parameters tak	en with:	YSI Pro I	Plus, Hatch 21000	<u> </u>	Sample Conditi	ion (Clear, Cloud	y, Other):	Clear	•
Field Filtration:	Yes No	If yes	s, which sample pa	arameters we	ere field filtered:				
Sampled at:	16:00	Sam	ple Delivered to: E	Eurofins					
— Analytical Para	meters and Cor	ntainers (Type	s, Number of Con	tainers, Pres	ervatives): 3x 4	0 mL VOAs (VO	Cs 8260) w/H0	CL	

LOW-FLOW GROUNDWATER SAMPLING RECORD

Generalized Stabilization Criteria (1)

pH: +/- 0.1 SU

Specific Conductivity: +/- 5%

Turbidity: <10 NTUs or stabilized Water Level: slight and stable

drawdown (<0.33 ft)

Dissolved Oxygen: +/- 0.2 mg/L

lob No.	SAI.413		
JOD NO.	O/ (I 10		

Well ID: MW-2

Date: 8/14/24

Site Name: Noethwest Motorsports					Site Location: 400 Rover Road, Puyallup, Washington				
Sampling Pers	sonnel	TGS			Weather:	Clear; Sunny; 70s			
Casing Materia	al: PVC		_ Well Diameter:		2"	Screen Interval	(ft bgs):	11 -	. 19
Top of Casing	Elevation (ft m	nsl): 38.23	Total Well Dept	h (ft bgs): _	19.1	Depth to Water	(ft bgs):	 16	 6.4
Pump/Tubing s	set at (ft):	18	Type of Pump:	Peristaltic			ing Material: [
NOTES:							_		
			GROUN	IDWATER F	IELD PARAME	TERS			
	Water	Volume	Purging	Temp.	S. Cond.	На	ORP	Turbidity	, DO
<u>Time</u>	<u>Level</u>	<u>Purged</u>	<u>Rate</u>	<u>(°C)</u>	<u>(μS/cm)</u>	<u>(SU)</u>	<u>(mV)</u>	(NTU)	(mg/L
13:00	16.42	0.5 L	100mL/min	17.0	369.3	6.71	-28.9	7.10	0,44
13:05	16.42	1 L	100mL/min	17.3	369.2	6.74	-30.4	8.17	0.37
13:10	16.42	1.5 L	100mL/min	17.2	368.	6.73	-31.9	5.04	0,50
Other Field Para	ameters:								
Parameters take	en with:	YSI Pro I	Plus, Hatch 21000	Q	Sample Condit	ion (Clear, Cloud	y, Other):	Cle	ear
Field Filtration:	Yes No	If yes	s, which sample pa	arameters we	re field filtered:				
Sampled at:	13:20	Samp	ple Delivered to: E	Eurofins					
Analytical Paran	neters and Cor		s, Number of Con		envatives): 2v 4	0 ml 1/04a (1/04	20 0260\ w/U	21	

LOW-FLOW GROUNDWATER SAMPLING RECORD

Generalized Stabilization Criteria (1)

pH: +/- 0.1 SU

Specific Conductivity: +/- 5%

Turbidity: <10 NTUs or stabilized Water Level: slight and stable

drawdown (<0.33 ft)

Dissolved Oxygen: +/- 0.2 mg/L

lob No.	SAI.413		
JOD ING.	C/ (I. 1 1 C		

Well ID: MW-3

Date: 8/13/24

Site Name: Noethwest Motorsports					Site Location: 400 Rover Road, Puyallup, Washington				
Sampling Per	rsonnel	TGS			Weather:		Clear; Sun	ny; 70s	
Casing Mater	rial: PVC		Well Diameter:		2"	Screen Interval	(ft bgs):	7	22
Top of Casing	g Elevation (ft ms	l): <u>33.95</u>	Total Well Dept	th (ft bgs): _	22	Depth to Water	(ft bgs):	12.21	
Pump/Tubing	set at (ft):	18	_ Type of Pump:	Peristaltic			ing Material: F		
NOTES:							_		
			<u>GROUI</u>	NDWATER F	ELD PARAME	TERS			
<u>Time</u>	Water <u>Level</u>	Volume <u>Purged</u>	Purging <u>Rate</u>	Temp. <u>(°C)</u>	S. Cond. <u>(μS/cm)</u>	pH <u>(SU)</u>	ORP <u>(mV)</u>	Turbidity <u>(NTU)</u>	DO <u>(mg/L)</u>
17:00	12.21	0.5 L	100mL/min	16.7	404.2	6.32	-2.2	5.26	0.44
17:05	12.22	1 L	100mL/min	16.5	399.9	6.32	-8.8	3.88	0.30
Other Field Par	rameters:								
Parameters tak	cen with:	YSI Pro F	Plus, Hatch 21000	<u> </u>	Sample Condit	ion (Clear, Cloud	y, Other):	Clear	
Field Filtration:	Yes No	If yes	s, which sample pa	arameters we	re field filtered:				
Sampled at:	17:15	Samp	ole Delivered to: [Eurofins					
Analytical Para	meters and Conta	ainers (Type	s, Number of Con	tainers, Prese	ervatives): 3x 4	0 mL VOAs (VOC	Cs 8260) w/HC	CL	

LOW-FLOW GROUNDWATER SAMPLING RECORD

Generalized Stabilization Criteria (1)

pH: +/- 0.1 SU

Specific Conductivity: +/- 5% Turbidity: <10 NTUs or stabilized

Water Level: slight and stable

drawdown (<0.33 ft)

Dissolved Oxygen: +/- 0.2 mg/L

Job No:	SAI.413

Well ID: MW-4

Date: 8/14/24

Site Name: Noethwest Motorsports					Site Location: 400 Rover Road, Puyallup, Washington				
Sampling Per	sonnel	TGS			Weather:		Clear; Sun	ny; 70s	
Casing Mater	ial: PVC		Well Diameter:		2"	Screen Interval	(ft bgs):	7	22
Top of Casing	g Elevation (ft m	nsl): 39.25	Total Well Dept	th (ft bgs): _	22.10	Depth to Water	(ft bgs):	17.5	
Pump/Tubing	set at (ft):	20	_ Type of Pump:	Peristaltic		Tubing Material: Polyethylene			
NOTES:							_		
			GROU	NDWATER F	ELD PARAME	TERS			
	Water	Volume	Purging	Temp.	S. Cond.	рН	ORP	Turbidity	DO
<u>Time</u>	<u>Level</u>	<u>Purged</u>	<u>Rate</u>	<u>(°C)</u>	<u>(μS/cm)</u>	<u>(SU)</u>	<u>(mV)</u>	<u>(NTU)</u>	(mg/L)
09:15	17.53	0.5 L	100mL/min	15.6	258.0	5.77	144.9	2.5	2.11
09:20	17.53	1 L	100mL/min	15.5	260.0	5.79	139.0	1.84	2.20
09:25	17.53	1,5 L	100mL/min	15.5	258,9	5,82	131.1	1.60	2,37
Other Field Par	ameters:								
Parameters tak	en with:	YSI Pro F	Plus, Hatch 21000	<u> </u>	Sample Condit	ion (Clear, Cloud	y, Other):	Clear	
Field Filtration:	Yes No	If yes	s, which sample pa	arameters we	re field filtered:				
Sampled at:	09:30	Samp	ole Delivered to: [Eurofins					
— Analytical Para	meters and Cor	 ntainers (Type	– s, Number of Con	tainers, Prese	ervatives): 3x 4	0 mL VOAs (VO	Cs 8260) w/HC	L _	
							•		

LOW-FLOW GROUNDWATER SAMPLING RECORD

Generalized Stabilization Criteria (1)

pH: +/- 0.1 SU

Specific Conductivity: +/- 5%

Turbidity: <10 NTUs or stabilized Water Level: slight and stable

drawdown (<0.33 ft)

Dissolved Oxygen: +/- 0.2 mg/L

Job No:	SAI.413		

Well ID: MW-5

Date: 8/14/24

Site Name: N	Site Name: Noethwest Motorsports				Site Location: 400 Rover Road, Puyallup, Washington				
Sampling Per	sonnel	TGS			Weather:		Clear; Sur	iny; 70s	
Casing Mater	ial: PVC		Well Diameter:		2"	Screen Interval	(ft bgs):	13 –	23
Top of Casing	Elevation (ft m	ısl): 39.25	Total Well Dept	h (ft bgs): _	23.31	Depth to Water	(ft bgs):	 18.80	
Pump/Tubing	set at (ft):	21	_ Type of Pump:	Peristaltic		Tubing Material: Polyethylene			
NOTES:							_		
			GROUN	IDWATER F	ELD PARAME	TERS			
<u>Time</u>	Water <u>Level</u>	Volume <u>Purged</u>	Purging <u>Rate</u>	Temp. <u>(°C)</u>	S. Cond. (<u>μS/cm)</u>	pH <u>(SU)</u>	ORP <u>(mV)</u>	Turbidity (NTU)	DO <u>(mg/L)</u>
15:00	18.86	0.5 L	100mL/min	16.2	243.5	5.43	171.0	7.87	0.47
15:05	18.86	1 L	100mL/min	16.0	239.2	5.40	178.0	4.46	0.45
15:20	18.86	1.5 L	100mL/min	16.0		5,39	183,9	4,14	0.43
Other Field Par									
Parameters tak			Plus, Hatch 21000)	Sample Conditi	ion (Clear, Cloud	y, Other):	Clear	
Field Filtration:	Yes O No	If yes	s, which sample pa	ırameters we	re field filtered:				
Sampled at:	15:15	Samp	ole Delivered to: E	urofins					
Analytical Para	meters and Con	ntainers (Type	s, Number of Cont	ainers, Prese	ervatives): 3x 4	0 mL VOAs (VOC	Cs 8260) w/H0	CL	

LOW-FLOW GROUNDWATER SAMPLING RECORD

Generalized Stabilization Criteria (1)

pH: +/- 0.1 SU

Specific Conductivity: +/- 5%

Turbidity: <10 NTUs or stabilized Water Level: slight and stable

drawdown (<0.33 ft)

Dissolved Oxygen: +/- 0.2 mg/L

Job No:	SAI.413		

Well ID: MW-6

Date: 8/15/24

Site Name: _I	Site Name: Noethwest Motorsports				Site Location: 400 Rover Road, Puyallup, Washington					
Sampling Per	rsonnel	TGS			Weather:		Clear; Sun	ny; 70s		
Casing Mater	rial: PVC		Well Diameter:		2"	Screen Interval	(ft bgs):	8	_ 22	
Top of Casing	g Elevation (ft m	nsl): 40.54	_ Total Well Dept	th (ft bgs):	22.55	Depth to Water	(ft bgs):	1	8.7	
Pump/Tubing	set at (ft):	21	Type of Pump:	Peristaltic		Tub	ing Material: F	Polyethylene		
NOTES:							_			
			<u>GROUI</u>	NDWATER F	IELD PARAME	ΓERS				
<u>Time</u>	Water <u>Level</u>	Volume <u>Purged</u>	Purging <u>Rate</u>	Temp. <u>(°C)</u>	S. Cond. <u>(μS/cm)</u>	pH <u>(SU)</u>	ORP <u>(mV)</u>	Turbidit <u>(NTU)</u>	•	
10:00	18.7	0.5 L	100mL/min	15.7	458.2	6.30	12.8	3.27	0.27	
10:05	18.7	1 L	100mL/min	15.6	456.9	6.30	9.7	2.28	0.31	
10:10	18.7	1.5 L	100mL/min	15.6	459.2	6.33	8.3	2.11	0.30	
Other Field Par	rameters:									
Parameters tak	cen with:	YSI Pro I	Plus, Hatch 21000	<u> </u>	Sample Conditi	on (Clear, Cloud	y, Other):	Cl	ear	
Field Filtration:	Yes O No	If yes	s, which sample pa	arameters we	re field filtered:					
Sampled at:	10:15	Samp	ole Delivered to: [Eurofins						
Analytical Para	meters and Cor	ntainers (Type	s, Number of Con	tainers, Pres	ervatives): 3x 40	0 mL VOAs (VOC	Cs 8260) w/HC	CL .		

Sub-Slab / Soil Gas Vapor Sampling Field Form

Proiect No.:	SAI.474	Sampler:	TGS	Weather:	Clear; Sunny; 70s

				Saı	mpling Informat	tion		Outdoor Parameters		Indoor Parameters	
	Sample ID		Date	Proposed Sampling Duration	g o l	Time	Canister Pressure	Outdoor Temperature	Outdoor Humidity	Indoor Temperature	Indoor Humidity
			mm/dd/yy	Minutes	Period	24-hr	" Hg	°F	%	°F	%
S:	SSV-7	1.4 L			Beginning	1750	-28				
C:	5156	1.4 L	8/16/24	10 Min	Middle	1755	-14	81	41	76	45
R:	1205 Flow Rate:				End	1800	-5				
S:	SSV-8	1.4 L			Beginning	1813	-29				
C:	1480		8/16/24	10 Min	Middle	1818	-12	81	41	76	45
R:	1246 Flow Rate:				End	1820	-5				
S:	Size:				Beginning						
C:	31ZE.				Middle						
R:	Flow Rate:				End						
S:	Size:				Beginning						
C:	Size:				Middle						
R:	Flow Rate:				End						
S:	Size:				Beginning						
C:					Middle						
R:	Flow Rate:				End						
S:	Size:			_	Beginning	_					_
C:					Middle						
R:	Flow Rate:	1.4 10.6			End						

S = sample ID; C = canister ID; R = regulator ID; SS = sub-slab; SG = soil gas; Perm = permanent; Temp = temporary

Last updated: 6/18/2020

Note:

Per NC DEQ DWM Vapor Intrusion Guidance, shut-in test and helium leak check must be passed before sampling.

otes:			

[&]quot;Hg = inches of mercury

Sub-Slab / Soil Gas Vapor Sampling Field Form

Project No.:	SAI.474	Sampler:	TGS	Weather:	Clear; Sunny; 70s	
FIOJECT NO		Sampler		** ******************************		

					Sai	mpling Informat	ion		Outdoor P	arameters	Indoor Parameters	
	Sa	mple ID		Date	Proposed Sampling Duration	Sampling Period	Time	Canister Pressure	Outdoor Temperature	Outdoor Humidity	Indoor Temperature	I ndoor Humidity
				mm/dd/yy	Minutes	renou	24-hr	" Hg	°F	%	°F	%
S:	SSV-1	Size:	1.4 L			Beginning	1619	-29				
C:	1148		1.4 L	8/16/24	10 Min	Middle	1624	-9	79	41	76	43
R:	1041	Flow Rate:				End	1626	-5				
S:	SSV-2	Size:	1.4 L			Beginning	1632	-28]			
C:	2854			8/16/24	10 Min	lin Middle End	1637	-8	79	41	76	43
R:	1250	Flow Rate:					1638	-5				
S:	SSV-3	SSV-3 Size: 1.4 L		Beginning	1644	-29						
C:	2370			8/16/24	10 Min	Midd l e	1649	-11	79	41	76	43
R:	1288	Flow Rate:				End	1651	-5				
S:	SSV-4	Size:	1.4 L		10 Min	Beginning	1700	-29		41		
C:	10907/15126			8/16/24		Middle	1705	-13	79		76	43
R:	1195	Flow Rate:				End	1708	-5				
S:	SSV-5	Size:	1.4 L			Beginning	1714	-29]			
C:	10254		1.7 L	8/16/24	10 Min	Middle	1719	-19	79	41	76	43
R:	1170	Flow Rate:				End	1728	-5				
S:	SSV-6	Size:	1.4 L			Beginning	1735	-28]			
C:	1939		1.寸 ┗	8/16/24	10 Min	Middle	1740	-14	79	41	76	43
R:	1060	Flow Rate:				End	1743	-5				

S = sample ID; C = canister ID; R = regulator ID; SS = sub-slab; SG = soil gas; Perm = permanent; Temp = temporary

Last updated: 6/18/2020

Note:

Per NC DEQ DWM Vapor Intrusion Guidance, shut-in test and helium leak check must be passed before sampling.

Notes:		
•		
-		
-		

[&]quot; Hg = inches of mercury

Appendix D Laboratory Analytical Reports

44

ANALYTICAL REPORT

PREPARED FOR

Attn: Tyler Schulz Hart & Hickman, PC 2923 S Tryon Street Suite 100 Charlotte, North Carolina 28203

Generated 8/30/2024 11:19:13 AM

JOB DESCRIPTION

Northwest Motorsports - Puyallup

JOB NUMBER

580-143019-1

Eurofins Seattle 5755 8th Street East Tacoma WA 98424

Eurofins Seattle

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northwest, LLC Project Manager.

Authorization

Generated 8/30/2024 11:19:13 AM

Authorized for release by Pauline Matlock, Project Manager Pauline.Matlock@et.eurofinsus.com (253)922-2310

Client: Hart & Hickman, PC Project/Site: Northwest Motorsports - Puyallup Laboratory Job ID: 580-143019-1

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Definitions	5
Client Sample Results	6
QC Sample Results	12
Chronicle	21
Certification Summary	22
Sample Summary	23
Chain of Custody	24
Receipt Checklists	25

4

Δ

6

8

9

10

Case Narrative

Client: Hart & Hickman, PC

Project: Northwest Motorsports - Puyallup

Job ID: 580-143019-1 Eurofins Seattle

Job Narrative 580-143019-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed
 unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 8/16/2024 12:18 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.8°C.

GC/MS VOA

Method 8260D_LL: The continuing calibration verification (CCV) associated with batch 580-469513 recovered outside acceptance criteria, low biased, for Bromomethane and Chloromethane. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported.

Method 8260D_LL: The continuing calibration verification (CCV) associated with batch 580-469513 recovered above the upper control limit for Dichlorodifluoromethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: MW-1 (580-143019-1), MW-4 (580-143019-4) and (CCVIS 580-469513/3).

Method 8260D_LL: The LCSD associated with analytical batch 580-469513 was outside of control limits low for cis-1,3-Dichloropropene. Re-analysis was performed outside of analytical holding time, therefore, both sets of data are reported. The following samples are affected: MW-1 (580-143019-1) and (LCSD 580-469513/5)

Method 8260D_LL: The following sample was analyzed outside of analytical holding time due to the sample being activated outside of analytical holding time.MW-3 (580-143019-3).

Method 8260D_LL: The continuing calibration verification (CCV) associated with batch 580-469625 recovered above the upper control limit for Dichlorodifluoromethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: MW-3 (580-143019-3) and (CCVIS 580-469625/4).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Seattle

Job ID: 580-143019-1

Page 4 of 25 8/30/2024

Definitions/Glossary

Client: Hart & Hickman, PC Job ID: 580-143019-1

Project/Site: Northwest Motorsports - Puyallup

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

LCS and/or LCSD is outside acceptance limits, low biased.

Н Sample was prepped or analyzed beyond the specified holding time. This does not meet regulatory requirements. Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit **CNF** Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) **DER**

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) EDL LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive **Quality Control** QC

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) **TEF TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Seattle

Client: Hart & Hickman, PC Job ID: 580-143019-1

0.30

0.20

MDL Unit

0.11 ug/L

0.025 ug/L

0.062 ug/L

0.060 ug/L

0.13 ug/L

0.082 ug/L

0.067 ug/L

0.16 ug/L

0.27 ug/L

0.070 ug/L

1.2 ug/L

0.12 ug/L

0.52 ug/L

0.35 ug/L

0.091 ug/L

Project/Site: Northwest Motorsports - Puyallup

Method: SW846 8260D - Volatile Organic Compounds by GC/MS

Result Qualifier

ND

Client Sample ID: MW-1

1,1,1,2-Tetrachloroethane

1,1,1-Trichloroethane

Dibromomethane

Ethylbenzene

Dichlorobromomethane

Dichlorodifluoromethane

Ethylene Dibromide

Isopropylbenzene

Hexachlorobutadiene

Methyl tert-butyl ether

Methylene Chloride

Naphthalene

n-Butylbenzene

N-Propylbenzene

m-Xylene & p-Xylene

Analyte

Date Collected: 08/13/24 16:00 Date Received: 08/16/24 12:18 Lab Sample ID: 580-143019-1

Matrix: Water

D	Prepared	Analyzed	Dil Fac
		08/27/24 19:52	1

08/27/24 19:52

	1,1,1 111011101001111110	110	0.20	0.020	49, L	00/21/21 10.02	•
	1,1,2,2-Tetrachloroethane	ND	0.20	0.056	ug/L	08/27/24 19:52	1
	1,1,2-Trichloroethane	ND	0.20	0.070	ug/L	08/27/24 19:52	1
	1,1-Dichloroethane	ND	0.20	0.064	ug/L	08/27/24 19:52	1
	1,1-Dichloroethene	ND	0.20	0.035	ug/L	08/27/24 19:52	1
İ	1,1-Dichloropropene	ND	0.20	0.084	ug/L	08/27/24 19:52	1
	1,2,3-Trichlorobenzene	ND	1.5	0.47	ug/L	08/27/24 19:52	1
	1,2,3-Trichloropropane	ND	0.20	0.050	ug/L	08/27/24 19:52	1
İ	1,2,4-Trichlorobenzene	ND	1.5	0.36	ug/L	08/27/24 19:52	1
	1,2,4-Trimethylbenzene	ND	0.55	0.23	ug/L	08/27/24 19:52	1
	1,2-Dibromo-3-Chloropropane	ND	2.0	0.48	ug/L	08/27/24 19:52	1
İ	1,2-Dichlorobenzene	ND	0.30	0.038	ug/L	08/27/24 19:52	1
	1,2-Dichloroethane	ND	0.25	0.12	ug/L	08/27/24 19:52	1
	1,2-Dichloropropane	ND	0.20	0.060	ug/L	08/27/24 19:52	1
İ	1,3,5-Trimethylbenzene	ND	0.50	0.19	ug/L	08/27/24 19:52	1
	1,3-Dichlorobenzene	ND	0.30	0.050	ug/L	08/27/24 19:52	1
	1,3-Dichloropropane	ND	0.20	0.056	ug/L	08/27/24 19:52	1
İ	1,4-Dichlorobenzene	ND	0.30	0.050	ug/L	08/27/24 19:52	1
	2,2-Dichloropropane	ND	0.50	0.060	ug/L	08/27/24 19:52	1
	2-Chlorotoluene	ND	0.50	0.12	ug/L	08/27/24 19:52	1
İ	4-Chlorotoluene	ND	0.30	0.12	ug/L	08/27/24 19:52	1
	4-Isopropyltoluene	ND	0.50	0.25	ug/L	08/27/24 19:52	1
	Benzene	ND	0.20	0.030	ug/L	08/27/24 19:52	1
	Bromobenzene	ND	0.20	0.038	ug/L	08/27/24 19:52	1
	Bromoform	ND	0.50	0.16	ug/L	08/27/24 19:52	1
	Bromomethane	ND	0.50	0.13	ug/L	08/27/24 19:52	1
	Carbon tetrachloride	ND	0.20	0.025	-	08/27/24 19:52	1
	Chlorobenzene	ND	0.20	0.060	ug/L	08/27/24 19:52	1
	Chlorobromomethane	ND	0.20	0.050		08/27/24 19:52	1
	Chlorodibromomethane	ND	0.20	0.055	ug/L	08/27/24 19:52	1
	Chloroethane	ND	0.50	0.24	ug/L	08/27/24 19:52	1
	Chloroform	ND	0.20	0.030		08/27/24 19:52	1
	Chloromethane	ND	0.50		ug/L	08/27/24 19:52	1
	cis-1,2-Dichloroethene	ND	0.20	0.055	ug/L	08/27/24 19:52	1
	cis-1,3-Dichloropropene	ND *-	0.20	0.090	ug/L	08/27/24 19:52	1

0.20

0.20

0.40

0.20

0.15

0.50

1.0

0.30

5.0

0.50

1.5

1.0

0.30

Eurofins Seattle

08/27/24 19:52

08/27/24 19:52

08/27/24 19:52

08/27/24 19:52

08/27/24 19:52

08/27/24 19:52

08/27/24 19:52

08/27/24 19:52

08/27/24 19:52

08/27/24 19:52

08/27/24 19:52

08/27/24 19:52

08/27/24 19:52

Page 6 of 25 8/30/2024

Client: Hart & Hickman, PC Job ID: 580-143019-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: MW-1

Lab Sample ID: 580-143019-1

Matrix: Water

Date Collected: 08/13/24 16:00 Date Received: 08/16/24 12:18

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	MD		0.50	0.23	ug/L			08/27/24 19:52	1
sec-Butylbenzene	ND		1.0	0.17	ug/L			08/27/24 19:52	1
Styrene	ND		1.0	0.33	ug/L			08/27/24 19:52	1
tert-Butylbenzene	ND		0.50	0.26	ug/L			08/27/24 19:52	1
Tetrachloroethene	ND		0.50	0.084	ug/L			08/27/24 19:52	1
Toluene	ND		0.20	0.050	ug/L			08/27/24 19:52	1
trans-1,2-Dichloroethene	ND		0.20	0.033	ug/L			08/27/24 19:52	1
trans-1,3-Dichloropropene	ND		0.20	0.092	ug/L			08/27/24 19:52	1
Trichloroethene	ND		0.20	0.066	ug/L			08/27/24 19:52	1
Trichlorofluoromethane	ND		0.50	0.12	ug/L			08/27/24 19:52	1
Vinyl chloride	ND		0.10	0.040	ug/L			08/27/24 19:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		80 - 120			•		08/27/24 19:52	1
4-Bromofluorobenzene (Surr)	107		80 - 120					08/27/24 19:52	1
Dibromofluoromethane (Surr)	110		80 - 120					08/27/24 19:52	1
Toluene-d8 (Surr)	95		80 - 120					08/27/24 19:52	1
Method: SW846 8260D - Vo	latile Organic	Compoun	ds by GC/MS	- RA					
Analyte	_	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
cis-1,3-Dichloropropene	ND	Н	0.20	0.090	ua/L			08/28/24 16:00	

- -	cis-1,3-Dichloropropene	Result ND	H	0.20	0.090		— <u> </u>	Prepared	08/28/24 16:00	Dii Fac
	, , ,				0.000	ug/L		_		·
-	Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
- -	1,2-Dichloroethane-d4 (Surr)	102		80 - 120					08/28/24 16:00	1
4	4-Bromofluorobenzene (Surr)	106		80 - 120					08/28/24 16:00	1
1	Dibromofluoromethane (Surr)	108		80 - 120					08/28/24 16:00	1
	Toluene-d8 (Surr)	96		80 - 120					08/28/24 16:00	1

Client: Hart & Hickman, PC Job ID: 580-143019-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: MW-3

Lab Sample ID: 580-143019-3

Matrix: Water

Date Collected: 08/13/24 17:15 Date Received: 08/16/24 12:18

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND	H	0.30	0.11	ug/L		<u> </u>	08/28/24 16:23	
1,1,1-Trichloroethane	ND	Н	0.20	0.025	ug/L			08/28/24 16:23	
1,1,2,2-Tetrachloroethane	ND	Н	0.20	0.056	ug/L			08/28/24 16:23	
1,1,2-Trichloroethane	ND	Н	0.20	0.070	ug/L			08/28/24 16:23	
1,1-Dichloroethane	ND	Н	0.20	0.064	ug/L			08/28/24 16:23	
1,1-Dichloroethene	ND	Н	0.20	0.035	_			08/28/24 16:23	
1,1-Dichloropropene	ND	Н	0.20	0.084				08/28/24 16:23	
1,2,3-Trichlorobenzene	ND	Н	1.5	0.47	-			08/28/24 16:23	
1,2,3-Trichloropropane	ND	Н	0.20	0.050	-			08/28/24 16:23	
1,2,4-Trichlorobenzene	ND	Н	1.5	0.36				08/28/24 16:23	
1,2,4-Trimethylbenzene	ND	Н	0.55	0.23	-			08/28/24 16:23	
1,2-Dibromo-3-Chloropropane	ND	Н	2.0	0.48	-			08/28/24 16:23	
1,2-Dichlorobenzene	ND		0.30	0.038				08/28/24 16:23	
1,2-Dichloroethane	ND		0.25	0.12	-			08/28/24 16:23	
1,2-Dichloropropane	ND		0.20	0.060	-			08/28/24 16:23	
1,3,5-Trimethylbenzene	ND		0.50	0.19				08/28/24 16:23	
1,3-Dichlorobenzene	ND		0.30	0.050	-			08/28/24 16:23	
1,3-Dichloropropane	ND		0.20	0.056	-			08/28/24 16:23	
1,4-Dichlorobenzene	ND		0.30	0.050				08/28/24 16:23	
2,2-Dichloropropane	ND		0.50	0.060	-			08/28/24 16:23	
2-Chlorotoluene	ND		0.50	0.12	-			08/28/24 16:23	
I-Chlorotoluene	ND		0.30	0.12				08/28/24 16:23	
I-Isopropyltoluene	ND		0.50	0.25				08/28/24 16:23	
Benzene	ND		0.20	0.030	-			08/28/24 16:23	
Bromobenzene	ND		0.20	0.038				08/28/24 16:23	
Bromoform	ND		0.50	0.16	-			08/28/24 16:23	
Bromomethane	ND		0.50	0.13	-			08/28/24 16:23	
Carbon tetrachloride	ND		0.20	0.025				08/28/24 16:23	
Chlorobenzene	ND		0.20	0.023	-			08/28/24 16:23	
Chlorobenzene	ND		0.20	0.050	-			08/28/24 16:23	
Chlorodibromomethane	ND		0.20	0.055				08/28/24 16:23	
Chloroethane	ND		0.50	0.033	-			08/28/24 16:23	
Chloroform	ND		0.20	0.030	-			08/28/24 16:23	
Chloromethane	ND		0.50	0.030				08/28/24 16:23	
cis-1,2-Dichloroethene	ND ND		0.20	0.055	-			08/28/24 16:23	
cis-1,3-Dichloropropene	ND		0.20	0.090	-			08/28/24 16:23	
Dibromomethane	ND		0.20	0.090					
Dichlorobromomethane	ND ND			0.062				08/28/24 16:23 08/28/24 16:23	
Dichlorodifluoromethane	ND ND		0.20 0.40		-			08/28/24 16:23	
	ND		0.40		ug/L			08/28/24 16:23	
Ethylbenzene				0.082	-				
Ethylene Dibromide	ND		0.15	0.067	-			08/28/24 16:23	
Hexachlorobutadiene	ND		0.50		ug/L			08/28/24 16:23	
sopropylbenzene	ND		1.0		ug/L			08/28/24 16:23	
Methyl tert-butyl ether	ND		0.30	0.070	_			08/28/24 16:23	
Methylene Chloride	ND		5.0		ug/L			08/28/24 16:23	
n-Xylene & p-Xylene	ND		0.50		ug/L			08/28/24 16:23	
Naphthalene	ND		1.5	0.52				08/28/24 16:23	
n-Butylbenzene	ND	Н	1.0	0.35	ug/L			08/28/24 16:23	

Eurofins Seattle

Page 8 of 25 8/30/2024

Client: Hart & Hickman, PC Job ID: 580-143019-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: MW-3

Lab Sample ID: 580-143019-3

Matrix: Water

Date Collected: 08/13/24 17:15 Date Received: 08/16/24 12:18

Method: SW846 8260D - Vo	olatile Organic	Compoun	ds by GC/MS	(Conti	inued)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	MD	H	0.50	0.23	ug/L			08/28/24 16:23	1
sec-Butylbenzene	ND	Н	1.0	0.17	ug/L			08/28/24 16:23	1
Styrene	ND	Н	1.0	0.33	ug/L			08/28/24 16:23	1
tert-Butylbenzene	ND	Н	0.50	0.26	ug/L			08/28/24 16:23	1
Tetrachloroethene	ND	Н	0.50	0.084	ug/L			08/28/24 16:23	1
Toluene	ND	Н	0.20	0.050	ug/L			08/28/24 16:23	1
trans-1,2-Dichloroethene	ND	Н	0.20	0.033	ug/L			08/28/24 16:23	1
trans-1,3-Dichloropropene	ND	Н	0.20	0.092	ug/L			08/28/24 16:23	1
Trichloroethene	ND	Н	0.20	0.066	ug/L			08/28/24 16:23	1
Trichlorofluoromethane	ND	Н	0.50	0.12	ug/L			08/28/24 16:23	1
Vinyl chloride	ND	Н	0.10	0.040	ug/L			08/28/24 16:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		80 - 120					08/28/24 16:23	1
4-Bromofluorobenzene (Surr)	107		80 - 120					08/28/24 16:23	1
Dibromofluoromethane (Surr)	108		80 - 120					08/28/24 16:23	1
Toluene-d8 (Surr)	95		80 - 120					08/28/24 16:23	1

8/30/2024

2

8

9

10

1-

Client: Hart & Hickman, PC Job ID: 580-143019-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: MW-4

Date Collected: 08/14/24 09:30 Date Received: 08/16/24 12:18 Lab Sample ID: 580-143019-4

Matrix: Water

Analyte	Result Qualifier	RL _	MDL		<u>D</u> .	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	0.30	0.11	ug/L			08/27/24 19:29	1
1,1,1-Trichloroethane	0.18 J	0.20	0.025	ug/L			08/27/24 19:29	1
1,1,2,2-Tetrachloroethane	ND	0.20	0.056	ug/L			08/27/24 19:29	1
1,1,2-Trichloroethane	ND	0.20	0.070	ug/L			08/27/24 19:29	1
1,1-Dichloroethane	ND	0.20	0.064	ug/L			08/27/24 19:29	1
1,1-Dichloroethene	ND	0.20	0.035	ug/L			08/27/24 19:29	1
1,1-Dichloropropene	ND	0.20	0.084	ug/L			08/27/24 19:29	1
1,2,3-Trichlorobenzene	ND	1.5	0.47	ug/L			08/27/24 19:29	1
1,2,3-Trichloropropane	ND	0.20	0.050	ug/L			08/27/24 19:29	1
1,2,4-Trichlorobenzene	ND	1.5	0.36	ug/L			08/27/24 19:29	1
1,2,4-Trimethylbenzene	ND	0.55		ug/L			08/27/24 19:29	1
1,2-Dibromo-3-Chloropropane	ND	2.0		ug/L			08/27/24 19:29	1
1,2-Dichlorobenzene	ND	0.30	0.038				08/27/24 19:29	1
1,2-Dichloroethane	ND	0.25		ug/L			08/27/24 19:29	1
1,2-Dichloropropane	ND	0.20	0.060	-			08/27/24 19:29	1
1,3,5-Trimethylbenzene	ND	0.50		ug/L			08/27/24 19:29	1
1,3-Dichlorobenzene	ND	0.30	0.050	•			08/27/24 19:29	1
1,3-Dichloropropane	ND	0.20	0.056	-			08/27/24 19:29	1
1,4-Dichlorobenzene	ND	0.30	0.050				08/27/24 19:29	· 1
2,2-Dichloropropane	ND	0.50	0.060	-			08/27/24 19:29	1
2-Chlorotoluene	ND	0.50		ug/L			08/27/24 19:29	1
4-Chlorotoluene	ND ND	0.30		ug/L ug/L			08/27/24 19:29	' 1
4-Isopropyltoluene	ND ND	0.50		ug/L ug/L			08/27/24 19:29	
				-				1
Benzene Bromobenzene	ND ND	0.20	0.030				08/27/24 19:29	
	ND	0.20	0.038	_			08/27/24 19:29	1
Bromoform	ND	0.50		ug/L			08/27/24 19:29	1
Bromomethane	ND	0.50		ug/L			08/27/24 19:29	
Carbon tetrachloride	ND	0.20	0.025	-			08/27/24 19:29	1
Chlorobenzene	ND	0.20	0.060	J			08/27/24 19:29	1
Chlorobromomethane	ND	0.20	0.050				08/27/24 19:29	
Chlorodibromomethane	ND	0.20	0.055	-			08/27/24 19:29	1
Chloroethane	ND	0.50		ug/L			08/27/24 19:29	1
Chloroform	ND	0.20	0.030				08/27/24 19:29	1
Chloromethane	ND	0.50		ug/L			08/27/24 19:29	1
cis-1,2-Dichloroethene	ND	0.20	0.055	-			08/27/24 19:29	1
Dibromomethane	ND	0.20	0.062				08/27/24 19:29	1
Dichlorobromomethane	ND	0.20	0.060	-			08/27/24 19:29	1
Dichlorodifluoromethane	ND	0.40	0.13	ug/L			08/27/24 19:29	1
Ethylbenzene	ND	0.20	0.082	ug/L			08/27/24 19:29	1
Ethylene Dibromide	ND	0.15	0.067	ug/L			08/27/24 19:29	1
Hexachlorobutadiene	ND	0.50	0.16	ug/L			08/27/24 19:29	1
Isopropylbenzene	ND	1.0	0.27	ug/L			08/27/24 19:29	1
Methyl tert-butyl ether	ND	0.30	0.070	ug/L			08/27/24 19:29	1
Methylene Chloride	ND	5.0	1.2	ug/L			08/27/24 19:29	1
m-Xylene & p-Xylene	ND	0.50	0.12	ug/L			08/27/24 19:29	1
Naphthalene	ND	1.5		ug/L			08/27/24 19:29	1
n-Butylbenzene	ND	1.0		ug/L			08/27/24 19:29	1
N-Propylbenzene	ND	0.30	0.091	_			08/27/24 19:29	1
o-Xylene	ND	0.50		ug/L			08/27/24 19:29	1

Eurofins Seattle

3

<u>ح</u>

7

9

1

Client: Hart & Hickman, PC Job ID: 580-143019-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: MW-4

Lab Sample ID: 580-143019-4

Matrix: Water

Date Collected: 08/14/24 09:30 Date Received: 08/16/24 12:18

Method: SW846 8260D - Vo	latile Organic	Compoun	ds by GC/MS	(Conti	inued)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	ND		1.0	0.17	ug/L			08/27/24 19:29	1
Styrene	ND		1.0	0.33	ug/L			08/27/24 19:29	1
tert-Butylbenzene	ND		0.50	0.26	ug/L			08/27/24 19:29	1
Tetrachloroethene	ND		0.50	0.084	ug/L			08/27/24 19:29	1
Toluene	ND		0.20	0.050	ug/L			08/27/24 19:29	1
trans-1,2-Dichloroethene	ND		0.20	0.033	ug/L			08/27/24 19:29	1
trans-1,3-Dichloropropene	ND		0.20	0.092	ug/L			08/27/24 19:29	1
Trichloroethene	ND		0.20	0.066	ug/L			08/27/24 19:29	1
Trichlorofluoromethane	ND		0.50	0.12	ug/L			08/27/24 19:29	1
Vinyl chloride	ND		0.10	0.040	ug/L			08/27/24 19:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		80 - 120					08/27/24 19:29	1
4-Bromofluorobenzene (Surr)	106		80 - 120					08/27/24 19:29	1
Dibromofluoromethane (Surr)	107		80 - 120					08/27/24 19:29	1
Toluene-d8 (Surr)	96		80 - 120					08/27/24 19:29	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,3-Dichloropropene	ND		0.20	0.090	ug/L			08/28/24 16:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		80 - 120					08/28/24 16:46	1
4-Bromofluorobenzene (Surr)	107		80 - 120					08/28/24 16:46	1
Dibromofluoromethane (Surr)	109		80 - 120					08/28/24 16:46	1
Toluene-d8 (Surr)	96		80 - 120					08/28/24 16:46	1

Client: Hart & Hickman, PC Job ID: 580-143019-1

Project/Site: Northwest Motorsports - Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 580-469513/7

Matrix: Water

Analysis Batch: 469513

Client Sample ID: Method Blank **Prep Type: Total/NA**

Amaluta		MB	ъ.	MDI	1114	_	B	A l	D!! E
Analyte		Qualifier	RL _	MDL		<u>D</u> .	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		0.30		ug/L			08/27/24 13:30	1
1,1,1-Trichloroethane	ND		0.20	0.025	-			08/27/24 13:30	1
1,1,2,2-Tetrachloroethane	ND		0.20	0.056				08/27/24 13:30	
1,1,2-Trichloroethane	ND		0.20	0.070	-			08/27/24 13:30	1
1,1-Dichloroethane	ND		0.20	0.064	_			08/27/24 13:30	1
1,1-Dichloroethene	ND		0.20	0.035				08/27/24 13:30	1
1,1-Dichloropropene	ND		0.20	0.084	-			08/27/24 13:30	1
1,2,3-Trichlorobenzene	ND		1.5		ug/L			08/27/24 13:30	1
1,2,3-Trichloropropane	ND		0.20	0.050				08/27/24 13:30	1
1,2,4-Trichlorobenzene	ND		1.5		ug/L			08/27/24 13:30	1
1,2,4-Trimethylbenzene	ND		0.55		ug/L			08/27/24 13:30	1
1,2-Dibromo-3-Chloropropane	ND		2.0		ug/L			08/27/24 13:30	1
1,2-Dichlorobenzene	ND		0.30	0.038	ug/L			08/27/24 13:30	1
1,2-Dichloroethane	ND		0.25	0.12	ug/L			08/27/24 13:30	1
1,2-Dichloropropane	ND		0.20	0.060	ug/L			08/27/24 13:30	1
1,3,5-Trimethylbenzene	ND		0.50	0.19	ug/L			08/27/24 13:30	1
1,3-Dichlorobenzene	ND		0.30	0.050	ug/L			08/27/24 13:30	1
1,3-Dichloropropane	ND		0.20	0.056	ug/L			08/27/24 13:30	1
1,4-Dichlorobenzene	ND		0.30	0.050	ug/L			08/27/24 13:30	1
2,2-Dichloropropane	ND		0.50	0.060	ug/L			08/27/24 13:30	1
2-Chlorotoluene	ND		0.50	0.12	ug/L			08/27/24 13:30	1
4-Chlorotoluene	ND		0.30	0.12	ug/L			08/27/24 13:30	1
4-Isopropyltoluene	ND		0.50	0.25	ug/L			08/27/24 13:30	1
Benzene	ND		0.20	0.030	ug/L			08/27/24 13:30	1
Bromobenzene	ND		0.20	0.038	ug/L			08/27/24 13:30	1
Bromoform	ND		0.50	0.16	ug/L			08/27/24 13:30	1
Bromomethane	ND		0.50	0.13	ug/L			08/27/24 13:30	1
Carbon tetrachloride	ND		0.20	0.025	ug/L			08/27/24 13:30	1
Chlorobenzene	ND		0.20	0.060	ug/L			08/27/24 13:30	1
Chlorobromomethane	ND		0.20	0.050	ug/L			08/27/24 13:30	1
Chlorodibromomethane	ND		0.20	0.055	ug/L			08/27/24 13:30	1
Chloroethane	ND		0.50		ug/L			08/27/24 13:30	1
Chloroform	ND		0.20	0.030	ug/L			08/27/24 13:30	1
Chloromethane	ND		0.50		ug/L			08/27/24 13:30	1
cis-1,2-Dichloroethene	ND		0.20	0.055	-			08/27/24 13:30	1
cis-1,3-Dichloropropene	ND		0.20	0.090	ug/L			08/27/24 13:30	1
Dibromomethane	ND		0.20	0.062				08/27/24 13:30	1
Dichlorobromomethane	ND		0.20	0.060	ug/L			08/27/24 13:30	1
Dichlorodifluoromethane	ND		0.40		ug/L			08/27/24 13:30	1
Ethylbenzene	ND		0.20	0.082				08/27/24 13:30	1
Ethylene Dibromide	ND		0.15	0.067				08/27/24 13:30	1
Hexachlorobutadiene	ND		0.50		ug/L			08/27/24 13:30	1
Isopropylbenzene	ND		1.0		ug/L			08/27/24 13:30	
Methyl tert-butyl ether	ND		0.30	0.070				08/27/24 13:30	1
Methylene Chloride	ND		5.0		ug/L			08/27/24 13:30	1
m-Xylene & p-Xylene	ND		0.50		ug/L			08/27/24 13:30	
Naphthalene	ND		1.5		ug/L			08/27/24 13:30	1
n-Butylbenzene	ND		1.0		ug/L			08/27/24 13:30	1
n-batylbenzene	ND		1.0	0.33	ug/L			00/21/24 13.30	

Eurofins Seattle

8/30/2024

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 580-143019-1

Matrix: Water Analysis Batch: 469513

Lab Sample ID: MB 580-469513/7

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
N-Propylbenzene	ND		0.30	0.091	ug/L			08/27/24 13:30	1
o-Xylene	ND		0.50	0.23	ug/L			08/27/24 13:30	1
sec-Butylbenzene	ND		1.0	0.17	ug/L			08/27/24 13:30	1
Styrene	ND		1.0	0.33	ug/L			08/27/24 13:30	1
tert-Butylbenzene	ND		0.50	0.26	ug/L			08/27/24 13:30	1
Tetrachloroethene	ND		0.50	0.084	ug/L			08/27/24 13:30	1
Toluene	ND		0.20	0.050	ug/L			08/27/24 13:30	1
trans-1,2-Dichloroethene	ND		0.20	0.033	ug/L			08/27/24 13:30	1
trans-1,3-Dichloropropene	ND		0.20	0.092	ug/L			08/27/24 13:30	1
Trichloroethene	ND		0.20	0.066	ug/L			08/27/24 13:30	1
Trichlorofluoromethane	ND		0.50	0.12	ug/L			08/27/24 13:30	1
Vinyl chloride	ND		0.10	0.040	ug/L			08/27/24 13:30	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103	80 - 120		08/27/24 13:30	1
4-Bromofluorobenzene (Surr)	105	80 - 120		08/27/24 13:30	1
Dibromofluoromethane (Surr)	105	80 - 120		08/27/24 13:30	1
Toluene-d8 (Surr)	97	80 - 120		08/27/24 13:30	1

Lab Sample ID: LCS 580-469513/4

Matrix: Water

Analysis Batch: 469513

Client Sample	ID: Lab Control Sample
	Prep Type: Total/NA

Allalysis Batch. 400010	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	5.00	4.20		ug/L		84	69 - 127
1,1,1-Trichloroethane	5.00	4.78		ug/L		96	70 - 121
1,1,2,2-Tetrachloroethane	5.00	4.18		ug/L		84	67 - 136
1,1,2-Trichloroethane	5.00	4.07		ug/L		81	73 - 127
1,1-Dichloroethane	5.00	4.63		ug/L		93	74 - 120
1,1-Dichloroethene	5.00	4.56		ug/L		91	60 - 129
1,1-Dichloropropene	5.00	4.46		ug/L		89	72 - 125
1,2,3-Trichlorobenzene	5.00	4.59		ug/L		92	60 - 136
1,2,3-Trichloropropane	5.00	4.02		ug/L		80	67 - 135
1,2,4-Trichlorobenzene	5.00	4.69		ug/L		94	60 - 130
1,2,4-Trimethylbenzene	5.00	4.08		ug/L		82	71 - 127
1,2-Dibromo-3-Chloropropane	5.00	4.51		ug/L		90	55 - 135
1,2-Dichlorobenzene	5.00	4.46		ug/L		89	72 - 129
1,2-Dichloroethane	5.00	4.66		ug/L		93	74 - 127
1,2-Dichloropropane	5.00	4.26		ug/L		85	69 - 130
1,3,5-Trimethylbenzene	5.00	4.37		ug/L		87	75 - 123
1,3-Dichlorobenzene	5.00	4.49		ug/L		90	72 - 125
1,3-Dichloropropane	5.00	4.20		ug/L		84	69 - 138
1,4-Dichlorobenzene	5.00	4.51		ug/L		90	71 - 129
2,2-Dichloropropane	5.00	4.88		ug/L		98	55 - 140
2-Chlorotoluene	5.00	4.43		ug/L		89	73 - 120
4-Chlorotoluene	5.00	4.42		ug/L		88	75 - 124
4-Isopropyltoluene	5.00	4.32		ug/L		86	78 - 125
Benzene	5.00	4.36		ug/L		87	80 - 120

Eurofins Seattle

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Job ID: 580-143019-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 580-469513/4

Matrix: Water

Analysis Batch: 469513

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike		LCS		%Rec
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits
Bromobenzene	5.00	4.32	ug/L	86	74 - 130
Bromoform	5.00	4.17	ug/L	83	48 - 127
Bromomethane	5.00	3.65	ug/L	73	51 - 148
Carbon tetrachloride	5.00	4.76	ug/L	95	66 - 130
Chlorobenzene	5.00	4.42	ug/L	88	74 - 123
Chlorobromomethane	5.00	4.73	ug/L	95	79 - 121
Chlorodibromomethane	5.00	4.41	ug/L	88	62 - 141
Chloroethane	5.00	4.64	ug/L	93	54 - 140
Chloroform	5.00	4.76	ug/L	95	75 - 120
Chloromethane	5.00	3.75	ug/L	75	32 - 150
cis-1,2-Dichloroethene	5.00	4.83	ug/L	97	72 - 120
cis-1,3-Dichloropropene	5.00	3.87	ug/L	77	77 - 131
Dibromomethane	5.00	4.96	ug/L	99	65 - 141
Dichlorobromomethane	5.00	4.62	ug/L	92	74 - 131
Dichlorodifluoromethane	5.00	4.86	ug/L	97	20 - 150
Ethylbenzene	5.00	4.52	ug/L	90	80 - 124
Ethylene Dibromide	5.00	4.40	ug/L	88	61 - 143
Hexachlorobutadiene	5.00	4.87	ug/L	97	63 - 130
Isopropylbenzene	5.00	5.07	ug/L	101	71 - 123
Methyl tert-butyl ether	5.00	4.47	ug/L	89	61 - 131
Methylene Chloride	5.00	5.43	ug/L	109	40 - 142
m-Xylene & p-Xylene	5.00	4.65	ug/L	93	75 - 124
Naphthalene	5.00	4.47	ug/L	89	54 - 137
n-Butylbenzene	5.00	4.25	ug/L	85	69 - 127
N-Propylbenzene	5.00	4.46	ug/L	89	72 - 126
o-Xylene	5.00	4.55	ug/L	91	71 - 124
sec-Butylbenzene	5.00	4.53	ug/L	91	75 - 126
Styrene	5.00	4.75	ug/L	95	74 - 127
tert-Butylbenzene	5.00	4.36	ug/L	87	70 - 129
Tetrachloroethene	5.00	4.61	ug/L	92	75 - 124
Toluene	5.00	4.28	ug/L	86	80 - 126
trans-1,2-Dichloroethene	5.00	4.64	ug/L	93	69 - 121
trans-1,3-Dichloropropene	5.00	4.35	ug/L	87	71 - 138
Trichloroethene	5.00	4.43	ug/L	89	72 - 120
Trichlorofluoromethane	5.00	5.16	ug/L	103	60 - 132
Vinyl chloride	5.00	4.58	ug/L	92	41 - 150

1	CS	1	CS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	102		80 - 120
4-Bromofluorobenzene (Surr)	106		80 - 120
Dibromofluoromethane (Surr)	105		80 - 120
Toluene-d8 (Surr)	97		80 - 120

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 580-469513/5

Matrix: Water

Analysis Batch: 469513

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Job ID: 580-143019-1

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	5.00	4.14		ug/L		83	69 - 127	1	22
1,1,1-Trichloroethane	5.00	4.61		ug/L		92	70 - 121	4	24
1,1,2,2-Tetrachloroethane	5.00	3.92		ug/L		78	67 - 136	6	24
1,1,2-Trichloroethane	5.00	3.86		ug/L		77	73 - 127	5	22
1,1-Dichloroethane	5.00	4.66		ug/L		93	74 - 120	1	26
1,1-Dichloroethene	5.00	4.67		ug/L		93	60 - 129	2	29
1,1-Dichloropropene	5.00	4.33		ug/L		87	72 - 125	3	23
1,2,3-Trichlorobenzene	5.00	4.60		ug/L		92	60 - 136	0	28
1,2,3-Trichloropropane	5.00	3.92		ug/L		78	67 - 135	3	25
1,2,4-Trichlorobenzene	5.00	4.75		ug/L		95	60 - 130	1	26
1,2,4-Trimethylbenzene	5.00	4.11		ug/L		82	71 - 127	1	23
1,2-Dibromo-3-Chloropropane	5.00	4.13		ug/L		83	55 - 135	9	29
1,2-Dichlorobenzene	5.00	4.57		ug/L		91	72 - 129	3	22
1,2-Dichloroethane	5.00	4.54		ug/L		91	74 - 127	3	21
1,2-Dichloropropane	5.00	4.30		ug/L		86	69 - 130	1	22
1,3,5-Trimethylbenzene	5.00	4.43		ug/L		89	75 - 123	1	23
1,3-Dichlorobenzene	5.00	4.61		ug/L		92	72 - 125	3	22
1,3-Dichloropropane	5.00	4.00		ug/L		80	69 - 138	5	19
1,4-Dichlorobenzene	5.00	4.51		ug/L		90	71 - 129	0	22
2,2-Dichloropropane	5.00	4.80		ug/L		96	55 - 140	2	31
2-Chlorotoluene	5.00	4.49		ug/L		90	73 - 120	1	22
4-Chlorotoluene	5.00	4.45		ug/L		89	75 - 124	1	23
4-Isopropyltoluene	5.00	4.47		ug/L		89	78 - 125	3	24
Benzene	5.00	4.29		ug/L		86	80 - 120	2	22
Bromobenzene	5.00	4.32		ug/L		86	74 - 130	0	23
Bromoform	5.00	3.85		ug/L		77	48 - 127	8	23
Bromomethane	5.00	3.83		ug/L		77	51 - 148	5	35
Carbon tetrachloride	5.00	4.51		ug/L		90	66 - 130	5	24
Chlorobenzene	5.00	4.27		ug/L		85	74 - 123	4	21
Chlorobromomethane	5.00	4.79		ug/L		96	79 - 121	1	20
Chlorodibromomethane	5.00	4.05		ug/L		81	62 - 141	9	22
Chloroethane	5.00	4.71		ug/L		94	54 - 140	1	33
Chloroform	5.00	4.76		ug/L		95	75 - 120	0	21
Chloromethane	5.00	3.85		ug/L		77	32 - 150	3	33
cis-1,2-Dichloroethene	5.00	4.68		ug/L		94	72 - 120	3	22
cis-1,3-Dichloropropene	5.00	3.75	*_	ug/L		75	77 - 131	3	24
Dibromomethane	5.00	4.90		ug/L		98	65 - 141	1	22
Dichlorobromomethane	5.00	4.43		ug/L		89	74 - 131	4	21
Dichlorodifluoromethane	5.00	4.87		ug/L		97	20 - 150	0	30
Ethylbenzene	5.00	4.52		ug/L		90	80 - 124	0	22
Ethylene Dibromide	5.00	4.10		ug/L		82	61 - 143	7	22
Hexachlorobutadiene	5.00	4.97		ug/L		99	63 - 130	2	26
Isopropylbenzene	5.00	5.10		ug/L		102	71 - 123	1	23
Methyl tert-butyl ether	5.00	4.14		ug/L		83	61 - 131	8	27
Methylene Chloride	5.00	5.16		ug/L		103	40 - 142	5	25
m-Xylene & p-Xylene	5.00	4.58		ug/L		92	75 - 124	2	22
Naphthalene	5.00	4.40		ug/L		88	54 - 137	2	28
n-Butylbenzene	5.00	4.36		ug/L		87	69 - 127	3	24

Eurofins Seattle

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 580-469513/5

Matrix: Water

Analysis Batch: 469513

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Job ID: 580-143019-1

LCSD LCSD RPD %Rec Spike D %Rec Added Result Qualifier Unit Limits RPD Limit N-Propylbenzene 5.00 4.58 ug/L 92 72 - 126 3 20 o-Xylene 5.00 4.54 ug/L 91 71 - 124 0 23 5.00 75 - 126 23 sec-Butylbenzene 4.63 ug/L 93 22 Styrene 5.00 4.70 ug/L 94 74 - 127 tert-Butylbenzene 5.00 4.40 ug/L 88 70 - 129 24 Tetrachloroethene 5.00 4.47 ug/L 89 75 - 124 20 Toluene 5.00 4.22 ug/L 84 80 - 126 20 5.00 93 27 trans-1,2-Dichloroethene 4.66 ug/L 69 - 121 trans-1,3-Dichloropropene 5.00 4.19 84 71 - 138 26 ug/L Trichloroethene 5.00 4.38 88 72 - 120 22 ug/L Trichlorofluoromethane 5.00 5.20 ug/L 104 60 - 132 32 Vinyl chloride 5.00 95 32 4.73 ug/L 41 - 150

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		80 - 120
4-Bromofluorobenzene (Surr)	105		80 - 120
Dibromofluoromethane (Surr)	107		80 - 120
Toluene-d8 (Surr)	98		80 - 120

Lab Sample ID: MB 580-469625/11

Matrix: Water

Analysis Batch: 469625

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batom 400020	MB N	ИΒ							
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		0.30	0.11	ug/L			08/28/24 15:23	1
1,1,1-Trichloroethane	ND		0.20	0.025	ug/L			08/28/24 15:23	1
1,1,2,2-Tetrachloroethane	ND		0.20	0.056	ug/L			08/28/24 15:23	1
1,1,2-Trichloroethane	ND		0.20	0.070	ug/L			08/28/24 15:23	1
1,1-Dichloroethane	ND		0.20	0.064	ug/L			08/28/24 15:23	1
1,1-Dichloroethene	ND		0.20	0.035	ug/L			08/28/24 15:23	1
1,1-Dichloropropene	ND		0.20	0.084	ug/L			08/28/24 15:23	1
1,2,3-Trichlorobenzene	ND		1.5	0.47	ug/L			08/28/24 15:23	1
1,2,3-Trichloropropane	ND		0.20	0.050	ug/L			08/28/24 15:23	1
1,2,4-Trichlorobenzene	ND		1.5	0.36	ug/L			08/28/24 15:23	1
1,2,4-Trimethylbenzene	ND		0.55	0.23	ug/L			08/28/24 15:23	1
1,2-Dibromo-3-Chloropropane	ND		2.0	0.48	ug/L			08/28/24 15:23	1
1,2-Dichlorobenzene	ND		0.30	0.038	ug/L			08/28/24 15:23	1
1,2-Dichloroethane	ND		0.25	0.12	ug/L			08/28/24 15:23	1
1,2-Dichloropropane	ND		0.20	0.060	ug/L			08/28/24 15:23	1
1,3,5-Trimethylbenzene	ND		0.50	0.19	ug/L			08/28/24 15:23	1
1,3-Dichlorobenzene	ND		0.30	0.050	ug/L			08/28/24 15:23	1
1,3-Dichloropropane	ND		0.20	0.056	ug/L			08/28/24 15:23	1
1,4-Dichlorobenzene	ND		0.30	0.050	ug/L			08/28/24 15:23	1
2,2-Dichloropropane	ND		0.50	0.060	ug/L			08/28/24 15:23	1
2-Chlorotoluene	ND		0.50	0.12	ug/L			08/28/24 15:23	1
4-Chlorotoluene	ND		0.30	0.12	ug/L			08/28/24 15:23	1
4-Isopropyltoluene	ND		0.50	0.25	ug/L			08/28/24 15:23	1
Benzene	ND		0.20	0.030	ug/L			08/28/24 15:23	1

Eurofins Seattle

Page 16 of 25

Client: Hart & Hickman, PC Job ID: 580-143019-1

Project/Site: Northwest Motorsports - Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 580-469625/11

Matrix: Water

Analysis Batch: 469625

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Bromobenzene	ND		0.20	0.038	ug/L			08/28/24 15:23	1
Bromoform	ND		0.50	0.16	ug/L			08/28/24 15:23	1
Bromomethane	ND		0.50	0.13	ug/L			08/28/24 15:23	1
Carbon tetrachloride	ND		0.20	0.025	ug/L			08/28/24 15:23	1
Chlorobenzene	ND		0.20	0.060	ug/L			08/28/24 15:23	1
Chlorobromomethane	ND		0.20	0.050	ug/L			08/28/24 15:23	1
Chlorodibromomethane	ND		0.20	0.055	ug/L			08/28/24 15:23	1
Chloroethane	ND		0.50	0.24	ug/L			08/28/24 15:23	1
Chloroform	ND		0.20	0.030	ug/L			08/28/24 15:23	1
Chloromethane	ND		0.50	0.14	ug/L			08/28/24 15:23	1
cis-1,2-Dichloroethene	ND		0.20	0.055	ug/L			08/28/24 15:23	1
cis-1,3-Dichloropropene	ND		0.20	0.090	ug/L			08/28/24 15:23	1
Dibromomethane	ND		0.20	0.062	ug/L			08/28/24 15:23	1
Dichlorobromomethane	ND		0.20	0.060	ug/L			08/28/24 15:23	1
Dichlorodifluoromethane	ND		0.40	0.13	ug/L			08/28/24 15:23	1
Ethylbenzene	ND		0.20	0.082	ug/L			08/28/24 15:23	1
Ethylene Dibromide	ND		0.15	0.067	ug/L			08/28/24 15:23	1
Hexachlorobutadiene	ND		0.50	0.16	ug/L			08/28/24 15:23	1
Isopropylbenzene	ND		1.0	0.27	ug/L			08/28/24 15:23	1
Methyl tert-butyl ether	ND		0.30	0.070	ug/L			08/28/24 15:23	1
Methylene Chloride	ND		5.0	1.2	ug/L			08/28/24 15:23	1
m-Xylene & p-Xylene	ND		0.50	0.12	ug/L			08/28/24 15:23	1
Naphthalene	ND		1.5	0.52	ug/L			08/28/24 15:23	1
n-Butylbenzene	ND		1.0	0.35	ug/L			08/28/24 15:23	1
N-Propylbenzene	ND		0.30	0.091	ug/L			08/28/24 15:23	1
o-Xylene	ND		0.50	0.23	ug/L			08/28/24 15:23	1
sec-Butylbenzene	ND		1.0	0.17	ug/L			08/28/24 15:23	1
Styrene	ND		1.0	0.33	ug/L			08/28/24 15:23	1
tert-Butylbenzene	ND		0.50	0.26	ug/L			08/28/24 15:23	1
Tetrachloroethene	ND		0.50	0.084	ug/L			08/28/24 15:23	1
Toluene	ND		0.20	0.050	ug/L			08/28/24 15:23	1
trans-1,2-Dichloroethene	ND		0.20	0.033	ug/L			08/28/24 15:23	1
trans-1,3-Dichloropropene	ND		0.20	0.092	ug/L			08/28/24 15:23	1
Trichloroethene	ND		0.20	0.066	ug/L			08/28/24 15:23	1
Trichlorofluoromethane	ND		0.50	0.12	ug/L			08/28/24 15:23	1
Vinyl chloride	ND		0.10	0.040	ug/L			08/28/24 15:23	1

l .					
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103	80 - 120		08/28/24 15:23	1
4-Bromofluorobenzene (Surr)	108	80 - 120		08/28/24 15:23	1
Dibromofluoromethane (Surr)	111	80 - 120		08/28/24 15:23	1
Toluene-d8 (Surr)	97	80 - 120		08/28/24 15:23	1

