

# **REPORT ON**CUSTOM PLYWOOD GROUNDWATER MONITORING ANACORTES, WASHINGTON

by Haley & Aldrich, Inc. Seattle, Washington

for

Washington State Department of Ecology, Toxics Cleanup Program Shoreline, Washington

File No. 0209325-000 14 November 2024



HALEY & ALDRICH, INC. 3131 Elliott Avenue Suite 600 Seattle, WA 98121 206.324.9530

14 November 2024 File No. 0209325-000

Washington State Department of Ecology, Toxics Cleanup Program 300 Desmond Drive SE Lacey, Washington 98503

Attention: Josh Morman

Environmental Specialist, Toxics Cleanup Program

Subject: Custom Plywood Groundwater Monitoring

Anacortes, Washington

Dear Josh:

This groundwater monitoring report provides groundwater quality data on the upland portion of the Custom Plywood site (Site), located in the wetland mitigation area along Fidalgo Bay in Anacortes, Washington (Cleanup Site ID Number 4533, Facility Site ID Number 2685). The project location is shown on Figure 1. This report provides results of the two groundwater sampling events conducted in 2024.

## **Site Summary**

The Site is one of several Anacortes-area, bay-wide priority sites for Fidalgo and Padilla Bays being addressed by the Toxics Cleanup Program (TCP) under the Puget Sound Initiative (PSI). The Site consists of a 6.6-acre upland portion of the larger former Custom Plywood Cleanup. This property is owned by GBH Investments and includes an additional 34 acres of intertidal and subtidal areas.

Custom Plywood operated as a lumber and planning mill between 1900 until burning down some time between 1925 and 1937. Through the mid-1900s, the property changed owners several times, was ultimately rebuilt and expanded until Custom Plywood was again operating some time prior to 1991. The facility was used for sawmill and plywood manufacturing until another fire occurred November 1992 and all operations ceased. Milling activities over the course of its industrial life produced wood-related wastes and chemical contaminants that impacted the soil, sediment, and groundwater.

### PREVIOUS AND ONGOING CLEANUP ACTIONS

Past limited interim remedial actions were conducted under Washington Administrative Code 173-340-515 (Independent Remedial Actions) on the upland portion of the site beginning in 1998. To date, three interim remedial actions have been completed at the Site. Phase I of the remedial actions, completed in fall 2011, consisted of upland remediation. Phase II, completed in fall 2013, consisted of shoreline

Washington State Department of Ecology, Toxics Cleanup Program 14 November 2024 Page 2

restoration and cleanup in intertidal and limited subtidal areas. Phase III is currently underway and has consisted of subtidal sediment dredging and capping and eelgrass transplanting and monitoring.

As part of the Phase I Upland Cleanup Action, in September 2011 six groundwater monitoring wells were installed along the northern section of the buffer area and along the western Site boundary to further investigate historic exceedances in diesel- and lube oil-range total petroleum hydrocarbons (TPH), carcinogenic polycyclic aromatic hydrocarbons (cPAHs), and heavy metals associated with petroleum-related contaminants.

## **Groundwater Sampling and Results**

#### FIELD INVESTIGATION ACTIVITIES AND OBSERVATIONS

The purpose of the groundwater monitoring is to generate data of sufficient quality characterize the nature and extent of potential environmental impacts on the Site as part of compliance monitoring recommendations and the Periodic Review process described in the Final Cleanup Action Plan for Phase I Upland Remediation (September 2011).

It has been several years since any groundwater monitoring has been performed. The objective of the compliance monitoring is to evaluate current shallow groundwater quality at the Site. Prior to mobilizing for the groundwater monitoring, a sampling and analysis plan (SAP) detailing the proposed field efforts, sampling and analysis procedures, and relevant laboratory information was prepared. The SAP include a site-specific Quality Assurance Project Plan (QAPP) and Health and Safety Plan (HASP) for the sampling effort (Haley & Aldrich, 2024).

Due to long period of inactivity at the Site, the monitoring wells were redeveloped over 12 hours prior to sampling by surging. Wells were redeveloped on 31 January and 1 February 2024. Details of the groundwater levels, development water characteristics, and development purge volumes can be found in Attachment A.

There were two sampling events involving the six compliance groundwater monitoring wells (MW-1 through MW-6), approximately six months apart. The two sampling events occurred 1 and 2 February and 12 August 2024. The locations of the wells are shown on Figure 2.

After depressurizing and accurately gauging the depth to groundwater, samples were collected from the wells using standard low-flow sampling techniques. Each well was purged until the field parameters of pH, temperature, and specific conductivity met the stability criteria (i.e., specific conductivity  $\pm$  10 percent, pH  $\pm$  0.1 pH units, and temperature  $\pm$  0.1 °C). Following stabilization, groundwater samples were collected for laboratory testing by directly filling laboratory-provided sample containers. The labeled sample containers were placed in coolers with ice. Samples were delivered under chain of custody protocol to OnSite Environmental, Inc. (OnSite) in Redmond, Washington, for laboratory analysis. During purging, visual and olfactory observations were recorded in addition to quantitative stabilization measurements. For each monitoring events, no visual or olfactory observations were noted that may signify impacted water quality.



#### **GROUNDWATER SAMPLE CHEMICAL ANALYSIS AND RESULTS**

Groundwater samples were collected and analyzed from six monitoring wells (MW-1 through MW-6) in each sampling event. The groundwater samples were submitted to OnSite and analyzed for TPH-D, TPH-O, cPAHs, and total and dissolved metals (arsenic, cadmium, chromium, lead, and mercury). Groundwater sample analytical results are summarized in Table 1 and the laboratory reports and data usability summary report (DUSR) are provided in Attachment B.

Cleanup levels are derived from the lowest concentration protective of human or ecological health from Model Toxics Control Act (MTCA) Method B, state surface water quality criteria (Chapter 173-201A WAC), Clean Water Act Section 304, or the National Toxics Rule (40 CFR 131). We compared results with Ecology's Groundwater Preliminary Cleanup Level (PCUL) that's protective of marine surface water, as updated in July 2024 (Table 1). Analytical results are summarized below and on Figure 3.

- TPH-D was detected in samples from MW-2 and MW-3 at concentrations up to 330 micrograms per liter ( $\mu$ g/L) between both sampling events, below the Groundwater PCUL of 500  $\mu$ g/L. No other wells had detections of TPH-D at or above the laboratory reporting limit for either sampling event.
- TPH-O was detected in MW-1 and MW-3 in August, and MW-2 for both events at concentrations up to 350  $\mu$ g/L, below the Groundwater PCUL of 500  $\mu$ g/L. No other wells had detections of TPH-O at or above the laboratory reporting limit for either sampling event.
- TPH (the sum of TPH-D and TPH-O) was detected in MW-2 for both events at concentrations up to 680 µg/L, exceeding the Groundwater PCUL of 500 µg/L.
- cPAHs were not detected at any of the wells at or above laboratory reporting limits.
- Total and dissolved arsenic exceeded the Groundwater PCUL of 8  $\mu$ g/L in well MW-1 in both events, and in MW-2 and MW-5 in the February event. This is discussed in more detail in the section below.
- Total and dissolved mercury also exceeded the PCUL of 0.025  $\mu$ g/L in MW-1. This is discussed in more detail in the section below.
- MW-1 in the August sampling event had detections for all total and dissolved metals analyzed, and besides arsenic, were below the pertinent Groundwater PCULs for cadmium, chromium (trivalent), lead, and mercury.
- Acenaphthene was detected in MW-2 and MW-5 and below the PCUL screening criteria (30 μg/L).
- A low-level (0.35  $\mu$ g/L) of 1-methylnapthalene was detected in MW-5, however there is no applicable PCUL screening criteria.



## **Conclusions and Recommendations**

Dissolved arsenic concentrations are generally within the range of anticipated Puget Sound groundwater background levels except for samples collected from MW-1. A 2022 study by Ecology's Toxics Cleanup Program (TCP) indicates that natural background levels for arsenic ranged from <1 to 150  $\mu$ g/L across the state. In Island County, an area located near the Site with comparable tidal influences and demands on well water, the calculated arsenic background threshold value is 13.3  $\mu$ g/L (Ecology, 2022). Mercury also exceeded the PCUL in well MW-1 during August 2024 sampling event.

Diesel- and oil-range hydrocarbons were also detected at concentrations slightly above the PCUL in well MW-2. There was no evidence of petroleum hydrocarbons encountered in the samples (no sheen or odor) and concentrations of PAHs, which are often associated with petroleum products, were not detected at concentrations exceeding PCULs. Review of sample chromatograms and discussion with the laboratory indicates that the detected TPH-D and TPH-O concentrations do not appear to be associated with petroleum products and are likely due to the presence of natural organics. We recommend that groundwater samples analyzed for TPH-D extended in future sampling events should include testing with and without silica gel cleanup.

While it is unlikely that the Site poses a threat to human health and the environment, additional groundwater monitoring may be warranted to assess PCUL exceedances observed in several of the wells. We appreciate the opportunity to provide environmental consulting services on this project. Please do not hesitate to call if you have any questions or comments.

Sincerely yours,

HALEY & ALDRICH, INC.

Samantha Fisher

Senior Environmental Scientist

Andrew Kaparos, P.E.

Senior Associate Engineer

Mike Ehlebracht, L.H.G.

**Principal Geochemist** 

**Enclosures:** 

Table 1 - Summary of Groundwater Quality Data

Figure 1 - Vicinity Map

Figure 2 - Groundwater Monitoring Well Locations

Figure 3 - Chemical Analysis



Washington State Department of Ecology, Toxics Cleanup Program 14 November 2024 Page 5

> Attachment A - Completed Field Forms Attachment B - Laboratory Reports and Data Usability Summary Report



## References

- 1. San Juan, Charles. 2022. Natural Background Arsenic Concentrations in Washington State. Washington State Department of Ecology. January.
- 2. Hart Crowser, 2012. Final Construction Completion Report, Phase I, Upland Interim Remedial Action, Custom Plywood Site, Anacortes Washington. Prepared by Hart Crowser under Direction and Contract with the Washington State Department of Ecology under Agreement with GBH Investments, LLC. 22 October.
- 3. Haley & Aldrich, Inc., 2024. Sampling and Analysis Plan / Quality Assurance Project Plan, Custom Plywood Site, Anacortes, Washington. Prepared by Haley & Aldrich, Inc. for the Washington State Department of Ecology. January.



**TABLE** 

TABLE 1
SUMMARY OF GROUNDWATER QUALITY DATA
WASHINGTON STATE DEPARTMENT OF ECOLOGY
CUSTOM PLYWOOD
ANACORTES, WASHINGTON

| Location Name                                   |               | MW-1          | MW-1                   | MW-2          | MW-2                   | MW-3          | MW-3          | MW-4          | MW-4          | MW-5          | MW-5          | MW-6          | MW-6          |
|-------------------------------------------------|---------------|---------------|------------------------|---------------|------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Sample Name                                     | Groundwater   | MW-1-20240201 | MW-1-20240812          | MW-2-20240202 | MW-2-20240812          | MW-3-20240201 | MW-3-20240812 | MW-4-20240202 | MW-4-20240812 | MW-5-20240202 | MW-5-20240812 | MW-6-20240202 | MW-6-20240812 |
| Sample Name Sample Date                         | PCUL Protect  | 02/01/2024    | 08/12/2024             | 02/02/2024    | 08/12/2024             | 02/01/2024    | 08/12/2024    | 02/02/2024    | 08/12/2024    | 02/02/2024    | 08/12/2024    | 02/02/2024    | 08/12/2024    |
| Lab Sample ID                                   | Surface Water | 2402-047-01   | 2408-148-05            | 2402-047-06   | 2408-148-03            | 2402-047-02   | 2408-148-02   | 2402-047-05   | 2408-148-01   | 2402-047-03   | 2408-148-04   | 2402-047-04   | 2408-148-06   |
| ·                                               | Minimum       | 14.5 (ft)     | 2408-148-05<br>14 (ft) | 2402-047-06   | 2408-148-03<br>16 (ft) | 14.5 (ft)     | 14 (ft)       | 13.5 (ft)     | 12 (ft)       | 13 (ft)       | 12 (ft)       | 13 (ft)       | 12 (ft)       |
| Sample Depth (bgs)                              | Willilliam    | 14.5 (11)     | 14 (11)                | -             | 16 (11)                | 14.5 (11)     | 14 (11)       | 15.5 (11)     | 12 (11)       | 15 (11)       | 12 (11)       | 15 (11)       | 12 (11)       |
| Total Petroleum Hydrocarbons (ug/L)             |               |               |                        |               |                        |               |               |               |               |               |               |               |               |
| Diesel Range Organics                           | 50/500(a)     | 220 U         | 230 U                  | 230           | 330                    | 250           | 150 J-        | 200 U         | 220 U         | 210 U         | 200 U         | 200 U         | 220 U         |
| PHC as Lube Oil                                 | 500           | 220 U         | 240                    | 300           | 350                    | 210 U         | 320 J-        | 200 U         | 220 U         | 210 U         | 200 U         | 200 U         | 220 U         |
| Diesel Range + Oil Range Organics               | 500           | 220 U         | 240                    | 530           | 680                    | 250           | 470 J-        | 200 U         | 220 U         | 210 U         | 200 U         | 200 U         | 220 U         |
| Inorganic Compounds (ug/L)                      |               |               |                        |               |                        |               |               |               |               |               |               |               |               |
| Arsenic, Dissolved                              | 8 (b)         | 20            | 27                     | 7.8           | 3.6                    | 4.4 U         | 1.4           | 4.4 U         | 2.4           | 7.7           | 0.67          | 4.4 U         | 2.1           |
| Cadmium, Dissolved                              | 7.9           | 4.4 U         | 0.31                   | 4.4 U         | 0.22 U                 | 4.4 U         | 0.22 U        | 4 U           | 0.2 U         | 4 U           | 0.2 U         | 4 U           | 0.2 U         |
| Chromium, Dissolved                             | 27 (c)        | 11 U          | 5.9                    | 11 U          | 8.5                    | 11 U          | 9.2           | 10 U          | 1 U           | 10 U          | 1 U           | 10 U          | 1 U           |
| Lead, Dissolved                                 | 8.1           | 4.4 U         | 0.87                   | 4.4 U         | 0.44 U                 | 4.4 U         | 0.44 U        | 4 U           | 0.4 U         | 4 U           | 0.4 U         | 4 U           | 0.4 U         |
| Mercury, Dissolved                              | 0.025         | 0.5 U         | 0.16                   | 0.5 U         | 0.13 U                 | 0.5 U         | 0.13 U        | 0.5 U         | 0.13 U        | 0.5 U         | 0.13 U        | 0.5 U         | 0.13 U        |
| Arsenic, Total                                  | 8 (b)         | 21            | 27                     | 8.1           | 6.4                    | 4.4 U         | 2.3           | 4.4 U         | 3.2           | 8.7           | 0.68          | 4.4 U         | 2.6           |
| Cadmium, Total                                  | 7.9           | 4.4 U         | 0.6                    | 4.4 U         | 0.22 U                 | 4.4 U         | 0.22 U        | 4.4 U         | 0.22 U        | 4.4 U         | 0.22 U        | 4.4 U         | 0.22 U        |
| Chromium, Total                                 | 27 (c)        | 11 U          | 12                     | 11 U          | 12                     | 11 U          | 9.2           | 11 U          | 1.1 U         | 11 U          | 1.1 U         | 11 U          | 1.1 U         |
| Lead, Total                                     | 8.1           | 4.4 U         | 3.3                    | 4.4 U         | 1.3                    | 4.4 U         | 0.44 U        |
| Mercury, Total                                  | 0.025         | 0.5 U         | 1                      | 0.5 U         | 0.13 U                 | 0.5 U         | 0.13 U        | 0.5 U         | 0.13 U        | 0.5 U         | 0.13 U        | 0.5 U         | 0.13 U        |
| Semi-Volatile Organic Compounds (SIM) (ug/L)    |               |               |                        |               |                        |               |               |               |               |               |               |               |               |
| 1-Methylnaphthalene                             | NA            | 0.095 U       | 0.1 U                  | 0.098 U       | 0.095 U                | 0.095 U       | 0.098 U       | 0.095 U       | 0.1 U         | 0.098 U       | 0.35          | 0.095 U       | 0.095 U       |
| 2-Methylnaphthalene                             | NA            | 0.095 U       | 0.1 U                  | 0.098 U       | 0.095 U                | 0.095 U       | 0.098 U       | 0.095 U       | 0.1 U         | 0.098 U       | 0.095 U       | 0.095 U       | 0.095 U       |
| Acenaphthene                                    | 30            | 0.095 U       | 0.1 U                  | 0.14          | 0.095 U                | 0.095 U       | 0.098 U       | 0.095 U       | 0.1 U         | 0.098 U       | 0.11          | 0.095 U       | 0.095 U       |
| Acenaphthylene                                  | NA            | 0.095 U       | 0.1 U                  | 0.098 U       | 0.095 U                | 0.095 U       | 0.098 U       | 0.095 U       | 0.1 U         | 0.098 U       | 0.095 U       | 0.095 U       | 0.095 U       |
| Anthracene                                      | 100           | 0.095 U       | 0.1 U                  | 0.098 U       | 0.095 U                | 0.095 U       | 0.098 U       | 0.095 U       | 0.1 U         | 0.098 U       | 0.095 U       | 0.095 U       | 0.095 U       |
| Benzo(a)anthracene                              | 0.00016       | 0.0095 U      | 0.01 U                 | 0.0098 U      | 0.0095 U               | 0.0095 U      | 0.0098 U      | 0.0095 U      | 0.01 U        | 0.0098 U      | 0.0095 U      | 0.0095 U      | 0.0095 U      |
| Benzo(a)pyrene                                  | 0.000016      | 0.0095 U      | 0.01 U                 | 0.0098 U      | 0.0095 U               | 0.0095 U      | 0.0098 U      | 0.0095 U      | 0.01 U        | 0.0098 U      | 0.0095 U      | 0.0095 U      | 0.0095 U      |
| Benzo(b)fluoranthene                            | 0.00016       | 0.0095 U      | 0.01 U                 | 0.0098 U      | 0.0095 U               | 0.0095 U      | 0.0098 U      | 0.0095 U      | 0.01 U        | 0.0098 U      | 0.0095 U      | 0.0095 U      | 0.0095 U      |
| Benzo(g,h,i)perylene                            | NA            | 0.0095 U      | 0.01 U                 | 0.0098 U      | 0.0095 U               | 0.0095 U      | 0.0098 U      | 0.0095 U      | 0.012 U       | 0.0098 U      | 0.0095 U      | 0.0095 U      | 0.0095 U      |
| Benzo(j,k)fluoranthene                          | 0.0013        | 0.0095 U      | 0.01 U                 | 0.0098 U      | 0.0095 U               | 0.0095 U      | 0.0098 U      | 0.0095 U      | 0.01 U        | 0.0098 U      | 0.0095 U      | 0.0095 U      | 0.0095 U      |
| Chrysene                                        | 0.016         | 0.0095 U      | 0.01 U                 | 0.0098 U      | 0.0095 U               | 0.0095 U      | 0.0098 U      | 0.0095 U      | 0.01 U        | 0.0098 U      | 0.0095 U      | 0.0095 U      | 0.0095 U      |
| Dibenz(a,h)anthracene                           | 0.000016      | 0.0095 U      | 0.01 U                 | 0.0098 U      | 0.0095 U               | 0.0095 U      | 0.0098 U      | 0.0095 U      | 0.01 U        | 0.0098 U      | 0.0095 U      | 0.0095 U      | 0.0095 U      |
| Fluoranthene                                    | 6             | 0.095 U       | 0.1 U                  | 0.098 U       | 0.095 U                | 0.095 U       | 0.098 U       | 0.095 U       | 0.1 U         | 0.098 U       | 0.095 U       | 0.095 U       | 0.095 U       |
| Fluorene                                        | 10            | 0.095 U       | 0.1 U                  | 0.098 U       | 0.095 U                | 0.095 U       | 0.098 U       | 0.095 U       | 0.1 U         | 0.098 U       | 0.095 U       | 0.095 U       | 0.095 U       |
| Indeno(1,2,3-cd)pyrene                          | 0.00016       | 0.0095 U      | 0.01 U                 | 0.0098 U      | 0.0095 U               | 0.0095 U      | 0.0098 U      | 0.0095 U      | 0.014 U       | 0.0098 U      | 0.0095 U      | 0.0095 U      | 0.0095 U      |
| Naphthalene                                     | 1.4           | 0.095 U       | 0.1 U                  | 0.098 U       | 0.095 U                | 0.095 U       | 0.098 U       | 0.095 U       | 0.1 U         | 0.098 U       | 0.095 U       | 0.095 U       | 0.095 U       |
| Phenanthrene                                    | NA            | 0.095 U       | 0.1 U                  | 0.098 U       | 0.095 U                | 0.095 U       | 0.098 U       | 0.095 U       | 0.1 U         | 0.098 U       | 0.095 U       | 0.095 U       | 0.095 U       |
| Pyrene                                          | 8             | 0.095 U       | 0.1 U                  | 0.098 U       | 0.095 U                | 0.095 U       | 0.098 U       | 0.095 U       | 0.1 U         | 0.098 U       | 0.095 U       | 0.095 U       | 0.095 U       |
| cPAHs-TEQ (d)                                   | 0.000016      | 0.007 U       | 0.008 U                | 0.007 U       | 0.007 U                | 0.007 U       | 0.007 U       | 0.007 U       | 0.008 U       | 0.007 U       | 0.007 U       | 0.007 U       | 0.007 U       |
| Field Parameters                                |               |               |                        |               |                        |               |               |               |               |               |               |               |               |
| Temperature (Deg C)                             | NA            | 9.1           | 16.1                   | 10.6          | 14.6                   | 11.3          | 12.8          | 9             | 13.4          | 10.1          | 13.2          | 8.6           | 12.9          |
| Oxidation Reduction Potential (ORP), Field (mv) | NA            | -91.6         | -114.3                 | -200.4        | -156                   | -259.4        | -201.7        | -66.8         | -125          | -150.7        | -             | -109.1        | -127.8        |
| Turbidity, Field (NTU)                          | NA            | 34.8          | 38.52                  | 30.57         | 24.6                   | 40.39         | 9.87          | 3.95          | 2.94          | 6.31          | 2.25          | 2.92          | 0.96          |
| pH, Field (pH units)                            | NA            | 7.33          | 7.57                   | 6.9           | 6.6                    | 6.91          | 6.99          | 7.01          | 7.22          | 7.3           | -             | 7.85          | 7.4           |
| Dissolved Oxygen, Field (mg/L)                  | NA            | 2             | 0.44                   | 1.1           | 0.09                   | 2.4           | 0             | 2.7           | 0.32          | 2.3           | 0.05          | 2.6           | 0.2           |
| Conductivity, Field (uS/cm)                     | NA            | 16094         | 5363                   | 7271          | 11652                  | 20194         | 19318         | 5587          | 4781          | 3824          | 6125          | 845           | 1579          |

## ABBREVIATIONS AND NOTES:

-: Not analyzed, probe malfunction 8/12/2024

bgs: below ground surface

Deg C: Degrees Celsius ft: feet

J-: value is estimated, biased low

mg/L: milligrams per liter

mv: millvolts

NTU: Nephelometric Turbidity Units

PCUL: Preliminary Cleanup Level

U: not detected above the indicated laboratory reporting limit

ug/L: micrograms per liter

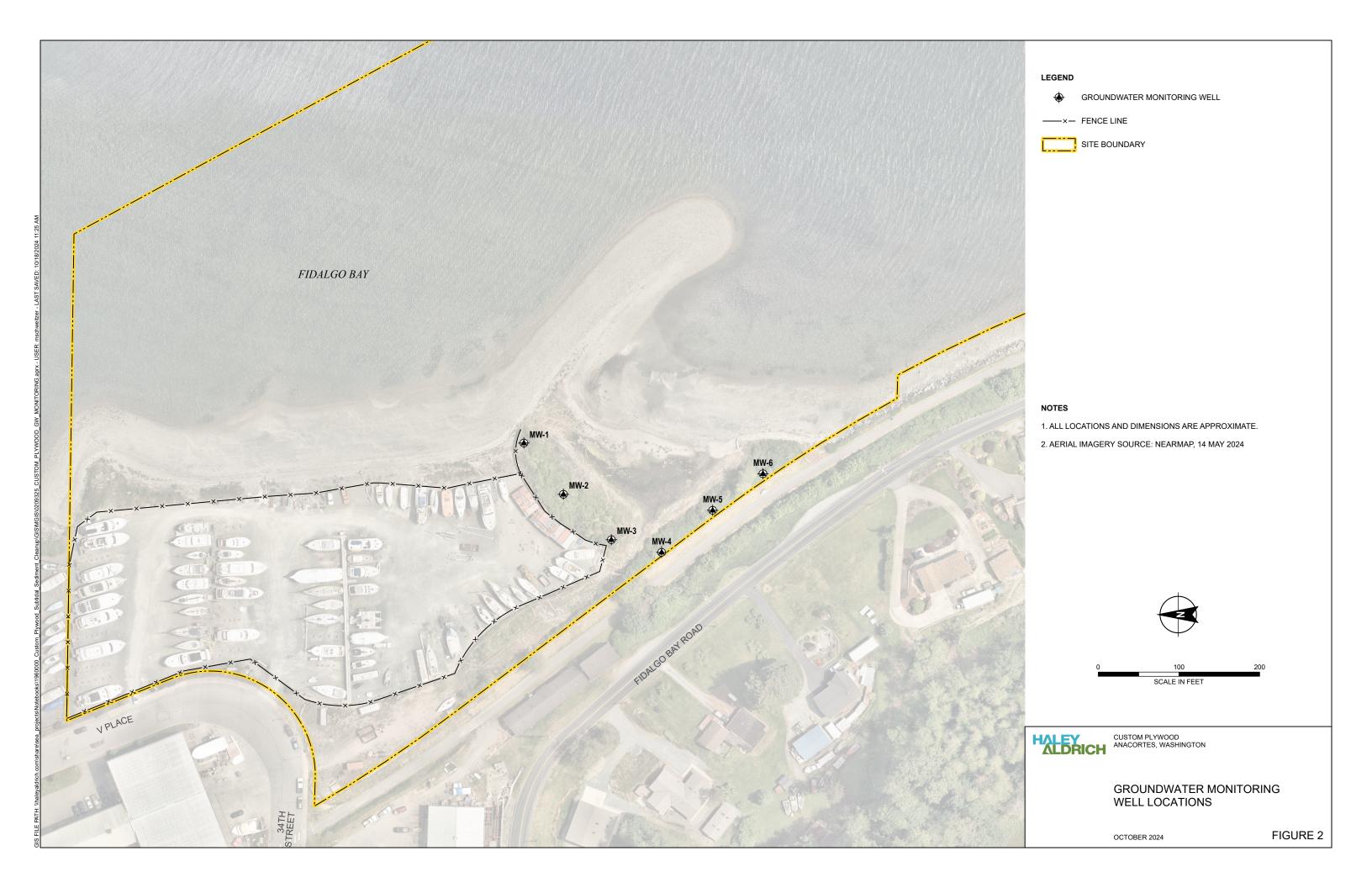
uS/cm: microSiemen per centimeter

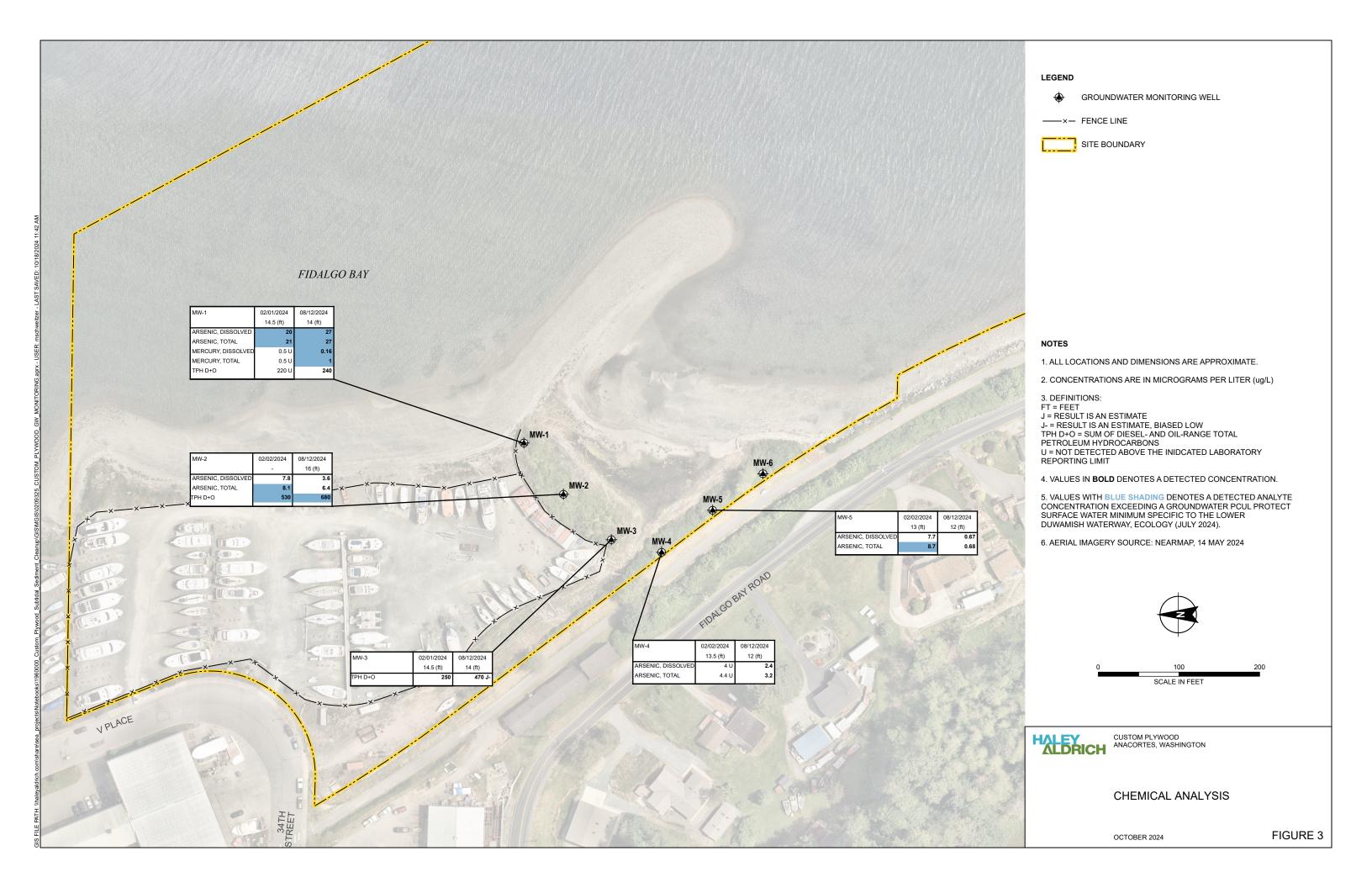
Groundwater PCUL Protect Surface Water Minimum, July 2024

(a) 50 ug/L if fresh, 500 ug/L if weathered

(b) PCUL below background levels. Puget Sound background level of 8 ug/L as determined by Ecology used.

