

2023 ANNUAL GROUNDWATER MONITORING REPORT

And Surface Maintenance Report

WEST SURFACE IMPOUNDMENT

Columbia Gorge Aluminum Smelter Site

85 John Day Dam Road, Goldendale WA Facility Site ID #95415874

September 8, 2023

On behalf of:

NSC Smelter LLC 3313 West Second Street The Dalles OR 97058

In Cooperation With:

Blue Mountain Environmental Consulting Inc. 125 Main Street Waitsburg WA 99361

Prepared by:

GeoPro LLC P. O. Box 26 Battle Ground WA 98604

Table of Contents

1	INTRODUCTION	4
	1.1 SCOPE AND PURPOSE	4 4
2	GROUNDWATER INVESTIGATION	5
	2.1 MONITORING WELL LOCATIONS	5 6 6
3	RESULTS	8
	3.1 SUMMARY	9 9 10
4	CONCLUSIONS AND RECOMMENDATIONS	12
	4.1 CONCLUSIONS	
	4.2 RECOMMENDATIONS	12
5	REFERENCES	13
6	SURFACE MAINTENANCE	13
7	LIMITATIONS	14
<u>T/</u>	<u>BLES</u>	
	ble 1. Monitoring Well Construction Data	
	ole 2. Data Evaluation Schedule for WSI	
	ole 3. Groundwater Protection Standards for WSIble 4. Post-Closure Significant Trends Using the Mann-Kendall Test	
	ole 5. Upper Confidence Limits of Post-Closure Groundwater Data	
<u>FI</u>	<u>SURES</u>	
Fi	ure 1 - Location Mapfollowing pagure 2 - West Surface Impoundment Groundwater Monitor Well Location Map ure 3 - West Surface Impoundment Groundwater Elevation Contour Map	ge 14

Table of Contents - continued

APPENDICES

Appendix A – Groundwater Analyses

Appendix A1 - Analyses Summary Table

Appendix A2 - Laboratory Report

Appendix B - UCL and Trends

Appendix B1 - Time-Series Graphs: Sulfate, Fluoride, Chloride, Cyanide

Appendix B2 - Mann-Kendall Trend Test Results

Appendix B3 - Mann-Kendall Test Output

Appendix B4 - UCL Calculations

Appendix B5 - DOE Groundwater UCL Output

Appendix B6 - EPA Groundwater UCL Output

Appendix B7 - Calculator Input Table

Appendix C – Groundwater Levels

Appendix C1 - Static Water Level Hydrographs

Appendix C2 – Static Water Levels

Appendix D – Surface Maintenance Annual Report

1 INTRODUCTION

1.1 SCOPE AND PURPOSE

This report presents the results of the 2023 annual groundwater monitoring and evaluation following closure of the former Columbia Gorge Aluminum Smelter West Surface Impoundment (WSI). Statistical evaluation of the groundwater monitoring data was conducted to evaluate natural attenuation in the concentration of groundwater contaminates. This monitoring and statistical evaluation was conducted in accordance with the Groundwater Sampling Data Analysis and Evaluation Plan (GSDAEP) for the WSI facility (Parametrix 2004b). Groundwater sampling was performed on July 20, 2023, by GeoPro LLC, Battle Ground, Washington.

1.2 SITE DESCRIPTION

The approximately 10-acre WSI was constructed as an earthen impoundment with Hypalon liner in 1981. It was used through 2001 to dispose of various types of waste generated from plant pollution controls. A map of the location is shown in Figure 1.

The WSI contains approximately 89,000 cubic yards of sludge comprised primarily of alumina, dust, and particulates from wastewater and residual waste generated by plant emission control systems. The WSI managed waste through evaporation of wastewater and disposal of emission control sludge (DOE 2014). The WSI discontinued accepting waste and was closed in September 2004 (Parametrix 2004a). Closure of the WSI included placement of an engineered RCRA cap consisting of soil and geosynthetic materials and development of a post-closure maintenance and groundwater monitoring plan (Parametrix 2004b). The annual surface maintenance report prepared by others is supplemented in Appendix D.

1.3 HYDROGEOLOGIC SETTING

The geologic materials present beneath the WSI consist of unconsolidated alluvial deposits of Quaternary age, underlain by a series of basalt flows and sedimentary interbeds of the Columbia River Basalt Group (CH2M Hill 1995; Golder 1989). The groundwater gradient flattens beneath the WSI; south of the WSI, groundwater flows southwestward toward the Columbia River. The following aquifer zones have been defined for the Smelter Site in the Remedial Investigation Report.

- Unconsolidated Aquifer (UA) shallow water bearing zone in the colluvium, alluvium, and fill that overlies the basalt bedrock in most areas. The unit is thicker and more laterally extensive on the western side of the Site. Groundwater occurring locally within the upper 2-3 feet of weathered flow top and fractured basalt bedrock is part of the UA.
- Basalt Aquifer Upper zone (BAU) occurs within the basalt flow sequence commonly beneath a flow interior within a flow top.
- Basalt Aquifer Lower Zone (BAL) includes saturated zones beneath BAU near the Columbia River elevation to the bottom elevation of the John Day Dam reservoir.

1.4 PREVIOUS GROUNDWATER MONITORING

The current monitoring network at the WSI site consists of sixteen monitoring wells, including some shallow and deep well clusters. The initial monitoring wells were installed in 1984, and another set of wells were installed in 1989. An additional monitoring well, MW-18, was installed in October 2004 near the downgradient property boundary about 2,500-feet from the WSI.

Sampling and analysis of groundwater has been conducted since 1984 and followed a quarterly schedule between 1991 and 2004. One additional pre-closure sampling event was conducted in September 2004 for the five wells included in the post- closure monitoring plan to establish groundwater quality before the wells could be affected by subsurface disturbances from WSI closure construction. Post-closure sampling and analysis was conducted quarterly from 2005-2007, semiannually from 2008-2010, and annually beginning in 2011. Previous samples were analyzed for pH, conductivity, total organic carbon, sulfate, fluoride, chloride, sodium, iron, manganese, free cyanide, total cyanide, and total phenols. Sulfate and fluoride were determined to be representative indicator parameters for the WSI wastes since sulfate concentrations show direct response to periods of waste discharge into the pond. Pre-closure maximum sulfate concentrations were observed in 2000 and 2001 (Parametrix 2004a).

2 GROUNDWATER INVESTIGATION

The post-closure monitoring investigation was described in the GSDAEP (Parametrix 2004b) and is summarized in this section.

2.1 MONITORING WELL LOCATIONS

The post-closure monitoring well locations include the following upgradient and downgradient wells:

- Upgradient well: MW-8A
- Downgradient wells near WSI: MW-10A, MW-12A, and MW-14A
- Downgradient wells farther from WSI: MW-3B and MW-18

The aquifer in which each well is screened was determined as part of implementing the Remedial Investigation work plan pursuant to the Agreed Order (DOE 2014). Monitoring well construction details are shown below in Table 1. Monitor well 12A has been dry except for the March 13, 2007 sampling event. Well locations are shown on Figure 2.

Well Number	Installed	Total Well Depth (ft bgs)	Well Screen Interval (ft bgs)	PVC Casing Diameter (inches)	Ground Surface Elevation (ft)	Top of PVC Elevation (ft)	Location
MW-8A	May 1989	41	22-32	4	490	492.97	Upgradient
MW-3B	April 1984	51	46-51	4	408	410.90	Downgradient
MW- 10A	April 1989	26	13-25.5	4	425	427.95	Downgradient
MW- 12A	May 1989	55	40-54	4	439	441.38	Downgradient
MW- 14A	May 1989	30.5	8.5-29.5	4	429	431.65	Downgradient
MW-18	October 2004	51	35-50	4	346	348.40	Downgradient
Notes: bg	s = below grou	ınd surfa	ce; elevatio	ns from Para	ametrix (200	4b)	

Table 1. Monitoring Well Construction Data

2.2 SAMPLING PROCEDURES

Samples were collected on July 20, 2023, by GeoPro LLC using a submersible pump. Sampling collection procedures are summarized below.

- The static water level was measured prior to sampling.
- Each monitor well was purged of stagnant water in the casing and filter by slowly setting the pump within the approximate middle of the screened interval or slightly above the middle until the temperature, conductivity and pH stabilized.
- Samples were collected by setting the pump within the approximate middle of the screened interval with a low flow pumping rate.
- Water samples were placed in appropriate containers prepared by the laboratory. The containers were filled to prevent air-entrapment, sealed, labeled, and placed in an ice chest at approximately 4°C for transport to OnSite Laboratory. The samples were accompanied by a completed and signed chain-of-custody form. The samples were submitted by OnSite to AmTest laboratory for cyanide analysis.

2.3 SAMPLE ANALYSES

The laboratory report from Onsite Environmental, Inc., Redmond, Washington for analysis of the groundwater samples was reported on August 2, 2023. The laboratory report is included in Appendix A2.

2.4 MONITORING SCHEDULE

Groundwater sampling follows the schedule outlined in the post-closure plan (Parametric 2007c). Beginning in 2005, the plan specified quarterly sampling for the first two years, semiannually for years 3 through 7, and annual sampling thereafter until

concentrations drop below groundwater protection standards, or for a maximum of 30 years. One semiannual sampling event was not completed in 2011.

2.5 DATA EVALUATION

The statistical approach for evaluating the post-closure groundwater monitoring data collected at the WSI is described in the GSDAEP (Parametrix 2004b). The objectives of the post-closure data evaluation for the WSI are to demonstrate the effectiveness of the correction action, that is, evaluate whether groundwater quality is improving, deteriorating, or remaining unchanged relative to pre-closure conditions, and to determine compliance with the groundwater protection standards. The data evaluation schedule is summarized below in Table 2.

Frequency of Evaluation Statistical Procedure Purpose Quarterly or semiannually Time-series plots Visually identify increasing or Years 1-7 decreasing trends in concentrations Quantitatively identify increasing or Trend analyses using Mann-Kendall test decreasing trends in concentrations **Upper Confidence Limit** Compare concentrations to the Annually After Year 7 Evaluation groundwater protection standards Time-series plots Visually identify increasing or decreasing trends in concentrations

Table 2. Data Evaluation Schedule for WSI

Groundwater protection standards are MTCA¹ Method B cleanup standards and Maximum Contaminant Levels (MCLs). The groundwater protection standards for these parameters are presented in the following Table 3.

		MCL	(mg/L)
Parameter	MTCA B Cleanup Level (mg/L)	Primary	Secondary
Fluoride	0.96	4	2
Chloride	-	-	250
Sulfate	-	-	250
Total Cyanide	0.32	0.2	-

Table 3. Groundwater Protection Standards for WSI

The analysis for total cyanide is to be discontinued if not detected for four consecutive sampling events.

The GSDAEP (Parametrix 2004b) also recommended using Upper Prediction Limit (UPL) comparisons to evaluate post-closure data. However, EPA guidance (EPA 2004) does not recommend that UPL comparisons be used for sites such as WSI with pre-existing contamination.

 $^{^{1}}$ State of Washington Department of Ecology Model Toxics Control Act, Cleanup Regulations, Chapter 173-340 WAC, as revised.

Three years of quarterly data (2005-2007), three years of semiannual data (2008-2010), and thirteen years of annual data (2011-2023) from ground water sampling were used for analysis evaluation (see Appendix A1). The concentrations of fluoride, chloride, sulfate, and total cyanide in each well were evaluated and prepared to satisfy the quarterly and semiannual requirements. The time-series plots, Mann-Kendall test and UCL comparisons were conducted to satisfy the annual evaluation requirements. With approval from Paul Skyllingstad, DOE (personal communication, June 28, 2012) both the Washington Department of Ecology UCL calculator and the Environmental Protection Agency ProUCL calculator were used to calculate UCLs for the data.

Time-series plots were created using the Microsoft Excel graphing functions. The Mann-Kendall test was conducted using the EPA's ProUCL calculator. ProUCL did not directly create all the statistical outputs needed for the Mann-Kendall analysis. VAR(S) was computed using equation (1), Z was computed using equation (2), and probability was computed using Table A.21 (Hollander and Wolfe, 1973).

(1) Standard Deviation of S =
$$\sqrt{VAR(S)}$$

(2)
$$Z = \frac{|S|-1}{\sqrt{VAR(S)}}$$

The Washington DOE UCL (DOE, 2012) calculator was used to calculate the 95 percent UCL for normal and lognormal datasets as well as the mean, minimum value, and maximum value for each dataset. For datasets that were neither normal nor lognormal, the UCL was calculated using the EPA's ProUCL Calculator (ProUCL, 2012). The datasets were evaluated using ProUCL Raw calculations for the DOE and EPA ProUCL calculators are presented in Appendix B.

3 RESULTS

3.1 SUMMARY

Post-closure data has been collected during 12 quarterly events between February 2005 and November 2007, 6 semiannual events between May 2008 and October 2010, and 13 annual events in July 2011, April 2012, June 2013, April 2014, July 2015, August 2016, August 2017, July 2018, July 2019, June 2020, July 2021, June 2022, and July 2023. The post-closure data are summarized in Appendix A1 and individual results that exceed the groundwater protection level are highlighted.

3.2 STATISTICAL EVALUATION

3.2.1 Time-Series Plots

During the post-closure period beginning in February 2005 groundwater samples were analyzed for sulfate, fluoride, chloride, and total cyanide. Time-series plots of data collected since 2005 are presented in Appendix B1. For the time-series non-detected data, points were plotted using one half of the laboratory practical quantitative limit.

The time-series plots indicate the following trends since closing of the WSI in 2004 and compared to the prior year concentrations.

Sulfate

Sulfate concentrations since the prior year have slightly increased in well MW-14A and slightly decreased in the other wells. The sulfate concentrations remain above the groundwater protection standard of 250 mg/L except in upgradient well MW-8A which remains below the standard.

<u>Fluorid</u>e

Fluoride concentrations since the prior year are slightly decreasing in wells MW-3B and MW-14A. Fluoride concentrations remain below the groundwater protection standard of 0.96 mg/L except in wells MW-10A and MW-14A in which fluoride concentrations continue to be above the standard.

Chloride

Chloride concentrations since the prior year are decreasing in wells MW-3B, MW-10A and MW-18. Chloride concentrations since the prior year are slightly increasing in wells MW-8A and MW-14A. The chloride concentrations in all wells have not exceeded the groundwater protection standard of 250 mg/L since 2005.

Total Cyanide

Total cyanide was not detected in any wells at concentrations below the standard of 0.2 mg/L.

3.2.2 Mann-Kendall Test

The Mann-Kendall test (Gilbert, 1987; Hollander and Wolfe, 1973) was used to evaluate temporal trends in the concentrations of analytes. The nonparametric Mann-Kendall test evaluates the direction and significance of trends in the data at the 95 percent UCL. The GWSDAEP specified that Sen's slope tests were to be used to evaluate trends in the data but have not been used because they provide similar information to the Mann-Kendall test and are less conservative since they evaluate the significance of the data at the 90 percent UCL.

The Mann-Kendall test was conducted using the post-closure data. Results of the Mann-Kendall tests are presented in Appendix B2 and summarized in Table 4.

Total Well Cvanide Sulfate Fluoride Chloride *Upgradient* MW-8A 1 Downgradient MW-3B 1 MW-10A 1 MW-12A n/a n/a n/a n/a 1 1 1 MW-14A T MW-18

Table 4. Post-Closure Significant Trends Using the Mann-Kendall Test

Table 4 Notes:

↑ Significant Increasing Trend
 ↓ Significant Decreasing Trend
 - Negative Trend
 + Positive Trend
 n/a Trend could not be calculated.

Only one data point available or the well was dry.

The Mann-Kendall Trend test results indicate the following:

- Sulfate levels are significantly increasing in downgradient well MW-10A and are significantly decreasing in downgradient wells MW-14A and MW-18.
- Fluoride levels are significantly decreasing in upgradient well MW-8A and downgradient wells MW-3B, MW-14A, and MW-18.
- Chloride levels are significantly decreasing downgradient wells MW-3B, MW-14A and MW-18.
- Total cyanide levels are significantly decreasing in downgradient well MW-10A.

3.2.3 Upper Confidence Limits

The primary tool cited in MTCA (WAC 173-340-720[9]) for assessing whether data exceeds established cleanup levels is by comparing data to UCLs calculated on the mean. The UCL for each parameter at each well was calculated using the post-closure data, and the calculated UCL was compared to the MTCA cleanup level and MCL for each analyte to assess whether groundwater protection standards are being met. The results of the UCL comparisons are presented in Appendix B and summarized in Table 5.

Table 5. Upper Confidence Limits of Post-Closure Groundwater Data

		Upper Confi	dence Limit (m	g/L)
	Sulfate	Chloride	Fluoride	Total Cyanide
Lowest Groundwater Protection Standard (mg/L)	250	250	0.96	0.2
Upgradient Well				
MW-8A	9.04	4.39	0.54	0.01
Downgradient Wells				
MW-3B	2134.53	104.53	1.88	0.01
MW-10A	2241.72	66.28	3.5	0.02
MW-12A ¹	1800	150	6.3	0.01
MW-14A	3435.86	98.97	17.13	0.09
MW-18	1450.33	80.17	2.3	0.01

Table 5 Notes:

 $\textbf{Bold} \ \text{indicates UCL exceeds lowest groundwater protection standard}.$

All the sampled wells downgradient of the WSI have post-closure UCL concentrations above the groundwater protection standards for sulfate and fluoride and below the groundwater protection standard for chloride and total cyanide. Upgradient well MW-8A has a UCL below the groundwater protection standard for sulfate, chloride fluoride and total cyanide.

3.3 GROUNDWATER FLOW

Groundwater elevations were measured once during 2004, quarterly between 2005 and 2007, semiannually between 2008 and 2010, and annually during 2011 through 2023 in the five sampled wells. The groundwater elevation data and a hydrograph showing changes in groundwater elevation during post-closure are presented in Appendix C. A groundwater elevation contour map was prepared using groundwater levels measured in July 2023 and is provided in Figure 3. Groundwater flow is consistent with historical data and the overall flow direction downgradient from the WSI is toward the southwest.

¹No UCL calculated. Well was dry during most sampling events.

4 CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

The following is concluded based on the July 2023 groundwater sampling results, trends, and statistical evaluation of historic data.

- Sulfate and fluoride concentrations in downgradient wells, based on the calculated UCLs, are above groundwater protection standards. Sulfate and fluoride in the upgradient well are below groundwater protection standards.
- Sulfate concentration is significantly increasing in downgradient well MW-10A.
- Sulfate concentration is significantly decreasing in downgradient wells MW-14A and MW-18.
- Fluoride concentrations are significantly decreasing in concentration in all wells except downgradient well MW-10A.
- Chloride concentrations remain below groundwater protection standards, based on calculated UCLs, since the last reporting period. There are significant decreasing trends for chloride concentration in upgradient well MW-8A and downgradient wells MW-14A and MW-18.
- Total cyanide concentrations are below groundwater protection standards, based on calculated UCLs, since the last reporting period. A significant decreasing trend continues since the last reporting period for total cyanide in downgradient well MW-10A.

4.2 RECOMMENDATIONS

Post-closure fluoride and sulfate concentrations are lower than pre-closure concentrations. However, the lack of significant reduction in their concentrations during the post-closure period may indicate that the WSI is continuing to contribute these contaminates to groundwater. Continued sampling and data evaluation will be required to determine whether the concentrations of fluoride and sulfate decrease below the lowest groundwater protection standards.

As specified in the GSDAEP, the WSI groundwater monitoring frequency is on an annual basis. Also specified, future annual reports will continue to include time-series plots, Mann-Kendall tests for trend and a comparison of the UCLs of the most recent sampling data to groundwater protection standards.

5 REFERENCES

CH2M Hill, 1995, West Surface Impoundment Closure and Postclosure Plan. Prepared for Goldendale Aluminum, February 1995.

DOE, 2012, State of Washington Department of Ecology 6/11/2012 http://www.ecy.wa.gov/programs/tcp/tools/SITE97.XLT.

DOE, 2014, Agreed Order No. DE 10483 Columbia Gorge Aluminum Smelter, Effective May 1, 2014.

GeoPro LLC, 2012, Semi-Annual Groundwater Monitoring Report, West Surface Impoundment, Former Goldendale Aluminum Smelter.

GeoPro LLC, 2013 Through 2022, Annual Groundwater Monitoring Reports, West Surface Impoundment, Former Goldendale Aluminum Smelter.

Gibbons, R.D., 1994, Statistical Methods for Ground Water Monitoring. John Wiley and Sons.

Gilbert, R.O., 1987, <u>Statistical Methods for Environmental Pollution Monitoring</u>, Van Nostrand Reinhold, New York.

Golder Associates, Inc., 1989, <u>Groundwater Monitoring Well Installation</u>, <u>West Surface Impoundment</u>, <u>Golden Northwest Aluminum</u>, <u>Interim Report</u>.

Hollander and Wolfe, 1973, Nonparametric Statistical Methods, John Wiley and Sons.

Parametrix, Inc., 2004a, Goldendale Aluminum West Surface Impoundment Closure.

Parametrix, Inc., 2004b, <u>Groundwater Sampling Data Analysis and Evaluation Plan for Goldendale Aluminum West Surface Impoundment Facility.</u>

Parametrix, Inc., 2004c, WSI Closure and Post Closure Plan.

Parametrix, Inc., 2005, <u>Groundwater Sampling Data Analysis and Evaluation Plan for Goldendale Aluminum West Surface Impoundment Facility, February 2005 Revision to November 2004 Document.</u>

Parametrix, Inc., 2007, <u>Two-Year Post-Closure Groundwater Evaluation</u>, <u>Goldendale Aluminum West Surface Impoundment Facility</u>, September 2007.

Paul Skyllingstad, WA DOE, Personal Communication, June 28, 2012.

ProUCL 7/12/11 U.S. Environmental Protection Agency 6/11/2012: http://www.epa.gov/osp/hstl/tsc/setup v41.zip

6 SURFACE MAINTENANCE

The quarterly surface maintenance reports for the past annual are included in Appendix D pursuant to Section 6.5 of the WSI Closure and Post Closure Plan (Parametrix, 2004c). The reports include visual inspection of the cover, stormwater conveyance system and any correction action. Quarterly photographs are included in each report.

7 LIMITATIONS

This report has been prepared for use by the landowner and is not intended for use by others except the landowner(s), landowner's agents and appropriate government agencies. All others should contact GeoPro LLC before applying or interpreting any information in this report. Each project and project site is unique and the information contained in this report is not applicable to other sites. This report has been prepared pursuant to a post-closure work plan prepared by others and the work plan approved by the State of Washington Department of Ecology.

GeoPro LLC does not accept liability or responsibility for use of this report by third parties, including but not limited to, detachment, partial use, separation, or reproduction without color, if used, which may depict significant information. Such use shall be at user's sole risk.

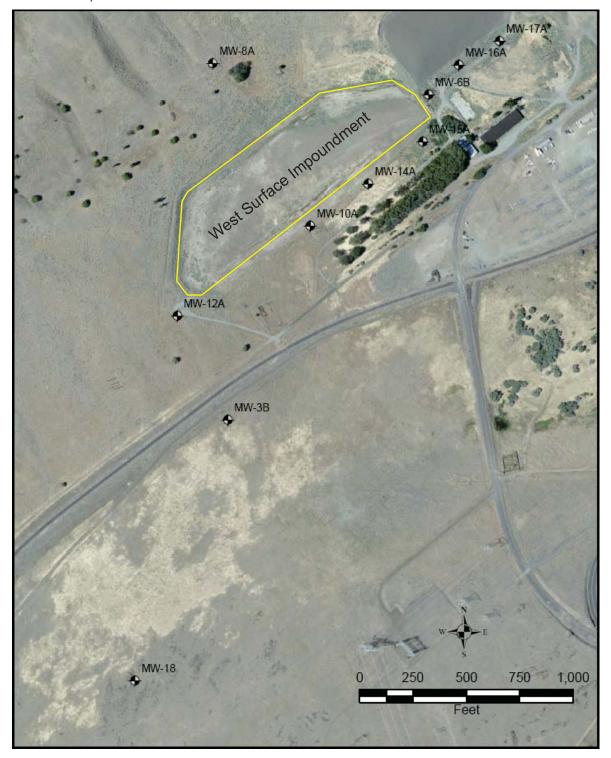
Records, documentation, and personal communication have been relied upon in good faith; however, GeoPro LLC accepts no responsibility for errors or omissions of work by others. Services are performed in accordance with generally accepted professional practices, in the same or similar localities, related to the nature of the work accomplished, at the time services are rendered. GeoPro LLC is not responsible for references to regulatory terms, practices, numeric data, or conditions that may lead to other conclusions if such references are not in final form.

Conclusions and findings apply only to present conditions, and opinions expressed are subject to revision when additional or new information is presented and reviewed. This warranty is in lieu of all other warranties, either expressed or implied. It is possible that explorations failed to reveal the presence of hazardous materials at areas where hazardous materials were assumed, suspected or expected to exist (hazardous as used herein shall also mean contaminated and polluted). Through use of this report it is understand that failure to sample soil or water, or install groundwater monitor wells at locations through appropriate and mutually agreed-upon techniques does not guarantee that hazardous materials have, or will be, detected at such locations. Similarly, areas which in fact are unaffected by hazardous materials at the time of this report, may later, due to natural causes or human intervention, become contaminated. GeoPro LLC is not responsible for failing to locate hazardous materials which have not been discovered at the time of this report or in the future. In the event of changes in future development plans as understood at the time of this report, the conclusions and recommendations made herein shall be invalid until GeoPro LLC is given the opportunity to review and modify this report in writing. Portions of an Agreement to perform professional services may or may not be disclosed in this report.

