

2024 ANNUAL GROUNDWATER MONITORING REPORT

And Surface Maintenance Report

WEST SURFACE IMPOUNDMENT

Columbia Gorge Aluminum Smelter Site

85 John Day Dam Road, Goldendale WA Facility Site ID #95415874

October 30, 2024

On behalf of:

NSC Smelter LLC 3313 West Second Street The Dalles OR 97058

Prepared by:

Blue Mountain Environmental Consulting Inc. 125 Main Street Waitsburg WA 99361

TABLE OF CONTENTS

T	ABLE OF CONTENTS	2
1	INTRODUCTION	5
	1.1 SCOPE AND PURPOSE 1.2 SITE DESCRIPTION 1.3 HYDROGEOLOGIC SETTING 1.4 PREVIOUS GROUNDWATER MONITORING	5 5
2	GROUNDWATER INVESTIGATION	6
	 2.1 MONITORING WELL LOCATIONS 2.2 SAMPLING PROCEDURES 2.3 SAMPLE ANALYSES 2.4 MONITORING SCHEDULE 2.5 DATA EVALUATION 	7 8 8
3	RESULTS1	0
	3.1 SUMMARY 1 3.2 STATISTICAL EVALUATION 1 3.2.1 Time-Series Plots 1	0
	3.2.2 Mann-Kendall Test	1
	3.2.3 Upper Confidence Limits12	
	3.3 GROUNDWATER FLOW	
4	CONCLUSIONS AND RECOMMENDATIONS1	3
	4.1 CONCLUSIONS	4
5	REFERENCES1	5
6	SURFACE MAINTENANCE1	6
7	LIMITATIONS	6

FIGURES

FIGURE 1 – SITE LOCATION MAP

FIGURE 2 – WEST SURFACE IMPOUNDMENT GROUNDWATER MONITORING WELL LOCATION MAP

FIGURE 3 – WEST SURFACE IMPOUNDMENT GROUNDWATER SURFACE CONTOUR MAP – JULY 23, 2024

TABLE OF CONTENTS (CONT)

TABLES

- TABLE 1 MONITORING WELL CONSTRUCTION DATA
- TABLE 2 DATA EVALUATION SCHEDULE FOR WSI
- TABLE 3 GROUNDWATER PROTECTION STANDARDS FOR WSI
- TABLE 4 POST-CLOSURE SIGNIFICANT TRENDS USING THE MANN-KENDALL TEST
- TABLE 5 UPPER CONFIDENCE LIMITS OF POST-CLOSURE GROUNDWATER DATA

APPENDICES

APPENDIX A – GROUNDWATER ANALYSES

APPENDIX A1 – ANALYSES SUMMARY TABLE

APPENDIX A2 – LABORATORY REPORT

APPENDIX B – UCL AND TRENDS

APPENDIX B1 – TIMES-SERIES GRAPHS: SULFATE, CHLORIDE, FLUORIDE, AND CYANIDE

APPENDIX B2 – MANN-KENDALL TREND TEST RESULTS

APPENDIX B3 - MANN-KENDALL TEST OUTPUT

APPENDIX B4 – UCL CALCULATIONS

APPENDIX B5 – EPA GROUNDWATER UCL OUTPUT

APPENDIX B6 – CALCULATOR INPUT TABLE

TABLE OF CONTENTS (CONT)

APPENDIX C – GROUNDWATER LEVELS

APPENDIX C1 – STATIC WATER LEVEL HYDROGRAPHS

APPENDIX C2 – STATIC WATER LEVELS

APPENDIX D – SURFACE MAINTENANCE ANNUAL REPORT

1 INTRODUCTION

1.1 SCOPE AND PURPOSE

This report represents the results of the 2024 annual groundwater monitoring and evaluation following closure of the former Columbia Gorge Aluminum Smelter West Surface Impoundment (WSI). Statistical evaluation of the groundwater monitoring data was conducted to assess natural attenuation in the concentration of dissolved-phase groundwater contaminants. This monitoring and statistical evaluation was conducted in accordance with the Groundwater Sampling Data Analysis and Evaluation Plan (GSDAEP) for the WSI facility (Parametrix, 2004b). Groundwater sampling was performed on July 23, 2024 by Blue Mountain Environmental & Consulting Co., Inc. (BMEC) personnel.

1.2 SITE DESCRIPTION

The approximately 10-acre WSI was constructed as an earthen impoundment with Hypalon liner in 1981. It was used through 2001 to dispose of various types of waste generated from plant pollution controls. A map of the location is illustrated on **Figure 1**.

The WSI contains approximately 89,000 cubic yards of sludge comprised primarily of alumina, dust, and particulates from wastewater and residual waste generated from plant emission control systems. The WSI managed waste through evaporation of wastewater and disposal of emission control sludge (DOE, 2014). The WSI discontinued accepting waste and was closed in September 2004 (Parametrix, 2004a). Closure of the WSI included placement of an engineered Resource Conservation and Control Act (RCRA) cap consisting of soils and geosynthetic materials and development of a post-closure maintenance and groundwater monitoring plan (Parametrix, 2004b). The annual surface maintenance report prepared by others is supplemented in **Appendix D**.

1.3 HYDROGEOLOGIC SETTING

The geologic materials present beneath the WSI consist of unconsolidated alluvial deposits of Quaternary age, underlain by a series of basalt flows and sedimentary interbeds of the Columbia River Basalt Group [CRBG] (CH2M Hill, 1995; Golder, 1989). The groundwater gradient flattens beneath the WSI; south of the WSI, groundwater flows southwestward toward the Columbia River. The following aquifer zones have been defined for the Smelter Site in the Remedial Investigation (RI) Report:

- Unconsolidated Aquifer (UA) shallow water-bearing zone in the colluvium, alluvium, and fill that overlies the basalt bedrock in most areas. The unit is thicker and more laterally extensive on the western side of the Site. Groundwater occurring locally within the upper 2-3 feet of weathered flow top and fractured bedrock is part of the UA.
- Basalt Aquifer Upper Zone (BAU) occurs within the basalt flow sequence commonly within a flow interior within a flow top.

• Basalt Aquifer Lower Zone (BAL) – includes saturated zones beneath the BAU near the Columbia River elevation to the bottom elevation of the John Day Dam reservoir.

1.4 PREVIOUS GROUNDWATER MONITORING

The current monitoring network at the WSI Site consists of 16 monitoring wells, including some shallow and deep well clusters. The initial monitoring wells were installed in 1984, and another set of wells were installed in 1989. An additional monitoring well, MW-18, was installed in October 2004 near the down-gradient property boundary, about 2,500 feet from the WSI.

Sampling and analysis of groundwater has been conducted since 1984, and followed a quarterly schedule from 1991 through 2004. One additional pre-closure sampling event was conducted in September 2004 for the five monitoring wells included in the post-closure monitoring plan to establish groundwater quality before the wells could be affected by subsurface disturbances from WSI closure construction. Post-closure sampling and analysis was conducted quarterly from 2005 – 2007, semi-annually from 2008 – 2010, and annually beginning in 2011. Previous samples were analyzed for pH, conductivity, total organic carbon, sulfate, fluoride, chloride, sodium, iron, manganese, free cyanide, total cyanide, and total phenols. Sulfate and fluoride were determined to be representative indicator parameters for the WSI wastes, since sulfate concentrations showed direct response to periods of waste discharge into the pond. Pre-closure maximum sulfate concentrations were observed in 2000 and 2001 (Parametrix, 2004a).

2 **GROUNDWATER INVESTIGATION**

The post-closure groundwater investigation was described in the GSDAEP (Parametrix, 2004b) and is summarized in the following section.

2.1 MONITORING WELL LOCATIONS

The post-closure monitoring well locations include the following up-gradient and down-gradient monitoring wells:

- Up-gradient well: MW-8A
- Down-gradient wells near WSI: MW-10, MW-12A, and MW-14A
- Down-gradient wells further from WSI: MW-3B and MW-18

Monitoring well construction details are shown below in **Table 1**. Prior to the most recent groundwater monitoring event conducted on July 23, 2024, monitoring well MW-12A had been reported as dry from July 26, 2018 - July20, 2023. Monitoring well locations are illustrated on **Figures 2 and 3**.

	11122		i i i o i ui i o	H BBB 00	1.01110001101	. 2.1111	
WELL	DATE OF	TOTAL	WELL	PVC	GROUND	TOP OF PVC	LOCATION
#	INSTALL	WELL	SCREEN	CASING	SURFACE	ELEVATION	
		DEPTH	INTERVAL	DIA.	ELEVATION	(feet amsl)	
		(feet	(feet bgs)	(inches)	(feet amsl)		
		bgs)					
MW-	May 1989	41	22-32	4	490	492.97	Up-gradient
8A							
MW-	April	51	46-51	4	408	410.90	Down-
3B	1984						gradient
MW-	April	26	13-25.5	4	425	427.95	Down-
10A	1989						gradient
MW-	May 1989	55	40-54	4	439	441.38	Down-
12A							gradient
MW-	May 1989	30.5	8.5-29.5	4	429	431.65	Down-
14A							gradient
MW-18	October	51	35-50	4	346	348.40	Down-
	2004						gradient

 TABLE 1 – MONITORING WELL CONSTRUCTION DATA

Notes: bgs = below ground surface

DIA. = diameter

amsl = above mean sea level

PVC = polyvinylchloride

Elevations from Parametrix 2004b

2.2 SAMPLING PROCEDURES

Groundwater samples were collected on July 23, 2024 by BMEC personnel using a submersible pump and dedicated polyethylene tubing. Sample collection procedures are summarized below.

- The static water level (i.e., depth to groundwater from PVC top of casing) was measured via a Solinst interface probe prior to sampling.
- Each monitoring well was purged of stagnant water in the casing and filter by slowly setting the pump in the approximate middle of the screened interval or slightly above the middle, until the pH, temperature, and conductivity stabilized.
- Samples were collected by placing the pump within the approximate middle of the screened interval with a low-flow pumping rate.
- Groundwater samples were collected within appropriate containers prepared by the laboratory. The containers were filled to prevent air entrapment, sealed, labeled, and placed in an ice chest at approximately 4° for transport to OnSite Environmental (OnSite) in Redmond, Washington. The samples were accompanied by a completed and signed chain-of-custody form. Subsequent to arrival, the samples were relinquished by OnSite to AmTest laboratory for cyanide analysis.

2.3 SAMPLE ANALYSES

The laboratory report from OnSite for the analysis of the groundwater samples collected on July 23, 2024, is included in **Appendix A2**.

2.4 MONITORING SCHEDULE

Groundwater monitoring and sampling follows the schedule outlined in the post-closure plan (Parametrix, 2007c). Beginning in 2005, the plan specified quarterly sampling for the first two years, semi-annually for years three through seven, and annual sampling thereafter until concentrations drop below groundwater protection standards, or for a maximum of 30 years. One of two scheduled semi-annual sampling events was not completed in 2011.

2.5 DATA EVALUATION

The statistical approach for evaluating the post-closure groundwater monitoring data collected at the WSI is described in the GSDAEP (Parametrix, 2004b). The objectives of the post-closure data evaluation for the WSI are to demonstrate the effectiveness of the correction action, that is, evaluate whether groundwater quality is improving, deteriorating, or remaining unchanged relative to pre-closure conditions, and determine compliance with the groundwater protection standards. The data evaluation schedule is summarized below in **Table 2**.

$\mathbf{I} \mathbf{A} \mathbf{D} \mathbf{L} \mathbf{E} \mathbf{Z} - \mathbf{D} \mathbf{A}$	ATA EVALUATION SCHEDU	LE FUK WSI
FREQUENCY OF	STATISTICAL	PURPOSE
EVALUATION	PROCEDURE	
Quarterly or Semi-annually	Time-Series Plots	Visually Identify Increasing
Years 1 - 7		or Decreasing Concentration
		Trends
Annually After Year 7	Trend Analyses Using Mann-	Quantitatively Identify
	Kendall Test	Increasing or Decreasing
		Concentration Trends
	Upper Confidence Limit	Compare Concentrations to
	Evaluation	the Groundwater Protection
		Standards
	Time-Series Plots	Visually Identify Increasing
		or Decreasing Concentration
		Trends

TABLE 2 – DATA EVALUATION SCHEDULE FOR WSI

Groundwater cleanup standards are Model Toxics Control Act (MTCA) Method B Cleanup Levels (CULs) and Maximum Contaminant Levels (MCLs). The groundwater protection standards are presented in the following **Table 3**.

PARAMETER	MTCA METHOD B	MCL ((mg/L)				
	CLEANUP LEVEL	Primary	Secondary				
	(mg/L)						
Fluoride	0.96	4	2				
Chloride	-	-	250				
Sulfate	-	-	250				
Total Cyanide	0.32	0.2	-				

TABLE 3 – GROUNDWATER PROTECTION STANDARDS FOR WSI

The analysis for total cyanide is to be discontinued, if not detected for four consecutive sampling events.

The GSDAEP (Parametrix, 2004b) also recommended using Upper Prediction Limit (UPL) comparisons to evaluate post-closure data. However, Environmental Protection Agency (EPA 2004) guidance does not recommend that UPL comparisons be used for sites such as the WSI with pre-existing contamination.

Three years of quarterly data (2005 - 2007), three years of semi-annual data (2008 - 2010), and fourteen years of annual data (2011 - 2024) from groundwater sampling were used for analysis (**Appendix A1**). The concentrations of chloride, fluoride, sulfate, and total cyanide, in each well, were evaluated and prepared to satisfy the semi-annual requirements. The time-series plots, Mann-Kendall test, and UCL comparisons were conducted to satisfy the annual evaluation requirements. With approval from Paul Skyllingskad of the State of Washington DOE (personal communication, June 28, 2012), both the DOE and EPA ProUCL calculator were used to calculate UCLs for the data.

Time-series plots were created using Microsoft Excel graphing functions. The Mann-Kendall test was conducted using the EPA's ProUCL calculator. ProUCL did not directly create all of the statistical outputs for the Mann-Kendall analysis. VAR(S) was computed using equation [1], Z was computed using equation [2], and probability was computed using **Table A21** (Hollander and Wolfe 1973).

[1] Standard Deviation of $S = \sqrt{VAR(S)}$

[2]
$$Z = \left| \frac{S}{\sqrt{VAR(S)}} \right|$$

The State of Washington DOE UCL (DOE 2012) calculator was used to calculate the 95 percent UCL for normal and lognormal data sets, as well as the mean, minimum value, and maximum value for each data set. For data sets that were neither normal nor lognormal, the UCL was calculated using the EPA's ProUCL calculator (ProUCL, 2012). The data sets were calculated using ProUCL. Raw calculations for the DOE and EPA ProUCL calculators are presented in **Appendix B**.

3 **RESULTS**

3.1 SUMMARY

Post-closure data has been collected during 12 quarterly events between February 2005 and November 2007; six semi-annual events between May 2008 and October 2010; and 14 annual events in July 2011, April 2012, June 2013, April 2014, July 2015, August 2016, August 2017, July 2018, July 2019, June 2020, July 2021, June 2022, July 2023, and July 2024. The post-closure data are summarized in **Appendix A1** and individual results that exceed the groundwater protection level are highlighted.

3.2 STATISTICAL EVALUATION

3.2.1 Time-Series Plots

During the post-closure period beginning in February 2005, groundwater samples were analyzed for sulfate, fluoride, chloride, and total cyanide. Time-series plots of data collected since 2005 are presented in **Appendix B1**. For the time-series non-detected data, points were plotted using one half of the laboratory practical quantitative limit (PQL).

The time-series plots indicate the following trends since closing of the WSI in 2004 and compared to the prior year concentrations. Please note that during the July 2024 groundwater monitoring event, groundwater was noted in well MW-12A with slow recharge which is the first time since 2017 that measureable groundwater was detected in the well.

<u>Sulfate</u>

Sulfate concentrations since the prior year have increased slightly in well MW-14A and slightly decreased in other wells. The sulfate concentrations remain above the groundwater protection standard of 250 mg/L, except in up-gradient well MW-8A, which remains below the standard. The sulfate concentration in well MW-12A during the July 23, 2024 groundwater monitoring event was 510 mg/L which is above the standard.

<u>Fluoride</u>

Fluoride concentrations since the prior year are slightly decreasing in wells MW-3B and MW-14A. Fluoride concentrations remain below the groundwater protection standard of 0.96 mg/L, except in wells MW-10A and MW-14A in which fluoride concentrations continue to be above the standard. The fluoride concentration in well MW-12A during the July 23, 2024 groundwater monitoring event was 1.9 mg/L which is above the standard.

<u>Chloride</u>

Chloride concentrations since the prior year are decreasing in wells MW-3B, MW-10A, and MW-18A. Chloride concentrations since the prior year are slightly increasing in wells MW-8A and MW-14A. The chloride concentrations in all five of the afore-mentioned wells have not exceeded

the groundwater protection standard of 250 mg/L since 2005. The chloride concentration in well MW-12A during the July 23, 2024 groundwater monitoring event was 37 mg/L which is below the standard.

<u>Total Cyanide</u>

Total cyanide was not detected in wells MW-8A, MW-12A, MW-3B, and MW-18. The groundwater protection standard for total cyanide is 0.2 mg/L. The cyanide concentrations in MW-10A and 14-A were 0.009 mg/L and 0.019 mg/L, respectively, which are both below the standard.

3.2.2 Mann-Kendall Test

The Mann-Kendall test (Gilbert, 1987; Hollander and Wolfe, 1973) was used to evaluate temporal trends in the concentrations of analytes. The nonparametric Mann-Kendall test evaluates the direction and significance of trends in the data at the 95 percent UCL. The GSDAEP specified that Sen's slope tests were to be used to evaluate trends in the data but have not been used because they provide information similar to the Mann-Kendall test and are less conservative since they evaluate the significance of the data at the 90 percent UCL.

The Mann-Kendall test was conducted using the post-closure data. Results of the Mann-Kendall test are presented in **Appendix B2** and summarized below in **Table 4**.

TABLE 4 – POST-CLOSURE SIGNIFICANT TRENDS USING THE MANN-KENDALL TEST

WELL #	SULFATE	FLUORIDE	CHLORIDE	TOTAL CYANIDE								
UP-GRADIENT												
MW-8A	-	\downarrow	-	+								
		DOWN-GRADIEN	Г									
MW-3B	\downarrow	\downarrow	\downarrow	+								
MW-10A	\uparrow	+	+	\downarrow								
MW-12A	NA	NA	NA	NA								
MW-14A	\downarrow	\downarrow	-	\downarrow								
MW-18	-	\downarrow	\downarrow	+								

NOTES: \uparrow = significant increasing trend

- \downarrow = significant decreasing trend
- = negative trend
- + = positive trend
- NA = trend could not be calculated; only one data point available since 2017

The Mann-Kendall test results indicate the following:

- Sulfate concentrations are significantly increasing in down-gradient well MW-10A yet are significantly decreasing in down-gradient wells MW-3B and MW-14A.
- Fluoride concentrations are significantly decreasing in up-gradient well MW-8A and down-gradient wells MW3B, MW-14A, and MW-18.

- Chloride concentrations are significantly decreasing in down-gradient wells MW-3B and MW-18.
- Total cyanide concentrations are significantly decreasing in down-gradient wells MW-10A and MW-14A.
- Trend data assessment for groundwater samples obtained from MW-12A cannot be calculated at this time due to a hiatus of consecutive groundwater monitoring events from 2018 through 2023.

3.2.3 Upper Confidence Limits

The primary tool cited in MTCA (WAC 173-34-720 [9]) for assessing whether data exceeds established CULs is by comparing data to established UCLs calculated on the mean. The UCL for each parameter at each well was calculated using the post-closure data, and the calculated UCL was compared to the MTCA CUL and MCL for each analyte to assess whether groundwater protection standards are being met. The results of the UCL comparisons are presented in **Appendix B** and summarized below in **Table 5**.

		DAIA							
	UPPER CONFIDENCE LIMIT (mg/L)								
	SULFATE	CHLORIDE	FLUORIDE	TOTAL					
				CYANIDE					
LOWEST	250	250	0.96	0.2					
GROUNDWATER									
PROTECTION									
STANDARD									
	UP-C	GRADIENT WEL	L						
MW-8A	9.641	4.674	0.824	0.15					
	DOWN	-GRADIENT WE	ELL						
MW-3B	2248	108.7	3.212	0.01					
MW-10A	2942	79.66	4.862	0.0296					
MW-12A*	NA	NA	NA	NA					
MW-14A	3990	118.9	19.81	0.135					
MW-18	1493	82.8	4.097	0.086					

 TABLE 5 – UPPER CONFIDENCE LIMITS OF POST-CLOSURE GROUNDWATER

 DATA

NOTES: * No UCL calculated. Well was dry during most sampling events.

BOLD indicates UCL exceeds lowest groundwater protection standard.

Aside from well MW-12A, all of the wells down-gradient of the WSI that were sampled have postclosure UCL concentrations above the groundwater protection standards for sulfate and fluoride; however, all of the wells down-gradient of the WSI that were sampled have post-closure UCL concentrations below the groundwater protection standards for chloride and total cyanide. Upgradient well MW-8A has a UCL below the groundwater protection standard for sulfate, chloride, fluoride, and total cyanide. No UCL calculations are available for groundwater obtained from down-gradient well MW-12A due to lack of sufficient data.

3.3 GROUNDWATER FLOW

Groundwater elevations were measured once during 2004, quarterly from 2005 - 2007, semiannually from 2008 - 2010, and annually from 2011 - 2024. The groundwater elevation data and hydrograph showing changes in groundwater surface elevation during post-closure are presented in **Appendix C**. A groundwater surface elevation contour map was prepared using groundwater surface elevations collected during the most recent July 23, 2024 groundwater monitoring event and is presented as **Figure 3**. Groundwater flow direction and hydraulic gradient are consistent with historical data and the overall flow direction down-gradient of the WSI is to the southwest.

4 CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

The following is concluded based on the July 23, 2024 groundwater sampling results, trends, and statistical evaluation of historic data.

- Sulfate and fluoride concentrations in down-gradient wells, based on the calculated UCLs, exceed the groundwater protection standards. Sulfate and fluoride in the up-gradient well (MW-8A) are below groundwater protection standards.
- Sulfate concentrations in down-gradient well MW-10A are significantly increasing.
- Sulfate concentrations in down-gradient wells MW-14A and MW-18 are significantly decreasing.
- Fluoride concentrations are significantly decreasing in all wells except down-gradient well MW-10A.
- Chloride concentrations remain below groundwater protection standards, based on calculated UCLs, since the last reporting period. There are significant decreasing trends for chloride concentrations in down-gradient wells MW-3B and MW-18.
- Total cyanide concentrations are below groundwater protection standards, based on calculated UCLs, since the last reporting period. A significant decreasing trend continues since the last reporting period for total cyanide in down-gradient wells MW-10A and MW-14A.

4.2 RECOMMENDATIONS

Post-closure sulfate and fluoride concentrations are lower than pre-closure concentrations. However, the lack of significant reduction in their concentrations during the post-closure period may indicate that the WSI is continuing to contribute these contaminants to the groundwater. Continued sampling and data evaluation will be required to determine whether the concentrations of sulfate and fluoride decrease below the lowest groundwater protection standard.

As specified in the GSDAEP, the WSI groundwater monitoring frequency is on an annual basis. Also specified, future reports will continue time-series plots, Mann-Kendall tests for trend and a comparison of the UCLs of the most recent sampling data to the groundwater protection standards.