(c) PCUL of 27 ug/L for tri-valent chromium used; no suspected sources of hexavalent chromium at the site.


(d) Toxicity Equivalent using April 2015 (revised July 2021) Ecology's Implementation Memo No. 10: Evaluating the Human Health Toxicity of Carcinogenic PAHs (cPAHs) Using Toxicity Equivalency Factors (TEFs), Publication No. 15-09-049. For non-detects (<RL), a value of one-half the RL has been used for TEQ calculation. cPAH calculated for samples with individual PAHs identified as a non-detect will be qualified with U.


**Bold** denotes a detected concentration.

Blue shading denotes a detected analyte concentration exceeding a Groundwater PCUL Protect Surface Water Minimum specific to the Lower Duwamish Waterway.

## **FIGURES**







APPENDIX A Completed Field Forms



## **GAUGING AND DEVELOPING FORM**

orm FMG 5.1-01 Rev (06-09-09)

| Project: CUSTON          | 1 PIXWOZ | 77)   | Client: Ed         | 02064                  |                         | File Number                         | 07.09                    | 325-000                  |                  | 1    |
|--------------------------|----------|-------|--------------------|------------------------|-------------------------|-------------------------------------|--------------------------|--------------------------|------------------|------|
| Location: ANACO          | ATES, WA |       | Weather:           |                        |                         | Project Mana                        |                          | KAPAROS                  |                  | 1    |
| 11 1700                  | ,,,,,,,, | ·     | Tidally influe     | enced? $4$             | 55                      |                                     |                          |                          | , C. DOVTHITT    | 1    |
| Method: MONS             | NO PUM   | P5    |                    |                        |                         | NT TO A                             | WETLA                    | ND, SULP                 | DE               | ]    |
| Monitoring<br>Well<br>ID | Date     | Time  | Well Dry?<br>(Y/N) | Depth to<br>Water (ft) | Depth to<br>Bottom (ft) | 1 Well<br>Casing<br>Volume<br>(gal) | Total<br>purged<br>(gal) | Purge Time<br>Completion | Remarks          |      |
| MW-1                     | 1/21/24  | 1400  | N                  | 4-85                   | 15.20                   | 1-69                                | ~17                      | 1430                     | Hz S overs, SEIX | MENT |
| MW-3                     | 13/124   | 1515  | N                  | 4.50                   | 15.18                   | 1.74                                | ~17.5                    | 1545                     | H2S overs        |      |
| MW-5                     | 2/1/21   | 0930  | N                  | 4.90                   | 13.75                   | 1.44                                | ~15                      | 1000                     |                  |      |
| MW-6                     | 2/1/24   | 09 40 | Ν.                 | 6.02                   | 13.85                   | 1.25                                | ~13                      | 1000                     | H2S ODOKS        |      |
| MW-4                     | 2/1/21   | 1125  | N                  | 6.28                   | 14.02                   | 1.26                                | ~13                      | 1200                     |                  |      |
| MW-2                     | 2/1/24   | 1130  | N                  | 4.50                   | 17.60                   | 2.04                                | ~2)                      | 1150                     | MONUMENTA        |      |
|                          |          |       |                    |                        |                         |                                     |                          |                          |                  |      |
|                          |          |       |                    |                        |                         |                                     |                          | - 1                      |                  |      |
|                          |          |       |                    |                        |                         |                                     |                          |                          |                  |      |
|                          |          |       |                    |                        |                         |                                     |                          |                          |                  |      |
|                          |          |       |                    |                        |                         |                                     |                          |                          |                  |      |
|                          |          |       |                    |                        |                         |                                     |                          |                          |                  |      |
|                          |          |       |                    |                        |                         |                                     |                          |                          |                  | 1    |
|                          |          |       |                    | L                      |                         |                                     |                          |                          | L                | J    |

| HYFE                                           | RICH                                     | g g                          |                           | LOW                                   | FLOW                      | //MNA        | A FIELD                      | SAM                                            | PLING I            | FORM                            |                                                      | Page 1 of                                      |
|------------------------------------------------|------------------------------------------|------------------------------|---------------------------|---------------------------------------|---------------------------|--------------|------------------------------|------------------------------------------------|--------------------|---------------------------------|------------------------------------------------------|------------------------------------------------|
| PROJECT<br>LOCATION<br>CLIENT                  |                                          | AN ACO<br>FCOLD              | RTES, U                   |                                       |                           | +            | -                            |                                                | -"                 |                                 | H&A FILE NO. PROJECT MGR. FIELD REP. SAMPLING DATE   | C209325-000<br>A.KAFAROS<br>S.FISHER<br>2/1/24 |
| Sampling Data Well ID: Start time: Finish Time | M 1                                      | n - 1<br>10<br>45            | •                         | th:<br>Top Of Screen<br>Bottom Of Scr |                           | SU           | ft Depth                     | Depth To Wa<br>Of Pump into<br>/ell installed: | ake:               |                                 | Purging Device: Tubing Present In Well: Tubing Type: | res.                                           |
| Elapsed Time (min:sec)                         | Depth To<br>Water<br>From Casing<br>(ft) | Pump<br>Setting<br>(sec/sec) | Purge<br>Rate<br>(ml/min) | Cumulative Purge Vol. (gal)           | Temp-<br>erature<br>(°C)  | рH           | Conduct-<br>ivity<br>(us/cm) | Dissolved Oxygen (mg/L)                        | Turbidity<br>(NTU) | ORP/eH<br>(mv)                  | Con                                                  | nments                                         |
| 14:10                                          | 5.3%<br>5.3%                             |                              |                           | 0.l<br>0-4                            | */- 10%<br>} _ 7<br>9 . 3 | 7.05<br>7.13 | 23479                        | 4.2                                            | 22.46<br>23.55     | +/- 10 mv<br>-\18 • 2<br>_ 58 4 | TEA COLORCO                                          | 7                                              |
| 14:20<br>15:10<br>15:15                        | G-38<br>5.38                             |                              |                           | 0.6                                   | 9.9                       | 7.51         | 7/708                        | 14.5                                           | 36.51              | -0.7                            | - PERI PUMP                                          | DIED !!                                        |
| 15.25<br>15.30                                 | 5.38<br>5.38                             |                              |                           | 1.3                                   | 9.1                       | 7.35         | 15676                        | 2.7                                            | 31-75              | -30:4<br>-86.5<br>-90:3         |                                                      |                                                |
| (5: 35                                         | S .38                                    |                              | ŭ.                        | 2.3                                   | 9.1                       | 7.33         | (6094                        | 2.0                                            | 34.80              | -31-6                           |                                                      |                                                |

SAMPLED @ 19:10

Mw-1

Sample ID:

| HALE                                                 | Y<br>RICH                       |                        |                           | LOW                                   | FLOW                     | //MNA  | FIELD                        | SAM                     | PLING I            | ORM                          |                                                            |                                                   |
|------------------------------------------------------|---------------------------------|------------------------|---------------------------|---------------------------------------|--------------------------|--------|------------------------------|-------------------------|--------------------|------------------------------|------------------------------------------------------------|---------------------------------------------------|
| PROJECT<br>LOCATION<br>CLIENT                        |                                 | ANALON<br>ELOLOG       | ?LYWUDI<br>RTES, U<br>XY  | )<br>~A                               |                          |        | -                            | -                       |                    |                              | H&A FILE NO. PROJECT MGR. FIELD REP. SAMPLING DATE         | Page 1 of 1 0209325-000 A.KAPAPOS C.DOMITT 2/1/24 |
| Sampling Dat<br>Well ID:<br>Start time<br>Finish Tim | MW-                             |                        | •                         | th:<br>Top Of Screer<br>Bottom Of Sci | :                        | 15.18. | ft Depth                     |                         | ter: 4.7           |                              | Purging Device:<br>Tubing Present In Well:<br>Tubing Type: | poil<br>yes<br>upre                               |
| Elapsed Time (min:sec)                               | Depth To Water From Casing (ft) | Pump Setting (sec/sec) | Purge<br>Rate<br>(ml/min) | Cumulative Purge Vol. (gal)           | Temp-<br>erature<br>(°C) | рH     | Conduct-<br>ivity<br>(us/cm) | Dissolved Oxygen (mg/L) | Turbidity<br>(NTU) | ORP/eH                       | Cor                                                        | nments                                            |
| 1540                                                 | 4.75                            | (*********             |                           |                                       | 11.5                     | 7.04   | 22680<br>22796               | +/-10%<br>20.4<br>7. !  | 34.75<br>29.07     | +/-10 mv<br>-192.3<br>-223.4 | Enitial<br>Dack water                                      | 1618cmsh                                          |
| 1550<br>1555<br>1600                                 |                                 |                        |                           |                                       | 11.5                     | 7.05   | 21350                        |                         | 32.53              | -236.8                       | NTU-35.63                                                  |                                                   |
| 1605                                                 | oled of                         | 1610                   |                           |                                       | 11.3                     | 6.91   | 20329                        | 2.7                     | Y0.39              | -256./                       | 7410-33,63                                                 |                                                   |
|                                                      |                                 |                        |                           |                                       |                          |        |                              |                         |                    |                              |                                                            |                                                   |
|                                                      |                                 |                        |                           |                                       |                          |        |                              |                         |                    |                              |                                                            |                                                   |
|                                                      |                                 |                        |                           |                                       |                          | 6      | 3)                           |                         |                    |                              |                                                            |                                                   |

Sample ID: Mw-3

| HALE         | RICH        | ,         |               | LOW           | FLOW        | //MNA                                            | A FIELD    | SAM             | PLING I    | FORM      |                           | Page         | e 1 of 1    |
|--------------|-------------|-----------|---------------|---------------|-------------|--------------------------------------------------|------------|-----------------|------------|-----------|---------------------------|--------------|-------------|
| PROJECT      | C           | USTAM     | Ply voc       | d             |             |                                                  |            |                 |            |           | H&A FILE NO.              | 0209         | 325-000     |
| LOCATION     |             | ANACUY    | RTES, L       | N A           |             |                                                  |            |                 |            |           | PROJECT MGR.              |              | AT AROS     |
| CLIENT       |             | Ecoli     |               |               |             |                                                  | -          |                 |            |           | FIELD REP.                |              | DUTITIT     |
| 1            |             |           |               |               |             |                                                  |            |                 |            |           | SAMPLING DATE             |              | 2 24        |
| Sampling Dat | a:          |           |               |               |             |                                                  |            |                 |            |           |                           |              |             |
| Well ID:     | MW-         | 5         | Well Dept     | th:           | 13          | 3-75                                             | ft Initial | Depth To Wa     | iter: 5. 2 | 5 ft      | Purging Device:           | PERI         |             |
| Start time   | 094         | 10        | -<br>Depth To | Top Of Screen | ):          |                                                  | _          |                 | ake:       | -         | Tubing Present In         |              |             |
| Finish Tim   | e: 10 7     | 5         | _ Depth To    | Bottom Of Scr | reer        |                                                  |            | /ell Installed: |            |           | Tubing Type:              | LDY          |             |
|              | Depth To    | Pump      | Purge         | Cumulative    | Temp-       |                                                  |            |                 |            |           | . =                       |              |             |
| Elapsed      | Water       | Setting   | Rate          | Purge Vol.    | erature     |                                                  | Conduct-   | Dissolved       |            |           | -                         |              |             |
| Time         | From Casing |           |               | 125           |             |                                                  | ivity      | Oxygen          | Turbidity  | ORP/eH    |                           |              |             |
| (min:sec)    | (ft)        | (sec/sec) | (ml/min)      | (gal)         | (°c)        | pH                                               | (us/cm)    | (mg/L)          | (NTU)      | (mv)      |                           | Comments     |             |
| 1.00         |             |           |               |               | +/- 10%     | +/- 0.1                                          | +/- 3%     | +/- 10%         | <50        | +/- 10 mv |                           |              |             |
| 0940         |             |           |               |               | 10.8        | 7.12                                             | 7821       | 7.6             | 56.75      | -147.8    | In418/                    | Ders         | (dor        |
| 0945         | 5.21        |           |               |               | 10.6        | 7./3                                             | 7641       | 4.8             | 29.31      | -143.4    |                           |              |             |
| 09.56        |             |           |               |               | 16.4        | 7.18                                             | 6635       | 3.6             | 22.18      | -145.5    |                           |              |             |
| 0955         |             |           |               |               | 10.3        | 7.23                                             | 5201       | 3.0             | 12.75      | -150.5    |                           |              |             |
| 0955         |             |           |               |               | 10.1        | 7.27                                             | 4302       | 2.7             | 9.5        | -/52.5    |                           |              |             |
| 1005         |             |           |               |               | 10./        | 7.28                                             | 3964       | 2.4             | 5.98       | -1563     |                           |              |             |
| ioto         |             |           |               |               | loi         | 7.29                                             | 3916       | 2.3             | 5.29       | -154.6    |                           |              |             |
| 1015         |             |           |               |               | 10.1        | 7.70                                             | 3824       | 2.7             | 6.3/       | -150.7    |                           |              |             |
|              | Souphe      | d 91      | 1020          |               | , ,         |                                                  |            |                 |            |           |                           |              |             |
|              |             | p lo s -  |               |               |             |                                                  | TBI        |                 |            |           |                           |              |             |
| -            | Y           |           | og til de     |               |             |                                                  |            |                 |            |           |                           |              |             |
|              |             |           |               | 94            |             |                                                  | - 1        |                 |            |           |                           | П            |             |
|              |             |           | _             |               |             |                                                  |            |                 |            |           |                           | •            |             |
|              |             |           |               | _             |             |                                                  |            |                 |            |           |                           | 111          |             |
|              |             |           |               |               | <del></del> |                                                  |            |                 |            |           |                           |              |             |
|              |             |           |               |               |             | <del>                                     </del> |            |                 |            | [5]       |                           |              |             |
|              |             |           |               |               |             |                                                  |            |                 |            | 1         |                           |              |             |
|              |             |           |               |               |             |                                                  |            |                 | l          |           |                           |              |             |
|              |             |           | -             |               |             |                                                  |            |                 |            |           | Sample ID: MV             | <u>, - G</u> | <del></del> |
|              |             |           |               | L             |             | L                                                |            | I               | I          |           | leamble in: \ ( \rangle - | フ            |             |

| HAL  | FV    |
|------|-------|
| . YE | DRICH |

| ALD          | RICH              |           |          | LOW           | FLOW            | // IVIIV <i>E</i> | A FIELD           | SAIVII            | PLING I      | -OKIVI            |                         | Page 1 of 1 |
|--------------|-------------------|-----------|----------|---------------|-----------------|-------------------|-------------------|-------------------|--------------|-------------------|-------------------------|-------------|
| PROJECT      |                   | CUSTON    | PLYNO    | 777)          | -               |                   |                   |                   |              | ····              | H&A FILE NO.            | 0209325-000 |
| LOCATION     |                   |           | RTES, V  |               |                 |                   | •                 |                   |              |                   | PROJECT MGR.            | K KAPAPOS   |
| CLIENT       |                   | ECOLO     |          |               |                 |                   |                   |                   |              |                   | FIELD REP.              | S.FISHER    |
|              |                   |           | •        | ,             |                 |                   | -                 |                   |              | 2                 | SAMPLING DATE           | 2224        |
| Sampling Dat |                   | ,         |          |               |                 | 1-                |                   |                   |              | · ·               |                         | 0 1         |
| Well ID:     | M W               | ) - 6     | Well Dep | th:           | (               | 3.65              | ft Initial        | Depth To Wa       | 4.741        | 9.0               | Purging Device:         | Peri        |
| Start time:  | 9:4               | 50        | Depth To | Top Of Screen | ):<br>          |                   | ft Depth          | Of Pump Inta      | ake:\        | ろft               | Tubing Present In Well: | yes         |
| Finish Time  | e: <u>       </u> | 10        | Depth To | Bottom Of Scr | reer            | <u></u>           | ft Date W         | /ell Installed:   |              |                   | Tubing Type:            | LOPE        |
|              | Depth To          | Pump      | Purge    | Cumulative    | Temp-           |                   |                   |                   |              |                   |                         |             |
| Elapsed      | Water             | Setting   | Rate     | Purge Vol.    | erature         |                   | Conduct-          | Dissolved         |              |                   |                         |             |
| Time         | From Casing       |           |          |               |                 |                   | ivity             | Oxygen            | Turbidity    | ORP/eH            |                         |             |
| (min:sec)    | (ft)              | (sec/sec) | (ml/min) | (gal)         | (°C)<br>+/- 10% | pH<br>+/- 0.1     | (us/cm)<br>+/- 3% | (mg/L)<br>+/- 10% | (NTU)<br><50 | (mv)<br>+/- 10 mv | Comm                    | ents        |
| 9.55         | 6.28              |           |          | 0.1           | 8.8             | 6.30              | 966               | 11-9              | 7.68         | -23.4             | No ovor or              | SHEEN       |
| 10:00        | 6 26              |           |          | 0.3           | 8.7             | 7.94              | 860               | 6.6               | 5.03         | -47.4             |                         |             |
| 10:05        | 6 28              |           |          | 0.6           | 8.7             | 7.90              | 850               | 4.9               | 3.21         | -74.7             |                         |             |
|              |                   |           |          |               |                 |                   |                   |                   |              |                   | PERI DIE)               |             |
| 10:19        | 6.20              |           |          | 0.7           | 9.2             | 7.88              | 854               | 5.6               | 3 86         | -82.1             |                         |             |
| 10:20        | 6.20              |           |          | 1.0           | g .6            | 7.87              | 851               | 4.1               | 3.38         | -88.)             | <                       |             |
| 10:25        | 6.20              |           |          | 1.4           | 8.6             | 7-86              | 841               | 3.3               | 3.02         | -96.4             |                         |             |
| 10:30        | 6.20              |           |          | 1.8           | 8.6             | 7.86              | 845               | 2.9               | 2.82         | -101.2            |                         |             |
| 10.35        | 6.20              |           |          | 2.2           | 8.6             | 7.86              | 840               | 2-8               | 2.37         | - 105.4           |                         |             |
| 10:40        | 6.20              |           |          | 2.6           | 8.6             | 7.85              | 845               | 2.6               | 2.92         | -109.1            |                         |             |
|              |                   |           |          |               |                 |                   |                   |                   |              |                   |                         |             |
|              |                   |           |          |               |                 |                   |                   |                   |              |                   |                         |             |
|              |                   |           |          |               | -               |                   |                   |                   |              |                   |                         |             |
|              |                   |           |          |               |                 |                   |                   |                   |              |                   |                         |             |
|              |                   |           | -        |               |                 |                   |                   |                   |              |                   |                         | ~           |
|              |                   |           | 100      | The second    |                 |                   |                   |                   |              |                   |                         |             |
|              |                   |           |          |               |                 |                   |                   |                   |              |                   | Sampled C               | 10:45       |
|              |                   |           |          | 1             |                 |                   |                   |                   |              |                   |                         |             |
|              |                   |           |          |               |                 |                   |                   |                   |              |                   | Sample ID: MW-6         |             |

| H | ΔL | EY |    |
|---|----|----|----|
|   |    |    | CH |

| HYFE                                           | RICH                                     |                              |                                         | LOW                                   | FLOW             | /MNA              | FIELD                        | SAMI                                           | PLING F            | ORM            |                                                      | Page 1 of 1                                         |
|------------------------------------------------|------------------------------------------|------------------------------|-----------------------------------------|---------------------------------------|------------------|-------------------|------------------------------|------------------------------------------------|--------------------|----------------|------------------------------------------------------|-----------------------------------------------------|
| PROJECT<br>LOCATION<br>CLIENT                  |                                          | ANACOT<br>Eco vo             | RTES, 1                                 | )<br>μA                               |                  |                   | -                            | 19                                             | 1                  |                | H&A FILE NO. PROJECT MGR. FIELD REP. SAMPLING DATE   | 020 9325 -000<br>A. KAY AROS<br>S. FISHER<br>2/2/24 |
| Sampling Data Well ID: Start time: Finish Time | MW                                       | - 4<br>35<br>-20             | •                                       | th:<br>Top Of Screen<br>Bottom Of Scr | :                | 4.02              | ft Depth                     | Depth To Wa<br>Of Pump Inta<br>/ell Installed: | ter: 6.5           |                | Purging Device: Tubing Present In Well: Tubing Type: | Peri<br>yes<br>in le                                |
| Elapsed Time (min:sec)                         | Depth To<br>Water<br>From Casing<br>(ft) | Pump<br>Setting<br>(sec/sec) | Purge<br>Rate<br>(ml/min)               | Cumulative Purge Vol. (gal)           | Temp-<br>erature | рН                | Conduct-<br>ivity<br>(us/cm) | Dissolved Oxygen (mg/L)                        | Turbidity<br>(NTU) | ORP/eH<br>(mv) | Com                                                  | nments                                              |
| 11.40                                          | 6.40                                     | (223,223,                    | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 0.4                                   | +/- 10%<br>9 . 9 | +/· 0.1<br>7 · 22 | +/-3%                        | +/- 10%                                        | <50<br>18.32       | +/- 10 mv      | No ODUR                                              | UR CHECK                                            |
| 11:45                                          | 6.28                                     |                              |                                         | 0.6                                   | 9.5              | 7.24              | 8996                         | 4.2                                            | 31.43              | -85.7          |                                                      | DI GIRCE                                            |
| 11:50                                          | 6.38                                     |                              |                                         | 0.8                                   | 9.2              | 7.14              | 6324                         | 3.2                                            | 10.10              | -81.4          |                                                      |                                                     |
| 11:55                                          | 6-38                                     |                              |                                         | 1.0                                   | 9.0              | 7.05              | 5565                         | 2.9                                            | 6.75               | -72.7          |                                                      |                                                     |
| 12.00                                          | 6 38                                     |                              |                                         | 1.2                                   | 9.0              | 7.01              | 5235                         | 2.7                                            | 4.75               | -68.0          |                                                      | <u>.                                    </u>        |
| 12:05                                          | 6.38                                     |                              |                                         | 1. 4                                  | 9.0              | 7.00              | 5362                         | 2.6                                            | 3.82               | -66-3          |                                                      | <del></del>                                         |
| 12 10                                          | 1 28                                     |                              |                                         | 1.6                                   | 9.0              | 7.01              | 5 \$87                       | 2)                                             | 3.95               | -66.8          | <u></u>                                              |                                                     |
|                                                | -                                        |                              |                                         | 1                                     | 7 10             |                   | 700                          |                                                | = 1                |                |                                                      |                                                     |
|                                                |                                          |                              |                                         |                                       |                  |                   |                              |                                                |                    |                |                                                      |                                                     |
| <u></u>                                        |                                          |                              |                                         |                                       |                  |                   |                              |                                                |                    |                |                                                      |                                                     |
|                                                |                                          | _                            |                                         |                                       |                  |                   |                              |                                                |                    |                | · -                                                  | <del></del>                                         |
|                                                |                                          |                              |                                         |                                       |                  |                   |                              |                                                |                    |                |                                                      | <del></del>                                         |
|                                                |                                          |                              |                                         |                                       |                  |                   |                              |                                                |                    |                |                                                      |                                                     |
|                                                |                                          |                              |                                         |                                       |                  |                   |                              |                                                |                    |                |                                                      |                                                     |
|                                                |                                          |                              |                                         |                                       |                  |                   |                              | - K                                            |                    |                |                                                      |                                                     |
|                                                |                                          |                              |                                         |                                       |                  |                   |                              |                                                |                    |                | Sampled                                              | @ 12:15                                             |
|                                                |                                          |                              |                                         |                                       |                  |                   |                              |                                                |                    |                |                                                      |                                                     |
|                                                |                                          |                              |                                         |                                       |                  |                   |                              |                                                |                    |                |                                                      |                                                     |
|                                                |                                          |                              |                                         |                                       |                  |                   |                              |                                                |                    |                | Sample ID: M w - 4                                   | t:                                                  |