Respectfully submitted,

Richard C. Kent, L.G.

GeoPro LLC


FIGURE 1

LOCATION MAP

Columbia Gorge Aluminum Corporation Former Columbia Gorge Aluminum Smelter Goldendale, Washington

GeoPro LLC PO Box 26 Battle Ground, WA 98604

FIGURE 2

WEST SURFACE IMPOUNDMENT GROUNDWATER MONITOR WELLS LOCATION MAP

Columbia Gorge Aluminum Corporation Former Columbia Gorge Aluminum Smelter Goldendale, Washington

GeoPro LLC PO Box 26 Battle Ground, WA 98604

contour interval 20 feet contours in feet MSL

flow direction

FIGURE 3

WEST SURFACE IMPOUNDMENT GROUNDWATER CONTOUR MAP

Columbia Gorge Aluminum Corporation Former Columbia Gorge Aluminum Smelter Goldendale, Washington

GeoPro LLC PO Box 26 Battle Ground, WA 98604

APPENDICES

Appendix A – Groundwater Analyses

Appendix A1 Analyses Summary Table

Analyses Summary Table (mg/L): page 1 of 2

	ι	Jpgradient \		A	_	owngradien		_	Do	wngradient	Well MW-	10A
	Sulfate	Fluoride	Chloride	CN (total)	Sulfate	Fluoride	Chloride	CN (total)	Sulfate	Fluoride	Chloride	CN (total)
Lowest Groundwater Protection Standard	250	0.96	250	0.2	250	0.96	250	0.2	250	0.96	250	0.2
Sample Date												
2/16/2005	10	0.9	5.6	<0.01	2300	0.6	130	<0.01	940	1.8	29	0.04
5/11/2005	9.8	0.3	4.6	<0.01	2500	0.4	140	<0.01	910	1.5	31	0.05
8/29/2005	8.9	0.4	4.2	<0.01	2700	0.6	120	<0.01	670	1.2	28	0.04
11/1/2005	9.6	0.9	4.7	<0.01	2600	0.9	130	<0.01	670	2.7	28	0.03
2/27/2006	9.27	2.8	4.2	<0.01	2610	0.7	118	<0.01	1570	2.3	43	0.03
6/5/2006	9.8	0.2	4.9	<0.05	2220	0.2	113	<0.01	1650	3.2	48	0.03
7/31/2006	9.8	0.1	4.6	<0.01	2000	3.7	110	<0.01	860	2.3	35	0.08
10/9/2006	9.7	<0.2	4.5	<0.01	2500	3.8	110	<0.01	850	1.9	30	0.03
3/13/2007	10	<0.1	6.6	<0.01	2500	3.8	110	<0.01	1100	3.4	45	0.04
6/22/2007	1	<10	4.89	<0.01	2500	<10	97	<0.01	1100	<10	36	<0.01
9/24/2007	10	<1	4.2	<0.01	2200	<1	124.79	<0.01	760	1.2	30	0.04
11/14/2007	-	-	-	<0.01	-	-	-	<0.01	-	-	-	0.043
5/8/2008	10	<1	4	<0.01	2200	<50	100	<0.01	2700	<50	100	0.05
10/14/2008	10	0.1	4.5	<0.01	2600	<10	100	<0.01	860	<10	30	0.04
5/29/2009	9	<1	3	<0.02	2200	<1	96	<0.02	2000	2	68	0.03
10/27/2009	10	<1	5.5	<0.02	2606	<1	110	<0.02	760	<1	79	<0.02
5/26/2010	9.3	<1	4.4	<0.02	2300	2.3	120	<0.02	2200	4.4	83	0.032
10/6/2010	8.9	<1	3.6	<0.02	2400	<1	110	<0.02	710	1	23	0.022
7/26/2011	7.8	<1	3.6	<0.02	2000	<1	98	<0.02	1800	3.3	62	0.028
4/19/2012	10	0.18	3.8	<0.005	2200	0.16	90	<0.005	5800	1.9	180	0.007
6/20/2013	9.4	0.16	4.8	< 0.005	1900	0.16	91	0.006	4700	3.1	99	0.008
4/25/2014	9.5	0.19	4.9	<0.005	2000	0.18	91	<0.006	6100	2	190	<0.005
7/20/2015	9.5	0.16	4.2	<0.005	1900	0.14	80	<0.005	1900	2	58	<0.005
8/2/2016	9.3	0.13	4.1	<0.005	1900	0.12	98	<0.005	3500	2.1	82	<0.005
8/9/2017	9.6	0.15	4.1	<0.005	1700	0.15	95	0.01	2900	3.2	170	<0.005
7/26/2018	9.5	0.15	3.2	< 0.005	1800	0.16	95	<0.005	4800	4.1	71	<0.005
7/24/2019	5.4	0.14	4.1	<0.005	1500	0.15	93	<0.005	4000	3.7	82	<0.006
6/20/2020	11	0.16	3.9	<0.005	1700	0.14	88	<0.005	5700	4.4	77	<0.006
7/28/2021	9	0.15	4.4	<0.004	1500	0.17	93	<0.005	Dry	Dry	Dry	Dry
6/30/2022	9.2	0.15	3.7	<0.005	1600	0.17	99	<0.005	2100	3.2	47	<0.005
7/20/2023	7.4	0.15	5	<0.005	1400	0.13	86	<0.005	1400	4.0	38	<0.005

GeoPro LLC APPENDIX A1

Analyses Summary Table (mg/L): page 2 of 2

	_			-	Downgradient Well MW-14A				Downgradient Well MW-18			
Ī		wngradient										
Lawash	Sulfate	Fluoride	Chloride	CN (total)	Sulfate	Fluoride	Chloride	CN (total)	Sulfate	Fluoride	Chloride	CN (total)
Lowest Groundwater												
Protection	250	0.96	250	0.2	250	0.96	250	0.2	250	0.96	250	0.2
Standard												
Sample Date		<u> </u>		<u>I</u>		<u>I</u>		l .		<u>I</u>	<u>l</u>	
2/16/2005	Dry	Dry	Dry	Dry	4000	9.6	110	0.35	1500	0.6	86	<0.01
5/11/2005	Dry	Dry	Dry	Dry	3500	8.6	90	0.24	1300	0.4	91	<0.01
8/29/2005	Dry	Dry	Dry	Dry	3600	30	71	0.27	1500	0.4	75	<0.01
11/1/2005	Dry	Dry	Dry	Dry	2800	25	75	0.19	1300	1.8	84	<0.01
2/27/2006	Dry	Dry	Dry	Dry	2170	31	53	0.19	1520	0.9	83	<0.01
6/5/2006	Dry	Dry	Dry	Dry	2380	27	63	0.2	1490	0.2	91	<0.01
7/31/2006	Dry	Dry	Dry	Dry	3300	30	98	0.17	1500	2.6	89	<0.01
10/9/2006	Dry	Dry	Dry	Dry	3900	24	130	0.01	1600	2.4	80	<0.01
3/13/2007	1800	6.3	150	<0.01	4400	16	140	0.12	1600	2.6	93	<0.01
6/22/2007	Dry	Dry	Dry	Dry	7900	19	170	<0.01	1700	<1	77	<0.01
9/24/2007	Dry	Dry	Dry	Dry	6400	<50	200	0.03	1400	<50	100	<0.01
11/14/2007	Dry	Dry	Dry	Dry	1	-	•	<0.01	•	-	-	<0.01
5/8/2008	Dry	Dry	Dry	Dry	5500	<50	100	0.19	1300	<50	70	<0.01
10/14/2008	Dry	Dry	Dry	Dry	6500	20	180	0.12	1600	<1	80	<0.01
5/29/2009	Dry	Dry	Dry	Dry	7000	30	210	0.14	1500	1	81	<0.01
10/27/2009	Dry	Dry	Dry	Dry	5900	24	160	0.044	1200	<1	70	<0.01
5/26/2010	Dry	Dry	Dry	Dry	5200	32	170	0.14	1500	2	100	<0.02
10/6/2010	Dry	Dry	Dry	Dry	4000	18	120	0.086	1600	<1	84	<0.02
7/26/2011	Dry	Dry	Dry	Dry	3900	23	130	0.066	1600	<1	89	<0.02
4/19/2012	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	1700	0.2	79	<0.005
6/20/2013	Dry	Dry	Dry	Dry	2300	17	66	0.028	1500	0.13	84	<0.005
4/25/2014	Dry	Dry	Dry	Dry	2100	18	61	0.037	1700	0.12	79	<0.005
7/20/2015	Dry	Dry	Dry	Dry	1100	6.8	47	0.008	1300	0.11	86	<0.005
8/2/2016	Dry	Dry	Dry	Dry	1400	3.5	61	0.019	1700	0.12	79	<0.005
8/9/2017	Dry	Dry	Dry	Dry	1700	2.5	68	0.017	1300	0.11	59	0.086
7/26/2018	Dry	Dry	Dry	Dry	1800	3.6	66	<0.005	1400	0.11	69	<0.005
7/24/2019	Dry	Dry	Dry	Dry	1700	2.8	64	0.018	1200	0.12	68	<0.005
6/20/2020	Dry	Dry	Dry	Dry	2000	7	49	0.018	1400	0.13	67	<0.005
7/28/2021	Dry	Dry	Dry	Dry	1100	7.8	36	<0.004	1200	0.11	71	<0.004
6/30/2022	Dry	Dry	Dry	Dry	990	7.8	32	0.008	1300	0.15	72	<0.005
7/20/2023	Dry	Dry	Dry	Dry	1100	2.9	50	<0.005	1100	0.16	69	<0.005

GeoPro LLC APPENDIX A1

Appendix A2 Laboratory Report

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

August 2, 2023

Richard Kent GeoPro, LLC PO Box 26 Battle Ground, WA 98604

Re: Analytical Data for Project 230720

Laboratory Reference No. 2307-192

Dear Richard:

Enclosed are the analytical results and associated quality control data for samples submitted on July 25, 2023.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 230720

Case Narrative

Samples were collected on July 20, 2023 and received by the laboratory on July 25, 2023. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Project: 230720

FLUORIDE SM 4500-F C

ome. mg r /L				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-3B					
Laboratory ID:	07-192-01					
Fluoride	0.13	0.020	SM 4500-F C	7-27-23	7-27-23	
Client ID:	MW-8A					
Laboratory ID:	07-192-02					
Fluoride	0.15	0.020	SM 4500-F C	7-27-23	7-27-23	
Client ID:	MW-10A					
Laboratory ID:	07-192-03					
Fluoride	4.0	0.040	SM 4500-F C	7-27-23	7-27-23	
Client ID:	MW-10A Dup					
Laboratory ID:	07-192-04					
Fluoride	4.0	0.040	SM 4500-F C	7-27-23	7-27-23	
Client ID:	MW-14A					
Laboratory ID:	07-192-05					
Fluoride	2.9	0.040	SM 4500-F C	7-27-23	7-27-23	
Client ID:	MW-18					
Laboratory ID:	07-192-06					
Fluoride	0.15	0.020	SM 4500-F C	7-27-23	7-27-23	

Project: 230720

FLUORIDE SM 4500-F C QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0727W1					
Fluoride	ND	0.020	SM 4500-F C	7-27-23	7-27-23	

			Source	Percent	Recovery		RPD	
Analyte	Result	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	07-192-02							
	ORIG DUP							
Fluoride	0.145 0.133	NA	NA	NA	NA	9	17	
MATRIX SPIKE								
Laboratory ID:	07-192-02							
	MS	MS		MS				
Fluoride	0.659	0.500	0.145	103	63-131	NA	NA	
SPIKE BLANK								
Laboratory ID:	SB0727W1							
	SB	SB		SB			•	•
Fluoride	0.457	0.500	NA	91	73-111	NA	NA	•

Project: 230720

SULFATE ASTM D516-11

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-3B					
Laboratory ID:	07-192-01					
Sulfate	1400	500	ASTM D516-11	7-20-23	7-20-23	
Client ID:	MW-8A					
Laboratory ID:	07-192-02					
Sulfate	7.4	5.0	ASTM D516-11	7-20-23	7-20-23	
Client ID:	MW-10A					
Laboratory ID:	07-192-03					
Sulfate	1400	1000	ASTM D516-11	7-20-23	7-20-23	
Client ID:	MW-10A Dup					
Laboratory ID:	07-192-04					
Sulfate	1400	1000	ASTM D516-11	7-20-23	7-20-23	
Client ID:	MW-14A					
Laboratory ID:	07-192-05					
Sulfate	1100	500	ASTM D516-11	7-20-23	7-20-23	
Client ID:	MW-18					
Laboratory ID:	07-192-06					
Sulfate	1100	500	ASTM D516-11	7-20-23	7-20-23	-

Project: 230720

SULFATE ASTM D516-11 QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0726W1					
Sulfate	ND	5.0	ASTM D516-11	7-20-23	7-20-23	

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	07-19	92-02							
	ORIG	DUP							
Sulfate	7.44	7.62	NA	NA	NA	NA	2	10	
MATRIX SPIKE									
Laboratory ID:	07-19	92-02							
	M	IS	MS		MS				
Sulfate	18	3.6	10.0	7.44	112	73-127	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB07	26W1							
	S	В	SB		SB			•	
Sulfate	9.0	67	10.0	NA	97	85-114	NA	NA	

Project: 230720

CHLORIDE SM 4500-CI E

•				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-3B					
Laboratory ID:	07-192-01					
Chloride	86	2.0	SM 4500-CI E	7-25-23	7-25-23	
Client ID:	MW-8A					
Laboratory ID:	07-192-02					
Chloride	5.0	2.0	SM 4500-CI E	7-25-23	7-25-23	
Client ID:	MW-10A					
Laboratory ID:	07-192-03					
Chloride	38	2.0	SM 4500-CI E	7-25-23	7-25-23	
Client ID:	MW-10A Dup					
Laboratory ID:	07-192-04					
Chloride	38	2.0	SM 4500-CI E	7-25-23	7-25-23	
Client ID:	MW-14A					
Laboratory ID:	07-192-05					
Chloride	50	2.0	SM 4500-CI E	7-25-23	7-25-23	
Client ID:	MW-18					
Laboratory ID:	07-192-06					
Chloride	69	2.0	SM 4500-CI E	7-25-23	7-25-23	

Project: 230720

CHLORIDE SM 4500-CI E QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0725W1					
Chloride	ND	2.0	SM 4500-CLF	7-25-23	7-25-23	

	_			Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	07-19	92-02							
	ORIG	DUP							
Chloride	5.04	4.21	NA	NA	NA	NA	18	12	С
MATRIX SPIKE									
Laboratory ID:	07-19	92-02							
	N	IS	MS		MS				
Chloride	54	1.8	50.0	5.04	100	83-120	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB07	25W1							
-	S	В	SB		SB				
Chloride	45	5.8	50.0	NA	92	83-119	NA	NA	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 Professional Analytical Services

Jul 28 2023
On-Site Environmental
14648 NE 95th ST
Redmond, WA 98052
Attention: David Baumeister

Dear David Baumeister:

Enclosed please find the analytical data for your project.

The following is a cross correlation of client and laboratory identifications for your convenience.

CLIENT ID	MATRIX	AMTEST ID	TEST
MW-3B	Water	23-A012684	CN- Shim
MW-8A	Water	23-A012685	CN- Shim
MW-10A	Water	23-A012686	CN- Shim
MW-10A DUP	Water	23-A012687	CN- Shim
MW-14A	Water	23-A012688	CN- Shim
MW-18	Water	23-A012689	CN- Shim

Your samples were received on Tuesday, July 25, 2023. At the time of receipt, the samples were logged in and properly maintained prior to the subsequent analysis.

The analytical procedures used at AmTest are well documented and are typically derived from the protocols of the EPA, USDA, FDA or the Army Corps of Engineers.

Following the analytical data you will find the Quality Control (QC) results.

Please note that the detection limits that are listed in the body of the report refer to the Practical Quantitation Limits (PQL's), as opposed to the Method Detection Limits (MDL's).

If you should have any questions pertaining to the data package, please feel free to contact me.

Sincerely,

Aaron Young Vice President

Project #: 230720 SDG #: 2330520 PO Number: 07-192

BACT = Bacteriological CONV = Conventionals

MET = Metals ORG = Organics NUT=Nutrients DEM=Demand MIN=Minerals

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664

www.amtestlab.com

Professional Analytical Services

ANALYSIS REPORT

On-Site Environmental 14648 NE 95th ST Redmond, WA 98052

Attention: David Baumeister SDG Number: 2330520

Project #: 230720 PO Number: 07-192

All results reported on an as received basis.

Date Received: 07/25/23 Date Reported: 7/28/23

AMTEST Identification Number

23-A012684 Client Identification MW-3B

Sampling Date 07/20/23, 11:25

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Cyanide	< 0.005	mg/l		0.005	SM 4500CN-E99	AE	07/27/23

AMTEST Identification Number

Client Identification

Sampling Date

23-A012685 A8-WM

07/20/23, 07:45

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Cyanide	< 0.005	mg/l		0.005	SM 4500CN-E99	AE	07/27/23

AMTEST Identification Number Client Identification

Sampling Date

23-A012686 **MW-10A** 07/20/23, 10:00 On-Site Environmental

Project Name:

AmTest ID: 23-A012686

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Cyanide	< 0.005	mg/l		0.005	SM 4500CN-E99	AE	07/27/23

AMTEST Identification Number

Client Identification Sampling Date 23-A012687 MW-10A DUP 07/20/23, 10:00

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Cyanide	< 0.005	mg/l		0.005	SM 4500CN-E99	AE	07/27/23

AMTEST Identification Number

Client Identification Sampling Date 23-A012688 MW-14A 07/20/23, 08:55

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Cyanide	< 0.005	mg/l		0.005	SM 4500CN-E99	AE	07/27/23

AMTEST Identification Number

Client Identification Sampling Date 23-A012689 MW-18 07/20/23, 12:33

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Cyanide	< 0.005	mg/l		0.005	SM 4500CN-E99	AE	07/27/23

On-Site Environmental Project Name: AmTest ID: 23-A012689

> Aaron Young Vice President

Am Test Inc. 13600 NE 126th PL Suite C Kirkland, WA, 98034 (425) 885-1664 www.amtestlab.com

QC Summary for sample numbers: 23-A012684 to 23-A012689

DUPLICATES

SAMPLE #	ANALYTE	UNITS	SAMPLE VALUE	DUP VALUE	RPD
23-A011979	Total Cyanide	mg/l	< 0.005	< 0.005	
23-A012032	Total Cyanide	mg/l	< 0.005	< 0.005	
23-A012712	Total Cyanide	mg/l	< 0.005	< 0.005	

MATRIX SPIKES

SAMPLE #	ANALYTE	UNITS	SAMPLE VALUE	SMPL+ SPK	SPK AMT	RECOVERY
23-A011979	Total Cyanide	mg/l	< 0.005	0.023	0.025	92.00 %
23-A012032	Total Cyanide	mg/l	< 0.005	0.035	0.025	140.00 %
23-A012712	Total Cyanide	mg/l	< 0.005	0.029	0.025	116.00 %

STANDARD REFERENCE MATERIALS

ANALYTE	UNITS	TRUE VALUE	MEASURED VALUE	RECOVERY
Total Cyanide	mg/l	0.10	0.10	100. %
Total Cyanide	mg/l	0.10	0.099	99.0 %
Total Cyanide	mg/l	0.10	0.099	99.0 %

BLANKS

ANALYTE	UNITS	RESULT
Total Cyanide	mg/l	< 0.005
Total Cyanide	mg/l	< 0.005
Total Cyanide	mg/l	< 0.005

M. OnSite Environmental Inc.

14648 NE 95th Street, Redmond, WA 98052 · (425) 883-3881

Laboratory: AmTest Laboratories

Attention: Aaron Young

13600 NE 126th PI Kirkland, WA 98034 Phone Number: (425) 885-1664

Turnaround Request

3 Day

1 Day 2 Day Standard Other:

Laboratory Reference #: 07-192

Project Manager: David Baumeister

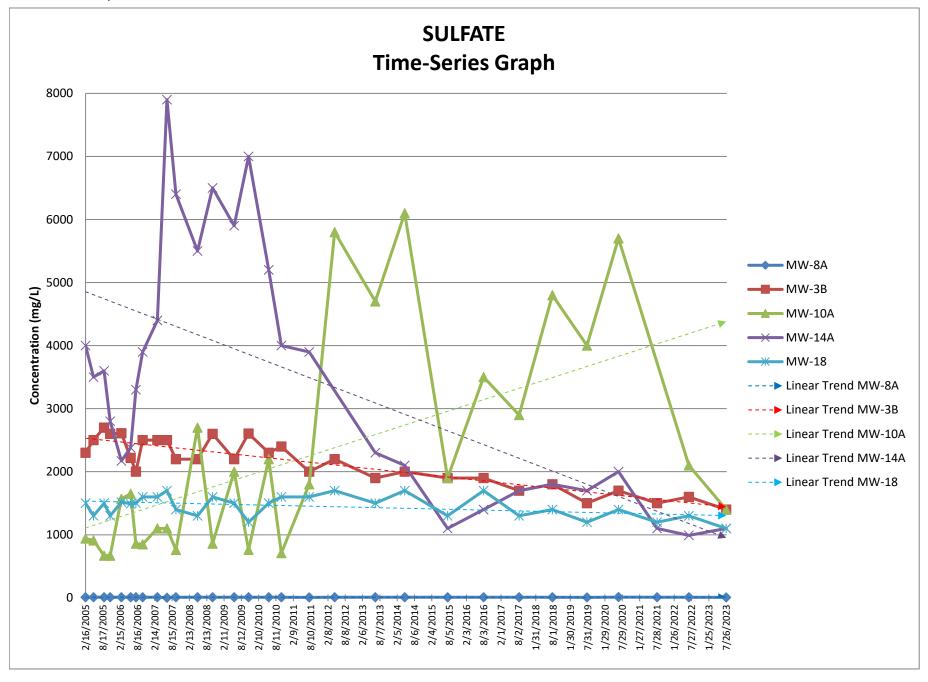
email: dbaumeister@onsite-env.com

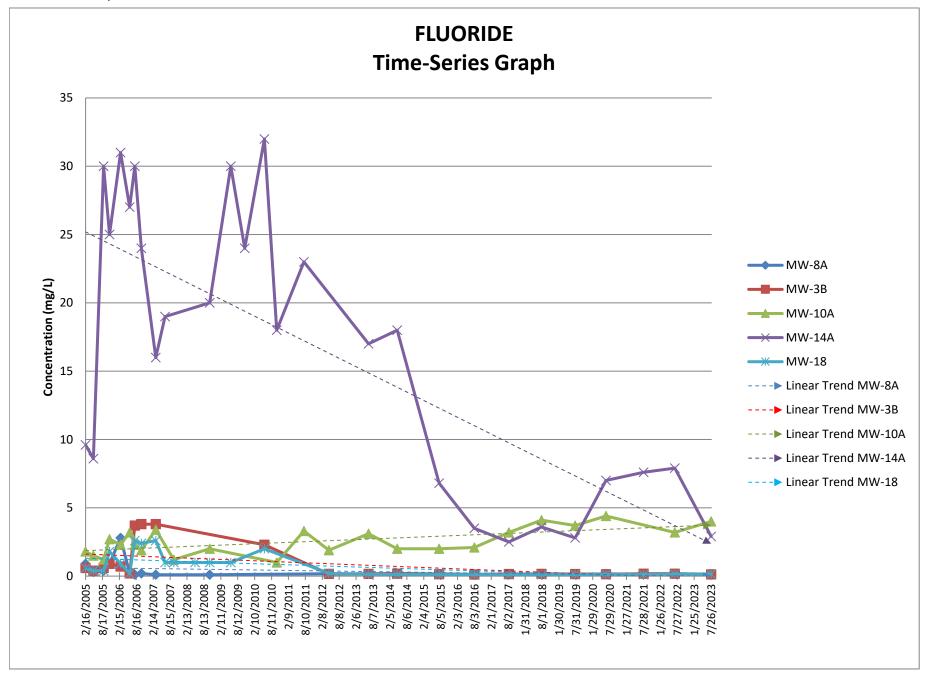
Project Number: 230720

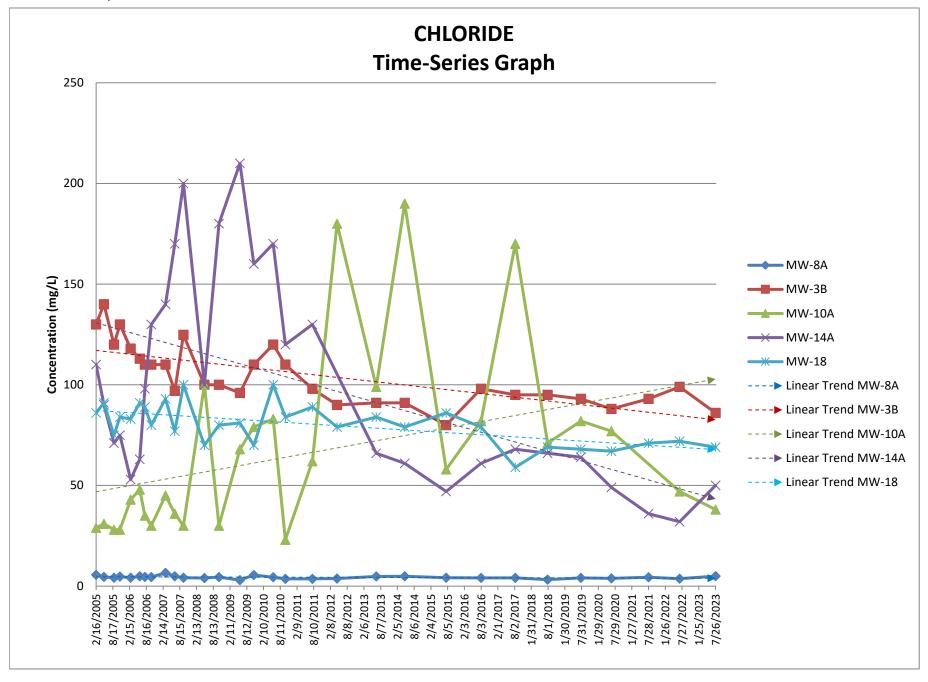
Project Name:

			Date	Time		‡ ○#	
Lab ID		Sample Identification	70	Sampled	Matrix	Cont	Requested Analyses
	MW-3B	13684		11:25	Water	1	Total Cyanide
	MW-8A	13185	7/20/23	7:45	Water	1	Total Cyanide
	MW-10A	98961	7/20/23	10:00	Water	-	Total Cyanide
	MW-10A Dup	1.8921	7/20/23	10:00	Water	1	Total Cyanide
	MW-14A	13688	7/20/23	8:55	Water	-	Total Cyanide
	MW-18 12	13689	7/20/23	12:33	Water	1	Total Cyanide
							THE PROPERTY OF THE PROPERTY O
							The state of the s
			Company	pany		Date	Time Comments/Special Instructions
Reling	Relinquished by: $\mathbb{N} \mathbb{N} \mathbb{N}$					711stal 1270	0.721
Recei	Received by:	く	\$ 100 m			7/15/25 1210	0)2
Reling	Relinquished by:						
Recei	Received by:						
Relino	Relinquished by:						
Receiv	Received by:						

OnSite Environmental Inc.