Eurofins Seattle

8/30/2024

4

6

8

10

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 580-469625/6

Matrix: Water

Methylene Chloride

Naphthalene

n-Butylbenzene

m-Xylene & p-Xylene

Analysis Batch: 469625

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Job ID: 580-143019-1

Analysis Daton. 409025	Spike		LCS	D 0/D	%Rec	
Analyte	Added		Qualifier Unit	<u>D</u> %Rec	Limits	
1,1,1,2-Tetrachloroethane	5.00	4.56	ug/L	91	69 - 127	
1,1,1-Trichloroethane	5.00	5.18	ug/L	104	70 - 121	
1,1,2,2-Tetrachloroethane	5.00	4.11	ug/L	82	67 - 136	
1,1,2-Trichloroethane	5.00	4.39	ug/L	88	73 - 127	
1,1-Dichloroethane	5.00	4.94	ug/L	99	74 - 120	
1,1-Dichloroethene	5.00	4.85	ug/L	97	60 - 129	
1,1-Dichloropropene	5.00	4.86	ug/L	97	72 - 125	
1,2,3-Trichlorobenzene	5.00	4.82	ug/L	96	60 - 136	
1,2,3-Trichloropropane	5.00	4.37	ug/L	87	67 - 135	
1,2,4-Trichlorobenzene	5.00	5.19	ug/L	104	60 - 130	
1,2,4-Trimethylbenzene	5.00	4.63	ug/L	93	71 - 127	
1,2-Dibromo-3-Chloropropane	5.00	4.55	ug/L	91	55 - 135	
1,2-Dichlorobenzene	5.00	4.86	ug/L	97	72 - 129	
1,2-Dichloroethane	5.00	5.09	ug/L	102	74 - 127	
1,2-Dichloropropane	5.00	4.63	ug/L	93	69 - 130	
1,3,5-Trimethylbenzene	5.00	4.91	ug/L	98	75 - 123	
1,3-Dichlorobenzene	5.00	4.88	ug/L	98	72 - 125	
1,3-Dichloropropane	5.00	4.59	ug/L	92	69 - 138	
1,4-Dichlorobenzene	5.00	4.74	ug/L	95	71 - 129	
2,2-Dichloropropane	5.00	5.08	ug/L	102	55 - 140	
2-Chlorotoluene	5.00	4.72	ug/L	94	73 - 120	
4-Chlorotoluene	5.00	4.77	ug/L	95	75 - 124	
4-Isopropyltoluene	5.00	4.72	ug/L	94	78 - 125	
Benzene	5.00	4.70	ug/L	94	80 - 120	
Bromobenzene	5.00	4.58	ug/L	92	74 - 130	
Bromoform	5.00	4.39	ug/L	88	48 - 127	
Bromomethane	5.00	4.62	ug/L	92	51 - 148	
Carbon tetrachloride	5.00	5.00	ug/L	100	66 - 130	
Chlorobenzene	5.00	4.68	ug/L	94	74 - 123	
Chlorobromomethane	5.00	5.06	ug/L	101	79 - 121	
Chlorodibromomethane	5.00	4.70	ug/L	94	62 - 141	
Chloroethane	5.00	4.71	ug/L	94	54 - 140	
Chloroform	5.00	5.20	ug/L	104	75 - 120	
Chloromethane	5.00	3.87	ug/L	77	32 - 150	
cis-1,2-Dichloroethene	5.00	5.06	ug/L	101	72 - 120	
cis-1,3-Dichloropropene	5.00	4.24	ug/L	85	77 - 131	
Dibromomethane	5.00	5.44	ug/L	109	65 - 141	
Dichlorobromomethane	5.00	5.09	ug/L	102	74 - 131	
Dichlorodifluoromethane	5.00	4.80	ug/L	96	20 - 150	
Ethylbenzene	5.00	4.86	ug/L	97	80 - 124	
Ethylene Dibromide	5.00	4.79	ug/L	96	61 - 143	
Hexachlorobutadiene	5.00	5.26	ug/L	105	63 - 130	
Isopropylbenzene	5.00	5.43	ug/L	109	71 - 123	
Methyl tert-butyl ether	5.00	4.72	ug/L	94	61 - 131	
would for -pary of le	5.00	4.12	ug/L	94	01-101	

Eurofins Seattle

8/30/2024

5.00

5.00

5.00

5.00

5.35

5.01

4.76

4.67

ug/L

ug/L

ug/L

ug/L

107

100

95

93

40 - 142

75 - 124

54 - 137

69 - 127

3

4

6

8

3

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 580-469625/6

Matrix: Water

Analysis Batch: 469625

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 580-143019-1

LCS LCS %Rec Spike D %Rec Added Result Qualifier Unit Limits N-Propylbenzene 5.00 4.75 ug/L 95 72 - 126 o-Xylene 5.00 4.89 ug/L 98 71 - 124 sec-Butylbenzene 5.00 4.79 75 - 126 ug/L 96 5.00 Styrene 5.05 ug/L 101 74 - 127 tert-Butylbenzene 5.00 4.65 ug/L 93 70 - 129 Tetrachloroethene 5.00 4.91 ug/L 98 75 - 124 Toluene 5.00 4.55 ug/L 91 80 - 126 5.00 99 trans-1,2-Dichloroethene 4.93 ug/L 69 - 121 trans-1,3-Dichloropropene 5.00 4.74 95 71 - 138 ug/L 96 Trichloroethene 5.00 4.79 72 - 120 ug/L Trichlorofluoromethane 5.00 5.17 ug/L 103 60 - 132 Vinyl chloride 5.00 4.70 ug/L 94 41 - 150

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	104		80 - 120
4-Bromofluorobenzene (Surr)	107		80 - 120
Dibromofluoromethane (Surr)	106		80 - 120
Toluene-d8 (Surr)	97		80 - 120

Lab Sample ID: LCSD 580-469625/7

Matrix: Water

Analysis Batch: 469625

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	5.00	4.52		ug/L		90	69 - 127	1	22
1,1,1-Trichloroethane	5.00	5.20		ug/L		104	70 - 121	0	24
1,1,2,2-Tetrachloroethane	5.00	4.34		ug/L		87	67 - 136	5	24
1,1,2-Trichloroethane	5.00	4.55		ug/L		91	73 - 127	4	22
1,1-Dichloroethane	5.00	5.16		ug/L		103	74 - 120	4	26
1,1-Dichloroethene	5.00	5.05		ug/L		101	60 - 129	4	29
1,1-Dichloropropene	5.00	4.66		ug/L		93	72 - 125	4	23
1,2,3-Trichlorobenzene	5.00	5.22		ug/L		104	60 - 136	8	28
1,2,3-Trichloropropane	5.00	4.46		ug/L		89	67 - 135	2	25
1,2,4-Trichlorobenzene	5.00	5.41		ug/L		108	60 - 130	4	26
1,2,4-Trimethylbenzene	5.00	4.67		ug/L		93	71 - 127	1	23
1,2-Dibromo-3-Chloropropane	5.00	4.55		ug/L		91	55 - 135	0	29
1,2-Dichlorobenzene	5.00	5.00		ug/L		100	72 - 129	3	22
1,2-Dichloroethane	5.00	5.12		ug/L		102	74 - 127	1	21
1,2-Dichloropropane	5.00	4.70		ug/L		94	69 - 130	2	22
1,3,5-Trimethylbenzene	5.00	4.89		ug/L		98	75 - 123	1	23
1,3-Dichlorobenzene	5.00	5.12		ug/L		102	72 - 125	5	22
1,3-Dichloropropane	5.00	4.56		ug/L		91	69 - 138	1	19
1,4-Dichlorobenzene	5.00	4.91		ug/L		98	71 - 129	4	22
2,2-Dichloropropane	5.00	5.12		ug/L		102	55 - 140	1	31
2-Chlorotoluene	5.00	4.82		ug/L		96	73 - 120	2	22
4-Chlorotoluene	5.00	4.96		ug/L		99	75 - 124	4	23
4-Isopropyltoluene	5.00	4.90		ug/L		98	78 - 125	4	24
Benzene	5.00	4.78		ug/L		96	80 - 120	2	22

Eurofins Seattle

Page 19 of 25

8/30/2024

Client: Hart & Hickman, PC

Job ID: 580-143019-1 Project/Site: Northwest Motorsports - Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 580-469625/7

Matrix: Water

Analysis Batch: 469625

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch. 403023	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Bromobenzene	5.00	4.78		ug/L		96	74 - 130	4	23
Bromoform	5.00	4.67		ug/L		93	48 - 127	6	23
Bromomethane	5.00	5.02		ug/L		100	51 - 148	8	35
Carbon tetrachloride	5.00	5.07		ug/L		101	66 - 130	1	24
Chlorobenzene	5.00	4.87		ug/L		97	74 - 123	4	21
Chlorobromomethane	5.00	5.24		ug/L		105	79 - 121	3	20
Chlorodibromomethane	5.00	4.74		ug/L		95	62 - 141	1	22
Chloroethane	5.00	5.04		ug/L		101	54 - 140	7	33
Chloroform	5.00	5.29		ug/L		106	75 - 120	2	21
Chloromethane	5.00	4.15		ug/L		83	32 - 150	7	33
cis-1,2-Dichloroethene	5.00	5.25		ug/L		105	72 - 120	4	22
cis-1,3-Dichloropropene	5.00	4.26		ug/L		85	77 - 131	1	24
Dibromomethane	5.00	5.66		ug/L		113	65 - 141	4	22
Dichlorobromomethane	5.00	5.02		ug/L		100	74 - 131	2	21
Dichlorodifluoromethane	5.00	4.97		ug/L		99	20 - 150	3	30
Ethylbenzene	5.00	4.97		ug/L		99	80 - 124	2	22
Ethylene Dibromide	5.00	4.78		ug/L		96	61 - 143	0	22
Hexachlorobutadiene	5.00	5.37		ug/L		107	63 - 130	2	26
Isopropylbenzene	5.00	5.70		ug/L		114	71 - 123	5	23
Methyl tert-butyl ether	5.00	4.68		ug/L		94	61 - 131	1	27
Methylene Chloride	5.00	5.60		ug/L		112	40 - 142	5	25
m-Xylene & p-Xylene	5.00	5.14		ug/L		103	75 - 124	3	22
Naphthalene	5.00	4.96		ug/L		99	54 - 137	4	28
n-Butylbenzene	5.00	4.61		ug/L		92	69 - 127	1	24
N-Propylbenzene	5.00	4.84		ug/L		97	72 - 126	2	20
o-Xylene	5.00	5.17		ug/L		103	71 - 124	6	23
sec-Butylbenzene	5.00	4.91		ug/L		98	75 - 126	2	23
Styrene	5.00	5.29		ug/L		106	74 - 127	5	22
tert-Butylbenzene	5.00	4.78		ug/L		96	70 - 129	3	24
Tetrachloroethene	5.00	5.09		ug/L		102	75 - 124	3	20
Toluene	5.00	4.65		ug/L		93	80 - 126	2	20
trans-1,2-Dichloroethene	5.00	5.10		ug/L		102	69 - 121	3	27
trans-1,3-Dichloropropene	5.00	4.80		ug/L		96	71 - 138	1	26
Trichloroethene	5.00	4.79		ug/L		96	72 - 120	0	22
Trichlorofluoromethane	5.00	5.49		ug/L		110	60 - 132	6	32
Vinyl chloride	5.00	4.82		ug/L		96	41 - 150	2	32

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	104		80 - 120
4-Bromofluorobenzene (Surr)	108		80 - 120
Dibromofluoromethane (Surr)	107		80 - 120
Toluene-d8 (Surr)	98		80 - 120

Lab Chronicle

Client: Hart & Hickman, PC Job ID: 580-143019-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: MW-1 Lab Sample ID: 580-143019-1

Matrix: Water

Date Collected: 08/13/24 16:00 Date Received: 08/16/24 12:18

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	469513	AA	EET SEA	08/27/24 19:52
Total/NA	Analysis	8260D	RA	1	469625	AA	EET SEA	08/28/24 16:00

Client Sample ID: MW-3 Lab Sample ID: 580-143019-3

Date Collected: 08/13/24 17:15

Matrix: Water

Date Received: 08/16/24 12:18

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	469625	AA	EET SEA	08/28/24 16:23

Client Sample ID: MW-4 Lab Sample ID: 580-143019-4

Date Collected: 08/14/24 09:30 Matrix: Water

Date Received: 08/16/24 12:18

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	469513	AA	EET SEA	08/27/24 19:29
Total/NA	Analysis	8260D	RA	1	469625	AA	EET SEA	08/28/24 16:46

Laboratory References:

EET SEA = Eurofins Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

9

3

5

9

_

9

10

Accreditation/Certification Summary

Client: Hart & Hickman, PC Job ID: 580-143019-1

Project/Site: Northwest Motorsports - Puyallup

Laboratory: Eurofins Seattle

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Washington	State	C788-24	07-13-25

3

4

5

8

4.6

10

Eurofins Seattle

Sample Summary

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-143019-1	MW-1	Water	08/13/24 16:00	08/16/24 12:18
580-143019-3	MW-3	Water	08/13/24 17:15	08/16/24 12:18
580-143019-4	MW-4	Water	08/14/24 09:30	08/16/24 12:18

Job ID: 580-143019-1

4

_

Environment Testing

Client Information	Sampler:	ker Sc	411/2	La	ib PM;			CHICAGO HARACON CANA	onalisantial particular		Ca	rrier Tra	cking N	lo(s):	Medikasakens	Printer convergent again	COC No:	
Client Information Client Contact: Tyler Schulz Company: Hart & Hickman, P.C. Address: 2923 S. Tryan Sty Suite (OC Clity: Challotte NC 78203	Phone: 70	Ger Sc. 4-607	707	2 E-	Mail:		and the same of th	-			Sta	te of O	rigin:	. Λ	-		Page;	
Hart & Hickory DC			PWSID:		T-	Surprise and participation of the	TERMINAL PROPERTY.	PONTANTON CONTRACTOR				latory when your PERSON	N		no more and a second		Page 1 of 1 Job #:	1051
Address:	Due Date Reque					Section of the last of the las	interdege (gro	-	Analy	⁄sis R	eque	sted		Alexandra Maria			000 #.	
2923 S. Tryon Sty Suite (OC)								-								Preservation Co	odes:
Charlotte	TAT Requested			_					1								A - HCL. B - NaOH	M - Hexane N - None
NC 78203	Compliance Proj	ndard S	- Day	TAT		4											C - Zn Acetate D - Nitric Acid	O - AsNaO2 P - Na2O4S
hone:	PO#:	NAME OF TAXABLE PARTY OF TAXABLE PARTY.			41										1.		E - NaHSO4 F - MeOH	Q - Na2SO3
707-586 400 J	Purchase Orde	er not requir	ed														G - Amchior	R - Na2S2O3 S - H2SO4
Tschulz@HartHickman.com	WO#;														all the second		H - Ascorbic Acid I - Ice	T - TSP Dodecahydrate U - Acetone
NWMS - Parallino	Project #:	T 1/15	**************************************		ij	0728										8	J - DI Water K - EDTA	V - MCAA W - pH 4-5
te:	SSOW#:	I-4/3	5		-11	Ò										夏	L-EDA	Z - other (specify)
hone: NC 78203 hone: 704-586-0007 TEchulze Hart Hickman. com roject Name: NWMS-Payallup te: 400 River Rd., Payallup, WA																8	Other:	
			Sample	Matrix		1,7	-									ă		
		Sample	Type (C≖comp	(W≈water, 8≃solid,		KoK								o de la composición della composición della comp		ž		
Imple Identification	Sample Date	Time	G=grab	BT=Tissue, A=Air) E	11										8	Special is	nstructions/Note:
20.		$\geq \leq$	-	ation Code:	$\times\!\!\!>$	A										X	Special II	isuucuons/Note:
<u>mw-1</u>	8/13/24	1600	G	LW		X					T				T		* Wild A	al with Extraction
MW-2	8/14/24	1320	(2	W	П	×	1						十		T		A HOLO I	in with betterfice
MW-3	8/13/24	1715	G	W	$\dagger \dagger$		+	1		\dashv	+		\dashv	+	+	H		
MW-4					╫	X	+	+-			-	\dashv	-	+-	┼			
MW-5		0930	<u>G</u>	I W	\vdash	14	+	-			_	_			_			
mw-6		1515	G	W	4	X									L			\
J-100-100	8/15/24	1010	G	W	Ш	X				1				Section 2	Parameter State of the State of		•	
									Т	. 1		1	T	1	1		-	andrian profession (1 describe norse en <u>equiparies describe</u> en 2004 <u>en esta de companya des</u> le e
T. T.							\top		-								anning-state	
					\vdash	\vdash	+	+-									Heraldonium	
					-	\vdash	+-	+	et (fema								Mensellikopiepi	
				THE PROPERTY OF THE PROPERTY O	-		_	\perp	 	0-1430		 hain d	of Cus	tody			Ministration	
sible Hazard identification			Manager of the Control of the Contro															
Non-Hazard Flammable Skin Irritant Porerable Requested: Of III, IV, Other (specify)	ison B Unknow	vn 🗆 R.	diological		Sar	nple Dis	pos	al (A	fee ma	y beya	ssess	ed if	samp	les ar	re ret	aineo	l longer than 1 e For	month)
erable Requested: I(II), III, IV, Other (specify)		110	diological	NOTE OF THE PARTY	Spe	cial Inst	n 10 ructio	Client ns/Q0	Regu	ireme)ispos	al By	Lab			rchive	For	Months
ty Kit Relinquished by:		ate:			Time:		Minimum	NAMES OF THE OWNER, WHEN THE OWNER, WHEN THE OWNER, WHEN THE OWNER, WHEN THE OWNER, WHEN THE OWNER, WHEN THE O	and the latest section of		Ha	old a	21/5	cim	ole.	s Fe	of SB re	sults
uished by:	Date/Time:	1										Method	MANAGEMENT AND ADDRESS OF THE PARTY OF THE P	Lincoln Spinor August	H	ick	-UP	
uished by:	Date/Time:	1100		Company H+H		Redeved	is	He.	1				S	e/Time:	10/2	W	1219	Company
ulshed by:			ľ	Company	I	Received	by:				*************	************	Date	e/Time:	* /*5	pinnokuru	The state of the s	Company
State of the Contract of the C	Date/Time:			Company		Received	by:	**********	THE PARTY OF THE P		Professional Com-	-	Date	o/Time:	MODEL STATE	on the contract of the contrac		Company
tody Seals Intact: Custody Seal No.: Δ Yes Δ No			-			Cooler To-	There's	harmen o	C ac d 4	Ath a- P		Mentalenthole	-	nel de l'architecture de l'arc	and the special	- Aparente		,
TIES TIMO					ľ	Cooler Ter	-iberal	me(2)	c and g	uner Re	marks:				•	10	ublile	et/LC

Login Sample Receipt Checklist

Client: Hart & Hickman, PC Job Number: 580-143019-1

Login Number: 143019 List Source: Eurofins Seattle

List Number: 1

Creator: Martinez, Lanea

Answer	Comment
N/A	
True	
True	
True	
True	
True	
True	
True	
True	
True	
True	
False	Received Trip Blank(s) not listed on COC.
True	
True	
True	
True	
True	
True	
True	
True	
True	
True	
True	
N/A	
	N/A True True True True True True True Tru

6

А

_

6

9

10

ANALYTICAL REPORT

PREPARED FOR

Attn: Tyler Schulz Hart & Hickman, PC 2923 S Tryon Street Suite 100 Charlotte, North Carolina 28203

Generated 8/23/2024 10:00:55 PM

JOB DESCRIPTION

Northwest Motorsports - Puyallup

JOB NUMBER

580-143025-1

Eurofins Seattle 5755 8th Street East Tacoma WA 98424

Eurofins Seattle

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northwest, LLC Project Manager.

Authorization

Generated

8/23/2024 10:00:55 PM Authorized for release by

Pauline Matlock, Project Manager Pauline.Matlock@et.eurofinsus.com

(253)922-2310

Client: Hart & Hickman, PC Project/Site: Northwest Motorsports - Puyallup Laboratory Job ID: 580-143025-1

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Definitions	
Client Sample Results	6
QC Sample Results	38
Chronicle	49
Certification Summary	55
Sample Summary	56
Chain of Custody	57
Receipt Checklists	59

Case Narrative

Client: Hart & Hickman, PC
Project: Northwest Motorsports - Puyallup

Job ID: 580-143025-1

Job ID: 580-143025-1 Eurofins Seattle

Job Narrative 580-143025-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed
 unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 8/16/2024 12:18 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.0°C.

Receipt Exceptions

Sample ID on the COC does not match the sample ID on the sample containers for sample SB-18 (6'-8') (580-143025-18). Logged in reference to the COC.

Sample ID on the COC: "SB-18 (6'-8') Sample ID on the Containers: "SB-18 (12'-14')

GC/MS VOA

Method 8260D: The following samples were provided to the laboratory with a significantly different initial weight than that required by the reference method: SB-5R (2'-4') (580-143025-1) and SB-13 (2'-4') (580-143025-3). Deviations in the weight by more than 20% may affect reporting limits and potentially method performance. The method specifies 5g. The amount provided was below this range.

Method 8260D: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for preparation batch 580-468849 and analytical batch 580-468850 recovered outside control limits for the following analytes: Isopropylbenzene and trans-1,3-Dichloropropene. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method 8260D: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for preparation batch 580-468911 and analytical batch 580-468912 recovered outside control limits for the following analytes: trans-1,3-Dichloropropene. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Hydrocarbons

Method NWTPH_Dx: The sample duplicate (DUP) precision for preparation batch 580-468838 and analytical batch 580-469098 was outside control limits. Sample matrix interference and/or non-homogeneity are suspected. The laboratory control sample (LCS) for the batch was within acceptance limits.

Method NWTPH_Dx: The following samples contained a hydrocarbon pattern in the diesel range; however, the elution pattern is not the typical diesel fuel pattern used by the laboratory for quantitative purposes: SB-5R (2'-4') (580-143025-1), SB-5R (4'-6') (580-143025-2), SB-13 (2'-4') (580-143025-3), SB-13 (4'-6') (580-143025-4), SB-3R (10'-12') (580-143025-10), SB-16 (10'-12') (580-143025-13), SB-17 (6'-8') (580-143025-15), SB-17 (10'-12') (580-143025-16) and SB-18 (6'-8') (580-143025-18).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Seattle

Page 4 of 59 8/23/2024

Δ

5

7

8

9

Definitions/Glossary

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

LCS and/or LCSD is outside acceptance limits, high biased.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC Semi VOA

Qualifier **Qualifier Description**

F5 Duplicate RPD exceeds limit, and one or both sample results are less than 5 times RL, and the absolute difference between results is <

the upper reporting limits for both.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCL MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present PQL

Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RI Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Seattle

Page 5 of 59

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-5R (2'-4')

Lab Sample ID: 580-143025-1 Date Collected: 08/14/24 12:30 **Matrix: Solid** Percent Solids: 95.2 Date Received: 08/16/24 12:18

Analyto	Docult	Qualifier	by GC/M	MDL	Unit	D	Dropared	Analyzed	Dil Fa
Analyte	ND	Qualifier	0.0041	0.00081			Prepared 08/20/24 13:15		
1,1,1,2-Tetrachloroethane			0.0041	0.00081	mg/Kg	\$		08/20/24 15:30 08/20/24 15:30	
1,1,1-Trichloroethane	0.0020 ND	J			0 0	☆			
1,1,2,2-Tetrachloroethane			0.0041	0.00031				08/20/24 15:30	
1,1,2-Trichloroethane	ND		0.0027	0.00072	0 0	*		08/20/24 15:30	
1,1-Dichloroethane	ND		0.0027	0.0013	0 0	‡	08/20/24 13:15	08/20/24 15:30	
1,1-Dichloroethene	ND		0.0069	0.0029		.		08/20/24 15:30	
1,1-Dichloropropene	ND		0.0041	0.0015	0 0	*		08/20/24 15:30	
1,2,3-Trichlorobenzene	ND		0.014	0.00082		*	08/20/24 13:15		
1,2,3-Trichloropropane	ND		0.0068	0.0014		<u>.</u> .		08/20/24 15:30	
1,2,4-Trichlorobenzene	ND		0.0041	0.0017		‡		08/20/24 15:30	
1,2,4-Trimethylbenzene	ND		0.0068	0.0016		₩	08/20/24 13:15		
1,2-Dibromo-3-Chloropropane	ND		0.014	0.0022		.	08/20/24 13:15	08/20/24 15:30	
1,2-Dibromoethane	ND		0.0014	0.00027		₩		08/20/24 15:30	
1,2-Dichlorobenzene	ND		0.014	0.0018	0 0	₩		08/20/24 15:30	
1,2-Dichloroethane	ND		0.0027	0.00085				08/20/24 15:30	
1,2-Dichloropropane	ND		0.0027	0.00068	0 0	₩		08/20/24 15:30	
1,3,5-Trimethylbenzene	ND		0.0068	0.0011	0 0	₩	08/20/24 13:15	08/20/24 15:30	
1,3-Dichlorobenzene	ND		0.0068	0.0015	mg/Kg	₩	08/20/24 13:15	08/20/24 15:30	
1,3-Dichloropropane	ND		0.0027	0.00031	0 0	₩	08/20/24 13:15	08/20/24 15:30	
1,4-Dichlorobenzene	ND		0.0068	0.0013	mg/Kg	₩	08/20/24 13:15	08/20/24 15:30	
2,2-Dichloropropane	ND		0.0068	0.0011	mg/Kg	₩	08/20/24 13:15	08/20/24 15:30	
2-Chlorotoluene	ND		0.0068	0.0013	mg/Kg	₩	08/20/24 13:15	08/20/24 15:30	
4-Chlorotoluene	ND		0.0068	0.0014	mg/Kg	₩	08/20/24 13:15	08/20/24 15:30	
4-Isopropyltoluene	ND		0.0027	0.00055	mg/Kg	₩	08/20/24 13:15	08/20/24 15:30	
Benzene	ND		0.0027	0.00053	mg/Kg	₩	08/20/24 13:15	08/20/24 15:30	
Bromobenzene	ND		0.014	0.0014	mg/Kg	₩	08/20/24 13:15	08/20/24 15:30	
Bromochloromethane	ND		0.0027	0.0013	mg/Kg	₩	08/20/24 13:15	08/20/24 15:30	
3romodichloromethane	ND		0.0027	0.0012	mg/Kg	₩	08/20/24 13:15	08/20/24 15:30	
Bromoform	ND		0.0068	0.0011	mg/Kg	₩	08/20/24 13:15	08/20/24 15:30	
Bromomethane	ND		0.0027	0.0012	mg/Kg	₩	08/20/24 13:15	08/20/24 15:30	
Carbon tetrachloride	ND		0.0027	0.0012	mg/Kg	₩	08/20/24 13:15	08/20/24 15:30	
Chlorobenzene	ND		0.0027	0.00034	mg/Kg	₩	08/20/24 13:15	08/20/24 15:30	
Chloroethane	ND		0.014	0.0010	mg/Kg	₩	08/20/24 13:15	08/20/24 15:30	
Chloroform	ND		0.0041	0.0018	mg/Kg	₩	08/20/24 13:15	08/20/24 15:30	
Chloromethane	ND		0.0068	0.0013	mg/Kg	₩	08/20/24 13:15	08/20/24 15:30	
cis-1,2-Dichloroethene	ND		0.0041	0.00031		₩	08/20/24 13:15	08/20/24 15:30	
cis-1,3-Dichloropropene	ND		0.0014	0.00027				08/20/24 15:30	
Dibromochloromethane	ND		0.0027	0.00077		₩		08/20/24 15:30	
Dibromomethane	ND		0.0027	0.00057		₩		08/20/24 15:30	
Dichlorodifluoromethane	ND		0.0041	0.0018				08/20/24 15:30	
Ethylbenzene	ND		0.0027	0.0013		₩.		08/20/24 15:30	
Hexachlorobutadiene	ND		0.0027	0.0013	0 0	₩		08/20/24 15:30	
sopropylbenzene	ND	*+	0.0041	0.0020				08/20/24 15:30	
Methyl tert-butyl ether	ND ND	•	0.0041	0.0013	0 0	₩		08/20/24 15:30	
	ND ND		0.0027		mg/Kg	1,t **		08/20/24 15:30	
Methylene Chloride									
m-Xylene & p-Xylene	ND		0.014	0.0016		π. Ω:		08/20/24 15:30	
Naphthalene	ND		0.014	0.0025		₩.		08/20/24 15:30	
n-Butylbenzene N-Propylbenzene	ND ND		0.0041	0.00086		<u>.</u>		08/20/24 15:30 08/20/24 15:30	

Eurofins Seattle

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-5R (2'-4')

Lab Sample ID: 580-143025-1 Date Collected: 08/14/24 12:30

Matrix: Solid Date Received: 08/16/24 12:18 Percent Solids: 95.2

Analyte	atile Organic Result	Qualifier	RL	(Conti	•	D	Prepared	Analyzed	Dil Fac
o-Xylene	ND		0.0068	0.0013	mg/Kg	— <u>-</u>	08/20/24 13:15	08/20/24 15:30	
sec-Butylbenzene	ND		0.0041	0.00092		₩	08/20/24 13:15	08/20/24 15:30	
Styrene	ND		0.0041	0.0010	mg/Kg		08/20/24 13:15	08/20/24 15:30	1
t-Butylbenzene	ND		0.0041	0.00090		₩	08/20/24 13:15	08/20/24 15:30	1
Tetrachloroethene	0.014		0.0027	0.00055	mg/Kg	₩	08/20/24 13:15	08/20/24 15:30	1
Toluene	ND		0.014	0.0018	mg/Kg		08/20/24 13:15	08/20/24 15:30	1
trans-1,2-Dichloroethene	ND		0.0048	0.0020		₩	08/20/24 13:15	08/20/24 15:30	1
trans-1,3-Dichloropropene	ND	*+	0.014	0.00082	mg/Kg	₩	08/20/24 13:15	08/20/24 15:30	1
Trichloroethene	ND		0.0027	0.00041			08/20/24 13:15	08/20/24 15:30	1
Trichlorofluoromethane	ND		0.012	0.0053		₩	08/20/24 13:15	08/20/24 15:30	1
Vinyl chloride	ND		0.0027	0.0012		₽	08/20/24 13:15	08/20/24 15:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	112		80 - 121				08/20/24 13:15	08/20/24 15:30	1
4-Bromofluorobenzene (Surr)	90		80 - 120				08/20/24 13:15	08/20/24 15:30	1
Dibromofluoromethane (Surr)	106		80 - 120				08/20/24 13:15	08/20/24 15:30	1
Toluene-d8 (Surr)	106		80 - 120				08/20/24 13:15	08/20/24 15:30	1
Method: NWTPH-Dx - Northy	west - Semi-V	olatile Petr	roleum Prod	ucts (GC	c) - DL				
					•		Prepared	A walumad	
Analyte	Result	Qualifier	RL	MDL	Unit	D	riepareu	Analyzed	Dil Fac
	Result 680	Qualifier			Unit mg/Kg	— D	08/20/24 12:10	08/22/24 14:36	
#2 Diesel (C10-C24)		Qualifier		24			08/20/24 12:10		2
#2 Diesel (C10-C24) Motor Oil (>C24-C36)	680		98	24	mg/Kg	<u></u>	08/20/24 12:10	08/22/24 14:36	Dil Fac
#2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate	680 2800		98	24	mg/Kg	<u></u>	08/20/24 12:10 08/20/24 12:10	08/22/24 14:36 08/22/24 14:36 Analyzed	Dil Fac
#2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate o-Terphenyl	680 2800 %Recovery		98 98 Limits	24	mg/Kg	<u></u>	08/20/24 12:10 08/20/24 12:10 Prepared	08/22/24 14:36 08/22/24 14:36 Analyzed	2
Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate o-Terphenyl General Chemistry Analyte	680 2800 %Recovery 69		98 98 Limits	24 34	mg/Kg	<u></u>	08/20/24 12:10 08/20/24 12:10 Prepared	08/22/24 14:36 08/22/24 14:36 Analyzed	2 2 Dil Fac
#2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate o-Terphenyl General Chemistry	680 2800 %Recovery 69	Qualifier	98 98 Limits 50 - 150	24 34	mg/Kg mg/Kg	— —	08/20/24 12:10 08/20/24 12:10 Prepared 08/20/24 12:10	08/22/24 14:36 08/22/24 14:36 Analyzed 08/22/24 14:36	Dil Fac

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-5R (4'-6')

Lab Sample ID: 580-143025-2 Date Collected: 08/14/24 12:30 **Matrix: Solid** Date Received: 08/16/24 12:18

Percent Solids: 94.7

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
1,1,1,2-Tetrachloroethane	ND		0.0033	0.00064	mg/Kg	☼	08/20/24 13:15	08/20/24 15:49	
1,1,1-Trichloroethane	0.0015	J	0.0022	0.0011	mg/Kg	☼	08/20/24 13:15	08/20/24 15:49	
1,1,2,2-Tetrachloroethane	ND		0.0033	0.00025	mg/Kg	₩	08/20/24 13:15	08/20/24 15:49	
1,1,2-Trichloroethane	ND		0.0022	0.00057	mg/Kg	☼	08/20/24 13:15	08/20/24 15:49	
1,1-Dichloroethane	ND		0.0022	0.0010	mg/Kg	☼	08/20/24 13:15	08/20/24 15:49	
1,1-Dichloroethene	ND		0.0054	0.0023	mg/Kg	≎	08/20/24 13:15	08/20/24 15:49	
1,1-Dichloropropene	ND		0.0033	0.0012	mg/Kg	₩	08/20/24 13:15	08/20/24 15:49	
1,2,3-Trichlorobenzene	ND		0.011	0.00065	mg/Kg	☼	08/20/24 13:15	08/20/24 15:49	
1,2,3-Trichloropropane	ND		0.0054	0.0011	mg/Kg	☼	08/20/24 13:15	08/20/24 15:49	
1,2,4-Trichlorobenzene	ND		0.0033	0.0013	mg/Kg	₽	08/20/24 13:15	08/20/24 15:49	
1,2,4-Trimethylbenzene	ND		0.0054	0.0013	mg/Kg	☼	08/20/24 13:15	08/20/24 15:49	
1,2-Dibromo-3-Chloropropane	ND		0.011	0.0017	mg/Kg	☼	08/20/24 13:15	08/20/24 15:49	
1,2-Dibromoethane	ND		0.0011	0.00022	mg/Kg	₩	08/20/24 13:15	08/20/24 15:49	
1,2-Dichlorobenzene	ND		0.011	0.0014		₽	08/20/24 13:15	08/20/24 15:49	
1,2-Dichloroethane	ND		0.0022	0.00067		≎	08/20/24 13:15	08/20/24 15:49	
1,2-Dichloropropane	ND		0.0022	0.00054			08/20/24 13:15	08/20/24 15:49	
1,3,5-Trimethylbenzene	ND		0.0054	0.00088	0 0	₽	08/20/24 13:15	08/20/24 15:49	
1,3-Dichlorobenzene	ND		0.0054	0.0012	0 0	₩	08/20/24 13:15	08/20/24 15:49	
1,3-Dichloropropane	ND		0.0022	0.00025				08/20/24 15:49	
I,4-Dichlorobenzene	ND		0.0054	0.0011		₩		08/20/24 15:49	
2,2-Dichloropropane	ND		0.0054	0.00083		₩		08/20/24 15:49	
2-Chlorotoluene	ND		0.0054	0.0010				08/20/24 15:49	
4-Chlorotoluene	ND		0.0054	0.0011		~ ☆		08/20/24 15:49	
4-Isopropyltoluene	ND ND		0.0034	0.00043		~ ☆		08/20/24 15:49	
Benzene	ND		0.0022	0.00043		·····		08/20/24 15:49	
Bromobenzene	ND		0.0022	0.00042	mg/Kg	₩		08/20/24 15:49	
Bromochloromethane	ND ND		0.0022	0.0011	0 0	₩		08/20/24 15:49	
Bromodichloromethane	ND		0.0022	0.00096				08/20/24 15:49	
Bromoform	ND ND		0.0022	0.00090	mg/Kg	₩ #		08/20/24 15:49	
Bromomethane	ND ND		0.0034		0 0			08/20/24 15:49	
				0.00095		 .			
Carbon tetrachloride	ND		0.0022	0.00093	0 0			08/20/24 15:49	
Chlorobenzene	ND		0.0022	0.00027				08/20/24 15:49	
Chloroethane	ND		0.011	0.00081		· · · · · · · ·		08/20/24 15:49	
Chloroform	ND		0.0033	0.0014		₽.		08/20/24 15:49	
Chloromethane	ND		0.0054	0.0010		₩		08/20/24 15:49	
cis-1,2-Dichloroethene	ND		0.0033	0.00025				08/20/24 15:49	
cis-1,3-Dichloropropene	ND		0.0011	0.00022		☼		08/20/24 15:49	
Dibromochloromethane	ND		0.0022	0.00061		≎		08/20/24 15:49	
Dibromomethane	ND		0.0022	0.00046				08/20/24 15:49	
Dichlorodifluoromethane	ND		0.0033	0.0014		₩		08/20/24 15:49	
Ethylbenzene	ND		0.0022	0.0010		☼		08/20/24 15:49	
lexachlorobutadiene	ND		0.0033	0.0016		≎	08/20/24 13:15	08/20/24 15:49	
sopropylbenzene	ND	*+	0.0033	0.0012		☼	08/20/24 13:15	08/20/24 15:49	
Methyl tert-butyl ether	ND		0.0022	0.00033	mg/Kg	☼	08/20/24 13:15	08/20/24 15:49	
Methylene Chloride	ND		0.043	0.011	mg/Kg	≎	08/20/24 13:15	08/20/24 15:49	
n-Xylene & p-Xylene	ND		0.011	0.0013	mg/Kg	₽	08/20/24 13:15	08/20/24 15:49	
Naphthalene	ND		0.011	0.0020	mg/Kg	☼	08/20/24 13:15	08/20/24 15:49	
n-Butylbenzene	ND		0.0033	0.00068	mg/Kg	₽	08/20/24 13:15	08/20/24 15:49	
N-Propylbenzene	ND		0.0054	0.00082		∴		08/20/24 15:49	

Eurofins Seattle

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-5R (4'-6')

Lab Sample ID: 580-143025-2 Date Collected: 08/14/24 12:30 **Matrix: Solid**

Percent Solids: 94.7 Date Received: 08/16/24 12:18

Analyte	_	Qualifier	ds by GC/MS RL	(Conti		D	Prepared	Analyzed	Dil Fac
o-Xylene	ND		0.0054	0.0010	ma/Ka	— <u> </u>		08/20/24 15:49	
sec-Butylbenzene	ND		0.0033	0.00073		₩	08/20/24 13:15	08/20/24 15:49	1
Styrene	ND		0.0033	0.00080			08/20/24 13:15	08/20/24 15:49	1
t-Butylbenzene	ND		0.0033	0.00072		₩	08/20/24 13:15	08/20/24 15:49	1
Tetrachloroethene	0.0069		0.0022	0.00043	mg/Kg	≎	08/20/24 13:15	08/20/24 15:49	1
Toluene	ND		0.011	0.0014			08/20/24 13:15	08/20/24 15:49	1
trans-1,2-Dichloroethene	ND		0.0038	0.0016		≎	08/20/24 13:15	08/20/24 15:49	1
trans-1,3-Dichloropropene	ND	*+	0.011	0.00065		≎	08/20/24 13:15	08/20/24 15:49	1
Trichloroethene	ND		0.0022	0.00033			08/20/24 13:15	08/20/24 15:49	1
Trichlorofluoromethane	ND		0.0092	0.0042		₩	08/20/24 13:15	08/20/24 15:49	1
Vinyl chloride	ND		0.0022	0.00095		₽	08/20/24 13:15	08/20/24 15:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	111		80 - 121				08/20/24 13:15	08/20/24 15:49	1
4-Bromofluorobenzene (Surr)	95		80 - 120				08/20/24 13:15	08/20/24 15:49	1
Dibromofluoromethane (Surr)	105		80 - 120				08/20/24 13:15	08/20/24 15:49	1
Toluene-d8 (Surr)	103		80 - 120				08/20/24 13:15	08/20/24 15:49	1
_ Method: NWTPH-Dx - Northw	vest - Semi-V	olatile Pet	roleum Prod	ucts (GC) - DL				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	1000		99	24	mg/Kg	<u></u>	08/20/24 12:10	08/22/24 14:56	2
#4 DIESEI (C IU-C24)					mg/Kg	₩	08/20/24 12:10	08/22/24 14:56	2
Motor Oil (>C24-C36)	3900		99	35	mg/rtg	**			
•	3900 %Recovery	Qualifier	99 Limits	35	mg/rtg	**	Prepared	Analyzed	Dil Fac
Motor Oil (>C24-C36)		Qualifier		35	mg/Ng	**			Dil Fac
Motor Oil (>C24-C36) Surrogate o-Terphenyl	%Recovery	Qualifier	Limits	35	mg/Ng	**	Prepared		_
Motor Oil (>C24-C36) Surrogate	%Recovery 107	Qualifier Qualifier	Limits		Unit	D	Prepared		Dil Fac
Motor Oil (>C24-C36) Surrogate o-Terphenyl General Chemistry	%Recovery 107		Limits 50 - 150				Prepared 08/20/24 12:10	08/22/24 14:56	Dil Fac

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-13 (2'-4')

Lab Sample ID: 580-143025-3 Date Collected: 08/14/24 13:25 **Matrix: Solid** Date Received: 08/16/24 12:18

Percent Solids: 93.4

Analyte	Result C	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND ND	0.0042	0.00083	mg/Kg	— <u></u>	08/20/24 13:15	08/20/24 16:08	1
1,1,1-Trichloroethane	ND	0.0028	0.0014	mg/Kg	₩	08/20/24 13:15	08/20/24 16:08	1
1,1,2,2-Tetrachloroethane	ND	0.0042	0.00032	mg/Kg	₩	08/20/24 13:15	08/20/24 16:08	1
1,1,2-Trichloroethane	ND	0.0028	0.00074	mg/Kg	₩	08/20/24 13:15	08/20/24 16:08	1
1,1-Dichloroethane	ND	0.0028	0.0013	mg/Kg	₩	08/20/24 13:15	08/20/24 16:08	1
1,1-Dichloroethene	ND	0.0070			☆	08/20/24 13:15	08/20/24 16:08	1
1,1-Dichloropropene	ND	0.0042			∴	08/20/24 13:15	08/20/24 16:08	1
1,2,3-Trichlorobenzene	ND	0.014			₩	08/20/24 13:15	08/20/24 16:08	1
1,2,3-Trichloropropane	ND	0.0070	0.0014	mg/Kg	₩	08/20/24 13:15	08/20/24 16:08	1
1,2,4-Trichlorobenzene	ND	0.0042	0.0017	mg/Kg	₩	08/20/24 13:15	08/20/24 16:08	1
1,2,4-Trimethylbenzene	ND	0.0070		mg/Kg	☆	08/20/24 13:15	08/20/24 16:08	1
1,2-Dibromo-3-Chloropropane	ND	0.014		mg/Kg	☆	08/20/24 13:15	08/20/24 16:08	1
1,2-Dibromoethane	ND	0.0014				08/20/24 13:15	08/20/24 16:08	1
1,2-Dichlorobenzene	ND	0.014		0 0	₩	08/20/24 13:15	08/20/24 16:08	1
1,2-Dichloroethane	ND	0.0028			₽		08/20/24 16:08	1
1,2-Dichloropropane	ND	0.0028				08/20/24 13:15	08/20/24 16:08	
1,3,5-Trimethylbenzene	ND	0.0070		mg/Kg	₩		08/20/24 16:08	
1,3-Dichlorobenzene	ND	0.0070			₩	08/20/24 13:15	08/20/24 16:08	
1,3-Dichloropropane	ND	0.0028				08/20/24 13:15	08/20/24 16:08	
1,4-Dichlorobenzene	ND	0.0070		0 0	☆		08/20/24 16:08	
2,2-Dichloropropane	ND	0.0070		mg/Kg	₩	08/20/24 13:15	08/20/24 16:08	
2-Chlorotoluene	ND	0.0070		mg/Kg	 .☆		08/20/24 16:08	
4-Chlorotoluene	ND	0.0070			☆		08/20/24 16:08	
4-Isopropyltoluene	ND	0.0028		0 0	ά		08/20/24 16:08	
Benzene	ND	0.0028					08/20/24 16:08	
Bromobenzene	ND	0.014		mg/Kg	☆		08/20/24 16:08	
Bromochloromethane	ND	0.0028					08/20/24 16:08	
Bromodichloromethane	ND	0.0028		mg/Kg			08/20/24 16:08	
Bromoform	ND	0.0070					08/20/24 16:08	
Bromomethane	ND	0.0028		mg/Kg			08/20/24 16:08	
Carbon tetrachloride	ND	0.0028		mg/Kg			08/20/24 16:08	
Chlorobenzene	ND	0.0028					08/20/24 16:08	
Chloroethane	ND	0.014		mg/Kg		08/20/24 13:15		1
Chloroform	ND	0.0042		mg/Kg			08/20/24 16:08	
Chloromethane	ND	0.0070					08/20/24 16:08	
cis-1,2-Dichloroethene	ND	0.0042		0 0	~ \$	08/20/24 13:15		,
cis-1,3-Dichloropropene	ND	0.0012				08/20/24 13:15		
Dibromochloromethane	ND	0.0028			~ \$		08/20/24 16:08	,
Dibromomethane	ND ND	0.0028		0 0	₩		08/20/24 16:08	
Dichlorodifluoromethane	ND	0.0020					08/20/24 16:08	,
Ethylbenzene	ND	0.0042		mg/Kg	₩		08/20/24 16:08	,
Hexachlorobutadiene	ND	0.0020		mg/Kg	₩		08/20/24 16:08	4
Isopropylbenzene	ND *-			mg/Kg	¥. 		08/20/24 16:08	
Methyl tert-butyl ether	ND ND	0.0042					08/20/24 16:08	,
Methylene Chloride	ND ND	0.0028			☆			,
				mg/Kg	· · · · · · 🌣		08/20/24 16:08	
m-Xylene & p-Xylene	ND	0.014		mg/Kg	ή. Υ		08/20/24 16:08	,
Naphthalene n Butulbenzone	ND	0.014			φ.		08/20/24 16:08	1
n-Butylbenzene N-Propylbenzene	ND ND	0.0042 0.0070		mg/Kg mg/Kg	.		08/20/24 16:08 08/20/24 16:08	1

Eurofins Seattle

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-13 (2'-4')

Date Collected: 08/14/24 13:25 Date Received: 08/16/24 12:18

Lab Sample ID: 580-143025-3 **Matrix: Solid**

Percent Solids: 93.4

Method: SW846 8260D - Vo	latile Organic	Compoun	ds by GC/MS	(Conti	inued)				
Analyte	_	Qualifier	RL	•	Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	ND		0.0070	0.0013	mg/Kg	<u></u>	08/20/24 13:15	08/20/24 16:08	1
sec-Butylbenzene	ND		0.0042	0.00094	mg/Kg	☼	08/20/24 13:15	08/20/24 16:08	1
Styrene	ND		0.0042	0.0010	mg/Kg	⊅	08/20/24 13:15	08/20/24 16:08	1
t-Butylbenzene	ND		0.0042	0.00093	mg/Kg	☼	08/20/24 13:15	08/20/24 16:08	1
Tetrachloroethene	0.0016	J	0.0028	0.00056	mg/Kg	₩	08/20/24 13:15	08/20/24 16:08	1
Toluene	ND		0.014	0.0018	mg/Kg	⊅	08/20/24 13:15	08/20/24 16:08	1
trans-1,2-Dichloroethene	ND		0.0049	0.0020	mg/Kg	☼	08/20/24 13:15	08/20/24 16:08	1
trans-1,3-Dichloropropene	ND	*+	0.014	0.00084	mg/Kg	₩	08/20/24 13:15	08/20/24 16:08	1
Trichloroethene	ND		0.0028	0.00042	mg/Kg	⊅	08/20/24 13:15	08/20/24 16:08	1
Trichlorofluoromethane	ND		0.012	0.0054	mg/Kg	☼	08/20/24 13:15	08/20/24 16:08	1
Vinyl chloride	ND		0.0028	0.0012	mg/Kg	☼	08/20/24 13:15	08/20/24 16:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	115		80 - 121				08/20/24 13:15	08/20/24 16:08	1
4-Bromofluorobenzene (Surr)	100		80 - 120				08/20/24 13:15	08/20/24 16:08	1
Dibromofluoromethane (Surr)	109		80 - 120				08/20/24 13:15	08/20/24 16:08	1
Toluene-d8 (Surr)	97		80 - 120				08/20/24 13:15	08/20/24 16:08	1
Method: NWTPH-Dx - Nortl	hwest - Semi-V	olatile Pet	roleum Produ	ıcts (G	C)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	65		50	12	mg/Kg	<u></u>	08/20/24 12:10	08/22/24 15:16	1

Method: NWTPH-Dx - North	nwest - Semi-Volatile Pet	roleum Prodi						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	<u>65</u>	50	12	mg/Kg	<u></u>	08/20/24 12:10	08/22/24 15:16	1
Motor Oil (>C24-C36)	91	50	18	mg/Kg	₩	08/20/24 12:10	08/22/24 15:16	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	65	50 - 150				08/20/24 12:10	08/22/24 15:16	1

General Chemistry Analyte	Result Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids (SM22 2540G)	93.4	0.1	0.1	%			08/21/24 09:49	1
Percent Moisture (SM22 2540G)	6.6	0.1	0.1	%			08/21/24 09:49	1

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-13 (4'-6')

Date Collected: 08/14/24 13:25 Date Received: 08/16/24 12:18

Lab Sample ID: 580-143025-4

Matrix: Solid

Percent Solids: 94.2

Method: SW846 8260D	- Volatile Organic	Compounds by GC/N	IS					
Analyte	_	Qualifier RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	0.0040	0.00078	mg/Kg	<u></u>	08/20/24 13:15	08/20/24 16:27	1
1,1,1-Trichloroethane	ND	0.0027	0.0013	mg/Kg	☼	08/20/24 13:15	08/20/24 16:27	1
1,1,2,2-Tetrachloroethane	ND	0.0040	0.00030	mg/Kg	₩	08/20/24 13:15	08/20/24 16:27	1
1,1,2-Trichloroethane	ND	0.0027	0.00070	mg/Kg	₩	08/20/24 13:15	08/20/24 16:27	1
1,1-Dichloroethane	ND	0.0027	0.0012	mg/Kg	≎	08/20/24 13:15	08/20/24 16:27	1
1,1-Dichloroethene	ND	0.0066	0.0028		☆	08/20/24 13:15	08/20/24 16:27	1
1,1-Dichloropropene	ND	0.0040	0.0014	mg/Kg	₩	08/20/24 13:15	08/20/24 16:27	1
1,2,3-Trichlorobenzene	ND	0.013	0.00079		₽	08/20/24 13:15	08/20/24 16:27	1
1,2,3-Trichloropropane	ND	0.0066	0.0013	mg/Kg	₩	08/20/24 13:15	08/20/24 16:27	1
1,2,4-Trichlorobenzene	ND	0.0040	0.0016	mg/Kg		08/20/24 13:15	08/20/24 16:27	1
1,2,4-Trimethylbenzene	ND	0.0066	0.0016	mg/Kg	₩	08/20/24 13:15	08/20/24 16:27	1
1,2-Dibromo-3-Chloropropane	ND	0.013	0.0021	0 0	₩	08/20/24 13:15	08/20/24 16:27	1
1,2-Dibromoethane	ND	0.0013	0.00026				08/20/24 16:27	1
1,2-Dichlorobenzene	ND	0.013	0.0017	0 0	☆		08/20/24 16:27	1
1,2-Dichloroethane	ND	0.0027	0.00082		☆		08/20/24 16:27	1
1,2-Dichloropropane	ND	0.0026	0.00066				08/20/24 16:27	 1
1,3,5-Trimethylbenzene	ND	0.0066		mg/Kg			08/20/24 16:27	1
1,3-Dichlorobenzene	ND	0.0066	0.0015				08/20/24 16:27	1
1,3-Dichloropropane	ND	0.0027	0.00030				08/20/24 16:27	
1,4-Dichlorobenzene	ND	0.0027	0.0013		*		08/20/24 16:27	1
2,2-Dichloropropane	ND	0.0066	0.0010		*		08/20/24 16:27	
2-Chlorotoluene	ND	0.0066	0.0010		· · · · · · · · · · · · · · · · · · ·		08/20/24 16:27	
4-Chlorotoluene	ND	0.0066	0.0012		₩		08/20/24 16:27	1
4-Isopropyltoluene	ND	0.0026	0.00013	0 0	Ď.		08/20/24 16:27	1
Benzene	ND	0.0026	0.00053		 		08/20/24 16:27	1
Bromobenzene	ND ND	0.0020	0.00032	0 0			08/20/24 16:27	1
Bromochloromethane	ND ND	0.013			*		08/20/24 16:27	1
Bromodichloromethane			0.0012					
	ND ND	0.0027	0.0012	0 0	1,2		08/20/24 16:27	1
Bromoform	ND ND	0.0066		mg/Kg	☆		08/20/24 16:27 08/20/24 16:27	1
Bromomethane		0.0027	0.0012		· · · · · ·			
Carbon tetrachloride	ND	0.0027		mg/Kg	*		08/20/24 16:27	1
Chlorobenzene	ND	0.0026	0.00033		*		08/20/24 16:27	1
Chloroethane	ND	0.013	0.00099		 .		08/20/24 16:27	
Chloroform	ND	0.0040	0.0017	0 0	*		08/20/24 16:27	1
Chloromethane	ND	0.0066	0.0012		₩	00/20/21 10110	08/20/24 16:27	1
cis-1,2-Dichloroethene	ND	0.0040	0.00030		.		08/20/24 16:27	1
cis-1,3-Dichloropropene	ND	0.0013	0.00026		≎		08/20/24 16:27	1
Dibromochloromethane	ND	0.0027	0.00074	0 0	≎		08/20/24 16:27	1
Dibromomethane	ND	0.0026	0.00056		.		08/20/24 16:27	1
Dichlorodifluoromethane	ND	0.0040	0.0018		☼		08/20/24 16:27	1
Ethylbenzene	ND	0.0027	0.0013		₩		08/20/24 16:27	1
Hexachlorobutadiene	ND	0.0040	0.0019				08/20/24 16:27	1
Isopropylbenzene	ND	*+ 0.0040	0.0014		☼		08/20/24 16:27	1
Methyl tert-butyl ether	ND	0.0026	0.00040	mg/Kg	₽		08/20/24 16:27	1
Methylene Chloride	ND	0.053	0.013	mg/Kg	₽	08/20/24 13:15	08/20/24 16:27	1
m-Xylene & p-Xylene	ND	0.013	0.0015	mg/Kg	⊅	08/20/24 13:15	08/20/24 16:27	1
Naphthalene	ND	0.013	0.0024	mg/Kg	≎	08/20/24 13:15	08/20/24 16:27	1
n-Butylbenzene	ND	0.0040	0.00083	mg/Kg	₽	08/20/24 13:15	08/20/24 16:27	1
N-Propylbenzene	ND	0.0066	0.0010	mg/Kg	⊅	08/20/24 13:15	08/20/24 16:27	1

Eurofins Seattle

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-13 (4'-6')

Date Collected: 08/14/24 13:25

Date Received: 08/16/24 12:18

Lab Sample ID: 580-143025-4

Matrix: Solid

Percent Solids: 94.2

Method: SW846 8260D - Vo	latile Organic	Compound	ds by GC/MS	(Conti	nued)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
o-Xylene	ND		0.0066	0.0012	mg/Kg	<u></u>	08/20/24 13:15	08/20/24 16:27	•
sec-Butylbenzene	ND		0.0040	0.00089	mg/Kg	₩	08/20/24 13:15	08/20/24 16:27	
Styrene	ND		0.0040	0.00098	mg/Kg	₽	08/20/24 13:15	08/20/24 16:27	
t-Butylbenzene	ND		0.0040	0.00087	mg/Kg	₩	08/20/24 13:15	08/20/24 16:27	
Tetrachloroethene	0.0032		0.0026	0.00053	mg/Kg	₩	08/20/24 13:15	08/20/24 16:27	
Toluene	ND		0.013	0.0017	mg/Kg	₩	08/20/24 13:15	08/20/24 16:27	
trans-1,2-Dichloroethene	ND		0.0046	0.0019	mg/Kg	₩	08/20/24 13:15	08/20/24 16:27	
trans-1,3-Dichloropropene	ND	*+	0.013	0.00079	mg/Kg	₩	08/20/24 13:15	08/20/24 16:27	•
Trichloroethene	ND		0.0026	0.00040	mg/Kg	₩	08/20/24 13:15	08/20/24 16:27	1
Trichlorofluoromethane	ND		0.011	0.0051	mg/Kg	₩	08/20/24 13:15	08/20/24 16:27	1
Vinyl chloride	ND		0.0027	0.0012	mg/Kg	₽	08/20/24 13:15	08/20/24 16:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	114		80 - 121				08/20/24 13:15	08/20/24 16:27	1
4-Bromofluorobenzene (Surr)	94		80 - 120				08/20/24 13:15	08/20/24 16:27	1
Dibromofluoromethane (Surr)	110		80 - 120				08/20/24 13:15	08/20/24 16:27	1
Toluene-d8 (Surr)	101		80 - 120				08/20/24 13:15	08/20/24 16:27	1
Method: NWTPH-Dx - North	west - Semi-V	olatile Pet	roleum Prod	ucts (GC	C)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	130		53	13	mg/Kg	— <u></u>	08/20/24 12:10	08/22/24 15:36	1
Motor Oil (>C24-C36)	150		53	18	mg/Kg	☼	08/20/24 12:10	08/22/24 15:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	65		50 - 150				08/20/24 12:10	08/22/24 15:36	1
=									
General Chemistry						_			
	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
General Chemistry Analyte Percent Solids (SM22 2540G)	Result 94.2	Qualifier		0.1	Unit %	_ D	Prepared	Analyzed 08/21/24 09:49	Dil Fac

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-14 (2'-4')

Date Collected: 08/14/24 14:00 Date Received: 08/16/24 12:18 Lab Sample ID: 580-143025-5

Matrix: Solid

Percent Solids: 94.3

Method: SW846 8260D - Vola ^{Analyte}	Result Q		MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND ND	0.0037	0.00073		— -	08/20/24 13:15	08/20/24 16:46	Diriac
1,1,1-Trichloroethane	ND	0.0025	0.0012	0 0	₩.	08/20/24 13:15	08/20/24 16:46	1
1,1,2,2-Tetrachloroethane	ND	0.0037	0.00028	0 0	₩.	08/20/24 13:15	08/20/24 16:46	1
1,1,2-Trichloroethane	ND	0.0025	0.00065			08/20/24 13:15	08/20/24 16:46	1
,1-Dichloroethane	ND	0.0025	0.00011	0 0	₩	08/20/24 13:15	08/20/24 16:46	
1,1-Dichloroethene	ND	0.0062	0.0026	0 0	Ď.	08/20/24 13:15	08/20/24 16:46	1
1,1-Dichloropropene	ND	0.0037	0.0020			08/20/24 13:15	08/20/24 16:46	
1,2,3-Trichlorobenzene	ND	0.012	0.00074		₩	08/20/24 13:15	08/20/24 16:46	1
,2,3-Trichloropropane	ND	0.0062	0.0012		₩	08/20/24 13:15	08/20/24 16:46	1
1,2,4-Trichlorobenzene	ND	0.0002	0.0012			08/20/24 13:15	08/20/24 16:46	
	ND	0.0062	0.0015			08/20/24 13:15	08/20/24 16:46	1
I,2,4-Trimethylbenzene	ND ND	0.0062			φ.			
I,2-Dibromo-3-Chloropropane			0.0020	mg/Kg	· · · · · · · · · · · · · · · · · · ·	08/20/24 13:15	08/20/24 16:46	
1,2-Dibromoethane	ND	0.0012	0.00025		-Ω:	08/20/24 13:15	08/20/24 16:46	1
1,2-Dichlorobenzene	ND	0.012	0.0016		*	08/20/24 13:15	08/20/24 16:46	1
1,2-Dichloroethane	ND	0.0025	0.00076			08/20/24 13:15	08/20/24 16:46	1
1,2-Dichloropropane	ND	0.0025	0.00062		∵	08/20/24 13:15	08/20/24 16:46	1
,3,5-Trimethylbenzene	ND	0.0062	0.0010		₩	08/20/24 13:15	08/20/24 16:46	1
,3-Dichlorobenzene	ND	0.0062	0.0014		<u></u>	08/20/24 13:15	08/20/24 16:46	1
,3-Dichloropropane	ND	0.0025	0.00028	0 0	☼	08/20/24 13:15	08/20/24 16:46	1
,4-Dichlorobenzene	ND	0.0062	0.0012		₩	08/20/24 13:15		1
,2-Dichloropropane	ND	0.0062	0.00095		.	08/20/24 13:15	08/20/24 16:46	1
-Chlorotoluene	ND	0.0062	0.0011		₩	08/20/24 13:15		1
-Chlorotoluene	ND	0.0062	0.0012	0 0	₩	08/20/24 13:15	08/20/24 16:46	1
l-Isopropyltoluene	ND	0.0025	0.00049			08/20/24 13:15	08/20/24 16:46	1
Benzene	ND	0.0025	0.00048		₩	08/20/24 13:15	08/20/24 16:46	1
Bromobenzene	ND	0.012	0.0012		₩	08/20/24 13:15	08/20/24 16:46	1
Bromochloromethane	ND	0.0025	0.0011	mg/Kg	₩	08/20/24 13:15	08/20/24 16:46	1
Bromodichloromethane	ND	0.0025	0.0011	mg/Kg	₩	08/20/24 13:15	08/20/24 16:46	1
Bromoform	ND	0.0062	0.0010	mg/Kg	₩	08/20/24 13:15	08/20/24 16:46	1
Bromomethane	ND	0.0025	0.0011	mg/Kg	₩	08/20/24 13:15	08/20/24 16:46	1
Carbon tetrachloride	ND	0.0025		mg/Kg	₩	08/20/24 13:15	08/20/24 16:46	1
Chlorobenzene	ND	0.0025	0.00031	mg/Kg	☼	08/20/24 13:15	08/20/24 16:46	1
Chloroethane	ND	0.012	0.00092	mg/Kg	☼	08/20/24 13:15	08/20/24 16:46	1
Chloroform	ND	0.0037	0.0016	mg/Kg	₩	08/20/24 13:15	08/20/24 16:46	1
Chloromethane	ND	0.0062	0.0011	mg/Kg	☼	08/20/24 13:15	08/20/24 16:46	1
cis-1,2-Dichloroethene	ND	0.0037	0.00028	mg/Kg	₩	08/20/24 13:15	08/20/24 16:46	1
cis-1,3-Dichloropropene	ND	0.0012	0.00025	mg/Kg	₩	08/20/24 13:15	08/20/24 16:46	1
Dibromochloromethane	ND	0.0025	0.00069	mg/Kg	₩	08/20/24 13:15	08/20/24 16:46	1
Dibromomethane	ND	0.0025	0.00052	mg/Kg	₩	08/20/24 13:15	08/20/24 16:46	1
Dichlorodifluoromethane	ND	0.0037	0.0016	mg/Kg	₽	08/20/24 13:15	08/20/24 16:46	1
Ethylbenzene	ND	0.0025	0.0012		₩	08/20/24 13:15	08/20/24 16:46	1
	ND	0.0037	0.0018	mg/Kg	₩	08/20/24 13:15	08/20/24 16:46	1
sopropylbenzene	ND *+	0.0037	0.0013		₩	08/20/24 13:15	08/20/24 16:46	1
Methyl tert-butyl ether	ND	0.0025	0.00037		₩	08/20/24 13:15	08/20/24 16:46	1
Methylene Chloride	ND	0.049		mg/Kg	₩		08/20/24 16:46	1
n-Xylene & p-Xylene	ND	0.012	0.0014				08/20/24 16:46	,
Naphthalene	ND	0.012	0.0022		₩.		08/20/24 16:46	1
n-Butylbenzene	ND	0.0037	0.00078		.∵ 		08/20/24 16:46	1
N-Propylbenzene	ND	0.0062	0.00076				08/20/24 16:46	

