Prepared for DTG Recycling

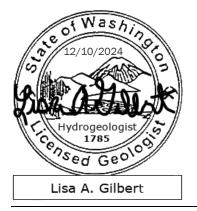
December 2024

Prepared for

DTG Recycling P.O. Box 14203 Mill Creek, WA 98082

Prepared by

Parametrix 719 2nd Avenue, Suite 200 Seattle, WA 98104 T. 206.394.3700 F. 1.206.649.6353 www.parametrix.com


December 2024 | 553-8472-005

Citation

Parametrix. 2024. Rocky Top Environmental Limited Purpose Landfill Third Quarter 2024 Groundwater Monitoring Report. Prepared for DTG Recycling by Parametrix, Seattle, Washington. December 2024.


Certification

The technical material and data contained in this document were prepared under the supervision and direction of the undersigned, whose seal, as a professional hydrogeologist licensed to practice as such, is affixed below.

Sally Nguyen, GIT ed by

Lisa Gilbert, LG, LHG

Reviewed by Michael Brady, LG, LHG

Sonce anna

Approved by Laura B. Lee, Project Manager

Contents

1.	Intro	duction		1-1
	1.1	LPL Des	scription	1-1
		1.1.1	MTCA Site	1-1
		1.1.2	Additional Facility Operations	1-2
	1.2	Physica	I Setting	1-2
	1.3	Monitor	ing History	1-2
		1.3.1	Recent Changes	1-3
	1.4	Objectiv	/es	1-3
	1.5	Complia	ance	1-3
2.	Geol	ogy and I	Hydrogeology	2-1
	2.1	Regiona	al Geology and Hydrogeology	
		2.1.1	Regional Geology	
		2.1.2	Regional Hydrogeology	
	2.2	LPL Geo	ology and Hydrogeology	
		2.2.1	LPL Geology	2-2
		2.2.2	LPL Hydrogeology	2-3
3.	Sam	oling and	I Analysis	
	3.1	Routine	Groundwater Sampling	
	3.2			
	5.2	Nonrout	tine Groundwater Sampling	
	3.3		tine Groundwater Sampling water Analysis	
4.	3.3	Ground		3-1
4.	3.3	Ground ^y Its	water Analysis	3-1 4-1
4.	3.3 Res u	Ground ^y Its	water Analysis	3-1 4-1 4-1
4.	3.3 Res u	Ground Its Ground 4.1.1	water Analysis	3-1 4-1 4-1
4.	3.3 Res u	Ground ⁴ Its Ground ⁴ 4.1.1 4.1.2	water Analysis water Elevations and Flow Groundwater Elevations	
4.	3.3 Resu 4.1	Ground ⁴ Its Ground ⁴ 4.1.1 4.1.2	water Analysis water Elevations and Flow Groundwater Elevations Groundwater Flow	
4.	3.3 Resu 4.1	Ground Its Ground 4.1.1 4.1.2 Ground	water Analysis water Elevations and Flow Groundwater Elevations Groundwater Flow water Quality	
4.	3.3 Resu 4.1	Ground Its Ground 4.1.1 4.1.2 Ground 4.2.1	water Analysis water Elevations and Flow Groundwater Elevations Groundwater Flow water Quality Data Quality Evaluation	
4.	3.3 Resu 4.1	Ground Its Ground 4.1.1 4.1.2 Ground 4.2.1 4.2.2	water Analysis water Elevations and Flow Groundwater Elevations Groundwater Flow water Quality Data Quality Evaluation Comparison of Data to Water Quality Criteria	3-1 4-1 4-1 4-1 4-1 4-1 4-2 4-2 4-2 4-2 4-2 4-3
4.	3.3 Resu 4.1	Ground Its Ground 4.1.1 4.1.2 Ground 4.2.1 4.2.2 4.2.3	water Analysis water Elevations and Flow Groundwater Elevations Groundwater Flow water Quality Data Quality Evaluation Comparison of Data to Water Quality Criteria Time-Series Plots	3-1 4-1 4-1 4-1 4-1 4-1 4-2 4-2 4-2 4-2 4-3 4-3 4-4
4.	3.3 Resu 4.1	Ground Its Ground 4.1.1 4.1.2 Ground 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5	water Analysis water Elevations and Flow Groundwater Elevations Groundwater Flow water Quality Data Quality Evaluation Comparison of Data to Water Quality Criteria Time-Series Plots Geochemical Evaluation	

Contents (continued)

5.	References	5-	1
6.	Limitations	6-	1

FIGURES

Figure 1	Facility Vicinity Map
----------	-----------------------

- Figure 2 Well Location Map
- Figure 3 Groundwater Levels and Elevations
- Figure 4 Third Quarter 2024 Shallow Aquifer Potentiometric Surface
- Figure 5 Third Quarter 2024 Interflow Zone Potentiometric Surface

TABLES

Table 1	Groundwater Analyses and Analytical Methods
Table 2	Groundwater Levels and Elevations
Table 3a	Third Quarter 2024 Shallow Aquifer Groundwater Quality Monitoring Results
Table 3b	Third Quarter 2024 Interflow Zone Groundwater Quality Monitoring Results
Table 4	Comparison of Third Quarter 2024 Groundwater Quality Data to Upper Prediction Limits (UPLs) and Shewhart Control Limits (SCLs) Calculated from Background Data

APPENDICES

- A Third Quarter 2024 Field Data Sheets
- B Third Quarter 2024 Laboratory Analytical Report
- C Third Quarter 2024 Data Quality Evaluation
- D Time-Series Plots
- E Geochemistry
- F Statistics

Acronyms and Abbreviations

-	
AFFF	Aqueous film-forming foam
AMSL	above mean sea level
bgs	below ground surface
CDL	Construction, demolition, and land-clearing debris
CULs	cleanup levels
CUSUM	cumulative sum
cm/sec	centimeters per second
DTG	DTG Recycling
Ecology	Washington State Department of Ecology
EPA	U.S. Environmental Protection Agency
GWQS	Groundwater Quality Criteria (Chapter 173-200 WAC)
h	control limit for CUSUM comparisons
HWA	HWA GeoSciences, Inc.
LPL	Limited Purpose Landfill
MCLs	Maximum Contaminant Levels (Chapter 246-290 WAC)
meq/L	milliequivalents per liter
mg/L	milligrams per liter
MTCA	Model Toxics Control Act (Chapter 173-340 WAC)
MRF	Materials Recovery Facility
On-Site	On-Site Environmental, Inc.
PCS	Petroleum-contaminated soil
PFAS	Per- and polyfluoroalkyl substances
RI	remedial investigation
RL	reporting limit
SAP	Sampling and Analysis Plan
SCL	Shewhart Control Limit
TDS	total dissolved solids
TPH	total petroleum hydrocarbons

Acronyms and Abbreviations (Continued)

µmhos/cm	micromhos per centimeter
UPLs	upper prediction limits
USACE	US Army Corps of Engineers
VOCs	volatile organic compounds
WAC	Washington Administrative Code
WRCC	Western Regional Climate Center
YHD	Yakima Health District
YRCAA	Yakima Regional Clean Air Agency

1. Introduction

This report presents the results of the third quarter 2024 environmental monitoring completed at the Rocky Top Environmental Limited Purpose Landfill (LPL) located at 41 Rocky Top Road in Yakima, Washington. The LPL is owned and operated by DTG Recycling (DTG). Figure 1 shows the LPL vicinity. The LPL layout and facility boundary are shown on Figure 2.

1.1 LPL Description

The facility was originally permitted as an unlined construction, demolition, and land-clearing debris (CDL) landfill that began operation in 1997 as Anderson Rock and Demolition Pit under Chapter 173-304 of the Washington Administrative Code (WAC). The facility was reclassified as an LPL in 2007, with the southern expansion area permitted in 2015. The LPL accepted treated petroleum-contaminated soil (PCS) that was stockpiled in a separate area on the northeast portion of the facility and managed until soil concentrations were below the Model Toxics Control Act (MTCA) Method A cleanup levels (CULs) for unrestricted land use. Once soils in the stockpiles were below MTCA CULs, they were used as daily cover in the LPL following approval from Yakima Health District (YHD).

In October 2019, DTG purchased the LPL and overtook operations of the facility. The LPL can accept, per WAC 173-350-100, segregated industrial solid waste, CDL, wood-waste, ash (other than special incinerator ash), and dredge spoils.

Phase 1 is the historical fill area and is unlined (Figure 2). Filling of Phase 1 continued through 2022, and then waste was placed in a permitted unlined expansion cell south of Phase 1. It was discovered that the area of the expansion cell had differing physical conditions than Phase 1. This area became known as the temporary fill area and DTG began plans for a lined expansion cell (Phase 2). Filling of the temporary fill area continued through June 2023 with plans that the waste would be moved to Phase 2 upon completion. In July 2023, YHD denied the permit renewal for the facility primarily due to the need for an air permit from the Yakima Regional Clean Air Agency (YRCAA), and filling of the temporary fill area ceased.

Phase 2 was constructed with a liner system and leachate collection system and is located on the southern portion of the facility. Phase 2 construction was completed in September 2024. The LPL is currently being re-permitted in accordance with Chapter 173-350 WAC to allow filling of the Phase 2 lined cell. An air permit has been received from the YRCAA. DTG is awaiting the final solid waste permit from YHD to move waste from the temporary fill area to the lined cell.

1.1.1 MTCA Site

Washington State Department of Ecology (Ecology) listed the northwest slope of the LPL as a MTCA site in September 2022 related to ambient air found above MTCA CULs. DTG and Ecology negotiated an Agreed Order that was executed in February 2023. A subsurface fire beneath the northwest slope of the LPL was confirmed in March 2023 and is likely the source of the ambient air emissions. Additional groundwater monitoring wells were installed related to the MTCA remedial investigation (RI). Environmental monitoring and additional investigations and actions were completed related to the fire.

Low permeability material was mined from the facility and placed as additional cover over the fire area. This was to prevent fire emissions from reaching ambient air and preventing oxygen from reaching the fire area. The low permeability cover is suppressing the fire and preventing vertical

migration out of the LPL. This may be forcing emissions and any landfill gas from the fire area downwards closer to groundwater. Ecology and YHD are concerned this may cause additional contaminants within the groundwater and monitoring of the on-site wells will assist in the MTCA evaluation related to the fire response.

DTG acquired the land north of the facility which allowed for an improved subsurface fire response and increased flexibility for installing groundwater monitoring wells for the facility.

Groundwater monitoring for the MTCA releases is being reported separately. This includes analysis of Per- and polyfluoroalkyl substances (PFAS) and dioxins/furans which were suspected to be present related to the MTCA site.

1.1.2 Additional Facility Operations

There is a materials recovery facility (MRF) operating on the central portion of the facility adjacent to the LPL. In 2023, YHD and Ecology required the MRF to develop a covered receiving area, impervious receiving floor, and leachate controls. DTG is in the process of design and construction of these systems for the MRF. Figure 1 displays the current MRF location as the sorting area at the facility. An active rock quarry also operates on the western portion of the facility and is permitted separately (Figure 1).

1.2 Physical Setting

The LPL is located on the northeast flank of Cowiche Mountain, northwest of Yakima in Section 10, Township 13 North, Range 17 East, Willamette Meridian, in Yakima County, Washington. Elevations range from 2,050 feet above mean sea level (AMSL) in the southwest corner, to around 1,860 feet AMSL in the northeast corner.

1.3 Monitoring History

Groundwater monitoring well locations at the LPL are shown on Figure 2. Until the second quarter of 2024, quarterly monitoring was conducted at downgradient wells MW-2S, MW-3S, and MW-4S for compliance with WAC 173-350-500 and permit requirements. Well MW-2S was installed in December 2005 with a screened interval of approximately 310 to 330 feet below ground surface (bgs). Well MW-3S was installed in September 2007 with a screened interval of approximately 188 and 198 feet bgs. Well MW-4S was installed in July 2022 with a screened interval of approximately 49.5 to 69.5 feet bgs.

Eight background monitoring events were conducted at MW-2S and MW-3S between August 2008 and August 2009 to establish baseline groundwater quality conditions. Background monitoring is described in the Groundwater Monitoring Report, Anderson Pit Limited Purpose Landfill, Yakima, Washington (HWA 2010). MW-2S and MW-3S are located downgradient of the LPL, and the landfill was in operation before this time. A revised statistical approach to establishing groundwater compliance is described in Section 4.2.5.

Since 2009, quarterly groundwater monitoring has been conducted at MW-2S and MW-3S and the results have been documented in annual reports. Quarterly groundwater reporting began in 2023. Monitoring well MW-4S was initially sampled in October 2022 and has been monitored quarterly since installation. The initial results were presented in the 2022 Annual Report (Parametrix 2023a) and subsequent results in quarterly and annual reports (Parametrix 2024a).

The Bertheas '95 domestic well, which is owned by DTG, is located southeast of the LPL and is completed in the Deep Aquifer. The well was sampled for four quarters in 2023 and results presented in the 2023 quarterly and annual reports (Parametrix 2024a). The Bertheas '95 well was decommissioned in September 2024 and is no longer available for sampling.

In May 2023, DTG presented a work plan (Parametrix in association with HWA 2023) for additional hydrogeologic characterization of the LPL related to the Phase 2 development. Drilling of two new Shallow Aquifer wells and four new Interflow Zone wells commenced in May 2024. The two new Shallow Aquifer wells MW-5S and MW-6S were installed prior to the second quarter 2024 sampling event in June. The screened intervals of wells MW-5S and MW-6S are 222 to243 feet bgs and 110 to130 feet bgs, respectively. Background sampling of these wells will continue until eight quarters have been completed.

1.3.1 Recent Changes

The Sampling and Analysis Plan (SAP) was updated in September 2024 (Parametrix 2024c) to reflect the new statistical analysis for the groundwater monitoring program as well as to update with the completed monitoring wells for the LPL. The September SAP also includes protocols for analysis of PFAS and dioxins/furans. Dedicated PFAS-free pumps were installed in the Shallow Aquifer wells following the 2024 second quarter event and sampling for PFAS for the Shallow Aquifer wells was completed in the 2024 third quarter event. The results for PFAS and dioxins/furans are not included in this report and will be presented in other reporting for the MTCA site as part of the AO.

Monitoring wells MW-7D through MW-10D were completed in September 2024 into the Interflow Zone and were sampled during hydraulic testing events at the same time as the third quarter 2024 monitoring event. The sampling is described in Section 3.2 below. The Interflow Zone is a water bearing zone located stratigraphically between the Shallow Aquifer and the Deep Aquifer and is the first water bearing unit below the Phase 2 development. Dedicated pumps and tubing will be installed in the Interflow Zone wells prior to the fourth quarter 2024 sampling event. Hydraulic testing of these wells overlapped with the third quarter 2024 sampling event, and nonroutine sampling was conducted at these wells (see Section 3.2). New dedicated QED PFAS-free bladder pumps were placed into the Interflow Zone wells in December 2024 prior to the fourth quarter event.

1.4 Objectives

This report documents the third quarter 2024 groundwater monitoring at the DTG LPL. Reporting requirements, as required by the LPL operating permit and WAC 173-350-500, entail quarterly groundwater monitoring and submission of an annual groundwater monitoring report to the YHD and Ecology by April 1 of each year.

Groundwater sampling and analysis for this quarter was conducted in accordance with the revised Groundwater SAP (Parametrix 2023c).

1.5 Compliance

If statistical analyses determine a significant increase over background (as described in Section 4.2.5), DTG will notify YHD and Ecology within 30 days of the evaluation finding. If the increase is not demonstrated to be attributable to a source other than the landfill, natural variation in groundwater quality, or an error in sampling, analyses, or statistical evaluation, and the concentrations of constituents exceed the groundwater quality criteria established by Chapter 173-200 WAC, Water Quality Standards for Groundwaters of the State of Washington,

DTG in consultation with YHD and Ecology, will determine additional measures. Additional measures to be considered are to characterize the chemical composition of the release and the contaminant fate and transport characteristics by installing additional monitoring wells; assess and, if necessary, implement appropriate intermediate measures to remedy the release; and evaluate, select, and implement remedial measures as required by Chapter 173-340 WAC, MTCA, where applicable.

2. Geology and Hydrogeology

The current understanding of the geology and hydrogeology of the LPL is described in the following reports and summarized in the following sections:

- Geotechnical & Hydrogeologic Investigation Report, Anderson Rock and Demolition Pits Limited Purpose Landfill Expansion (HWA 2015)
- Hydrogeologic Investigation Report DTG/Anderson Pit LPL (HWA 2022a),
- Hydrogeologic Approach (Parametrix 2023c)
- Hydrogeologic Characterization Work Plan (Parametrix in association with HWA 2023).
- 2023 Annual Groundwater Monitoring Report (Parametrix 2024a)
- Monitoring Well Construction Update (Parametrix 2024b).

2.1 Regional Geology and Hydrogeology

The LPL and the surrounding Yakima area are located within the Columbia Plateau (also known as the Columbia Basin). The Columbia Plateau encompasses an area including eastern Washington, southwestern Idaho, and northern Oregon. The topography is characterized by incised rivers, extensive plateaus, and anticlinal ridges.

2.1.1 Regional Geology

2.1.1.1 Stratigraphy

The Columbia Plateau is underlain by Miocene Columbia River Basalt Group rocks and interbedded sediments. The regional geologic units consist of gently warped to steeply folded volcanic basalt flows and interbedded sediment (fluvial sand and gravel, lacustrine silt and clay) that were deposited on top of and next to basalt flows between periods of basalt volcanism.

The Yakima Basalt Subgroup comprises the uppermost (youngest) portion of the regional Columbia River Basalt Group and includes (from oldest to youngest): the Grande Ronde Basalt, the Wanapum Basalt, and the Saddle Mountain Basalt. Cowiche Mountain, where the LPL is located, is underlain by the Grande Ronde and Wanapum basalts.

Between the individual basalt flow events, sedimentary deposits accumulated on the surface only to be later buried by subsequent lava flows. Some of these sedimentary interbeds are quite extensive and generally consist of clays and sandstones. Each basalt formation includes one or more sedimentary interbed.

A significant interbed, known as the Ellensburg Formation, extends throughout the region, and is exposed at the surface in areas of the project. The Vantage member of the Ellensburg Formation (Vantage Interbed) that occurs over large areas throughout the Columbia Plateau (including the LPL) between the Grande Ronde and Wanapum flows is a distinctive marker bed due to its light tan or white color. The Vantage Interbed consists of fluvial and volcaniclastic sand to clay with gravel and cobbles. The Vantage Interbed varies in thickness over the Columbia Plateau from 0 to 100 feet but is generally around 25 feet (Drost et al 1990).

2.1.1.2 Structure

The area of the LPL is within the Yakima fold and thrust belt, a series of east-west trending thrust faults and folds on the westernmost portion of the Columbia Plateau. The anticlines are usually formed over a thrust fault, and typically form topographic ridges. The synclines tend to form broad topographic valleys.

Cowiche Mountain is an east-west trending anticlinal structure that extends under the City of Yakima and forms Yakima Ridge to the east of the LPL. The axis of the anticline is located approximately 1,600 feet to the south of the LPL (Bentley & Campbell 1983).

2.1.2 Regional Hydrogeology

2.1.2.1 Groundwater Occurrence and Flow

Groundwater in the Columbia Plateau generally occurs within permeable sections of basalt, surficial sand and gravel alluvium, and sedimentary interbeds (e.g., Ellensburg Formation). Regional groundwater level contours typically mirror topographic relief, with the divides of the groundwater basins coinciding with topographic divides of the fold and thrust belts, and groundwater flow occurs from the crests of the anticlinal structures toward the synclinal axis in the valley, and then toward the Yakima River (Golder 2002). Deeper aquifers within the valleys are often under confined (artesian) conditions. Groundwater within the basalt units tends to occur in vesicular and highly fractured zones. Groundwater occurring less than 300 feet bgs generally is derived from recent groundwater recharge from precipitation and groundwater occurring below this depth is generally older and derived from regional recharge areas.

2.1.2.2 Recharge and Discharge

The Yakima area (including the LPL area) is classified as a "zone of little groundwater recharge potential from direct precipitation sources" (Myers et al 1979), which is the lowest of three relative groundwater recharge classifications in their study. Recharge to groundwater in the basalt aquifers occurs primarily between Cowiche Mountain and Bethel Ridge to the northwest, with some recharge north of the sub-basin boundary (USACE 1978). The reach of Yakima River east of the LPL is also classified as a suspected recharge area (Myers et al 1979). The shallowest groundwater in the Wanapum Basalt likely discharges to alluvial sediments at lower elevations to the north, and ultimately to Cowiche Creek, which flows into Naches River, and then into the Yakima River. Deeper groundwater in the Grande Ronde Basalt likely also discharges to Cowiche Creek or may flow under it to the Naches River.

2.2 LPL Geology and Hydrogeology

2.2.1 LPL Geology

The surface geology of the LPL (Bentley and Campbell, 1983) is mapped as the Kelley Hollow flow of the Frenchman Springs Member of the Wanapum Basalt with a thin band of the Vantage Interbed separating the Wanapum Basalt (north) from the Grande Ronde Basalt (south). Mining has since uncovered large portions of the Vantage Interbed at the facility including within the current temporary fill area.

The Vantage Interbed strikes roughly west-northwest in the LPL area, at a dip of approximately seven to 11 degrees to the north. Several monitoring wells and boreholes at the LPL fully penetrated the Vantage Interbed with apparent (not corrected for dip) thicknesses ranging from 26 to 35 feet, and overall confirming the geologic mapping. The measured vertical hydraulic conductivity of one fine-grained layer in the Vantage Interbed is about 1×10^{-7} cm/sec, although portions of it appear sandy and possibly water bearing (HWA 2015).

2.2.2 LPL Hydrogeology

2.2.2.1 Groundwater Occurrence

There are three groundwater zones below the LPL including a Shallow Aquifer, Interflow Zone, and a Deep Aquifer. The Shallow Aquifer below the LPL occurs near the Vantage Interbed. The aquifer is comprised of the fractured and porous flow bottom zone of the Wanapum Basalt, the sandy portions of the Vantage Interbed, and the fractured and porous flow top zone of the Grande Ronde Basalt as observed in monitoring wells MW-2S, MW-3S, MW-4S, MW-5S, and MW-6S and in several domestic water wells adjacent north of the LPL. Groundwater encountered in the Shallow Aquifer monitoring wells is under confined aquifer conditions. The Shallow Aquifer pinches out to the south around elevation 1,820 to 1,830 feet AMSL near where the Vantage Interbed outcrops at land surface. This is approximately close to the east-west alignment with Rocky Top Road and south of Phase 1.

The Interflow Zone is an intermediate water bearing zone occurring within the Grande Ronde Basalt above the Deep Aquifer. The Interflow Zone is a planar feature following a similar slope to the Vantage Interbed (Parametrix 2024b). Monitoring wells MW-7D, MW-8D, MW-9D, and MW-10D show the Interflow Zone is comprised of minor factures of basalt varying to larger fractures, vesicular basalt, and true interflow zones containing palagonite and pyrite mineralization.

The Deep Aquifer is located several hundred feet below the Vantage Interbed (where present) within the Grande Ronde Basalt and is estimated to occur approximately 700 to 1,000 feet below Phase 2. There are several domestic wells in the LPL vicinity completed within the Deep Aquifer at elevations of around 1,100 to 1,250 feet including the Bertheas '95 well that was sampled for four quarters by DTG prior to being decommissioned in September 2024.

2.2.2.2 Groundwater Flow

Shallow Aquifer

The groundwater gradient for the Shallow Aquifer is predominantly northerly (HWA 2022b) following the topographic slope and dip of the Vantage Interbed. In March 2022, HWA measured groundwater depths in 18 private residential and orchard wells surrounding the LPL completed in the Shallow Aquifer, as well as in DTG monitoring wells MW-2S and MW-3S. Methods and results are detailed in the Groundwater Gradient Study, DTG/Anderson Pit Limited Purpose Landfill, Yakima, Washington (HWA 2022b). The interpreted groundwater elevation contour maps showed hydraulic gradients of 0.07 to 0.17 feet/feet, or approximately 370 to 900 feet per mile, with flow generally to the north, downslope and down-dip, as expected.

Interflow Zone

The groundwater gradient for the Interflow Zone is described in Section 4.1. The 2024 third quarter was the first monitoring event where static water level elevations for the Interflow Zone were evaluated.

Deep Aquifer

Parametrix reviewed domestic well logs in the vicinity of the LPL to develop an approximate groundwater gradient map for the Deep Aquifer to support future well drilling. The gradient map developed from the domestic wells (Parametrix 2023c) showed a similar approximately north-northwesterly gradient for the Deep Aquifer near the LPL at a rate of approximately 0.11 feet/feet, or approximately 600 feet per mile. The gradient map also demonstrated there is a local groundwater divide located 1,500 feet south of the LPL along the anticline axis of Cowiche Mountain.

2.2.2.3 Recharge and Discharge

The LPL receives approximately 8 inches of precipitation per year, including 24 inches per year of snowfall, on average. Twenty-four inches of snowfall may be equivalent to 0.6 to 2 inches of rain, depending on the temperature. Mean annual evapotranspiration in the area is 11 inches (Myers et al 1979).

Based on the average annual precipitation and evapotranspiration of 11 inches (WRCC 2005; Myers et al 1979), direct recharge at the LPL is likely very low. During the growing season, evapotranspiration rates exceed precipitation rates. During the winter, much of the snowfall on the LPL likely evaporates (sublimes). Little of the precipitation falling on the LPL therefore infiltrates below the surface.

3. Sampling and Analysis

The third quarter 2024 groundwater sampling and analysis was conducted in accordance with the SAP (Parametrix 2024c).

3.1 Routine Groundwater Sampling

Parametrix collected groundwater samples at Shallow Aquifer monitoring wells MW-2S, through MW-6S on September 10, 11, and 12, 2024. A duplicate sample (MW-13S) was collected at well MW-5S.

The shallow monitoring wells were purged and sampled using recently installed dedicated PFAS-free QED bladder pumps with an electronic pump control unit (QED Micropurge MP10H) and external nitrogen tank. Low flow purging methods were utilized in accordance with the SAP. Samples to be tested for dissolved metals were field filtered through a 0.45-micron filter.

3.2 Nonroutine Groundwater Sampling

Samples from the Interflow Zone wells were collected via atypical methods. Due to scheduling and the absence of dedicated pumps at the time of the third quarter 2024 event, Interflow Zone samples were collected during hydraulic pump tests using the drilling contractor's pumps. The samples for wells MW-7D, MW-8D, and MW-10D were collected on August 28, September 9, and 11, 2024, respectively. Development and hydraulic testing of MW-9D could not be completed due to a combination of an extremely low head and low groundwater production. Samples were collected with a bailer on September 10, 2024; however, no water had been removed from the well since the time of drilling indicating the sample may not reflect the true water chemistry at that location.

Groundwater levels in all the monitoring wells were measured to the nearest 0.01-foot prior to well purging using a decontaminated electronic well probe. Groundwater level measurement data are presented in Section 4.1.

Samples from Shallow Aquifer wells were also collected for PFAS and dioxins/furans. As noted above, the results for these analytes are presented separately for the MTCA Site.

3.3 Groundwater Analysis

The third quarter 2024 samples were analyzed by On-Site Environmental, Inc. (On-Site) located in Redmond, Washington. The analytical methods used are listed in Table 1. In addition to the parameters required by WAC 173-350-500, the samples were analyzed for the volatile organic compounds (VOCs) included in WAC 173-351-990 Appendix I and naphthalene, and gasoline and diesel/oil range total petroleum hydrocarbons (TPH).

4. Results

4.1 Groundwater Elevations and Flow

4.1.1 Groundwater Elevations

Table 2 summarizes the groundwater depths and elevations measured at the LPL during the third quarter 2024 monitoring period and previous groundwater monitoring events. Figure 3 presents a hydrograph of groundwater elevation and the cumulative deviation from average monthly precipitation recorded at the Yakima Air Terminal. The water levels appear consistent with deviations in precipitation over time (Figure 3).

Water levels declined over 50 feet at MW-2S between 2006 and 2015; however, since that time water levels have slightly increased and stabilized. The apparent increase in the MW-2S water level of over 10 feet observed in December 2022 continued through the third quarter 2024 monitoring event.

Water levels at well MW-3S also showed decreases of over 20 feet between 2006 and 2015 and since that time increased slightly and stabilized with some substantial short-term changes including increases of approximately 20 feet in June and September 2017. An apparent decrease in the MW-3S water level of over 10 feet observed in December 2022 continued through the second quarter 2024 monitoring event with another decrease of 14 feet during the third quarter 2024 event.

The water level at MW-4S increased by over 10 feet in the first through third quarters of 2023 compared to the previous two quarters but decreased approximately 8 feet in the fourth quarter of 2023 to within the previous range observed during 2022. An increase in MW-4S water level of approximately 6 feet to a level in the range of the first through third quarter 2023 measurements continued through the second quarter 2024 event. A decrease of 6 feet was observed during the third quarter 2024 event to levels similar to the fourth quarter of 2023. This well is anticipated to have the quickest response to recharge due to the depth to the Shallow Aquifer at that location, approximately 50 feet.

The initial water levels at new Shallow Aquifer (MW-5S and MW-6S) and Interflow Zone wells (MW-7D though MW-10D) are also shown on Figure 3. Trends will be determined with more data from future monitoring events.

4.1.2 Groundwater Flow

Based on the water levels measured in the five Shallow Aquifer monitoring wells, an approximate potentiometric surface was calculated showing the interpreted direction and gradient of groundwater flow in the Shallow Aquifer at the LPL and is shown on Figure 4. The northerly flow direction is consistent with the area wide direction of flow observed at LPL monitoring wells and surrounding wells in 2021 (HWA 2022b) as described in Section 2.2.2.

Groundwater particle velocity is described by the following relationship: V = K i / n, where:

- V = particle velocity
- K = hydraulic conductivity
- i = gradient
- n = effective porosity

Shallow Aquifer hydraulic conductivity was measured in MW-2S and MW-4S via short term pumping tests. Estimated hydraulic conductivity was 3.2 feet/day at MW-2S and 0.4 feet/day at MW-4S. Based on these values, an assumed effective porosity of 0.2 (Nimmo et al 2003), and the calculated gradient of 0.27 feet/feet in the vicinity of the three LPL monitoring wells; estimated horizontal groundwater particle flow velocity in the Shallow Aquifer below the LPL may range from approximately 0.5 to 4 feet per day (199 to 1,596 feet per year). These theoretical groundwater particle velocity estimates may be biased high due to heterogeneity of the Shallow Aquifer and the unknown lateral continuity of related fractured water bearing zones. Further hydraulic analyses will be completed during the upcoming hydrogeologic characterization of the LPL.

An approximate potentiometric surface was calculated showing the interpreted direction and gradient of groundwater flow in the Interflow Zone and is shown on Figure 5. The gradient for the third quarter of 2024 was observed to be 0.197 ft/ft, or approximately 1,040 ft per mile. The flow direction is north-northwesterly which generally follows the slope of the topography. The groundwater flow properties of the Interflow Zone, including hydraulic conductivity/transmissivity, will be evaluated and discussed in a hydrogeologic characterization report in addition to being summarized in the upcoming 2024 annual groundwater sampling summary report. However, the Interflow Zone appears to be a planar feature related to the anticline below the LPL similar to the Shallow Aquifer (Parametrix 2024b).

4.2 Groundwater Quality

4.2.1 Data Quality Evaluation

For the third quarter 2024 event, field data sheets are presented in Appendix A and laboratory reports are presented in Appendix B. Appendix C presents an evaluation of the third quarter 2024 analytical and field data quality.

4.2.2 Comparison of Data to Water Quality Criteria

4.2.2.1 Routine Sampling

The data from the Shallow Aquifer wells were compared to Water Quality Standards for Groundwaters of the State of Washington (GWQS; Chapter 173-200 WAC) and Maximum Contaminant Levels (MCLs; Chapter 246-290 WAC), see Table 3a. TPH and naphthalene concentrations were compared to MTCA Method A CULs (Table 3a). The following concentrations in the shallow wells above these criteria were observed during third quarter 2024:

Well MW-3S:

• Nitrate (11 mg/L) was above the GWQS of 10 mg/L.

Well MW-4S:

- Specific conductivity (973 μmhos/cm) was above the GWQS of 700 μmhos/cm.
- Nitrate (47 mg/L) was above the GWQS of 10 mg/L.
- Total dissolved solids (TDS; 590 mg/L) was above the MCL of 500 mg/L.

Well MW-5S:

- Total iron (0.55 to 0.85 mg/L) was above the GWQS and MCL of 0.3 mg/L
- Total Manganese (0.11 to 0.16 mg/L) and dissolved manganese (0.13 mg/L) were above the GWQS and MCL of 0.05 mg/L.
- Both total iron and total manganese results were J-flagged as estimated because of poor correlation between MW-5S and the duplicate MW-13S. The elevated concentrations of iron and manganese appear to be related to turbidity (2.52 NTU) in the samples.

No VOCs were detected above laboratory reporting limits (RLs). No gasoline or diesel/oil-range TPH were detected.

Specific conductivity, TDS, and nitrate exceedances at MW-4S are potential impacts related to the LPL. As noted below, statistical analysis of MW-4S is to be completed once eight quarters of data have been obtained. Since eight quarters of data for MW-4S has been acquired, statistical analysis will be completed and included in the 2024 annual groundwater summary report.

4.2.2.2 Nonroutine Sampling

The data from the Interflow Zone wells were compared to Water Quality Standards for Groundwaters of the State of Washington (GWQS; Chapter 173-200 WAC) and Maximum Contaminant Levels (MCLs; Chapter 246-290 WAC), see Table 3b. TPH and naphthalene concentrations were compared to MTCA Method A CULs (Table 3b). The following concentrations in the Interflow Zone wells above these criteria were observed during third quarter 2024:

Well MW-9D had the following exceedances:

- Total iron (23 mg/L) and dissolved iron (0.39 mg/L) were above the GWQS and MCL of 0.3 mg/L.
- Total manganese (0.42 mg/L) and dissolved manganese (0.17 mg/L) were above the GWQS and MCL of 0.05 mg/L.
- Diesel- and Lube Oil-Range TPH (533 micrograms per liter [µg/L]) were above the MTCA Method A cleanup level.

Well MW-9D was not properly developed, turbidity was recorded at 109.5 NTU, and samples are not likely representative. The TPH appears to be related to a broken hammer that occurred during drilling. None of the water since drilling has been evacuated from the well.

All the Interflow Zone wells had detections of toluene ranging from 1.4 to 11 µg/L. The detections of TPH and toluene appear related to cross contamination from the drilling and hydraulic testing equipment. All drilling and hydraulic testing equipment was to be free of petroleum hydrocarbons and VOCs and decontaminated prior to use, these detections show the driller may have been inefficient in decontamination. Since samples for the Interflow Zone monitoring wells were collected via atypical methods, data for TPH and VOCs will be confirmed with the next quarterly monitoring event following placement of dedicated pumps and development of MW-9D.

4.2.3 **Time-Series Plots**

Time-series plots for inorganic parameters are presented in Appendix D. The data show a considerable degree of variability in TDS and some other analytes. It should be noted that the analytical laboratory has changed several times over the history of monitoring.

Historically, concentrations of some analytes have typically been higher in samples collected from well MW-3S compared to well MW-2S. In MW-3S, slight apparent increases have been observed over the past few years in total and dissolved magnesium and nitrate. Nitrate in MW-3S has been slowly increasing from 2014 to the present. Over the past approximately 2 years higher specific conductivity and increased concentrations of bicarbonate, alkalinity, chloride, dissolved calcium, sulfate, and TDS have been measured, and notable increases in the concentrations of these analytes were observed in MW-3S in the third quarter 2024 event.

Alkalinity/bicarbonate concentrations began decreasing in wells MW-2S and MW-3S in 2018 but were again within historical ranges beginning in the fourth quarter of 2022. These changes at MW-3S correspond to the change to the current analytical laboratory On-Site. Historically, specific conductivity has typically been higher in MW-3S than MW-2S, consistent with the TDS concentrations. However, during the period between 2020 and second quarter 2022, specific conductivity was lower in MW-3S.

Specific conductivity and concentrations of analytes were typically higher in well MW-4S than in the other two monitoring wells including alkalinity/bicarbonate, dissolved cations (calcium, magnesium, potassium, and sodium), nitrate, sulfate, and TDS. Nitrate concentrations have recently fluctuated within a range below the two historic highs observed during the second quarters of 2023 and 2024.

4.2.4 Geochemical Evaluation

4.2.4.1 Cation/Anion Balances

Cation/anion balance evaluations for the third quarter 2024 data are presented in Appendix E. Cation/anion balances are a standard check of inorganic water quality data. When all the major anions and cations have been accurately determined, the sum of the anions in milliequivalents per liter (meq/L) should equal the sum of the cations expressed in the same units. WAC 173-351-420(5)(a) specifies that a 5 percent difference is acceptable if the anion plus cation sum of the sample is greater than 5 meq/L, while a 10 percent difference is acceptable if the anion plus cation sum of the sample is less than 5 meq/L.