Chain of Custody


of


% Moisture Electronic Data Deliverables (EDDs) Level IV HEM (oil and grease) 1664 TCLP Metals Level III Total MTCA Metals Invoice BMEC Chromatograms with final report Total RCRA Metals Comments/Special Instructions Data Package: Standard Z Chlorinated Acid Herbicides 8151 Organophosphorus Pesticides 8270/SIM PCBs 8082 -(level-wol) MIZ\07S8 &HA9 (sHA9 level-wol rtiw) Semivolatiles 8270/SIM Laboratory Number: EDB EPA 8011 (Waters Only) 080 Halogenated Volatiles 8260 Time NMTPH-Dx (SG Clean-up □) 78/23 NWTPH-GX Date NWTPH-Gx/BTEX (8021 8260 □) NWTPH-HCID **Number of Containers** 2 00 2 3 Days Matrix 1 Day **Turnaround Request** (in working days) Reviewed/Date (Check One) Standard (7 Days) 1233 (other) Time Company Same Day 2 Days Date Sampled -2023 -2023 16 30 230720 Phone: (425) 883-3881 • www.onsite-env.com 14648 NE 95th Street • Redmond, WA 98052 Analytical Laboratory Testing Services Sample Identification 110hr Signature seo Pro Reviewed/Date Project Number: Project Manager Project Name: Relinquished Relinquished Relinquished Sampled by: Received Received Received Lab ID 0

Appendix B - UCL and Trends

Appendix B1 Time-Series Graphs: Sulfate, Fluoride, Chloride, Cyanide

Appendix B2 Mann-Kendall Trend Test Results

SUMMARY MANN-KENDALL TEST FOR TREND RESULTS

Well ID	Analyte	n	S	variance	Z	Probability	Trend
MW-3B	Sulfate	19	-145	810.3333	5.0586	4.22E-07	Negative
	Fluoride	19	-94	809.3333	3.2690	0.0011	Significantly Negative
	Chloride	19	-85	813	2.9460	0.0032	Significantly Negative
	Total Cyanide	10	-1	111.6667	0	1	Negative
MW-8A	Sulfate	19	-56	804.6667	1.9389	0.0525	Negative
	Fluoride	19	-81	787	2.8517	0.0043	Significantly Negative
	Chloride	19	-35	812.3333	1.1929	0.2329	Negative
	Total Cyanide	19	-9	541	0.3439	0.7309	Negative
MW-10A	Sulfate	18	67	697	2.4999	0.0124	Significantly Positive
	Fluoride	18	51	695	1.8966	0.0579	Positive
	Chloride	18	30	696	1.0992	0.2717	Positive
	Total Cyanide	18	-88	666.6667	3.3695	0.0008	Significantly Negative
MW-12A ¹	Sulfate	1	NA	NA	NA	NA	NA
	Fluoride	1	NA	NA	NA	NA	NA
	Chloride	1	NA	NA	NA	NA	NA
	Total Cyanide	1	NA	NA	NA	NA	NA
MW-14A	Sulfate	18	-97	3.6485	692.3333	0.0003	Significantly Negative
	Fluoride	18	-77	697	2.8787	0.0040	Significantly Negative
	Chloride	18	-93	695	3.4898	0.0005	Significantly Negative
	Total Cyanide	18	-106	691.3333	3.9934	6.51E-05	Negative
MW-18	Sulfate	19	-62	804	2.1513	0.0315	Significantly Negative
	Fluoride	19	-85	801.6667	2.9668	0.0030	Significantly Negative
	Chloride	19	-82	811.3333	2.8437	0.0045	Significantly Negative
	Total Cyanide	19	3	543.6667	0.0858	0.9316	Positive

Notes:

S = Mann-Kendall test statistic; calculated based on S and the estimated variance when the sample size is greater than 10.

Variance = Standard deviation of S squared

Z = Approximate normal test statistic; calculated based on S and the estimated variance when the sample size is greater than 10.

Probability from Table A.21 [Hollander and Wolfe (1973)]

Trends significant at alpha = 0.05 or less are *highlighted*

¹ No UCL calculated. Well was dry during most sampling events.

n = sample size

Appendix B3 Mann-Kendall Test Output

User Selected Options

Date/Time of Computation ProUCL 5.2 9/7/2023 12:12:28 PM

From File WSI2023_1.0.xls

Full Precision OFF

Confidence Coefficient 0.95 Level of Significance 0.05

S₃B

General Statistics

Number or Reported Events Not Used 0 Number of Generated Events 30 Number Values Reported (n) 31 Number Values Missing 1 Number Values Used 30 Minimum 1400 Maximum 2700 Mean 2135 Geometric Mean 2099 Median 2200 381.7 Standard Deviation

Coefficient of Variation

0.179

Mann-Kendall Test

M-K Test Value (S) -293
Critical Value (0.05) -1.645
Standard Deviation of S 55.79
Standardized Value of S -5.234
Approximate p-value 8.3159E-8

Statistically significant evidence of a decreasing trend at the specified level of significance.

User Selected Options

Date/Time of Computation ProUCL 5.2 9/6/2023 6:05:04 PM

From File WSI2023_1.0.xls

Full Precision OFF

Confidence Coefficient 0.95 Level of Significance 0.05

S8A

General Statistics

Number or Reported Events Not Used 0 Number of Generated Events 30 Number Values Reported (n) 31 Number Values Missing 1 30 Number Values Used Minimum 0.5 Maximum 11 Mean 9.039 Geometric Mean 8.408

Median 9.5

Standard Deviation 1.898

Coefficient of Variation 0.21

Mann-Kendall Test

M-K Test Value (S) -82
Critical Value (0.05) -1.645
Standard Deviation of S 55.55
Standardized Value of S -1.458
Approximate p-value 0.0724

Insufficient evidence to identify a significant trend at the specified level of significance.

User Selected Options

Date/Time of Computation ProUCL 5.2 9/6/2023 6:06:03 PM

From File WSI2023_1.0.xls

Full Precision OFF

Confidence Coefficient 0.95 Level of Significance 0.05

S10A

General Statistics

Number or Reported Events Not Used 0 **Number of Generated Events** 29 Number Values Reported (n) 31 Number Values Missing 2 Number Values Used 29 Minimum 670 Maximum 6100 Mean 2242 Geometric Mean 1721 Median 1650

Mann-Kendall Test

M-K Test Value (S) 180
Critical Value (0.05) 1.645
Standard Deviation of S 53.27
Standardized Value of S 3.36
Approximate p-value 3.8963E-4

Standard Deviation 1720

0.767

Coefficient of Variation

Statistically significant evidence of an increasing trend at the specified level of significance.

User Selected Options

Date/Time of Computation ProUCL 5.2 9/6/2023 6:06:25 PM

From File WSI2023_1.0.xls

Full Precision OFF

Confidence Coefficient 0.95 Level of Significance 0.05

S12A

General Statistics

Number or Reported Events Not Used 0

Number of Generated Events

Number Values Reported (n) 9

Number Values Missing 8

Number Values Used 1

Minimum 1800

Maximum 1800

Mean 1800

Geometric Mean 1800

Median 1800

Standard Deviation N/A

Coefficient of Variation N/A

Not enough reported values (n) to provide Mann-Kendall Statistics!

User Selected Options

Date/Time of Computation ProUCL 5.2 9/6/2023 6:06:50 PM

From File WSI2023_1.0.xls

Full Precision OFF

Confidence Coefficient 0.95 Level of Significance 0.05

S14A

General Statistics

Number or Reported Events Not Used 0 Number of Generated Events 29 Number Values Reported (n) 31 Number Values Missing 2 Number Values Used 29 Minimum 990 Maximum 7900 3436 Mean Geometric Mean 2890 Median 3300

Mann-Kendall Test

M-K Test Value (S) -168
Critical Value (0.05) -1.645
Standard Deviation of S 53.25
Standardized Value of S -3.136
Approximate p-value 8.5554E-4

Standard Deviation

Coefficient of Variation

1980

0.576

Statistically significant evidence of a decreasing trend at the specified level of significance.

User Selected Options

Date/Time of Computation ProUCL 5.2 9/6/2023 6:07:10 PM

From File WSI2023_1.0.xls

Full Precision OFF

Confidence Coefficient 0.95 Level of Significance 0.05

S18

General Statistics

Number or Reported Events Not Used 0 Number of Generated Events 30 Number Values Reported (n) 31 Number Values Missing 1 30 Number Values Used Minimum 1100 Maximum 1700 1450 Mean Geometric Mean 1440 Median 1500 Standard Deviation 169.8

Mann-Kendall Test

M-K Test Value (S) -69
Critical Value (0.05) -1.645
Standard Deviation of S 55.25
Standardized Value of S -1.231
Approximate p-value 0.109

Coefficient of Variation

0.117

Insufficient evidence to identify a significant trend at the specified level of significance.

User Selected Options

Date/Time of Computation ProUCL 5.2 9/6/2023 6:07:30 PM

From File WSI2023_1.0.xls

Full Precision OFF

Confidence Coefficient 0.95 Level of Significance 0.05

F3B

General Statistics

Number or Reported Events Not Used 0 Number of Generated Events 30 Number Values Reported (n) Number Values Missing 1 Number Values Used 30 Minimum 0.12 Maximum 25 Mean 1.878 Geometric Mean 0.533 Median 0.5 Standard Deviation 4.627 Coefficient of Variation 2.464

Mann-Kendall Test

M-K Test Value (S) -210
Critical Value (0.05) -1.645
Standard Deviation of S 55.82
Standardized Value of S -3.745
Approximate p-value 9.0376E-5

Statistically significant evidence of a decreasing trend at the specified level of significance.

User Selected Options

Date/Time of Computation ProUCL 5.2 9/6/2023 6:07:52 PM

From File WSI2023_1.0.xls

Full Precision OFF

Confidence Coefficient 0.95 Level of Significance 0.05

F8A

General Statistics

Number or Reported Events Not Used 0 Number of Generated Events 30 Number Values Reported (n) 31 Number Values Missing 1 Number Values Used 30 Minimum 0.05 Maximum 5 Mean 0.542 Geometric Mean 0.28 Median 0.185 Standard Deviation 0.983

Coefficient of Variation

1.815

Mann-Kendall Test

M-K Test Value (S) -134
Critical Value (0.05) -1.645
Standard Deviation of S 55.49
Standardized Value of S -2.397
Approximate p-value 0.00827

Statistically significant evidence of a decreasing trend at the specified level of significance.

User Selected Options

Date/Time of Computation ProUCL 5.2 9/6/2023 6:08:12 PM

From File WSI2023_1.0.xls

Full Precision OFF

Confidence Coefficient 0.95 Level of Significance 0.05

F₁₀A

General Statistics

Number or Reported Events Not Used	0
Number of Generated Events	29
Number Values Reported (n)	31
Number Values Missing	2
Number Values Used	29
Minimum	0.5
Maximum	25
Mean	3.497
Geometric Mean	2.624
Median	2.7
Standard Deviation	4.308

Coefficient of Variation

1.232

Mann-Kendall Test

M-K Test Value (S)	97
Critical Value (0.05)	1.645
Standard Deviation of S	53.19
Standardized Value of S	1.805
Approximate p-value	0.0356

Statistically significant evidence of an increasing trend at the specified level of significance.

User Selected Options

Date/Time of Computation ProUCL 5.2 9/6/2023 6:08:32 PM

From File WSI2023_1.0.xls

Full Precision OFF

Confidence Coefficient 0.95 Level of Significance 0.05

F12A

General Statistics

Number or Reported Events Not Used 0

Number of Generated Events 1

Number Values Reported (n) 9

Number Values Missing 8

Number Values Used 1

Minimum 6.3

Maximum 6.3

Mean 6.3

Geometric Mean 6.3

Median 6.3

Standard Deviation N/A

Coefficient of Variation N/A

Not enough reported values (n) to provide Mann-Kendall Statistics!

User Selected Options

Date/Time of Computation ProUCL 5.2 9/6/2023 6:08:54 PM

From File WSI2023_1.0.xls

Full Precision OFF

Confidence Coefficient 0.95 Level of Significance 0.05

F14A

General Statistics

Number or Reported Events Not Used 0 Number of Generated Events 29 Number Values Reported (n) 31 Number Values Missing 2 Number Values Used 29 Minimum 2.5 Maximum 32 Mean 17.13 Geometric Mean 13.18 Median 18 Standard Deviation 10.08

Coefficient of Variation

Mann-Kendall Test

M-K Test Value (S) -188
Critical Value (0.05) -1.645
Standard Deviation of S 53.22
Standardized Value of S -3.514
Approximate p-value 2.2110E-4

0.588

Statistically significant evidence of a decreasing trend at the specified level of significance.

User Selected Options

Date/Time of Computation ProUCL 5.2 9/6/2023 6:09:14 PM

From File WSI2023_1.0.xls

Full Precision OFF

Confidence Coefficient 0.95 Level of Significance 0.05

F18

General Statistics

Number or Reported Events Not Used 0 Number of Generated Events 30 Number Values Reported (n) Number Values Missing 1 Number Values Used 30 Minimum 0.11 Maximum 25 Mean 2.299 Geometric Mean 0.485 Median 0.45 Standard Deviation 6.22 Coefficient of Variation 2.706

Mann-Kendall Test

M-K Test Value (S) -200
Critical Value (0.05) -1.645
Standard Deviation of S 55.74
Standardized Value of S -3.57
Approximate p-value 1.7828E-4

Statistically significant evidence of a decreasing trend at the specified level of significance.

User Selected Options

Date/Time of Computation ProUCL 5.2 9/6/2023 6:09:32 PM

From File WSI2023_1.0.xls

Full Precision OFF

Confidence Coefficient 0.95 Level of Significance 0.05

СН3В

General Statistics

Number or Reported Events Not Used 0 Number of Generated Events 30 Number Values Reported (n) 31 Number Values Missing 1 Number Values Used 30 Minimum 80 Maximum 140 Mean 104.5 Geometric Mean 103.5 Median 99.5 Standard Deviation 14.83

Mann-Kendall Test

Coefficient of Variation

M-K Test Value (S) -276
Critical Value (0.05) -1.645
Standard Deviation of S 55.84
Standardized Value of S -4.925
Approximate p-value 4.2209E-7

0.142

Statistically significant evidence of a decreasing trend at the specified level of significance.

User Selected Options

Date/Time of Computation ProUCL 5.2 9/6/2023 6:09:51 PM

From File WSI2023_1.0.xls

Full Precision OFF

Confidence Coefficient 0.95 Level of Significance 0.05

CH8A

General Statistics

Number or Reported Events Not Used 0 Number of Generated Events 30 Number Values Reported (n) 31 Number Values Missing 1 Number Values Used 30 Minimum 3 Maximum 6.6 Mean 4.393 Geometric Mean 4.337 Median 4.3

ivieulaii 4.5

Standard Deviation 0.727

Coefficient of Variation 0.165

Mann-Kendall Test

M-K Test Value (S) -119
Critical Value (0.05) -1.645
Standard Deviation of S 55.9
Standardized Value of S -2.111
Approximate p-value 0.0174

Statistically significant evidence of a decreasing trend at the specified level of significance.

User Selected Options

Date/Time of Computation ProUCL 5.2 9/6/2023 6:10:53 PM

From File WSI2023_1.0.xls

Full Precision OFF

Confidence Coefficient 0.95 Level of Significance 0.05

CH10A

General Statistics

denoral otationes	
Number or Reported Events Not Used	0
Number of Generated Events	29
Number Values Reported (n)	31
Number Values Missing	2
Number Values Used	29
Minimum	23
Maximum	190
Mean	66.28
Geometric Mean	55.09
Median	48

Mann-Kendall Test

M-K Test Value (S)	155
Critical Value (0.05)	1.645
Standard Deviation of S	53.26
Standardized Value of S	2.892
Approximate p-value	0.00192

Standard Deviation

Coefficient of Variation

45.57

0.688

Statistically significant evidence of an increasing trend at the specified level of significance.

User Selected Options

Date/Time of Computation ProUCL 5.2 9/6/2023 6:11:14 PM

From File WSI2023_1.0.xls

Full Precision OFF

Confidence Coefficient 0.95 Level of Significance 0.05

CH12A

General Statistics

Number or Reported Events Not Used 0

Number of Generated Events 1

Number Values Reported (n) 9

Number Values Missing 8

Number Values Used 1

Minimum 150

Maximum 150

Mean 150

Geometric Mean 150

Median 150

Standard Deviation N/A

Coefficient of Variation N/A

Not enough reported values (n) to provide Mann-Kendall Statistics!

User Selected Options

Date/Time of Computation ProUCL 5.2 9/6/2023 6:11:37 PM

From File WSI2023_1.0.xls

Full Precision OFF

Confidence Coefficient 0.95 Level of Significance 0.05

CH14A

General Statistics

Number or Reported Events Not Used	0
Number of Generated Events	29
Number Values Reported (n)	31
Number Values Missing	2
Number Values Used	29
Minimum	32
Maximum	210
Mean	98.97
Geometric Mean	86.71
Median	75
Standard Deviation	51.83

Mann-Kendall Test

M-K Test Value (S)	-132
Critical Value (0.05)	-1.645
Standard Deviation of S	53.27
Standardized Value of S	-2.459
Approximate p-value	0.00697

Coefficient of Variation

0.524

Statistically significant evidence of a decreasing trend at the specified level of significance.

User Selected Options

Date/Time of Computation ProUCL 5.2 9/6/2023 6:11:58 PM

From File WSI2023_1.0.xls

Full Precision OFF

Confidence Coefficient 0.95 Level of Significance 0.05

CH18

General Statistics

Number or Reported Events Not Used 0 Number of Generated Events 30 Number Values Reported (n) 31 Number Values Missing 1 Number Values Used 30 Minimum 59 Maximum 100 Mean 80.17 Geometric Mean 79.56

Median 80

Standard Deviation 9.966
Coefficient of Variation 0.124

Mann-Kendall Test

M-K Test Value (S) -172
Critical Value (0.05) -1.645
Standard Deviation of S 55.92
Standardized Value of S -3.058
Approximate p-value 0.00111

Statistically significant evidence of a decreasing trend at the specified level of significance.

User Selected Options

Date/Time of Computation ProUCL 5.2 9/6/2023 6:12:21 PM

From File WSI2023_1.0.xls

Full Precision OFF

Confidence Coefficient 0.95 Level of Significance 0.05

CY3B

General Statistics

Number or Reported Events Not Used 0

Number of Generated Events 31

Number Values Reported (n) 31

Minimum 0.0025

Maximum 0.01

Mean 0.00584

Geometric Mean 0.0055

Median 0.005

Standard Deviation 0.00217

Coefficient of Variation 0.372

Mann-Kendall Test

M-K Test Value (S) 22

Critical Value (0.05) 1.645

Standard Deviation of S 46.63

Standardized Value of S 0.45

Approximate p-value 0.326

Insufficient evidence to identify a significant trend at the specified level of significance.

User Selected Options

Date/Time of Computation ProUCL 5.2 9/6/2023 6:12:44 PM

From File WSI2023_1.0.xls

Full Precision OFF

Confidence Coefficient 0.95 Level of Significance 0.05

CY8A

General Statistics

Number or Reported Events Not Used 0

Number of Generated Events 31

Number Values Reported (n) 31

Minimum 0.0025

Maximum 0.025

Mean 0.00621

Geometric Mean 0.00551

Median 0.005

Standard Deviation 0.00408

Coefficient of Variation 0.656

Mann-Kendall Test

M-K Test Value (S) -27

Critical Value (0.05) -1.645

Standard Deviation of S 46.73

Standardized Value of S -0.556

Approximate p-value 0.289

Insufficient evidence to identify a significant trend at the specified level of significance.

User Selected Options

Date/Time of Computation ProUCL 5.2 9/6/2023 6:10:12 PM

From File WSI2023_1.0.xls

Full Precision OFF

Confidence Coefficient 0.95 Level of Significance 0.05

CY10A

General Statistics

Number or Reported Events Not Used 0 Number of Generated Events 30

Number Values Reported (n) 31

Number Values Missing 1

Number Values Used 30

Minimum 0.0025

Maximum 0.08

Mean 0.0243

Geometric Mean 0.0161

Median 0.029

Standard Deviation 0.0193

Coefficient of Variation 0.792

Mann-Kendall Test

M-K Test Value (S) -242

Critical Value (0.05) -1.645

Standard Deviation of S 55.34

Standardized Value of S -4.355

Approximate p-value 6.6453E-6

Statistically significant evidence of a decreasing trend at the specified level of significance.

User Selected Options

Date/Time of Computation ProUCL 5.2 9/6/2023 6:13:10 PM

From File WSI2023_1.0.xls

Full Precision OFF

Confidence Coefficient 0.95 Level of Significance 0.05

CY12A

General Statistics

Number or Reported Events Not Used 0

Number of Generated Events 1

Number Values Reported (n) 9

Number Values Missing 8

Number Values Used 1

Minimum 0.005

Maximum 0.005

Mean 0.005

Geometric Mean 0.005

Median 0.005

Standard Deviation N/A

Coefficient of Variation N/A

Not enough reported values (n) to provide Mann-Kendall Statistics!

User Selected Options

Date/Time of Computation ProUCL 5.2 9/6/2023 6:13:32 PM

From File WSI2023_1.0.xls

Full Precision OFF

Confidence Coefficient 0.95 Level of Significance 0.05

CY14A

General Statistics

Number or Reported Events Not Used 0

Number of Generated Events 30

Number Values Reported (n) 31

Number Values Missing 1

Number Values Used 30

Minimum 0.005

Maximum 0.35

Mean 0.0911

Geometric Mean 0.041

Median 0.0405

Standard Deviation 0.096

Coefficient of Variation 1.054

Mann-Kendall Test

M-K Test Value (S) -264

Critical Value (0.05) -1.645

Standard Deviation of S 55.83

Standardized Value of S -4.71

Approximate p-value 1.2357E-6

Statistically significant evidence of a decreasing trend at the specified level of significance.

User Selected Options

Date/Time of Computation ProUCL 5.2 9/6/2023 6:13:53 PM

From File WSI2023_1.0.xls

Full Precision OFF

Confidence Coefficient 0.95 Level of Significance 0.05

CY18

General Statistics

Number or Reported Events Not Used 0

Number of Generated Events 31

Number Values Reported (n) 31

Minimum 0.0025

Maximum 0.086

Mean 0.00785

Geometric Mean 0.00548

Median 0.005

Standard Deviation 0.0146

Coefficient of Variation 1.86

Mann-Kendall Test

M-K Test Value (S) 9

Critical Value (0.05) 1.645

Standard Deviation of S 42.77

Standardized Value of S 0.187

Approximate p-value 0.426

Insufficient evidence to identify a significant trend at the specified level of significance.