Eurofins Seattle

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-14 (2'-4')

Date Collected: 08/14/24 14:00

Percent Moisture (SM22 2540G)

Lab Sample ID: 580-143025-5

Matrix: Solid

		_							
Method: SW846 8260D - Vol. Analyte	_	Compoun Qualifier	ds by GC/MS RL	•	inued) Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	ND		0.0062	0.0011	mg/Kg	— <u>-</u>	08/20/24 13:15	08/20/24 16:46	
sec-Butylbenzene	ND		0.0037	0.00083	0 0	☼	08/20/24 13:15	08/20/24 16:46	
Styrene	ND		0.0037	0.00091			08/20/24 13:15	08/20/24 16:46	1
t-Butylbenzene	ND		0.0037	0.00081	mg/Kg	☆	08/20/24 13:15	08/20/24 16:46	1
Tetrachloroethene	0.0019	J	0.0025	0.00049	mg/Kg	☼	08/20/24 13:15	08/20/24 16:46	1
Toluene	ND		0.012	0.0016	mg/Kg	₩	08/20/24 13:15	08/20/24 16:46	1
trans-1,2-Dichloroethene	ND		0.0043	0.0018	mg/Kg	☼	08/20/24 13:15	08/20/24 16:46	1
trans-1,3-Dichloropropene	ND	*+	0.012	0.00074	mg/Kg	☼	08/20/24 13:15	08/20/24 16:46	1
Trichloroethene	ND		0.0025	0.00037	mg/Kg	₩	08/20/24 13:15	08/20/24 16:46	1
Trichlorofluoromethane	ND		0.010	0.0048	mg/Kg	☼	08/20/24 13:15	08/20/24 16:46	1
Vinyl chloride	ND		0.0025	0.0011	mg/Kg	₩	08/20/24 13:15	08/20/24 16:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			80 - 121				08/20/24 13:15	08/20/24 16:46	1
4-Bromofluorobenzene (Surr)	101		80 - 120				08/20/24 13:15	08/20/24 16:46	1
Dibromofluoromethane (Surr)	110		80 - 120				08/20/24 13:15	08/20/24 16:46	1
Toluene-d8 (Surr)	98		80 - 120				08/20/24 13:15	08/20/24 16:46	1
Method: NWTPH-Dx - North	west - Semi-V	olatile Pet	roleum Prod	ucts (G0	C)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	ND		53	13	mg/Kg	<u></u>	08/20/24 12:10	08/22/24 16:16	1
Motor Oil (>C24-C36)	ND		53	18	mg/Kg	₩	08/20/24 12:10	08/22/24 16:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	60		50 - 150				08/20/24 12:10	08/22/24 16:16	1
General Chemistry									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids (SM22 2540G)	94.3		0.1	0.1				08/21/24 09:49	1

0.1

5.7

0.1 %

08/21/24 09:49

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-14 (4'-6')

Date Collected: 08/14/24 14:00

Lab Sample ID: 580-143025-6

Matrix: Solid

Method: SW846 8260D - Vola	tile Organic	Compound	s by GC/M	8					
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND		0.0037	0.00073	mg/Kg	≎	08/20/24 13:15	08/20/24 17:05	•
1,1,1-Trichloroethane	ND		0.0025	0.0012	mg/Kg	☼	08/20/24 13:15	08/20/24 17:05	•
1,1,2,2-Tetrachloroethane	ND		0.0037	0.00029		☼	08/20/24 13:15	08/20/24 17:05	•
1,1,2-Trichloroethane	ND		0.0025	0.00066	mg/Kg	₽	08/20/24 13:15	08/20/24 17:05	
1,1-Dichloroethane	ND		0.0025	0.0012	mg/Kg	☼	08/20/24 13:15	08/20/24 17:05	
1,1-Dichloroethene	ND		0.0062	0.0027	mg/Kg	☼	08/20/24 13:15	08/20/24 17:05	
1,1-Dichloropropene	ND		0.0037	0.0014	mg/Kg	₩	08/20/24 13:15	08/20/24 17:05	
1,2,3-Trichlorobenzene	ND		0.012	0.00074	mg/Kg	☼	08/20/24 13:15	08/20/24 17:05	
1,2,3-Trichloropropane	ND		0.0062	0.0012	mg/Kg	☼	08/20/24 13:15	08/20/24 17:05	
1,2,4-Trichlorobenzene	ND		0.0037	0.0015	mg/Kg	₩	08/20/24 13:15	08/20/24 17:05	
1,2,4-Trimethylbenzene	ND		0.0062	0.0015	mg/Kg	☼	08/20/24 13:15	08/20/24 17:05	
1,2-Dibromo-3-Chloropropane	ND		0.012	0.0020	mg/Kg	☼	08/20/24 13:15	08/20/24 17:05	
1,2-Dibromoethane	ND		0.0012	0.00025	mg/Kg	₩	08/20/24 13:15	08/20/24 17:05	
1,2-Dichlorobenzene	ND		0.012	0.0016		₽	08/20/24 13:15	08/20/24 17:05	
1,2-Dichloroethane	ND		0.0025	0.00077		₽	08/20/24 13:15	08/20/24 17:05	
1,2-Dichloropropane	ND		0.0025	0.00062	mg/Kg	₩	08/20/24 13:15	08/20/24 17:05	
1,3,5-Trimethylbenzene	ND		0.0062	0.0010		☆	08/20/24 13:15	08/20/24 17:05	
1,3-Dichlorobenzene	ND		0.0062	0.0014		☆	08/20/24 13:15	08/20/24 17:05	
1,3-Dichloropropane	ND		0.0025	0.00029			08/20/24 13:15	08/20/24 17:05	
1,4-Dichlorobenzene	ND		0.0062	0.0012		₩		08/20/24 17:05	
2,2-Dichloropropane	ND		0.0062	0.00096	0 0	ά	08/20/24 13:15	08/20/24 17:05	
2-Chlorotoluene	ND		0.0062	0.0012				08/20/24 17:05	
4-Chlorotoluene	ND		0.0062	0.0012				08/20/24 17:05	
4-Isopropyltoluene	ND		0.0025	0.00050	0 0	Ď.		08/20/24 17:05	
Benzene	ND		0.0025	0.00048		T.		08/20/24 17:05	
Bromobenzene	ND		0.012	0.0012				08/20/24 17:05	
Bromochloromethane	ND		0.0025	0.0012		~ \$			
Bromodichloromethane	ND		0.0025	0.0011				08/20/24 17:05	
Bromoform	ND		0.0023	0.0011		~ \$	08/20/24 13:15	08/20/24 17:05	
Bromomethane	ND		0.0002	0.0010		~ \$	08/20/24 13:15	08/20/24 17:05	
Carbon tetrachloride	ND ND		0.0025		mg/Kg		08/20/24 13:15	08/20/24 17:05	
Chlorobenzene	ND ND		0.0025	0.0011		₩	08/20/24 13:15	08/20/24 17:05	
Chloroethane	ND ND		0.0023	0.00031	0 0	₩	08/20/24 13:15	08/20/24 17:05	
Chloroform	ND		0.012	0.00093		 . ☆	08/20/24 13:15	08/20/24 17:05	
Chloromethane	ND			0.0010				08/20/24 17:05	
	ND ND		0.0062	0.0012	0 0	φ.			
cis-1,2-Dichloroethene			0.0037					08/20/24 17:05	
cis-1,3-Dichloropropene	ND		0.0012	0.00025		*		08/20/24 17:05	
Dibromochloromethane	ND		0.0025	0.00069		*		08/20/24 17:05	
Dibromomethane	ND		0.0025	0.00052				08/20/24 17:05	
Dichlorodifluoromethane	ND		0.0037	0.0017		☼		08/20/24 17:05	
Ethylbenzene	ND		0.0025	0.0012		\$			
Hexachlorobutadiene	ND		0.0037	0.0018		.	08/20/24 13:15	08/20/24 17:05	
Isopropylbenzene	ND	^+	0.0037	0.0013		₽.			
Methyl tert-butyl ether	ND		0.0025	0.00037		₽.		08/20/24 17:05	
Methylene Chloride	ND		0.050		mg/Kg	. .		08/20/24 17:05	
m-Xylene & p-Xylene	ND		0.012	0.0015		₩		08/20/24 17:05	
Naphthalene	ND		0.012	0.0022		₩		08/20/24 17:05	•
n-Butylbenzene	ND		0.0037	0.00078 0.00094		₩	08/20/24 13:15	08/20/24 17:05	

Eurofins Seattle

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-14 (4'-6')

Date Collected: 08/14/24 14:00 Date Received: 08/16/24 12:18

Percent Solids (SM22 2540G)

Percent Moisture (SM22 2540G)

Lab Sample ID: 580-143025-6

Matrix: Solid

Percent Solids: 93.8

			ds by GC/M		,				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
o-Xylene	ND		0.0062	0.0011	mg/Kg	☼	08/20/24 13:15	08/20/24 17:05	
sec-Butylbenzene	ND		0.0037	0.00083	mg/Kg	☼	08/20/24 13:15	08/20/24 17:05	
Styrene	ND		0.0037	0.00092	mg/Kg	₽	08/20/24 13:15	08/20/24 17:05	
t-Butylbenzene	ND		0.0037	0.00082	mg/Kg	☼	08/20/24 13:15	08/20/24 17:05	
Tetrachloroethene	0.0022	J	0.0025	0.00050	mg/Kg	☼	08/20/24 13:15	08/20/24 17:05	
Toluene	ND		0.012	0.0016	mg/Kg	₩	08/20/24 13:15	08/20/24 17:05	
trans-1,2-Dichloroethene	ND		0.0043	0.0018	mg/Kg	☼	08/20/24 13:15	08/20/24 17:05	
trans-1,3-Dichloropropene	ND	*+	0.012	0.00074	mg/Kg	☼	08/20/24 13:15	08/20/24 17:05	
Trichloroethene	ND		0.0025	0.00037	mg/Kg	⊅	08/20/24 13:15	08/20/24 17:05	
Trichlorofluoromethane	ND		0.011	0.0048	mg/Kg	₩	08/20/24 13:15	08/20/24 17:05	
Vinyl chloride	ND		0.0025	0.0011	mg/Kg	☼	08/20/24 13:15	08/20/24 17:05	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	112		80 - 121				08/20/24 13:15	08/20/24 17:05	
4-Bromofluorobenzene (Surr)	103		80 - 120				08/20/24 13:15	08/20/24 17:05	
Dibromofluoromethane (Surr)	106		80 - 120				08/20/24 13:15	08/20/24 17:05	
Toluene-d8 (Surr)	95		80 - 120				08/20/24 13:15	08/20/24 17:05	
Method: NWTPH-Dx - Nort	hwest - Semi-V	olatile Pet	roleum Prod	lucts (G0	C)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
#2 Diesel (C10-C24)	ND		52	13	mg/Kg	<u></u>	08/20/24 12:10	08/22/24 16:37	
Motor Oil (>C24-C36)	18	J	52	18	mg/Kg	₩	08/20/24 12:10	08/22/24 16:37	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	60		50 - 150				08/20/24 12:10	08/22/24 16:37	
•									
General Chemistry									

0.1

0.1

93.8

6.2

0.1 %

0.1 %

08/21/24 09:49

08/21/24 09:49

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-15 (2'-4')

Lab Sample ID: 580-143025-7 Date Collected: 08/14/24 15:20 Date Received: 08/16/24 12:18

Matrix: Solid Percent Solids: 90.6

Method: SW846 8260D - Vola Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		0.0038	0.00076	mg/Kg	— <u>-</u>	08/20/24 13:15		1
1,1,1-Trichloroethane	ND		0.0026	0.0012		₩	08/20/24 13:15	08/20/24 17:24	1
1,1,2,2-Tetrachloroethane	ND		0.0038	0.00030	mg/Kg	₩	08/20/24 13:15	08/20/24 17:24	1
1,1,2-Trichloroethane	ND		0.0026	0.00068		₩	08/20/24 13:15	08/20/24 17:24	1
1,1-Dichloroethane	ND		0.0026	0.0012		₩	08/20/24 13:15	08/20/24 17:24	1
1,1-Dichloroethene	ND		0.0064	0.0027		₩	08/20/24 13:15	08/20/24 17:24	
1,1-Dichloropropene	ND		0.0038	0.0014			08/20/24 13:15	08/20/24 17:24	,
1,2,3-Trichlorobenzene	ND		0.013	0.00077		₩	08/20/24 13:15	08/20/24 17:24	
1,2,3-Trichloropropane	ND		0.0064	0.0013		₩	08/20/24 13:15	08/20/24 17:24	
1,2,4-Trichlorobenzene	ND		0.0039	0.0016			08/20/24 13:15	08/20/24 17:24	
1,2,4-Trimethylbenzene	ND		0.0064	0.0015		₩	08/20/24 13:15	08/20/24 17:24	
1,2-Dibromo-3-Chloropropane	ND		0.013	0.0021	0 0	₩		08/20/24 17:24	
1,2-Dibromoethane	ND		0.0013	0.00026				08/20/24 17:24	
1.2-Dichlorobenzene	ND		0.013	0.0017	0 0	₩		08/20/24 17:24	
1,2-Dichloroethane	ND		0.0026	0.00080		Ď.		08/20/24 17:24	
1,2-Dichloropropane	ND		0.0026	0.00064				08/20/24 17:24	
1,3,5-Trimethylbenzene	ND		0.0064	0.0010		Ď.		08/20/24 17:24	
1,3-Dichlorobenzene	ND		0.0064	0.0014		~ :Y:		08/20/24 17:24	
1,3-Dichloropropane	ND		0.0026	0.00030				08/20/24 17:24	· · · · ·
1,4-Dichlorobenzene	ND		0.0020	0.00030	0 0	₩		08/20/24 17:24	
2,2-Dichloropropane	ND		0.0064	0.00099	0 0	Ď.		08/20/24 17:24	
2-Chlorotoluene	ND		0.0064	0.00099		¥. 		08/20/24 17:24	
4-Chlorotoluene	ND ND		0.0064	0.0012	0 0	₩		08/20/24 17:24	
	ND ND		0.0004	0.0013	0 0			08/20/24 17:24	
4-Isopropyltoluene	ND		0.0026			· · · · · · · · · · · · · · · · · · ·		08/20/24 17:24	
Benzene				0.00050		φ.			
Bromobenzene	ND		0.013	0.0013		φ.		08/20/24 17:24	
Bromochloromethane	ND		0.0026	0.0012				08/20/24 17:24	
Bromodichloromethane	ND		0.0026	0.0011		₩.	08/20/24 13:15		
Bromoform	ND		0.0064	0.0011		₩.		08/20/24 17:24	
Bromomethane	ND		0.0026	0.0011	mg/Kg	<u>.</u> .		08/20/24 17:24	
Carbon tetrachloride	ND		0.0026	0.0011		∵		08/20/24 17:24	
Chlorobenzene	ND		0.0026	0.00032		*		08/20/24 17:24	
Chloroethane	ND		0.013	0.00096		. .	08/20/24 13:15		
Chloroform	ND		0.0039	0.0016		☼		08/20/24 17:24	
Chloromethane	ND		0.0064	0.0012	0 0	☼	08/20/24 13:15		
cis-1,2-Dichloroethene	ND		0.0038	0.00030		.	08/20/24 13:15		
cis-1,3-Dichloropropene	ND		0.0013	0.00026		☼	08/20/24 13:15		
Dibromochloromethane	ND		0.0026	0.00072		₩		08/20/24 17:24	
Dibromomethane	ND		0.0026	0.00054		. .		08/20/24 17:24	
Dichlorodifluoromethane	ND		0.0039	0.0017		₩		08/20/24 17:24	
Ethylbenzene	ND		0.0026	0.0012		₩		08/20/24 17:24	
Hexachlorobutadiene	ND		0.0039	0.0019				08/20/24 17:24	
sopropylbenzene	ND	*+	0.0039	0.0014		₩		08/20/24 17:24	
Methyl tert-butyl ether	ND		0.0026	0.00038		₩		08/20/24 17:24	
Methylene Chloride	ND		0.051	0.013	mg/Kg	₩	08/20/24 13:15	08/20/24 17:24	
m-Xylene & p-Xylene	ND		0.013	0.0015	mg/Kg	₩	08/20/24 13:15	08/20/24 17:24	
Naphthalene	ND		0.013	0.0023		☼	08/20/24 13:15	08/20/24 17:24	
n-Butylbenzene	ND		0.0038	0.00081	mg/Kg	₩	08/20/24 13:15	08/20/24 17:24	1
N-Propylbenzene	ND		0.0064	0.00097	mg/Kg	₽	08/20/24 13:15	08/20/24 17:24	

Eurofins Seattle

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-15 (2'-4')

Date Collected: 08/14/24 15:20 Date Received: 08/16/24 12:18 Lab Sample ID: 580-143025-7

Matrix: Solid

Percent Solids: 90.6

Method: SW846 8260D - Vola Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	ND		0.0064	0.0012	mg/Kg	<u></u>	08/20/24 13:15	08/20/24 17:24	1
sec-Butylbenzene	ND		0.0038	0.00086	mg/Kg	☆	08/20/24 13:15	08/20/24 17:24	1
Styrene	ND		0.0038	0.00095	mg/Kg	☼	08/20/24 13:15	08/20/24 17:24	1
t-Butylbenzene	ND		0.0038	0.00085	mg/Kg	☼	08/20/24 13:15	08/20/24 17:24	1
Tetrachloroethene	ND		0.0026	0.00051	mg/Kg	☼	08/20/24 13:15	08/20/24 17:24	1
Toluene	ND		0.013	0.0017	mg/Kg	₩	08/20/24 13:15	08/20/24 17:24	1
trans-1,2-Dichloroethene	ND		0.0045	0.0019	mg/Kg	₩	08/20/24 13:15	08/20/24 17:24	1
trans-1,3-Dichloropropene	ND	*+	0.013	0.00077	mg/Kg	₩	08/20/24 13:15	08/20/24 17:24	1
Trichloroethene	ND		0.0026	0.00038	mg/Kg	₩	08/20/24 13:15	08/20/24 17:24	1
Trichlorofluoromethane	ND		0.011	0.0050	mg/Kg	₩	08/20/24 13:15	08/20/24 17:24	1
Vinyl chloride	ND		0.0026	0.0011	mg/Kg	₽	08/20/24 13:15	08/20/24 17:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	113		80 - 121				08/20/24 13:15	08/20/24 17:24	1
4-Bromofluorobenzene (Surr)	101		80 - 120				08/20/24 13:15	08/20/24 17:24	1
Dibromofluoromethane (Surr)	108		80 - 120				08/20/24 13:15	08/20/24 17:24	1
Toluene-d8 (Surr)	96		80 - 120				08/20/24 13:15	08/20/24 17:24	1
- Method: NWTPH-Dx - Northy	west - Semi-V	olatile Pet	roleum Prodi	ucts (GC	;)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Allalyte					mg/Kg		08/20/24 12:10	08/22/24 16:57	
	ND		55	14	ilig/Ng	₩	00/20/24 12.10	00/22/24 10.37	1
#2 Diesel (C10-C24)	ND ND		55 55		mg/Kg	₩	08/20/24 12:10	08/22/24 16:57	
#2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate		Qualifier			0 0				1 1 Dil Fac
#2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate	ND	Qualifier	55		0 0		08/20/24 12:10	08/22/24 16:57	Dil Fac
#2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate o-Terphenyl	ND %Recovery	Qualifier	55 Limits		0 0		08/20/24 12:10 Prepared	08/22/24 16:57 <i>Analyzed</i>	Dil Fac
#2 Diesel (C10-C24) Motor Oil (>C24-C36)	ND **Recovery 61	Qualifier Qualifier	55 Limits	19	0 0		08/20/24 12:10 Prepared	08/22/24 16:57 <i>Analyzed</i>	1
#2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate o-Terphenyl General Chemistry	ND **Recovery 61		55 Limits 50 - 150	19	mg/Kg	*	08/20/24 12:10 Prepared 08/20/24 12:10	08/22/24 16:57 Analyzed 08/22/24 16:57	Dil Fac

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-15 (4'-6')

Date Collected: 08/14/24 15:20 Date Received: 08/16/24 12:18 Lab Sample ID: 580-143025-8

Matrix: Solid

Percent Solids: 94.4

Analyto	Docul4	Qualifier	RL	MDL	Unit	D	Dropared	Analyzod	Dil Fa
Analyte	ND Result	Qualifier	0.0035				Prepared	Analyzed 08/20/24 17:43	DII Fa
1,1,1,2-Tetrachloroethane	ND ND		0.0035	0.00070 0.0011	mg/Kg	₩		08/20/24 17:43	
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	ND ND		0.0024					08/20/24 17:43	
				0.00027					
1,1,2-Trichloroethane	ND		0.0024	0.00062	0 0	₩		08/20/24 17:43	
I,1-Dichloroethane	ND		0.0024	0.0011		*		08/20/24 17:43	
1,1-Dichloroethene	ND		0.0059	0.0025		Ω		08/20/24 17:43	
I,1-Dichloropropene	ND		0.0035	0.0013		*		08/20/24 17:43	
,2,3-Trichlorobenzene	ND		0.012	0.00071		*		08/20/24 17:43	
,2,3-Trichloropropane	ND		0.0059	0.0012		<u>.</u>		08/20/24 17:43	
,2,4-Trichlorobenzene	ND		0.0035	0.0014		₩		08/20/24 17:43	
1,2,4-Trimethylbenzene	ND		0.0059	0.0014		₩		08/20/24 17:43	
,2-Dibromo-3-Chloropropane	ND		0.012	0.0019		.		08/20/24 17:43	
1,2-Dibromoethane	ND		0.0012	0.00024		₩		08/20/24 17:43	
1,2-Dichlorobenzene	ND		0.012	0.0015	0 0	₩		08/20/24 17:43	
,2-Dichloroethane	ND		0.0024	0.00073		.		08/20/24 17:43	
,2-Dichloropropane	ND		0.0024	0.00059	0 0	₩		08/20/24 17:43	
,3,5-Trimethylbenzene	ND		0.0059	0.00095	0 0	₩	08/20/24 13:15	08/20/24 17:43	
,3-Dichlorobenzene	ND		0.0059	0.0013	mg/Kg	₩	08/20/24 13:15	08/20/24 17:43	
,3-Dichloropropane	ND		0.0024	0.00027		₩	08/20/24 13:15	08/20/24 17:43	
,4-Dichlorobenzene	ND		0.0059	0.0012	mg/Kg	₩	08/20/24 13:15	08/20/24 17:43	
,2-Dichloropropane	ND		0.0059	0.00091	mg/Kg	₩	08/20/24 13:15	08/20/24 17:43	
2-Chlorotoluene	ND		0.0059	0.0011	mg/Kg	₩	08/20/24 13:15	08/20/24 17:43	
-Chlorotoluene	ND		0.0059	0.0012	mg/Kg	₩	08/20/24 13:15	08/20/24 17:43	
-Isopropyltoluene	ND		0.0024	0.00047	mg/Kg	₩	08/20/24 13:15	08/20/24 17:43	
Benzene	ND		0.0024	0.00046	mg/Kg	₩	08/20/24 13:15	08/20/24 17:43	
Bromobenzene	ND		0.012	0.0012	mg/Kg	₩	08/20/24 13:15	08/20/24 17:43	
Bromochloromethane	ND		0.0024	0.0011	mg/Kg	₩	08/20/24 13:15	08/20/24 17:43	
Bromodichloromethane	ND		0.0024	0.0010	mg/Kg	₩	08/20/24 13:15	08/20/24 17:43	
Bromoform	ND		0.0059	0.00099	mg/Kg	₩	08/20/24 13:15	08/20/24 17:43	
Bromomethane	ND		0.0024	0.0010	mg/Kg	₩	08/20/24 13:15	08/20/24 17:43	
Carbon tetrachloride	ND		0.0024	0.0010	mg/Kg	₩	08/20/24 13:15	08/20/24 17:43	
Chlorobenzene	ND		0.0024	0.00029	mg/Kg	₩	08/20/24 13:15	08/20/24 17:43	
Chloroethane	ND		0.012	0.00088	mg/Kg	₩	08/20/24 13:15	08/20/24 17:43	
Chloroform	ND		0.0035	0.0015	mg/Kg		08/20/24 13:15	08/20/24 17:43	
Chloromethane	ND		0.0059	0.0011		₩	08/20/24 13:15	08/20/24 17:43	
sis-1,2-Dichloroethene	ND		0.0035	0.00027		₩	08/20/24 13:15	08/20/24 17:43	
is-1,3-Dichloropropene	ND		0.0012	0.00024			08/20/24 13:15	08/20/24 17:43	
Dibromochloromethane	ND		0.0024	0.00066		₩		08/20/24 17:43	
)ibromomethane	ND		0.0024	0.00050		₩		08/20/24 17:43	
Dichlorodifluoromethane	ND		0.0035	0.0016				08/20/24 17:43	
Ethylbenzene	ND		0.0024	0.0011		₩.		08/20/24 17:43	
dexachlorobutadiene	ND		0.0024	0.0017	0 0	₩		08/20/24 17:43	
sopropylbenzene	ND	*+	0.0035	0.0017				08/20/24 17:43	
Methyl tert-butyl ether	ND ND	•	0.0033	0.0013	0 0	₩		08/20/24 17:43	
Methylene Chloride	ND ND		0.0024			1,t **		08/20/24 17:43	
					mg/Kg				
n-Xylene & p-Xylene	ND		0.012	0.0014		*		08/20/24 17:43	
Naphthalene	ND		0.012	0.0021		₩.		08/20/24 17:43	
n-Butylbenzene N-Propylbenzene	ND ND		0.0035	0.00074 0.00090		<u>⇔</u>		08/20/24 17:43 08/20/24 17:43	

Eurofins Seattle

3

6

8

10

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-15 (4'-6')

Date Collected: 08/14/24 15:20 Date Received: 08/16/24 12:18

Percent Moisture (SM22 2540G)

Lab Sample ID: 580-143025-8

Matrix: Solid

Percent Solids: 94.4

Method: SW846 8260D - Vol Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	ND		0.0059	0.0011	mg/Kg	-	08/20/24 13:15	08/20/24 17:43	1
sec-Butylbenzene	ND		0.0035	0.00079	mg/Kg	☼	08/20/24 13:15	08/20/24 17:43	1
Styrene	ND		0.0035	0.00087	mg/Kg	₽	08/20/24 13:15	08/20/24 17:43	1
t-Butylbenzene	ND		0.0035	0.00078	mg/Kg	₩	08/20/24 13:15	08/20/24 17:43	1
Tetrachloroethene	ND		0.0024	0.00047	mg/Kg	☼	08/20/24 13:15	08/20/24 17:43	1
Toluene	ND		0.012	0.0015	mg/Kg	₩	08/20/24 13:15	08/20/24 17:43	1
trans-1,2-Dichloroethene	ND		0.0041	0.0017	mg/Kg	☼	08/20/24 13:15	08/20/24 17:43	1
trans-1,3-Dichloropropene	ND	*+	0.012	0.00071	mg/Kg	☼	08/20/24 13:15	08/20/24 17:43	1
Trichloroethene	ND		0.0024	0.00035	mg/Kg	⊅	08/20/24 13:15	08/20/24 17:43	1
Trichlorofluoromethane	ND		0.010	0.0046	mg/Kg	☼	08/20/24 13:15	08/20/24 17:43	1
Vinyl chloride	ND		0.0024	0.0010	mg/Kg	₩	08/20/24 13:15	08/20/24 17:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	114		80 - 121				08/20/24 13:15	08/20/24 17:43	1
4-Bromofluorobenzene (Surr)	102		80 - 120				08/20/24 13:15	08/20/24 17:43	1
Dibromofluoromethane (Surr)	110		80 - 120				08/20/24 13:15	08/20/24 17:43	1
Toluene-d8 (Surr)	96		80 - 120				08/20/24 13:15	08/20/24 17:43	1
Method: NWTPH-Dx - North	west - Semi-V	olatile Pet	roleum Prod	lucts (G	C)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	ND		50	12	mg/Kg	-	08/20/24 12:10	08/22/24 17:17	1
Motor Oil (>C24-C36)	ND		50	17	mg/Kg	≎	08/20/24 12:10	08/22/24 17:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	61		50 - 150				08/20/24 12:10	08/22/24 17:17	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids (SM22 2540G)	94.4		0.1	0.1	%			08/21/24 09:49	1

0.1

5.6

0.1 %

8/23/2024

08/21/24 09:49

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-3R (6'-8')

Lab Sample ID: 580-143025-9 Date Collected: 08/15/24 15:00 **Matrix: Solid** Percent Solids: 94.4 Date Received: 08/16/24 12:18

Method: SW846 8260D - Vola Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
I,1,1,2-Tetrachloroethane	ND -		0.0038	0.00075		— <u>-</u>		08/20/24 18:02	1
I,1,1-Trichloroethane	ND		0.0026	0.0012		₩	08/20/24 13:15	08/20/24 18:02	1
I,1,2,2-Tetrachloroethane	ND		0.0038	0.00029	mg/Kg	₩	08/20/24 13:15	08/20/24 18:02	1
,1,2-Trichloroethane	ND		0.0026	0.00067	mg/Kg	₩	08/20/24 13:15	08/20/24 18:02	1
,1-Dichloroethane	ND		0.0026	0.0012	0 0	₩		08/20/24 18:02	1
, I,1-Dichloroethene	ND		0.0064	0.0027	0 0	₩		08/20/24 18:02	1
I,1-Dichloropropene	ND		0.0038	0.0014				08/20/24 18:02	1
,2,3-Trichlorobenzene	ND		0.013	0.00076		₩	08/20/24 13:15	08/20/24 18:02	1
I,2,3-Trichloropropane	ND		0.0064	0.0013		₩	08/20/24 13:15	08/20/24 18:02	1
1,2,4-Trichlorobenzene	ND		0.0038	0.0015		∷. ;;;		08/20/24 18:02	1
I,2,4-Trimethylbenzene	ND		0.0064	0.0015		₩		08/20/24 18:02	1
I,2-Dibromo-3-Chloropropane	ND		0.013	0.0020				08/20/24 18:02	1
I,2-Dibromoethane	ND		0.0013	0.00025				08/20/24 18:02	· · · · · · · · · · · · · · · · · · ·
1,2-Dichlorobenzene	ND		0.013	0.0017		₩.		08/20/24 18:02	1
I,2-Dichloroethane	ND		0.0026	0.00079		~ ☆		08/20/24 18:02	1
I,2-Dichloropropane	ND		0.0025	0.00073				08/20/24 18:02	
1,3,5-Trimethylbenzene	ND		0.0064	0.0010	0 0	~ ☆		08/20/24 18:02	1
,3-Dichlorobenzene	ND		0.0064	0.0014	0 0	Ď.		08/20/24 18:02	1
,3-Dichloropropane	ND		0.0026	0.00029				08/20/24 18:02	
,4-Dichlorobenzene	ND		0.0020	0.00023	0 0	₩		08/20/24 18:02	1
2,2-Dichloropropane	ND		0.0064	0.00098		γ. γ.		08/20/24 18:02	1
-Chlorotoluene	ND		0.0064	0.00030				08/20/24 18:02	
-Chlorotoluene	ND		0.0064	0.0012		₩		08/20/24 18:02	1
I-Isopropyltoluene	ND		0.0004	0.0013	0 0	₩		08/20/24 18:02	1
Renzene	ND		0.0025	0.00051		¥. 		08/20/24 18:02	· · · · · · · · · · · · · · · · · · ·
Bromobenzene	ND		0.0023					08/20/24 18:02	
Bromochloromethane	ND ND		0.013	0.0013		*		08/20/24 18:02	1
Bromodichloromethane	ND			0.0012		· · *			
Bromoform	ND ND		0.0026	0.0011	0 0	φ.		08/20/24 18:02	1
	ND ND		0.0064		mg/Kg	☆		08/20/24 18:02	1
Bromomethane			0.0026	0.0011				08/20/24 18:02	1
Carbon tetrachloride	ND		0.0026	0.0011	0 0	₩.		08/20/24 18:02	1
Chlorobenzene	ND		0.0025	0.00032		*		08/20/24 18:02	1
Chloroethane	ND		0.013	0.00095		p		08/20/24 18:02	
Chloroform	ND		0.0038	0.0016		∵		08/20/24 18:02	1
Chloromethane	ND		0.0064	0.0012		*		08/20/24 18:02	1
cis-1,2-Dichloroethene	ND		0.0038	0.00029		. .		08/20/24 18:02	1
cis-1,3-Dichloropropene	ND		0.0013	0.00025		÷.		08/20/24 18:02	1
Dibromochloromethane	ND		0.0026	0.00071		₩		08/20/24 18:02	1
Dibromomethane	ND		0.0025	0.00053	T T	.		08/20/24 18:02	1
Dichlorodifluoromethane	ND		0.0038	0.0017		₽		08/20/24 18:02	1
Ethylbenzene	ND		0.0026	0.0012		₽		08/20/24 18:02	1
-lexachlorobutadiene	ND		0.0038	0.0019				08/20/24 18:02	1
sopropylbenzene	ND *	*+	0.0038	0.0014		₩		08/20/24 18:02	1
Methyl tert-butyl ether	ND		0.0025	0.00038		**		08/20/24 18:02	1
Methylene Chloride	ND		0.051		mg/Kg	₩		08/20/24 18:02	1
n-Xylene & p-Xylene	ND		0.013	0.0015		₩		08/20/24 18:02	1
Naphthalene	ND		0.013	0.0023		₩		08/20/24 18:02	1
n-Butylbenzene	ND		0.0038	0.00080	ma/Ka	₩	08/20/24 13:15	08/20/24 18:02	1

Eurofins Seattle

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-3R (6'-8')

Lab Sample ID: 580-143025-9 Date Collected: 08/15/24 15:00

Matrix: Solid Date Received: 08/16/24 12:18 Percent Solids: 94.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	ND		0.0064	0.0012	mg/Kg	-	08/20/24 13:15	08/20/24 18:02	1
sec-Butylbenzene	ND		0.0038	0.00085	mg/Kg	☼	08/20/24 13:15	08/20/24 18:02	1
Styrene	ND		0.0038	0.00094	mg/Kg	₩	08/20/24 13:15	08/20/24 18:02	1
t-Butylbenzene	ND		0.0038	0.00084	mg/Kg	☼	08/20/24 13:15	08/20/24 18:02	1
Tetrachloroethene	0.0013	J	0.0025	0.00051	mg/Kg	☼	08/20/24 13:15	08/20/24 18:02	1
Toluene	ND		0.013	0.0017	mg/Kg	₩	08/20/24 13:15	08/20/24 18:02	1
trans-1,2-Dichloroethene	ND		0.0045	0.0019	mg/Kg	☼	08/20/24 13:15	08/20/24 18:02	1
trans-1,3-Dichloropropene	ND	*+	0.013	0.00076	mg/Kg	☼	08/20/24 13:15	08/20/24 18:02	1
Trichloroethene	ND		0.0025	0.00038	mg/Kg	⊅	08/20/24 13:15	08/20/24 18:02	1
Trichlorofluoromethane	ND		0.011	0.0049	mg/Kg	₩	08/20/24 13:15	08/20/24 18:02	1
Vinyl chloride	ND		0.0026	0.0011	mg/Kg	☼	08/20/24 13:15	08/20/24 18:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	116		80 - 121				08/20/24 13:15	08/20/24 18:02	1
4-Bromofluorobenzene (Surr)	98		80 - 120				08/20/24 13:15	08/20/24 18:02	1
Dibromofluoromethane (Surr)	109		80 - 120				08/20/24 13:15	08/20/24 18:02	1
Toluene-d8 (Surr)	99		80 - 120				08/20/24 13:15	08/20/24 18:02	1
- Method: NWTPH-Dx - Northw	vest - Semi-V	olatile Pet	roleum Prod	ucts (G0	C)				
Analyte		Qualifier	RL	MDL	•	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	41	J	50	12	mg/Kg	<u></u>	08/20/24 12:10	08/22/24 17:37	1
Motor Oil (>C24-C36)	43	J	50	18	mg/Kg	☼	08/20/24 12:10	08/22/24 17:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	64		50 - 150				08/20/24 12:10	08/22/24 17:37	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids (SM22 2540G)	94.4		0.1	0.1	%			08/21/24 09:49	1
	5.6		0.1	0.1	%			08/21/24 09:49	1

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-3R (10'-12')

Lab Sample ID: 580-143025-10 Date Collected: 08/15/24 15:00 **Matrix: Solid** Date Received: 08/16/24 12:18 Percent Solids: 87.8

Analyte	Result Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	Dil F
1,1,1,2-Tetrachloroethane	ND	0.0039	0.00076	mg/Kg	☼	08/20/24 13:15	08/20/24 18:21	
1,1,1-Trichloroethane	ND	0.0026	0.0012		☼	08/20/24 13:15	08/20/24 18:21	
1,1,2,2-Tetrachloroethane	ND	0.0039	0.00030		₩	08/20/24 13:15	08/20/24 18:21	
1,1,2-Trichloroethane	ND	0.0026	0.00068		☼	08/20/24 13:15	08/20/24 18:21	
1,1-Dichloroethane	ND	0.0026	0.0012	mg/Kg	☼	08/20/24 13:15	08/20/24 18:21	
1,1-Dichloroethene	ND	0.0064	0.0028	mg/Kg	☼	08/20/24 13:15	08/20/24 18:21	
1,1-Dichloropropene	ND	0.0039	0.0014	mg/Kg	₽	08/20/24 13:15	08/20/24 18:21	
1,2,3-Trichlorobenzene	ND	0.013	0.00077	mg/Kg	☼	08/20/24 13:15	08/20/24 18:21	
I,2,3-Trichloropropane	ND	0.0064	0.0013	mg/Kg	☼	08/20/24 13:15	08/20/24 18:21	
,2,4-Trichlorobenzene	ND	0.0039	0.0016	mg/Kg	₩	08/20/24 13:15	08/20/24 18:21	
1,2,4-Trimethylbenzene	ND	0.0064	0.0015	mg/Kg	☼	08/20/24 13:15	08/20/24 18:21	
I,2-Dibromo-3-Chloropropane	ND	0.013	0.0021	mg/Kg	☼	08/20/24 13:15	08/20/24 18:21	
I,2-Dibromoethane	ND	0.0013	0.00026	mg/Kg	₽	08/20/24 13:15	08/20/24 18:21	
1,2-Dichlorobenzene	ND	0.013	0.0017		₽	08/20/24 13:15	08/20/24 18:21	
1,2-Dichloroethane	ND	0.0026	0.00080		₽	08/20/24 13:15	08/20/24 18:21	
,2-Dichloropropane	ND	0.0026	0.00064			08/20/24 13:15	08/20/24 18:21	
,3,5-Trimethylbenzene	ND	0.0064	0.0010		☼	08/20/24 13:15	08/20/24 18:21	
,3-Dichlorobenzene	ND	0.0064	0.0014		☼	08/20/24 13:15	08/20/24 18:21	
,3-Dichloropropane	ND	0.0026	0.00030			08/20/24 13:15	08/20/24 18:21	
,4-Dichlorobenzene	ND	0.0064	0.0013	0 0	₩	08/20/24 13:15	08/20/24 18:21	
z,2-Dichloropropane	ND	0.0064	0.00099		ά		08/20/24 18:21	
-Chlorotoluene	ND	0.0064	0.0012				08/20/24 18:21	
-Chlorotoluene	ND	0.0064	0.0013		☆		08/20/24 18:21	
-Isopropyltoluene	ND	0.0026	0.00051	0 0	ά		08/20/24 18:21	
Benzene	ND	0.0026	0.00050		 		08/20/24 18:21	
Bromobenzene	ND	0.013	0.0013				08/20/24 18:21	
Bromochloromethane	ND	0.0026	0.0012	0 0	Ť.		08/20/24 18:21	
Bromodichloromethane	ND	0.0026	0.0011		T		08/20/24 18:21	
Bromoform	ND	0.0064	0.0011		~ \$		08/20/24 18:21	
Bromomethane	ND	0.0026		mg/Kg	Ť		08/20/24 18:21	
Carbon tetrachloride	ND	0.0026	0.0011				08/20/24 18:21	
Chlorobenzene	ND	0.0026	0.00011		**		08/20/24 18:21	
Chloroethane	ND	0.0020	0.00096		**		08/20/24 18:21	
Chloroform	ND	0.0039	0.0016				08/20/24 18:21	
Chloromethane	ND	0.0064	0.0010		₩		08/20/24 18:21	
sis-1,2-Dichloroethene	ND	0.0039	0.00030	0 0	*		08/20/24 18:21	
is-1,3-Dichloropropene							08/20/24 18:21	
• • •	ND ND	0.0013	0.00026		1.tr			
Dibromochloromethane	ND	0.0026	0.00072	0 0	₩.		08/20/24 18:21	
Dibromomethane	ND	0.0026	0.00054		:Ω: :		08/20/24 18:21	
Dichlorodifluoromethane	ND	0.0039	0.0017		: Q :		08/20/24 18:21	
Ethylbenzene	ND	0.0026	0.0012		*		08/20/24 18:21	
lexachlorobutadiene	ND	0.0039	0.0019		.		08/20/24 18:21	
sopropylbenzene	ND *+	0.0039	0.0014		₽		08/20/24 18:21	
Methyl tert-butyl ether	ND	0.0026	0.00039		₩		08/20/24 18:21	
Methylene Chloride	ND	0.051		mg/Kg			08/20/24 18:21	
n-Xylene & p-Xylene	ND	0.013	0.0015		₩		08/20/24 18:21	
laphthalene	ND	0.013	0.0023		₩		08/20/24 18:21	
n-Butylbenzene N-Propylbenzene	ND ND	0.0039 0.0064	0.00081		₽	08/20/24 13:15	08/20/24 18:21	

Eurofins Seattle

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-3R (10'-12')

Lab Sample ID: 580-143025-10 Date Collected: 08/15/24 15:00

Matrix: Solid Percent Solids: 87.8 Date Received: 08/16/24 12:18

Method: SW846 8260D - Vola	_	•	•	•	•	_			
Analyte		Qualifier	RL _	MDL		<u>D</u>	Prepared	Analyzed	Dil Fac
o-Xylene	ND		0.0064	0.0012		₩	08/20/24 13:15	08/20/24 18:21	1
sec-Butylbenzene	ND		0.0039	0.00086		.	08/20/24 13:15	08/20/24 18:21	1
Styrene	ND		0.0039	0.00095		☆	08/20/24 13:15	08/20/24 18:21	1
t-Butylbenzene	ND		0.0039	0.00085	mg/Kg	₩	08/20/24 13:15	08/20/24 18:21	1
Tetrachloroethene	0.00079	J	0.0026	0.00051	mg/Kg	₩	08/20/24 13:15	08/20/24 18:21	1
Toluene	ND		0.013	0.0017	mg/Kg	₽	08/20/24 13:15	08/20/24 18:21	1
trans-1,2-Dichloroethene	ND		0.0045	0.0019	mg/Kg	₩	08/20/24 13:15	08/20/24 18:21	1
trans-1,3-Dichloropropene	ND	*+	0.013	0.00077	mg/Kg	₩	08/20/24 13:15	08/20/24 18:21	1
Trichloroethene	ND		0.0026	0.00039	mg/Kg	₽	08/20/24 13:15	08/20/24 18:21	1
Trichlorofluoromethane	ND		0.011	0.0050	mg/Kg	₩	08/20/24 13:15	08/20/24 18:21	1
Vinyl chloride	ND		0.0026	0.0011	mg/Kg	₽	08/20/24 13:15	08/20/24 18:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	114		80 - 121				08/20/24 13:15	08/20/24 18:21	1
4-Bromofluorobenzene (Surr)	89		80 - 120				08/20/24 13:15	08/20/24 18:21	1
Dibromofluoromethane (Surr)	109		80 - 120				08/20/24 13:15	08/20/24 18:21	1
Toluene-d8 (Surr)	105		80 - 120				08/20/24 13:15	08/20/24 18:21	1
- Method: NWTPH-Dx - Northw	rest - Semi-V	olatile Pet	roleum Prod	ucts (G0	C)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	170		55	14	mg/Kg	<u></u>	08/20/24 12:10	08/22/24 17:57	1
M. (O'! (. OO (. OOO)	160		55	10	mg/Kg	χ̈́	08/20/24 12:10	08/22/24 17:57	1
Motor Oil (>C24-C36)	100		55	13	9/.19	7			
Motor Oil (>C24-C36) Surrogate	%Recovery	Qualifier	Limits 33	19	9/1.19	~	Prepared	Analyzed	Dil Fac
Surrogate		Qualifier		19		~	Prepared 08/20/24 12:10	Analyzed 08/22/24 17:57	Dil Fac
,	%Recovery	Qualifier	Limits	19	9/149	~			
Surrogate o-Terphenyl General Chemistry	%Recovery 69	Qualifier Qualifier	Limits		Unit	D			
Surrogate o-Terphenyl	%Recovery 69		Limits 50 - 150				08/20/24 12:10	08/22/24 17:57	1

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-16 (6'-8')

Date Collected: 08/15/24 09:00 Date Received: 08/16/24 12:18 Lab Sample ID: 580-143025-12

Matrix: Solid

Percent Solids: 90.4

Method: SW846 8260D	- Volatile Organic	Compounds by GC/N	IS					
Analyte	_	Qualifier RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	0.0036	0.00070	mg/Kg	<u></u>	08/20/24 13:15	08/20/24 18:58	1
1,1,1-Trichloroethane	ND	0.0024	0.0011	mg/Kg	₽	08/20/24 13:15	08/20/24 18:58	1
1,1,2,2-Tetrachloroethane	ND	0.0036	0.00027	mg/Kg	₩	08/20/24 13:15	08/20/24 18:58	1
1,1,2-Trichloroethane	ND	0.0024	0.00063	mg/Kg	☼	08/20/24 13:15	08/20/24 18:58	1
1,1-Dichloroethane	ND	0.0024	0.0011	mg/Kg	₩	08/20/24 13:15	08/20/24 18:58	1
1,1-Dichloroethene	ND	0.0059	0.0025	mg/Kg	≎	08/20/24 13:15	08/20/24 18:58	1
1,1-Dichloropropene	ND	0.0036	0.0013	mg/Kg		08/20/24 13:15	08/20/24 18:58	1
1,2,3-Trichlorobenzene	ND	0.012	0.00071	mg/Kg	≎	08/20/24 13:15	08/20/24 18:58	1
1,2,3-Trichloropropane	ND	0.0059	0.0012	mg/Kg	₽	08/20/24 13:15	08/20/24 18:58	1
1,2,4-Trichlorobenzene	ND	0.0036	0.0014	mg/Kg		08/20/24 13:15	08/20/24 18:58	1
1,2,4-Trimethylbenzene	ND	0.0059	0.0014	mg/Kg	₩	08/20/24 13:15	08/20/24 18:58	1
1,2-Dibromo-3-Chloropropane	ND	0.012	0.0019	0 0	₩		08/20/24 18:58	1
1,2-Dibromoethane	ND	0.0012	0.00024				08/20/24 18:58	1
1,2-Dichlorobenzene	ND	0.012	0.0015	0 0	☆		08/20/24 18:58	1
1,2-Dichloroethane	ND	0.0024	0.00073	0 0	☆		08/20/24 18:58	1
1,2-Dichloropropane	ND	0.0024	0.00059				08/20/24 18:58	1
1,3,5-Trimethylbenzene	ND	0.0059	0.00096	0 0			08/20/24 18:58	1
1,3-Dichlorobenzene	ND	0.0059	0.0013				08/20/24 18:58	1
1,3-Dichloropropane	ND	0.0024	0.00027				08/20/24 18:58	· 1
1,4-Dichlorobenzene	ND	0.0024	0.00027		*		08/20/24 18:58	1
2,2-Dichloropropane	ND	0.0059	0.00091		*		08/20/24 18:58	1
2-Chlorotoluene	ND	0.0059		mg/Kg	· · · · · · · · · · · · · · · · · · ·		08/20/24 18:58	' 1
4-Chlorotoluene	ND	0.0059	0.0011		₩		08/20/24 18:58	1
4-Isopropyltoluene	ND	0.0039	0.00047	0 0	Ď.		08/20/24 18:58	1
Benzene	ND	0.0024	0.00047		 		08/20/24 18:58	1
Bromobenzene	ND	0.0024	0.00040		₩		08/20/24 18:58	1
Bromochloromethane	ND ND	0.012		0 0	**		08/20/24 18:58	1
Bromodichloromethane				mg/Kg				' 1
	ND ND	0.0024		mg/Kg	1,2		08/20/24 18:58	-
Bromoform	ND ND	0.0059	0.00099		☆		08/20/24 18:58	1
Bromomethane		0.0024	0.0010		· · · · · ·		08/20/24 18:58	
Carbon tetrachloride	ND	0.0024	0.0010		*		08/20/24 18:58	1
Chlorobenzene	ND	0.0024	0.00030		*		08/20/24 18:58	1
Chloroethane	ND	0.012	0.00089				08/20/24 18:58	
Chloroform	ND	0.0036	0.0015	0 0	*		08/20/24 18:58	1
Chloromethane	ND	0.0059		mg/Kg	₩		08/20/24 18:58	1
cis-1,2-Dichloroethene	ND	0.0036	0.00027		.		08/20/24 18:58	1
cis-1,3-Dichloropropene	ND	0.0012	0.00024		≎		08/20/24 18:58	1
Dibromochloromethane	ND	0.0024	0.00066		₽		08/20/24 18:58	1
Dibromomethane	ND	0.0024	0.00050				08/20/24 18:58	1
Dichlorodifluoromethane	ND	0.0036	0.0016		☼		08/20/24 18:58	1
Ethylbenzene	ND	0.0024		mg/Kg	₩		08/20/24 18:58	1
Hexachlorobutadiene	ND	0.0036	0.0017				08/20/24 18:58	1
Isopropylbenzene	ND	*+ 0.0036	0.0013	mg/Kg	≎	08/20/24 13:15	08/20/24 18:58	1
Methyl tert-butyl ether	ND	0.0024	0.00036	mg/Kg	₽		08/20/24 18:58	1
Methylene Chloride	ND	0.047	0.012	mg/Kg	₩	08/20/24 13:15	08/20/24 18:58	1
m-Xylene & p-Xylene	ND	0.012	0.0014	mg/Kg	₽	08/20/24 13:15	08/20/24 18:58	1
Naphthalene	ND	0.012	0.0021	mg/Kg	≎	08/20/24 13:15	08/20/24 18:58	1
n-Butylbenzene	ND	0.0036	0.00075	mg/Kg	₽	08/20/24 13:15	08/20/24 18:58	1
N-Propylbenzene	ND	0.0059	0.00090	mg/Kg	≎	08/20/24 13:15	08/20/24 18:58	1

Eurofins Seattle

3

6

8

10

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-16 (6'-8')

Date Collected: 08/15/24 09:00

Date Received: 08/16/24 12:18

Lab Sample ID: 580-143025-12

Matrix: Solid

Percent Solids: 90.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	ND		0.0059	0.0011	mg/Kg	<u></u>	08/20/24 13:15	08/20/24 18:58	1
sec-Butylbenzene	ND		0.0036	0.00079	mg/Kg	₩	08/20/24 13:15	08/20/24 18:58	1
Styrene	ND		0.0036	0.00088	mg/Kg	₩	08/20/24 13:15	08/20/24 18:58	1
t-Butylbenzene	ND		0.0036	0.00078	mg/Kg	₩	08/20/24 13:15	08/20/24 18:58	1
Tetrachloroethene	0.0047		0.0024	0.00047	mg/Kg	₩	08/20/24 13:15	08/20/24 18:58	1
Toluene	ND		0.012	0.0015	mg/Kg	₩	08/20/24 13:15	08/20/24 18:58	1
trans-1,2-Dichloroethene	ND		0.0041	0.0017	mg/Kg	₩	08/20/24 13:15	08/20/24 18:58	1
trans-1,3-Dichloropropene	ND	*+	0.012	0.00071	mg/Kg	₩	08/20/24 13:15	08/20/24 18:58	1
Trichloroethene	ND		0.0024	0.00036	mg/Kg	₩	08/20/24 13:15	08/20/24 18:58	1
Trichlorofluoromethane	ND		0.010	0.0046	mg/Kg	₩	08/20/24 13:15	08/20/24 18:58	1
Vinyl chloride	ND		0.0024	0.0010	mg/Kg	₽	08/20/24 13:15	08/20/24 18:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	112		80 - 121				08/20/24 13:15	08/20/24 18:58	1
4-Bromofluorobenzene (Surr)	101		80 - 120				08/20/24 13:15	08/20/24 18:58	1
Dibromofluoromethane (Surr)	108		80 - 120				08/20/24 13:15	08/20/24 18:58	1
Toluene-d8 (Surr)	96		80 - 120				08/20/24 13:15	08/20/24 18:58	1
- Method: NWTPH-Dx - Northv	vest - Semi-V	olatile Pet	roleum Prod	lucts (GC	C)				
Analyta	Desuit	Qualifier			Unit	D	Prepared	Analyzed	
Analyte	Result	Qualifier	RL	MDL	Ollit	ט	opa.oa	Allalyzea	Dil Fac
	42		RL		mg/Kg	— ö	08/20/24 12:10	08/22/24 18:38	Dil Fac
		J		13		_ =			
Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate	42	J J	53	13	mg/Kg	_	08/20/24 12:10	08/22/24 18:38	1
#2 Diesel (C10-C24) Motor Oil (>C24-C36)	42 45	J J	53 53	13	mg/Kg	_	08/20/24 12:10 08/20/24 12:10	08/22/24 18:38 08/22/24 18:38	1
#2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate o-Terphenyl	42 45 %Recovery	J J	53 53 <i>Limits</i>	13	mg/Kg	_	08/20/24 12:10 08/20/24 12:10 Prepared	08/22/24 18:38 08/22/24 18:38 Analyzed	1 1 Dil Fac
#2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate	42 45 %Recovery 67	J J	53 53 <i>Limits</i>	13 19	mg/Kg	_	08/20/24 12:10 08/20/24 12:10 Prepared	08/22/24 18:38 08/22/24 18:38 Analyzed	1 1 Dil Fac
#2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate o-Terphenyl General Chemistry	42 45 %Recovery 67	J J Qualifier	53 53 Limits 50 - 150	13 19	mg/Kg mg/Kg	 \$	08/20/24 12:10 08/20/24 12:10 Prepared 08/20/24 12:10	08/22/24 18:38 08/22/24 18:38 Analyzed 08/22/24 18:38	1 1 Dil Fac

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-16 (10'-12')

Lab Sample ID: 580-143025-13 Date Collected: 08/15/24 09:00 Matrix: Solid Date Received: 08/16/24 12:18 Percent Solids: 89.1

Method: SW846 8260D - Volatile Organic Compounds by GC/MS Dil Fac Analyte Result Qualifier **MDL** Unit D Prepared Analyzed 1,1,1,2-Tetrachloroethane ND 0.0039 0.00076 mg/Kg 08/20/24 13:15 08/20/24 19:17 ND 1.1.1-Trichloroethane 0.0026 0.0013 mg/Kg 08/20/24 13:15 08/20/24 19:17 1,1,2,2-Tetrachloroethane ND 0.0039 0.00030 mg/Kg 08/20/24 13:15 08/20/24 19:17 ND 0.00068 1,1,2-Trichloroethane 0.0026 mg/Kg 08/20/24 13:15 08/20/24 19:17 ND 0.0026 0.0012 mg/Kg 08/20/24 13:15 08/20/24 19:17 1.1-Dichloroethane 1,1-Dichloroethene ND 0.0065 0.0028 mg/Kg 08/20/24 13:15 08/20/24 19:17 1,1-Dichloropropene ND 0.0039 0.0014 08/20/24 13:15 08/20/24 19:17 mg/Kg 0.00077 ND 08/20/24 13:15 08/20/24 19:17 1,2,3-Trichlorobenzene 0.013 mg/Kg 1,2,3-Trichloropropane ND 0.0064 0.0013 mg/Kg 08/20/24 13:15 08/20/24 19:17 0.0016 1,2,4-Trichlorobenzene ND 0.0039 mg/Kg 08/20/24 13:15 08/20/24 19:17 1,2,4-Trimethylbenzene ND 0.0064 0.0015 mg/Kg 08/20/24 13:15 08/20/24 19:17 mg/Kg 1.2-Dibromo-3-Chloropropane ND 0.013 0.0021 08/20/24 13:15 08/20/24 19:17 1 1,2-Dibromoethane ND 0.0013 0.00026 mg/Kg 08/20/24 13:15 08/20/24 19:17 1,2-Dichlorobenzene ND 0.013 0.0017 mg/Kg 08/20/24 13:15 08/20/24 19:17 ND 0.0026 0.00080 mg/Kg 08/20/24 13:15 08/20/24 19:17 1.2-Dichloroethane 1,2-Dichloropropane NΩ 0.0026 0.00064 mg/Kg 08/20/24 13:15 08/20/24 19:17 ND 08/20/24 19:17 1,3,5-Trimethylbenzene 0.0064 0.0010 mg/Kg 08/20/24 13:15 1,3-Dichlorobenzene ND 0.0064 0.0014 mg/Kg 08/20/24 13:15 08/20/24 19:17 ND 0.0026 0.00030 mg/Kg 08/20/24 13:15 08/20/24 19:17 1,3-Dichloropropane 1,4-Dichlorobenzene ND 0.0064 0.0013 ma/Ka 08/20/24 13:15 08/20/24 19:17 2,2-Dichloropropane ND 0.0064 0.00099 mg/Kg ť. 08/20/24 13:15 08/20/24 19:17 2-Chlorotoluene ND 0.0064 0.0012 mg/Kg 08/20/24 13:15 08/20/24 19:17 4-Chlorotoluene ND 0.0064 08/20/24 13:15 08/20/24 19:17 0.0013 mg/Kg 4-Isopropyltoluene ND 0.0026 0.00052 mg/Kg 08/20/24 13:15 08/20/24 19:17 Benzene ND 0.0026 0.00050 mg/Kg 08/20/24 13:15 08/20/24 19:17 Bromobenzene ND 0.013 0.0013 mg/Kg 08/20/24 13:15 08/20/24 19:17 Bromochloromethane ND 0.0026 0.0012 mg/Kg 08/20/24 13:15 08/20/24 19:17 Bromodichloromethane 0.0011 ND 0.0026 mg/Kg 08/20/24 13:15 08/20/24 19:17 Bromoform ND 0.0064 0.0011 mg/Kg 08/20/24 13:15 08/20/24 19:17 ND 08/20/24 19:17 Bromomethane 0.0026 0.0011 mg/Kg 08/20/24 13:15 Carbon tetrachloride ND 0.0026 0.0011 mg/Kg 08/20/24 13:15 08/20/24 19:17 ND 0.0026 0.00032 mg/Kg 08/20/24 13:15 08/20/24 19:17 Chlorobenzene Chloroethane 0.00097 08/20/24 13:15 08/20/24 19:17 ND 0.013 mg/Kg Chloroform ND 08/20/24 13:15 08/20/24 19:17 0.0039 0.0016 mg/Kg Chloromethane ND 0.0064 0.0012 mg/Kg 08/20/24 13:15 08/20/24 19:17 cis-1.2-Dichloroethene ND 0.0039 0.00030 mg/Kg 08/20/24 13:15 08/20/24 19:17 cis-1,3-Dichloropropene ND 0.0013 0.00026 mg/Kg 08/20/24 13:15 08/20/24 19:17 Dibromochloromethane ND 0.0026 0.00072 mg/Kg 08/20/24 13:15 08/20/24 19:17 Dibromomethane ND 0.00054 0.0026 mg/Kg ₩ 08/20/24 13:15 08/20/24 19:17 Dichlorodifluoromethane ND 0.0039 0.0017 mg/Kg 08/20/24 13:15 08/20/24 19:17 Ethylbenzene ND 0.0026 0.0012 mg/Kg 08/20/24 13:15 08/20/24 19:17 Hexachlorobutadiene NΩ 0.0039 0.0019 mg/Kg 08/20/24 13:15 08/20/24 19:17 08/20/24 19:17 Isopropylbenzene ND 0.0039 0.0014 mg/Kg 08/20/24 13:15 Methyl tert-butyl ether 0.0026 0.00039 08/20/24 13:15 08/20/24 19:17 ND mg/Kg 0.052 08/20/24 19:17 Methylene Chloride ND 0.013 mg/Kg 08/20/24 13:15 m-Xylene & p-Xylene ND 0.013 0.0015 mg/Kg 08/20/24 13:15 08/20/24 19:17 Naphthalene ND 0.0023 08/20/24 13:15 08/20/24 19:17 0.013 mg/Kg n-Butylbenzene ND 0.0039 0.00081 mg/Kg ₩ 08/20/24 13:15 08/20/24 19:17 N-Propylbenzene ND 0.0064 0.00098 mg/Kg 08/20/24 13:15 08/20/24 19:17

Eurofins Seattle

8/23/2024

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-16 (10'-12')

o-Terphenyl

Lab Sample ID: 580-143025-13 Date Collected: 08/15/24 09:00 **Matrix: Solid** Date Received: 08/16/24 12:18