| HALE              | RICH                |                 |               | LOW                      | FLOW             | //MNA         | A FIELD                    | SAM                         | PLING F             | ORM               |                      | Page 1 of 1 |
|-------------------|---------------------|-----------------|---------------|--------------------------|------------------|---------------|----------------------------|-----------------------------|---------------------|-------------------|----------------------|-------------|
| PROJECT           | Cu                  | Stom F          | 14 1000       | 1                        |                  |               | -25                        |                             |                     |                   | H&A FILE NO.         | 0209729-000 |
| LOCATION          |                     |                 | ES, WA        |                          |                  |               |                            |                             |                     |                   | PROJECT MGR.         | A. KAPAROS  |
| CLIENT            | -                   | Eloro           |               |                          |                  |               |                            |                             |                     |                   | FIELD REP.           | C. Dout hit |
|                   |                     |                 | <u> </u>      | 900 -                    |                  | ,             | - ·                        |                             | · <u> </u>          |                   | SAMPLING DATE        | 02/02/24    |
| Sampling Dat      | a:                  |                 | 55.K          | 7                        |                  |               | -                          |                             | . 0090              |                   | ·                    | -           |
| Well ID:          | MW-                 | -07_            | Well Dep      | th:                      |                  |               | ft Initial                 | Depth To Wa                 | iter: 4.5           | 5 ft              | Purging Device:      | PERI        |
| Start time:       | 115                 | 5               | Depth To      | Top Of Screen            | n:               |               | ft Depth                   | Of Pump Int                 | ake:                | ft                | Tubing Present In We |             |
| Finish Time       | e: <u>13</u>        | 05              | _ Depth To    | Bottom Of Sci            | reer             |               | ft Date W                  | Vell Installed:             | - 1                 |                   | Tubing Type:         | LDPE        |
| Elapsed           | Depth To<br>Water   | Pump<br>Setting | Purge<br>Rate | Cumulative<br>Purge Vol. | Temp-<br>erature |               | Conduct-                   | Dissolved                   |                     | 000/44            |                      | es h        |
| Time<br>(min:sec) | From Casing<br>(ft) | (sec/sec)       | (ml/min)      | (gal)                    | (°C)<br>+/- 10%  | pH<br>+/- 0.1 | ivity<br>(us/cm)<br>+/- 3% | Oxygen<br>(mg/L)<br>+/- 10% | Turbidity (NTU) <50 | (mv)<br>+/- 10 mv | NG * F               | omments     |
| 1155              | 4.55                |                 |               |                          | (1,              | 6.70          | 2453                       | 6.2                         | 87.38               | -139.8            | Dark water           | initially   |
| 1260              | 4.78                |                 |               |                          | 11.0             | 6.63          | 18508                      | 3,7                         | 51.38               | -179.0            |                      |             |
| 1205              |                     |                 |               |                          | 10.7             | 6.66          | 14188                      | 2,7                         | 17.62               | -177.9            |                      |             |
| 1210              |                     | ,               |               |                          | 10.6             | 6.79          | 10135                      | 2.2                         | 29.25               | -191.3            |                      |             |
| 1215              |                     |                 |               |                          | 10.5             | 6.88          | 7240                       | 1.9                         | 31.20               | -194.5            | ·                    |             |
| 1220              |                     |                 |               |                          | 10.5             | 6.90          | 6787                       | 1.7                         | 28.72               | -197.1            |                      |             |
| 1225              |                     |                 |               |                          | 10.6             | 6.89          | 7052                       | 1.5                         | 24.90               | -199.5            |                      |             |
| 1230              |                     |                 |               |                          | 10.7             | 6.84          | 9837                       | 1,4                         | 28.53               | -200.6            |                      | *1          |
| 1235              |                     |                 |               |                          | 10.6             | 6.86          | 7823                       | 1.3                         | 24.42               | -260.8            |                      |             |
| 1240              |                     |                 |               |                          | 10.6             | 6.89          | 7585                       | 1.3                         | 25,12               | -201.6            | (A)                  |             |
| 1245              |                     |                 |               |                          | 16.7             | 6.90          | 7754                       | 1.2                         | 43.98               | -203.6            |                      | 18%         |
| 1250              |                     |                 |               |                          | 16.6             | 6.90          | 7457                       | 1.1                         | 35.71               | -207.9            |                      | - T         |
| 1255              | V                   |                 |               |                          | 10:6             | 6.90          | 7271                       | (./                         | 30.57               | -200.4            |                      | 127         |
|                   |                     |                 |               |                          | ,                |               |                            |                             |                     |                   |                      | i) i        |
| ,                 |                     |                 |               |                          |                  | ,             | 417                        | 16                          |                     |                   |                      |             |
|                   |                     |                 |               |                          |                  | 15.00         |                            |                             |                     |                   |                      |             |
|                   |                     |                 |               | -                        |                  |               |                            |                             | -                   |                   |                      |             |
|                   |                     |                 | 3             |                          |                  |               |                            | - =                         | -                   |                   | Sampled              | (P 1300)    |
|                   |                     |                 |               |                          |                  |               |                            |                             |                     |                   | Sample ID: MW-2      |             |

## HALEYICH

## **GROUNDWATER GAUGING FORM**

Form FMG 5.1-01 Rev (06-09-09)

| - 101             |           |         |                |                               |              |               |                                              |                 |          | Rev (06-09-09      |
|-------------------|-----------|---------|----------------|-------------------------------|--------------|---------------|----------------------------------------------|-----------------|----------|--------------------|
| Project: Custor1  | prywood   | _       | Client: E      | CLOGY<br>OVERCAS<br>nced? Y & |              |               | File Number:                                 | 0209325         |          | -                  |
| Location: ANACOR  | TES, WA   |         | Weather:       | DVERCAS                       | L. COOL      |               | Project Mana                                 | ger: KAPA1      | 205      |                    |
|                   |           |         | Tidally influe | nced? 4 6                     | S, EXTRE     | MELY          | Field Represe                                | entative: FISH  | ER, BAN  | GASSER             |
| Method:           | Waterline | 1       | Comments:      |                               |              |               |                                              |                 |          |                    |
|                   |           |         |                |                               |              |               |                                              | Calculated      |          |                    |
| M 3 1 M 8 15      | :         |         | Well Dry?      | Depth to                      | Depth to     | Depth to Well | Top of Riser                                 | Water Elevation |          |                    |
| MonitoringWell ID | Date      | Time    | (Y/N)          | Water (ft)                    | Product (ft) | bottom (ft)   | Elevation (ft)                               | (ft)            | Re       | marks              |
| Mw-6              | 8/12/24   |         | N              | 93997                         | 2 —          | 12,90         |                                              | 7               | BROKENS  | PPIRONIAL MOTSTURE |
| M5                |           | 7:22    | N              | 6.37                          | _            | 13.93         |                                              |                 | DTW      | PTI ROXI M.        |
| MW-4              | 8/12/24   | 9:36    | N              | 5,79                          |              | 14.23         |                                              |                 | WITH     | MOTSTURE           |
| MW-3              | 8/12      | 11:00   | N              | 8-68                          |              | 15, 35        |                                              |                 | TAPE     |                    |
| MW-2              | 8/12      | 11:08   | N              | 10.31                         | -            | 17.20         |                                              |                 |          |                    |
| MW-1              | 8/12      | 11:12   | N              | 8.21                          | _            | 15.48         |                                              |                 |          |                    |
|                   |           |         |                |                               |              | 1             |                                              |                 |          |                    |
|                   |           |         |                |                               |              |               |                                              |                 | \        |                    |
|                   |           | ,       |                |                               |              |               |                                              |                 |          |                    |
|                   |           | <u></u> |                |                               |              |               |                                              |                 |          |                    |
|                   |           |         |                |                               |              |               |                                              |                 |          |                    |
|                   |           |         |                |                               |              |               |                                              |                 |          |                    |
|                   |           |         |                |                               | 100 (        |               | <u>.                                    </u> |                 |          | <del></del> .      |
|                   | 1         |         |                |                               |              |               | <u> </u>                                     |                 |          | <del></del>        |
|                   | i         |         |                |                               |              |               |                                              |                 |          |                    |
|                   | !         |         |                |                               |              |               |                                              |                 | <u> </u> |                    |
|                   |           |         |                |                               |              |               |                                              |                 |          |                    |
|                   |           |         |                |                               |              |               |                                              |                 |          |                    |
|                   |           |         |                |                               |              |               |                                              |                 |          |                    |
|                   |           |         |                |                               |              |               |                                              |                 | <u> </u> |                    |

| 14 | ΛI | FV  |     |
|----|----|-----|-----|
|    | ÁΪ | ĴĎΑ | ICH |

| HALB          | RICH        |           |           | LOW            | FLOW    | /MNA    | FIELD      | SAMI            | PLING F       | ORM       |                         | Page 1 of 1                                  |
|---------------|-------------|-----------|-----------|----------------|---------|---------|------------|-----------------|---------------|-----------|-------------------------|----------------------------------------------|
| PROJECT       |             | SUSTOM    | PLYWOO    | D              |         |         |            | <del>.</del>    | -             |           | H&A FILE NO.            | 0209379-000                                  |
| LOCATION      |             | AN ACOR   |           |                |         |         | •          |                 |               |           | PROJECT MGR.            | KAPARUS                                      |
| CLIENT        |             | FLOLOG    |           |                |         |         |            |                 |               |           | FIELD REP.              | HISHER                                       |
|               |             | 10000     |           |                | ·       |         |            |                 |               |           | SAMPLING DATE           | 8/12/24                                      |
| Sampling Data | );          |           |           | :              |         |         |            |                 | .**.          | +0        | 9:36                    |                                              |
| Well ID:      | Mw          | - 4       | Well Dept | :h:            | 14      | .23     | ft Initial | Depth To Wa     | ter: <u> </u> | 79 ft     | Purging Device:         | PERI                                         |
| Start time:   |             | 55        | Depth To  | Top Of Screen: | ,       |         | ft Depth   | Of Pump Inta    | ike: 1        | <u> </u>  | Tubing Present in Well: |                                              |
| Finish Time   | 2: [1       | 0:90      | Depth To  | Bottom Of Scr  | eer     |         | ft Date W  | Vell Installed: |               |           | Tubing Type:            | HDPE                                         |
|               | Depth To    | Pump      | Purge     | Cumulative     | Temp-   |         |            |                 |               |           | TO NIM PROBE SEN        | BOR MALFUNCTION,                             |
| Elapsed       | Water       | Setting   | Rate      | Purge Vol.     | erature |         | Conduct-   | Dissolved       |               |           | NO DTW READIN           | ues posible                                  |
| Time          | From Casing |           |           |                | ,       | 1       | ivity      | Oxygen          | Turbidity     | ORP/eH    |                         |                                              |
| (min:sec)     | (ft) 🐴      | (sec/sec) | (ml/min)  | (gal)          | (°C)    | рН      | (us/cm)    | (mg/L)          | (NTU)         | (mv)      | Cor                     | nments                                       |
| 21.22         |             |           | (C)       |                | +/- 10% | +/- 0.1 | +/- 3%     | +/- 10%         | <50           | +/- 10 mv |                         |                                              |
| 9.55          |             |           |           | 0              | 13.5    | 7.06    | 4852       | 2-76            | 28.42         |           |                         | in Diama                                     |
| (0:00         |             |           |           | 0.3            | 13.6    | 7.15    | 4629       | 0.78            | 19.87         | -92.3     |                         | M SHEEN                                      |
| 10:05         |             |           |           | 0.7            | 13.9    | 6.71    | 4100       | 0.58            | 21.97         | .93.6     | OBSERVE                 | <u> </u>                                     |
| 10:10         |             |           |           | [.]            | 13.8    | 6.96    | 4385       | 0.38            | 5.87          | 106.7     |                         | . <u></u>                                    |
| 10:19         |             |           |           | 1.6            | 13.7    | 7.08    | 4519       | 0.29            | 3.37          | -117.1    |                         | <u>.                                    </u> |
| 10:20         |             |           |           | 2.1            | 13.6    | 7.13    | 4965       | 0-27            | 3.09          | -121.3    |                         |                                              |
| 10:15         |             |           |           | 2.6            | 13.6    | 7.18    | 4667       | 0-27            | 3.52          | - (24:1   |                         | <u>-</u>                                     |
| 10:30         |             |           |           | 2.9            | 13.5    | 7.20    | 4710       | 0.30            | 3.90          | -129.1    |                         |                                              |
| 10:35         | ·-          |           |           | 3.4            | 13.4    | 7.22    | 4781       | 032             | 2.94          | -125.0    |                         |                                              |
|               |             |           |           |                |         |         |            |                 |               |           |                         | <u> </u>                                     |
|               |             |           |           |                |         |         |            |                 |               |           |                         |                                              |
|               |             |           |           |                |         |         |            |                 |               |           |                         | <u>.                                    </u> |
|               |             |           |           | M              |         |         |            |                 |               |           |                         |                                              |
|               |             |           |           | 8              |         |         |            |                 |               |           |                         | ·                                            |
|               |             |           |           | ů,             |         | _       |            |                 |               |           |                         |                                              |
|               |             |           |           |                |         |         |            |                 |               |           | Sampled                 | @ 10.40                                      |
|               |             |           |           |                |         |         |            |                 |               |           |                         |                                              |
|               |             |           |           |                |         |         |            |                 |               |           |                         |                                              |
|               |             |           |           |                |         |         |            | 1               |               |           | Sample ID: Mw-          | 4                                            |

| PROJECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _Cu.                             |                 |               |                          | FLOW             | //MN/         | A FIELD           | SAM                 | PLING I      | ORM               | H&A FILE NO.                                       | Page 1 of 1                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------|---------------|--------------------------|------------------|---------------|-------------------|---------------------|--------------|-------------------|----------------------------------------------------|--------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                 | es, W/        | <u></u>                  |                  |               | -                 |                     |              |                   | PROJECT MGR. FIELD REP. SAMPLING DATE              | BANGHASSER<br>8/12/24          |
| Well ID:<br>Start time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MW-                              | 9               | - Depth To    | Top Of Screen            |                  | 35            | ft Depth          | Of Pump Inta        |              |                   | Purging Device: Tubing Present In Wel Tubing Type: | per:pump<br>: replaced<br>LDPE |
| Elapsed<br>Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Depth To<br>Water<br>From Casing | Pump<br>Setting | Purge<br>Rate | Cumulative<br>Purge Vol. | Temp-<br>erature |               | Conduct-          | Dissolved<br>Oxygen | Turbidîty    | ORP/eH            |                                                    |                                |
| (min:sec)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (ft)                             | (sec/sec)       | (ml/min)      | (gal)                    | (°C)<br>+/- 10%  | pH<br>+/- 0.1 | (us/cm)<br>+/- 3% | (mg/L)<br>+/- 10%   | (NTU)<br><50 | (mv)<br>+/- 10 mv | Cc                                                 | omments                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                 |               | 0                        |                  |               | ī                 | 1.79                |              |                   |                                                    |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                 |               | 1                        |                  | - '           | 18538             |                     |              |                   |                                                    |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                 |               | ~ '                      |                  |               |                   |                     |              |                   |                                                    |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                 |               |                          | 12.9             |               | 18987             | Ü                   |              | -142.6            | _                                                  |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                 |               |                          | 12.8             |               | (9010             | 0.16                | 17.69        | -158.2            |                                                    |                                |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                 |               | 1.8                      | 12.8             |               | 19222             | 0.11                | 16.73        |                   |                                                    |                                |
| 1235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |                 |               | 2.0                      | 12.8             |               | 19253             |                     | 18-77        |                   | <u></u>                                            |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                 |               |                          |                  | 1             |                   |                     | -            |                   |                                                    |                                |
| REAL FILE NO.   PROJECT MAR.   FAPAROS FILE NEP.   SAMPLING DATE   SAMPLING DATE |                                  |                 |               |                          |                  |               |                   |                     |              |                   |                                                    |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                 |               | 28                       | 12.8             | 6,99          | 19318             | -0,00               | 4.87         | -201.7            |                                                    |                                |
| 1255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |                 |               |                          |                  |               |                   |                     |              |                   | Sample tak                                         |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                 |               |                          |                  |               |                   |                     |              |                   |                                                    | 12:90                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                 |               |                          |                  |               |                   |                     |              |                   |                                                    | SUF                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                 |               |                          |                  |               |                   |                     |              |                   |                                                    |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                 |               |                          |                  | ž.            | 1                 |                     |              |                   |                                                    |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                 |               |                          |                  |               |                   |                     |              |                   |                                                    |                                |

MW -3

Sample ID:

| HALE                                    | RICH        |            |                                         | LOW                                              | FLOW    | //MN/   | A FIELD                                          | SAMI           | PLING F                                      | ORM       | Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | age 1 of 1     |
|-----------------------------------------|-------------|------------|-----------------------------------------|--------------------------------------------------|---------|---------|--------------------------------------------------|----------------|----------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| PROJECT                                 | Cu          | stom 1     | Plywo                                   | och                                              |         |         |                                                  |                |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25 - 000       |
| LOCATION                                | A           | macor.     | tes, W/                                 | 4                                                |         |         | _                                                |                |                                              |           | PROJECT MGR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HOS            |
| CLIENT                                  | 4.00        | cology     |                                         |                                                  |         |         | _                                                |                |                                              |           | FIELD REP. BAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GHSSER         |
|                                         |             |            |                                         |                                                  | _       |         | _                                                |                |                                              |           | SAMPLING DATE 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12/24          |
| Sampling Data                           | 1:          |            |                                         |                                                  |         |         |                                                  |                |                                              | ₩6        | 2 11:08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| Well ID:                                | MU          | J-2        | Well Dep                                | th:                                              | 17      | .20     | ft Initial                                       | Depth To Wa    | ter: ( 0                                     | -3/ ft    | Purging Device:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ipump          |
| Start time:                             |             | 55         | -<br>Depth To                           | Top Of Screer                                    | );      |         | –<br>ft Depth                                    | Of Pump Inta   | ike:                                         | 16 ft     | Tubing Present In Well:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| Finish Time                             | .2          | -10        | •                                       | Bottom Of Sci                                    |         |         | _                                                | ell Installed: |                                              |           | Tubing Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PE             |
|                                         | Depth To    | Pump       | Purge                                   | Cumulative                                       | Temp-   |         | <del>-</del>                                     |                |                                              |           | *WM PROBE SENSOR A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | METUNCTION.    |
| Elapsed                                 | Water       | Setting    | Rate                                    | Purge Vol.                                       | erature |         | Conduct-                                         | Dissolved      |                                              |           | NO DIW READINGS F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DSIBLE         |
| Time                                    | From Casing | Jetting    | 1.000                                   | l arge ron                                       | 2.3.0.0 | -       | ivity                                            | Oxygen         | Turbidity                                    | ORP/eH    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| (min:sec)                               | (ft)女       | (sec/sec)  | (ml/min)                                | (gal)                                            | (°C)    | pH      | (us/cm)                                          | (mg/L)         | (NTU)                                        | (mv)      | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| (111111.300)                            | (19)        | (300) 300) | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | (80.)                                            | +/- 10% | +/- 0.1 | +/- 3%                                           | +/- 10%        | <50                                          | +/- 10 mv |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 1500                                    |             |            |                                         |                                                  | 13.9    | 663     | 22916                                            | 0.64           | 41.97                                        | -133.5    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 1205                                    |             |            |                                         |                                                  | 140     | 6.63    | 21980                                            |                | 60,91                                        | -1509     | Hydrogensulfide :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | smell          |
| 1210                                    |             |            |                                         |                                                  | 14.5    | 6.68    | 19940                                            | 0.90           | 625                                          | -114      | Tubing slipped to d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/1/81 emption |
| 1215                                    |             |            |                                         |                                                  | 14.5    | 6.64    | 13602                                            | 1.17           | 378                                          | -133.1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EDIMENT        |
| 1220                                    |             |            |                                         |                                                  | 14.7    | 6.61    | 12441                                            | 0119           | 37.7                                         | -150,2    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 1225                                    |             |            |                                         |                                                  | 14.7    | 6.60    | 12124                                            | 0.15           | 37.2                                         | -152      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 1230                                    |             |            |                                         |                                                  | 147     | 6.60    | 11947                                            | 0,12           | 3157                                         | -154      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 1235                                    |             |            |                                         |                                                  | 14.7    | 6.80    | 11816                                            | 0.10           | 28.25                                        | -155      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 1240                                    |             |            |                                         |                                                  | 14.6    | 6.60    | 11652                                            | 0,09           | 24,60                                        | -156      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 1245                                    | _           |            |                                         |                                                  |         |         |                                                  |                | 117                                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| * * * * * * * * * * * * * * * * * * * * |             |            |                                         |                                                  |         |         |                                                  |                |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                                         |             |            |                                         |                                                  |         |         |                                                  |                |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                                         |             |            | -                                       |                                                  |         |         |                                                  |                |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                                         |             |            |                                         |                                                  |         |         |                                                  |                |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                                         |             |            |                                         |                                                  |         |         |                                                  |                |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                                         |             |            |                                         | <del>                                     </del> |         |         |                                                  |                | <u>.                                    </u> |           | Sampled @ 13:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D              |
|                                         |             |            |                                         |                                                  |         |         | <del>                                     </del> |                |                                              |           | John John Marie Ma |                |
|                                         |             |            |                                         |                                                  |         |         | 1                                                |                |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                                         |             |            |                                         |                                                  |         |         | +                                                |                |                                              |           | Sample ID: Ww -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |

| H/ | ME  | V   |   |
|----|-----|-----|---|
| 17 | (Th | ŘIC | H |

| ALD          | RICH        |              |           | LOW           | <b>FLOW</b>   | //MNA    | \ FIELD    | SAM             | PLING F   | ORM          |                 |                |
|--------------|-------------|--------------|-----------|---------------|---------------|----------|------------|-----------------|-----------|--------------|-----------------|----------------|
|              |             |              | 93        |               |               | <u> </u> |            |                 |           |              |                 | Page 1 of 1    |
| ROJECT       |             |              | PLYWO     |               |               |          |            |                 |           |              | H&A FILE NO.    | 0201325-000    |
| OCATION      |             | ANACOR       | TES W     | A             |               |          |            |                 |           |              | PROJECT MGR.    | KAPAROS        |
| LIENT        |             | ELOLOGY      | 927.04    |               |               |          |            |                 |           |              | FIELD REP.      | FISHER         |
|              |             |              |           |               |               | <u></u>  |            |                 |           |              | SAMPLING DATE   | 8/12/24        |
| ampling Data |             |              |           |               |               | •        |            |                 |           | タタン<br>37 ft | Purging Device: |                |
| Well ID:     |             | N - 5        | Well Dept | :h:           |               | 3.93     | ft Initial | PERI            |           |              |                 |                |
| Start time:  |             | :45          | Depth To  | Top Of Screen | :             |          | ft Depth   | YES             |           |              |                 |                |
| Finish Time  | : 15        | ; <b>4</b> 0 | Depth To  | Bottom Of Scr | eer           | <u>.</u> | ft Date W  | /ell installed: |           | Tubing Type: | LDPE            |                |
|              | Depth To    | Pump         | Purge     | Cumulative    | Temp-         |          |            |                 |           |              |                 |                |
| Elapsed      | Water       | Setting      | Rate      | Purge Vol.    | erature       |          | Conduct-   | Dissolved       |           |              |                 |                |
| Time         | From Casing |              |           |               |               |          | ivity      | Oxygen          | Turbidity | ORP/eH       |                 |                |
| (min:sec)    | (ft)        | (sec/sec)    | (ml/min)  | (gal)         | (°C)          | pН       | (us/cm)    | (mg/L)          | (NTU)     | (mv)         | Coi             | mments         |
|              | lla .       |              |           | Α.            | +/- 10%       | +/- 0.1  | +/- 3%     | +/- 10%         | <50       | +/- 10 mv    |                 | 0-             |
| (1:45        | *           |              |           | 0             | 13.1          | 7.41     | 6291       | 1 2 3 9         | 29.57     | -1270        |                 | AR ZENZOR TIME |
| 14:50        |             |              |           | 0.2           | 13:1          | 7.77     | 8185       | 1.39            | 27.64     | -120.4       | MALFONO         | 27101          |
| 14:55        |             |              |           | 0.7           | 13.5          | 1.54     | 6124       | 2.32            | 40.10     | 774.3        |                 |                |
| (5°.00       |             |              |           | 1.1           | 13.4          | 4.54     | 6109       | 2.28            | 26.33     | 1163.0       |                 |                |
| 15:05        |             |              |           | 1.5           | 13.6          | 4.54     | 6098       | 0.33            | 4.58      | 1185.5       |                 |                |
| 15:10        |             |              |           | (.9           | 13.5          | 4.54     | 6111       | 0.13            | 2.98      | 1186.5       |                 |                |
| 1515         |             |              |           | 2.3           | 13.4          | 4.54     | 6118       | 0.09            | 2.63      | 1186.5       |                 |                |
| 15:20        |             |              |           | 2.5           | 13.3          | 4.55     | 6122       | 0.07            | 2.79      | (186.5       |                 |                |
| 15:25        |             |              |           | ۷.            | 13.2          | 4.55     | 6125       | 0.09            | 2.25      | 1186.5       | No anok         | OSSERVED,      |
|              |             |              |           | !             |               |          |            |                 |           |              | SUGHT           | SHEEV          |
|              |             |              |           |               |               |          | P.         |                 |           |              | <u>-</u>        |                |
|              |             |              |           |               |               |          | 7          |                 |           |              |                 |                |
|              |             |              |           |               |               |          |            |                 |           |              |                 |                |
|              |             |              |           |               |               |          |            |                 |           | ·            |                 |                |
|              |             |              |           |               |               |          |            |                 |           |              | Sampled (       | 15:30          |
|              |             |              |           |               | - <del></del> |          |            |                 |           |              | 1               | -              |
|              |             |              |           |               |               |          |            |                 |           |              |                 |                |
|              |             |              |           |               |               |          |            |                 |           |              |                 |                |
|              |             |              |           |               |               |          |            |                 |           |              | Sample ID: Mw-5 |                |

| HALE                               | Y<br>RICH                        |                                   |               | LOW                      | FLOW             | //MNA         | FIELD                | SAM                                           | PLING F                | ORM               |                                                    | Page 1 of 1                                |
|------------------------------------|----------------------------------|-----------------------------------|---------------|--------------------------|------------------|---------------|----------------------|-----------------------------------------------|------------------------|-------------------|----------------------------------------------------|--------------------------------------------|
| PROJECT<br>LOCATION<br>CLIENT      | And                              | tom Plyv<br>acortes, W<br>Fcacoar |               |                          |                  |               | -                    |                                               | ~                      |                   | H&A FILE NO. PROJECT MGR. FIELD REP. SAMPLING DATE | 0209325<br>KAPAROS<br>BANGASSER<br>8/12/24 |
| Sampling Dat  Well ID:  Start time | MW -<br>1440                     | )                                 | - '           | oth:<br>Top Of Screen    | :                | -48           | -<br>_ ft Depth<br>- | Depth To Wa<br>Of Pump Int<br>/ell Installed: |                        | #@  \<br> 14 ft   | Purging Device: Tubing Present In We Tubing Type:  | Perijamp  Yes  LDPE                        |
| Elapsed<br>Time                    | Depth To<br>Water<br>From Casing | Pump<br>Setting                   | Purge<br>Rate | Cumulative<br>Purge Vol. | Temp-<br>erature |               | Conduct-             | Dissolved<br>Oxygen                           | Turbidity              | ORP/eH            | MALFONCTIC                                         | E JENSOR<br>NU NO DTW<br>POSSIBLE          |
| (min:sec)                          | (ft)- <b>1</b>                   | (sec/sec)                         | (ml/min)      | (gal)                    | (°C)<br>+/-10%   | pH<br>+/- 0.1 | (us/cm)<br>+/- 3%    | (mg/L)<br>+/- 10%                             | (NTU)<br><50           | (mv)<br>+/- 10 mv | C                                                  | omments                                    |
| 1440                               |                                  |                                   |               | 3/4                      | 15,9             | 7.69          | 4460                 | 2.10                                          | 59.47                  | 22.2              |                                                    | <u> </u>                                   |
| 1445                               |                                  |                                   | <u> </u>      | 1                        | 15.9             | 768           | 4128                 | 1.96                                          | 43,85                  | 14.6              |                                                    |                                            |
| 1450                               |                                  |                                   |               | 1.6                      | 15.9             | 7.62          | 4200                 | 0.60                                          | 52.61<br><b>89</b> .21 | -7.6<br>-44.0     |                                                    |                                            |
| 1500                               |                                  |                                   |               | 7.0                      | 15.9             | 7,60          | 4826                 | 0,52                                          | 96.62                  | -67.7             |                                                    |                                            |
| 1505                               |                                  |                                   |               | 2.4                      | 16.0             | 7.58          | 5187                 | 0.57                                          | 87.88                  | -90.2             |                                                    | 16/                                        |
| 1510                               |                                  |                                   |               | 2.7                      | 16.1             | 7.57          | 5344                 | 0.57                                          | 82,69                  | -100.4            |                                                    |                                            |
| 1515                               |                                  |                                   |               | 2.8                      | 16.1             | 7.57          | 5408                 | 0.60                                          | 71.86                  | -1041             |                                                    |                                            |
| 1520                               |                                  |                                   |               | 3.2                      | 16.0             | 7.57          | 5442                 | 0.63                                          | 61.45                  | -10611            |                                                    |                                            |
| 1525                               |                                  |                                   |               | 3.4                      | 16.1             | 7.57          | 5432                 | 0.63                                          | 54.12                  | -108.2            |                                                    |                                            |
| 1530                               |                                  |                                   |               | 3.6                      | 16.1             | 7.57          | 5404                 | 0,60                                          | 49.58                  | -109.6            |                                                    |                                            |
| 1535                               | _                                |                                   |               | 3.8                      | 16.1             | 7,57          | 5355                 | 0,49                                          | 39.98                  | P.511-            | C                                                  | c) 0 12110                                 |
| 1540                               |                                  |                                   |               | 4.0                      | 16:1             | 7.57          | 5363                 | 0.44                                          | 38.52                  | -114.3            | dample t                                           | 9km@, 1540                                 |