The third quarter 2024 cation/anion balance differences were within acceptable limits.

4.2.4.2 Trilinear Diagram

A trilinear (Piper) diagram showing the third quarter 2024 data is presented in Appendix E. Piper diagrams are trilinear graphical representations of inorganic water quality, where major anions (chloride, sulfate, and bicarbonate plus carbonate) and cations (calcium, sodium, potassium, and magnesium) are plotted, on a molar equivalent basis, on two triangular graphs, and the combined data projected onto a quadrilateral field, or four-sided graph. The Piper diagram can be used to compare different water samples to evaluate the degree of similarity, mixing relationships, time trends, etc.

Groundwater quality in the monitoring wells shows some variations in cation and anion distributions suggesting slightly differing geochemical conditions. The cation distributions in all monitoring wells fell within a similar zone with the principal cations being calcium and magnesium. The anion distributions were more variable. Bicarbonate was the dominant anion in well MW-2S while the other Shallow Aquifer wells had higher proportions of chloride and sulfate.

MW-2S is screened slightly lower in the Shallow Aquifer than the other monitoring wells and includes the flow top zone of the Grande Ronde Basalt. The Piper diagram is consistent with the slight differences in geochemistry anticipated due to differing positions of these wells and more closely resembles the geochemistry of the other wells completed in the Interflow Zone of the Grande Ronde Basalt.

The chemistry of MW-9D appears different from the other Interflow Zone wells. The well has not been properly developed and was sampled using a bailer. It appears that residual water present from drilling the well was present in the samples and affected the data. The geochemistry looks similar to carry down water from the Shallow Aquifer.

Since all Interflow Zone wells were sampled using nonroutine methods, further analysis of their water chemistry will be evaluated after the fourth quarter 2024 sampling event. However, these results appear to be consistent with deeper groundwater having higher concentrations of sodium and potassium cations and carbonate/bicarbonate anions.

4.2.5 Statistical Analysis of Groundwater Quality Data

Washington's Solid Waste Landfill regulations (Chapter 173-350 WAC) require evaluation of groundwater monitoring data to identify if a statistically significant indication of a release has occurred. Because there are no established background groundwater quality data, either from an upgradient location or from downgradient locations predating the active use of the facility, an intrawell (i.e., within the same well) statistical approach will be used to determine compliance (Parametrix 2023b).

4.2.5.1 Statistical Approach

The statistical approach for evaluating data at the LPL consists of establishing a subset of parameters for formal detection monitoring and conducting quarterly comparisons of data to intrawell upper prediction limits (UPLs) calculated for each well/parameter case. Control charts are used to supplement the UPLs to evaluate whether any trends are occurring that could potentially be attributable to the landfill. Annually, the data is evaluated for trends using the Mann-Kendall/Sen's Slope test, and the results are used to support periodic updates of the control chart and prediction limit background data sets.

As recommended by Ecology guidance (Ecology 2018), the U.S. Environmental Protection Agency's (EPA's) Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities – Unified Guidance (Unified Guidance; EPA 2009) was used for guidance on statistical analysis of landfill groundwater monitoring data.

Monitoring at MW-2S and MW-3S began in 2008, providing sufficient data for statistical analysis and calculation of UPLs and control charts for those wells. For these two wells, the first eight data points from 2008 and 2009 provide the baseline background data set. MW-4S was installed in 2022 and has only been sampled seven times (i.e., fewer than the minimum of eight data points recommended by the Unified Guidance); consequently, data from this well were not statistically evaluated or used to calculate UPLs or control charts for that well. Statistical analysis for MW-4S will be conducted at the end of 2024 monitoring after sufficient data is obtained.

The Unified Guidance (EPA 2009) provides a suggested rule for evaluating constituents that are "never detected," including the VOCs. Any constituent that has never been previously detected should be evaluated by the following simple, quasi-statistical rule: A confirmed exceedance is registered if any well-constituent pair in the '100% non-detect' group exhibits quantified measurements (i.e., at or above the RL) in two consecutive sample and resample events.

A technical memorandum was presented in Appendix F of the first quarter 2024 report (Parametrix 2024d) providing statistical limits to be used for evaluating the 2024 data. The statistical approach was revised from the initial approach presented in the 2023 annual report (Parametrix 2024a) based on recommendations from Ecology (Ecology 2024). UPLs were developed by removing statistical outliers as well as visual outliers for data sets with a high percentage of non-detects that invalidated the statistical outlier test.

As summarized in the SAP, the Unified Guidance recommends selecting a subset of monitoring parameters to balance the site-wide false positive rate and the power of the statistical program. These parameters should be limited to a few representative constituents thought to be reliable indicators of a contaminant release, that exhibit a large concentration contrast between leachate and groundwater and are relatively mobile in groundwater. Because leachate is not currently measured at the LPL, the following parameters listed in Chapter 173-350 WAC were selected for formal statistical analysis:

- pH
- chloride
- nitrate
- sulfate
- ammonia
- TDS
- total and dissolved iron
- total and dissolved manganese

Since 2020, both total and dissolved fractions of iron and manganese have been monitored. Both fractions were included in this evaluation, for a total of 10 parameters at two wells. Leachate samples are anticipated to be available once Phase 2 receives waste. This may alter the current statistical analysis program.

4.2.5.2 2024 Statistical Comparisons

The statistical approach for evaluating data at the LPL will be implemented following the approach outlined in the SAP (Parametrix 2024b) to evaluate whether any statistically significant increases are present that could potentially be attributable to the landfill.

The 2024 quarterly data collected at wells MW-2S and MW-3S are compared to the calculated UPLs presented in Appendix F. MW-4S did not have enough data points to establish UPLs previously. These will be calculated and updated in the annual report. The new wells will be evaluated for UPLs once eight data points have been collected (i.e. following the 2026 annual environmental monitoring). A 1-of-2 retesting scheme (EPA 2009) will be used to compare the new sample value(s) to the UPL. The 1-of-2 scheme assumes that two samples will be collected for a particular constituent at a given well, including the initial groundwater sample and one resample. The initial groundwater sample will be collected in the first and third quarters, and the resamples will be collected in the second and fourth quarters. Statistical comparisons will be made in the first and third quarters and, if necessary, in the second and fourth quarters for retests. However, because groundwater is sampled quarterly, any measured concentrations above the UPL during the second and fourth quarters, respectively.

These limits will be used in the following way to evaluate groundwater quality at the DTG Yakima LPL:

• For a statistically significant increase (monitoring data exceeding a limit for two consecutive quarters) that cannot be attributed to sampling error, the monitoring data will be compared to the water quality standard in WAC 173-200 (if available).

If the water quality standard is exceeded, the monitoring data will be compared to any historical data values that were flagged as outliers to determine whether the monitoring data are within the range of historical data. Because historical outliers were flagged based on statistical tests and visual assessments but could not be verified as outliers through additional data evaluation such as resampling or laboratory review, those values may actually represent a portion of the background population.

The control charts will be updated at the end of 2024 to show the cumulative sum (CUSUM) and the compliance data since the background period. These will be compared to the respective control limit (h) and upper Shewhart control limit (SCL) calculated using background data for the UPLs, to determine whether a statistically significant increase has occurred. The background data sets for the UPLs and control charts will be updated annually.

4.2.5.3 Third Quarter 2024 Statistical Evaluation

Comparison of the third quarter 2024 results with the calculated UPLs and SCLs for the wells MW-2S and MW-3S are presented in Table 4. UPLs and SCLs have not been calculated for MW-4S, MW-5S, MW-6S, MW-7D, MW-8D, MW-9D, or MW-10D.

The MW-2S result for pH exceeded the upper range of the calculated UPL. This exceedance will be verified in the fourth quarter of 2024.

The sulfate result for well MW-3S exceeded both the UPL and SCL, with the UPL exceedance occurring for the third consecutive quarter. The MW-3S results for chloride, nitrate and TDS exceeded the calculated UPLs. These exceedances will be verified in the fourth quarter of 2024.

MW-9D was drilled adjacent to MW-3S prior to the third quarter 2024 event. The effects of drilling the adjacent well through the Shallow Aquifer could have impacted the water quality at MW-3S. For example, water quality changes were confirmed at MW-5S when the adjacent well (MW-7D) was drilled through the aquifer and MW-5S was subsequently further developed. Water quality changes will be evaluated following the fourth quarter 2024 event.

4.3 Conclusions

The following conclusions are based on the data presented in this report.

- No TPH or VOCs were detected in any of the Shallow Aquifer wells.
- In well MW-2S, the result for pH exceeded the calculated upper range of the UPL. This exceedance will be verified in the fourth quarter of 2024.
- In well MW-3S, nitrate concentrations exceeded the GWQS and MCL. The MW-3S results for chloride, nitrate, and TDS exceeded the calculated UPLs and these exceedances will be verified in the fourth quarter of 2024. Some potentially increasing concentrations, including nitrate and total and dissolved magnesium, are apparent in well MW-3S, and concentrations of specific conductivity and concentrations of chloride, dissolved calcium, total iron, sulfate, and TDS have been higher during the past few quarters.
- A new monitoring well (MW-9D) was drilled adjacent to MW-3S that could have affected the water quality.
- In well MW-4S, specific conductivity measurements and TDS and nitrate concentrations continued to exceed the GWQS and MCL. UPLs and SCLs will be developed in the 2024 annual report.

- MW-5S, MW-6S, MW-7D, MW-8D, MW-9D, and MW-10D are new monitoring wells. UPLs and SCLs will be developed in the 2026 annual report.
- The trilinear plot shows some geochemical variability within the Shallow Aquifer. The cation distributions in all Shallow Aquifer monitoring wells (excluding MW-3S) were similar but the anion distributions varied slightly reflecting their slightly different positions within the aquifers.
- Interflow Zone wells showed some variability in water chemistry which may have been due to nonroutine sampling methods. Water chemistry of these wells will be evaluated during the fourth quarter 2024 event.
- A water level decrease of 14 feet was observed in well MW-3S. This could be related to the adjacent drilling. The water level in MW-4S was in the range of the fourth quarter of 2023.
- A potentiometric surface calculated using data from the Shallow Aquifer monitoring wells indicates a northerly flow direction generally consistent with the flow direction calculated previously based on additional area-wide wells. The gradient was observed to be 0.27 feet/feet consistent with previous quarters. A potentiometric surface for the Interflow Zone was observed to be similar at 0.197 feet/feet.
- Non-routine sampling of the Interflow Zone wells found diesel and oil-range TPH at MW-9D above the MTCA Method A CUL and detections of toluene in all the wells. MW-9D was not developed prior to sampling. The fourth quarter 2024 event will be completed using routine sampling procedures using dedicated pumps and MW-9D will be developed prior to sampling.
- The existing dedicated Solinst Model 407 bladder pumps were replaced with PFAS-free QED bladder pumps prior to the third quarter 2024 event.
- Additional monitoring wells have recently been installed surrounding the LPL. These wells will help delineate any potential impacts related to the MTCA site and detection monitoring program of the LPL.

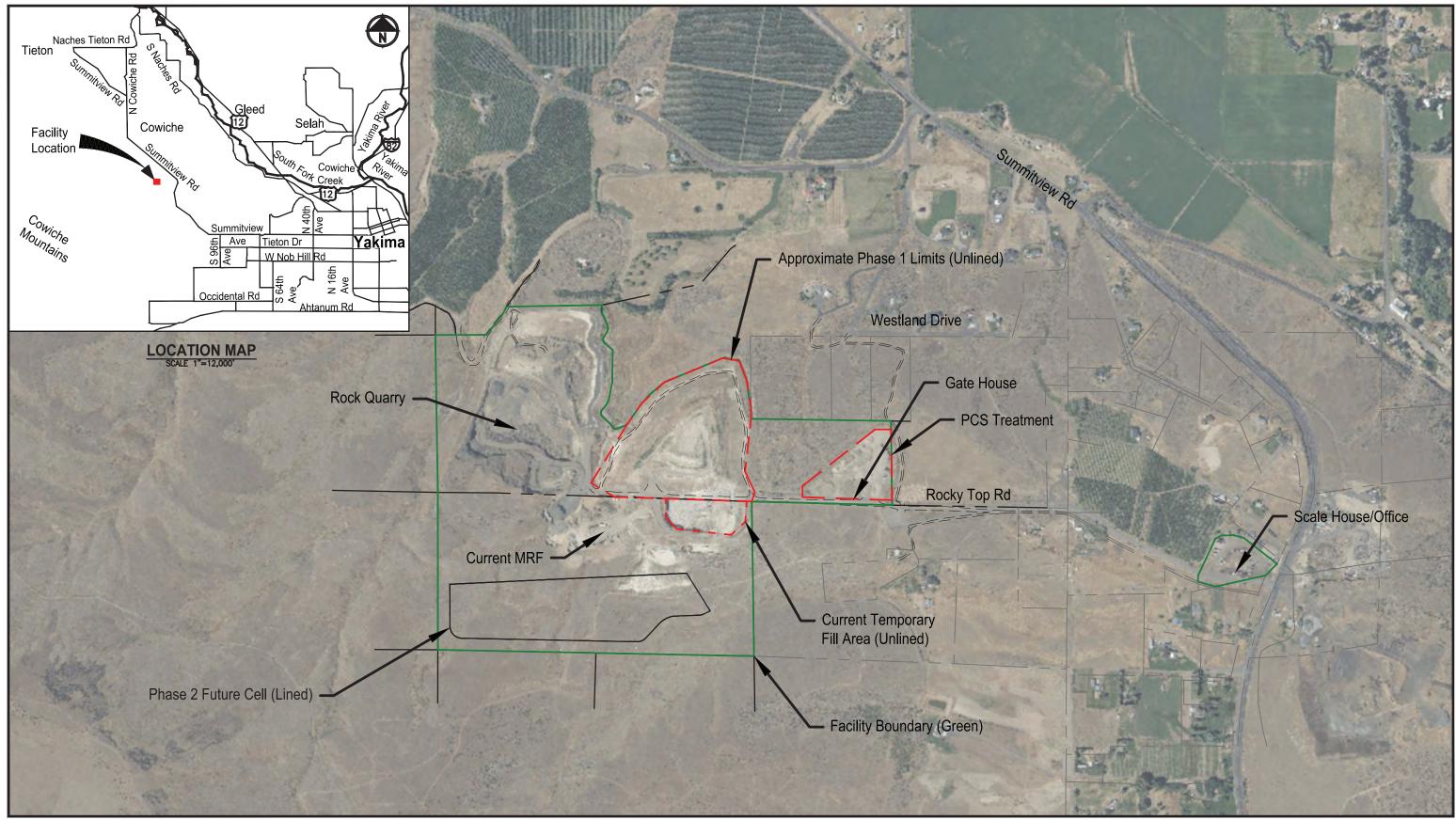
4.4 **Recommendations**

The following recommendations and planned activities are based on the data presented in this report:

- Nitrate concentrations remain above the GWQS and MCL at well MW-4S. Increasing concentrations of nitrate are also apparent at MW-3S, with its first exceedance in the third quarter of 2024. Nitrate and other apparent increasing concentrations in groundwater should continue to be evaluated.
- UPLs and control charts should be prepared for well MW-4S and presented in the 2024 annual report using the first eight data points.
- The updated hydrogeologic setting below the LPL was summarized (Parametrix 2024b). A more thorough report including discussion of transmissivity/hydraulic conductivity, background water quality, and other aquifer parameters for the Shallow Aquifer and the Interflow Zone will be summarized in a hydrogeologic characterization report.
- Monitoring well MW-9D should be redeveloped, pumped dry, and allowed to recover prior to the fourth quarter 2024 sampling event. Monitoring well MW-3S may need to be redeveloped.

5. References

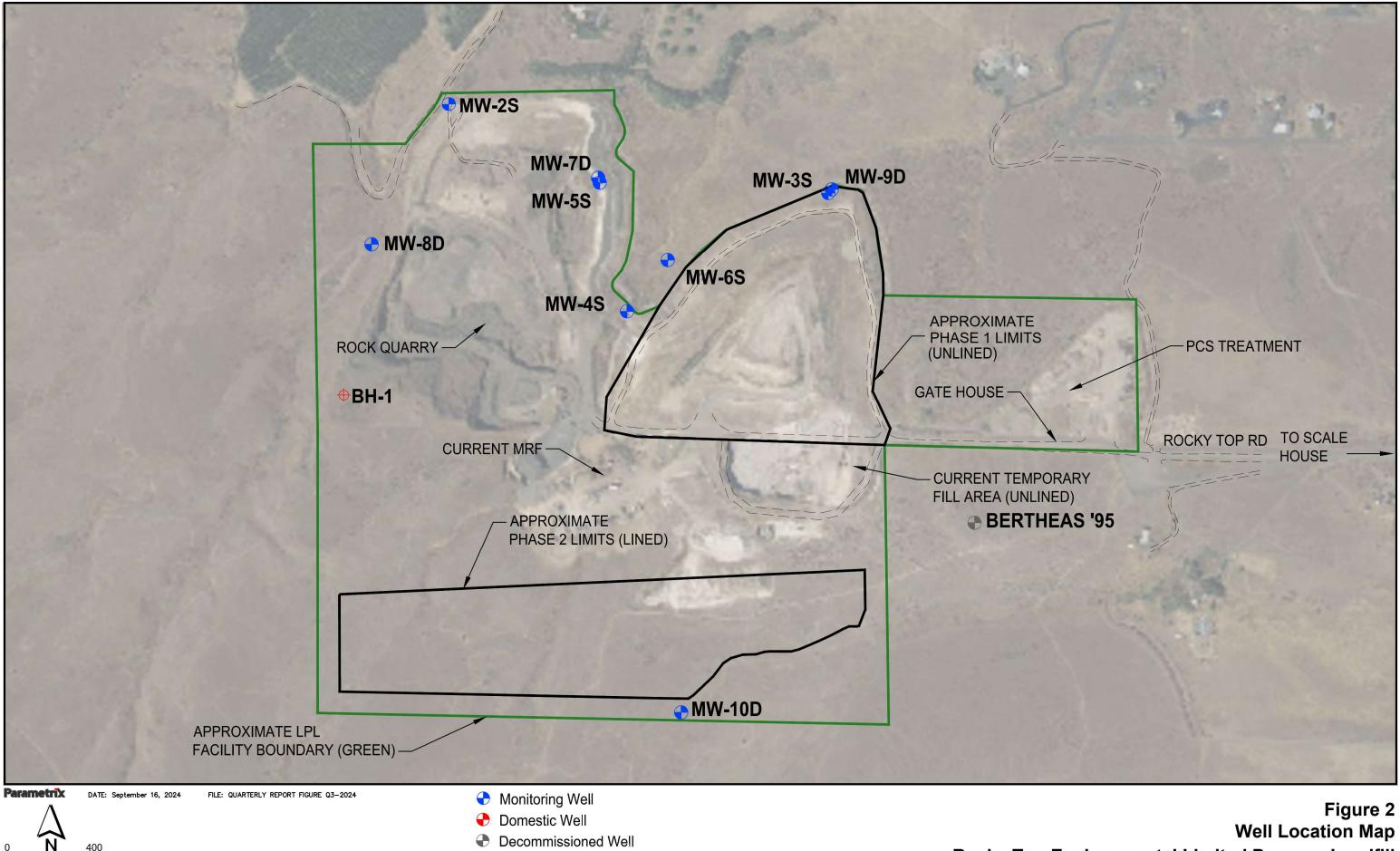
- Bentley, R.D. and N.P. Campbell. 1983. Geologic Map of the Yakima Quadrangle, Washington. Washington Division of Geology and Earth Resources Geologic Map GM-29.
- Drost, B.W., K.J. Whiteman, and J.B Gonthier. 1990. Geologic Framework of the Columbia Plateau Aquifer System, Washington, Oregon, and Idaho. U.S. Geological Survey Water-Resources Investigations Report 87-4328.
- Ecology (Washington Department of Ecology). 2018. Guidance for Monitoring at Landfills and Other Facilities Regulated Under Chapters 173-304, 173-306, 173-350, and 173-351 WAC. Publication No. 12-07-072. Revised December 2018.
- Ecology. 2023. Guidance for Investigating and Remediating PFAS Contamination in Washington State. Publication Number 22-09-058. Published December 2022, Revised June 2023.
- Ecology. 2024. DTG Yakima Limited Purpose Landfill–2023 Annual Groundwater Monitoring Report. Letter from Luke LeMond, LHG, Hydrogeologist, Solid Waste Management Program, Washington State Department of Ecology, to Steven Newchurch, Environmental Health Specialist/Solid Waste Program Lead, Yakima Health District. May 7, 2024.
- EPA (U.S. Environmental Protection Agency). 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, EPA 530/R-09-007. March 2009.
- Golder Associates. 2002. Naches Basin (WRIA 38) Storage Assessment, Application of Aquifer Storage & Recovery. Prepared for Yakima River Basin Planning Unit, on behalf of the City of Yakima.
- Hansen, A.J., J.J. Vaccaro, and H.H. Bauer. 1994. Ground-Water Flow Simulation of the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho. USGS Water-Resources Investigation Report 91-4187.
- HWA (HWA GeoSciences Inc.). 2010. Groundwater Monitoring Report, Anderson Pit Limited Purpose Landfill, Yakima, Washington. February 2, 2010.
- HWA. 2015. Geotechnical and Hydrogeologic Investigation Report, Anderson Rock and Demolition Pits Limited Purpose Landfill Expansion. March 18, 2015.
- HWA, 2022a. Geotechnical and Hydrogeologic Investigation Report, DTG/Anderson Pit Limited Purpose Landfill. October 4, 2022.
- HWA. 2022b. Groundwater Gradient Study, DTG/Anderson Pit Limited Purpose Landfill, Yakima, Washington. March 25, 2022.
- Molenaar, D. 1985. Water in the Lower Yakima River Basin, Washington. Washington Department of Ecology Water Supply Bulletin 53.
- Myers, C. W., S. M. Price, et al. 1979. Geologic Studies of the Columbia Plateau A Status Report. Rockwell Hanford Operations RHO-BWI-ST-4.
- Nimmo, J.R. and other. 2003. Hydraulic and Geochemical Framework of the Idaho National Engineering and Environmental Laboratory Vadose Zone. Special Section: Understanding Subsurface Flow and Transport Processes at the Idaho National Engineering & Environmental Laboratory (Ineel) Site, Vadose Zone Journal 3:6-34.


- Parametrix. 2023a. Anderson Pit Limited Purpose Landfill Yakima, Washington, 2022 Annual Groundwater Monitoring Report. April 2023.
- Parametrix. 2023b. Anderson Pit Limited Purpose Landfill Yakima, Washington, Groundwater Sampling and Analysis Plan. May 2023.
- Parametrix. 2023c. Hydrogeologic Approach New Monitoring Wells at the DTG/Anderson Limited Purpose Landfill in Yakima, Washington. Letter report. Prepared for Steven Newchurch of the Yakima Health District. February 9, 2023.
- Parametrix in association with HWA Geosciences, Inc. 2023. Hydrogeologic Characterization Work Plan, DTG/Anderson Pit Limited Purpose Landfill, Yakima, Washington. Prepared for DTG Recycle. May 2023.
- Parametrix 2024a. 2023 Annual Groundwater Monitoring Report, DTG Yakima Limited Purpose Landfill, Yakima, Washington. Prepared for DTG Recycle. March 2024.
- Parametrix 2024b. Monitoring Well Construction Update Technical Memorandum, DTG Yakima Limited Purpose Landfill, Yakima, Washington. Prepared for the Yakima Health District on behalf of DTG Recycle. September 2024.
- Parametrix 2024c. Sampling and Analysis Plan for the DTG Yakima Limited Purpose Landfill, Yakima, Washington. Revised September 2024.
- Parametrix 2024d. First Quarter 2024 Groundwater Monitoring Report, DTG Yakima Limited Purpose Landfill Yakima, Washington. Prepared for DTG Recycle. September 2024.
- US Army Corps of Engineers (USACE), Seattle District. 1978. Yakima Valley Regional Water Management Study, Volume IV, Geology and Groundwater, July 17, 1978.
- Vaccaro, J. J. 1997. Results of the Columbia Plateau Regional Aquifer Study, Washington, Oregon, and Idaho. Inland Northwest Regional Water Resources Conference, Spokane Convention Center, April 28 - 29, 1997.
- Weather Underground. 2019. Data for Yakima, Washington, www.wunderground.com
- Western Regional Climate Center (WRCC). 2023. data for Yakima Air Terminal, Washington, https://wrcc.dri.edu/cgi-bin/cliMAIN.pl?wa9465

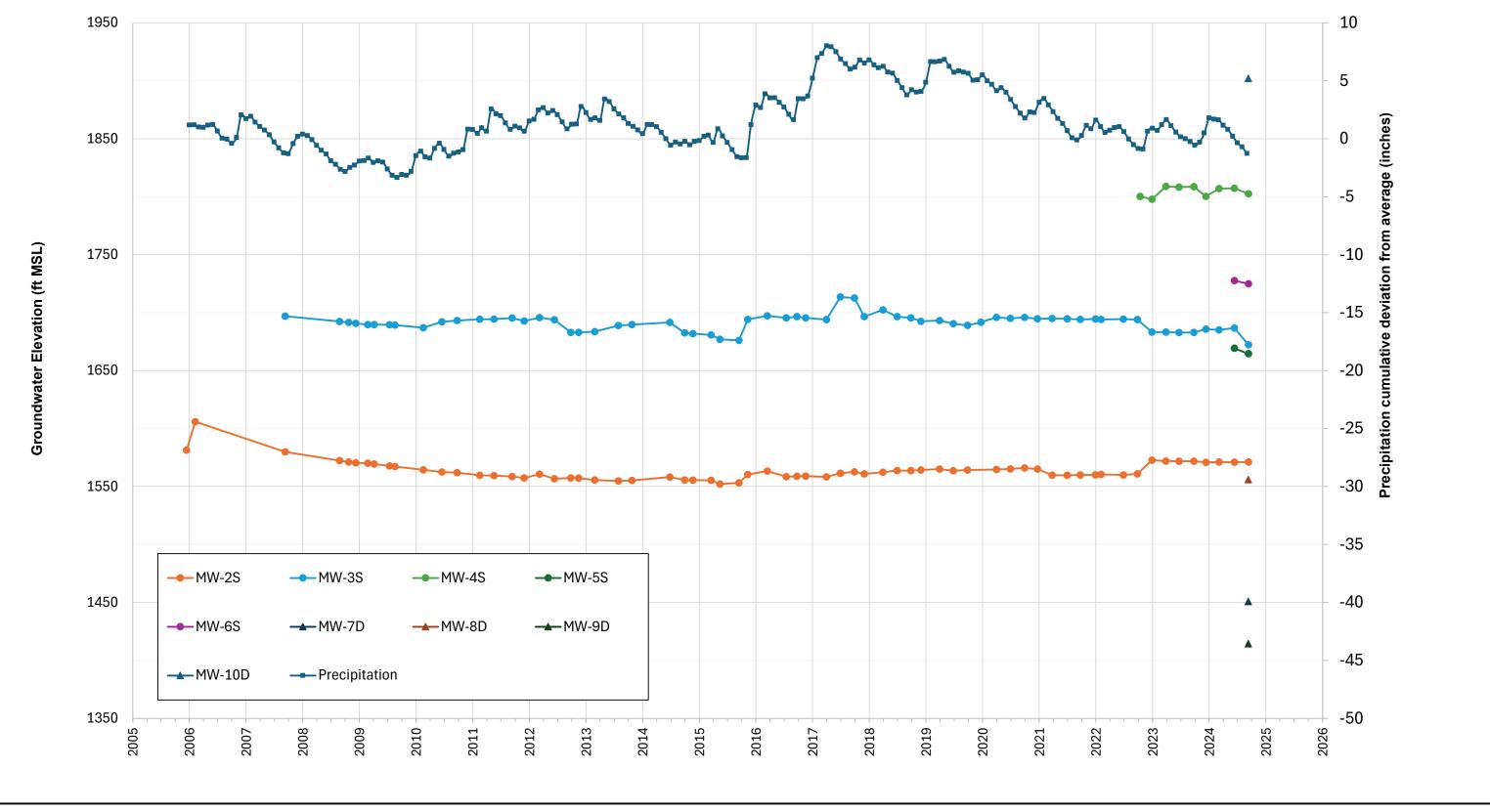
6. Limitations

The conclusions expressed herein are based solely on material referenced in this report. Observations were made under the conditions stated. Within the limitations of scope, schedule and budget, these services were executed in accordance with generally accepted professional principles and practices in the area at the time the report was prepared. No warranty, expressed or implied, is made. Experience has shown that subsurface soil and groundwater conditions can vary significantly over small distances. The findings and conclusions must not be considered as scientific or engineering certainties, but rather as our professional opinion concerning the significance of the limited data gathered and interpreted during the course of the assessment.

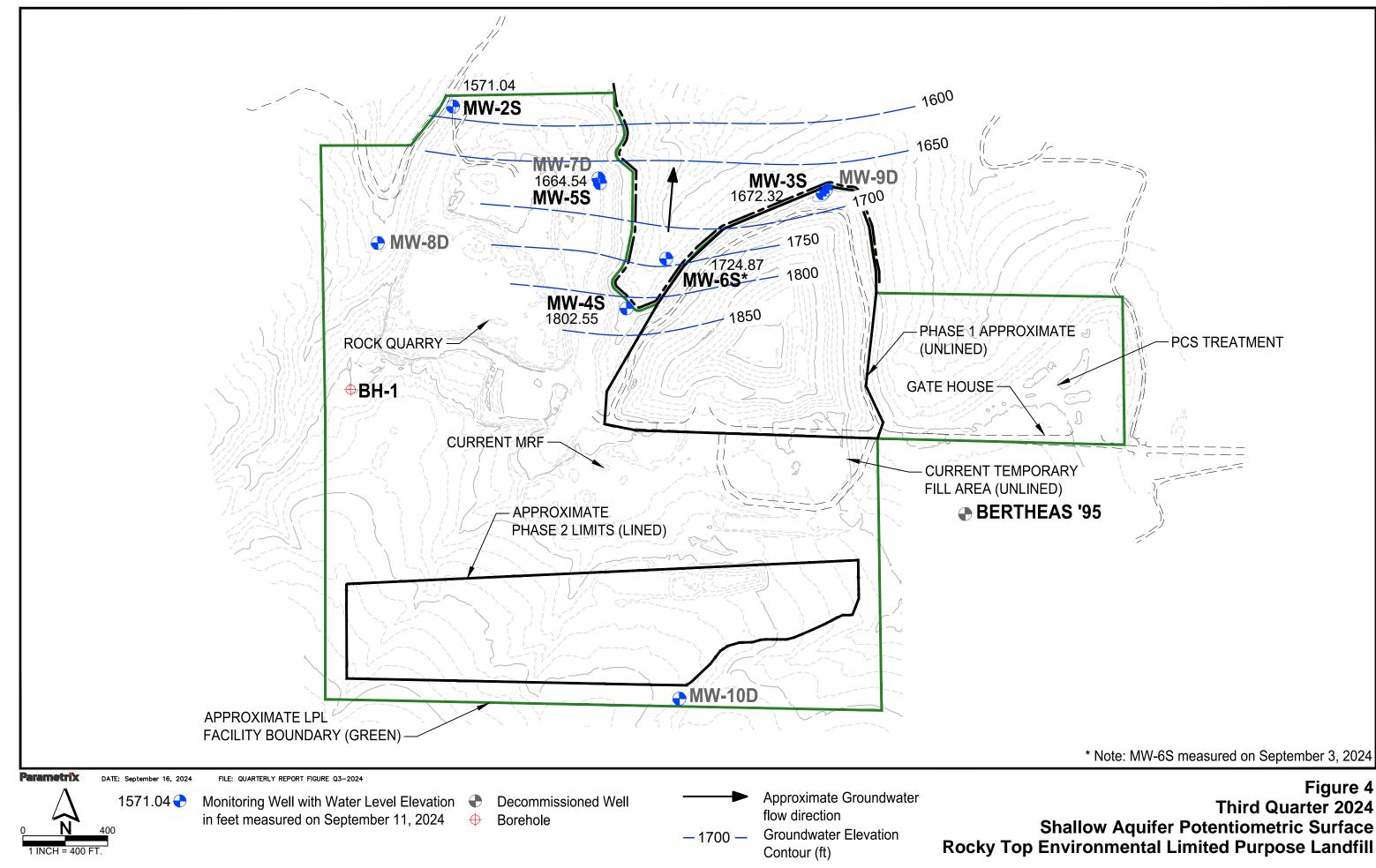
This study and report have been prepared on behalf of DTG, for the specific application to the subject property. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this report.