Percent Solids: 89.1

<u>08/20/24 12:10</u> <u>08/22/24 18:58</u>

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	ND		0.0064	0.0012	mg/Kg	— <u></u>	08/20/24 13:15	08/20/24 19:17	1
sec-Butylbenzene	ND		0.0039	0.00086		☼	08/20/24 13:15	08/20/24 19:17	1
Styrene	ND		0.0039	0.00095	mg/Kg	₽	08/20/24 13:15	08/20/24 19:17	1
t-Butylbenzene	ND		0.0039	0.00085	mg/Kg	☼	08/20/24 13:15	08/20/24 19:17	1
Tetrachloroethene	ND		0.0026	0.00052	mg/Kg	☼	08/20/24 13:15	08/20/24 19:17	1
Toluene	ND		0.013	0.0017	mg/Kg	₽	08/20/24 13:15	08/20/24 19:17	1
trans-1,2-Dichloroethene	ND		0.0045	0.0019	mg/Kg	☼	08/20/24 13:15	08/20/24 19:17	1
trans-1,3-Dichloropropene	ND	*+	0.013	0.00077	mg/Kg	☼	08/20/24 13:15	08/20/24 19:17	1
Trichloroethene	ND		0.0026	0.00039	mg/Kg	☼	08/20/24 13:15	08/20/24 19:17	1
Trichlorofluoromethane	ND		0.011	0.0050	mg/Kg	☼	08/20/24 13:15	08/20/24 19:17	1
Vinyl chloride	ND		0.0026	0.0011	mg/Kg	₩	08/20/24 13:15	08/20/24 19:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			80 - 121				08/20/24 13:15	08/20/24 19:17	1
4-Bromofluorobenzene (Surr)	99		80 - 120				08/20/24 13:15	08/20/24 19:17	1
Dibromofluoromethane (Surr)	109		80 - 120				08/20/24 13:15	08/20/24 19:17	1
Toluene-d8 (Surr)	97		80 - 120				08/20/24 13:15	08/20/24 19:17	1
- Method: NWTPH-Dx - Nortl	nwest - Semi-V	olatile Pet	roleum Prod	ucts (G	C)				
Analyte		Qualifier	RL	•	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	230		54	13	mg/Kg	— <u></u>	08/20/24 12:10	08/22/24 18:58	1
Motor Oil (>C24-C36)	210		54			₩	08/20/24 12:10	08/22/24 18:58	1
Surrogate	%Recovery	Ouglifier	Limits				Prepared	Analyzed	Dil Fac

General Chemistry Analyte	Result Quali	ifier RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids (SM22 2540G)	89.1	0.1	0.1	%			08/21/24 14:56	1
Percent Moisture (SM22 2540G)	10.9	0.1	0.1	%			08/21/24 14:56	1

50 - 150

72

8/23/2024

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-17 (6'-8')

Lab Sample ID: 580-143025-15 Date Collected: 08/15/24 11:15 Matrix: Solid Date Received: 08/16/24 12:18 Percent Solids: 91.2

Method: SW846 8260D - Volatile Organic Compounds by GC/MS Dil Fac Analyte Result Qualifier **MDL** Unit D Prepared Analyzed 1,1,1,2-Tetrachloroethane ND 0.0040 0.00078 mg/Kg 08/21/24 07:40 08/21/24 10:10 ND 1.1.1-Trichloroethane 0.0027 0.0013 mg/Kg 08/21/24 07:40 08/21/24 10:10 1,1,2,2-Tetrachloroethane ND 0.0040 0.00031 mg/Kg 08/21/24 07:40 08/21/24 10:10 ND 0.00070 1,1,2-Trichloroethane 0.0027 mg/Kg 08/21/24 07:40 08/21/24 10:10 ND 0.0027 0.0012 mg/Kg 08/21/24 07:40 08/21/24 10:10 1.1-Dichloroethane 0.0028 1,1-Dichloroethene ND 0.0067 mg/Kg 08/21/24 07:40 08/21/24 10:10 1,1-Dichloropropene ND 0.0040 0.0014 08/21/24 07:40 08/21/24 10:10 mg/Kg ND 0.00080 08/21/24 07:40 08/21/24 10:10 1,2,3-Trichlorobenzene 0.013 mg/Kg 1,2,3-Trichloropropane ND 0.0066 0.0013 mg/Kg 08/21/24 07:40 08/21/24 10:10 0.0016 1,2,4-Trichlorobenzene ND 0.0040 mg/Kg 08/21/24 07:40 08/21/24 10:10 1,2,4-Trimethylbenzene ND 0.0066 0.0016 mg/Kg 08/21/24 07:40 08/21/24 10:10 0.0021 mg/Kg 1.2-Dibromo-3-Chloropropane ND 0.013 08/21/24 07:40 08/21/24 10:10 1 1,2-Dibromoethane ND 0.0013 0.00027 mg/Kg 08/21/24 07:40 08/21/24 10:10 1,2-Dichlorobenzene ND 0.013 0.0017 mg/Kg 08/21/24 07:40 08/21/24 10:10 ND 0.0027 0.00082 mg/Kg 08/21/24 07:40 08/21/24 10:10 1.2-Dichloroethane 1,2-Dichloropropane ND 0.0027 0.00066 mg/Kg 08/21/24 07:40 08/21/24 10:10 08/21/24 10:10 1,3,5-Trimethylbenzene ND 0.0066 0.0011 mg/Kg 08/21/24 07:40 1,3-Dichlorobenzene ND 0.0066 0.0015 mg/Kg 08/21/24 07:40 08/21/24 10:10 ND 0.0027 0.00031 mg/Kg 08/21/24 07:40 08/21/24 10:10 1,3-Dichloropropane 1,4-Dichlorobenzene ND 0.0066 0.0013 ma/Ka 08/21/24 07:40 08/21/24 10:10 2,2-Dichloropropane ND 0.0066 0.0010 mg/Kg ť. 08/21/24 07:40 08/21/24 10:10 2-Chlorotoluene ND 0.0066 0.0012 mg/Kg 08/21/24 07:40 08/21/24 10:10 4-Chlorotoluene ND 0.0066 0.0013 08/21/24 07:40 08/21/24 10:10 mg/Kg 4-Isopropyltoluene ND 0.0027 0.00053 mg/Kg 08/21/24 07:40 08/21/24 10:10 Benzene ND 0.0027 0.00052 mg/Kg 08/21/24 07:40 08/21/24 10:10 Bromobenzene ND 0.013 0.0013 mg/Kg 08/21/24 07:40 08/21/24 10:10 Bromochloromethane ND 0.0027 0.0012 mg/Kg 08/21/24 07:40 08/21/24 10:10 Bromodichloromethane 0.0012 ND 0.0027 mg/Kg 08/21/24 07:40 08/21/24 10:10 Bromoform ND 0.0066 0.0011 mg/Kg 08/21/24 07:40 08/21/24 10:10 ND Bromomethane 0.0027 0.0012 mg/Kg 08/21/24 07:40 08/21/24 10:10 Carbon tetrachloride ND 0.0027 0.0011 mg/Kg 08/21/24 07:40 08/21/24 10:10 ND 0.0027 0.00033 mg/Kg 08/21/24 07:40 08/21/24 10:10 Chlorobenzene Chloroethane ND 0.0010 08/21/24 07:40 08/21/24 10:10 0.013 mg/Kg 0.0017 Chloroform ND 08/21/24 07:40 08/21/24 10:10 0.0040 mg/Kg Chloromethane ND 0.0066 0.0012 mg/Kg 08/21/24 07:40 08/21/24 10:10 cis-1.2-Dichloroethene ND 0.0040 0.00031 mg/Kg 08/21/24 07:40 08/21/24 10:10 cis-1,3-Dichloropropene ND 0.0013 0.00027 mg/Kg 08/21/24 07:40 08/21/24 10:10 Dibromochloromethane ND 0.0027 0.00074 mg/Kg 08/21/24 07:40 08/21/24 10:10 Dibromomethane ND 0.00056 mg/Kg 0.0027 08/21/24 07:40 08/21/24 10:10 Dichlorodifluoromethane ND 0.0040 0.0018 mg/Kg 08/21/24 07:40 08/21/24 10:10 Ethylbenzene ND 0.0027 0.0013 mg/Kg 08/21/24 07:40 08/21/24 10:10 Hexachlorobutadiene ND 0.0040 0.0019 mg/Kg 08/21/24 07:40 08/21/24 10:10 08/21/24 10:10 Isopropylbenzene ND 0.0040 0.0014 mg/Kg 08/21/24 07:40 Methyl tert-butyl ether 0.0027 0.00040 08/21/24 07:40 08/21/24 10:10 ND mg/Kg ND Methylene Chloride 0.053 0.013 mg/Kg 08/21/24 07:40 08/21/24 10:10 m-Xylene & p-Xylene ND 0.013 0.0016 mg/Kg 08/21/24 07:40 08/21/24 10:10 Naphthalene ND 0.0024 08/21/24 07:40 0.013 mg/Kg 08/21/24 10:10 n-Butylbenzene ND 0.0040 0.00084 mg/Kg 08/21/24 07:40 08/21/24 10:10 0.0010 mg/Kg N-Propylbenzene ND 0.0066 08/21/24 07:40 08/21/24 10:10

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-17 (6'-8')

Date Collected: 08/15/24 11:15

Lab Sample ID: 580-143025-15

Matrix: Solid

Method: SW846 8260D	- Volatile Organic	Compound	ds by GC/MS	(Conti	nued)				
Analyte	_	Qualifier	RL	MDL	•	D	Prepared	Analyzed	Dil Fac
o-Xylene	ND		0.0066	0.0012	mg/Kg	<u></u>	08/21/24 07:40	08/21/24 10:10	1
sec-Butylbenzene	ND		0.0040	0.00089	mg/Kg	₩	08/21/24 07:40	08/21/24 10:10	1
Styrene	ND		0.0040	0.00098	mg/Kg	₩	08/21/24 07:40	08/21/24 10:10	1
t-Butylbenzene	ND		0.0040	0.00088	mg/Kg	₩	08/21/24 07:40	08/21/24 10:10	1
Tetrachloroethene	0.0023	J	0.0027	0.00053	mg/Kg	₽	08/21/24 07:40	08/21/24 10:10	1
Toluene	ND		0.013	0.0017	mg/Kg	₩	08/21/24 07:40	08/21/24 10:10	1
trans-1,2-Dichloroethene	ND		0.0047	0.0019	mg/Kg	₩	08/21/24 07:40	08/21/24 10:10	1
trans-1,3-Dichloropropene	ND	*+	0.013	0.00080	mg/Kg	₩	08/21/24 07:40	08/21/24 10:10	1
Trichloroethene	ND		0.0027	0.00040	mg/Kg	₩	08/21/24 07:40	08/21/24 10:10	1
Trichlorofluoromethane	ND		0.011	0.0051	mg/Kg	₩	08/21/24 07:40	08/21/24 10:10	1
Vinyl chloride	ND		0.0027	0.0012	mg/Kg	₽	08/21/24 07:40	08/21/24 10:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	115		80 - 121				08/21/24 07:40	08/21/24 10:10	1
4-Bromofluorobenzene (Surr)	97		80 - 120				08/21/24 07:40	08/21/24 10:10	1
Dibromofluoromethane (Surr)	107		80 - 120				08/21/24 07:40	08/21/24 10:10	1
Toluene-d8 (Surr)	101		80 - 120				08/21/24 07:40	08/21/24 10:10	1
Method: NWTPH-Dx - N	orthwest - Semi-V	olatile Pet	roleum Prod	ucts (GC	;)				
		Qualifier	RL	MDL	•	D	Prepared	Analyzed	Dil Fac
Analyte					mg/Kg	<u></u>	08/20/24 12:11	08/22/24 19:58	
	79		52	13	mg/rxg	14		00/22/2 0.00	
#2 Diesel (C10-C24) Motor Oil (>C24-C36)	79 80		52 52		mg/Kg	₩	08/20/24 12:11	08/22/24 19:58	1
#2 Diesel (C10-C24)		Qualifier				\$	08/20/24 12:11 Prepared		-
#2 Diesel (C10-C24) Motor Oil (>C24-C36)	80	Qualifier	52			\$		08/22/24 19:58 <i>Analyzed</i>	1
#2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate	80 %Recovery	Qualifier	52 Limits			\$ *	Prepared	08/22/24 19:58 <i>Analyzed</i>	Dil Fac
#2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate o-Terphenyl	80 	Qualifier Qualifier	52 Limits	18		₩ Ø	Prepared	08/22/24 19:58 <i>Analyzed</i>	Dil Fac
#2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate o-Terphenyl General Chemistry	80 %Recovery 70 Result		52 Limits 50 - 150	18	mg/Kg	*	Prepared 08/20/24 12:11	08/22/24 19:58 Analyzed 08/22/24 19:58	Dil Fac

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-17 (10'-12')

Lab Sample ID: 580-143025-16 Date Collected: 08/15/24 11:15 **Matrix: Solid** Date Received: 08/16/24 12:18 Percent Solids: 91.3

Analyte		Qualifier	RL _	MDL		D	Prepared	Analyzed	Dil F
1,1,1,2-Tetrachloroethane	ND		0.0029	0.00058		☼	08/21/24 07:40	08/21/24 10:29	
1,1,1-Trichloroethane	ND		0.0020	0.00095	0 0	₩	08/21/24 07:40	08/21/24 10:29	
1,1,2,2-Tetrachloroethane	ND		0.0029	0.00022	mg/Kg		08/21/24 07:40	08/21/24 10:29	
1,1,2-Trichloroethane	ND		0.0020	0.00052	mg/Kg	☼	08/21/24 07:40	08/21/24 10:29	
1,1-Dichloroethane	ND		0.0020	0.00091	mg/Kg	☼	08/21/24 07:40	08/21/24 10:29	
1,1-Dichloroethene	ND		0.0049	0.0021	mg/Kg	☼	08/21/24 07:40	08/21/24 10:29	
1,1-Dichloropropene	ND		0.0029	0.0011	mg/Kg	₽	08/21/24 07:40	08/21/24 10:29	
1,2,3-Trichlorobenzene	ND		0.0098	0.00059	mg/Kg	☼	08/21/24 07:40	08/21/24 10:29	
1,2,3-Trichloropropane	ND		0.0049	0.00098	mg/Kg	☼	08/21/24 07:40	08/21/24 10:29	
1,2,4-Trichlorobenzene	ND		0.0029	0.0012	mg/Kg	₩	08/21/24 07:40	08/21/24 10:29	
1,2,4-Trimethylbenzene	ND		0.0049	0.0012	mg/Kg	☼	08/21/24 07:40	08/21/24 10:29	
1,2-Dibromo-3-Chloropropane	ND		0.0098	0.0016	mg/Kg	₽	08/21/24 07:40	08/21/24 10:29	
1,2-Dibromoethane	ND		0.00098	0.00020	mg/Kg	₩	08/21/24 07:40	08/21/24 10:29	
1,2-Dichlorobenzene	ND		0.0098	0.0013	mg/Kg	₽	08/21/24 07:40	08/21/24 10:29	
1,2-Dichloroethane	ND		0.0020	0.00061		☆	08/21/24 07:40	08/21/24 10:29	
1,2-Dichloropropane	ND		0.0020	0.00049				08/21/24 10:29	
1,3,5-Trimethylbenzene	ND		0.0049	0.00079		₩	08/21/24 07:40	08/21/24 10:29	
1.3-Dichlorobenzene	ND		0.0049	0.0011	0 0	₩	08/21/24 07:40	08/21/24 10:29	
1,3-Dichloropropane	ND		0.0020	0.00022			08/21/24 07:40		
1,4-Dichlorobenzene	ND		0.0049	0.00096		ά	08/21/24 07:40		
2,2-Dichloropropane	ND		0.0049	0.00075			08/21/24 07:40		
2-Chlorotoluene	ND		0.0049	0.00091		T.	08/21/24 07:40	08/21/24 10:29	
4-Chlorotoluene	ND		0.0049	0.00098		~ \$	08/21/24 07:40	08/21/24 10:29	
4-Isopropyltoluene	ND		0.0043	0.00039		Ť	08/21/24 07:40	08/21/24 10:29	
Benzene	ND		0.0020	0.00038				08/21/24 10:29	
Bromobenzene	ND		0.0020	0.00038		₩	08/21/24 07:40		
Bromochloromethane	ND ND		0.0098	0.00098	0 0	Ψ.		08/21/24 10:29	
Bromodichloromethane									
	ND		0.0020	0.00087	0 0			08/21/24 10:29	
Bromoform	ND		0.0049	0.00082		±	08/21/24 07:40		
Bromomethane	ND		0.0020	0.00086		.	08/21/24 07:40		
Carbon tetrachloride	ND		0.0020	0.00084		*		08/21/24 10:29	
Chlorobenzene	ND		0.0020	0.00024		*	08/21/24 07:40	08/21/24 10:29	
Chloroethane	ND		0.0098	0.00073		.	08/21/24 07:40		
Chloroform	ND		0.0029	0.0013		☼	08/21/24 07:40	08/21/24 10:29	
Chloromethane	ND		0.0049	0.00091		☼		08/21/24 10:29	
cis-1,2-Dichloroethene	ND		0.0029	0.00022			08/21/24 07:40	08/21/24 10:29	
cis-1,3-Dichloropropene	ND		0.00098	0.00020		☼	08/21/24 07:40		
Dibromochloromethane	ND		0.0020	0.00055		₩		08/21/24 10:29	
Dibromomethane	ND		0.0020	0.00041				08/21/24 10:29	
Dichlorodifluoromethane	ND		0.0029	0.0013	mg/Kg	☼	08/21/24 07:40	08/21/24 10:29	
Ethylbenzene	ND		0.0020	0.00094	0 0	₽	08/21/24 07:40	08/21/24 10:29	
Hexachlorobutadiene	ND		0.0029	0.0014		₽	08/21/24 07:40	08/21/24 10:29	
sopropylbenzene	ND		0.0029	0.0010	mg/Kg	☼	08/21/24 07:40	08/21/24 10:29	
Methyl tert-butyl ether	ND		0.0020	0.00029	mg/Kg	☼	08/21/24 07:40	08/21/24 10:29	
Methylene Chloride	ND		0.039	0.0097	mg/Kg	₽	08/21/24 07:40	08/21/24 10:29	
n-Xylene & p-Xylene	ND		0.0098	0.0011	mg/Kg	☆	08/21/24 07:40	08/21/24 10:29	
Naphthalene	ND		0.0098	0.0018		₽	08/21/24 07:40	08/21/24 10:29	
n-Butylbenzene	ND		0.0029	0.00062		☼	08/21/24 07:40	08/21/24 10:29	
N-Propylbenzene	ND		0.0049	0.00074				08/21/24 10:29	

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-17 (10'-12')

Lab Sample ID: 580-143025-16 Date Collected: 08/15/24 11:15 **Matrix: Solid** Date Received: 08/16/24 12:18

Percent Solids: 91.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	ND		0.0049	0.00090	mg/Kg	<u></u>	08/21/24 07:40	08/21/24 10:29	1
sec-Butylbenzene	ND		0.0029	0.00065		☼	08/21/24 07:40	08/21/24 10:29	1
Styrene	ND		0.0029	0.00072	mg/Kg	☼	08/21/24 07:40	08/21/24 10:29	1
t-Butylbenzene	ND		0.0029	0.00065	mg/Kg	☼	08/21/24 07:40	08/21/24 10:29	1
Tetrachloroethene	ND		0.0020	0.00039	mg/Kg	≎	08/21/24 07:40	08/21/24 10:29	1
Toluene	ND		0.0098	0.0013	mg/Kg	≎	08/21/24 07:40	08/21/24 10:29	1
trans-1,2-Dichloroethene	ND		0.0034	0.0014	mg/Kg	≎	08/21/24 07:40	08/21/24 10:29	1
trans-1,3-Dichloropropene	ND	*+	0.0098	0.00059	mg/Kg	≎	08/21/24 07:40	08/21/24 10:29	1
Trichloroethene	ND		0.0020	0.00029	mg/Kg	≎	08/21/24 07:40	08/21/24 10:29	1
Trichlorofluoromethane	ND		0.0083	0.0038	mg/Kg	≎	08/21/24 07:40	08/21/24 10:29	1
Vinyl chloride	ND		0.0020	0.00086	mg/Kg	₩	08/21/24 07:40	08/21/24 10:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	114		80 - 121				08/21/24 07:40	08/21/24 10:29	1
4-Bromofluorobenzene (Surr)	101		80 - 120				08/21/24 07:40	08/21/24 10:29	1
Dibromofluoromethane (Surr)	107		80 - 120				08/21/24 07:40	08/21/24 10:29	1
Toluene-d8 (Surr)	99		80 - 120				08/21/24 07:40	08/21/24 10:29	1
Method: NWTPH-Dx - Nort	hwest - Semi-V	olatile Pet	roleum Prod	ucts (G0	C)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	120		52	13	mg/Kg	-	08/20/24 12:11	08/22/24 20:18	1
Motor Oil (>C24-C36)	110		52	18	mg/Kg	₩	08/20/24 12:11	08/22/24 20:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

General Chemistry									
Analyte	Result (Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids (SM22 2540G)	91.3		0.1	0.1	%			08/21/24 14:56	1
Percent Moisture (SM22 2540G)	8.7		0.1	0.1	%			08/21/24 14:56	1

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-18 (6'-8')

Date Collected: 08/15/24 13:30 Date Received: 08/16/24 12:18

Lab Sample ID: 580-143025-18

Matrix: Solid

Percent Solids: 94.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
1,1,1,2-Tetrachloroethane	ND		0.0036	0.00071	mg/Kg	₩	08/21/24 07:40	08/21/24 11:07	
1,1,1-Trichloroethane	ND		0.0024	0.0012	mg/Kg	☼	08/21/24 07:40	08/21/24 11:07	
1,1,2,2-Tetrachloroethane	ND		0.0036	0.00028	mg/Kg	☼	08/21/24 07:40	08/21/24 11:07	
1,1,2-Trichloroethane	ND		0.0024	0.00064	mg/Kg	☼	08/21/24 07:40	08/21/24 11:07	
1,1-Dichloroethane	ND		0.0024	0.0011	mg/Kg	≎	08/21/24 07:40	08/21/24 11:07	
1,1-Dichloroethene	ND		0.0061	0.0026	mg/Kg	≎	08/21/24 07:40	08/21/24 11:07	
1,1-Dichloropropene	ND		0.0036	0.0013	mg/Kg	≎	08/21/24 07:40	08/21/24 11:07	
1,2,3-Trichlorobenzene	ND		0.012	0.00073	mg/Kg	≎	08/21/24 07:40	08/21/24 11:07	
1,2,3-Trichloropropane	ND		0.0060	0.0012	mg/Kg	₩	08/21/24 07:40	08/21/24 11:07	
1,2,4-Trichlorobenzene	ND		0.0036	0.0015	mg/Kg	₩	08/21/24 07:40	08/21/24 11:07	
1,2,4-Trimethylbenzene	ND		0.0060	0.0015	mg/Kg	₩	08/21/24 07:40	08/21/24 11:07	
1,2-Dibromo-3-Chloropropane	ND		0.012			≎	08/21/24 07:40	08/21/24 11:07	
1,2-Dibromoethane	ND		0.0012	0.00024		₩	08/21/24 07:40	08/21/24 11:07	
1,2-Dichlorobenzene	ND		0.012	0.0016		☼	08/21/24 07:40	08/21/24 11:07	
1,2-Dichloroethane	ND		0.0024	0.00075		≎	08/21/24 07:40	08/21/24 11:07	
1,2-Dichloropropane	ND		0.0024	0.00060			08/21/24 07:40	08/21/24 11:07	
1,3,5-Trimethylbenzene	ND		0.0060	0.00098	0 0	₽	08/21/24 07:40	08/21/24 11:07	
1,3-Dichlorobenzene	ND		0.0060	0.0013	0 0	₽	08/21/24 07:40	08/21/24 11:07	
I,3-Dichloropropane	ND		0.0024	0.00028		∴	08/21/24 07:40	08/21/24 11:07	
I,4-Dichlorobenzene	ND		0.0060	0.0012		₩	08/21/24 07:40		
2,2-Dichloropropane	ND		0.0060	0.00093		₩	08/21/24 07:40		
2-Chlorotoluene	ND		0.0060	0.0011		∴	08/21/24 07:40		
I-Chlorotoluene	ND		0.0060	0.0012		₩	08/21/24 07:40		
1-Isopropyltoluene	ND		0.0024	0.00048		₩	08/21/24 07:40	08/21/24 11:07	
Benzene	ND		0.0024	0.00047		T 	08/21/24 07:40		
Bromobenzene	ND		0.012	0.0012		Ť.	08/21/24 07:40	08/21/24 11:07	
Bromochloromethane	ND		0.0024	0.0012	mg/Kg	~ #		08/21/24 11:07	
Bromodichloromethane	ND		0.0024	0.0011				08/21/24 11:07	
Bromoform	ND		0.0060	0.0011	0 0	₩	08/21/24 07:40		
Bromomethane	ND		0.0024	0.0010	0 0	₩	08/21/24 07:40		
Carbon tetrachloride	ND		0.0024	0.0010			08/21/24 07:40		
Chlorobenzene	ND		0.0024	0.00030		₩	08/21/24 07:40		
Chloroethane	ND ND		0.0024	0.00091		₩	08/21/24 07:40		
Chloroform	ND		0.0036	0.00091			08/21/24 07:40		
Chloromethane	ND ND		0.0060	0.0013		₩	08/21/24 07:40		
							08/21/24 07:40		
cis-1,2-Dichloroethene	ND		0.0036	0.00028 0.00024		· · · · · · · · · · · · · · ·	08/21/24 07:40	08/21/24 11:07 08/21/24 11:07	
cis-1,3-Dichloropropene Dibromochloromethane	ND		0.0012			1.t			
	ND		0.0024	0.00068				08/21/24 11:07	
Dibromomethane	ND		0.0024			· · · · ·	08/21/24 07:40		
Dichlorodifluoromethane	ND		0.0036	0.0016		±.	08/21/24 07:40		
Ethylbenzene	ND		0.0024	0.0012		*		08/21/24 11:07	
Hexachlorobutadiene	ND		0.0036	0.0018		.	08/21/24 07:40		
sopropylbenzene	ND		0.0036	0.0013		₽	08/21/24 07:40		
Methyl tert-butyl ether	ND		0.0024	0.00036		*	08/21/24 07:40		
Methylene Chloride	ND		0.048		mg/Kg	₽	08/21/24 07:40		
m-Xylene & p-Xylene	ND		0.012	0.0014		☼	08/21/24 07:40		
Naphthalene	ND		0.012	0.0022		≎		08/21/24 11:07	
n-Butylbenzene N-Propylbenzene	ND		0.0036	0.00076 0.00092		₩	08/21/24 07:40 08/21/24 07:40		

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-18 (6'-8')

Lab Sample ID: 580-143025-18 Date Collected: 08/15/24 13:30 **Matrix: Solid**

Date Received: 08/16/24 12:18 Percent Solids: 94.6

Method: SW846 8260D - Vola Analyte	_	Qualifier	RL	(Conti	•	D	Prepared	Analyzed	Dil Fac
o-Xylene	ND	- Guainioi	0.0060	0.0011	mg/Kg	— <u>-</u>	08/21/24 07:40	08/21/24 11:07	1
sec-Butylbenzene	ND		0.0036		mg/Kg	Ť Ť	08/21/24 07:40	08/21/24 11:07	1
Styrene	ND		0.0036	0.00090			08/21/24 07:40		1
t-Butylbenzene	ND		0.0036	0.00080	0 0	₩	08/21/24 07:40		1
Tetrachloroethene	ND		0.0024	0.00048		₩	08/21/24 07:40	08/21/24 11:07	1
Toluene	ND		0.012	0.0016			08/21/24 07:40	08/21/24 11:07	1
trans-1,2-Dichloroethene	ND		0.0042	0.0018		₩	08/21/24 07:40		1
trans-1,3-Dichloropropene	ND	*+	0.012	0.00073	0 0	₩	08/21/24 07:40	08/21/24 11:07	1
Trichloroethene	ND		0.0024	0.00036			08/21/24 07:40	08/21/24 11:07	1
Trichlorofluoromethane	ND		0.010	0.0047		₩	08/21/24 07:40		1
Vinyl chloride	ND		0.0024	0.0011		₽	08/21/24 07:40	08/21/24 11:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	113		80 - 121				08/21/24 07:40	08/21/24 11:07	1
4-Bromofluorobenzene (Surr)	99		80 - 120				08/21/24 07:40	08/21/24 11:07	1
Dibromofluoromethane (Surr)	104		80 - 120				08/21/24 07:40	08/21/24 11:07	1
Toluene-d8 (Surr)	98		80 - 120				08/21/24 07:40	08/21/24 11:07	1
Method: NWTPH-Dx - Northy	west - Semi-V	olatile Pet	roleum Prod	ucts (GC	C)				
Analyte		Qualifier	RL	MDL	•	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	180		49	12	mg/Kg	— <u></u>	08/20/24 12:12	08/22/24 20:58	1
Motor Oil (>C24-C36)	150		49	17	mg/Kg	₽	08/20/24 12:12	08/22/24 20:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Surrogate	%Recovery	Qualifier	Limits 50 - 150					Analyzed 08/22/24 20:58	
		Qualifier							Dil Fac
Surrogate o-Terphenyl General Chemistry	66	Qualifier Qualifier		RL	Unit	D			
Surrogate o-Terphenyl	66		50 - 150	RL 0.1	Unit %	<u>D</u>	08/20/24 12:12	08/22/24 20:58	1

8/23/2024

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-18 (10'-12')

Lab Sample ID: 580-143025-19 Date Collected: 08/15/24 13:30 **Matrix: Solid** Date Received: 08/16/24 12:18 Percent Solids: 92.6

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
1,1,1,2-Tetrachloroethane	ND		0.0036	0.00071	mg/Kg	₩	08/21/24 07:40	08/21/24 11:26	
1,1,1-Trichloroethane	ND		0.0024	0.0012	0 0	₩	08/21/24 07:40	08/21/24 11:26	
1,1,2,2-Tetrachloroethane	ND		0.0036	0.00028		⊅	08/21/24 07:40	08/21/24 11:26	
1,1,2-Trichloroethane	ND		0.0024	0.00064	mg/Kg	☼	08/21/24 07:40	08/21/24 11:26	
1,1-Dichloroethane	ND		0.0024	0.0011	mg/Kg	☼	08/21/24 07:40	08/21/24 11:26	
1,1-Dichloroethene	ND		0.0060	0.0026	mg/Kg	☼	08/21/24 07:40	08/21/24 11:26	
1,1-Dichloropropene	ND		0.0036	0.0013	mg/Kg	₩	08/21/24 07:40	08/21/24 11:26	
1,2,3-Trichlorobenzene	ND		0.012	0.00072	mg/Kg	☼	08/21/24 07:40	08/21/24 11:26	
1,2,3-Trichloropropane	ND		0.0060	0.0012	mg/Kg	☼	08/21/24 07:40	08/21/24 11:26	
1,2,4-Trichlorobenzene	ND		0.0036	0.0015	mg/Kg	⊅	08/21/24 07:40	08/21/24 11:26	
1,2,4-Trimethylbenzene	ND		0.0060	0.0014	mg/Kg	☼	08/21/24 07:40	08/21/24 11:26	
1,2-Dibromo-3-Chloropropane	ND		0.012	0.0019	mg/Kg	☼	08/21/24 07:40	08/21/24 11:26	
1,2-Dibromoethane	ND		0.0012	0.00024	mg/Kg	₩	08/21/24 07:40	08/21/24 11:26	
1,2-Dichlorobenzene	ND		0.012	0.0016		☼	08/21/24 07:40	08/21/24 11:26	
1,2-Dichloroethane	ND		0.0024	0.00074		☆	08/21/24 07:40	08/21/24 11:26	
1,2-Dichloropropane	ND		0.0024	0.00060			08/21/24 07:40	08/21/24 11:26	
1,3,5-Trimethylbenzene	ND		0.0060	0.00097	0 0	₩	08/21/24 07:40	08/21/24 11:26	
1,3-Dichlorobenzene	ND		0.0060	0.0013	0 0	₩	08/21/24 07:40	08/21/24 11:26	
1,3-Dichloropropane	ND		0.0024	0.00028			08/21/24 07:40	08/21/24 11:26	
1,4-Dichlorobenzene	ND		0.0060	0.0012		ά	08/21/24 07:40	08/21/24 11:26	
2,2-Dichloropropane	ND		0.0060	0.00092		ά	08/21/24 07:40	08/21/24 11:26	
2-Chlorotoluene	ND		0.0060	0.0011		T.	08/21/24 07:40	08/21/24 11:26	
4-Chlorotoluene	ND		0.0060	0.0011		~ \$	08/21/24 07:40	08/21/24 11:26	
4-Isopropyltoluene	ND		0.0004	0.00048	0 0	Ť	08/21/24 07:40	08/21/24 11:26	
Benzene	ND		0.0024	0.00047			08/21/24 07:40		
Bromobenzene	ND		0.0024	0.00047		☆	08/21/24 07:40	08/21/24 11:26	
Bromochloromethane	ND ND		0.012	0.0012	0 0	Ψ Φ	08/21/24 07:40	08/21/24 11:26	
Bromodichloromethane									
	ND		0.0024	0.0011	0 0	±	08/21/24 07:40	08/21/24 11:26	
Bromoform	ND		0.0060	0.0010	0 0	±	08/21/24 07:40	08/21/24 11:26	
Bromomethane	ND		0.0024	0.0011		.	08/21/24 07:40	08/21/24 11:26	
Carbon tetrachloride	ND		0.0024	0.0010		*	08/21/24 07:40	08/21/24 11:26	
Chlorobenzene	ND		0.0024	0.00030		*	08/21/24 07:40	08/21/24 11:26	
Chloroethane	ND		0.012	0.00090			08/21/24 07:40	08/21/24 11:26	
Chloroform	ND		0.0036	0.0015		☼	08/21/24 07:40	08/21/24 11:26	
Chloromethane	ND		0.0060	0.0011		☼	08/21/24 07:40		
cis-1,2-Dichloroethene	ND		0.0036	0.00028			08/21/24 07:40	08/21/24 11:26	
cis-1,3-Dichloropropene	ND		0.0012	0.00024		₩	08/21/24 07:40		
Dibromochloromethane	ND		0.0024	0.00067		₩		08/21/24 11:26	
Dibromomethane	ND		0.0024	0.00050	mg/Kg	₩		08/21/24 11:26	
Dichlorodifluoromethane	ND		0.0036	0.0016		₩	08/21/24 07:40	08/21/24 11:26	
Ethylbenzene	ND		0.0024	0.0012		☼		08/21/24 11:26	
Hexachlorobutadiene	ND		0.0036	0.0018	mg/Kg	₩	08/21/24 07:40	08/21/24 11:26	
sopropylbenzene	ND		0.0036	0.0013	mg/Kg	☼	08/21/24 07:40	08/21/24 11:26	
Methyl tert-butyl ether	ND		0.0024	0.00036	mg/Kg	☼	08/21/24 07:40	08/21/24 11:26	
Methylene Chloride	ND		0.048	0.012	mg/Kg	₩	08/21/24 07:40	08/21/24 11:26	
n-Xylene & p-Xylene	ND		0.012	0.0014	mg/Kg	₩	08/21/24 07:40	08/21/24 11:26	
Naphthalene	ND		0.012	0.0022		₽	08/21/24 07:40	08/21/24 11:26	
n-Butylbenzene	ND		0.0036	0.00076		☆	08/21/24 07:40	08/21/24 11:26	
N-Propylbenzene	ND		0.0060	0.00091				08/21/24 11:26	

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-18 (10'-12')

Lab Sample ID: 580-143025-19 Date Collected: 08/15/24 13:30 **Matrix: Solid** Date Received: 08/16/24 12:18

Percent Solids: 92.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	ND		0.0060	0.0011	mg/Kg	<u></u>	08/21/24 07:40	08/21/24 11:26	1
sec-Butylbenzene	ND		0.0036	0.00080	mg/Kg	☼	08/21/24 07:40	08/21/24 11:26	1
Styrene	ND		0.0036	0.00089	mg/Kg	₩	08/21/24 07:40	08/21/24 11:26	1
t-Butylbenzene	ND		0.0036	0.00079	mg/Kg	☼	08/21/24 07:40	08/21/24 11:26	1
Tetrachloroethene	ND		0.0024	0.00048	mg/Kg	☼	08/21/24 07:40	08/21/24 11:26	1
Toluene	ND		0.012	0.0016	mg/Kg	₩	08/21/24 07:40	08/21/24 11:26	1
trans-1,2-Dichloroethene	ND		0.0042	0.0018	mg/Kg	☼	08/21/24 07:40	08/21/24 11:26	1
trans-1,3-Dichloropropene	ND	*+	0.012	0.00072	mg/Kg	☼	08/21/24 07:40	08/21/24 11:26	1
Trichloroethene	ND		0.0024	0.00036	mg/Kg	⊅	08/21/24 07:40	08/21/24 11:26	1
Trichlorofluoromethane	ND		0.010	0.0046	mg/Kg	₩	08/21/24 07:40	08/21/24 11:26	1
Vinyl chloride	ND		0.0024	0.0011	mg/Kg	☼	08/21/24 07:40	08/21/24 11:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	115		80 - 121				08/21/24 07:40	08/21/24 11:26	1
4-Bromofluorobenzene (Surr)	85		80 - 120				08/21/24 07:40	08/21/24 11:26	1
Dibromofluoromethane (Surr)	110		80 - 120				08/21/24 07:40	08/21/24 11:26	1
Toluene-d8 (Surr)	109		80 - 120				08/21/24 07:40	08/21/24 11:26	1
Method: NWTPH-Dx - North	west - Semi-V	olatile Pet	roleum Prod	ducts (GC	C)				
					•	_	Prepared	A a l a al	
Analyte	Result	Qualifier	RL	MDL	Unit	D	riepaieu	Analyzed	Dil Fac
Analyte #2 Diesel (C10-C24)			RL 52		Unit mg/Kg	— □	08/20/24 14:59	08/21/24 15:08	Dil Fac
		J		13			08/20/24 14:59		1
#2 Diesel (C10-C24)	38	J J	52	13	mg/Kg	— <u></u>	08/20/24 14:59	08/21/24 15:08	1
#2 Diesel (C10-C24) Motor Oil (>C24-C36)	38 47	J J	52 52	13	mg/Kg	— <u></u>	08/20/24 14:59 08/20/24 14:59	08/21/24 15:08 08/21/24 15:08	1 1 Dil Fac
#2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate	38 47 %Recovery	J J	52 52 Limits	13	mg/Kg	— <u></u>	08/20/24 14:59 08/20/24 14:59 Prepared	08/21/24 15:08 08/21/24 15:08 Analyzed	1 1 Dil Fac
#2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate o-Terphenyl	38 47 %Recovery 58	J J	52 52 Limits	13 18	mg/Kg	— <u></u>	08/20/24 14:59 08/20/24 14:59 Prepared	08/21/24 15:08 08/21/24 15:08 Analyzed	1 1 Dil Fac
#2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate o-Terphenyl General Chemistry	38 47 %Recovery 58	J J Qualifier	52 52 Limits 50 - 150	13 18	mg/Kg mg/Kg	— <u> </u>	08/20/24 14:59 08/20/24 14:59 Prepared 08/20/24 14:59	08/21/24 15:08 08/21/24 15:08 Analyzed 08/21/24 15:08	1

8/23/2024

Client: Hart & Hickman, PC Job ID: 580-143025-1

RL

MDL Unit

Project/Site: Northwest Motorsports - Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS

MB MB

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

Result Qualifier

Lab Sample ID: MB 580-468849/1-A

Matrix: Solid

2,2-Dichloropropane

2-Chlorotoluene

4-Chlorotoluene

Bromobenzene

Bromomethane

Chlorobenzene

Chloromethane

Dibromomethane

Ethylbenzene

Naphthalene

n-Butylbenzene

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Dibromochloromethane

Dichlorodifluoromethane

Hexachlorobutadiene

Methyl tert-butyl ether

Methylene Chloride

m-Xylene & p-Xylene

Isopropylbenzene

Chloroethane

Chloroform

Carbon tetrachloride

Benzene

Bromoform

4-Isopropyltoluene

Bromochloromethane

Bromodichloromethane

Analyte

Analysis Batch: 468850

Client Sample ID: Method Blank Prep Type: Total/NA

Analyzed

08/20/24 15:12

Prepared

08/20/24 13:15

08/20/24 13:15 08/20/24 15:12

08/20/24 13:15 08/20/24 15:12

08/20/24 13:15 08/20/24 15:12

08/20/24 13:15 08/20/24 15:12

08/20/24 13:15 08/20/24 15:12

08/20/24 13:15 08/20/24 15:12

08/20/24 13:15 08/20/24 15:12

08/20/24 13:15 08/20/24 15:12

08/20/24 13:15 08/20/24 15:12

08/20/24 13:15 08/20/24 15:12

08/20/24 13:15 08/20/24 15:12

08/20/24 13:15 08/20/24 15:12

08/20/24 13:15 08/20/24 15:12

08/20/24 13:15 08/20/24 15:12

08/20/24 13:15 08/20/24 15:12

08/20/24 13:15 08/20/24 15:12

08/20/24 13:15 08/20/24 15:12

08/20/24 13:15 08/20/24 15:12

08/20/24 13:15 08/20/24 15:12

08/20/24 13:15 08/20/24 15:12

08/20/24 13:15 08/20/24 15:12

08/20/24 13:15

Prep Batch: 468849

Dil Fac

1,1,1,2-Tetrachloroethane	ND	0.0030	0.00059	mg/Kg	08/20/24 13:15	08/20/24 15:12	1
1,1,1-Trichloroethane	ND	0.0020	0.00097	mg/Kg	08/20/24 13:15	08/20/24 15:12	1
1,1,2,2-Tetrachloroethane	ND	0.0030	0.00023	mg/Kg	08/20/24 13:15	08/20/24 15:12	1
1,1,2-Trichloroethane	ND	0.0020	0.00053	mg/Kg	08/20/24 13:15	08/20/24 15:12	1
1,1-Dichloroethane	ND	0.0020	0.00093	mg/Kg	08/20/24 13:15	08/20/24 15:12	1
1,1-Dichloroethene	ND	0.0050	0.0021	mg/Kg	08/20/24 13:15	08/20/24 15:12	1
1,1-Dichloropropene	ND	0.0030	0.0011	mg/Kg	08/20/24 13:15	08/20/24 15:12	1
1,2,3-Trichlorobenzene	ND	0.010	0.00060	mg/Kg	08/20/24 13:15	08/20/24 15:12	1
1,2,3-Trichloropropane	ND	0.0050	0.0010	mg/Kg	08/20/24 13:15	08/20/24 15:12	1
1,2,4-Trichlorobenzene	ND	0.0030	0.0012	mg/Kg	08/20/24 13:15	08/20/24 15:12	1
1,2,4-Trimethylbenzene	ND	0.0050	0.0012	mg/Kg	08/20/24 13:15	08/20/24 15:12	1
1,2-Dibromo-3-Chloropropane	ND	0.010	0.0016	mg/Kg	08/20/24 13:15	08/20/24 15:12	1
1,2-Dibromoethane	ND	0.0010	0.00020	mg/Kg	08/20/24 13:15	08/20/24 15:12	1
1,2-Dichlorobenzene	ND	0.010	0.0013	mg/Kg	08/20/24 13:15	08/20/24 15:12	1
1,2-Dichloroethane	ND	0.0020	0.00062	mg/Kg	08/20/24 13:15	08/20/24 15:12	1
1,2-Dichloropropane	ND	0.0020	0.00050	mg/Kg	08/20/24 13:15	08/20/24 15:12	1
1,3,5-Trimethylbenzene	ND	0.0050	0.00081	mg/Kg	08/20/24 13:15	08/20/24 15:12	1
1,3-Dichlorobenzene	ND	0.0050	0.0011	mg/Kg	08/20/24 13:15	08/20/24 15:12	1
1,3-Dichloropropane	ND	0.0020	0.00023	mg/Kg	08/20/24 13:15	08/20/24 15:12	1
1,4-Dichlorobenzene	ND	0.0050	0.00098	mg/Kg	08/20/24 13:15	08/20/24 15:12	1

0.0050

0.0050

0.0050

0.0020

0.0020

0.010

0.0020

0.0020

0.0050

0.0020

0.0020

0.0020

0.010

0.0030

0.0050

0.0030

0.0010

0.0020

0.0020

0.0030

0.0020

0.0030

0.0030

0.0020

0.040

0.010

0.010

0.0030

0.00077

0.0010

0.00040

0.00039

0.0010

0.00089

0.00093 mg/Kg

0.00093 mg/Kg

0.00084 mg/Kg

0.00088 mg/Kg

0.00086 mg/Kg

0.00025 mg/Kg

0.00075 mg/Kg

0.00020 mg/Kg

0.00056 mg/Kg

0.00042 mg/Kg

0.0013 mg/Kg

0.00096 mg/Kg

0.0015 mg/Kg

0.00030 mg/Kg

0.0099 mg/Kg

0.0012 mg/Kg

0.0018 mg/Kg

0.00063 mg/Kg

mg/Kg

0.0011

0.0013

0.00093

0.00023

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

08/20/24 15:12

Eurofins Seattle

3

4

6

a

10

1

8/23/2024

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Job ID: 580-143025-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 580-468849/1-A

Matrix: Solid

Analysis Batch: 468850

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 468849

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
N-Propylbenzene	ND		0.0050	0.00076	mg/Kg		08/20/24 13:15	08/20/24 15:12	1
o-Xylene	ND		0.0050	0.00092	mg/Kg		08/20/24 13:15	08/20/24 15:12	1
sec-Butylbenzene	ND		0.0030	0.00067	mg/Kg		08/20/24 13:15	08/20/24 15:12	1
Styrene	ND		0.0030	0.00074	mg/Kg		08/20/24 13:15	08/20/24 15:12	1
t-Butylbenzene	ND		0.0030	0.00066	mg/Kg		08/20/24 13:15	08/20/24 15:12	1
Tetrachloroethene	ND		0.0020	0.00040	mg/Kg		08/20/24 13:15	08/20/24 15:12	1
Toluene	ND		0.010	0.0013	mg/Kg		08/20/24 13:15	08/20/24 15:12	1
trans-1,2-Dichloroethene	ND		0.0035	0.0015	mg/Kg		08/20/24 13:15	08/20/24 15:12	1
trans-1,3-Dichloropropene	ND		0.010	0.00060	mg/Kg		08/20/24 13:15	08/20/24 15:12	1
Trichloroethene	ND		0.0020	0.00030	mg/Kg		08/20/24 13:15	08/20/24 15:12	1
Trichlorofluoromethane	ND		0.0085	0.0039	mg/Kg		08/20/24 13:15	08/20/24 15:12	1
Vinyl chloride	ND		0.0020	0.00088	mg/Kg		08/20/24 13:15	08/20/24 15:12	1
I and the second									

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103	80 - 121	08/20/24 13:15	08/20/24 15:12	1
4-Bromofluorobenzene (Surr)	99	80 - 120	08/20/24 13:15	08/20/24 15:12	1
Dibromofluoromethane (Surr)	104	80 - 120	08/20/24 13:15	08/20/24 15:12	1
Toluene-d8 (Surr)	98	80 - 120	08/20/24 13:15	08/20/24 15:12	1

Lab Sample ID: LCS 580-468849/2-A

Matrix: Solid

Analysis Batch: 468850

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 468849

Alialysis Batch. 400050	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	0.0500	0.0610		mg/Kg		122	79 - 128
1,1,1-Trichloroethane	0.0500	0.0596		mg/Kg		119	78 - 135
1,1,2,2-Tetrachloroethane	0.0500	0.0581		mg/Kg		116	77 - 122
1,1,2-Trichloroethane	0.0500	0.0589		mg/Kg		118	80 - 123
1,1-Dichloroethane	0.0500	0.0580		mg/Kg		116	78 - 126
1,1-Dichloroethene	0.0500	0.0588		mg/Kg		118	73 - 134
1,1-Dichloropropene	0.0500	0.0596		mg/Kg		119	76 - 140
1,2,3-Trichlorobenzene	0.0500	0.0605		mg/Kg		121	58 - 146
1,2,3-Trichloropropane	0.0500	0.0574		mg/Kg		115	77 - 127
1,2,4-Trichlorobenzene	0.0500	0.0642		mg/Kg		128	74 - 131
1,2,4-Trimethylbenzene	0.0500	0.0622		mg/Kg		124	73 - 138
1,2-Dibromo-3-Chloropropane	0.0500	0.0557		mg/Kg		111	64 - 129
1,2-Dibromoethane	0.0500	0.0592		mg/Kg		118	77 - 123
1,2-Dichlorobenzene	0.0500	0.0591		mg/Kg		118	78 - 126
1,2-Dichloroethane	0.0500	0.0548		mg/Kg		110	76 - 124
1,2-Dichloropropane	0.0500	0.0582		mg/Kg		116	73 - 130
1,3,5-Trimethylbenzene	0.0500	0.0638		mg/Kg		128	72 - 134
1,3-Dichlorobenzene	0.0500	0.0601		mg/Kg		120	78 - 132
1,3-Dichloropropane	0.0500	0.0590		mg/Kg		118	80 - 120
1,4-Dichlorobenzene	0.0500	0.0598		mg/Kg		120	77 - 123
2,2-Dichloropropane	0.0500	0.0592		mg/Kg		118	75 - 134
2-Chlorotoluene	0.0500	0.0596		mg/Kg		119	77 - 134
4-Chlorotoluene	0.0500	0.0609		mg/Kg		122	71 - 137
4-Isopropyltoluene	0.0500	0.0622		mg/Kg		124	71 - 142

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 580-468849/2-A

Matrix: Solid

Analysis Batch: 468850

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 580-143025-1

Prep Batch: 468849

Spike	LCS	LCS				%Rec	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
 0.0500	0.0594		mg/Kg		119	79 - 135	-
0.0500	0.0590		mg/Kg		118	78 - 126	
0.0500	0.0576		mg/Kg		115	76 - 131	
0.0500	0.0607		mg/Kg		121	78 - 125	
0.0500	0.0614		mg/Kg		123	71 - 130	
0.0500	0.0503		mg/Kg		101	55 - 150	
0.0500	0.0605		mg/Kg		121	76 - 140	
0.0500	0.0601		mg/Kg		120	80 - 125	
0.0500	0.0491		mg/Kg		98	26 - 150	
			11.6				

Analyte	Added	Result Qualifier	Unit	D %Rec	Limits
Benzene	0.0500	0.0594	mg/Kg	119	79 - 135
Bromobenzene	0.0500	0.0590	mg/Kg	118	78 - 126
Bromochloromethane	0.0500	0.0576	mg/Kg	115	76 - 131
Bromodichloromethane	0.0500	0.0607	mg/Kg	121	78 - 125
Bromoform	0.0500	0.0614	mg/Kg	123	71 - 130
Bromomethane	0.0500	0.0503	mg/Kg	101	55 - 150
Carbon tetrachloride	0.0500	0.0605	mg/Kg	121	76 - 140
Chlorobenzene	0.0500	0.0601	mg/Kg	120	80 - 125
Chloroethane	0.0500	0.0491	mg/Kg	98	26 - 150
Chloroform	0.0500	0.0583	mg/Kg	117	74 - 133
Chloromethane	0.0500	0.0444	mg/Kg	89	52 - 142
cis-1,2-Dichloroethene	0.0500	0.0582	mg/Kg	116	80 - 125
cis-1,3-Dichloropropene	0.0500	0.0580	mg/Kg	116	80 - 122
Dibromochloromethane	0.0500	0.0603	mg/Kg	121	75 - 125
Dibromomethane	0.0500	0.0596	mg/Kg	119	72 - 130
Dichlorodifluoromethane	0.0500	0.0446	mg/Kg	89	33 - 150
Ethylbenzene	0.0500	0.0608	mg/Kg	122	80 - 135
Hexachlorobutadiene	0.0500	0.0633	mg/Kg	127	65 - 145
Isopropylbenzene	0.0500	0.0681 *+	mg/Kg	136	80 - 131
Methyl tert-butyl ether	0.0500	0.0602	mg/Kg	120	71 - 126
Methylene Chloride	0.0500	0.0589	mg/Kg	118	56 - 140
m-Xylene & p-Xylene	0.0500	0.0618	mg/Kg	124	80 - 132
Naphthalene	0.0500	0.0616	mg/Kg	123	56 - 145
n-Butylbenzene	0.0500	0.0650	mg/Kg	130	69 - 143
N-Propylbenzene	0.0500	0.0623	mg/Kg	125	78 - 133
o-Xylene	0.0500	0.0604	mg/Kg	121	80 - 132
sec-Butylbenzene	0.0500	0.0619	mg/Kg	124	71 - 143
Styrene	0.0500	0.0597	mg/Kg	119	79 - 129
t-Butylbenzene	0.0500	0.0615	mg/Kg	123	72 - 144
Tetrachloroethene	0.0500	0.0626	mg/Kg	125	75 - 141
Toluene	0.0500	0.0588	mg/Kg	118	75 - 125
trans-1,2-Dichloroethene	0.0500	0.0565	mg/Kg	113	77 - 134
trans-1,3-Dichloropropene	0.0500	0.0638 *+	mg/Kg	128	80 - 121
Trichloroethene	0.0500	0.0618	mg/Kg	124	80 - 134
Trichlorofluoromethane	0.0500	0.0517	mg/Kg	103	71 - 150
Vinyl chloride	0.0500	0.0531	mg/Kg	106	62 - 144
•			- 0		

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	94		80 - 121
4-Bromofluorobenzene (Surr)	98		80 - 120
Dibromofluoromethane (Surr)	96		80 - 120
Toluene-d8 (Surr)	101		80 - 120

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 580-468849/3-A

Matrix: Solid

Analyte

Analysis Batch: 468850

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

1,1,1-Trichloroethane

1,1,2-Trichloroethane

1,1-Dichloroethane

1,1-Dichloroethene

1,1-Dichloropropene

1,2,3-Trichlorobenzene

1,2,3-Trichloropropane

1,2,4-Trichlorobenzene

1,2,4-Trimethylbenzene

1.2-Dibromoethane

1,2-Dichloroethane

1,2-Dichloropropane

1.3-Dichlorobenzene

1,3-Dichloropropane

1.4-Dichlorobenzene

2,2-Dichloropropane

2-Chlorotoluene

4-Chlorotoluene

Bromobenzene

Bromomethane

Chlorobenzene

Chloromethane

Chloroethane

Chloroform

Carbon tetrachloride

Benzene

Bromoform

4-Isopropyltoluene

Bromochloromethane

Bromodichloromethane

1,3,5-Trimethylbenzene

1,2-Dichlorobenzene

1,2-Dibromo-3-Chloropropane

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 468849 Spike LCSD LCSD %Rec **RPD** Added Result Qualifier %Rec Limits RPD Limit Unit D 6 0.0500 0.0509 mg/Kg 102 79 - 128 18 20 0.0500 0.0493 mg/Kg 99 78 - 135 19 20 103 0.0500 0.0513 77 - 122 20 mg/Kg 12 0.0500 0.0507 mg/Kg 101 80 - 123 15 20 0.0500 0.0495 mg/Kg 99 78 - 12616 20 0.0500 97 19 25 0.0487 mg/Kg 73 - 134 0.0500 0.0498 100 76 - 140 20 mg/Kg 18 0.0500 0.0516 mg/Kg 103 58 - 146 16 28 0.0500 0.0502 100 77 - 12713 20 mg/Kg 0.0500 0.0543 109 74 - 131 17 26 mg/Kg 106 73 - 1380.0500 0.0528 mg/Kg 16 22 0.0500 0.0470 mg/Kg 94 64 - 129 17 40 0.0500 0.0517 103 77 - 123 20 mg/Kg 14 0.0500 0.0503 mg/Kg 101 78 - 126 16 20 0.0500 0.0472 mg/Kg 94 76 - 124 15 20 0.0500 0.0500 100 73 - 130 15 20 mg/Kg 0.0500 0.0537 mg/Kg 107 72 - 13417 24 0.0500 0.0520 104 78 - 13220 mg/Kg 14 80 - 120 0.0500 0.0507 mg/Kg 101 15 20 0.0500 0.0510 102 77 - 123 20 mg/Kg 16 0.0500 0.0504 101 75 - 134 20 mg/Kg 16 102 21 0.0500 0.0508 mg/Kg 77 - 13416 0.0500 0.0517 103 71 - 137 16 21 mg/Kg 0.0500 0.0528 106 71 - 142 16 29 mg/Kg

101

103

92

79 - 135

78 - 126

52 - 142

16

13

20

20

40

99 0.0500 0.0495 mg/Kg 76 - 131 15 20 0.0500 0.0517 103 78 - 125 16 20 mg/Kg 0.0500 0.0526 mg/Kg 105 71 - 130 15 20 0.0500 0.0516 mg/Kg 103 55 - 150 3 26 20 0.0500 0.0501 100 76 - 140mg/Kg 19 0.0500 0.0507 101 80 - 12520 mg/Kg 17 104 0.0500 0.0520 mg/Kg 26 - 150 6 40 0.0500 0.0497 99 74 - 133 16 20 mg/Kg

0.0504

0.0517

mg/Kg

mg/Kg

mg/Kg

cis-1,2-Dichloroethene 0.0500 0.0492 mg/Kg 98 80 - 125 17 20 cis-1,3-Dichloropropene 0.0500 0.0500 mg/Kg 100 80 - 122 15 20 Dibromochloromethane 0.0500 0.0518 mg/Kg 104 75 - 12515 20 mg/Kg Dibromomethane 0.0500 0.0508 102 72 - 13016 40 Dichlorodifluoromethane 0.0500 0.0473 mg/Kg 95 33 - 1506 31 Ethylbenzene 0.0500 0.0510 102 80 - 135 18 20 mg/Kg 105 0.0500 0.0526 65 - 145 18 mg/Kg

0.0461

36 Hexachlorobutadiene Isopropylbenzene 0.0500 0.0567 mg/Kg 113 80 - 131 18 20 Methyl tert-butyl ether 0.0500 0.0523 105 71 - 12620 mg/Kg 14 Methylene Chloride 0.0500 0.0501 100 56 - 140 16 20 mg/Kg 104 m-Xylene & p-Xylene 0.0500 0.0518 80 - 13218 20 mg/Kg Naphthalene 0.0500 0.0541 mg/Kg 108 56 - 145 13 25 n-Butylbenzene 0.0500 0.0547 109 69 - 143 17 31 mg/Kg

0.0500

0.0500

0.0500

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 580-468849/3-A

Matrix: Solid

Analysis Batch: 468850

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 468849

	Бріке	LCSD LCSD				%Rec		RPD
Analyte	Added	Result Qualifier	Unit	D	%Rec	Limits	RPD	Limit
N-Propylbenzene	0.0500	0.0533	mg/Kg		107	78 - 133	15	24
o-Xylene	0.0500	0.0514	mg/Kg		103	80 - 132	16	20
sec-Butylbenzene	0.0500	0.0526	mg/Kg		105	71 - 143	16	29
Styrene	0.0500	0.0508	mg/Kg		102	79 - 129	16	20
t-Butylbenzene	0.0500	0.0525	mg/Kg		105	72 - 144	16	27
Tetrachloroethene	0.0500	0.0526	mg/Kg		105	75 - 141	17	20
Toluene	0.0500	0.0490	mg/Kg		98	75 - 125	18	20
trans-1,2-Dichloroethene	0.0500	0.0471	mg/Kg		94	77 - 134	18	20
trans-1,3-Dichloropropene	0.0500	0.0539	mg/Kg		108	80 - 121	17	20
Trichloroethene	0.0500	0.0510	mg/Kg		102	80 - 134	19	20
Trichlorofluoromethane	0.0500	0.0546	mg/Kg		109	71 - 150	5	30
Vinyl chloride	0.0500	0.0558	mg/Kg		112	62 - 144	5	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	93		80 - 121
4-Bromofluorobenzene (Surr)	100		80 - 120
Dibromofluoromethane (Surr)	96		80 - 120
Toluene-d8 (Surr)	102		80 - 120

Lab Sample ID: MB 580-468911/3-A

Matrix: Solid

Analysis Batch: 468912

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 468911

7 many coo Batom 1000 in								op Dato	
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		0.0030	0.00059	mg/Kg		08/21/24 07:40	08/21/24 09:33	1
1,1,1-Trichloroethane	ND		0.0020	0.00097	mg/Kg		08/21/24 07:40	08/21/24 09:33	1
1,1,2,2-Tetrachloroethane	ND		0.0030	0.00023	mg/Kg		08/21/24 07:40	08/21/24 09:33	1
1,1,2-Trichloroethane	ND		0.0020	0.00053	mg/Kg		08/21/24 07:40	08/21/24 09:33	1
1,1-Dichloroethane	ND		0.0020	0.00093	mg/Kg		08/21/24 07:40	08/21/24 09:33	1
1,1-Dichloroethene	ND		0.0050	0.0021	mg/Kg		08/21/24 07:40	08/21/24 09:33	1
1,1-Dichloropropene	ND		0.0030	0.0011	mg/Kg		08/21/24 07:40	08/21/24 09:33	1
1,2,3-Trichlorobenzene	ND		0.010	0.00060	mg/Kg		08/21/24 07:40	08/21/24 09:33	1
1,2,3-Trichloropropane	ND		0.0050	0.0010	mg/Kg		08/21/24 07:40	08/21/24 09:33	1
1,2,4-Trichlorobenzene	ND		0.0030	0.0012	mg/Kg		08/21/24 07:40	08/21/24 09:33	1
1,2,4-Trimethylbenzene	ND		0.0050	0.0012	mg/Kg		08/21/24 07:40	08/21/24 09:33	1
1,2-Dibromo-3-Chloropropane	ND		0.010	0.0016	mg/Kg		08/21/24 07:40	08/21/24 09:33	1
1,2-Dibromoethane	ND		0.0010	0.00020	mg/Kg		08/21/24 07:40	08/21/24 09:33	1
1,2-Dichlorobenzene	ND		0.010	0.0013	mg/Kg		08/21/24 07:40	08/21/24 09:33	1
1,2-Dichloroethane	ND		0.0020	0.00062	mg/Kg		08/21/24 07:40	08/21/24 09:33	1
1,2-Dichloropropane	ND		0.0020	0.00050	mg/Kg		08/21/24 07:40	08/21/24 09:33	1
1,3,5-Trimethylbenzene	ND		0.0050	0.00081	mg/Kg		08/21/24 07:40	08/21/24 09:33	1
1,3-Dichlorobenzene	ND		0.0050	0.0011	mg/Kg		08/21/24 07:40	08/21/24 09:33	1
1,3-Dichloropropane	ND		0.0020	0.00023	mg/Kg		08/21/24 07:40	08/21/24 09:33	1
1,4-Dichlorobenzene	ND		0.0050	0.00098	mg/Kg		08/21/24 07:40	08/21/24 09:33	1
2,2-Dichloropropane	ND		0.0050	0.00077	mg/Kg		08/21/24 07:40	08/21/24 09:33	1
2-Chlorotoluene	ND		0.0050	0.00093	mg/Kg		08/21/24 07:40	08/21/24 09:33	1
4-Chlorotoluene	ND		0.0050	0.0010	mg/Kg		08/21/24 07:40	08/21/24 09:33	1
4-Isopropyltoluene	ND		0.0020	0.00040	mg/Kg		08/21/24 07:40	08/21/24 09:33	1