Appendix B4 UCL Calculations

SUMMARY OF UCL CALCULATIONS

			Sulfa	ite					Fluo	ride		
	MW-3B	MW-8A	MW-10A	MW-12A	MW-14A	MW-18	MW-3B	MW-8A	MW-10A	MW-12A	MW-14A	MW-18
Num data pts	30.00	30.00	29.00	1.00	29.00	30.00	30.00	30.00	29.00	1.00	29.00	30.00
Num Non-Detect	0.00	1.00	0.00	0.00	0.00	0.00	8.00	8.00	4.00	0.00	2.00	8.00
Percent Non-Detect	0.00	3.33	0.00	0.00	0.00	0.00	26.67	26.67	13.79	0.00	6.90	26.67
Min.	1400.00	0.50	670.00	1800.00	990.00	1100.00	0.12	0.05	0.50	6.30	2.50	0.11
Max.	2700.00	11.00	6100.00	1800.00	7900.00	1700.00	25.00	5.00	25.00	6.30	32.00	25.00
Mean	2134.53	9.04	2241.72	1800.00	3435.86	1450.33	1.88	0.54	3.50	6.30	17.13	2.30
Max Conc (>50% ND)				NA						NA		
Log Normal				NA	3438.15					NA		
Normal	2136.18			NA		1451.98				NA		
Non-parametric		10.59	3669.32	NA			5.65	1.34	7.07	NA	25.49	7.37
Distribution	Normal	Neither	Neither	NA	Log-Normal	Normal	Neither	Neither	Neither	NA	Neither	Neither
			Chlor	ide					Cyar	nide		
	MW-3B	MW-8A	MW-10A	MW-12A	MW-14A	MW-18	MW-3B	MW-8A	MW-10A	MW-12A	MW-14A	MW-18
Num data pts	30.00	30.00	29.00	1.00	29.00	30.00	31.00	31.00	30.00	1.00	30.00	31.00
Num Non-Detect	0.00	0.00	0.00	0.00	0.00	0.00	29.00	30.00	8.00	1.00	4.00	30.00
Percent Non-Detect	0.00	0.00	0.00	0.00	0.00	0.00	93.55	96.77	26.67	100.00	13.33	96.77
Min.	80.00	3.00	23.00	150.00	32.00	59.00	0.00	0.00	0.00	0.01	0.01	0.00
Max.	140.00	6.60	190.00	150.00	210.00	100.00	0.01	0.03	0.08	0.01	0.35	0.09
Mean	104.53	4.39	66.28	150.00	98.97	80.17	0.01	0.01	0.02	0.01	0.09	0.01
Max Conc (>50% ND)				NA			0.01	0.03		0.01		0.09
Log Normal			68.60	NA	101.41							
Normal	106.19	6.55		NA		81.84						
Non-parametric				NA					0.04		0.17	
							Non-Detect	Non-Detect		Non-Detect		Non-Detect
Distribution	Normal	Normal	Log-Normal	NA	Log-Normal	Normal	(>50%)	(>50%)	Neither	(>50%)	Neither	(>50%)

Appendix B5 DOE Groundwater UCL Output

2300 2500 2700	MW-3B MW-3B MW-3B	Sulfate MW-3B					
2600	MW-3B						
2610	MW-3B	Number of samples			Uncensored values		
2220	MW-3B	Uncensored	3	80	Mean	2134.53	
2000	MW-3B	Censored		.0	Lognormal mean	3454.60	
2500	MW-3B	Detection limit or PQL			Std. devn.	381.682277	
2500	MW-3B	Method detection limit			Median	2200	
2500	MW-3B	TOTAL	3	80	Min.	1400	
2200	MW-3B				Max.	2700	
	MW-3B						
2200	MW-3B						
2600	MW-3B						
2200	MW-3B	Lognormal distribution?		Normal dis	stribution?		
2606	MW-3B	r-squared is:	0.275	r-squared	is:	0.823	
2300	MW-3B	Recommendations:					
2400	MW-3B						
2000	MW-3B	Reject BOTH lognormal and	normal distr	ibutions. Se	e Statistics Guidance.		
2200	MW-3B						
1900	MW-3B						
2000	MW-3B						
1900	MW-3B						
1900	MW-3B						
1700	MW-3B						
1800	MW-3B						
1500	MW-3B						
1700	MW-3B		UCL (based	l on Z-statisti	c) is 2247.337		
1500	MW-3B						
1600	MW-3B						

10 9.8	MW-8A MW-8A	Sulfate MW-8A					
8.9	MW-8A						
9.6	MW-8A						
9.27	MW-8A	Number of samples	•		Uncensored values	0.04	
9.8	MW-8A	Uncensored	3	U	Mean	9.04	
9.8	MW-8A	Censored			Lognormal mean	9.86	
9.7	MW-8A	Detection limit or PQL			Std. devn.	1.89843193	
10	MW-8A	Method detection limit			Median	9.5	
0.5	MW-8A	TOTAL	3	0	Min.	0.5	
10	MW-8A				Max.	11	
	MW-8A						
10	MW-8A						
10	MW-8A						
9	MW-8A	Lognormal distribution?		Normal distr	ibution?		
10	MW-8A	r-squared is:	0.204	r-squared is:		0.523	
9.3	MW-8A	Recommendations:					
8.9	MW-8A						
7.8	MW-8A	Reject BOTH lognormal and	normal distri	butions. See	Statistics Guidance.		
10	MW-8A						
9.4	MW-8A						
9.5	MW-8A						
9.5	MW-8A						
9.3	MW-8A						
9.6	MW-8A						
9.5	MW-8A						
5.4	MW-8A						
11	MW-8A		UCL (based	on Z-statistic)	is 9.544		
9	MW-8A		`	,			
9.2	MW-8A						

940	MW-10A	Sulfate MW-10A					
910	MW-10A						
670	MW-10A						
670	MW-10A						
1570	MW-10A	Number of samples			Uncensored values		
1650	MW-10A	Uncensored	29	9	Mean	2241.72	
860	MW-10A	Censored			Lognormal mean	2292.28	
850	MW-10A	Detection limit or PQL			Std. devn.	1719.87763	
1100	MW-10A	Method detection limit			Median	1650	
1100	MW-10A	TOTAL	2	9	Min.	670	
760	MW-10A				Max.	6100	
	MW-10A						
2700	MW-10A						
860	MW-10A						
2000	MW-10A	Lognormal distribution?		Normal dis	tribution?		
760	MW-10A	r-squared is:	0.693	r-squared i	s:	0.860	
2200	MW-10A	Recommendations:					
710	MW-10A						
1800	MW-10A	Reject BOTH lognormal and	normal distri	butions. See	Statistics Guidance.		
5800	MW-10A						
4700	MW-10A						
6100	MW-10A						
1900	MW-10A						
3500	MW-10A						
2900	MW-10A						
4800	MW-10A						
4000	MW-10A						
5700	MW-10A		UCL (based	on Z-statistic	c) is 2673.91		
	MW-10A						

3500 MW-14A 3600 MW-14A 2800 MW-14A 3800 MW-14A	4000	MW-14A	Sulfate MW-14A					
2800 MW-14A Number of samples Uncensored values 2380 MW-14A Uncensored 29 Mean 3435.86 3300 MW-14A Censored Lognormal mean 3666.57 3900 MW-14A Detection limit or PQL Std. devn. 1979.8458 4400 MW-14A Method detection limit Median 3300 7900 MW-14A TOTAL 29 Min. 990 6400 MW-14A Max. 7900 Max. 7900 MW-14A Consored Lognormal mean 3666.57 300 300 MW-14A MW-14A TOTAL 29 Min. 990 MW-14A Lognormal distribution? Normal distribution? -squared is: 0.968 Fecommendations: Use normal distribution. Use normal distribution. Use normal distribution. W-14A MW-14A US W-14A	3500	MW-14A						
2170 MW-14A Number of samples Uncensored values 2380 MW-14A Uncensored 29 Mean 3435.86 3300 MW-14A Censored Lognormal mean 3666.57 3900 MW-14A Detection limit or PQL Std. devn. 1979.8458 4400 MW-14A Median 3300 7900 MW-14A TOTAL 29 Min. 990 MW-14A MW-14A Max. 7900 5500 MW-14A Lognormal distribution? Normal distribution? 7900 MW-14A Lognormal distribution? Normal distribution? 800 MW-14A Num-14A Num-14A 100 MW-14A Num-14A Num-14A 100 MW-14A Num-14A Num-14A 100 MW-14A UCL (based on t-statistic) is 4022.52072167236	3600	MW-14A						
2380 MW-14A Uncensored 29 Mean 3435.86 3300 MW-14A Censored Lognormal mean 3666.57 3900 MW-14A Detection limit or PQL Std. devn. 1979.8458 4400 MW-14A Median 3300 7900 MW-14A TOTAL 29 Min. 990 6400 MW-14A Max. 7900 7900 MW-14A MW-14A Lognormal distribution? Normal distribution? r-squared is: 0.968 7500 MW-14A MW-14A MW-14A We normal distribution. We normal distribution? 800 MW-14A MW-14A We normal distribution. We normal distribution. 100 MW-14A We normal distribution. We normal distribution. 100 MW-14A We normal distribution. We normal distribution? 100 MW-14A We normal distribution. We normal distribution? 100 MW-14A We normal distribution? We normal distribution? 100	2800	MW-14A						
3300 MW-14A Censored Lognormal mean 3666.57 3900 MW-14A Detection limit or PQL Std. devn. 1979.8458 4400 MW-14A Method detection limit Median 3300 7900 MW-14A TOTAL 29 Min. 990 6400 MW-14A Max. 7900 7900 MW-14A MW-14A Lognormal distribution? Normal distribution? 5500 MW-14A Lognormal distribution? Normal distribution? 7900 MW-14A Recommendations: Use normal distribution. 3900 MW-14A MW-14A Use normal distribution. 4100 MW-14A MW-14A UCL (based on t-statistic) is 4022.52072167236 1800 MW-14A MW-14A UCL (based on t-statistic) is 4022.52072167236	2170	MW-14A	Number of samples			Uncensored values		
3900 MW-14A Detection limit or PQL Std. devn. 1979.8458 4400 MW-14A Method detection limit Median 3300 7900 MW-14A TOTAL 29 Min. 990 6400 MW-14A Max. 7900 5500 MW-14A Mw-14A Max. 7900 5500 MW-14A Lognormal distribution? Normal distribution? r-squared is: 0.968 7-squared is: 0.705 r-squared is: 0.968 8-commendations: Use normal distribution. Use normal distribution. 100 MW-14A MW-14A UCL (based on t-statistic) is 4022.52072167236 100 MW-14A WW-14A WW-14A WW-14A 1700 MW-14A WW-14A WW-14A WW-14A 1800 MW-14A WW-14A WW-14A WW-14A WW-14A	2380		Uncensored	2	29	Mean	3435.86	
4400 MW-14A Method detection limit Median 3300 7900 MW-14A TOTAL 29 Min. 990 6400 MW-14A Max. 7900 5500 MW-14A MW-14A Mormal distribution? MW-14A 5500 MW-14A Lognormal distribution? Normal distribution? Normal distribution? 7-squared is: 0.705 r-squared is: 0.968 8-commendations: Use normal distribution. 100 MW-14A 1100		MW-14A	Censored			Lognormal mean	3666.57	
7900 MW-14A TOTAL 29 Min. 990 6400 MW-14A Max. 7900 5500 MW-14A MW-14A Wormal distribution? Wormal distribution? 5900 MW-14A Lognormal distribution? Normal distribution? 0.968 5200 MW-14A Recommendations: Use normal distribution. Use normal distribution. 3900 MW-14A MW-14A Wormal distribution. Wormal distribution? 2300 MW-14A Use normal distribution. Wormal distribution. Wormal distribution? 100 MW-14A Wormal distribution. Wormal distribution? Wormal distribution? 100 MW-14A Wormal distribution. Wormal distribution? Wormal distribution? 100 MW-14A Wormal distribution? Wormal distribution? Wormal distribution? 100 MW-14A Wormal distribution? Wormal distribution? Wormal distribution? 100 MW-14A Wormal distribution? Wormal distribution? Wormal distribution? 100	3900	MW-14A	Detection limit or PQL			Std. devn.	1979.8458	
MW-14A	4400	MW-14A	Method detection limit			Median	3300	
MW-14A 5500 MW-14A 6500 MW-14A 7000 MW-14A 7000 MW-14A 5900 MW-14A 5200 MW-14A 4000 MW-14A 3900 MW-14A MW-14A 2300 MW-14A 2100 MW-14A 1100 MW-14A 1100 MW-14A 1700 MW-14A 1700 MW-14A 1700 MW-14A 1700 MW-14A 1700 MW-14A	7900	MW-14A	TOTAL	2	29	Min.	990	
5500 MW-14A 6500 MW-14A 7000 MW-14A 7000 MW-14A 5900 MW-14A 5900 MW-14A 4000 MW-14A 4000 MW-14A MW-14A 2300 MW-14A 2100 MW-14A 1100 MW-14A 1100 MW-14A 1700 MW-14A 1700 MW-14A 1700 MW-14A 1700 MW-14A 1700 MW-14A	6400	MW-14A				Max.	7900	
6500 MW-14A 7000 MW-14A 5900 MW-14A 5900 MW-14A 4000 MW-14A 4000 MW-14A 3900 MW-14A MW-14A 2300 MW-14A 2100 MW-14A 1100 MW-14A 1100 MW-14A 1700 MW-14A 1700 MW-14A 1700 MW-14A 1700 MW-14A		MW-14A						
7000 MW-14A Lognormal distribution? Normal distribution? 5900 MW-14A r-squared is: 0.705 r-squared is: 0.968 Recommendations: Use normal distribution. 3900 MW-14A Use normal distribution. 2300 MW-14A WW-14A 2100 MW-14A UCL (based on t-statistic) is 4022.52072167236 1700 MW-14A UCL (based on t-statistic) is 4022.52072167236	5500	MW-14A						
5900 MW-14A r-squared is: 0.705 r-squared is: 0.968 5200 MW-14A Recommendations: Use normal distribution. 3900 MW-14A WW-14A WW-14A WW-14A WW-14A 1100 MW-14A WW-14A WW-14A WW-14A WW-14A WW-14A 1700 MW-14A WW-14A WW-14A WW-14A WW-14A WW-14A 1700 MW-14A WW-14A WW-14A WW-14A WW-14A WW-14A WW-14A	6500	MW-14A						
5200 MW-14A 4000 MW-14A 3900 MW-14A MW-14A 2300 MW-14A 2100 MW-14A 1100 MW-14A 1400 MW-14A 1700 MW-14A 1700 MW-14A 1700 MW-14A 1700 MW-14A		MW-14A	Lognormal distribution?		Normal dis	stribution?		
4000 MW-14A 3900 MW-14A MW-14A 2300 MW-14A 2100 MW-14A 1100 MW-14A 1400 MW-14A 1700 MW-14A 1700 MW-14A 1700 MW-14A	5900	MW-14A	r-squared is:	0.705	r-squared	is:	0.968	
3900 MW-14A MW-14A 2300 MW-14A 2100 MW-14A 1100 MW-14A 1400 MW-14A 1700 MW-14A 1700 MW-14A 1700 MW-14A 1700 MW-14A	5200	MW-14A	Recommendations:					
MW-14A 2300 MW-14A 2100 MW-14A 1100 MW-14A 1400 MW-14A 1700 MW-14A 1700 MW-14A 1700 MW-14A 1700 MW-14A	4000	MW-14A	Use normal distribution.					
2300 MW-14A 2100 MW-14A 1100 MW-14A 1400 MW-14A 1700 MW-14A 1700 MW-14A 1700 MW-14A	3900							
2100 MW-14A 1100 MW-14A 1400 MW-14A 1700 MW-14A 1800 MW-14A 1700 MW-14A								
1100 MW-14A 1400 MW-14A 1700 MW-14A 1700 MW-14A 1700 MW-14A 1700 MW-14A								
1400 MW-14A 1700 MW-14A 1800 MW-14A 1700 MW-14A UCL (based on t-statistic) is 4022.52072167236								
1700 MW-14A 1800 MW-14A 1700 MW-14A		MW-14A						
1800 MW-14A 1700 MW-14A								
1700 MW-14A			UCL (based on t-statistic) is	4022.52072	167236			
2000 MW-14A								
1100 MW-14A	1100	MW-14A						

1500	MW-18	Sulfate MW-18					
1300	MW-18						
1500	MW-18						
1300	MW-18						
1520	MW-18	Number of samples			Uncensored value	s	
1490	MW-18	Uncensored	3	30	Mea	n 145	0.33
1500	MW-18	Censored			Lognormal mea	n 146	2.81
1600	MW-18	Detection limit or PQL			Std. devi	n. 169.837	7312
1600	MW-18	Method detection limit			Media	n 1	1500
1700	MW-18	TOTAL	3	30	Mir	າ. 1	1100
1400	MW-18				Max	x . 1	1700
	MW-18						
1300	MW-18						
1600	MW-18						
1500	MW-18	Lognormal distribution?		Normal di	stribution?		
1200	MW-18	r-squared is:	0.785	r-squared	is:	0.627	
1500	MW-18	Recommendations:					
1600	MW-18						
1600	MW-18	Reject BOTH lognormal and	normal distr	ibutions. Se	ee Statistics Guidano	e.	
1700	MW-18						
1500	MW-18						
1700	MW-18						
1300	MW-18						
1700	MW-18						
1300	MW-18						
1400	MW-18						
1200	MW-18						
1400	MW-18		UCL (based	l on Z-statist	ic) is 1506.603		
1200	MW-18						
1300	MW-18						

0.6	MW-3B	Fluoride MW-3B					
0.4	MW-3B						
0.6	MW-3B						
0.9	MW-3B						
0.7	MW-3B	Number of samples			Uncensored values		
0.2	MW-3B	Uncensored	3	0	Mean	1.88	
3.7	MW-3B	Censored			Lognormal mean	1.55	
3.8	MW-3B	Detection limit or PQL			Std. devn.	4.62692099	
3.8	MW-3B	Method detection limit			Median	0.5	
5	MW-3B	TOTAL	3	0	Min.	0.12	
0.5	MW-3B				Max.	25	
	MW-3B						
25	MW-3B						
5	MW-3B						
0.5	MW-3B	Lognormal distribution?		Normal dis	tribution?		
0.5	MW-3B	r-squared is:	0.754	r-squared i	s:	0.372	
2.3	MW-3B	Recommendations:					
0.5	MW-3B						
0.5	MW-3B	Reject BOTH lognormal and	normal distri	butions. See	e Statistics Guidance	-	
0.16	MW-3B						
0.16	MW-3B						
0.18	MW-3B						
0.14	MW-3B						
0.12	MW-3B						
0.15	MW-3B						
0.16	MW-3B						
0.15	MW-3B						
0.14	MW-3B		UCL (based	on Z-statistic	c) is 3.263		
0.17	MW-3B						
0.17	MW-3B						

0.9 0.3	MW-8A MW-8A	Fluoride MW-8A					
0.4	MW-8A						
0.9	MW-8A						
2.8	MW-8A	Number of samples			Incensored values		
0.2	MW-8A	Uncensored	30)	Mean	0.54	
0.1	MW-8A	Censored			Lognormal mean	0.48	
0.1	MW-8A	Detection limit or PQL			Std. devn.	0.98321458	
0.05	MW-8A	Method detection limit			Median	0.185	
5	MW-8A	TOTAL	30)	Min.	0.05	
0.5	MW-8A				Max.	5	
	MW-8A						
0.5	MW-8A						
0.1	MW-8A						
0.5	MW-8A	Lognormal distribution?		Normal distri	bution?		
0.5	MW-8A	r-squared is:	0.768	r-squared is:		0.443	
0.5	MW-8A	Recommendations:					
0.5	MW-8A						
0.5	MW-8A	Reject BOTH lognormal and	normal distril	outions. See S	Statistics Guidance.		
0.18	MW-8A						
0.16	MW-8A						
0.19	MW-8A						
0.16	MW-8A						
0.13	MW-8A						
0.15	MW-8A						
0.15	MW-8A						
0.14	MW-8A						
0.16	MW-8A		UCL (based	on Z-statistic)	is 0.833		
0.15	MW-8A						
0.18	MW-8A						

1.8	Μ///_10Δ	Fluoride MW-10A					
1.5	MW-10A	I Idolide WW-TOA					
1.2	MW-10A						
2.7	MW-10A						
2.3	MW-10A	Number of samples		Unc	ensored values		
3.2	MW-10A	Uncensored			Mean	3.50	
2.3	MW-10A	Censored			ognormal mean	3.28	
1.9	MW-10A	Detection limit or PQL			Std. devn.	4.30767444	
3.4	MW-10A	Method detection limit			Median	2.7	
5.7	MW-10A	TOTAL		1	Min.	0.5	
1.2	MW-10A	TOTAL	23	,	Max.	25	
1.2	MW-10A				iviax.	25	
25	MW-10A						
5	MW-10A						
2	MW-10A	Lognormal distribution?		Normal distribut	ion?		
0.5	MW-10A	r-squared is:	0.645	r-squared is:		0.437	
4.4	MW-10A	Recommendations:	0.040	1-3quarcu is.		0.401	
1	MW-10A	recommendations.					
3.3	MW-10A	Reject BOTH lognormal and	normal distrib	outions See Stat	tistics Guidance		
1.9	MW-10A	Troject Bo TT logilolillar and	noma distri	odions. Occ otal	iistics Guidarice.		
3.1	MW-10A						
2	MW-10A						
2	MW-10A						
2.1	MW-10A						
3.2	MW-10A						
4.1	MW-10A						
3.7	MW-10A						
4.4	MW-10A		UCL (based	on Z-statistic) is 4	1.592		
	MW-10A			,			

9.6	MW-14A	Fluoride MW-14A			
8.6	MW-14A				
30	MW-14A				
25	MW-14A				
31	MW-14A	Number of samples		Uncensored values	
27	MW-14A	Uncensored	29	Mean	17.13
30	MW-14A	Censored		Lognormal mean	19.63
24	MW-14A	Detection limit or PQL		Std. devn.	10.0756816
16	MW-14A	Method detection limit		Median	18
19	MW-14A	TOTAL	29	Min.	2.5
25	MW-14A			Max.	32
	MW-14A				
25	MW-14A				
20	MW-14A				
30	MW-14A	Lognormal distribution?		Normal distribution?	
24	MW-14A	r-squared is:	0.591	r-squared is:	0.933
32		Recommendations:			
18	MW-14A	Use normal distribution.			
23	MW-14A				
	MW-14A				
17	MW-14A				
18	MW-14A				
6.8	MW-14A				
3.5	MW-14A				
2.5	MW-14A	UCL (based on t-statistic) is	20.102373064	1997	
3.6	MW-14A				
2.8	MW-14A				
7	MW-14A				
7.6	MW-14A				

0.6	MW-18	Fluoride MW-18					
0.4	MW-18						
0.4	MW-18						
1.8	MW-18						
0.9	MW-18	Number of samples			Uncensored values		
0.2	MW-18	Uncensored	3	0	Mean	2.30	
2.6	MW-18	Censored			Lognormal mean	1.61	
2.4	MW-18	Detection limit or PQL			Std. devn.	6.22008523	
2.6	MW-18	Method detection limit			Median	0.45	
0.5	MW-18	TOTAL	3	0	Min.	0.11	
25	MW-18				Max.	25	
	MW-18						
25	MW-18						
0.5	MW-18						
1	MW-18	Lognormal distribution?		Normal dis	stribution?		
0.5	MW-18	r-squared is:	0.754	r-squared	is:	0.353	
2	MW-18	Recommendations:					
0.5	MW-18						
0.5	MW-18	Reject BOTH lognormal and	normal distr	ibutions. See	e Statistics Guidance	-	
0.2	MW-18						
0.13	MW-18						
0.12	MW-18						
0.11	MW-18						
0.12	MW-18						
0.11	MW-18						
0.11	MW-18						
0.12	MW-18						
0.13	MW-18		UCL (based	on Z-statisti	c) is 4.162		
0.11	MW-18						
0.15	MW-18						

130	MW-3B	Chloride MW-3B					
140	MW-3B						
120	MW-3B						
130	MW-3B						
118	MW-3B	Number of samples		Uncensor	ed values		
113	MW-3B	Uncensored	3	0	Mean	104.53	
110	MW-3B	Censored		Lognorr	mal mean	105.19	
110	MW-3B	Detection limit or PQL		8	Std. devn.	14.8288085	
110	MW-3B	Method detection limit			Median	99.5	
97	MW-3B	TOTAL	3	0	Min.	80	
124.79	MW-3B				Max.	140	
	MW-3B						
100	MW-3B						
100	MW-3B						
96	MW-3B	Lognormal distribution?		Normal distribution?			
110	MW-3B	r-squared is:	0.818	r-squared is:		0.734	
120	MW-3B	Recommendations:					
110	MW-3B						
98	MW-3B	Reject BOTH lognormal and	normal distri	butions. See Statistics	Guidance	•	
90	MW-3B						
91	MW-3B						
91	MW-3B						
80	MW-3B						
98	MW-3B						
95	MW-3B						
95	MW-3B						
93	MW-3B						
88	MW-3B		UCL (based	on Z-statistic) is 108.87			
93	MW-3B						
99	MW-3B						