Parametrix FILE: PS8472003-C01_QTY REPORT 052023_RECOVER DATE: December 6, 2024


Figure 1 Facility Vicinity Map Rocky Top Environmental Limited Purpose Landfill

Borehole


1 INCH = 400 FT

Rocky Top Environmental Limited Purpose Landfill

Parametrix

Figure 3 Water Level Summary Rocky Top Environmental Limited Purpose Landfill

* Note: MW-6S measured on September 3, 2024

Figure 4 Third Quarter 2024 **Shallow Aquifer Potentiometric Surface**

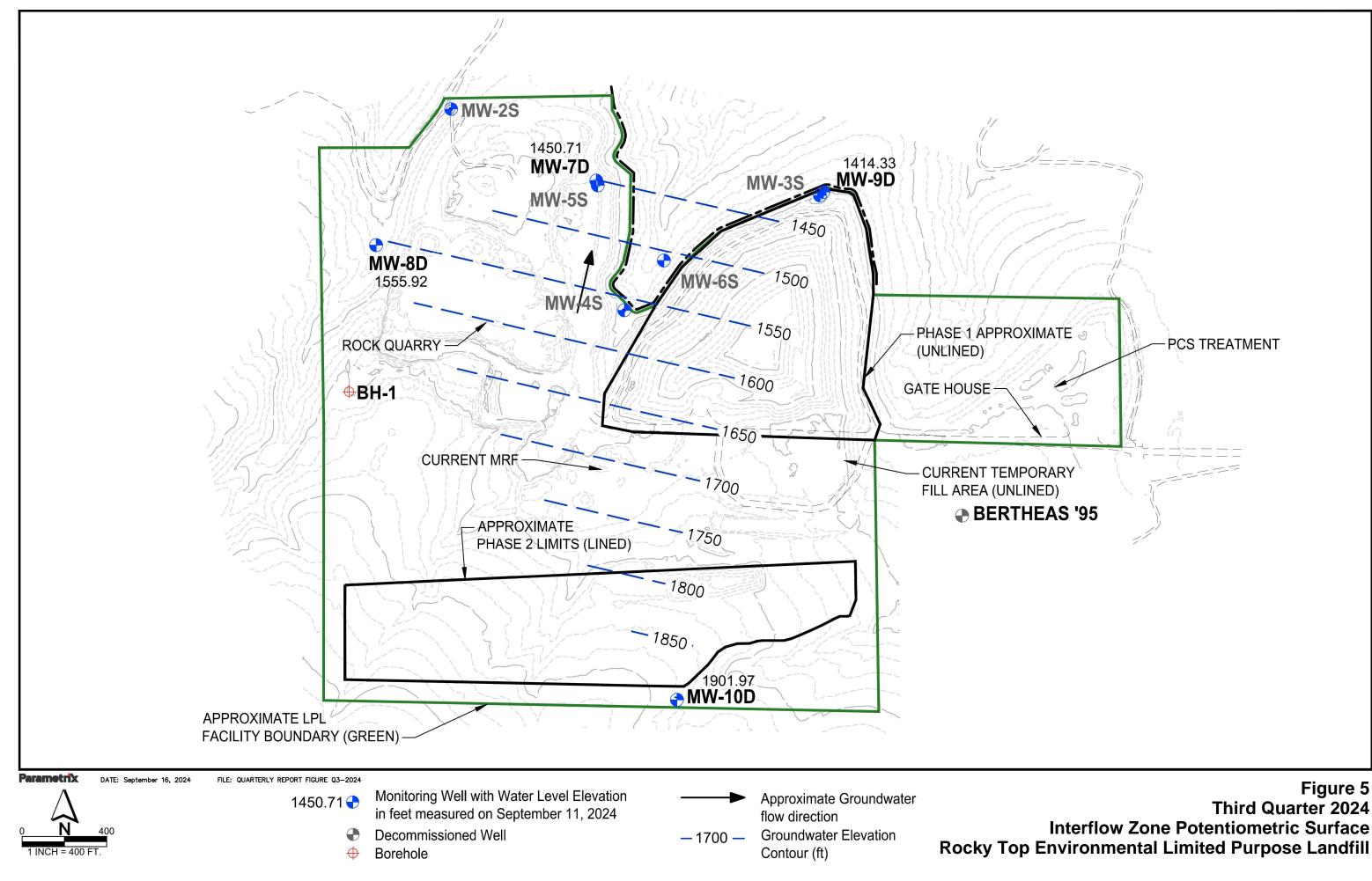


Figure 5 Third Quarter 2024 **Interflow Zone Potentiometric Surface**

Analyte	Methods
Temperature	field
pH	field
Specific conductivity	field
Alkalinity as CaCO ₃	SM 2520B
Ammonia	EPA 350.1
Bicarbonate as CaCO ₃	Calculation
Calcium (D)	SM3111B
Chloride	SM4500-CI E
Iron (D&T)	SM3111B
Magnesium (D&T)	SM3111B
Manganese (D&T)	SM3111B
Nitrate as N	EPA 353.2
Potassium (D)	SM3111B
Sodium (D)	SM3111B
Sulfate	ASTM D516-90
Total Dissolved Solids	SM2540C
Total Organic Carbon	SM 2550B
Volatile Organic Compounds	EPA 8260D*
Total Petroleum Hydrocarbons – Gasoline range	NWTPH-Gx
Total Petroleum Hydrocarbons – Diesel/Oil range	NWTPH-Dx

Table 1. Groundwater Analyses and Analytical Methods

D = dissolved

T = Total

*WAC 173-351-430 parameter list

Table 2. Groundwater Elevations, Third Quarter 2024, Rocky Top EnvironmentalLimited Purpose Landfill

	Measurement	Elevation Top of PVC Casing	Depth to Groundwater (feet below top of	Groundwater Elevation
Well Number	Date	(feet)	casing)	(feet)
MW-2S	9/12/2024	1858.36	287.32	1571.04
MW-3S	9/12/2024	1845.92	173.60	1672.32
MW-4S	9/11/2024	1845.59	43.04	1802.55
MW-5S	9/11/2024	1883.88	219.34	1664.54
MW-6S	9/11/2024	1825.31	100.44	1724.87
MW-7D	9/11/2024	1883.88	433.17	1450.71
MW-8D	9/11/2024	1863.94	308.02	1555.92
MW-9D	9/11/2024	1847.49	433.16	1414.33
MW-10D	9/11/2024	1988.77	86.80	1901.97

Notes:

Elevation datum based on NAD83

Water levels were taken on different dates due to aquifer testing and sampling event scheduling

Table 26. Third Occurs 2024 Challers A.		. Maxitaning Desults Deslu	To a David a second all the land Develop	
Table 3a. Third Quarter 2024 Shallow Ac	quifer Groundwater Qualit	y ivionitoring Results, Rocky	/ Top Environmental Limited Purpo	ose Landfill

Analyte	GWQS	MCL	Units	MW-2S 9/12/2024	MW-3S 9/12/2024	MW-4S 9/11/2024	MW-5S 9/11/2024	MW-13S (MW-5S Dup) 9/11/2024	MW-6S 9/11/2024	Trip Blanl 9/12/2024
ield Data										
pH	6.5-8.5			7.91	7.69	7.76	8.49		8.25	
Conductivity Temperature		700 **	μmhos/cm C	176.8 14.2	630 14.4	973 13.1	356.6 15.6		501 13.3	
Redox			mv	-72.1	-73.9	-96.9	-149.7		-104.2	
Dissolved Oxygen			mg/L	6.04	4.88	4.04	0.14		4.06	
Turbidity			NTU	0.00	0.00	0.00	2.52		0.00	
Netals										
Calcium, Dissolved			mg/L	13	49	85	24	24	41	
Iron, Total	0.3 **	0.3 **	mg/L	< 0.050	< 0.050	< 0.050	0.55 J	0.85 J	< 0.050	
Iron, Dissolved Magnesium, Total			mg/L mg/L	<0.056 8.5	<0.056 32	<0.056 58	0.26 13 J	0.27 17 J	<0.056 27	
Magnesium, Dissolved			mg/L	9.1	35	58	15	15	27	
Manganese, Total	0.05 **	0.05 **	mg/L	< 0.010	< 0.010	< 0.010	0.11 J	0.16 J	< 0.010	
Manganese, Dissolved			mg/L	<0.011	<0.011	<0.011	0.13	0.13	<0.011	
Potassium, Dissolved			mg/L	2.9	4.6	6.3	2.6	2.7	4.1	
Sodium, Dissolved			mg/L	9.5	18	21	14	14	15	
Vater Quality Parameters										
Alkalinity, Total			mg CaCO3/L	80	96	180	92	92	82	
Ammonia (NH3) as Nitrogen (N)			mg/L	< 0.053	< 0.053	< 0.053	< 0.053	< 0.053	< 0.053	
Bicarbonate Chloride	250 **	250 **	mg CaCO3/L mg/L	80 <2.0	96 73	180 41	92 19 J	92 27 J	82 62	
Nitrate	10 *	10 *	mg/L mg/L-N	0.60	73 11	41 47	<0.050	0.051	9.2	
Sulfate	250 **	250 **	mg/L	5.1	96	100	39	42	52	
Total Dissolved Solids	500 **	500 **	mg/L	140	320	590	190	170	170	
Total Organic Carbon			mg/L	<1.0	3.0	4.8	<1.0	<1.0	2.9	
otal Petroleum Hydrocarbons										
<u>v</u>	CA Method A:	1000	μg/L	<100	<100	<100	<100	<100	<100	<100
TPHDx			4	0.04	0.04	0.04		0.04		
Diesel Range Organics Lube Oil Range Organics			mg/L mg/L	<0.21 <0.21	<0.21 <0.21	<0.21 <0.21	<0.22 <0.22	<0.21 <0.21	<0.20 <0.20	
	CA Method A:	0.5	mg/L	<0.21	<0.21	<0.21	<0.22	<0.21	<0.20	
olatile Organic Compounds										
Chloromethane			μg/L	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	<1.4
Vinyl Chloride	0.02 ***	2 *	μg/L	< 0.020	< 0.020	< 0.020	< 0.020	<0.020	< 0.020	<0.020
Bromomethane			μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroethane			μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CFC-11, Trichlorofluoromethane 1,1-Dichloroethene		7 *	μg/L μg/L	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20
Acetone			μg/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Methyl Iodide			μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Carbon Disulfide			μg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methylene Chloride	5 ***	5 *	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Acrylonitrile Trans-1,2-Dichloroethene	0.07 ***	100 *	μg/L μg/L	<0.50 <0.20	<0.50 <0.20	<0.50 <0.20	<0.50 <0.20	<0.50 <0.20	<0.50 <0.20	<0.50 <0.20
1,1-Dichloroethane	1 ***	100	μg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Vinyl Acetate	_		μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,2-Dichloroethene		70 *	μg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
2-Butanone			μg/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Bromochloromethane Chloroform	7 ***	80 * THI	μg/L VI μg/L	<0.20	<0.20 <0.20	<0.20 <0.20	<0.20	<0.20 <0.20	<0.20 <0.20	<0.20
1,1,1-Trichloroethane	200 *	200 *	μg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Carbon Tetrachloride	0.3 ***	5 *	μg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	< 0.20
Benzene	1 ***	5 *	μg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloroethane	0.5 *** 3 ***	5 *	μg/L	<0.20	<0.20	< 0.20	< 0.20	<0.20	< 0.20	< 0.20
Trichloroethene 1,2-Dichloropropane	0.6 ***	5 * 5 *	μg/L μg/L	<0.20	<0.20 <0.20	<0.20 <0.20	<0.20	<0.20 <0.20	<0.20 <0.20	<0.20
Dibromomethane	0.0		μg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Dichlorobromomethane	0.3 ***	80 * THI		<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	< 0.20
cis-1,3-Dichloropropene			μg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
4-methyl-2-pentanone		1000 *	μg/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Toluene		1000 *	μg/L	<1.0 <0.20	<1.0 <0.20	<1.0 <0.20	<1.0 <0.20	<1.0	<1.0 <0.20	<1.0 <0.20
Trans-1,3-Dichloropropene 1,1,2-Trichloroethane		5 *	μg/L μg/L	<0.20	< 0.20	<0.20	< 0.20	<0.20	<0.20	< 0.20
Tetrachloroethene	0.8 ***	5 *	μg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
2-Hexanone			μg/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Dibromochloromethane		80 * THI	10,	< 0.20	< 0.20	< 0.20	< 0.20	<0.20	< 0.20	< 0.20
1,2-Dibromoethane (EDB) Chlorobenzene	0.001 ***	0.05 *	μg/L μg/L	<0.020 <0.20	<0.020 <0.20	<0.020 <0.20	<0.020 <0.20	<0.020 <0.20	<0.020 <0.20	<0.020 <0.20
1,1,1,2-Tetrachloroethane		100 .	μg/L μg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Ethylbenzene		700 *	μg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
m, p-Xylene			μg/L	<0.40	< 0.40	<0.40	<0.40	<0.40	<0.40	< 0.40
o-Xylene			μg/L	< 0.20	<0.20	< 0.20	<0.20	<0.20	<0.20	< 0.20
Styrene Bromoform	5 ***	100 *	μg/L	< 0.20	< 0.20	<0.20	< 0.20	<0.20	< 0.20	< 0.20
Bromoform 1,1,2,2-Tetrachloroethane	5 ***	80 * THI	VI μg/L μg/L	<1.0	<1.0 <0.20	<1.0	<1.0 <0.20	<1.0	<1.0 <0.20	<1.0 <0.20
1,2,3-Trichloropropane			μg/L μg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
trans-1,4-Dichloro-2-butene			μg/L	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50
1,4-Dichlorobenzene	4 ***	75 *	μg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichlorobenzene		600 *	μg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dibromo-3-chloropropane		0.2 *	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

Notes:

GWQS = Water Quality Standards for Ground Waters of the State of Washington (WAC 173-200)

MCL = Maximum Contaminant Level, State Drinking Water Regulations (WAC 246-290)

MTCA = Model Toxics Control Act (WAC 173-340)

^a = Gasoline with no benzene present

* = Primary

** = Secondary

*** = Carcinogen

*THM = Primary MCL for the sum of all trihalomethanes

*XYL = Primary MCL for the sum of all xylenes

December 2024 | 553-8472-005

= Does not meet GWQS or MCL

- - = Not analyzed

J = Estimated value

Table 3b. Third Quarter 2024 Interflow Zone Groundwater Quality Monitoring Results,Rocky Top Environmental Limited Purpose Landfill

Analyte	GWQS	MCL	Units	MW-7D 8/28/2024	MW-8D 9/9/2024	MW-9D 9/10/2024	MW-10D 9/11/2024	Trip Blank 9/11/2024
ield Data			51113	-,, 2024	5, 5, 2024	5, 20, 2024	-, -1, 2024	5, 11, 2024
рН	6.5-8.5			8.23	8.50	8.56	8.21	
Conductivity		700 **	µmhos/cm	204.7	406.8	680	227.8	
Temperature Redox			C mv	19.4 -251.5	23.2 1.40	18.2 -158.6	17.2 -101.7	
Dissolved Oxygen			mg/L	0.70	1.38	6.74	7.74	
Turbidity			NTU	0.0	1.27	109.5		
etals								
Calcium, Dissolved			mg/L	15	24	48	17	
Iron, Total	0.3 **	0.3 **	mg/L	0.067	0.12	23	0.15	
Iron, Dissolved			mg/L	0.071	<0.056	0.39	<0.056	
Magnesium, Total			mg/L	10	16	28	10	
Magnesium, Dissolved	0.05 **	0.05 **	mg/L	11	16 0.026	27 0.42	10	
Manganese, Total Manganese, Dissolved	0.05	0.05	mg/L mg/L	0.032 0.035	0.026	0.42	0.022 0.021	
Potassium, Dissolved			mg/L	2.8	3.0	<1.1	2.2	
Sodium, Dissolved			mg/L	11	18	52	15	
/ater Quality Parameters								
Alkalinity, Total			mg CaCO3/L	100	94	68	94	
Ammonia (NH3) as Nitrogen (N)			mg/L	0.065	<0.053	0.78	<0.053	
Bicarbonate			mg CaCO3/L	100	94	68	94	
Chloride	250 **	250 **	mg/L	3.2	12	74	4.9	
Nitrate	10 *	10 *	mg/L-N	<0.050	0.85	0.17 H	1.5	
Sulfate Total Dissolved Solids	250 ** 500 **	250 ** 500 **	mg/L mg/L	<5.0 100	46 230	200 460	12 160	
Total Organic Carbon	500	500	mg/L	<1.0	1.3	460	<1.0	
-					1.5		-1.0	
otal Petroleum Hydrocarbons		1000		400	400	4.0.0		
Gasoline Range Organics ^a MT TPHDx	CA Method A:	1000	μg/L	<100	<100	<100	<100	<100
Diesel Range Organics			mg/L	<0.20	<0.21	0.46	<0.20	
Lube Oil Range Organics			mg/L	<0.20	<0.21	0.073	<0.20	
	CA Method A:	0.5	mg/L	<0.20	<0.21	0.533	<0.20	
olatile Organic Compounds			-					
Chloromethane			μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Vinyl Chloride	0.02 ***	2 *	μg/L	<0.020	<0.020	<0.020	<0.020	<0.020
Bromomethane			μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroethane			μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
CFC-11, Trichlorofluoromethane		7 *	μg/L	<0.20	<0.20	<0.20	< 0.20	< 0.20
1,1-Dichloroethene Acetone		7 *	μg/L μg/L	<0.20 <5.0	<0.20 <5.0	<0.20 <5.0	<0.20 <5.0	<0.20 <5.0
Methyl Iodide			μg/L	<1.0	<1.3	<1.3	<1.3	<1.3
Carbon Disulfide			μg/L	<0.20	<0.20	<0.20	<0.20	<0.20
Methylene Chloride	5 ***	5 *	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Acrylonitrile	0.07 ***		μg/L	<0.69	<0.50	<0.50	<0.50	<0.50
Trans-1,2-Dichloroethene		100 *	μg/L	<0.20	<0.20	<0.20	<0.20	<0.20
1,1-Dichloroethane	1 ***		μg/L	<0.20	<0.20	<0.20	< 0.20	< 0.20
Vinyl Acetate cis-1,2-Dichloroethene		70 *	μg/L μg/L	<1.0	<1.0	<1.0 <0.20	<1.0 <0.20	<1.0
2-Butanone		70	μg/L	<5.0	<5.0	<5.0	<5.0	<5.0
Bromochloromethane			μg/L	<0.20	<0.20	<0.20	<0.20	<0.20
Chloroform	7 ***	80 * THI		<0.20	<0.20	<0.20	<0.20	< 0.20
1,1,1-Trichloroethane	200 *	200 *	μg/L	<0.20	<0.20	<0.20	<0.20	<0.20
Carbon Tetrachloride	0.3 ***	5 *	μg/L	<0.20	<0.20	<0.20	<0.20	<0.20
Benzene	1 ***	5 *	μg/L	<0.20	< 0.20	< 0.20	< 0.20	< 0.20
1,2-Dichloroethane Trichloroethene	0.5 *** 3 ***	5 * 5 *	μg/L	<0.20 <0.20	<0.20	<0.20 <0.20	<0.20 <0.20	<0.20
1,2-Dichloropropane	0.6 ***	5 *	μg/L μg/L	<0.20	<0.20	<0.20	<0.20	<0.20
Dibromomethane	0.0		μg/L	<0.20	<0.20	<0.20	<0.20	<0.20
Dichlorobromomethane	0.3 ***	80 * THI		<0.20	<0.20	<0.20	<0.20	<0.20
cis-1,3-Dichloropropene			μg/L	<0.20	<0.20	<0.20	<0.20	<0.20
4-methyl-2-pentanone		1000	μg/L	<2.0	<2.0	<2.0	<2.0	<2.0
Toluene		1000 *	μg/L	11	4.5	2.7	1.4	<1.0
Trans-1,3-Dichloropropene 1,1,2-Trichloroethane		5 *	μg/L μg/L	<0.20 <0.20	<0.20	<0.20 <0.20	<0.20 <0.20	<0.20
Tetrachloroethene	0.8 ***	5 *	μg/L	<0.20	<0.20	<0.20	<0.20	<0.20
2-Hexanone			μg/L	<2.0	<2.0	<2.0	<2.0	<2.0
Dibromochloromethane		80 * THI		<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dibromoethane (EDB)	0.001 ***	0.05 *	μg/L	< 0.020	<0.020	<0.020	<0.020	<0.020
Chlorobenzene		100 *	μg/L	<0.20	<0.20	<0.20	< 0.20	< 0.20
1,1,1,2-Tetrachloroethane		700 *	μg/L	<0.20	< 0.20	<0.20	< 0.20	<0.20
Ethylbenzene m, p-Xylene		700 *	μg/L μg/L	<0.20 <0.40	<0.20	<0.20 <0.40	<0.20 <0.40	<0.20
o-Xylene			μg/L μg/L	<0.20	<0.40	<0.40	<0.40	<0.40
Styrene		100 *	μg/L	<0.20	<0.20	<0.20	<0.20	<0.20
Bromoform	5 ***	80 * THI		<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-Tetrachloroethane			μg/L	<0.20	<0.20	<0.20	<0.20	<0.20
1,2,3-Trichloropropane			μg/L	<0.20	<0.20	<0.20	<0.20	<0.20
trans-1,4-Dichloro-2-butene	ماد ماي رات ور	JF 4	μg/L	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
1,4-Dichlorobenzene 1,2-Dichlorobenzene	4 ***	75 *	μg/L	<0.20	< 0.20	< 0.20	< 0.20	< 0.20
1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane		600 * 0.2 *	μg/L μg/L	<0.20	<0.20 <1.0	<0.20 <1.0	<0.20 <1.0	<0.20
±,∠-ບາດເບເເບ-ວ-ແແບເບµiuµane		0.2	μg/L μg/L	<1.0	<1.0	<1.0	\1.U	\L.U

Notes:

GWQS = Water Quality Standards for Ground Waters of the State of Washington (WAC 173-200)

MCL = Maximum Contaminant Level, State Drinking Water Regulations (WAC 246-290)

MTCA = Model Toxics Control Act (WAC 173-340)

^a = Gasoline with no benzene present

* = Primary

** = Secondary

*** = Carcinogen

*THM = Primary MCL for the sum of all trihalomethanes

*XYL = Primary MCL for the sum of all xylenes

- = Does not meet GWQS, MCL, or MTCA
- - = Not analyzed
- J = Estimated value
- H = Holding time exceeded

Table 4. Comparison of Third Quarter 2024 Groundwater Quality Data to Upper Prediction Limits
(UPLs) and Shewhart Control Limits (SCLs) Calculated from Background Data, DTG Rocky Top
Environmental Limited Purpose Landfill

Parameter	Units	Value	Qualifier	UPL	SCL
		Well MW-2S			
Ammonia	mg/L	0.053	U	0.1	
Chloride	mg/L	2.0	U	18	
Iron, dissolved	mg/L	0.056	U	0.281	
Iron, total	mg/L	0.050	U	0.118	
Manganese, dissolved	mg/L	0.011	U	0.1	
Manganese, total	mg/L	0.010	U	0.01	
Nitrate	mg/L	0.60		1.995	
рН		7.91]	7.79	8.245 & 5.827
Sulfate	mg/L	5.1	-	10.51	19.01
Total Dissolved Solids	mg/L	140		176.8	
		Well MW-3S			
Ammonia	NH3	0.053	U	0.1	
Chloride	mg/L	73		45.99	85.84
Iron, dissolved	mg/L	0.056	U	0.37	
Iron, total	mg/L	0.050	U	0.138	
Manganese, dissolved	mg/L	0.011	U	0.03	
Manganese, total	mg/L	0.010	U	0.01	
Nitrate	mg/L	11		9.201	18.23
рН		7.69	_	7.701	
Sulfate	mg/L	96		44.84	81.34
Total Dissolved Solids	mg/L	320		286.3	533.1

* = WAC 173-351 Appendix I parameter.

U = Undetected at the specified detection limit

BOLD = Value exceeds UPL or SCL

BOLD = Value exceeds UPL and SCL

Appendix A

Third Quarter 2024 Field Data Sheets

l

Groundwater Sampling Field Data Sheet

Well #:<u>MW-2S</u>

		the second se		the second se	the second s		the second se	And in case of the local data and the	the second s
	Project Numbe	er: 5538	77200	5	Date:		9/12/2	, 4	
	Project Name:	Yakima	LPL		Compan Name:	y Pa	rametri	×	
	Project Addres	ss: Rocky T	op		Sampleo			Y & K. BL	.vhe
	Casing Diamet	ter: 2″ _	4	<u>" /</u>	6″	Other	r		
	Initial Depth to below TOC):	Water (feet	287	.32	Purge R Measure	ate ement Metho	d: Cornal	unter a	yhinder
	Top of Screen	(feet bgs):	310		Date Pu	rged:	7/12/2	- L 4	
	Bottom of Scre	een (feet bgs)	330		Purge T	ime (from/to)	: 1022	-1040	
	Reference Poi	nt (surveyor's n	otch, etc.):	PVL	Time Sa	mpled:	1050	0	
		DEPTH TO WATER (ft) ことモ.3ン	pH (units)	Ec (µmhos/cm 25°C)	TEMP °C	Redox (mv)	Dissolved Oxygen mg/L	TURBIDITY (visual)	PUMP SETTING (PS()
030		287,91	7.92	178.5	14.1	-77.9	7.08	0-81	170
	1035	287.79	7.94	177.7	13.9	-75.0	6.28	0.00	χ.+
	1040	287.72	7,91	176.8	14.2		6.07		<u>+1</u>
		on Criteria	±0.1	3%	3%	± 10 mv	10%, or 3 <0.5	 10%, or 3<5.0	
	Purge Equipm	ent: Bladd	er puny	P	Flow Ra	te: Z	65 ml	-Imm	
	Laboratory:		Ons:te	L	Date Se	nt to Lab:		9/年12	124
	Shipment Met		in-pers			Sample Nur		лч	
	Remarks:	Susta	in Elon	170 PS coul s (cpm gas	d vet	d to get a	init: nt.	e and the	
	Signature:		2hr	/					

Well #:MW-3S

Project Number:	55-	38472	005	Date:		9/12	124	
Project Name:	Yakima			Compa	ານ ມີ	vametri		
>				Name:				
Project Address:	Rocky 7	Гор	,	Sample		Bourges	s 3 K. B.	whe
Casing Diameter:	2″ _		4"	6″	Othe	r		
Initial Depth to Wate below TOC):	er (feet	179-	87 143, 10	D Purge F Measur	tate ement Metho	d: Grad	luated e	ylinde
Top of Screen (feet	bgs):	188		Date Pu	rged:	1/14/29	`	
Bottom of Screen (f	eet bgs)	198		Purge T	ime (from/to): 827	- 850	
Reference Point (su	rveyor's r	otch, etc.):	PUL TOL	Time Sa	ampled:	900		
· · ·	Ή ΤΟ ER (ft) 3,6 ◊	pH (units)	Ec (µmhos/cm 25°C)	TEMP °C	Redox (mv)	Dissolved Oxygen mg/L	TURBIDITY (visual)	PUMP SETTING (२९१)
	1.05	7.61	616	14.7	-66,5	6.74	0.71	165
835 17	7.10	7.63	629	14.4	-71.3	4.99	0.00	~
840 -	-	7.46	629	14.5	71.4	4.95	6.00	<u>v</u>
	4.04		629	<u>[4.4</u>	- 72.5	5.06	0.00	
850 171	1.06	7.69	630	14.4	-73.9	4.88	60.0	د،
• •								
							<u></u>	
							<u> </u>	
Stabilization Crit	eria	± 0.1	3%	3%	± 10 mv	10%, or 3 <0.5	 10%, or 3<5.0	
Purge Equipment:	QED	PFAS	FREEBL	ADE EVE Flow Ra	nte: 45	O me/n	nih	
Laboratory:		Ousit	e.		nt to Lab:		9/12/	27
Shipment Method	6 64	in-per			C Sample Nu		NA	
Remarks:	Prmp	s setti	hgs ta	initiate	the:	40/z	o (CPM	l)
	4	tool	c 3-4	cycle	ες	+ 170	, L) (
			10 31			punga.		
Signature:		Cer	\checkmark					

Month My

Groundwater Sampling Field Data Sheet

Well #:MW-4S

						24	
Project Number:	5538472	005	Date:		9/11/9	203-27	
Project Name:	Yakima LPL		Compa Name:		PMX		
Project Address:	Rocky Top	-	Sample	d By:	1. Bour	jedis à	K. Burke
Casing Diameter:	2″ _	4" 🖌	6″	Othe	r		
Initial Depth to Water below TOC):	(feet 43	1.04	Purge F Measur	Rate ement Metho	d: Puly	bottle	
Top of Screen (feet by	gs): 49.5		Date Pu	irged:	7/11/21		
Bottom of Screen (fee	et bgs) 69.5		Purge 1	ime (from/to): 905	- 925	-
Reference Point (surv	veyor's notch, etc.):	Y. PUK.	Time Sa	ampled:	930	>	
TIME DEPTH (2400 hr) WATER	t (ft) pH (units)	Ec (µmhos/cm 25°C)	TEMP °C	Redox (mv)	Dissolved Oxygen mg/L	TURBIDITY (visual)	२८ PUMP SETTING
<u>Initial</u> <u>43.</u> 910 -	09 7.77	961	(3.4	-102.8	4.76	deer	59 Pri
ait i	4.78	969	13.1		4.12		65
$\frac{q_{10}}{q_{20}} = \frac{-}{-}$	7.77	973		-96.6	4.16	~	65
925 -	7.76	973	13.1	-96.9	4.04	6	65
·					+	111 / L	
					<u> </u>		
Stabilization Criter	ia ± 0.1	3%	3%	± 10 mv	10%, or 3 <0.5	10%, or 3<5.0	
Purge Equipment: B	ladder pin	~v	Flow Ra	ite:	300 ~	1/min	
Laboratory:	Onsit	સ	Date Se	nt to Lab:		91212	1
Shipment Method	in-pe	rson	Field Q0	C Sample Nur	mber:	NA	
Remarks:	used	crmy	10/5	Se this	^y s		0
	- bob						1
Signature:	Chr	Y					

Page <u>1</u> of <u>1</u>

t Mい-55 Well #:**MW#55**

				_				
Project Number:	553	847200	5	Date:		9/11/	24	
Project Name:	Yakima	a LPL		Compa Name:	ny	Paramete	it	
Project Address:	Rocky	Тор		Sample	d By:	Parameti C. Borgeni	3 2 14.15	Burke
Casing Diameter:	2″ _	4'	· _	6″	0	ther		
Initial Depth to Wat below TOC):	er (feet	219.3	17	Purge F Measur	Rate rement Me	thod: gara	lunted c	Inde
Top of Screen (feet	: bgs):	110 22	2	Date Pu	urged:	9/11/2	1	
Bottom of Screen (feet bgs)	-130 24	13	Purge 1	lime (fron	n/to): 130	3 1333	- 1400
Reference Point (se	urveyor's	notch, etc.):	N. PVC.	Time S	ampled:	141	6	
	TH TO ER (ft)	pH (units)	Ec (µmhos/cm 25°C)	TEMP °C	Redox (mv)	Dissolved Oxygen mg/L	TURBIDITY (visual)	PUMP SETTING
1350 *	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	<u>८.५३</u> <u>८.53</u> <u>८.52</u> <u>८.२</u> <u>८.२</u> <u>८.२</u> <u>८.२</u>	368.2 365.8 357.6 357.6 356.6	16.5 16.0 15.9 15.6 15.6	-137.0 -148 -149 -149 -149 -149 -149	1.39 .8 0.62 .2 0.31 3 0.15 .7 0.14 .7 0.14 .7 0.14 .7 0.14 .7 0.14 .7 0.14 .7 0.14 .7 0.14 .7	<u>6.83</u> <u>7.24</u> <u>2.75</u> <u>2.62</u> <u>2.52</u> 10%, or 3<5.0	40/20 N/9
Purge Equipment:	Bla	deler p	mp	Flow R	ate: 30	so mewa	wh	
Laboratory:		ONSite		Date Se	ent to Lab	:	9/10/-	24
Shipment Method		in-pa			-	Number:	MW-135	
Remarks:			400	KS: Lep	401- 12	20 ne ned	ed to ih	it in b
P		settings	fbu. CPM3	11/9		dup	۵ ۱۶۰۵	5
Signature:	0	el y						

Well #:**MW-53**

				the second s		-		
Project Number:	553	877200	15	Date:		9/1	1/24	
Project Name:	Yakima	a LPL		Compa Name:	i ny P	annet		
Project Address:	Rocky	Тор	4	Sample			Y K.B.	rke
Casing Diameter:	2″	4	u	6″	Othe			
Initial Depth to Wate below TOC):	er (feet			Purge i Measur	Rate rement Metho	d: grad	voted u	, Inda
Top of Screen (feet	bgs):	222 110	د	Date Pu	urged:	9/11/2	24	
Bottom of Screen (fe	eet bgs)	243 2	13	Purge 1	Time (from/to)		- 1115	
Reference Point (su	rveyor's i	notch, etc.):	N. PVC	Time S	ampled:	1445		
TIME DEPT (2400 hr) WATE Initial		pH (units) 8.28	Ec (µmhos/cm 25°C)	TEMP °C	Redox (mv) - 120-8	Dissolved Oxygen mg/L	TURBIDITY (visual)	PUMP SETTING ((251)
1050		13-2	531	13.2	YEO	4.50	clear	
1055	82	13:13:1	530	13.1	-115.5		0.00	105
1100		8-32	511	13.2	-113.3		0.04	u
1165		8.31	495	13.2	-109.5	4.09	0.14	u
118		8.28	498	13.3	-107.0	4.02	0,00	5
1115		8.25	501	13.3	-104.2	4.06	0.00	<u>- U</u>
			<u> </u>					
Stabilization Crite	eria	± 0.1	3%	3%	± 10 mv	10%, or 3 <0.5	10%, or 3<5.0	
Purge Equipment:	Black	reles p	mp	Flow Ra	te:	320 v	nt/min	
Laboratory:	2	onsite	-	Date Sei	nt to Lab:		320 9	112/24
Shipment Method		in-purs		Field QC	Sample Num	iber:	NA	
Remarks:	Py	-Mu-1	35-07	H 2	11-7	5 1455		
water level	du	ng pum	comy ptest (a	10/ 113/24): 100	5 PSI	-	
Signature:	Ce	~~						

Project Number: Project Name:	553-84	12-005			Maller
1	Yakima LPL		Date:	8/201	Well #: <u>MV</u>
Project Address:			Company	8/28/24	
	Rocky Top		Name:	Panametry	
Casing Diameter:	2″		Sampled By:	()	
Initial Depth to Water below TOC):	(feet	4″	6″		Brady
Top of Screen (feet bg			Purgo P-1	iner	
Bottom of a	gs): 475		Measurement Me	thod:	
Bottom of Screen (feet	t bgs) 495		Date Purged:		
Reference Point (surve	yor's notch. etc)		Purge Time (from/	tol	
			Time Sampled:		
TIME DEPTH TO	0	Ec	mpied;		
I TAIER (fi	t) pH (units)	(µmhos/cm 25°C)	D	Dissolved	
1101	>	-0 0)	TEMP °C	Oxygen TURBIDITY	Dist
1136 2450	8.23	204.7		(visual)	PUMP SETTING
		(`	19.4 -251.5	A 3A	
				0-0-0-0	
					- 1
Stabillar					
Stabilization Criteria	± 0.1				
	± 0.1	3%			
urge Equipment:	± 0.1	3%	± 10 mv 109	%, or 3 10%, or 3<5.0	
urge Equipment: boratory:	± 0.1		± 10 mv 109		
urge Equipment: boratory:	± 0.1	F	± 10 mv 109		
urge Equipment: boratory: ipment Method		Fi	low Rate:	(0.5 10%) or 3<5.0	
urge Equipment: boratory: ipment Method		Fi	low Rate:	(0.5 10%) or 3<5.0	
urge Equipment: boratory: ipment Method		Fi	low Rate:	(0.5 10%) or 3<5.0	
urge Equipment: boratory: ipment Method		Fi	low Rate:	(0.5 10%) or 3<5.0	
urge Equipment: boratory: ipment Method		Fi	low Rate:	(0.5 10%) or 3<5.0	
urge Equipment: boratory: ipment Method		Fi	low Rate:	(0.5 10%) or 3<5.0	
urge Equipment: aboratory: ipment Method narks: Sample tal Water level	ken dur taken d	Fi	low Rate:	(0.5 10%) or 3<5.0	
urge Equipment: boratory: ipment Method	ken dur taken d	Fi	low Rate:	(0.5 10%) or 3<5.0	
urge Equipment: boratory: ipment Method narks: Sample tal K Water level	ken dur taken d	Fi	low Rate:	(0.5 10%) or 3<5.0	

 n_{-}

Well #:MW-8D

Project Number:	553	-96472	- 005	Date:					
Project Name:	Yakima	LPL		Company Name:	у	Para	netrix		
Project Address:	Rocky 7	Гор			Sampled By: Mike Bredy				
Casing Diameter:	2″ _	- 4	" _	6″	Othe	er			
Initial Depth to Wate below TOC):	er (feet	8		Purge Rate Measurement Method:					
Top of Screen (feet	bgs):	375		Date Pur	ged:				
Bottom of Screen (f	feet bgs)	405		Purge Ti	me (from/to):			
Reference Point (su	ırveyor's r	otch, etc.):		Time Sar	mpled:	-			
	TH TO ER (ft)	pH (units)	Ec (µmhos/cm 25°C)	TEMP °C	Redox (mv)	Dissolved Oxygen mg/L	TURBIDITY (visual)	PUMP SETTING	
Initial 1522 35	\$8.52	8.50	406.8	23.2	1 40	1.38	1.27		
		·							
								. <u></u>	
Stabilization Crit	teria	±0.1	3%	3%	± 10 mv	10%, or 3 <0.5	10%, or 3<5.0		
Purge Equipment:				Flow Rat	e:				
Laboratory:				Date Sen	t to Lab:				
Shipment Method				Field QC	Sample Nu	mber:	3		
Remarks: Water Levelfakenduning 9/11/24:308.02									
	11.1	B	A						
Signature:	100	~ 1-							

Well #:MW-9D

Project Number:	553	-8472	-005	Date:	c	1/10/20	1				
Project Name:	Yakima	LPL		Compar Name:	עי ע	1/10/20 argine	trix				
Project Address:	Rocky 7	Гор		Sampleo	d By: 🔣	3 Chris	: B				
Casing Diameter:	2″ _	4	"	6″	6" Other						
Initial Depth to Wate below TOC):	er (feet	432. (62	Purge Rate Measurement Method:							
Top of Screen (feet I	bgs):	420		Date Pu	Date Purged:						
Bottom of Screen (fe	eet bgs)	440		Purge T	ime (from/to):						
Reference Point (su	rveyor's n	otch, etc.):		Time Sa	mpled:						
TIME DEPT (2400 hr) WATE Initial 서ろ		pH (units)	Ec (µmhos/cm 25°C)	TEMP °C	Redox (mv)	Dissolved Oxygen mg/L	TURBIDITY (visual) 109, 5	PUMP SETTING W TV			
1214		8.56	680	18.2	-158.6	6.74	trace	barle			
·											
		<u> </u>									
Stabilization Crite	eria	± 0.1	3%	3%	± 10 mv	10%, or 3 <0.5	10%, or 3<5.0				
Purge Equipment:				Flow Ra	te:						
Laboratory:				Date Sei	nt to Lab:						
Shipment Method	-			Field QC	Sample Num	nber:					
Remarks:	JS< d	baile	<i>~.</i>								
433.90 433.58' Tor after samples											
* Water I eve	1 tak	en gli	124:4	\$3.16							
Signature:		Chry	/			- j					

Well #:<u>MW-10D</u>

F F	- GUAD ODE		a	77. 1						
Project Number: 55	3-8472-005	Date:		/11/24						
Project Name: Yakima	a LPL	Compar Name:	עי Pe	urameto:	×					
Project Address: Rocky	Тор	Sample	Company Name: Perrumetrix Sampled By: C. Bargais & K. Burke							
Casing Diameter: 2″ _	4″ _	6″	6" Other							
Initial Depth to Water (feet below TOC):	86.80	Purge R Measure		d:						
Top of Screen (feet bgs):		Date Pu	rged:							
Bottom of Screen (feet bgs)		Purge T	ime (from/to)	:						
Reference Point (surveyor's notch, etc.): Time Sampled:										
Ec TIME DEPTH TO (µmhos/cm (2400 hr) WATER (ft) pH (units) 25°C) TI			Redox (mv)	Dissolved Oxygen mg/L	TURBIDITY (visual)	PUMP SETTING				
<u>Initial</u>	8.21 227.8	17.2	4-7-1	7.74	alear	Sample				
			-101.7							
				-						
	<u></u>									
Stabilization Criteria	± 0.1 3%	3%	± 10 mv	10%, or 3 <0.5	10%, or 3<5.0					
Purge Equipment:		Flow Ra	ite:							
Laboratory:		Date Se	nt to Lab:							
Shipment Method		Field Q0	C Sample Nu	mber:						
Remarks: Sau	yre taken der	ivy hy	phartic	punp	test					
Ciamatura	Clarky									
Signature:										