5 REFERENCES

CH2M Hill, 1995, <u>West Surface Impoundment and Post-Closure Plan. Prepared for Goldendale</u> <u>Aluminum</u>, February 1995.

DOE, 2012, State of Washington Department of Ecology 6/11/2012 http://www.ecy.wa.gov/programs/tcp/tools/SITE97.XLT.

DOE, 2014, Agreed Order No. DE 10483 Columbia Gorge Aluminum Smelter, Effective May 1, 2014.

Geo-Pro LLC, 2012, Semi-Annual Groundwater Monitoring Report, West Surface Impoundment, Former Goldendale Aluminum Smelter.

Geo-Pro LLC, 2013 Through 2023, Semi-Annual Groundwater Monitoring Reports, West Surface Impoundment, Former Goldendale Aluminum Smelter.

Gibbons, R.D., 1994, Statistical Methods for Ground Water Monitoring, John Wiley and Sons.

Gilbert, R.O., 1987, <u>Statistical Methods for Environmental Pollution Monitoring</u>, Van Rostrand Reinhold, New York.

Golder Associates, Inc., 1989, <u>Groundwater Monitoring Well Installation</u>, <u>West Surface</u> <u>Impoundment</u>, <u>Golden Northwest Aluminum</u>, <u>Interim Report</u>.

Hollander and Wolfe, 1973, Nonparametric Statistical Methods, John Wiley and Sons.

Parametrix, Inc., 2004a, Goldendale Aluminum West Surface Impoundment Closure.

Parametrix, Inc., 2004b, <u>Groundwater Sampling Data Analysis and Evaluation Plan for</u> <u>Goldendale Aluminum West Surface Impoundment Facility</u>.

Parametrix, Inc., 2004c, WSI Closure and Post Closure Plan.

Parametrix, Inc., 2005, <u>Groundwater Sampling Data Analysis and Evaluation Plan for Goldendale</u> <u>Aluminum West Surface Impoundment Facility, February 2005 Revision to November 2004</u> <u>Document</u>.

Parametrix, Inc., 2007, <u>Two-Year Post-Closure Groundwater Evaluation</u>, <u>Goldendale Aluminum</u> <u>West Surface Impoundment Facility</u>, September 2007.

Skyllingstad, Paul, WA DOE, Personal Communication, June 28, 2012.

ProUCL 7/12/11, U.S. Environmental Protection Agency 6/11/2012: http://www.epa.gov/osp//hstl//tsc/setup v41.zip

6 SURFACE MAINTENANCE

The quarterly surface maintenance reports for the year are included in **Appendix D** pursuant to Section 6.5 of the WSI Closure and Post Closure Plan (Parametrix, 2004c). The reports include visual inspection of the cover, stormwater conveyance system, and any correction action. Quarterly photographs are included in each report.

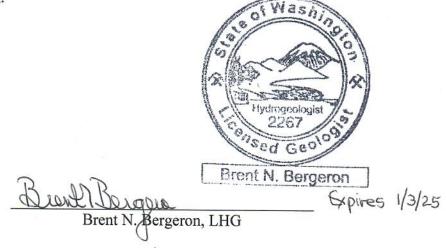
7 LIMITATIONS

The enclosed JULY 2024 ANNUAL GROUNDWATER MONITORING REPORT has been performed for the exclusive use of Washington DOE and the NSC Smelter LLC, for the subject property, located at 85 John Day Dam Road in Goldendale, Washington.

The purpose of the JULY 2024 ANNUAL GROUNDWATER MONITORING activities was to evaluate potential or actual effects of past or current practices at the given Site. In performing the referenced field activities, a balance was struck between reasonable inquiry into environmental issues and an exhaustive analysis of every conceivable issue of possible concern. This GWSE report contains BMEC opinion(s) regarding environmental issues of concern and/or additional issues that may need to be addressed. In rendering our professional opinion(s), BMEC warrants that the services provided within the scope of these field activities were performed, within the limits described, in accordance with generally accepted environmental consulting principles and practices. No other warranty, expressed or implied, is made. The following paragraphs describe the assumptions and standard parameters under which such an opinion is rendered.

Any opinions and/or recommendations presented in this report apply to site conditions existing at the time of performance of services. BMEC is unable to report on or accurately predict events that may affect the Site after the performance of services, whether occurring naturally or caused by human forces. BMEC assumes no responsibility for conditions BMEC did not investigate, or conditions not generally recognized as environmentally unacceptable at the time services were performed.

Except where there is expressed concern of our client, or where specific environmental contaminants have previously been reported by others, naturally occurring toxic substances, potential environmental contaminants located inside buildings, or contaminant concentrations not of current environmental concern, may not be addressed in this document.


No assessment is thorough enough to exclude the presence of hazardous materials at a given site. Therefore, if specific hazardous materials have not been identified during this investigation, the lack of such identifications should not be construed as a guarantee of the absence of hazardous materials, but merely as the result of services performed within the scope, limitations, and cost of work done.

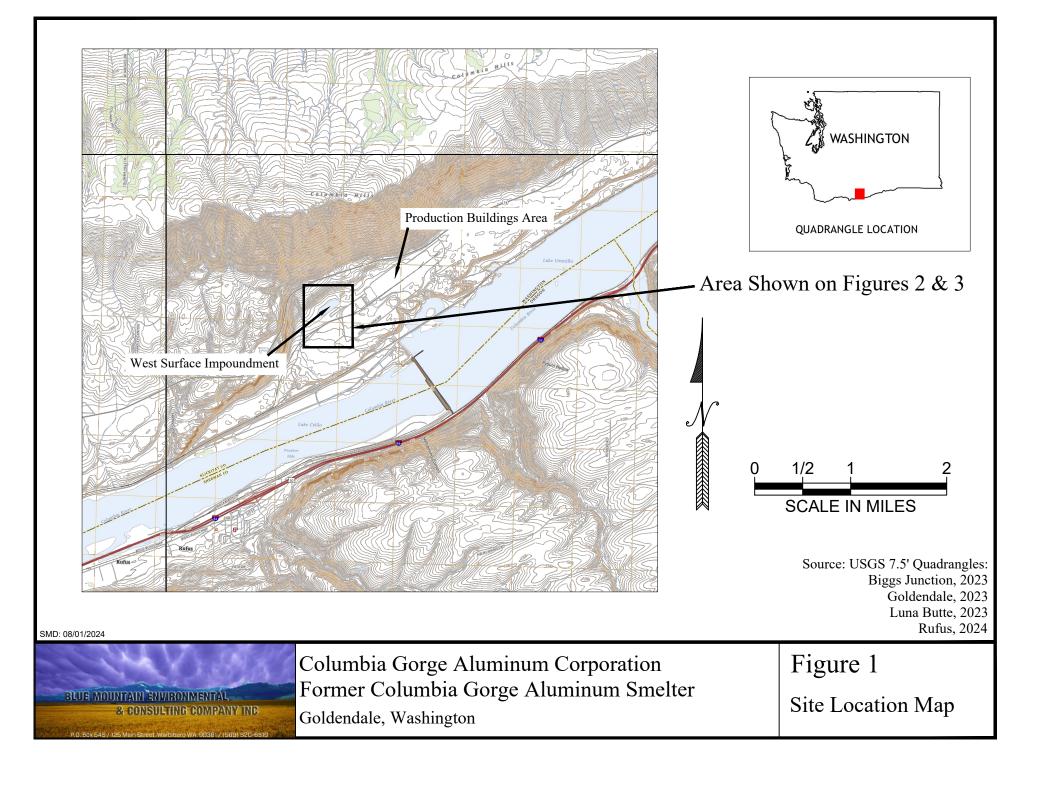
BMEC is not responsible for the effects of changes in applicable environmental standards,

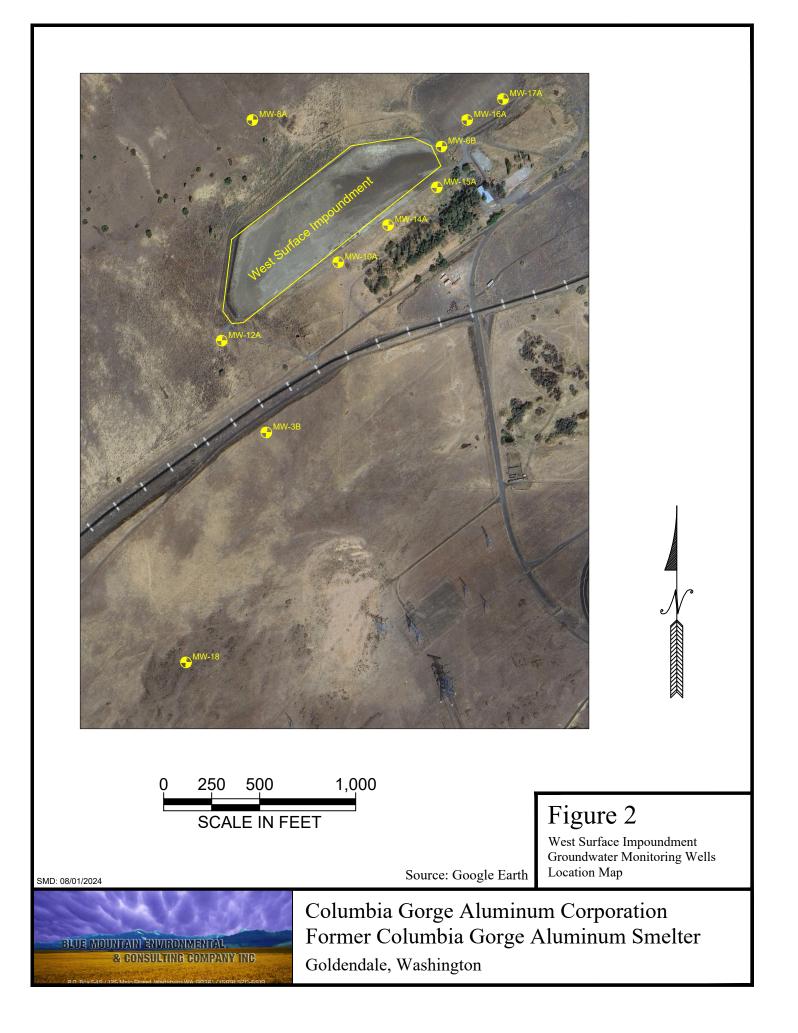
BMEC is not responsible for the effects of changes in applicable environmental standards, practices, or regulations after the performance of services.

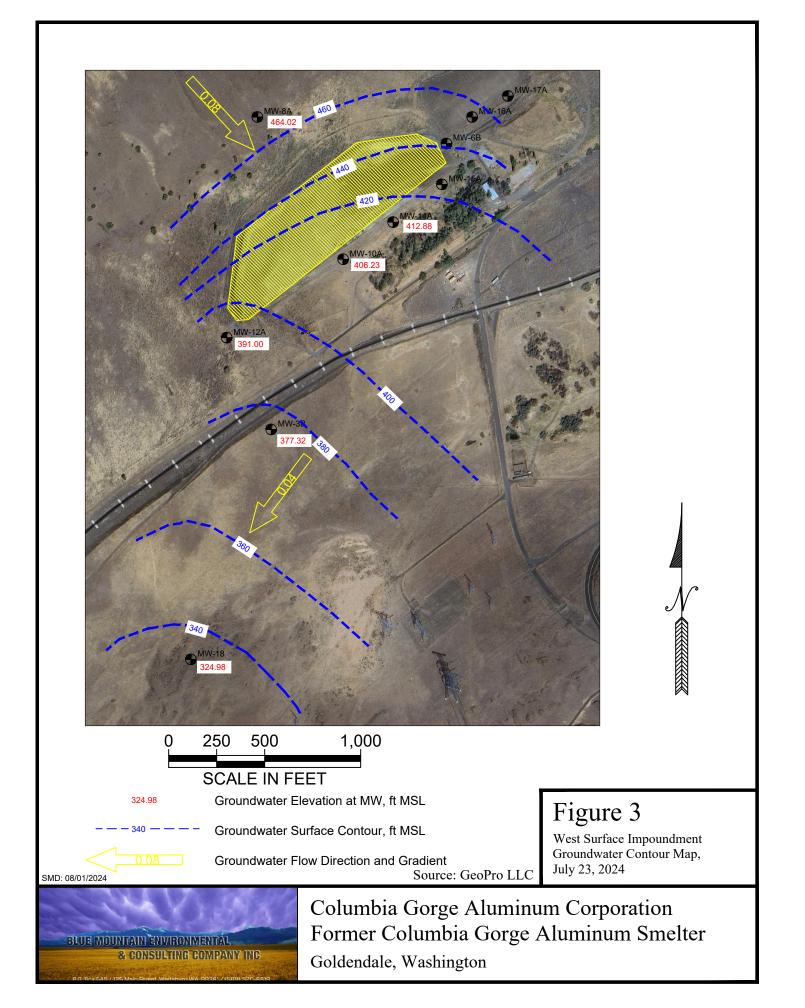
The services provided for this investigation were performed in accordance with Washington DOE's requests and BMEC's agreement and understanding with our client, which may not be fully disclosed in this report. Opinions and/or recommendations are intended for the client, purpose, site, location, time frame, and project parameters indicated.

This report was prepared solely for the use of Washington DOE and the NSC Smelter LLC and should be reviewed in its entirety; BMEC is not responsible for subsequent separation, detachment, or partial use of this document. Any reliance on this report by a third party shall be at such party's sole risk.

Statement of Quality Control


The objective of these JULY 2024 ANNUAL GROUNDWATER MONITORING field activities was to ascertain the potential presence or absence of environmental problems that could impact the subject property. The purpose of the field activities was to perform reasonable steps in accordance with the existing regulations, currently available technology, and generally accepted engineering practices in order to accomplish the desired objectives. To the best of our knowledge, these field activities have been performed in compliance with BMEC's Standard Operating Procedures protocol for Environmental Site Assessments and/or Groundwater Monitoring Reports.


Blue Mountain Environmental Consulting, Inc.


P Trabusiner

Peter H. Trabusiner, Engineer

BMEC E2023/1007 WSI @ Goldendale, WA WSI Annual Groundwater Monitoring Report – July 2024 pg 17

APPENDICES

APPENDIX A – GROUNDWATER ANALYSES

APPENDIX A1

Analyses Summary Table

			WATER ANALYSES			
	Analyte	st surrace impound	ment - Former Columbia Gorg Sulfate	Fluoride	endale, Washington Chloride	Total Cyanide
Lowest Grou	undwater Protection St	tandard	250	0.96	250	0.2
Monitoring Well ID	Location To WSI	Date Collected	250	0.50	230	0.2
		2/16/05	10	0.9	5.6	< 0.01
		5/11/05	9.8	0.3	4.6	< 0.01
		8/29/05	8.9	0.4	4.2	< 0.01
		11/1/05	9.6	0.9	4.7	< 0.01
		2/27/06	9.27	2.8	4.2	< 0.01
		6/5/06	9.8	0.2	4.9	< 0.05
		7/31/06	9.8	0.1	4.6	< 0.01
		10/9/06	9.7	< 0.2	4.5	< 0.01
		3/13/07	10	< 0.1	6.6	< 0.01
		6/22/07	1	< 10	4.89	< 0.01
		9/24/07	10	< 1	4.2	< 0.01
		11/14/07 5/8/08	- 10	- <1	- 4	< 0.01
		10/14/08	10	0.1	4.5	< 0.01
		5/29/09	9	<1	3	< 0.01
		10/27/09	10	<1	5.5	< 0.02
MW-8A	Up-Gradient	5/26/10	9.3	<1	4.4	< 0.02
		10/6/10	8.9	<1	3.6	< 0.02
		7/26/11	7.8	<1	3.6	< 0.02
		4/19/12	10	0.18	3.8	< 0.005
		6/20/13	9.4	0.16	4.8	< 0.005
		4/25/14	9.5	0.19	4.9	< 0.005
		7/20/15	9.5	0.16	4.2	< 0.005
		8/2/16	9.3	0.13	4.1	< 0.005
		8/9/17	9.6	0.15	4.1	< 0.005
		7/26/18	9.5	0.15	3.2	< 0.005
		7/24/19	5.4	0.14	4.1	< 0.005
		6/20/20	11	0.16	3.9	< 0.005
		7/28/21	9	0.15	4.4	< 0.004
		6/30/22	9.2	0.15	3.7	< 0.005
		7/20/23	7.4	0.15	5	< 0.005
		7/23/24	10	0.15	5.9	<0.005
		2/16/05	2300	0.6	130	< 0.01
		5/11/05 8/29/05	2500 2700	0.4	140 120	< 0.01
		11/1/05	2600	0.9	130	< 0.01
		2/27/06	2610	0.3	130	< 0.01
		6/5/06	2220	0.7	118	< 0.01
		7/31/06	2000	3.7	110	< 0.01
		10/9/06	2500	3.8	110	< 0.01
		3/13/07	2500	3.8	110	< 0.01
		6/22/07	2500	< 10	97	< 0.01
		9/24/07	2200	<1	124.79	< 0.01
		11/14/07	-	-	-	-
		5/8/08	2200	< 50	100	< 0.01
		10/14/08	2600	< 10	100	< 0.01
		5/29/09	2200	< 1	96	< 0.01
MW-3B	Down-Gradient	10/27/09	2606	< 1	110	< 0.02
	2011. Sidulent	5/26/10	2300	2.3	120	< 0.02
		10/6/10	2400	< 1	120	< 0.02
		7/26/11	2000	<1	98	< 0.02
		4/19/12	2200	0.16	90	< 0.005
		6/20/13	1900	0.16	91	0.006
		4/25/14	2000	0.18	91	< 0.006
		7/20/15	1900	0.14	80	< 0.005
		8/2/16	1900	0.12	98	< 0.005
		8/9/17 7/26/18	1700 1800	0.15	95 95	0.01 <0.005
		7/26/18	1500	0.15	93	< 0.005
		6/20/20	1700	0.15	88	< 0.005
		7/28/21	1500	0.14	93	< 0.005
		6/30/22	1600	0.17	99	< 0.005
		7/20/23	1400	0.13	86	< 0.005
		7/23/24	2100	0.17	89	<0.005

	1	- /: - /				
		2/16/05	940	1.8	29	0.04
		5/11/05	910	1.5	31	0.05
		8/29/05	670	1.2	28	0.04
		11/1/05	670	2.7	28	0.03
		2/27/06	1570	2.3	43	0.03
		6/5/06	1650	3.2	48	0.03
		7/31/06	860	2.3	35	0.08
		10/9/06	850	1.9	30	0.03
		3/13/07	1100	3.4	45	0.04
		6/22/07	1100	< 10	36	< 0.01
		9/24/07	760	1.2	30	0.04
		11/14/07	-	-	-	0.043
		5/8/08	2700	< 50	100	0.05
		10/14/08	860	<10	30	0.04
		5/29/09	2000	2	68	0.03
		10/27/09	760	<1	79	< 0.02
MW-10A	Down-Gradient					
		5/26/10	2200	4.4	83	0.032
		10/6/10	710	1	23	0.022
		7/26/11	1800	3.3	62	0.028
		4/19/12	5800	1.9	180	0.007
		6/20/13	4700	3.1	99	0.008
		4/25/14	6100	2	190	< 0.005
		7/20/15	1900	2	58	< 0.005
		8/2/16	3500	2.1	82	< 0.005
		8/9/17	2900	3.2	170	< 0.005
		7/26/18	4800	4.1	71	< 0.005
		7/24/19	4000	3.7	82	< 0.006
		6/20/20	5700	4.4	77	< 0.006
		7/28/21	DRY	DRY	DRY	DRY
		6/30/22	2100	3.2	47	< 0.005
		7/20/23	1400	4.0	38	< 0.005
		7/23/24	3550	5	50	< 0.005
			DRY	DRY	DRY	
		2/16/05				DRY
		5/11/05	DRY	DRY	DRY	DRY
		8/29/05	DRY	DRY	DRY	DRY
		11/1/05	DRY	DRY	DRY	DRY
		2/27/06	DRY	DRY	DRY	DRY
		6/5/06	DRY	DRY	DRY	DRY
		7/31/06	DRY	DRY	DRY	DRY
		10/9/06	DRY	DRY	DRY	DRY
		3/13/07	1800	6.3	150	
		6/22/07				< 0.01
			DRY	DRY	DRY	< 0.01 DRY
		9/24/07	DRY DRY	DRY DRY	DRY DRY	
						DRY
		9/24/07	DRY	DRY	DRY	DRY DRY
		9/24/07 11/14/07	DRY DRY	DRY DRY	DRY DRY	DRY DRY DRY
		9/24/07 11/14/07 5/8/08 10/14/08	DRY DRY DRY DRY	DRY DRY DRY DRY	DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY
		9/24/07 11/14/07 5/8/08 10/14/08 5/29/09	DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY
MW-12A	Down-Gradient	9/24/07 11/14/07 5/8/08 10/14/08 5/29/09 10/27/09	DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY
MW-12A	Down-Gradient	9/24/07 11/14/07 5/8/08 10/14/08 5/29/09 10/27/09 5/26/10	DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY
MW-12A	Down-Gradient	9/24/07 11/14/07 5/8/08 10/14/08 5/29/09 10/27/09 5/26/10 10/6/10	DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY
MW-12A	Down-Gradient	9/24/07 11/14/07 5/8/08 10/14/08 5/29/09 10/27/09 5/26/10 10/6/10 7/26/11	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY
MW-12A	Down-Gradient	9/24/07 11/14/07 5/8/08 10/14/08 5/29/09 10/27/09 5/26/10 10/6/10 7/26/11 4/19/12	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY
MW-12A	Down-Gradient	9/24/07 11/14/07 5/8/08 10/14/08 5/29/09 10/27/09 5/26/10 10/6/10 7/26/11 4/19/12 6/20/13	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY
MW-12A	Down-Gradient	9/24/07 11/14/07 5/8/08 10/14/08 5/29/09 10/27/09 5/26/10 10/6/10 7/26/11 4/19/12 6/20/13 4/25/14	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY
MW-12A	Down-Gradient	9/24/07 11/14/07 5/8/08 10/14/08 5/29/09 10/27/09 5/26/10 10/6/10 7/26/11 4/19/12 6/20/13 4/25/14 7/20/15	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY
MW-12A	Down-Gradient	9/24/07 11/14/07 5/8/08 10/14/08 5/29/09 10/27/09 5/26/10 10/6/10 7/26/11 4/19/12 6/20/13 4/25/14 7/20/15 8/2/16	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY
MW-12A	Down-Gradient	9/24/07 11/14/07 5/8/08 10/14/08 5/29/09 10/27/09 5/26/10 10/6/10 7/26/11 4/19/12 6/20/13 4/25/14 7/20/15 8/2/16 8/9/17	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY
MW-12A	Down-Gradient	9/24/07 11/14/07 5/8/08 10/14/08 5/29/09 10/27/09 5/26/10 10/6/10 7/26/11 4/19/12 6/20/13 4/25/14 7/20/15 8/2/16 8/9/17 7/26/18	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY
MW-12A	Down-Gradient	9/24/07 11/14/07 5/8/08 10/14/08 5/29/09 10/27/09 5/26/10 10/6/10 7/26/11 4/19/12 6/20/13 4/25/14 7/20/15 8/2/16 8/9/17	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY
MW-12A	Down-Gradient	9/24/07 11/14/07 5/8/08 10/14/08 5/29/09 10/27/09 5/26/10 10/6/10 7/26/11 4/19/12 6/20/13 4/25/14 7/20/15 8/2/16 8/9/17 7/26/18	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY
MW-12A	Down-Gradient	9/24/07 11/14/07 5/8/08 10/14/08 5/29/09 10/27/09 5/26/10 10/6/10 7/26/11 4/19/12 6/20/13 4/25/14 7/20/15 8/2/16 8/9/17 7/26/18 7/24/19	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY
MW-12A	Down-Gradient	9/24/07 11/14/07 5/8/08 10/14/08 5/29/09 10/27/09 5/26/10 10/6/10 7/26/11 4/19/12 6/20/13 4/25/14 7/20/15 8/2/16 8/9/17 7/26/18 7/26/18 7/26/18 7/26/18	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY
MW-12A	Down-Gradient	9/24/07 11/14/07 5/8/08 10/14/08 5/29/09 10/27/09 5/26/10 10/6/10 7/26/11 4/19/12 6/20/13 4/25/14 7/20/15 8/2/16 8/9/17 7/26/18 7/24/19 6/20/20	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY

			I	1		1
		2/16/05	4000	9.6	110	0.35
		5/11/05	3500	8.6	90	0.24
		8/29/05	3600	30	71	0.27
		11/1/05	2800	25	75	0.19
		2/27/06	2170	31	53	0.19
		6/5/06	2380	27	63	0.2
		7/31/06	3300	30	98	0.17
		10/9/06	3900	24	130	0.01
		3/13/07	4400	16	140	0.12
		6/22/07	7900	19	170	< 0.01
		9/24/07	6400	< 50	200	0.03
		11/14/07	-	-	-	-
		5/8/08	5500	< 50	100	0.19
		10/14/08	6500	20	180	0.12
		5/29/09	7000	30	210	0.14
MW-14A	Down-Gradient	10/27/09	5900	24	160	0.044
		5/26/10	5200	32	170	0.14
		10/6/10	4000	18	120	0.086
		7/26/11	3900	23	130	0.066
		4/19/12	DRY	DRY	DRY	DRY
		6/20/13	2300	17	66	0.028
		4/25/14	2100	18	61	0.037
		7/20/15	1100	6.8	47	0.008
		8/2/16	1400	3.5	61	0.019
		8/9/17	1700	2.5	68	0.015
		7/26/18	1800	3.6	66	< 0.005
		7/24/19	1700	2.8	64	0.018
		6/20/20	2000	7	49	0.018
		7/28/21	1100	7.8	36	< 0.004
		6/30/22	990	7.8	32	0.008
		7/20/23	1100	2.9	50	< 0.005
		7/23/24	1700	1.8	64	<0.005
		2/16/05	1500	0.6	86	< 0.01
		5/11/05	1300	0.4	91	< 0.01
		8/29/05	1500	0.4	75	< 0.01
		11/1/05	1300	1.8	84	< 0.01
		2/27/06	1520	0.9	83	< 0.01
		6/5/06	1490	0.2	91	< 0.01
		7/31/06	1500	2.6	89	< 0.01
		10/9/06	1600	2.4	80	< 0.01
		3/13/07	1600	2.6	93	< 0.01
		6/22/07	1700	<1	77	< 0.01
		9/24/07	1400	< 50	100	< 0.01
		11/14/07	-	-	-	-
		5/8/08	1300	< 50	70	< 0.01
		10/14/08	1600	<1	80	< 0.01
		5/29/09	1500	1	81	< 0.01
MW-18	Down-Gradient	10/27/09	1200	<1	70	< 0.01
	Bown Gradient	5/26/10	1500	2	100	< 0.02
		10/6/10	1600	<1	84	< 0.02
		7/26/11	1600	<1	89	< 0.02
		4/19/12	1700	0.2	79	< 0.005
		6/20/13	1500	0.13	84	< 0.005
		4/25/14	1700	0.12	79	< 0.005
		7/20/15	1300	0.11	86	< 0.005
		8/2/16	1700	0.12	79	< 0.005
		8/9/17	1300	0.12	59	0.086
		7/26/18	1400	0.11	69	< 0.005
		7/24/19	1200	0.12	68	< 0.005
		6/20/20	1400	0.13	67	< 0.005
		7/28/21	1200	0.11	71	< 0.004
		6/30/22	1300	0.15	72	< 0.005
		7/20/23	1100	0.16	69	< 0.005
		7/23/24	1100	0.14	66	<0.005

NOTES:

mg/L - milligrams per liter or parts per million

< = not detected above laboratory practical quantitation limit (PQL)

BOLD = detected at concentration above PQL

- = not analyzed **500**

Gray shading implies detection above the PQL and BOLD BLACK text implies concentration exceeds the Lowest Groundwater Protection Standard.

APPENDIX A2

Laboratory Report

August 7, 2024

Peter Trabusiner Blue Mountain Environmental, Inc. 1500 Adair Drive Richland, WA 99352

Re: Analytical Data for Project E2023/1007; Goldendale WSI Laboratory Reference No. 2407-287

Dear Peter:

Enclosed are the analytical results and associated quality control data for samples submitted on July 25, 2024.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: August 7, 2024 Samples Submitted: July 25, 2024 Laboratory Reference: 2407-287 Project: E2023/1007; Goldendale WSI

Case Narrative

Samples were collected on July 23, 2024 and received by the laboratory on July 25, 2024. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below. However the soil results for the QA/QC samples are reported on a wet-weight basis.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

CHLORIDE SM 4500-CI E

Matrix: Water Units: mg/L						
Ameliate	Decult		Mathad	Date Dran are d	Date	Flows
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW8A-7-23-24-GW 07-287-01					
Laboratory ID: Chloride	5.9	2.0	SM 4500-CI E	7-31-24	7-31-24	
Chionde	5.9	2.0	3101 4300-CI E	7-31-24	7-31-24	
Client ID:	MW12A-7-23-24-GW					
Laboratory ID:	07-287-02					
Chloride	37	2.0	SM 4500-CI E	7-31-24	7-31-24	
Client ID:	MW3B-7-23-24-GW					
Laboratory ID:	07-287-03					
Chloride	89	2.0	SM 4500-CI E	7-31-24	7-31-24	
Client ID:	MW10A-7-23-24-GW					
Laboratory ID:	07-287-04					
Chloride	47	2.0	SM 4500-CI E	7-31-24	7-31-24	
		2.0		10121		
Client ID:	MW10A-7-23-24-GW-DUP					
Laboratory ID:	07-287-05					
Chloride	53	2.0	SM 4500-CI E	7-31-24	7-31-24	
Client ID:	MW14A-7-23-24-GW					
Laboratory ID:	07-287-06					
Chloride	64	2.0	SM 4500-CI E	7-31-24	7-31-24	
Client ID:	MW18-7-23-24-GW					
Laboratory ID:	07-287-07	2.0		7.04.04	7 04 04	
Chloride	66	2.0	SM 4500-CI E	7-31-24	7-31-24	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

3

CHLORIDE SM 4500-CI E QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0731W1					
Chloride	ND	2.0	SM 4500-CI E	7-31-24	7-31-24	

				Source	Percent	Recovery		RPD	
Analyte	Result		Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	07-28	32-02							
	ORIG	DUP							
Chloride	5970	5710	NA	NA	NA	NA	4	21	
MATRIX SPIKE									
Laboratory ID:	07-28	32-02							
	М	S	MS		MS				
Chloride	164	100	10000	5970	104	81-115	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB07	31W1							
	S	В	SB		SB				
Chloride	53	3.5	50.0	NA	107	77-115	NA	NA	

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

FLUORIDE

SM 4500-F C

Matrix: Water Units: mg F- /L

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW8A-7-23-24-GW	FQL	Wethou	Flepaleu	Analyzeu	Flays
Laboratory ID:	07-287-01					
Fluoride	0.15	0.020	SM 4500-F C	8-2-24	8-2-24	
Client ID:	MW12A-7-23-24-GW					
Laboratory ID:	07-287-02					
Fluoride	1.9	0.020	SM 4500-F C	8-2-24	8-2-24	
Client ID:	MW3B-7-23-24-GW					
Laboratory ID:	07-287-03					
Fluoride	0.17	0.020	SM 4500-F C	8-2-24	8-2-24	
Client ID:	MW10A-7-23-24-GW					
Laboratory ID:	07-287-04					
Fluoride	5.0	0.080	SM 4500-F C	8-2-24	8-2-24	
Client ID:	MW10A-7-23-24-GW-DUP					
Laboratory ID:	07-287-05					
Fluoride	4.9	0.080	SM 4500-F C	8-2-24	8-2-24	
Client ID:	MW14A-7-23-24-GW					
Laboratory ID:	07-287-06					
Fluoride	1.8	0.020	SM 4500-F C	8-2-24	8-2-24	
Client ID:	MW18-7-23-24-GW					
Laboratory ID:	07-287-07					
Fluoride	0.14	0.020	SM 4500-F C	8-2-24	8-2-24	
	VIIT	0.020		~ 1	0221	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

FLUORIDE SM 4500-F C QUALITY CONTROL

Matrix: Water Units: mg F- /L

						Date	Date	•	
Analyte		Result	PQL	Me	ethod	Prepared	Analyz	ed	Flags
METHOD BLANK									
Laboratory ID:		MB0802W1							
Fluoride		ND	0.020	SM 4	500-F C	8-2-24	8-2-2	4	
				Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike Level	Result	Recovery	-	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	07-3	28-01							
	ORIG	DUP							
Fluoride	0.0344	0.0363	NA	NA	NA	NA	5	30	
MATRIX SPIKE									
Laboratory ID:	07-3	28-01							
	Ν	1S	MS		MS				
Fluoride	0.	566	0.500	0.0344	106	81-123	NA	NA	
SPIKE BLANK									
Laboratory ID.	SB08	02W1							

SB SB Fluoride 0.512 0.500 NA 102 75-122 NA NA	Laboratory ID:	SB0802W1							
Fluoride 0.512 0.500 NA 102 75-122 NA NA			SB						
		0.512	0.500	NA	102	75-122	NA	NA	

SULFATE ASTM D516-11

Matrix: Water Units: mg/L						
onita. Ing/E				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW8A-7-23-24-GW					
Laboratory ID:	07-287-01					
Sulfate	10	5.0	ASTM D516-11	8-5-24	8-5-24	
Client ID:	MW12A-7-23-24-GW					
Laboratory ID:	07-287-02					
Sulfate	510	500	ASTM D516-11	8-5-24	8-5-24	
Client ID:	MW3B-7-23-24-GW					
Laboratory ID:	07-287-03					
Sulfate	2100	1000	ASTM D516-11	8-5-24	8-5-24	
Client ID:	MW10A-7-23-24-GW					
Laboratory ID:	07-287-04					
Sulfate	3700	1000	ASTM D516-11	8-5-24	8-5-24	
Client ID:	MW10A-7-23-24-GW-DUP					
Laboratory ID:	07-287-05					
Sulfate	3400	1000	ASTM D516-11	8-5-24	8-5-24	
Client ID:	MW14A-7-23-24-GW					
Laboratory ID:	07-287-06					
Sulfate	1700	1000	ASTM D516-11	8-5-24	8-5-24	
	1700	1000	AG 10 D3 10-11	0-0-24	0-0-24	
Client ID:	MW18-7-23-24-GW					
Laboratory ID:	07-287-07					
Sulfate	1100	1000	ASTM D516-11	8-5-24	8-5-24	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

SULFATE ASTM D516-11 QUALITY CONTROL

Matrix: Water Units: mg/L

onita. Ing/L						Date	Date		
Analyte	Result		PQL	Me	ethod	Prepared	Analyzed		Flags
METHOD BLANK						-			
Laboratory ID:		MB0805W1							
Sulfate		ND	5.0	ASTM	D516-11	8-5-24	8-5-24	4	
Analyte	Res	sult	Spike Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE									
Laboratory ID:	07-29	96-04							
	ORIG	DUP							
Sulfate	ND	ND	NA	NA	NA	NA	NA	11	
MATRIX SPIKE									
Laboratory ID:	07-29	96-04							
	М	S	MS		MS				
Sulfate	7.	50	10.0	ND	75	69-134	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB08	05W1							
	S	В	SB		SB				
Sulfate	10	.1	10.0	NA	101	81-106	NA	NA	

8

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed. Am Test Inc. 13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com

Professional Analytical Services

July 30, 2024

David Baumeister

14648 NE 95th ST Redmond, WA 98052

Project: OSE Project Number: E2023/1007

Project Manager: David Baumeister RE: OSE

Enclosed are the results of analyses for samples received by our laboratory on 7/26/2024. Please feel free to contact me with any questions or considerations regarding this report.

Sincerely,

Aavon YJ

Aaron Young President

13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com

OnSite Environmental Inc.

14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister Project Name: OSE Project #: E2023/1007

ANALYSIS REPORT

Professional Analytical Services

Date Received: 07/26/24 **Date Reported:** 07/30/24

All results reported on an as received basis.

Reported Samples

Lab ID	Sample	Matrix	Qualifiers	Date Sampled	Date Received
A24G0490-01		Mater		102/22/2024	07/26/2024
	MW8A-7-23-24-GW	Water		07/23/2024	07/26/2024
A24G0490-02	MW12A-7-23-24-GW	Water		07/23/2024	07/26/2024
A24G0490-03	MW3B-7-23-24-GW	Water		07/23/2024	07/26/2024
A24G0490-04	MW10A-7-23-24-GW	Water		07/23/2024	07/26/2024
A24G0490-05	MW10A-7-23-24-GW-DUP	Water		07/23/2024	07/26/2024
A24G0490-06	MW14A-7-23-24-GW	Water		07/23/2024	07/26/2024
A24G0490-07	MW18-7-23-24-GW	Water		07/23/2024	07/26/2024

13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com

OnSite Environmental Inc.

14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister Project Name: OSE Project #: E2023/1007

ANALYSIS REPORT

Professional Analytical Services

Date Received: 07/26/24 **Date Reported:** 07/30/24

All results reported on an as received basis.

AMTEST Identification Number: A24G0490-01 Client Identification: MW8A-7-23-24-GW Sampling Date: 07/23/24 09:10

Conventional Chemistry Parameters by APHA/EPA Methods

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Cyanide	ND	mg/L	U	0.005	SM 4500CN-E_2011	EZ	07/30/2024

AMTEST Identification Number: A24G0490-02 Client Identification: MW12A-7-23-24-GW Sampling Date: 07/23/24 10:02

Conventional Chemistry Parameters by APHA/EPA Methods

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Cyanide	ND	mg/L	U	0.005	SM 4500CN-E_2011	EZ	07/30/2024

AMTEST Identification Number: A24G0490-03 Client Identification: MW3B-7-23-24-GW Sampling Date: 07/23/24 11:24

Conventional Chemistry Parameters by APHA/EPA Methods

Total Cyanide ND mg/L U 0.005 SM 4500CN-E_2011 EZ 0	ND mg/L U 0.005 SM 4500CN-E_2011 EZ 07/30/2024

AMTEST Identification Number: A24G0490-04 Client Identification: MW10A-7-23-24-GW Sampling Date: 07/23/24 12:18

Conventional Chemistry Parameters by APHA/EPA Methods

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Cyanide	0.009	mg/L		0.005	SM 4500CN-E_2011	EZ	07/30/2024

13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com

OnSite Environmental Inc.

14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister Project Name: OSE Project #: E2023/1007

ANALYSIS REPORT

Professional Analytical Services

Date Received: 07/26/24 **Date Reported:** 07/30/24

All results reported on an as received basis.

AMTEST Identification Number: A24G0490-05 Client Identification: MW10A-7-23-24-GW-DUP Sampling Date: 07/23/24 12:22

Conventional Chemistry Parameters by APHA/EPA Methods

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Cyanide	0.009	mg/L		0.005	SM 4500CN-E_2011	EZ	07/30/2024

AMTEST Identification Number: A24G0490-06 Client Identification: MW14A-7-23-24-GW Sampling Date: 07/23/24 13:13

Conventional Chemistry Parameters by APHA/EPA Methods

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Cyanide	0.019	mg/L		0.005	SM 4500CN-E_2011	EZ	07/30/2024

AMTEST Identification Number: A24G0490-07 Client Identification: MW18-7-23-24-GW Sampling Date: 07/23/24 15:02

Conventional Chemistry Parameters by APHA/EPA Methods

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Cyanide	ND	mg/L	U	0.005	SM 4500CN-E_2011	EZ	07/30/2024

13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com

OnSite Environmental Inc.

14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister Project Name: OSE Project #: E2023/1007

ANALYSIS REPORT

Professional Analytical Services

Date Received: 07/26/24 **Date Reported:** 07/30/24

All results reported on an as received basis.

Quality Control

Conventional Chemistry Parameters by APHA/EPA Methods

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BBG0416 - No Prep - WetC	Chem									
Blank (BBG0416-BLK1)				P	Prepared: 07/29/2	24 Analyzed	: 07/30/24	4		
Total Cyanide	ND	U	0.005	mg/L						
LCS (BBG0416-BS1)				P	Prepared: 07/29/2	24 Analyzed	: 07/30/24	4		
Total Cyanide	0.052			mg/L	0.05000		103%	80-120%		
Calibration Blank (BBG0416-CCB1)				P	Prepared: 07/29/2	24 Analyzed	: 07/30/24	4		
Total Cyanide	-0.0005	U		mg/L						
Calibration Blank (BBG0416-CCB2)				P	Prepared: 07/29/2	24 Analyzed	: 07/30/24	4		
Total Cyanide	-0.001	U		mg/L						
Calibration Blank (BBG0416-CCB3)				P	Prepared: 07/29/2	24 Analyzed	: 07/30/24	4		
Total Cyanide	-0.0009	U		mg/L						
Calibration Blank (BBG0416-CCB4)					Prepared: 07/29/2	24 Analyzed	: 07/30/24	4		
Total Cyanide	-0.0005	U		mg/L						
Calibration Check (BBG0416-CCV1)				P	Prepared: 07/29/2	24 Analyzed	: 07/30/24	4		
Total Cyanide	0.104			mg/L	0.1000		104%	85-115%		
Calibration Check (BBG0416-CCV2)					Prepared: 07/29/2	24 Analyzed		4		
Total Cyanide	0.102			mg/L	0.1000		102%	85-115%		
Calibration Check (BBG0416-CCV3)				P	Prepared: 07/29/2	24 Analyzed	: 07/30/24	4		
Total Cyanide	0.101			mg/L	0.1000		101%	85-115%		
Calibration Check (BBG0416-CCV4)					Prepared: 07/29/2	24 Analyzed		4		
Total Cyanide	0.101			mg/L	0.1000		101%	85-115%		
Duplicate (BBG0416-DUP1)			24G0508-01		Prepared: 07/29/2	-	: 07/30/24	4		
Total Cyanide	ND	U	0.0008	mg/L		ND				20
Duplicate (BBG0416-DUP2)			24G0490-01	P	Prepared: 07/29/2	24 Analyzed	: 07/30/24	4		
Total Cyanide	ND	U	0.0008	mg/L		ND				20

13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com

OnSite Environmental Inc.

14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister Project Name: OSE Project #: E2023/1007

ANALYSIS REPORT

Professional Analytical Services

Date Received: 07/26/24 **Date Reported:** 07/30/24

All results reported on an as received basis.

Quality Control

(Continued)

Conventional Chemistry Parameters by APHA/EPA Methods (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BBG0416 - No Prep - We Matrix Spike (BBG0416-MS1)	tChem (Cor	ntinued) Source: A	24G0508-01	Pre	epared: 07/2	9/24 Analyz	ed: 07/30/24	1		
Total Cyanide	0.051			mg/L	0.05000	-0.0009	102%	55-145%		
Matrix Spike (BBG0416-MS2)		Source: A	24G0490-01	Pre	epared: 07/2	9/24 Analyz	ed: 07/30/24	1		
Total Cyanide	0.042			mg/L	0.05000	-0.0001	84%	55-145%		

Notes and Definitions

Item	Definition
U	The compound was analyzed for but was not detected (Non-detect) at or above the MRL/MDL.
Dry	Sample results reported on a dry weight basis.
ND	Analyte NOT DETECTED at or above the reporting limit.
RPD	Relative Percent Difference
%REC	Percent Recovery
Source	Sample that was matrix spiked or duplicated.

hc.
intal
) nme
nSite Iviro

Azyboyao

14648 NE 95th Street, Redmond, WA 98052 · (425) 883-3881

Laboratory: AmTest Laboratories

13600 NE 126th PI Kirkland, WA 98034 Attention: Aaron Young

Phone Number: (425) 885-1664

Turnaround Request 2 Day Standard 1 Day

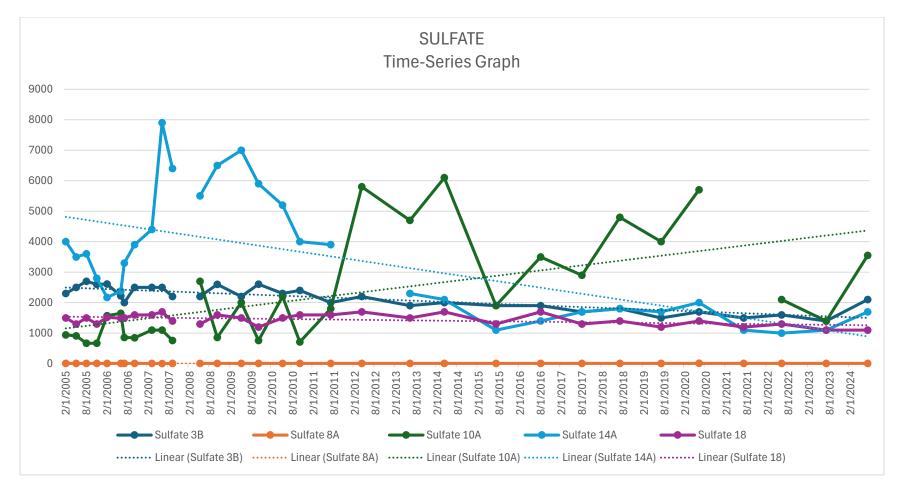
3 Day

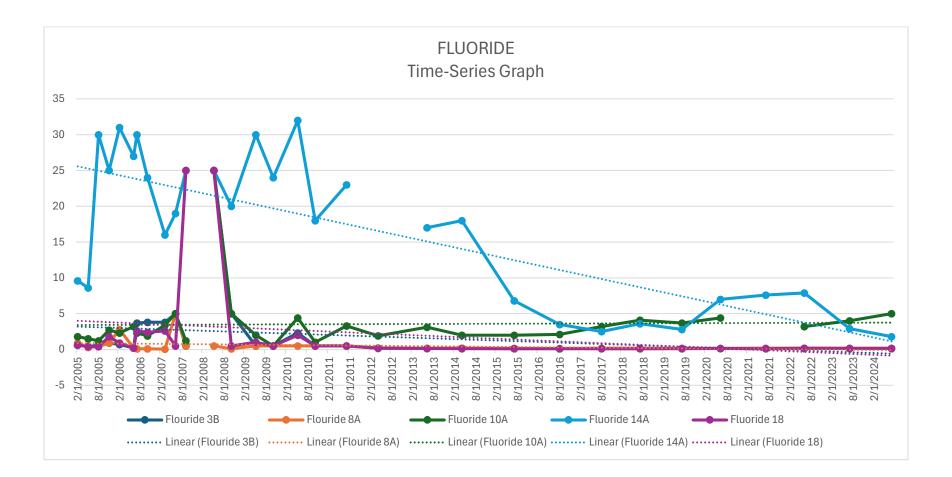
Other:

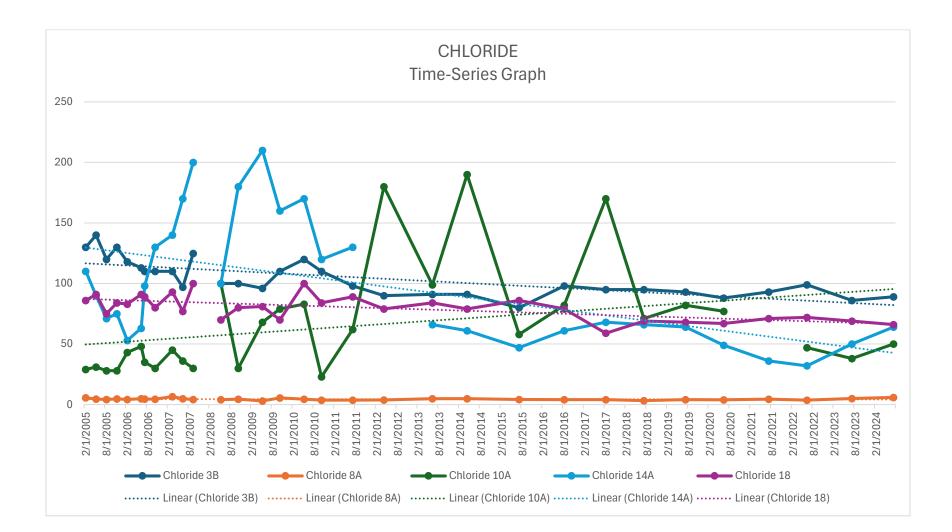
Project Manager: David Baumeister Laboratory Reference #: 07-287

email: dbaumeister@onsite-env.com Project Number: E2023/1007

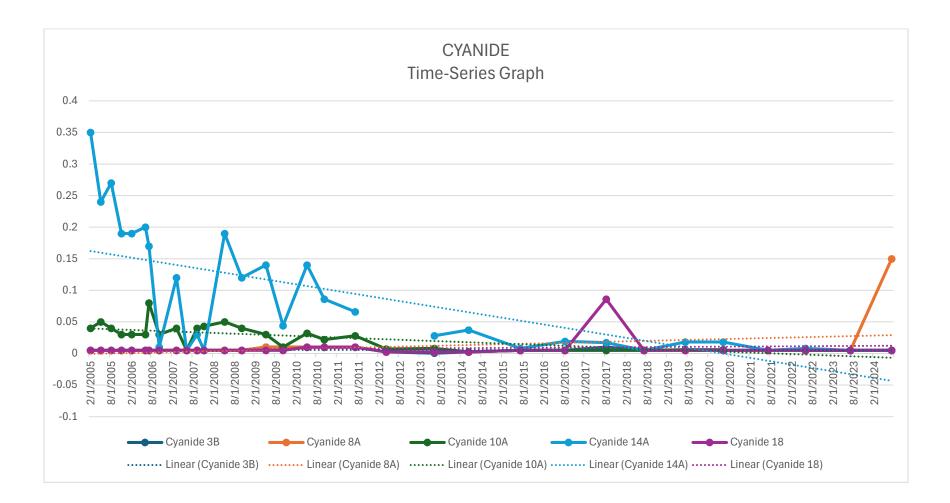
Project Name:


Lab [D) Sample Identification	Date Sampled	Time Sampled	Matrix	# of Cont.	Requested Analyses
5	MW8A-7-23-24-GV	7/23/24	9:10	M	~	Total Cyanide
20	MW12A-7-23-24-GW	7/23/24	10:02	N	· · ·	Total Cyanide
03	MW3B-7-23-24-GW	7/23/24	11:24	X	~	Total Cyanide
<u>6</u>	MW10A-7-23-24-GW	7/23/24	12:18	×		Total Cyanide
С 0	MW10A-7-23-24-GW-DUP	7/23/24	12:22	M	-	Total Cyanide
S	CC MW14A-7-23-24-GW	7/23/24	13:13	M	~	Total Cyanide
01	O7 MW18-7-23-24-GW	7/23/24	15:02	W	~	Total Cyanide
		Company	рапу		Date	Time Comments/Special Instructions
Reling	Relinquished by:	B			7-26-24 10:20	
Receiv	Received by: KM	Antest	7	-	126/24 1020	1020 6.4 E
Reling	Relinquished by:					
Receiv	Received by:					
Reling	Relinquished by:			***		
Receiv	Received by:					


Page 1 of 1


Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature		7 MUIS-7-23-24-6N	6 Khu14A-7-23-24- CNU	5 MW104-7-23-24-6N-DUP	4 Mulion-7-23-24-CW-	3 MU38-7-23-24-CN	2 MW12A-7-23-24-CIW	1 Mul8A-7-23-24-GW	e Id	D. BELLOON / XMEYED	RTRASUSINCE B. DERLEIDN	Gerdendare WSI	E2023/1007	Company: Divisor Mumber	Analytical Laboratory lesting services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.
Reviewed/Date					280	BMEC	Company		V 1502 V V	1313	1222	1218	424	1002	6	Date Time Sampled Sampled Matrix	(other)	contain	Standard (7 Days)	2 Days 3 Days	Same Day 1 Day	(in working days) (Check One)	Chain of Custody
					7/2544 133	7-14-24 1000	Date Time									NWTF NWTF NWTF Volatil Haloge	'H-Gx 'H-Dx (es 8260 enated	SG Clea)		Laboratory Number:	Custody
Chromatograms with final report \Box Electronic Data Deliverables (EDDs) \Box	Data Package: Standard 🛛 Level III 🗋 Level IV 🗌				Ŏ		Comments/Special Instructions									Semiv (with I PAHs PCBs Organ Organ Chlorii Total F Total N TCLP	olatiles ww-levever 8270/S 8082 ochlorin pophosp nated A ACRA M Metals oil and Metals oil and Metals	8270/S al PAHs) IM (low- ne Pesti horus F Acid Her letals /letals grease)	level) cides 8(Pesticide	081 es 8270, 8151		r: 07-287	Page of

Appendix B – UCL and Trends


Appendix B1 Time-Series Graphs: Sulfate, Fluoride, Chloride, Cyanide

BMEC, Inc.

Appendix B2 Mann-Kendall Trend Analysis

SUMMARY MANN-KENDALL TEST FOR TREND RESULTS

Well ID	Analyte	n	S	Variance	Z	Probability	Trend
MW-3B	Sulfate	31	-297	3432	5.05	2.19E-7	Significantly Negative
	Fluoride	31	-220	3432	3.74	9.27E-5	Significantly Negative
	Chloride	31	-300	3437	5.10	1.70E-7	Significantly Negative
	Total Cyanide	31	7	2340	0.124	0.451	Positive
MW-8A	Sulfate	30	-61	3384	1.03	0.151	Negative
	<mark>Fluoride</mark>	30	-148	3392	2.54	0.0058	Significantly Negative
	Chloride	30	-91	3445	1.53	0.0626	Negative
	Total Cyanide	30	26	2348	0.516	0.303	Positive
MW-10A	Sulfate	30	197	3137	3.50	2.33E-4	Significantly positive
	Fluoride	30	128	3129	2.27	0.0116	Positive
	Chloride	30	156	3136	2.77	0.0028	Positive
	Total Cyanide	30	-263	3361	4.52	3.1E-6	Significantly Negative
MW-12A ¹	Sulfate	2	NA	NA	NA	NA	NA
	Fluoride	2	NA	NA	NA	NA	NA
	Chloride	2	NA	NA	NA	NA	NA
	Total Cyanide	2	NA	NA	NA	NA	NA
MW-14A	<mark>Sulfate</mark>	30	-185	3132	3.29	5.05E-6	Significantly Negative
	<mark>Fluoride</mark>	30	-217	3133	3.86	5.68E-5	Significantly Negative
	Chloride	30	-142	3137	2.52	0.0059	Negative
	Total Cyanide	30	-289	3426	4.92	4.31E-7	Significantly Negative
MW-18	Sulfate	31	-98	3370	1.67	0.0474	Negative
	<mark>Fluoride</mark>	31	-212	3427	3.61	1.56E-4	Significantly Negative
	Chloride	31	-200	3447	3.39	3.50E-4	Significantly Negative
	Total Cyanide	31	8	1962	0.158	0.437	Positive

Notes:

¹ No UCL calculated. Not enough sampling events

n = number of sample events

S = Mann-Kendall test statistic, calculated based on S with sample events greater than 10 Variance = Standard deviation of S squared

Z = approximate normal test statistic, calculated based on S with sample events greater than 10 Probability from Table A.21 [Hollander and Wolfe (1973)]

Trends significant at alpha = 0.05 or less are highlighted

Appendix B3 Mann-Kendall Trend Test Analysis Output

User Selected Options			
Date/Time of Computation	ProUCL 5.2	2 8/14/20	24 9:16:28 AM
From File	WSI2024_7	1.0.xls	
Full Precision	OFF		
Confidence Coefficient	0.95		
Level of Significance	0.05		
Sulfate MW3B			
	C	General S	Statistics
Number or Reported Events I	Not Used		0
Number of Generated Events	;		31
Number Values Reported (n)			32
Number Values Missing			1
Number Values Used			31
Minimum			1400
Maximum			2700
Mean			2133
Geometric Mean			2099
Median			2200
Standard Deviation			375.3
Coefficient of Variation			0.176
	Ν	/lann-Ker	ndall Test
M-K Test Value (S)			-297
Critical Value (0.05)			-1.645
Standard Deviation of S			58.59
Standardized Value of S			-5.052
Approximate p-value			2.1872E-7

User Selected Options				
Date/Time of Computation	ProUCL 5.2 8/14/2024 2:46:01 PM			
From File	WSI2024_1.0.xls			
Full Precision	OFF			
Confidence Coefficient	0.95			
Level of Significance	0.05			
Sulfate MW8A				

General Statistics

0
31
32
1
31
0.5
11
9.07
8.455
9.5
1.874
0.207
endall Test
-61
-1.645
58.18
-1.031
0.151

Insufficient evidence to identify a significant trend at the specified level of significance.

User Selected Options	Mann-Kendall Trend Test Analysis
Date/Time of Computation	ProUCL 5.2 8/14/2024 3:22:36 PM
From File	WSI2024_1.0.xls
Full Precision	OFF
Confidence Coefficient	0.95
Level of Significance	0.05
Sulfate MW10A	
	General Statistics
Number or Reported Events I	Not Used 0
Number of Generated Events	30
Number Values Reported (n)	32
Number Values Missing	2
Number Values Used	30
Minimum	670
Maximum	6100
Mean	2285
Geometric Mean	1763
Median	1725
Standard Deviation	1707
Coefficient of Variation	0.747
	Mann-Kendall Test
M-K Test Value (S)	197
Critical Value (0.05)	1.645
Standard Deviation of S	56.01
Standardized Value of S	3.499
Approximate p-value	2.3344E-4

User Selected Options		
Date/Time of Computation	ProUCL	5.2 9/10/2024 8:44:30 PM
From File	WSI2024	1_1.0.xls
Full Precision	OFF	
Confidence Coefficient	0.95	
Level of Significance	0.05	
Sulfate MW12A		
	General	Statistics
Number or Reported Events	Not Used	0
Number of Generated Events		2
Number Values Reported (n)		32
Number Values Missing		30
Number Values Used		2
Minimum		510
Maximum		1800
Mean		1155
Geometric Mean		958.1
Median		1155
Standard Deviation		912.2
Coefficient of Variation		0.79
Coefficient of Variation		0.79

Not enough reported values (n) to provide Mann-Kendall Statistics

User Selected Options	
Date/Time of Computation	ProUCL 5.2 8/27/2024 3:02:56 PM
From File	WSI2024_1.0.xls
Full Precision	OFF
Confidence Coefficient	0.95
Level of Significance	0.05
Sulfate MW14A	
General	Statistics
Number or Reported Events	Not Used 0
Number of Generated Events	30
Number Values Reported (n)	33
Number Values Missing	3
Number Values Used	30
Minimum	1000
Maximum	7900
Mean	3378
Geometric Mean	2840
Median	3050
Standard Deviation	1971
Coefficient of Variation	0.583
Mann-Ke	endall Test
M-K Test Value (S)	-185
Critical Value (0.05)	-1.645
Standard Deviation of S	55.97
Standardized Value of S	-3.288
Approximate p-value	5.0516E-4

User Selected Options	
Date/Time of Computation	ProUCL 5.2 9/5/2024 12:16:57
From File	WorkSheet.xls
Full Precision	OFF
Confidence Coefficient	0.95
Level of Significance	0.05
Sulfate MW18	
General	Statistics
Number or Reported Events I	Not Used 0
Number of Generated Events	31
Number Values Reported (n)	32
Number Values Missing	1
Number Values Used	31
Minimum	1100
Maximum	1700
Mean	1439
Geometric Mean	1428
Median	1500
Standard Deviation	178.4
Coefficient of Variation	0.124
	Mann-Kendall Test
M-K Test Value (S)	-98
Critical Value (0.05)	-1.645
Standard Deviation of S	58.06
Standardized Value of S	-1.671
Approximate p-value	0.0474
Statistically significant eviden	ce of a decreasing

ΡM

User Selected Options	
Date/Time of Computation	ProUCL 5.2 9/5/2024 12:38:31 PM
From File	WorkSheet_a.xls
Full Precision	OFF
Confidence Coefficient	0.95
Level of Significance	0.05

Fluoride MW3B					
General Statistics					
Number or Reported Events Not Used	0				
Number of Generated Events	31				
Number Values Reported (n)	32				
Number Values Missing	1				
Number Values Used	31				
Minimum	0.12				
Maximum	25				
Mean	1.823				
Geometric Mean	0.514				
Median	0.5				
Standard Deviation	4.559				
Coefficient of Variation	2.502				
	Mann-Kendall Test				
M-K Test Value (S)	-220				
Critical Value (0.05)	-1.645				
Standard Deviation of S	58.59				
Standardized Value of S	-3.738				
Approximate p-value	9.2780E-5				
Statistically significant evidence of a decreasing trend at the specified level of significance.					

User Selected Options		
Date/Time of Computation	ProUCL 5.2 9/5/2024 1:03:16 PM	
From File	WorkSheet_b.xls	
Full Precision	OFF	
Confidence Coefficient	0.95	
Level of Significance	0.05	
Fluoride MW8A		
	General Statistics	
Number or Reported Events I	Not Used 0	
Number of Generated Events	31	
Number Values Reported (n)	32	
Number Values Missing	1	
Number Values Used	31	
Minimum	0.05	
Maximum	5	
Mean	0.529	
Geometric Mean	0.274	
Median	0.18	
Standard Deviation	0.969	
Coefficient of Variation	1.832	
	Mann-Kendall Test	
M-K Test Value (S)	-148	
Critical Value (0.05)	-1.645	
Standard Deviation of S	58.24	
Standardized Value of S	-2.524	
Approximate p-value	0.0058	

User Selected Options	
Date/Time of Computation	ProUCL 5.2 9/10/2024 7:19:09 PM
From File	WorkSheet.xls
Full Precision	OFF
Confidence Coefficient	0.95
Level of Significance	0.05
Fluoride MW10A	
	General Statistics
Number or Reported Events Not Used	0
Number of Generated Events	30
Number Values Reported (n)	32
Number Values Missing	2
Number Values Used	30
Minimum	0.5
Maximum	25
Mean	3.56
Geometric Mean	2.691
Median	2.9
Standard Deviation	4.241
Coefficient of Variation	1.191
	Mann-Kendall Test
M-K Test Value (S)	128
Critical Value (0.05)	1.645
Standard Deviation of S	55.94
Standardized Value of S	2.27
Approximate p-value	0.0116

User Selected Options	
Date/Time of Computation	ProUCL 5.2 9/10/2024 8:39:45 PM
From File	WorkSheet_h.xls
Full Precision	OFF
Confidence Coefficient	0.95
Level of Significance	0.05

General Statistics

Fluoride MW12A

Number or Reported Events Not Used	0
Number of Generated Events	2
Number Values Reported (n)	32
Number Values Missing	30
Number Values Used	2
Minimum	1.9
Maximum	3.6
Mean	2.75
Geometric Mean	2.615
Median	2.75
Standard Deviation	1.202
Coefficient of Variation	0.437

Not enough reported values (n) to provide Mann-Kendall Statistics!

User Selected Options		
Date/Time of Computation	ProUCL 5.2 9/10/2024 7:47:51 PM	
From File	WorkSheet_b.xls	
Full Precision	OFF	
Confidence Coefficient	0.95	
Level of Significance	0.05	
Fluoride MW14A		
General Statistics		
Number or Reported Events N	Not Used 0	
Number of Generated Events	30	
Number Values Reported (n)	32	
Number Values Missing	2	
Number Values Used	30	
Minimum	1.8	
Maximum	32	
Mean	16.62	
Geometric Mean	12.34	
Median	18	
Standard Deviation	10.29	
Coefficient of Variation	0.619	
	Mann-Kendall Test	
M-K Test Value (S)	-217	
Critical Value (0.05)	-1.645	
Standard Deviation of S	55.97	
Standardized Value of S	-3.859	
Approximate p-value	5.6833E-5	

User Selected Options	
Date/Time of Computation	ProUCL 5.2 9/10/2024 7:56:44 PM
From File	WorkSheet c.xls
Full Precision	OFF
Confidence Coefficient	0.95
Level of Significance	0.05
Fluoride MW18	
	General Statistics
Number or Reported Events Not Used	0
Number of Generated Events	31
Number Values Reported (n)	32
Number Values Missing	1
Number Values Used	31
Minimum	0.11
Maximum	25
Mean	2.229
Geometric Mean	0.466
Median	0.4
Standard Deviation	6.128
Coefficient of Variation	2.749
	Mann-Kendall Test
M-K Test Value (S)	-212
Critical Value (0.05)	-1.645
Standard Deviation of S	58.54
Standardized Value of S	-3.605
Approximate p-value	1.5637E-4

User Selected Options	
Date/Time of Computation	ProUCL 5.2 9/10/2024 8:07:08 PM
From File	WorkSheet_d.xls
Full Precision	OFF
Confidence Coefficient	0.95
Level of Significance	0.05
Chloride MW3B	
	General Statistics
Number or Reported Events Not Used	0
Number of Generated Events	31
Number Values Reported (n)	32
Number Values Missing	1
Number Values Used	31
Minimum	80
Maximum	140
Mean	104
Geometric Mean	103
Median	99
Standard Deviation	14.84
Coefficient of Variation	0.143
	Mann-Kendall Test
M-K Test Value (S)	-300
Critical Value (0.05)	-1.645
Standard Deviation of S	58.63
Standardized Value of S	-5.099
Approximate p-value	1.7037E-7

User Selected Options	
Date/Time of Computation	ProUCL 5.2 9/10/2024 8:15:57 PM
From File	WorkSheet_e.xls
Full Precision	OFF
Confidence Coefficient	0.95
Level of Significance	0.05

Chloride MW8A

General Statistics	
Number or Reported Events Not Used	0
Number of Generated Events	31
Number Values Reported (n)	32
Number Values Missing	1
Number Values Used	31
Minimum	3
Maximum	6.6
Mean	4.442
Geometric Mean	4.38
Median	4.4
Standard Deviation	0.764
Coefficient of Variation	0.172

	Mann-Kendall Test
M-K Test Value (S)	-91
Critical Value (0.05)	-1.645
Standard Deviation of S	58.69
Standardized Value of S	-1.534
Approximate p-value	0.0626

Insufficient evidence to identify a significant trend at the specified level of significance.

User Selected Options

Date/Time of Computation	ProUCL 5.2 9/10/2024 8:23:29 PM
From File	WorkSheet_f.xls
Full Precision	OFF
Confidence Coefficient	0.95
Level of Significance	0.05

Chloride MW10A

	General Statistics
Number or Reported Events Not Used	0
Number of Generated Events	30
Number Values Reported (n)	32
Number Values Missing	2
Number Values Used	30
Minimum	23
Maximum	190
Mean	65.73
Geometric Mean	54.92
Median	49
Standard Deviation	44.88
Coefficient of Variation	0.683

	Mann-Kendall Test
M-K Test Value (S)	156
Critical Value (0.05)	1.645
Standard Deviation of S	56
Standardized Value of S	2.768
Approximate p-value	0.00282

Level of Significance

Date/Time of Computation	ProUCL 5.2 9/10/2024 8:32:46 PM
From File	WorkSheet_g.xls
Full Precision	OFF
Confidence Coefficient	0.95

0.05

Chloride MW12A

General Statistics

Number or Reported Events Not Used	0
Number of Generated Events	2
Number Values Reported (n)	32
Number Values Missing	30
Number Values Used	2
Minimum	37
Maximum	150
Mean	93.5
Geometric Mean	74.5
Median	93.5
Standard Deviation	79.9
Coefficient of Variation	0.855

Not enough reported values (n) to provide Mann-Kendall Statistics!

User Selected Options	
Date/Time of Computation	ProUCL 5.2 9/10/2024 8:50:53 PM
From File	WorkSheet_j.xls
Full Precision	OFF
Confidence Coefficient	0.95
Level of Significance	0.05
Chloride	MW14A
	General Statistics
Number or Reported Events Not Used	0
Number of Generated Events	30
Number Values Reported (n)	32
Number Values Missing	2
Number Values Used	30
Minimum	32
Maximum	210
Mean	97.8
Geometric Mean	85.84
Median	73
Standard Deviation	51.33
Coefficient of Variation	0.525

Mann-Kendall Test

M-K Test Value (S)	-142
Critical Value (0.05)	-1.645
Standard Deviation of S	56.01
Standardized Value of S	-2.518
Approximate p-value	0.00591

User Selected Options	
Date/Time of Computation	ProUCL 5.2 9/10/2024 9:15:38 PM
From File	WorkSheet_k.xls
Full Precision	OFF
Confidence Coefficient	0.95
Level of Significance	0.05

Chloride MW18

		General Statistics
Number or Reported Events Not Used	0	
Number of Generated Events	31	
Number Values Reported (n)	32	
Number Values Missing	1	
Number Values Used	31	
Minimum	59	
Maximum	100	
Mean	79.71	
Geometric Mean	79.08	
Median	80	
Standard Deviation	10.12	
Coefficient of Variation	0.127	
		Mann-Kendall Test
M-K Test Value (S)	-200	
Critical Value (0.05)	-1.645	
Standard Deviation of S	58.71	
Standardized Value of S	-3.389	
Approximate p-value	3.5034E	-4

User Selected Options	
Date/Time of Computation	ProUCL 5.2 9/10/2024 9:28:22 PM
From File	WorkSheet_I.xls
Full Precision	OFF
Confidence Coefficient	0.95
Level of Significance	0.05
Arsenic	MW3B
	General Statistics
Number or Reported Events Not Used	0
Number of Generated Events	32
Number Values Reported (n)	32
Minimum	6.0000E-4
Maximum	0.01
Mean	0.00564
Geometric Mean	0.0051
Median	0.005
Standard Deviation	0.00233
Coefficient of Variation	0.413
	Mann-Kendall Test
M-K Test Value (S)	7
Critical Value (0.05)	1.645
Standard Deviation of S	48.37
Standardized Value of S	0.124
Approximate p-value	0.451

Insufficient evidence to identify a significant trend at the specified level of significance.