NU-

Sample ID:

| TIAL ENGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HALLEY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ALDRICH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| THE RESERVE THE PARTY OF THE PA |

| HALE                             | RICH                              |                              |                           | LOW                                   | FLOW        | //MNA          | FIELD                                  | SAM                                            | PLING F                               | ORM                              |                                                      | Page 1 of 1                                     |
|----------------------------------|-----------------------------------|------------------------------|---------------------------|---------------------------------------|-------------|----------------|----------------------------------------|------------------------------------------------|---------------------------------------|----------------------------------|------------------------------------------------------|-------------------------------------------------|
| PROJECT<br>OCATION<br>CLIENT     |                                   | AN ACON<br>ELOLO             | etes, u                   | G-oc<br>A (                           |             |                | -                                      |                                                | · · · · · · · · · · · · · · · · · · · |                                  | H&A FILE NO. PROJECT MGR. FIELD REP. SAMPLING DATE   | Page 1 of 1 0209325.000 KAPAFOS FISHER 8/12/24  |
| Well ID: Start time: Finish Time | M 163                             | u - 6<br>-20                 | •                         | th:<br>Top Of Screen<br>Bottom Of Scr |             | (3. <b>9</b> 0 | ft Depth                               | Depth To Wa<br>Of Pump Inta<br>Vell Installed: |                                       | -2 * ft                          | Purging Device: Tubing Present In Well: Tubing Type: | PERI<br>YES<br>DRE                              |
| Elapsed<br>Time<br>(min:sec)     | Depth To Water  From Casing  (ft) | Pump<br>Setting<br>(sec/sec) | Purge<br>Rate<br>(ml/min) | Cumulative<br>Purge Vol.<br>(gal)     | Temperature | pH<br>+/- 0.1  | Conduct-<br>ivity<br>(us/cm)<br>+/- 3% | Dissolved Oxygen (mg/L) +/- 10%                | Turbidity<br>(NTU)<br><50             | ORP/eH<br>(mv)<br>+/- 10 mv      | MALFUNC<br>READING                                   | E SENSOY<br>MON NO DTW<br>S POSSIBLE<br>Imments |
| 16:20<br>16:25<br>16:30<br>16:35 |                                   |                              |                           | 0.5                                   | 13.1        | 7.63 7.57 7.52 | 2865<br>2412<br>1985                   | 2.27<br>2.88<br>2.00                           | 200.31<br>146.21<br>39.01<br>7.69     | -66-7<br>-73.9<br>-78.7<br>-91.5 | No odok                                              | OR SHEEN                                        |
| 16 45                            |                                   |                              |                           | 1.5                                   | 12.9        | 7.42           | 1619                                   | 0.31                                           | 1.60                                  | -100-8<br>-112-2<br>-116-7       | OBSERVE                                              | THREGAOT                                        |
| 16:55                            |                                   |                              |                           | 3.0                                   | 12.9        | 7.40           | 1579                                   | 0.21                                           | 0.96                                  | -124.7                           |                                                      |                                                 |
|                                  |                                   |                              |                           |                                       |             |                |                                        |                                                |                                       |                                  | Sampled 6                                            | 1705                                            |
|                                  |                                   |                              |                           |                                       |             |                |                                        |                                                |                                       |                                  |                                                      |                                                 |
|                                  |                                   |                              |                           |                                       |             |                |                                        |                                                |                                       |                                  | Sample ID: Mw-6                                      |                                                 |

| APPENDIX B Laboratory Reports and Data Usability Summary Report |
|-----------------------------------------------------------------|
|                                                                 |



March 5, 2024

Andrew Kaparos Hart Crowser, Inc. A Division of Haley & Aldrich, Inc. 3131 Elliott Avenue, Suite 600 Seattle, WA 98121

Re: Analytical Data for Project 0209325-000 Laboratory Reference No. 2402-047

Dear Andrew:

Enclosed are the analytical results and associated quality control data for samples submitted on February 7, 2024.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

**Enclosures** 

Project: 0209325-000

#### **Case Narrative**

Samples were collected on February 1 and 2, 2024 and received by the laboratory on February 7, 2024. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below. However the soil results for the QA/QC samples are reported on a wet-weight basis.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

#### **NWTPH-Dx Analysis**

The surrogate percent recovery in sample MW-3 was below the control limit of 50% due to matrix effects. The sample was re-extracted with the same result. The percent recovery for the silica gel cleanup for this sample was within control limits due to the natural tendency for extracts to concentrate slightly during the cleanup process.

#### Dissolved Metals by EPA 200.8/7470A Analysis

The dissolved field filtered samples MW-1,MW-3 and MW-2 were received containing solid material. The samples were digested according to the OnSite Environmental standard operating procedure.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 0209325-000

## DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

| Analyte                 | Result           | PQL            | Method         | Date<br>Prepared             | Date<br>Analyzed | Flags      |
|-------------------------|------------------|----------------|----------------|------------------------------|------------------|------------|
| Client ID:              | MW-1             |                |                | •                            | •                |            |
| Laboratory ID:          | 02-047-01        |                |                |                              |                  |            |
| Diesel Range Organics   | ND               | 0.22           | NWTPH-Dx       | 2-6-24                       | 2-6-24           |            |
| Lube Oil Range Organics | ND               | 0.22           | NWTPH-Dx       | 2-6-24                       | 2-6-24           |            |
| Surrogate:              | Percent Recovery | Control Limits |                |                              |                  |            |
| o-Terphenyl             | 69               | 50-150         |                |                              |                  |            |
| Client ID:              | MW-1             |                |                |                              |                  |            |
| Laboratory ID:          | 02-047-01        |                |                |                              |                  |            |
| Diesel Range Organics   | ND               | 0.22           | NWTPH-Dx       | 2-6-24                       | 2-6-24           | X2         |
| Lube Oil Range Organics | ND               | 0.22           | NWTPH-Dx       | 2-6-24                       | 2-6-24           | X2         |
| Surrogate:              | Percent Recovery | Control Limits |                |                              |                  |            |
| o-Terphenyl             | 70               | 50-150         |                |                              |                  |            |
|                         |                  |                |                |                              |                  |            |
| Client ID:              | MW-3             |                |                |                              |                  |            |
| Laboratory ID:          | 02-047-02        |                |                |                              |                  |            |
| Diesel Range Organics   | 0.25             | 0.21           | NWTPH-Dx       | 2-6-24                       | 2-7-24           |            |
| Lube Oil Range Organics | ND               | 0.21           | NWTPH-Dx       | 2-6-24                       | 2-7-24           |            |
| Surrogate:              | Percent Recovery | Control Limits |                |                              |                  |            |
| o-Terphenyl             | 50               | 50-150         |                |                              |                  | Q          |
|                         |                  |                |                |                              |                  |            |
| Client ID:              | MW-3             |                |                |                              |                  |            |
| Laboratory ID:          | 02-047-02        |                |                |                              |                  |            |
| Diesel Range Organics   | ND               | 0.21           | NWTPH-Dx       | 2-6-24                       | 2-7-24           | X2         |
| Lube Oil Range Organics | ND               | 0.21           | NWTPH-Dx       | 2-6-24                       | 2-7-24           | X2         |
| Surrogate:              | Percent Recovery | Control Limits |                |                              |                  |            |
| o-Terphenyl             | 52               | 50-150         |                |                              |                  |            |
|                         |                  |                |                |                              |                  |            |
| Client ID:              | MW-5             |                |                |                              |                  |            |
| Laboratory ID:          | 02-047-03        |                |                |                              |                  |            |
| Diesel Range Organics   | ND               | 0.21           | NWTPH-Dx       | 2-5-24                       | 2-5-24           |            |
| Lube Oil Range Organics | ND               | 0.21           | NWTPH-Dx       | 2-5-24                       | 2-5-24           |            |
| Surrogate:              | Percent Recovery | Control Limits |                |                              |                  |            |
| o-Terphenyl             | 70               | 50-150         |                |                              |                  |            |
| Client ID:              | MW-5             |                |                |                              |                  |            |
| Laboratory ID:          | 02-047-03        |                |                |                              |                  |            |
| Diesel Range Organics   | ND               | 0.21           | NWTPH-Dx       | 2-5-24                       | 2-5-24           | X2         |
| Lube Oil Range Organics | ND               | 0.21           | NWTPH-Dx       | 2-5-2 <del>4</del><br>2-5-24 | 2-5-24<br>2-5-24 | X2<br>X2   |
| Surrogate:              | Percent Recovery | Control Limits | INVV I T TI-DX | Z-J-Z4                       | Z-J-Z4           | Λ <u>∠</u> |
| o-Terphenyl             | 78               | 50-150         |                |                              |                  |            |
| 0- reipilettyt          | 70               | 30-130         |                |                              |                  |            |

Project: 0209325-000

## DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

| Analyte                 | Result           | PQL            | Method   | Date<br>Prepared | Date<br>Analyzed | Flags  |
|-------------------------|------------------|----------------|----------|------------------|------------------|--------|
| Client ID:              | MW-6             | ı «L           | Wictifod | Trepared         | Analyzea         | i lugo |
| Laboratory ID:          | 02-047-04        |                |          |                  |                  |        |
| Diesel Range Organics   | ND               | 0.20           | NWTPH-Dx | 2-5-24           | 2-5-24           |        |
| Lube Oil Range Organics | ND               | 0.20           | NWTPH-Dx | 2-5-24           | 2-5-24           |        |
| Surrogate:              | Percent Recovery | Control Limits |          |                  |                  |        |
| o-Terphenyl             | 68               | 50-150         |          |                  |                  |        |
| , ,                     |                  |                |          |                  |                  |        |
| Client ID:              | MW-6             |                |          |                  |                  |        |
| Laboratory ID:          | 02-047-04        |                |          |                  |                  |        |
| Diesel Range Organics   | ND               | 0.20           | NWTPH-Dx | 2-5-24           | 2-5-24           | X2     |
| Lube Oil Range Organics | ND               | 0.20           | NWTPH-Dx | 2-5-24           | 2-5-24           | X2     |
| Surrogate:              | Percent Recovery | Control Limits |          |                  |                  |        |
| o-Terphenyl             | 67               | 50-150         |          |                  |                  |        |
|                         |                  |                |          |                  |                  |        |
| Client ID:              | MW-4             |                |          |                  |                  |        |
| Laboratory ID:          | 02-047-05        |                |          |                  |                  |        |
| Diesel Range Organics   | ND               | 0.20           | NWTPH-Dx | 2-5-24           | 2-5-24           |        |
| Lube Oil Range Organics | ND               | 0.20           | NWTPH-Dx | 2-5-24           | 2-5-24           |        |
| Surrogate:              | Percent Recovery | Control Limits |          |                  |                  |        |
| o-Terphenyl             | 91               | 50-150         |          |                  |                  |        |
|                         |                  |                |          |                  |                  |        |
| Client ID:              | MW-4             |                |          |                  |                  |        |
| Laboratory ID:          | 02-047-05        |                |          |                  |                  |        |
| Diesel Range Organics   | ND               | 0.20           | NWTPH-Dx | 2-5-24           | 2-5-24           | X2     |
| Lube Oil Range Organics | ND               | 0.20           | NWTPH-Dx | 2-5-24           | 2-5-24           | X2     |
| Surrogate:              | Percent Recovery | Control Limits |          |                  |                  |        |
| o-Terphenyl             | 95               | 50-150         |          |                  |                  |        |
|                         |                  |                |          |                  |                  |        |
| Client ID:              | MW-2             |                |          |                  |                  |        |
| Laboratory ID:          | 02-047-06        |                |          |                  |                  |        |
| Diesel Range Organics   | 0.23             | 0.23           | NWTPH-Dx | 2-6-24           | 2-6-24           |        |
| Lube Oil Range Organics | 0.30             | 0.23           | NWTPH-Dx | 2-6-24           | 2-6-24           |        |
| Surrogate:              | Percent Recovery | Control Limits |          |                  |                  |        |
| o-Terphenyl             | 52               | 50-150         |          |                  |                  |        |
| - 1 7                   |                  |                |          |                  |                  |        |
| Client ID:              | MW-2             |                |          |                  |                  |        |
| Laboratory ID:          | 02-047-06        |                |          |                  |                  |        |
| Diesel Range Organics   | ND               | 0.23           | NWTPH-Dx | 2-6-24           | 2-6-24           | X2     |
| Lube Oil Range Organics | ND               | 0.23           | NWTPH-Dx | 2-6-24           | 2-6-24           | X2     |
| Surrogate:              | Percent Recovery | Control Limits |          | -                | -                |        |
| o-Terphenyl             | 55               | 50-150         |          |                  |                  |        |
| - r J                   |                  |                |          |                  |                  |        |

Project: 0209325-000

## DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

|                         |                  |                |          | Date     | Date     |       |
|-------------------------|------------------|----------------|----------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method   | Prepared | Analyzed | Flags |
| METHOD BLANK            |                  |                |          |          |          |       |
| Laboratory ID:          | MB0205W1         |                |          |          |          |       |
| Diesel Range Organics   | ND               | 0.16           | NWTPH-Dx | 2-5-24   | 2-5-24   |       |
| Lube Oil Range Organics | ND               | 0.16           | NWTPH-Dx | 2-5-24   | 2-5-24   |       |
| Surrogate:              | Percent Recovery | Control Limits |          |          |          |       |
| o-Terphenyl             | 94               | 50-150         |          |          |          |       |
| Laboratory ID:          | MB0205W1         |                |          |          |          |       |
| Diesel Range Organics   | ND               | 0.16           | NWTPH-Dx | 2-5-24   | 2-5-24   | X2    |
| Lube Oil Range Organics | ND               | 0.16           | NWTPH-Dx | 2-5-24   | 2-5-24   | X2    |
| Surrogate:              | Percent Recovery | Control Limits |          |          |          |       |
| o-Terphenyl             | 117              | 50-150         |          |          |          |       |
| Laboratory ID:          | MB0206W1         |                |          |          |          |       |
| Diesel Range Organics   | ND               | 0.16           | NWTPH-Dx | 2-6-24   | 2-6-24   |       |
| Lube Oil Range Organics | ND               | 0.16           | NWTPH-Dx | 2-6-24   | 2-6-24   |       |
| Surrogate:              | Percent Recovery | Control Limits |          |          |          |       |
| o-Terphenyl             | 88               | 50-150         |          |          |          |       |
| Laboratory ID:          | MB0206W1         |                |          |          |          |       |
| Diesel Range Organics   | ND               | 0.16           | NWTPH-Dx | 2-6-24   | 2-6-24   | X2    |
| Lube Oil Range Organics | ND               | 0.16           | NWTPH-Dx | 2-6-24   | 2-6-24   | X2    |
| Surrogate:              | Percent Recovery | Control Limits |          |          |          |       |
| o-Terphenyl             | 99               | 50-150         |          |          |          |       |

Project: 0209325-000

## DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

|                | Result   |       | Spike Level |    | Source<br>Result | Percent<br>Recovery |     | Recovery<br>Limits |     | RPD<br>Limit | Flags |
|----------------|----------|-------|-------------|----|------------------|---------------------|-----|--------------------|-----|--------------|-------|
| Analyte        |          |       |             |    |                  |                     |     |                    | RPD |              |       |
| DUPLICATE      |          |       |             |    |                  |                     |     |                    |     |              |       |
| Laboratory ID: | SB0205W1 |       |             |    |                  |                     |     |                    |     |              |       |
|                | ORIG     | DUP   |             |    |                  |                     |     |                    |     |              |       |
| Diesel Fuel #2 | 0.398    | 0.387 | NA          | NA |                  | NA                  |     | NA                 | 3   | 40           |       |
| Surrogate:     |          |       |             |    |                  |                     |     |                    |     |              |       |
| o-Terphenyl    |          |       |             |    |                  | 95                  | 91  | 50-150             |     |              |       |
| Laboratory ID: | SB0205W1 |       |             |    |                  |                     |     |                    |     |              |       |
|                | ORIG     | DUP   |             |    |                  |                     |     |                    |     |              |       |
| Diesel Fuel #2 | 0.401    | 0.373 | NA          | NA |                  | NA                  |     | NA                 | 7   | 40           | X2    |
| Surrogate:     |          |       |             |    |                  |                     |     |                    |     |              |       |
| o-Terphenyl    |          |       |             |    |                  | 99                  | 92  | 50-150             |     |              |       |
| Laboratory ID: | SB0206W1 |       |             |    |                  |                     |     |                    |     |              |       |
|                | ORIG     | DUP   |             |    |                  |                     |     |                    |     |              |       |
| Diesel Fuel #2 | 0.405    | 0.373 | NA          | NA |                  | NA                  |     | NA                 | 8   | 40           |       |
| Surrogate:     |          |       |             |    |                  |                     |     |                    |     |              |       |
| o-Terphenyl    |          |       |             |    |                  | 101                 | 100 | 50-150             |     |              |       |
| Laboratory ID: | SB0206W1 |       |             |    |                  |                     |     |                    |     |              |       |
|                | ORIG     | DUP   |             |    |                  |                     |     |                    |     |              |       |
| Diesel Fuel #2 | 0.474    | 0.366 | NA          | NA |                  | NA                  |     | NA                 | 26  | 40           | X2    |
| Surrogate:     |          |       |             |    |                  |                     |     |                    |     |              |       |
| o-Terphenyl    |          |       |             |    |                  | 116                 | 100 | 50-150             |     |              |       |

### **DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL**

|                |               |       | Source | Percent  | Recovery |     | RPD   |       |
|----------------|---------------|-------|--------|----------|----------|-----|-------|-------|
| Analyte        | nalyte Result |       | Result | Recovery | Limits   | RPD | Limit | Flags |
| SPIKE BLANK    |               |       |        |          |          |     |       |       |
| Laboratory ID: | SB0205W1      |       |        |          |          |     |       |       |
| -              |               |       |        |          |          |     |       |       |
| Diesel Fuel #2 | 0.398         | 0.500 | NA     | 80       | 53-126   | NA  | NA    |       |
| Surrogate:     |               |       |        |          |          |     |       |       |
| o-Terphenyl    |               |       |        | 95       | 50-150   |     |       |       |
| Laboratory ID: | SB0205W1 SG   |       |        |          |          |     |       |       |
| Laboratory 12. | 02020011100   |       |        |          |          |     |       |       |
| Diesel Fuel #2 | 0.401         | 0.500 | NA     | 80       | 53-126   | NA  | NA    | X2    |
| Surrogate:     |               |       |        |          |          |     |       |       |
| o-Terphenyl    |               |       |        | 99       | 50-150   |     |       |       |
| Laboratory ID: | SB0206W1      |       |        |          |          |     |       |       |
|                | 020200        |       |        |          |          |     |       |       |
| Diesel Fuel #2 | 0.405         | 0.500 | NA     | 81       | 53-126   | NA  | NA    |       |
| Surrogate:     |               |       |        |          |          |     |       |       |
| o-Terphenyl    |               |       |        | 101      | 50-150   |     |       |       |
| Laboratory ID: | SB0206W1 SG   |       |        |          |          |     |       |       |
|                |               |       |        |          |          |     |       |       |
| Diesel Fuel #2 | 0.474         | 0.500 | NA     | 95       | 53-126   | NA  | NA    | X2    |
| Surrogate:     |               |       |        |          |          |     |       |       |
| o-Terphenyl    |               |       |        | 116      | 50-150   |     |       |       |

Project: 0209325-000

# PAHs EPA 8270E/SIM

Matrix: Water Units: ug/L

| Analyta                 | Result           | DOL            | Mathad        | Date     | Date     | Elege |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte Client ID:      | MW-1             | PQL            | Method        | Prepared | Analyzed | Flags |
|                         |                  |                |               |          |          |       |
| Laboratory ID:          | 02-047-01        |                |               |          |          |       |
| Naphthalene             | ND               | 0.095          | EPA 8270E/SIM | 2-5-24   | 2-6-24   |       |
| 2-Methylnaphthalene     | ND               | 0.095          | EPA 8270E/SIM | 2-5-24   | 2-6-24   |       |
| 1-Methylnaphthalene     | ND               | 0.095          | EPA 8270E/SIM | 2-5-24   | 2-6-24   |       |
| Acenaphthylene          | ND               | 0.095          | EPA 8270E/SIM | 2-5-24   | 2-6-24   |       |
| Acenaphthene            | ND               | 0.095          | EPA 8270E/SIM | 2-5-24   | 2-6-24   |       |
| Fluorene                | ND               | 0.095          | EPA 8270E/SIM | 2-5-24   | 2-6-24   |       |
| Phenanthrene            | ND               | 0.095          | EPA 8270E/SIM | 2-5-24   | 2-6-24   |       |
| Anthracene              | ND               | 0.095          | EPA 8270E/SIM | 2-5-24   | 2-6-24   |       |
| Fluoranthene            | ND               | 0.095          | EPA 8270E/SIM | 2-5-24   | 2-6-24   |       |
| Pyrene                  | ND               | 0.095          | EPA 8270E/SIM | 2-5-24   | 2-6-24   |       |
| Benzo[a]anthracene      | ND               | 0.0095         | EPA 8270E/SIM | 2-5-24   | 2-6-24   |       |
| Chrysene                | ND               | 0.0095         | EPA 8270E/SIM | 2-5-24   | 2-6-24   |       |
| Benzo[b]fluoranthene    | ND               | 0.0095         | EPA 8270E/SIM | 2-5-24   | 2-6-24   |       |
| Benzo(j,k)fluoranthene  | ND               | 0.0095         | EPA 8270E/SIM | 2-5-24   | 2-6-24   |       |
| Benzo[a]pyrene          | ND               | 0.0095         | EPA 8270E/SIM | 2-5-24   | 2-6-24   |       |
| Indeno(1,2,3-c,d)pyrene | ND               | 0.0095         | EPA 8270E/SIM | 2-5-24   | 2-6-24   |       |
| Dibenz[a,h]anthracene   | ND               | 0.0095         | EPA 8270E/SIM | 2-5-24   | 2-6-24   |       |
| Benzo[g,h,i]perylene    | ND               | 0.0095         | EPA 8270E/SIM | 2-5-24   | 2-6-24   |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 55               | 26-106         |               |          |          |       |
| D                       | 70               | 15 101         |               |          |          |       |

Pyrene-d10 72 45-104 Terphenyl-d14 93 43-114

Project: 0209325-000

# PAHs EPA 8270E/SIM

Matrix: Water Units: ug/L

| Analyte                 | Result           | PQL            | Method        | Date<br>Prepared | Date<br>Analyzed | Flags  |
|-------------------------|------------------|----------------|---------------|------------------|------------------|--------|
| Client ID:              | MW-3             | FQL            | Wethou        | Fiepaieu         | Allalyzeu        | i iays |
| Laboratory ID:          | 02-047-02        |                |               |                  |                  |        |
| Naphthalene             | ND               | 0.095          | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| 2-Methylnaphthalene     | ND               | 0.095          | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| 1-Methylnaphthalene     | ND               | 0.095          | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Acenaphthylene          | ND               | 0.095          | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Acenaphthene            | ND               | 0.095          | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Fluorene                | ND               | 0.095          | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Phenanthrene            | ND               | 0.095          | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Anthracene              | ND               | 0.095          | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Fluoranthene            | ND               | 0.095          | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Pyrene                  | ND               | 0.095          | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Benzo[a]anthracene      | ND               | 0.0095         | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Chrysene                | ND               | 0.0095         | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Benzo[b]fluoranthene    | ND               | 0.0095         | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Benzo(j,k)fluoranthene  | ND               | 0.0095         | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Benzo[a]pyrene          | ND               | 0.0095         | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Indeno(1,2,3-c,d)pyrene | ND               | 0.0095         | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Dibenz[a,h]anthracene   | ND               | 0.0095         | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Benzo[g,h,i]perylene    | ND               | 0.0095         | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Surrogate:              | Percent Recovery | Control Limits |               |                  |                  |        |
| 2-Fluorobiphenyl        | 49               | 26-106         |               |                  |                  |        |
| D                       | <b>50</b>        | 45 404         |               |                  |                  |        |

Pyrene-d10 52 45-104 Terphenyl-d14 65 43-114

Project: 0209325-000

# PAHs EPA 8270E/SIM

Matrix: Water Units: ug/L

| Analyte                 | Result           | PQL            | Method        | Date<br>Prepared | Date<br>Analyzed | Flags  |
|-------------------------|------------------|----------------|---------------|------------------|------------------|--------|
| Client ID:              | MW-5             | F QL           | Wethou        | Fiepaieu         | Allalyzeu        | i iags |
| Laboratory ID:          | 02-047-03        |                |               |                  |                  |        |
| Naphthalene             | ND               | 0.098          | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| 2-Methylnaphthalene     | ND               | 0.098          | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| 1-Methylnaphthalene     | ND               | 0.098          | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Acenaphthylene          | ND               | 0.098          | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Acenaphthene            | ND               | 0.098          | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Fluorene                | ND               | 0.098          | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Phenanthrene            | ND               | 0.098          | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Anthracene              | ND               | 0.098          | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Fluoranthene            | ND               | 0.098          | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Pyrene                  | ND               | 0.098          | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Benzo[a]anthracene      | ND               | 0.0098         | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Chrysene                | ND               | 0.0098         | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Benzo[b]fluoranthene    | ND               | 0.0098         | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Benzo(j,k)fluoranthene  | ND               | 0.0098         | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Benzo[a]pyrene          | ND               | 0.0098         | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Indeno(1,2,3-c,d)pyrene | ND               | 0.0098         | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Dibenz[a,h]anthracene   | ND               | 0.0098         | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Benzo[g,h,i]perylene    | ND               | 0.0098         | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Surrogate:              | Percent Recovery | Control Limits |               |                  |                  |        |
| 2-Fluorobiphenyl        | 44               | 26-106         |               |                  |                  |        |