Page <u>1</u> of <u>1</u>

Appendix B

Third Quarter 2024 Laboratory Analytical Report

September 10, 2024

Michael Brady Parametrix, Inc. 719 2nd Avenue, Suite 200 Seattle, WA 98104

Re: Analytical Data for Project 553-8472-006 Laboratory Reference No. 2408-369

Dear Michael:

Enclosed are the analytical results and associated quality control data for samples submitted on August 28, 2024.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: September 10, 2024 Samples Submitted: August 28, 2024 Laboratory Reference: 2408-369 Project: 553-8472-006

Case Narrative

Samples were collected on August 28, 2024 and received by the laboratory on August 28, 2024. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below. However the soil results for the QA/QC samples are reported on a wet-weight basis.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
Client ID:	MW-7D-0828						
Laboratory ID:	08-369-01						
Chloromethane	ND	1.0	EPA 8260D	8-30-24	8-30-24		
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	8-30-24	8-30-24		
Bromomethane	ND	1.0	EPA 8260D	8-30-24	8-30-24		
Chloroethane	ND	1.0	EPA 8260D	8-30-24	8-30-24		
Trichlorofluoromethane	ND	0.20	EPA 8260D	8-30-24	8-30-24		
1,1-Dichloroethene	ND	0.20	EPA 8260D	8-30-24	8-30-24		
Acetone	ND	5.0	EPA 8260D	8-30-24	8-30-24		
lodomethane	ND	1.0	EPA 8260D	8-30-24	8-30-24		
Carbon Disulfide	ND	0.20	EPA 8260D	8-30-24	8-30-24		
Methylene Chloride	ND	1.0	EPA 8260D	8-30-24	8-30-24		
Acrylonitrile	ND	0.69	EPA 8260D	8-30-24	8-30-24		
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-30-24	8-30-24		
1,1-Dichloroethane	ND	0.20	EPA 8260D	8-30-24	8-30-24		
Vinyl Acetate	ND	1.0	EPA 8260D	8-30-24	8-30-24		
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-30-24	8-30-24		
2-Butanone	ND	5.0	EPA 8260D	8-30-24	8-30-24		
Bromochloromethane	ND	0.20	EPA 8260D	8-30-24	8-30-24		
Chloroform	ND	0.20	EPA 8260D	8-30-24	8-30-24		
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	8-30-24	8-30-24		
Carbon Tetrachloride	ND	0.20	EPA 8260D	8-30-24	8-30-24		
Benzene	ND	0.20	EPA 8260D	8-30-24	8-30-24		
1,2-Dichloroethane	ND	0.20	EPA 8260D	8-30-24	8-30-24		
Trichloroethene	ND	0.20	EPA 8260D	8-30-24	8-30-24		
1,2-Dichloropropane	ND	0.20	EPA 8260D	8-30-24	8-30-24		
Dibromomethane	ND	0.20	EPA 8260D	8-30-24	8-30-24		
Bromodichloromethane	ND	0.20	EPA 8260D	8-30-24	8-30-24		
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	8-30-24	8-30-24		
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	8-30-24	8-30-24		
Toluene	11	1.0	EPA 8260D	8-30-24	8-30-24		
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	8-30-24	8-30-24		
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	8-30-24	8-30-24		
Tetrachloroethene	ND	0.20	EPA 8260D	8-30-24	8-30-24		

VOLATILE ORGANICS EPA 8260D/SIM	
page 2 of 2	

				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
Client ID:	MW-7D-0828						
Laboratory ID:	08-369-01						
2-Hexanone	ND	2.0	EPA 8260D	8-30-24	8-30-24		
Dibromochloromethane	ND	0.20	EPA 8260D	8-30-24	8-30-24		
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	8-30-24	8-30-24		
Chlorobenzene	ND	0.20	EPA 8260D	8-30-24	8-30-24		
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-30-24	8-30-24		
Ethylbenzene	ND	0.20	EPA 8260D	8-30-24	8-30-24		
m,p-Xylene	ND	0.40	EPA 8260D	8-30-24	8-30-24		
o-Xylene	ND	0.20	EPA 8260D	8-30-24	8-30-24		
Styrene	ND	0.20	EPA 8260D	8-30-24	8-30-24		
Bromoform	ND	1.0	EPA 8260D	8-30-24	8-30-24		
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-30-24	8-30-24		
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	8-30-24	8-30-24		
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	8-30-24	8-30-24		
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	8-30-24	8-30-24		
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	8-30-24	8-30-24		
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	8-30-24	8-30-24		
Naphthalene	ND	1.0	EPA 8260D	8-30-24	8-30-24		
Surrogate:	Percent Recovery	Control Limits					
Dibromofluoromethane	90	68-133					
Toluene-d8	98	79-123					
4-Bromofluorobenzene	95	78-117					

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

Matrix: Water Units: ug/L

Analyte Client ID: Laboratory ID: Chloromethane Vinyl Chloride (SIM) Bromomethane Chloroethane	Result Trip Blank 08-369-02 ND ND ND ND ND ND	PQL 1.0 0.020 1.0	Method EPA 8260D EPA 8260D/SIM	Prepared 8-30-24	Analyzed	Flags
Laboratory ID: Chloromethane Vinyl Chloride (SIM) Bromomethane Chloroethane	08-369-02 ND ND ND ND ND	0.020 1.0			8-30-24	
Chloromethane Vinyl Chloride (SIM) Bromomethane Chloroethane	ND ND ND ND	0.020 1.0			8-30-24	
Vinyl Chloride (SIM) Bromomethane Chloroethane	ND ND ND	0.020 1.0			8-30-24	
Bromomethane Chloroethane	ND ND	1.0	EPA 8260D/SIM			
Chloroethane	ND			8-30-24	8-30-24	
• · · · · · · · · · · · · · · · · · · ·			EPA 8260D	8-30-24	8-30-24	
	ND	1.0	EPA 8260D	8-30-24	8-30-24	
Trichlorofluoromethane		0.20	EPA 8260D	8-30-24	8-30-24	
1,1-Dichloroethene	ND	0.20	EPA 8260D	8-30-24	8-30-24	
Acetone	ND	5.0	EPA 8260D	8-30-24	8-30-24	
lodomethane	ND	1.0	EPA 8260D	8-30-24	8-30-24	
Carbon Disulfide	ND	0.20	EPA 8260D	8-30-24	8-30-24	
Methylene Chloride	ND	1.0	EPA 8260D	8-30-24	8-30-24	
Acrylonitrile	ND	0.69	EPA 8260D	8-30-24	8-30-24	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-30-24	8-30-24	
1,1-Dichloroethane	ND	0.20	EPA 8260D	8-30-24	8-30-24	
Vinyl Acetate	ND	1.0	EPA 8260D	8-30-24	8-30-24	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-30-24	8-30-24	
2-Butanone	ND	5.0	EPA 8260D	8-30-24	8-30-24	
Bromochloromethane	ND	0.20	EPA 8260D	8-30-24	8-30-24	
Chloroform	ND	0.20	EPA 8260D	8-30-24	8-30-24	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	8-30-24	8-30-24	
Carbon Tetrachloride	ND	0.20	EPA 8260D	8-30-24	8-30-24	
Benzene	ND	0.20	EPA 8260D	8-30-24	8-30-24	
1,2-Dichloroethane	ND	0.20	EPA 8260D	8-30-24	8-30-24	
Trichloroethene	ND	0.20	EPA 8260D	8-30-24	8-30-24	
1,2-Dichloropropane	ND	0.20	EPA 8260D	8-30-24	8-30-24	
Dibromomethane	ND	0.20	EPA 8260D	8-30-24	8-30-24	
Bromodichloromethane	ND	0.20	EPA 8260D	8-30-24	8-30-24	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	8-30-24	8-30-24	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	8-30-24	8-30-24	
Toluene	ND	1.0	EPA 8260D	8-30-24	8-30-24	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	8-30-24	8-30-24	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	8-30-24	8-30-24	
Tetrachloroethene	ND	0.20	EPA 8260D	8-30-24	8-30-24	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Trip Blank					
Laboratory ID:	08-369-02					
2-Hexanone	ND	2.0	EPA 8260D	8-30-24	8-30-24	
Dibromochloromethane	ND	0.20	EPA 8260D	8-30-24	8-30-24	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	8-30-24	8-30-24	
Chlorobenzene	ND	0.20	EPA 8260D	8-30-24	8-30-24	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-30-24	8-30-24	
Ethylbenzene	ND	0.20	EPA 8260D	8-30-24	8-30-24	
m,p-Xylene	ND	0.40	EPA 8260D	8-30-24	8-30-24	
o-Xylene	ND	0.20	EPA 8260D	8-30-24	8-30-24	
Styrene	ND	0.20	EPA 8260D	8-30-24	8-30-24	
Bromoform	ND	1.0	EPA 8260D	8-30-24	8-30-24	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-30-24	8-30-24	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	8-30-24	8-30-24	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	8-30-24	8-30-24	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	8-30-24	8-30-24	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	8-30-24	8-30-24	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	8-30-24	8-30-24	
Naphthalene	ND	1.0	EPA 8260D	8-30-24	8-30-24	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	90	68-133				
Toluene-d8	100	79-123				
4-Bromofluorobenzene	100	78-117				

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0830W1					
Chloromethane	ND	1.0	EPA 8260D	8-30-24	8-30-24	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	8-30-24	8-30-24	
Bromomethane	ND	1.0	EPA 8260D	8-30-24	8-30-24	
Chloroethane	ND	1.0	EPA 8260D	8-30-24	8-30-24	
Trichlorofluoromethane	ND	0.20	EPA 8260D	8-30-24	8-30-24	
1,1-Dichloroethene	ND	0.20	EPA 8260D	8-30-24	8-30-24	
Acetone	ND	5.0	EPA 8260D	8-30-24	8-30-24	
lodomethane	ND	1.0	EPA 8260D	8-30-24	8-30-24	
Carbon Disulfide	ND	0.20	EPA 8260D	8-30-24	8-30-24	
Methylene Chloride	ND	1.0	EPA 8260D	8-30-24	8-30-24	
Acrylonitrile	ND	0.69	EPA 8260D	8-30-24	8-30-24	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-30-24	8-30-24	
1,1-Dichloroethane	ND	0.20	EPA 8260D	8-30-24	8-30-24	
Vinyl Acetate	ND	1.0	EPA 8260D	8-30-24	8-30-24	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	8-30-24	8-30-24	
2-Butanone	ND	5.0	EPA 8260D	8-30-24	8-30-24	
Bromochloromethane	ND	0.20	EPA 8260D	8-30-24	8-30-24	
Chloroform	ND	0.20	EPA 8260D	8-30-24	8-30-24	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	8-30-24	8-30-24	
Carbon Tetrachloride	ND	0.20	EPA 8260D	8-30-24	8-30-24	
Benzene	ND	0.20	EPA 8260D	8-30-24	8-30-24	
1,2-Dichloroethane	ND	0.20	EPA 8260D	8-30-24	8-30-24	
Trichloroethene	ND	0.20	EPA 8260D	8-30-24	8-30-24	
1,2-Dichloropropane	ND	0.20	EPA 8260D	8-30-24	8-30-24	
Dibromomethane	ND	0.20	EPA 8260D	8-30-24	8-30-24	
Bromodichloromethane	ND	0.20	EPA 8260D	8-30-24	8-30-24	
cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	8-30-24	8-30-24	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	8-30-24	8-30-24	
Toluene	ND	1.0	EPA 8260D	8-30-24	8-30-24	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	8-30-24	8-30-24	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	8-30-24	8-30-24	
Tetrachloroethene	ND	0.20	EPA 8260D	8-30-24	8-30-24	

7

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0830W1					
2-Hexanone	ND	2.0	EPA 8260D	8-30-24	8-30-24	
Dibromochloromethane	ND	0.20	EPA 8260D	8-30-24	8-30-24	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	8-30-24	8-30-24	
Chlorobenzene	ND	0.20	EPA 8260D	8-30-24	8-30-24	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-30-24	8-30-24	
Ethylbenzene	ND	0.20	EPA 8260D	8-30-24	8-30-24	
m,p-Xylene	ND	0.40	EPA 8260D	8-30-24	8-30-24	
o-Xylene	ND	0.20	EPA 8260D	8-30-24	8-30-24	
Styrene	ND	0.20	EPA 8260D	8-30-24	8-30-24	
Bromoform	ND	1.0	EPA 8260D	8-30-24	8-30-24	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	8-30-24	8-30-24	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	8-30-24	8-30-24	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	8-30-24	8-30-24	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	8-30-24	8-30-24	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	8-30-24	8-30-24	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	8-30-24	8-30-24	
Naphthalene	ND	1.0	EPA 8260D	8-30-24	8-30-24	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	95	68-133				
Toluene-d8	98	79-123				
4-Bromofluorobenzene	98	78-117				

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

Units: ug/L					Per	cent	Recovery		RPD	
Analyte	Res	ult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB083	30W 1								
	SB	SBD	SB	SBD	SB	SBD				
Chloromethane	9.45	9.26	10.0	10.0	95	93	45-145	2	19	
Vinyl Chloride	9.88	9.48	10.0	10.0	99	95	67-130	4	15	
Bromomethane	8.84	9.59	10.0	10.0	88	96	27-165	8	36	
Chloroethane	8.80	8.71	10.0	10.0	88	87	61-132	1	18	
Trichlorofluoromethane	10.8	10.5	10.0	10.0	108	105	67-136	3	17	
1,1-Dichloroethene	10.3	9.98	10.0	10.0	103	100	74-125	3	15	
Acetone	9.01	9.29	10.0	10.0	90	93	49-140	3	20	
lodomethane	10.8	10.6	10.0	10.0	108	106	15-154	2	49	
Carbon Disulfide	9.85	9.63	10.0	10.0	99	96	58-122	2	18	
Methylene Chloride	9.37	9.30	10.0	10.0	94	93	70-123	1	15	
(trans) 1,2-Dichloroethene	10.0	9.89	10.0	10.0	100	99	77-125	1	15	
1,1-Dichloroethane	9.81	9.70	10.0	10.0	98	97	75-125	1	15	
Vinyl Acetate	9.44	9.77	10.0	10.0	94	98	61-138	3	16	
(cis) 1,2-Dichloroethene	10.4	10.3	10.0	10.0	104	103	78-130	1	15	
2-Butanone	8.80	9.22	10.0	10.0	88	92	58-144	5	16	
Bromochloromethane	9.92	9.91	10.0	10.0	99	99	79-132	0	15	
Chloroform	9.57	9.60	10.0	10.0	96	96	73-128	0	15	
1,1,1-Trichloroethane	10.0	9.90	10.0	10.0	100	99	72-127	1	15	
Carbon Tetrachloride	10.0	9.82	10.0	10.0	100	98	68-131	2	15	
Benzene	10.2	9.88	10.0	10.0	102	99	76-124	3	15	
1,2-Dichloroethane	10.4	10.4	10.0	10.0	104	104	68-133	0	15	
Trichloroethene	11.7	11.5	10.0	10.0	117	115	80-126	2	15	
1,2-Dichloropropane	10.8	10.7	10.0	10.0	108	107	78-124	1	15	
Dibromomethane	11.1	11.2	10.0	10.0	111	112	76-131	1	15	
Bromodichloromethane	10.6	10.7	10.0	10.0	106	107	81-128	1	15	
(cis) 1,3-Dichloropropene	11.0	11.0	10.0	10.0	110	110	80-131	0	15	
Methyl Isobutyl Ketone	10.3	10.8	10.0	10.0	103	108	67-133	5	16	
Toluene	10.3	10.1	10.0	10.0	103	101	75-120	2	15	
(trans) 1,3-Dichloropropene	10.9	10.9	10.0	10.0	109	109	77-128	0	15	
1,1,2-Trichloroethane	10.1	9.94	10.0	10.0	101	99	80-124	2	15	
Tetrachloroethene	11.2	11.1	10.0	10.0	112	111	80-125	1	15	
2-Hexanone	9.41	9.71	10.0	10.0	94	97	65-134	3	20	
Dibromochloromethane	10.5	11.2	10.0	10.0	105	112	81-131	6	15	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

9

Date of Report: September 10, 2024 Samples Submitted: August 28, 2024 Laboratory Reference: 2408-369 Project: 553-8472-006

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL page 2 of 2

					Percent		Recovery			
Analyte	Res	ult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB083	30W1								
	SB	SBD	SB	SBD	SB	SBD				
1,2-Dibromoethane	11.3	11.4	10.0	10.0	113	114	82-129	1	15	
Chlorobenzene	11.0	10.8	10.0	10.0	110	108	80-119	2	15	
1,1,1,2-Tetrachloroethane	11.1	11.3	10.0	10.0	111	113	80-124	2	15	
Ethylbenzene	10.9	10.7	10.0	10.0	109	107	80-121	2	15	
m,p-Xylene	21.5	21.2	20.0	20.0	108	106	80-122	1	15	
o-Xylene	10.8	10.6	10.0	10.0	108	106	80-121	2	15	
Styrene	11.2	11.2	10.0	10.0	112	112	82-128	0	15	
Bromoform	10.6	10.7	10.0	10.0	106	107	77-131	1	15	
1,1,2,2-Tetrachloroethane	9.73	9.63	10.0	10.0	97	96	66-138	1	15	
1,2,3-Trichloropropane	8.66	8.86	10.0	10.0	87	89	67-127	2	18	
1,4-Dichlorobenzene	10.8	10.8	10.0	10.0	108	108	78-127	0	15	
1,2-Dichlorobenzene	10.8	10.9	10.0	10.0	108	109	79-129	1	15	
1,2-Dibromo-3-chloropropane	9.44	9.65	10.0	10.0	94	97	62-140	2	18	
Naphthalene	8.46	9.88	10.0	10.0	85	99	53-144	15	25	
Surrogate:										
Dibromofluoromethane					88	90	68-133			
Toluene-d8					99	98	79-123			
4-Bromofluorobenzene					102	100	78-117			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

onno: dg/= (ppb)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-7D-0828					
Laboratory ID:	08-369-01					
Gasoline	ND	100	NWTPH-Gx	8-29-24	8-29-24	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	75	61-122				
Client ID:	Trip Blank					
Laboratory ID:	08-369-02					
Gasoline	ND	100	NWTPH-Gx	8-29-24	8-29-24	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	77	61-122				

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

							Date	Date)	
Analyte		Result		PQL	Me	ethod	Prepared	Analyz	ed	Flags
METHOD BLANK										
Laboratory ID:		MB0829W1								
Gasoline		ND		100	NW	ГРН-Gx	8-29-24	8-29-2	24	
Surrogate:	Per	cent Recov	rery	Control Limi	its					
Fluorobenzene		77		61-122						
					Source	Percent	Recovery		RPD	
Analyte	Res	sult	S	pike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	08-22	21-04								
	ORIG	DUP								
GRO	486	449	Ν	IA NA		NA	NA	8	30	
Surrogate:										

80

83

61-122

Fluorobenzene

M

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW-7D-0828					
Laboratory ID:	08-369-01					
Diesel Range Organics	ND	0.20	NWTPH-Dx	8-30-24	8-30-24	
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	8-30-24	8-30-24	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	87	50-150				

13

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

0 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0830W1					
Diesel Range Organics	ND	0.16	NWTPH-Dx	8-30-24	8-30-24	
Lube Oil Range Organics	ND	0.16	NWTPH-Dx	8-30-24	8-30-24	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	107	50-150				

		Source	Percent	Recovery		RPD	
Spi	ike Level	Result	Recovery	Limits	RPD	Limit	Flags
Р							
98 NA	NA		NA	NA	7	40	
			112 104	50-150			
U	'1 UP	UP	11 UP	11 UP 398 NA NA NA	11 UP 398 NA NA NA NA	11 UP 398 NA NA NA NA 7	11 UP 398 NA NA NA NA 7 40

TOTAL METALS EPA 6010D

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-7D-0828					
Laboratory ID:	08-369-01					
Iron	0.067	0.050	EPA 6010D	8-29-24	9-3-24	
Magnesium	10	1.0	EPA 6010D	8-29-24	9-3-24	
Manganese	0.032	0.010	EPA 6010D	8-29-24	9-3-24	

TOTAL METALS EPA 6010D QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0829WH1					
Iron	ND	0.050	EPA 6010D	8-29-24	9-3-24	
Magnesium	ND	1.0	EPA 6010D	8-29-24	9-3-24	
Manganese	ND	0.010	EPA 6010D	8-29-24	9-3-24	

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	08-14	10-06								
	ORIG	DUP								
Iron	5.56	5.38	NA	NA		NA	NA	3	20	
Magnesium	37.5	36.4	NA	NA		NA	NA	3	20	
Manganese	1.37	1.32	NA	NA		NA	NA	3	20	

MATRIX SPIKES

Laboratory ID:	08-14	40-06									
	MS	MSD	MS	MSD		MS	MSD				
Iron	24.4	24.9	20.0	20.0	5.56	94	97	75-125	2	20	
Magnesium	59.7	60.2	20.0	20.0	37.5	111	114	75-125	1	20	
Manganese	1.79	1.78	0.500	0.500	1.37	85	84	75-125	0	20	

DISSOLVED METALS EPA 6010D

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-7D-0828					
Laboratory ID:	08-369-01					
Calcium	15	1.1	EPA 6010D		9-3-24	
Iron	0.071	0.056	EPA 6010D		9-3-24	
Magnesium	11	1.1	EPA 6010D		9-3-24	
Manganese	0.035	0.011	EPA 6010D		9-3-24	
Potassium	2.8	1.1	EPA 6010D		9-3-24	
Sodium	11	1.1	EPA 6010D		9-3-24	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED METALS EPA 6010D QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0903D1					
Calcium	ND	1.1	EPA 6010D		9-3-24	
Iron	ND	0.056	EPA 6010D		9-3-24	
Magnesium	ND	1.1	EPA 6010D		9-3-24	
Manganese	ND	0.011	EPA 6010D		9-3-24	
Potassium	ND	1.1	EPA 6010D		9-3-24	
Sodium	ND	1.1	EPA 6010D		9-3-24	

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	08-28	89-07								
	ORIG	DUP								
Calcium	36.8	36.9	NA	NA		NA	NA	0	20	
Iron	17.6	17.6	NA	NA		NA	NA	0	20	
Magnesium	14.8	14.8	NA	NA		NA	NA	0	20	
Manganese	1.02	1.01	NA	NA		NA	NA	0	20	
Potassium	2.23	2.28	NA	NA		NA	NA	2	20	
Sodium	17.5	17.5	NA	NA		NA	NA	0	20	

MATRIX SPIKES

Laboratory ID:	08-2	89-07									
	MS	MSD	MS	MSD		MS	MSD				
Calcium	58.1	57.5	22.2	22.2	36.8	96	93	75-125	1	20	
Iron	103	110	100	100	17.6	85	93	75-125	7	20	
Magnesium	36.3	36.2	22.2	22.2	14.8	97	97	75-125	0	20	
Manganese	1.48	1.47	0.556	0.556	1.02	84	81	75-125	1	20	
Potassium	25.6	25.9	22.2	22.2	2.23	105	106	75-125	1	20	
Sodium	36.7	36.5	22.2	22.2	17.5	87	86	75-125	1	20	

NITRATE (as Nitrogen) EPA 353.2

Matrix: Water Units: mg/L-N

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-7D-0828					
Laboratory ID:	08-369-01					
Nitrate	ND	0.050	EPA 353.2	8-29-24	8-29-24	

19

NITRATE (as Nitrogen) EPA 353.2 QUALITY CONTROL

Matrix: Water Units: mg/L-N

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB0829W1					
ND	0.050	EPA 353.2	8-29-24	8-29-24	
	MB0829W1	MB0829W1	MB0829W1	Result PQL Method Prepared MB0829W1 MB0829W1 MB0829W1 MB0829W1 MB0829W1	Result PQL Method Prepared Analyzed MB0829W1 MB0829W1

			Source	Percent	Recovery		RPD	
Analyte	Result	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	08-367-03							
	ORIG DUP							
Nitrate	0.310 0.298	NA NA	NA	NA	NA	4	22	
MATRIX SPIKE								
Laboratory ID:	08-367-03							
	MS	MS		MS				
Nitrate	2.28	2.00	0.310	99	86-119	NA	NA	
SPIKE BLANK								
Laboratory ID:	SB0829W1							
	SB	SB		SB				
Nitrate	1.96	2.00	NA	98	85-117	NA	NA	

CHLORIDE SM 4500-CI E

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-7D-0828					
Laboratory ID:	08-369-01					
Chloride	3.2	2.0	SM 4500-CI E	9-5-24	9-5-24	

CHLORIDE SM 4500-CI E QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0905W1					
Chloride	ND	2.0	SM 4500-CI E	9-5-24	9-5-24	

				Source	Percent	Recovery		RPD	
Analyte	Result		Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	08-36	69-01							
	ORIG	DUP							
Chloride	3.20	2.98	NA	NA	NA	NA	7	21	
MATRIX SPIKE									
Laboratory ID:	08-36	69-01							
	N	1S	MS		MS				
Chloride	59	9.3	50.0	3.20	112	81-115	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB09	05W1							
	S	B	SB		SB				
Chloride	54	4.4	50.0	NA	109	77-115	NA	NA	

SULFATE ASTM D516-11

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-7D-0828					
Laboratory ID:	08-369-01					
Sulfate	ND	5.0	ASTM D516-11	9-3-24	9-3-24	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

SULFATE ASTM D516-11 QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0903W1					
Sulfate	ND	5.0	ASTM D516-11	9-3-24	9-3-24	

				Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	08-36	69-01							
	ORIG	DUP							
Sulfate	ND	ND	NA	NA	NA	NA	NA	11	
MATRIX SPIKE									
Laboratory ID:	08-36	69-01							
	Ν	1S	MS		MS				
Sulfate	9.	96	10.0	ND	100	69-134	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB09	03W1							
	S	B	SB		SB				
Sulfate	9.	50	10.0	NA	95	81-106	NA	NA	

24

TOTAL DISSOLVED SOLIDS SM 2540C

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-7D-0828					
Laboratory ID:	08-369-01					
Total Dissolved Solids	100	13	SM 2540C	8-30-24	8-30-24	

TOTAL DISSOLVED SOLIDS SM 2540C QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0830W1					
Total Dissolved Solids	ND	13	SM 2540C	8-30-24	8-30-24	

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	08-36	69-01							
	ORIG	DUP							
Total Dissolved Solids	100	112	NA	NA	NA	NA	11	29	
SPIKE BLANK									
Laboratory ID:	SB08	30W1							
	S	В	SB		SB				
Total Dissolved Solids	46	69	500	NA	94	76-120	NA	NA	

TOTAL ALKALINITY SM 2320B

Matrix: Water Units: mg CaCO3/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-7D-0828					
Laboratory ID:	08-369-01					
Total Alkalinity	100	2.0	SM 2320B	8-29-24	8-29-24	

27

TOTAL ALKALINITY SM 2320B QUALITY CONTROL

Matrix: Water Units: mg CaCO3/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0829W1					
Total Alkalinity	ND	2.0	SM 2320B	8-29-24	8-29-24	

Analyte	Res	sult	Spike Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE		Juit		Rooun	nooorony				11490
Laboratory ID:	08-36	69-01							
	ORIG	DUP							
Total Alkalinity	100	100	NA	NA	NA	NA	0	10	
SPIKE BLANK									
Laboratory ID:	SB082	29W1							
	S	В	SB		SB				
Total Alkalinity	96	6.0	100	NA	96	82-101	NA	NA	

BICARBONATE SM 2320B

Matrix: Water Units: mg CaCO3/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-7D-0828					
Laboratory ID:	08-369-01					
Bicarbonate	100	2.0	SM 2320B	8-29-24	8-29-24	

BICARBONATE SM 2320B QUALITY CONTROL

Matrix: Water Units: mg CaCO3/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0829W1					
Bicarbonate	ND	2.0	SM 2320B	8-29-24	8-29-24	

Analyte	Res	sult	Spike Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE									
Laboratory ID:	08-36	69-01							
	ORIG	DUP							
Bicarbonate	100	100	NA	NA	NA	NA	0	10	
SPIKE BLANK									
Laboratory ID:	SB082	29W1							
	S	В	SB		SB				
Bicarbonate	96	5.0	100	NA	96	82-101	NA	NA	

AMMONIA (as Nitrogen) SM 4500-NH₃ D

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-7D-0828					
Laboratory ID:	08-369-01					
Ammonia	0.065	0.053	SM 4500-NH3 D	9-4-24	9-4-24	

AMMONIA (as Nitrogen) SM 4500-NH₃ D QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0904W1					
Ammonia	ND	0.053	SM 4500-NH3 D	9-4-24	9-4-24	

			Source	Percent	Recovery		RPD	
Analyte	Result	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	08-369-01							
	ORIG DUP							
Ammonia	0.0654 0.0627	NA	NA	NA	NA	4	15	
MATRIX SPIKE								
Laboratory ID:	08-369-01							
	MS	MS		MS				
Ammonia	4.81	5.00	0.0654	95	75-111	NA	NA	
SPIKE BLANK								
Laboratory ID:	SB0904W1							
	SB	SB		SB				
Ammonia	5.04	5.00	NA	101	81-110	NA	NA	

TOTAL ORGANIC CARBON SM 5310B

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-7D-0828					
Laboratory ID:	08-369-01					
Total Organic Carbon	ND	1.0	SM 5310B	9-9-24	9-9-24	

33

TOTAL ORGANIC CARBON SM 5310B QUALITY CONTROL

Matrix: Water Units: mg/L

					Date	Date		
Analyte	Result	PQL	Me	thod	Prepared	Analyze	əd	Flags
METHOD BLANK								
Laboratory ID:	MB0909W1							
Total Organic Carbon	ND	1.0	SM 5	5310B	9-9-24	9-9-24	1	
			Source	Percent	Recovery		RPD	
Analyte	Result	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags

Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	08-36	69-01							
	ORIG	DUP							
Total Organic Carbon	ND	ND	NA	NA	NA	NA	NA	11	
MATRIX SPIKE									
Laboratory ID:	08-36	69-01							
	N	IS	MS		MS				
Total Organic Carbon	10).9	10.0	ND	109	85-120	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB09	09W1							
	S	В	SB		SB				
Total Organic Carbon	11	.5	10.0	NA	115	79-120	NA	NA	

34

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

ĺ	OnSite		Cha	ain o) f (Cu	SI	101	ly										ł	Page _	ľ	of_	1	
1	Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Turn (in	around Required working day	uest ys)		L	.abc	orat	ory	' Nu	ımb)er:	0	8	-3	6	9							
Comp			(Check One)																					
Proje	^{ct Number:} 553-8472-006	_		1 Day 3 Days		1,2-EDB				Ca, K, Na)														
Proje	^{ct Name:} DTG Yakima LPL	Stan	dard (7 Days))			jus.		g)	Dissolved Metals (Fe, Mn, Mg, Ca,		nate												
Proje	Mike Brady	- (TPH	H analysis 5 D)ays)	Number of Containers	WAC 173- M-VC and			Total Metals (Fe, Mn, Mg)	s (Fe, M	Nitrate, chloride, sulfate	TDS, Alkalinity, Bicarbonate												
Samp	Mike Brady	1 -	(other)	,	r of Con	260D - \ ene; SIN	ğ	×Q-	tals (Fe	d Metals	chloride,	alinity, I	0											arre
Lab ID		Date Sampled	Time Sampled	Matrix	Number	VOCs (8260D – WAC Naphthalene; SIM-VC	NWTPH-Gx	NWTPH-Dx	Fotal Me	Dissolve	Vitrate, o	rDS, Alk	Ammonia	TOC										% Moisture
1	MW-7D-0828	8/28/21		Water	13		X	X	X	X	X	X	X	x					-					0
2	Trip Blank		_	L	3	X	x										1							
							e																	
							ž ž																	
								<i>i</i>			×													
																	10							
				×.	11											0								
								-							ц									
144. X 144																								
Beli	nguished MARA		mpany				Date		Lu	Time	1008 00000		Com	ment	s/Spec	cial In	struct	tions						
	eived	Fa	arametrix	POE			8	28	24		100					30-1 1								
Reli	nquished		\bigcirc	PUE			01	61	01	1.4	m	2												
Rec	eived				L.		~																	
Relin	nquished	_						-																
Rece	eived														c									
Revi	iewed/Date	ſ	Reviewed/Da	.te		,							Chro	matogr	rams w	/ith fin	al repo	ort 🗌					-	

1

September 19, 2024

Michael Brady Parametrix, Inc. 719 2nd Avenue, Suite 200 Seattle, WA 98104

Re: Analytical Data for Project 553-8472-006 Laboratory Reference No. 2409-088

Dear Michael:

Enclosed are the analytical results and associated quality control data for samples submitted on September 10, 2024.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: September 19, 2024 Samples Submitted: September 10, 2024 Laboratory Reference: 2409-088 Project: 553-8472-006

Case Narrative

Samples were collected on September 8 and 9, 2024 and received by the laboratory on September 10, 2024. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below. However the soil results for the QA/QC samples are reported on a wet-weight basis.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Volatiles EPA 8260D Analysis

The percent recovery for Trichloroethene is outside the control limits on the high end in the Spike Blank and Spike Blank Duplicate. The method allows for a percentage of the compounds to fall outside of the control limits due to the large number of analytes being spiked.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-8D					
Laboratory ID:	09-088-01					
Chloromethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	9-16-24	9-16-24	
Bromomethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Chloroethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Trichlorofluoromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Acetone	ND	5.0	EPA 8260D	9-16-24	9-16-24	
lodomethane	ND	1.3	EPA 8260D	9-16-24	9-16-24	
Carbon Disulfide	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Methylene Chloride	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Acrylonitrile	ND	0.50	EPA 8260D	9-16-24	9-16-24	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1-Dichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Vinyl Acetate	ND	1.0	EPA 8260D	9-16-24	9-16-24	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
2-Butanone	ND	5.0	EPA 8260D	9-16-24	9-16-24	
Bromochloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Chloroform	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Carbon Tetrachloride	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Benzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Trichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichloropropane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Dibromomethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Bromodichloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	9-16-24	9-16-24	
Toluene	4.5	1.0	EPA 8260D	9-16-24	9-16-24	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Tetrachloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-8D					
Laboratory ID:	09-088-01					
2-Hexanone	ND	2.0	EPA 8260D	9-16-24	9-16-24	
Dibromochloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	9-16-24	9-16-24	
Chlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Ethylbenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
m,p-Xylene	ND	0.40	EPA 8260D	9-16-24	9-16-24	
o-Xylene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Styrene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Bromoform	ND	1.0	EPA 8260D	9-16-24	9-16-24	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	9-16-24	9-16-24	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Naphthalene	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	95	68-133				
Toluene-d8	100	79-123				
4-Bromofluorobenzene	103	78-117				

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

4

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Trip Blank					
Laboratory ID:	09-088-02					
Chloromethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	9-16-24	9-16-24	
Bromomethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Chloroethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Trichlorofluoromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Acetone	ND	5.0	EPA 8260D	9-16-24	9-16-24	
lodomethane	ND	1.3	EPA 8260D	9-16-24	9-16-24	
Carbon Disulfide	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Methylene Chloride	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Acrylonitrile	ND	0.50	EPA 8260D	9-16-24	9-16-24	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1-Dichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Vinyl Acetate	ND	1.0	EPA 8260D	9-16-24	9-16-24	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
2-Butanone	ND	5.0	EPA 8260D	9-16-24	9-16-24	
Bromochloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Chloroform	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Carbon Tetrachloride	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Benzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Trichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichloropropane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Dibromomethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Bromodichloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	9-16-24	9-16-24	
Toluene	ND	1.0	EPA 8260D	9-16-24	9-16-24	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Tetrachloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Trip Blank		motriou	Topulou	, analyzoa	1 14.90
Laboratory ID:	09-088-02					
2-Hexanone	ND	2.0	EPA 8260D	9-16-24	9-16-24	
Dibromochloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	9-16-24	9-16-24	
Chlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Ethylbenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
m,p-Xylene	ND	0.40	EPA 8260D	9-16-24	9-16-24	
o-Xylene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Styrene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Bromoform	ND	1.0	EPA 8260D	9-16-24	9-16-24	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	9-16-24	9-16-24	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Naphthalene	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	95	68-133				