User Selected Options	
Date/Time of Computation	ProUCL 5.2 9/10/2024 9:36:53 PM
From File	WorkSheet_m.xls
Full Precision	OFF
Confidence Coefficient	0.95
Level of Significance	0.05
Arsenic	MW8A
	General Statistics
Number or Reported Events Not Used	0
Number of Generated Events	32
Number Values Reported (n)	32
Minimum	0.0025
Maximum	0.15
Mean	0.0101
Geometric Mean	0.00581
Median	0.005
Standard Deviation	0.0256
Coefficient of Variation	2.542
	Mann-Kendall Test
M-K Test Value (S)	26
Critical Value (0.05)	1.645
Standard Deviation of S	48.46
Standardized Value of S	0.516
Approximate p-value	0.303

Mann-Kendall Trend Test Analysis

Insufficient evidence to identify a significant trend at the specified level of significance.

User Selected Options	
Date/Time of Computation	ProUCL 5.2 9/10/2024 9:47:02 PM
From File	WorkSheet.xls
Full Precision	OFF
Confidence Coefficient	0.95
Level of Significance	0.05
Arsenic	MW10A
	General Statistics
Number or Reported Events Not Used	0
Number of Generated Events	31
Number Values Reported (n)	32
Number Values Missing	1
Number Values Used	31
Minimum	0.0025
Maximum	0.08
Mean	0.0237
Geometric Mean	0.0155
Median	0.028
Standard Deviation	0.0193
Coefficient of Variation	0.813
	Mann-Kendall Test
M-K Test Value (S)	-263
Critical Value (0.05)	-1.645
Standard Deviation of S	57.97
Standardized Value of S	-4.519
Approximate p-value	3.1029E-6

Statistically significant evidence of a decreasing trend at the specified level of significance.

Mann-Kendall Trend Test Analysis

User Selected Options	
Date/Time of Computation	ProUCL 5.2 9/10/2024 9:54:13 PM
From File	WorkSheet_a.xls
Full Precision	OFF
Confidence Coefficient	0.95
Level of Significance	0.05
Arsenic	MW12A
	General Statistics
Number or Reported Events Not Used	0
Number of Generated Events	2
Number Values Reported (n)	32
Number Values Missing	30
Number Values Used	2
Minimum	0.005
Maximum	0.005
Mean	0.005
Geometric Mean	0.005
Median	0.005
Standard Deviation	0
Coefficient of Variation	N/A

Mann-Kendall Trend Test Analysis

Not enough reported values (n) to provide Mann-Kendall Statistics!

User Selected Options	
Date/Time of Computation	ProUCL 5.2 9/10/2024 10:06:12 PM
From File	WorkSheet_b.xls
Full Precision	OFF
Confidence Coefficient	0.95
Level of Significance	0.05
Arsenic I	MW14A
	General Statistics
Number or Reported Events Not Used	0
Number of Generated Events	31
Number Values Reported (n)	32
Number Values Missing	1
Number Values Used	31
Minimum	0.005
Maximum	0.35
Mean	0.0884
Geometric Mean	0.0383
Median	0.037
Standard Deviation	0.0957
Coefficient of Variation	1.083
	Mann-Kendall Test
M-K Test Value (S)	-289
Critical Value (0.05)	-1.645
Standard Deviation of S	58.53
Standardized Value of S	-4.921
Approximate p-value	4.3135E-7

Mann-Kendall Trend Test Analysis

Statistically significant evidence of a decreasing rend at the specified level of significance.

	Mann-Kendall Trend Test Analysis
User Selected Options	
Date/Time of Computation	ProUCL 5.2 9/10/2024 10:14:56 PM
From File	WorkSheet_c.xls
Full Precision	OFF
Confidence Coefficient	0.95
Level of Significance	0.05
Arsenic	MW18
	General Statistics
Number or Reported Events Not Used	0
Number of Generated Events	32
Number Values Reported (n)	32
Minimum	0.0025
Maximum	0.086
Mean	0.00777
Geometric Mean	0.00546
Median	0.005
Standard Deviation	0.0144
Coefficient of Variation	1.852
	Mann-Kendall Test
M-K Test Value (S)	8
Critical Value (0.05)	1.645
Standard Deviation of S	44.29
Standardized Value of S	0.158
Approximate p-value	0.437

Insufficient evidence to identify a significant trend at the specified level of significance.

Appendix B4 UCL Calculations

		Sulfate					Fluoride					
	MW-3B	MW-8A	MW-10A	MW-12A	MW-14A	MW-18	MW-3B	MW-8A	MW-10A	MW-12A	MW-14A	MW-18
Num data pts	31	31	30	2	30	31	31	31	30	2	30	31
Num Non-Detect	0	0	0	0	0	0	8	8	4	0	2	8
Percent Non-Detect	0	0	0	0	0	0	25.8	25.8	13.3	0	6.6	25.8
Min.	1400	0.5	670	510	1000	1100	0.12	0.05	0.5	1.9	1.8	0.11
Max.	2700	11	6100	1800	7900	1700	25	5	25	3.6	32	25
Mean	2133	9.07	2285	1155	3378	1439	1.823	0.529	3.547	2.75	16.62	2.229
Max Conc (>50% ND)				NA						NA		
Log Normal				NA						NA		
Normal	2248			NA	3990	1493				NA	19.81	
Non-parametric		9.641	2924	NA			3.212	0.824	4.862	NA		4.097
Distribution	Normal	Neither	Gamma	NA	Normal	Normal	Neither	Neither	Neither	NA	Normal	Neither
			Chlor	ride			Cyanide					
	MW-3B	MW-8A	MW-10A	MW-12A	MW-14A	MW-18	MW-3B	MW-8A	MW-10A	MW-12A	MW-14A	MW-18
Num data pts	31	31	30	2	30	31	32	32	31	2	31	32
Num Non-Detect	0	0	0	0	0	0	30	32	9	2	4	31
Percent Non-Detect	0	0	0	0	0	0	93.75	100	29	100	12.9	96.87
Min.	80	3	23	37	32	59	0.0006	0.0025	0.0025	0.005	0.005	0.0025
Max.	140	6.6	190	150	210	100	0.01	0.15	0.08	0.005	0.35	0.086
Mean	104	4.442	65.73	93.5	97.8	79.71	0.00564	0.0101	0.0237	0.005	0.0084	0.00777
Max Conc (>50% ND)				NA			0.01	0.15		NA		0.086
Log Normal	108.7			NA	118.9					NA		
Normal		4.674	79.66	NA		82.8				NA		
Non-parametric				NA					0.0296	NA	0.135	
non parametrio							Non-Detect	Non-Detect				Non-Detect

Appendix B5 EPA Groundwater UCL Output

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.2 9/11/2024 8:54:18 AM

From File WorkSheet.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Sulfate MW-3B

	General Statistics
Total Number of Observations	31
Number of Distinct Observations	17
Number of Missing Observations	1
Minimum	1400
Mean	2133
Maximum	2700
Median	2200
SD	375.3
Std. Error of Mean	67.41
Coefficient of Variation	0.176
Skewness	-0.319

Normal GOF Test

Shapiro Wilk Test Statistic	0.944	Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value	0.902	Data appear Normal at 1% Significance Level
Lilliefors Test Statistic	0.126	Lilliefors GOF Test
1% Lilliefors Critical Value	0.182	Data appear Normal at 1% Significance Level

Data appear Normal at 1% Significance Level

95% Normal UCL	95% UCLs (Adjusted for Skewness)
95% Student's-t UCL	2248
95% Adjusted-CLT UCL (Chen-1995)	2240
95% Modified-t UCL (Johnson-1978)	2247

Gamma GOF Test

A-D Test Statistic	0.597	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.745	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0 14	Kolmogorov-Smirnov Gamma GOF Test
	0.14	Kolmogorov-Siminov Gamma GOL Test

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	31.36	k star (bias corrected MLE)	28.35		
Theta hat (MLE)	68.03 Th	eta star (bias corrected MLE)	75.26		
nu hat (MLE)	1944	nu star (bias corrected)			
MLE Mean (bias co	prrected) 2133	MLE Sd (bias corrected)	400.7		
	Approxi	mate Chi Square Value (0.05)	1661		
Adjusted Level of S	Significance 0.0413	Adjusted Chi Square Value	1656		

Assuming Gamma Distribution

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.929	Shapiro Wilk Lognormal GOF Test
10% Shapiro Wilk Critical Value	0.94	Data Not Lognormal at 10% Significance Level
Lilliefors Test Statistic	0.148	Lilliefors Lognormal GOF Test
10% Lilliefors Critical Value	0.143	Data Not Lognormal at 10% Significance Level
Data Not Lognormal at 10% Sigr	nificanc	e Level

Lognormal Statistics

Minimum of Logged Data	7.244	Mean of logged Data 7.649
Maximum of Logged Data	7.901	SD of logged Data 0.185
Assun	ning Log	normal Distribution
95% H-UCL	2265	90% Chebyshev (MVUE) UCL 2349
95% Chebyshev (MVUE) UCL	2446	97.5% Chebyshev (MVUE) UCL 2581
99% Chebyshev (MVUE) UCL	2846	

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution

Nonparametric Distribution Free UCLs

95% CLT UCL	2244	95% BCA Bootstrap UCL	2241
95% Standard Bootstrap UCL	2242	95% Bootstrap-t UCL	2242
95% Hall's Bootstrap UCL	2238	95% Percentile Bootstrap UCL	2243
90% Chebyshev(Mean, Sd) UCL	2336	95% Chebyshev(Mean, Sd) UCL	2427
97.5% Chebyshev(Mean, Sd) UCL 2554		99% Chebyshev(Mean, Sd) UCL	2804

Suggested UCL to Use

95% Student's-t UCL 2248

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

Sulfate MW-8A

	General Statistics
Total Number of Observations	31
Number of Distinct Observations	16
Number of Missing Observations	1
Minimum	0.5
Mean	9.07
Maximum	11
Median	9.5
SD	1.874
Std. Error of Mean	0.337
Coefficient of Variation	0.207
Skewness	-3.624

Normal GOF Test

Shapiro Wilk Test Statistic	0.571	Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value	0.902	Data Not Normal at 1% Significance Level
Lilliefors Test Statistic	0.335	Lilliefors GOF Test
1% Lilliefors Critical Value	0.182	Data Not Normal at 1% Significance Level

Data Not Normal at 1% Significance Level

95% Normal UCL		95% UCLs (Adjusted for Skewi	ness)
95% Student's-t UCL	9.641	95% Adjusted-CLT UCL (Chen-1995)	9.39
		95% Modified-t UCL (Johnson-1978)	9.605

Gamma GOF Test

A-D Test Statistic	6.87	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.747	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.4	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.158	Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	7.283	k star (bias corrected MLE)	6.6		
Theta hat (MLE)	1.245	Theta star (bias corrected MLE)	1.374		
nu hat (MLE)	451.6	nu star (bias corrected)	409.2		
MLE Mean (bias corrected	9.07	MLE Sd (bias corrected)	3.53		
	Ар	proximate Chi Square Value (0.05)	363.3		
Adjusted Level of Significa	nce 0.0413	Adjusted Chi Square Value	360.9		
Assuming Gamma Distribution					
95% Approximate Gamma UCL 10.22 95% Adjusted Gamma UCL 10.28		10.28			
Lognormal GOF Test					
Shapiro Wilk Test Statistic	0.333	Shapiro Wilk Lognormal G	OF Test		
10% Shapiro Wilk Critical	10% Shapiro Wilk Critical Value 0.94 Data Not Lognormal at 10% Significance Level				
Lilliefors Test Statistic	0.409	Lilliefors Lognormal GOF	Test		
10% Lilliefors Critical Value	e 0.143	Data Not Lognormal at 10% Signific	cance Level		
		10 I I			

Data Not Lognormal at 10% Significance Level

Lognormal Statistics

Minimum of Logged Data -(0.693	Mean of logged Data	2.135
Maximum of Logged Data 2	2.398	SD of logged Data	0.54
A	ssuming Logno	rmal Distribution	
95% H-UCL	11.86	90% Chebyshev (MVUE) UCL	12.7
95% Chebyshev (MVUE) UC	L 14.05	97.5% Chebyshev (MVUE) UC	L 15.92
99% Chebyshev (MVUE) UC	L 19.59		

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution

Nonparametric Distribution Free UCLs

95% CLT UCL	9.624	95% BCA Bootstrap UCL	9.459
95% Standard Bootstrap UCL	9.621	95% Bootstrap-t UCL	9.49
95% Hall's Bootstrap UCL	9.455	95% Percentile Bootstrap UCL	9.548
90% Chebyshev(Mean, Sd) UCL	10.08	95% Chebyshev(Mean, Sd) UCI	_ 10.54
97.5% Chebyshev(Mean, Sd) UCI	_ 11.17	99% Chebyshev(Mean, Sd) UCI	12.42

Suggested UCL to Use

95% Student's-t UCL 9.641

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

Sulfate MW-10A

	Gene	ral Statistics	
Total Number of Observations	30		
Number of Distinct Observatio	ns 26		
Number of Missing Observatio	ns 2		
Minimum	670		
Mean	2285		
Maximum	6100		
Median	1725		
SD	1707		
Std. Error of Mean	311.6		
Coefficient of Variation	0.747		
Skewness	1.039		
	Norm	al GOF Test	
Shapiro Wilk Test Statistic	0.836	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.9	Data Not Normal at 1% Significance Lev	/el
Lilliefors Test Statistic	0.187	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.185	Data Not Normal at 1% Significance Lev	/el
Data Not Normal at 1% Signifi	cance Lev	/el	
	Assu	ming Normal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL 287	15	95% Adjusted-CLT UCL (Chen-1995)	2861
		95% Modified-t UCL (Johnson-1978)	2825

Gamma GOF Test			
A-D Test Statistic	0.919	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.758	Data Not Gamma Distributed at 5% Significance Level	
K-S Test Statistic	0.157	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.162	Detected data appear Gamma Distributed at 5% Significance Level	

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics

k hat (MLE)	2.077	k star (bias corrected MLE)	1.892
Theta hat (MLE)	1100	Theta star (bias corrected MLE)	1208
nu hat (MLE)	124.6	nu star (bias corrected)	113.5
MLE Mean (bias corrected) 2285		MLE Sd (bias corrected)	1662
		Approximate Chi Square Value (0.05)	89.9
Adjusted Level of Significa	ance 0.041	Adjusted Chi Square Value	88.69
Assuming Gamma Distribution			
95% Approximate Gamma	a UCL 2885	95% Adjusted Gamma UCL	2924

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.916	Shapiro Wilk Lognormal GOF Test
10% Shapiro Wilk Critical Value	0.939	Data Not Lognormal at 10% Significance Level
Lilliefors Test Statistic	0.141	Lilliefors Lognormal GOF Test
10% Lilliefors Critical Value	0.146	Data appear Lognormal at 10% Significance Level

Data appear Approximate Lognormal at 10% Significance Level

Lognormal Statistics				
Minimum of Logged Data	6.507	Mean of logged Data	7.475	
Maximum of Logged Data	8.716	SD of logged Data	0.731	
Assu	ming Log	normal Distribution		
95% H-UCL	3090	90% Chebyshev (MVUE) UCL	3269	
95% Chebyshev (MVUE) UCL	3718	97.5% Chebyshev (MVUE) UCL	4342	
99% Chebyshev (MVUE) UCL	5567			
Nonparametric Distributio Data appear to follow a D				
Nonparametric Distribution Free UCLs				
95% CLT UCL	2798	95% BCA Bootstrap UCL	2897	
95% Standard Bootstrap UCL	2801	95% Bootstrap-t UCL	2937	
95% Hall's Bootstrap UCL	2865	95% Percentile Bootstrap UCL	2824	
90% Chebyshev(Mean, Sd) UCL	3220	95% Chebyshev(Mean, Sd) UCL	3644	
97.5% Chebyshev(Mean, Sd) U	CL 4231	99% Chebyshev(Mean, Sd) UCL	5386	

Suggested UCL to Use

95% Adjusted Gamma UCL 2924

When a data set follows an approximate distribution passing only one of the GOF tests, it is suggested to use a UCL based upon a distribution passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Sulfate MW-12A

General Statistics

Total Number of Observations	2
Number of Distinct Observations	2
Number of Missing Observations	30
Minimum	510
Mean	1155
Maximum	1800
Median	1155

Warning: This data set only has 2 observations! Data set is too small to compute reliable and meaningful statistics and estimates! The data set for MW-12A was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods! If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

Sulfate MW-14A

General Statistics

- Total Number of Observations 30
- Number of Distinct Observations 24
- Number of Missing Observations 2
- Minimum 1000
- Mean 3378
- Maximum

Skewness

- Median3050SD1971Std. Error of Mean359.8Coefficient of Variation0.583
 - Normal GOF Test

7900

0.713

Shapiro Wilk Test Statistic	0.912	Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value	0.9	Data appear Normal at 1% Significance Level
Lilliefors Test Statistic	0.16	Lilliefors GOF Test
1% Lilliefors Critical Value	0.185	Data appear Normal at 1% Significance Level

Data appear Normal at 1% Significance Level

95% Normal UCL		95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL	3990	95% Adjusted-CLT UCL (Chen-1995)	4020	
		95% Modified-t UCL (Johnson-1978)	3997	

Gamma GOF Test				
A-D Test Statistic	0.438	Anderson-Darling Gamma GOF Test		
5% A-D Critical Value	0.752	Detected data appear Gamma Distributed at 5% Significance Level		
K-S Test Statistic	0.114	Kolmogorov-Smirnov Gamma GOF Test5%		
K-S Critical Value	0.161	Detected data appear Gamma Distributed at 5% Significance Level		

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	3.037	k star (bias corrected MLE)	2.756
Theta hat (MLE)	1112	Theta star (bias corrected MLE)	1226
nu hat (MLE)	182.2	nu star (bias corrected)	165.3
MLE Mean (bias corrected) 3378		MLE Sd (bias corrected)	2035
	Appro	oximate Chi Square Value (0.05)	136.6
Adjusted Level of Significance 0.041		Adjusted Chi Square Value	135.1
Assuming Gamma Distribution			
95% Approximate Gamma	UCL 4089	95% Adjusted Gamma UCL	4134

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.949	Shapiro Wilk Lognormal GOF Test
10% Shapiro Wilk Critical Value	0.939	Data appear Lognormal at 10% Significance Level
Lilliefors Test Statistic	0.0998	Lilliefors Lognormal GOF Test
10% Lilliefors Critical Value	0.146	Data appear Lognormal at 10% Significance Level

Data appear Lognormal at 10% Significance Level

Lognormal Statistics

Minimum of Logged Data	6.908	Mean of logged Data 7.952
Maximum of Logged Data	8.975	SD of logged Data 0.614
	Assuming I	Lognormal Distribution
95% H-UCL	4334	90% Chebyshev (MVUE) UCL 4624
95% Chebyshev (MVUE) UCL	5176	97.5% Chebyshev (MVUE) UCL 5943
99% Chebyshev (MVUE) UCL	7449	

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution

Nonparametric Distribution Free UCLs

95% CLT UCL	3970	95% BCA Bootstrap UCL	4039
95% Standard Bootstrap UCL	3963	95% Bootstrap-t UCL	4045
95% Hall's Bootstrap UCL	4014	95% Percentile Bootstrap UCL	3972
90% Chebyshev(Mean, Sd) UCL	4458	95% Chebyshev(Mean, Sd) UCI	_ 4947
97.5% Chebyshev(Mean, Sd) UC	CL 5625	99% Chebyshev(Mean, Sd) UCI	_ 6958

Suggested UCL to Use

95% Student's-t UCL 3990

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Sulfate MW-18

Total Number of Observations	31
Number of Distinct Observations	9
Number of Missing Observations	1
Minimum	1100
Mean	1439
Maximum	1700
Median	1500
SD	178.4
Std. Error of Mean	32.05
Coefficient of Variation	0.124
Skewness	-0.259

General Statistics

Normal GOF Test

Shapiro Wilk Test Statistic	0.932	Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value	0.902 Data appea	r Normal at 1% Significance Level
Lilliefors Test Statistic	0.161	Lilliefors GOF Test
1% Lilliefors Critical Value Data appear	0.182 Data appea Normal at 1% Sign	r Normal at 1% Significance Level ificance Level

95% Normal UCL		95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL	1493	95% Adjusted-CLT UCL (Chen-1995)	1490	
		95% Modified-t UCL (Johnson-1978)	1493	

Gamma GOF Test

A-D Test Statistic	0.753	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.745	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.175	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.157	Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	64.99	k star (bias corrected MLE)	58.72		
Theta hat (MLE)	22.14	Theta star (bias corrected MLE)	24.5		
nu hat (MLE)	4030	nu star (bias corrected)	3641		
MLE Mean (bias corrected	l) 1439	MLE Sd (bias corrected)	187.8		
	Appro	oximate Chi Square Value (0.05)	3502		
Adjusted Level of Significa	ance 0.0413	Adjusted Chi Square Value	3494		
Assuming Gamma Distribution					
95% Approximate Gamma	UCL 1496	95% Adjusted Gamma UCL	1499		
Lognormal GOF Test					
Shapiro Wilk Test Statistic	0.924	Shapiro Wilk Lognormal	GOF Test		
10% Shapiro Wilk Critical	Value 0.94	Data Not Lognormal at 10% Sign	ificance Level		
Lilliefors Test Statistic	0.179	Lilliefors Lognormal GO	F Test		
10% Lilliefors Critical Valu	e 0.143	Data Not Lognormal at 10% Sign	ificance Level		

Data Not Lognormal at 10% Significance Level

Lognormal	Statistics	
7.003	Mean of logged Data	7.264
7.438	SD of logged Data	0.127
Assuming I	Lognormal Distribution	
1498	90% Chebyshev (MVUE)	UCL 1538
1583	97.5% Chebyshev (MVUE	E) UCL 1646
1768		
	7.003 7.438 Assuming I 1498 1583	7.438SD of logged DataAssuming Lognormal Distribution149890% Chebyshev (MVUE)158397.5% Chebyshev (MVUE)

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution

Nonparametric Distribution Free UCLs

95% CLT UCL	1492	95% BCA Bootstrap UCL	1485
95% Standard Bootstrap UCL	1491	95% Bootstrap-t UCL	1494
95% Hall's Bootstrap UCL	1491	95% Percentile Bootstrap UCL	1490
90% Chebyshev(Mean, Sd) UCL	1535	95% Chebyshev(Mean, Sd) UCL	1579
97.5% Chebyshev(Mean, Sd) UCL	. 1639	99% Chebyshev(Mean, Sd) UCL	1758

Suggested UCL to Use

95% Student's-t UCL 1493

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

Chloride MW-3B

General Statistics

Total Number of Observations	31
Number of Distinct Observations	20
Number of Missing Observations	1
Minimum	80
Mean	104
Maximum	140
Median	99
SD	14.84
Std. Error of Mean	2.666
Coefficient of Variation	0.142
Skewness	0.688

Normal GOF Test

0.937	Shapiro Wilk GOF Test
0.902	Data appear Normal at 1% Significance Level
0.188	Lilliefors GOF Test
0.182	Data not Normal at 1% Significance Level
	0.902 0.188

Data appear Approximate Normal at 1% Significance Level

95% Normal UCL	Normal UCL 95% UCLs (Adjusted for Skewn		
95% Student's-t UCL	2248	95% Adjusted-CLT UCL (Chen-1995)	2240
		95% Modified-t UCL (Johnson-1978)	2247

Gamma GOF Test					
A-D Test Statistic	0.661	Anderson-Darling Gamma GOF Test			
5% A-D Critical Value	0.744	Detected data appear Gamma Distributed at 5% Significance Level			
K-S Test Statistic	0.175	Kolmogorov-Smirnov Gamma GOF Test			
5% K-S Critical Value	0.157	Detected not Gamma Distributed at 5% Significance Level			