 Surrogate:
 Percent Recovery
 Control Limit

 2-Fluorobiphenyl
 44
 26-106

 Pyrene-d10
 61
 45-104

 Terphenyl-d14
 70
 43-114

Project: 0209325-000

# PAHs EPA 8270E/SIM

Matrix: Water Units: ug/L

| Analyte                 | Result           | PQL            | Method        | Date<br>Prepared | Date<br>Analyzed | Flags |
|-------------------------|------------------|----------------|---------------|------------------|------------------|-------|
| Client ID:              | MW-6             |                |               |                  |                  |       |
| Laboratory ID:          | 02-047-04        |                |               |                  |                  |       |
| Naphthalene             | ND               | 0.095          | EPA 8270E/SIM | 2-7-24           | 2-7-24           |       |
| 2-Methylnaphthalene     | ND               | 0.095          | EPA 8270E/SIM | 2-7-24           | 2-7-24           |       |
| 1-Methylnaphthalene     | ND               | 0.095          | EPA 8270E/SIM | 2-7-24           | 2-7-24           |       |
| Acenaphthylene          | ND               | 0.095          | EPA 8270E/SIM | 2-7-24           | 2-7-24           |       |
| Acenaphthene            | ND               | 0.095          | EPA 8270E/SIM | 2-7-24           | 2-7-24           |       |
| Fluorene                | ND               | 0.095          | EPA 8270E/SIM | 2-7-24           | 2-7-24           |       |
| Phenanthrene            | ND               | 0.095          | EPA 8270E/SIM | 2-7-24           | 2-7-24           |       |
| Anthracene              | ND               | 0.095          | EPA 8270E/SIM | 2-7-24           | 2-7-24           |       |
| Fluoranthene            | ND               | 0.095          | EPA 8270E/SIM | 2-7-24           | 2-7-24           |       |
| Pyrene                  | ND               | 0.095          | EPA 8270E/SIM | 2-7-24           | 2-7-24           |       |
| Benzo[a]anthracene      | ND               | 0.0095         | EPA 8270E/SIM | 2-7-24           | 2-7-24           |       |
| Chrysene                | ND               | 0.0095         | EPA 8270E/SIM | 2-7-24           | 2-7-24           |       |
| Benzo[b]fluoranthene    | ND               | 0.0095         | EPA 8270E/SIM | 2-7-24           | 2-7-24           |       |
| Benzo(j,k)fluoranthene  | ND               | 0.0095         | EPA 8270E/SIM | 2-7-24           | 2-7-24           |       |
| Benzo[a]pyrene          | ND               | 0.0095         | EPA 8270E/SIM | 2-7-24           | 2-7-24           |       |
| Indeno(1,2,3-c,d)pyrene | ND               | 0.0095         | EPA 8270E/SIM | 2-7-24           | 2-7-24           |       |
| Dibenz[a,h]anthracene   | ND               | 0.0095         | EPA 8270E/SIM | 2-7-24           | 2-7-24           |       |
| Benzo[g,h,i]perylene    | ND               | 0.0095         | EPA 8270E/SIM | 2-7-24           | 2-7-24           |       |
| Surrogate:              | Percent Recovery | Control Limits |               |                  |                  |       |
| 2-Fluorobiphenyl        | 56               | 26-106         |               |                  |                  |       |
| Pyrene-d10              | 60               | 45-104         |               |                  |                  |       |

Pyrene-d10 60 45-104 Terphenyl-d14 63 43-114

Project: 0209325-000

# PAHs EPA 8270E/SIM

Matrix: Water Units: ug/L

| Analyte                 | Result           | PQL            | Method        | Date<br>Prepared | Date<br>Analyzed | Flags |
|-------------------------|------------------|----------------|---------------|------------------|------------------|-------|
| Client ID:              | MW-4             |                |               |                  |                  |       |
| Laboratory ID:          | 02-047-05        |                |               |                  |                  |       |
| Naphthalene             | ND               | 0.095          | EPA 8270E/SIM | 2-7-24           | 2-7-24           |       |
| 2-Methylnaphthalene     | ND               | 0.095          | EPA 8270E/SIM | 2-7-24           | 2-7-24           |       |
| 1-Methylnaphthalene     | ND               | 0.095          | EPA 8270E/SIM | 2-7-24           | 2-7-24           |       |
| Acenaphthylene          | ND               | 0.095          | EPA 8270E/SIM | 2-7-24           | 2-7-24           |       |
| Acenaphthene            | ND               | 0.095          | EPA 8270E/SIM | 2-7-24           | 2-7-24           |       |
| Fluorene                | ND               | 0.095          | EPA 8270E/SIM | 2-7-24           | 2-7-24           |       |
| Phenanthrene            | ND               | 0.095          | EPA 8270E/SIM | 2-7-24           | 2-7-24           |       |
| Anthracene              | ND               | 0.095          | EPA 8270E/SIM | 2-7-24           | 2-7-24           |       |
| Fluoranthene            | ND               | 0.095          | EPA 8270E/SIM | 2-7-24           | 2-7-24           |       |
| Pyrene                  | ND               | 0.095          | EPA 8270E/SIM | 2-7-24           | 2-7-24           |       |
| Benzo[a]anthracene      | ND               | 0.0095         | EPA 8270E/SIM | 2-7-24           | 2-7-24           |       |
| Chrysene                | ND               | 0.0095         | EPA 8270E/SIM | 2-7-24           | 2-7-24           |       |
| Benzo[b]fluoranthene    | ND               | 0.0095         | EPA 8270E/SIM | 2-7-24           | 2-7-24           |       |
| Benzo(j,k)fluoranthene  | ND               | 0.0095         | EPA 8270E/SIM | 2-7-24           | 2-7-24           |       |
| Benzo[a]pyrene          | ND               | 0.0095         | EPA 8270E/SIM | 2-7-24           | 2-7-24           |       |
| Indeno(1,2,3-c,d)pyrene | ND               | 0.0095         | EPA 8270E/SIM | 2-7-24           | 2-7-24           |       |
| Dibenz[a,h]anthracene   | ND               | 0.0095         | EPA 8270E/SIM | 2-7-24           | 2-7-24           |       |
| Benzo[g,h,i]perylene    | ND               | 0.0095         | EPA 8270E/SIM | 2-7-24           | 2-7-24           |       |
| Surrogate:              | Percent Recovery | Control Limits |               |                  |                  |       |
| 2-Fluorobiphenyl        | 67               | 26-106         |               |                  |                  |       |
| Pyrene-d10              | 75               | 45-104         |               |                  |                  |       |

Pyrene-d10 75 45-104 Terphenyl-d14 83 43-114

Project: 0209325-000

# PAHs EPA 8270E/SIM

Matrix: Water Units: ug/L

| Analysis                | Result           | DOL            | Mathad        | Date     | Date     | Elege |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 |                  | PQL            | Method        | Prepared | Analyzed | Flags |
| Client ID:              | MW-2             |                |               |          |          |       |
| Laboratory ID:          | 02-047-06        |                |               |          |          |       |
| Naphthalene             | ND               | 0.098          | EPA 8270E/SIM | 2-5-24   | 2-6-24   |       |
| 2-Methylnaphthalene     | ND               | 0.098          | EPA 8270E/SIM | 2-5-24   | 2-6-24   |       |
| 1-Methylnaphthalene     | ND               | 0.098          | EPA 8270E/SIM | 2-5-24   | 2-6-24   |       |
| Acenaphthylene          | ND               | 0.098          | EPA 8270E/SIM | 2-5-24   | 2-6-24   |       |
| Acenaphthene            | 0.14             | 0.098          | EPA 8270E/SIM | 2-5-24   | 2-6-24   |       |
| Fluorene                | ND               | 0.098          | EPA 8270E/SIM | 2-5-24   | 2-6-24   |       |
| Phenanthrene            | ND               | 0.098          | EPA 8270E/SIM | 2-5-24   | 2-6-24   |       |
| Anthracene              | ND               | 0.098          | EPA 8270E/SIM | 2-5-24   | 2-6-24   |       |
| Fluoranthene            | ND               | 0.098          | EPA 8270E/SIM | 2-5-24   | 2-6-24   |       |
| Pyrene                  | ND               | 0.098          | EPA 8270E/SIM | 2-5-24   | 2-6-24   |       |
| Benzo[a]anthracene      | ND               | 0.0098         | EPA 8270E/SIM | 2-5-24   | 2-6-24   |       |
| Chrysene                | ND               | 0.0098         | EPA 8270E/SIM | 2-5-24   | 2-6-24   |       |
| Benzo[b]fluoranthene    | ND               | 0.0098         | EPA 8270E/SIM | 2-5-24   | 2-6-24   |       |
| Benzo(j,k)fluoranthene  | ND               | 0.0098         | EPA 8270E/SIM | 2-5-24   | 2-6-24   |       |
| Benzo[a]pyrene          | ND               | 0.0098         | EPA 8270E/SIM | 2-5-24   | 2-6-24   |       |
| Indeno(1,2,3-c,d)pyrene | ND               | 0.0098         | EPA 8270E/SIM | 2-5-24   | 2-6-24   |       |
| Dibenz[a,h]anthracene   | ND               | 0.0098         | EPA 8270E/SIM | 2-5-24   | 2-6-24   |       |
| Benzo[g,h,i]perylene    | ND               | 0.0098         | EPA 8270E/SIM | 2-5-24   | 2-6-24   |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 52               | 26-106         |               |          |          |       |
| D                       | 74               | 45 404         |               |          |          |       |

Pyrene-d10 71 45-104 Terphenyl-d14 92 43-114

Project: 0209325-000

# PAHS EPA 8270E/SIM QUALITY CONTROL

Matrix: Water Units: ug/L

| Analyte                 | Result           | PQL            | Method        | Date<br>Prepared | Date<br>Analyzed | Flags  |
|-------------------------|------------------|----------------|---------------|------------------|------------------|--------|
| METHOD BLANK            | Nesuit           | I QL           | Wiethou       | rrepared         | Analyzeu         | i iags |
| Laboratory ID:          | MB0205W1         |                |               |                  |                  |        |
| Naphthalene             | ND               | 0.10           | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| 2-Methylnaphthalene     | ND               | 0.10           | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| 1-Methylnaphthalene     | ND               | 0.10           | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Acenaphthylene          | ND               | 0.10           | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Acenaphthene            | ND               | 0.10           | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Fluorene                | ND               | 0.10           | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Phenanthrene            | ND               | 0.10           | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Anthracene              | ND               | 0.10           | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Fluoranthene            | ND               | 0.10           | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Pyrene                  | ND               | 0.10           | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Benzo[a]anthracene      | ND               | 0.010          | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Chrysene                | ND               | 0.010          | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Benzo[b]fluoranthene    | ND               | 0.010          | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Benzo(j,k)fluoranthene  | ND               | 0.010          | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Benzo[a]pyrene          | ND               | 0.010          | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Indeno(1,2,3-c,d)pyrene | ND               | 0.010          | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Dibenz[a,h]anthracene   | ND               | 0.010          | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Benzo[g,h,i]perylene    | ND               | 0.010          | EPA 8270E/SIM | 2-5-24           | 2-6-24           |        |
| Surrogate:              | Percent Recovery | Control Limits |               |                  |                  |        |
| 2-Fluorobiphenvl        | 63               | 26-106         |               |                  |                  |        |

| Surrogate:       | Percent Recovery | Control Limit |
|------------------|------------------|---------------|
| 2-Fluorobiphenyl | 63               | 26-106        |
| Pyrene-d10       | 75               | 45-104        |
| Terphenyl-d14    | 74               | 43-114        |



Project: 0209325-000

# PAHs EPA 8270E/SIM **QUALITY CONTROL**

Date

Date

Matrix: Water Units: ug/L

|                         |                  |                |               | Date     | Date     |       |  |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|--|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |  |
| METHOD BLANK            |                  |                |               | _        |          |       |  |
| Laboratory ID:          | MB0207W1         |                |               |          |          |       |  |
| Naphthalene             | ND               | 0.10           | EPA 8270E/SIM | 2-7-24   | 2-7-24   |       |  |
| 2-Methylnaphthalene     | ND               | 0.10           | EPA 8270E/SIM | 2-7-24   | 2-7-24   |       |  |
| 1-Methylnaphthalene     | ND               | 0.10           | EPA 8270E/SIM | 2-7-24   | 2-7-24   |       |  |
| Acenaphthylene          | ND               | 0.10           | EPA 8270E/SIM | 2-7-24   | 2-7-24   |       |  |
| Acenaphthene            | ND               | 0.10           | EPA 8270E/SIM | 2-7-24   | 2-7-24   |       |  |
| Fluorene                | ND               | 0.10           | EPA 8270E/SIM | 2-7-24   | 2-7-24   |       |  |
| Phenanthrene            | ND               | 0.10           | EPA 8270E/SIM | 2-7-24   | 2-7-24   |       |  |
| Anthracene              | ND               | 0.10           | EPA 8270E/SIM | 2-7-24   | 2-7-24   |       |  |
| Fluoranthene            | ND               | 0.10           | EPA 8270E/SIM | 2-7-24   | 2-7-24   |       |  |
| Pyrene                  | ND               | 0.10           | EPA 8270E/SIM | 2-7-24   | 2-7-24   |       |  |
| Benzo[a]anthracene      | ND               | 0.010          | EPA 8270E/SIM | 2-7-24   | 2-7-24   |       |  |
| Chrysene                | ND               | 0.010          | EPA 8270E/SIM | 2-7-24   | 2-7-24   |       |  |
| Benzo[b]fluoranthene    | ND               | 0.010          | EPA 8270E/SIM | 2-7-24   | 2-7-24   |       |  |
| Benzo(j,k)fluoranthene  | ND               | 0.010          | EPA 8270E/SIM | 2-7-24   | 2-7-24   |       |  |
| Benzo[a]pyrene          | ND               | 0.010          | EPA 8270E/SIM | 2-7-24   | 2-7-24   |       |  |
| Indeno(1,2,3-c,d)pyrene | ND               | 0.010          | EPA 8270E/SIM | 2-7-24   | 2-7-24   |       |  |
| Dibenz[a,h]anthracene   | ND               | 0.010          | EPA 8270E/SIM | 2-7-24   | 2-7-24   |       |  |
| Benzo[g,h,i]perylene    | ND               | 0.010          | EPA 8270E/SIM | 2-7-24   | 2-7-24   |       |  |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |  |
| 2-Fluorobiphenyl        | 51               | 26-106         |               |          |          |       |  |
|                         |                  |                |               |          |          |       |  |

Pyrene-d10 45-104 66 Terphenyl-d14 65 43-114

# PAHs EPA 8270E/SIM **QUALITY CONTROL**

Matrix: Water Units: ug/L

|                         |       |       |       |       | P  | ercent | Recovery |     | RPD   |       |
|-------------------------|-------|-------|-------|-------|----|--------|----------|-----|-------|-------|
| Analyte                 | Res   | sult  | Spike | Level | Re | covery | Limits   | RPD | Limit | Flags |
| SPIKE BLANKS            |       |       |       |       |    |        |          |     |       |       |
| Laboratory ID:          | SB02  | 05W1  |       |       |    |        |          |     |       |       |
|                         | SB    | SBD   | SB    | SBD   | SE | SBD    |          |     |       |       |
| Naphthalene             | 0.268 | 0.304 | 0.500 | 0.500 | 54 | 61     | 35 - 84  | 13  | 34    |       |
| Acenaphthylene          | 0.297 | 0.352 | 0.500 | 0.500 | 59 | 70     | 44 - 97  | 17  | 29    |       |
| Acenaphthene            | 0.274 | 0.327 | 0.500 | 0.500 | 55 | 65     | 40 - 93  | 18  | 29    |       |
| Fluorene                | 0.279 | 0.333 | 0.500 | 0.500 | 56 | 67     | 46 - 97  | 18  | 24    |       |
| Phenanthrene            | 0.295 | 0.342 | 0.500 | 0.500 | 59 | 68     | 49 - 102 | 15  | 21    |       |
| Anthracene              | 0.296 | 0.355 | 0.500 | 0.500 | 59 | 71     | 50 - 99  | 18  | 21    |       |
| Fluoranthene            | 0.312 | 0.345 | 0.500 | 0.500 | 62 | 69     | 53 - 107 | 10  | 21    |       |
| Pyrene                  | 0.317 | 0.376 | 0.500 | 0.500 | 63 | 75     | 52 - 111 | 17  | 23    |       |
| Benzo[a]anthracene      | 0.320 | 0.387 | 0.500 | 0.500 | 64 | 77     | 51 - 119 | 19  | 20    |       |
| Chrysene                | 0.311 | 0.358 | 0.500 | 0.500 | 62 | 72     | 52 - 113 | 14  | 21    |       |
| Benzo[b]fluoranthene    | 0.387 | 0.459 | 0.500 | 0.500 | 77 | 92     | 50 - 116 | 17  | 24    |       |
| Benzo(j,k)fluoranthene  | 0.292 | 0.345 | 0.500 | 0.500 | 58 | 69     | 54 - 113 | 17  | 22    |       |
| Benzo[a]pyrene          | 0.339 | 0.399 | 0.500 | 0.500 | 68 | 80     | 52 - 110 | 16  | 21    |       |
| Indeno(1,2,3-c,d)pyrene | 0.373 | 0.423 | 0.500 | 0.500 | 75 | 85     | 55 - 114 | 13  | 21    |       |
| Dibenz[a,h]anthracene   | 0.340 | 0.405 | 0.500 | 0.500 | 68 | 81     | 55 - 111 | 17  | 19    |       |
| Benzo[g,h,i]perylene    | 0.334 | 0.395 | 0.500 | 0.500 | 67 | 79     | 52 - 111 | 17  | 20    |       |
| Surrogate:              |       |       |       |       |    |        |          |     |       |       |
| 2-Fluorobiphenyl        |       |       |       |       | 58 | 68     | 26-106   |     |       |       |
| Pyrene-d10              |       |       |       |       | 70 | 79     | 45-104   |     |       |       |
| Terphenyl-d14           |       |       |       |       | 69 | 77     | 43-114   |     |       |       |

# PAHs EPA 8270E/SIM **QUALITY CONTROL**

Matrix: Water Units: ug/L

| Office. ug/L            |       |       |       |                    | Pe  | ercent | Recovery |     | RPD   |       |
|-------------------------|-------|-------|-------|--------------------|-----|--------|----------|-----|-------|-------|
| Analyte                 | Res   | sult  | Spike | Spike Level Recove |     | covery | Limits   | RPD | Limit | Flags |
| SPIKE BLANKS            |       |       |       |                    |     |        |          |     |       |       |
| Laboratory ID:          | SB02  | 07W1  |       |                    |     |        |          |     |       |       |
|                         | SB    | SBD   | SB    | SBD                | SB  | SBD    |          |     |       |       |
| Naphthalene             | 0.343 | 0.358 | 0.500 | 0.500              | 69  | 72     | 35 - 84  | 4   | 34    |       |
| Acenaphthylene          | 0.414 | 0.375 | 0.500 | 0.500              | 83  | 75     | 44 - 97  | 10  | 29    |       |
| Acenaphthene            | 0.368 | 0.339 | 0.500 | 0.500              | 74  | 68     | 40 - 93  | 8   | 29    |       |
| Fluorene                | 0.393 | 0.365 | 0.500 | 0.500              | 79  | 73     | 46 - 97  | 7   | 24    |       |
| Phenanthrene            | 0.385 | 0.374 | 0.500 | 0.500              | 77  | 75     | 49 - 102 | 3   | 21    |       |
| Anthracene              | 0.414 | 0.391 | 0.500 | 0.500              | 83  | 78     | 50 - 99  | 6   | 21    |       |
| Fluoranthene            | 0.464 | 0.437 | 0.500 | 0.500              | 93  | 87     | 53 - 107 | 6   | 21    |       |
| Pyrene                  | 0.442 | 0.436 | 0.500 | 0.500              | 88  | 87     | 52 - 111 | 1   | 23    |       |
| Benzo[a]anthracene      | 0.480 | 0.438 | 0.500 | 0.500              | 96  | 88     | 51 - 119 | 9   | 20    |       |
| Chrysene                | 0.479 | 0.436 | 0.500 | 0.500              | 96  | 87     | 52 - 113 | 9   | 21    |       |
| Benzo[b]fluoranthene    | 0.527 | 0.445 | 0.500 | 0.500              | 105 | 89     | 50 - 116 | 17  | 24    |       |
| Benzo(j,k)fluoranthene  | 0.484 | 0.460 | 0.500 | 0.500              | 97  | 92     | 54 - 113 | 5   | 22    |       |
| Benzo[a]pyrene          | 0.513 | 0.453 | 0.500 | 0.500              | 103 | 91     | 52 - 110 | 12  | 21    |       |
| Indeno(1,2,3-c,d)pyrene | 0.540 | 0.464 | 0.500 | 0.500              | 108 | 93     | 55 - 114 | 15  | 21    |       |
| Dibenz[a,h]anthracene   | 0.514 | 0.460 | 0.500 | 0.500              | 103 | 92     | 55 - 111 | 11  | 19    |       |
| Benzo[g,h,i]perylene    | 0.510 | 0.456 | 0.500 | 0.500              | 102 | 91     | 52 - 111 | 11  | 20    |       |
| Surrogate:              |       |       |       |                    |     |        |          |     |       |       |
| 2-Fluorobiphenyl        |       |       |       |                    | 83  | 73     | 26-106   |     |       |       |
| Pyrene-d10              |       |       |       |                    | 90  | 85     | 45-104   |     |       |       |
| Terphenyl-d14           |       |       |       |                    | 90  | 85     | 43-114   |     |       |       |

# **TOTAL METALS** EPA 200.8/7470A

|                |           |      |           | Date     | Date     |       |
|----------------|-----------|------|-----------|----------|----------|-------|
| Analyte        | Result    | PQL  | Method    | Prepared | Analyzed | Flags |
| Client ID:     | MW-1      |      |           |          |          |       |
| Laboratory ID: | 02-047-01 |      |           |          |          |       |
| Arsenic        | 21        | 4.4  | EPA 200.8 | 2-26-24  | 3-5-24   |       |
| Cadmium        | ND        | 4.4  | EPA 200.8 | 2-26-24  | 3-5-24   |       |
| Chromium       | ND        | 11   | EPA 200.8 | 2-26-24  | 3-5-24   |       |
| Lead           | ND        | 4.4  | EPA 200.8 | 2-26-24  | 3-5-24   |       |
| Mercury        | ND        | 0.50 | EPA 7470A | 2-15-24  | 2-15-24  |       |
| Client ID:     | MW-3      |      |           |          |          |       |
| Laboratory ID: | 02-047-02 |      |           |          |          |       |
| Arsenic        | ND        | 4.4  | EPA 200.8 | 2-26-24  | 3-5-24   |       |
| Cadmium        | ND        | 4.4  | EPA 200.8 | 2-26-24  | 3-5-24   |       |
| Chromium       | ND        | 11   | EPA 200.8 | 2-26-24  | 3-5-24   |       |
| Lead           | ND        | 4.4  | EPA 200.8 | 2-26-24  | 3-5-24   |       |
| Mercury        | ND        | 0.50 | EPA 7470A | 2-15-24  | 2-15-24  |       |
|                |           |      |           |          |          |       |
| Client ID:     | MW-5      |      |           |          |          |       |
| Laboratory ID: | 02-047-03 |      |           |          |          |       |
| Arsenic        | 8.7       | 4.4  | EPA 200.8 | 2-26-24  | 3-5-24   |       |
| Cadmium        | ND        | 4.4  | EPA 200.8 | 2-26-24  | 3-5-24   |       |
| Chromium       | ND        | 11   | EPA 200.8 | 2-26-24  | 3-5-24   |       |
| Lead           | ND        | 4.4  | EPA 200.8 | 2-26-24  | 3-5-24   |       |
| Mercury        | ND        | 0.50 | EPA 7470A | 2-15-24  | 2-15-24  |       |
|                |           |      |           |          |          |       |
| Client ID:     | MW-6      |      |           |          |          |       |
| Laboratory ID: | 02-047-04 |      |           |          |          |       |
| Arsenic        | ND        | 4.4  | EPA 200.8 | 2-26-24  | 3-5-24   |       |
| Cadmium        | ND        | 4.4  | EPA 200.8 | 2-26-24  | 3-5-24   |       |
| Chromium       | ND        | 11   | EPA 200.8 | 2-26-24  | 3-5-24   |       |
| Lead           | ND        | 4.4  | EPA 200.8 | 2-26-24  | 3-5-24   |       |
| Mercury        | ND        | 0.50 | EPA 7470A | 2-15-24  | 2-15-24  |       |

Project: 0209325-000

# TOTAL METALS EPA 200.8/7470A

Matrix: Water
Units: ug/L (ppb)

Chromium

Lead

Mercury

|                |           |      |           | Date     | Date     |       |
|----------------|-----------|------|-----------|----------|----------|-------|
| Analyte        | Result    | PQL  | Method    | Prepared | Analyzed | Flags |
| Client ID:     | MW-4      |      |           |          |          |       |
| Laboratory ID: | 02-047-05 |      |           |          |          |       |
| Arsenic        | ND        | 4.4  | EPA 200.8 | 2-26-24  | 3-5-24   |       |
| Cadmium        | ND        | 4.4  | EPA 200.8 | 2-26-24  | 3-5-24   |       |
| Chromium       | ND        | 11   | EPA 200.8 | 2-26-24  | 3-5-24   |       |
| Lead           | ND        | 4.4  | EPA 200.8 | 2-26-24  | 3-5-24   |       |
| Mercury        | ND        | 0.50 | EPA 7470A | 2-15-24  | 2-15-24  |       |
| Client ID:     | MW-2      |      |           |          |          |       |
| Laboratory ID: | 02-047-06 |      |           |          |          |       |
| Arsenic        | 8.1       | 4.4  | EPA 200.8 | 2-26-24  | 3-5-24   |       |
| Cadmium        | ND        | 4.4  | EPA 200.8 | 2-26-24  | 3-5-24   |       |

EPA 200.8

EPA 200.8

EPA 7470A

2-26-24

2-26-24

2-15-24

3-5-24

3-5-24

2-15-24

11

4.4

0.50

ND

ND

ND

# **TOTAL METALS** EPA 200.8/7470A **QUALITY CONTROL**

|                |           |      |           | Date     | Date     |       |
|----------------|-----------|------|-----------|----------|----------|-------|
| Analyte        | Result    | PQL  | Method    | Prepared | Analyzed | Flags |
| METHOD BLANK   |           |      |           |          |          |       |
| Laboratory ID: | MB0226WM1 |      |           |          |          |       |
| Arsenic        | ND        | 3.3  | EPA 200.8 | 2-26-24  | 2-26-24  |       |
| Cadmium        | ND        | 4.4  | EPA 200.8 | 2-26-24  | 2-26-24  |       |
| Chromium       | ND        | 11   | EPA 200.8 | 2-26-24  | 2-26-24  |       |
| Lead           | ND        | 1.1  | EPA 200.8 | 2-26-24  | 2-26-24  |       |
|                |           |      |           |          |          |       |
| Laboratory ID: | MB0215W1  |      |           |          |          |       |
| Mercury        | ND        | 0.50 | EPA 7470A | 2-15-24  | 2-15-24  |       |

| Analyte        | Res   | sult  | Spike | Level | Source<br>Result | Percent<br>Recovery | Recovery<br>Limits | RPD | RPD<br>Limit | Flags |
|----------------|-------|-------|-------|-------|------------------|---------------------|--------------------|-----|--------------|-------|
| DUPLICATE      |       |       | •     |       |                  |                     |                    |     |              |       |
| Laboratory ID: | 01-06 | 67-08 |       |       |                  |                     |                    |     |              |       |
|                | ORIG  | DUP   |       |       |                  |                     |                    |     |              |       |
| Arsenic        | ND    | ND    | NA    | NA    |                  | NA                  | NA                 | NA  | 20           |       |
| Cadmium        | ND    | ND    | NA    | NA    |                  | NA                  | NA                 | NA  | 20           |       |
| Chromium       | ND    | ND    | NA    | NA    |                  | NA                  | NA                 | NA  | 20           |       |
| Lead           | ND    | ND    | NA    | NA    |                  | NA                  | NA                 | NA  | 20           |       |
| Laboratory ID: | 02-18 | 36-01 |       |       |                  |                     |                    |     |              |       |
| Mercury        | ND    | ND    | NA    | NA    |                  | NA                  | NA                 | NA  | 20           |       |