Client: Hart & Hickman, PC Job ID: 580-143025-1

RL

MDL Unit

Project/Site: Northwest Motorsports - Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

MB MB

Result Qualifier

Lab Sample ID: MB 580-468911/3-A

Matrix: Solid

Analyte

Analysis Batch: 468912

trans-1,3-Dichloropropene

Trichlorofluoromethane

Trichloroethene

Vinyl chloride

Client Sample ID: Method Blank

Analyzed

Prepared

Prep Type: Total/NA

Prep Batch: 468911

Benzene	ND	0.0020	0.00039 mg/Kg	08/21/24 07:40 08/21/24 09:33	1
Bromobenzene	ND	0.010	0.0010 mg/Kg	08/21/24 07:40 08/21/24 09:33	1
Bromochloromethane	ND	0.0020	0.00093 mg/Kg	08/21/24 07:40 08/21/24 09:33	1
Bromodichloromethane	ND	0.0020	0.00089 mg/Kg	08/21/24 07:40 08/21/24 09:33	1
Bromoform	ND	0.0050	0.00084 mg/Kg	08/21/24 07:40 08/21/24 09:33	1
Bromomethane	ND	0.0020	0.00088 mg/Kg	08/21/24 07:40 08/21/24 09:33	1
Carbon tetrachloride	ND	0.0020	0.00086 mg/Kg	08/21/24 07:40 08/21/24 09:33	1
Chlorobenzene	ND	0.0020	0.00025 mg/Kg	08/21/24 07:40 08/21/24 09:33	1
Chloroethane	ND	0.010	0.00075 mg/Kg	08/21/24 07:40 08/21/24 09:33	1
Chloroform	ND	0.0030	0.0013 mg/Kg	08/21/24 07:40 08/21/24 09:33	1
Chloromethane	ND	0.0050	0.00093 mg/Kg	08/21/24 07:40 08/21/24 09:33	1
cis-1,2-Dichloroethene	ND	0.0030	0.00023 mg/Kg	08/21/24 07:40 08/21/24 09:33	1
cis-1,3-Dichloropropene	ND	0.0010	0.00020 mg/Kg	08/21/24 07:40 08/21/24 09:33	1
Dibromochloromethane	ND	0.0020	0.00056 mg/Kg	08/21/24 07:40 08/21/24 09:33	1
Dibromomethane	ND	0.0020	0.00042 mg/Kg	08/21/24 07:40 08/21/24 09:33	1
Dichlorodifluoromethane	ND	0.0030	0.0013 mg/Kg	08/21/24 07:40 08/21/24 09:33	1
Ethylbenzene	ND	0.0020	0.00096 mg/Kg	08/21/24 07:40 08/21/24 09:33	1
Hexachlorobutadiene	ND	0.0030	0.0015 mg/Kg	08/21/24 07:40 08/21/24 09:33	1
Isopropylbenzene	ND	0.0030	0.0011 mg/Kg	08/21/24 07:40 08/21/24 09:33	1
Methyl tert-butyl ether	ND	0.0020	0.00030 mg/Kg	08/21/24 07:40 08/21/24 09:33	1
Methylene Chloride	ND	0.040	0.0099 mg/Kg	08/21/24 07:40 08/21/24 09:33	1
m-Xylene & p-Xylene	ND	0.010	0.0012 mg/Kg	08/21/24 07:40 08/21/24 09:33	1
Naphthalene	ND	0.010	0.0018 mg/Kg	08/21/24 07:40 08/21/24 09:33	1
n-Butylbenzene	ND	0.0030	0.00063 mg/Kg	08/21/24 07:40 08/21/24 09:33	1
N-Propylbenzene	ND	0.0050	0.00076 mg/Kg	08/21/24 07:40 08/21/24 09:33	1
o-Xylene	ND	0.0050	0.00092 mg/Kg	08/21/24 07:40 08/21/24 09:33	1
sec-Butylbenzene	ND	0.0030	0.00067 mg/Kg	08/21/24 07:40 08/21/24 09:33	1
Styrene	ND	0.0030	0.00074 mg/Kg	08/21/24 07:40 08/21/24 09:33	1
t-Butylbenzene	ND	0.0030	0.00066 mg/Kg	08/21/24 07:40 08/21/24 09:33	1
Tetrachloroethene	ND	0.0020	0.00040 mg/Kg	08/21/24 07:40 08/21/24 09:33	1
Toluene	ND	0.010	0.0013 mg/Kg	08/21/24 07:40 08/21/24 09:33	1
trans-1,2-Dichloroethene	ND	0.0035	0.0015 mg/Kg	08/21/24 07:40 08/21/24 09:33	1
I and the second					

ND

ND

ND

ND

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		80 - 121	08/21/24 07:40	08/21/24 09:33	1
4-Bromofluorobenzene (Surr)	101		80 - 120	08/21/24 07:40	08/21/24 09:33	1
Dibromofluoromethane (Surr)	104		80 - 120	08/21/24 07:40	08/21/24 09:33	1
Toluene-d8 (Surr)	100		80 - 120	08/21/24 07:40	08/21/24 09:33	1

0.010

0.0020

0.0085

0.0020

0.00060 mg/Kg

0.00030 mg/Kg

0.0039 mg/Kg

0.00088 mg/Kg

08/21/24 07:40 08/21/24 09:33 08/21/24 07:40 08/21/24 09:33

08/21/24 07:40 08/21/24 09:33

08/21/24 07:40 08/21/24 09:33

6

Dil Fac

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Job ID: 580-143025-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 580-468911/1-A

Matrix: Solid

m-Xylene & p-Xylene

Naphthalene

n-Butylbenzene

Analysis Batch: 468912

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 468911

Analysis Batch. 400312	Spike	LCS LCS				%Rec
Analyte	Added	Result Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	0.0500	0.0564	mg/Kg		113	79 - 128
1,1,1-Trichloroethane	0.0500	0.0504	mg/Kg		101	78 - 135
1,1,2,2-Tetrachloroethane	0.0500	0.0551	mg/Kg		110	77 - 122
1,1,2-Trichloroethane	0.0500	0.0553	mg/Kg		111	80 - 123
1,1-Dichloroethane	0.0500	0.0497	mg/Kg		99	78 - 126
1,1-Dichloroethene	0.0500	0.0508	mg/Kg		102	73 - 134
1,1-Dichloropropene	0.0500	0.0511	mg/Kg		102	76 - 140
1,2,3-Trichlorobenzene	0.0500	0.0584	mg/Kg		117	58 - 146
1,2,3-Trichloropropane	0.0500	0.0561	mg/Kg		112	77 - 127
1,2,4-Trichlorobenzene	0.0500	0.0612	mg/Kg		122	74 - 131
1,2,4-Trimethylbenzene	0.0500	0.0557	mg/Kg		111	73 - 138
1,2-Dibromo-3-Chloropropane	0.0500	0.0510	mg/Kg		102	64 - 129
1,2-Dibromoethane	0.0500	0.0561	mg/Kg		112	77 - 123
1,2-Dichlorobenzene	0.0500	0.0547	mg/Kg		109	78 - 126
1,2-Dichloroethane	0.0500	0.0509	mg/Kg		102	76 - 124
1,2-Dichloropropane	0.0500	0.0527	mg/Kg		105	73 - 130
1,3,5-Trimethylbenzene	0.0500	0.0570	mg/Kg		114	72 - 134
1,3-Dichlorobenzene	0.0500	0.0564	mg/Kg		113	78 - 132
1,3-Dichloropropane	0.0500	0.0553	mg/Kg		111	80 - 120
1,4-Dichlorobenzene	0.0500	0.0545	mg/Kg		109	77 - 123
2,2-Dichloropropane	0.0500	0.0498	mg/Kg		100	75 - 134
2-Chlorotoluene	0.0500	0.0534	mg/Kg		107	77 - 134
4-Chlorotoluene	0.0500	0.0552	mg/Kg		110	71 - 137
4-Isopropyltoluene	0.0500	0.0566	mg/Kg		113	71 - 142
Benzene	0.0500	0.0516	mg/Kg		103	79 - 135
Bromobenzene	0.0500	0.0554	mg/Kg		111	78 - 126
Bromochloromethane	0.0500	0.0503	mg/Kg		101	76 - 131
Bromodichloromethane	0.0500	0.0561	mg/Kg		112	78 - 125
Bromoform	0.0500	0.0575	mg/Kg		115	71 - 130
Bromomethane	0.0500	0.0550	mg/Kg		110	55 - 150
Carbon tetrachloride	0.0500	0.0508	mg/Kg		102	76 - 140
Chlorobenzene	0.0500	0.0551	mg/Kg		110	80 - 125
Chloroethane	0.0500	0.0520	mg/Kg		104	26 - 150
Chloroform	0.0500	0.0514	mg/Kg		103	74 - 133
Chloromethane	0.0500	0.0471	mg/Kg		94	52 - 142
cis-1,2-Dichloroethene	0.0500	0.0509	mg/Kg		102	80 - 125
cis-1,3-Dichloropropene	0.0500	0.0534	mg/Kg		107	80 - 122
Dibromochloromethane	0.0500	0.0574	mg/Kg		115	75 - 125
Dibromomethane	0.0500	0.0539	mg/Kg		108	72 - 130
Dichlorodifluoromethane	0.0500	0.0482	mg/Kg		96	33 - 150
Ethylbenzene	0.0500	0.0537	mg/Kg		107	80 - 135
Hexachlorobutadiene	0.0500	0.0569	mg/Kg		114	65 - 145
Isopropylbenzene	0.0500	0.0602	mg/Kg		120	80 - 131
Methyl tert-butyl ether	0.0500	0.0551	mg/Kg		110	71 - 126
Methylene Chloride	0.0500	0.0500	mg/Kg		100	56 - 140

Eurofins Seattle

80 - 132

56 - 145

69 - 143

109

119

116

0.0544

0.0593

0.0582

0.0500

0.0500

0.0500

mg/Kg

mg/Kg

mg/Kg

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 580-468911/1-A

Matrix: Solid

Analysis Batch: 468912

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 468911

Job ID: 580-143025-1

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
N-Propylbenzene	0.0500	0.0558		mg/Kg		112	78 - 133	
o-Xylene	0.0500	0.0544		mg/Kg		109	80 - 132	
sec-Butylbenzene	0.0500	0.0558		mg/Kg		112	71 - 143	
Styrene	0.0500	0.0549		mg/Kg		110	79 - 129	
t-Butylbenzene	0.0500	0.0549		mg/Kg		110	72 - 144	
Tetrachloroethene	0.0500	0.0551		mg/Kg		110	75 - 141	
Toluene	0.0500	0.0514		mg/Kg		103	75 - 125	
trans-1,2-Dichloroethene	0.0500	0.0497		mg/Kg		99	77 - 134	
trans-1,3-Dichloropropene	0.0500	0.0593		mg/Kg		119	80 - 121	
Trichloroethene	0.0500	0.0529		mg/Kg		106	80 - 134	
Trichlorofluoromethane	0.0500	0.0557		mg/Kg		111	71 - 150	
Vinyl chloride	0.0500	0.0558		mg/Kg		112	62 - 144	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		80 - 121
4-Bromofluorobenzene (Surr)	100		80 - 120
Dibromofluoromethane (Surr)	97		80 - 120
Toluene-d8 (Surr)	99		80 - 120

Lab Sample ID: LCSD 580-468911/2-A

Matrix: Solid

Analysis Batch: 468912

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 468911

	Spike	LCSD LCSD			%Rec		RPD
Analyte	Added	Result Qualifie	er Unit	D %Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	0.0500	0.0572	mg/Kg		79 - 128	1	20
1,1,1-Trichloroethane	0.0500	0.0508	mg/Kg	102	78 - 135	1	20
1,1,2,2-Tetrachloroethane	0.0500	0.0579	mg/Kg	116	77 - 122	5	20
1,1,2-Trichloroethane	0.0500	0.0576	mg/Kg	115	80 - 123	4	20
1,1-Dichloroethane	0.0500	0.0508	mg/Kg	102	78 - 126	2	20
1,1-Dichloroethene	0.0500	0.0498	mg/Kg	100	73 - 134	2	25
1,1-Dichloropropene	0.0500	0.0504	mg/Kg	101	76 - 140	1	20
1,2,3-Trichlorobenzene	0.0500	0.0586	mg/Kg	117	58 - 146	0	28
1,2,3-Trichloropropane	0.0500	0.0574	mg/Kg	115	77 - 127	2	20
1,2,4-Trichlorobenzene	0.0500	0.0622	mg/Kg	124	74 - 131	2	26
1,2,4-Trimethylbenzene	0.0500	0.0574	mg/Kg	115	73 - 138	3	22
1,2-Dibromo-3-Chloropropane	0.0500	0.0543	mg/Kg	109	64 - 129	6	40
1,2-Dibromoethane	0.0500	0.0588	mg/Kg	118	77 - 123	5	20
1,2-Dichlorobenzene	0.0500	0.0571	mg/Kg	114	78 - 126	4	20
1,2-Dichloroethane	0.0500	0.0525	mg/Kg	105	76 - 124	3	20
1,2-Dichloropropane	0.0500	0.0549	mg/Kg	110	73 - 130	4	20
1,3,5-Trimethylbenzene	0.0500	0.0580	mg/Kg	116	72 - 134	2	24
1,3-Dichlorobenzene	0.0500	0.0575	mg/Kg	115	78 - 132	2	20
1,3-Dichloropropane	0.0500	0.0575	mg/Kg	115	80 - 120	4	20
1,4-Dichlorobenzene	0.0500	0.0563	mg/Kg	113	77 - 123	3	20
2,2-Dichloropropane	0.0500	0.0504	mg/Kg	101	75 - 134	1	20
2-Chlorotoluene	0.0500	0.0548	mg/Kg	110	77 - 134	3	21
4-Chlorotoluene	0.0500	0.0564	mg/Kg	113	71 - 137	2	21
4-Isopropyltoluene	0.0500	0.0570	mg/Kg	114	71 - 142	1	29

Eurofins Seattle

Page 45 of 59

9

3

5

7

Q

10

1-

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 580-468911/2-A

Matrix: Solid

Analysis Batch: 468912

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Job ID: 580-143025-1

Prep Batch: 468911

, , , , , , , , , , , , , , , , , , , ,	Spike	LCSD LCSD			%Rec		RPD
Analyte	Added	Result Qualific	er Unit	D %Rec	Limits	RPD	Limit
Benzene	0.0500	0.0525	mg/Kg	105	79 - 135	2	20
Bromobenzene	0.0500	0.0565	mg/Kg	113	78 - 126	2	20
Bromochloromethane	0.0500	0.0537	mg/Kg	107	76 - 131	7	20
Bromodichloromethane	0.0500	0.0576	mg/Kg	115	78 - 125	3	20
Bromoform	0.0500	0.0604	mg/Kg	121	71 - 130	5	20
Bromomethane	0.0500	0.0511	mg/Kg	102	55 - 150	7	26
Carbon tetrachloride	0.0500	0.0512	mg/Kg	102	76 - 140	1	20
Chlorobenzene	0.0500	0.0557	mg/Kg	111	80 - 125	1	20
Chloroethane	0.0500	0.0475	mg/Kg	95	26 - 150	9	40
Chloroform	0.0500	0.0525	mg/Kg	105	74 - 133	2	20
Chloromethane	0.0500	0.0445	mg/Kg	89	52 - 142	6	40
cis-1,2-Dichloroethene	0.0500	0.0519	mg/Kg	104	80 - 125	2	20
cis-1,3-Dichloropropene	0.0500	0.0561	mg/Kg	112	80 - 122	5	20
Dibromochloromethane	0.0500	0.0586	mg/Kg	117	75 - 125	2	20
Dibromomethane	0.0500	0.0562	mg/Kg	112	72 - 130	4	40
Dichlorodifluoromethane	0.0500	0.0445	mg/Kg	89	33 - 150	8	31
Ethylbenzene	0.0500	0.0546	mg/Kg	109	80 - 135	2	20
Hexachlorobutadiene	0.0500	0.0584	mg/Kg	117	65 - 145	3	36
Isopropylbenzene	0.0500	0.0604	mg/Kg	121	80 - 131	0	20
Methyl tert-butyl ether	0.0500	0.0569	mg/Kg	114	71 - 126	3	20
Methylene Chloride	0.0500	0.0506	mg/Kg	101	56 - 140	1	20
m-Xylene & p-Xylene	0.0500	0.0554	mg/Kg	111	80 - 132	2	20
Naphthalene	0.0500	0.0619	mg/Kg	124	56 - 145	4	25
n-Butylbenzene	0.0500	0.0583	mg/Kg	117	69 - 143	0	31
N-Propylbenzene	0.0500	0.0573	mg/Kg	115	78 - 133	3	24
o-Xylene	0.0500	0.0561	mg/Kg	112	80 - 132	3	20
sec-Butylbenzene	0.0500	0.0566	mg/Kg	113	71 - 143	1	29
Styrene	0.0500	0.0557	mg/Kg	111	79 - 129	1	20
t-Butylbenzene	0.0500	0.0558	mg/Kg	112	72 - 144	2	27
Tetrachloroethene	0.0500	0.0538	mg/Kg	108	75 - 141	2	20
Toluene	0.0500	0.0531	mg/Kg	106	75 - 125	3	20
trans-1,2-Dichloroethene	0.0500	0.0484	mg/Kg	97	77 - 134	3	20
trans-1,3-Dichloropropene	0.0500	0.0613 *+	mg/Kg	123	80 - 121	3	20
Trichloroethene	0.0500	0.0535	mg/Kg	107	80 - 134	1	20
Trichlorofluoromethane	0.0500	0.0508	mg/Kg	102	71 - 150	9	30
Vinyl chloride	0.0500	0.0519	mg/Kg	104	62 - 144	7	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		80 - 121
4-Bromofluorobenzene (Surr)	102		80 - 120
Dibromofluoromethane (Surr)	98		80 - 120
Toluene-d8 (Surr)	100		80 - 120

8/23/2024

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 580-468838/1-A

Lab Sample ID: LCS 580-468838/2-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 469098

Analysis Batch: 469098

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 468838

MB MB Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Analyte 08/20/24 12:10 08/22/24 12:36 #2 Diesel (C10-C24) ND 50 12 mg/Kg Motor Oil (>C24-C36) ND 50 18 mg/Kg 08/20/24 12:10 08/22/24 12:36 MB MB

Surrogate %Recovery Qualifier I imite Prepared Analyzed Dil Fac o-Terphenyl 59 50 - 150 08/20/24 12:10 08/22/24 12:36

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 468838

Spike LCS LCS %Rec Added Result Qualifier Limits **Analyte** Unit D %Rec #2 Diesel (C10-C24) 500 70 - 125 458 mg/Kg 92 mg/Kg Motor Oil (>C24-C36) 500 449 90 70 - 129

LCS LCS

%Recovery Qualifier Limits Surrogate o-Terphenyl 50 - 150 80

Lab Sample ID: 580-143025-12 DU Client Sample ID: SB-16 (6'-8')

Matrix: Solid Prep Type: Total/NA **Analysis Batch: 469098 Prep Batch: 468838**

Sample Sample DU DU **RPD** Result Qualifier Result Qualifier **RPD** Analyte Unit D Limit #2 Diesel (C10-C24) 42 J 20.3 J F5 ₩ 35 mg/Kg 71 45 J Motor Oil (>C24-C36) 24.7 J F5 mg/Kg ά 58 35

ווח ווח

Surrogate %Recovery Qualifier Limits o-Terphenyl 60 50 - 150

Lab Sample ID: MB 580-468875/1-A Client Sample ID: Method Blank

Matrix: Solid

Prep Type: Total/NA **Analysis Batch: 468926 Prep Batch: 468875** MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac #2 Diesel (C10-C24) ND 50 12 mg/Kg 08/20/24 14:59 08/21/24 12:47 Motor Oil (>C24-C36) ND 50 mg/Kg 08/20/24 14:59 08/21/24 12:47

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed o-Terphenyl 57 50 - 150 08/20/24 14:59 08/21/24 12:47

Lab Sample ID: LCS 580-468875/2-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Analysis Batch: 468926 Prep Batch: 468875

LCS LCS Spike Added Result Qualifier Unit %Rec Limits Analyte D #2 Diesel (C10-C24) 500 424 mg/Kg 85 70 - 125 Motor Oil (>C24-C36) 500 435 mg/Kg 87 70 - 129

Dil Fac

Prep Type: Total/NA

%Rec

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: LCS 580-468875/2-A

Matrix: Solid

Surrogate

o-Terphenyl

Analysis Batch: 468926

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 468875

LCS LCS

Limits %Recovery Qualifier

50 - 150 76

Method: 2540G - SM 2540G

Lab Sample ID: 580-143025-13 DU Client Sample ID: SB-16 (10'-12') Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 469028

-	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Percent Solids	89.1		89.2		%	<u>_</u>	·	0.1	20
Percent Moisture	10.9		10.8		%			0.9	20

Client Sample ID: SB-5R (2'-4')

Date Collected: 08/14/24 12:30

Date Received: 08/16/24 12:18

Lab Sample ID: 580-143025-1

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	2540G			468932	AUA	EET SEA	08/21/24 09:49

Client Sample ID: SB-5R (2'-4')

Date Collected: 08/14/24 12:30

Date Received: 08/16/24 12:18

Lab Sample ID: 580-143025-1

Matrix: Solid Percent Solids: 95.2

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			468849	AC	EET SEA	08/20/24 13:15
Total/NA	Analysis	8260D		1	468850	BYM	EET SEA	08/20/24 15:30
Total/NA	Prep	3546	DL		468838	ER	EET SEA	08/20/24 12:10
Total/NA	Analysis	NWTPH-Dx	DL	2	469098	SW	EET SEA	08/22/24 14:36

Client Sample ID: SB-5R (4'-6')

Date Collected: 08/14/24 12:30

Date Received: 08/16/24 12:18

Lab Sample ID: 580-143025-2

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	2540G		1	468932	AUA	EET SEA	08/21/24 09:49

Client Sample ID: SB-5R (4'-6')

Date Collected: 08/14/24 12:30

Date Received: 08/16/24 12:18

Lab Sample ID: 580-143025-2

Matrix: Solid Percent Solids: 94.7

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			468849	AC	EET SEA	08/20/24 13:15
Total/NA	Analysis	8260D		1	468850	BYM	EET SEA	08/20/24 15:49
Total/NA	Prep	3546	DL		468838	ER	EET SEA	08/20/24 12:10
Total/NA	Analysis	NWTPH-Dx	DL	2	469098	SW	EET SEA	08/22/24 14:56

Client Sample ID: SB-13 (2'-4')

Date Collected: 08/14/24 13:25

Date Received: 08/16/24 12:18

Lab Sample ID: 580-143025-3

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	2540G		1	468932	AUA	EET SEA	08/21/24 09:49

Client Sample ID: SB-13 (2'-4')

Date Collected: 08/14/24 13:25

Date Received: 08/16/24 12:18

Lab Sample ID: 580-143025-3

Matrix: Solid Percent Solids: 93.4

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			468849	AC	EET SEA	08/20/24 13:15
Total/NA	Analysis	8260D		1	468850	BYM	EET SEA	08/20/24 16:08
Total/NA	Prep	3546			468838	ER	EET SEA	08/20/24 12:10
Total/NA	Analysis	NWTPH-Dx		1	469098	SW	EET SEA	08/22/24 15:16

Client Sample ID: SB-13 (4'-6')

Project/Site: Northwest Motorsports - Puyallup

Date Collected: 08/14/24 13:25 Date Received: 08/16/24 12:18

Client: Hart & Hickman, PC

Lab Sample ID: 580-143025-4

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	2540G		1	468932	AUA	EET SEA	08/21/24 09:49

Client Sample ID: SB-13 (4'-6')

Date Collected: 08/14/24 13:25 Date Received: 08/16/24 12:18

Lab Sample ID: 580-143025-4

Matrix: Solid Percent Solids: 94.2

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			468849	AC	EET SEA	08/20/24 13:15
Total/NA	Analysis	8260D		1	468850	BYM	EET SEA	08/20/24 16:27
Total/NA	Prep	3546			468838	ER	EET SEA	08/20/24 12:10
Total/NA	Analysis	NWTPH-Dx		1	469098	SW	EET SEA	08/22/24 15:36

Client Sample ID: SB-14 (2'-4')

Date Collected: 08/14/24 14:00

Date Received: 08/16/24 12:18

Lab Sample ID: 580-143025-5

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	2540G		1	468932	AUA	EET SEA	08/21/24 09:49

Client Sample ID: SB-14 (2'-4')

Date Collected: 08/14/24 14:00

Date Received: 08/16/24 12:18

Lab Sample ID: 580-143025-5 **Matrix: Solid**

Percent Solids: 94.3

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			468849	AC	EET SEA	08/20/24 13:15
Total/NA	Analysis	8260D		1	468850	BYM	EET SEA	08/20/24 16:46
Total/NA	Prep	3546			468838	ER	EET SEA	08/20/24 12:10
Total/NA	Analysis	NWTPH-Dx		1	469098	SW	EET SEA	08/22/24 16:16

Client Sample ID: SB-14 (4'-6')

Date Collected: 08/14/24 14:00

Date Received: 08/16/24 12:18

l ah	Samn	lo ID:	520_1	143025-6
Lav	Sallib	IU ID.	30U-	143023-0

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	2540G			468932	AUA	EET SEA	08/21/24 09:49

Client Sample ID: SB-14 (4'-6')

Date Collected: 08/14/24 14:00

Date Received: 08/16/24 12:18

Lab Sample ID: 580-143025-6

Matrix: Solid

Percent Solids: 93.8

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			468849	AC	EET SEA	08/20/24 13:15
Total/NA	Analysis	8260D		1	468850	BYM	EET SEA	08/20/24 17:05
Total/NA	Prep	3546			468838	ER	EET SEA	08/20/24 12:10
Total/NA	Analysis	NWTPH-Dx		1	469098	SW	FET SEA	08/22/24 16:37

Client Sample ID: SB-15 (2'-4')

Date Collected: 08/14/24 15:20

Date Received: 08/16/24 12:18

Lab Sample ID: 580-143025-7

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	2540G		1	468932	AUA	EET SEA	08/21/24 09:49

Client Sample ID: SB-15 (2'-4')

Date Collected: 08/14/24 15:20 Date Received: 08/16/24 12:18

Lab Sample ID: 580-143025-7 **Matrix: Solid**

Percent Solids: 90.6

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			468849	AC	EET SEA	08/20/24 13:15
Total/NA	Analysis	8260D		1	468850	BYM	EET SEA	08/20/24 17:24
Total/NA	Prep	3546			468838	ER	EET SEA	08/20/24 12:10
Total/NA	Analysis	NWTPH-Dx		1	469098	SW	EET SEA	08/22/24 16:57

Client Sample ID: SB-15 (4'-6')

Date Collected: 08/14/24 15:20

Date Received: 08/16/24 12:18

Prep Type

Total/NA

Lab Sample ID: 580-143025-8

Batch Batch Dilution Batch **Prepared** Method Number Analyst or Analyzed Type Run **Factor** Lab EET SEA 08/21/24 09:49 2540G 468932 AUA Analysis

Client Sample ID: SB-15 (4'-6')

Date Collected: 08/14/24 15:20

Date Received: 08/16/24 12:18

Lab Sample ID: 580-143025-8

Matrix: Solid Percent Solids: 94.4

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			468849	AC	EET SEA	08/20/24 13:15
Total/NA	Analysis	8260D		1	468850	BYM	EET SEA	08/20/24 17:43
Total/NA	Prep	3546			468838	ER	EET SEA	08/20/24 12:10
Total/NA	Analysis	NWTPH-Dx		1	469098	SW	EET SEA	08/22/24 17:17

Client Sample ID: SB-3R (6'-8')

Date Collected: 08/15/24 15:00

Date Received: 08/16/24 12:18

Lab Sample ID: 580-143025-9

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	2540G		1	468932	AUA	EET SEA	08/21/24 09:49

Client Sample ID: SB-3R (6'-8')

Date Collected: 08/15/24 15:00

Date Received: 08/16/24 12:18

Lab Sample ID: 580-143025-9 **Matrix: Solid**

Percent Solids: 94.4

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			468849	AC	EET SEA	08/20/24 13:15
Total/NA	Analysis	8260D		1	468850	BYM	EET SEA	08/20/24 18:02
Total/NA	Prep	3546			468838	ER	EET SEA	08/20/24 12:10
Total/NA	Analysis	NWTPH-Dx		1	469098	SW	EET SEA	08/22/24 17:37

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-3R (10'-12')

Date Collected: 08/15/24 15:00 Date Received: 08/16/24 12:18

Lab Sample ID: 580-143025-10

Matrix: Solid

		Batch	Batch		Dilution	Batch			Prepared
	Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
l	Total/NA	Analysis	2540G		1	468932	AUA	EET SEA	08/21/24 09:49

Client Sample ID: SB-3R (10'-12')

Date Collected: 08/15/24 15:00 Date Received: 08/16/24 12:18

Lab Sample ID: 580-143025-10 **Matrix: Solid**

Percent Solids: 87.8

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			468849	AC	EET SEA	08/20/24 13:15
Total/NA	Analysis	8260D		1	468850	BYM	EET SEA	08/20/24 18:21
Total/NA	Prep	3546			468838	ER	EET SEA	08/20/24 12:10
Total/NA	Analysis	NWTPH-Dx		1	469098	SW	EET SEA	08/22/24 17:57

Client Sample ID: SB-16 (6'-8')

Date Collected: 08/15/24 09:00 Date Received: 08/16/24 12:18

Lab Sample ID: 580-143025-12

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	2540G		1	468932	AUA	EET SEA	08/21/24 09:49

Client Sample ID: SB-16 (6'-8')

Date Collected: 08/15/24 09:00

Date Received: 08/16/24 12:18

Lab Sample ID: 580-143025-12

Matrix: Solid

Percent Solids: 90.4

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			468849	AC	EET SEA	08/20/24 13:15
Total/NA	Analysis	8260D		1	468850	BYM	EET SEA	08/20/24 18:58
Total/NA	Prep	3546			468838	ER	EET SEA	08/20/24 12:10
Total/NA	Analysis	NWTPH-Dx		1	469098	SW	EET SEA	08/22/24 18:38

Client Sample ID: SB-16 (10'-12')

Date Collected: 08/15/24 09:00

Date Received: 08/16/24 12:18

_ab Samp	In ID:	500 A	12025 41	2
_ao Samo	le ID:	อดบ-1	43025-1.	5

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	2540G		1	469028	AUA	EET SEA	08/21/24 14:56

Client Sample ID: SB-16 (10'-12')

Date Collected: 08/15/24 09:00 Date Received: 08/16/24 12:18

Lab Sample ID: 580-143025-13

Matrix: Solid

Percent Solids: 89.1

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			468849	AC	EET SEA	08/20/24 13:15
Total/NA	Analysis	8260D		1	468850	BYM	EET SEA	08/20/24 19:17
Total/NA	Prep	3546			468838	ER	EET SEA	08/20/24 12:10
Total/NA	Analysis	NWTPH-Dx		1	469098	SW	EET SEA	08/22/24 18:58

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-17 (6'-8')

Date Collected: 08/15/24 11:15 Date Received: 08/16/24 12:18 Lab Sample ID: 580-143025-15

Matrix: Solid

		Batch	Batch		Dilution	Batch			Prepared
	Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
l	Total/NA	Analysis	2540G			469028	AUA	EET SEA	08/21/24 14:56

Client Sample ID: SB-17 (6'-8')

Date Collected: 08/15/24 11:15

Date Received: 08/16/24 12:18

Lab Sample ID: 580-143025-15

Matrix: Solid Percent Solids: 91.2

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Analyst	Lab	Prepared or Analyzed
Total/NA	Prep	5035			468911	BYM	EET SEA	08/21/24 07:40
Total/NA	Analysis	8260D		1	468912	BYM	EET SEA	08/21/24 10:10
Total/NA Total/NA	Prep Analysis	3546 NWTPH-Dx		1	468838 469098	ER SW	EET SEA EET SEA	08/20/24 12:11 08/22/24 19:58

Dilution

Factor

Batch

469028 AUA

Client Sample ID: SB-17 (10'-12')

Batch

Type

Analysis

Batch

Method

2540G

Date Collected: 08/15/24 11:15

Date Received: 08/16/24 12:18

Prep Type

Total/NA

Lab Sample ID: 580-143025-16

Prepared Number Analyst or Analyzed Lab 08/21/24 14:56 EET SEA

Client Sample ID: SB-17 (10'-12')

Date Collected: 08/15/24 11:15

Date Received: 08/16/24 12:18

Lab Sample ID: 580-143025-16

Matrix: Solid Percent Solids: 91.3

Matrix: Solid

Batch Batch Dilution Batch Prepared Method **Prep Type** Run Factor Number Analyst or Analyzed Type Lab 08/21/24 07:40 5035 Total/NA Prep 468911 BYM EET SEA Total/NA Analysis 8260D 468912 BYM **EET SEA** 08/21/24 10:29 1 Total/NA Prep 3546 468838 ER EET SEA 08/20/24 12:11 Total/NA NWTPH-Dx 469098 SW EET SEA 08/22/24 20:18 Analysis 1

Run

Client Sample ID: SB-18 (6'-8')

Date Collected: 08/15/24 13:30

Date Received: 08/16/24 12:18

Lab Sample ID: 580-143025-18

Matrix: Solid

	Batch	Batch		Dilution	Batch		Prepared
Prep Type	Type	Method	Run	Factor	Number Analyst	Lab	or Analyzed
Total/NA	Analysis	2540G			469028 AUA	EET SEA	08/21/24 14:56

Client Sample ID: SB-18 (6'-8')

Date Collected: 08/15/24 13:30

Lab Sample ID: 580-143025-18 **Matrix: Solid**

Date Received: 08/16/24 12:18 Percent Solids: 94.6

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			468911	BYM	EET SEA	08/21/24 07:40
Total/NA	Analysis	8260D		1	468912	BYM	EET SEA	08/21/24 11:07
Total/NA	Prep	3546			468838	ER	EET SEA	08/20/24 12:12
Total/NA	Analysis	NWTPH-Dx		1	469098	SW	EET SEA	08/22/24 20:58

Lab Chronicle

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Client Sample ID: SB-18 (10'-12')

Lab Sample ID: 580-143025-19 Date Collected: 08/15/24 13:30 **Matrix: Solid**

Date Received: 08/16/24 12:18

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	2540G			469028	AUA	EET SEA	08/21/24 14:56

Client Sample ID: SB-18 (10'-12') Lab Sample ID: 580-143025-19

Date Collected: 08/15/24 13:30 **Matrix: Solid** Date Received: 08/16/24 12:18 Percent Solids: 92.6

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			468911	BYM	EET SEA	08/21/24 07:40
Total/NA	Analysis	8260D		1	468912	BYM	EET SEA	08/21/24 11:26
Total/NA	Prep	3546			468875	AA	EET SEA	08/20/24 14:59
Total/NA	Analysis	NWTPH-Dx		1	468926	SW	EET SEA	08/21/24 15:08

Laboratory References:

EET SEA = Eurofins Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Accreditation/Certification Summary

Client: Hart & Hickman, PC Job ID: 580-143025-1

Project/Site: Northwest Motorsports - Puyallup

Laboratory: Eurofins Seattle

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority		am	Identification Number	Expiration Date		
Washington	State		C788-24	07-13-25		
The following analyte	s are included in this repo	rt_but the laboratory is n	not certified by the governing authori	itv_This list may include analyt		
0 ,	s are included in this repo does not offer certification	•	not certified by the governing authori	ity. This list may include analyt		
0 ,	•	•	not certified by the governing authori Analyte	ity. This list may include analyt		
for which the agency	does not offer certification	•	, , ,	ity. This list may include analyt		

3

4

10

1

Sample Summary

Client: Hart & Hickman, PC

Project/Site: Northwest Motorsports - Puyallup

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-143025-1	SB-5R (2'-4')	Solid	08/14/24 12:30	08/16/24 12:18
580-143025-2	SB-5R (4'-6')	Solid	08/14/24 12:30	08/16/24 12:18
580-143025-3	SB-13 (2'-4')	Solid	08/14/24 13:25	08/16/24 12:18
580-143025-4	SB-13 (4'-6')	Solid	08/14/24 13:25	08/16/24 12:18
580-143025-5	SB-14 (2'-4')	Solid	08/14/24 14:00	08/16/24 12:18
580-143025-6	SB-14 (4'-6')	Solid	08/14/24 14:00	08/16/24 12:18
580-143025-7	SB-15 (2'-4')	Solid	08/14/24 15:20	08/16/24 12:18
580-143025-8	SB-15 (4'-6')	Solid	08/14/24 15:20	08/16/24 12:18
580-143025-9	SB-3R (6'-8')	Solid	08/15/24 15:00	08/16/24 12:18
580-143025-10	SB-3R (10'-12')	Solid	08/15/24 15:00	08/16/24 12:18
580-143025-12	SB-16 (6'-8')	Solid	08/15/24 09:00	08/16/24 12:18
580-143025-13	SB-16 (10'-12')	Solid	08/15/24 09:00	08/16/24 12:18
580-143025-15	SB-17 (6'-8')	Solid	08/15/24 11:15	08/16/24 12:18
580-143025-16	SB-17 (10'-12')	Solid	08/15/24 11:15	08/16/24 12:18
580-143025-18	SB-18 (6'-8')	Solid	08/15/24 13:30	08/16/24 12:18
580-143025-19	SB-18 (10'-12')	Solid	08/15/24 13:30	08/16/24 12:18

Job ID: 580-143025-1

Chain of Custody Record

3	е	1.1	r	n	f		n	5	
0.0	·	r,e	8	v		,		J	

Environment Testing

	Sampler:	***************************************	Market Strong and Stranger of the	li at	Pa t.	THE STREET, SHEET, STR	Professional Profession	NACO DE COMPANSO D	White publication is	NA MINISTRAÇÃO			Monte and and	NAMES OF THE OWNER, AND	Mark day salah day in sa	Wengen-	and the second	Environment Testing
Client Information	Phone:	ler Sch 1-607-	w/Z		PM:							Carrie	r Track	ing No	o(s):			COC No:
Company:	704	1-607-	3877	E-M		لسط	26	کلا د	11.	- h		State	of Origi	n: W	Δ	***************************************	-	Page: Page 1 of Z
Hast + Hickman, P.C.			PWSID:	The second secon	T		سطرة						encontrates de la contrate de la con			The sections	nanus mateu	Job#:
Address:	Due Date Reque	ested:					mann		Anal	ysis	Ked	uest	ea	-		1	加	Preservation Codes:
Charlotte	TAT Requested	(days):			- 1													A-HGL M-Hexane
State, Zip:	Starlar	of 5-Day	TAT														2 (1.1)	B - NaOH N - None C - Zn Acetate O - AsNaO2
NC 2870"5	Compliance Pro	ject: A Yes	Δ Νο		11													D - Nitric Acid P - Na2O4S E - NaHSO4 Q - Na2SO3
704-586-0007	PO#: Purchase Ord	er not requir	ed															F - MeOH R - Na2S2O3 G - Amchlor S - H2SO4
/schulz@ Hart Hickman, com	WO#:		The state of the s															H - Ascorbic Acid T - TSP Dodecahydrate I - Ice U - Acetone
Project Name: Nwms-Payallup Site: 400 River Rd, Payallup, WA	Project #:	- /-			Š		Q										8	J - DI Water V - MCAA K - EDTA W - pH 4-5
Site:	SSOW#:	-413			ñ	d	826											L - EDA Z - other (specify)
400 Killer 120, Puyallup, WH		_	ningani sa kanadani sa engazi paga naga s			ठयय	٣										8 8	Other:
			Sample	Matrix		3	4										ă	
Daniel De Laboratificantica		Sample	Type (C=comp,	(Wewster, Sesolid, Owwaste/oil,		DR	ğ										Ē	
ample identification	Sample Date		G=grab)	BY=Tissue, A=Air)			1										8	Special Instructions/Note:
SB-5R (2'-4')		$\geq \leq$		ation Code:	$X \times X$	N										10.1	X	Market and the second
The same of the sa	8/14/24	1236	G	S	\bot	X	$\leq \perp$					\perp	\perp	$oldsymbol{\perp}$				
		1230		1		X >	<											
53-13 (2'-4')		1325				X >							T	1	T			
SB-13 (4'-6')		1325			\prod	XX	<			\Box	\neg	\top	T	1	1	T		
SB-14 (2'-4')		1400				X>	7	1		\neg	十	十	十	+				
SB-14 (4'-6')		1400								\dashv	-	+	+	+	\vdash			
53-15 (2'-4)							-	+	\vdash	\dashv	\dashv	+	+-	+-	\vdash			
SB-15 (4'-6')		1570			TT	4	+	 			1111111111	1 111 (1111)		1011111				
SB-3R (6'-8')	Cluster	1520		-++	++	XX	4											
SB. 3R (10'-12')	815/24		_			××	4	Ш						Ш				***************************************
SB-312 (14'-16')	++++++++++++++++++++++++++++++++++++	1500	\rightarrow		11	$\times \times$	4.	 580-1	 43024		IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Cust	.od. 					
ssible Hazard Identification	IV	1500	V	A		\times												* Hold*
Non-Hazard Flammable Skin Irritant Po	pison B	, D	diological		Sam	ple Di	spos	al (A	fee m	ay b	e asso	esse	d if sa	mple	es are	e reta	inec	longer than 1 month)
verable Requested: I, II, III, IV, Other (specify)	OTIKNOS	mi Ka	ulological		Spec	Retu	rn To	Client	Ren	uiren	Disp							e For Months
oty Kit Relinquished by:	ID	Pate:		TT:	me:		***********					土				Ex	-Ce4	ction *
quished by:	Date/Time:	7.7	To	ompany		le ct ived	by:	NAMES OF STREET	ADTENNION (ADDISON (A	Charles of the Charles	************	Met	hod of			Montangon	NEW ACTIONS	
quished by	Date/Time:	124/11	00	HtH		teceived	10	e se	1						Time:		4	12/8 (Company
quished by:		,		ompany	R	eceived	bÿ:		-					Date/	Time:	T		Company
	Date/Time:	***************************************	c	ompany	Re	eceived	by:	THE STATE OF THE S	****	***************************************		***************************************		Date/	Time:	and the second	e and the desired	Company
ustody Seals Intact: Custody Seal No.: Δ Yes Δ No					Ç	ooler Te	mpera	ture(s)/	C and	Other	Bernar	ks:			erranomentum.		7-	
						LKI		4	0	15	1.6	2	- Continue to the Continue to	NO CONTROL DO	4	3/	B	ub/Wet/LC
				Page !	b∕of	59				1					•	U		Vpr 01/16/2010 8/23

Page 57 of 59

Environment Testing

Chain of Custody Record

Client Information Client Contact:	Sampler: Tyle Phone: 704	r Shu	E		Lab PM:		NAME OF A STREET	and William Colonia		TO COMO CINADA	**************	Carr	er Trac	king N	o(s):	AND DESCRIPTION OF THE PERSONS ASSESSMENT		COC No:
Client Information Client Contact: Tyler Schulz Company: Hart & Hickman, P.C. Address: 2923 S. Tryon St., Suite 100 City: Charlotte	704	-607-3	87-7		E-Mail:	****************	***************************************	ay prominent in the contract of the contract o	Minter Promise Services	***************************************	Manager Consumer	State	of Orig	gin:	***************************************		-	Page:
Hart & Hickman, P.C.			PWSID:				MENON PROPERTY.	gy Printigues Costs	Αn	alva:	- D-	ques		Kindiis arkinin Asiyo a		Triangle Contraction of the Cont		Page 1 of 1 2 of Z Job#:
2923 S. Tryon Sty Suite 100	Due Date Req	uested:				T	T	T		arysi	5 Ke	ques	tea		Т	ТТ		Preservation Codes:
City: Charloffe State, Zip:							-											A - HCL M - Hexane
State, Zip: NC 28203	Stand	ud 5-1	by TF	77			1											B - NaOH N - None C - Zn Acetate O - AsNaO2
Phone:	PO#:	oject: A Yes	The second second second second															D - Nitric Acid P - Na2O4S E - NaHSO4 Q - Na2SO3
Email:	Purchase Or WO#:	der not requi	red															F - MeOH R - Na2S2O3 G - Amchlor S - H2SO4 H - Ascorbic Acid T - TSP Dodecahydrate
Project Name:			MOMENT OF THE PARTY OF THE PART		8	9	10											I - Ice U - Acetone
NWMS - Poyally	Project #:	FI - 413	3		2	0	82/00							-			81	J- DI Water V - MCAA K - EDTA W - pH 4-5 L - EDA Z - other (specify)
Project Name: NWMS - Puyallup Site: 400 River Rd, Puyallup, WA	SSOW#:					000	×			-							21	Other:
Sample Identification	Sample Date	Sample Time	Sample Type (C=comp	(Wewater		DROI	1000										tal Number of	
-7 // // //				vation Code		IN					314		5.11 85.	23 500			\$	Special Instructions/Note:
SB-16 (6-8')	8/15/24	0900	G	5		X	-									l í	7	
SB-16 (10'-12')		0900			\prod	×	X		1	1			十	+				MANAGEMENT AND AND AND AND AND AND AND AND AND AND
SB-16 (14'-16')		0900				×	X		T	1		\dashv	+	+				ab at a sub
SB-17 (6-8')		1115			#	T	X	\neg	1			\dashv	+	+			+	* Hold*
SB-17 (10'-12')		1115			++	1	X	\neg	+			+	+	+			+	
SB-17 (14'-16')		1115			TT	+	X	\neg	+	+		+	+	+	+		+	LILANI
SB-18 (6'-8')		1330			$\dagger \dagger$	x	-+	_	+	+		\dashv	+	+-	\vdash		+2	k (told*
SB-18 (10'-12')		1330			##	X		+	-	\vdash	\dashv	\dashv	+	+	\vdash		+	
SB-18 (14'-16')	1	1330			+	X		+	+	\vdash	\dashv	+	+	+-	\vdash			
		100			${\mathsf H}$	^_	4	-	+	\vdash	\dashv	\dashv	+	-	\vdash		区	t (4010X
					H	$\vdash \vdash$	+	-	-	$\vdash \vdash$	+	\dashv	+	-			1	
ssible Hazard identification Non-Hazard Flammable Skin Irritant Pois verable Requested: I, II, III, IV, Other (specify)					Sar	nple L	Dispo	osal (A fee	may h	10.25	50550	d if a	1			<u>L</u> ,	
verable Requested: I, II, III, IV, Other (specify)	on B Unkno	wn LRa	adiological			Ret	urn 1	To Clie	ent	Œ	Dis	posal	By Le	anipie ib	C	Arch	rea II nive I	onger than 1 month) For Months
oty Kit Relinquished by:					Spe	cial In	struc	tions/0	QC Re	quirer	ments							ion *
quished by:	Date/Time:	Date:		Company	Time:							Ме	hod of			-311	٢٧٢	
quished by:	Sile 24	1100		4+4		Receive	///	1011	11					Date/	Vime:	124	1	1218 Company
quished by:				Compañy		Receive	d by:	programation of the contract o		and the same				Date/	rime:	9	The section of the se	Company
	Date/Time:		C	Company		Receive	d by:	***************************************	Terkilan (terkina dang adam	elie terretario de la constanta de la constanta de la constanta de la constanta de la constanta de la constant		***************************************		Date/	lime:	MANUFACTURE CONTRACTOR	ette länkelen san	Company
stody Seals Infact: Custody Seal No.: Δ Yes Δ No						Cooler T	empe	rature(s) °C and	d Other	Rema	rks:	ella esta esta esta esta esta esta esta est	dinensional.	raidatament abanco	William Control of the Control of th		
				Doo	e 58 d	IR of FO	11	4	4.0		4.1		(MANAGEMENT CONTROL	No. of the Local Contract of the Local Contr		3/	12	ub/Wet/LC 8/2:

Login Sample Receipt Checklist

Client: Hart & Hickman, PC Job Number: 580-143025-1

Login Number: 143025 List Source: Eurofins Seattle

List Number: 1

Creator: Martinez, Lanea

Creator: Martinez, Lanea		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	Refer to Job Narrative for details.
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

2

Eurofins Seattle Page 59 of 59

Date of Report: 09/04/2024

Tyler Shulz

Hart & Hickman, PC 2923 S Tryon Street, Suite 100 Charlotte, NC 28203

SAI-413 Client Project: **NWMS** Pace Project: 2413336 Pace Work Order: B503636 Invoice ID:

Enclosed are the results of analyses for samples received by the laboratory on 8/20/2024. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Cari Bernotas

Client Services Rep.

Stuart Buttram Operations Manager

Certifications: CA ELAP #1186; NV #CA00014; OR ELAP #4032-001; AK UST101

Table of Contents

Sample Information	
Chain of Custody and Cooler Receipt form	3
Laboratory / Client Sample Cross Reference	5
Sample Results	
2413336-01 - IAS-1	
Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	6
2413336-02 - IAS-2	
Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	9
2413336-03 - IAS-3	
Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	12
Quality Control Reports	
Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	
Method Blank Analysis	15
Laboratory Control Sample	18
Notes	
Notes and Definitions	19

Chain of Custody and Cooler Receipt Form for 2413336 Page 1 of 2 Ves No Extractions □ppbv ⊠ug/m³ O III Samples for 0550 1 Day * 10 Hol UNITS (select one) Hold all Pace Analytical Bakersfield does not accept samples containing radioactive material above background levels. Samples containing radioactive material must be disclosed prior to receipt. samples suspected of containing radioactive material above background levels will not be accepted and will be returned to client. Pressure (psia) Гар Кессіуед 2413338 DILO ٩ 4 5 (THg Stop Sampling Information Sampling 3 3 STRIE SUB (537 1451 1544 539 Air Chain of 3 Day* -30 -30 Start Sampling Information (3H.) á 30 Received By 835 2140 0746 10013 0250 0800 ¥₽¥ Time 4 Day** 18713 10004 520% Flow 13691 8118 #0 Sampling Equipment 2025 Time 27740 24462 37576 \$2980 1820 35448 Canister #0 5 Day** Air Type anussan'l leitinl (gH") Date 3 8 8 8 ģ 8 4100 Allas Ct. - Bakersfield, CA 93308 - 661.327,4911 - Fax: 661.327.1918 - www.pacelabs.com VS) TopeV lioS (A) InsidmA Analysis Requested X Relinquished By XXXX 51-01 XX X Sampled Shr Project Name: NWMS Project #: SAL -413 Sampled 42 11 8 Point Of Collection Downstairs Office Fax: Business Center Service Bay Service Ban Show Room Dollicate Outside Street Address: 2923 S. Tryon St. Swik 100 Email: Tschulz@HartHickman.com Work Order #: 74- 13336 City, State, Zip: Charlotte, NI 28205 Hart + Hickman, 7.C. Phone: 704-586-0007 Fax: Attn: Tyle Schulz 145 Jup IAS-1 Z.847 ₽ F-50I 7.43-5 83 Street Address: Client: Sample Billing e M 7 Client: City

Chain of Custody and Cooler Receipt Form for 2413336 Page 2 of 2

SHIPPING INFOI Fed Ex Q UPS G GSO / G Pace Lab Pield Service G Oth	RMATION LS □ Ha er □ (Speci	nd Delive fy)	ry 🗆	Ice Che	HIPPING st⊡ N r⊡(Spec	CONTAIN lone □ ify)	NER Box	F	REE LIG	SUID S
Refrigerant: Ice Blue Ice	None	Q Oth	er 🗆	Commen	ts:			_		
Custody Seals Ice Chest Intact? Yes No	Containe		None	Comm	ents:					
All samples received? Yes∕ No□	All samples	containers	intact?	res D'No	0	Descript	ion(s) mat	ch COC?	res 🗹 No	
COC Received	missivity:	<u>/</u> c	ntainer 5	umms T	hermomete	r ID:		Date/Tim	. 8/70	124
4.20	emperature:	(A)	oom	_°C /	(C) /Z	my	°C	Analyst I	nit_Uß	10950
SAMPLE CONTAINERS			,		SAMPLE	NUMBERS				
QT PE UNPRES	1	2	3	4	5	6	7	8	9	10
402/802/1602 PE UNPRES	_	-	-				-	-		
2eg Cr's	1			-	-	-		-	-	+
QT INORGANIC CHEMICAL METALS		_								_
INORGANIC CHEMICAL METALS 40z / 80z / 160	,,									+-
PT CYANIDE										
PT NITROGEN FORMS										
PT TOTAL SULFIDE										
260. NITRATE / NITRITE										
PT TOTAL ORGANIC CARBON										
PT CHEMICAL OXYGEN DEMAND										
PtA PHENOLICS										
4fted VOA VIAL TRAVEL BLANK	-									
40ml VOA VIAL	-		-					-		
OT EPA 1664B	-		-		_			-		
PT ODOR	+-	-	-					-	-	+
RADIOLOGICAL	-		-				_		-	-
BACTERIOLOGICAL 40 ml VOA VIAL- 504	+-	-	 		-			-		+
QT EPA 508/608.3/8081A	_								-	_
QT EPA 515.1/8151A	-						-			-
OT EPA 525.2	$\overline{}$									
QT EPA 525.2 TRAVEL BLANK										
40ml EPA 547										
40ml EPA 531.1										
Soz EPA 548.1										
QT EPA 549.2										
QT EPA 8015M										
QT EPA 8270C										
Saz / 16oz / 32oz AMBER										
Soz / 160z / 320z JAR										
SOIL SLEEVE	_	-						-		-
PCB VIAL		-	-		-		-			
PLASTIC BAG	+		_			-	-	-		
TEDLAR BAG	_							-		-
FERROUS IRON ENCORE		+	1				-	-		
SMART KIT	500	-	_				-	-		
C. A.	- L	1	n	A	A	A	h.	_		
	_ A	L A	L A	H	LH	_ n	l A	Α		
Comments:			Date	v/Time:	20.29	1214	[S:WPDac/W	ordPerfectiLAB_D		05/20/22 MRECov. 20/

2923 S Tryon Street, Suite 100

Charlotte, NC 28203

Reported: 09/04/2024 9:15

Project: NWMS Project Number: SAI-413 Project Manager: Tyler Shulz

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Informati	on		
2413336-01	COC Number:		Receive Date:	08/20/2024 09:50
	Project Number:		Sampling Date:	08/16/2024 07:40
	Sampling Location:		Sample Depth:	
	Sampling Point:	IAS-1	Lab Matrix:	Air
	Sampled By:	Tyler Schulz	Sample Type:	Vapor or Air
2413336-02	COC Number:		Receive Date:	08/20/2024 09:50
	Project Number:		Sampling Date:	08/16/2024 07:35
	Sampling Location:		Sample Depth:	
	Sampling Point:	IAS-2	Lab Matrix:	Air
	Sampled By:	Tyler Schulz	Sample Type:	Vapor or Air
2413336-03	COC Number:		Receive Date:	08/20/2024 09:50
	Project Number:		Sampling Date:	08/16/2024 07:42
	Sampling Location:		Sample Depth:	
	Sampling Point:	IAS-3	Lab Matrix:	Air
	Sampled By:	Tyler Schulz	Sample Type:	Vapor or Air
2413336-04	COC Number:		Receive Date:	08/20/2024 09:50
	Project Number:		Sampling Date:	08/16/2024 07:46
	Sampling Location:		Sample Depth:	
	Sampling Point:	IAS-4	Lab Matrix:	Air
	Sampled By:	Tyler Schulz	Sample Type:	Vapor or Air
2413336-05	COC Number:		Receive Date:	08/20/2024 09:50
	Project Number:		Sampling Date:	08/16/2024 07:50
	Sampling Location:		Sample Depth:	
	Sampling Point:	IAS-5	Lab Matrix:	Air
	Sampled By:	Tyler Schulz	Sample Type:	Vapor or Air
2413336-06	COC Number:		Receive Date:	08/20/2024 09:50
	Project Number:		Sampling Date:	08/16/2024 08:00
	Sampling Location:		Sample Depth:	
	Sampling Point:	BG	Lab Matrix:	Air
	Sampled By:	Tyler Schulz	Sample Type:	Vapor or Air
2413336-07	COC Number:		Receive Date:	08/20/2024 09:50
	Project Number:		Sampling Date:	08/16/2024 00:00
	Sampling Location:		Sample Depth:	
	Sampling Point:	IAS-DUP-1	Lab Matrix:	Air
	Sampled By:	Tyler Schulz	Sample Type:	Vapor or Air

Page 5 of 19 Report ID: 1001533535

2923 S Tryon Street, Suite 100 Charlotte, NC 28203 **Reported:** 09/04/2024 9:15

Project: NWMS
Project Number: SAI-413
Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 24	13336-01 Client Sam	ple Name:	IAS-1, 8/	16/2024 7	40:00AM, Tyler	Schulz		
Constituent	Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
Chlorodifluoromethane	ND ND	ug/m3	2.0	0.53	EPA-TO-15	ND ND	Quais	1
Acetone	10	ug/m3	5.0	0.43	EPA-TO-15	ND		1
Acrylonitrile	ND	ug/m3	2.0	0.27	EPA-TO-15	ND		1
Allyl chloride	ND	ug/m3	2.0	0.28	EPA-TO-15	ND		1
Benzene	ND	ug/m3	2.0	0.21	EPA-TO-15	ND		1
Benzyl chloride	ND	ug/m3	10	0.26	EPA-TO-15	ND		1
Bromodichloromethane	ND	ug/m3	5.0	0.45	EPA-TO-15	ND		1
Bromoform	ND	ug/m3	10	0.86	EPA-TO-15	ND		1
Bromomethane	ND	ug/m3	2.0	0.47	EPA-TO-15	ND		1
1,3-Butadiene	ND	ug/m3	2.0	0.22	EPA-TO-15	ND		1
Carbon disulfide	ND	ug/m3	2.0	0.19	EPA-TO-15	ND		1
Carbon tetrachloride	ND	ug/m3	5.0	0.45	EPA-TO-15	ND		1
Chlorobenzene	ND	ug/m3	5.0	0.40	EPA-TO-15	ND		1
Chloroethane	ND	ug/m3	2.0	0.53	EPA-TO-15	ND		1
Chloroform	ND	ug/m3	5.0	0.54	EPA-TO-15	ND		1
Chloromethane	1.1	ug/m3	2.0	0.21	EPA-TO-15	ND	J	1
Cyclohexane	ND	ug/m3	2.0	0.38	EPA-TO-15	ND		1
Dibromochloromethane	ND	ug/m3	5.0	0.43	EPA-TO-15	ND		1
1,2-Dibromoethane	ND	ug/m3	5.0	0.58	EPA-TO-15	ND		1
1,2-Dichlorobenzene	ND	ug/m3	5.0	0.50	EPA-TO-15	ND		1
1,3-Dichlorobenzene	ND	ug/m3	5.0	0.31	EPA-TO-15	ND		1
1,4-Dichlorobenzene	ND	ug/m3	5.0	0.50	EPA-TO-15	ND		1
Dichlorodifluoromethane	2.0	ug/m3	5.0	0.45	EPA-TO-15	ND	J	1
1,1-Dichloroethane	ND	ug/m3	5.0	0.23	EPA-TO-15	ND		1
1,2-Dichloroethane	ND	ug/m3	5.0	0.26	EPA-TO-15	ND		1
1,1-Dichloroethene	ND	ug/m3	5.0	0.31	EPA-TO-15	ND		1
cis-1,2-Dichloroethene	ND	ug/m3	2.0	0.32	EPA-TO-15	ND		1
trans-1,2-Dichloroethene	ND	ug/m3	2.0	0.27	EPA-TO-15	ND		1
1,2-Dichloropropane	ND	ug/m3	5.0	0.32	EPA-TO-15	ND		1
cis-1,3-Dichloropropene	ND	ug/m3	5.0	0.30	EPA-TO-15	ND		1
trans-1,3-Dichloropropene	ND	ug/m3	5.0	0.40	EPA-TO-15	ND		1
1,2-Dichloro-1,1,2,2-tetrafluoro	oethane ND	ug/m3	5.0	0.91	EPA-TO-15	ND		1
1,1-Difluoroethane	3.8	ug/m3	5.0	2.0	EPA-TO-15	ND	J	1

Report ID: 1001533535 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com Page 6 of 19

2923 S Tryon Street, Suite 100

Charlotte, NC 28203

Reported: 09/04/2024 9:15

Project: NWMS
Project Number: SAI-413
Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 24	113336-01	Client Sampl	e Name:	IAS-1, 8/1	6/2024 7	:40:00AM, Tyler \$	Schulz		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
1,4-Dioxane		ND	ug/m3	2.0	0.33	EPA-TO-15	ND	Quais	1
Ethanol		510	ug/m3	40	8.4	EPA-TO-15	ND	A01	2
Ethyl acetate		ND	ug/m3	2.0	0.33	EPA-TO-15	ND		1
Ethylbenzene		ND	ug/m3	5.0	0.32	EPA-TO-15	ND		1
1-Ethyl-4-methylbenzene		ND	ug/m3	5.0	0.30	EPA-TO-15	ND		1
n-Heptane		0.55	ug/m3	2.0	0.34	EPA-TO-15	ND	J	1
Hexachlorobutadiene		ND	ug/m3	10	1.5	EPA-TO-15	ND		1
Hexane		ND	ug/m3	5.0	0.20	EPA-TO-15	ND		1
2-Hexanone		ND	ug/m3	5.0	0.29	EPA-TO-15	ND		1
Isopropyl alcohol		6.1	ug/m3	2.0	0.32	EPA-TO-15	ND		1
Methylene chloride		1.0	ug/m3	10	0.40	EPA-TO-15	ND	J	1
Methyl ethyl ketone		0.73	ug/m3	2.0	0.19	EPA-TO-15	ND	J	1
Methyl isobutyl ketone		ND	ug/m3	5.0	0.26	EPA-TO-15	ND		1
Methyl t-butyl ether		ND	ug/m3	2.0	0.28	EPA-TO-15	ND		1
Propylene		ND	ug/m3	2.0	0.25	EPA-TO-15	ND		1
Styrene		0.51	ug/m3	5.0	0.24	EPA-TO-15	ND	J	1
1,1,2,2-Tetrachloroethane		ND	ug/m3	5.0	0.47	EPA-TO-15	ND		1
Tetrachloroethene		0.87	ug/m3	2.0	0.50	EPA-TO-15	ND	J	1
Tetrahydrofuran		ND	ug/m3	2.0	0.27	EPA-TO-15	ND		1
Toluene		1.9	ug/m3	2.0	0.27	EPA-TO-15	ND	J	1
1,2,4-Trichlorobenzene		ND	ug/m3	10	0.82	EPA-TO-15	ND		1
1,1,1-Trichloroethane		ND	ug/m3	5.0	0.39	EPA-TO-15	ND		1
1,1,2-Trichloroethane		ND	ug/m3	5.0	0.61	EPA-TO-15	ND		1
Trichloroethene		ND	ug/m3	2.0	0.54	EPA-TO-15	ND		1
Trichlorofluoromethane		1.1	ug/m3	5.0	0.47	EPA-TO-15	ND	J	1
1,1,2-Trichloro-1,2,2-trifluoro	ethane	ND	ug/m3	5.0	0.55	EPA-TO-15	ND		1
1,2,4-Trimethylbenzene		0.58	ug/m3	5.0	0.40	EPA-TO-15	ND	J	1
1,3,5-Trimethylbenzene		ND	ug/m3	5.0	0.40	EPA-TO-15	ND		1
Vinyl acetate		ND	ug/m3	2.0	0.33	EPA-TO-15	ND		1
Vinyl chloride		ND	ug/m3	2.0	0.39	EPA-TO-15	ND		1
p- & m-Xylenes		1.1	ug/m3	5.0	0.61	EPA-TO-15	ND	J	1
o-Xylene		ND	ug/m3	5.0	0.30	EPA-TO-15	ND		1
Total Xylenes		1.1	ug/m3	10	0.91	EPA-TO-15	ND	J	1