5.6	MW-8A	Chloride MW-8A					
4.6	MW-8A						
4.2	MW-8A						
4.7	MW-8A						
4.2	MW-8A	Number of samples			Uncensored values		
4.9	MW-8A	Uncensored	3	0	Mean	4.39	
4.6	MW-8A	Censored			Lognormal mean	4.37	
4.5	MW-8A	Detection limit or PQL			Std. devn.	0.72655612	
6.6	MW-8A	Method detection limit			Median	4.3	
4.89	MW-8A	TOTAL	3	0	Min.	3	
4.2	MW-8A				Max.	6.6	
	MW-8A						
4	MW-8A						
4.5	MW-8A						
3	MW-8A	Lognormal distribution?		Normal dis	tribution?		
5.5	MW-8A	r-squared is:	0.809	r-squared i	s:	0.791	
4.4	MW-8A	Recommendations:					
3.6	MW-8A						
3.6	MW-8A	Reject BOTH lognormal and	normal distr	ibutions. See	Statistics Guidance		
3.8	MW-8A						
4.8	MW-8A						
4.9	MW-8A						
4.2	MW-8A						
4.1	MW-8A						
4.1	MW-8A						
3.2	MW-8A						
4.1	MW-8A						
3.9	MW-8A		UCL (based	on Z-statistic	c) is 4.549		
4.4	MW-8A						
3.7	MW-8A						

29	MW-10A	Chloride MW-10A					
31	MW-10A						
28	MW-10A						
28	MW-10A						
43	MW-10A	Number of samples			Uncensored values	3	
48	MW-10A	Uncensored	2	9	Mea	n 66.28	
35	MW-10A	Censored			Lognormal mear	n 67.82	
30	MW-10A	Detection limit or PQL			Std. devn	. 45.5716834	
45	MW-10A	Method detection limit			Media	n 48	
36	MW-10A	TOTAL	2	9	Min	. 23	
30	MW-10A				Max	. 190	
	MW-10A						
100	MW-10A						
30	MW-10A						
68	MW-10A	Lognormal distribution?		Normal d	istribution?		
79	MW-10A	r-squared is:	0.702	r-squared	l is:	0.851	
83	MW-10A	Recommendations:					
23	MW-10A						
62	MW-10A	Reject BOTH lognormal and	normal distr	ibutions. Se	ee Statistics Guidance	э.	
180	MW-10A						
99	MW-10A						
190	MW-10A						
58	MW-10A						
82	MW-10A						
170	MW-10A						
71	MW-10A						
82	MW-10A						
77	MW-10A		UCL (based	on Z-statis	tic) is 78.121		
	MW-10A						
				·			

110	MW-14A	Chloride MW-14A			
90	MW-14A				
71	MW-14A				
75	MW-14A				
53	MW-14A	Number of samples		Uncensored values	
63	MW-14A	Uncensored	29	Mean	98.97
98	MW-14A	Censored		Lognormal mean	103.84
130	MW-14A	Detection limit or PQL		Std. devn.	51.8311012
140	MW-14A	Method detection limit		Median	75
170	MW-14A	TOTAL	29	Min.	32
200	MW-14A			Max.	210
	MW-14A				
100	MW-14A				
180	MW-14A				
210	MW-14A	Lognormal distribution?		Normal distribution?	
160	MW-14A	r-squared is:	0.705	r-squared is:	0.956
170	MW-14A	Recommendations:			
120	MW-14A	Use normal distribution.			
130	MW-14A				
	MW-14A				
66	MW-14A				
61	MW-14A				
47	MW-14A				
61	MW-14A				
68	MW-14A	UCL (based on t-statistic) is	113.81518596	958	
66	MW-14A				
64	MW-14A				
49	MW-14A				
36	MW-14A				

86	MW-18	Chloride MW-18					
91	MW-18						
75	MW-18						
84	MW-18						
83	MW-18	Number of samples		Un	censored values		
91	MW-18	Uncensored	30)	Mean	80.17	
89	MW-18	Censored		I	Lognormal mean	80.58	
80	MW-18	Detection limit or PQL			Std. devn.	9.96574593	
93	MW-18	Method detection limit			Median	80	
77	MW-18	TOTAL	30)	Min.	59	
100	MW-18				Max.	100	
	MW-18						
70	MW-18						
80	MW-18						
81	MW-18	Lognormal distribution?		Normal distribu			
70	MW-18	r-squared is:	0.815	r-squared is:		0.693	
100	MW-18	Recommendations:					
84	MW-18						
89	MW-18	Reject BOTH lognormal and	normal distril	butions. See Sta	atistics Guidance.		
79	MW-18						
84	MW-18						
79	MW-18						
86	MW-18						
79	MW-18						
59	MW-18						
69	MW-18						
68	MW-18			-	00.404		
67	MW-18		UCL (based	on Z-statistic) is	83.164		
71	MW-18						
72	MW-18						

0.005	MW-3B	Cyanide MW-3B			
0.005	MW-3B	•			
0.005	MW-3B				
0.005	MW-3B				
0.005	MW-3B	Number of samples		Uncensored values	
0.005	MW-3B	Uncensored	31	Mean	0.01
0.005	MW-3B	Censored		Lognormal mean	0.01
0.005	MW-3B	Detection limit or PQL		Std. devn.	0.00217327
0.005	MW-3B	Method detection limit		Median	0.005
0.005	MW-3B	TOTAL	31	Min.	0.0025
0.005	MW-3B			Max.	0.01
0.005	MW-3B				
0.005	MW-3B				
0.005	MW-3B				
0.01	MW-3B	Lognormal distribution?		Normal distribution?	
0.01	MW-3B	r-squared is:	0.689	r-squared is:	0.647
0.01	MW-3B	Recommendations:			
0.01	MW-3B				
0.01	MW-3B	Reject BOTH lognormal and	normal distrib	outions. See Statistics Guidance	-
0.0025	MW-3B				
0.006	MW-3B				
0.0025	MW-3B				
0.005	MW-3B				
0.005	MW-3B				
0.01	MW-3B				
0.005	MW-3B				
0.005	MW-3B				
0.005	MW-3B		UCL (based of	on Z-statistic) is 0.006	
0.005	MW-3B				
0.005	MW-3B				
0.005	MW-3B				

0.005	A8-WM	Cyanide MW-8A					
0.005	MW-8A						
0.005	MW-8A						
0.005	MW-8A						
0.005	MW-8A	Number of samples		Und	censored values		
0.025	MW-8A	Uncensored	3	1	Mean	0.01	
0.005	MW-8A	Censored		L	ognormal mean	0.01	
0.005	A8-WM	Detection limit or PQL			Std. devn.	0.00407589	
0.005	MW-8A	Method detection limit			Median	0.005	
0.005	A8-WM	TOTAL	3	1	Min.	0.0025	
0.005	A8-WM				Max.	0.025	
0.005	MW-8A						
0.005	MW-8A						
0.005	MW-8A						
0.01	MW-8A	Lognormal distribution?		Normal distribut	tion?		
0.01	A8-WM	r-squared is:	0.703	r-squared is:		0.504	
0.01	A8-WM	Recommendations:					
0.01	A8-WM						
0.01	MW-8A	Reject BOTH lognormal and	normal distr	butions. See Sta	tistics Guidance		
0.0025	MW-8A						
0.0025	A8-WM						
0.0025	MW-8A						
0.005	MW-8A						
0.005	A8-WM						
0.005	MW-8A						
0.005	A8-WM						
0.005	A8-WM						
0.005	A8-WM		UCL (based	on Z-statistic) is	0.007		
0.005	A8-WM						
0.005	A8-WM						
0.005	MW-8A						

0.04	MW-10A	Cyanide MW-10A					
0.05	MW-10A						
0.04	MW-10A						
0.03	MW-10A						
0.03	MW-10A	Number of samples		Uncen	sored values		
0.03	MW-10A	Uncensored	3	0	Mean	0.02	
0.08	MW-10A	Censored		Logr	normal mean	0.03	
0.03	MW-10A	Detection limit or PQL			Std. devn.	0.01926963	
0.04	MW-10A	Method detection limit			Median	0.029	
0.005	MW-10A	TOTAL	3	0	Min.	0.0025	
0.04	MW-10A				Max.	0.08	
0.043	MW-10A						
0.05	MW-10A						
0.04	MW-10A						
0.03	MW-10A	Lognormal distribution?		Normal distribution	1?		
0.01	MW-10A	r-squared is:	0.870	r-squared is:		0.867	
0.032	MW-10A	Recommendations:					
0.022	MW-10A						
0.028	MW-10A	Reject BOTH lognormal and	normal distri	butions. See Statist	ics Guidance		
0.007	MW-10A						
0.008	MW-10A						
0.0025	MW-10A						
0.005	MW-10A						
0.005	MW-10A						
0.005	MW-10A						
0.005	MW-10A						
0.006	MW-10A						
0.006	MW-10A		UCL (based	on Z-statistic) is 0.03	3		
0.005	MW-10A						
0.005	MW-10A						
		·					

0.005	MW-14A	Cyanide MW-14A				
0.005	MW-14A					
0.005	MW-14A					
0.005	MW-14A					
0.005	MW-14A	Number of samples		Uncensored valu	es	
0.008	MW-14A	Uncensored	30	Me	an	0.09
0.008	MW-14A	Censored		Lognormal me	an	0.12
0.01	MW-14A	Detection limit or PQL		Std. dev	vn. 0.09	603043
0.017	MW-14A	Method detection limit		Medi	an	0.0405
0.018	MW-14A	TOTAL	30	M	lin.	0.005
0.018	MW-14A			Ma	ax.	0.35
0.019	MW-14A					
0.028	MW-14A					
0.03	MW-14A					
0.037	MW-14A	Lognormal distribution?		Normal distribution?		
0.044	MW-14A	r-squared is:	0.920	r-squared is:	0.847	
0.066	MW-14A	Recommendations:				
0.086	MW-14A	Use lognormal distribution.				
0.12	MW-14A					
0.12	MW-14A					
0.14	MW-14A					
0.14	MW-14A					
0.17	MW-14A					
0.19	MW-14A					
0.19	MW-14A	UCL (Land's method) is 0.26	82841952940	17		
0.19	MW-14A					
0.2	MW-14A					
0.24	MW-14A					
0.27	MW-14A					
0.35	MW-14A					

0.005	MW-18	Cyanide MW-18			
0.005	MW-18				
0.005	MW-18				
0.005	MW-18				
0.005	MW-18	Number of samples		Uncensored values	
0.005	MW-18	Uncensored	31	Mean	0.01
0.005	MW-18	Censored		Lognormal mean	0.01
0.005	MW-18	Detection limit or PQL		Std. devn.	0.01460833
0.005	MW-18	Method detection limit		Median	0.005
0.005	MW-18	TOTAL	31	Min.	0.0025
0.005	MW-18			Max.	0.086
0.005	MW-18				
0.005	MW-18				
0.005	MW-18				
0.005	MW-18	Lognormal distribution?		Normal distribution?	
0.005	MW-18	r-squared is:	0.493	r-squared is:	0.220
0.01	MW-18	Recommendations:			
0.01	MW-18				
0.01	MW-18	Reject BOTH lognormal and	normal distrib	utions. See Statistics Guidance	
0.0025	MW-18				
0.0025	MW-18				
0.0025	MW-18				
0.005	MW-18				
0.005	MW-18				
0.086	MW-18				
0.005	MW-18				
0.005	MW-18				
0.005	MW-18		UCL (based of	on Z-statistic) is 0.012	
0.005	MW-18				
0.005	MW-18				
0.005	MW-18				

Appendix B6 EPA Groundwater UCL Output

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.2 9/7/2023 2:02:11 PM

From File WSI2023_1.0.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Canara	1 0+	-+1-+1	

Number of Distinct Observations	30	Total Number of Observations
Number of Missing Observations		
Mean	1400	Minimum
Median	2700	Maximum
Std. Error of Mean	381.7	SD
Skewness	0.179	Coefficient of Variation

Normal GOF Test

Shapiro Wilk Test Statistic	0.939	Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value	0.9	Data appear Normal at 1% Significance Level
Lilliefors Test Statistic	0.135	Lilliefors GOF Test
1% Lilliefors Critical Value	0.185	Data appear Normal at 1% Significance Level

Data appear Normal at 1% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL 2253	95% Adjusted-CLT UCL (Chen-1995)		
	05% Modified + LICL (Johnson 1078)		

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.656	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significan	0.744	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.157	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significan	0.16	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	30.36	k star (bias corrected MLE)
Theta hat (MLE)	70.3	Theta star (bias corrected MLE)
nu hat (MLE)	1822	nu star (bias corrected)
MLE Mean (bias corrected)	2135	MLE Sd (bias corrected)
		Approximate Chi Square Value (0.05)
Adjusted Level of Significance	0.041	Adjusted Chi Square Value

Assuming Gamma Distribution

95% Approximate Gamma UCL 2263 95% Adjusted Gamma UCL

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.924	Shapiro Wilk Lognormal GOF Test
10% Shapiro Wilk Critical Value	0.939	Data Not Lognormal at 10% Significance Level
Lilliefors Test Statistic	0.165	Lilliefors Lognormal GOF Test
10% Lilliefors Critical Value	0.146	Data Not Lognormal at 10% Significance Level

Data Not Lognormal at 10% Significance Level

Lognormal Statistics

Minimum of Logged Data 7.244 Mean of logged Data

Maximum of Logged Data 7.901 SD of logged Data

Assuming Lognormal Distribution

 95% H-UCL
 2272
 90% Chebyshev (MVUE) UCL

 95% Chebyshev (MVUE) UCL
 2458
 97.5% Chebyshev (MVUE) UCL

 99% Chebyshev (MVUE) UCL
 2872

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution

Nonparametric Distribution Free UCLs

95% BCA Bootstrap UCL	L 22	95% CLT UCL
95% Bootstrap-t UCL	L 22	95% Standard Bootstrap UCL
95% Percentile Bootstrap UCL	L 22	95% Hall's Bootstrap UCL
95% Chebyshev(Mean, Sd) UCL	L 23	90% Chebyshev(Mean, Sd) UCL
99% Chebyshev(Mean, Sd) UCL	L 25	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 2253

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistici

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

S8A

	General Statistics	
Total Number of Observations	30	Number of Distinct Observations
		Number of Missing Observations
Number of Detects	29	Number of Non-Detects
Number of Distinct Detects	15	Number of Distinct Non-Detects
Minimum Detect	5.4	Minimum Non-Detect
Maximum Detect	11	Maximum Non-Detect
Variance Detects	1.039	Percent Non-Detects
Mean Detects	9.333	SD Detects
Median Detects	9.5	CV Detects
Skewness Detects	-2.348	Kurtosis Detects
Mean of Logged Detects	2.226	SD of Logged Detects

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.762	Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value	0.898	Detected Data Not Normal at 1% Significance Leve
Lilliefors Test Statistic	0.232	Lilliefors GOF Test
1% Lilliefors Critical Value	0.189	Detected Data Not Normal at 1% Significance Leve

Detected Data Not Normal at 1% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	9.039	KM Standard Error of Mean
90KM SD	1.867	95% KM (BCA) UCL
95% KM (t) UCL	9.628	95% KM (Percentile Bootstrap) UCL
95% KM (z) UCL	9.609	95% KM Bootstrap t UCL
90% KM Chebyshev UCL	10.08	95% KM Chebyshev UCL
97.5% KM Chebyshev UCL	11.2	99% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	2.756	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance	0.743	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.258	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance	0.162	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k star (bias corrected MLE)	70.35	k hat (MLE)
Theta star (bias corrected MLE)	0.133	Theta hat (MLE)
nu star (bias corrected)	4081	nu hat (MLE)
	9.333	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS \ may \ not \ be \ used \ when \ kstar \ of \ detects \ is \ small \ such \ as < 1.0, \ especially \ when \ the \ sample \ size \ is \ small \ (e.g., < 15-20)$

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Mean	5.4	Minimum
Median	11	Maximum
CV	1.062	SD
k star (bias corrected MLE)	65.13	k hat (MLE)
Theta star (bias corrected MLE)	0.142	Theta hat (MLE)
nu star (bias corrected)	3908	nu hat (MLE)
	0.041	Adjusted Level of Significance (β)
Adjusted Chi Square Value (N/A, β)	3382	Approximate Chi Square Value (N/A, α)
95% Gamma Adjusted UCL	9.644	95% Gamma Approximate UCL

Estimates of Gamma Parameters using KM Estimates

SD (KM)	9.039	Mean (KM)
SE of Mean (KM)	3.484	Variance (KM)
k star (KM)	23.45	k hat (KM)
nu star (KM)	1407	nu hat (KM)
theta star (KM)	0.385	theta hat (KM)
90% gamma percentile (KM)	10.64	80% gamma percentile (KM)
99% gamma percentile (KM)	12.5	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (N/A, α)	1186	Adjusted Chi Square Value (N/A, β)
95% KM Approximate Gamma UCL	9.661	95% KM Adjusted Gamma UCL

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk GOF Test	0.679	Shapiro Wilk Test Statistic
Detected Data Not Lognormal at 10% Significance Le	0.937	10% Shapiro Wilk Critical Value
Lilliefors GOF Test	0.273	Lilliefors Test Statistic
Detected Data Not Lognormal at 10% Significance Le	0.148	10% Lilliefors Critical Value

Detected Data Not Lognormal at 10% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Log Scale	9.263	Mean in Original Scale
SD in Log Scale	1.074	SD in Original Scale
95% Percentile Bootstrap UCL	9.596	95% t UCL (assumes normality of ROS data)
95% Bootstrap t UCL	9.526	95% BCA Bootstrap UCL
	9.681	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

	_		_
KM Geo Mean		2.129	KM Mean (logged)
95% Critical H Value (KM-Log)		0.539	KM SD (logged)
95% H-UCL (KM -Log)		0.1	KM Standard Error of Mean (logged)

2023 Annual Groundwater Monitoring Report West Surface Impoundment

Former Columbia Gorge Aluminum Smelter

KM SD (logged) 0.539 95% Critical H Value (KM-Log)

KM Standard Error of Mean (logged) 0.1

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed
Mean in Original Scale	9.031	Mean in Log Scale
SD in Original Scale	1.937	SD in Log Scale
95% t UCL (Assumes normality)	9.632	95% H-Stat UCL

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution

Suggested UCL to Use

95% KM (t) UCL 9.628

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistici

S10A

Canara	Statistics
venera	SIMILSHES

Number of Distinct Observations	29	Total Number of Observations
Number of Missing Observations		
Mean	670	Minimum
Median	6100	Maximum
Std. Error of Mean	1720	SD
Skewness	0.767	Coefficient of Variation

Normal GOF Test

Shapiro Wilk Test Statistic	0.819	Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value	0.898	Data Not Normal at 1% Significance Level
Lilliefors Test Statistic	0.199	Lilliefors GOF Test
1% Lilliefors Critical Value	0.189	Data Not Normal at 1% Significance Level

Data Not Normal at 1% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)
95% Student's-t UCL 2785	95% Adjusted-CLT UCL (Chen-1995)
	95% Modified-t UCL (Johnson-1978)

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.999	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Lev	0.757	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.16	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significan	0.165	5% K-S Critical Value

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics

k star (bias corrected MLE)	2.041	k hat (MLE)
Theta star (bias corrected MLE)	1098	Theta hat (MLE)
nu star (bias corrected)	118.4	nu hat (MLE)
MLE Sd (bias corrected)	2242	MLE Mean (bias corrected)
Approximate Chi Square Value (0.05)		
Adjusted Chi Square Value	0.0407	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL 2850	95% Adjusted Gamma UCL
--------------------------------	------------------------

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.912	Shapiro Wilk Lognormal GOF Test
10% Shapiro Wilk Critical Value	0.937	Data Not Lognormal at 10% Significance Level
Lilliefors Test Statistic	0.143	Lilliefors Lognormal GOF Test
10% Lilliefors Critical Value	0.148	Data appear Lognormal at 10% Significance Level

Data appear Approximate Lognormal at 10% Significance Level

Lognormal Statistics

Minimum of Logged Data 6.507 Mean of logged Data

Maximum of Logged Data 8.716 SD of logged Data

Assuming Lognormal Distribution

 95% H-UCL
 3031
 90% Chebyshev (MVUE) UCL

 95% Chebyshev (MVUE) UCL
 3654
 97.5% Chebyshev (MVUE) UCL

 99% Chebyshev (MVUE) UCL
 5489

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution

Nonparametric Distribution Free UCLs

95% BCA Bootstrap UCL	JCL 2	95% CLT UCL
95% Bootstrap-t UCL	JCL 2	95% Standard Bootstrap UCL
95% Percentile Bootstrap UCL	JCL 28	95% Hall's Bootstrap UCL
95% Chebyshev(Mean, Sd) UCL	JCL 32	90% Chebyshev(Mean, Sd) UCL
99% Chebyshev(Mean, Sd) UCL	JCL 42	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Adjusted Gamma UCL 2891

When a data set follows an approximate distribution passing only one of the GOF tests, it is suggested to use a UCL based upon a distribution passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistici

S12A

General Statistics

Total Number of Observations 1 Number of Distinct Observations

Number of Missing Observations

Minimum 1800 Mean Maximum 1800 Median

Warning: This data set only has 1 observations!

Data set is too small to compute reliable and meaningful statistics and estimates!

The data set for variable S12A was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods!

If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

S14A

General	Statistics	

Number of Distinct Observations	29	Total Number of Observations
Number of Missing Observations		
Mean	990	Minimum
Median	7900	Maximum
Std. Error of Mean	1980	SD
76 Skewness	0.57	Coefficient of Variation

Normal GOF Test

Shapiro Wilk Test Statistic	0.921	Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value	0.898	Data appear Normal at 1% Significance Level
Lilliefors Test Statistic	0.151	Lilliefors GOF Test
1% Lilliefors Critical Value	0.189	Data appear Normal at 1% Significance Level

Data appear Normal at 1% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL 4061	95% Adjusted-CLT UCL (Chen-1995)	
	95% Modified-t LICL (Johnson-1978)	

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.381	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Signific	0.753	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.106	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Signification	0.164	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k star (bias corrected MLE)	3.045	k hat (MLE)
Theta star (bias corrected MLE)	1128	Theta hat (MLE)
nu star (bias corrected)	176.6	nu hat (MLE)
MLE Sd (bias corrected)	3436	MLE Mean (bias corrected)
Approximate Chi Square Value (0.05)		
Adjusted Chi Square Value	0.0407	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL	4173	95% Adjusted Gamma UCL
---------------------------	------	------------------------

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.95	Shapiro Wilk Lognormal GOF Test
10% Shapiro Wilk Critical Value	0.937	Data appear Lognormal at 10% Significance Level
Lilliefors Test Statistic	0.105	Lilliefors Lognormal GOF Test
10% Lilliefors Critical Value	0.148	Data appear Lognormal at 10% Significance Level

Data appear Lognormal at 10% Significance Level

Lognormal Statistics

Minimum of Logged Data 6.898 Mean of logged Data

Maximum of Logged Data 8.975 SD of logged Data

Assuming Lognormal Distribution

95% H-UCL 4443 90% Chebyshev (MVUE) UCL 95% Chebyshev (MVUE) UCL 5319 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL 7688

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution

Nonparametric Distribution Free UCLs

95% BCA Bootstrap UCL	4041	95% CLT UCL
95% Bootstrap-t UCL	4042	95% Standard Bootstrap UCL
95% Percentile Bootstrap UCL	4093	95% Hall's Bootstrap UCL
95% Chebyshev(Mean, Sd) UCL	4539	90% Chebyshev(Mean, Sd) UCL
99% Chebyshev(Mean, Sd) UCL	5732	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 4061

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistici

Ger	eral	Stat	tisti	CS

Number of Distinct Observations	30	Total Number of Observations
Number of Missing Observations		
Mean	1100	Minimum
Median	1700	Maximum
Std. Error of Mean	169.8	SD
Skewness	0.117	Coefficient of Variation

Normal GOF Test

Shapiro Wilk Test Statistic	0.936	Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value	0.9	Data appear Normal at 1% Significance Level
Lilliefors Test Statistic	0.159	Lilliefors GOF Test
1% Lilliefors Critical Value	0.185	Data appear Normal at 1% Significance Level

Data appear Normal at 1% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)
95% Student's-t UCL 1503	95% Adjusted-CLT UCL (Chen-1995)
	95% Modified-t LICL (Johnson-1978)

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.754	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Le	0.745	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.173	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Le	0.16	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

k star (bias corrected MLE)	73.3	k hat (MLE)
Theta star (bias corrected MLE)	19.79	Theta hat (MLE)
nu star (bias corrected)	4398	nu hat (MLE)
MLE Sd (bias corrected)	1450	MLE Mean (bias corrected)
Approximate Chi Square Value (0.05)		
Adjusted Chi Square Value	0.041	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL 1506 95% Adjusted Gamma UCL

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.93	Shapiro Wilk Lognormal GOF Test
10% Shapiro Wilk Critical Value	0.939	Data Not Lognormal at 10% Significance Level
Lilliefors Test Statistic	0.178	Lilliefors Lognormal GOF Test
10% Lilliefors Critical Value	0.146	Data Not Lognormal at 10% Significance Level

Lognormal Statistics

Minimum of Logged Data	7.003	Mean of logged Data
Maximum of Logged Data	7.438	SD of logged Data

Assuming Lognormal Distribution

95% H-UCL	1507	90% Chebyshev (MVUE) UCL
95% Chebyshev (MVUE) UCL	1589	97.5% Chebyshev (MVUE) UCL
99% Chebyshev (MVUE) UCL	1767	

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution

Nonparametric Distribution Free UCLs

95% BCA Bootstrap UCL	1501	95% CLT UCL
95% Bootstrap-t UCL	1500	95% Standard Bootstrap UCL
95% Percentile Bootstrap UCL	1500	95% Hall's Bootstrap UCL
95% Chebyshev(Mean, Sd) UCL	1543	90% Chebyshev(Mean, Sd) UCL
99% Chebyshev(Mean, Sd) UCL	1644	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 1503