Project: 0209325-000

# TOTAL METALS EPA 200.8/7470A QUALITY CONTROL

|                |      |       |       |       | Source | Per | cent  | Recovery |     | RPD   |       |
|----------------|------|-------|-------|-------|--------|-----|-------|----------|-----|-------|-------|
| Analyte        | Re   | sult  | Spike | Level | Result | Rec | overy | Limits   | RPD | Limit | Flags |
| MATRIX SPIKES  |      |       |       |       |        |     |       |          |     |       |       |
| Laboratory ID: | 01-0 | 67-08 |       |       |        |     |       |          |     |       |       |
|                | MS   | MSD   | MS    | MSD   |        | MS  | MSD   |          |     |       |       |
| Arsenic        | 113  | 112   | 111   | 111   | ND     | 102 | 101   | 75-125   | 1   | 20    |       |
| Cadmium        | 111  | 109   | 111   | 111   | ND     | 100 | 98    | 75-125   | 2   | 20    |       |
| Chromium       | 112  | 111   | 111   | 111   | ND     | 101 | 100   | 75-125   | 1   | 20    |       |
| Lead           | 109  | 109   | 111   | 111   | ND     | 99  | 98    | 75-125   | 0   | 20    |       |
|                |      |       |       |       |        |     |       |          |     |       |       |
| Laboratory ID: | 02-1 | 86-01 |       |       |        |     |       |          |     |       |       |
| Mercury        | 11.9 | 12.1  | 12.5  | 12.5  | ND     | 95  | 97    | 75-125   | 1   | 20    |       |
| CDIVE DI ANIV  |      |       |       |       |        |     |       |          |     |       |       |
| SPIKE BLANK    |      |       |       |       |        |     |       |          |     |       |       |
| Laboratory ID: |      | 26WM1 |       |       |        |     |       |          |     |       |       |
| Arsenic        | 1    | 12    | 1     | 11    | N/A    | 1   | 01    | 85-115   |     |       |       |
| Cadmium        | 1    | 11    | 1     | 11    | N/A    | 1   | 00    | 85-115   |     |       |       |
| Chromium       | 1    | 10    | 1     | 11    | N/A    | 9   | 99    | 85-115   |     |       |       |
| Lead           | 1    | 12    | 1     | 11    | N/A    | 1   | 01    | 85-115   |     |       |       |
| Laboratory ID: | SB02 | 21W1  |       |       |        |     |       |          |     |       |       |
| Mercury        |      | 1.9   | 1:    | 2.5   | N/A    | 9   | 95    | 80-120   |     |       |       |

# **DISSOLVED METALS** EPA 200.8/7470A

|                |           |      |           | Date     | Date     |       |
|----------------|-----------|------|-----------|----------|----------|-------|
| Analyte        | Result    | PQL  | Method    | Prepared | Analyzed | Flags |
| Client ID:     | MW-1      |      |           |          |          |       |
| Laboratory ID: | 02-047-01 |      |           |          |          |       |
| Arsenic        | 20        | 4.4  | EPA 200.8 | 2-26-24  | 3-5-24   |       |
| Cadmium        | ND        | 4.4  | EPA 200.8 | 2-26-24  | 3-5-24   |       |
| Chromium       | ND        | 11   | EPA 200.8 | 2-26-24  | 3-5-24   |       |
| Lead           | ND        | 4.4  | EPA 200.8 | 2-26-24  | 3-5-24   |       |
| Mercury        | ND        | 0.50 | EPA 7470A |          | 2-15-24  |       |
| Client ID:     | MW-3      |      |           |          |          |       |
| Laboratory ID: | 02-047-02 |      |           |          |          |       |
| Arsenic        | ND        | 4.4  | EPA 200.8 | 2-26-24  | 3-5-24   |       |
| Cadmium        | ND        | 4.4  | EPA 200.8 | 2-26-24  | 3-5-24   |       |
| Chromium       | ND        | 11   | EPA 200.8 | 2-26-24  | 3-5-24   |       |
| Lead           | ND        | 4.4  | EPA 200.8 | 2-26-24  | 3-5-24   |       |
| Mercury        | ND        | 0.50 | EPA 7470A |          | 2-15-24  |       |
|                |           |      |           |          |          |       |
| Client ID:     | MW-5      |      |           |          |          |       |
| Laboratory ID: | 02-047-03 |      |           |          |          |       |
| Arsenic        | 7.7       | 4.0  | EPA 200.8 |          | 3-5-24   |       |
| Cadmium        | ND        | 4.0  | EPA 200.8 |          | 3-5-24   |       |
| Chromium       | ND        | 10   | EPA 200.8 |          | 3-5-24   |       |
| Lead           | ND        | 4.0  | EPA 200.8 |          | 3-5-24   |       |
| Mercury        | ND        | 0.50 | EPA 7470A |          | 2-15-24  |       |
|                |           |      |           |          |          |       |
| Client ID:     | MW-6      |      |           |          |          |       |
| Laboratory ID: | 02-047-04 |      |           |          |          |       |
| Arsenic        | ND        | 4.0  | EPA 200.8 |          | 3-5-24   |       |
| Cadmium        | ND        | 4.0  | EPA 200.8 |          | 3-5-24   |       |
| Chromium       | ND        | 10   | EPA 200.8 |          | 3-5-24   |       |
| Lead           | ND        | 4.0  | EPA 200.8 |          | 3-5-24   |       |
| Mercury        | ND        | 0.50 | EPA 7470A |          | 2-15-24  |       |

2-15-24

Date of Report: March 5, 2024 Samples Submitted: February 7, 2024 Laboratory Reference: 2402-047

Project: 0209325-000

# DISSOLVED METALS EPA 200.8/7470A

Matrix: Water
Units: ug/L (ppb)

Mercury

|                |           |      |           | Date     | Date     |       |
|----------------|-----------|------|-----------|----------|----------|-------|
| Analyte        | Result    | PQL  | Method    | Prepared | Analyzed | Flags |
| Client ID:     | MW-4      |      |           |          |          |       |
| Laboratory ID: | 02-047-05 |      |           |          |          |       |
| Arsenic        | ND        | 4.0  | EPA 200.8 |          | 3-5-24   |       |
| Cadmium        | ND        | 4.0  | EPA 200.8 |          | 3-5-24   |       |
| Chromium       | ND        | 10   | EPA 200.8 |          | 3-5-24   |       |
| Lead           | ND        | 4.0  | EPA 200.8 |          | 3-5-24   |       |
| Mercury        | ND        | 0.50 | EPA 7470A |          | 2-15-24  |       |
|                |           |      |           |          |          |       |
| Client ID:     | MW-2      |      |           |          |          |       |
| Laboratory ID: | 02-047-06 |      |           |          |          |       |
| Arsenic        | 7.8       | 4.4  | EPA 200.8 | 2-26-24  | 3-5-24   |       |
| Cadmium        | ND        | 4.4  | EPA 200.8 | 2-26-24  | 3-5-24   |       |
| Chromium       | ND        | 11   | EPA 200.8 | 2-26-24  | 3-5-24   |       |
| Lead           | ND        | 4.4  | EPA 200.8 | 2-26-24  | 3-5-24   |       |

**EPA 7470A** 

0.50

ND

Project: 0209325-000

# DISSOLVED METALS EPA 200.8/7470A QUALITY CONTROL

|                |           |      |           | Date     | Date     |       |
|----------------|-----------|------|-----------|----------|----------|-------|
| Analyte        | Result    | PQL  | Method    | Prepared | Analyzed | Flags |
| METHOD BLANK   |           |      |           |          |          |       |
| Laboratory ID: | MB0226WM1 |      |           |          |          |       |
| Arsenic        | ND        | 3.3  | EPA 200.8 | 2-26-24  | 2-26-24  |       |
| Cadmium        | ND        | 4.4  | EPA 200.8 | 2-26-24  | 2-26-24  |       |
| Chromium       | ND        | 11   | EPA 200.8 | 2-26-24  | 2-26-24  |       |
| Lead           | ND        | 1.1  | EPA 200.8 | 2-26-24  | 2-26-24  |       |
|                |           |      |           |          |          |       |
| Laboratory ID: | MB0215D1  |      |           |          |          |       |
| Mercury        | ND        | 0.50 | EPA 7470A | 2-15-24  | 2-15-24  |       |
| Labaratar ID.  | MD0205D4  |      |           |          |          |       |
| Laboratory ID: | MB0305D1  |      |           |          |          |       |
| Arsenic        | ND        | 3.0  | EPA 200.8 |          | 3-5-24   |       |
| Cadmium        | ND        | 4.0  | EPA 200.8 |          | 3-5-24   |       |
| Chromium       | ND        | 10   | EPA 200.8 |          | 3-5-24   |       |
| Lead           | ND        | 1.0  | EPA 200.8 |          | 3-5-24   |       |

|                |       |       |       |       | Source | Percent  | Recovery |     | RPD   |       |
|----------------|-------|-------|-------|-------|--------|----------|----------|-----|-------|-------|
| Analyte        | Res   | sult  | Spike | Level | Result | Recovery | Limits   | RPD | Limit | Flags |
| DUPLICATE      |       |       |       |       |        |          |          |     |       |       |
| Laboratory ID: | 01-06 | 67-08 |       |       |        |          |          |     |       |       |
|                | ORIG  | DUP   |       |       |        |          |          |     |       |       |
| Arsenic        | ND    | ND    | NA    | NA    |        | NA       | NA       | NA  | 20    |       |
| Cadmium        | ND    | ND    | NA    | NA    |        | NA       | NA       | NA  | 20    |       |
| Chromium       | ND    | ND    | NA    | NA    |        | NA       | NA       | NA  | 20    |       |
| Lead           | ND    | ND    | NA    | NA    |        | NA       | NA       | NA  | 20    |       |
|                |       |       |       |       |        |          |          |     |       |       |
| Laboratory ID: | 02-04 | 17-01 |       |       |        |          |          |     |       |       |
| Mercury        | ND    | ND    | NA    | NA    |        | NA       | NA       | NA  | 20    |       |
| Laboratory ID: | 02-04 | 15-02 |       |       |        |          |          |     |       |       |
|                | ORIG  | DUP   |       |       |        |          |          |     |       |       |
| Arsenic        | 6.78  | 6.36  | NA    | NA    |        | NA       | NA       | 6   | 20    |       |
| Cadmium        | ND    | ND    | NA    | NA    |        | NA       | NA       | NA  | 20    |       |
| Chromium       | ND    | ND    | NA    | NA    |        | NA       | NA       | NA  | 20    |       |
| Lead           | ND    | ND    | NA    | NA    |        | NA       | NA       | NA  | 20    |       |

# **DISSOLVED METALS** EPA 200.8/7470A **QUALITY CONTROL**

| <b>3</b> (11 ) |       |       |       |       | Source | Per | cent  | Recovery |     | RPD   |       |
|----------------|-------|-------|-------|-------|--------|-----|-------|----------|-----|-------|-------|
| Analyte        | Re    | sult  | Spike | Level | Result | Rec | overy | Limits   | RPD | Limit | Flags |
| MATRIX SPIKES  |       |       |       |       |        |     |       |          |     |       |       |
| Laboratory ID: | 01-0  | 67-08 |       |       |        |     |       |          |     |       |       |
|                | MS    | MSD   | MS    | MSD   |        | MS  | MSD   |          |     |       |       |
| Arsenic        | 113   | 112   | 111   | 111   | ND     | 102 | 101   | 75-125   | 1   | 20    |       |
| Cadmium        | 111   | 109   | 111   | 111   | ND     | 100 | 98    | 75-125   | 2   | 20    |       |
| Chromium       | 112   | 111   | 111   | 111   | ND     | 101 | 100   | 75-125   | 1   | 20    |       |
| Lead           | 109   | 109   | 111   | 111   | ND     | 99  | 98    | 75-125   | 0   | 20    |       |
| Laboratory ID: | 02.0  | 47-01 |       |       |        |     |       |          |     |       |       |
| Laboratory ID: | 12.1  | 12.1  | 12.5  | 12.5  | ND     | 97  | 97    | 75-125   | 0   | 20    |       |
| Mercury        | 12.1  | 12.1  | 12.5  | 12.5  | ND     | 91  | 91    | 75-125   | - 0 | 20    |       |
| Laboratory ID: | 02-04 | 45-02 |       |       |        |     |       |          |     |       |       |
|                | MS    | MSD   | MS    | MSD   |        | MS  | MSD   |          |     |       |       |
| Arsenic        | 89.6  | 90.8  | 80.0  | 80.0  | 6.78   | 104 | 105   | 75-125   | 1   | 20    |       |
| Cadmium        | 76.2  | 77.2  | 80.0  | 80.0  | ND     | 95  | 97    | 75-125   | 1   | 20    |       |
| Chromium       | 80.4  | 79.8  | 80.0  | 80.0  | ND     | 101 | 100   | 75-125   | 1   | 20    |       |
| Lead           | 63.2  | 64.4  | 80.0  | 80.0  | ND     | 79  | 81    | 75-125   | 2   | 20    |       |
|                |       |       |       |       |        |     |       |          |     |       |       |
| SPIKE BLANK    |       |       |       |       |        |     |       |          |     |       |       |
| Laboratory ID: |       | 26WM1 |       |       |        |     |       |          |     |       |       |
| Arsenic        |       | 12    |       | 11    | N/A    |     | 01    | 85-115   |     |       |       |
| Cadmium        |       | 11    |       | 11    | N/A    |     | 00    | 85-115   |     |       |       |
| Chromium       |       | 10    |       | 11    | N/A    |     | 99    | 85-115   |     |       |       |
| Lead           | 1     | 12    | 1     | 11    | N/A    | 1   | 01    | 85-115   |     |       |       |
| Laboratory ID: | SB02  | 215D1 |       |       |        |     |       |          |     |       |       |
| Mercury        |       | 2.0   | 12    | 2.5   | N/A    | ç   | 96    | 80-120   |     |       |       |
|                |       |       |       |       | ,, .   |     |       | 00 .20   |     |       |       |
| Laboratory ID: | SB03  | 05D1  |       |       |        |     |       |          |     |       |       |
| Arsenic        | 79    | 9.8   | 80    | 0.0   | N/A    | 1   | 00    | 85-115   |     |       |       |
| Cadmium        | 81    | 1.2   | 80    | 0.0   | N/A    | 1   | 02    | 85-115   |     |       |       |
| Chromium       | 81    | 1.2   | 80    | 0.0   | N/A    | 1   | 02    | 85-115   |     |       |       |
| Lead           | 80    | ).8   | 80    | 0.0   | N/A    | 1   | 01    | 85-115   |     |       |       |



#### **Data Qualifiers and Abbreviations**

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference





# **Chain of Custody**

|   | Ta. | ) |   |
|---|-----|---|---|
| 1 | ge  |   |   |
|   | -   |   | _ |
|   | 잌   | , |   |
|   | ,   |   |   |
|   |     |   |   |

| Reviewed/Date                       | Received         | Relinquished | Received | Relinquished                   | Received            | Relinquished Affact | Signature                     |   |     |  | 6 MW-2      | S MW-4   | 7 mw-6   | 2 MW-S   | 2 MW-3   | 1 MW-1     | Lab ID Sample Identification | C. PO THITT, S. MSHER | Project Manager:<br>A・ルベア みんじら  | Project Name:     | Project Number:<br>6269325-600 | Company: HALEY 3 ANDRICH | 14648 NE 95th Street • Hedmond, WA 98052<br>Phone: (425) 883-3881 • www.onsite-env.com | Aliayical Laboratory Testing Services |
|-------------------------------------|------------------|--------------|----------|--------------------------------|---------------------|---------------------|-------------------------------|---|-----|--|-------------|----------|----------|----------|----------|------------|------------------------------|-----------------------|---------------------------------|-------------------|--------------------------------|--------------------------|----------------------------------------------------------------------------------------|---------------------------------------|
|                                     |                  |              |          |                                |                     | 7                   | Con                           |   |     |  | 2/2/24      | 2/2/24   | 2/2/24   | 2/2/29   | 2/1/24   |            | Date<br>Sampled              | [                     |                                 | Standard (7 Days) | 2 Days                         | Same Day                 | 00                                                                                     | in )                                  |
| Reviewed/Date                       |                  |              |          |                                | S. X.               | MARGY 3/A           | Company                       |   |     |  | (3:00 GW    | 12:15 Gw | 10:45 RW | 10:20 AW | 16:10 Ew | 15:40 Grav | Time<br>Sampled Matrix       | (other)               |                                 | rd (7 Days)       |                                | Day 1 Day                | (Check One)                                                                            | (in working days)                     |
|                                     |                  |              |          |                                | M                   | SACO                |                               |   |     |  | 2           | 3        | 3        | w %      | 2        | 3          |                              | er of C               | ontaine                         | rs                | ıys                            | Ę.                       |                                                                                        |                                       |
|                                     |                  |              |          |                                | Make                | 1 2/2/24            | Date                          |   |     |  | /           |          |          |          |          |            | NWTP                         | H-Gx                  | SG Clea                         |                   |                                | m +                      | 200                                                                                    | Laboratory                            |
|                                     |                  |              |          |                                | 4 1542              | 15:4                | Time                          |   |     |  | <i>&gt;</i> | X        | Χ,       | _        | <u>X</u> | <u>×</u>   | Volatil                      | es 8260<br>enated     |                                 | 8260              |                                | TH +                     |                                                                                        | √ Number:                             |
| Chron                               | Data F           |              |          | 多                              | a pross &           | 12 AS DI            | Comn                          |   | 1   |  |             |          |          |          | <u> </u> |            | Semiv<br>(with le            | olatiles<br>ow-leve   | 8270/SI<br>el PAHs)<br>IM (low- | M                 |                                |                          | \c                                                                                     | 3<br>3                                |
| Chromatograms with final report □   | Data Package: \$ |              | -        | o upon                         | 15.8 Send           | DISSOLVED           | Comments/Special Instructions |   | igg |  |             |          | <u> </u> | _        |          | _          | PCBs                         | 8082                  | ne Pestio                       | C                 | PA <sub>1</sub>                | 15                       |                                                                                        | 100                                   |
| with final r                        | Standard         |              |          | Risa                           | d (es               | METALS              | al Instructi                  |   |     |  |             |          |          |          |          |            |                              |                       | horus P                         |                   |                                | SIM                      |                                                                                        | 1                                     |
|                                     | Level            |              |          | @ Way                          | (esults             |                     | ons                           | # |     |  |             |          |          | <u> </u> | <b>×</b> |            |                              | RCRA M                |                                 |                   |                                |                          |                                                                                        |                                       |
| Electronic                          |                  |              |          | erse                           | 7                   | 方はど                 |                               |   |     |  |             |          |          |          |          | _          |                              | Metals                | grease)                         | 1664              |                                |                          |                                                                                        |                                       |
| Electronic Data Deliverables (EDDs) | Level IV         |              |          | AND uperliance halogaldichican | 2 Kaparos@ haley 26 | Autored             |                               |   |     |  | ×           | ×        | <b>X</b> | X        | X        | X          |                              | oil and               |                                 | 1664<br>NETA      | rls                            | *                        |                                                                                        |                                       |
| EDDs) 💢                             |                  |              |          |                                | of the              |                     |                               |   |     |  |             |          |          |          |          |            | % Moi:                       | sture                 |                                 |                   |                                |                          |                                                                                        |                                       |



14648 NE 95<sup>th</sup> Street, Redmond, WA 98052 • (425) 883-3881

August 23, 2024

Andrew Kaparos Hart Crowser, Inc. A Division of Haley & Aldrich, Inc. 3131 Elliott Avenue, Suite 600 Seattle, WA 98121

Re: Analytical Data for Project 0209325-000

Laboratory Reference No. 2408-148

Dear Andrew:

Enclosed are the analytical results and associated quality control data for samples submitted on August 13, 2024.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures



Project: 0209325-000

#### Case Narrative

Samples were collected on August 12, 2024 and received by the laboratory on August 13, 2024. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below. However the soil results for the QA/QC samples are reported on a wet-weight basis.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

### **NWTPH Dx Analysis**

The surrogate percent recovery in sample MW-3 was below the control limit of 50% due to matrix effects. The sample was re-extracted with the same result.

#### PAHs EPA 8270E/SIM Analysis

Sample MW-1 had one surrogate recovery outside of control limits. This is within allowance of our standard operating procedure as long as the recovery is above 10%.

# Dissolved Metals EPA 200.8/7470A Analysis

The dissolved field filter samples MW-3, MW-2, and MW-1 were received containing solid material. The samples were digested according to OnSite Environmental standard operating procedure.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.



Project: 0209325-000

# DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

|                         |                  |                |          | Date     | Date     |       |
|-------------------------|------------------|----------------|----------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method   | Prepared | Analyzed | Flags |
| Client ID:              | MW-4             |                |          |          |          |       |
| Laboratory ID:          | 08-148-01        |                |          |          |          |       |
| Diesel Range Organics   | ND               | 0.22           | NWTPH-Dx | 8-16-24  | 8-16-24  |       |
| Lube Oil Range Organics | ND               | 0.22           | NWTPH-Dx | 8-16-24  | 8-16-24  |       |
| Surrogate:              | Percent Recovery | Control Limits |          |          |          |       |
| o-Terphenyl             | 112              | 50-150         |          |          |          |       |
| Client ID:              | MW-3             |                |          |          |          |       |
| Laboratory ID:          | 08-148-02        |                |          |          |          |       |
| Diesel Range Organics   | 0.15             | 0.14           | NWTPH-Dx | 8-16-24  | 8-16-24  |       |
| Lube Oil Range Organics | 0.32             | 0.22           | NWTPH-Dx | 8-16-24  | 8-16-24  |       |
| Surrogate:              | Percent Recovery | Control Limits |          |          |          |       |
| o-Terphenyl             | 33               | 50-150         |          |          |          | Q     |
| Client ID:              | MW-2             |                |          |          |          |       |
| Laboratory ID:          | 08-148-03        |                |          |          |          |       |
| Diesel Range Organics   | 0.33             | 0.21           | NWTPH-Dx | 8-16-24  | 8-17-24  |       |
| Lube Oil Range Organics | 0.35             | 0.21           | NWTPH-Dx | 8-16-24  | 8-17-24  |       |
| Surrogate:              | Percent Recovery | Control Limits |          |          | -        |       |
| o-Terphenyl             | 85               | 50-150         |          |          |          |       |
| , ,                     | · -              |                |          |          |          |       |

Project: 0209325-000

# DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

|                         |                  |                |          | Date     | Date     |       |
|-------------------------|------------------|----------------|----------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method   | Prepared | Analyzed | Flags |
| Client ID:              | MW-5             |                |          |          |          |       |
| Laboratory ID:          | 08-148-04        |                |          |          |          |       |
| Diesel Range Organics   | ND               | 0.20           | NWTPH-Dx | 8-16-24  | 8-16-24  |       |
| Lube Oil Range Organics | ND               | 0.20           | NWTPH-Dx | 8-16-24  | 8-16-24  |       |
| Surrogate:              | Percent Recovery | Control Limits |          |          |          |       |
| o-Terphenyl             | 104              | 50-150         |          |          |          |       |
|                         |                  |                |          |          |          |       |
| Client ID:              | MW-1             |                |          |          |          |       |
|                         |                  |                |          |          |          |       |
| Laboratory ID:          | 08-148-05        |                |          |          |          |       |
| Diesel Range Organics   | ND               | 0.23           | NWTPH-Dx | 8-16-24  | 8-16-24  |       |
| Lube Oil Range Organics | 0.24             | 0.23           | NWTPH-Dx | 8-16-24  | 8-16-24  |       |
| Surrogate:              | Percent Recovery | Control Limits |          |          |          |       |
| o-Terphenyl             | 84               | 50-150         |          |          |          |       |
|                         |                  |                |          |          |          |       |
| Client ID:              | MW-6             |                |          |          |          |       |
| Laboratory ID:          | 08-148-06        |                |          |          |          |       |
| Diesel Range Organics   | ND               | 0.22           | NWTPH-Dx | 8-16-24  | 8-16-24  |       |
| Lube Oil Range Organics | ND               | 0.22           | NWTPH-Dx | 8-16-24  | 8-16-24  |       |
| Surrogate:              | Percent Recovery | Control Limits |          | 0 10 21  | 0.1021   |       |
| •                       |                  |                |          |          |          |       |
| o-Terphenyl             | 117              | 50-150         |          |          |          |       |

Project: 0209325-000

# DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

|                         |                  |                |          | Date     | Date     |       |
|-------------------------|------------------|----------------|----------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method   | Prepared | Analyzed | Flags |
| METHOD BLANK            |                  |                |          |          |          |       |
| Laboratory ID:          | MB0816W1         |                |          |          |          |       |
| Diesel Range Organics   | ND               | 0.10           | NWTPH-Dx | 8-16-24  | 8-16-24  |       |
| Lube Oil Range Organics | ND               | 0.16           | NWTPH-Dx | 8-16-24  | 8-16-24  |       |
| Surrogate:              | Percent Recovery | Control Limits |          |          |          |       |
| o-Terphenyl             | 94               | 50-150         |          |          |          |       |

|                           |             |             | Source | Percent         | Recovery |     | RPD   |       |
|---------------------------|-------------|-------------|--------|-----------------|----------|-----|-------|-------|
| Analyte                   | Result      | Spike Level | Result | Recovery Limits |          | RPD | Limit | Flags |
| DUPLICATE                 |             |             |        |                 |          |     |       |       |
| Laboratory ID:            | SB0816W1    |             |        |                 |          |     |       |       |
|                           | ORIG DUP    |             |        |                 |          |     |       | _     |
| Diesel Fuel #2            | 0.552 0.533 | NA NA       |        | NA              | NA       | 4   | 40    |       |
| Surrogate:                |             |             |        |                 |          |     |       | _     |
| o-Terphenyl               |             |             |        | 125 128         | 50-150   |     |       |       |
| SPIKE BLANK               |             |             |        |                 |          |     |       |       |
| Laboratory ID:            | SB0816W1    |             |        |                 |          |     |       |       |
| Diesel Fuel #2            | 0.552       | 0.500       | NA     | 110             | 50-129   | NA  | NA    |       |
| Surrogate:<br>o-Terphenyl |             |             |        | 125             | 50-150   |     |       |       |

Project: 0209325-000

# PAHs EPA 8270E/SIM

Matrix: Water Units: ug/L

| · ·                     |                  |                |               | Date     | Date     |       |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| Client ID:              | MW-4             |                |               |          |          |       |
| Laboratory ID:          | 08-148-01        |                |               |          |          |       |
| Naphthalene             | ND               | 0.10           | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| 2-Methylnaphthalene     | ND               | 0.10           | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| 1-Methylnaphthalene     | ND               | 0.10           | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Acenaphthylene          | ND               | 0.10           | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Acenaphthene            | ND               | 0.10           | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Fluorene                | ND               | 0.10           | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Phenanthrene            | ND               | 0.10           | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Anthracene              | ND               | 0.10           | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Fluoranthene            | ND               | 0.10           | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Pyrene                  | ND               | 0.10           | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Benzo[a]anthracene      | ND               | 0.010          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Chrysene                | ND               | 0.010          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Benzo[b]fluoranthene    | ND               | 0.010          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Benzo(j,k)fluoranthene  | ND               | 0.010          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Benzo[a]pyrene          | ND               | 0.010          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Indeno(1,2,3-c,d)pyrene | ND               | 0.014          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Dibenz[a,h]anthracene   | ND               | 0.010          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Benzo[g,h,i]perylene    | ND               | 0.012          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 51               | 27-106         |               |          |          |       |
| Pyrene-d10              | 76               | 37-125         |               |          |          |       |