Detected data follow Appr. Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	52.95	k star (bias corrected MLE)	47.85
Theta hat (MLE)	1.964 T	heta star (bias corrected MLE)	2.184
nu hat (MLE)	3283	nu star (bias corrected)	2967
MLE Mean (bias co	prrected) 104	MLE Sd (bias corrected)	15.04
	Approximate (Chi Square Value (0.05) 2841	
Adjusted Level of S	ignificance 0.041	3 Adjusted Chi Square Value	2834

Assuming Gamma Distribution

95% Approximate Gamma UCL	108.6	95% Adjusted Gamma UCL	108.9
---------------------------	-------	------------------------	-------

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.957	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.94	Data Appear Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.166	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.143	Data Not Lognormal at 10% Significance Level	
Data appear Approximate Lognormal at 10% Significance Level			

Lognormal Statistics

Minimum of Logged Data	4.382	Mean of logged Data	4.635
Maximum of Logged Data	4.942	SD of logged Data	0.139

Assuming Lognormal Distribution

95% H-UCL	108.7	90% Chebyshev (MVUE) UCL	111.8
95% Chebyshev (MVUE) UCL	115.3	97.5% Chebyshev (MVUE) UCL	120.2
99% Chebyshev (MVUE) UCL	129.9		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution

Nonparametric Distribution Free UCLs

95% CLT UCL	108.4	95% BCA Bootstrap UCL	108.6
95% Standard Bootstrap UCL	108.4	95% Bootstrap-t UCL	109.1
95% Hall's Bootstrap UCL	108.9	95% Percentile Bootstrap UCL	108.4
90% Chebyshev(Mean, Sd) UCL	112	95% Chebyshev(Mean, Sd) UCL	115.6
97.5% Chebyshev(Mean, Sd) UC	L 120.7	99% Chebyshev(Mean, Sd) UCL	130.6

Suggested UCL to Use

95% Student's-t UCL 108.6

When a data set follows an approximate distribution passing only one of the GOF tests, it is suggested to use a UCL based upon a distribution passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Chloride MW-8A

General Statistics

Total Number of Observations	31
Number of Distinct Observations	21
Number of Missing Observations	1
Minimum	3
Mean	4.442
Maximum	6.6
Median	4.4
SD	0.764
Std. Error of Mean	0.137
Coefficient of Variation	0.172
Skewness	0.738

Normal GOF Test

Shapiro Wilk Test Statistic	0.961	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.902	Data appear Normal at 1% Significance Level	
Lilliefors Test Statistic	0.113	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.182	Data appear Normal at 1% Significance Level	
Determinent Nermel et 40/ Oinnifieenes Level			

Data appear Normal at 1% Significance Level

95% Normal UCL		95% UCLs (Adjusted for Skew	ness)
95% Student's-t UCL	4.674	95% Adjusted-CLT UCL (Chen-1995)	4.687
		95% Modified-t UCL (Johnson-1978)	4.678

Gamma GOF Test

A-D Test Statistic	0.289	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.745 Detected data appear Gamma Distributed at 5% Significance Level	
K-S Test Statistic	0.0946	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.157 Detected data appear Gamma Distributed at 5% Significance Level	

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	36.24	k star (bias corrected MLE)	32.75
Theta hat (MLE)	0.123	Theta star (bias corrected MLE)	0.136
nu hat (MLE)	2247	nu star (bias corrected)	2031
MLE Mean (bias corrected	d) 4.442	MLE Sd (bias corrected)	0.776
	Approxima	te Chi Square Value (0.05) 1927	
Adjusted Level of Significa	ance 0.0413	Adjusted Chi Square Value	1921

Assuming Gamma Distribution

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.984	Shapiro Wilk Lognormal GOF Test
10% Shapiro Wilk Critical Value	0.94	Data appear Lognormal at 10% Significance Level
Lilliefors Test Statistic	0.918	Lilliefors Lognormal GOF Test
10% Lilliefors Critical Value	0.143 Level	Data appear Lognormal at 10% Significance

Data appear Lognormal at 10% Significance Level

Lognormal Statistics

Minimum of Logged Data 1	.099	Mean of logged Data 1.477
Maximum of Logged Data	1.887	SD of logged Data 0.169
Assumi	ng Lognormal Di	stribution
95% H-UCL	4.686	90% Chebyshev (MVUE) UCL 4.847
95% Chebyshev (MVUE) UC	CL 5.03	97.5% Chebyshev (MVUE) UCL 5.285
99% Chebyshev (MVUE) UC	CL 5.786	

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution

Nonparametric Distribution Free UCLs

95% CLT UCL	4.667	95% BCA Bootstrap UCL	4.686
95% Standard Bootstrap UCL	4.661	95% Bootstrap-t UCL	4.709
95% Hall's Bootstrap UCL	4.715	95% Percentile Bootstrap UCL	4.667
90% Chebyshev(Mean, Sd) UCL	4.853	95% Chebyshev(Mean, Sd) UCI	_ 5.04
97.5% Chebyshev(Mean, Sd) UC	L 5.298	99% Chebyshev(Mean, Sd) UCI	_ 5.807

Suggested UCL to Use

95% Student's-t UCL 4.674

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Chloride MW-10A

General Statistics

Total Number of Observations	
Number of Distinct Observations	26

Number of Missing Observations 2

Minimum	23
Mean	65.73
Maximum	190
Median	49
SD	44.88
Std. Error of Mean	8.193
Coefficient of Variation	0.683
Skewness	1.681

Normal GOF Test

Shapiro Wilk Test Statistic	0.785	Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value	0.9	Data Not Normal at 1% Significance Level
Lilliefors Test Statistic	0.184	Lilliefors GOF Test
1% Lilliefors Critical Value	0.185	Data appear Normal at 1% Significance Level

Data appear Approximate Normal at 1% Significance Level

95% Normal UCL		95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL	79.66	95% Adjusted-CLT UCL (Chen-1995)	81.9	
		95% Modified-t UCL (Johnson-1978)	80.07	

West Burlace Impediation			r onner Goldminik Golge Add			
Gamma GOF Test						
A-D Test Statistic	0.925		Anderson-Darling Gamma GOF 1	est		
5% A-D Critical Value Level	0.753	Data N	lot Gamma Distributed at 5% Signif	icance		
K-S Test Statistic	0.131		Kolmogorov-Smirnov Gamma G0	OF Test		
5% K-S Critical Value	0.161		ed data appear Gamma Distributed cance Level	at 5%		
Detected data follow Appr	. Gamn	na Distri	bution at 5% Significance Level			
	Gamma Statistics					
k hat (MLE)	2.937		k star (bias corrected MLE)	2.665		
Theta hat (MLE)	22.38		Theta star (bias corrected MLE)	24.66		
nu hat (MLE)	176.2		nu star (bias corrected)	159.9		
MLE Mean (bias corrected) 65.73		MLE Sd (bias corrected)	40.26			
Appro			kimate Chi Square Value (0.05)	131.7		
Adjusted Level of Significa	ance 0.	041	Adjusted Chi Square Value	130.2		
	Assu	ming G	amma Distribution			
95% Approximate Gamma	a UCL	79.83	95% Adjusted Gamma UCL	80.73		
Lognormal GOF Test						
Shapiro Wilk Test Statistic	;	0.931	Shapiro Wilk Lognormal G	OF Test		
10% Shapiro Wilk Critical Value		0.939	Data Not Lognormal at 10% Signifi	cance Level		
Lilliefors Test Statistic		0.102	Lilliefors Lognormal GOF	Test		
10% Lilliefors Critical Valu	е	0.146	Data appear Lognormal at 10% Si Level	gnificance		

Data appear Approximate Lognormal at 10% Significance Level

99% Chebyshev(Mean, Sd) UCL 147.3

Lognormal Statistics				
Minimum of Logged Data	3.135	Mean of logged Data	4.006	
Maximum of Logged Data	5.247	SD of logged Data	0.586	
Assuming L	.ognormal	Distribution		
95% H-UCL	81.3	90% Chebyshev (MVUE) UCL	86.81	
95% Chebyshev (MVUE) UCL	96.79	97.5% Chebyshev (MVUE) UCL	110.6	
99% Chebyshev (MVUE) UCL	137.8			
Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution				
Nonparametric Distribution Free UCLs				
95% CLT UCL	79.21	95% BCA Bootstrap UCL	82.47	
95% Standard Bootstrap UCL	78.83	95% Bootstrap-t UCL	83.36	
95% Hall's Bootstrap UCL	81.08	95% Percentile Bootstrap UCL	79.77	
90% Chebyshev(Mean, Sd) UCL	90.31	95% Chebyshev(Mean, Sd) UCL	101.4	

97.5% Chebyshev(Mean, Sd) UCL 116.9

Suggested UCL to Use

95% Adjusted Gamma UCL 79.66

When a data set follows an approximate distribution passing only one of the GOF tests, it is suggested to use a UCL based upon a distribution passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Chloride MW-12A

General Statistics

Total Number of Observations	2
Number of Distinct Observations	2
Number of Missing Observations	30
Minimum	37
Mean	93.5
Maximum	150
Median	93.5

Warning: This data set only has 2 observations!

Data set is too small to compute reliable and meaningful statistics and estimates!

The data set for MW-12A was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods! If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

Chloride MW-14A

General Statistics

Total Number of Observations	30
Number of Distinct Observations	25
Number of Missing Observations	2
Minimum	32
Mean	97.8
Maximum	210
Median	73
SD	51.33
Std. Error of Mean	9.371
Coefficient of Variation	0.525
Skewness	0.785

Normal GOF Test

Shapiro Wilk Test Statistic	0.892	Shapiro Wilk GOF Test		
1% Shapiro Wilk Critical Value	0.9	Data not Normal at 1% Significance Level		
Lilliefors Test Statistic	0.205	Lilliefors GOF Test		
1% Lilliefors Critical Value	0.185	Data not Normal at 1% Significance Level		
Data not Normal at 1% Significance Level				

95% Normal UCL		95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL	113.7	95% Adjusted-CLT UCL (Chen-1995)	114.7	
		95% Modified-t UCL (Johnson-1978)	113.9	

Gamma GOF Test				
A-D Test Statistic	0.718	Anderson-Darling Gamma GOF Test		
5% A-D Critical Value	0.75	Detected data appear Gamma Distributed at 5% Significance Level		
K-S Test Statistic	0.168	Kolmogorov-Smirnov Gamma GOF Test		
5% K-S Critical Value	0.161 Data	not Gamma Distributed at 5% Significance Level		
Detected data follow Appr. Gamma Distributed at 5% Significance Level				

Gamma Statistics

k hat (MLE)	3.993	k star (bias corrected MLE)	3.616
Theta hat (MLE)	24.5	Theta star (bias corrected MLE)	27.05
nu hat (MLE)	239.6	nu star (bias corrected)	216.9
MLE Mean (bias corrected	d) 97.8	MLE Sd (bias corrected)	51.43
	Approximate	Chi Square Value (0.05) 183.8	3
Adjusted Level of Significa	ance 0.041	Adjusted Chi Square Value	182.1

Assuming Gamma Distribution

95% Approximate Gamma UCL 115.4	95% Adjusted Gamma UCL	116.5

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.952	Shapiro Wilk Lognormal GOF Test
10% Shapiro Wilk Critical Value	0.939	Data appear Lognormal at 10% Significance Level
Lilliefors Test Statistic	0.142	Lilliefors Lognormal GOF Test
10% Lilliefors Critical Value	0.146	Data appear Lognormal at 10% Significance Level

Data appear Lognormal at 10% Significance Level

Lognormal Statistics

Minimum of Logged Data	3.466	Mean of logged Data 4.452			
Maximum of Logged Data	5.347	SD of logged Data 0.521			
Assuming Lognormal Distribution					
95% H-UCL	118.9	90% Chebyshev (MVUE) UCL 127			
95% Chebyshev (MVUE) UCL	140.3	97.5% Chebyshev (MVUE) UCL 158.6			
99% Chebyshev (MVUE) UCL	194.7				

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution

Nonparametric Distribution Free UCLs

95% CLT UCL	113.2	95% BCA Bootstrap UCL	116.2
95% Standard Bootstrap UCL	112.9	95% Bootstrap-t UCL	115.2
95% Hall's Bootstrap UCL	113.9	95% Percentile Bootstrap UCL	113.9
90% Chebyshev(Mean, Sd) UCL	125.9	95% Chebyshev(Mean, Sd) UCI	L 138.6
97.5% Chebyshev(Mean, Sd) UC	L 156.3	99% Chebyshev(Mean, Sd) UC	L 191

Suggested UCL to Use

95% Adjusted Gamma UCL 116.5

When a data set follows an approximate distribution passing only one of the GOF tests, it is suggested to use a UCL based upon a distribution passing both GOF tests in ProUCL

Chloride MW-18

General Statistics

Total Number of Observations		
Number of Distinct Observations	20	

Number of Missing Observations 1

Minimum	59
Mean	79.71
Maximum	100
Median	80
SD	10.12
Std. Error of Mean	1.818

Std. Error of Mean1.818Coefficient of Variation0.127Skewness0.126

Normal GOF Test

Shapiro Wilk Test Statistic	0.974	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.902 Data appea	r Normal at 1% Significance Level	
Lilliefors Test Statistic	0.0994	Lilliefors GOF Test	
1% Lilliefors Critical Value0.182Data appear Normal at 1%Significance LData appear Normal at 1%Significance Level			

95% Normal UCL		95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL	82.8	95% Adjusted-CLT UCL (Chen-1995)	82.74	
		95% Modified-t UCL (Johnson-1978)	82.8	

Gamma GOF Test						
A-D Test Statistic	0.297	Ande	erson-Darling Gamma GOF	- Test		
5% A-D Critical Value		tected da Inificance	ta appear Gamma Distribute Level	ed at 5%		
K-S Test Statistic	0.101 Ko	Imogoro	v-Smirnov Gamma GOF T	est		
5% K-S Critical Value		tected da Inificance	ta appear Gamma Distribute Level	ed at 5%		
Detected data appear Ga	mma Distrit	outed at 5	% Significance Level			
	Gamma S	Statistics	i			
k hat (MLE)	63.66	k star	(bias corrected MLE)	57.52		
Theta hat (MLE)	1.252	Theta	a star (bias corrected MLE)	1.386		
nu hat (MLE)	3947	nu sta	ar (bias corrected)	3566		
MLE Mean (bias corrected	d) 79.71	MLE	Sd (bias corrected)	10.51		
Approximate Chi Square Value (0.05) 3428						
Adjusted Level of Significance 0.0413 Adjusted Chi Square Value 3421						
Assuming Gamma Distribution						
95% Approximate Gamma	a UCL 82.9	95%	6 Adjusted Gamma UCL	83.09		
	Lo	gnormal	GOF Test			
Shapiro Wilk Test Statistic	; 0.9	74	Shapiro Wilk Lognormal	GOF Test		
10% Shapiro Wilk Critical Value 0.94 Data appear Lognormal at 10% Significance Level						
Lilliefors Test Statistic	0.1	1	Lilliefors Lognormal GO	F Test		
10% Lilliefors Critical Value 0.143 Data appear Lognormal at 10% Significance Level						
Data appear Lognormal at 10% Significance Level Lognormal Statistics						
Minimum of Logged Data	4.0	78	Mean of logged Data	4.371		
Maximum of Logged Data	4.6	05	SD of logged Data	0.128		

95% H-UCL	82.99	90% Chebyshev (MVUE) UCL	85.23
95% Chebyshev (MVUE) UCL	87.73	97.5% Chebyshev (MVUE) UCL	91.2
99% Chebyshev (MVUE) UCL	98.01		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution

Nonparametric Distribution Free UCLs

95% CLT UCL	82.7	95% BCA Bootstrap UCL	82.71
95% Standard Bootstrap UCL	82.66	95% Bootstrap-t UCL	82.78
95% Hall's Bootstrap UCL	82.73	95% Percentile Bootstrap UCL	82.71
90% Chebyshev(Mean, Sd) UCL	85.16	95% Chebyshev(Mean, Sd) UCL	87.63
97.5% Chebyshev(Mean, Sd) UCI	_ 91.06	99% Chebyshev(Mean, Sd) UCL	97.8

Suggested UCL to Use

95% Student's-t UCL 82.8

Fluoride MW-3B

General Statistics

Total Number of Observations	31
Number of Distinct Observations	18
Number of Missing Observations	1
Minimum	0.12
Mean	1.823
Maximum	25
Median	0.5
SD	4.559
Std. Error of Mean	0.819
Coefficient of Variation	2.502
Skewness	4.681

Normal GOF Test

Shapiro Wilk Test Statistic	0.398	Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value	0.902	Data not Normal at 1% Significance Level
Lilliefors Test Statistic	0.354	Lilliefors GOF Test
1% Lilliefors Critical Value	0.182	Data not Normal at 1% Significance Level

Data not Normal at 1% Significance Level

95% Normal UCL		95% UCLs (Adjusted for Skewn	iess)
95% Student's-t UCL	3.212	95% Adjusted-CLT UCL (Chen-1995)	3.905
	9	95% Modified-t UCL (Johnson-1978)	3.327

Gamma GOF Test				
A-D Test Statistic	3.113	Anderson-Darling Gamma GOF Test		
5% A-D Critical Value	0.81	Data not Gamma Distributed at 5% Significance Level		
K-S Test Statistic	0.278	Kolmogorov-Smirnov Gamma GOF Test		
5% K-S Critical Value	0.167	Data not Gamma Distributed at 5% Significance Level		
Data not Gamma Distributed at 5% Significance Level				

Gamma Statistics

k hat (MLE)	0.501	k star (bias corrected MLE)	0.474
Theta hat (MLE)	3.635	Theta star (bias corrected MLE)	3.842
nu hat (MLE)	31.09	nu star (bias corrected)	29.41
MLE Mean (bias co	prrected) 1.823	MLE Sd (bias corrected)	2.646
	Approximate	Chi Square Value (0.05) 18.03	3
Adjusted Level of S	Significance 0.041	13 Adjusted Chi Square Value	17.54

Assuming Gamma Distribution

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.846	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value Level	0.94	Data Appear Lognormal at 10% Significance	
Lilliefors Test Statistic	0.199	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.143	Data Not Lognormal at 10% Significance Level	
Data not Lognormal at 10% Significance Level			

Lognormal Statistics

Minimum of Logged Data	-2.12	Mean of logged Data	-0.666
Maximum of Logged Data	3.219	SD of logged Data	1.418
Assuming Lognormal Distribu	tion		
95% H-UCL	3.021	90% Chebyshev (MVUE) UCL	2.584
95% Chebyshev (MVUE) UCL	3.154	97.5% Chebyshev (MVUE) UCI	_ 3.947
99% Chebyshev (MVUE) UCL	5.504		

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution

Nonparametric Distribution Free UCLs

95% CLT UCL	3.17	95% BCA Bootstrap UCL	4.334
95% Standard Bootstrap UCL	3.161	95% Bootstrap-t UCL	5.607
95% Hall's Bootstrap UCL	7.637	95% Percentile Bootstrap UCL	3.381
90% Chebyshev(Mean, Sd) UCL	4.279	95% Chebyshev(Mean, Sd) UCL	5.392
97.5% Chebyshev(Mean, Sd) UC	L 6.937	99% Chebyshev(Mean, Sd) UCL	9.971

Suggested UCL to Use

95% Student's-t UCL 3.212

The calculated UCLs are based on assumptions that the data were collected in a random and unbiased manner. Please verify the data were collected from random locations. If the data were collected using judgmental or other non-random methods, then contact a statistician to correctly calculate UCLs.

Fluoride MW-8A

General Statistics

Total Number of Observations	31
Number of Distinct Observations	15
Number of Missing Observations	1
Minimum	0.05
Mean	0.529
Maximum	5
Median	0.18
SD	0.969
Std. Error of Mean	0.174
Coefficient of Variation	1.832
Skewness	3.918

Normal GOF Test

Shapiro Wilk Test Statistic	0.456	Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value	0.902	Data not Normal at 1% Significance Level
Lilliefors Test Statistic	0.383	Lilliefors GOF Test
1% Lilliefors Critical Value	0.182	Data not Normal at 1% Significance Level

Data not Normal at 1% Significance Level

95% Normal UCL		95% UCLs (Adjusted for Skew	ness)
95% Student's-t UCL	0.824	95% Adjusted-CLT UCL (Chen-1995)	0.946
		95% Modified-t UCL (Johnson-1978)	0.845

	Gamma GOF Test		
A-D Test Statistic	2.728	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.781	Data not Gamma Distributed at 5% Significance Level	
K-S Test Statistic	0.251	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.157	Data not Gamma Distributed at 5% Significance Level	

Data not Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	0.89	k star (bias corrected MLE) 0.825
Theta hat (MLE)	0.595	Theta star (bias corrected MLE) 0.641
nu hat (MLE)	55.16	nu star (bias corrected) 51.16
MLE Mean (bias corrected	d) 0.529	MLE Sd (bias corrected) 0.582
	Approximat	e Chi Square Value (0.05) 35.73
Adjusted Level of Significa	ance 0.0413	Adjusted Chi Square Value 35.01

Assuming Gamma Distribution

95% Approximate Gamma UCL 0.757 95% Adjusted Gamma UCL 0.773

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.89	Shapiro Wilk Lognormal GOF Test
10% Shapiro Wilk Critical Value	0.94	Data not Lognormal at 10% Significance Level
Lilliefors Test Statistic	0.205	Lilliefors Lognormal GOF Test
10% Lilliefors Critical Value	0.143	Data not Lognormal at 10% Significance Level

Data not Lognormal at 10% Significance Level

Lognormal Statistics

Minimum of Logged Data	-2.996	Mean of logged Data	-1.295
Maximum of Logged Data	1.609	SD of logged Data	0.993

Assuming Lognormal Distribution

95% H-UCL	0.695	90% Chebyshev (MVUE) UCL 0.708	;
95% Chebyshev (MVUE) UCL	0.83	97.5% Chebyshev (MVUE) UCL 0.999)
99% Chebyshev (MVUE) UCL	1.332		

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution

Nonparametric Distribution Free UCLs

95% CLT UCL	0.815	95% BCA Bootstrap UCL	0.979
95% Standard Bootstrap UCL	0.814	95% Bootstrap-t UCL	1.654
95% Hall's Bootstrap UCL	2.131	95% Percentile Bootstrap UCL	0.847
90% Chebyshev(Mean, Sd) UCL	1.051	95% Chebyshev(Mean, Sd) UCL	1.288
97.5% Chebyshev(Mean, Sd) UCI	_ 1.616	99% Chebyshev(Mean, Sd) UCI	2.261

Suggested UCL to Use

95% Student's-t UCL 0.824

The calculated UCLs are based on assumptions that the data were collected in a random and unbiased manner. Please verify the data were collected from random locations. If the data were collected using judgmental or other non-random methods, then contact a statistician to correctly calculate UCLs.