Report ID: 1001533535 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com Page 7 of 19

2923 S Tryon Street, Suite 100

Charlotte, NC 28203

Reported: 09/04/2024 9:15

Project: NWMS Project Number: SAI-413 Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID:	2413336-01	Client Sampl	e Name:	IAS-1, 8/10	6/2024 7	:40:00AM, Tyler S			
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
4-Bromofluorobenzene	e (Surrogate)	99.3	%	70 - 130 (LCI	UCL)	EPA-TO-15			1
4-Bromofluorobenzene	e (Surrogate)	92.6	%	70 - 130 (LCI	UCL)	EPA-TO-15			2

			Run			QC			
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	Prep Method	
1	EPA-TO-15	08/29/24 11:16	08/30/24 05:35	BEP	MS-A2	1	B195946	EPA TO-15	
2	EPA-TO-15	08/29/24 11:16	08/30/24 23:16	BEP	MS-A2	20	B195946	EPA TO-15	

DCN = Data Continuation Number

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com Page 8 of 19 Report ID: 1001533535

2923 S Tryon Street, Suite 100

Charlotte, NC 28203

Reported: 09/04/2024 9:15

Project: NWMS
Project Number: SAI-413
Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 241333	6-02 Client Samp	le Name:	IAS-2, 8/	16/2024 7	35:00AM, Tyler \$	Schulz		
Constituent	Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
Chlorodifluoromethane	0.84	ug/m3	2.0	0.53	EPA-TO-15	ND	J	1
Acetone	11	ug/m3	5.0	0.43	EPA-TO-15	ND		1
Acrylonitrile	ND	ug/m3	2.0	0.27	EPA-TO-15	ND		1
Allyl chloride	ND	ug/m3	2.0	0.28	EPA-TO-15	ND		1
Benzene	ND	ug/m3	2.0	0.21	EPA-TO-15	ND		1
Benzyl chloride	ND	ug/m3	10	0.26	EPA-TO-15	ND		1
Bromodichloromethane	ND	ug/m3	5.0	0.45	EPA-TO-15	ND		1
Bromoform	ND	ug/m3	10	0.86	EPA-TO-15	ND		1
Bromomethane	ND	ug/m3	2.0	0.47	EPA-TO-15	ND		1
1,3-Butadiene	ND	ug/m3	2.0	0.22	EPA-TO-15	ND		1
Carbon disulfide	ND	ug/m3	2.0	0.19	EPA-TO-15	ND		1
Carbon tetrachloride	ND	ug/m3	5.0	0.45	EPA-TO-15	ND		1
Chlorobenzene	ND	ug/m3	5.0	0.40	EPA-TO-15	ND		1
Chloroethane	ND	ug/m3	2.0	0.53	EPA-TO-15	ND		1
Chloroform	ND	ug/m3	5.0	0.54	EPA-TO-15	ND		1
Chloromethane	1.1	ug/m3	2.0	0.21	EPA-TO-15	ND	J	1
Cyclohexane	ND	ug/m3	2.0	0.38	EPA-TO-15	ND		1
Dibromochloromethane	ND	ug/m3	5.0	0.43	EPA-TO-15	ND		1
1,2-Dibromoethane	ND	ug/m3	5.0	0.58	EPA-TO-15	ND		1
1,2-Dichlorobenzene	ND	ug/m3	5.0	0.50	EPA-TO-15	ND		1
1,3-Dichlorobenzene	ND	ug/m3	5.0	0.31	EPA-TO-15	ND		1
1,4-Dichlorobenzene	ND	ug/m3	5.0	0.50	EPA-TO-15	ND		1
Dichlorodifluoromethane	2.2	ug/m3	5.0	0.45	EPA-TO-15	ND	J	1
1,1-Dichloroethane	ND	ug/m3	5.0	0.23	EPA-TO-15	ND		1
1,2-Dichloroethane	ND	ug/m3	5.0	0.26	EPA-TO-15	ND		1
1,1-Dichloroethene	ND	ug/m3	5.0	0.31	EPA-TO-15	ND		1
cis-1,2-Dichloroethene	ND	ug/m3	2.0	0.32	EPA-TO-15	ND		1
trans-1,2-Dichloroethene	ND	ug/m3	2.0	0.27	EPA-TO-15	ND		1
1,2-Dichloropropane	ND	ug/m3	5.0	0.32	EPA-TO-15	ND		1
cis-1,3-Dichloropropene	ND	ug/m3	5.0	0.30	EPA-TO-15	ND		1
trans-1,3-Dichloropropene	ND	ug/m3	5.0	0.40	EPA-TO-15	ND		1
1,2-Dichloro-1,1,2,2-tetrafluoroetha	ne ND	ug/m3	5.0	0.91	EPA-TO-15	ND		1
1,1-Difluoroethane	ND	ug/m3	5.0	2.0	EPA-TO-15	ND		1

Report ID: 1001533535 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com Page 9 of 19

2923 S Tryon Street, Suite 100

Charlotte, NC 28203

Reported: 09/04/2024 9:15

Project: NWMS Project Number: SAI-413 Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 2	413336-02	Client Sample	e Name:	IAS-2, 8/1	6/2024 7:	35:00AM, Tyler	Schulz		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
1,4-Dioxane		ND	ug/m3	2.0	0.33	EPA-TO-15	ND	Quais	1
Ethanol		130	ug/m3	40	8.4	EPA-TO-15	ND	A01	2
Ethyl acetate		ND	ug/m3	2.0	0.33	EPA-TO-15	ND		1
Ethylbenzene		2.7	ug/m3	5.0	0.32	EPA-TO-15	ND	J	1
1-Ethyl-4-methylbenzene		9.9	ug/m3	5.0	0.30	EPA-TO-15	ND		1
n-Heptane		4.8	ug/m3	2.0	0.34	EPA-TO-15	ND		1
Hexachlorobutadiene		ND	ug/m3	10	1.5	EPA-TO-15	ND		1
Hexane		ND	ug/m3	5.0	0.20	EPA-TO-15	ND		1
2-Hexanone		ND	ug/m3	5.0	0.29	EPA-TO-15	ND		1
Isopropyl alcohol		3.3	ug/m3	2.0	0.32	EPA-TO-15	ND		1
Methylene chloride		1.3	ug/m3	10	0.40	EPA-TO-15	ND	J	1
Methyl ethyl ketone		0.91	ug/m3	2.0	0.19	EPA-TO-15	ND	J	1
Methyl isobutyl ketone		ND	ug/m3	5.0	0.26	EPA-TO-15	ND		1
Methyl t-butyl ether		ND	ug/m3	2.0	0.28	EPA-TO-15	ND		1
Propylene		ND	ug/m3	2.0	0.25	EPA-TO-15	ND		1
Styrene		ND	ug/m3	5.0	0.24	EPA-TO-15	ND		1
1,1,2,2-Tetrachloroethane		ND	ug/m3	5.0	0.47	EPA-TO-15	ND		1
Tetrachloroethene		ND	ug/m3	2.0	0.50	EPA-TO-15	ND		1
Tetrahydrofuran		ND	ug/m3	2.0	0.27	EPA-TO-15	ND		1
Toluene		6.8	ug/m3	2.0	0.27	EPA-TO-15	ND		1
1,2,4-Trichlorobenzene		ND	ug/m3	10	0.82	EPA-TO-15	ND		1
1,1,1-Trichloroethane		ND	ug/m3	5.0	0.39	EPA-TO-15	ND		1
1,1,2-Trichloroethane		ND	ug/m3	5.0	0.61	EPA-TO-15	ND		1
Trichloroethene		ND	ug/m3	2.0	0.54	EPA-TO-15	ND		1
Trichlorofluoromethane		1.6	ug/m3	5.0	0.47	EPA-TO-15	ND	J	1
1,1,2-Trichloro-1,2,2-trifluoro	oethane	ND	ug/m3	5.0	0.55	EPA-TO-15	ND		1
1,2,4-Trimethylbenzene		12	ug/m3	5.0	0.40	EPA-TO-15	ND		1
1,3,5-Trimethylbenzene		3.5	ug/m3	5.0	0.40	EPA-TO-15	ND	J	1
Vinyl acetate		ND	ug/m3	2.0	0.33	EPA-TO-15	ND		1
Vinyl chloride		ND	ug/m3	2.0	0.39	EPA-TO-15	ND		1
p- & m-Xylenes		12	ug/m3	5.0	0.61	EPA-TO-15	ND		1
o-Xylene		5.3	ug/m3	5.0	0.30	EPA-TO-15	ND		1
Total Xylenes		18	ug/m3	10	0.91	EPA-TO-15	ND		1

Page 10 of 19 Report ID: 1001533535

2923 S Tryon Street, Suite 100

Charlotte, NC 28203

Reported: 09/04/2024 9:15

Project: NWMS
Project Number: SAI-413
Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID:	2413336-02	Client Sampl	e Name:	IAS-2, 8/16	6/2024 7	:35:00AM, Tyler S			
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
4-Bromofluorobenzene	e (Surrogate)	101	%	70 - 130 (LCI	UCL)	EPA-TO-15			1
4-Bromofluorobenzene	e (Surrogate)	95.7	%	70 - 130 (LCI	UCL)	EPA-TO-15			2

			Run			QC			
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	Prep Method	
1	EPA-TO-15	08/29/24 11:16	08/30/24 06:23	BEP	MS-A2	1	B195946	EPA TO-15	
2	EPA-TO-15	08/29/24 11:16	08/30/24 23:57	BEP	MS-A2	20	B195946	EPA TO-15	

DCN = Data Continuation Number

Report ID: 1001533535 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

2923 S Tryon Street, Suite 100

Charlotte, NC 28203

Reported: 09/04/2024 9:15

Project: NWMS
Project Number: SAI-413
Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 24	13336-03 Client Sam	ple Name:	IAS-3, 8/	16/2024 7	:42:00AM, Tyler	Schulz		
Constituent	Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
Chlorodifluoromethane	ND	ug/m3	2.0	0.53	EPA-TO-15	ND	Qualit	1
Acetone	10	ug/m3	5.0	0.43	EPA-TO-15	ND		1
Acrylonitrile	ND	ug/m3	2.0	0.27	EPA-TO-15	ND		1
Allyl chloride	ND	ug/m3	2.0	0.28	EPA-TO-15	ND		1
Benzene	ND	ug/m3	2.0	0.21	EPA-TO-15	ND		1
Benzyl chloride	ND	ug/m3	10	0.26	EPA-TO-15	ND		1
Bromodichloromethane	ND	ug/m3	5.0	0.45	EPA-TO-15	ND		1
Bromoform	ND	ug/m3	10	0.86	EPA-TO-15	ND		1
Bromomethane	ND	ug/m3	2.0	0.47	EPA-TO-15	ND		1
1,3-Butadiene	ND	ug/m3	2.0	0.22	EPA-TO-15	ND		1
Carbon disulfide	ND	ug/m3	2.0	0.19	EPA-TO-15	ND		1
Carbon tetrachloride	ND	ug/m3	5.0	0.45	EPA-TO-15	ND		1
Chlorobenzene	ND	ug/m3	5.0	0.40	EPA-TO-15	ND		1
Chloroethane	ND	ug/m3	2.0	0.53	EPA-TO-15	ND		1
Chloroform	ND	ug/m3	5.0	0.54	EPA-TO-15	ND		1
Chloromethane	1.1	ug/m3	2.0	0.21	EPA-TO-15	ND	J	1
Cyclohexane	ND	ug/m3	2.0	0.38	EPA-TO-15	ND		1
Dibromochloromethane	ND	ug/m3	5.0	0.43	EPA-TO-15	ND		1
1,2-Dibromoethane	ND	ug/m3	5.0	0.58	EPA-TO-15	ND		1
1,2-Dichlorobenzene	ND	ug/m3	5.0	0.50	EPA-TO-15	ND		1
1,3-Dichlorobenzene	ND	ug/m3	5.0	0.31	EPA-TO-15	ND		1
1,4-Dichlorobenzene	ND	ug/m3	5.0	0.50	EPA-TO-15	ND		1
Dichlorodifluoromethane	2.2	ug/m3	5.0	0.45	EPA-TO-15	ND	J	1
1,1-Dichloroethane	ND	ug/m3	5.0	0.23	EPA-TO-15	ND		1
1,2-Dichloroethane	ND	ug/m3	5.0	0.26	EPA-TO-15	ND		1
1,1-Dichloroethene	ND	ug/m3	5.0	0.31	EPA-TO-15	ND		1
cis-1,2-Dichloroethene	ND	ug/m3	2.0	0.32	EPA-TO-15	ND		1
trans-1,2-Dichloroethene	ND	ug/m3	2.0	0.27	EPA-TO-15	ND		1
1,2-Dichloropropane	ND	ug/m3	5.0	0.32	EPA-TO-15	ND		1
cis-1,3-Dichloropropene	ND	ug/m3	5.0	0.30	EPA-TO-15	ND		1
trans-1,3-Dichloropropene	ND	ug/m3	5.0	0.40	EPA-TO-15	ND		1
1,2-Dichloro-1,1,2,2-tetrafluoro	pethane ND	ug/m3	5.0	0.91	EPA-TO-15	ND		1
1,1-Difluoroethane	3.5	ug/m3	5.0	2.0	EPA-TO-15	ND	J	1

Report ID: 1001533535 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com Page 12 of 19

2923 S Tryon Street, Suite 100

Charlotte, NC 28203

Reported: 09/04/2024 9:15

Project: NWMS Project Number: SAI-413 Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 24	13336-03	Client Sampl	e Name:	IAS-3, 8/1	6/2024 7	42:00AM, Tyler \$	Schulz		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
1,4-Dioxane		ND	ug/m3	2.0	0.33	EPA-TO-15	ND	Quais	1
Ethanol		470	ug/m3	40	8.4	EPA-TO-15	ND	A01	2
Ethyl acetate		ND	ug/m3	2.0	0.33	EPA-TO-15	ND		1
Ethylbenzene		0.44	ug/m3	5.0	0.32	EPA-TO-15	ND	J	1
1-Ethyl-4-methylbenzene		1.4	ug/m3	5.0	0.30	EPA-TO-15	ND	J	1
n-Heptane		0.82	ug/m3	2.0	0.34	EPA-TO-15	ND	J	1
Hexachlorobutadiene		ND	ug/m3	10	1.5	EPA-TO-15	ND		1
Hexane		ND	ug/m3	5.0	0.20	EPA-TO-15	ND		1
2-Hexanone		ND	ug/m3	5.0	0.29	EPA-TO-15	ND		1
Isopropyl alcohol		5.6	ug/m3	2.0	0.32	EPA-TO-15	ND		1
Methylene chloride		ND	ug/m3	10	0.40	EPA-TO-15	ND		1
Methyl ethyl ketone		ND	ug/m3	2.0	0.19	EPA-TO-15	ND		1
Methyl isobutyl ketone		ND	ug/m3	5.0	0.26	EPA-TO-15	ND		1
Methyl t-butyl ether		ND	ug/m3	2.0	0.28	EPA-TO-15	ND		1
Propylene		ND	ug/m3	2.0	0.25	EPA-TO-15	ND		1
Styrene		ND	ug/m3	5.0	0.24	EPA-TO-15	ND		1
1,1,2,2-Tetrachloroethane		ND	ug/m3	5.0	0.47	EPA-TO-15	ND		1
Tetrachloroethene		ND	ug/m3	2.0	0.50	EPA-TO-15	ND		1
Tetrahydrofuran		ND	ug/m3	2.0	0.27	EPA-TO-15	ND		1
Toluene		2.2	ug/m3	2.0	0.27	EPA-TO-15	ND		1
1,2,4-Trichlorobenzene		ND	ug/m3	10	0.82	EPA-TO-15	ND		1
1,1,1-Trichloroethane		ND	ug/m3	5.0	0.39	EPA-TO-15	ND		1
1,1,2-Trichloroethane		ND	ug/m3	5.0	0.61	EPA-TO-15	ND		1
Trichloroethene		ND	ug/m3	2.0	0.54	EPA-TO-15	ND		1
Trichlorofluoromethane		1.7	ug/m3	5.0	0.47	EPA-TO-15	ND	J	1
1,1,2-Trichloro-1,2,2-trifluoro	ethane	ND	ug/m3	5.0	0.55	EPA-TO-15	ND		1
1,2,4-Trimethylbenzene		1.8	ug/m3	5.0	0.40	EPA-TO-15	ND	J	1
1,3,5-Trimethylbenzene		0.61	ug/m3	5.0	0.40	EPA-TO-15	ND	J	1
Vinyl acetate		ND	ug/m3	2.0	0.33	EPA-TO-15	ND		1
Vinyl chloride		ND	ug/m3	2.0	0.39	EPA-TO-15	ND		1
p- & m-Xylenes		1.9	ug/m3	5.0	0.61	EPA-TO-15	ND	J	1
o-Xylene		0.81	ug/m3	5.0	0.30	EPA-TO-15	ND	J	1
Total Xylenes		2.7	ug/m3	10	0.91	EPA-TO-15	ND	J	1

Page 13 of 19 Report ID: 1001533535

2923 S Tryon Street, Suite 100 Charlotte, NC 28203

Reported: 09/04/2024 9:15

Project: NWMS
Project Number: SAI-413
Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID:	2413336-03	Client Sampl	e Name:	IAS-3, 8/10	6/2024 7	:42:00AM, Tyler S	Schulz		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
4-Bromofluorobenzene	e (Surrogate)	102	%	70 - 130 (LCI	UCL)	EPA-TO-15			1
4-Bromofluorobenzene	e (Surrogate)	92.0	%	70 - 130 (LCI	UCL)	EPA-TO-15			2

			Run				QC	
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	Prep Method
1	EPA-TO-15	08/29/24 11:16	08/30/24 07:12	BEP	MS-A2	1	B195946	EPA TO-15
2	EPA-TO-15	08/29/24 11:16	08/31/24 00:41	BEP	MS-A2	20	B195946	EPA TO-15

DCN = Data Continuation Number

Report ID: 1001533535 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Hart & Hickman, PC 2923 S Tryon Street, Suite 100 Charlotte, NC 28203 **Reported:** 09/04/2024 9:15

Project: NWMS
Project Number: SAI-413
Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals	Run #
QC Batch ID: B195946							
Chlorodifluoromethane	B195946-BLK1	ND	ug/m3	2.0	0.53		1
Acetone	B195946-BLK1	ND	ug/m3	5.0	0.43		1
Acrylonitrile	B195946-BLK1	ND	ug/m3	2.0	0.27		1
Allyl chloride	B195946-BLK1	ND	ug/m3	2.0	0.28		1
Benzene	B195946-BLK1	ND	ug/m3	2.0	0.21		1
Benzyl chloride	B195946-BLK1	ND	ug/m3	10	0.26		1
Bromodichloromethane	B195946-BLK1	ND	ug/m3	5.0	0.45		1
Bromoform	B195946-BLK1	ND	ug/m3	10	0.86		1
Bromomethane	B195946-BLK1	ND	ug/m3	2.0	0.47		1
1,3-Butadiene	B195946-BLK1	ND	ug/m3	2.0	0.22		1
Carbon disulfide	B195946-BLK1	ND	ug/m3	2.0	0.19		1
Carbon tetrachloride	B195946-BLK1	ND	ug/m3	5.0	0.45		1
Chlorobenzene	B195946-BLK1	ND	ug/m3	5.0	0.40		1
Chloroethane	B195946-BLK1	ND	ug/m3	2.0	0.53		1
Chloroform	B195946-BLK1	ND	ug/m3	5.0	0.54		1
Chloromethane	B195946-BLK1	ND	ug/m3	2.0	0.21		1
Cyclohexane	B195946-BLK1	ND	ug/m3	2.0	0.38		1
Dibromochloromethane	B195946-BLK1	ND	ug/m3	5.0	0.43		1
1,2-Dibromoethane	B195946-BLK1	ND	ug/m3	5.0	0.58		1
1,2-Dichlorobenzene	B195946-BLK1	ND	ug/m3	5.0	0.50		1
1,3-Dichlorobenzene	B195946-BLK1	ND	ug/m3	5.0	0.31		1
1,4-Dichlorobenzene	B195946-BLK1	ND	ug/m3	5.0	0.50		1
Dichlorodifluoromethane	B195946-BLK1	ND	ug/m3	5.0	0.45		1
1,1-Dichloroethane	B195946-BLK1	ND	ug/m3	5.0	0.23		1
1,2-Dichloroethane	B195946-BLK1	ND	ug/m3	5.0	0.26		1
1,1-Dichloroethene	B195946-BLK1	ND	ug/m3	5.0	0.31		1
cis-1,2-Dichloroethene	B195946-BLK1	ND	ug/m3	2.0	0.32		1
trans-1,2-Dichloroethene	B195946-BLK1	ND	ug/m3	2.0	0.27		1
1,2-Dichloropropane	B195946-BLK1	ND	ug/m3	5.0	0.32		1
cis-1,3-Dichloropropene	B195946-BLK1	ND	ug/m3	5.0	0.30		1
trans-1,3-Dichloropropene	B195946-BLK1	ND	ug/m3	5.0	0.40		1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	B195946-BLK1	ND	ug/m3	5.0	0.91		1
1,1-Difluoroethane	B195946-BLK1	ND	ug/m3	5.0	2.0		1
1,4-Dioxane	B195946-BLK1	ND	ug/m3	2.0	0.33		1

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, detachment or third party interpretation.

Report ID: 1001533535 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com Page 15 of 19

Hart & Hickman, PC 2923 S Tryon Street, Suite 100

Charlotte, NC 28203

Reported: 09/04/2024 9:15

Project: NWMS
Project Number: SAI-413
Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Quality Control Report - Method Blank Analysis

	-						
Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals	Run #
QC Batch ID: B195946							
Ethanol	B195946-BLK1	ND	ug/m3	2.0	0.42		1
Ethyl acetate	B195946-BLK1	ND	ug/m3	2.0	0.33		1
Ethylbenzene	B195946-BLK1	ND	ug/m3	5.0	0.32		1
1-Ethyl-4-methylbenzene	B195946-BLK1	ND	ug/m3	5.0	0.30		1
n-Heptane	B195946-BLK1	ND	ug/m3	2.0	0.34		1
Hexachlorobutadiene	B195946-BLK1	ND	ug/m3	10	1.5		1
Hexane	B195946-BLK1	ND	ug/m3	5.0	0.20		1
2-Hexanone	B195946-BLK1	ND	ug/m3	5.0	0.29		1
Isopropyl alcohol	B195946-BLK1	ND	ug/m3	2.0	0.32		1
Methylene chloride	B195946-BLK1	ND	ug/m3	10	0.40		1
Methyl ethyl ketone	B195946-BLK1	ND	ug/m3	2.0	0.19		1
Methyl isobutyl ketone	B195946-BLK1	ND	ug/m3	5.0	0.26		1
Methyl t-butyl ether	B195946-BLK1	ND	ug/m3	2.0	0.28		1
Propylene	B195946-BLK1	ND	ug/m3	2.0	0.25		1
Styrene	B195946-BLK1	ND	ug/m3	5.0	0.24		1
1,1,2,2-Tetrachloroethane	B195946-BLK1	ND	ug/m3	5.0	0.47		1
Tetrachloroethene	B195946-BLK1	ND	ug/m3	2.0	0.50		1
Tetrahydrofuran	B195946-BLK1	ND	ug/m3	2.0	0.27		1
Toluene	B195946-BLK1	ND	ug/m3	2.0	0.27		1
1,2,4-Trichlorobenzene	B195946-BLK1	ND	ug/m3	10	0.82		1
1,1,1-Trichloroethane	B195946-BLK1	ND	ug/m3	5.0	0.39		1
1,1,2-Trichloroethane	B195946-BLK1	ND	ug/m3	5.0	0.61		1
Trichloroethene	B195946-BLK1	ND	ug/m3	2.0	0.54		1
Trichlorofluoromethane	B195946-BLK1	ND	ug/m3	5.0	0.47		1
1,1,2-Trichloro-1,2,2-trifluoroethane	B195946-BLK1	ND	ug/m3	5.0	0.55		1
1,2,4-Trimethylbenzene	B195946-BLK1	ND	ug/m3	5.0	0.40		1
1,3,5-Trimethylbenzene	B195946-BLK1	ND	ug/m3	5.0	0.40		1
Vinyl acetate	B195946-BLK1	ND	ug/m3	2.0	0.33		1
Vinyl chloride	B195946-BLK1	ND	ug/m3	2.0	0.39		1
p- & m-Xylenes	B195946-BLK1	ND	ug/m3	5.0	0.61		1
o-Xylene	B195946-BLK1	ND	ug/m3	5.0	0.30		1
Total Xylenes	B195946-BLK1	ND	ug/m3	10	0.91		1
4-Bromofluorobenzene (Surrogate)	B195946-BLK1	99.4	%	70 - 13	0 (LCL - UCL)		1

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

Report ID: 1001533535 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com Page 16 of 19

2923 S Tryon Street, Suite 100 Charlotte, NC 28203

Reported: 09/04/2024 9:15

Project: NWMS Project Number: SAI-413 Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Quality Control Report - Method Blank Analysis

					Run				
Run#	QC Sample ID	QC Type	Method	Prep Date	Date Time	Analyst	Instrument	Dilution	
1	B195946-BLK1	PB	EPA-TO-15	08/29/24	08/29/24 15:11	BEP	MS-A2	1	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. Page 17 of 19

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com Report ID: 1001533535

2923 S Tryon Street, Suite 100 Charlotte, NC 28203

Reported: 09/04/2024 9:15

Project: NWMS
Project Number: SAI-413
Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Quality Control Report - Laboratory Control Sample

Seminaria Semi									Control I	imits		
Seminary Seminary					Spike		Percent		Percent		Lab	
Benzene Big5946-BS1 LCS 15.132 15.974 ug/m3 94.7 70 - 130 1 1 2 2 2 2 2 2 2 2	Constituent	QC Sample ID	Type	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals	Run #
B195946-BSD1 LCSD 15.520 15.974 ug/m3 97.2 2.5 70-130 25 2 2 2 2 2 2 2 2	QC Batch ID: B195946											,
Chloroform B195946-BS1 LCS 23.417 24.413 ug/m3 95.9 70 - 130 1	Benzene	B195946-BS1	LCS	15.132	15.974	ug/m3	94.7		70 - 130			1
B195946-BSD1 LCSD 23.565 24.413 ug/m3 96.5 0.6 70 - 130 25 2		B195946-BSD1	LCSD	15.520	15.974	ug/m3	97.2	2.5	70 - 130	25		2
Ethylbenzene B195946-BS1 LCS 22.583 21.711 ug/m3 104 70 - 130 1 B195946-BSD1 LCSD 22.953 21.711 ug/m3 106 1.6 70 - 130 25 2 Fetrachloroethene B195946-BSD1 LCSD 35.515 33.913 ug/m3 104 70 - 130 25 2 Foluene B195946-BSD1 LCSD 18.907 18.842 ug/m3 99.4 70 - 130 25 2 Frichloroethene B195946-BSD1 LCSD 18.907 18.842 ug/m3 100 1.0 70 - 130 25 2 Frichloroethene B195946-BSD1 LCSD 28.273 26.869 ug/m3 103 70 - 130 25 2 Frichloroethene B195946-BSD1 LCSD 28.273 26.869 ug/m3 105 2.2 70 - 130 25 2 Frichloroethene B195946-BSD1 LCSD 27.784 28.092 ug/m3 96.7 70 - 130 25 2 Frichloro-1,2,2-trifluoroethane B195946-BSD1 LCSD 37.668 38.318 ug/m3 96.7 70 - 130 25 2 Frichloro-1,2,2-trifluoroethane B195946-BSD1 LCSD 37.668 38.318 ug/m3 96.7 70 - 130 25 2 Frichloroethene B195946-BSD1 LCSD 37.668 38.318 ug/m3 96.7 70 - 130 25 2 Frichloro-1,2,2-trifluoroethane B195946-BSD1 LCSD 37.668 38.318 ug/m3 96.7 70 - 130 25 2 Frichloroethene B195946-BSD1 LCSD 37.668 38.318 ug/m3 96.7 70 - 130 25 2 Frichloroethene B195946-BSD1 LCSD 37.668 38.318 ug/m3 96.7 70 - 130 25 2 Frichloroethene B195946-BSD1 LCSD 37.668 38.318 ug/m3 96.7 70 - 130 25 2 Frichloroethene B195946-BSD1 LCSD 37.668 38.318 ug/m3 96.7 70 - 130 25 2 Frichloroethene B195946-BSD1 LCSD 46.272 43.421 ug/m3 105 70 - 130 25 2 Frichloroethene B195946-BSD1 LCSD 23.237 21.711 ug/m3 105 70 - 130 25 2 Frichloroethene B195946-BSD1 LCSD 69.509 65.132 ug/m3 105 70 - 130 25 2 Frichloroethene B195946-BSD1 LCSD 69.509 65.132 ug/m3 105 70 - 130 25 2	Chloroform	B195946-BS1	LCS	23.417	24.413	ug/m3	95.9		70 - 130			1
B195946-BSD1 LCSD 22.953 21.711 ug/m3 106 1.6 70 - 130 25 2		B195946-BSD1	LCSD	23.565	24.413	ug/m3	96.5	0.6	70 - 130	25		2
Effrachloroethene	Ethylbenzene	B195946-BS1	LCS	22.583	21.711	ug/m3	104		70 - 130			1
B195946-BSD1 LCSD 35.515 33.913 ug/m3 105 1.0 70 - 130 25 2		B195946-BSD1	LCSD	22.953	21.711	ug/m3	106	1.6	70 - 130	25		2
B195946-BS1 LCS 18.721 18.842 ug/m3 99.4 70 - 130 1	Tetrachloroethene	B195946-BS1	LCS	35.147	33.913	ug/m3	104		70 - 130			1
B195946-BSD1 LCSD 18.907 18.842 ug/m3 100 1.0 70 - 130 25 2		B195946-BSD1	LCSD	35.515	33.913	ug/m3	105	1.0	70 - 130	25		2
Frichloroethene B195946-BS1 LCS 27.659 26.869 ug/m3 103 70 - 130 1	Toluene	B195946-BS1	LCS	18.721	18.842	ug/m3	99.4		70 - 130			1
B195946-BSD1 LCSD 28.273 26.869 ug/m3 105 2.2 70 - 130 25 2		B195946-BSD1	LCSD	18.907	18.842	ug/m3	100	1.0	70 - 130	25		2
Frichlorofluoromethane B195946-BS1 LCS 27.169 28.092 ug/m3 96.7 70 - 130 1 B195946-BSD1 LCSD 27.784 28.092 ug/m3 98.9 2.2 70 - 130 25 2 I,1,2-Trichloro-1,2,2-trifluoroethane B195946-BS1 LCS 37.039 38.318 ug/m3 96.7 70 - 130 1 B195946-BSD1 LCSD 37.668 38.318 ug/m3 98.3 1.7 70 - 130 25 2 D-& m-Xylenes B195946-BSD1 LCSD 45.588 43.421 ug/m3 105 70 - 130 25 2 D-Xylene B195946-BSD1 LCSD 46.272 43.421 ug/m3 105 70 - 130 25 2 D-Xylene B195946-BSD1 LCSD 23.237 21.711 ug/m3 105 70 - 130 25 2 Total Xylenes B195946-BSD1 LCSD 68.434 65.132 ug/m3 105 70 - 130 25 2 Total Xylenes B195946-BSD1 LCSD 69.509 65.132 ug/m3 107 1.6 70 - 130 25 2 Total Sylenes B195946-BSD1 LCSD 69.509 65.132 ug/m3 107 1.6 70 - 130 25 2 Total Sylenes B195946-BSD1 LCSD 69.509 65.132 ug/m3 107 1.6 70 - 130 25 2 Total Sylenes B195946-BSD1 LCSD 69.509 65.132 ug/m3 107 1.6 70 - 130 25 2 Total Sylenes B195946-BSD1 LCSD 69.509 65.132 ug/m3 107 1.6 70 - 130 25 2 Total Sylenes B195946-BSD1 LCSD 69.509 65.132 ug/m3 107 1.6 70 - 130 25 2 Total Sylenes B195946-BSD1 LCSD 69.509 65.132 ug/m3 107 1.6 70 - 130 25 2 Total Sylenes B195946-BSD1 LCSD 69.509 65.132 ug/m3 107 1.6 70 - 130 25 2 Total Sylenes B195946-BSD1 LCSD 69.509 65.132 ug/m3 107 1.6 70 - 130 25 2 Total Sylenes B195946-BSD1 LCSD 69.509 65.132 ug/m3 107 1.6 70 - 130 25 2 Total Sylenes B195946-BSD1 LCSD 69.509 65.132 ug/m3 107 1.6 70 - 130 25 2	Trichloroethene	B195946-BS1	LCS	27.659	26.869	ug/m3	103		70 - 130			1
B195946-BSD1 LCSD 27.784 28.092 ug/m3 98.9 2.2 70 - 130 25 2 I,1,2-Trichloro-1,2,2-trifluoroethane B195946-BS1 LCS 37.039 38.318 ug/m3 96.7 70 - 130 1 B195946-BSD1 LCSD 37.668 38.318 ug/m3 98.3 1.7 70 - 130 25 2 D-& m-Xylenes B195946-BS1 LCS 45.588 43.421 ug/m3 105 70 - 130 1 B195946-BSD1 LCSD 46.272 43.421 ug/m3 107 1.5 70 - 130 25 2 D-Xylene B195946-BSD1 LCS 22.846 21.711 ug/m3 105 70 - 130 1 B195946-BSD1 LCSD 23.237 21.711 ug/m3 107 1.7 70 - 130 25 2 Total Xylenes B195946-BSD1 LCS 68.434 65.132 ug/m3 105 70 - 130 1 B195946-BSD1 LCSD 69.509 65.132 ug/m3 107 1.6 70 - 130 25 2		B195946-BSD1	LCSD	28.273	26.869	ug/m3	105	2.2	70 - 130	25		2
1,1,2-Trichloro-1,2,2-trifluoroethane	Trichlorofluoromethane	B195946-BS1	LCS	27.169	28.092	ug/m3	96.7		70 - 130			1
B195946-BSD1 LCSD 37.668 38.318 ug/m3 98.3 1.7 70 - 130 25 2 D- & m-Xylenes B195946-BSD1 LCS 45.588 43.421 ug/m3 105 70 - 130 1 B195946-BSD1 LCSD 46.272 43.421 ug/m3 107 1.5 70 - 130 25 2 D-Xylene B195946-BSD1 LCS 22.846 21.711 ug/m3 105 70 - 130 1 B195946-BSD1 LCSD 23.237 21.711 ug/m3 107 1.7 70 - 130 25 2 Total Xylenes B195946-BSD1 LCS 68.434 65.132 ug/m3 105 70 - 130 1 B195946-BSD1 LCSD 69.509 65.132 ug/m3 107 1.6 70 - 130 25 2		B195946-BSD1	LCSD	27.784	28.092	ug/m3	98.9	2.2	70 - 130	25		2
De- & m-Xylenes B195946-BS1 LCS 45.588 43.421 ug/m3 105 70 - 130 1 B195946-BSD1 LCSD 46.272 43.421 ug/m3 107 1.5 70 - 130 25 2 De-Xylene B195946-BSD1 LCS 22.846 21.711 ug/m3 105 70 - 130 1 B195946-BSD1 LCSD 23.237 21.711 ug/m3 107 1.7 70 - 130 25 2 December 25 25 2 2 December 26 25 25 2 December 26 25 25 2 December 27 25 25 2 December 27 25 25 2 December 27 25 25 2 December 28 25 25 2 December 29 25 25	1,1,2-Trichloro-1,2,2-trifluoroethane	B195946-BS1	LCS	37.039	38.318	ug/m3	96.7		70 - 130			1
B195946-BSD1 LCSD 46.272 43.421 ug/m3 107 1.5 70 - 130 25 2 D-Xylene B195946-BSD1 LCS 22.846 21.711 ug/m3 105 70 - 130 1 B195946-BSD1 LCSD 23.237 21.711 ug/m3 107 1.7 70 - 130 25 2 Total Xylenes B195946-BSD1 LCSD 69.509 65.132 ug/m3 107 1.6 70 - 130 25 2		B195946-BSD1	LCSD	37.668	38.318	ug/m3	98.3	1.7	70 - 130	25		2
D-Xylene B195946-BS1 LCS 22.846 21.711 ug/m3 105 70 - 130 1 B195946-BSD1 LCSD 23.237 21.711 ug/m3 107 1.7 70 - 130 25 2 Total Xylenes B195946-BSD1 LCSD 69.509 65.132 ug/m3 107 1.6 70 - 130 25 2	p- & m-Xylenes	B195946-BS1	LCS	45.588	43.421	ug/m3	105		70 - 130			1
B195946-BSD1 LCSD 23.237 21.711 ug/m3 107 1.7 70 - 130 25 2 Total Xylenes B195946-BSD1 LCSD 68.434 65.132 ug/m3 105 70 - 130 1 B195946-BSD1 LCSD 69.509 65.132 ug/m3 107 1.6 70 - 130 25 2		B195946-BSD1	LCSD	46.272	43.421	ug/m3	107	1.5	70 - 130	25		2
Total Xylenes B195946-BS1 LCS 68.434 65.132 ug/m3 105 70 - 130 1 B195946-BSD1 LCSD 69.509 65.132 ug/m3 107 1.6 70 - 130 25 2	o-Xylene	B195946-BS1	LCS	22.846	21.711	ug/m3	105		70 - 130			1
B195946-BSD1 LCSD 69.509 65.132 ug/m3 107 1.6 70 - 130 25 2		B195946-BSD1	LCSD	23.237	21.711	ug/m3	107	1.7	70 - 130	25		2
	Total Xylenes	B195946-BS1	LCS	68.434	65.132	ug/m3	105		70 - 130			1
Promofluorobenzone (Surrogate)		B195946-BSD1	LCSD	69.509	65.132	ug/m3	107	1.6	70 - 130	25		2
I of the found	4-Bromofluorobenzene (Surrogate)	B195946-BS1	LCS	72.3	71.6	ug/m3	101		70 - 130			1
B195946-BSD1 LCSD 71.4 71.6 ug/m3 99.8 1.2 70 - 130 2		B195946-BSD1	LCSD	71.4	71.6	ug/m3	99.8	1.2	70 - 130			2

					Run			
Run#	QC Sample ID	QC Type	Method	Prep Date	Date Time	Analyst	Instrument	Dilution
1	B195946-BS1	LCS	EPA-TO-15	08/29/24	08/29/24 13:41	BEP	MS-A2	1
2	B195946-BSD1	LCSD	EPA-TO-15	08/29/24	08/29/24 14:25	BEP	MS-A2	1

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

Report ID: 1001533535 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

2923 S Tryon Street, Suite 100

Charlotte, NC 28203

Reported: 09/04/2024 9:15

Project: NWMS

Project Number: SAI-413
Project Manager: Tyler Shulz

Notes And Definitions

J Estimated Value (CLP Flag)

MDL Method Detection Limit

ND Analyte Not Detected

PQL Practical Quantitation Limit

A01 Detection and quantitation limits are raised due to sample dilution.

Report ID: 1001533535 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Report To:

Air Chain of

4100 Atlas Ct. - Bakersfield, CA 93308 - 661.327.4911 - Fax: 661.327.1918 - www.pacelabs.com

Analysis Requested

Client:	Hart + Hickman, P.C.		Project #:	Project #: SAI-4(3	2	Analysı	Analysis Requested	ted					5	2413337		
Attn:	Attn: Tyler Scholz		Project N	Project Name: NWM S	MS			9	/Comments:	nts:		d				
Street Ad	Street Address: 2923 S. Topon Sty, Suite 100		Sampler(s):	, ,				$d\chi_{I}$	_							
City, Stal	City, State, Zip: ChacleHe+NC 28203 Phone: 704-586-0007Fax:		(Print)	Tyler Schu	chult			ii.A	Sampling I	Sampling Equipment	Start Sampling Information	mpling	Stop Sampling Information		(8)	DATA PACKAGE Ves No
Email:		ckman.com				_	(//8) -			i				evisos	ure (psi	и п
Sample #	Sample ID P	7.5 † Field ID / Point Of Collection	/ ection	Date Sampled	Time Sampled	51-01	ous/\(\frac{1}{10}\)	Soil Vapo Ambient ord Isitinl (gH")	Canister ID#	Flow Controller ID#	Time	Canister Pressure ("Hg)	Time	Canister Pressure ("Hg)	Pressu	(select one)] ppbv (Kµg/m3) Notes
1 -	550-1	Showroom		8/16/24	(Dmin	X	8	5/-29	8/11/1	1401	1419	-29	1629	h		
7 -	2-755	Service Boy				×		-28	7854	1250	1632	-28	1638	-		
3	550-3	Service B	- 3			×		29		1288	1644	29	1501			
6-	550-4	Work Stated	74			λ		29	10907		1700	-29	1708			
5	554.5	South Service Bry	ice Bru			×		62-		0411	14		17.28			
9	555-6	South Service Buy	x 36m			×		-28	$\overline{}$	1000	1735	-28	1743			
4	F-VSS	Basment				×		82-	5156	1205	1750	82-	1800			
8	551/8	Outsulding Since Buy	VICE BOW			×		-29	0841	1246	1813	62-	0281			
61	55V-Dup-1	Diplicate		-	4	×		b2- T	15126	١	١	-29	(4		
								+			CHK	34	DISTR	GITUBIL	N	
								+			101	· A	-	-		
											3		SU	BOUT	In	
								+								
Billing		Same as above			Result Request		STD (10 Days)	┨ □	5 Day**	☐ 4 Day**		3 Day**] 2 Day**		1 Day**
Tient:					1. Rel	1. Relinquished By	A	D	Date	Time 1.	Received By	,		Date	te /	Time
treet Address:	dress:				P	6	A	000	12/11/8	10	Mann	1		102/8	7	0630
Sity:		State:	Zip:		- American	myusueu D	۸.			7	Necessed 1				9	a IIII c
ttm:			Fax:		3. Rel	3. Relinquished By	A	D	Date	Time 3.	3. Received By	Sy.		Date	te	Time
.0.#:	.0.#:	and the second	ai control	tondinoni	o loisopour out	Josephan Park		200	1	- Post State	our outgood	in laint	of he dies	oran posici	10000	A mar
Mary Care	Value of the same	The state of the s	THE PERSONS	THE PROPERTY.	AVE. BILLIANCE AND AND AND AND AND AND AND AND AND AND	THE PARTY OF TAXABLE	THE PERSON NAMED IN		THE PERSON NAMED IN		OLL SATT WATER	The state and sent	THE PERSON NAMED IN	DONE PERSON		

samples suspected of containing radioactive material above background levels will not be accepted and will be returned to client.

PACE ANALYTICAL		CO	OLER R	ECEIPT	FORM			Page	Of \		
Submission #: 24-1333	7										
SHIPPING INF	ORMA	TION			SH	IIPPING (CONTAIN	IFR		REE LIQI	
Fed Ex ⊠ UPS □ GSO	GLS [] Han	d Deliver	у□	Ice Che	st⊡ N	one 🗆 I			ES NO	
Pace Lab Pield Service □ C)ther □	(Specify	/)		Other	ˈ □ (Speci	ify)	\	.	W / S	
Define the land		\									
Refrigerant: Ice Blue Ice		None 🖎		er 🗆 🤇	comment	s:			-		
Custody Seals Ice Chest		ontainer t? Yes ⊡		None 🖎	Comm	ents:					
All samples received? Yes ☑ No □	All s	amples c			es 📐 No I			on(s) matc	h COC? Y	es la No [J
COC Received	Emissi	ivity:	<u>/</u> Coi	ntainer: <u>ີວິບ</u>	mma Ti	nermomete	r ID: <u>/</u>		Date/Time	8/70/	24
\QYES □NO	Temne	erature: (AN R	com	°C 1 1	C) TE	m12	°C	Amples to	īit <u>U<i>f\$ (</i></u>	0950
	Tempe	rature: (7) /21	70,	(<u> </u>	77 7		Analyst II	111 <u>U /5 (</u>	
SAMPLE CONTAINERS	Ļ					SAMPLE	NUMBERS				
		1	2	3	4	5	6	7	8	9	10
QT PE UNPRES											
4oz/8oz/16oz PE UNPRES											
2oz Cr ^{→4}					_						
QT INORGANIC CHEMICAL METALS							_				!
INORGANIC CHEMICAL METALS 40z / 80z /	160z			_							
PT CYANIDE						-					
PT NITROGEN FORMS			-								
PT TOTAL SULFIDE											
DE TOTAL OPENING CAPPON											
PT TOTAL ORGANIC CARBON			_				-				
PT CHEMICAL OXYGEN DEMAND											
PtA PHENOLICS											
40ml VOA VIAL TRAVEL BLANK 40ml VOA VIAL											
QT EPA 1664B	_					-		-			
PT ODOR											
RADIOLOGICAL					-						
BACTERIOLOGICAL							_				
40 ml VOA VIAL- 504											
QT EPA 508/608.3/8081A									-		
QT EPA 515.1/8151A								-			
QT EPA 525,2						-					
OT EPA 525.2 TRAVEL BLANK						_					
40ml EPA 547											
40ml EPA 531.1										~~	
8oz EPA 548.1											
QT EPA 549.2											
QT EPA 8015M											
QT EPA 8270C											
802/1602/3202 AMBER		-									
80z/160z/320z JAR							-			-	
SOIL SLEEVE						_					
PCB VIAL											
PLASTIC BAG											
TEDLAR BAG											
FERROUS IRON											
ENCORE											
SMART KIT											
SUMMA CANISTER 19L G	0	A	A	A	A	A.	A	A	A	-A	
Comments:									7-1	7	
Sample Numbering Completed Day CA					T	- 14					

Sample Numbering Completed By: 5 Mb Date/Time: 6-20-21 (24 Rev 23 05/20/22 A = Actual / C = Corrected [S:WPDoctWordPerfectLAB_DOCSFORMSISAMREGrev 20]

Date of Report: 08/26/2024

Tyler Shulz

Hart & Hickman, PC 2923 S Tryon Street, Suite 100 Charlotte, NC 28203

SAI-413 Client Project: **NWMS** Pace Project: 2413337 Pace Work Order: B502914 Invoice ID:

Enclosed are the results of analyses for samples received by the laboratory on 8/20/2024. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Cari Bernotas

Client Services Rep.

Stuart Buttram **Operations Manager**

Certifications: CA ELAP #1186; NV #CA00014; OR ELAP #4032-001; AK UST101

Table of Contents

Sample	e Information	
	Chain of Custody and Cooler Receipt form	3
	Laboratory / Client Sample Cross Reference	5
Sample	e Results	
•	2413337-01 - SSV-1	
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	7
	2413337-02 - SSV-2	4.0
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	10
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	13
	2413337-05 - SSV-5	
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	16
	2413337-06 - SSV-6	
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	19
	2413337-07 - SSV-7	
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	22
	2413337-08 - SSV-8	
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	25
	2413337-09 - SSV-DUP-1	
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	28
Quality	y Control Reports	
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	
	Method Blank Analysis	
	Laboratory Control Sample	34
Notes		
	Notes and Definitions	25

Chain of Custody and Cooler Receipt Form for 2413337 Page 1 of 2 OYes No (If Yes', Select one) □ ppbv ⊠ug/m3 0950 □ 1 Day* UNITS ing radioactive material above background levels. Samples containing radioactive material must be disclosed prior to receipt. Pressure (psia) Lab Received 2413337 BUT 5 188 188 1728 743 1860 DIST Stop Air Chain of 3 Day** ("Hg Start Sampling 735 1750 300 1619 1644 三 153 1813 Time CHK 4 Day** 17 205 246 1250 195 Sampling Equipment E # samples suspected of containing radioactive material above background levels will not be accepted and will be returned to client. 10907 Canister 10254 5156 15126 148 148 1939 0861 S Day** 8/14/24 Date Initial Pressure (8H**) Air Type 3 57 \$ 5 29 52 52 57 4100 Atlas Ct. - Bakersfield, CA 93308 - 661.327.4911 - Fax: 661.327.1918 - www.pacelabs.com Soil Vapor (SV)
(A) InsidmA Analysis Requested X 51-01 X \times λ λ × D MIN Project Name: NIJM S Project #: SAI - 4(3 Sampled Outsulding Source Box Point Of Collection South Service Box South Service Ba Showroom Pace Analytical Bakersfield does not accept samples Service Bay Basment Street Address: 2923 5. Topon St., Sult 100 City, State, Zip: Charlotte, NC 28203 Email: Tschulze HartHickman.com Client: Hart + Hickman, P.C. Phone: 704-586 - 0007Fax: Attn: Tyler Scholz ₽ 5.755 55V-555.5 55V-6 550.7 551/8 Work Order #: Street Address: Client: V P.O.#

Chain of Custody and Cooler Receipt Form for 2413337 Page 2 of 2

Submission #: 24-1333 SHIPPING INF Fed Ex Q UPS G GSO. Pace Lab Pield Service G	ORMA GLS	ATION Hand (Specification)		ry 🗆	Ice Che	IIPPING (st □ N	one 🗆		,	REE LIC	0 12
	_						,		`	VV / .	3
Refrigerant: Ice ☐ Blue Ice	-	None N			Commen						
Custody Seals Ice Chest	Intac	ontaine	no. □	None D	Comm	ents:					
All samples received? Yes No 🗇				Intact2 V	es D. No		Descript	ion(n) mot	-h coca 1	Yesti No	
COC Received		lvity:	_		$\overline{}$	hermomete		ion(s) mai	_		
☐ YES ☐ NO								_		10 8/20	
	remp	erature:	(A) N	Corre	_*C /	(c) Tz	miy	_ °C	Analyst I	nÎt_U <i>f</i> \$	10470
SAMPLE CONTAINERS	ļ						NUMBERS				
OT PE UNPRES		1	2	3	-	_ 5	6	7	-	9	10
40z/80z/160z PE UNPRES					-						1
2oz Cr⁴				<u> </u>							
OT INORGANIC CHEMICAL METALS	_										
NORGANIC CHEMICAL METALS 402 / 802.	/160z	_							<u> </u>		
PT CYANIDE PT NITROGEN FORMS											
PT TOTAL SULFIDE					-						
tor. NITRATE / NITRITE				i							
PT TOTAL ORGANIC CARBON											
PT CHEMICAL OXYGEN DEMAND											
PIA PHENOLICS	_			<u> </u>							
IDMI VOA VIAL TRAVEL BLANK											ļ
OT EPA 1664B						_			 		
PT ODOR 1	_									-	
RADIOLOGICAL	\neg			$\overline{}$	i						\vdash
BACTERIOLOGICAL						,					
40 ml VOA VIAL- 504											
OT EPA 508/608.3/8181A									<u> </u>	ļ	
QT EPA 515.1/8151A	!							<u> </u>			
QT EPA 525,2						_		<u> </u>			
QT EPA 525.2 TRAVEL BLANK 40ml EPA 547									-		-
40ml EPA 531.1									1		-
Box EPA 548.1											
QT EPA 549.2											
QT EPA 8015M	_										
OT EPA \$270C											\perp
Roz/16ex/32ez AMBER	\dashv		<u> </u>	 					-	-	<u> </u>
80x/16gz/32azJAR SOIL SLEEVE						-		-	-		\vdash
PCB VIAL			i	 		 			 		
PLASTIC BAG											
TEDLAR BAG											
FERROUS IRON											
ENCORE	!										\sqcup
SMART KIT											
SUMMA CANISTER 191. G	0	A	l A	l A	A	L A	Pr	<u> </u>	I A	LĄ	إيسا
omments:_ample Numbering Completed By:Si = Actual / C = Corrected	ИН			Date	9/Time: <u>%-1</u>	o-24 ()	.u	(S/WPD=/W	erdPartect/LAD U	Rev 23	05/20/22 NRSCov 70

2923 S Tryon Street, Suite 100

Charlotte, NC 28203

Reported: 08/26/2024 16:12

Project: NWMS Project Number: SAI-413 Project Manager: Tyler Shulz

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Informati	on		
2413337-01	COC Number:		Receive Date:	08/20/2024 09:50
	Project Number:		Sampling Date:	08/16/2024 16:19
	Sampling Location:		Sample Depth:	
	Sampling Point:	SSV-1	Lab Matrix:	Air
	Sampled By:	Tyler Schulz	Sample Type:	Vapor or Air
2413337-02	COC Number:		Receive Date:	08/20/2024 09:50
	Project Number:		Sampling Date:	08/16/2024 16:32
	Sampling Location:		Sample Depth:	
	Sampling Point:	SSV-2	Lab Matrix:	Air
	Sampled By:	Tyler Schulz	Sample Type:	Vapor or Air
2413337-03	COC Number:		Receive Date:	08/20/2024 09:50
	Project Number:		Sampling Date:	08/16/2024 16:44
	Sampling Location:		Sample Depth:	
	Sampling Point:	SSV-3	Lab Matrix:	Air
	Sampled By:	Tyler Schulz	Sample Type:	Vapor or Air
2413337-04	COC Number:		Receive Date:	08/20/2024 09:50
	Project Number:		Sampling Date:	08/16/2024 17:00
	Sampling Location:		Sample Depth:	
	Sampling Point:	SSV-4	Lab Matrix:	Air
	Sampled By:	Tyler Schulz	Sample Type:	Vapor or Air
2413337-05	COC Number:		Receive Date:	08/20/2024 09:50
	Project Number:		Sampling Date:	08/16/2024 17:14
	Sampling Location:		Sample Depth:	
	Sampling Point:	SSV-5	Lab Matrix:	Air
	Sampled By:	Tyler Schulz	Sample Type:	Vapor or Air
2413337-06	COC Number:		Receive Date:	08/20/2024 09:50
	Project Number:		Sampling Date:	08/16/2024 17:35
	Sampling Location:		Sample Depth:	
	Sampling Point:	SSV-6	Lab Matrix:	Air
	Sampled By:	Tyler Schulz	Sample Type:	Vapor or Air
2413337-07	COC Number:		Receive Date:	08/20/2024 09:50
	Project Number:		Sampling Date:	08/16/2024 17:50
	Sampling Location:		Sample Depth:	
	Sampling Point:	SSV-7	Lab Matrix:	Air
	Sampled By:	Tyler Schulz	Sample Type:	Vapor or Air

Page 5 of 35 Report ID: 1001532151

2923 S Tryon Street, Suite 100

Charlotte, NC 28203

Reported: 08/26/2024 16:12

Project: NWMS Project Number: SAI-413 Project Manager: Tyler Shulz

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Informati	on		
2413337-08	COC Number:		Receive Date:	08/20/2024 09:50
	Project Number:		Sampling Date:	08/16/2024 18:13
	Sampling Location:		Sample Depth:	
	Sampling Point:	SSV-8	Lab Matrix:	Air
	Sampled By:	Tyler Schulz	Sample Type:	Vapor or Air
2413337-09	COC Number:		Receive Date:	08/20/2024 09:50
	Project Number:		Sampling Date:	08/16/2024 00:00
	Sampling Location:		Sample Depth:	
	Sampling Point:	SSV-DUP-1	Lab Matrix:	Air
	Sampled By:	Tyler Schulz	Sample Type:	Vapor or Air

Page 6 of 35 Report ID: 1001532151

2923 S Tryon Street, Suite 100

Charlotte, NC 28203

Reported: 08/26/2024 16:12

Project: NWMS
Project Number: SAI-413
Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 24	13337-01 Client	Sample Name:	SSV-1	8/16/2024	4:19:00PM, Tyl	er Schulz		
Constituent	Res	sult Units	PQL	MDL	Method	MB	Lab	DCN
Chlorodifluoromethane	Ne:			1.1	EPA-TO-15	Bias ND	Quals A01	1
Acetone	2.	3 ug/m3	10	0.86	EPA-TO-15	ND	J,A01	1
Acrylonitrile	N	D ug/m3	4.0	0.54	EPA-TO-15	ND	A01	1
Allyl chloride	N	D ug/m3	4.0	0.56	EPA-TO-15	ND	A01	1
Benzene	N	D ug/m3	4.0	0.42	EPA-TO-15	ND	A01	1
Benzyl chloride	N	D ug/m3	20	0.52	EPA-TO-15	ND	A01	1
Bromodichloromethane	N	D ug/m3	10	0.90	EPA-TO-15	ND	A01	1
Bromoform	N	D ug/m3	20	1.7	EPA-TO-15	ND	A01	1
Bromomethane	N	D ug/m3	4.0	0.94	EPA-TO-15	ND	A01	1
1,3-Butadiene	N	D ug/m3	4.0	0.44	EPA-TO-15	ND	A01	1
Carbon disulfide	1.	7 ug/m3	4.0	0.38	EPA-TO-15	ND	J,A01	1
Carbon tetrachloride	N	D ug/m3	10	0.90	EPA-TO-15	ND	A01	1
Chlorobenzene	N	D ug/m3	10	0.80	EPA-TO-15	ND	A01	1
Chloroethane	N	D ug/m3	4.0	1.1	EPA-TO-15	ND	A01	1
Chloroform	N	D ug/m3	10	1.1	EPA-TO-15	ND	A01	1
Chloromethane	N	D ug/m3	4.0	0.42	EPA-TO-15	ND	A01	1
Cyclohexane	N	D ug/m3	4.0	0.76	EPA-TO-15	ND	A01	1
Dibromochloromethane	N	D ug/m3	10	0.86	EPA-TO-15	ND	A01	1
1,2-Dibromoethane	N	D ug/m3	10	1.2	EPA-TO-15	ND	A01	1
1,2-Dichlorobenzene	N	D ug/m3	10	1.0	EPA-TO-15	ND	A01	1
1,3-Dichlorobenzene	N	D ug/m3	10	0.62	EPA-TO-15	ND	A01	1
1,4-Dichlorobenzene	N	D ug/m3	10	1.0	EPA-TO-15	ND	A01	1
Dichlorodifluoromethane	6.	0 ug/m3	10	0.90	EPA-TO-15	ND	J,A01	1
1,1-Dichloroethane	N	D ug/m3	10	0.46	EPA-TO-15	ND	A01	1
1,2-Dichloroethane	N	D ug/m3	10	0.52	EPA-TO-15	ND	A01	1
1,1-Dichloroethene	N	D ug/m3	10	0.62	EPA-TO-15	ND	A01	1
cis-1,2-Dichloroethene	N	D ug/m3	4.0	0.64	EPA-TO-15	ND	A01	1
trans-1,2-Dichloroethene	N	D ug/m3	4.0	0.54	EPA-TO-15	ND	A01	1
1,2-Dichloropropane	N	D ug/m3	10	0.64	EPA-TO-15	ND	A01	1
cis-1,3-Dichloropropene	N	D ug/m3	10	0.60	EPA-TO-15	ND	A01	1
trans-1,3-Dichloropropene	N	D ug/m3	10	0.80	EPA-TO-15	ND	A01	1
1,2-Dichloro-1,1,2,2-tetrafluor	roethane N	D ug/m3	10	1.8	EPA-TO-15	ND	A01	1
1,1-Difluoroethane	N	D ug/m3	10	4.0	EPA-TO-15	ND	A01	1

Report ID: 1001532151 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com Page 7 of 35

2923 S Tryon Street, Suite 100 Charlotte, NC 28203

Reported: 08/26/2024 16:12

Project: NWMS Project Number: SAI-413 Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 24	413337-01	Client Sampl	e Name:	SSV-1, 8/	16/2024 4	:19:00PM, Tyler	Schulz		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
1,4-Dioxane		ND	ug/m3	4.0	0.66	EPA-TO-15	ND	A01	1
Ethanol		100	ug/m3	4.0	0.84	EPA-TO-15	ND	A01	1
Ethyl acetate		ND	ug/m3	4.0	0.66	EPA-TO-15	ND	A01	1
Ethylbenzene		ND	ug/m3	10	0.64	EPA-TO-15	ND	A01	1
1-Ethyl-4-methylbenzene		ND	ug/m3	10	0.60	EPA-TO-15	ND	A01	1
n-Heptane		ND	ug/m3	4.0	0.68	EPA-TO-15	ND	A01	1
Hexachlorobutadiene		ND	ug/m3	20	3.0	EPA-TO-15	ND	A01	1
Hexane		ND	ug/m3	10	0.40	EPA-TO-15	ND	A01	1
2-Hexanone		ND	ug/m3	10	0.58	EPA-TO-15	ND	A01	1
Isopropyl alcohol		0.98	ug/m3	4.0	0.64	EPA-TO-15	ND	J,A01	1
Methylene chloride		ND	ug/m3	20	0.80	EPA-TO-15	ND	A01	1
Methyl ethyl ketone		ND	ug/m3	4.0	0.38	EPA-TO-15	ND	A01	1
Methyl isobutyl ketone		ND	ug/m3	10	0.52	EPA-TO-15	ND	A01	1
Methyl t-butyl ether		ND	ug/m3	4.0	0.56	EPA-TO-15	ND	A01	1
Propylene		ND	ug/m3	4.0	0.50	EPA-TO-15	ND	A01	1
Styrene		ND	ug/m3	10	0.48	EPA-TO-15	ND	A01	1
1,1,2,2-Tetrachloroethane		ND	ug/m3	10	0.94	EPA-TO-15	ND	A01	1
Tetrachloroethene		9.8	ug/m3	4.0	1.0	EPA-TO-15	ND	A01	1
Tetrahydrofuran		ND	ug/m3	4.0	0.54	EPA-TO-15	ND	A01	1
Toluene		ND	ug/m3	4.0	0.54	EPA-TO-15	ND	A01	1
1,2,4-Trichlorobenzene		ND	ug/m3	20	1.6	EPA-TO-15	ND	A01	1
1,1,1-Trichloroethane		180	ug/m3	10	0.78	EPA-TO-15	ND	A01	1
1,1,2-Trichloroethane		ND	ug/m3	10	1.2	EPA-TO-15	ND	A01	1
Trichloroethene		ND	ug/m3	4.0	1.1	EPA-TO-15	ND	A01	1
Trichlorofluoromethane		2.7	ug/m3	10	0.94	EPA-TO-15	ND	J,A01	1
1,1,2-Trichloro-1,2,2-trifluoro	ethane	ND	ug/m3	10	1.1	EPA-TO-15	ND	A01	1
1,2,4-Trimethylbenzene		ND	ug/m3	10	0.80	EPA-TO-15	ND	A01	1
1,3,5-Trimethylbenzene		ND	ug/m3	10	0.80	EPA-TO-15	ND	A01	1
Vinyl acetate		ND	ug/m3	4.0	0.66	EPA-TO-15	ND	A01	1
Vinyl chloride		ND	ug/m3	4.0	0.78	EPA-TO-15	ND	A01	1
p- & m-Xylenes		ND	ug/m3	10	1.2	EPA-TO-15	ND	A01	1
o-Xylene		ND	ug/m3	10	0.60	EPA-TO-15	ND	A01	1
Total Xylenes		ND	ug/m3	20	1.8	EPA-TO-15	ND	A01	1