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistici

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

	General Statistics	
Total Number of Observations	30	Number of Distinct Observations
		Number of Missing Observations
Number of Detects	22	Number of Non-Detects
Number of Distinct Detects	15	Number of Distinct Non-Detects
Minimum Detect	0.12	Minimum Non-Detect
Maximum Detect	3.8	Maximum Non-Detect
Variance Detects	1.631	Percent Non-Detects
Mean Detects	0.856	SD Detects
Median Detects	0.175	CV Detects
Skewness Detects	1.822	Kurtosis Detects
Mean of Logged Detects	-0.993	SD of Logged Detects

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.602	Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value	0.878	Detected Data Not Normal at 1% Significance Leve
Lilliefors Test Statistic	0.321	Lilliefors GOF Test
1% Lilliefors Critical Value	0.214	Detected Data Not Normal at 1% Significance Leve

Detected Data Not Normal at 1% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Standard Error of Mean	0.73	KM Mean
95% KM (BCA) UCL	1.157	90KM SD
95% KM (Percentile Bootstrap) UCL	1.117	95% KM (t) UCL
95% KM Bootstrap t UCL	1.105	95% KM (z) UCL
95% KM Chebyshev UCL	1.414	90% KM Chebyshev UCL
99% KM Chebyshev UCL	2.154	97.5% KM Chebyshev UCL

Note: KM UCLs may be biased low with this dataset. Other substitution method recommended

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	2.563	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance	0.786	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.307	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance	0.193	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k star (bias corrected MLE)	0.719	k hat (MLE)
Theta star (bias corrected MLE)	1.19	Theta hat (MLE)
nu star (bias corrected)	31.64	nu hat (MLE)
	0.856	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

80% gamma 95% gamma

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Mean	Minimum
Median	Maximum
CV	SD
k star (bias corrected MLE)	k hat (MLE)
Theta star (bias corrected MLE)	Theta hat (MLE)
nu star (bias corrected)	nu hat (MLE)
	Adjusted Level of Significance (β)
Adjusted Chi Square Value (34.28, β)	Approximate Chi Square Value (34.28, α)
95% Gamma Adjusted UCL	95% Gamma Approximate UCL

Estimates of Gamma Parameters using KM Estimates

SD (KM)	0.73	Mean (KM)
SE of Mean (KM)	1.339	Variance (KM)
k star (KM)	0.397	k hat (KM)
nu star (KM)	23.84	nu hat (KM)
theta star (KM)	1.836	theta hat (KM)
90% gamma percentile (KM)	1.17	percentile (KM)
99% gamma percentile (KM)	3.086	percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (22.79, α)	12.93	Adjusted Chi Square Value (22.79, β)
95% KM Approximate Gamma UCL	1.286	95% KM Adjusted Gamma UCL

Note: KM UCLs may be biased low with this dataset. Other substitution method recommended

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.787	Shapiro Wilk GOF Test
10% Shapiro Wilk Critical Value	0.926	Detected Data Not Lognormal at 10% Significance Le
Lilliefors Test Statistic	0.284	Lilliefors GOF Test
10% Lilliefors Critical Value	0.169	Detected Data Not Lognormal at 10% Significance Le

Detected Data Not Lognormal at 10% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.701	Mean in Log Scale
SD in Original Scale	1.12	SD in Log Scale
95% t UCL (assumes normality of ROS data)	1.048	95% Percentile Bootstrap UCL
95% BCA Bootstrap UCL	1.118	95% Bootstrap t UCL
95% H-UCL (Log ROS)	1.023	

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.142	KM Geo Mean
------------------	--------	-------------

2023 Annual Groundwater Monitoring Report West Surface Impoundment

Former Columbia Gorge Aluminum Smelter

KM SD (logged)	1.127	95% Critical H Value (KM-Log)
KM Standard Error of Mean (logged)	0.224	95% H-UCL (KM -Log)
KM SD (logged)	1.127	95% Critical H Value (KM-Log)
KM Standard Error of Mean (logged)	0.224	

Note: KM UCLs may be biased low with this dataset. Other substitution method recommended

DL	/2	Sta	tisti	CS	

DL/2 Normal		DL/2 Log-Transformed
Mean in Original Scale	1.253	Mean in Log Scale
SD in Original Scale	2.438	SD in Log Scale
95% t UCL (Assumes normality)	2.009	95% H-Stat UCL

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution

Suggested UCL to Use

95% KM (t) UCL 1.117

The calculated UCLs are based on assumptions that the data were collected in a random and unbiased manner.

Please verify the data were collected from random locations.

If the data were collected using judgmental or other non-random methods,

then contact a statistician to correctly calculate UCLs.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistici

F8A

	General Statistics	
Total Number of Observations	30	Number of Distinct Observations
		Number of Missing Observations
Number of Detects	22	Number of Non-Detects
Number of Distinct Detects	13	Number of Distinct Non-Detects
Minimum Detect	0.05	Minimum Non-Detect
Maximum Detect	2.8	Maximum Non-Detect
Variance Detects	0.35	Percent Non-Detects
Mean Detects	0.352	SD Detects
Median Detects	0.16	CV Detects
Skewness Detects	3.745	Kurtosis Detects
Mean of Logged Detects	-1.591	SD of Logged Detects

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.456	Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value	0.878	Detected Data Not Normal at 1% Significance Leve
Lilliefors Test Statistic	0.374	Lilliefors GOF Test
1% Lilliefors Critical Value	0.214	Detected Data Not Normal at 1% Significance Leve

Detected Data Not Normal at 1% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.307	KM Standard Error of Mean
90KM SD	0.511	95% KM (BCA) UCL
95% KM (t) UCL	0.473	95% KM (Percentile Bootstrap) UCL
95% KM (z) UCL	0.468	95% KM Bootstrap t UCL
90% KM Chebyshev UCL	0.6	95% KM Chebyshev UCL
97.5% KM Chebyshev UCL	0.916	99% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	2.832	Anderson-Darling GOF Test
5% A-D Critical Value	0.77	Detected Data Not Gamma Distributed at 5% Significance
K-S Test Statistic	0.348	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.191	Detected Data Not Gamma Distributed at 5% Significance

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k star (bias corrected MLE)	1.049	k hat (MLE)
Theta star (bias corrected MLE)	0.336	Theta hat (MLE)
nu star (bias corrected)	46.14	nu hat (MLE)
	0.352	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean
Maximum	2.8	Median
SD	0.518	CV
k hat (MLE)	0.917	k star (bias corrected MLE)
Theta hat (MLE)	0.341	Theta star (bias corrected MLE)
nu hat (MLE)	55.05	nu star (bias corrected)
Adjusted Level of Significance (β)	0.041	
Approximate Chi Square Value (50.88, α)	35.5	Adjusted Chi Square Value (50.88, β)
95% Gamma Approximate UCL	0.448	95% Gamma Adjusted UCL

Estimates of Gamma Parameters using KM Estimates

SD (KM)	0.307	Mean (KM)
SE of Mean (KM)	0.261	Variance (KM)
k star (KM)	0.361	k hat (KM)
nu star (KM)	21.67	nu hat (KM)
theta star (KM)	0.851	theta hat (KM)
90% gamma percentile (KM)	0.486	80% gamma percentile (KM)
99% gamma percentile (KM)	1.34	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (20.84, α)	11.47	Adjusted Chi Square Value (20.84, β)
95% KM Approximate Gamma UCL	0.558	95% KM Adjusted Gamma UCL

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk GOF Test	0.82	Shapiro Wilk Test Statistic
Detected Data Not Lognormal at 10% Significance L	0.926	10% Shapiro Wilk Critical Value
Lilliefors GOF Test	0.281	Lilliefors Test Statistic
Detected Data Not Lognormal at 10% Significance L	0.169	10% Lilliefors Critical Value

Detected Data Not Lognormal at 10% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Log Scale	0.31	Mean in Original Scale
SD in Log Scale	0.511	SD in Original Scale
95% Percentile Bootstrap UCL	0.468	95% t UCL (assumes normality of ROS data)
95% Bootstrap t UCL	0.573	95% BCA Bootstrap UCL
	0.373	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.662	KM Geo Mean
KM SD (logged)	0.788	95% Critical H Value (KM-Log)
KM Standard Error of Mean (logged)	0.157	95% H-UCL (KM -Log)

Former Columbia Gorge Aluminum Smelter

KM SD (logged) 0.788 95% Critical H Value (KM-Log)

KM Standard Error of Mean (logged) 0.157

Note: KM UCLs may be biased low with this dataset. Other substitution method recommended

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed
Mean in Original Scale	0.4	Mean in Log Scale
SD in Original Scale	0.643	SD in Log Scale
95% t UCL (Assumes normality)	0.599	95% H-Stat UCL

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution

Suggested UCL to Use

95% KM (t) UCL 0.473

The calculated UCLs are based on assumptions that the data were collected in a random and unbiased manner.

Please verify the data were collected from random locations.

If the data were collected using judgmental or other non-random methods,

then contact a statistician to correctly calculate UCLs.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistici

F10A

	General Statistics	
Total Number of Observations	29	Number of Distinct Observations
		Number of Missing Observations
Number of Detects	25	Number of Non-Detects
Number of Distinct Detects	17	Number of Distinct Non-Detects
Minimum Detect	1	Minimum Non-Detect
Maximum Detect	4.4	Maximum Non-Detect
Variance Detects	1.048	Percent Non-Detects
Mean Detects	2.636	SD Detects
Median Detects	2.3	CV Detects
Skewness Detects	0.215	Kurtosis Detects
Mean of Logged Detects	0.889	SD of Logged Detects

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.943	Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value	0.886	Detected Data appear Normal at 1% Significance Lev
Lilliefors Test Statistic	0.149	Lilliefors GOF Test
1% Lilliefors Critical Value	0.201	Detected Data appear Normal at 1% Significance Lev

Detected Data appear Normal at 1% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Standard Error of Mean	2.554	KM Mean
95% KM (BCA) UCL	1.066	90KM SD
95% KM (Percentile Bootstrap) UCL	2.917	95% KM (t) UCL
95% KM Bootstrap t UCL	2.905	95% KM (z) UCL
95% KM Chebyshev UCL	3.194	90% KM Chebyshev UCL
99% KM Chebvshev UCL	3.886	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.448	Anderson-Darling GOF Test
5% A-D Critical Value	0.746	Detected data appear Gamma Distributed at 5% Significan
K-S Test Statistic	0.15	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.175	Detected data appear Gamma Distributed at 5% Significan

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k star (bias corrected MLE)	6.405	k hat (MLE)
Theta star (bias corrected MLE)	0.412	Theta hat (MLE)
nu star (bias corrected)	320.3	nu hat (MLE)
	2.636	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Mean	0.715	Minimum
Median	4.4	Maximum
CV	1.021	SD
k star (bias corrected MLE)	5.72	k hat (MLE)
Theta star (bias corrected MLE)	0.446	Theta hat (MLE)
nu star (bias corrected)	331.8	nu hat (MLE)
	0.0407	Adjusted Level of Significance (β)
Adjusted Chi Square Value (298.78, β)	259.7	Approximate Chi Square Value (298.78, α)
95% Gamma Adjusted UCL	2.936	95% Gamma Approximate UCL

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	2.554	SD (KM)
Variance (KM)	1.136	SE of Mean (KM)
k hat (KM)	5.74	k star (KM)
nu hat (KM)	332.9	nu star (KM)
theta hat (KM)	0.445	theta star (KM)
80% gamma percentile (KM)	3.42	90% gamma percentile (KM)
95% gamma percentile (KM)	4.637	99% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (299.79, α)	260.7	Adjusted Chi Square Value (299.79, β)
95% KM Approximate Gamma UCL	2.937	95% KM Adjusted Gamma UCL

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk GOF Test	0.943	Shapiro Wilk Test Statistic
Detected Data appear Lognormal at 10% Significance I	0.931	10% Shapiro Wilk Critical Value
Lilliefors GOF Test	0.157	Lilliefors Test Statistic
Detected Data appear Lognormal at 10% Significance I	0.159	10% Lilliefors Critical Value

Detected Data appear Lognormal at 10% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Log Scale	2.548	Mean in Original Scale
SD in Log Scale	1.014	SD in Original Scale
95% Percentile Bootstrap UCL	2.869	95% t UCL (assumes normality of ROS data)
95% Bootstrap t UCL	2.865	95% BCA Bootstrap UCL
	3.016	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.828	KM Geo Mean
KM SD (logged)	0.507	95% Critical H Value (KM-Log)
KM Standard Error of Mean (logged)	0.101	95% H-UCL (KM -Log)

2023 Annual Groundwater Monitoring Report West Surface Impoundment

Former Columbia Gorge Aluminum Smelter

KM SD (logged) 0.507 95% Critical H Value (KM-Log)

KM Standard Error of Mean (logged) 0.101

DL/2 Statistics

ı	DL/2 Normal		DL/2 Log-Transformed	
	Mean in Original Scale	2.884	Mean in Log Scale	
	SD in Original Scale	2.125	SD in Log Scale	
9!	5% t UCL (Assumes normality)	3.556	95% H-Stat UCL	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 1% Significance Level

Suggested UCL to Use

95% KM (t) UCL 2.917

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistici

F12A

	General Statistics	
Total Number of Observations	1	Number of Distinct Observations
		Number of Missing Observations
Minimum	6.3	Mean
Maximum	6.3	Median

Warning: This data set only has 1 observations!

Data set is too small to compute reliable and meaningful statistics and estimates!

The data set for variable F12A was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods!

If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

F14A

	General Statistics	
Total Number of Observations	29	Number of Distinct Observations
		Number of Missing Observations
Number of Detects	27	Number of Non-Detects
Number of Distinct Detects	23	Number of Distinct Non-Detects
Minimum Detect	2.5	Minimum Non-Detect
Maximum Detect	32	Maximum Non-Detect
Variance Detects	104.2	Percent Non-Detects
Mean Detects	16.55	SD Detects
Median Detects	18	CV Detects
Skewness Detects	0.0238	Kurtosis Detects
Mean of Logged Detects	2.532	SD of Logged Detects

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.904	Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value	0.894	Detected Data appear Normal at 1% Significance Lev
Lilliefors Test Statistic	0.159	Lilliefors GOF Test
1% Lilliefors Critical Value	0.194	Detected Data appear Normal at 1% Significance Lev

Detected Data appear Normal at 1% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	16.24	KM Standard Error of Mean
90KM SD	9.932	95% KM (BCA) UCL
95% KM (t) UCL	19.51	95% KM (Percentile Bootstrap) UCL
95% KM (z) UCL	19.4	95% KM Bootstrap t UCL
90% KM Chebyshev UCL	22	95% KM Chebyshev UCL
97.5% KM Chebyshev UCL	28.23	99% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	1.017	Anderson-Darling GOF Test
5% A-D Critical Value	0.757	Detected Data Not Gamma Distributed at 5% Significance
K-S Test Statistic	0.169	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.171	Detected data appear Gamma Distributed at 5% Significan

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics on Detected Data Only

k star (bias corrected MLE)	1.97	k hat (MLE)
Theta star (bias corrected MLE)	8.398	Theta hat (MLE)
nu star (bias corrected)	106.4	nu hat (MLE)
	16.55	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Mean	2.5	Minimum
Median	32	Maximum
CV	9.943	SD
k star (bias corrected MLE)	2.065	k hat (MLE)
Theta star (bias corrected MLE)	7.848	Theta hat (MLE)
nu star (bias corrected)	119.8	nu hat (MLE)
	0.0407	Adjusted Level of Significance (β)
Adjusted Chi Square Value (108.73, β)	85.67	Approximate Chi Square Value (108.73, α)
95% Gamma Adjusted UCL	20.57	95% Gamma Approximate UCI

Estimates of Gamma Parameters using KM Estimates

SD (KM)	16.24	Mean (KM)
SE of Mean (KM)	98.64	Variance (KM)
k star (KM)	2.674	k hat (KM)
nu star (KM)	155.1	nu hat (KM)
theta star (KM)	6.074	theta hat (KM)
90% gamma percentile (KM)	23.77	80% gamma percentile (KM)
99% gamma percentile (KM)	36.31	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (140.38, α)	114	Adjusted Chi Square Value (140.38, β)
95% KM Approximate Gamma UCL	20	95% KM Adjusted Gamma UCL

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk GOF Test	0.869	Shapiro Wilk Test Statistic
Detected Data Not Lognormal at 10% Significance Le	0.935	10% Shapiro Wilk Critical Value
Lilliefors GOF Test	0.205	Lilliefors Test Statistic
Detected Data Not Lognormal at 10% Significance Le	0.153	10% Lilliefors Critical Value

Detected Data Not Lognormal at 10% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Log Scale	16.07	Mean in Original Scale
SD in Log Scale	10.02	SD in Original Scale
95% Percentile Bootstrap UCL	19.24	95% t UCL (assumes normality of ROS data)
95% Bootstrap t UCL	19.12	95% BCA Bootstrap UCL
	24.54	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	2.511	KM Geo Mean
KM SD (logged)	0.83	95% Critical H Value (KM-Log)
KM Standard Error of Mean (logged)	0.162	95% H-UCL (KM -Log)

2023 Annual Groundwater Monitoring Report West Surface Impoundment

Former Columbia Gorge Aluminum Smelter

KM SD (logged) 0.83 95% Critical H Value (KM-Log)

KM Standard Error of Mean (logged) 0.162

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed
Mean in Original Scale	16.27	Mean in Log Scale
SD in Original Scale	9.892	SD in Log Scale
95% t UCL (Assumes normality)	19.39	95% H-Stat UCL

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 1% Significance Level

Suggested UCL to Use

95% KM (t) UCL 19.51

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistici

	General Statistics	
Total Number of Observations	30	Number of Distinct Observations
		Number of Missing Observations
Number of Detects	22	Number of Non-Detects
Number of Distinct Detects	13	Number of Distinct Non-Detects
Minimum Detect	0.11	Minimum Non-Detect
Maximum Detect	2.6	Maximum Non-Detect
Variance Detects	0.819	Percent Non-Detects
Mean Detects	0.739	SD Detects
Median Detects	0.175	CV Detects
Skewness Detects	1.264	Kurtosis Detects
Mean of Logged Detects	-1.048	SD of Logged Detects

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.713	Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value	0.878	Detected Data Not Normal at 1% Significance Leve
Lilliefors Test Statistic	0.282	Lilliefors GOF Test
1% Lilliefors Critical Value	0.214	Detected Data Not Normal at 1% Significance Leve

Detected Data Not Normal at 1% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.615	KM Standard Error of Mean
90KM SD	0.82	95% KM (BCA) UCL
95% KM (t) UCL	0.885	95% KM (Percentile Bootstrap) UCL
95% KM (z) UCL	0.876	95% KM Bootstrap t UCL
90% KM Chebyshev UCL	1.091	95% KM Chebyshev UCL
97.5% KM Chebyshev UCL	1.607	99% KM Chebyshev UCL

Note: KM UCLs may be biased low with this dataset. Other substitution method recommended

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	1.917	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance	0.781	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.265	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significand	0.192	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k star (bias corrected MLE)	0.796	k hat (MLE)
Theta star (bias corrected MLE)	0.928	Theta hat (MLE)
nu star (bias corrected)	35.04	nu hat (MLE)
	0.739	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Mean	0.01	Minimum
Median	2.6	Maximum
CV	0.814	SD
k star (bias corrected MLE)	0.684	k hat (MLE)
Theta star (bias corrected MLE)	0.882	Theta hat (MLE)
nu star (bias corrected)	41.06	nu hat (MLE)
	0.041	Adjusted Level of Significance (β)
Adjusted Chi Square Value (38.29, β)	25.12	Approximate Chi Square Value (38.29, α)
95% Gamma Adjusted UCL	0.921	95% Gamma Approximate UCL

Estimates of Gamma Parameters using KM Estimates

SD (KM)	0.615	Mean (KM)
SE of Mean (KM)	0.673	Variance (KM)
k star (KM)	0.562	k hat (KM)
nu star (KM)	33.7	nu hat (KM)
theta star (KM)	1.094	theta hat (KM)
90% gamma percentile (KM)	1.012	80% gamma percentile (KM)
99% gamma percentile (KM)	2.316	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (31.66, α)	19.8	Adjusted Chi Square Value (31.66, β)
95% KM Approximate Gamma UCL	0.983	95% KM Adjusted Gamma UCL

Note: KM UCLs may be biased low with this dataset. Other substitution method recommended

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.811	Shapiro Wilk GOF Test
10% Shapiro Wilk Critical Value	0.926	Detected Data Not Lognormal at 10% Significance Le
Lilliefors Test Statistic	0.253	Lilliefors GOF Test
10% Lilliefors Critical Value	0.169	Detected Data Not Lognormal at 10% Significance Le

Detected Data Not Lognormal at 10% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.605	Mean in Log Scale
SD in Original Scale	0.806	SD in Log Scale
95% t UCL (assumes normality of ROS data)	0.855	95% Percentile Bootstrap UCL
95% BCA Bootstrap UCL	0.887	95% Bootstrap t UCL
95% H-UCL (Log ROS)	0.991	

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.239	KM Geo Mean
------------------	--------	-------------

2023 Annual Groundwater Monitoring Report West Surface Impoundment

Former Columbia Gorge Aluminum Smelter

95% H-Stat UCL

95% Critical H Value (KM-Log)	1.149	KM SD (logged)
95% H-UCL (KM -Log)	0.226	KM Standard Error of Mean (logged)
95% Critical H Value (KM-Log)	1.149	KM SD (logged)
	0.226	KM Standard Error of Mean (logged)

Note: KM UCLs may be biased low with this dataset. Other substitution method recommended

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed
Mean in Original Scale	1.42	Mean in Log Scale
SD in Original Scale	3.116	SD in Log Scale

DL/2 is not a recommended method, provided for comparisons and historical reasons

2.387

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution

Suggested UCL to Use

95% KM (t) UCL 0.885

95% t UCL (Assumes normality)

The calculated UCLs are based on assumptions that the data were collected in a random and unbiased manner.

Please verify the data were collected from random locations.