Terphenyl-d14 75 37-110

Project: 0209325-000

# PAHs EPA 8270E/SIM

Matrix: Water Units: ug/L

| -                       |                  |                |               | Date     | Date     |       |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| Client ID:              | MW-3             |                |               |          |          |       |
| Laboratory ID:          | 08-148-02        |                |               |          |          |       |
| Naphthalene             | ND               | 0.098          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| 2-Methylnaphthalene     | ND               | 0.098          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| 1-Methylnaphthalene     | ND               | 0.098          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Acenaphthylene          | ND               | 0.098          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Acenaphthene            | ND               | 0.098          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Fluorene                | ND               | 0.098          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Phenanthrene            | ND               | 0.098          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Anthracene              | ND               | 0.098          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Fluoranthene            | ND               | 0.098          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Pyrene                  | ND               | 0.098          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Benzo[a]anthracene      | ND               | 0.0098         | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Chrysene                | ND               | 0.0098         | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Benzo[b]fluoranthene    | ND               | 0.0098         | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Benzo(j,k)fluoranthene  | ND               | 0.0098         | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Benzo[a]pyrene          | ND               | 0.0098         | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Indeno(1,2,3-c,d)pyrene | ND               | 0.0098         | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Dibenz[a,h]anthracene   | ND               | 0.0098         | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Benzo[g,h,i]perylene    | ND               | 0.0098         | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 59               | 27-106         |               |          |          |       |
| Pyrene-d10              | 64               | 37-125         |               |          |          |       |

Pyrene-d10 64 37-125 Terphenyl-d14 77 37-110

Project: 0209325-000

# PAHs EPA 8270E/SIM

Matrix: Water Units: ug/L

| · ·                     |                  |                |               | Date     | Date     |       |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| Client ID:              | MW-2             |                |               |          |          |       |
| Laboratory ID:          | 08-148-03        |                |               |          |          |       |
| Naphthalene             | ND               | 0.095          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| 2-Methylnaphthalene     | ND               | 0.095          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| 1-Methylnaphthalene     | ND               | 0.095          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Acenaphthylene          | ND               | 0.095          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Acenaphthene            | ND               | 0.095          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Fluorene                | ND               | 0.095          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Phenanthrene            | ND               | 0.095          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Anthracene              | ND               | 0.095          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Fluoranthene            | ND               | 0.095          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Pyrene                  | ND               | 0.095          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Benzo[a]anthracene      | ND               | 0.0095         | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Chrysene                | ND               | 0.0095         | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Benzo[b]fluoranthene    | ND               | 0.0095         | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Benzo(j,k)fluoranthene  | ND               | 0.0095         | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Benzo[a]pyrene          | ND               | 0.0095         | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Indeno(1,2,3-c,d)pyrene | ND               | 0.0095         | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Dibenz[a,h]anthracene   | ND               | 0.0095         | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Benzo[g,h,i]perylene    | ND               | 0.0095         | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 27               | 27-106         |               |          |          |       |
| Pyrene-d10              | 54               | 37-125         |               |          |          |       |

Project: 0209325-000

# PAHs EPA 8270E/SIM

Matrix: Water Units: ug/L

| · ·                     |                  |                |               | Date     | Date     |       |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| Client ID:              | MW-5             |                |               |          |          |       |
| Laboratory ID:          | 08-148-04        |                |               |          |          |       |
| Naphthalene             | ND               | 0.095          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| 2-Methylnaphthalene     | ND               | 0.095          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| 1-Methylnaphthalene     | 0.35             | 0.095          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Acenaphthylene          | ND               | 0.095          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Acenaphthene            | 0.11             | 0.095          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Fluorene                | ND               | 0.095          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Phenanthrene            | ND               | 0.095          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Anthracene              | ND               | 0.095          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Fluoranthene            | ND               | 0.095          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Pyrene                  | ND               | 0.095          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Benzo[a]anthracene      | ND               | 0.0095         | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Chrysene                | ND               | 0.0095         | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Benzo[b]fluoranthene    | ND               | 0.0095         | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Benzo(j,k)fluoranthene  | ND               | 0.0095         | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Benzo[a]pyrene          | ND               | 0.0095         | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Indeno(1,2,3-c,d)pyrene | ND               | 0.0095         | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Dibenz[a,h]anthracene   | ND               | 0.0095         | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Benzo[g,h,i]perylene    | ND               | 0.0095         | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 53               | 27-106         |               |          |          |       |
| Pyrene-d10              | 69               | 37-125         |               |          |          |       |

Terphenyl-d14 37-110 77

Project: 0209325-000

# PAHs EPA 8270E/SIM

Matrix: Water Units: ug/L

|                         |                  |                |               | Date     | Date     |       |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| Client ID:              | MW-1             |                |               |          |          |       |
| Laboratory ID:          | 08-148-05        |                |               |          |          |       |
| Naphthalene             | ND               | 0.10           | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| 2-Methylnaphthalene     | ND               | 0.10           | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| 1-Methylnaphthalene     | ND               | 0.10           | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Acenaphthylene          | ND               | 0.10           | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Acenaphthene            | ND               | 0.10           | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Fluorene                | ND               | 0.10           | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Phenanthrene            | ND               | 0.10           | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Anthracene              | ND               | 0.10           | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Fluoranthene            | ND               | 0.10           | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Pyrene                  | ND               | 0.10           | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Benzo[a]anthracene      | ND               | 0.010          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Chrysene                | ND               | 0.010          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Benzo[b]fluoranthene    | ND               | 0.010          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Benzo(j,k)fluoranthene  | ND               | 0.010          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Benzo[a]pyrene          | ND               | 0.010          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Indeno(1,2,3-c,d)pyrene | ND               | 0.010          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Dibenz[a,h]anthracene   | ND               | 0.010          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Benzo[g,h,i]perylene    | ND               | 0.010          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 68               | 27-106         |               |          |          |       |
| Pyrene-d10              | 74               | 37-125         |               |          |          |       |
| Terphenyl-d14           | 155              | 37-110         |               |          |          | Q     |
| -                       |                  |                |               |          |          |       |

Project: 0209325-000

# PAHs EPA 8270E/SIM

Matrix: Water Units: ug/L

| <b>G</b>                |                  |                |               | Date     | Date     |       |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| Client ID:              | MW-6             |                |               |          |          |       |
| Laboratory ID:          | 08-148-06        |                |               |          |          |       |
| Naphthalene             | ND               | 0.095          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| 2-Methylnaphthalene     | ND               | 0.095          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| 1-Methylnaphthalene     | ND               | 0.095          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Acenaphthylene          | ND               | 0.095          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Acenaphthene            | ND               | 0.095          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Fluorene                | ND               | 0.095          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Phenanthrene            | ND               | 0.095          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Anthracene              | ND               | 0.095          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Fluoranthene            | ND               | 0.095          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Pyrene                  | ND               | 0.095          | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Benzo[a]anthracene      | ND               | 0.0095         | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Chrysene                | ND               | 0.0095         | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Benzo[b]fluoranthene    | ND               | 0.0095         | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Benzo(j,k)fluoranthene  | ND               | 0.0095         | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Benzo[a]pyrene          | ND               | 0.0095         | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Indeno(1,2,3-c,d)pyrene | ND               | 0.0095         | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Dibenz[a,h]anthracene   | ND               | 0.0095         | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Benzo[g,h,i]perylene    | ND               | 0.0095         | EPA 8270E/SIM | 8-19-24  | 8-20-24  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 57               | 27-106         |               |          |          |       |
| Pyrene-d10              | 82               | 37-125         |               |          |          |       |

Terphenyl-d14 37-110 78

Project: 0209325-000

# PAHs EPA 8270E/SIM **QUALITY CONTROL**

Matrix: Water Units: ug/L

| Analyte                 | Result           | PQL            | Method        | Date<br>Prepared | Date<br>Analyzed | Flags  |
|-------------------------|------------------|----------------|---------------|------------------|------------------|--------|
| METHOD BLANK            | Nesuit           | r QL           | Metriou       | Fiepaieu         | Allalyzeu        | i iays |
| Laboratory ID:          | MB0819W1         |                |               |                  |                  |        |
| Naphthalene             | ND               | 0.10           | EPA 8270E/SIM | 8-19-24          | 8-19-24          |        |
| 2-Methylnaphthalene     | ND               | 0.10           | EPA 8270E/SIM | 8-19-24          | 8-19-24          |        |
| 1-Methylnaphthalene     | ND               | 0.10           | EPA 8270E/SIM | 8-19-24          | 8-19-24          |        |
| Acenaphthylene          | ND               | 0.10           | EPA 8270E/SIM | 8-19-24          | 8-19-24          |        |
| Acenaphthene            | ND               | 0.10           | EPA 8270E/SIM | 8-19-24          | 8-19-24          |        |
| Fluorene                | ND               | 0.10           | EPA 8270E/SIM | 8-19-24          | 8-19-24          |        |
| Phenanthrene            | ND               | 0.10           | EPA 8270E/SIM | 8-19-24          | 8-19-24          |        |
| Anthracene              | ND               | 0.10           | EPA 8270E/SIM | 8-19-24          | 8-19-24          |        |
| Fluoranthene            | ND               | 0.10           | EPA 8270E/SIM | 8-19-24          | 8-19-24          |        |
| Pyrene                  | ND               | 0.10           | EPA 8270E/SIM | 8-19-24          | 8-19-24          |        |
| Benzo[a]anthracene      | ND               | 0.010          | EPA 8270E/SIM | 8-19-24          | 8-19-24          |        |
| Chrysene                | ND               | 0.010          | EPA 8270E/SIM | 8-19-24          | 8-19-24          |        |
| Benzo[b]fluoranthene    | ND               | 0.010          | EPA 8270E/SIM | 8-19-24          | 8-19-24          |        |
| Benzo(j,k)fluoranthene  | ND               | 0.010          | EPA 8270E/SIM | 8-19-24          | 8-19-24          |        |
| Benzo[a]pyrene          | ND               | 0.010          | EPA 8270E/SIM | 8-19-24          | 8-19-24          |        |
| Indeno(1,2,3-c,d)pyrene | ND               | 0.010          | EPA 8270E/SIM | 8-19-24          | 8-19-24          |        |
| Dibenz[a,h]anthracene   | ND               | 0.010          | EPA 8270E/SIM | 8-19-24          | 8-19-24          |        |
| Benzo[g,h,i]perylene    | ND               | 0.010          | EPA 8270E/SIM | 8-19-24          | 8-19-24          |        |
| Surrogate:              | Percent Recovery | Control Limits |               |                  |                  |        |
| 2-Fluorobiphenyl        | 55               | 27-106         |               |                  |                  |        |
| Pyrene-d10              | 67               | 37-125         |               |                  |                  |        |

Pyrene-d10 67 37-125 Terphenyl-d14 67 37-110

Project: 0209325-000

# PAHS EPA 8270E/SIM QUALITY CONTROL

Matrix: Water Units: ug/L

|                         |       |       |       |       | Per | cent  | Recovery |     | RPD   |       |
|-------------------------|-------|-------|-------|-------|-----|-------|----------|-----|-------|-------|
| Analyte                 | Res   | sult  | Spike | Level | Rec | overy | Limits   | RPD | Limit | Flags |
| SPIKE BLANKS            |       |       |       |       |     |       |          |     |       |       |
| Laboratory ID:          | SB08  | 19W1  |       |       |     |       |          |     |       |       |
|                         | SB    | SBD   | SB    | SBD   | SB  | SBD   |          |     |       |       |
| Naphthalene             | 0.281 | 0.292 | 0.500 | 0.500 | 56  | 58    | 36-95    | 4   | 34    |       |
| Acenaphthylene          | 0.330 | 0.365 | 0.500 | 0.500 | 66  | 73    | 51-103   | 10  | 26    |       |
| Acenaphthene            | 0.312 | 0.341 | 0.500 | 0.500 | 62  | 68    | 47-97    | 9   | 25    |       |
| Fluorene                | 0.340 | 0.374 | 0.500 | 0.500 | 68  | 75    | 51-105   | 10  | 23    |       |
| Phenanthrene            | 0.422 | 0.458 | 0.500 | 0.500 | 84  | 92    | 52-110   | 8   | 24    |       |
| Anthracene              | 0.360 | 0.388 | 0.500 | 0.500 | 72  | 78    | 55-104   | 7   | 24    |       |
| Fluoranthene            | 0.427 | 0.403 | 0.500 | 0.500 | 85  | 81    | 59-111   | 6   | 24    |       |
| Pyrene                  | 0.404 | 0.433 | 0.500 | 0.500 | 81  | 87    | 59-110   | 7   | 22    |       |
| Benzo[a]anthracene      | 0.442 | 0.443 | 0.500 | 0.500 | 88  | 89    | 55-116   | 0   | 22    |       |
| Chrysene                | 0.388 | 0.405 | 0.500 | 0.500 | 78  | 81    | 59-111   | 4   | 23    |       |
| Benzo[b]fluoranthene    | 0.445 | 0.442 | 0.500 | 0.500 | 89  | 88    | 62-115   | 1   | 27    |       |
| Benzo(j,k)fluoranthene  | 0.397 | 0.409 | 0.500 | 0.500 | 79  | 82    | 59-117   | 3   | 23    |       |
| Benzo[a]pyrene          | 0.434 | 0.444 | 0.500 | 0.500 | 87  | 89    | 64-109   | 2   | 24    |       |
| Indeno(1,2,3-c,d)pyrene | 0.483 | 0.476 | 0.500 | 0.500 | 97  | 95    | 58-114   | 1   | 22    |       |
| Dibenz[a,h]anthracene   | 0.503 | 0.509 | 0.500 | 0.500 | 101 | 102   | 63-114   | 1   | 24    |       |
| Benzo[g,h,i]perylene    | 0.409 | 0.421 | 0.500 | 0.500 | 82  | 84    | 61-110   | 3   | 24    |       |
| Surrogate:              |       |       |       |       |     |       |          |     |       |       |
| 2-Fluorobiphenyl        |       |       |       |       | 59  | 63    | 27-106   |     |       |       |
| Pyrene-d10              |       |       |       |       | 83  | 86    | 37-125   |     |       |       |
| Terphenyl-d14           |       |       |       |       | 82  | 84    | 37-110   |     |       |       |

Project: 0209325-000

# TOTAL METALS EPA 200.8/7470A

|                |           |      |           | Date     | Date     |       |
|----------------|-----------|------|-----------|----------|----------|-------|
| Analyte        | Result    | PQL  | Method    | Prepared | Analyzed | Flags |
| Client ID:     | MW-4      |      |           |          |          |       |
| Laboratory ID: | 08-148-01 |      |           |          |          |       |
| Arsenic        | 3.2       | 0.56 | EPA 200.8 | 8-19-24  | 8-20-24  |       |
| Cadmium        | ND        | 0.22 | EPA 200.8 | 8-19-24  | 8-20-24  |       |
| Chromium       | ND        | 1.1  | EPA 200.8 | 8-19-24  | 8-20-24  |       |
| Lead           | ND        | 0.44 | EPA 200.8 | 8-19-24  | 8-20-24  |       |
| Mercury        | ND        | 0.13 | EPA 7470A | 8-22-24  | 8-22-24  |       |
| Client ID:     | MW-3      |      |           |          |          |       |
| Laboratory ID: | 08-148-02 |      |           |          |          |       |
| Arsenic        | 2.3       | 0.56 | EPA 200.8 | 8-19-24  | 8-20-24  |       |
| Cadmium        | ND        | 0.22 | EPA 200.8 | 8-19-24  | 8-20-24  |       |
| Chromium       | 9.2       | 1.1  | EPA 200.8 | 8-19-24  | 8-20-24  |       |
| Lead           | ND        | 0.44 | EPA 200.8 | 8-19-24  | 8-20-24  |       |
| Mercury        | ND        | 0.13 | EPA 7470A | 8-22-24  | 8-22-24  |       |
|                |           |      |           |          |          |       |
| Client ID:     | MW-2      |      |           |          |          |       |
| Laboratory ID: | 08-148-03 |      |           |          |          |       |
| Arsenic        | 6.4       | 0.56 | EPA 200.8 | 8-19-24  | 8-20-24  |       |
| Cadmium        | ND        | 0.22 | EPA 200.8 | 8-19-24  | 8-20-24  |       |
| Chromium       | 12        | 1.1  | EPA 200.8 | 8-19-24  | 8-20-24  |       |
| Lead           | 1.3       | 0.44 | EPA 200.8 | 8-19-24  | 8-20-24  |       |
| Mercury        | ND        | 0.13 | EPA 7470A | 8-22-24  | 8-22-24  |       |
|                |           |      |           |          |          |       |
| Client ID:     | MW-5      |      |           |          |          |       |
| Laboratory ID: | 08-148-04 |      |           |          |          |       |
| Arsenic        | 0.68      | 0.56 | EPA 200.8 | 8-19-24  | 8-20-24  |       |
| Cadmium        | ND        | 0.22 | EPA 200.8 | 8-19-24  | 8-20-24  |       |
| Chromium       | ND        | 1.1  | EPA 200.8 | 8-19-24  | 8-20-24  |       |
| Lead           | ND        | 0.44 | EPA 200.8 | 8-19-24  | 8-20-24  |       |
| Mercury        | ND        | 0.13 | EPA 7470A | 8-22-24  | 8-22-24  |       |

Project: 0209325-000

# TOTAL METALS EPA 200.8/7470A

| Analyte        | Result    | PQL  |           | Date<br>Prepared | Date<br>Analyzed | Flags |
|----------------|-----------|------|-----------|------------------|------------------|-------|
|                |           |      | Method    |                  |                  |       |
| Client ID:     | MW-1      |      |           |                  |                  |       |
| Laboratory ID: | 08-148-05 |      |           |                  |                  |       |
| Arsenic        | 27        | 0.56 | EPA 200.8 | 8-19-24          | 8-20-24          |       |
| Cadmium        | 0.60      | 0.22 | EPA 200.8 | 8-19-24          | 8-20-24          |       |
| Chromium       | 12        | 1.1  | EPA 200.8 | 8-19-24          | 8-20-24          |       |
| Lead           | 3.3       | 0.44 | EPA 200.8 | 8-19-24          | 8-20-24          |       |
| Mercury        | 1.0       | 0.13 | EPA 7470A | 8-22-24          | 8-22-24          |       |

| Client ID:     | MW-6      |      |           |         |         |  |
|----------------|-----------|------|-----------|---------|---------|--|
| Laboratory ID: | 08-148-06 |      |           |         |         |  |
| Arsenic        | 2.6       | 0.56 | EPA 200.8 | 8-19-24 | 8-20-24 |  |
| Cadmium        | ND        | 0.22 | EPA 200.8 | 8-19-24 | 8-20-24 |  |
| Chromium       | ND        | 1.1  | EPA 200.8 | 8-19-24 | 8-20-24 |  |
| Lead           | ND        | 0.44 | EPA 200.8 | 8-19-24 | 8-20-24 |  |
| Mercury        | ND        | 0.13 | EPA 7470A | 8-22-24 | 8-22-24 |  |

Project: 0209325-000

# TOTAL METALS EPA 200.8/7470A QUALITY CONTROL

|                |           |      |           | Date     | Date     |       |
|----------------|-----------|------|-----------|----------|----------|-------|
| Analyte        | Result    | PQL  | Method    | Prepared | Analyzed | Flags |
| METHOD BLANK   |           |      |           |          |          |       |
| Laboratory ID: | MB0819WM1 |      |           |          |          |       |
| Arsenic        | ND        | 0.56 | EPA 200.8 | 8-19-24  | 8-20-24  |       |
| Cadmium        | ND        | 0.22 | EPA 200.8 | 8-19-24  | 8-20-24  |       |
| Chromium       | ND        | 1.1  | EPA 200.8 | 8-19-24  | 8-20-24  |       |
| Lead           | ND        | 0.44 | EPA 200.8 | 8-19-24  | 8-20-24  |       |
| Laboratory ID: | MB0822W1  |      |           |          |          |       |
| Mercury        | ND        | 0.13 | EPA 7470A | 8-22-24  | 8-22-24  |       |

Project: 0209325-000

### TOTAL METALS EPA 200.8/7470A QUALITY CONTROL

| оо. ч.д. – (рръ) |       |                                               |       |       | Source | Per | cent  | Recovery |     | RPD   |       |
|------------------|-------|-----------------------------------------------|-------|-------|--------|-----|-------|----------|-----|-------|-------|
| Analyte          | Res   | sult                                          | Spike | Level | Result | Rec | overy | Limits   | RPD | Limit | Flags |
| DUPLICATE        |       |                                               |       |       |        |     |       |          |     |       |       |
| Laboratory ID:   | 08-02 | 28-05                                         |       |       |        |     |       |          |     |       |       |
|                  | ORIG  | DUP                                           |       |       |        |     |       |          |     |       |       |
| Arsenic          | ND    | ND                                            | NA    | NA    |        | N   | IΑ    | NA       | NA  | 20    |       |
| Cadmium          | ND    | ND                                            | NA    | NA    |        | N   | lΑ    | NA       | NA  | 20    |       |
| Chromium         | ND    | ND                                            | NA    | NA    |        | N   | IΑ    | NA       | NA  | 20    |       |
| Lead             | ND    | ND                                            | NA    | NA    |        | N   | IA    | NA       | NA  | 20    |       |
| Laboratory ID:   | 08-14 | 10-02                                         |       |       |        |     |       |          |     |       |       |
| Mercury          | ND    | ND                                            | NA    | NA    |        | ١   | IA    | NA       | NA  | 20    |       |
| MATRIX SPIKES    |       |                                               |       |       |        |     |       |          |     |       |       |
| Laboratory ID:   | 08-02 | 28-05                                         |       |       |        |     |       |          |     |       |       |
|                  | MS    | MSD                                           | MS    | MSD   |        | MS  | MSD   |          |     |       |       |
| Arsenic          | 113   | 119                                           | 111   | 111   | ND     | 102 | 108   | 75-125   | 5   | 20    |       |
| Cadmium          | 115   | 121                                           | 111   | 111   | ND     | 104 | 109   | 75-125   | 5   | 20    |       |
| Chromium         | 114   | 121                                           | 111   | 111   | ND     | 103 | 109   | 75-125   | 6   | 20    |       |
| Lead             | 113   | 118                                           | 111   | 111   | ND     | 102 | 107   | 75-125   | 4   | 20    |       |
| Laboratory ID:   | 08-14 | 10-02                                         |       |       |        |     |       |          |     |       |       |
| Mercury          | 12.2  | 12.2                                          | 12.5  | 12.5  | ND     | 97  | 97    | 75-125   | 0   | 20    |       |
| SPIKE BLANK      |       |                                               |       |       |        |     |       |          |     |       |       |
| Laboratory ID:   | SB081 | 9WM1                                          |       |       |        |     |       |          |     |       |       |
| Arsenic          | 1     | 15                                            | 1     | 11    | N/A    | 1   | 03    | 85-115   |     |       |       |
| Cadmium          | 1     | 17                                            | 1     | 11    | N/A    | 1   | 05    | 85-115   |     |       |       |
| Chromium         | 1     | 15                                            | 1     | 11    | N/A    | 1   | 03    | 85-115   |     |       |       |
| Lead             | 1′    | <u>  11                                  </u> | 1     | 11    | N/A    | 1   | 00    | 85-115   |     |       |       |
| Laboratory ID:   | SB08  | 22W1                                          |       |       |        |     |       |          |     |       |       |
| Mercury          | 12    | 2.3                                           | 12    | 2.5   | N/A    | 9   | 9     | 80-120   |     |       |       |

Project: 0209325-000

### DISSOLVED METALS EPA 200.8/7470A

| Omio. ug/L (pps) |           |      |           | Date                | Date     |       |
|------------------|-----------|------|-----------|---------------------|----------|-------|
| Analyte          | Result    | PQL  | Method    | Prepared            | Analyzed | Flags |
| Client ID:       | MW-4      |      |           |                     |          |       |
| Laboratory ID:   | 08-148-01 |      |           |                     |          |       |
| Arsenic          | 2.4       | 0.50 | EPA 200.8 |                     | 8-20-24  |       |
| Cadmium          | ND        | 0.20 | EPA 200.8 |                     | 8-20-24  |       |
| Chromium         | ND        | 1.0  | EPA 200.8 |                     | 8-20-24  |       |
| Lead             | ND        | 0.40 | EPA 200.8 |                     | 8-20-24  |       |
| Mercury          | ND        | 0.13 | EPA 7470A |                     | 8-22-24  |       |
| Client ID:       | MW-3      |      |           |                     |          |       |
| Laboratory ID:   | 08-148-02 |      |           |                     |          |       |
| Arsenic          | 1.4       | 0.56 | EPA 200.8 | 8-19-24             | 8-20-24  |       |
| Cadmium          | ND        | 0.30 | EPA 200.8 | 8-19-24             | 8-20-24  |       |
| Chromium         | 9.2       | 1.1  | EPA 200.8 | 8-19-24             | 8-20-24  |       |
| Lead             | ND        | 0.44 | EPA 200.8 | 8-19-2 <del>4</del> | 8-20-24  |       |
| Mercury          | ND        | 0.13 | EPA 7470A | 0-13-2-             | 8-22-24  |       |
| Morodry          | , to      | 0.10 | LITTITOT  |                     | 0 22 21  |       |
| Client ID:       | MW-2      |      |           |                     |          |       |
| Laboratory ID:   | 08-148-03 |      |           |                     |          |       |
| Arsenic          | 3.6       | 0.56 | EPA 200.8 | 8-19-24             | 8-20-24  |       |
| Cadmium          | ND        | 0.22 | EPA 200.8 | 8-19-24             | 8-20-24  |       |
| Chromium         | 8.5       | 1.1  | EPA 200.8 | 8-19-24             | 8-20-24  |       |
| Lead             | ND        | 0.44 | EPA 200.8 | 8-19-24             | 8-20-24  |       |
| Mercury          | ND        | 0.13 | EPA 7470A |                     | 8-22-24  |       |
|                  |           |      |           |                     |          |       |
| Client ID:       | MW-5      |      |           |                     |          |       |
| Laboratory ID:   | 08-148-04 |      |           |                     |          |       |
| Arsenic          | 0.67      | 0.50 | EPA 200.8 |                     | 8-20-24  |       |
| Cadmium          | ND        | 0.20 | EPA 200.8 |                     | 8-20-24  |       |
| Chromium         | ND        | 1.0  | EPA 200.8 |                     | 8-20-24  |       |
| Lead             | ND        | 0.40 | EPA 200.8 |                     | 8-20-24  |       |
| Mercury          | ND        | 0.13 | EPA 7470A |                     | 8-22-24  |       |

Project: 0209325-000

### DISSOLVED METALS EPA 200.8/7470A

|                |           |      |           | Date     | Date     |       |
|----------------|-----------|------|-----------|----------|----------|-------|
| Analyte        | Result    | PQL  | Method    | Prepared | Analyzed | Flags |
| Client ID:     | MW-1      |      |           |          |          |       |
| Laboratory ID: | 08-148-05 |      |           |          |          |       |
| Arsenic        | 27        | 0.56 | EPA 200.8 | 8-19-24  | 8-20-24  |       |
| Cadmium        | 0.31      | 0.22 | EPA 200.8 | 8-19-24  | 8-20-24  |       |
| Chromium       | 5.9       | 1.1  | EPA 200.8 | 8-19-24  | 8-20-24  |       |
| Lead           | 0.87      | 0.44 | EPA 200.8 | 8-19-24  | 8-20-24  |       |
| Mercury        | 0.16      | 0.13 | EPA 7470A |          | 8-22-24  |       |

| Client ID:     | MW-6      |      |           |         |  |
|----------------|-----------|------|-----------|---------|--|
| Laboratory ID: | 08-148-06 |      |           |         |  |
| Arsenic        | 2.1       | 0.50 | EPA 200.8 | 8-20-24 |  |
| Cadmium        | ND        | 0.20 | EPA 200.8 | 8-20-24 |  |
| Chromium       | ND        | 1.0  | EPA 200.8 | 8-20-24 |  |
| Lead           | ND        | 0.40 | EPA 200.8 | 8-20-24 |  |
| Mercury        | ND        | 0.13 | EPA 7470A | 8-22-24 |  |