Page 8 of 35 Report ID: 1001532151

2923 S Tryon Street, Suite 100

Charlotte, NC 28203

Reported: 08/26/2024 16:12

Project: NWMS

Project Number: SAI-413
Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID:	2413337-01	Client Sample	e Name:	SSV-1, 8/	16/2024	4:19:00PM, Tyler	Schulz		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
4-Bromofluorobenzene	(Surrogate)	95.7	%	70 - 130 (LC	L - UCL)	EPA-TO-15			1

			Run					
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	Prep Method
1	EPA-TO-15	08/22/24 09:02	08/22/24 23:43	BEP	MS-A2	2	B195602	EPA TO-15

DCN = Data Continuation Number

Report ID: 1001532151 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com Page 9 of 35

2923 S Tryon Street, Suite 100

Charlotte, NC 28203

Reported: 08/26/2024 16:12

Project: NWMS
Project Number: SAI-413
Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 24	13337-02	Client Sampl	e Name:	SSV-2, 8/	16/2024 4	:32:00PM, Tyler	Schulz			
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN	
Chlorodifluoromethane		ND	ug/m3	4.0	1.1	EPA-TO-15	ND	A01	1	
Acetone		3.6	ug/m3	10	0.86	EPA-TO-15	ND	J,A01	1	
Acrylonitrile		ND	ug/m3	4.0	0.54	EPA-TO-15	ND	A01	1	
Allyl chloride		ND	ug/m3	4.0	0.56	EPA-TO-15	ND	A01	1	
Benzene		ND	ug/m3	4.0	0.42	EPA-TO-15	ND	A01	1	
Benzyl chloride		ND	ug/m3	20	0.52	EPA-TO-15	ND	A01	1	
Bromodichloromethane		ND	ug/m3	10	0.90	EPA-TO-15	ND	A01	1	
Bromoform		ND	ug/m3	20	1.7	EPA-TO-15	ND	A01	1	
Bromomethane		ND	ug/m3	4.0	0.94	EPA-TO-15	ND	A01	1	
1,3-Butadiene		ND	ug/m3	4.0	0.44	EPA-TO-15	ND	A01	1	
Carbon disulfide		ND	ug/m3	4.0	0.38	EPA-TO-15	ND	A01	1	
Carbon tetrachloride		2.3	ug/m3	10	0.90	EPA-TO-15	ND	J,A01	1	
Chlorobenzene		ND	ug/m3	10	0.80	EPA-TO-15	ND	A01	1	
Chloroethane		ND	ug/m3	4.0	1.1	EPA-TO-15	ND	A01	1	
Chloroform		1.2	ug/m3	10	1.1	EPA-TO-15	ND	J,A01	1	
Chloromethane		ND	ug/m3	4.0	0.42	EPA-TO-15	ND	A01	1	
Cyclohexane		ND	ug/m3	4.0	0.76	EPA-TO-15	ND	A01	1	
Dibromochloromethane		ND	ug/m3	10	0.86	EPA-TO-15	ND	A01	1	
1,2-Dibromoethane		ND	ug/m3	10	1.2	EPA-TO-15	ND	A01	1	
1,2-Dichlorobenzene		ND	ug/m3	10	1.0	EPA-TO-15	ND	A01	1	
1,3-Dichlorobenzene		ND	ug/m3	10	0.62	EPA-TO-15	ND	A01	1	
1,4-Dichlorobenzene		ND	ug/m3	10	1.0	EPA-TO-15	ND	A01	1	
Dichlorodifluoromethane		3.5	ug/m3	10	0.90	EPA-TO-15	ND	J,A01	1	
1,1-Dichloroethane		ND	ug/m3	10	0.46	EPA-TO-15	ND	A01	1	
1,2-Dichloroethane		ND	ug/m3	10	0.52	EPA-TO-15	ND	A01	1	
1,1-Dichloroethene		2.2	ug/m3	10	0.62	EPA-TO-15	ND	J,A01	1	
cis-1,2-Dichloroethene		ND	ug/m3	4.0	0.64	EPA-TO-15	ND	A01	1	
trans-1,2-Dichloroethene		ND	ug/m3	4.0	0.54	EPA-TO-15	ND	A01	1	
1,2-Dichloropropane		ND	ug/m3	10	0.64	EPA-TO-15	ND	A01	1	
cis-1,3-Dichloropropene		ND	ug/m3	10	0.60	EPA-TO-15	ND	A01	1	
trans-1,3-Dichloropropene		ND	ug/m3	10	0.80	EPA-TO-15	ND	A01	1	
1,2-Dichloro-1,1,2,2-tetrafluo	roethane	ND	ug/m3	10	1.8	EPA-TO-15	ND	A01	1	
1,1-Difluoroethane		ND	ug/m3	10	4.0	EPA-TO-15	ND	A01	1	

Report ID: 1001532151 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com Page 10 of 35

2923 S Tryon Street, Suite 100

Charlotte, NC 28203

Reported: 08/26/2024 16:12

Project: NWMS Project Number: SAI-413 Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 24	13337-02	Client Sampl	e Name:	SSV-2, 8/	16/2024 4	:32:00PM, Tyler	Schulz			
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN	
1,4-Dioxane		ND	ug/m3	4.0	0.66	EPA-TO-15	ND	A01	1	
Ethanol		89	ug/m3	4.0	0.84	EPA-TO-15	ND	A01	1	
Ethyl acetate		ND	ug/m3	4.0	0.66	EPA-TO-15	ND	A01	1	
Ethylbenzene		1.0	ug/m3	10	0.64	EPA-TO-15	ND	J,A01	1	
1-Ethyl-4-methylbenzene		ND	ug/m3	10	0.60	EPA-TO-15	ND	A01	1	
n-Heptane		ND	ug/m3	4.0	0.68	EPA-TO-15	ND	A01	1	
Hexachlorobutadiene		ND	ug/m3	20	3.0	EPA-TO-15	ND	A01	1	
Hexane		ND	ug/m3	10	0.40	EPA-TO-15	ND	A01	1	
2-Hexanone		ND	ug/m3	10	0.58	EPA-TO-15	ND	A01	1	
Isopropyl alcohol		1.1	ug/m3	4.0	0.64	EPA-TO-15	ND	J,A01	1	
Methylene chloride		ND	ug/m3	20	0.80	EPA-TO-15	ND	A01	1	
Methyl ethyl ketone		ND	ug/m3	4.0	0.38	EPA-TO-15	ND	A01	1	
Methyl isobutyl ketone		ND	ug/m3	10	0.52	EPA-TO-15	ND	A01	1	
Methyl t-butyl ether		ND	ug/m3	4.0	0.56	EPA-TO-15	ND	A01	1	
Propylene		ND	ug/m3	4.0	0.50	EPA-TO-15	ND	A01	1	
Styrene		ND	ug/m3	10	0.48	EPA-TO-15	ND	A01	1	
1,1,2,2-Tetrachloroethane		ND	ug/m3	10	0.94	EPA-TO-15	ND	A01	1	
Tetrachloroethene		430	ug/m3	4.0	1.0	EPA-TO-15	ND	A01	1	
Tetrahydrofuran		ND	ug/m3	4.0	0.54	EPA-TO-15	ND	A01	1	
Toluene		1.6	ug/m3	4.0	0.54	EPA-TO-15	ND	J,A01	1	
1,2,4-Trichlorobenzene		ND	ug/m3	20	1.6	EPA-TO-15	ND	A01	1	
1,1,1-Trichloroethane		43	ug/m3	10	0.78	EPA-TO-15	ND	A01	1	
1,1,2-Trichloroethane		ND	ug/m3	10	1.2	EPA-TO-15	ND	A01	1	
Trichloroethene		13	ug/m3	4.0	1.1	EPA-TO-15	ND	A01	1	
Trichlorofluoromethane		5.1	ug/m3	10	0.94	EPA-TO-15	ND	J,A01	1	
1,1,2-Trichloro-1,2,2-trifluoro	ethane	ND	ug/m3	10	1.1	EPA-TO-15	ND	A01	1	
1,2,4-Trimethylbenzene		ND	ug/m3	10	0.80	EPA-TO-15	ND	A01	1	
1,3,5-Trimethylbenzene		ND	ug/m3	10	0.80	EPA-TO-15	ND	A01	1	
Vinyl acetate		ND	ug/m3	4.0	0.66	EPA-TO-15	ND	A01	1	
Vinyl chloride		ND	ug/m3	4.0	0.78	EPA-TO-15	ND	A01	1	
p- & m-Xylenes		2.8	ug/m3	10	1.2	EPA-TO-15	ND	J,A01	1	
o-Xylene		ND	ug/m3	10	0.60	EPA-TO-15	ND	A01	1	
Total Xylenes		2.8	ug/m3	20	1.8	EPA-TO-15	ND	J,A01	1	

Page 11 of 35 Report ID: 1001532151

2923 S Tryon Street, Suite 100

Charlotte, NC 28203

Reported: 08/26/2024 16:12

Project: NWMS Project Number: SAI-413 Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID:	2413337-02	Client Sample	e Name:	SSV-2, 8/	16/2024	4:32:00PM, Tyler	vler Schulz		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
4-Bromofluorobenzene (Surrogate)		99.3	%	70 - 130 (LC	L - UCL)	EPA-TO-15			1

			Run					
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	Prep Method
1	EPA-TO-15	08/22/24 09:02	08/23/24 00:28	BEP	MS-A2	2	B195602	EPA TO-15

DCN = Data Continuation Number

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com Report ID: 1001532151

2923 S Tryon Street, Suite 100

Charlotte, NC 28203

Reported: 08/26/2024 16:12

Project: NWMS
Project Number: SAI-413
Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 24	13337-03 CI	ient Samp	le Name:	SSV-3, 8/	16/2024 4	:44:00PM, Tyler	Schulz			
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN	
Chlorodifluoromethane		ND	ug/m3	4.0	1.1	EPA-TO-15	ND	A01	1	
Acetone		2.9	ug/m3	10	0.86	EPA-TO-15	ND	J,A01	1	
Acrylonitrile		ND	ug/m3	4.0	0.54	EPA-TO-15	ND	A01	1	
Allyl chloride		ND	ug/m3	4.0	0.56	EPA-TO-15	ND	A01	1	
Benzene		ND	ug/m3	4.0	0.42	EPA-TO-15	ND	A01	1	
Benzyl chloride		ND	ug/m3	20	0.52	EPA-TO-15	ND	A01	1	
Bromodichloromethane		ND	ug/m3	10	0.90	EPA-TO-15	ND	A01	1	
Bromoform		ND	ug/m3	20	1.7	EPA-TO-15	ND	A01	1	
Bromomethane		ND	ug/m3	4.0	0.94	EPA-TO-15	ND	A01	1	
1,3-Butadiene		ND	ug/m3	4.0	0.44	EPA-TO-15	ND	A01	1	
Carbon disulfide		ND	ug/m3	4.0	0.38	EPA-TO-15	ND	A01	1	
Carbon tetrachloride		ND	ug/m3	10	0.90	EPA-TO-15	ND	A01	1	
Chlorobenzene		ND	ug/m3	10	0.80	EPA-TO-15	ND	A01	1	
Chloroethane		ND	ug/m3	4.0	1.1	EPA-TO-15	ND	A01	1	
Chloroform		ND	ug/m3	10	1.1	EPA-TO-15	ND	A01	1	
Chloromethane		ND	ug/m3	4.0	0.42	EPA-TO-15	ND	A01	1	
Cyclohexane		ND	ug/m3	4.0	0.76	EPA-TO-15	ND	A01	1	
Dibromochloromethane		ND	ug/m3	10	0.86	EPA-TO-15	ND	A01	1	
1,2-Dibromoethane		ND	ug/m3	10	1.2	EPA-TO-15	ND	A01	1	
1,2-Dichlorobenzene		ND	ug/m3	10	1.0	EPA-TO-15	ND	A01	1	
1,3-Dichlorobenzene		ND	ug/m3	10	0.62	EPA-TO-15	ND	A01	1	
1,4-Dichlorobenzene		ND	ug/m3	10	1.0	EPA-TO-15	ND	A01	1	
Dichlorodifluoromethane		16	ug/m3	10	0.90	EPA-TO-15	ND	A01	1	
1,1-Dichloroethane		ND	ug/m3	10	0.46	EPA-TO-15	ND	A01	1	
1,2-Dichloroethane		ND	ug/m3	10	0.52	EPA-TO-15	ND	A01	1	
1,1-Dichloroethene		ND	ug/m3	10	0.62	EPA-TO-15	ND	A01	1	
cis-1,2-Dichloroethene		ND	ug/m3	4.0	0.64	EPA-TO-15	ND	A01	1	
trans-1,2-Dichloroethene		ND	ug/m3	4.0	0.54	EPA-TO-15	ND	A01	1	
1,2-Dichloropropane		ND	ug/m3	10	0.64	EPA-TO-15	ND	A01	1	
cis-1,3-Dichloropropene		ND	ug/m3	10	0.60	EPA-TO-15	ND	A01	1	
trans-1,3-Dichloropropene		ND	ug/m3	10	0.80	EPA-TO-15	ND	A01	1	
1,2-Dichloro-1,1,2,2-tetrafluo	roethane	ND	ug/m3	10	1.8	EPA-TO-15	ND	A01	1	
1,1-Difluoroethane		ND	ug/m3	10	4.0	EPA-TO-15	ND	A01	1	

Report ID: 1001532151 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com Page 13 of 35

2923 S Tryon Street, Suite 100

Charlotte, NC 28203

Reported: 08/26/2024 16:12

Project: NWMS
Project Number: SAI-413
Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 24	113337-03	Client Sampl	e Name:	SSV-3, 8/	16/2024 4	1:44:00PM, Tyler	Schulz		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
1,4-Dioxane		ND	ug/m3	4.0	0.66	EPA-TO-15	ND ND	A01	1
Ethanol		92	ug/m3	4.0	0.84	EPA-TO-15	ND	A01	1
Ethyl acetate		ND	ug/m3	4.0	0.66	EPA-TO-15	ND	A01	1
Ethylbenzene		1.4	ug/m3	10	0.64	EPA-TO-15	ND	J,A01	1
1-Ethyl-4-methylbenzene		2.7	ug/m3	10	0.60	EPA-TO-15	ND	J,A01	1
n-Heptane		ND	ug/m3	4.0	0.68	EPA-TO-15	ND	A01	1
Hexachlorobutadiene		ND	ug/m3	20	3.0	EPA-TO-15	ND	A01	1
Hexane		ND	ug/m3	10	0.40	EPA-TO-15	ND	A01	1
2-Hexanone		ND	ug/m3	10	0.58	EPA-TO-15	ND	A01	1
Isopropyl alcohol		0.96	ug/m3	4.0	0.64	EPA-TO-15	ND	J,A01	1
Methylene chloride		ND	ug/m3	20	0.80	EPA-TO-15	ND	A01	1
Methyl ethyl ketone		ND	ug/m3	4.0	0.38	EPA-TO-15	ND	A01	1
Methyl isobutyl ketone		ND	ug/m3	10	0.52	EPA-TO-15	ND	A01	1
Methyl t-butyl ether		ND	ug/m3	4.0	0.56	EPA-TO-15	ND	A01	1
Propylene		ND	ug/m3	4.0	0.50	EPA-TO-15	ND	A01	1
Styrene		ND	ug/m3	10	0.48	EPA-TO-15	ND	A01	1
1,1,2,2-Tetrachloroethane		ND	ug/m3	10	0.94	EPA-TO-15	ND	A01	1
Tetrachloroethene		170	ug/m3	4.0	1.0	EPA-TO-15	ND	A01	1
Tetrahydrofuran		ND	ug/m3	4.0	0.54	EPA-TO-15	ND	A01	1
Toluene		2.3	ug/m3	4.0	0.54	EPA-TO-15	ND	J,A01	1
1,2,4-Trichlorobenzene		ND	ug/m3	20	1.6	EPA-TO-15	ND	A01	1
1,1,1-Trichloroethane		96	ug/m3	10	0.78	EPA-TO-15	ND	A01	1
1,1,2-Trichloroethane		ND	ug/m3	10	1.2	EPA-TO-15	ND	A01	1
Trichloroethene		ND	ug/m3	4.0	1.1	EPA-TO-15	ND	A01	1
Trichlorofluoromethane		6.7	ug/m3	10	0.94	EPA-TO-15	ND	J,A01	1
1,1,2-Trichloro-1,2,2-trifluoro	ethane	ND	ug/m3	10	1.1	EPA-TO-15	ND	A01	1
1,2,4-Trimethylbenzene		5.3	ug/m3	10	0.80	EPA-TO-15	ND	J,A01	1
1,3,5-Trimethylbenzene		1.5	ug/m3	10	0.80	EPA-TO-15	ND	J,A01	1
Vinyl acetate		ND	ug/m3	4.0	0.66	EPA-TO-15	ND	A01	1
Vinyl chloride		ND	ug/m3	4.0	0.78	EPA-TO-15	ND	A01	1
p- & m-Xylenes		5.8	ug/m3	10	1.2	EPA-TO-15	ND	J,A01	1
o-Xylene		1.4	ug/m3	10	0.60	EPA-TO-15	ND	J,A01	1
Total Xylenes		7.3	ug/m3	20	1.8	EPA-TO-15	ND	J,A01	1

Report ID: 1001532151 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com Page 14 of 35

2923 S Tryon Street, Suite 100

Charlotte, NC 28203

Reported: 08/26/2024 16:12

Project: NWMS

Project Number: SAI-413
Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID:	2413337-03	Client Sample	e Name:	SSV-3, 8/	16/2024	4:44:00PM, Tyler	Schulz		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
4-Bromofluorobenzene	(Surrogate)	97.3	%	70 - 130 (LC	L - UCL)	EPA-TO-15			1

			Run					
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	Prep Method
1	EPA-TO-15	08/22/24 09:02	08/23/24 01:13	BEP	MS-A2	2	B195602	EPA TO-15

DCN = Data Continuation Number

Report ID: 1001532151 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

2923 S Tryon Street, Suite 100

Charlotte, NC 28203

Reported: 08/26/2024 16:12

Project: NWMS
Project Number: SAI-413
Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 24	13337-05 Clie	ent Sampl	e Name:	SSV-5, 8/	16/2024 5	5:14:00PM, Tyler	Schulz		
Constituent	· .	Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
Chlorodifluoromethane	<u> </u>	ND	ug/m3	4.0	1.1	EPA-TO-15	ND ND	A01	1
Acetone		4.5	ug/m3	10	0.86	EPA-TO-15	ND	J,A01	1
Acrylonitrile		ND	ug/m3	4.0	0.54	EPA-TO-15	ND	A01	1
Allyl chloride		ND	ug/m3	4.0	0.56	EPA-TO-15	ND	A01	1
Benzene		ND	ug/m3	4.0	0.42	EPA-TO-15	ND	A01	1
Benzyl chloride		ND	ug/m3	20	0.52	EPA-TO-15	ND	A01	1
Bromodichloromethane		ND	ug/m3	10	0.90	EPA-TO-15	ND	A01	1
Bromoform		ND	ug/m3	20	1.7	EPA-TO-15	ND	A01	1
Bromomethane		ND	ug/m3	4.0	0.94	EPA-TO-15	ND	A01	1
1,3-Butadiene		ND	ug/m3	4.0	0.44	EPA-TO-15	ND	A01	1
Carbon disulfide		ND	ug/m3	4.0	0.38	EPA-TO-15	ND	A01	1
Carbon tetrachloride		ND	ug/m3	10	0.90	EPA-TO-15	ND	A01	1
Chlorobenzene		ND	ug/m3	10	0.80	EPA-TO-15	ND	A01	1
Chloroethane		ND	ug/m3	4.0	1.1	EPA-TO-15	ND	A01	1
Chloroform		ND	ug/m3	10	1.1	EPA-TO-15	ND	A01	1
Chloromethane		ND	ug/m3	4.0	0.42	EPA-TO-15	ND	A01	1
Cyclohexane		ND	ug/m3	4.0	0.76	EPA-TO-15	ND	A01	1
Dibromochloromethane		ND	ug/m3	10	0.86	EPA-TO-15	ND	A01	1
1,2-Dibromoethane		ND	ug/m3	10	1.2	EPA-TO-15	ND	A01	1
1,2-Dichlorobenzene		ND	ug/m3	10	1.0	EPA-TO-15	ND	A01	1
1,3-Dichlorobenzene		ND	ug/m3	10	0.62	EPA-TO-15	ND	A01	1
1,4-Dichlorobenzene		ND	ug/m3	10	1.0	EPA-TO-15	ND	A01	1
Dichlorodifluoromethane		3.1	ug/m3	10	0.90	EPA-TO-15	ND	J,A01	1
1,1-Dichloroethane		ND	ug/m3	10	0.46	EPA-TO-15	ND	A01	1
1,2-Dichloroethane		ND	ug/m3	10	0.52	EPA-TO-15	ND	A01	1
1,1-Dichloroethene		ND	ug/m3	10	0.62	EPA-TO-15	ND	A01	1
cis-1,2-Dichloroethene		ND	ug/m3	4.0	0.64	EPA-TO-15	ND	A01	1
trans-1,2-Dichloroethene		ND	ug/m3	4.0	0.54	EPA-TO-15	ND	A01	1
1,2-Dichloropropane		ND	ug/m3	10	0.64	EPA-TO-15	ND	A01	1
cis-1,3-Dichloropropene		ND	ug/m3	10	0.60	EPA-TO-15	ND	A01	1
trans-1,3-Dichloropropene		ND	ug/m3	10	0.80	EPA-TO-15	ND	A01	1
1,2-Dichloro-1,1,2,2-tetrafluor	roethane	ND	ug/m3	10	1.8	EPA-TO-15	ND	A01	1
1,1-Difluoroethane		ND	ug/m3	10	4.0	EPA-TO-15	ND	A01	1

Report ID: 1001532151 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com Page 16 of 35

2923 S Tryon Street, Suite 100

Charlotte, NC 28203

Reported: 08/26/2024 16:12

Project: NWMS
Project Number: SAI-413
Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 24	13337-05	Client Sampl	e Name:	SSV-5, 8/	16/2024 5	5:14:00PM, Tyler	Schulz		
Constituent		Danult	Heite	PQL	MDL	Mathad	MB	Lab	DON
Constituent 1,4-Dioxane		Result ND	Units ug/m3	4.0	0.66	Method EPA-TO-15	Bias ND	Quals A01	DCN 1
Ethanol		180	ug/m3	4.0	0.84	EPA-TO-15	ND	A01	<u>·</u> 1
Ethyl acetate		ND	ug/m3	4.0	0.66	EPA-TO-15	ND	A01	<u>.</u> 1
Ethylbenzene		ND	ug/m3	10	0.64	EPA-TO-15	ND	A01	<u>·</u> 1
1-Ethyl-4-methylbenzene		1.7	ug/m3	10	0.60	EPA-TO-15	ND	J,A01	1
n-Heptane		ND	ug/m3	4.0	0.68	EPA-TO-15	ND	A01	1
Hexachlorobutadiene		ND	ug/m3	20	3.0	EPA-TO-15	ND	A01	1
Hexane		ND	ug/m3	10	0.40	EPA-TO-15	ND	A01	1
2-Hexanone		ND	ug/m3	10	0.58	EPA-TO-15	ND	A01	1
Isopropyl alcohol		1.9	ug/m3	4.0	0.64	EPA-TO-15	ND	J,A01	1
Methylene chloride		ND	ug/m3	20	0.80	EPA-TO-15	ND	A01	1
Methyl ethyl ketone		ND	ug/m3	4.0	0.38	EPA-TO-15	ND	A01	1
Methyl isobutyl ketone		ND	ug/m3	10	0.52	EPA-TO-15	ND	A01	1
Methyl t-butyl ether		ND	ug/m3	4.0	0.56	EPA-TO-15	ND	A01	1
Propylene		ND	ug/m3	4.0	0.50	EPA-TO-15	ND	A01	1
Styrene		ND	ug/m3	10	0.48	EPA-TO-15	ND	A01	1
1,1,2,2-Tetrachloroethane		ND	ug/m3	10	0.94	EPA-TO-15	ND	A01	1
Tetrachloroethene		560	ug/m3	4.0	1.0	EPA-TO-15	ND	A01	1
Tetrahydrofuran		ND	ug/m3	4.0	0.54	EPA-TO-15	ND	A01	1
Toluene		2.5	ug/m3	4.0	0.54	EPA-TO-15	ND	J,A01	1
1,2,4-Trichlorobenzene		ND	ug/m3	20	1.6	EPA-TO-15	ND	A01	1
1,1,1-Trichloroethane		10	ug/m3	10	0.78	EPA-TO-15	ND	A01	1
1,1,2-Trichloroethane		ND	ug/m3	10	1.2	EPA-TO-15	ND	A01	1
Trichloroethene		ND	ug/m3	4.0	1.1	EPA-TO-15	ND	A01	1
Trichlorofluoromethane		6.9	ug/m3	10	0.94	EPA-TO-15	ND	J,A01	1
1,1,2-Trichloro-1,2,2-trifluoro	ethane	ND	ug/m3	10	1.1	EPA-TO-15	ND	A01	1
1,2,4-Trimethylbenzene		ND	ug/m3	10	0.80	EPA-TO-15	ND	A01	1
1,3,5-Trimethylbenzene		ND	ug/m3	10	0.80	EPA-TO-15	ND	A01	1
Vinyl acetate		ND	ug/m3	4.0	0.66	EPA-TO-15	ND	A01	1
Vinyl chloride		ND	ug/m3	4.0	0.78	EPA-TO-15	ND	A01	1
p- & m-Xylenes		3.3	ug/m3	10	1.2	EPA-TO-15	ND	J,A01	1
o-Xylene		1.0	ug/m3	10	0.60	EPA-TO-15	ND	J,A01	1
Total Xylenes		4.3	ug/m3	20	1.8	EPA-TO-15	ND	J,A01	1

Report ID: 1001532151 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com Page 17 of 35

2923 S Tryon Street, Suite 100

Charlotte, NC 28203

Reported: 08/26/2024 16:12

Project: NWMS

Project Number: SAI-413
Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID:	2413337-05	Client Sample	e Name:	SSV-5, 8/	16/2024	5:14:00PM, Tyler	Schulz		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
4-Bromofluorobenzene	(Surrogate)	96.9	%	70 - 130 (LC	L - UCL)	EPA-TO-15			1

			Run					
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	Prep Method
1	EPA-TO-15	08/22/24 09:02	08/23/24 01:57	BEP	MS-A2	2	B195602	EPA TO-15

DCN = Data Continuation Number

Report ID: 1001532151 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

2923 S Tryon Street, Suite 100

Charlotte, NC 28203

Reported: 08/26/2024 16:12

Project: NWMS Project Number: SAI-413 Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 24	13337-06	Client Sampl	e Name:	SSV-6, 8/	16/2024	5:35:00PM, Tyler	Schulz		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
Chlorodifluoromethane		ND	ug/m3	20	5.3	EPA-TO-15	ND	A01	1
Acetone		6.9	ug/m3	50	4.3	EPA-TO-15	ND	J,A01	1
Acrylonitrile		ND	ug/m3	20	2.7	EPA-TO-15	ND	A01	1
Allyl chloride		ND	ug/m3	20	2.8	EPA-TO-15	ND	A01	1
Benzene		ND	ug/m3	20	2.1	EPA-TO-15	ND	A01	1
Benzyl chloride		ND	ug/m3	100	2.6	EPA-TO-15	ND	A01	1
Bromodichloromethane		ND	ug/m3	50	4.5	EPA-TO-15	ND	A01	1
Bromoform		ND	ug/m3	100	8.6	EPA-TO-15	ND	A01	1
Bromomethane		ND	ug/m3	20	4.7	EPA-TO-15	ND	A01	1
1,3-Butadiene		ND	ug/m3	20	2.2	EPA-TO-15	ND	A01	1
Carbon disulfide		ND	ug/m3	20	1.9	EPA-TO-15	ND	A01	1
Carbon tetrachloride		ND	ug/m3	50	4.5	EPA-TO-15	ND	A01	1
Chlorobenzene		ND	ug/m3	50	4.0	EPA-TO-15	ND	A01	1
Chloroethane		ND	ug/m3	20	5.3	EPA-TO-15	ND	A01	1
Chloroform		ND	ug/m3	50	5.4	EPA-TO-15	ND	A01	1
Chloromethane		ND	ug/m3	20	2.1	EPA-TO-15	ND	A01	1
Cyclohexane		ND	ug/m3	20	3.8	EPA-TO-15	ND	A01	1
Dibromochloromethane		ND	ug/m3	50	4.3	EPA-TO-15	ND	A01	1
1,2-Dibromoethane		ND	ug/m3	50	5.8	EPA-TO-15	ND	A01	1
1,2-Dichlorobenzene		ND	ug/m3	50	5.0	EPA-TO-15	ND	A01	1
1,3-Dichlorobenzene		ND	ug/m3	50	3.1	EPA-TO-15	ND	A01	1
1,4-Dichlorobenzene		ND	ug/m3	50	5.0	EPA-TO-15	ND	A01	1
Dichlorodifluoromethane		9.5	ug/m3	50	4.5	EPA-TO-15	ND	J,A01	1
1,1-Dichloroethane		ND	ug/m3	50	2.3	EPA-TO-15	ND	A01	1
1,2-Dichloroethane		ND	ug/m3	50	2.6	EPA-TO-15	ND	A01	1
1,1-Dichloroethene		ND	ug/m3	50	3.1	EPA-TO-15	ND	A01	1
cis-1,2-Dichloroethene		ND	ug/m3	20	3.2	EPA-TO-15	ND	A01	1
trans-1,2-Dichloroethene		ND	ug/m3	20	2.7	EPA-TO-15	ND	A01	1
1,2-Dichloropropane		ND	ug/m3	50	3.2	EPA-TO-15	ND	A01	1
cis-1,3-Dichloropropene		ND	ug/m3	50	3.0	EPA-TO-15	ND	A01	1
trans-1,3-Dichloropropene		ND	ug/m3	50	4.0	EPA-TO-15	ND	A01	1
1,2-Dichloro-1,1,2,2-tetrafluo	oethane	ND	ug/m3	50	9.1	EPA-TO-15	ND	A01	1
1,1-Difluoroethane		ND	ug/m3	50	20	EPA-TO-15	ND	A01	1

Page 19 of 35 Report ID: 1001532151

2923 S Tryon Street, Suite 100

Charlotte, NC 28203

Reported: 08/26/2024 16:12

Project: NWMS
Project Number: SAI-413
Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 24	413337-06	Client Sampl	e Name:	SSV-6, 8/	16/2024	5:35:00PM, Tyler	Schulz		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
1,4-Dioxane		ND	ug/m3	20	3.3	EPA-TO-15	ND	A01	1
Ethanol		190	ug/m3	20	4.2	EPA-TO-15	ND	A01	1
Ethyl acetate		ND	ug/m3	20	3.3	EPA-TO-15	ND	A01	1
Ethylbenzene		ND	ug/m3	50	3.2	EPA-TO-15	ND	A01	1
1-Ethyl-4-methylbenzene		ND	ug/m3	50	3.0	EPA-TO-15	ND	A01	1
n-Heptane		ND	ug/m3	20	3.4	EPA-TO-15	ND	A01	1
Hexachlorobutadiene		ND	ug/m3	100	15	EPA-TO-15	ND	A01	1
Hexane		ND	ug/m3	50	2.0	EPA-TO-15	ND	A01	1
2-Hexanone		ND	ug/m3	50	2.9	EPA-TO-15	ND	A01	1
Isopropyl alcohol		ND	ug/m3	20	3.2	EPA-TO-15	ND	A01	1
Methylene chloride		ND	ug/m3	100	4.0	EPA-TO-15	ND	A01	1
Methyl ethyl ketone		ND	ug/m3	20	1.9	EPA-TO-15	ND	A01	1
Methyl isobutyl ketone		ND	ug/m3	50	2.6	EPA-TO-15	ND	A01	1
Methyl t-butyl ether		ND	ug/m3	20	2.8	EPA-TO-15	ND	A01	1
Propylene		ND	ug/m3	20	2.5	EPA-TO-15	ND	A01	1
Styrene		ND	ug/m3	50	2.4	EPA-TO-15	ND	A01	1
1,1,2,2-Tetrachloroethane		ND	ug/m3	50	4.7	EPA-TO-15	ND	A01	1
Tetrachloroethene		1200	ug/m3	20	5.0	EPA-TO-15	ND	A01	1
Tetrahydrofuran		ND	ug/m3	20	2.7	EPA-TO-15	ND	A01	1
Toluene		ND	ug/m3	20	2.7	EPA-TO-15	ND	A01	1
1,2,4-Trichlorobenzene		ND	ug/m3	100	8.2	EPA-TO-15	ND	A01	1
1,1,1-Trichloroethane		130	ug/m3	50	3.9	EPA-TO-15	ND	A01	1
1,1,2-Trichloroethane		ND	ug/m3	50	6.1	EPA-TO-15	ND	A01	1
Trichloroethene		ND	ug/m3	20	5.4	EPA-TO-15	ND	A01	1
Trichlorofluoromethane		7.2	ug/m3	50	4.7	EPA-TO-15	ND	J,A01	1
1,1,2-Trichloro-1,2,2-trifluoro	ethane	ND	ug/m3	50	5.5	EPA-TO-15	ND	A01	1
1,2,4-Trimethylbenzene		ND	ug/m3	50	4.0	EPA-TO-15	ND	A01	1
1,3,5-Trimethylbenzene		ND	ug/m3	50	4.0	EPA-TO-15	ND	A01	1
Vinyl acetate		ND	ug/m3	20	3.3	EPA-TO-15	ND	A01	1
Vinyl chloride		ND	ug/m3	20	3.9	EPA-TO-15	ND	A01	1
p- & m-Xylenes		ND	ug/m3	50	6.1	EPA-TO-15	ND	A01	1
o-Xylene		ND	ug/m3	50	3.0	EPA-TO-15	ND	A01	1
Total Xylenes		ND	ug/m3	100	9.1	EPA-TO-15	ND	A01	1

2923 S Tryon Street, Suite 100

Charlotte, NC 28203

Reported: 08/26/2024 16:12

Project: NWMS
Project Number: SAI-413
Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID:	2413337-06	Client Sample	e Name:	SSV-6, 8/	SSV-6, 8/16/2024 5:35:00PM, Tyler Schulz				
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
4-Bromofluorobenzene	(Surrogate)	97.1	%	70 - 130 (LC	L - UCL)	EPA-TO-15			1

			Run					
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	Prep Method
1	EPA-TO-15	08/22/24 09:02	08/23/24 02:40	BEP	MS-A2	10	B195602	EPA TO-15

DCN = Data Continuation Number

2923 S Tryon Street, Suite 100

Charlotte, NC 28203

Reported: 08/26/2024 16:12

Project: NWMS
Project Number: SAI-413
Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 24	13337-07 c	lient Samp	le Name:	SSV-7, 8/	16/2024 5	5:50:00PM, Tyler	Schulz		
Constituent	•	Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
Chlorodifluoromethane		ND	ug/m3	4.0	1.1	EPA-TO-15	ND	A01	1
Acetone		2.6	ug/m3	10	0.86	EPA-TO-15	ND	J,A01	1
Acrylonitrile		ND	ug/m3	4.0	0.54	EPA-TO-15	ND	A01	1
Allyl chloride		ND	ug/m3	4.0	0.56	EPA-TO-15	ND	A01	1
Benzene		ND	ug/m3	4.0	0.42	EPA-TO-15	ND	A01	1
Benzyl chloride		ND	ug/m3	20	0.52	EPA-TO-15	ND	A01	1
Bromodichloromethane		ND	ug/m3	10	0.90	EPA-TO-15	ND	A01	1
Bromoform		ND	ug/m3	20	1.7	EPA-TO-15	ND	A01	1
Bromomethane		ND	ug/m3	4.0	0.94	EPA-TO-15	ND	A01	1
1,3-Butadiene		ND	ug/m3	4.0	0.44	EPA-TO-15	ND	A01	1
Carbon disulfide		ND	ug/m3	4.0	0.38	EPA-TO-15	ND	A01	1
Carbon tetrachloride		ND	ug/m3	10	0.90	EPA-TO-15	ND	A01	1
Chlorobenzene		ND	ug/m3	10	0.80	EPA-TO-15	ND	A01	1
Chloroethane		ND	ug/m3	4.0	1.1	EPA-TO-15	ND	A01	1
Chloroform		ND	ug/m3	10	1.1	EPA-TO-15	ND	A01	1
Chloromethane		ND	ug/m3	4.0	0.42	EPA-TO-15	ND	A01	1
Cyclohexane		ND	ug/m3	4.0	0.76	EPA-TO-15	ND	A01	1
Dibromochloromethane		ND	ug/m3	10	0.86	EPA-TO-15	ND	A01	1
1,2-Dibromoethane		ND	ug/m3	10	1.2	EPA-TO-15	ND	A01	1
1,2-Dichlorobenzene		ND	ug/m3	10	1.0	EPA-TO-15	ND	A01	1
1,3-Dichlorobenzene		ND	ug/m3	10	0.62	EPA-TO-15	ND	A01	1
1,4-Dichlorobenzene		ND	ug/m3	10	1.0	EPA-TO-15	ND	A01	1
Dichlorodifluoromethane		53	ug/m3	10	0.90	EPA-TO-15	ND	A01	1
1,1-Dichloroethane		ND	ug/m3	10	0.46	EPA-TO-15	ND	A01	1
1,2-Dichloroethane		ND	ug/m3	10	0.52	EPA-TO-15	ND	A01	1
1,1-Dichloroethene		ND	ug/m3	10	0.62	EPA-TO-15	ND	A01	1
cis-1,2-Dichloroethene		ND	ug/m3	4.0	0.64	EPA-TO-15	ND	A01	1
trans-1,2-Dichloroethene		ND	ug/m3	4.0	0.54	EPA-TO-15	ND	A01	1
1,2-Dichloropropane		ND	ug/m3	10	0.64	EPA-TO-15	ND	A01	1
cis-1,3-Dichloropropene		ND	ug/m3	10	0.60	EPA-TO-15	ND	A01	1
trans-1,3-Dichloropropene		ND	ug/m3	10	0.80	EPA-TO-15	ND	A01	1
1,2-Dichloro-1,1,2,2-tetrafluor	roethane	ND	ug/m3	10	1.8	EPA-TO-15	ND	A01	1
1,1-Difluoroethane		ND	ug/m3	10	4.0	EPA-TO-15	ND	A01	1

2923 S Tryon Street, Suite 100

Charlotte, NC 28203

Reported: 08/26/2024 16:12

Project: NWMS Project Number: SAI-413 Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID:	2413337-07	Client Sampl	e Name:	SSV-7, 8/	16/2024 5	5:50:00PM, Tyler	Schulz		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
1,4-Dioxane		ND	ug/m3	4.0	0.66	EPA-TO-15	ND ND	A01	1
Ethanol		74	ug/m3	4.0	0.84	EPA-TO-15	ND	A01	1
Ethyl acetate		ND	ug/m3	4.0	0.66	EPA-TO-15	ND	A01	1
Ethylbenzene		5.6	ug/m3	10	0.64	EPA-TO-15	ND	J,A01	1
1-Ethyl-4-methylbenzene		3.1	ug/m3	10	0.60	EPA-TO-15	ND	J,A01	1
n-Heptane		ND	ug/m3	4.0	0.68	EPA-TO-15	ND	A01	1
Hexachlorobutadiene		ND	ug/m3	20	3.0	EPA-TO-15	ND	A01	1
Hexane		ND	ug/m3	10	0.40	EPA-TO-15	ND	A01	1
2-Hexanone		ND	ug/m3	10	0.58	EPA-TO-15	ND	A01	1
Isopropyl alcohol		ND	ug/m3	4.0	0.64	EPA-TO-15	ND	A01	1
Methylene chloride		ND	ug/m3	20	0.80	EPA-TO-15	ND	A01	1
Methyl ethyl ketone		ND	ug/m3	4.0	0.38	EPA-TO-15	ND	A01	1
Methyl isobutyl ketone		ND	ug/m3	10	0.52	EPA-TO-15	ND	A01	1
Methyl t-butyl ether		ND	ug/m3	4.0	0.56	EPA-TO-15	ND	A01	1
Propylene		ND	ug/m3	4.0	0.50	EPA-TO-15	ND	A01	1
Styrene		ND	ug/m3	10	0.48	EPA-TO-15	ND	A01	1
1,1,2,2-Tetrachloroethane		ND	ug/m3	10	0.94	EPA-TO-15	ND	A01	1
Tetrachloroethene		21	ug/m3	4.0	1.0	EPA-TO-15	ND	A01	1
Tetrahydrofuran		ND	ug/m3	4.0	0.54	EPA-TO-15	ND	A01	1
Toluene		2.2	ug/m3	4.0	0.54	EPA-TO-15	ND	J,A01	1
1,2,4-Trichlorobenzene		ND	ug/m3	20	1.6	EPA-TO-15	ND	A01	1
1,1,1-Trichloroethane		1.4	ug/m3	10	0.78	EPA-TO-15	ND	J,A01	1
1,1,2-Trichloroethane		ND	ug/m3	10	1.2	EPA-TO-15	ND	A01	1
Trichloroethene		ND	ug/m3	4.0	1.1	EPA-TO-15	ND	A01	1
Trichlorofluoromethane		2.0	ug/m3	10	0.94	EPA-TO-15	ND	J,A01	1
1,1,2-Trichloro-1,2,2-trifluo	roethane	ND	ug/m3	10	1.1	EPA-TO-15	ND	A01	1
1,2,4-Trimethylbenzene		6.0	ug/m3	10	0.80	EPA-TO-15	ND	J,A01	1
1,3,5-Trimethylbenzene		1.2	ug/m3	10	0.80	EPA-TO-15	ND	J,A01	1
Vinyl acetate		ND	ug/m3	4.0	0.66	EPA-TO-15	ND	A01	1
Vinyl chloride		ND	ug/m3	4.0	0.78	EPA-TO-15	ND	A01	1
p- & m-Xylenes		6.3	ug/m3	10	1.2	EPA-TO-15	ND	J,A01	1
o-Xylene		ND	ug/m3	10	0.60	EPA-TO-15	ND	A01	1
Total Xylenes		6.3	ug/m3	20	1.8	EPA-TO-15	ND	J,A01	1

Page 23 of 35 Report ID: 1001532151

2923 S Tryon Street, Suite 100

Charlotte, NC 28203

Reported: 08/26/2024 16:12

Project: NWMS
Project Number: SAI-413
Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID:	2413337-07	Client Sample	e Name:	SSV-7, 8/	16/2024	5:50:00PM, Tyler	Schulz		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
4-Bromofluorobenzene	(Surrogate)	96.5	%	70 - 130 (LC	L - UCL)	EPA-TO-15			1

			Run					
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	Prep Method
1	EPA-TO-15	08/22/24 09:02	08/23/24 03:25	BEP	MS-A2	2	B195602	EPA TO-15

DCN = Data Continuation Number

2923 S Tryon Street, Suite 100

Charlotte, NC 28203

Reported: 08/26/2024 16:12

Project: NWMS
Project Number: SAI-413
Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 24	13337-08	Client Sampl	e Name:	SSV-8, 8/	16/2024 6	6:13:00PM, Tyler	Schulz		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
Chlorodifluoromethane		ND	ug/m3	4.0	1.1	EPA-TO-15	ND	A01	1
Acetone		5.0	ug/m3	10	0.86	EPA-TO-15	ND	J,A01	1
Acrylonitrile		ND	ug/m3	4.0	0.54	EPA-TO-15	ND	A01	1
Allyl chloride		ND	ug/m3	4.0	0.56	EPA-TO-15	ND	A01	1
Benzene		0.85	ug/m3	4.0	0.42	EPA-TO-15	ND	J,A01	1
Benzyl chloride		ND	ug/m3	20	0.52	EPA-TO-15	ND	A01	1
Bromodichloromethane		ND	ug/m3	10	0.90	EPA-TO-15	ND	A01	1
Bromoform		ND	ug/m3	20	1.7	EPA-TO-15	ND	A01	1
Bromomethane		ND	ug/m3	4.0	0.94	EPA-TO-15	ND	A01	1
1,3-Butadiene		ND	ug/m3	4.0	0.44	EPA-TO-15	ND	A01	1
Carbon disulfide		ND	ug/m3	4.0	0.38	EPA-TO-15	ND	A01	1
Carbon tetrachloride		ND	ug/m3	10	0.90	EPA-TO-15	ND	A01	1
Chlorobenzene		ND	ug/m3	10	0.80	EPA-TO-15	ND	A01	1
Chloroethane		ND	ug/m3	4.0	1.1	EPA-TO-15	ND	A01	1
Chloroform		ND	ug/m3	10	1.1	EPA-TO-15	ND	A01	1
Chloromethane		0.73	ug/m3	4.0	0.42	EPA-TO-15	ND	J,A01	1
Cyclohexane		ND	ug/m3	4.0	0.76	EPA-TO-15	ND	A01	1
Dibromochloromethane		ND	ug/m3	10	0.86	EPA-TO-15	ND	A01	1
1,2-Dibromoethane		2.7	ug/m3	10	1.2	EPA-TO-15	ND	J,A01	1
1,2-Dichlorobenzene		ND	ug/m3	10	1.0	EPA-TO-15	ND	A01	1
1,3-Dichlorobenzene		ND	ug/m3	10	0.62	EPA-TO-15	ND	A01	1
1,4-Dichlorobenzene		ND	ug/m3	10	1.0	EPA-TO-15	ND	A01	1
Dichlorodifluoromethane		2.5	ug/m3	10	0.90	EPA-TO-15	ND	J,A01	1
1,1-Dichloroethane		ND	ug/m3	10	0.46	EPA-TO-15	ND	A01	1
1,2-Dichloroethane		ND	ug/m3	10	0.52	EPA-TO-15	ND	A01	1
1,1-Dichloroethene		ND	ug/m3	10	0.62	EPA-TO-15	ND	A01	1
cis-1,2-Dichloroethene		ND	ug/m3	4.0	0.64	EPA-TO-15	ND	A01	1
trans-1,2-Dichloroethene		ND	ug/m3	4.0	0.54	EPA-TO-15	ND	A01	1
1,2-Dichloropropane		ND	ug/m3	10	0.64	EPA-TO-15	ND	A01	1
cis-1,3-Dichloropropene		ND	ug/m3	10	0.60	EPA-TO-15	ND	A01	1
trans-1,3-Dichloropropene		ND	ug/m3	10	0.80	EPA-TO-15	ND	A01	1
1,2-Dichloro-1,1,2,2-tetrafluo	oethane	ND	ug/m3	10	1.8	EPA-TO-15	ND	A01	1
1,1-Difluoroethane		ND	ug/m3	10	4.0	EPA-TO-15	ND	A01	1

2923 S Tryon Street, Suite 100 Charlotte, NC 28203

Reported: 08/26/2024 16:12

Project: NWMS Project Number: SAI-413 Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 24	113337-08	Client Sampl	e Name:	SSV-8, 8/	16/2024 6	6:13:00PM, Tyler	Schulz		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
1,4-Dioxane		ND	ug/m3	4.0	0.66	EPA-TO-15	ND	A01	1
Ethanol		120	ug/m3	4.0	0.84	EPA-TO-15	ND	A01	1
Ethyl acetate		ND	ug/m3	4.0	0.66	EPA-TO-15	ND	A01	1
Ethylbenzene		2.5	ug/m3	10	0.64	EPA-TO-15	ND	J,A01	1
1-Ethyl-4-methylbenzene		2.6	ug/m3	10	0.60	EPA-TO-15	ND	J,A01	1
n-Heptane		ND	ug/m3	4.0	0.68	EPA-TO-15	ND	A01	1
Hexachlorobutadiene		ND	ug/m3	20	3.0	EPA-TO-15	ND	A01	1
Hexane		ND	ug/m3	10	0.40	EPA-TO-15	ND	A01	1
2-Hexanone		ND	ug/m3	10	0.58	EPA-TO-15	ND	A01	1
Isopropyl alcohol		1.2	ug/m3	4.0	0.64	EPA-TO-15	ND	J,A01	1
Methylene chloride		ND	ug/m3	20	0.80	EPA-TO-15	ND	A01	1
Methyl ethyl ketone		ND	ug/m3	4.0	0.38	EPA-TO-15	ND	A01	1
Methyl isobutyl ketone		ND	ug/m3	10	0.52	EPA-TO-15	ND	A01	1
Methyl t-butyl ether		ND	ug/m3	4.0	0.56	EPA-TO-15	ND	A01	1
Propylene		ND	ug/m3	4.0	0.50	EPA-TO-15	ND	A01	1
Styrene		ND	ug/m3	10	0.48	EPA-TO-15	ND	A01	1
1,1,2,2-Tetrachloroethane		ND	ug/m3	10	0.94	EPA-TO-15	ND	A01	1
Tetrachloroethene		8.4	ug/m3	4.0	1.0	EPA-TO-15	ND	A01	1
Tetrahydrofuran		ND	ug/m3	4.0	0.54	EPA-TO-15	ND	A01	1
Toluene		6.8	ug/m3	4.0	0.54	EPA-TO-15	ND	A01	1
1,2,4-Trichlorobenzene		ND	ug/m3	20	1.6	EPA-TO-15	ND	A01	1
1,1,1-Trichloroethane		17	ug/m3	10	0.78	EPA-TO-15	ND	A01	1
1,1,2-Trichloroethane		ND	ug/m3	10	1.2	EPA-TO-15	ND	A01	1
Trichloroethene		ND	ug/m3	4.0	1.1	EPA-TO-15	ND	A01	1
Trichlorofluoromethane		2.8	ug/m3	10	0.94	EPA-TO-15	ND	J,A01	1
1,1,2-Trichloro-1,2,2-trifluoro	ethane	ND	ug/m3	10	1.1	EPA-TO-15	ND	A01	1
1,2,4-Trimethylbenzene		3.7	ug/m3	10	0.80	EPA-TO-15	ND	J,A01	1
1,3,5-Trimethylbenzene		1.2	ug/m3	10	0.80	EPA-TO-15	ND	J,A01	1
Vinyl acetate		ND	ug/m3	4.0	0.66	EPA-TO-15	ND	A01	1
Vinyl chloride		ND	ug/m3	4.0	0.78	EPA-TO-15	ND	A01	1
p- & m-Xylenes		9.2	ug/m3	10	1.2	EPA-TO-15	ND	J,A01	1
o-Xylene		3.2	ug/m3	10	0.60	EPA-TO-15	ND	J,A01	1
Total Xylenes		12	ug/m3	20	1.8	EPA-TO-15	ND	J,A01	1

Page 26 of 35 Report ID: 1001532151

2923 S Tryon Street, Suite 100

Charlotte, NC 28203

Reported: 08/26/2024 16:12

Project: NWMS

Project Number: SAI-413
Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID:	2413337-08	Client Sample	e Name:	SSV-8, 8/	16/2024	6:13:00PM, Tyler	Schulz		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
4-Bromofluorobenzene	(Surrogate)	96.5	%	70 - 130 (LC	L - UCL)	EPA-TO-15			1

			Run					
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	Prep Method
1	EPA-TO-15	08/22/24 09:02	08/23/24 04:10	BEP	MS-A2	2	B195602	EPA TO-15

DCN = Data Continuation Number

2923 S Tryon Street, Suite 100

Charlotte, NC 28203

Reported: 08/26/2024 16:12

Project: NWMS Project Number: SAI-413 Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID: 24	13337-09	Client Sampl	e Name:	SSV-DUP	P-1, 8/16/20	24 12:00:00AM,	Tyler Schulz		
Constituent	•	Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
Chlorodifluoromethane		ND	ug/m3	4.0	1.1	EPA-TO-15	ND	A01	1
Acetone		29	ug/m3	10	0.86	EPA-TO-15	ND	A01	1
Acrylonitrile		ND	ug/m3	4.0	0.54	EPA-TO-15	ND	A01	1
Allyl chloride		ND	ug/m3	4.0	0.56	EPA-TO-15	ND	A01	1
Benzene		ND	ug/m3	4.0	0.42	EPA-TO-15	ND	A01	1
Benzyl chloride		ND	ug/m3	20	0.52	EPA-TO-15	ND	A01	1
Bromodichloromethane		ND	ug/m3	10	0.90	EPA-TO-15	ND	A01	1
Bromoform		ND	ug/m3	20	1.7	EPA-TO-15	ND	A01	1
Bromomethane		ND	ug/m3	4.0	0.94	EPA-TO-15	ND	A01	1
1,3-Butadiene		ND	ug/m3	4.0	0.44	EPA-TO-15	ND	A01	1
Carbon disulfide		ND	ug/m3	4.0	0.38	EPA-TO-15	ND	A01	1
Carbon tetrachloride		ND	ug/m3	10	0.90	EPA-TO-15	ND	A01	1
Chlorobenzene		ND	ug/m3	10	0.80	EPA-TO-15	ND	A01	1
Chloroethane		ND	ug/m3	4.0	1.1	EPA-TO-15	ND	A01	1
Chloroform		ND	ug/m3	10	1.1	EPA-TO-15	ND	A01	1
Chloromethane		1.1	ug/m3	4.0	0.42	EPA-TO-15	ND	J,A01	1
Cyclohexane		ND	ug/m3	4.0	0.76	EPA-TO-15	ND	A01	1
Dibromochloromethane		ND	ug/m3	10	0.86	EPA-TO-15	ND	A01	1
1,2-Dibromoethane		ND	ug/m3	10	1.2	EPA-TO-15	ND	A01	1
1,2-Dichlorobenzene		ND	ug/m3	10	1.0	EPA-TO-15	ND	A01	1
1,3-Dichlorobenzene		ND	ug/m3	10	0.62	EPA-TO-15	ND	A01	1
1,4-Dichlorobenzene		ND	ug/m3	10	1.0	EPA-TO-15	ND	A01	1
Dichlorodifluoromethane		2.4	ug/m3	10	0.90	EPA-TO-15	ND	J,A01	1
1,1-Dichloroethane		ND	ug/m3	10	0.46	EPA-TO-15	ND	A01	1
1,2-Dichloroethane		ND	ug/m3	10	0.52	EPA-TO-15	ND	A01	1
1,1-Dichloroethene		ND	ug/m3	10	0.62	EPA-TO-15	ND	A01	1
cis-1,2-Dichloroethene		ND	ug/m3	4.0	0.64	EPA-TO-15	ND	A01	1
trans-1,2-Dichloroethene		ND	ug/m3	4.0	0.54	EPA-TO-15	ND	A01	1
1,2-Dichloropropane		ND	ug/m3	10	0.64	EPA-TO-15	ND	A01	1
cis-1,3-Dichloropropene		ND	ug/m3	10	0.60	EPA-TO-15	ND	A01	1
trans-1,3-Dichloropropene		ND	ug/m3	10	0.80	EPA-TO-15	ND	A01	1
1,2-Dichloro-1,1,2,2-tetrafluo	roethane	ND	ug/m3	10	1.8	EPA-TO-15	ND	A01	1
1,1-Difluoroethane		ND	ug/m3	10	4.0	EPA-TO-15	ND	A01	1

Page 28 of 35 Report ID: 1001532151

2923 S Tryon Street, Suite 100

Charlotte, NC 28203

Reported: 08/26/2024 16:12

Project: NWMS Project Number: SAI-413 Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID:	2413337-09	Client Sampl	e Name:	: SSV-DUP-1, 8/16/2024 12:00:00AM, Tyler Schulz					
				POI.	MDI		MB	Lab	
Constituent 1,4-Dioxane		Result 22	Units ug/m3	PQL 4.0	MDL 0.66	Method EPA-TO-15	Bias ND	Quals A01	DCN 1
Éthanol		230	ug/m3	4.0	0.84	EPA-TO-15	ND	A01	<u>·</u> 1
Ethyl acetate		ND	ug/m3	4.0	0.66	EPA-TO-15	ND	A01	<u>·</u> 1
Ethylbenzene		ND	ug/m3	10	0.64	EPA-TO-15	ND	A01	<u>·</u> 1
1-Ethyl-4-methylbenzene	•	2.0	ug/m3	10	0.60	EPA-TO-15	ND	J,A01	<u>·</u> 1
n-Heptane		ND	ug/m3	4.0	0.68	EPA-TO-15	ND	A01	1
Hexachlorobutadiene		ND	ug/m3	20	3.0	EPA-TO-15	ND	A01	1
Hexane		ND	ug/m3	10	0.40	EPA-TO-15	ND	A01	1
2-Hexanone		ND	ug/m3	10	0.58	EPA-TO-15	ND	A01	1
Isopropyl alcohol		10	ug/m3	4.0	0.64	EPA-TO-15	ND	A01	1
Methylene chloride		ND	ug/m3	20	0.80	EPA-TO-15	ND	A01	1
Methyl ethyl ketone		4.2	ug/m3	4.0	0.38	EPA-TO-15	ND	A01	1
Methyl isobutyl ketone		2.0	ug/m3	10	0.52	EPA-TO-15	ND	J,A01	1
Methyl t-butyl ether		ND	ug/m3	4.0	0.56	EPA-TO-15	ND	A01	1
Propylene		ND	ug/m3	4.0	0.50	EPA-TO-15	ND	A01	1
Styrene		ND	ug/m3	10	0.48	EPA-TO-15	ND	A01	1
1,1,2,2-Tetrachloroethane)	ND	ug/m3	10	0.94	EPA-TO-15	ND	A01	1
Tetrachloroethene		ND	ug/m3	4.0	1.0	EPA-TO-15	ND	A01	1
Tetrahydrofuran		ND	ug/m3	4.0	0.54	EPA-TO-15	ND	A01	1
Toluene		3.4	ug/m3	4.0	0.54	EPA-TO-15	ND	J,A01	1
1,2,4-Trichlorobenzene		ND	ug/m3	20	1.6	EPA-TO-15	ND	A01	1
1,1,1-Trichloroethane		ND	ug/m3	10	0.78	EPA-TO-15	ND	A01	1
1,1,2-Trichloroethane		ND	ug/m3	10	1.2	EPA-TO-15	ND	A01	1
Trichloroethene		ND	ug/m3	4.0	1.1	EPA-TO-15	ND	A01	1
Trichlorofluoromethane		1.6	ug/m3	10	0.94	EPA-TO-15	ND	J,A01	1
1,1,2-Trichloro-1,2,2-triflu	oroethane	ND	ug/m3	10	1.1	EPA-TO-15	ND	A01	1
1,2,4-Trimethylbenzene		3.8	ug/m3	10	0.80	EPA-TO-15	ND	J,A01	1
1,3,5-Trimethylbenzene		1.3	ug/m3	10	0.80	EPA-TO-15	ND	J,A01	1
Vinyl acetate		ND	ug/m3	4.0	0.66	EPA-TO-15	ND	A01	1
Vinyl chloride		ND	ug/m3	4.0	0.78	EPA-TO-15	ND	A01	1
p- & m-Xylenes		2.7	ug/m3	10	1.2	EPA-TO-15	ND	J,A01	1
o-Xylene		1.1	ug/m3	10	0.60	EPA-TO-15	ND	J,A01	1
Total Xylenes		3.8	ug/m3	20	1.8	EPA-TO-15	ND	J,A01	1

Page 29 of 35 Report ID: 1001532151

2923 S Tryon Street, Suite 100

Charlotte, NC 28203

Reported: 08/26/2024 16:12

Project: NWMS

Project Number: SAI-413
Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Pace Sample ID:	2413337-09	Client Sample	e Name:	: SSV-DUP-1, 8/16/2024 12:00:00AM, Tyler Schulz							
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN		
4-Bromofluorobenzene	(Surrogate)	95.5	%	70 - 130 (LC	L - UCL)	EPA-TO-15			1		

			Run					
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	Prep Method
1	EPA-TO-15	08/22/24 09:02	08/23/24 04:55	BEP	MS-A2	2	B195602	EPA TO-15

DCN = Data Continuation Number

Hart & Hickman, PC 2923 S Tryon Street, Suite 100

2923 S Tryon Street, Suite 100 Charlotte, NC 28203 **Reported:** 08/26/2024 16:12

Project: NWMS
Project Number: SAI-413
Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Quality Control Report - Method Blank Analysis