If the data were collected using judgmental or other non-random methods,

then contact a statistician to correctly calculate UCLs.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistici

СНЗВ

	General Statistics	
Total Number of Observations	30	Number of Distinct Observations
		Number of Missing Observations
Minimum	80	Mean
Maximum	140	Median
SD	14.83	Std. Error of Mean

Coefficient of Variation 0.142 Skewness

Normal GOF Test

Shapiro Wilk Test Statistic	0.943	Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value	0.9	Data appear Normal at 1% Significance Level
Lilliefors Test Statistic	0.187	Lilliefors GOF Test
1% Lilliefors Critical Value	0.185	Data Not Normal at 1% Significance Level

Data appear Approximate Normal at 1% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)
95% Student's-t UCL 109.1	95% Adjusted-CLT UCL (Chen-1995)
	95% Modified-t UCL (Johnson-1978)

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.6	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significan	0.744	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.175	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Lev	0.16	5% K-S Critical Value

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics

k star (bias corrected MLE)	53.41	k hat (MLE)
Theta star (bias corrected MLE)	1.957	Theta hat (MLE)
nu star (bias corrected)	3205	nu hat (MLE)
MLE Sd (bias corrected)	104.5	MLE Mean (bias corrected)
Approximate Chi Square Value (0.05)		
Adjusted Chi Square Value	0.041	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL 109.2 95% Adjusted Gamma UCL

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.961	Shapiro Wilk Lognormal GOF Test
10% Shapiro Wilk Critical Value	0.939	Data appear Lognormal at 10% Significance Level
Lilliefors Test Statistic	0.166	Lilliefors Lognormal GOF Test
10% Lilliefors Critical Value	0.146	Data Not Lognormal at 10% Significance Level

Data appear Approximate Lognormal at 10% Significance Level

Lognormal Statistics

Minimum of Logged Data	4.382	Mean of logged Data
Maximum of Logged Data	4.942	SD of logged Data

Assuming Lognormal Distribution

95% H-UCL	109.3	90% Chebyshev (MVUE) UCL
95% Chebyshev (MVUE) UCL	116.1	97.5% Chebyshev (MVUE) UCL
99% Chehyshey (MVLIE) LICI	130.9	

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution

Nonparametric Distribution Free UCLs

95% BCA Bootstrap UCL	109	95% CLT UCL
95% Bootstrap-t UCL	109	95% Standard Bootstrap UCL
95% Percentile Bootstrap UCL	109.6	95% Hall's Bootstrap UCL
95% Chebyshev(Mean, Sd) UCL	112.6	90% Chebyshev(Mean, Sd) UCL
99% Chebyshev(Mean, Sd) UCL	121.4	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 109.1

When a data set follows an approximate distribution passing only one of the GOF tests, it is suggested to use a UCL based upon a distribution passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistici

Data appear Lognormal at 10% Significance Level Lilliefors Lognormal GOF Test

Data appear Lognormal at 10% Significance Level

CH8A

	General S	Statistics
Total Number of Observations	30	Number of Distinct Observations
		Number of Missing Observations
Minimum	3	Mean
Maximum	6.6	Median
SD	0.727	Std. Error of Mean
Coefficient of Variation	0.165	Skewness
	Normal G	OF Test
Shapiro Wilk Test Statistic	0.956	Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value	0.9	Data appear Normal at 1% Significance Level
Lilliefors Test Statistic	0.109	Lilliefors GOF Test
1% Lilliefors Critical Value	0.185	Data appear Normal at 1% Significance Level
Data appea	ar Normal at	1% Significance Level
	suming Norm	nal Distribution
95% Normal UCL	4.040	95% UCLs (Adjusted for Skewness)
95% Student's-t UCL	4.618	95% Adjusted-CLT UCL (Chen-1995)
		95% Modified-t UCL (Johnson-1978)
	Gamma G	GOF Test
A-D Test Statistic	0.291	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.744	Detected data appear Gamma Distributed at 5% Significan
K-S Test Statistic	0.0933	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.16	Detected data appear Gamma Distributed at 5% Significan
Detected data appear	Gamma Dis	tributed at 5% Significance Level
	Gamma S	Statistics
k hat (MLE)	39.28	k star (bias corrected MLE)
Theta hat (MLE)	0.112	Theta star (bias corrected MLE)
nu hat (MLE)	2357	nu star (bias corrected)
MLE Mean (bias corrected)	4.393	MLE Sd (bias corrected)
		Approximate Chi Square Value (0.05)
Adjusted Level of Significance	0.041	Adjusted Chi Square Value
Ass	uming Gamı	ma Distribution
95% Approximate Gamma UCL	4.624	95% Adjusted Gamma UCL
	Lognormal	GOF Test
Shapiro Wilk Test Statistic	0.981	Shapiro Wilk Lognormal GOF Test
100/ Chamina M/III - Cuiti 1 / 1	0.000	D-t

GeoPro LLC APPENDIX B6

0.939

0.0976

0.146

10% Shapiro Wilk Critical Value

10% Lilliefors Critical Value

Lilliefors Test Statistic

Lognormal Statistics

Minimum of Logged Data 1.099 Mean of logged Data

Maximum of Logged Data 1.887 SD of logged Data

Assuming Lognormal Distribution

 95% H-UCL
 4.63
 90% Chebyshev (MVUE) UCL

 95% Chebyshev (MVUE) UCL
 4.962
 97.5% Chebyshev (MVUE) UCL

 99% Chebyshev (MVUE) UCL
 5.692

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution

Nonparametric Distribution Free UCLs

95% BCA Bootstrap UCL	4.611	95% CLT UCL
95% Bootstrap-t UCL	4.606	95% Standard Bootstrap UCL
95% Percentile Bootstrap UCL	4.67	95% Hall's Bootstrap UCL
95% Chebyshev(Mean, Sd) UCL	4.791	90% Chebyshev(Mean, Sd) UCL
99% Chebyshev(Mean, Sd) UCL	5.221	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 4.618

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistici

CH10A

ics	General Statistics	
Number of Distinct Observations	29	Total Number of Observations
Number of Missing Observations		
Mean	23	Minimum
Median	190	Maximum
Std. Error of Mean	45.57	SD
Skewness	0.688	Coefficient of Variation
est	Normal GOF Test	
Shapiro Wilk GOF Test	0.789	Shapiro Wilk Test Statistic
Data Not Normal at 1% Significance Level	0.898	1% Shapiro Wilk Critical Value
Lilliefors GOF Test	0.184	Lilliefors Test Statistic
Data appear Normal at 1% Significance Level	0.189	1% Lilliefors Critical Value

Data appear Approximate Normal at 1% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL	80.67	95% Adjusted-CLT UCL (Chen-1995)	
		95% Modified t LICL (Johnson-1978)	

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.933	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Lev	0.753	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.141	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significan	0.164	5% K-S Critical Value

Detected data follow Appr. Gamma Distribution at 5% Significance Level

k star (bias corrected MLE)	2.861	k hat (MLE)
Theta star (bias corrected MLE)	23.16	Theta hat (MLE)
nu star (bias corrected)	166	nu hat (MLE)
MLE Sd (bias corrected)	66.28	MLE Mean (bias corrected)
Approximate Chi Square Value (0.05)		
Adjusted Chi Square Value	0.0407	Adjusted Level of Significance

Assuming Gamma Distribution

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.928	Shapiro Wilk Lognormal GOF Test
10% Shapiro Wilk Critical Value	0.937	Data Not Lognormal at 10% Significance Level
Lilliefors Test Statistic	0.113	Lilliefors Lognormal GOF Test
10% Lilliefors Critical Value	0.148	Data appear Lognormal at 10% Significance Level

Data appear Approximate Lognormal at 10% Significance Level

Lognormal Statistics

Minimum of Logged Data 3.135 Mean of logged Data

Maximum of Logged Data 5.247 SD of logged Data

Assuming Lognormal Distribution

 95% H-UCL
 82.72
 90% Chebyshev (MVUE) UCL

 95% Chebyshev (MVUE) UCL
 98.79
 97.5% Chebyshev (MVUE) UCL

 99% Chebyshev (MVUE) UCL
 141.7

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution

Nonparametric Distribution Free UCLs

95% BCA Bootstrap UCL	80.2	95% CLT UCL
95% Bootstrap-t UCL	79.97	95% Standard Bootstrap UCL
95% Percentile Bootstrap UCL	83.15	95% Hall's Bootstrap UCL
95% Chebyshev(Mean, Sd) UCL	91.66	90% Chebyshev(Mean, Sd) UCL
99% Chebyshev(Mean, Sd) UCL	119.1	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 80.67

When a data set follows an approximate distribution passing only one of the GOF tests, it is suggested to use a UCL based upon a distribution passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistici

CH12A

Genera	l Stat	istics
Genera	I Stat	istics

Number of Distinct Observations	1	Total Number of Observations
Number of Missing Observations		
Mean	150	Minimum
Median	150	Maximum

Warning: This data set only has 1 observations!

Data set is too small to compute reliable and meaningful statistics and estimates!

The data set for variable CH12A was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods!

If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

CH14A

General Statistics	
29	Number of Distinct Observations
	Number of Missing Observations
32	Mean
210	Median
51.83	Std. Error of Mean
0.524	Skewness
Normal GOF Test	
0.901	Shapiro Wilk GOF Test
0.898	Data appear Normal at 1% Significance Level
0.195	Lilliefors GOF Test
0.189	Data Not Normal at 1% Significance Level
	29 32 210 51.83 0.524 Normal GOF Test 0.901 0.898 0.195

Data appear Approximate Normal at 1% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)
95% Student's-t UCL 115.3	95% Adjusted-CLT UCL (Chen-1995)
	95% Modified-t LICL (Johnson-1978)

Gamma GOF Test

	A-D Test Statistic	0.611	Anderson-Darling Gamma GOF Test
5%	6 A-D Critical Value	0.75	Detected data appear Gamma Distributed at 5% Significan
	K-S Test Statistic	0.157	Kolmogorov-Smirnov Gamma GOF Test
5%	6 K-S Critical Value	0.163	Detected data appear Gamma Distributed at 5% Significan

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k star (bias corrected MLE)	3.943	k hat (MLE)
Theta star (bias corrected MLE)	25.1	Theta hat (MLE)
nu star (bias corrected)	228.7	nu hat (MLE)
MLE Sd (bias corrected)	98.97	MLE Mean (bias corrected)
Approximate Chi Square Value (0.05)		
Adjusted Chi Square Value	0.0407	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL 117.3 95% Adjusted Gamma UCL

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.955	Shapiro Wilk Lognormal GOF Test
10% Shapiro Wilk Critical Value	0.937	Data appear Lognormal at 10% Significance Level
Lilliefors Test Statistic	0.131	Lilliefors Lognormal GOF Test
10% Lilliefors Critical Value	0.148	Data appear Lognormal at 10% Significance Level

Lognormal Statistics

Minimum of Logged Data	3.466	Mean of logged Data
Maximum of Logged Data	5.347	SD of logged Data

Assuming Lognormal Distribution

95% H-UCL	121.2	90% Chebyshev (MVUE) UCL
95% Chebyshev (MVUE) UCL	143.4	97.5% Chebyshev (MVUE) UCL
99% Chebyshev (MVUE) UCL	200.2	

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution

Nonparametric Distribution Free UCLs

95% BCA Bootstrap UCL	114.8	95% CLT UCL
95% Bootstrap-t UCL	114.8	95% Standard Bootstrap UCL
95% Percentile Bootstrap UCL	116.1	95% Hall's Bootstrap UCL
95% Chebyshev(Mean, Sd) UCL	127.8	90% Chebyshev(Mean, Sd) UCL
99% Chebyshev(Mean, Sd) UCL	159.1	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 115.3

When a data set follows an approximate distribution passing only one of the GOF tests, it is suggested to use a UCL based upon a distribution passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistici

Lilliefors Lognormal GOF Test

Data appear Lognormal at 10% Significance Level

CH18

	General	Statistics
Total Number of Observations	30	Number of Distinct Observations
		Number of Missing Observations
Minimum	59	Mean
Maximum	100	Median
SD	9.966	Std. Error of Mean
Coefficient of Variation	0.124	Skewness
	Normal (GOF Test
Shapiro Wilk Test Statistic	0.976	Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value	0.9	Data appear Normal at 1% Significance Level
Lilliefors Test Statistic	0.0937	Lilliefors GOF Test
1% Lilliefors Critical Value	0.185	Data appear Normal at 1% Significance Level
Data appea	r Normal at	t 1% Significance Level
Ass	suming Nori	mal Distribution
95% Normal UCL	_	95% UCLs (Adjusted for Skewness)
95% Student's-t UCL	83.26	95% Adjusted-CLT UCL (Chen-1995)
		95% Modified-t UCL (Johnson-1978)
	Gamma	GOF Test
A-D Test Statistic	0.282	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.744	Detected data appear Gamma Distributed at 5% Significan
K-S Test Statistic	0.102	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.16	Detected data appear Gamma Distributed at 5% Significan
Detected data appear	Gamma Di	stributed at 5% Significance Level
		· ·
	Gamma	Statistics
k hat (MLE)	66.28	k star (bias corrected MLE)
Theta hat (MLE)	1.21	Theta star (bias corrected MLE)
nu hat (MLE)	3977	nu star (bias corrected)
MLE Mean (bias corrected)	80.17	MLE Sd (bias corrected)
		Approximate Chi Square Value (0.05)
Adjusted Level of Significance	0.041	Adjusted Chi Square Value
Ass	uming Gam	nma Distribution
95% Approximate Gamma UCL	83.38	95% Adjusted Gamma UCL
	Lognorma	I GOF Test
Shapiro Wilk Test Statistic	0.974	Shapiro Wilk Lognormal GOF Test

GeoPro LLC APPENDIX B6

0.939

0.111

0.146

10% Shapiro Wilk Critical Value

Lilliefors Test Statistic

10% Lilliefors Critical Value

Lognormal Statistics

Minimum of Logged Data	4.078	Mean of logged Data
Maximum of Logged Data	4.605	SD of logged Data

Assuming Lognormal Distribution

95% H-UCL	83.48	90% Chebyshev (MVUE) UCL
95% Chebyshev (MVUE) UCL	88.21	97.5% Chebyshev (MVUE) UCL
99% Chebyshev (MVUE) UCL	98.53	

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution

Nonparametric Distribution Free UCLs

95% BCA Bootstrap UCL	83.16	95% CLT UCL
95% Bootstrap-t UCL	83.09	95% Standard Bootstrap UCL
95% Percentile Bootstrap UCL	83.12	95% Hall's Bootstrap UCL
95% Chebyshev(Mean, Sd) UCL	85.63	90% Chebyshev(Mean, Sd) UCL
99% Chebyshev(Mean, Sd) UCL	91.53	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 83.26

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistici

CY3B

Genera	I Statistics

Total Number of Observations	31	Number of Distinct Observations
Number of Detects	2	Number of Non-Detects
Number of Distinct Detects	2	Number of Distinct Non-Detects
Minimum Detect	0.006	Minimum Non-Detect
Maximum Detect	0.01	Maximum Non-Detect
Variance Detects 8	3.0000E-6	Percent Non-Detects
Mean Detects	0.008	SD Detects
Median Detects	0.008	CV Detects
Skewness Detects	N/A	Kurtosis Detects
Mean of Logged Detects	-4.861	SD of Logged Detects

Warning: Data set has only 2 Detected Values.

This is not enough to compute meaningful or reliable statistics and estimates.

Normal GOF Test on Detects Only

Not Enough Data to Perform GOF Test

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Standard Error of Mean	0.00288	KM Mean
95% KM (BCA) UCL	0.00147	90KM SD
95% KM (Percentile Bootstrap) UCL	0.00352	95% KM (t) UCL
95% KM Bootstrap t UCL	0.0035	95% KM (z) UCL
95% KM Chebyshev UCL	0.00402	90% KM Chebyshev UCL
99% KM Chebyshev UCL	0.00525	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

Not Enough Data to Perform GOF Test

Gamma Statistics on Detected Data Only

k star (bias corrected MLE)	15.66	k hat (MLE)
Theta star (bias corrected MLE)	5.1087E-4	Theta hat (MLE)
nu star (bias corrected)	62.64	nu hat (MLE)
	800.0	Mean (detects)

Estimates of Gamma Parameters using KM Estimates

Mean (KM) 0.00288 SD (KM) Variance (KM) 2.1463E-6 SE of Mean (KM) k hat (KM) 3.858 k star (KM) nu hat (KM) 239.2 nu star (KM) theta hat (KM) 7.4590E-4 theta star (KM) 80% gamma percentile (KM) 0.00403 90% gamma percentile (KM)	_		
k hat (KM) 3.858 k star (KM) nu hat (KM) 239.2 nu star (KM) theta hat (KM) 7.4590E-4 theta star (KM)	SD (KM)	0.00288	Mean (KM)
nu hat (KM) 239.2 nu star (KM) theta hat (KM) 7.4590E-4 theta star (KM)	SE of Mean (KM)	2.1463E-6	Variance (KM)
theta hat (KM) 7.4590E-4 theta star (KM)	k star (KM)	3.858	k hat (KM)
	nu star (KM)	239.2	nu hat (KM)
80% gamma percentile (KM) 0.00403 90% gamma percentile (KM)	theta star (KM)	7.4590E-4	theta hat (KM)
	90% gamma percentile (KM)	0.00403	80% gamma percentile (KM)

Approximate Chi Square Value (217.36, α) 184.2

95% KM Approximate Gamma UCL

95% gamma percentile (KM) 0.00578 99% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Adjusted Level of Significance (β)
Adjusted Chi Square Value (217.36, β)
95% KM Adjusted Gamma UCL

Lognormal GOF Test on Detected Observations Only

0.00339

Not Enough Data to Perform GOF Test

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Log Scale	0.00179	Mean in Original Scale
SD in Log Scale	0.00197	SD in Original Scale
95% Percentile Bootstrap UCL	0.00239	95% t UCL (assumes normality of ROS data)
95% Bootstrap t UCL	0.00251	95% BCA Bootstrap UCL
	0.00257	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-5.913	KM Geo Mean
KM SD (logged)	0.292	95% Critical H Value (KM-Log)
KM Standard Error of Mean (logged)	0.0767	95% H-UCL (KM -Log)
KM SD (logged)	0.292	95% Critical H Value (KM-Log)
KM Standard Error of Mean (logged)	0.0767	

Note: KM UCLs may be biased low with this dataset. Other substitution method recommended

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed
Mean in Original Scale	0.00318	Mean in Log Scale
SD in Original Scale	0.00172	SD in Log Scale
95% t UCL (Assumes normality)	0.0037	95% H-Stat UCL

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution

Suggested UCL to Use

95% KM (t) UCL 0.00352

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistici

Former Columbia Gorge Aluminum Smelter

CY8A

General Statistics

r of Observations 31 Number of Distinct	Observations
umber of Detects 0 Number of	f Non-Detects
f Distinct Detects 0 Number of Distinct	t Non-Detects

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs!

Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit!

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV)

The data set for variable CY8A was not processed!

SD of Logged Detects

CY10A

Total Number of Observations	30	Number of Distinct Observations
		Number of Missing Observations
Number of Detects	22	Number of Non-Detects
Number of Distinct Detects	12	Number of Distinct Non-Detects
Minimum Detect	0.005	Minimum Non-Detect

Number of Distinct D Minimum Maximum Detect 0.08 Maximum Non-Detect Percent Non-Detects Variance Detects 3.2371E-4 Mean Detects 0.0312 SD Detects **CV Detects** Median Detects 0.03 Skewness Detects 0.508 Kurtosis Detects

Normal GOF Test on Detects Only

-3.702

Mean of Logged Detects

General Statistics

Shapiro Wilk Test Statistic	0.906	Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value	0.878	Detected Data appear Normal at 1% Significance Lev
Lilliefors Test Statistic	0.156	Lilliefors GOF Test
1% Lilliefors Critical Value	0.214	Detected Data appear Normal at 1% Significance Lev

Detected Data appear Normal at 1% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.0236	KM Standard Error of Mean
90KM SD	0.0196	95% KM (BCA) UCL
95% KM (t) UCL	0.0299	95% KM (Percentile Bootstrap) UCL
95% KM (z) UCL	0.0297	95% KM Bootstrap t UCL
90% KM Chebyshev UCL	0.0346	95% KM Chebyshev UCL
97.5% KM Chebyshev UCL	0.0466	99% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	1.441	Anderson-Darling GOF Test
5% A-D Critical Value	0.754	Detected Data Not Gamma Distributed at 5% Significance
K-S Test Statistic	0.252	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.188	Detected Data Not Gamma Distributed at 5% Significance

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k star (bias corrected MLE)	2.275	k hat (MLE)
Theta star (bias corrected MLE)	0.0137	Theta hat (MLE)
nu star (bias corrected)	100.1	nu hat (MLE)
	0.0312	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Mean	0.005	Minimum
Median	0.08	Maximum
CV	0.018	SD
k star (bias corrected MLE)	1.959	k hat (MLE)
Theta star (bias corrected MLE)	0.0131	Theta hat (MLE)
nu star (bias corrected)	117.5	nu hat (MLE)
	0.041	Adjusted Level of Significance (β)
Adjusted Chi Square Value (107.12, β)	84.23	Approximate Chi Square Value (107.12, α)
95% Gamma Adjusted UCL	0.0325	95% Gamma Approximate UCL

Estimates of Gamma Parameters using KM Estimates

SD (KM)	0.0236	Mean (KM)
SE of Mean (KM)	3.8592E - 4	Variance (KM)
k star (KM)	1.446	k hat (KM)
nu star (KM)	86.75	nu hat (KM)
theta star (KM)	0.0163	theta hat (KM)
90% gamma percentile (KM)	0.037	80% gamma percentile (KM)
99% gamma percentile (KM)	0.0642	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (79.40, α)	59.87	Adjusted Chi Square Value (79.40, β)
95% KM Approximate Gamma UCL	0.0313	95% KM Adjusted Gamma UCL

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk GOF Test	0.819	Shapiro Wilk Test Statistic
Detected Data Not Lognormal at 10% Significance Le	0.926	10% Shapiro Wilk Critical Value
Lilliefors GOF Test	0.29	Lilliefors Test Statistic
Detected Data Not Lognormal at 10% Significance Le	0.169	10% Lilliefors Critical Value

Detected Data Not Lognormal at 10% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.0243	Mean in Log Scale
SD in Original Scale	0.0193	SD in Log Scale
95% t UCL (assumes normality of ROS data)	0.0303	95% Percentile Bootstrap UCL
95% BCA Bootstrap UCL	0.0305	95% Bootstrap t UCL
95% H-UCL (Log ROS)	0.043	

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-4.3	KM Geo Mean
KM SD (logged)	1.202	95% Critical H Value (KM-Log)
KM Standard Error of Mean (logged)	0.225	95% H-UCL (KM -Log)

2023 Annual Groundwater Monitoring Report West Surface Impoundment

Former Columbia Gorge Aluminum Smelter

KM SD (logged) 1.202 95% Critical H Value (KM-Log)

KM Standard Error of Mean (logged) 0.225

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

Mean in Original Scale0.0236Mean in Log ScaleSD in Original Scale0.02SD in Log Scale95% t UCL (Assumes normality)0.029895% H-Stat UCL

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 1% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.0299

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistici

CY12A

	General Statistics	
Total Number of Observations	1	Number of Distinct Observations
		Number of Missing Observations
Number of Detects	0	Number of Non-Detects
Number of Distinct Detects	0	Number of Distinct Non-Detects

Warning: This data set only has 1 observations!

Data set is too small to compute reliable and meaningful statistics and estimates!

The data set for variable CY12A was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods!

If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

CY14A

	General Statistics	
Total Number of Observations	30	Number of Distinct Observations
		Number of Missing Observations
Number of Detects	26	Number of Non-Detects
Number of Distinct Detects	20	Number of Distinct Non-Detects
Minimum Detect	0.005	Minimum Non-Detect
Maximum Detect	0.35	Maximum Non-Detect
Variance Detects	0.00933	Percent Non-Detects
Mean Detects	0.104	SD Detects
Median Detects	0.076	CV Detects
Skewness Detects	0.835	Kurtosis Detects
Mean of Logged Detects	-2.87	SD of Logged Detects

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.879	Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value	0.891	Detected Data Not Normal at 1% Significance Leve
Lilliefors Test Statistic	0.196	Lilliefors GOF Test
1% Lilliefors Critical Value	0.199	Detected Data appear Normal at 1% Significance Lev

Detected Data appear Approximate Normal at 1% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Standard Error of Mean	0.0911	KM Mean
95% KM (BCA) UCL	0.0944	90KM SD
95% KM (Percentile Bootstrap) UCL	0.121	95% KM (t) UCL
95% KM Bootstrap t UCL	0.12	95% KM (z) UCL
95% KM Chebyshev UCL	0.144	90% KM Chebyshev UCL
99% KM Chebyshev UCL	0.201	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.696	Anderson-Darling GOF Test
5% A-D Critical Value	0.776	Detected data appear Gamma Distributed at 5% Significan
K-S Test Statistic	0.147	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.177	Detected data appear Gamma Distributed at 5% Significan

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k star (bias corrected MLE)	0.951	k hat (MLE)
Theta star (bias corrected MLE)	0.11	Theta hat (MLE)
nu star (bias corrected)	49.45	nu hat (MLE)
	0.104	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Mean	0.005	Minimum
Median	0.35	Maximum
CV	0.0954	SD
k star (bias corrected MLE)	0.828	k hat (MLE)
Theta star (bias corrected MLE)	0.111	Theta hat (MLE)
nu star (bias corrected)	49.68	nu hat (MLE)
	0.041	Adjusted Level of Significance (β)
Adjusted Chi Square Value (46.05, β)	31.48	Approximate Chi Square Value (46.05, α)
95% Gamma Adjusted UCL	0.134	95% Gamma Approximate UCL

Estimates of Gamma Parameters using KM Estimates

SD (KM)	0.0911	Mean (KM)
SE of Mean (KM)	0.00891	Variance (KM)
k star (KM)	0.932	k hat (KM)
nu star (KM)	55.9	nu hat (KM)
theta star (KM)	0.0978	theta hat (KM)
90% gamma percentile (KM)	0.148	80% gamma percentile (KM)
99% gamma percentile (KM)	0.288	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (51.64, α)	36.14	Adjusted Chi Square Value (51.64, β)
95% KM Approximate Gamma UCL	0.13	95% KM Adjusted Gamma UCL

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk GOF Test	0.92	Shapiro Wilk Test Statistic
Detected Data Not Lognormal at 10% Significance Le	0.933	10% Shapiro Wilk Critical Value
Lilliefors GOF Test	0.183	Lilliefors Test Statistic
Detected Data Not Lognormal at 10% Significance Le	0.156	10% Lilliefors Critical Value

Detected Data Not Lognormal at 10% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Log Scale	0.0909	Mean in Original Scale
SD in Log Scale	0.0962	SD in Original Scale
95% Percentile Bootstrap UCL	0.121	95% t UCL (assumes normality of ROS data)
95% Bootstrap t UCL	0.125	95% BCA Bootstrap UCL
	0.333	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-3.194	KM Geo Mean
KM SD (logged)	1.431	95% Critical H Value (KM-Log)
KM Standard Error of Mean (logged)	0.266	95% H-UCL (KM -Log)

Former Columbia Gorge Aluminum Smelter

KM SD (logged) 1.431 95% Critical H Value (KM-Log)

KM Standard Error of Mean (logged) 0.266

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

Mean in Original Scale0.0908Mean in Log ScaleSD in Original Scale0.0963SD in Log Scale95% t UCL (Assumes normality)0.12195% H-Stat UCL

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Normal Distributed at 1% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.121

When a data set follows an approximate distribution passing only one of the GOF tests, it is suggested to use a UCL based upon a distribution passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistici

CY18

General Statistics

Total Number of Observations	31	Number of Distinct Observations
Number of Detects	1	Number of Non-Detects
Number of Distinct Detects	1	Number of Distinct Non-Detects

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., El

The data set for variable CY18 was not processed!

Former Columbia Gorge Aluminum Smelter

1

2135

2200

69.69

-0.324

2245

2252

ce Level

ce Level

27.35

78.05

1641

408.2

1548

1543

2271

Former Columbia Gorge Aluminum Smelter

7.649

0.189

2358

2598

2242

2257

2243

2438

2828

...

an.

1

1

1

0.5

0.5

3.333%

1.019

0.109

7.651

0.129

;l

·!

0.347

9.522

9.529

9.486

10.55

12.49

e Level

e Level

63.1

0.148

3660

9.5

0.115

58.64

0.158

3518

3374

9.666

1.867 0.347

21.13

1268

0.428

11.63

14.23

1182

9.699

vel

vel

2.218

0.134

9.569

9.538

8.408

1.984

11.85

2.106

0.672

13.39

..

an.