79-123

78-117

101

103

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

Toluene-d8

4-Bromofluorobenzene

6

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

	_			Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0916W1					
Chloromethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	9-16-24	9-16-24	
Bromomethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Chloroethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Trichlorofluoromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Acetone	ND	5.0	EPA 8260D	9-16-24	9-16-24	
odomethane	ND	1.3	EPA 8260D	9-16-24	9-16-24	
Carbon Disulfide	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Vethylene Chloride	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Acrylonitrile	ND	0.50	EPA 8260D	9-16-24	9-16-24	
trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
I,1-Dichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
/inyl Acetate	ND	1.0	EPA 8260D	9-16-24	9-16-24	
cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
2-Butanone	ND	5.0	EPA 8260D	9-16-24	9-16-24	
Bromochloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Chloroform	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Carbon Tetrachloride	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Benzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Frichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichloropropane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Dibromomethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Bromodichloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	9-16-24	9-16-24	
Foluene	ND	1.0	EPA 8260D	9-16-24	9-16-24	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Tetrachloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0916W1					
2-Hexanone	ND	2.0	EPA 8260D	9-16-24	9-16-24	
Dibromochloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	9-16-24	9-16-24	
Chlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Ethylbenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
m,p-Xylene	ND	0.40	EPA 8260D	9-16-24	9-16-24	
o-Xylene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Styrene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Bromoform	ND	1.0	EPA 8260D	9-16-24	9-16-24	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	9-16-24	9-16-24	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Naphthalene	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	93	68-133				
Toluene-d8	100	79-123				
4-Bromofluorobenzene	102	78-117				

8

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

Units: ug/L					Per	cent	Recovery		RPD	
Analyte	Res	ult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB091									
	SB	SBD	SB	SBD	SB	SBD				
Chloromethane	10.8	10.8	10.0	10.0	108	108	45-145	0	19	
Vinyl Chloride	11.1	11.0	10.0	10.0	111	110	67-130	1	15	
Bromomethane	9.58	11.1	10.0	10.0	96	111	27-165	15	36	
Chloroethane	9.46	9.36	10.0	10.0	95	94	61-132	1	18	
Trichlorofluoromethane	12.1	12.0	10.0	10.0	121	120	67-136	1	17	
1,1-Dichloroethene	11.2	11.3	10.0	10.0	112	113	74-125	1	15	
Acetone	8.44	8.94	10.0	10.0	84	89	49-140	6	20	
lodomethane	7.65	9.38	10.0	10.0	77	94	15-154	20	49	
Carbon Disulfide	8.76	9.08	10.0	10.0	88	91	58-122	4	18	
Methylene Chloride	9.98	9.89	10.0	10.0	100	99	70-123	1	15	
(trans) 1,2-Dichloroethene	10.9	10.9	10.0	10.0	109	109	77-125	0	15	
1,1-Dichloroethane	10.7	10.8	10.0	10.0	107	108	75-125	1	15	
Vinyl Acetate	9.41	9.35	10.0	10.0	94	94	61-138	1	16	
(cis) 1,2-Dichloroethene	11.1	11.2	10.0	10.0	111	112	78-130	1	15	
2-Butanone	9.39	9.09	10.0	10.0	94	91	58-144	3	16	
Bromochloromethane	10.7	10.9	10.0	10.0	107	109	79-132	2	15	
Chloroform	10.4	10.7	10.0	10.0	104	107	73-128	3	15	
1,1,1-Trichloroethane	10.8	11.0	10.0	10.0	108	110	72-127	2	15	
Carbon Tetrachloride	11.0	11.1	10.0	10.0	110	111	68-131	1	15	
Benzene	11.1	11.2	10.0	10.0	111	112	76-124	1	15	
1,2-Dichloroethane	11.4	11.3	10.0	10.0	114	113	68-133	1	15	
Trichloroethene	12.7	13.0	10.0	10.0	127	130	80-126	2	15	١,١
1,2-Dichloropropane	11.4	11.5	10.0	10.0	114	115	78-124	1	15	
Dibromomethane	12.5	12.4	10.0	10.0	125	124	76-131	1	15	
Bromodichloromethane	11.2	11.4	10.0	10.0	112	114	81-128	2	15	
(cis) 1,3-Dichloropropene	11.8	11.9	10.0	10.0	118	119	80-131	1	15	
Methyl Isobutyl Ketone	10.2	9.99	10.0	10.0	102	100	67-133	2	16	
Toluene	11.1	11.3	10.0	10.0	111	113	75-120	2	15	
(trans) 1,3-Dichloropropene	10.5	10.4	10.0	10.0	105	104	77-128	1	15	
1,1,2-Trichloroethane	9.98	10.0	10.0	10.0	100	100	80-124	0	15	
Tetrachloroethene	11.3	11.4	10.0	10.0	113	114	80-125	1	15	
2-Hexanone	8.83	8.73	10.0	10.0	88	87	65-134	1	20	
Dibromochloromethane	10.3	10.5	10.0	10.0	103	105	81-131	2	15	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

9

Date of Report: September 19, 2024 Samples Submitted: September 10, 2024 Laboratory Reference: 2409-088 Project: 553-8472-006

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL page 2 of 2

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB09	16W1								
	SB	SBD	SB	SBD	SB	SBD				
1,2-Dibromoethane	11.3	11.6	10.0	10.0	113	116	82-129	3	15	
Chlorobenzene	10.8	11.0	10.0	10.0	108	110	80-119	2	15	
1,1,1,2-Tetrachloroethane	11.0	11.3	10.0	10.0	110	113	80-124	3	15	
Ethylbenzene	10.8	11.0	10.0	10.0	108	110	80-121	2	15	
m,p-Xylene	21.2	21.4	20.0	20.0	106	107	80-122	1	15	
o-Xylene	10.4	10.6	10.0	10.0	104	106	80-121	2	15	
Styrene	11.3	11.6	10.0	10.0	113	116	82-128	3	15	
Bromoform	10.8	11.0	10.0	10.0	108	110	77-131	2	15	
1,1,2,2-Tetrachloroethane	9.17	9.64	10.0	10.0	92	96	66-138	5	15	
1,2,3-Trichloropropane	8.28	8.41	10.0	10.0	83	84	67-127	2	18	
1,4-Dichlorobenzene	10.1	10.4	10.0	10.0	101	104	78-127	3	15	
1,2-Dichlorobenzene	10.0	10.4	10.0	10.0	100	104	79-129	4	15	
1,2-Dibromo-3-chloropropane	8.74	8.64	10.0	10.0	87	86	62-140	1	18	
Naphthalene	8.81	9.27	10.0	10.0	88	93	53-144	5	25	
Surrogate:										
Dibromofluoromethane					87	88	68-133			
Toluene-d8					97	99	79-123			
4-Bromofluorobenzene					104	103	78-117			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

10

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-8D					
Laboratory ID:	09-088-01					
Gasoline	ND	100	NWTPH-Gx	9-12-24	9-12-24	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	61-122				
Client ID:	Trip Blank					
Laboratory ID:	09-088-02					
Gasoline	ND	100	NWTPH-Gx	9-12-24	9-12-24	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	87	61-122				

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

							Date	Date)		
Analyte	Result			PQL		ethod	Prepared	Analyzed		Flags	
METHOD BLANK											
Laboratory ID:		MB0912W1									
Gasoline		ND		100	NW	ГРН-Gx	9-12-24	9-12-2	24		
Surrogate:	Pe	rcent Recove	ery C	ontrol Limi	its						
Fluorobenzene		87		61-122							
					Source	Percent	Recovery		RPD		
Analyte	Res	sult	Spil	ke Level	Result	Recovery	Limits	RPD	Limit	Flags	
DUPLICATE											
Laboratory ID:	09-14	46-01									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		NA	NA	NA	30		
Surragata											

Surrogate: Fluorobenzene

91 82 61-122

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW-8D					
Laboratory ID:	09-088-01					
Diesel Range Organics	ND	0.21	NWTPH-Dx	9-12-24	9-12-24	
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	9-12-24	9-12-24	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	82	50-150				

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0912W1					
Diesel Range Organics	ND	0.16	NWTPH-Dx	9-12-24	9-12-24	
Lube Oil Range Organics	ND	0.16	NWTPH-Dx	9-12-24	9-12-24	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	74	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	09-1	32-01								
	ORIG	DUP								
Diesel Range Organics	0.996	0.864	NA	NA		NA	NA	14	40	
Lube Oil Range Organics	1.03	0.814	NA	NA		NA	NA	23	40	
Surrogate:										
o-Terphenyl						96 91	50-150			

TOTAL METALS EPA 6010D

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-8D					
Laboratory ID:	09-088-01					
Iron	0.12	0.050	EPA 6010D	9-16-24	9-16-24	
Magnesium	16	1.0	EPA 6010D	9-16-24	9-16-24	
Manganese	0.026	0.010	EPA 6010D	9-16-24	9-16-24	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010D QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0916WH1					
Iron	ND	0.050	EPA 6010D	9-16-24	9-16-24	
Magnesium	ND	1.0	EPA 6010D	9-16-24	9-16-24	
Manganese	ND	0.010	EPA 6010D	9-16-24	9-16-24	

					Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	09-1	59-04								
	ORIG	DUP								
Iron	0.546	0.623	NA	NA		NA	NA	13	20	
Magnesium	12.9	14.3	NA	NA		NA	NA	10	20	
Manganese	0.110	0.122	NA	NA		NA	NA	10	20	

MATRIX SPIKES

Laboratory ID:	09-1	59-04									
	MS	MSD	MS	MSD		MS	MSD				
Iron	22.0	20.6	20.0	20.0	0.546	107	100	75-125	7	20	
Magnesium	35.8	34.3	20.0	20.0	12.9	114	107	75-125	4	20	
Manganese	0.668	0.631	0.500	0.500	0.110	112	104	75-125	6	20	

DISSOLVED METALS EPA 6010D

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-8D					
Laboratory ID:	09-088-01					
Calcium	24	1.1	EPA 6010D		9-13-24	
Iron	ND	0.056	EPA 6010D		9-13-24	
Magnesium	16	1.1	EPA 6010D		9-13-24	
Manganese	0.026	0.011	EPA 6010D		9-13-24	
Potassium	3.0	1.1	EPA 6010D		9-13-24	
Sodium	18	1.1	EPA 6010D		9-13-24	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED METALS EPA 6010D QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0913D1					
Calcium	ND	1.1	EPA 6010D		9-13-24	
Iron	ND	0.056	EPA 6010D		9-13-24	
Magnesium	ND	1.1	EPA 6010D		9-13-24	
Manganese	ND	0.011	EPA 6010D		9-13-24	
Potassium	ND	1.1	EPA 6010D		9-13-24	
Sodium	ND	1.1	EPA 6010D		9-13-24	

					Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	09-15	59-04								
	ORIG	DUP								
Calcium	24.2	23.9	NA	NA		NA	NA	1	20	
Iron	0.261	0.345	NA	NA		NA	NA	28	20	С
Magnesium	15.5	15.4	NA	NA		NA	NA	1	20	
Manganese	0.130	0.129	NA	NA		NA	NA	0	20	
Potassium	2.65	2.62	NA	NA		NA	NA	1	20	
Sodium	13.5	13.4	NA	NA		NA	NA	1	20	

MATRIX SPIKES

Laboratory ID:	09-1	59-04									
	MS	MSD	MS	MSD		MS	MSD				
Calcium	43.9	45.3	22.2	22.2	24.2	89	95	75-125	3	20	
Iron	22.1	22.8	22.2	22.2	0.261	98	102	75-125	3	20	
Magnesium	35.9	36.4	22.2	22.2	15.5	92	94	75-125	1	20	
Manganese	0.638	0.646	0.556	0.556	0.130	92	93	75-125	1	20	
Potassium	25.9	26.6	22.2	22.2	2.65	105	108	75-125	3	20	
Sodium	32.9	33.4	22.2	22.2	13.5	87	90	75-125	2	20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NITRATE (as Nitrogen) EPA 353.2

Matrix: Water Units: mg/L-N

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-8D					
Laboratory ID:	09-088-01					
Nitrate	0.85	0.050	EPA 353.2	9-10-24	9-10-24	

NITRATE (as Nitrogen) EPA 353.2 QUALITY CONTROL

Matrix: Water Units: mg/L-N

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB0910W1					
ND	0.050	EPA 353.2	9-10-24	9-10-24	
	MB0910W1	MB0910W1	MB0910W1	Result PQL Method Prepared MB0910W1	Result PQL Method Prepared Analyzed MB0910W1

			Source	Percent	Recovery		RPD	
Analyte	Result	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	09-088-01							
	ORIG DU	כ						
Nitrate	0.851 0.79	5 NA	NA	NA	NA	7	22	
MATRIX SPIKE								
Laboratory ID:	09-088-01							
	MS	MS		MS				
Nitrate	2.88	2.00	0.851	101	86-119	NA	NA	
SPIKE BLANK								
Laboratory ID:	SB0910W1							
	SB	SB		SB				
Nitrate	2.06	2.00	NA	103	85-117	NA	NA	

20

CHLORIDE SM 4500-CI E

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-8D					
Laboratory ID:	09-088-01					
Chloride	12	2.0	SM 4500-CI E	9-12-24	9-12-24	

CHLORIDE SM 4500-CI E QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0912W1					
Chloride	ND	2.0	SM 4500-CI E	9-12-24	9-12-24	

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	09-08	38-01							
	ORIG	DUP							
Chloride	12.0	11.9	NA	NA	NA	NA	1	21	
MATRIX SPIKE									
Laboratory ID:	09-08	38-01							
	Μ	S	MS		MS				
Chloride	67	.5	50.0	12.0	111	81-115	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB09	12W1							
	S	В	SB		SB				
Chloride	53	6.8	50.0	NA	108	77-115	NA	NA	

SULFATE ASTM D516-11

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-8D					
Laboratory ID:	09-088-01					
Sulfate	46	20	ASTM D516-11	9-10-24	9-10-24	

SULFATE ASTM D516-11 QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0910W1					
Sulfate	ND	5.0	ASTM D516-11	9-10-24	9-10-24	

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	09-01	17-01							
	ORIG	DUP							
Sulfate	ND	ND	NA	NA	NA	NA	NA	11	
MATRIX SPIKE									
Laboratory ID:	09-01	17-01							
	Μ	IS	MS		MS				
Sulfate	8.9	91	10.0	ND	89	69-134	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB09	10W1							
	S	В	SB		SB				
Sulfate	8.8	81	10.0	NA	88	81-106	NA	NA	

TOTAL DISSOLVED SOLIDS SM 2540C

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-8D					
Laboratory ID:	09-088-01					
Total Dissolved Solids	230	13	SM 2540C	9-10-24	9-10-24	

TOTAL DISSOLVED SOLIDS SM 2540C QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0910W1					
Total Dissolved Solids	ND	13	SM 2540C	9-10-24	9-10-24	

Analyte	Res	sult	Spike Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE									
Laboratory ID:	09-0 ²	17-01							
	ORIG	DUP							
Total Dissolved Solids	3750	3710	NA	NA	NA	NA	1	29	
SPIKE BLANK									
Laboratory ID:	SB09	10W1							
	S	В	SB		SB				
Total Dissolved Solids	48	81	500	NA	96	76-120	NA	NA	

TOTAL ALKALINITY SM 2320B

Matrix: Water Units: mg CaCO3/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-8D					
Laboratory ID:	09-088-01					
Total Alkalinity	94	2.0	SM 2320B	9-13-24	9-13-24	

TOTAL ALKALINITY SM 2320B QUALITY CONTROL

Matrix: Water Units: mg CaCO3/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0913W1					
Total Alkalinity	ND	2.0	SM 2320B	9-13-24	9-13-24	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-1	59-04									
	ORIG	DUP									
Total Alkalinity	92.0	92.0	Ν	IA	NA		NA	NA	0	10	
MATRIX SPIKES											
Laboratory ID:	09-1	59-04									
	MS	MSD	MS	MSD		MS	MSD				
Total Alkalinity	182	182	100	100	92.0	90	90	80-120	0	20	
SPIKE BLANK											
Laboratory ID:	SB09	13W1									
	S	B	S	BB			SB				
Total Alkalinity	98	3.0	1	00	NA		98	82-101	NA	NA	

BICARBONATE SM 2320B

Matrix: Water Units: mg CaCO3/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-8D					
Laboratory ID:	09-088-01					
Bicarbonate	94	2.0	SM 2320B	9-13-24	9-13-24	

BICARBONATE SM 2320B QUALITY CONTROL

Matrix: Water Units: mg CaCO3/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0913W1					
Bicarbonate	ND	2.0	SM 2320B	9-13-24	9-13-24	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-1	59-04									
	ORIG	DUP									
Total Alkalinity	92.0	92.0	Ν	IA	NA		NA	NA	0	10	
MATRIX SPIKES											
Laboratory ID:	09-1	59-04									
	MS	MSD	MS	MSD		MS	MSD				
Total Alkalinity	182	182	100	100	92.0	90	90	80-120	0	20	
SPIKE BLANK											
Laboratory ID:	SB09	13W1									
	S	В	S	BB			SB				
Total Alkalinity	98	3.0	1	00	NA		98	82-101	NA	NA	

AMMONIA (as Nitrogen) SM 4500-NH₃ D

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-8D					
Laboratory ID:	09-088-01					
Ammonia	ND	0.053	SM 4500-NH3 D	9-16-24	9-16-24	

AMMONIA (as Nitrogen) SM 4500-NH₃ D QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0916W1					
Ammonia	ND	0.053	SM 4500-NH3 D	9-16-24	9-16-24	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-1	59-04									
	ORIG	DUP									
Ammonia	ND	ND	Ν	A	NA		NA	NA	NA	15	
MATRIX SPIKES											
Laboratory ID:	09-1	59-04									
	MS	MSD	MS	MSD		MS	MSD				
Ammonia	4.93	4.95	5.00	5.00	ND	99	99	75-111	0	20	
SPIKE BLANK											
Laboratory ID:	SB09	16W1									
	S	B	5	BB			SB				
Ammonia	4.	95	5.	.00	NA		99	81-110	NA	NA	

32

TOTAL ORGANIC CARBON SM 5310B

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-8D					
Laboratory ID:	09-088-01					
Total Organic Carbon	1.3	1.0	SM 5310B	9-17-24	9-17-24	

TOTAL ORGANIC CARBON SM 5310B QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0917W1					
Total Organic Carbon	ND	1.0	SM 5310B	9-17-24	9-17-24	

					Source	Per	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-1	59-04									
	ORIG	DUP									
Total Organic Carbon	ND	ND	Ν	A	NA	1	NA	NA	NA	11	
MATRIX SPIKES											
Laboratory ID:	09-1	59-04									
	MS	MSD	MS	MSD		MS	MSD				
Total Organic Carbon	11.1	10.8	10.0	10.0	ND	111	108	85-120	3	20	
SPIKE BLANK											
Laboratory ID:	SB09	17W1									
	S	В	S	В		S	SB				
Total Organic Carbon	10).3	10).0	NA	1	03	79-120	NA	NA	

34

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

	A OnSit	6		Cha	nin o	f (Pa	ige	ι	_of	1		
	14648 NE 9 Phone: (425	onmental Inc. 15th Street • Redmond, WA 98052 1) 883-3881 • www.onsite-env.com	Turr (in	naround Requ working day	iest is)		L	abo	rate	ory	Nu	mb	er:	0	9 -	- 0	8	8									
Compa				(Check One)	-					3	Na) 🗙				[- T			
Project	Number: 553-	8472-006	Sam	-	☐ 1 Day ☐ 3 Days		I-351 Appendix I) I 1,2-EDB				Ca, K,																
Project	Name: DTG	Yakima LPL		ndard (7 Days)		s	73-351 A				Mg,	0	onate														
Project	Manager: Mike	e Brady		H analysis 5 D	ays)	Number of Containers	VOCs (8260D – WAC 173- Vaphthalene; SIM-VC and			Total Metals (Fe, Mn, Mg)	Dissolved Metals (Fe, Mn,	Nitrate, chloride, sulfate	TDS, Alkalinity, Bicarbonate														
Sample	ed by: Mt	BN	$ \Box_{-}$	(other)		er of Co	8260D - alene; SI	+GX	+Dx	letals (F	ed Meta	chloride	lkalinity,	lia													iture
Lab ID	S	ample Identification	Date Sampled	Time Sampled	Matrix	Numbe	VOCs (I Naphtha	NWTPH-GX	NWTPH-Dx	Total M	Dissolv	Nitrate,	TDS, A	Ammonia	TOC												% Moisture
١	MW-8D-		9/9/24	1530	Water	518	×	x	х	х	х	х	x	x	x												
2	Trip Blank		9/8-9/10		Ho	4	x	х																			
																				2							
		Signature	C	ompany		1		Date	_		Time			Cor	nmer	nts/Sp	ecial	Instru	iction	IS		I					
	quished	MULBI		arametrix	~~~~				10			:04		-	>	E		T	_	La	red	1					
Rece		Nichells fri	>	OST	5			91	0	24	0	93	6			71	~10		777	6.	EU						
Relin	quished													-													
	quished													-													
Rece																											
Revi	ewed/Date			Reviewed/Da	ite			I	- 18.00.00					Chr	omato	grams	with f	inal re	anort								
L		Da	ata Package:		evel IV 🗌 E	lectro	onic Da	ita Del	iverab	les (E	DDs)	X	_		-mail				Port							2	2°

September 23, 2024

Michael Brady Parametrix, Inc. 719 2nd Avenue, Suite 200 Seattle, WA 98104

Re: Analytical Data for Project 553-8472-006 Laboratory Reference No. 2409-157

Dear Michael:

Enclosed are the analytical results and associated quality control data for samples submitted on September 12, 2024.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: September 23, 2024 Samples Submitted: September 12, 2024 Laboratory Reference: 2409-157 Project: 553-8472-006

Case Narrative

Samples were collected on September 10 and 11, 2024 and received by the laboratory on September 12, 2024. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below. However the soil results for the QA/QC samples are reported on a wet-weight basis.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Volatiles EPA 8260D Analysis

The percent recovery for Trichloroethene is outside the control limits on the high end in the Spike Blank and Spike Blank Duplicate. The method allows for a percentage of the compounds to fall outside of the control limits due to the large number of analytes being spiked.

Nitrate (as Nitrogen) EPA 353.2 Analysis

Sample MW-9D-0910 was received and analyzed outside of holding time.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

2

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10D-0911					
Laboratory ID:	09-157-01					
Chloromethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	9-16-24	9-16-24	
Bromomethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Chloroethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Trichlorofluoromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Acetone	ND	5.0	EPA 8260D	9-16-24	9-16-24	
lodomethane	ND	1.3	EPA 8260D	9-16-24	9-16-24	
Carbon Disulfide	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Methylene Chloride	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Acrylonitrile	ND	0.50	EPA 8260D	9-16-24	9-16-24	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1-Dichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Vinyl Acetate	ND	1.0	EPA 8260D	9-16-24	9-16-24	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
2-Butanone	ND	5.0	EPA 8260D	9-16-24	9-16-24	
Bromochloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Chloroform	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Carbon Tetrachloride	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Benzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Trichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichloropropane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Dibromomethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Bromodichloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	9-16-24	9-16-24	
Toluene	1.4	1.0	EPA 8260D	9-16-24	9-16-24	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Tetrachloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10D-0911					
Laboratory ID:	09-157-01					
2-Hexanone	ND	2.0	EPA 8260D	9-16-24	9-16-24	
Dibromochloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	9-16-24	9-16-24	
Chlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Ethylbenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
m,p-Xylene	ND	0.40	EPA 8260D	9-16-24	9-16-24	
o-Xylene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Styrene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Bromoform	ND	1.0	EPA 8260D	9-16-24	9-16-24	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	9-16-24	9-16-24	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Naphthalene	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	92	68-133				
Toluene-d8	100	79-123				
4-Bromofluorobenzene	103	78-117				

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

Date of Report: September 23, 2024 Samples Submitted: September 12, 2024 Laboratory Reference: 2409-157 Project: 553-8472-006

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Trip Blank					
Laboratory ID:	09-157-02					
Chloromethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	9-16-24	9-16-24	
Bromomethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Chloroethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Trichlorofluoromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Acetone	ND	5.0	EPA 8260D	9-16-24	9-16-24	
lodomethane	ND	1.3	EPA 8260D	9-16-24	9-16-24	
Carbon Disulfide	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Methylene Chloride	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Acrylonitrile	ND	0.50	EPA 8260D	9-16-24	9-16-24	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1-Dichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Vinyl Acetate	ND	1.0	EPA 8260D	9-16-24	9-16-24	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
2-Butanone	ND	5.0	EPA 8260D	9-16-24	9-16-24	
Bromochloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Chloroform	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Carbon Tetrachloride	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Benzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Trichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichloropropane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Dibromomethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Bromodichloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	9-16-24	9-16-24	
Toluene	ND	1.0	EPA 8260D	9-16-24	9-16-24	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Tetrachloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Trip Blank					
Laboratory ID:	09-157-02					
2-Hexanone	ND	2.0	EPA 8260D	9-16-24	9-16-24	
Dibromochloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	9-16-24	9-16-24	
Chlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Ethylbenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
m,p-Xylene	ND	0.40	EPA 8260D	9-16-24	9-16-24	
o-Xylene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Styrene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Bromoform	ND	1.0	EPA 8260D	9-16-24	9-16-24	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	9-16-24	9-16-24	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Naphthalene	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	95	68-133				
Toluene-d8	99	79-123				
4-Bromofluorobenzene	103	78-117				

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

6

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9D-0910					
Laboratory ID:	09-157-03					
Chloromethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	9-16-24	9-16-24	
Bromomethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Chloroethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Trichlorofluoromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Acetone	ND	5.0	EPA 8260D	9-16-24	9-16-24	
lodomethane	ND	1.3	EPA 8260D	9-16-24	9-16-24	
Carbon Disulfide	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Methylene Chloride	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Acrylonitrile	ND	0.50	EPA 8260D	9-16-24	9-16-24	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1-Dichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Vinyl Acetate	ND	1.0	EPA 8260D	9-16-24	9-16-24	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
2-Butanone	ND	5.0	EPA 8260D	9-16-24	9-16-24	
Bromochloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Chloroform	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Carbon Tetrachloride	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Benzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Trichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichloropropane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Dibromomethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Bromodichloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	9-16-24	9-16-24	
Toluene	2.7	1.0	EPA 8260D	9-16-24	9-16-24	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Tetrachloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9D-0910					
Laboratory ID:	09-157-03					
2-Hexanone	ND	2.0	EPA 8260D	9-16-24	9-16-24	
Dibromochloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	9-16-24	9-16-24	
Chlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Ethylbenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
m,p-Xylene	ND	0.40	EPA 8260D	9-16-24	9-16-24	
o-Xylene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Styrene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Bromoform	ND	1.0	EPA 8260D	9-16-24	9-16-24	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	9-16-24	9-16-24	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Naphthalene	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	95	68-133				
Toluene-d8	100	79-123				
4-Bromofluorobenzene	104	78-117				

VOLATILE ORGANICS EPA 8260D/SIM

page 2 of 2

Date of Report: September 23, 2024 Samples Submitted: September 12, 2024 Laboratory Reference: 2409-157 Project: 553-8472-006

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

	_			Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0916W1					
Chloromethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	9-16-24	9-16-24	
Bromomethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Chloroethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Trichlorofluoromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Acetone	ND	5.0	EPA 8260D	9-16-24	9-16-24	
lodomethane	ND	1.3	EPA 8260D	9-16-24	9-16-24	
Carbon Disulfide	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Methylene Chloride	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Acrylonitrile	ND	0.50	EPA 8260D	9-16-24	9-16-24	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1-Dichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Vinyl Acetate	ND	1.0	EPA 8260D	9-16-24	9-16-24	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
2-Butanone	ND	5.0	EPA 8260D	9-16-24	9-16-24	
Bromochloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Chloroform	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Carbon Tetrachloride	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Benzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Trichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichloropropane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Dibromomethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Bromodichloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	9-16-24	9-16-24	
Toluene	ND	1.0	EPA 8260D	9-16-24	9-16-24	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Tetrachloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

9

Date of Report: September 23, 2024 Samples Submitted: September 12, 2024 Laboratory Reference: 2409-157 Project: 553-8472-006

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0916W1					
2-Hexanone	ND	2.0	EPA 8260D	9-16-24	9-16-24	
Dibromochloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	9-16-24	9-16-24	
Chlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Ethylbenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
m,p-Xylene	ND	0.40	EPA 8260D	9-16-24	9-16-24	
o-Xylene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Styrene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Bromoform	ND	1.0	EPA 8260D	9-16-24	9-16-24	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	9-16-24	9-16-24	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Naphthalene	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	93	68-133				
Toluene-d8	100	79-123				
4-Bromofluorobenzene	102	78-117				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

Units: ug/L					Per	cent	Recovery		RPD	
Analyte	Res	ult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB091									
	SB	SBD	SB	SBD	SB	SBD				
Chloromethane	10.8	10.8	10.0	10.0	108	108	45-145	0	19	
Vinyl Chloride	11.1	11.0	10.0	10.0	111	110	67-130	1	15	
Bromomethane	9.58	11.1	10.0	10.0	96	111	27-165	15	36	
Chloroethane	9.46	9.36	10.0	10.0	95	94	61-132	1	18	
Trichlorofluoromethane	12.1	12.0	10.0	10.0	121	120	67-136	1	17	
1,1-Dichloroethene	11.2	11.3	10.0	10.0	112	113	74-125	1	15	
Acetone	8.44	8.94	10.0	10.0	84	89	49-140	6	20	
lodomethane	7.65	9.38	10.0	10.0	77	94	15-154	20	49	
Carbon Disulfide	8.76	9.08	10.0	10.0	88	91	58-122	4	18	
Methylene Chloride	9.98	9.89	10.0	10.0	100	99	70-123	1	15	
(trans) 1,2-Dichloroethene	10.9	10.9	10.0	10.0	109	109	77-125	0	15	
1,1-Dichloroethane	10.7	10.8	10.0	10.0	107	108	75-125	1	15	
Vinyl Acetate	9.41	9.35	10.0	10.0	94	94	61-138	1	16	
(cis) 1,2-Dichloroethene	11.1	11.2	10.0	10.0	111	112	78-130	1	15	
2-Butanone	9.39	9.09	10.0	10.0	94	91	58-144	3	16	
Bromochloromethane	10.7	10.9	10.0	10.0	107	109	79-132	2	15	
Chloroform	10.4	10.7	10.0	10.0	104	107	73-128	3	15	
1,1,1-Trichloroethane	10.8	11.0	10.0	10.0	108	110	72-127	2	15	
Carbon Tetrachloride	11.0	11.1	10.0	10.0	110	111	68-131	1	15	
Benzene	11.1	11.2	10.0	10.0	111	112	76-124	1	15	
1,2-Dichloroethane	11.4	11.3	10.0	10.0	114	113	68-133	1	15	
Trichloroethene	12.7	13.0	10.0	10.0	127	130	80-126	2	15	١,١
1,2-Dichloropropane	11.4	11.5	10.0	10.0	114	115	78-124	1	15	
Dibromomethane	12.5	12.4	10.0	10.0	125	124	76-131	1	15	
Bromodichloromethane	11.2	11.4	10.0	10.0	112	114	81-128	2	15	
(cis) 1,3-Dichloropropene	11.8	11.9	10.0	10.0	118	119	80-131	1	15	
Methyl Isobutyl Ketone	10.2	9.99	10.0	10.0	102	100	67-133	2	16	
Toluene	11.1	11.3	10.0	10.0	111	113	75-120	2	15	
(trans) 1,3-Dichloropropene	10.5	10.4	10.0	10.0	105	104	77-128	1	15	
1,1,2-Trichloroethane	9.98	10.0	10.0	10.0	100	100	80-124	0	15	
Tetrachloroethene	11.3	11.4	10.0	10.0	113	114	80-125	1	15	
2-Hexanone	8.83	8.73	10.0	10.0	88	87	65-134	1	20	
Dibromochloromethane	10.3	10.5	10.0	10.0	103	105	81-131	2	15	

A

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

11

Date of Report: September 23, 2024 Samples Submitted: September 12, 2024 Laboratory Reference: 2409-157 Project: 553-8472-006

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL page 2 of 2

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB09	16W1								
	SB	SBD	SB	SBD	SB	SBD				
1,2-Dibromoethane	11.3	11.6	10.0	10.0	113	116	82-129	3	15	
Chlorobenzene	10.8	11.0	10.0	10.0	108	110	80-119	2	15	
1,1,1,2-Tetrachloroethane	11.0	11.3	10.0	10.0	110	113	80-124	3	15	
Ethylbenzene	10.8	11.0	10.0	10.0	108	110	80-121	2	15	
m,p-Xylene	21.2	21.4	20.0	20.0	106	107	80-122	1	15	
o-Xylene	10.4	10.6	10.0	10.0	104	106	80-121	2	15	
Styrene	11.3	11.6	10.0	10.0	113	116	82-128	3	15	
Bromoform	10.8	11.0	10.0	10.0	108	110	77-131	2	15	
1,1,2,2-Tetrachloroethane	9.17	9.64	10.0	10.0	92	96	66-138	5	15	
1,2,3-Trichloropropane	8.28	8.41	10.0	10.0	83	84	67-127	2	18	
1,4-Dichlorobenzene	10.1	10.4	10.0	10.0	101	104	78-127	3	15	
1,2-Dichlorobenzene	10.0	10.4	10.0	10.0	100	104	79-129	4	15	
1,2-Dibromo-3-chloropropane	8.74	8.64	10.0	10.0	87	86	62-140	1	18	
Naphthalene	8.81	9.27	10.0	10.0	88	93	53-144	5	25	
Surrogate:										
Dibromofluoromethane					87	88	68-133			
Toluene-d8					97	99	79-123			
4-Bromofluorobenzene					104	103	78-117			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10D-0911					
Laboratory ID:	09-157-01					
Gasoline	ND	100	NWTPH-Gx	9-16-24	9-16-24	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	61-122				
Client ID:	Trip Blank					
Laboratory ID:	09-157-02					
Gasoline	ND	100	NWTPH-Gx	9-16-24	9-16-24	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	61-122				
Client ID:	MW-9D-0910					
Laboratory ID:	09-157-03					
Gasoline	ND	100	NWTPH-Gx	9-16-24	9-16-24	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	83	61-122				

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

onits. ug/L (ppb)						Date	Date)	
Analyte		Result	PQI	_ M	ethod	Prepared	Analyz	ed	Flags
METHOD BLANK									
Laboratory ID:		MB0916W2							
Gasoline		ND	100) NW	TPH-Gx	9-16-24	9-16-2	24	
Surrogate:	Per	rcent Recover	y Control I	Limits					
Fluorobenzene		85	61-12	22					
				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Lev	el Result	Recover	y Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	09-14	18-01							
	ORIG	DUP							
Gasoline	ND	ND	NA N	A	NA	NA	NA	30	
Surrogate:									
Fluorobenzene					85 81	61-122			

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW-10D-0911					
Laboratory ID:	09-157-01					
Diesel Range Organics	ND	0.20	NWTPH-Dx	9-16-24	9-16-24	
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	9-16-24	9-16-24	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	87	50-150				

Client ID:	MW-9D-0910					
Laboratory ID:	09-157-03					
Diesel Range Organics	0.46	0.057	NWTPH-Dx	9-16-24	9-19-24	
Lube Oil Range Organics	0.073	0.057	NWTPH-Dx	9-16-24	9-19-24	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				

Date of Report: September 23, 2024 Samples Submitted: September 12, 2024 Laboratory Reference: 2409-157 Project: 553-8472-006

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB0916W1					
ND	0.053	NWTPH-Dx	9-16-24	9-19-24	
ND	0.053	NWTPH-Dx	9-16-24	9-19-24	
Percent Recovery	Control Limits				
86	50-150				
-	MB0916W1 ND ND Percent Recovery	MB0916W1 ND 0.053 ND 0.053 Percent Recovery Control Limits	MB0916W1ND0.053ND0.053ND0.053Percent RecoveryControl Limits	Result PQL Method Prepared MB0916W1 -<	Result PQL Method Prepared Analyzed MB0916W1 -

					Source	Perc	ent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-17	74-01									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		NA	4	NA	NA	40	
Lube Oil Range	ND	ND	NA	NA		NA	Ą	NA	NA	40	
Surrogate:											
o-Terphenyl						88	81	50-150			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010D

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10D-0911					
Laboratory ID:	09-157-01					
Iron	0.15	0.050	EPA 6010D	9-16-24	9-16-24	
Magnesium	10	1.0	EPA 6010D	9-16-24	9-16-24	
Manganese	0.022	0.010	EPA 6010D	9-16-24	9-16-24	

Olient ID.	10100-50-0510					
Laboratory ID:	09-157-03					
Iron	23	0.050	EPA 6010D	9-16-24	9-16-24	
Magnesium	28	1.0	EPA 6010D	9-16-24	9-16-24	
Manganese	0.42	0.010	EPA 6010D	9-16-24	9-16-24	

TOTAL METALS EPA 6010D QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0916WH1					
Iron	ND	0.050	EPA 6010D	9-16-24	9-16-24	
Magnesium	ND	1.0	EPA 6010D	9-16-24	9-16-24	
Manganese	ND	0.010	EPA 6010D	9-16-24	9-16-24	

					Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	09-1	59-04								
	ORIG	DUP								
Iron	0.546	0.623	NA	NA		NA	NA	13	20	
Magnesium	12.9	14.3	NA	NA		NA	NA	10	20	
Manganese	0.110	0.122	NA	NA		NA	NA	10	20	

MATRIX SPIKES

Laboratory ID:	09-1	59-04									
	MS	MSD	MS	MSD		MS	MSD				
Iron	22.0	20.6	20.0	20.0	0.546	107	100	75-125	7	20	
Magnesium	35.8	34.3	20.0	20.0	12.9	114	107	75-125	4	20	
Manganese	0.668	0.631	0.500	0.500	0.110	112	104	75-125	6	20	

DISSOLVED METALS EPA 6010D

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10D-0911					
Laboratory ID:	09-157-01					
Calcium	17	1.1	EPA 6010D		9-13-24	
Iron	ND	0.056	EPA 6010D		9-13-24	
Magnesium	10	1.1	EPA 6010D		9-13-24	
Manganese	0.021	0.011	EPA 6010D		9-13-24	
Potassium	2.2	1.1	EPA 6010D		9-13-24	
Sodium	15	1.1	EPA 6010D		9-13-24	

Client ID:	MW-9D-0910				
Laboratory ID:	09-157-03				
Calcium	48	1.1	EPA 6010D	9-13-24	
Iron	0.39	0.056	EPA 6010D	9-13-24	
Magnesium	27	1.1	EPA 6010D	9-13-24	
Manganese	0.17	0.011	EPA 6010D	9-13-24	
Potassium	ND	1.1	EPA 6010D	9-13-24	
Sodium	52	1.1	EPA 6010D	9-13-24	

DISSOLVED METALS EPA 6010D QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0913D1					
Calcium	ND	1.1	EPA 6010D		9-13-24	
Iron	ND	0.056	EPA 6010D		9-13-24	
Magnesium	ND	1.1	EPA 6010D		9-13-24	
Manganese	ND	0.011	EPA 6010D		9-13-24	
Potassium	ND	1.1	EPA 6010D		9-13-24	
Sodium	ND	1.1	EPA 6010D		9-13-24	

					Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	09-15	59-04								
	ORIG	DUP								
Calcium	24.2	23.9	NA	NA		NA	NA	1	20	
Iron	0.261	0.345	NA	NA		NA	NA	28	20	С
Magnesium	15.5	15.4	NA	NA		NA	NA	1	20	
Manganese	0.130	0.129	NA	NA		NA	NA	0	20	
Potassium	2.65	2.62	NA	NA		NA	NA	1	20	
Sodium	13.5	13.4	NA	NA		NA	NA	1	20	

MATRIX SPIKES

Laboratory ID:	09-1	59-04									
	MS	MSD	MS	MSD		MS	MSD				
Calcium	43.9	45.3	22.2	22.2	24.2	89	95	75-125	3	20	
Iron	22.1	22.8	22.2	22.2	0.261	98	102	75-125	3	20	
Magnesium	35.9	36.4	22.2	22.2	15.5	92	94	75-125	1	20	
Manganese	0.638	0.646	0.556	0.556	0.130	92	93	75-125	1	20	
Potassium	25.9	26.6	22.2	22.2	2.65	105	108	75-125	3	20	
Sodium	32.9	33.4	22.2	22.2	13.5	87	90	75-125	2	20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NITRATE (as Nitrogen) EPA 353.2

Matrix: Water Units: mg/L-N

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10D-0911					
Laboratory ID:	09-157-01					
Nitrate	1.5	0.050	EPA 353.2	9-13-24	9-13-24	
Client ID:	MW-9D-0910					
Laboratory ID:	09-157-03					
Nitrate	0.17	0.050	EPA 353.2	9-13-24	9-13-24	

21

NITRATE (as Nitrogen) EPA 353.2 QUALITY CONTROL

Matrix: Water Units: mg/L-N

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0913W1					
Nitrate	ND	0.050	EPA 353.2	9-13-24	9-13-24	

					Source	Pei	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-1	59-04									
	ORIG	DUP									
Nitrate	ND	ND	Ν	IA	NA	1	NA	NA	NA	22	
MATRIX SPIKES											
Laboratory ID:	09-1	59-04									
	MS	MSD	MS	MSD		MS	MSD				
Nitrate	2.10	2.34	2.00	2.00	ND	105	117	86-119	11	20	
SPIKE BLANK											
Laboratory ID:	SB09	13W1									
	S	В	S	B		ę	SB				
Nitrate	2.	13	2.	00	NA	1	07	85-117	NA	NA	

22

CHLORIDE SM 4500-CI E

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10D-0911					
Laboratory ID:	09-157-01					
Chloride	4.9	2.0	SM 4500-CI E	9-18-24	9-18-24	
Client ID:	MW-9D-0910					
Laboratory ID:	09-157-03					
Chloride	74	2.0	SM 4500-CI E	9-18-24	9-18-24	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

CHLORIDE SM 4500-CI E QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0918W1					
Chloride	ND	2.0	SM 4500-CI E	9-18-24	9-18-24	

					Source	Pei	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-1	59-04									
	ORIG	DUP									
Chloride	18.7	19.4	Ν	IA	NA	1	NA	NA	4	21	
MATRIX SPIKES											
Laboratory ID:	09-1	59-04									
	MS	MSD	MS	MSD		MS	MSD				
Chloride	74.0	74.8	50.0	50.0	18.7	111	112	81-115	1	20	
SPIKE BLANK											
Laboratory ID:	SB09	18W1									
	S	B	S	BB		ç	SB				
Chloride	51	1.7	50	0.0	NA	1	03	77-115	NA	NA	

24

SULFATE ASTM D516-11

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10D-0911					
Laboratory ID:	09-157-01					
Sulfate	12	5.0	ASTM D516-11	9-17-24	9-17-24	
Client ID:	MW-9D-0910					
Laboratory ID:	09-157-03					
Sulfate	200	50	ASTM D516-11	9-17-24	9-17-24	

SULFATE ASTM D516-11 QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0917W1					
Sulfate	ND	5.0	ASTM D516-11	9-17-24	9-17-24	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-1	59-04									
	ORIG	DUP									
Sulfate	39.2	42.3	Ν	A	NA		NA	NA	8	11	
MATRIX SPIKES											
Laboratory ID:	09-1	59-04									
	MS	MSD	MS	MSD		MS	MSD				
Sulfate	79.5	82.7	40.0	40.0	39.2	101	109	69-134	4	20	
SPIKE BLANK											
Laboratory ID:	SB09	17W1									
	S	B	S	BB			SB				
Sulfate	9.	10	1(0.0	NA		91	81-106	NA	NA	

26

TOTAL DISSOLVED SOLIDS SM 2540C

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10D-0911					
Laboratory ID:	09-157-01					
Total Dissolved Solids	160	13	SM 2540C	9-16-24	9-16-24	
Client ID:	MW-9D-0910					
Laboratory ID:	09-157-03					
Total Dissolved Solids	460	13	SM 2540C	9-16-24	9-16-24	

27

TOTAL DISSOLVED SOLIDS SM 2540C QUALITY CONTROL

Matrix: Water Units: mg/L

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB0916W1					
ND	13	SM 2540C	9-16-24	9-16-24	
	MB0916W1	MB0916W1	MB0916W1	Result PQL Method Prepared MB0916W1	Result PQL Method Prepared Analyzed MB0916W1 MB0916W1

Analyte	Re	sult	Spike Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE									
Laboratory ID:	09-15	59-04							
	ORIG	DUP							
Total Dissolved Solids	185	188	NA	NA	NA	NA	2	29	
SPIKE BLANK									
Laboratory ID:	SB09	16W1							
	S	В	SB		SB				
Total Dissolved Solids	47	79	500	NA	96	76-120	NA	NA	

TOTAL ALKALINITY SM 2320B

Matrix: Water Units: mg CaCO3/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10D-0911					
Laboratory ID:	09-157-01					
Total Alkalinity	94	2.0	SM 2320B	9-13-24	9-13-24	
Client ID:	MW-9D-0910					
Laboratory ID:	09-157-03					
Total Alkalinity	68	2.0	SM 2320B	9-13-24	9-13-24	

TOTAL ALKALINITY SM 2320B QUALITY CONTROL

Matrix: Water Units: mg CaCO3/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0913W1					
Total Alkalinity	ND	2.0	SM 2320B	9-13-24	9-13-24	

				S		Pe	rcent	Recovery			
Analyte	Re	sult	Spike	Level	Result	Rec	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-1	59-04									
	ORIG	DUP									
Total Alkalinity	92.0	92.0	Ν	IA	NA		NA	NA	0	10	
MATRIX SPIKES											
Laboratory ID:	09-1	59-04									
	MS	MSD	MS	MSD		MS	MSD				
Total Alkalinity	182	182	100	100	92.0	90	90	80-120	0	20	
SPIKE BLANK											
Laboratory ID:	SB09	13W1									
	S	SB	S	B			SB				
Total Alkalinity	98	8.0	1	00	NA		98	82-101	NA	NA	

BICARBONATE SM 2320B

Matrix: Water Units: mg CaCO3/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10D-0911					
Laboratory ID:	09-157-01					
Bicarbonate	94	2.0	SM 2320B	9-13-24	9-13-24	
Client ID:	MW-9D-0910					
Laboratory ID:	09-157-03					
Bicarbonate	68	2.0	SM 2320B	9-13-24	9-13-24	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

BICARBONATE SM 2320B QUALITY CONTROL

Matrix: Water Units: mg CaCO3/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0913W1					
Bicarbonate	ND	2.0	SM 2320B	9-13-24	9-13-24	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	e Level	Result	Rec	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-1	59-04									
	ORIG	DUP									
Total Alkalinity	92.0	92.0	Ν	IA	NA		NA	NA	0	10	
MATRIX SPIKES											
Laboratory ID:	09-1	59-04									
	MS	MSD	MS	MSD		MS	MSD				
Total Alkalinity	182	182	100	100	92.0	90	90	80-120	0	20	
SPIKE BLANK											
Laboratory ID:	SB09	13W1									
	S	B	S	SB			SB				
Total Alkalinity	98	3.0	1	00	NA		98	82-101	NA	NA	

32

AMMONIA (as Nitrogen) SM 4500-NH₃ D

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10D-0911					
Laboratory ID:	09-157-01					
Ammonia	ND	0.053	SM 4500-NH3 D	9-16-24	9-16-24	
Client ID:	MW-9D-0910					
Laboratory ID:	09-157-03					
Ammonia	0.78	0.053	SM 4500-NH3 D	9-16-24	9-16-24	

33

AMMONIA (as Nitrogen) SM 4500-NH₃ D QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0916W1					
Ammonia	ND	0.053	SM 4500-NH3 D	9-16-24	9-16-24	

			So		Source	Pe	rcent	Recovery		RPD			
Analyte	Re	sult	Spike	Level	Result	Rec	covery	Limits	RPD	Limit	Flags		
DUPLICATE													
Laboratory ID:	09-1	59-04											
	ORIG	DUP											
Ammonia	ND	ND	Ν	A	NA		NA	NA	NA	15			
MATRIX SPIKES													
Laboratory ID:	09-1	59-04											
	MS	MSD	MS	MSD		MS	MSD						
Ammonia	4.93	4.95	5.00	5.00	ND	99	99	75-111	0	20			
SPIKE BLANK													
Laboratory ID:	SB09	16W1											
	S	B	S	BB			SB						
Ammonia	4.	95	5.	00	NA		99	81-110	NA	NA			

TOTAL ORGANIC CARBON SM 5310B

Matrix: Water Units: mg/L

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MW-10D-0911					
09-157-01					
ND	1.0	SM 5310B	9-17-24	9-17-24	
MW-9D-0910					
09-157-03					
4.0	1.0	SM 5310B	9-17-24	9-17-24	
	MW-10D-0911 09-157-01 ND MW-9D-0910 09-157-03	MW-10D-0911 09-157-01 ND 1.0 MW-9D-0910 09-157-03	MW-10D-0911 09-157-01 ND 1.0 SM 5310B MW-9D-0910 09-157-03 Instant Second Se	Result PQL Method Prepared MW-10D-0911 09-157-01	Result PQL Method Prepared Analyzed MW-10D-0911 09-157-01 - </td

35

TOTAL ORGANIC CARBON SM 5310B QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0917W1					
Total Organic Carbon	ND	1.0	SM 5310B	9-17-24	9-17-24	

			Source	Per	rcent	Recovery		RPD					
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags		
DUPLICATE													
Laboratory ID:	09-1	59-04											
	ORIG	DUP											
Total Organic Carbon	ND	ND	Ν	A	NA	1	NA	NA	NA	11			
MATRIX SPIKES													
Laboratory ID:	09-1	59-04											
	MS	MSD	MS	MSD		MS	MSD						
Total Organic Carbon	11.1	10.8	10.0	10.0	ND	111	108	85-120	3	20			
SPIKE BLANK													
Laboratory ID:	SB09	17W1											
	S	В	S	В		S	SB						
Total Organic Carbon	10).3	10).0	NA	1	03	79-120	NA	NA			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Consite		Cha	ain o) 1 (Cu	st	00	ly											Page	,	o	ı/	1	
Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Turna (in v	around Req working day	uest ys)		L	abo	orat	ory	Nu	ımb	er:	0	9	•	1 5	7	0							
Company: Parametrix	(Check One)	1 Day		(1				Ia) PP												an dan dari da Antonio da			
Project Number: 553-8472-006			1 Day		VOCs (8260D – WAC 173-351 Appendix I) Naphthalene; SIM-VC and 1,2-EDB				Ca, K, Na)					2										
Project Name: DTG Yakima LPL	Stand	lard (7 Days))		73-351 A			lg)	In, Mg,		nate				ia.									
Project Manager: Mike Brady		analysis 5 D)ays)	ntainers	WAC 17 M-VC ar			e, Mn, N	s (Fe, N	, sulfate	Bicarbo													
Sampled by: C. Burgeons	1	(other)		Number of Containers	3260D - llene; SI	-Gx	YD.	Total Metals (Fe, Mn, Mg)	Dissolved Metals (Fe, Mn, Mg,	Nitrate, chloride, sulfate	TDS, Alkalinity, Bicarbonate	20.												nre
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Numbe	VOCs (8 Naphtha	NWTPH-Gx	NWTPH-Dx	Total Me	Dissolve	Nitrate,	TDS, AI	Ammonia	TOC											% Moisture
/	9/11/24	1215	Water	13	x	x	x	x	х	х	X	х	X											
2 Trip Blank	9/11/24	1215	water	3	x	x					1				и. 1	-								
3 MW-9D-0910	9/10/24	1224	Water	13	X	×	×	×	×	×	X	×	×											
														1										
Signature							-	2014/2014			1				1			1/1 at 10, 142 at						
Relinquished		npany ametrix			ender B	Date	112		Time LG	, <u>Y</u> 7	D	Com	ment	s/Spe	cial l	nstruc	tions	and a state	l'alterne		-	影響發		
Received Relinquished	>	0	NÉ	а ж		9/1										22	×							
Received								r																
Relinquished																<u>,</u> 25								
Received					ň.		u.																	
Reviewed/Date	F	leviewed/Da	te		П							Chron	natogi	rams v	vith fir	nal rep	ort 🗌							

.

Data Package: Level III 🗌 Level IV 🗌 Electronic Data Deliverables (EDDs)

September 23, 2024

Michael Brady Parametrix, Inc. 719 2nd Avenue, Suite 200 Seattle, WA 98104

Re: Analytical Data for Project 553-8472-06 Laboratory Reference No. 2409-159

Dear Michael:

Enclosed are the analytical results and associated quality control data for samples submitted on September 12, 2024.

Please note that the data for the subcontracted analyses will follow in the final report.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on September 11 and 12, 2024 and received by the laboratory on September 12, 2024. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below. However the soil results for the QA/QC samples are reported on a wet-weight basis.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Volatiles EPA 8260D Analysis

The percent recovery for Dibromochloromethane is outside the control limits in the Spike Blank/Spike Blank Duplicate and Matrix Spike/Matrix Spike Duplicate. The method allows for a percentage of the compounds to fall outside of the control limits due to the large number of analytes being spiked.

Nitrate (as Nitrogen) EPA 353.2 Analysis

The reported Nitrate results are a calculated value based on the subtraction of Nitrite from the Nitrate plus Nitrite result. The Nitrite analysis, which has a 48-hour holding time, was performed within the holding time. Immediately after this analysis, an aliquot from each sample was preserved with concentrated sulfuric acid and stored at 4 degrees C. The preserved samples were then analyzed within the maximum 28-day holding time for the Nitrate plus Nitrite analysis.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2S-0912					
Laboratory ID:	09-159-01					
Chloromethane	ND	1.3	EPA 8260D	9-16-24	9-16-24	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	9-16-24	9-16-24	
Bromomethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Chloroethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Trichlorofluoromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Acetone	ND	5.0	EPA 8260D	9-16-24	9-16-24	
lodomethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Carbon Disulfide	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Methylene Chloride	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Acrylonitrile	ND	0.50	EPA 8260D	9-16-24	9-16-24	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1-Dichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
√inyl Acetate	ND	1.0	EPA 8260D	9-16-24	9-16-24	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
2-Butanone	ND	5.0	EPA 8260D	9-16-24	9-16-24	
Bromochloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Chloroform	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Carbon Tetrachloride	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Benzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Trichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichloropropane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Dibromomethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Bromodichloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	9-16-24	9-16-24	
Toluene	ND	1.0	EPA 8260D	9-16-24	9-16-24	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Tetrachloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2S-0912					
Laboratory ID:	09-159-01					
2-Hexanone	ND	2.0	EPA 8260D	9-16-24	9-16-24	
Dibromochloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	9-16-24	9-16-24	
Chlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Ethylbenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
m,p-Xylene	ND	0.40	EPA 8260D	9-16-24	9-16-24	
o-Xylene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Styrene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Bromoform	ND	1.0	EPA 8260D	9-16-24	9-16-24	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	9-16-24	9-16-24	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Naphthalene	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	106	68-133				
Toluene-d8	103	79-123				
4-Bromofluorobenzene	99	78-117				

page 2 of 2

4

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-3S-0912					
Laboratory ID:	09-159-02					
Chloromethane	ND	1.3	EPA 8260D	9-16-24	9-16-24	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	9-16-24	9-16-24	
Bromomethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Chloroethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Trichlorofluoromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Acetone	ND	5.0	EPA 8260D	9-16-24	9-16-24	
lodomethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Carbon Disulfide	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Methylene Chloride	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Acrylonitrile	ND	0.50	EPA 8260D	9-16-24	9-16-24	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1-Dichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Vinyl Acetate	ND	1.0	EPA 8260D	9-16-24	9-16-24	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
2-Butanone	ND	5.0	EPA 8260D	9-16-24	9-16-24	
Bromochloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Chloroform	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Carbon Tetrachloride	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Benzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Trichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichloropropane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Dibromomethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Bromodichloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	9-16-24	9-16-24	
Toluene	ND	1.0	EPA 8260D	9-16-24	9-16-24	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Tetrachloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-3S-0912					
Laboratory ID:	09-159-02					
2-Hexanone	ND	2.0	EPA 8260D	9-16-24	9-16-24	
Dibromochloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	9-16-24	9-16-24	
Chlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Ethylbenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
m,p-Xylene	ND	0.40	EPA 8260D	9-16-24	9-16-24	
o-Xylene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Styrene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Bromoform	ND	1.0	EPA 8260D	9-16-24	9-16-24	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	9-16-24	9-16-24	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Naphthalene	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	106	68-133				
Toluene-d8	102	79-123				
4-Bromofluorobenzene	101	78-117				

page 2 of 2

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4S-0911					
Laboratory ID:	09-159-03					
Chloromethane	ND	1.3	EPA 8260D	9-16-24	9-16-24	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	9-16-24	9-16-24	
Bromomethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Chloroethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Trichlorofluoromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Acetone	ND	5.0	EPA 8260D	9-16-24	9-16-24	
lodomethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Carbon Disulfide	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Methylene Chloride	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Acrylonitrile	ND	0.50	EPA 8260D	9-16-24	9-16-24	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1-Dichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Vinyl Acetate	ND	1.0	EPA 8260D	9-16-24	9-16-24	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
2-Butanone	ND	5.0	EPA 8260D	9-16-24	9-16-24	
Bromochloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Chloroform	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Carbon Tetrachloride	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Benzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Trichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichloropropane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Dibromomethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Bromodichloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	9-16-24	9-16-24	
Toluene	ND	1.0	EPA 8260D	9-16-24	9-16-24	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Tetrachloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4S-0911					
Laboratory ID:	09-159-03					
2-Hexanone	ND	2.0	EPA 8260D	9-16-24	9-16-24	
Dibromochloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	9-16-24	9-16-24	
Chlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Ethylbenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
m,p-Xylene	ND	0.40	EPA 8260D	9-16-24	9-16-24	
o-Xylene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Styrene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Bromoform	ND	1.0	EPA 8260D	9-16-24	9-16-24	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	9-16-24	9-16-24	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Naphthalene	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	104	68-133				
Toluene-d8	101	79-123				
4-Bromofluorobenzene	99	78-117				

page 2 of 2

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5S-0911					
Laboratory ID:	09-159-04					
Chloromethane	ND	1.3	EPA 8260D	9-16-24	9-16-24	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	9-16-24	9-16-24	
Bromomethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Chloroethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Trichlorofluoromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Acetone	ND	5.0	EPA 8260D	9-16-24	9-16-24	
lodomethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Carbon Disulfide	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Methylene Chloride	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Acrylonitrile	ND	0.50	EPA 8260D	9-16-24	9-16-24	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1-Dichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Vinyl Acetate	ND	1.0	EPA 8260D	9-16-24	9-16-24	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
2-Butanone	ND	5.0	EPA 8260D	9-16-24	9-16-24	
Bromochloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Chloroform	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Carbon Tetrachloride	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Benzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Trichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichloropropane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Dibromomethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Bromodichloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	9-16-24	9-16-24	
Toluene	ND	1.0	EPA 8260D	9-16-24	9-16-24	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Tetrachloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5S-0911					
Laboratory ID:	09-159-04					
2-Hexanone	ND	2.0	EPA 8260D	9-16-24	9-16-24	
Dibromochloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	9-16-24	9-16-24	
Chlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Ethylbenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
m,p-Xylene	ND	0.40	EPA 8260D	9-16-24	9-16-24	
o-Xylene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Styrene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Bromoform	ND	1.0	EPA 8260D	9-16-24	9-16-24	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	9-16-24	9-16-24	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Naphthalene	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	103	68-133				
Toluene-d8	100	79-123				
4-Bromofluorobenzene	98	78-117				

page 2 of 2

10

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6S-0911					
Laboratory ID:	09-159-05					
Chloromethane	ND	1.3	EPA 8260D	9-16-24	9-16-24	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	9-16-24	9-16-24	
Bromomethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Chloroethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Trichlorofluoromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Acetone	ND	5.0	EPA 8260D	9-16-24	9-16-24	
lodomethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Carbon Disulfide	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Methylene Chloride	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Acrylonitrile	ND	0.50	EPA 8260D	9-16-24	9-16-24	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1-Dichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Vinyl Acetate	ND	1.0	EPA 8260D	9-16-24	9-16-24	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
2-Butanone	ND	5.0	EPA 8260D	9-16-24	9-16-24	
Bromochloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Chloroform	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Carbon Tetrachloride	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Benzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Trichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichloropropane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Dibromomethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Bromodichloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	9-16-24	9-16-24	
Toluene	ND	1.0	EPA 8260D	9-16-24	9-16-24	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Tetrachloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6S-0911					
Laboratory ID:	09-159-05					
2-Hexanone	ND	2.0	EPA 8260D	9-16-24	9-16-24	
Dibromochloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	9-16-24	9-16-24	
Chlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Ethylbenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
m,p-Xylene	ND	0.40	EPA 8260D	9-16-24	9-16-24	
o-Xylene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Styrene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Bromoform	ND	1.0	EPA 8260D	9-16-24	9-16-24	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	9-16-24	9-16-24	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Naphthalene	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	106	68-133				
Toluene-d8	103	79-123				
4-Bromofluorobenzene	98	78-117				

page 2 of 2

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-13S-0911					
Laboratory ID:	09-159-06					
Chloromethane	ND	1.3	EPA 8260D	9-16-24	9-16-24	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	9-16-24	9-16-24	
Bromomethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Chloroethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Trichlorofluoromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Acetone	ND	5.0	EPA 8260D	9-16-24	9-16-24	
lodomethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Carbon Disulfide	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Methylene Chloride	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Acrylonitrile	ND	0.50	EPA 8260D	9-16-24	9-16-24	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1-Dichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Vinyl Acetate	ND	1.0	EPA 8260D	9-16-24	9-16-24	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
2-Butanone	ND	5.0	EPA 8260D	9-16-24	9-16-24	
Bromochloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Chloroform	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Carbon Tetrachloride	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Benzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Trichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichloropropane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Dibromomethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Bromodichloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	9-16-24	9-16-24	
Toluene	ND	1.0	EPA 8260D	9-16-24	9-16-24	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Tetrachloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-13S-0911					
Laboratory ID:	09-159-06					
2-Hexanone	ND	2.0	EPA 8260D	9-16-24	9-16-24	
Dibromochloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	9-16-24	9-16-24	
Chlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Ethylbenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
m,p-Xylene	ND	0.40	EPA 8260D	9-16-24	9-16-24	
o-Xylene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Styrene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Bromoform	ND	1.0	EPA 8260D	9-16-24	9-16-24	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	9-16-24	9-16-24	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Naphthalene	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	104	68-133				
Toluene-d8	103	79-123				
4-Bromofluorobenzene	97	78-117				

page 2 of 2

14

VOLATILE ORGANICS EPA 8260D/SIM

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Trip Blank					
Laboratory ID:	09-159-07					
Chloromethane	ND	1.4	EPA 8260D	9-17-24	9-17-24	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	9-17-24	9-17-24	
Bromomethane	ND	1.0	EPA 8260D	9-17-24	9-17-24	
Chloroethane	ND	1.0	EPA 8260D	9-17-24	9-17-24	
Trichlorofluoromethane	ND	0.20	EPA 8260D	9-17-24	9-17-24	
1,1-Dichloroethene	ND	0.20	EPA 8260D	9-17-24	9-17-24	
Acetone	ND	5.0	EPA 8260D	9-17-24	9-17-24	
lodomethane	ND	1.0	EPA 8260D	9-17-24	9-17-24	
Carbon Disulfide	ND	0.25	EPA 8260D	9-17-24	9-17-24	
Methylene Chloride	ND	1.0	EPA 8260D	9-17-24	9-17-24	
Acrylonitrile	ND	0.50	EPA 8260D	9-17-24	9-17-24	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	9-17-24	9-17-24	
1,1-Dichloroethane	ND	0.20	EPA 8260D	9-17-24	9-17-24	
Vinyl Acetate	ND	1.0	EPA 8260D	9-17-24	9-17-24	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	9-17-24	9-17-24	
2-Butanone	ND	5.0	EPA 8260D	9-17-24	9-17-24	
Bromochloromethane	ND	0.20	EPA 8260D	9-17-24	9-17-24	
Chloroform	ND	0.20	EPA 8260D	9-17-24	9-17-24	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	9-17-24	9-17-24	
Carbon Tetrachloride	ND	0.20	EPA 8260D	9-17-24	9-17-24	
Benzene	ND	0.20	EPA 8260D	9-17-24	9-17-24	
1,2-Dichloroethane	ND	0.20	EPA 8260D	9-17-24	9-17-24	
Trichloroethene	ND	0.20	EPA 8260D	9-17-24	9-17-24	
1,2-Dichloropropane	ND	0.20	EPA 8260D	9-17-24	9-17-24	
Dibromomethane	ND	0.20	EPA 8260D	9-17-24	9-17-24	
Bromodichloromethane	ND	0.20	EPA 8260D	9-17-24	9-17-24	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	9-17-24	9-17-24	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	9-17-24	9-17-24	
Toluene	ND	1.0	EPA 8260D	9-17-24	9-17-24	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	9-17-24	9-17-24	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	9-17-24	9-17-24	
Tetrachloroethene	ND	0.20	EPA 8260D	9-17-24	9-17-24	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Trip Blank					
Laboratory ID:	09-159-07					
2-Hexanone	ND	2.0	EPA 8260D	9-17-24	9-17-24	
Dibromochloromethane	ND	0.20	EPA 8260D	9-17-24	9-17-24	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	9-17-24	9-17-24	
Chlorobenzene	ND	0.20	EPA 8260D	9-17-24	9-17-24	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	9-17-24	9-17-24	
Ethylbenzene	ND	0.20	EPA 8260D	9-17-24	9-17-24	
m,p-Xylene	ND	0.40	EPA 8260D	9-17-24	9-17-24	
o-Xylene	ND	0.20	EPA 8260D	9-17-24	9-17-24	
Styrene	ND	0.20	EPA 8260D	9-17-24	9-17-24	
Bromoform	ND	1.0	EPA 8260D	9-17-24	9-17-24	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	9-17-24	9-17-24	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	9-17-24	9-17-24	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	9-17-24	9-17-24	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	9-17-24	9-17-24	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	9-17-24	9-17-24	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	9-17-24	9-17-24	
Naphthalene	ND	1.0	EPA 8260D	9-17-24	9-17-24	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	96	68-133				
Toluene-d8	101	79-123				
4-Bromofluorobenzene	99	78-117				

page 2 of 2

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0916W2					
Chloromethane	ND	1.3	EPA 8260D	9-16-24	9-16-24	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	9-16-24	9-16-24	
Bromomethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Chloroethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Trichlorofluoromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Acetone	ND	5.0	EPA 8260D	9-16-24	9-16-24	
lodomethane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Carbon Disulfide	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Methylene Chloride	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Acrylonitrile	ND	0.50	EPA 8260D	9-16-24	9-16-24	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1-Dichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Vinyl Acetate	ND	1.0	EPA 8260D	9-16-24	9-16-24	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
2-Butanone	ND	5.0	EPA 8260D	9-16-24	9-16-24	
Bromochloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Chloroform	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Carbon Tetrachloride	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Benzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Trichloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichloropropane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Dibromomethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Bromodichloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	9-16-24	9-16-24	
Toluene	ND	1.0	EPA 8260D	9-16-24	9-16-24	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Tetrachloroethene	ND	0.20	EPA 8260D	9-16-24	9-16-24	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

17

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0916W2					
2-Hexanone	ND	2.0	EPA 8260D	9-16-24	9-16-24	
Dibromochloromethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	9-16-24	9-16-24	
Chlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Ethylbenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
m,p-Xylene	ND	0.40	EPA 8260D	9-16-24	9-16-24	
o-Xylene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Styrene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
Bromoform	ND	1.0	EPA 8260D	9-16-24	9-16-24	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	9-16-24	9-16-24	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	9-16-24	9-16-24	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	9-16-24	9-16-24	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Naphthalene	ND	1.0	EPA 8260D	9-16-24	9-16-24	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	104	68-133				
Toluene-d8	101	79-123				
4-Bromofluorobenzene	98	78-117				

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0917W2					
Chloromethane	ND	1.4	EPA 8260D	9-17-24	9-17-24	
Vinyl Chloride (SIM)	ND	0.020	EPA 8260D/SIM	9-17-24	9-17-24	
Bromomethane	ND	1.0	EPA 8260D	9-17-24	9-17-24	
Chloroethane	ND	1.0	EPA 8260D	9-17-24	9-17-24	
Trichlorofluoromethane	ND	0.20	EPA 8260D	9-17-24	9-17-24	
1,1-Dichloroethene	ND	0.20	EPA 8260D	9-17-24	9-17-24	
Acetone	ND	5.0	EPA 8260D	9-17-24	9-17-24	
lodomethane	ND	1.0	EPA 8260D	9-17-24	9-17-24	
Carbon Disulfide	ND	0.25	EPA 8260D	9-17-24	9-17-24	
Methylene Chloride	ND	1.0	EPA 8260D	9-17-24	9-17-24	
Acrylonitrile	ND	0.50	EPA 8260D	9-17-24	9-17-24	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	9-17-24	9-17-24	
1,1-Dichloroethane	ND	0.20	EPA 8260D	9-17-24	9-17-24	
Vinyl Acetate	ND	1.0	EPA 8260D	9-17-24	9-17-24	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	9-17-24	9-17-24	
2-Butanone	ND	5.0	EPA 8260D	9-17-24	9-17-24	
Bromochloromethane	ND	0.20	EPA 8260D	9-17-24	9-17-24	
Chloroform	ND	0.20	EPA 8260D	9-17-24	9-17-24	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	9-17-24	9-17-24	
Carbon Tetrachloride	ND	0.20	EPA 8260D	9-17-24	9-17-24	
Benzene	ND	0.20	EPA 8260D	9-17-24	9-17-24	
1,2-Dichloroethane	ND	0.20	EPA 8260D	9-17-24	9-17-24	
Trichloroethene	ND	0.20	EPA 8260D	9-17-24	9-17-24	
1,2-Dichloropropane	ND	0.20	EPA 8260D	9-17-24	9-17-24	
Dibromomethane	ND	0.20	EPA 8260D	9-17-24	9-17-24	
Bromodichloromethane	ND	0.20	EPA 8260D	9-17-24	9-17-24	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	9-17-24	9-17-24	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	9-17-24	9-17-24	
Toluene	ND	1.0	EPA 8260D	9-17-24	9-17-24	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	9-17-24	9-17-24	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	9-17-24	9-17-24	
Tetrachloroethene	ND	0.20	EPA 8260D	9-17-24	9-17-24	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

19

Date of Report: September 23, 2024 Samples Submitted: September 12, 2024 Laboratory Reference: 2409-159 Project: 553-8472-06

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0917W2					
2-Hexanone	ND	2.0	EPA 8260D	9-17-24	9-17-24	
Dibromochloromethane	ND	0.20	EPA 8260D	9-17-24	9-17-24	
1,2-Dibromoethane (SIM)	ND	0.020	EPA 8260D/SIM	9-17-24	9-17-24	
Chlorobenzene	ND	0.20	EPA 8260D	9-17-24	9-17-24	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	9-17-24	9-17-24	
Ethylbenzene	ND	0.20	EPA 8260D	9-17-24	9-17-24	
m,p-Xylene	ND	0.40	EPA 8260D	9-17-24	9-17-24	
o-Xylene	ND	0.20	EPA 8260D	9-17-24	9-17-24	
Styrene	ND	0.20	EPA 8260D	9-17-24	9-17-24	
Bromoform	ND	1.0	EPA 8260D	9-17-24	9-17-24	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	9-17-24	9-17-24	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	9-17-24	9-17-24	
(trans) 1,4-Dichloro-2-butene	ND	0.50	EPA 8260D	9-17-24	9-17-24	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	9-17-24	9-17-24	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	9-17-24	9-17-24	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	9-17-24	9-17-24	
Naphthalene	ND	1.0	EPA 8260D	9-17-24	9-17-24	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	97	68-133				
Toluene-d8	98	79-123				
4-Bromofluorobenzene	99	78-117				

20

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	09-15	59-04									
	MS	MSD	MS	MSD		MS	MSD				
Chloromethane	8.17	8.12	10.0	10.0	ND	82	81	36-162	1	19	
Vinyl Chloride	9.17	9.14	10.0	10.0	ND	92	91	62-121	0	15	
Bromomethane	9.44	9.13	10.0	10.0	ND	94	91	48-166	3	22	
Chloroethane	9.78	9.71	10.0	10.0	ND	98	97	62-129	1	14	
Trichlorofluoromethane	11.2	11.2	10.0	10.0	ND	112	112	77-120	0	16	
1,1-Dichloroethene	10.8	11.0	10.0	10.0	ND	108	110	76-119	2	15	
Acetone	10.9	10.7	10.0	10.0	ND	109	107	56-132	2	17	
lodomethane	9.59	9.83	10.0	10.0	ND	96	98	54-121	2	21	
Carbon Disulfide	8.34	8.17	10.0	10.0	ND	83	82	47-123	2	16	
Methylene Chloride	10.7	10.5	10.0	10.0	ND	107	105	74-114	2	16	
(trans) 1,2-Dichloroethene	11.2	11.3	10.0	10.0	ND	112	113	79-120	1	16	
1,1-Dichloroethane	11.1	11.3	10.0	10.0	ND	111	113	77-122	2	15	
Vinyl Acetate	10.7	10.3	10.0	10.0	ND	107	103	54-123	4	17	
(cis) 1,2-Dichloroethene	11.5	11.3	10.0	10.0	ND	115	113	81-128	2	16	
2-Butanone	10.8	10.8	10.0	10.0	ND	108	108	57-142	0	15	
Bromochloromethane	11.7	11.7	10.0	10.0	ND	117	117	80-129	0	17	
Chloroform	11.3	11.5	10.0	10.0	ND	113	115	75-126	2	16	
1,1,1-Trichloroethane	11.4	11.3	10.0	10.0	ND	114	113	74-126	1	17	
Carbon Tetrachloride	11.7	12.0	10.0	10.0	ND	117	120	70-128	3	18	
Benzene	11.5	11.5	10.0	10.0	ND	115	115	80-122	0	16	
1,2-Dichloroethane	11.4	11.3	10.0	10.0	ND	114	113	70-126	1	17	
Trichloroethene	11.5	11.6	10.0	10.0	ND	115	116	80-130	1	12	
1,2-Dichloropropane	11.6	11.4	10.0	10.0	ND	116	114	79-121	2	17	
Dibromomethane	11.6	11.5	10.0	10.0	ND	116	115	81-122	1	16	
Bromodichloromethane	11.8	11.7	10.0	10.0	ND	118	117	82-127	1	17	
(cis) 1,3-Dichloropropene	12.2	12.0	10.0	10.0	ND	122	120	81-128	2	17	
Methyl Isobutyl Ketone	11.7	11.3	10.0	10.0	ND	117	113	62-130	3	14	
Toluene	12.0	11.9	10.0	10.0	ND	120	119	75-124	1	19	
(trans) 1,3-Dichloropropene	12.1	11.7	10.0	10.0	ND	121	117	71-124	3	18	
1,1,2-Trichloroethane	11.6	11.1	10.0	10.0	ND	116	111	76-126	4	16	
Tetrachloroethene	11.6	11.4	10.0	10.0	ND	116	114	84-126	2	19	
2-Hexanone	10.9	10.8	10.0	10.0	ND	109	108	41-156	1	23	
Dibromochloromethane	16.0	15.1	10.0	10.0	ND	160	151	74-131	6	18	V,V