Acrylonifrile B195602-BLK1 ND ug/m3 2.0 0.27 Allyl chloride B196902-BLK1 ND ug/m3 2.0 0.28 Benzene B196902-BLK1 ND ug/m3 2.0 0.21 Benzyl chloride B195602-BLK1 ND ug/m3 1.0 0.26 Bromodichloromethane B196502-BLK1 ND ug/m3 1.0 0.45 Bromomethane B196502-BLK1 ND ug/m3 1.0 0.86 Bromomethane B196502-BLK1 ND ug/m3 2.0 0.47 J.3.Butadiene B196502-BLK1 ND ug/m3 2.0 0.47 Carbon disulfide B196502-BLK1 ND ug/m3 2.0 0.19 Carbon tetrachloride B196602-BLK1 ND ug/m3 5.0 0.45 Chlorobenzene B196602-BLK1 ND ug/m3 5.0 0.40 Chloromethane B196602-BLK1 ND ug/m3 5.0 0.54 Chloromethane	Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals	Run #
Chlorodifluoromethane B195602-BLK1 ND ugim3 2.0 0.53 Acetone B196602-BLK1 ND ugim3 5.0 0.43 Acrylonifitie B195602-BLK1 ND ugim3 2.0 0.27 Ally chloride B195602-BLK1 ND ugim3 2.0 0.28 Benzene B195602-BLK1 ND ugim3 1.0 0.26 Bernychbride B195602-BLK1 ND ugim3 1.0 0.26 Bromodichtoromethane B195602-BLK1 ND ugim3 1.0 0.45 Bromodichtoromethane B195602-BLK1 ND ugim3 1.0 0.86 Bromonethane B195602-BLK1 ND ugim3 1.0 0.86 Bromonethane B195602-BLK1 ND ugim3 2.0 0.47 1,3-Budaidene B195602-BLK1 ND ugim3 2.0 0.42 Carbon disulfide B195602-BLK1 ND ugim3 5.0 0.45 Chlorobenzane	QC Batch ID: B195602							
Acryfonitrite B195602-BLK1 ND ug/m3 2.0 0.27 Allyl chloride B196002-BLK1 ND ug/m3 2.0 0.28 Benzene B196002-BLK1 ND ug/m3 2.0 0.21 Benzyl chloride B196002-BLK1 ND ug/m3 1.0 0.26 Bromodichloromethane B196002-BLK1 ND ug/m3 1.0 0.45 Bromodern B196002-BLK1 ND ug/m3 1.0 0.46 Bromodern B196002-BLK1 ND ug/m3 2.0 0.47 1.3-Butadiene B196002-BLK1 ND ug/m3 2.0 0.47 1.3-Butadiene B196002-BLK1 ND ug/m3 2.0 0.19 Carbon distribute B196002-BLK1 ND ug/m3 2.0 0.19 Carbon tetrachloride B196002-BLK1 ND ug/m3 5.0 0.40 Chlorobenzene B196002-BLK1 ND ug/m3 5.0 0.41 Chloromethane	Chlorodifluoromethane	B195602-BLK1	ND	ug/m3	2.0	0.53		1
Alyk chloride	Acetone	B195602-BLK1	ND	ug/m3	5.0	0.43		1
Benzene B19502_BLK1 ND ug/m3 2.0 0.21	Acrylonitrile	B195602-BLK1	ND	ug/m3	2.0	0.27		1
Benzyl chloride	Allyl chloride	B195602-BLK1	ND	ug/m3	2.0	0.28		1
Bromodichloromethane B195602-BLK1 ND ug/m3 5.0 0.45 Bromoform B195602-BLK1 ND ug/m3 10 0.86 Bromomethane B195602-BLK1 ND ug/m3 2.0 0.47 1,3-Butadiene B195602-BLK1 ND ug/m3 2.0 0.22 Carbon Ideathide B195602-BLK1 ND ug/m3 2.0 0.45 Carbon tetrachloride B195602-BLK1 ND ug/m3 5.0 0.45 Chlorobenzene B195602-BLK1 ND ug/m3 5.0 0.40 Chlorobenzene B195602-BLK1 ND ug/m3 5.0 0.40 Chloroberhane B195602-BLK1 ND ug/m3 5.0 0.53 Chloroberhane B195602-BLK1 ND ug/m3 5.0 0.54 Chloromethane B195602-BLK1 ND ug/m3 5.0 0.21 Cyclohexane B195602-BLK1 ND ug/m3 5.0 0.43 1,2-Dichlorobehane <td>Benzene</td> <td>B195602-BLK1</td> <td>ND</td> <td>ug/m3</td> <td>2.0</td> <td>0.21</td> <td></td> <td>1</td>	Benzene	B195602-BLK1	ND	ug/m3	2.0	0.21		1
Bromoform B195602-BLK1 ND ug/m3 10 0.86 Bromomethane B195602-BLK1 ND ug/m3 2.0 0.47 1.3-Butadiene B195602-BLK1 ND ug/m3 2.0 0.22 Carbon disulfide B195602-BLK1 ND ug/m3 5.0 0.45 Chlorobenzene B195602-BLK1 ND ug/m3 5.0 0.40 Chlorobenzene B195602-BLK1 ND ug/m3 5.0 0.40 Chlorobethane B195602-BLK1 ND ug/m3 5.0 0.40 Chloromethane B195602-BLK1 ND ug/m3 5.0 0.53 Chloromethane B195602-BLK1 ND ug/m3 5.0 0.54 Cyclohexane B195602-BLK1 ND ug/m3 5.0 0.43 1,2-Dirchorothoromethane B195602-BLK1 ND ug/m3 5.0 0.43 1,2-Dirchorobenzene B195602-BLK1 ND ug/m3 5.0 0.50 1,3-Dirchlorobenzen	Benzyl chloride	B195602-BLK1	ND	ug/m3	10	0.26		1
Bromomethane	Bromodichloromethane	B195602-BLK1	ND	ug/m3	5.0	0.45		1
1,3-Butadiene B195602-BLK1 ND ug/m3 2.0 0.22 Carbon disulfide B195602-BLK1 ND ug/m3 2.0 0.19 Carbon tetrachloride B195602-BLK1 ND ug/m3 5.0 0.45 Chlorobenzene B195602-BLK1 ND ug/m3 5.0 0.40 Chlorotemane B195602-BLK1 ND ug/m3 2.0 0.53 Chlorotom B195602-BLK1 ND ug/m3 5.0 0.54 Chloromethane B195602-BLK1 ND ug/m3 5.0 0.54 Chloromethane B195602-BLK1 ND ug/m3 2.0 0.21 Cyclohexane B195602-BLK1 ND ug/m3 2.0 0.38 Dibromochloromethane B195602-BLK1 ND ug/m3 5.0 0.43 1,2-Dichloroethane B195602-BLK1 ND ug/m3 5.0 0.56 1,3-Dichloroethane B195602-BLK1 ND ug/m3 5.0 0.50 Dichloroeth	Bromoform	B195602-BLK1	ND	ug/m3	10	0.86		1
Carbon disulfide B195602-BLK1 ND ug/m3 2.0 0.19 Carbon tetrachloride B195602-BLK1 ND ug/m3 5.0 0.45 Chlorobenzene B195602-BLK1 ND ug/m3 5.0 0.40 Chlorofform B195602-BLK1 ND ug/m3 5.0 0.53 Chlorofform B195602-BLK1 ND ug/m3 5.0 0.54 Chloromethane B195602-BLK1 ND ug/m3 2.0 0.21 Cyclohexane B195602-BLK1 ND ug/m3 2.0 0.38 Dibromochloromethane B195602-BLK1 ND ug/m3 5.0 0.43 1,2-Dibriomoethane B195602-BLK1 ND ug/m3 5.0 0.58 1,2-Dibriomoethane B195602-BLK1 ND ug/m3 5.0 0.50 1,3-Dichlorobenzene B195602-BLK1 ND ug/m3 5.0 0.50 1,4-Dichloroethane B195602-BLK1 ND ug/m3 5.0 0.45 <td< td=""><td>Bromomethane</td><td>B195602-BLK1</td><td>ND</td><td>ug/m3</td><td>2.0</td><td>0.47</td><td></td><td>1</td></td<>	Bromomethane	B195602-BLK1	ND	ug/m3	2.0	0.47		1
Carbon tetrachloride B195602-BLK1 ND ug/m3 5.0 0.45 Chlorobenzene B195602-BLK1 ND ug/m3 5.0 0.40 Chloroethane B195602-BLK1 ND ug/m3 2.0 0.53 Chloroform B195602-BLK1 ND ug/m3 5.0 0.54 Chloromethane B195602-BLK1 ND ug/m3 2.0 0.21 Cyclohexane B195602-BLK1 ND ug/m3 5.0 0.43 1,2-Dibromoethane B195602-BLK1 ND ug/m3 5.0 0.43 1,2-Dichlorobenzene B195602-BLK1 ND ug/m3 5.0 0.58 1,2-Dichlorobenzene B195602-BLK1 ND ug/m3 5.0 0.50 1,3-Dichlorobenzene B195602-BLK1 ND ug/m3 5.0 0.50 Dichlorodifluoromethane B195602-BLK1 ND ug/m3 5.0 0.50 Dichlorodifluoromethane B195602-BLK1 ND ug/m3 5.0 0.23	1,3-Butadiene	B195602-BLK1	ND	ug/m3	2.0	0.22		1
Chlorobenzene B195602-BLK1 ND ug/m3 5.0 0.40 Chloroethane B195602-BLK1 ND ug/m3 2.0 0.53 Chloroform B195602-BLK1 ND ug/m3 5.0 0.54 Chloromethane B195602-BLK1 ND ug/m3 2.0 0.21 Cyclohexane B195602-BLK1 ND ug/m3 2.0 0.38 Dibromochloromethane B195602-BLK1 ND ug/m3 5.0 0.43 1,2-Dichlorobertane B195602-BLK1 ND ug/m3 5.0 0.43 1,2-Dichlorobenzene B195602-BLK1 ND ug/m3 5.0 0.58 1,3-Dichlorobenzene B195602-BLK1 ND ug/m3 5.0 0.50 Dichlorodifluoromethane B195602-BLK1 ND ug/m3 5.0 0.50 Dichlorodifluoromethane B195602-BLK1 ND ug/m3 5.0 0.45 1,1-Dichloroethane B195602-BLK1 ND ug/m3 5.0 0.23	Carbon disulfide	B195602-BLK1	ND	ug/m3	2.0	0.19		1
Chloroethane B195602-BLK1 ND ug/m3 2.0 0.53 Chloroform B195602-BLK1 ND ug/m3 5.0 0.54 Chloromethane B195602-BLK1 ND ug/m3 2.0 0.21 Cyclohexane B195602-BLK1 ND ug/m3 2.0 0.38 Dibromochloromethane B195602-BLK1 ND ug/m3 5.0 0.43 1,2-Dichlorobenzene B195602-BLK1 ND ug/m3 5.0 0.58 1,2-Dichlorobenzene B195602-BLK1 ND ug/m3 5.0 0.50 1,3-Dichlorobenzene B195602-BLK1 ND ug/m3 5.0 0.50 1,4-Dichlorobenzene B195602-BLK1 ND ug/m3 5.0 0.50 Dichlorodiffluoromethane B195602-BLK1 ND ug/m3 5.0 0.45 1,1-Dichloroethane B195602-BLK1 ND ug/m3 5.0 0.26 1,1-Dichloroethene B195602-BLK1 ND ug/m3 5.0 0.32 <t< td=""><td>Carbon tetrachloride</td><td>B195602-BLK1</td><td>ND</td><td>ug/m3</td><td>5.0</td><td>0.45</td><td></td><td>1</td></t<>	Carbon tetrachloride	B195602-BLK1	ND	ug/m3	5.0	0.45		1
Chloroform B195602-BLK1 ND ug/m3 5.0 0.54 Chloromethane B195602-BLK1 ND ug/m3 2.0 0.21 Cyclohexane B195602-BLK1 ND ug/m3 2.0 0.38 Dibromochloromethane B195602-BLK1 ND ug/m3 5.0 0.43 1,2-Dichlorobenzene B195602-BLK1 ND ug/m3 5.0 0.58 1,2-Dichlorobenzene B195602-BLK1 ND ug/m3 5.0 0.50 1,3-Dichlorobenzene B195602-BLK1 ND ug/m3 5.0 0.50 1,4-Dichlorobenzene B195602-BLK1 ND ug/m3 5.0 0.50 Dichlorodifluoromethane B195602-BLK1 ND ug/m3 5.0 0.50 1,1-Dichloroethane B195602-BLK1 ND ug/m3 5.0 0.23 1,2-Dichloroethane B195602-BLK1 ND ug/m3 5.0 0.31 1,2-Dichloroethene B195602-BLK1 ND ug/m3 5.0 0.32	Chlorobenzene	B195602-BLK1	ND	ug/m3	5.0	0.40		1
Chloromethane B195602-BLK1 ND	Chloroethane	B195602-BLK1	ND	ug/m3	2.0	0.53		1
Dipromochloromethane B195602-BLK1 ND ug/m3 2.0 0.38	Chloroform	B195602-BLK1	ND	ug/m3	5.0	0.54		1
Dibromochloromethane B195602-BLK1 ND ug/m3 5.0 0.43 1,2-Dibromoethane B195602-BLK1 ND ug/m3 5.0 0.58 1,2-Dichlorobenzene B195602-BLK1 ND ug/m3 5.0 0.50 1,3-Dichlorobenzene B195602-BLK1 ND ug/m3 5.0 0.31 1,4-Dichlorobenzene B195602-BLK1 ND ug/m3 5.0 0.50 Dichlorodifluoromethane B195602-BLK1 ND ug/m3 5.0 0.45 1,1-Dichloroethane B195602-BLK1 ND ug/m3 5.0 0.23 1,2-Dichloroethane B195602-BLK1 ND ug/m3 5.0 0.26 1,1-Dichloroethane B195602-BLK1 ND ug/m3 5.0 0.31 1,2-Dichloroethane B195602-BLK1 ND ug/m3 5.0 0.31 1,2-Dichloroethane B195602-BLK1 ND ug/m3 5.0 0.32 1,2-Dichloroethane B195602-BLK1 ND ug/m3 2.0 0.32 1,2-Dichloroethane B195602-BLK1 ND ug/m3 2.0 0.27 1,2-Dichloropropane B195602-BLK1 ND ug/m3 5.0 0.30 1,3-Dichloropropane B195602-BLK1 ND ug/m3 5.0 0.30 1,2-Dichloropropane B195602-BLK1 ND ug/m3 5.0 0.40 1,2-Dichloro-1,1,2,2-tetrafluoroethane B195602-BLK1 ND ug/m3 5.0 0.91 1,1-Diffluoroethane B195602-BLK1 ND ug/m3 5.0 0.91 1,1-Diffluoroe	Chloromethane	B195602-BLK1	ND	ug/m3	2.0	0.21		1
1,2-Dibromoethane B195602-BLK1 ND ug/m3 5.0 0.58 1,2-Dichlorobenzene B195602-BLK1 ND ug/m3 5.0 0.50 1,3-Dichlorobenzene B195602-BLK1 ND ug/m3 5.0 0.31 1,4-Dichlorobenzene B195602-BLK1 ND ug/m3 5.0 0.50 Dichlorodifluoromethane B195602-BLK1 ND ug/m3 5.0 0.45 1,1-Dichloroethane B195602-BLK1 ND ug/m3 5.0 0.23 1,2-Dichloroethane B195602-BLK1 ND ug/m3 5.0 0.26 1,1-Dichloroethene B195602-BLK1 ND ug/m3 5.0 0.31 cis-1,2-Dichloroethene B195602-BLK1 ND ug/m3 5.0 0.32 trans-1,2-Dichloropropane B195602-BLK1 ND ug/m3 5.0 0.32 cis-1,3-Dichloropropene B195602-BLK1 ND ug/m3 5.0 0.30 trans-1,3-Dichloropropene B195602-BLK1 ND ug/m3 5.0 0.40 1,2-Dichloro-1,1,2,2-tetrafluoroethane B195602-BLK1	Cyclohexane	B195602-BLK1	ND	ug/m3	2.0	0.38		1
1,2-Dichlorobenzene B195602-BLK1 ND ug/m3 5.0 0.50 1,3-Dichlorobenzene B195602-BLK1 ND ug/m3 5.0 0.31 1,4-Dichlorobenzene B195602-BLK1 ND ug/m3 5.0 0.50 Dichlorodifluoromethane B195602-BLK1 ND ug/m3 5.0 0.45 1,1-Dichloroethane B195602-BLK1 ND ug/m3 5.0 0.23 1,2-Dichloroethane B195602-BLK1 ND ug/m3 5.0 0.26 1,1-Dichloroethene B195602-BLK1 ND ug/m3 5.0 0.31 cis-1,2-Dichloroethene B195602-BLK1 ND ug/m3 5.0 0.32 trans-1,2-Dichloropropane B195602-BLK1 ND ug/m3 5.0 0.32 cis-1,3-Dichloropropene B195602-BLK1 ND ug/m3 5.0 0.30 trans-1,3-Dichloropropene B195602-BLK1 ND ug/m3 5.0 0.40 1,2-Dichloro-1,1,2,2-tetrafluoroethane B195602-BLK1 ND ug/m3	Dibromochloromethane	B195602-BLK1	ND	ug/m3	5.0	0.43		1
1,3-Dichlorobenzene B195602-BLK1 ND ug/m3 5.0 0.31 1,4-Dichlorobenzene B195602-BLK1 ND ug/m3 5.0 0.50 Dichlorodifluoromethane B195602-BLK1 ND ug/m3 5.0 0.45 1,1-Dichloroethane B195602-BLK1 ND ug/m3 5.0 0.23 1,2-Dichloroethane B195602-BLK1 ND ug/m3 5.0 0.26 1,1-Dichloroethene B195602-BLK1 ND ug/m3 5.0 0.31 cis-1,2-Dichloroethene B195602-BLK1 ND ug/m3 2.0 0.32 trans-1,2-Dichloropropane B195602-BLK1 ND ug/m3 5.0 0.32 cis-1,3-Dichloropropene B195602-BLK1 ND ug/m3 5.0 0.30 trans-1,3-Dichloropropene B195602-BLK1 ND ug/m3 5.0 0.40 1,2-Dichloro-1,1,2,2-tetrafluoroethane B195602-BLK1 ND ug/m3 5.0 0.91 1,1-Difluoroethane B195602-BLK1 ND ug/m3<	1,2-Dibromoethane	B195602-BLK1	ND	ug/m3	5.0	0.58		1
1,4-Dichlorobenzene B195602-BLK1 ND ug/m3 5.0 0.50 Dichlorodifluoromethane B195602-BLK1 ND ug/m3 5.0 0.45 1,1-Dichloroethane B195602-BLK1 ND ug/m3 5.0 0.23 1,2-Dichloroethane B195602-BLK1 ND ug/m3 5.0 0.26 1,1-Dichloroethene B195602-BLK1 ND ug/m3 5.0 0.31 cis-1,2-Dichloroethene B195602-BLK1 ND ug/m3 2.0 0.32 trans-1,2-Dichloroethene B195602-BLK1 ND ug/m3 5.0 0.32 1,2-Dichloropropane B195602-BLK1 ND ug/m3 5.0 0.30 trans-1,3-Dichloropropene B195602-BLK1 ND ug/m3 5.0 0.40 1,2-Dichloro-1,1,2,2-tetrafluoroethane B195602-BLK1 ND ug/m3 5.0 0.91 1,1-Difluoroethane B195602-BLK1 ND ug/m3 5.0 2.0	1,2-Dichlorobenzene	B195602-BLK1	ND	ug/m3	5.0	0.50		1
Dichlorodifluoromethane B195602-BLK1 ND ug/m3 5.0 0.45 1,1-Dichloroethane B195602-BLK1 ND ug/m3 5.0 0.23 1,2-Dichloroethane B195602-BLK1 ND ug/m3 5.0 0.26 1,1-Dichloroethane B195602-BLK1 ND ug/m3 5.0 0.31 cis-1,2-Dichloroethane B195602-BLK1 ND ug/m3 2.0 0.32 trans-1,2-Dichloroethane B195602-BLK1 ND ug/m3 5.0 0.27 1,2-Dichloropropane B195602-BLK1 ND ug/m3 5.0 0.32 cis-1,3-Dichloropropene B195602-BLK1 ND ug/m3 5.0 0.30 trans-1,3-Dichloropropene B195602-BLK1 ND ug/m3 5.0 0.40 1,2-Dichloro-1,1,2,2-tetrafluoroethane B195602-BLK1 ND ug/m3 5.0 0.91 1,1-Difluoroethane B195602-BLK1 ND ug/m3 5.0 2.0	1,3-Dichlorobenzene	B195602-BLK1	ND	ug/m3	5.0	0.31		1
1,1-Dichloroethane B195602-BLK1 ND ug/m3 5.0 0.23 1,2-Dichloroethane B195602-BLK1 ND ug/m3 5.0 0.26 1,1-Dichloroethene B195602-BLK1 ND ug/m3 5.0 0.31 cis-1,2-Dichloroethene B195602-BLK1 ND ug/m3 2.0 0.32 trans-1,2-Dichloroethene B195602-BLK1 ND ug/m3 5.0 0.32 1,2-Dichloropropane B195602-BLK1 ND ug/m3 5.0 0.30 cis-1,3-Dichloropropene B195602-BLK1 ND ug/m3 5.0 0.40 1,2-Dichloro-1,1,2,2-tetrafluoroethane B195602-BLK1 ND ug/m3 5.0 0.91 1,1-Diffuoroethane B195602-BLK1 ND ug/m3 5.0 0.91	1,4-Dichlorobenzene	B195602-BLK1	ND	ug/m3	5.0	0.50		1
1,2-Dichloroethane B195602-BLK1 ND ug/m3 5.0 0.26 1,1-Dichloroethene B195602-BLK1 ND ug/m3 5.0 0.31 cis-1,2-Dichloroethene B195602-BLK1 ND ug/m3 2.0 0.32 trans-1,2-Dichloroptopane B195602-BLK1 ND ug/m3 5.0 0.32 cis-1,3-Dichloropropene B195602-BLK1 ND ug/m3 5.0 0.30 trans-1,3-Dichloropropene B195602-BLK1 ND ug/m3 5.0 0.40 1,2-Dichloro-1,1,2,2-tetrafluoroethane B195602-BLK1 ND ug/m3 5.0 0.91 1,1-Difluoroethane B195602-BLK1 ND ug/m3 5.0 2.0	Dichlorodifluoromethane	B195602-BLK1	ND	ug/m3	5.0	0.45		1
1,1-Dichloroethene B195602-BLK1 ND ug/m3 5.0 0.31 cis-1,2-Dichloroethene B195602-BLK1 ND ug/m3 2.0 0.32 trans-1,2-Dichloroethene B195602-BLK1 ND ug/m3 2.0 0.27 1,2-Dichloropropane B195602-BLK1 ND ug/m3 5.0 0.32 cis-1,3-Dichloropropene B195602-BLK1 ND ug/m3 5.0 0.30 trans-1,3-Dichloropropene B195602-BLK1 ND ug/m3 5.0 0.40 1,2-Dichloro-1,1,2,2-tetrafluoroethane B195602-BLK1 ND ug/m3 5.0 0.91 1,1-Difluoroethane B195602-BLK1 ND ug/m3 5.0 2.0	1,1-Dichloroethane	B195602-BLK1	ND	ug/m3	5.0	0.23		1
cis-1,2-Dichloroethene B195602-BLK1 ND ug/m3 2.0 0.32 trans-1,2-Dichloroethene B195602-BLK1 ND ug/m3 2.0 0.27 1,2-Dichloropropane B195602-BLK1 ND ug/m3 5.0 0.32 cis-1,3-Dichloropropene B195602-BLK1 ND ug/m3 5.0 0.30 trans-1,3-Dichloropropene B195602-BLK1 ND ug/m3 5.0 0.40 1,2-Dichloro-1,1,2,2-tetrafluoroethane B195602-BLK1 ND ug/m3 5.0 0.91 1,1-Difluoroethane B195602-BLK1 ND ug/m3 5.0 2.0	1,2-Dichloroethane	B195602-BLK1	ND	ug/m3	5.0	0.26		1
trans-1,2-Dichloroethene B195602-BLK1 ND ug/m3 2.0 0.27 1,2-Dichloropropane B195602-BLK1 ND ug/m3 5.0 0.32 cis-1,3-Dichloropropene B195602-BLK1 ND ug/m3 5.0 0.30 trans-1,3-Dichloropropene B195602-BLK1 ND ug/m3 5.0 0.40 1,2-Dichloro-1,1,2,2-tetrafluoroethane B195602-BLK1 ND ug/m3 5.0 0.91 1,1-Difluoroethane B195602-BLK1 ND ug/m3 5.0 2.0	1,1-Dichloroethene	B195602-BLK1	ND	ug/m3	5.0	0.31		1
1,2-Dichloropropane B195602-BLK1 ND ug/m3 5.0 0.32 cis-1,3-Dichloropropene B195602-BLK1 ND ug/m3 5.0 0.30 trans-1,3-Dichloropropene B195602-BLK1 ND ug/m3 5.0 0.40 1,2-Dichloro-1,1,2,2-tetrafluoroethane B195602-BLK1 ND ug/m3 5.0 0.91 1,1-Difluoroethane B195602-BLK1 ND ug/m3 5.0 2.0	cis-1,2-Dichloroethene	B195602-BLK1	ND	ug/m3	2.0	0.32		1
cis-1,3-Dichloropropene B195602-BLK1 ND ug/m3 5.0 0.30 trans-1,3-Dichloropropene B195602-BLK1 ND ug/m3 5.0 0.40 1,2-Dichloro-1,1,2,2-tetrafluoroethane B195602-BLK1 ND ug/m3 5.0 0.91 1,1-Difluoroethane B195602-BLK1 ND ug/m3 5.0 2.0	trans-1,2-Dichloroethene	B195602-BLK1	ND	ug/m3	2.0	0.27		1
trans-1,3-Dichloropropene B195602-BLK1 ND ug/m3 5.0 0.40 1,2-Dichloro-1,1,2,2-tetrafluoroethane B195602-BLK1 ND ug/m3 5.0 0.91 1,1-Difluoroethane B195602-BLK1 ND ug/m3 5.0 2.0	1,2-Dichloropropane	B195602-BLK1	ND	ug/m3	5.0	0.32		1
1,2-Dichloro-1,1,2,2-tetrafluoroethane B195602-BLK1 ND ug/m3 5.0 0.91 1,1-Difluoroethane B195602-BLK1 ND ug/m3 5.0 2.0	cis-1,3-Dichloropropene	B195602-BLK1	ND	ug/m3	5.0	0.30		1
1,1-Difluoroethane B195602-BLK1 ND ug/m3 5.0 2.0	trans-1,3-Dichloropropene	B195602-BLK1	ND	ug/m3	5.0	0.40		1
	1,2-Dichloro-1,1,2,2-tetrafluoroethane	B195602-BLK1	ND	ug/m3	5.0	0.91		1
1.4-Dioxane B195602-BLK1 ND ug/m3 2.0 0.33	1,1-Difluoroethane	B195602-BLK1	ND	ug/m3	5.0	2.0		1
	1,4-Dioxane	B195602-BLK1	ND	ug/m3	2.0	0.33		1

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, detachment or third party interpretation.

2923 S Tryon Street, Suite 100

Charlotte, NC 28203

Reported: 08/26/2024 16:12

Project: NWMS
Project Number: SAI-413
Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals	Run #
QC Batch ID: B195602							
Ethanol	B195602-BLK1	ND	ug/m3	2.0	0.42		1
Ethyl acetate	B195602-BLK1	ND	ug/m3	2.0	0.33		1
- Ethylbenzene	B195602-BLK1	ND	ug/m3	5.0	0.32		1
1-Ethyl-4-methylbenzene	B195602-BLK1	ND	ug/m3	5.0	0.30		1
n-Heptane	B195602-BLK1	ND	ug/m3	2.0	0.34		1
Hexachlorobutadiene	B195602-BLK1	ND	ug/m3	10	1.5		1
Hexane	B195602-BLK1	ND	ug/m3	5.0	0.20		1
2-Hexanone	B195602-BLK1	ND	ug/m3	5.0	0.29		1
Isopropyl alcohol	B195602-BLK1	ND	ug/m3	2.0	0.32		1
Methylene chloride	B195602-BLK1	ND	ug/m3	10	0.40		1
Methyl ethyl ketone	B195602-BLK1	ND	ug/m3	2.0	0.19		1
Methyl isobutyl ketone	B195602-BLK1	ND	ug/m3	5.0	0.26		1
Methyl t-butyl ether	B195602-BLK1	ND	ug/m3	2.0	0.28		1
Propylene	B195602-BLK1	ND	ug/m3	2.0	0.25		1
Styrene	B195602-BLK1	ND	ug/m3	5.0	0.24		1
1,1,2,2-Tetrachloroethane	B195602-BLK1	ND	ug/m3	5.0	0.47		1
Tetrachloroethene	B195602-BLK1	ND	ug/m3	2.0	0.50		1
Tetrahydrofuran	B195602-BLK1	ND	ug/m3	2.0	0.27		1
Toluene	B195602-BLK1	ND	ug/m3	2.0	0.27		1
1,2,4-Trichlorobenzene	B195602-BLK1	ND	ug/m3	10	0.82		1
1,1,1-Trichloroethane	B195602-BLK1	ND	ug/m3	5.0	0.39		1
1,1,2-Trichloroethane	B195602-BLK1	ND	ug/m3	5.0	0.61		1
Trichloroethene	B195602-BLK1	ND	ug/m3	2.0	0.54		1
Trichlorofluoromethane	B195602-BLK1	ND	ug/m3	5.0	0.47		1
1,1,2-Trichloro-1,2,2-trifluoroethane	B195602-BLK1	ND	ug/m3	5.0	0.55		1
1,2,4-Trimethylbenzene	B195602-BLK1	ND	ug/m3	5.0	0.40		1
1,3,5-Trimethylbenzene	B195602-BLK1	ND	ug/m3	5.0	0.40		1
Vinyl acetate	B195602-BLK1	ND	ug/m3	2.0	0.33		1
Vinyl chloride	B195602-BLK1	ND	ug/m3	2.0	0.39		1
p- & m-Xylenes	B195602-BLK1	ND	ug/m3	5.0	0.61		1
o-Xylene	B195602-BLK1	ND	ug/m3	5.0	0.30		1
Total Xylenes	B195602-BLK1	ND	ug/m3	10	0.91		1
4-Bromofluorobenzene (Surrogate)	B195602-BLK1	94.2	%	70 - 13	0 (LCL - UCL)		1

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

2923 S Tryon Street, Suite 100

Charlotte, NC 28203

Reported: 08/26/2024 16:12

Project: NWMS Project Number: SAI-413 Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Quality Control Report - Method Blank Analysis

					Run				
Run#	QC Sample ID	QC Type	Method	Prep Date	Date Time	Analyst	Instrument	Dilution	
1	B195602-BLK1	PB	EPA-TO-15	08/22/24	08/22/24 19:55	BEP	MS-A2	1	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. Page 33 of 35

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com Report ID: 1001532151

2923 S Tryon Street, Suite 100 Charlotte, NC 28203 **Reported:** 08/26/2024 16:12

Project: NWMS
Project Number: SAI-413
Project Manager: Tyler Shulz

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Quality Control Report - Laboratory Control Sample

					<u>-</u>	<u></u>		Control I	imits		
				Spike		Percent		Percent		Lab	
Constituent	QC Sample ID	Туре	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals	Run #
QC Batch ID: B195602											
Benzene	B195602-BS1	LCS	16.033	15.974	ug/m3	100		70 - 130			1
	B195602-BSD1	LCSD	16.051	15.974	ug/m3	100	0.1	70 - 130	25		2
Chloroform	B195602-BS1	LCS	24.191	24.413	ug/m3	99.1		70 - 130			1
	B195602-BSD1	LCSD	24.422	24.413	ug/m3	100	1.0	70 - 130	25		2
Ethylbenzene	B195602-BS1	LCS	22.107	21.711	ug/m3	102		70 - 130			1
	B195602-BSD1	LCSD	21.874	21.711	ug/m3	101	1.1	70 - 130	25		2
Tetrachloroethene	B195602-BS1	LCS	35.205	33.913	ug/m3	104		70 - 130			1
	B195602-BSD1	LCSD	34.557	33.913	ug/m3	102	1.9	70 - 130	25		2
Toluene	B195602-BS1	LCS	18.453	18.842	ug/m3	97.9		70 - 130			1
	B195602-BSD1	LCSD	18.130	18.842	ug/m3	96.2	1.8	70 - 130	25		2
Trichloroethene	B195602-BS1	LCS	27.821	26.869	ug/m3	104		70 - 130			1
	B195602-BSD1	LCSD	27.445	26.869	ug/m3	102	1.4	70 - 130	25		2
Trichlorofluoromethane	B195602-BS1	LCS	28.186	28.092	ug/m3	100		70 - 130			1
	B195602-BSD1	LCSD	28.405	28.092	ug/m3	101	8.0	70 - 130	25		2
1,1,2-Trichloro-1,2,2-trifluoroethane	B195602-BS1	LCS	38.952	38.318	ug/m3	102		70 - 130			1
	B195602-BSD1	LCSD	38.996	38.318	ug/m3	102	0.1	70 - 130	25		2
p- & m-Xylenes	B195602-BS1	LCS	44.644	43.421	ug/m3	103		70 - 130			1
	B195602-BSD1	LCSD	44.326	43.421	ug/m3	102	0.7	70 - 130	25		2
o-Xylene	B195602-BS1	LCS	22.336	21.711	ug/m3	103		70 - 130			1
	B195602-BSD1	LCSD	22.153	21.711	ug/m3	102	8.0	70 - 130	25		2
Total Xylenes	B195602-BS1	LCS	66.979	65.132	ug/m3	103		70 - 130			1
	B195602-BSD1	LCSD	66.479	65.132	ug/m3	102	0.7	70 - 130	25		2
4-Bromofluorobenzene (Surrogate)	B195602-BS1	LCS	71.2	71.6	ug/m3	99.5		70 - 130			1
	B195602-BSD1	LCSD	70.9	71.6	ug/m3	99.1	0.4	70 - 130			2

					Run			
Run#	QC Sample ID	QC Type	Method	Prep Date	Date Time	Analyst	Instrument	Dilution
1	B195602-BS1	LCS	EPA-TO-15	08/22/24	08/22/24 18:24	BEP	MS-A2	1
2	B195602-BSD1	LCSD	EPA-TO-15	08/22/24	08/22/24 19:06	BEP	MS-A2	1

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation.

2923 S Tryon Street, Suite 100

Charlotte, NC 28203

Reported: 08/26/2024 16:12

Project: NWMS
Project Number: SAI-413
Project Manager: Tyler Shulz

Notes And Definitions

J Estimated Value (CLP Flag)

MDL Method Detection Limit

ND Analyte Not Detected

PQL Practical Quantitation Limit

A01 Detection and quantitation limits are raised due to sample dilution.

Appendix E EPA VISL Calculator Results

Variable	Commercial Air Default Value	Site-Specific Value
AF (Attenuation Factor Groundwater) unitless	0.001	0.001
AF (Attenuation Factor Sub-Slab) unitless	0.03	0.03
AT _{com} (averaging time - composite worker)	365	365
ED (exposure duration - composite worker) yr	25	25
EF _{com} (exposure frequency - composite worker) day/yr	250	250
ET _{com} (exposure time - composite worker) hr	8	8
THQ (target hazard quotient) unitless	0.1	0.1
LT (lifetime) yr	70	70
TR (target risk) unitless	1.0E-06	1.0E-06

Chemical	CAS Number	Does the chemical meet the definition for volatility? (HLC>1E-5 or VP>1)	Does the chemical have inhalation toxicity data? (IUR and/or RfC)	Is Chemical Sufficiently Volatile and Toxic to Pose Inhalation Risk Via Vapor Intrusion from Soil Source? (C _{vp} > C _{i,a} ,Target?)	Is Chemical Sufficiently Volatile and Toxic to Pose Inhalation Risk Via Vapor Intrusion from Groundwater Source? (C _{hc} > C _{i,a} ,Target?)	Target Indoor Air Concentration (TCR=1E-06 or THQ=0.1) MIN(C _{ia.c} ,C _{ia.n.c}) (μg/m³)	Toxicity Basis	Target Sub-Slab and Near-source Soil Gas Concentration (TCR=1E-06 or THQ=0.1) C _{sg} ,Target (μg/m³)	Target Groundwater Concentration (TCR=1E-06 or THQ=0.1) C _{gw} ,Target (µg/L)
Chlorodifluoromethane	75-45-6	Yes	Yes	Yes	Yes	2.19E+04	NC	7.30E+05	1.32E+04
Chloromethane	74-87-3	Yes	Yes	Yes	Yes	3.94E+01	NC	1.31E+03	1.09E+02
Dichlorodifluoromethane	75-71-8	Yes	Yes	Yes	Yes	4.38E+01	NC	1.46E+03	3.12E+00
Difluoroethane, 1,1-	75-37-6	Yes	Yes	Yes	Yes	1.75E+04	NC	5.84E+05	2.11E+04
Ethylbenzene	100-41-4	Yes	Yes	Yes	Yes	4.91E+00	CA	1.64E+02	1.52E+01
Heptane, N-	142-82-5	Yes	Yes	Yes	Yes	1.75E+02	NC	5.84E+03	2.14E+00
Isopropanol	67-63-0	Yes	Yes	Yes	Yes	8.76E+01	NC	2.92E+03	2.65E+05
Methyl Ethyl Ketone (2-Butanone)	78-93-3	Yes	Yes	Yes	Yes	2.19E+03	NC	7.30E+04	9.41E+05
Methylene Chloride	75-09-2	Yes	Yes	Yes	Yes	2.63E+02	NC	8.76E+03	1.98E+03
Styrene	100-42-5	Yes	Yes	Yes	Yes	4.38E+02	NC	1.46E+04	3.90E+03
Tetrachloroethylene	127-18-4	Yes	Yes	Yes	Yes	1.75E+01	NC	5.84E+02	2.42E+01
Toluene	108-88-3	Yes	Yes	Yes	Yes	2.19E+03	NC	7.30E+04	8.07E+03
Trimethylbenzene, 1,2,4-	95-63-6	Yes	Yes	Yes	Yes	2.63E+01	NC	8.76E+02	1.04E+02
Trimethylbenzene, 1,3,5-	108-67-8	Yes	Yes	Yes	Yes	2.63E+01	NC	8.76E+02	7.33E+01
Xylenes	1330-20-7	Yes	Yes	Yes	Yes	4.38E+01	NC	1.46E+03	1.62E+02

Is Target Groundwater Concentration < MCL? (C _{gw} < MCL?)	Pure Phase Vapor Concentration C _{νp} \ (25 °C)\ (μg/m³)	Maximum Groundwater Vapor Concentration C _{hc} \ (μg/m³)	Temperature for Maximum Groundwater Vapor Concentration (°C)	Lower Explosive Limit LEL (% by volume)	LEL Ref		IUR Ref		RfC Ref	Mutagenic Indicator	VISL TCR=1E-06	Noncarcinogenic VISL THQ=0.1 C _{ia,nc} (µg/m³)
	3.37E+10	4.60E+09	25	-		-		5.00E+01	U	No	-	2.19E+04
	1.17E+10	1.92E+09	25	8.10	U	-		9.00E-02	U	No	-	3.94E+01
	3.15E+10	3.93E+09	25	-		-		1.00E-01	U	No	-	4.38E+01
	1.62E+10	2.66E+09	25	3.70	U	-		4.00E+01	U	No	-	1.75E+04
Yes (700)	5.48E+07	5.44E+07	25	0.80	U	2.50E-06	U	1.00E+00	U	No	4.91E+00	4.38E+02
	2.48E+08	2.78E+08	25	1.05	U	-		4.00E-01	U	No	-	1.75E+02
	1.47E+08	3.31E+08	25	2.00	U	-		2.00E-01	U	No	-	8.76E+01
	3.51E+08	5.19E+08	25	1.40	U	-		5.00E+00	U	No	-	2.19E+03
No (5)	1.99E+09	1.73E+09	25	13.00	U	1.00E-08	U	6.00E-01	U	Mut	1.23E+03	2.63E+02
No (100)	3.58E+07	3.49E+07	25	0.90	U	-		1.00E+00	U	No	-	4.38E+02
No (5)	1.65E+08	1.49E+08	25	-		2.60E-07	U	4.00E-02	U	No	4.72E+01	1.75E+01
No (1000)	1.41E+08	1.43E+08	25	1.10	U	-		5.00E+00	U	No	-	2.19E+03
	1.36E+07	1.44E+07	25	0.90	U	-		6.00E-02	U	No	-	2.63E+01
	1.60E+07	1.73E+07	25	1.00	U	-		6.00E-02	U	No	-	2.63E+01
Yes (10000)	4.56E+07	2.87E+07	25	-		-		1.00E-01	U	No	-	4.38E+01

Chemical	CAS Number	Site Indoor Air Concentration C _{i.a} \ (μg/m³)	VI Carcinogenic Risk CDI (μg/m³)	VI Carcinogenic Risk CR	VI Hazard CDI (mg/m³)	VI Hazard HQ	IUR (ug/m³)-1	IUR Ref		RfC Ref	Temperature (°C)\ for Groundwater Vapor Concentration	Mutagen?
Chlorodifluoromethane	75-45-6	8.40E-01	6.85E-02	-	1.92E-04	3.84E-06	-		5.00E+01	U	25	No
Chloromethane	74-87-3	1.10E+00	8.97E-02	-	2.51E-04	2.79E-03	-		9.00E-02	U	25	No
Dichlorodifluoromethane	75-71-8	2.20E+00	1.79E-01	-	5.02E-04	5.02E-03	-		1.00E-01	U	25	No
Difluoroethane, 1,1-	75-37-6	3.80E+00	3.10E-01	-	8.68E-04	2.17E-05	-		4.00E+01	U	25	No
Ethylbenzene	100-41-4	2.70E+00	2.20E-01	5.50E-07	6.16E-04	6.16E-04	2.50E-06	U	1.00E+00	U	25	No
Heptane, N-	142-82-5	4.80E+00	3.91E-01	-	1.10E-03	2.74E-03	-		4.00E-01	U	25	No
Isopropanol	67-63-0	6.10E+00	4.97E-01	-	1.39E-03	6.96E-03	-		2.00E-01	U	25	No
Methyl Ethyl Ketone (2-Butanone)	78-93-3	9.10E-01	7.42E-02	-	2.08E-04	4.16E-05	-		5.00E+00	U	25	No
Methylene Chloride	75-09-2	1.30E+00	1.06E-01	1.06E-09	2.97E-04	4.95E-04	1.00E-08	U	6.00E-01	U	25	Mut
Styrene	100-42-5	5.10E-01	4.16E-02	-	1.16E-04	1.16E-04	-		1.00E+00	U	25	No
Tetrachloroethylene	127-18-4	8.70E-01	7.09E-02	1.84E-08	1.99E-04	4.97E-03	2.60E-07	U	4.00E-02	U	25	No
Toluene	108-88-3	6.80E+00	5.54E-01	-	1.55E-03	3.11E-04	-		5.00E+00	U	25	No
Trimethylbenzene, 1,2,4-	95-63-6	1.20E+01	9.78E-01	-	2.74E-03	4.57E-02	-		6.00E-02	U	25	No
Trimethylbenzene, 1,3,5-	108-67-8	3.50E+00	2.85E-01	-	7.99E-04	1.33E-02	-		6.00E-02	U	25	No
Xylenes	1330-20-7	1.80E+01	1.47E+00	-	4.11E-03	4.11E-02	-		1.00E-01	U	25	No
*Sum		-	-	5.70E-07	-	1.24E-01	-		-		-	

Chemical	CAS Number	Does the chemical meet the definition for volatility? (HLC>1E-5 or VP>1)	Does the chemical have inhalation toxicity data? (IUR and/or RfC)	MW	MW Ref	Vapor Pressure VP (mm Hg)	VP Ref	S (mg/L)	S Ref	MCL (ug/L)
Chlorodifluoromethane	75-45-6	Yes	Yes	86.47	U	7.25E+03	U	2.77E+03	U	-
Chloromethane	74-87-3	Yes	Yes	50.49	U	4.30E+03	U	5.32E+03	U	-
Dichlorodifluoromethane	75-71-8	Yes	Yes	120.91	U	4.85E+03	U	2.80E+02	U	-
Difluoroethane, 1,1-	75-37-6	Yes	Yes	66.05	U	4.55E+03	U	3.20E+03	U	-
Ethylbenzene	100-41-4	Yes	Yes	106.17	U	9.60E+00	U	1.69E+02	U	700
Heptane, N-	142-82-5	Yes	Yes	100.21	U	4.60E+01	U	3.40E+00	U	-
Isopropanol	67-63-0	Yes	Yes	60.10	U	4.54E+01	U	1.00E+06	U	-
Methyl Ethyl Ketone (2-Butanone)	78-93-3	Yes	Yes	72.11	U	9.06E+01	U	2.23E+05	U	-
Methylene Chloride	75-09-2	Yes	Yes	84.93	U	4.35E+02	U	1.30E+04	U	5
Styrene	100-42-5	Yes	Yes	104.15	U	6.40E+00	U	3.10E+02	U	100
Tetrachloroethylene	127-18-4	Yes	Yes	165.83	U	1.85E+01	U	2.06E+02	U	5
Toluene	108-88-3	Yes	Yes	92.14	U	2.84E+01	U	5.26E+02	U	1000
Trimethylbenzene, 1,2,4-	95-63-6	Yes	Yes	120.20	U	2.10E+00	U	5.70E+01	U	-
Trimethylbenzene, 1,3,5-	108-67-8	Yes	Yes	120.20	U	2.48E+00	U	4.82E+01	U	-
Xylenes	1330-20-7	Yes	Yes	106.17	U	7.99E+00	U	1.06E+02	U	10000

HLC (atm-m³/mole)	Henry's Law Constant (unitless)		Henry's Law Constant Used in Calcs (unitless)	Normal Boiling Point BP (K)	BP Ref	Critical Temperature T _c \ (K)	T _c \ Ref	Enthalpy of vaporization at the normal boiling point $\Delta H_{v,b} \setminus (cal/mol)$	$\Delta H_{v,b}$ \ Ref	Lower Explosive Limit LEL (% by volume)	LEL Ref
4.06E-02	1.66E+00	U	1.66E+00	232.45	U	3.69E+02	U	4830.00	U	-	
8.82E-03	3.61E-01	U	3.61E-01	249.15	U	4.16E+02	U	5110.00	U	8.10	U
3.43E-01	1.40E+01	U	1.40E+01	243.35	U	3.85E+02	U	4800.00	U	-	
2.03E-02	8.30E-01	U	8.30E-01	248.45	U	3.86E+02	U	5150.00	U	3.70	U
7.88E-03	3.22E-01	U	3.22E-01	409.15	U	6.17E+02	U	8500.00	U	0.80	U
2.00E+00	8.18E+01	U	8.18E+01	371.65	U	5.40E+02	U	7590.00	U	1.05	U
8.10E-06	3.31E-04	U	3.31E-04	355.45	U	5.08E+02	U	9520.00	U	2.00	U
5.69E-05	2.33E-03	U	2.33E-03	352.65	U	5.37E+02	U	7480.00	U	1.40	U
3.25E-03	1.33E-01	U	1.33E-01	313.15	U	5.08E+02	U	6710.00	U	13.00	U
2.75E-03	1.12E-01	U	1.12E-01	418.15	U	6.35E+02	U	9250.00	U	0.90	U
1.77E-02	7.24E-01	U	7.24E-01	394.15	U	6.20E+02	U	8290.00	U	-	
6.64E-03	2.71E-01	U	2.71E-01	384.15	U	5.92E+02	U	7930.00	U	1.10	U
6.16E-03	2.52E-01	U	2.52E-01	442.15	U	6.49E+02	U	9370.00	U	0.90	U
8.77E-03	3.59E-01	U	3.59E-01	438.15	U	6.37E+02	U	9320.00	U	1.00	U
6.63E-03	2.71E-01	U	2.71E-01	411.15	U	6.20E+02	U	8520.00	U	-	

Variable	Commercial Air Default Value	Site-Specific Value
AF _{mu} (Attenuation Factor Groundwater) unitless	0.001	0.001
AF (Attenuation Factor Sub-Slab) unitless	0.03	0.03
AT _{com} (averaging time - composite worker)	365	365
ED (exposure duration - composite worker) yr	25	25
EF _{com} (exposure frequency - composite worker) day/yr	250	250
ET _{com} (exposure time - composite worker) hr	8	8
THQ (target hazard quotient) unitless	0.1	0.1
LT (lifetime) yr	70	70
TR (target risk) unitless	1.0E-06	1.0E-06

Chemical	CAS Number	Does the chemical meet the definition for volatility? (HLC>1E-5 or VP>1)	chemical have inhalation toxicity data? (IUR	Via Vapor Intrusion from Soil Source?	to Pose Inhalation Risk Via Vapor Intrusion from Groundwater Source?	Target Indoor Air Concentration (TCR=1E-06 or THQ=0.1) MIN(C _{ia.c} ,C _{ia.nc}) (μg/m³)	Toxicity Basis	Target Sub-Slab and Near-source Soil Gas Concentration (TCR=1E-06 or THQ=0.1) C _{sg} ,Target (μg/m³)	Target Groundwater Concentration (TCR=1E-06 or THQ=0.1) C _{gw} ,Target (µg/L)
Benzene	71-43-2	Yes	Yes	Yes	Yes	1.57E+00	CA	5.24E+01	6.93E+00
Carbon Disulfide	75-15-0	Yes	Yes	Yes	Yes	3.07E+02	NC	1.02E+04	5.21E+02
Chloroform	67-66-3	Yes	Yes	Yes	Yes	5.33E-01	CA	1.78E+01	3.55E+00
Chloromethane	74-87-3	Yes	Yes	Yes	Yes	3.94E+01	NC	1.31E+03	1.09E+02
Dibromoethane, 1,2-	106-93-4	Yes	Yes	Yes	Yes	2.04E-02	CA	6.81E-01	7.69E-01
Dichlorodifluoromethane	75-71-8	Yes	Yes	Yes	Yes	4.38E+01	NC	1.46E+03	3.12E+00
Dichloroethylene, 1,1-	75-35-4	Yes	Yes	Yes	Yes	8.76E+01	NC	2.92E+03	8.21E+01
Dioxane, 1,4-	123-91-1	Yes	Yes	Yes	Yes	2.45E+00	CA	8.18E+01	1.25E+04
Ethylbenzene	100-41-4	Yes	Yes	Yes	Yes	4.91E+00	CA	1.64E+02	1.52E+01
Isopropanol	67-63-0	Yes	Yes	Yes	Yes	8.76E+01	NC	2.92E+03	2.65E+05
Methyl Ethyl Ketone (2-Butanone)	78-93-3	Yes	Yes	Yes	Yes	2.19E+03	NC	7.30E+04	9.41E+05
Methyl Isobutyl Ketone (4-methyl-2-pentanone)	108-10-1	Yes	Yes	Yes	Yes	1.31E+03	NC	4.38E+04	2.33E+05
Tetrachloroethylene	127-18-4	Yes	Yes	Yes	Yes	1.75E+01	NC	5.84E+02	2.42E+01
Toluene	108-88-3	Yes	Yes	Yes	Yes	2.19E+03	NC	7.30E+04	8.07E+03
Trichloroethane, 1,1,1-	71-55-6	Yes	Yes	Yes	Yes	2.19E+03	NC	7.30E+04	3.11E+03
Trichloroethylene	79-01-6	Yes	Yes	Yes	Yes	8.76E-01	NC	2.92E+01	2.18E+00
Trimethylbenzene, 1,2,4-	95-63-6	Yes	Yes	Yes	Yes	2.63E+01	NC	8.76E+02	1.04E+02
Trimethylbenzene, 1,3,5-	108-67-8	Yes	Yes	Yes	Yes	2.63E+01	NC	8.76E+02	7.33E+01
Xylenes	1330-20-7	Yes	Yes	Yes	Yes	4.38E+01	NC	1.46E+03	1.62E+02

Is Target Groundwater Concentration < MCL? (C _{ow} < MCL?)	Pure Phase Vapor Concentration C _{νp} \ (25 °C)\ (μg/m³)	Maximum Groundwater Vapor Concentration C _{hc} \ (μg/m³)	Temperature for Maximum Groundwater Vapor Concentration (°C)	Lower Explosive Limit LEL (% by volume)	LEL Ref	IUR (ug/m³)·¹	IUR Ref		RfC Ref	Mutagenic Indicator	VISL TCR=1E-06	Noncarcinogenic VISL THQ=0.1 C _{ia.nc} (µg/m³)
3				·								
No (5)	3.98E+08	4.06E+08	25	1.20	U	7.80E-06	U	3.00E-02	U	No	1.57E+00	1.31E+01
	1.47E+09	1.27E+09	25	1.30	U	-		7.00E-01	U	No	-	3.07E+02
Yes (80)	1.26E+09	1.19E+09	25	-		2.30E-05	U	1.95E-03	U	No	5.33E-01	8.54E-01
	1.17E+10	1.92E+09	25	8.10	U	-		9.00E-02	U	No	-	3.94E+01
No (0)	1.13E+08	1.04E+08	25	-		6.00E-04	U	9.00E-03	U	No	2.04E-02	3.94E+00
	3.15E+10	3.93E+09	25	-		-		1.00E-01	U	No	-	4.38E+01
No (7)	3.13E+09	2.58E+09	25	6.50	U	-		2.00E-01	U	No	-	8.76E+01
	1.81E+08	1.96E+08	25	2.00	U	5.00E-06	U	3.00E-02	U	No	2.45E+00	1.31E+01
Yes (700)	5.48E+07	5.44E+07	25	0.80	U	2.50E-06	U	1.00E+00	U	No	4.91E+00	4.38E+02
	1.47E+08	3.31E+08	25	2.00	U	-		2.00E-01	U	No	-	8.76E+01
	3.51E+08	5.19E+08	25	1.40	U	-		5.00E+00	U	No	-	2.19E+03
	1.07E+08	1.07E+08	25	1.20	U	-		3.00E+00	U	No	-	1.31E+03
No (5)	1.65E+08	1.49E+08	25	-		2.60E-07	U	4.00E-02	U	No	4.72E+01	1.75E+01
No (1000)	1.41E+08	1.43E+08	25	1.10	U	-		5.00E+00	U	No	-	2.19E+03
No (200)	8.90E+08	9.07E+08	25	8.00	U	-		5.00E+00	U	No	_	2.19E+03
Yes (5)	4.88E+08	5.15E+08	25	8.00	U	4.10E-06	U	2.00E-03	U	Mut	2.99E+00	8.76E-01
	1.36E+07	1.44E+07	25	0.90	U	_		6.00E-02	U	No	-	2.63E+01
	1.60E+07	1.73E+07	25	1.00	U	-		6.00E-02	U	No	_	2.63E+01
Yes (10000)	4.56E+07	2.87E+07	25	-		-		1.00E-01	U	No	-	4.38E+01

Chemical	CAS Number	$\begin{tabular}{ll} Site \\ Sub-Slab and \\ Exterior Soil \\ Gas \\ Concentration \\ C_{sg} \\ (\mu g/m^3) \end{tabular}$	Site Indoor Air Concentration C _{i.a} \ (µg/m³)	VI Carcinogenic Risk CDI (μg/m³)
Benzene	71-43-2	0.85	2.55E-02	2.08E-03
Carbon Disulfide	75-15-0	2.3	6.90E-02	5.63E-03
Chloroform	67-66-3	1.2	3.60E-02	2.94E-03
Chloromethane	74-87-3	1.1	3.30E-02	2.69E-03
Dibromoethane, 1,2-	106-93-4	2.7	8.10E-02	6.60E-03
Dichlorodifluoromethane	75-71-8	53	1.59E+00	1.30E-01
Dichloroethylene, 1,1-	75-35-4	2.2	6.60E-02	5.38E-03
Dioxane, 1,4-	123-91-1	22	6.60E-01	5.38E-02
Ethylbenzene	100-41-4	5.6	1.68E-01	1.37E-02
Isopropanol	67-63-0	3.1	9.30E-02	7.58E-03
Methyl Ethyl Ketone (2-Butanone)	78-93-3	4.2	1.26E-01	1.03E-02
Methyl Isobutyl Ketone (4-methyl-2-pentanone)	108-10-1	2	6.00E-02	4.89E-03
Tetrachloroethylene	127-18-4	1200	3.60E+01	2.94E+00
Toluene	108-88-3	6.8	2.04E-01	1.66E-02
Trichloroethane, 1,1,1-	71-55-6	180	5.40E+00	4.40E-01
Trichloroethylene	79-01-6	13	3.90E-01	3.18E-02
Trimethylbenzene, 1,2,4-	95-63-6	6	1.80E-01	1.47E-02
Trimethylbenzene, 1,3,5-	108-67-8	1.5	4.50E-02	3.67E-03
Xylenes	1330-20-7	12.4	3.72E-01	3.03E-02
*Sum		-	-	-

VI Carcinogenic Risk CR	VI Hazard CDI (mg/m³)	VI Hazard HQ	IUR (ug/m³) ⁻¹	IUR Ref	Chronic RfC (mg/m³)	RfC Ref	Temperature (°C)\ for Groundwater Vapor Concentration	Mutagen?
1.62E-08	5.82E-06	1.94E-04	7.80E-06	U	3.00E-02	U	25	No
-	1.58E-05	2.25E-05	-		7.00E-01	U	25	No
6.75E-08	8.22E-06	4.21E-03	2.30E-05	U	1.95E-03	U	25	No
_	7.53E-06	8.37E-05	-		9.00E-02	U	25	No
3.96E-06	1.85E-05	2.05E-03	6.00E-04	U	9.00E-03	U	25	No
-	3.63E-04	3.63E-03	-		1.00E-01	U	25	No
-	1.51E-05	7.53E-05	-		2.00E-01	U	25	No
2.69E-07	1.51E-04	5.02E-03	5.00E-06	U	3.00E-02	U	25	No
3.42E-08	3.84E-05	3.84E-05	2.50E-06	U	1.00E+00	U	25	No
-	2.12E-05	1.06E-04	-		2.00E-01	U	25	No
-	2.88E-05	5.75E-06	-		5.00E+00	U	25	No
-	1.37E-05	4.57E-06	-		3.00E+00	U	25	No
7.63E-07	8.22E-03	2.05E-01	2.60E-07	U	4.00E-02	U	25	No
-	4.66E-05	9.32E-06	-		5.00E+00	U	25	No
-	1.23E-03	2.47E-04	-		5.00E+00	U	25	No
1.30E-07	8.90E-05	4.45E-02	4.10E-06	U	2.00E-03	U	25	Mut
-	4.11E-05	6.85E-04	-		6.00E-02	U	25	No
_	1.03E-05	1.71E-04	-		6.00E-02	U	25	No
-	8.49E-05	8.49E-04	-		1.00E-01	U	25	No
5.24E-06	-	2.67E-01	-		-		-	

Chemical Properties

Chemical	CAS Number	Does the chemical meet the definition for volatility? (HLC>1E-5 or VP>1)	Does the chemical have inhalation toxicity data? (IUR and/or RfC)	MW	MW	Vapor Pressure VP	VP	S (***********	S	MCL (vall)
Benzene	71-43-2	Yes	Yes	78.12	U	(mm Hg) 9.48E+01	U	(mg/L) 1.79E+03	U	(ug/L)
Carbon Disulfide	71-43-2 75-15-0	Yes	Yes	76.12	U	3.59E+02	U	2.16E+03	U	-
Chloroform	67-66-3	Yes	Yes	119.38	U	1.97E+02	U	7.95E+03	U	80
Chloromethane	74-87-3	Yes	Yes	50.49	U	4.30E+03	U	5.32E+03	U	-
Dibromoethane, 1,2-	106-93-4	Yes	Yes	187.86	U	1.12E+01	U	3.91E+03	U	0.05
Dichlorodifluoromethane	75-71-8	Yes	Yes	120.91	U	4.85E+03	U	2.80E+02	U	-
Dichloroethylene, 1,1-	75-35-4	Yes	Yes	96.94	U	6.00E+02	U	2.42E+03	U	7
Dioxane, 1,4-	123-91-1	Yes	Yes	88.11	U	3.81E+01	U	1.00E+06	U	_
Ethylbenzene	100-41-4	Yes	Yes	106.17	U	9.60E+00	U	1.69E+02	U	700
Isopropanol	67-63-0	Yes	Yes	60.10	U	4.54E+01	U	1.00E+06	U	-
Methyl Ethyl Ketone (2-Butanone)	78-93-3	Yes	Yes	72.11	U	9.06E+01	U	2.23E+05	U	_
Methyl Isobutyl Ketone (4-methyl-2-pentanone)	108-10-1	Yes	Yes	100.16	U	1.99E+01	U	1.90E+04	U	-
Tetrachloroethylene	127-18-4	Yes	Yes	165.83	U	1.85E+01	U	2.06E+02	U	5
Toluene	108-88-3	Yes	Yes	92.14	U	2.84E+01	U	5.26E+02	U	1000
Trichloroethane, 1,1,1-	71-55-6	Yes	Yes	133.41	U	1.24E+02	U	1.29E+03	U	200
Trichloroethylene	79-01-6	Yes	Yes	131.39	U	6.90E+01	U	1.28E+03	U	5
Trimethylbenzene, 1,2,4-	95-63-6	Yes	Yes	120.20	U	2.10E+00	U	5.70E+01	U	-
Trimethylbenzene, 1,3,5-	108-67-8	Yes	Yes	120.20	U	2.48E+00	U	4.82E+01	U	-
Xylenes	1330-20-7	Yes	Yes	106.17	U	7.99E+00	U	1.06E+02	U	10000

HLC (atm-m³/mole)	Henry's Law Constant (unitless)	_	Henry's Law Constant Used in Calcs (unitless)	Normal Boiling Point BP (K)	BP Ref	Critical Temperature T _c \ (K)	T _c \ Ref	Enthalpy of vaporization at the normal boiling point $\Delta H_{v,b} \setminus (cal/mol)$	$\Delta H_{v,b} $ Ref	Lower Explosive Limit LEL (% by volume)	LEL Ref
5.55E-03	2.27E-01	U	2.27E-01	353.15	U	5.62E+02	U	7340.00	U	1.20	U
1.44E-02	5.89E-01	U	5.89E-01	319.15	U	5.52E+02	U	6390.00	U	1.30	U
3.67E-03	1.50E-01	U	1.50E-01	334.25	U	5.36E+02	U	6990.00	U	-	
8.82E-03	3.61E-01	U	3.61E-01	249.15	U	4.16E+02	U	5110.00	U	8.10	U
6.50E-04	2.66E-02	U	2.66E-02	405.15	U	6.50E+02	U	8310.00	U	-	
3.43E-01	1.40E+01	U	1.40E+01	243.35	U	3.85E+02	U	4800.00	U	-	
2.61E-02	1.07E+00	U	1.07E+00	304.85	U	4.82E+02	U	6250.00	U	6.50	U
4.80E-06	1.96E-04	U	1.96E-04	375.15	U	5.87E+02	U	8160.00	U	2.00	U
7.88E-03	3.22E-01	U	3.22E-01	409.15	U	6.17E+02	U	8500.00	U	0.80	U
8.10E-06	3.31E-04	U	3.31E-04	355.45	U	5.08E+02	U	9520.00	U	2.00	U
5.69E-05	2.33E-03	U	2.33E-03	352.65	U	5.37E+02	U	7480.00	U	1.40	U
1.38E-04	5.64E-03	U	5.64E-03	389.15	U	5.75E+02	U	8240.00	U	1.20	U
1.77E-02	7.24E-01	U	7.24E-01	394.15	U	6.20E+02	U	8290.00	U	-	
6.64E-03	2.71E-01	U	2.71E-01	384.15	U	5.92E+02	U	7930.00	U	1.10	U
1.72E-02	7.03E-01	U	7.03E-01	347.15	U	5.45E+02	U	7140.00	U	8.00	U
9.85E-03	4.03E-01	U	4.03E-01	360.35	U	5.71E+02	U	7500.00	U	8.00	U
6.16E-03	2.52E-01	U	2.52E-01	442.15	U	6.49E+02	U	9370.00	U	0.90	U
8.77E-03	3.59E-01	U	3.59E-01	438.15	U	6.37E+02	U	9320.00	U	1.00	U
6.63E-03	2.71E-01	U	2.71E-01	411.15	U	6.20E+02	U	8520.00	U	-	