Former Columbia Gorge Aluminum Smelter

25

2

2242

1650

319.4

1.121

2838

2796

'el

ce Level

1.853

1210

107.5

1647

84.55

83.34

2891

0.732

3208

4273

2833

2888

2777

3634

5419

..

an.

8

1800

1800

2

3436

3300

367.6

0.659

4089

4069

ce Level

ce Level

2.753

1248

159.7

2071

131.5

129.9

4222

Former Columbia Gorge Aluminum Smelter

7.969

0.618

4742

6118

4147

4131

4068

5038

7094

an.

1

1450

1500

31.01

-0.231

1500

1503

'el

′el

65.99

21.98

3959

178.5

3814

3806

1509

0.12

1546

1649

1503

1502

1501

1585

1759

an.

1

8

3

0.5

25

26.67%

1.277

1.492

1.841

1.22

;l

·!

0.228

1.157

1.141

1.304

1.724

2.999

e Level

e Level

0.651

1.314

28.66

0.175

1.619

0.571

1.22

34.28

21.32

1.121

1.157

0.228

0.38

22.79

1.921

2.079

5.63

12.5

1.33

vel

vel

-1.111

1.099 1.038

.....

1.256

0.319

Former Columbia Gorge Aluminum Smelter

2.641

1.047

2.641

-0.814

1.323

2.171

GeoPro LLC APPENDIX B6

..

an.

1

8

2

0.5

5

26.67%

0.592

1.68

15.18

0.881

;l

·!

0.0975

0.474

0.482

0.788

0.732

1.277

e Level

e Level

0.936

0.376

41.18

0.16

1.659

0.848

0.368

50.88

34.75

0.457

0.511

0.0975

0.347

20.84

0.885

0.888

2.492

11.07

0.578

vel

vel

-1.638

0.799

0.484

0.749

0.19

2.227

0.359

-1.459

0.878

0.5

GeoPro LLC APPENDIX B6

--

an.

2

4

3

0.5

25

13.79%

1.024

0.388

-1.048

0.422

vel

vel

0.213

2.921

2.914

2.933

3.484

4.677

ce Level

ce Level

5.663

0.465

283.2

2.3

0.4

5.151

0.495

298.8

257.6

2.96

1.066

0.213

5.169

299.8

0.494

4.057

5.861

258.5

2.962

_evel

_evel

0.85

0.439

2.857

2.896

2.289

1.952

3.139

0.869

0.658

3.838

..

an.

8

6.3

6.3

2

2

1

25

25

6.897%

10.21

0.617

-1.479

0.846

vel

vel

1.92

19.32

19.37

19.53

24.61

35.35

e Level

ce Level

1.776

9.317

95.91

17

0.613

1.875

8.646

108.7

84.45

20.87

9.932

1.92

2.42

140.4

6.71

30.22

49.67

112.6

20.25

vel

vel

2.51

0.823

19.15

19.43

12.32

2.266

24.81

2.531

0.816

24.79

..

an.

1

8

3

0.2

25

26.67%

0.905

1.225

0.023

1.24

ŀ

·!

0.159

0.893

0.89

0.946

1.307

2.196

e Level

e Level

0.718

1.029

31.6

0.15

1.347

0.638

0.946

38.29

24.5

0.944

0.82

0.159

0.528

31.66

1.165

1.644

3.961

19.26

1.01

vel

vel

-1.199

1.128

0.841

0.939

0.29

Former Columbia Gorge Aluminum Smelter

2.67

0.991

2.67

-0.908

1.431

2.535

an.

Former Columbia Gorge Aluminum Smelter

19

1

104.5

99.5

2.707

0.645

109.3

109.2

ce Level

'el

48.09

2.174

2885

15.07

2762

2755

109.5

Former Columbia Gorge Aluminum Smelter

4.64

0.138

112.5

121.1

109.7

109.7

109.2

116.3

131.5

..

an.

Former Columbia Gorge Aluminum Smelter

20

1

4.393

4.3

0.133

0.806

4.632

4.622

ce Level

ce Level

35.37

0.124

2122

0.739

2016

2010

4.638

0.162

4.784

5.208

4.629

4.644

4.61

4.971

5.713

..

an.

2023 Annual Groundwater Monitoring Report West Surface Impoundment

Former Columbia Gorge Aluminum Smelter

25

2

66.28

48

8.462

1.63

82.93

81.1

'el

ce Level

2.588

25.6

150.1

41.19

122.8

121.3

82

2023 Annual Groundwater Monitoring Report West Surface Impoundment

Former Columbia Gorge Aluminum Smelter

4.009

0.596

88.36

113.3

83.28

85.04

80.66

103.2

150.5

an.

8

150

150

2023 Annual Groundwater Monitoring Report West Surface Impoundment

Former Columbia Gorge Aluminum Smelter

25

2

98.97

75

9.625

0.73

116.2

115.6

ce Level

ce Level

3.558

27.82

206.3

52.47

174.1

172.3

118.5

2023 Annual Groundwater Monitoring Report West Surface Impoundment

Former Columbia Gorge Aluminum Smelter

4.463

0.527

129.6

162.6

117.7

117.4

115.6

140.9

194.7

...

an.

1

80.17

80

1.819

0.0853

83.19

83.26

ce Level

ce Level

59.67

1.343

3580

10.38

3442

3435

83.57

2023 Annual Groundwater Monitoring Report West Surface Impoundment

Former Columbia Gorge Aluminum Smelter

4.377

0.126

85.71

91.69

83.17

83.17

83.07

88.1

98.27

an.

29

3

0.0025

0.01

93.55%

0.00283

0.354

N/A

0.361

3.7992E-4

N/A

N/A

N/A

0.00453

0.00666

N/A

N/A

N/A

0.00147

3.7992E-4

3.506

217.4

8.2075E-4

0.00494

0.00759

0.0413

182.5

0.00343

-6.726

0.885

0.00239

0.00284

0.0027

1.789

0.00311

1.789

-5.851

0.426

0.00364

..

an.

31

4

).

1

8

3

0.0025

0.01

26.67%

0.018

0.576

1.288

0.803

vel

vel

0.00367

0.0304

0.03

0.0297

0.0396

0.0602

e Level

e Level

1.995

0.0157

87.78

0.0256

0.029

0.706

1.785

0.0143

107.1

83.06

0.033

0.0196

0.00367

1.323

79.4

0.0178

0.0508

0.0948

58.9

0.0318

vel

vel

-4.136

1.017

0.0301

0.0309

0.0136

2.742

0.0516

2.742

-4.313

1.249

0.0561

..

an.

8

1

1

1

4

1

0.005

0.005

13.33%

0.0966

0.925

-0.0818

1.28

;l

vel

0.0176

0.118

0.121

0.126

0.168

0.266

ce Level

ce Level

0.867

0.12

45.07

0.0918

0.0405

1.039

0.767

0.12

46.05

30.78

0.137

0.0944

0.0176

0.861

51.64

0.106

0.218

0.453

35.39

0.133

vel

vel

-3.255

1.559

0.122

0.126

0.041

3.063

0.257

3.063

-3.287

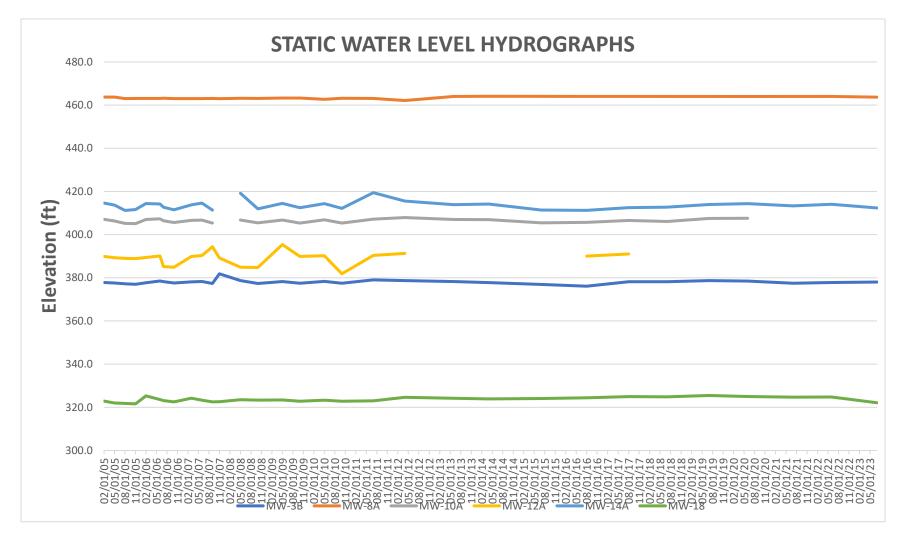
1.605

0.365

an.

30

3


PC, BTV).

Appendix B7 Calculator Input Table

	8	D_S3B	S8A	V10A	S10A	S12A	D_S12A	S14A	S14A	8	\$18	В	F3B	⋖	D_F8A	F10A	D_F10A	2A	_F12A	4A	F14A		F18	СН3В	.CH3B	СН8А	CH8A	CH10A D CH10A	- CH12A	CH12A	CH14A	CH14A	CH18	CH18	CY3B	CY3B	CY8A	D_CY8A	CY10A	CY10A	12A	CY12A	14A	CY14A	CY18 D_CY18
Date 2/45/2005					ا ا	\$1.	ا ا		٥	S 518	٥	F3B	۵	F8A		11 11		F1:	ο'	F1	۵	, F18	۵	ㅎ .	ا <u>ٰہ</u>	ರ	ام	<u>ე</u> ი	' 등	٥		٥	ਹ	۵		٥		٥		٥		۵	، ن	ച'	
2/16/2005	2300	_	10	1 94	_	-	-	4000	_	1500	1	0.6	1	0.9	1	1.8	1		_	9.6	1	0.6	_	130	1	5.6	1	29 1			110	1	86	1	0.005	0	0.005	0	0.04	_		<u> </u>	0.55	_	0.005 0
	2500	_	9.8	1 91	-	-	-	3500	_	1300	1	0.4	1	0.3	1	1.5	1			8.6	1	0.4	-	140	1	4.6	1	31 1			90	1	91	1	0.005	0	0.005	0	0.05	_		<u> </u>	0.24		0.005 0
	2700	_	3.9	1 67	_			3600		1500	1	0.6	1	0.4	1	1.2	1			30	1	0.4	_	120	1	4.2	1	28 1	L		71	1	75	1	0.005	0	0.005	0	0.04	_			0.27	_	0.005 0
11/1/2005			9.6	1 67	_			2800		1300	1	0.9	1	0.9	_	2.7	1			25	1	1.8	_	130	1	4.7	1	28 1	L		75	1	84	1	0.005	0	0.005	0	0.03	_	1		0.19	_	0.005 0
2/27/2006		_	27	1 157		<u> </u>		2170	-	1520	1	0.7	1	2.8	_	2.3	1			31	1	0.9	-	118	1	4.2	1	43 1	L L		53	1	83	1	0.005	0	0.005	0	0.03	-	1		0.19	_	0.005 0
6/5/2006		_	9.8	1 165				2380		1490	_	0.2	1	0.2	_	3.2	1			27	1	0.2		113	1	4.9	1	48 1	L		63	1	91	1	0.005	0	0.025		0.03	_	1		0.2	_	0.005 0
7/31/2006			9.8	1 86	_			3300		1500		3.7	1	0.1	1	2.3	1			30	1	2.6	_	110	1	4.6	_	35 1	L _L		98	1	89	1	0.005	0	0.005	0	0.08	_	1		0.17	_	0.005 0
10/9/2006		_	9.7	1 85				3900	1	1600		3.8	1	0.1	1	1.9	1			24	1	2.4	_	110	1	4.5	1	30 1	L		130	1	80	1	0.005	0	0.005	0	0.03	-	1		0.01		0.005 0
3/13/2007		_	10	1 110	_	1800) 1	4400	1	1600	1	3.8	1	0.05	1	3.4	1	6.3	1	16	1	2.6	1	110	1	6.6	1	45 1	150	1	140	1	93	1	0.005	0	0.005	0	0.04	_	1 0.005	0	0.12	_	0.005 0
	2500	1 (0.5	0 110	_			7900	1	1700	1	5	0	5	0	5	0			19	1	0.5	0	97	1	4.89	_	36 1	L		170	1	77	1	0.005	0	0.005	0	0.005	_	1		0.005	_	0.005 0
9/24/2007	2200	1	10	1 76	0 1			6400	1	1400	1	0.5	0	0.5	0	1.2	1			25	0	25	0	124.79	1	4.2	1	30 1	L		200	1	100	1	0.005	0	0.005	0	0.04	: ا	1		0.03	1 (0.005 0
11/14/2007																																			0.005	0	0.005	0	0.043	3 :	1		0.005	1	0.005 0
5/8/2008	2200	1	10	1 270	0 1			5500	1	1300	1	25	0	0.5	0	25	0			25	0	25	0	100	1	4	1	100 1	L		100	1	70	1	0.005	0	0.005	0	0.05	; :	1		0.19	1 (0.005 0
10/14/2008	2600	1	10	1 86	0 1			6500	1	1600	1	5	0	0.1	1	5	0			20	1	0.5	0	100	1	4.5	1	30 1	L		180	1	80	1	0.005	0	0.005	0	0.04	:	1		0.12	1	0.005 0
5/29/2009	2200	1	9	1 200	0 1			7000	1	1500	1	0.5	0	0.5	0	2	1			30	1	1	1	96	1	3	1	68 1	L		210	1	81	1	0.01	0	0.01	0	0.03	3	1		0.14	1 (0.005 0
10/27/2009	2606	1	10	1 76	0 1			5900	1	1200	1	0.5	0	0.5	0	0.5	0			24	1	0.5	0	110	1	5.5	1	79 1	L		160	1	70	1	0.01	0	0.01	0	0.03)		0.044	1 (0.005 0
5/26/2010	2300	1 9	9.3	1 220	0 1			5200	1	1500	1	2.3	1	0.5	0	4.4	1			32	1	2	1	120	1	4.4	1	83 1	L		170	1	100	1	0.01	0	0.01	0	0.032	: :	1		0.14	1	0.01 0
10/6/2010	2400	1 8	3.9	1 71	0 1			4000	1	1600	1	0.5	0	0.5	0	1	1			18	1	0.5	0	110	1	3.6	1	23 1	L		120	1	84	1	0.01	0	0.01	0	0.022	2	1		0.086	1	0.01 0
7/26/2011	2000	1	7.8	1 180	0 1			3900	1	1600	1	0.5	0	0.5	0	3.3	1			23	1	0.5	0	98	1	3.6	1	62 1	L		130	1	89	1	0.01	0	0.01	0	0.028	3 :	1		0.066	1	0.01 0
4/19/2012	2200	1	10	1 580	0 1					1700	1	0.16	1	0.18	1	1.9	1					0.2	1	90	1	3.8	1	180 1	L				79	1	0.0025	0	0.0025	0	0.007	' :	1			0.	.0025 0
6/20/2013	1900	1 9	9.4	1 470	0 1			2300	1	1500	1	0.16	1	0.16	1	3.1	1			17	1	0.13	1	91	1	4.8	1	99 1	L		66	1	84	1	0.006	1	0.0025	0	0.008	3	1		0.028	1 0.	.0025 0
	2000	1 9	9.5	1 610				2100		1700	1	0.18	1	0.19	1	2	1			18	1	0.12	1	91	1	4.9	_	190 1	L		61	1	79	1	0.0025	_	0.0025	0	0.0025	, ()		0.037	_	.0025 0
	1900	_	9.5	1 190				1100	1	1300	_	0.14	1	0.16	1	2	1			6.8	1	0.11	1	80	1	4.2	1	58 1	ı l		47	1	86	1	0.005	0	0.005	0	0.005)		0.008	_	0.005 0
	1900	_	9.3	1 350				1400	1	1700		0.12	1	0.13	1	2.1	1	1	_	3.5	_	0.12	_	98	1	4.1	1	82 1	1		61	1	79	1	0.005	0	0.005	0	0.005	_)		0.019	_	0.005 0
-, ,	1700	_	9.6	1 290				1700		1300		0.15		0.15	1	3.2	1	7		2.5	_	0.11	_	95	1	4.1	1	170 1			68	1	59	1	0.01	1	0.005	n	0.005	_	2	 	0.017	_	0.086 1
7/26/2018	1800		9.5	1 480	_	-		1800	_	1400	_	0.16	_	0.15	1	4.1	1	-		3.6		0.11		95	1	3.2	_	71 1	1		66	1	69	1	0.005	0	0.005	0	0.005	_	2		0.005	_	0.005 0
	1500	_	5.4	1 400				1700	1	1200	_	0.15	_	0.14	1	3.7	1	7	_	2.8	_	0.12	_	93	1	4.1	1	82 1			64	1	68	1	0.005	0	0.005	n	0.006	_	1	 	0.018	_	0.005 0
6/30/2020			11	1 570	_			2000	1	1400		0.14	_	0.16	1	4.4	1	-	-	7		0.12	-	88	1	3.9	1	77 1	1		49	1	67	1	0.005	0	0.005	0	0.000	-	1	1	0.018	_	0.005 0
8/16/2021		1	9	1	1			1100	_	1200	_	0.17	_	0.15	1	7.4	-			7.6	_	0.11	_	93	1	4.4	1		+		36	1	71	1	0.005	0	0.005	0) 0.000	+	1	1	0.005	_	0.005 0
7/15/2022		1 (1 210	n 1			990	_	1300	_	0.17	_	0.18	1	3.2	1	-	_	7.9		0.15	_	99	1	3.7	1	47 1	1		32	1	72	1	0.005	0	0.005	0	0.005	+	1	1	0.003	_	0.005 0
7/27/2023	1400		7.4	1 140	_			1100	_	1100		0.17	_	0.15	1	ر ۸	1	+	_	2.9		0.15	+	86	1	5.7	1	38 1	1		50	1	69	1	0.005	0	0.005	0	0.005	_	1	1	0.005		0.005 0
//2//2023	1400	1	.4	1 140	UĮ I	<u> </u>	1	1100	Ţ	1100	1	0.13	т	0.13	Т	4				2.5	Т	0.15	ш	00	1	Э	Т	30	Ц		ЭU	1	09		0.003	U	0.005	1 0	0.003	' '	٧	1	0.005	U I	0.005

Appendix C – Groundwater Levels

Appendix C1 Monitoring Wells Hydrographs

Appendix C2 Static Water Levels

GROUNDWATER STATIC WATER LEVEL ELEVATIONS

				We	ell ID		
		MW-3B	MW-8A	MW-10A	MW-12A	MW-14A	MW-18
Elevation (ft.)	Ground	408	490	425	439	429	346
Ele ₁	PVC	410.97	492.97	427.95	441.38	431.65	348.40
	09/08/04	378.1	463.7	406.6	390.2	413.2	NA ^a
	02/16/05	377.8	463.7	407.1	389.9	414.6	322.9
	05/11/05	377.6	463.7	406.3	389.3	413.7	322.0
	08/29/05	377.2	463.0	405.2	389.0	411.2	321.8
	11/01/05	377.0	463.1	405.1	388.9	411.6	321.6
	02/27/06	377.7	463.1	407.0	389.4	414.4	325.3
	06/05/06	378.5	463.1	407.3	390.1	414.2	323.6
	07/31/06	378.2	463.2	406.4	385.2	412.7	323.1
	10/09/06	377.6	463.0	405.6	384.9	411.5	322.5
t.)	03/13/07	378.1	463.0	406.6	389.9	413.8	324.2
C (f	06/22/07	378.3	463.0	406.7	390.3	414.6	323.3
δ.	09/24/07	377.4	463.1	405.4	394.4	411.4	322.5
Water Level Elevation from PVC (ft.)	11/14/07	381.9	463.0	NA ^b	389.2	NA ^b	322.6
on f	05/08/08	378.7	463.2	406.8	384.9	419.2	323.5
/atic	10/14/08	377.4	463.1	405.5	384.8	412.0	323.3
Ele	05/28/09	378.3	463.3	406.8	395.4	414.5	323.4
vel	10/27/09	377.5	463.3	405.4	389.9	412.5	322.8
r Le	05/26/10	378.3	462.7	406.9	390.2	414.4	323.3
ate	10/06/10	377.5	463.2	405.4	381.9	412.2	322.8
≥	07/06/11	379.0	463.1	407.2	390.4	419.5	323.0
	04/17/12	378.7	462.1	407.9	391.3	415.5	324.6
	6/20/2013	378.27	464.02	407	dry	413.85	324.18
	4/25/2014	377.8	464.1	407.0	dry	414.2	323.9
	7/20/2015	376.9	464.1	405.5	dry	411.4	324.1
	8/2/2016	376.12	464.00	405.68	390.04	411.25	324.40
	8/8/2017	378.17	463.97	406.55	391.05	412.50	324.96
	7/26/2018	378.16	464.00	406.10	dry	412.72	324.85
	7/24/2019	378.68	464.05	407.5	dry	413.93	325.5
	6/20/2020	378.46	463.97	407.56	dry	414.35	324.98
	7/29/2021	377.47	463.97	dry	dry	413.32	324.70
	6/30/2022	377.79	464.02	406.56	dry	414.05	324.77
	7/20/2023	378.04	463.66	405.81	dry	412.34	322.11

Notes: ^a Well was not in operation at this time. ^b Field sheets for MW-10A and MW-14A are missing for 5/8/2008.

Appendix D – Surface Maintenance Annual Report

WSI MAINTENACE AND INSPECTION ACTIVITIES

NSPECTIONS: 2022/2023 1st Qua	arter Inspection	
QUARTERLY & YEARLY INSPECTIONS:	2022/2023 1st	Quarter Inspection
DATES and INITIALS: 11/16/2022 C	c.K.	
COVER SYSTEM:	Rodent Holes	None
	Woody Vegetation	None observed on cap
	Security Fence	Good Condition
	Signs of Erosion	
Storm Water Convey	yance System	Good Condition
	Blockage	None Observed
	Settlement Buildup	None Observed
Corrective Action Ta	aken:C	Cleared out the sagebrush at the gate
	S-	
Additional Commen	ts:	

1st quarter 11-16-22 WSI

Looking west across the WSI.

Sagebrush at the entrance to the gate near the southeast corner of the WSI.

1st quarter 11-16-22 WSI

Cleared out sagebrush at the gated entrance in the southeast corner of the WSI.

View looking east across southern portion of the WSI.

WSI MAINTENACE AND INSPECTION ACTIVITIES

INSPECTIONS: 2022/2023 2nd Qu	uarter Inspection					
QUARTERLY & YEARLY INSPECTIONS:	2022/2023 2nd	d Quarter Inspection				
DATES and INITIALS: 2/28/2023 C.	K.					
COVER SYSTEM:	Rodent Holes	None				
	Woody Vegetation	None observed on cap				
	Security Fence	Good Condition				
	Signs of Erosion					
Storm Water Conve	yance System	Good Condition				
	Blockage	None Observed				
	Settlement Buildup	None Observed				
Corrective Action Ta	aken:C	Cleared out the sagebrush at the gate				
Additional Commen		© ©				
	8					

2nd quarter 2-28-23 WSI

Looking west across the WSI.

Sagebrush at the entrance to the gate near the southeast corner of the WSI.

2nd quarter 2-28-23 WSI

Cleared out sagebrush at the gated entrance in the southeast corner of the WSI.

View looking east across southern portion of the WSI.

WSI MAINTENACE AND INSPECTION ACTIVITIES

INSPECTIONS: 2022/2023 3rd Q	uarter Inspection						
QUARTERLY & YEARLY INSPECTIONS:	2022/2023 3rd	d Quarter Inspection					
DATES and INITIALS: 5/26/2023 C	S.K.						
COVER SYSTEM:	Rodent Holes	None					
	Woody Vegetation	None observed on cap					
	Security Fence	Good Condition					
	Signs of Erosion						
Storm Water Conve	eyance System	Good Condition					
	Blockage	None Observed					
	Settlement Buildup	None Observed					
Corrective Action	Taken: C	Cleared out the sagebrush at the gate					
		Cap of WSI was also recently sprayed					
Additional Comme	nts:						

3rd quarter 5-26-23 WSI

Looking west across the WSI.

Sagebrush at the entrance to the gate near the southeast corner of the WSI.

3rd quarter 5-26-23 WSI

Cleared out sagebrush at the gated entrance in the southeast corner of the WSI.

View looking east across southern portion of the WSI.

WSI MAINTENACE AND INSPECTION ACTIVITIES

INSPECTIONS: 2022/2023 4th Qu	uarter Inspection							
QUARTERLY & YEARLY INSPECTIONS:	2022/2023 4th	Quarter Inspection						
DATES and INITIALS: 8/22/2023 C	5.K.							
COVER SYSTEM:	Rodent Holes	None						
	Woody Vegetation	None observed on cap						
	Security Fence	Good Condition						
	Signs of Erosion							
Storm Water Conve	eyance System	Good Condition						
	Blockage	None Observed						
	Settlement Buildup	None Observed						
Corrective Action	Γaken:							
	:	Fixed rodent holes along fence line						
Additional Comme	nts:							
	,							

Looking west across the WSI.

Sagebrush at the entrance to the gate near the southeast corner of the WSI.

Cleared out sagebrush at the gated entrance in the southeast corner of the WSI.

View looking east across southern portion of the WSI.