Fluoride MW-10A

Skewness

Total Number of Observations	30
------------------------------	----

- Number of Distinct Observations 20
- Number of Missing Observations 2

Minimum	0.5
Mean	3.547
Maximum	25
Median	2.9
SD	4.242
Std. Error of Mean	0.774
Coefficient of Variation	1.196

Normal GOF Test

4.731

Shapiro Wilk Test Statistic	0.454	Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value	0.9	Data Not Normal at 1% Significance Level
Lilliefors Test Statistic	0.333	Lilliefors GOF Test
1% Lilliefors Critical Value	0.185	Data not Normal at 1% Significance Level

Data not Normal at 1% Significance Level

95% Normal UCL		95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL	4.862	95% Adjusted-CLT UCL (Chen-1995)	5.535	
		95% Modified-t UCL (Johnson-1978)	4.974	

Gamma GOF Test						
A-D Test Statistic	1.43		Anderson-Darling Gamma GOF Test			
5% A-D Critical Value	0.759	Data r	not Gamma Distributed at 5% Significance Lev	vel		
K-S Test Statistic	0.196	i	Kolmogorov-Smirnov Gamma GOF Test			
5% K-S Critical Value	0.162	Data r	not Gamma Distributed at 5% Significance Lev	vel		
Data not Ga	mma C)istribut	ed at 5% Significance Level			
	Gam	ma Stat	listics			
k hat (MLE)	1.936		k star (bias corrected MLE) 1.76	55		
Theta hat (MLE)	1.832		Theta star (bias corrected MLE) 2.00)9		
nu hat (MLE)	116.2		nu star (bias corrected) 105.	.9		
MLE Mean (bias corrected	d) 3.54 [°]	7	MLE Sd (bias corrected) 2.67	7		
Approximate Chi Square Value (0.05) 83.15						
Adjusted Level of Significance 0.041Adjusted Chi Square Value81.99				99		
Assuming Gamma Distribution						
95% Approximate Gamma UCL 4.517			95% Adjusted Gamma UCL 4.58	31		
Lognormal GOF Test						
Shapiro Wilk Test Statistic 0.926 Shapiro Wilk Lognormal GOF Test						
10% Shapiro Wilk Critical Value		0.939	Data Not Lognormal at 10% Significance Lev	vel		
Lilliefors Test Statistic		0.147	0.147 Lilliefors Lognormal GOF Test			
10% Lilliefors Critical Value 0.146 Data not Lognormal at 10% Significance Leve				vel		
Data not Lognormal at 10% Significance Level						
Lognormal Statistics						

Minimum of Logged Data	-0.693	Mean of logged Data	0.986
Maximum of Logged Data	3.219	SD of logged Data	0.682

95% H-UCL	4.422	90% Chebyshev (MVUE) UCL	4.7
95% Chebyshev (MVUE) UCL	5.311	97.5% Chebyshev (MVUE) UCL	6.159
99% Chebyshev (MVUE) UCL	7.824		

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution

Nonparametric Distribution Free UCLs

95% CLT UCL	4.82	95% BCA Bootstrap UCL	5.91
95% Standard Bootstrap UCL	4.826	95% Bootstrap-t UCL	6.96
95% Hall's Bootstrap UCL	9.889	95% Percentile Bootstrap UCL	5.043
90% Chebyshev(Mean, Sd) UCL	5.87	95% Chebyshev(Mean, Sd) UCL	6.922
97.5% Chebyshev(Mean, Sd) UC	CL 8.383	99% Chebyshev(Mean, Sd) UCL	11.25

Suggested UCL to Use

95% Student's-t UCL 4.862

The calculated UCLs are based on assumptions that the data were collected in a random and unbiased manner. Please verify the data were collected from random locations. If the data were collected using judgmental or other non-random methods, then contact a statistician to correctly calculate UCLs.

Fluoride MW-12A

General Statistics

Total Number of Observations	2
Number of Distinct Observations	2
Number of Missing Observations	30
Minimum	1.9
Mean	2.75
Maximum	3.6
Median	2.75

Warning: This data set only has 2 observations!

Data set is too small to compute reliable and meaningful statistics and estimates!

The data set for MW-12A was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods! If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

Fluoride MW-14A

General Statistics

Total Number of Observations	30
Number of Distinct Observations	24
Number of Missing Observations	2
Minimum	1.8
Mean	16.62
Maximum	32
Median	18
SD	10.29
Std. Error of Mean	1.878
Coefficient of Variation	0.619
Skewness	-0.0696

Normal GOF Test

Shapiro Wilk Test Statistic	0.899	Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value	0.9	Data not Normal at 1% Significance Level
Lilliefors Test Statistic	0.152	Lilliefors GOF Test
1% Lilliefors Critical Value Data appear approx		Data appear Normal at 1% Significance Level Normal at 1% Significance Level

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	19.81	95% Adjusted-CLT UCL (Chen-1995)	19.68
		95% Modified-t UCL (Johnson-1978)	19.81

Gam	ma GO	F Test		
A-D Test Statistic	1.294		Anderson-Darling Gamma GO	F Test
5% A-D Critical Value	0.76	Data	not Gamma Distributed at 5% Sigi	nificance Level
K-S Test Statistic	0.179		Kolmogorov-Smirnov Gamma	GOF Test
5% K-S Critical Value	0.162	Data	not Gamma Distributed at 5% Sigi	nificance Level
Data not Ga	mma D	listribut	ed at 5% Significance Level	
Gam	ma Sta	tistics		
k hat (MLE)	1.827		k star (bias corrected MLE)	1.666
Theta hat (MLE)	9.098		Theta star (bias corrected MLE)	9.974
nu hat (MLE)	109.6		nu star (bias corrected)	99.98
MLE Mean (bias corrected	d) 16.6	2	MLE Sd (bias corrected)	12.88
	Appro	oximate	e Chi Square Value (0.05) 77.9	1
Adjusted Level of Significa	ance 0	.041	Adjusted Chi Square Value	76.79
Assu	ming C	Samma	a Distribution	
95% Approximate Gamma	a UCL 2	21.33	95% Adjusted Gamma UCL	21.64
	Logn	ormal	GOF Test	
Shapiro Wilk Test Statistic	;	0.858	Shapiro Wilk Lognormal	GOF Test
10% Shapiro Wilk Critical	Value	0.939	Data not Lognormal at 10% Sign	ificance Level
Lilliefors Test Statistic		0.214	Lilliefors Lognormal GO	F Test
10% Lilliefors Critical Valu Data not Loc			Data not Lognormal at 10% Sign <mark>% Significance Level</mark>	ficance Level
Lognormal Statistics				
Minimum of Logged Data		0.588	Mean of logged Da	ta 2.513
		0 400		0.007

95% H-UCL	27.3	90% Chebyshev (MVUE) UCL 28.13
95% Chebyshev (MVUE) UCL	32.67	97.5% Chebyshev (MVUE) UCL 38.96
99% Chebyshev (MVUE) UCL	51.33	

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution

Nonparametric Distribution Free UCLs

95% CLT UCL 19.	.71 95% BCA Bootstrap UCL	19.65
95% Standard Bootstrap UCL 19.	.69 95% Bootstrap-t UCL	19.76
95% Hall's Bootstrap UCL 19.	.63 95% Percentile Bootstrap UCL	19.62
90% Chebyshev(Mean, Sd) UCL 22.	.26 95% Chebyshev(Mean, Sd) UCL	. 24.81
97.5% Chebyshev(Mean, Sd) UCL 28	8.35 99% Chebyshev(Mean, Sd) UCL	. 35.31

Suggested UCL to Use

95% Student's-t UCL 19.81

When a data set follows an approximate distribution passing only one of the GOF tests, it is suggested to use a UCL based upon a distribution passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

Fluoride MW-18

General Statistics

31
16
1
0.11
2.229
25
0.4
6.128
1.101
2.749
3.63

Normal GOF Test

Shapiro Wilk Test Statistic	0.362	Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value	0.902	Data not Normal at 1% Significance Level
Lilliefors Test Statistic	0.411	Lilliefors GOF Test
1% Lilliefors Critical Value Data not Not		Data not Normal at 1% Significance Level 1% Significance Level

95% Normal UCL		95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL 4.097		95% Adjusted-CLT UCL (Chen-1995)	4.806	
		95% Modified-t UCL (Johnson-1978)	4.217	

Gamma GOF Test					
A-D Test Statistic	3.748 Anderson-Darling Gamma GOF Test				
5% A-D Critical Value	0.828 Data	not Gamma Distributed at 5% Si	gnificance Level		
K-S Test Statistic	0.271	Kolmogorov-Smirnov Gamma	a GOF Test		
5% K-S Critical Value	0.169 Data	not Gamma Distributed at 5% Sig	gnificance Level		
Data not Gamma D	Distributed at	5% Significance Level			
	Gamma Sta	atistics			
k hat (MLE)	0.418	k star (bias corrected MLE)	0.399		
Theta hat (MLE)	5.337	Theta star (bias corrected MLE	5.59		
nu hat (MLE)	25.89	nu star (bias corrected)	24.72		
MLE Mean (bias corrected	d) 2.229	MLE Sd (bias corrected)	3.53		
Approximate Chi Square Value (0.05) 14.4					
Adjusted Level of Significance 0.0413 Adjusted Chi Square Value 13.96					
Assuming Gamma Distribution					
95% Approximate Gamma UCL 3.827 95% Adjusted Gamma UCL 3.947					
	Logr	ormal GOF Test			
Shapiro Wilk Test Statistic	0.842	2 Shapiro Wilk Lognorm	al GOF Test		
10% Shapiro Wilk Critical	Value 0.94	4 Data not Lognormal at 10% Sig	nificance Level		
Lilliefors Test Statistic	0.169	Eilliefors Lognormal G	OF Test		
10% Lilliefors Critical Valu	ie 0.143	3 Data not Lognormal at 10% Sig	nificance Level		
Data not Log	-	% Significance Level formal Statistics			
Minimum of Logged Data	-2.20	7 Mean of logged Data	-0.763		
Maximum of Logged Data	3.219	SD of logged Data	1.505		

95% H-UCL	3.379	90% Chebyshev (MVUE) UCL	2.734
95% Chebyshev (MVUE) UCL	3.362	97.5% Chebyshev (MVUE) UCL	4.234
99% Chebyshev (MVUE) UCL	5.946		

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution

Nonparametric Distribution Free UCLs

95% CLT UCL	4.039	95% BCA Bootstrap UCL	5.401
95% Standard Bootstrap UCL	4.072	95% Bootstrap-t UCL	15.87
95% Hall's Bootstrap UCL	13.63	95% Percentile Bootstrap UCL	4.285
90% Chebyshev(Mean, Sd) UCL	5.531	95% Chebyshev(Mean, Sd) UCL	7.026
97.5% Chebyshev(Mean, Sd) UCI	_ 9.102	99% Chebyshev(Mean, Sd) UCL	13.18

Suggested UCL to Use

95% Student's-t UCL 4.097

The calculated UCLs are based on assumptions that the data were collected in a random and unbiased manner. Please verify the data were collected from random locations. If the data were collected using judgmental or other non-random methods, then contact a statistician to correctly calculate UCLs.

Cyanide MW-3B

General Statistics

Total Number of Observations		32	
Number of Distinct Observations		4	
Number of Missing Observations	i	0	
Minimum		0.0006	
Mean		0.00564	
Maximum		0.01	
Median		0.005	
SD		0.00233	
Std. Error of Mean		0.0004122	
Coefficient of Variation		0.413	
Skewness		0.812	
Norm	al GOF	Test	
Shapiro Wilk Test Statistic	0.691	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.902	Data not Normal at 1% Significance Level	
Lilliefors Test Statistic	0.421	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.182	Data not Normal at 1% Significance Level	

Data not Normal at 1% Significance Level

95% Normal UCL		95% UCLs (Adjusted for Skewness)
95% Student's-t UCL	0.00634	95% Adjusted-CLT UCL (Chen-1995) 0.00639
		95% Modified-t UCL (Johnson-1978) 0.00635

Gamma GOF Test

A-D Test Statistic	4.741	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.748	Data not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.36	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.156	Data not Gamma Distributed at 5% Significance Level

Data not Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	5.125	k	star (bias corrected ML	E)	4.665
Theta hat (MLE)	0.0011	Theta	star (bias corrected MLE	=)	0.00121
nu hat (MLE)	328		nu star (bias corrected	d)	298.6
MLE Mean (bias co	orrected) 0.	00564	MLE Sd (bias corrected	J)	0.00261
	Approx	imate Chi S	Square Value (0.05)	259.5	

Adjusted Level of Significance 0.0416 Adjusted Chi Square Value 257.6

Assuming Gamma Distribution

95% Approximate Gamma UCL 0.00649 95% Adjusted Gamma UCL 0.00654

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.643	Shapiro Wilk Lognormal GOF Test
10% Shapiro Wilk Critical Value	0.941	Data not Lognormal at 10% Significance Level
Lilliefors Test Statistic	0.391	Lilliefors Lognormal GOF Test
10% Lilliefors Critical Value	0.142	Data not Lognormal at 10% Significance Level

Data not Lognormal at 10% Significance Level

Lognormal Statistics

Minimum of Logged Data	-7.419	Mean of logged Data	-5.278
Maximum of Logged Data	-4.605	SD of logged Data	0.518

95% H-UCL 0.007 90% Chebyshev (MVUE) UCL 0.00748

95% Chebyshev (MVUE) UCL 0.00824 97.5% Chebyshev (MVUE) UCL 0.00929

99% Chebyshev (MVUE) UCL 0.0114

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution

Nonparametric Distribution Free UCLs

95% CLT UCL	0.00632	95% BCA Bootstrap UCL	N/A
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
90% Chebyshev(Mean, Sd) U	CL 0.00688	95% Chebyshev(Mean, Sd) UCL	0.00744
97.5% Chebyshev(Mean, Sd)	UCL 0.0082	2 99% Chebyshev(Mean, Sd) UCL	0.00975

Suggested UCL to Use

95% Student's-t UCL 0.00634

Cyanide MW-8A

	Gene	ral Statistics
Total Number of Observations		32
Number of Distinct Observations	6	4
Number of Missing Observation	S	0
Minimum		0.0025
Mean		0.0101
Maximum		0.15
Median		0.005
SD		0.0256
Std. Error of Mean		0.00453
Coefficient of Variation		2.542
Skewness		5.598
	Norm	al GOF Test
Shapiro Wilk Test Statistic	0.232	Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value	0.904	Data not Normal at 1% Significance Level
Lilliefors Test Statistic	0.47	Lilliefors GOF Test
1% Lilliefors Critical Value	0.18	Data not Normal at 1% Significance Level
Data not Normal at 1% S	ignificar	ice Level
Ass	uming N	Iormal Distribution
95% Normal UCL		95% UCLs (Adjusted for Skewness)
95% Student's-t UCL 0.01	78	95% Adjusted-CLT UCL (Chen-1995) 0.0223
		95% Modified-t UCL (Johnson-1978) 0.0185

	Gamma GC	OF Test		
A-D Test Statistic	7.658	Anderson-Darling Gamma GOF Test		
5% A-D Critical Value	0.775 Data	not Gamma Distributed at 5% Significance Level		
K-S Test Statistic	0.429	Kolmogorov-Smirnov Gamma GOF Test		
5% K-S Critical Value	0.16 Data	not Gamma Distributed at 5% Significance Level		
Data not Gamma I	Distributed at	5% Significance Level		
	Gamma Sta	atistics		
k hat (MLE)	1.042	k star (bias corrected MLE) 0.965		
Theta hat (MLE)	0.00967	Theta star (bias corrected MLE) 0.0104		
nu hat (MLE)	66.69	nu star (bias corrected) 61.77		
MLE Mean (bias corrected	d) 0.0101	MLE Sd (bias corrected) 0.0103		
	Approxin	nate Chi Square Value (0.05) 44.69		
Adjusted Level of Significance 0.0416 Adjusted Chi Square Value 0.0142				
Assu	iming Gamm	a Distribution		
95% Approximate Gamma	a UCL 0.01	39 95% Adjusted Gamma UCL 0.0142		
	Lognormal	GOF Test		
Shapiro Wilk Test Statistic	0.553	Shapiro Wilk Lognormal GOF Test		
10% Shapiro Wilk Critical	Value 0.941	Data not Lognormal at 10% Significance Level		
Lilliefors Test Statistic	0.399	Lilliefors Lognormal GOF Test		
10% Lilliefors Critical Valu	ie 0.142	Data not Lognormal at 10% Significance Level		
Data not Lognormal at 10% Significance Level				
Lognormal Statistics				

Lognormal Statistics

Minimum of Logged Data	-5.991	Mean of logged Data	-5.149
Maximum of Logged Data	-1.897	SD of logged Data	0.689

95% H-UCL	0.00954	90% Chebyshev (MVUE) UCL 0.0102
95% Chebyshev (MVUE) UCL	0.0115	97.5% Chebyshev (MVUE) UCL 0.0133
99% Chebvshev (MVUE) UCL	0.0168	

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution

Nonparametric Distribution Free UCLs

95% CLT UCL	0.0175	95% BCA Bootstrap UCL	N/A
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
90% Chebyshev(Mean, Sd) UCL	0.0237 9	95% Chebyshev(Mean, Sd) UCL	0.0298
97.5% Chebyshev(Mean, Sd) UCL	0.0384	99% Chebyshev(Mean, Sd) UCL	0.0551

Suggested UCL to Use

95% Student's-t UCL 0.0178

The calculated UCLs are based on assumptions that the data were collected in a random and unbiased manner. Please verify the data were collected from random locations. If the data were collected using judgmental or other non-random methods, then contact a statistician to correctly calculate UCLs.

Cyanide MW-10A

General Statistics

Total Number of Observations	31
Number of Distinct Observations	14
Number of Missing Observations	1
Minimum	0.0025
Mean	0.0237
Maximum	0.08
Median	0.028
SD	0.0193
Std. Error of Mean	0.00346
Coefficient of Variation	0.0813
Skewness	0.807

Normal GOF Test

Shapiro Wilk Test Statistic	0.857	Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value	0.902	Data Not Normal at 1% Significance Level
Lilliefors Test Statistic	0.213	Lilliefors GOF Test
1% Lilliefors Critical Value	0.182	Data not Normal at 1% Significance Level

Data not Normal at 1% Significance Level

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.0296	95% Adjusted-CLT UCL (Chen-1995)	0.0299
		95% Modified-t UCL (Johnson-1978)	0.0296

	Gamma GOF Test			
A-D Test Statistic	1.939		Anderson-Darling Gamma GOF	Test
5% A-D Critical Value	0.768	Data n	ot Gamma Distributed at 5% Signi	ficance Level
K-S Test Statistic	0.203		Kolmogorov-Smirnov Gamma G	OF Test
5% K-S Critical Value	0.161	Data n	ot Gamma Distributed at 5% Signi	ficance Level
Data not Ga		istribute na Stat	ed at 5% Significance Level istics	
k hat (MLE)	1.324		k star (bias corrected MLE)	1.217
Theta hat (MLE)	0.0179	9	Theta star (bias corrected MLE)	0.0195
nu hat (MLE)	82.09		nu star (bias corrected)	75.48
MLE Mean (bias corrected	MLE Mean (bias corrected) 0.0237 MLE Sd (bias corrected) 0.021			0.0215
		Approx	ximate Chi Square Value (0.05)	56.47
Adjusted Level of Significance 0.0413Adjusted Chi Square Value55.56				55.56
	Assu	ming G	amma Distribution	
95% Approximate Gamma	a UCL	0.0317	95% Adjusted Gamma UCL	0.0322
	Logno	ormal C	GOF Test	
Shapiro Wilk Test Statistic	;	0.853	Shapiro Wilk Lognormal (GOF Test
10% Shapiro Wilk Critical	Value	0.94	Data Not Lognormal at 10% Signi	ficance Level
Lilliefors Test Statistic		0.236	Lilliefors Lognormal GOF	Test
10% Lilliefors Critical Valu	е	0.143	Data not Lognormal at 10% Signi	ficance Level
Data not Lognormal at 10% Significance Level				

Lognormal Statistics

Minimum of Logged Data	-5.991	Mean of logged Data	-4.166
Maximum of Logged Data	-2.526	SD of logged Data	1.013

95% H-UCL	0.0407	90% Chebyshev (MVUE) UCL	0.0413
95% Chebyshev (MVUE) UCL	0.0485	97.5% Chebyshev (MVUE) UCL	0.0585
99% Chebyshev (MVUE) UCL	0.0782		

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution

Nonparametric Distribution Free UCLs

95% CLT UCL	0.0294	95% BCA Bootstrap UCL	0.0297
95% Standard Bootstrap UCL	0.0293	95% Bootstrap-t UCL	0.0298
95% Hall's Bootstrap UCL	0.0298	95% Percentile Bootstrap	UCL 0.0294
90% Chebyshev(Mean, Sd) UCL	0.0341	95% Chebyshev(Mean, So	d) UCL 0.0388
97.5% Chebyshev(Mean, Sd) UC	CL 0.0453	99% Chebyshev(Mean, So	d) UCL 0.0581

Suggested UCL to Use

95% Student's-t UCL 0.0296

Cyanide MW-12A

General Statistics

Total Number of Observations	2
Number of Distinct Observations	1
Number of Missing Observations	30
Minimum	0.005
Mean	0.005
Maximum	0.005
Median	0.005

Warning: This data set only has 2 observations!

Data set is too small to compute reliable and meaningful statistics and estimates!

The data set for MW-12A was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods! If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

Cyanide MW-14A

General Statistics

Total Number of Observations	31
Number of Distinct Observations	20
Number of Missing Observations	1
Minimum	0.005
Mean	0.0084
Maximum	0.35
Median	0.037
SD	0.0957
Std. Error of Mean	0.0172
Coefficient of Variation	1.083
Skewness	1.049

Normal GOF Test

Shapiro Wilk Test Statistic	0.828	Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value	0.902	Data not Normal at 1% Significance Level
Lilliefors Test Statistic	0.227	Lilliefors GOF Test
1% Lilliefors Critical Value Data not Normal at		Data not Normal at 1% Significance Level nificance Level

95% Normal UCL		95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL	0.118	95% Adjusted-CLT UCL (Chen-1995)	0.12	
		95% Modified-t UCL (Johnson-1978)	0.118	

	Gamma GOF Test		
A-D Test Statistic	1.068	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.79 Data	not Gamma Distributed at 5% Significance Level	
K-S Test Statistic	0.151	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value		cted Data appear Gamma Distributed at 5% ficance Level	

Detected Data follow Approximate Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	0.72	k star (bias corrected MLE)	0.672
Theta hat (MLE)	0.123	Theta star (bias corrected MLE)	0.131
nu hat (MLE)	44.66	nu star (bias corrected)	41.68
MLE Mean (bias corrected	I) 0.0884	MLE Sd (bias corrected)	0.108
	Approximate	Chi Square Value (0.05) 27.88	3

Adjusted Level of Significance 0.0413 Adjusted Chi Square Value 27.25

Assuming Gamma Distribution

95% Approximate Gamma UCL 0.132	95% Adjusted Gamma UCL	0.135
---------------------------------	------------------------	-------

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.888	Shapiro Wilk Lognormal GOF Test
10% Shapiro Wilk Critical Value	0.94	Data not Lognormal at 10% Significance Level
Lilliefors Test Statistic	0.167	Lilliefors Lognormal GOF Test
10% Lilliefors Critical Value Data not Lognorma		Data not Lognormal at 10% Significance Level % Significance Level

Lognormal Statistics

Minimum of Logged Data	-5.298	Mean of logged Data	-3.262
Maximum of Logged Data	-1.05	SD of logged Data	1.48

95% H-UCL	0.261	90% Chebyshev (MVUE) UCL 0.215
95% Chebyshev (MVUE) UCL	0.264	97.5% Chebyshev (MVUE) UCL 0.331
99% Chebyshev (MVUE) UCL	0.464	

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution

Nonparametric Distribution Free UCLs

95% CLT UCL	0.117	95% BCA Bootstrap UCL	0.119
95% Standard Bootstrap UCL	0.116	95% Bootstrap-t UCL	0.123
95% Hall's Bootstrap UCL	0.121	95% Percentile Bootstrap UCL	0.116
90% Chebyshev(Mean, Sd) UCL	0.14	95% Chebyshev(Mean, Sd) UCL	. 0.163
97.5% Chebyshev(Mean, Sd) U0	CL 0.196	99% Chebyshev(Mean, Sd) UCL	0.259

Suggested UCL to Use

95% Adjusted Gamma UCL 0.135

The calculated UCLs are based on assumptions that the data were collected in a random and unbiased manner. Please verify the data were collected from random locations. If the data were collected using judgmental or other non-random methods, then contact a statistician to correctly calculate UCLs.