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Date of Report: September 23, 2024 Samples Submitted: September 12, 2024 Laboratory Reference: 2409-159 Project: 553-8472-06

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL page 2 of 2

					Source	Pe	rcent	Recovery		RPD	
Analyte	Result		Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	09-15	59-04									
	MS	MSD	MS	MSD		MS	MSD				
1,2-Dibromoethane	11.9	11.5	10.0	10.0	ND	119	115	74-131	3	16	
Chlorobenzene	11.4	11.1	10.0	10.0	ND	114	111	84-121	3	16	
1,1,1,2-Tetrachloroethane	11.9	11.6	10.0	10.0	ND	119	116	82-125	3	17	
Ethylbenzene	11.7	11.6	10.0	10.0	ND	117	116	85-125	1	17	
m,p-Xylene	23.7	23.2	20.0	20.0	ND	119	116	84-124	2	17	
o-Xylene	11.7	11.4	10.0	10.0	ND	117	114	84-126	3	17	
Styrene	12.1	11.7	10.0	10.0	ND	121	117	83-131	3	19	
Bromoform	10.7	10.2	10.0	10.0	ND	107	102	67-137	5	18	
1,1,2,2-Tetrachloroethane	11.0	10.7	10.0	10.0	ND	110	107	56-143	3	15	
1,2,3-Trichloropropane	11.2	11.0	10.0	10.0	ND	112	110	61-125	2	15	
1,4-Dichlorobenzene	11.4	11.5	10.0	10.0	ND	114	115	80-126	1	15	
1,2-Dichlorobenzene	11.5	11.4	10.0	10.0	ND	115	114	79-127	1	16	
1,2-Dibromo-3-chloropropane	11.7	11.0	10.0	10.0	ND	117	110	54-143	6	19	
Naphthalene	12.5	12.3	10.0	10.0	ND	125	123	48-143	2	17	
Surrogate:											
Dibromofluoromethane						101	104	68-133			
Toluene-d8						102	101	79-123			
4-Bromofluorobenzene						103	103	78-117			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL page 1 of 2

23

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Res	ult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB091									
	SB	SBD	SB	SBD	SB	SBD				
Chloromethane	7.38	7.23	10.0	10.0	74	72	45-145	2	19	
Vinyl Chloride	8.47	8.26	10.0	10.0	85	83	67-130	3	15	
Bromomethane	8.84	8.43	10.0	10.0	88	84	27-165	5	36	
Chloroethane	9.09	8.77	10.0	10.0	91	88	61-132	4	18	
Trichlorofluoromethane	10.2	9.85	10.0	10.0	102	99	67-136	3	17	
1,1-Dichloroethene	10.3	10.0	10.0	10.0	103	100	74-125	3	15	
Acetone	9.55	9.91	10.0	10.0	96	99	49-140	4	20	
lodomethane	9.20	8.77	10.0	10.0	92	88	15-154	5	49	
Carbon Disulfide	7.86	7.46	10.0	10.0	79	75	58-122	5	18	
Methylene Chloride	10.1	9.74	10.0	10.0	101	97	70-123	4	15	
(trans) 1,2-Dichloroethene	10.4	10.2	10.0	10.0	104	102	77-125	2	15	
1,1-Dichloroethane	10.6	10.1	10.0	10.0	106	101	75-125	5	15	
Vinyl Acetate	10.5	10.1	10.0	10.0	105	101	61-138	4	16	
(cis) 1,2-Dichloroethene	10.8	10.5	10.0	10.0	108	105	78-130	3	15	
2-Butanone	10.0	10.2	10.0	10.0	100	102	58-144	2	16	
Bromochloromethane	11.0	10.6	10.0	10.0	110	106	79-132	4	15	
Chloroform	10.7	10.3	10.0	10.0	107	103	73-128	4	15	
1,1,1-Trichloroethane	10.5	10.3	10.0	10.0	105	103	72-127	2	15	
Carbon Tetrachloride	11.0	10.7	10.0	10.0	110	107	68-131	3	15	
Benzene	10.6	10.3	10.0	10.0	106	103	76-124	3	15	
1,2-Dichloroethane	10.6	10.4	10.0	10.0	106	104	68-133	2	15	
Trichloroethene	10.7	10.3	10.0	10.0	107	103	80-126	4	15	
1,2-Dichloropropane	10.6	10.4	10.0	10.0	106	104	78-124	2	15	
Dibromomethane	10.6	10.6	10.0	10.0	106	106	76-131	0	15	
Bromodichloromethane	10.9	10.8	10.0	10.0	109	108	81-128	1	15	
(cis) 1,3-Dichloropropene	11.1	10.8	10.0	10.0	111	108	80-131	3	15	
Methyl Isobutyl Ketone	10.8	10.6	10.0	10.0	108	106	67-133	2	16	
Toluene	10.6	10.3	10.0	10.0	106	103	75-120	3	15	
(trans) 1,3-Dichloropropene	10.8	10.8	10.0	10.0	108	108	77-128	0	15	
1,1,2-Trichloroethane	10.3	10.3	10.0	10.0	103	103	80-124	0	15	
Tetrachloroethene	10.5	10.6	10.0	10.0	105	106	80-125	1	15	
2-Hexanone	10.4	10.2	10.0	10.0	100	102	65-134	2	20	
	14.5	14.2	10.0	10.0	101			2	-0	

A

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Date of Report: September 23, 2024 Samples Submitted: September 12, 2024 Laboratory Reference: 2409-159 Project: 553-8472-06

VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL page 2 of 2

					Per	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB09	17W2								
	SB	SBD	SB	SBD	SB	SBD				
1,2-Dibromoethane	10.5	10.6	10.0	10.0	105	106	82-129	1	15	
Chlorobenzene	10.4	10.3	10.0	10.0	104	103	80-119	1	15	
1,1,1,2-Tetrachloroethane	10.7	10.5	10.0	10.0	107	105	80-124	2	15	
Ethylbenzene	10.7	10.6	10.0	10.0	107	106	80-121	1	15	
m,p-Xylene	21.5	21.5	20.0	20.0	108	108	80-122	0	15	
o-Xylene	10.7	10.5	10.0	10.0	107	105	80-121	2	15	
Styrene	10.9	10.7	10.0	10.0	109	107	82-128	2	15	
Bromoform	9.39	9.25	10.0	10.0	94	93	77-131	2	15	
1,1,2,2-Tetrachloroethane	10.2	10.4	10.0	10.0	102	104	66-138	2	15	
1,2,3-Trichloropropane	10.1	10.2	10.0	10.0	101	102	67-127	1	18	
1,4-Dichlorobenzene	10.5	10.6	10.0	10.0	105	106	78-127	1	15	
1,2-Dichlorobenzene	10.6	10.7	10.0	10.0	106	107	79-129	1	15	
1,2-Dibromo-3-chloropropane	10.2	11.0	10.0	10.0	102	110	62-140	8	18	
Naphthalene	11.3	11.3	10.0	10.0	113	113	53-144	0	25	
Surrogate:										
Dibromofluoromethane					103	101	68-133			
Toluene-d8					102	99	79-123			
4-Bromofluorobenzene					104	103	78-117			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW-2S-0912		Method	Flepaleu	Analyzeu	1 1895
Laboratory ID:	09-159-01					
Gasoline	ND	100	NWTPH-Gx	9-17-24	9-17-24	
Surrogate:	Percent Recovery	Control Limits	NWIFII-GX	9-17-24	9-17-24	
Fluorobenzene	85	61-122				
Client ID:	MW-3S-0912					
Laboratory ID:	09-159-02					
Gasoline	ND	100	NWTPH-Gx	9-17-24	9-17-24	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	84	61-122				
Client ID:	MW-4S-0911					
_aboratory ID:	09-159-03					
Gasoline	ND	100	NWTPH-Gx	9-17-24	9-17-24	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	82	61-122				
Client ID:	MW-5S-0911					
Laboratory ID:	09-159-04					
Gasoline	ND	100	NWTPH-Gx	9-17-24	9-17-24	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	61-122				
Client ID:	MW-6S-0911					
Laboratory ID:	09-159-05					
Gasoline	ND	100	NWTPH-Gx	9-17-24	9-17-24	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	82	61-122				
Client ID:	MW-13S-0911					
Laboratory ID:	09-159-06					
Gasoline	ND	100	NWTPH-Gx	9-17-24	9-17-24	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	84	61-122				
Client ID:	Trip Blank					
Laboratory ID:	09-159-07					
Gasoline	ND	100	NWTPH-Gx	9-17-24	9-17-24	
Surrogate: Fluorobenzene	Percent Recovery 84	Control Limits 61-122				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

							Date	Date	;	
Analyte	Result			PQL		ethod	Prepared	Analyzed		Flags
METHOD BLANK										
Laboratory ID:		MB0917W1								
Gasoline		ND		100	NW	ГРН-Gx	9-17-24	9-17-2	24	
Surrogate:	Per	cent Recove	ry Co	ontrol Lim	its					
Fluorobenzene		85		61-122						
					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spik	e Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	09-15	59-04								
	ORIG	DUP								
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:										

85

85

61-122

Fluorobenzene

26

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW-2S-0912			•		v
Laboratory ID:	09-159-01					
Diesel Range Organics	ND	0.21	NWTPH-Dx	9-16-24	9-16-24	
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	9-16-24	9-16-24	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	76	50-150				
Client ID:	MW-3S-0912					
Laboratory ID:	09-159-02					
Diesel Range Organics	ND	0.21	NWTPH-Dx	9-16-24	9-16-24	
_ube Oil Range Organics	ND	0.21	NWTPH-Dx	9-16-24	9-16-24	
Surrogate:	Percent Recovery	Control Limits		0.02.		
o-Terphenyl	105	50-150				
e reipiienyi						
Client ID:	MW-4S-0911					
Laboratory ID:	09-159-03	0.67		0.46.5.4	0.46.54	
Diesel Range Organics	ND	0.21	NWTPH-Dx	9-16-24	9-16-24	
ube Oil Range Organics	ND	0.21	NWTPH-Dx	9-16-24	9-16-24	
Surrogate: p-Terphenyl	Percent Recovery 88	Control Limits 50-150				
Client ID:	MW-5S-0911					
_aboratory ID:	09-159-04					
Diesel Range Organics	ND	0.22	NWTPH-Dx	9-16-24	9-16-24	
ube Oil Range Organics	ND	0.22	NWTPH-Dx	9-16-24	9-16-24	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	94	50-150				
Client ID:	MW-6S-0911					
Laboratory ID:	09-159-05					
Diesel Range Organics	ND	0.20	NWTPH-Dx	9-16-24	9-16-24	
ube Oil Range Organics	ND	0.20	NWTPH-Dx	9-16-24	9-16-24	
Surrogate:	Percent Recovery	Control Limits				
p-Terphenyl	92	50-150				
Client ID:	MW-13S-0911					
Laboratory ID:	09-159-06					
Diesel Range Organics	ND	0.21	NWTPH-Dx	9-16-24	9-17-24	
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	9-16-24	9-17-24	
Surrogate:	Percent Recovery	Control Limits			· · · E ·	
o-Terphenyl	83	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Date of Report: September 23, 2024 Samples Submitted: September 12, 2024 Laboratory Reference: 2409-159 Project: 553-8472-06

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0916W1					
Diesel Range Organics	ND	0.16	NWTPH-Dx	9-16-24	9-16-24	
Lube Oil Range Organics	ND	0.16	NWTPH-Dx	9-16-24	9-16-24	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	89	50-150				

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike Level		Result	Result Recovery		Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-17	74-01									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		1	NA	NA	NA	40	
Lube Oil Range	ND	ND	NA	NA		1	NA	NA	NA	40	
Surrogate:											
o-Terphenyl						88	81	50-150			
MATRIX SPIKES											
Laboratory ID:	09-1	59-04									
	MS	MSD	MS	MSD		MS	MSD				
Diesel Range	0.546	0.487	0.500	0.500	ND	109	97	50-129	11	40	
Surrogate:											
o-Terphenyl						100	81	50-150			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010D

Matrix: Water Units: mg/L (ppm)

	_			Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2S-0912					
Laboratory ID:	09-159-01					
Iron	ND	0.050	EPA 6010D	9-16-24	9-16-24	
Magnesium	8.5	1.0	EPA 6010D	9-16-24	9-16-24	
Manganese	ND	0.010	EPA 6010D	9-16-24	9-16-24	
Client ID:	MW-3S-0912					
	09-159-02					
Laboratory ID:	ND	0.050	EPA 6010D	9-16-24	9-16-24	
Iron		1.0	EPA 6010D EPA 6010D	9-16-24 9-16-24		
Magnesium	32 ND				9-16-24	
Manganese	ND	0.010	EPA 6010D	9-16-24	9-16-24	
Client ID:	MW-4S-0911					
Laboratory ID:	09-159-03					
Iron	ND	0.050	EPA 6010D	9-16-24	9-16-24	
Magnesium	58	10	EPA 6010D	9-16-24	9-16-24	
Manganese	ND	0.010	EPA 6010D	9-16-24	9-16-24	
Client ID:	MW-5S-0911					
Laboratory ID:	09-159-04					
Iron	0.55	0.050	EPA 6010D	9-16-24	9-16-24	
Magnesium	13	1.0	EPA 6010D	9-16-24	9-16-24	
Manganese	0.11	0.010	EPA 6010D	9-16-24	9-16-24	
Client ID:	MW-6S-0911					
	09-159-05					
Laboratory ID:	09-159-05 ND	0.050	EPA 6010D	9-16-24	9-16-24	
Iron					9-16-24 9-16-24	
Magnesium	27 ND	1.0	EPA 6010D	9-16-24		
Manganese	ND	0.010	EPA 6010D	9-16-24	9-16-24	
Client ID:	MW-13S-0911					
Laboratory ID:	09-159-06					
Iron	0.85	0.050	EPA 6010D	9-16-24	9-16-24	
			EPA 6010D	9-16-24	9-16-24	
Magnesium	17	1.0		9-10-24	9-10-24	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010D QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0916WH1					
Iron	ND	0.050	EPA 6010D	9-16-24	9-16-24	
Magnesium	ND	1.0	EPA 6010D	9-16-24	9-16-24	
Manganese	ND	0.010	EPA 6010D	9-16-24	9-16-24	

					Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	09-1	59-04								
	ORIG	DUP								
Iron	0.546	0.623	NA	NA		NA	NA	13	20	
Magnesium	12.9	14.3	NA	NA		NA	NA	10	20	
Manganese	0.110	0.122	NA	NA		NA	NA	10	20	

MATRIX SPIKES

Laboratory ID:	09-1	59-04									
	MS	MSD	MS	MSD		MS	MSD				
Iron	22.0	20.6	20.0	20.0	0.546	107	100	75-125	7	20	
Magnesium	35.8	34.3	20.0	20.0	12.9	114	107	75-125	4	20	
Manganese	0.668	0.631	0.500	0.500	0.110	112	104	75-125	6	20	

DISSOLVED METALS EPA 6010D

Matrix: Water Units: mg/L (ppm)

onno: mg/2 (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2S-0912					
Laboratory ID:	09-159-01					
Calcium	13	1.1	EPA 6010D		9-13-24	
Iron	ND	0.056	EPA 6010D		9-13-24	
Magnesium	9.1	1.1	EPA 6010D		9-13-24	
Manganese	ND	0.011	EPA 6010D		9-13-24	
Potassium	2.9	1.1	EPA 6010D		9-13-24	
Sodium	9.5	1.1	EPA 6010D		9-13-24	
Client ID:	MW-3S-0912					
Laboratory ID:	09-159-02					
Calcium	49	1.1	EPA 6010D		9-13-24	
Iron	ND	0.056			0 12 24	

Sodium	18	1.1	EPA 6010D	9-13-24	
Potassium	4.6	1.1	EPA 6010D	9-13-24	
Manganese	ND	0.011	EPA 6010D	9-13-24	
Magnesium	35	1.1	EPA 6010D	9-13-24	
Iron	ND	0.056	EPA 6010D	9-13-24	
Calcium	49	1.1	EPA 6010D	9-13-24	

Client ID:	MW-4S-0911				
Laboratory ID:	09-159-03				
Calcium	85	10	EPA 6010D	9-13-24	
Iron	ND	0.056	EPA 6010D	9-13-24	
Magnesium	58	1.1	EPA 6010D	9-13-24	
Manganese	ND	0.011	EPA 6010D	9-13-24	
Potassium	6.3	1.1	EPA 6010D	9-13-24	
Sodium	21	1.1	EPA 6010D	9-13-24	

Client ID:	MW-5S-0911			
Laboratory ID:	09-159-04			
Calcium	24	1.1	EPA 6010D	9-13-24
Iron	0.26	0.056	EPA 6010D	9-13-24
Magnesium	15	1.1	EPA 6010D	9-13-24
Manganese	0.13	0.011	EPA 6010D	9-13-24
Potassium	2.6	1.1	EPA 6010D	9-13-24
Sodium	14	1.1	EPA 6010D	9-13-24

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED METALS EPA 6010D

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6S-0911					
Laboratory ID:	09-159-05					
Calcium	41	1.1	EPA 6010D		9-13-24	
Iron	ND	0.056	EPA 6010D		9-13-24	
Magnesium	27	1.1	EPA 6010D		9-13-24	
Manganese	ND	0.011	EPA 6010D		9-13-24	
Potassium	4.1	1.1	EPA 6010D		9-13-24	
Sodium	15	1.1	EPA 6010D		9-13-24	

Client ID:	MW-13S-0911			
Laboratory ID:	09-159-06			
Calcium	24	1.1	EPA 6010D	9-13-24
Iron	0.27	0.056	EPA 6010D	9-13-24
Magnesium	15	1.1	EPA 6010D	9-13-24
Manganese	0.13	0.011	EPA 6010D	9-13-24
Potassium	2.7	1.1	EPA 6010D	9-13-24
Sodium	14	1.1	EPA 6010D	9-13-24

DISSOLVED METALS EPA 6010D QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0913D1					
Calcium	ND	1.1	EPA 6010D		9-13-24	
Iron	ND	0.056	EPA 6010D		9-13-24	
Magnesium	ND	1.1	EPA 6010D		9-13-24	
Manganese	ND	0.011	EPA 6010D		9-13-24	
Potassium	ND	1.1	EPA 6010D		9-13-24	
Sodium	ND	1.1	EPA 6010D		9-13-24	

					Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	09-15	59-04								
	ORIG	DUP								
Calcium	24.2	23.9	NA	NA		NA	NA	1	20	
Iron	0.261	0.345	NA	NA		NA	NA	28	20	С
Magnesium	15.5	15.4	NA	NA		NA	NA	1	20	
Manganese	0.130	0.129	NA	NA		NA	NA	0	20	
Potassium	2.65	2.62	NA	NA		NA	NA	1	20	
Sodium	13.5	13.4	NA	NA		NA	NA	1	20	

MATRIX SPIKES

Laboratory ID:	09-1	59-04									
	MS	MSD	MS	MSD		MS	MSD				
Calcium	43.9	45.3	22.2	22.2	24.2	89	95	75-125	3	20	
Iron	22.1	22.8	22.2	22.2	0.261	98	102	75-125	3	20	
Magnesium	35.9	36.4	22.2	22.2	15.5	92	94	75-125	1	20	
Manganese	0.638	0.646	0.556	0.556	0.130	92	93	75-125	1	20	
Potassium	25.9	26.6	22.2	22.2	2.65	105	108	75-125	3	20	
Sodium	32.9	33.4	22.2	22.2	13.5	87	90	75-125	2	20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Water

NITRATE (as Nitrogen) EPA 353.2

Units: mg/L-N						
Units. mg/L-N				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2S-0912				_	
Laboratory ID:	09-159-01					
Nitrate	0.60	0.050	EPA 353.2	9-13-24	9-13-24	
Client ID:	MW-3S-0912					
Laboratory ID:	09-159-02					
Nitrate	11	0.20	EPA 353.2	9-13-24	9-13-24	
Client ID:	MW-4S-0911					
Laboratory ID:	09-159-03					
Nitrate	47	0.50	EPA 353.2	9-13-24	9-13-24	
Client ID:	MW-5S-0911					
Laboratory ID:	09-159-04					
Nitrate	ND	0.050	EPA 353.2	9-13-24	9-13-24	
Client ID:	MW-6S-0911					
Laboratory ID:	09-159-05					
Nitrate	9.2	0.10	EPA 353.2	9-13-24	9-13-24	
Client ID:	MW-13S-0911					
Laboratory ID:	09-159-06					
Nitrate	0.051	0.050	EPA 353.2	9-13-24	9-13-24	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NITRATE (as Nitrogen) EPA 353.2 QUALITY CONTROL

Matrix: Water Units: mg/L-N

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0913W1					
Nitrate	ND	0.050	EPA 353.2	9-13-24	9-13-24	

					Source	Per	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-1	59-04									
	ORIG	DUP									
Nitrate	ND	ND	Ν	IA	NA	1	NA	NA	NA	22	
MATRIX SPIKES											
Laboratory ID:	09-1	59-04									
	MS	MSD	MS	MSD		MS	MSD				
Nitrate	2.10	2.34	2.00	2.00	ND	105	117	86-119	11	20	
SPIKE BLANK											
Laboratory ID:	SB09	13W1									
-	S	В	S	BB		ç	SB				
Nitrate	2.	13	2.	00	NA	1	07	85-117	NA	NA	

35

CHLORIDE SM 4500-CI E

Matrix: Water Units: mg/L

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MW-2S-0912					
09-159-01					
ND	2.0	SM 4500-CI E	9-18-24	9-18-24	
MW-3S-0912					
09-159-02					
73	2.0	SM 4500-CI E	9-18-24	9-18-24	
MW-4S-0911					
09-159-03					
41	2.0	SM 4500-CI E	9-18-24	9-18-24	
MW-5S-0911					
09-159-04					
19	2.0	SM 4500-CI E	9-18-24	9-18-24	
MW-6S-0911					
09-159-05					
62	2.0	SM 4500-CI E	9-18-24	9-18-24	
MW-13S-0911					
09-159-06					
27	2.0	SM 4500-CI E	9-18-24	9-18-24	
	MW-2S-0912 09-159-01 ND MW-3S-0912 09-159-02 73 MW-4S-0911 09-159-03 41 MW-5S-0911 09-159-04 19 MW-6S-0911 09-159-05 62 MW-13S-0911 09-159-06	MW-2S-0912 09-159-01 ND 2.0 MW-3S-0912 09-159-02 73 2.0 MW-4S-0911 09-159-03 41 2.0 MW-5S-0911 09-159-04 19 2.0 MW-6S-0911 09-159-05 62 2.0 MW-13S-0911 09-159-06	MW-2S-0912 09-159-01 ND 2.0 SM 4500-CI E MW-3S-0912	Result PQL Method Prepared MW-2S-0912 09-159-01 . . . ND 2.0 SM 4500-CI E 9-18-24 MW-3S-0912 . . . 09-159-02 . . . 73 2.0 SM 4500-CI E 9-18-24 MW-4S-0911 . . . 09-159-03 . . . 41 2.0 SM 4500-CI E 9-18-24 MW-5S-0911 . . . 09-159-03 . . . 41 2.0 SM 4500-CI E 9-18-24 MW-6S-0911 . . . 09-159-04 . . . 09-159-05 . . . 62 2.0 SM 4500-CI E 9-18-24 MW-13S-0911 . . . 09-159-06 . . .	Result PQL Method Prepared Analyzed MW-2S-0912 09-159-01 -

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

36

CHLORIDE SM 4500-CI E QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0918W1					
Chloride	ND	2.0	SM 4500-CI E	9-18-24	9-18-24	

					Source	Pei	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-1	59-04									
	ORIG	DUP									
Chloride	18.7	19.4	Ν	IA	NA	1	NA	NA	4	21	
MATRIX SPIKES											
Laboratory ID:	09-1	59-04									
	MS	MSD	MS	MSD		MS	MSD				
Chloride	74.0	74.8	50.0	50.0	18.7	111	112	81-115	1	20	
SPIKE BLANK											
Laboratory ID:	SB09	18W1									
	S	B	S	BB		ç	SB				
Chloride	51	1.7	50	0.0	NA	1	03	77-115	NA	NA	

37

SULFATE ASTM D516-11

Matrix: Water Units: mg/L

Ū				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2S-0912					
Laboratory ID:	09-159-01					
Sulfate	5.1	5.0	ASTM D516-11	9-17-24	9-17-24	
Client ID:	MW-3S-0912					
Laboratory ID:	<u>09-159-02</u> 96	20		0.47.04	0 47 04	
Sulfate	90	20	ASTM D516-11	9-17-24	9-17-24	
Client ID:	MW-4S-0911					
Laboratory ID:	09-159-03					
Sulfate	100	25	ASTM D516-11	9-17-24	9-17-24	
Client ID:	MW-5S-0911					
Laboratory ID:	09-159-04					
Sulfate	39	20	ASTM D516-11	9-17-24	9-17-24	
Client ID:	MW-6S-0911					
Laboratory ID:	09-159-05					
Sulfate	<u>52</u>	20	ASTM D516-11	9-17-24	9-17-24	
Client ID:	MW-13S-0911					
Laboratory ID:	09-159-06					
Sulfate	42	10	ASTM D516-11	9-17-24	9-17-24	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

38

SULFATE ASTM D516-11 QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0917W1					
Sulfate	ND	5.0	ASTM D516-11	9-17-24	9-17-24	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-1	59-04									
	ORIG	DUP									
Sulfate	39.2	42.3	Ν	A	NA		NA	NA	8	11	
MATRIX SPIKES											
Laboratory ID:	09-1	59-04									
	MS	MSD	MS	MSD		MS	MSD				
Sulfate	79.5	82.7	40.0	40.0	39.2	101	109	69-134	4	20	
SPIKE BLANK											
Laboratory ID:	SB09	17W1									
	S	B	S	BB			SB				
Sulfate	9.	10	1(0.0	NA		91	81-106	NA	NA	

39

TOTAL DISSOLVED SOLIDS SM 2540C

Matrix: Water						
Units: mg/L				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2S-0912	· · ·		•	.	¥
Laboratory ID:	09-159-01					
Total Dissolved Solids	140	13	SM 2540C	9-16-24	9-16-24	
Client ID:	MW-3S-0912					
Laboratory ID:	09-159-02					
Total Dissolved Solids	320	13	SM 2540C	9-16-24	9-16-24	
Client ID:	MW-4S-0911					
Laboratory ID:	09-159-03					
Total Dissolved Solids	590	13	SM 2540C	9-16-24	9-16-24	
Client ID:	MW-5S-0911					
Laboratory ID:	09-159-04					
Total Dissolved Solids	190	13	SM 2540C	9-16-24	9-16-24	
Client ID:	MW-6S-0911					
Laboratory ID:	09-159-05					
Total Dissolved Solids	170	13	SM 2540C	9-16-24	9-16-24	
Client ID:	MW-13S-0911					
Laboratory ID:	09-159-06					
Total Dissolved Solids	170	13	SM 2540C	9-16-24	9-16-24	

TOTAL DISSOLVED SOLIDS SM 2540C QUALITY CONTROL

Matrix: Water Units: mg/L

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB0916W1					
ND	13	SM 2540C	9-16-24	9-16-24	
	MB0916W1	MB0916W1	MB0916W1	Result PQL Method Prepared MB0916W1	Result PQL Method Prepared Analyzed MB0916W1 MB0916W1

	_			Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	09-15	59-04							
	ORIG	DUP							
Total Dissolved Solids	185	188	NA	NA	NA	NA	2	29	
SPIKE BLANK									
Laboratory ID:	SB09	16W1							
	S	В	SB		SB				
Total Dissolved Solids	47	79	500	NA	96	76-120	NA	NA	

TOTAL ALKALINITY SM 2320B

Matrix: Water Units: mg CaCO3/L

3 - - - - - - - - - -				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2S-0912					
Laboratory ID:	09-159-01					
Total Alkalinity	80	2.0	SM 2320B	9-13-24	9-13-24	
Client ID:	MW-3S-0912					
Laboratory ID:	09-159-02					
Total Alkalinity	96	2.0	SM 2320B	9-13-24	9-13-24	
Client ID:	MW-4S-0911					
Laboratory ID:	09-159-03					
Total Alkalinity	180	2.0	SM 2320B	9-13-24	9-13-24	
Client ID:	MW-5S-0911					
Laboratory ID:	09-159-04					
Total Alkalinity	92	2.0	SM 2320B	9-13-24	9-13-24	
Client ID:	MW-6S-0911					
Laboratory ID:	09-159-05					
Total Alkalinity	82	2.0	SM 2320B	9-13-24	9-13-24	
Client ID:	MW-13S-0911					
Laboratory ID:	09-159-06					
Total Alkalinity	92	2.0	SM 2320B	9-13-24	9-13-24	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL ALKALINITY SM 2320B QUALITY CONTROL

Matrix: Water Units: mg CaCO3/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0913W1					
Total Alkalinity	ND	2.0	SM 2320B	9-13-24	9-13-24	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-1	59-04									
	ORIG	DUP									
Total Alkalinity	92.0	92.0	Ν	IA	NA		NA	NA	0	10	
MATRIX SPIKES											
Laboratory ID:	09-1	59-04									
	MS	MSD	MS	MSD		MS	MSD				
Total Alkalinity	182	182	100	100	92.0	90	90	80-120	0	20	
SPIKE BLANK											
Laboratory ID:	SB09	13W1									
	S	B	S	SB			SB				
Total Alkalinity	98	3.0	1	00	NA		98	82-101	NA	NA	

BICARBONATE SM 2320B

Matrix: Water Units: mg CaCO3/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2S-0912					
Laboratory ID:	09-159-01					
Bicarbonate	80	2.0	SM 2320B	9-13-24	9-13-24	
Client ID:	MW-3S-0912					
Laboratory ID:	09-159-02					
Bicarbonate	96	2.0	SM 2320B	9-13-24	9-13-24	
Client ID:	MW-4S-0911					
Laboratory ID:	09-159-03					
Bicarbonate	180	2.0	SM 2320B	9-13-24	9-13-24	
Client ID:	MW-5S-0911					
Laboratory ID:	09-159-04					
Bicarbonate	92	2.0	SM 2320B	9-13-24	9-13-24	
Client ID:	MW-6S-0911					
Laboratory ID:	09-159-05					
Bicarbonate	82	2.0	SM 2320B	9-13-24	9-13-24	
Client ID:	MW-13S-0911					
Laboratory ID:	09-159-06					
Bicarbonate	92	2.0	SM 2320B	9-13-24	9-13-24	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

44

BICARBONATE SM 2320B QUALITY CONTROL

Matrix: Water Units: mg CaCO3/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0913W1					
Bicarbonate	ND	2.0	SM 2320B	9-13-24	9-13-24	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	e Level	Result	Rec	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-1	59-04									
	ORIG	DUP									
Total Alkalinity	92.0	92.0	Ν	IA	NA		NA	NA	0	10	
MATRIX SPIKES											
Laboratory ID:	09-1	59-04									
	MS	MSD	MS	MSD		MS	MSD				
Total Alkalinity	182	182	100	100	92.0	90	90	80-120	0	20	
SPIKE BLANK											
Laboratory ID:	SB09	13W1									
	S	B	S	SB			SB				
Total Alkalinity	98	3.0	1	00	NA		98	82-101	NA	NA	

45

AMMONIA (as Nitrogen) SM 4500-NH₃ D

Matrix: Water Units: mg/L

Ū				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2S-0912					
Laboratory ID:	09-159-01					
Ammonia	ND	0.053	SM 4500-NH3 D	9-16-24	9-16-24	
Client ID:	MW-3S-0912					
Laboratory ID:	09-159-02					
Ammonia	ND	0.053	SM 4500-NH3 D	9-16-24	9-16-24	
Client ID:	MW-4S-0911					
Laboratory ID:	09-159-03					
Ammonia	ND	0.053	SM 4500-NH3 D	9-16-24	9-16-24	
Client ID:	MW-5S-0911					
Laboratory ID:	09-159-04					
Ammonia	ND	0.053	SM 4500-NH3 D	9-16-24	9-16-24	
Client ID:	MW-6S-0911					
Laboratory ID:	09-159-05					
Ammonia	ND	0.053	SM 4500-NH3 D	9-16-24	9-16-24	
Client ID:	MW/ 426 0044					
Client ID:						
Laboratory ID: Ammonia	09-159-06 ND	0.053	SM 4500-NH3 D	9-16-24	9-16-24	
	••=	0.000		5 10 21	0 10 2 1	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

46

AMMONIA (as Nitrogen) SM 4500-NH₃ D QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0916W1					
Ammonia	ND	0.053	SM 4500-NH3 D	9-16-24	9-16-24	

				Source	Pe	rcent	Recovery		RPD		
Analyte	Re	sult	Spike	Level	Result	Rec	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-1	59-04									
	ORIG	DUP									
Ammonia	ND	ND	Ν	A	NA		NA	NA	NA	15	
MATRIX SPIKES											
Laboratory ID:	09-1	59-04									
	MS	MSD	MS	MSD		MS	MSD				
Ammonia	4.93	4.95	5.00	5.00	ND	99	99	75-111	0	20	
SPIKE BLANK											
Laboratory ID:	SB09	16W1									
	S	B	S	BB			SB				
Ammonia	4.	95	5.	00	NA		99	81-110	NA	NA	

TOTAL ORGANIC CARBON SM 5310B

Matrix: Water						
Units: mg/L				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2S-0912				/	1.1.90
Laboratory ID:	09-159-01					
Total Organic Carbon	ND	1.0	SM 5310B	9-17-24	9-17-24	
Client ID:	MW-3S-0912					
Laboratory ID:	09-159-02					
Total Organic Carbon	3.0	1.0	SM 5310B	9-17-24	9-17-24	
Client ID:	MW-4S-0911					
Laboratory ID:	09-159-03					
Total Organic Carbon	4.8	1.0	SM 5310B	9-17-24	9-17-24	
Client ID:	MW-5S-0911					
Laboratory ID:	09-159-04					
Total Organic Carbon	ND	1.0	SM 5310B	9-17-24	9-17-24	
Client ID:	MW-5S-0911					
Laboratory ID:	09-159-04					
Total Organic Carbon	ND	1.0	SM 5310B	9-17-24	9-17-24	
Client ID:	MW-6S-0911					
Laboratory ID:	09-159-05					
Total Organic Carbon	2.9	1.0	SM 5310B	9-17-24	9-17-24	
Client ID:	MW-13S-0911					
Laboratory ID:	09-159-06					
Total Organic Carbon	ND	1.0	SM 5310B	9-17-24	9-17-24	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

48

TOTAL ORGANIC CARBON SM 5310B QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0917W1					
Total Organic Carbon	ND	1.0	SM 5310B	9-17-24	9-17-24	

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-1	59-04									
	ORIG	DUP									
Total Organic Carbon	ND	ND	Ν	A	NA	١	٨A	NA	NA	11	
MATRIX SPIKES											
Laboratory ID:	09-1	59-04									
	MS	MSD	MS	MSD		MS	MSD				
Total Organic Carbon	11.1	10.8	10.0	10.0	ND	111	108	85-120	3	20	
SPIKE BLANK											
Laboratory ID:	SB09	17W1									
	S	B	S	В			SB				
Total Organic Carbon	10).3	10	10.0		1	03	79-120	NA	NA	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

OnSite		Cha	ain o	f (Cu	st	:00	ly											P	Page _]	of	1		
Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Tur (ir	naround Req 1 working da	uest ys)		L	abo	orat	ory		ımk	er:	C)9	-	1	5	9								
Company: Parametrix		(Check One)			(1	-			Na)	12.1					5			1							
Project Number: 553-8472-006	San	-	☐ 1 Day ☐ 3 Days		-351 Appendix I) I 1,2-EDB				Ca, K, N					k S	(PFAS)										
Project Name: DTG Yakima LPL		ndard (7 Days	-		3-351 A			g)	In, Mg, (nate			FUNGH	5										
Project Manager: Mike Brady		H analysis 5 [Days)	Itainers	WAC 17 M-VC an			, Mn, M	s (Fe, N	, sulfate	Bicarbo			4	9										
Sampled by: C. Bargeois	1 -	(other)		Number of Containers	VOCs (8260D – WAC 173- Naphthalene; SIM-VC and	-Gx	-Dx	Total Metals (Fe, Mn, Mg)	Dissolved Metals (Fe, Mn, Mg,	Nitrate, chloride, sulfate	TDS, Alkalinity, Bicarbonate	<u>a</u> .		2 xins	PA										ure
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Numbe	VOCs (8 Naphtha	NWTPH-Gx	NWTPH-Dx	Total Me	Dissolve	Nitrate,	TDS, AI	Ammonia	TOC	0:0	E									-	% Moisture
1 MW-25- 0912	frazy	1050	Water	15	x	x	x	х	x	x	x	х	х	x	×										
2 MW-35- 0912	9/12/2	900	Water	15	x	x	x	х	х	x	x	х	х	¥	$ \neq$										
3 MW-45- 0911	9/11/24	930	Water	15	х	x	х	х	х	x	x	x	х	¥	×										
4 MW-55- 0911	1	1410	Water 35	-25	х	x	x	х	x	x	x	x	х	¥	X										
5 MW-65- 6911		1120	Water	15	х	x	x	х	x	x	x	x	х	*	×										
6 MW-135- 0911	Y	1500	Water	15	x	x	x	х	x	x	x	x	х	K	×										
7 Trip Blank	9/12/21	14900	Water	3	x	x																			
Signature		ompany		_		Date			Time			Com	ment	s/Spe	cial	Instru	ction	S							
Relinquished	Pa	arametrix	1 Dar				121	-		54		MS	/MSF) extr	a vo	lume	prov	ided	for M	/\\/_5	s.				
Received Relinquished	MS/MSD extra volume provided for MW-5S-																								
Received																									
Relinquished																									
Received																									
Reviewed/Date	Reviewed/Date Chromatograms with final report																								

Appendix C

Third Quarter 2024 Data Quality Evaluation

DATE:	October 10, 2024
TO:	Project File
FROM:	Sally Nguyen
SUBJECT:	Third Quarter 2024 Data Quality Evaluation
CC:	Lisa Gilbert
PROJECT NUMBER:	553-8472-005
PROJECT NAME:	DTG Rocky Top Environmental Limited Purpose Landfill

A data quality evaluation was conducted for the Third Quarter 2024 sampling event at the DTG Rocky Top Environmental Limited Purpose Landfill (LPL). Samples were collected between August 28 and September 12, 2024, by Parametrix under contract to DTG. The samples were analyzed by OnSite Environmental under four associated work orders:

- Work Order 2408-369 (MW-7D, Trip Blank)
- Work Order 2409-088 (MW-8D, Trip Blank)
- Work Order 2409-157 (MW-9D, MW-10D, Trip Blank)
- Work Order 2409-159 (MW-2S, MW-3S, MW-4S, MW-5S, MW-6S, MW-13S, Trip Blank)

The data were evaluated in accordance with EPA guidance (EPA 2020a, 2020b, and 2009) at a Stage 2A level. Sample MW-13S is a field duplicate of MW-5S.