Project: 0209325-000

### DISSOLVED METALS EPA 200.8/7470A QUALITY CONTROL

|                |           |      |           | Date     | Date     |       |
|----------------|-----------|------|-----------|----------|----------|-------|
| Analyte        | Result    | PQL  | Method    | Prepared | Analyzed | Flags |
| METHOD BLANK   |           |      |           |          |          |       |
| Laboratory ID: | MB0819D1  |      |           |          |          |       |
| Arsenic        | ND        | 0.50 | EPA 200.8 |          | 8-19-24  |       |
| Cadmium        | ND        | 0.20 | EPA 200.8 |          | 8-19-24  |       |
| Chromium       | ND        | 1.0  | EPA 200.8 |          | 8-19-24  |       |
| Lead           | ND        | 0.40 | EPA 200.8 |          | 8-19-24  |       |
| Laboratory ID: | MB0822D1  |      |           |          |          |       |
| Mercury        | ND        | 0.13 | EPA 7470A |          | 8-22-24  |       |
| Laboratory ID: | MB0819WM1 |      |           |          |          |       |
| Arsenic        | ND        | 0.56 | EPA 200.8 |          | 8-19-24  |       |
| Cadmium        | ND        | 0.22 | EPA 200.8 |          | 8-19-24  |       |
| Chromium ND    |           | 1.1  | EPA 200.8 |          | 8-19-24  |       |
| Lead           | ND        | 0.44 | EPA 200.8 |          | 8-19-24  |       |

|                |       |       |       |       | Source | Percent  | Recovery |     | RPD   |       |
|----------------|-------|-------|-------|-------|--------|----------|----------|-----|-------|-------|
| Analyte        | Res   | sult  | Spike | Level | Result | Recovery | Limits   | RPD | Limit | Flags |
| DUPLICATE      |       |       |       |       |        |          |          |     |       |       |
| Laboratory ID: | 08-14 | 10-02 |       |       |        |          |          |     |       |       |
|                | ORIG  | DUP   |       |       |        |          |          |     |       |       |
| Arsenic        | ND    | ND    | NA    | NA    |        | NA       | NA       | NA  | 20    |       |
| Cadmium        | ND    | ND    | NA    | NA    |        | NA       | NA       | NA  | 20    |       |
| Chromium       | ND    | ND    | NA    | NA    |        | NA       | NA       | NA  | 20    |       |
| Lead           | ND    | ND    | NA    | NA    |        | NA       | NA       | NA  | 20    |       |
|                |       |       |       |       |        |          |          |     |       |       |
| Laboratory ID: | 08-14 | 10-02 |       |       |        |          |          |     |       |       |
| Mercury        | ND    | ND    | NA    | NA    |        | NA       | NA       | NA  | 20    |       |
| Laboratory ID: | 08-02 | 28-05 |       |       |        |          |          |     |       |       |
|                | ORIG  | DUP   |       |       |        |          |          |     |       |       |
| Arsenic        | ND    | ND    | NA    | NA    |        | NA       | NA       | NA  | 20    |       |
| Cadmium        | ND    | ND    | NA    | NA    |        | NA       | NA       | NA  | 20    |       |
| Chromium       | ND    | ND    | NA    | NA    |        | NA       | NA       | NA  | 20    |       |
| Lead           | ND    | ND    | NA    | NA    |        | NA       | NA       | NA  | 20    |       |

Project: 0209325-000

### DISSOLVED METALS EPA 200.8/7470A QUALITY CONTROL

| Office. ug/L (ppb) |       | Source Percent |       | cent  | Recovery |     | RPD      |        |     |       |       |
|--------------------|-------|----------------|-------|-------|----------|-----|----------|--------|-----|-------|-------|
| Analyte            | Res   | sult           | Spike | Level | Result   | Rec | overy    | Limits | RPD | Limit | Flags |
| MATRIX SPIKES      |       |                | •     |       |          |     |          |        |     |       |       |
| Laboratory ID:     | 08-14 | 40-02          |       |       |          |     |          |        |     |       |       |
|                    | MS    | MSD            | MS    | MSD   |          | MS  | MSD      |        |     |       |       |
| Arsenic            | 85.4  | 88.0           | 80.0  | 80.0  | ND       | 107 | 110      | 75-125 | 3   | 20    |       |
| Cadmium            | 75.8  | 78.8           | 80.0  | 80.0  | ND       | 95  | 99       | 75-125 | 4   | 20    |       |
| Chromium           | 73.8  | 75.0           | 80.0  | 80.0  | ND       | 92  | 94       | 75-125 | 2   | 20    |       |
| Lead               | 76.0  | 76.8           | 80.0  | 80.0  | ND       | 95  | 96       | 75-125 | 1   | 20    |       |
|                    |       |                |       |       |          |     |          |        |     |       |       |
| Laboratory ID:     | 08-14 | 40-02          |       |       |          |     |          |        |     |       |       |
| Mercury            | 11.9  | 12.2           | 12.5  | 12.5  | ND       | 95  | 97       | 75-125 | 2   | 20    |       |
|                    |       |                |       |       |          |     |          |        |     |       |       |
| Laboratory ID:     | 08-02 | 28-05          |       |       |          |     |          |        |     |       |       |
|                    | MS    | MSD            | MS    | MSD   |          | MS  | MSD      |        |     |       |       |
| Arsenic            | 113   | 119            | 80.0  | 0.08  | ND       | 142 | 149      | 75-125 | 5   | 20    |       |
| Cadmium            | 115   | 121            | 80.0  | 0.08  | ND       | 144 | 152      | 75-125 | 5   | 20    |       |
| Chromium           | 114   | 121            | 80.0  | 0.08  | ND       | 143 | 151      | 75-125 | 6   | 20    |       |
| Lead               | 113   | 118            | 80.0  | 80.0  | ND       | 141 | 148      | 75-125 | 4   | 20    |       |
| ODIVE DI ANIX      |       |                |       |       |          |     |          |        |     |       |       |
| SPIKE BLANK        | 0.000 |                |       |       |          |     |          |        |     |       |       |
| Laboratory ID:     |       | 819D1          |       |       | N1/A     |     |          | 05.445 |     |       |       |
| Arsenic            |       | 9.4            |       | 0.0   | N/A      |     | 99       | 85-115 |     |       |       |
| Cadmium            |       | ).2            |       | 0.0   | N/A      |     | 00       | 85-115 |     |       |       |
| Chromium           |       | ).4            |       | 0.0   | N/A      |     | 01       | 85-115 |     |       |       |
| Lead               | 81    | 1.6            | 80    | 0.0   | N/A      | 1   | 02       | 85-115 |     |       |       |
| Laboratory ID:     | SBUS  | 322D1          |       |       |          |     |          |        |     |       |       |
| Mercury            |       | 2. <b>1</b>    | 11    | 2.5   | N/A      |     | 97       | 80-120 |     |       |       |
| iviercury          | 12    | 2. 1           | 12    | 2.3   | IN/A     | •   | <i>)</i> | 00-120 |     |       |       |
| Laboratory ID:     | SB081 | 9WM1           |       |       |          |     |          |        |     |       |       |
| Arsenic            | 1     | 15             | 80    | 0.0   | N/A      | 1   | 43       | 85-115 |     |       |       |
| Cadmium            | 1.    | 17             |       | 0.0   | N/A      | 1   | 46       | 85-115 |     |       |       |
| Chromium           | 11    | 15             | 80    | 0.0   | N/A      | 1   | 43       | 85-115 |     |       |       |
| Lead               | 11    | 11             | 80    | 0.0   | N/A      | 1   | 38       | 85-115 |     |       |       |



### **Data Qualifiers and Abbreviations**

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical .
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference





# Chain of Custody

| WA 98052                    | C.     |
|-----------------------------|--------|
| furnaround Request          |        |
| Laboratory Number: 09-1 / 8 |        |
|                             | Pageof |

| Reviewed/Date                                                         | Received                                        | Relinquished | Received                    | Relinquished                | Received                 | Relinquished X Lyncon | Signature                     |  | 6 MW-6              | N REI               | 4 MM-5             | 3 mw-2             | 2 MW-3             | NW-4               | Lab ID Sample Identification                                      | S. FISHCR, M. BANG ASSER                                                   | A. R.A.A.COS                                                               | CUSTOM PLYWOUT)            | 01092 5 -000           | TAREY & ADRCH  | Phone: (425) 883-3881 • www.onsite-env.com |
|-----------------------------------------------------------------------|-------------------------------------------------|--------------|-----------------------------|-----------------------------|--------------------------|-----------------------|-------------------------------|--|---------------------|---------------------|--------------------|--------------------|--------------------|--------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------|------------------------|----------------|--------------------------------------------|
| Reviewed/Date                                                         |                                                 |              |                             |                             |                          | MARCY 3 PRINCE        | Company                       |  | 8/12/24 17:05 cpm 8 | 8/12/24 15:40 Gav 6 | 8/22/24 15:30 GW 6 | 8/17/24 13:00 Gw 6 | 8 17/24 17:58 Gw 8 | 8/12/24 10:40 cm 6 | Date Time<br>Sampled Sampled Matrix                               | (other)                                                                    | ontaine                                                                    | Standard (7 Days)          | 2 Days 3 Days          | Same Day 1 Day | m (Check One)                              |
|                                                                       |                                                 | 3            |                             |                             | 8/13/14 1602             | CH 8/13/24 16:02      | Date Time                     |  | ×                   | ×                   | X                  | ×                  | ×                  | ×                  | NWTF NWTP NWTP Volatil                                            | PH-HCIE PH-Gx/E PH-Gx PH-Gx PH-Gx PH-Dx (Sees 8260                         | STEX (80<br>SG Clea                                                        | 021 8                      | )                      |                |                                            |
| Chromatograms with final report ☐ Electronic Data Deliverables (EDDs) | Data Package: Standard ☐ Level III ☐ Level IV ☐ |              | vpehlivan@ halogaldwich.com | skyperos@ indepolds ichown, | . Presse send (Asults to | 4 DISSOUNCED ME       | Comments/Special Instructions |  | X                   |                     |                    |                    | ×,<br>×,           | × × ×              | Semiv (with It PAHs and PCBs Organic Chlorin Total F Total N TCLP | olatiles ow-leve 8270/SI 8082 ochlorin ophosp nated A 8CRA M MTCA M Metals | 8270/SI<br>I PAHs)<br>M (low-<br>ne Pestid<br>horus P<br>cid Herl<br>etals | level)  cides 80 esticides | 081<br>es 8270<br>8151 | /SIM           | 40                                         |



# **Data Usability Summary Report**

**Project Name: Custom Plywood** 

**Project Description: Groundwater Samples** 

Sample Date(s): February and August 2024

Analytical Laboratory: OnSite Environmental, Inc. – Redmond, WA

Validation Performed by: Eric Hitchens
Validation Reviewed by: Gabrielle Davis

Validation Date: 3 September 2024

Haley & Aldrich, Inc. prepared this Data Usability Summary Report (DUSR) to summarize the review and validation of the analytical results for Sample Delivery Group(s) (SDGs) listed. This DUSR is organized into the following sections:

- 1. Sample Delivery Group Numbers
- 2. Precision and Accuracy [for SDG(s) above]
- 3. Explanations
- 4. Glossary
- 5. Abbreviations
- 6. Qualifiers

### References

This data validation and usability assessment was performed per the guidance and requirements established by the United States Environmental Protection Agency (USEPA) using the following reference materials:

- National Functional Guidelines (NFG) for Inorganic Data Review.
- National Functional Guidelines (NFG) for Organic Data Review.

Data reported in this sampling event were reported to the laboratory reporting limit (RL).

Sample data were qualified in accordance with the laboratory's standard operating procedures (SOPs). The results presented in each laboratory report were found to be compliant with the data quality objectives (DQOs) for the project and are therefore usable; any exceptions are noted in the following pages.



# 1. Sample Delivery Group Numbers

### 1.1 SAMPLE MANAGEMENT

This DUSR summarizes the review of SDG numbers:

- 2408-148; and
- 2402-047.

Samples were collected, preserved, and shipped following standard chain of custody (COC) protocols. Samples were also received appropriately, identified correctly, and analyzed according to the COC. Issues noted with sample management are listed below:

• Both reports initially reported TPH analysis with silica gel treatment when it was not requested; revisions were issued to remove the unnecessary analysis from the final reports.

Analyses were performed on the following samples:

| Sample ID     | Sample<br>Type | Lab ID      | Sample Date | Matrix | Methods    |
|---------------|----------------|-------------|-------------|--------|------------|
| MW-1-20240201 | N              | 2402-047-01 | 02/01/2024  | WG     | A, B, C, D |
| MW-3-20240201 | N              | 2402-047-02 | 02/01/2024  | WG     | A, B, C, D |
| MW-5-20240202 | N              | 2402-047-03 | 02/02/2024  | WG     | A, B, C, D |
| MW-6-20240202 | N              | 2402-047-04 | 02/02/2024  | WG     | A, B, C, D |
| MW-4-20240202 | N              | 2402-047-05 | 02/02/2024  | WG     | A, B, C, D |
| MW-2-20240202 | N              | 2402-047-06 | 02/02/2024  | WG     | A, B, C, D |
| MW-4-20240812 | N              | 2408-148-01 | 08/12/2024  | WG     | A, B, C, D |
| MW-3-20240812 | N              | 2408-148-02 | 08/12/2024  | WG     | A, B, C, D |
| MW-2-20240812 | N              | 2408-148-03 | 08/12/2024  | WG     | A, B, C, D |
| MW-5-20240812 | N              | 2408-148-04 | 08/12/2024  | WG     | A, B, C, D |
| MW-1-20240812 | N              | 2408-148-05 | 08/12/2024  | WG     | A, B, C, D |
| MW-6-20240812 | N              | 2408-148-06 | 08/12/2024  | WG     | A, B, C, D |

| Meth | Method Holding Times |                                                          |                                                              |  |  |  |  |  |  |  |  |  |
|------|----------------------|----------------------------------------------------------|--------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| A.   | E200.8               | Metals (by Mass Spectrometer)                            | 180 days for liquid, preserved                               |  |  |  |  |  |  |  |  |  |
| В.   | NWTPH-DX             | Total Petroleum Hydrocarbons (TPH) Diesel Range Organics | 14 days for liquid, preserved 7 days for liquid, unpreserved |  |  |  |  |  |  |  |  |  |
| C.   | SW7470A              | Mercury (in Liquids)                                     | 28 days extraction for liquid, preserved                     |  |  |  |  |  |  |  |  |  |
| D.   | SW8270ESIM           | Polycyclic Aromatic Hydrocarbons (PAHs)                  | 7 days extraction / 40 days analysis for liquid, unpreserved |  |  |  |  |  |  |  |  |  |

### 1.2 HOLDING TIMES/PRESERVATION

The samples arrived at the laboratory at the proper temperature and were prepared and analyzed within the holding time and preservation criteria specified per method protocol, with the following exceptions:

SDG 2402-047: Mercury was analyzed outside of analytical holding time; qualify data UJ.



### 1.3 REPORTING LIMITS AND SAMPLE DILUTIONS

All sample dilutions were reviewed and found to be justified.

### 1.4 SURROGATE RECOVERY COMPLIANCE

<u>Refer to Section E 1.2.</u> The percent recovery (%R) for each surrogate compound added to each project sample were determined to be within the laboratory-specified quality control (QC) limits, with the following exceptions:

| SDG      | Sample ID | Surrogate     | Dilution | %R  | Qualification       |
|----------|-----------|---------------|----------|-----|---------------------|
| 2408-148 | MW-3      | o-Terphenyl   | 1X       | 33  | J- target compounds |
| 2408-148 | MW-1      | Terphenyl-d14 | 1X       | 155 | None, sample is ND  |

<sup>\*</sup> o-Terphenyl targets the following compounds: Diesel-Range Organics, Lube Oil-Range Organics

### 1.5 LABORATORY CONTROL SAMPLES

<u>Refer to Section E 1.3</u>. Compounds associated with the laboratory control sample/laboratory control sample duplicate (LCS/LCSD) analyses associated with client samples exhibited recoveries and relative percent differences (RPDs) within the specified limits.

### 1.6 MATRIX SPIKE SAMPLES

Refer to Section E 1.4. The sample(s) below were used for matrix spike/matrix spike duplicate (MS/MSD):

| Lab Sample Number   | Matrix Spike/Matrix Spike Duplicate<br>Sample Client ID | Method(s)   |  |
|---------------------|---------------------------------------------------------|-------------|--|
| MW-1-20240201MS/MSD | MW-1-20240201                                           | USEPA 7470A |  |

The MS/MSD recoveries and the relative percent difference (RPD) between the MS and MSD results were within the specified limits.

### 1.7 BLANK SAMPLE ANALYSIS

<u>Refer to Section E 1.5.</u> Method blank samples had no detections, indicating that no contamination from laboratory activities occurred.

### 1.8 DUPLICATE SAMPLE ANALYSIS

<u>Refer to Section E 1.6.</u> The following sample(s) were used for laboratory duplicate analysis and the RPDs were all below 20 percent (or the absolute difference rule was satisfied if detects were less than 5 times the RL):

| Lab Sample Number | Laboratory Duplicate<br>Sample Client ID | Method(s) |  |
|-------------------|------------------------------------------|-----------|--|
| MW-1-20240201LR   | MW-1-20240201                            | EPA 7470A |  |



### 1.9 SYSTEM PERFORMANCE AND OVERALL ASSESSMENT

The results presented in this report were found to comply with the DQOs for the project and the guidelines specified by the analytical method. Based on the review of this report, the data are useable and acceptable as no data was rejected. A summary of qualifiers applied to this dataset is shown in Table 1.



# 2. Precision and Accuracy [for SDG(s) above]

<u>Refer to Section E 1.7.</u> Where required by the method, some measurement of analytical accuracy and precision was reported for each method with the site samples.



# 3. Explanations

The following explanations include more detailed information regarding each of the sections in the DUSR above. Not all sections in the Explanations are represented:

- E 1.2 Surrogate Recovery Compliance
  - Surrogates, also known as system monitoring compounds, are compounds added to
    each sample prior to sample preparation to determining the efficiency of the extraction
    procedure by evaluating the percent recovery (%R) of the compounds.
- E 1.3 Laboratory Control Samples
  - The laboratory control sample/laboratory control sample duplicate (LCS/LCSD) analyses are used to assess the precision and accuracy of the analytical method independent of matrix interferences.
- E 1.4 Matrix Spike Samples
  - Matrix spike/matrix spike duplicate (MS/MSD) data are used to assess the precision and accuracy of the analytical method and evaluate the effects of the sample matrix on the sample preparation procedures and measurement methodologies.
  - For inorganic methods, when a matrix spike recovery falls outside of the control limits and the sample result is less than four times the spike added, a post-digestion spike (PDS) is performed.
- E 1.5 Blank Sample Analysis
  - Method blanks are prepared by the analytical laboratory and analyzed concurrently with the project samples to assess possible laboratory contamination.
- E 1.6 Laboratory Duplicate Sample Analysis
  - The laboratory duplicate sample analysis is used by the laboratory at the time of the analysis to demonstrate acceptable method precision. The RPD or absolute difference was evaluated for each duplicate sample pair to monitor the reproducibility of the data.
- E 1.7 Precision and Accuracy
  - Precision measures the reproducibility of repetitive measurements. In a laboratory environment, this will be measured by determining the relative percent difference (RPD) found between a primary and a duplicate sample. This can be an LCS/LCSD pair, a MS/MSD pair, a laboratory duplicate performed on a site sample, or a field duplicate collected and analyzed concurrently with a site sample.
  - Accuracy is a statistical measurement of the correctness of a measured value and includes components of random error (variability caused by imprecision) and systematic error. In a laboratory environment, this will be measured by determining the percent recovery (%R) of certain spiked compounds. This can be assessed using LCS, blank spike (BS), MS, and/or surrogate recoveries.



# 4. Glossary

Not all of the following symbols, acronyms, or qualifiers occur in this document.

Sample Types:

EB Equipment Blank Sample
 FB Field Blank Sample
 FD Field Duplicate Sample
 N Primary Sample
 TB Trip Blank Sample

Units:

μg/kg micrograms per kilogram
 μg/L micrograms per liter
 μg/m³ micrograms per cubic meter

mg/kg milligrams per kilogrammg/L milligrams per liter

ppb v/v parts per billion volume/volume

pCi/L picocuries per liter
 pg/g picograms per gram
 pg/L picograms per liter

Matrices:

AA Ambient Air
GS Soil Gas
GW/WG Groundwater
QW Water Quality
IA Indoor Air
SE Sediment
SO Soil

SSV Sub-slab Vapor

WQ Water Quality control matrix

WS Surface Water

Table Footnotes:

NA Not applicableND Non-detectNR Not reported

Common Symbols:

- % percent- < less than</li>

– ≤ less than or equal to

– > greater than

- ≥ greater than or equal to

– = equal

C degrees Celsius
± plus or minus
~ approximately
x times (multiplier)



• Fractions:

N Normal (method cannot be filtered)

D Dissolved (filtered)

T Total (unfiltered)



# 5. Abbreviations

| %D             | Percent Difference                                      | MDL             | Laboratory Method Detection Limit               |
|----------------|---------------------------------------------------------|-----------------|-------------------------------------------------|
| %R             | Percent Recovery                                        | MS/MSD          | Matrix Spike/Matrix Spike Duplicate             |
| %RSD           | Percent Relative Standard Deviation                     | NA              | not applicable                                  |
| %v/v           | Percent volume by volume                                | ND              | Non-Detect                                      |
| 2s             | 2 sigma                                                 | NFG             | National Functional Guidelines                  |
| 4,4-DDT        | 4 4-dichlorodiphenyltrichloroethane                     | NH <sub>3</sub> | Ammonia                                         |
| Abs Diff       | Absolute Difference                                     | NYSDEC          | New York State Department of                    |
| amu            | atomic mass unit                                        | WISDEC          | Environmental Conservation                      |
| BPJ            | Best Professional Judgement                             | PAH             | Polycyclic Aromatic Hydrocarbon                 |
| BS             | Blank Spike                                             | PCB             | Polychlorinated Biphenyl                        |
| ССВ            | Continuing Calibration Blank                            | PDS             | Post-Digestion Spike                            |
| CCA            | Continuing Calibration Verification                     | PEM             | Performance Evaluation Mixture                  |
| CCVL           | Continuing Calibration Verification                     | PFAS            | Per- and Polyfluoroalkyl Substances             |
| CCVL           | Low                                                     | PFBA            | Perfluorbutanoic Acid                           |
| COC            | Chain of Custody                                        | PFD             | Perfluorodecalin                                |
| COM            | Combined Isotope Calculation                            | PFOA            | Perfluorooctanoic Acid                          |
| Cr (VI)        | Hexavalent Chromium                                     | PFOS            | Perfluorooctane sulfonate                       |
| CRI            | Collision Reaction Interface                            | PFPeA           | Perfluoropentanoic Acid                         |
| DoD            | Department of Defense                                   | QAPP            | Quality Assurance Project Plan                  |
| DQO            | data quality objective                                  | QC              | Quality Assurance Project Plan  Quality Control |
| DUSR           | Data Usability Summary Report                           | QSM             | Quality Systems Manual                          |
| EIS            |                                                         | R <sup>2</sup>  |                                                 |
|                | Extraction Internal Standard Estimated Maximum Possible |                 | R-squared value<br>Radium-226                   |
| EMPC           |                                                         | Ra-226          |                                                 |
| FDV            | Concentration                                           | Ra-228          | Radium-228                                      |
| FBK            | Field Blank Contamination                               | RESC            | Resolution Check Measure                        |
| FDP            | Field Duplicate                                         | RL              | Laboratory Reporting Limit                      |
| GC             | Gas Chromatograph                                       | RPD             | Relative Percent Difference                     |
| GC/MS          | Gas Chromatography/Mass                                 | RRF             | Relative Response Factor                        |
|                | Spectrometry                                            | RT              | Retention Time                                  |
| GPC            | Gel Permeation Chromatography                           | SAP             | Sampling Analysis Plan                          |
| H <sub>2</sub> | Hydrogen gas                                            | SDG             | Sample Delivery Group                           |
| HCl            | Hydrochloric Acid                                       | SIM             | Selected ion monitoring                         |
| ICAL           | Initial Calibration                                     | SOP             | Standard Operating Procedure                    |
| ICB            | Initial Calibration Blank                               | SPE             | Solid-Phase Extraction                          |
| ICP/MS         | Inductively Coupled Plasma/Mass                         | SVOC            | Semi-Volatile Organic Compound                  |
|                | Spectrometry                                            | TCLP            | Toxicity Characteristic Leaching                |
| ICV            | Initial Calibration Verification                        |                 | Procedure                                       |
| ICVL           | Initial Calibration Verification Low                    | TIC             | Tentatively Identified Compound                 |
| IPA            | Isopropyl Alcohol                                       | TKN             | Total Kjeldahl Nitrogen                         |
| LC             | Laboratory Control                                      | TPH             | Total Petroleum Hydrocarbon                     |
| LCS/LCSD       | Laboratory Control Sample/Laboratory                    | TPU             | Total Propagated Uncertainty                    |
|                | Control Sample Duplicate                                | USEPA           | U.S. Environmental Protection Agency            |
| MBK            | Method Blank Contamination                              | VOC             | Volatile Organic Compound                       |
| MDC            | Minimum Detectable Concentration                        | WP              | Work Plan                                       |



## 6. Qualifiers

The qualifiers below are from the USEPA National Functional Guidelines and the data in the DUSR may contain these qualifiers:

### Concentration (C) Qualifiers:

- U The compound was analyzed for but not detected. The associated value is either the compound quantitation limit if not detected by the analytical instrument or could be the reported or blank concentration if qualified by blank contamination. This can also be displayed as less than the associated compound quantitation limit (<RL or <MDL), or "ND".
- B The compound was found in the sample and its associated blank. Its presence in the sample may be suspect.

### Quantitation (Q) Qualifiers:

- E The compound was quantitated above the calibration range.
- D The concentration is based on a diluted sample analysis.

### Validation Qualifiers:

- The compound was positively identified; however, the associated numerical value is an estimated concentration only.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- J/UJ as listed in exception tables J applies to detected data and UJ applies to non-detected data as reported by the laboratory.
- UJ The compound was not detected. The reported sample quantitation limit is approximate.
- NJ The analysis indicated the presence of a compound for which there is presumptive evidence to make a tentative identification; the associated numerical value is an estimated concentration only.
- R The sample results were rejected as unusable; the compound may or may not be present in the sample.
- S Result is suspect. See DUSR for details.



# References

- 1. United States Environmental Protection Agency, 2020a. National Functional Guidelines for Inorganic Superfund Methods Data Review. EPA-542-R-20-006. November.
- 2. United States Environmental Protection Agency, 2020b. National Functional Guidelines for Organic Superfund Methods Data Review. EPA-540-R-20-005. November.

### Attachments:

Table 1 – System Performance Summary



**TABLE** 

# TABLE 1 SYSTEM PERFORMANCE SUMMARY

CUSTOM PLYWOOD

| SDG      | Method   | Sample ID     | Lab ID      | Analyte                            | Fraction       | Reportable Result | Reported Result | Validated Result | Reason for Qualifier |
|----------|----------|---------------|-------------|------------------------------------|----------------|-------------------|-----------------|------------------|----------------------|
| 2408-148 | NWTPH-DX | MW-3-20240812 | 2408-148-02 | Diesel Range Organics              | Not Applicable | Yes               | 0.15            | 0.15 J-          | SUR                  |
| 2408-148 | NWTPH-DX | MW-3-20240812 | 2408-148-02 | Petroleum Hydrocarbons as Lube Oil | Not Applicable | Yes               | 0.32            | 0.32 J-          | SUR                  |

### Notes:

SUR = Surrogate percent recovery outside the specified limits.

J- = The result is an estimated quantity, but the result may be biased low.

PAGE 1 OF 1