When a data set follows an approximate distribution passing only one of the GOF tests, it is suggested to use a UCL based upon a distribution passing both GOF tests in ProUCL

Cyanide MW-18

General Statistics

Total Number of Observations	32
Number of Distinct Observations	4
Number of Missing Observations	0
Minimum	0.0025
Mean	0.00777
Maximum	0.086
Median	0.005
SD	0.0144
Std. Error of Mean	0.00254
Coefficient of Variation	1.852
Skewness	5.531

Normal GOF Test

Shapiro Wilk Test Statistic	0.25	Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value	0.904	Data not Normal at 1% Significance Level
Lilliefors Test Statistic	0.451	Lilliefors GOF Test
1% Lilliefors Critical Value Data not Nor		Data not Normal at 1% Significance Level 1% Significance Level

95% Normal UCL		95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL	0.0121	95% Adjusted-CLT UCL (Chen-1995)	0.0146	
		95% Modified-t UCL (Johnson-1978)	0.0125	

Gamma GOF Test						
A-D Test Statistic	7.758	Anderson-Darling Gamma GOF Test				
5% A-D Critical Value	0.764 Data not Gamma Distributed at 5% Significance Level					
K-S Test Statistic	0.469	Kolmogorov-Smirnov Gamma GOF Test				
5% K-S Critical Value	0.158 Data	0.158 Data not Gamma Distributed at 5% Significance Level				
Data not Gamma Distributed at 5% Significance Level						
Gamma Statistics						
k hat (MLE)	1.569	k star (bias corrected MLE)	1.443			
Theta hat (MLE)	0.00495	Theta star (bias corrected MLE)	0.00538			
nu hat (MLE)	100.4	nu star (bias corrected)	92.33			
MLE Mean (bias corrected) 0.00777		MLE Sd (bias corrected)	0.00647			
	Appro	oximate Chi Square Value (0.05)	71.17			
Adjusted Level of Significance 0.0416		Adjusted Chi Square Value	70.18			
Assuming Gamma Distribution						
95% Approximate Gamma UCL 0.0101		95% Adjusted Gamma UCL	0.0102			
Lognormal GOF Test						
Shapiro Wilk Test Statistic	0.525	5 Shapiro Wilk Lognormal	GOF Test			
10% Shapiro Wilk Critical	Shapiro Wilk Critical Value 0.941 Data not Lognormal at 10% Significance Leve					
Lilliefors Test Statistic	0.435	5 Lilliefors Lognormal GOF Test				
10% Lilliefors Critical Valu	0% Lilliefors Critical Value 0.142 Data not Lognormal at 10% Significance Leve					
Data not Lognormal at 10% Significance Level						

Lognormal Statistics

Minimum of Logged Data	-5.991	Mean of logged Data	-5.209
Maximum of Logged Data	-2.453	SD of logged Data	0.588

Assuming Lognormal Distribution

95% H-UCL	0.00803	90% Chebyshev (MVUE) UCL	0.00859
95% Chebyshev (MVUE) UCL	0.00956	97.5% Chebyshev (MVUE) UCL	0.0109
99% Chebvshev (MVUE) UCL	0.0135		

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution

Nonparametric Distribution Free UCLs

95% CLT UCL	0.0119	95% BCA Bootstrap UCL	N/A
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
90% Chebyshev(Mean, Sd) UCL	0.0154	95% Chebyshev(Mean, Sd) UCL 0	.0188
97.5% Chebyshev(Mean, Sd) UCL	0.0236	99% Chebyshev(Mean, Sd) UCL 0	.0331

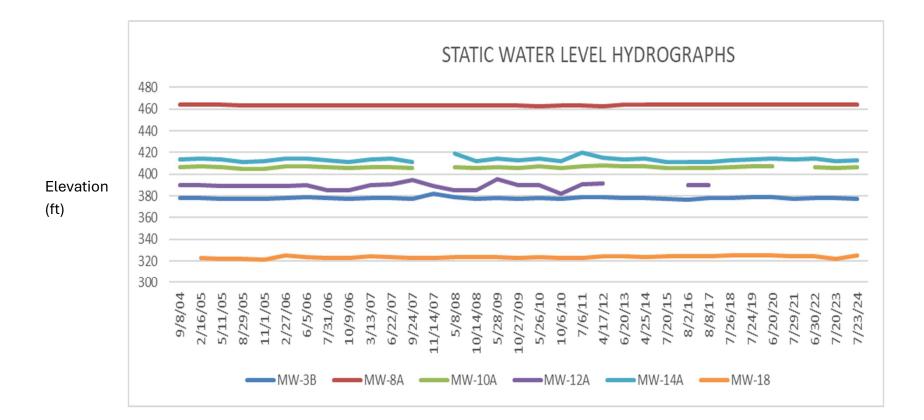
Suggested UCL to Use

95% Student's-t UCL 0.0121

The calculated UCLs are based on assumptions that the data were collected in a random and unbiased manner. Please verify the data were collected from random locations. If the data were collected using judgmental or other non-random methods, then contact a statistician to correctly calculate UCLs.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Appendix B6 Calculator Input Table


Former Columbia Gorge Aluminum Smelter

Date	Sulfate 3B	D-3B	Sulfate 8A	D-8A	Sulfate 10A	D-10A	Sulfate 12A	D-12A	Sulfate 14A	D-14A	Sulfate 18	D-18	Flouride 3B	D-3B Elourido eA		Elliorida 100		Elinorida 12A	D-12A	Fluoride 14A	D-14A	Elipride 18	D-18	Chloride 3B	D-3B	Chloride 8A	D-8A	Chloride 10A	D-10A	Chloride 12A	D-12A Chloride 14A	D-14A	Chloride 18	D-18	Cyanide 3B	D-3B	Cyanide 8A	D-8A	Cyanide 10A	D-10A	Cyanide 12A	D-12A	Cyanide 14A	D-14A	Cyanide 18	, D-18	1
2/16/2005	2300	1	10	1	940	1			4000	1	1500	1	0.6	1 0	.9	1 1.	8	1		9.	6 1	1 0.	6 1	130	1	5.6	1	29	1		11	0 1	86	1 (0.005	0 0	.005	0 0	.04	1			0.35	5 1	0.00	05 0)
5/11/2005	2500	1	9.8	1	910	1			3500	1	1300	1	0.4	1 0	.3	1 1.	5	1		8.	6 1	1 0.	4 1	140	1	4.6	1	31	1		90) 1	91	1 (0.005	0 0	.005	0 0	.05	1			0.24	4 1	0.00	05 0	J
8/29/2005	2700	1	8.9	1	670	1			3600	1	1500	1	D.6	1 0	.4	1 1.	2	1		3	0 1	1 0.	4 1	120	1	4.2	1	28	1		71	1	75	1 (0.005	0 0	.005	0 0	.04	1			0.27	7 1	0.00	05 0	J
11/1/2005	2600	1	9.6	1	670	1			2800	1	1300	1	0.9	1 0	.9	1 2.	7	1		2	5 1	1 1.	8 1	130	1	4.7	1	28	1		75	5 1	84	1 (0.005	0 0	.005	0 0	.03	1			0.19	9 1	0.00	05 0	J
2/27/2006	2610	1	9.27	1	1570	1			2170	1	1520	1	0.7	1 2	.8	1 2.	3	1		3	1 1	1 0.	9 1	118	1	4.2	1	43	1		53	3 1	83	1 (0.005	0 0	.005	0 0	.03	1			0.19	9 1	0.00	05 0	1
6/5/2006	2220	1	9.8	1	1650	1			2380	1	1490	1	0.2	1 0	.2	1 3.	2	1		2	7 1	1 0.	2 0	113	1	4.9	1	48	1		63	3 1	91	1 (0.005	0 0	.005	0 0	.03	1			0.2	1	0.00	05 0	1
7/31/2006	2000	1	9.8	1	860	1			3300	1	1500	1	3.7	1 0	.1	1 2.	3	1		3	0 1	1 2	6 1	110	1	4.6	1	35	1		98	3 1	89	1 (0.005	0 0	.005	0 0	.08	1			0.17	7 1	0.00	05 0	,
10/9/2006	2500	1	9.7	1	850	1			3900	1	1600	1	3.8	1 0	.1	1 1.	9	1		2	4 1	1 2	4 1	110	1	4.5	1	30	1		13	0 1	80	1 (0.005	0 0	.005	0 0	.03	1			0.01	1 1	0.00	05 0)
3/13/2007	2500	1	10	1	1100	1	1800	1	4400	1	1600	1	3.8	1 0.	05	1 3.	4	1 6.	3 1	1	6 1	1 2	6 1	110	1	6.6	1	45	1	150	1 14	0 1	93	1 (0.005	0 0	.005	0 0	.04	1 (0.005	0	0.12	2 1	0.00	05 0	J
6/22/2007	2500	1	0.5	0	1100	1			7900	1	1700	1	5	0 4	5	D 5	5	0		1	9 1	1 0.	5 0	97	1	4.89) 1	36	1		17	0 1	77	1 (0.005	0 0	.005	0 0.	005	1			0.00	5 0	0.00	05 0	,
9/24/2007	2200	1	10	1	760	1			6400	1	1400	1	0.5	0 0	.5	0 1.	2	1		2	5 () 2	5 0	124.7	9 1	4.2	1	30	1		20	0 1	100	1 (0.005	0 0	.005	0 0	.04	1			0.03	3 1	0.00	05 0	J
11/14/2007																																		(0.005	0 0	.005	0 0.	043	1			0.00	15 1	0.00	05 0	J
5/8/2008	2200	1	10	1	2700	1			5500	1	1300	1	25	0 0	.5) 2	5	0		2	5 () 2	50	100	1	4	1	100	1		10	0 1	70	1 (0.005	0 0	.005	0 0	.05	1			0.19	9 1	0.00	05 0	1
10/14/2008	2600	1	10	1	860	1			6500	1	1600	1	5	0 0	.1	1 5	;	0		2	0 1	1 0	5 0	100	1	4.5	1	30	1		18	0 1	80	1 (0.005	0 0	.005	0 0	.04	1			0.12	2 1	0.00	05 0	,
5/29/2009	2200	1	9	1	2000	1			7000	1	1500	1	0.5	0 0	.5	2	2	1		3	0 1	1	1	96	1	3	1	68	1		21	0 1	81	1	0.01	0	0.01	0 0	.03	1			0.14	4 1	0.00	05 0	,
10/27/2009	2606	1	10	1	760	1			5900	1	1200	1	0.5	0 0	.5	0.	5	0		2	4 1	1 0	5 0	110	1	5.5	1	79	1		16	0 1	70	1	0.01	0	0.01	0 0	.01	0			0.04	4 1	0.00	05 0	,
5/26/2010	2300	1	9.3	1	2200	1			5200	1	1500	1	2.3	1 0	.5) 4.	4	1		3	2 1	1 2	2 1	120	1	4.4	1	83	1		17	0 1	100	1	0.01	0	0.01	0 0.	032	1			0.14	4 1	0.0	01 0	,
10/6/2010	2400	1	8.9	1	710	1			4000	1	1600	1	0.5	0 0	.5	D 1		1		1	B 1	1 0.	5 0	110	1	3.6	1	23	1		12	0 1	84	1	0.01	0	0.01	0 0.	022	1			0.08	6 1	0.0	01 0	,
7/26/2011	2000	1	7.8	1	1800	1			3900	1	1600	1	0.5	0 0	.5	3.	3	1		2	3 1	1 0.	5 0	98	1	3.6	1	62	1		13	0 1	89	1	0.01	0	0.01	0 0.	028	1			0.06	61	0.0)1 0	J
4/19/2012	2200	1	10	1	5800	1					1700	1 (.16	1 0.	18	1 1.	9	1				0.	2 1	90	1	3.8	1	180	1				79	1 (0.003	0 0	.003	0 0.	007	1					0.00	025 0	1
6/20/2013	1900	1	9.4	1	4700	1			2300	1	1500	1 (.16	1 0.	16	1 3.	1	1		1	7 1	1 0.	13 1	91	1	4.8	1	99	1		66	6 1	84	1 (6E-04	1 (.003	0 0.	800	1			0.02	8 1	0.00	25 0	1
4/25/2014	2000	1	9.5	1	6100	1			2100	1	1700	1 (.18	1 0.	19	1 2	2	1		1	B 1	1 0.	12 1	91	1	4.9	1	190	1		61	1	79	1 (0.003	0 0	.003	0 0.	003	0			0.03	7 1	0.00	025 0	,
7/20/2015	1900	1	9.5	1	1900	1			1100	1	1300	1 (.14	1 0.	16	1 2	2	1		6.	8 1	1 0.	11 1	80	1	4.2	1	58	1		47	7 1	86	1 (0.005	0 0	.005	0 0.	005	0			0.00	8 1	0.00	05 0	,
8/2/2016	1900	1	9.3	1	3500	1			1400	1	1700	1 (.12	1 0.	13	1 2.	1	1		3.	5 1	1 0.	12 1	98	1	4.1	1	82	1		61	1	79	1 (0.005	0 0	.005	0 0.	005	0			0.01	9 1	0.00	05 0	,
8/9/2017	1700	1	9.6	1	2900	1			1700	1	1300	1 (.15	1 0.	15	1 3.	2	1		2.	5 1	1 0.	11 1	95	1	4.1	1	170	1		68	3 1	59	1	0.01	1 (.005	0 0.	005	0			0.01	7 1	0.08	36 1	1
7/26/2018	1800	1	9.5	1	4800	1			1800	1	1400	1 (.16	1 0.	15	1 4.	1	1		3.	6 1	1 0.	11 1	95	1	3.2	1	71	1		66	6 1	69	1	0.005	0 0	.005	0 0.	005	0		Т	0.00	5 0	0.00	05 0	J
7/24/2019	1500	1	5.4	1	4000	1			1700	1	1200	1 (.15	1 0.	14	1 3.	7	1		2.	8 1	1 0.	12 1	93	1	4.1	1	82	1		64	1	68	1	0.005	0 0	.005	0 0.	006	1		Т	0.01	8 1	0.00	05 0	J
6/20/2020	1700	1	11	1	5700	1			2000	1	1400	1 (.14	1 0.	16	1 4.	4	1		7	' 1	1 0.	13 1	88	1	3.9	1	77	1		49) 1	67	1 (0.005	0 0	.005	0 0.	006	1			0.01	8 1	0.00	05 0)
7/28/2021	1500	1	9	1					1100	1	1200	1 (.17	1 0.	15	1				7.	6 1	1 0.	11 1	93	1	4.4	1				36	3 1	71	1 (0.005	0 0	.005	0					0.00	5 0	0.00	05 0)
6/30/2022	1600	1	9.2	1	2100	1			1000	1	1300	1 (.17	1 0.	18	1 3.	2	1		7.	9 1	1 0.	15 1	99	1	3.7	1	47	1		32	2 1	72	1 (0.005	0 0	.005	0 0.	005	0			0.00	8 1	0.00	05 0	J
7/20/2023	1400	1	7.4	1	1400	1		Ī	1100	1	1100	1 (.13	1 0.	15	1 4	Ļ	1		2.	9 1	1 0.	15 1	86	1	5	1	38	1		50) 1	69	1 (0.005	0 0	.005	0 0.	005	0			0.00	5 1	0.00	05 0	J
7/23/2024	2100	1	10	1	3550	1	510	1	1700	1	1100	1 (.17	1 0.	15	1 5	;	1 1.	9 1	1.	8 1	1 0.	14 1	89	1	5.9	1	50	1	37	1 64	1	66	1	0.005	0	0.15	0 0.	005	0 (0.005	0	0.00	5 0	0.00	05 0	J
	2.00	<u> </u>	.0	Ļ		Ļ	2.10	Ļ		<u> </u>		<u> </u>				· _ `							<u> </u>		<u> </u>	5.0	<u> </u>		Ľ			· · ·		· [-		- 0.		-		Ļ			5.00	<u> </u>	4

APPENDIX C – GROUNDWATER LEVELS

APPENDIX C1

Static Water Level Hydrographs

APPENDIX C2

Static Water Levels

APPENDIX C2 Monitoring Well Static Water Level Elevations West Surface Impoundment Former Columbia Gorge Aluminum Smelter GROUNDWATER STATIC WATER LEVEL ELEVATIONS												
				MONITORI	NG WELL ID							
MW-3B MW-8A MW-10A MW-12A MW-14A												
GROUNDWATER SURFACE ELEVATION (FEET MSL)	TOP OF CASING (FEET MSL)	410.97	492.97	427.95	441.38	431.65	348.40					
	9/8/04	378.1	463.7	406.6	390.2	413.2	NA ^a					
	2/16/05	377.8	463.7	407.1	389.9	414.6	322.9					
	5/11/05	377.6	463.7	406.3	389.3	413.7	322.0					
	8/29/05	377.2	463.0	405.2	389.0	411.2	321.8					
	11/1/05	377.0	463.1	405.1	388.9	411.6	321.6					
	2/27/06	377.7	463.1	407.0	389.4	414.4	325.3					
E [6/5/06	378.5	463.1	407.3	390.1	414.2	323.6					
EE [7/31/06	378.2	463.2	406.2	385.2	412.7	323.1					
9	10/9/06	377.6	463.0	405.6	384.9	411.5	322.5					
SIN	3/13/07	378.1	463.0	406.6	389.9	413.8	324.2					
5	6/22/07	378.3	463.0	406.7	390.3	414.6	323.3					
Ë.	9/24/07	377.4	463.1	405.4	394.4	411.4	322.5					
L L	11/14/07	381.9	463.0	NA ^b	389.2	NA ^b	322.6					
2	5/8/08	378.7	463.2	406.8	384.9	419.2	323.5					
ý	10/14/08	377.4	463.1	405.5	384.8	412.0	323.3					
	5/28/09	378.3	463.3	406.8	395.4	414.5	323.4					
N N	10/27/09	377.5	463.3	405.4	389.9	412.5	322.8					
FRO	5/26/10	378.3	462.7	406.9	390.2	414.4	323.3					
z	10/6/10	377.5	463.2	405.4	381.9	412.2	322.8					
음	7/6/11	379.0	463.1	407.2	390.4	419.5	323.0					
× I	4/17/12	378.7	462.1	407.9	391.3	415.5	324.6					
E E	6/20/13	378.27	464.02	407.00	dry	413.85	324.18					
WATER LEVEL ELEVATION FROM PVC TOP OF CASING (FEET)	4/25/14	377.8	464.1	407.0	dry	414.2	323.9					
	7/20/15	376.9	464.1	405.5	dry	411.4	324.1					
	8/2/16	376.12	464.00	405.68	390.04	411.25	324.40					
E E	8/8/17	378.17	464.00	405.68	390.04	411.25	324.40					
E I	7/26/18	378.16	464.00	406.10	dry	412.72	324.85					
5	7/24/19	378.68	464.05	407.50	dry	413.93	325.50					
	6/20/20	378.46	464.05	407.56	dry	414.35	324.98					
	7/29/21	377.47	463.97	dry	dry	413.32	324.70					
	6/30/22	377.79	464.02	406.56	dry	414.05	324.77					
	7/20/23	378.04	463.66	405.81	dry	412.34	322.11					
·	7/23/24	377.32	464.02	406.23	391.00	412.88	324.98					

Notes:

^a Well was not in operation at this time

Well was not in operation at the time b Field sheets for MW-10A and MW-14A are missing for 5/8/2008 MSL = mean sea level NA = not available.

APPENDIX D – SURFACE MAINTENANCE ANNUAL REPORT

NSI MAINTENACE AND	INSPECTION	ACTIVITIES
--------------------	------------	------------

INSPECTIONS:	WINTER	2024	IST	QUARIER	
QUARTERLY & YE		3/2	8/24		
DATES and INITIAL	.S:	After			
	COVER SYSTEM:	Rodent Ho	les	1	K

۱

NO TOWARDS EAST SIDE NO PROBLEMS GEOTEX EXPOSED AT SW CORNER

Storm Water Conveyance System

Blockage

Settlement Buildup

Woody Vegetation

Security Fence

Signs of Erosion

NO

NO

-EA

Corrective Action Taken:

LEDSE T-WEEPS REMOVED/DISP. PRELIM. LINITED REPAIR TO GTEN COVER

Additional Comments:

LOVER NEERS TO BE REPLENISHED (GRAVEL) WEED CONTROL MEEDS TO BE INITIATED

WSI MAINTENACE AND INSPECTION ACTIVITIES

QUARTER SPRING ZOZY ZND INSPECTIONS:

QUARTERLY & YEARLY INSPECTIONS:

23-2024

DATES and INITIALS:

COVER SYSTEM: Rodent Holes

Woody Vegetation

Security Fence

Signs of Erosion

NEEDS PROFF. REHOVAL) PROBLEMS / LOCKED NO SLIGHT SIGNS REPAIR NEEPED! NO

NO

YES

NO

NO

Storm Water Conveyance System

Blockage

Settlement Buildup

Corrective Action Taken:

TUMBLE WEEPS AGAINST FENCE REMOVED

Additional Comments:

NO EVIDENCE FOR VANDALISHUS.

WSI MAINTENACE AND INSPECTION ACTIVITIES

INSPECTIONS:

SUMMER 2024

QUARTERLY & YEARLY INSPECTIONS:

DATES and INITIALS:

9-23-2021

COVER SYSTEM: Rodent Holes

Woody Vegetation

Security Fence

Signs of Erosion

Storm Water Conveyance System

Blockage

Settlement Buildup

Corrective Action Taken:

Piek UP T-WEEDS+ (AFPBOARD (BLOWN IN)

SOME ALONG EJGE OF CONTAINM,

Additional Comments:

MET ON SITE W. CONTRACTORS FOR TOOFY REHOVAL AND G. TEX COVER REPAIR WEFP

NONE

NO PROBLEMS

YES

NO

1)

WSI MAINTENACE AND INSPECTION ACTIVITIES

FALL 2024

INSPECTIONS:

QUARTERLY & YEARLY INSPECTIONS:

10/12/24

DATES and INITIALS:

COVER SYSTEM:

Woody Vegetation

Rodent Holes

Security Fence

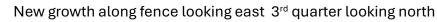
Signs of Erosion

YES (RENOUAL INITIATET) CLEAN + NO (ONCERN REPAIRED

NONE FOUND

No

Storm Water Conveyance System


Blockage

Settlement Buildup

Corrective Action Taken:

					nden dirizi ye marekazên	
PROFE	SSIDNAL	WEEP	REH	OVAC	UNPER	WAY.
G.TEX						
GRAVE.						
Au	WEEDS	PEHO	VED	10	GROUND	(EVEL
6-TEX	COVER.	15 BROU	IGHT T	to Fe	PRHER2	-
OPENE	ANT					

Additional Comments:

- $1^{\mbox{\scriptsize st}}$ quarter east end with dry weeds
- 1st quarter looking west along the fence

The following photos are all taken after the removal of all weeds from the site and after replacing the missing top cover at various locations. 4th quarter