Field Narrative

Groundwater sampling field data sheets were provided by Parametrix. Bertheas was decommissioned prior to Third Quarter 2024 sampling and therefore is no longer being sampled. There are multiple work orders for this sampling event with the laboratory because the deep well samples were collected at the time of aquifer testing following well installation.

Laboratory Case Narrative

Work Order 2408-369 (MW-7D, Trip Blank)

Samples collected on August 28, 2024 were received by the laboratory on August 28, 2024. They were maintained at the laboratory at a temperature of 2 to 6 degrees Celsius.

Volatiles - EPA Method SW8260D

No VOCs were detected in the trip blank.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The spike blank recoveries and relative percent differences (RPDs) were within control limits.

No matrix spike/matrix spike duplicate (MS/MSD) samples were submitted for this project.

ParametriX

Total Petroleum Hydrocarbons (NWTPH-Gx and Dx)

No TPH-Gx was detected in the trip blank.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The duplicate RPDs were within control limits.

Total and Dissolved Metals (EPA Method 6010D)

The sample(s) were digested and analyzed within the recommended holding times.

The method blank(s) were clean at the reporting limits.

The duplicate RPDs were within control limits.

The MS recoveries and relative percent differences (RPDs) were within advisory control limits; however, the MS for total and dissolved metals were not associated with the project.

Wet Chemistry

The sample(s) were prepared and analyzed within the recommended holding times.

The method blank(s) were clean at the reporting limits.

The duplicate RPDs were within control limits.

The MS (if required) and spike blank recoveries and RPDs were within control limits; however, the MS for the nitrate was not associated with the project.

Work Order 2409-088 (MW-8D, Trip Blank)

Samples collected on September 9, 2024 were received by the laboratory on September 10, 2024. They were maintained at the laboratory at a temperature of 2 to 6 degrees Celsius.

Volatiles - EPA Method SW8260D

No VOCs were detected in the trip blank.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The percent recovery for Trichloroethene is outside the control limits on the high end in the Spike Blank and Spike Blank Duplicate. The method allows for a percentage of the compounds to fall outside of the control limits due to the large number of analytes being spiked.

No matrix spike/matrix spike duplicate (MS/MSD) samples were submitted for this project.

Total Petroleum Hydrocarbons (NWTPH-Gx and Dx)

No TPH-Gx was detected in the trip blank.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

Parametrix

The duplicate RPDs were within control limits.

Total and Dissolved Metals (EPA Method 6010D)

The sample(s) were digested and analyzed within the recommended holding times.

The method blank(s) were clean at the reporting limits.

The duplicate RPDs were within control limits.

The MS recoveries and relative percent differences (RPDs) were within advisory control limits.

Wet Chemistry

The sample(s) were prepared and analyzed within the recommended holding times.

The method blank(s) were clean at the reporting limits.

The duplicate RPDs were within control limits.

The MS (if required) and spike blank recoveries and RPDs were within control limits; however, the MS for Sulfate, TDS, Alkalinity, Ammonia, and Total Organic Carbon were not associated with the project.

Work Order 2409-157 (MW-9D, MW-10D, Trip Blank)

Samples collected on September 10 and 11, 2024 were received by the laboratory on September 12, 2024. They were maintained at the laboratory at a temperature of 2 to 6 degrees Celsius.

Volatiles - EPA Method SW8260D

No VOCs were detected in the trip blank.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The percent recovery for Trichloroethene is outside the control limits on the high end in the Spike Blank and Spike Blank Duplicate. The method allows for a percentage of the compounds to fall outside of the control limits due to the large number of analytes being spiked.

No matrix spike/matrix spike duplicate (MS/MSD) samples were submitted for this project.

Total Petroleum Hydrocarbons (NWTPH-Gx and Dx)

No TPH-Gx was detected in the trip blank.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The duplicate RPDs were within control limits.

Total and Dissolved Metals (EPA Method 6010D)

The sample(s) were digested and analyzed within the recommended holding times.

The method blank(s) were clean at the reporting limits.

ParametriX

The duplicate RPDs were within control limits except for dissolved iron, which was qualified "C" outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

The MS recoveries and relative percent differences (RPDs) were within advisory control limits.

Wet Chemistry

The sample(s) were prepared and analyzed within the recommended holding times, except for sample MW-9D for Nitrate. Nitrate results for MW-9D will be flagged "H" as estimated due to analysis outside of holding times.

The method blank(s) were clean at the reporting limits.

The duplicate RPDs were within control limits.

The MS (if required) and spike blank recoveries and RPDs were within control limits.

Work Order 2409-159 (MW-2S, MW-3S, MW-4S, MW-5S, MW-6S, MW-13S, Trip Blank)

Samples collected on September 11 and 12, 2024 were received by the laboratory on September 12, 2024. They were maintained at the laboratory at a temperature of 2 to 6 degrees Celsius.

Volatiles - EPA Method SW8260D

No VOCs were detected in the trip blank.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The percent recovery for Dibromochloromethane is outside the control limits in the Spike Blank/Spike Blank Duplicate and Matrix Spike/Matrix Spike Duplicate. The method allows for a percentage of the compounds to fall outside of the control limits due to the large number of analytes being spiked.

Total Petroleum Hydrocarbons (NWTPH-Gx and Dx)

No TPH-Gx was detected in the trip blank.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The duplicate RPDs were within control limits.

Total and Dissolved Metals (EPA Method 6010D)

The sample(s) were digested and analyzed within the recommended holding times.

The method blank(s) were clean at the reporting limits.

The duplicate RPDs were within control limits.

The MS recoveries and relative percent differences (RPDs) were within advisory control limits.

Parametrix

Wet Chemistry

The reported Nitrate results are a calculated value based on the subtraction of Nitrite from the Nitrate plus Nitrite result. The Nitrite analysis, which has a 48-hour holding time, was performed within the holding time. Immediately after this analysis, an aliquot from each sample was preserved with concentrated sulfuric acid and stored at 4 degrees C. The preserved samples were then analyzed within the maximum 28-day holding time for the Nitrate plus Nitrite analysis.

The sample(s) were prepared and analyzed within the recommended holding times.

The method blank(s) were clean at the reporting limits.

The duplicate RPDs were within control limits.

The MS (if required) and spike blank recoveries and RPDs were within control limits.

Field Duplicate Evaluation

Relative Percent Differences (RPDs) were calculated for the results of sample MW-5S and duplicate MW-13S. Field Duplicate Relative Percent Difference Calculations are included in Attachment A.

The duplicate percent RPDs were within control limits for all analytes except for total iron, total magnesium, and chloride; therefore, results for these analytes will be flagged "J" as estimated.

Data Qualification

- Qualify nitrate for sample MW-9D "H" as estimated due to analysis outside of recommended holding times.
- Qualify total iron, total magnesium, total manganese, and chloride "J" as estimated for sample MW-5S and its duplicate MW-13S due to RPD outside acceptable limits.

Parametrix

References

- EPA (U.S. Environmental Protection Agency). 2002. Guidance on Environmental Data Verification and Data Validation. EPA QA/G-8. EPA240R-02/004.
- EPA. 2020a. National Functional Guidelines for Inorganic Superfund Data Review. EPA 540R- 2017-001. November.
- EPA. 2020b. National Functional Guidelines for Organic Superfund Data Review. EPA 542-R-20-006. November.

Attachment A

Third Quarter 2024 Field Duplicate Relative Percent Difference Calculations

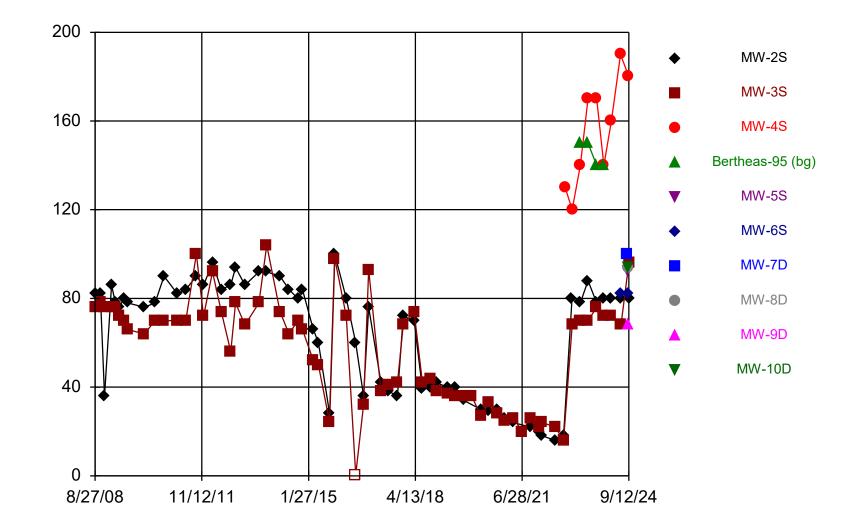
DTG Rocky Top Environmental LPL Field Duplicate Relative Percent Difference Calculations 553-8472-005

Third Quarter 2024											
Sample Dates:	8/28/24, 9/9/24, 9/	10/24, 9/11/24,	9/12/24								
Sample numbers:	On-Site Environmental 2408-369: MW-7D										
	On-Site Environment	al 2409-088: N	1W-8D								
	On-Site Environment	al 2409-157: N	1W-9D, MV	/-10D							
	On-Site Environment	al 2409-159: N	1W-2S, MW	-3S, MW-49	S, MW-5S,	MW-6S, MW	′-13S				
DUP MW-13S collected a	at MW-5S										
Completed by: Sally Ngu	yen	10/1/2024									
Groundwater	sample	duplicate	avg	diff	RPD	=/<25%?	RL	¹ w/in RL			
units = mg/L	MW-5S	MW-13S									
Iron, Total	0.55	0.85	0.70	-0.3	42.9	n	0.050	n			
Magnesium, Total	13	17	15	-4	26.7	n	1.0	n			
Manganese, Total	0.11	0.16	0.135	-0.05	37.0	n	0.010	n			
Calcium, Dissolved	24	24	24	0	0.0	у	1.1				
Iron, Dissolved	0.26	0.27	0.265	-0.01	3.8	У	0.056				
Magnesium, Dissolved	15	15	15	0	0.0	У	1.1				
Manganese, Dissolved	0.13	0.13	0.13	0	0.0	У	0.011				
Potassium, Dissolved	2.6	2.7	2.65	-0.1	3.8	У	1.1				
Sodium, Dissolved	14	14	14	0	0.0	У	1.1				
Nitrate	<0.050	0.051	0.051	n/a	n/a		0.050	У			
Chloride	19	27	23	-8	34.8	n	2.0	n			
Sulfate	39	42	40.5	-3	7.4	У	20/10				
TDS	190	170	180	20	11.1	У	13				
Alkalinity	92	92	234	0	0.0	У	2.0				
Bicarbonate	92	92	234	0	0.0	У	2.0				
Ammonia	< 0.053	< 0.053	n/a	n/a	n/a		0.053	У			
тос	<1.0	<1.0	n/a	n/a	n/a		1.0	У			
TPH-Gasoline (ug/L)	<100	<100	n/a	n/a	n/a		100	У			
TPH-Diesel	<0.22	<0.21	n/a	n/a	n/a		0.22/0.21	У			
TPH-Oil	<0.22	<0.21	n/a	n/a	n/a		0.22/0.21	У			
VOCs	None detected										
Comments:	Qualify total iron, tot acceptable limits.	al magnesium,	total mang	anese, and	chloride "J	l" as estimate	ed due to RP	D outside			

Notes

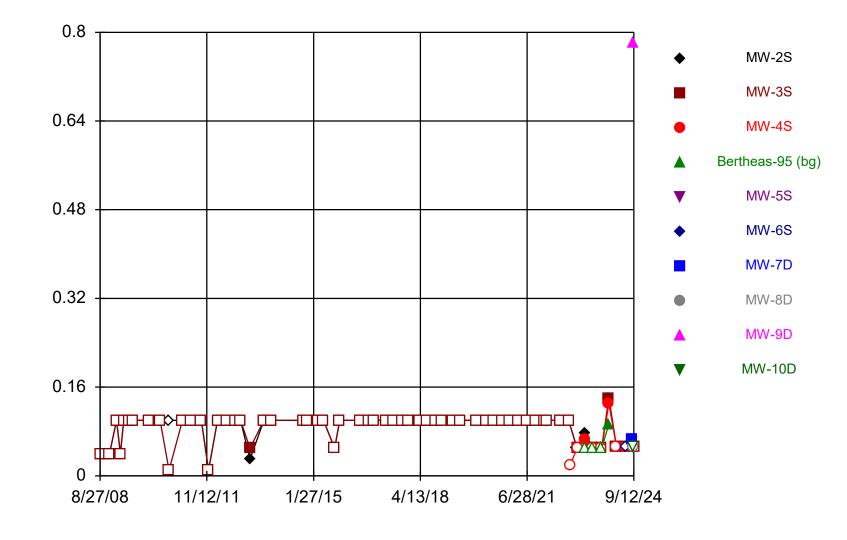
¹ = secondary comparison. When a RPD calculation is not available or is above limits, a reportling limit comparison is done.

RPD = relative percent difference


RL = reporting limit

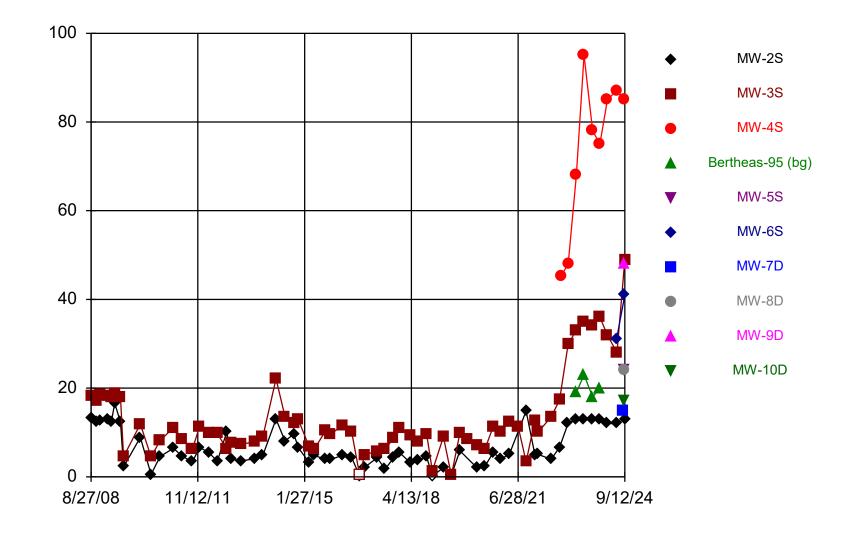
n/a = not applicable

Appendix D


Time-Series Plots

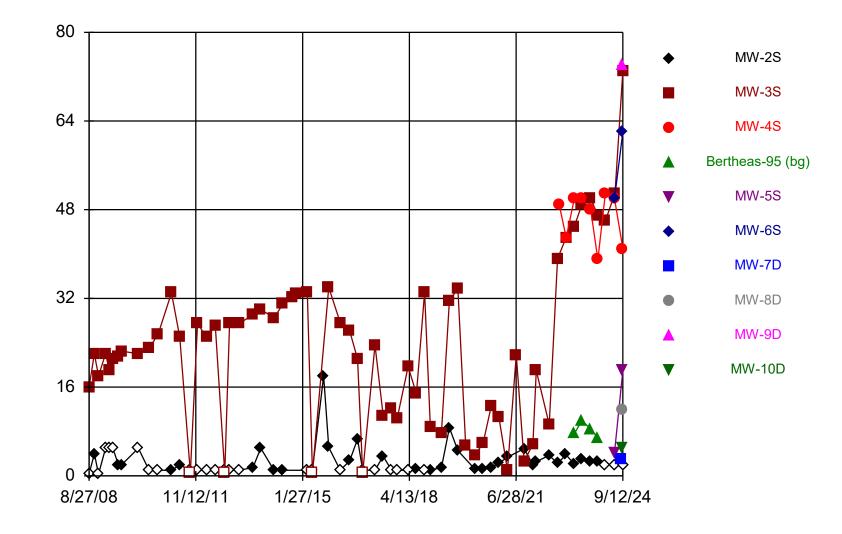
Constituent: Alkalinity, Total Analysis Run 10/15/2024 5:07 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

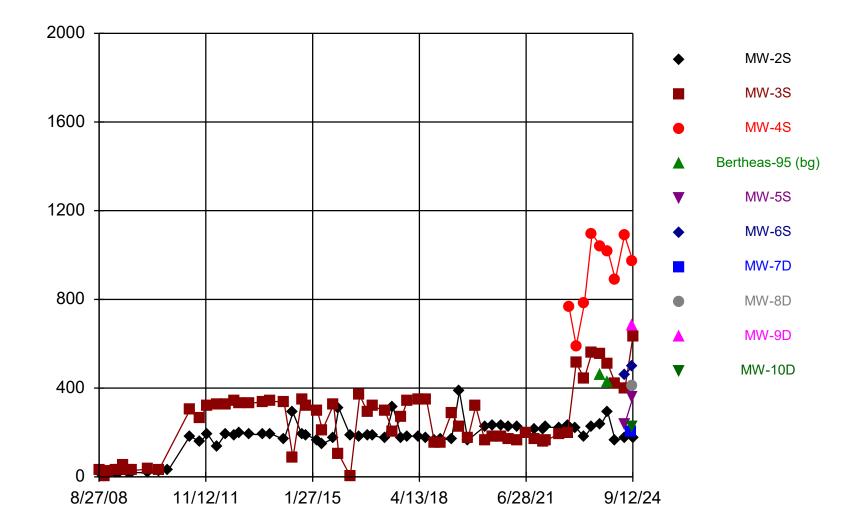
Constituent: Ammonia Analysis Run 10/15/2024 5:08 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats


NH3

200 MW-2S MW-3S 160 MW-4S Bertheas-95 (bg) MW-5S 120 MW-6S MW-7D 80 MW-8D MW-9D MW-10D 40 0 8/27/08 11/12/11 1/27/15 4/13/18 6/28/21 9/12/24

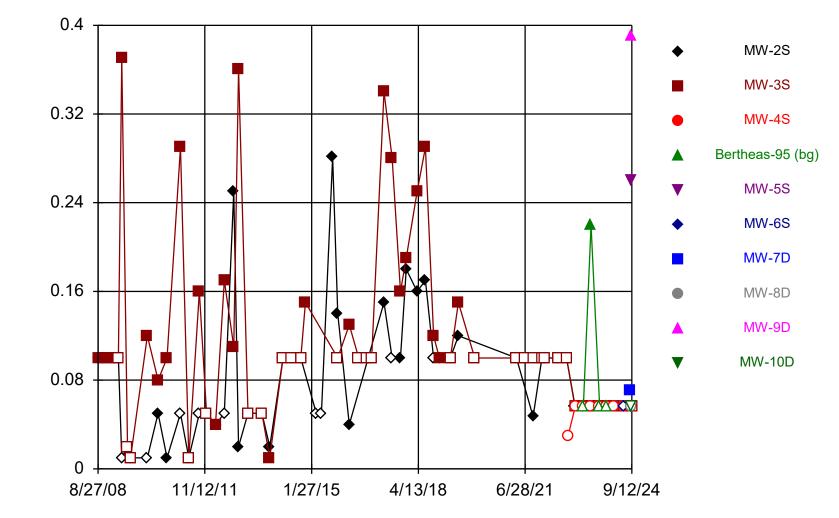
Time Series


Constituent: Bicarbonate Analysis Run 10/15/2024 5:08 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats



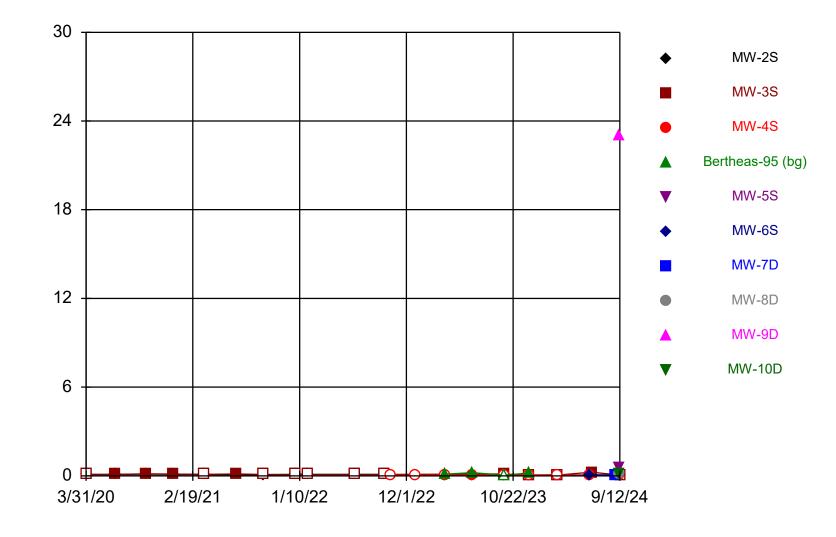
Constituent: Calcium, Dissolved Analysis Run 10/15/2024 5:08 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Constituent: Chloride Analysis Run 10/15/2024 5:08 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

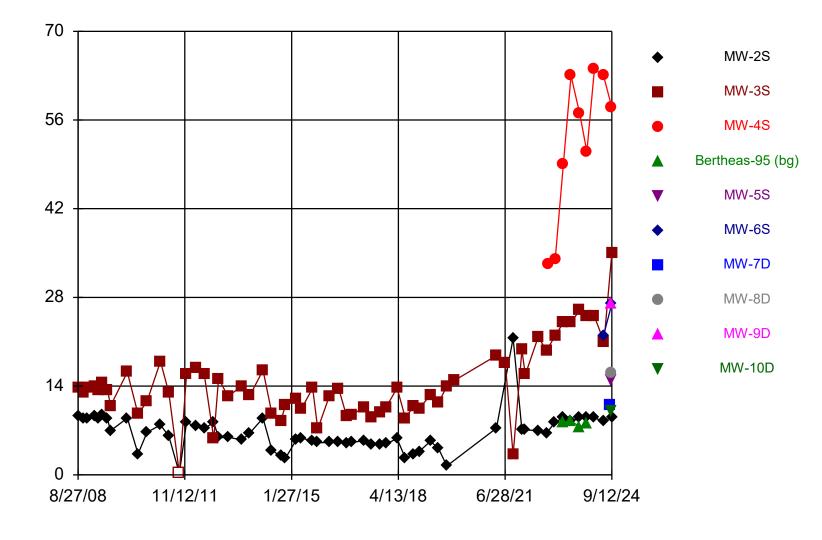


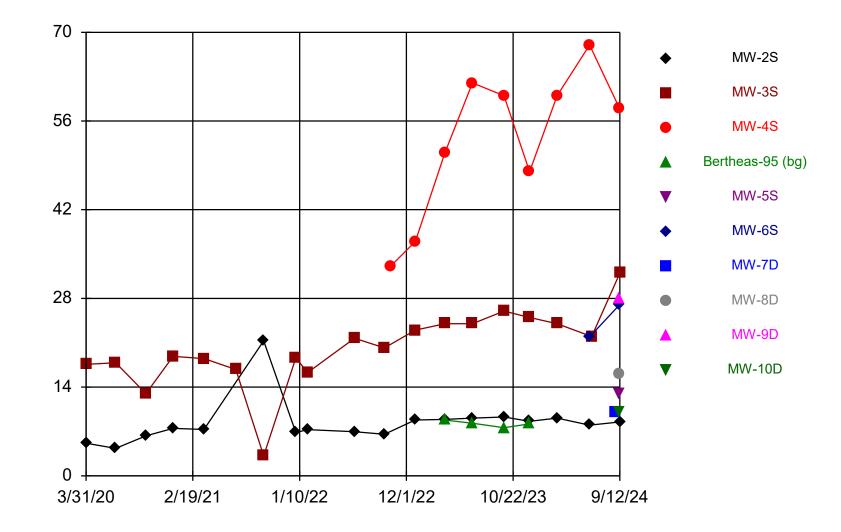
Time Series

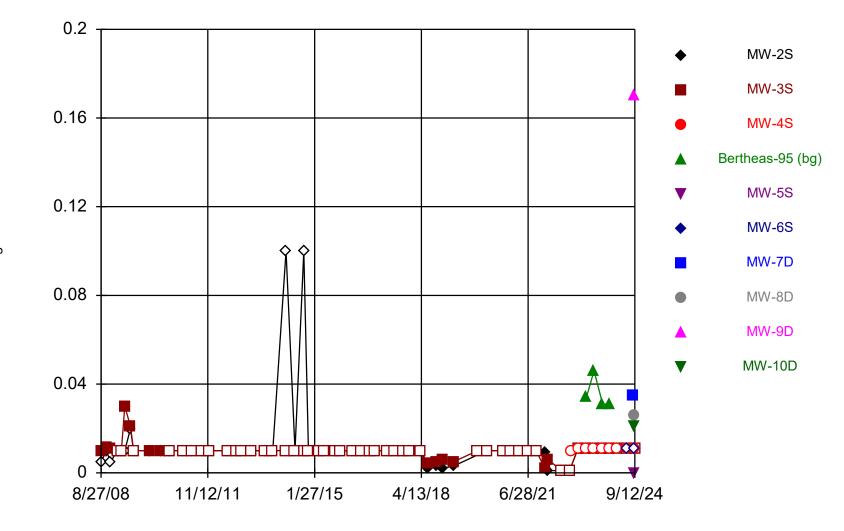
Constituent: Conductivity Analysis Run 10/15/2024 5:08 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats


umhos/cm

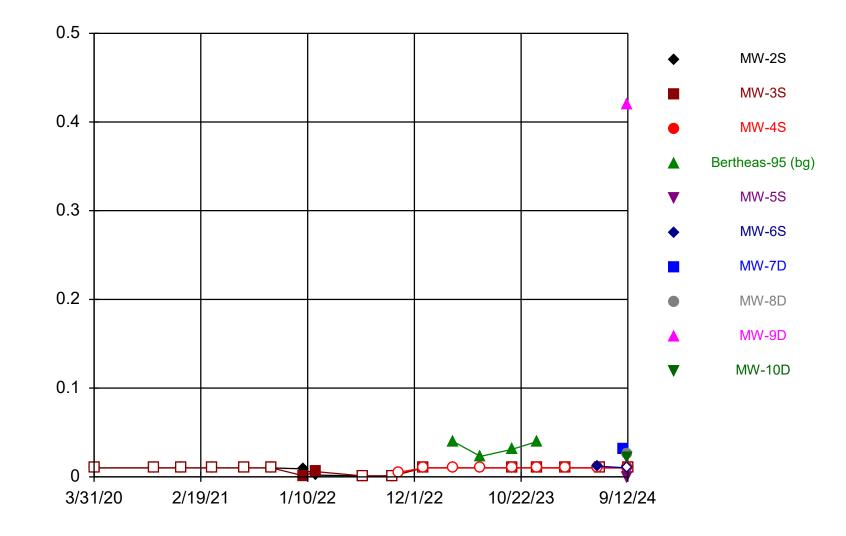
Time Series

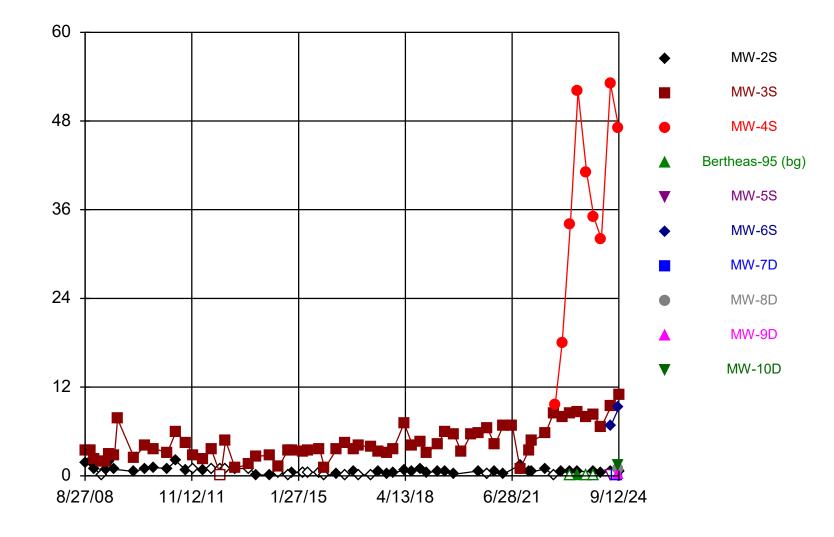

Constituent: Iron, Dissolved Analysis Run 10/15/2024 5:08 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

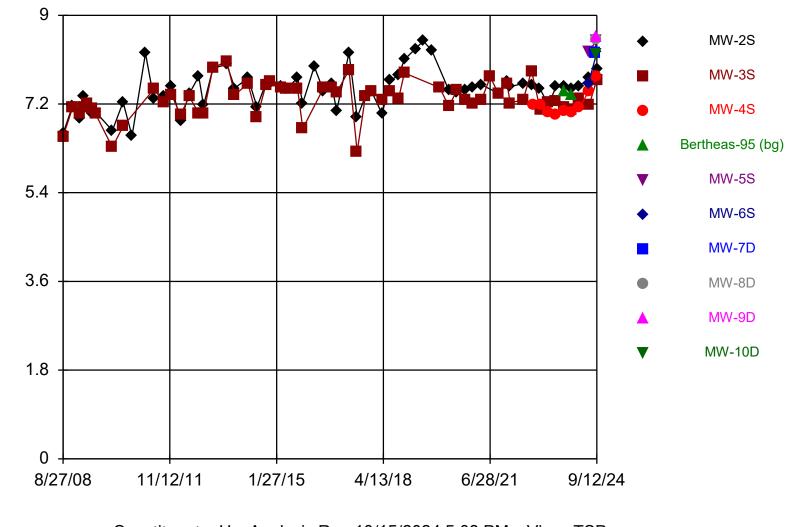

Constituent: Iron, Total Analysis Run 10/15/2024 5:08 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats


Constituent: Magnesium, Dissolved Analysis Run 10/15/2024 5:08 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

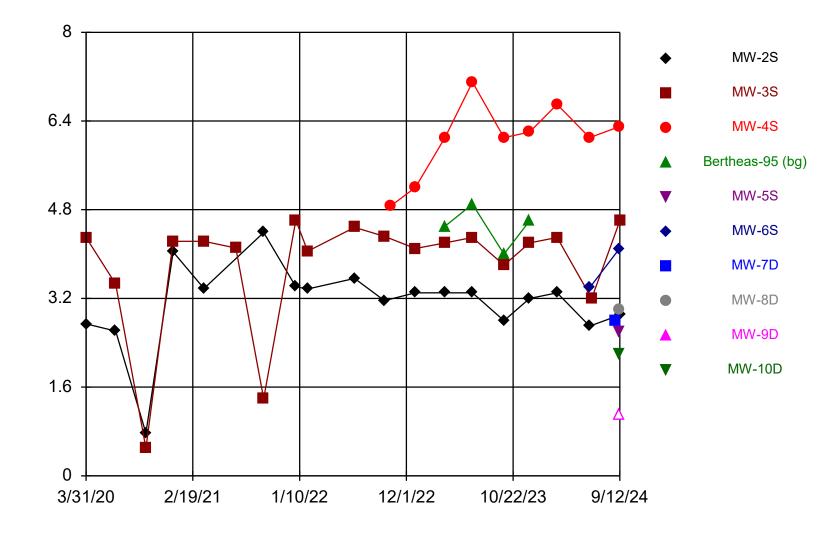
Time Series


Constituent: Magnesium, Total Analysis Run 10/15/2024 5:08 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

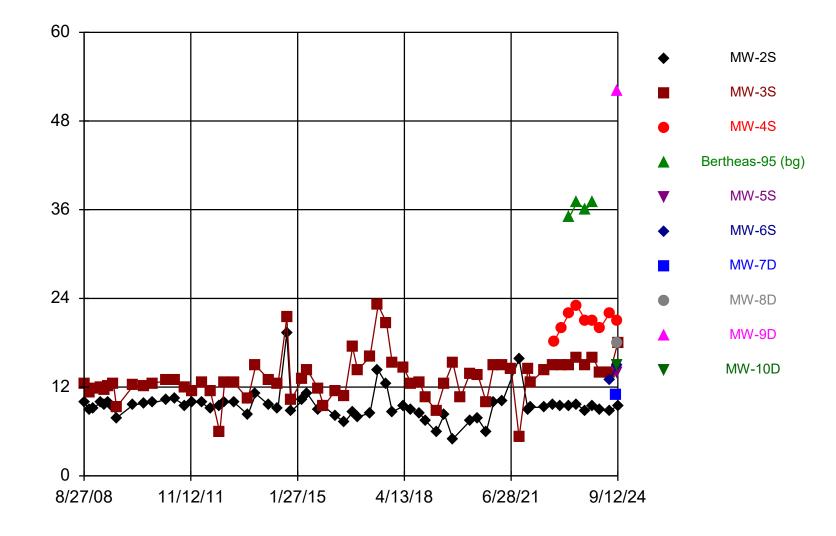

Constituent: Manganese, Dissolved Analysis Run 10/15/2024 5:08 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats


Constituent: Manganese, Total Analysis Run 10/15/2024 5:08 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Constituent: Nitrate Analysis Run 10/15/2024 5:08 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

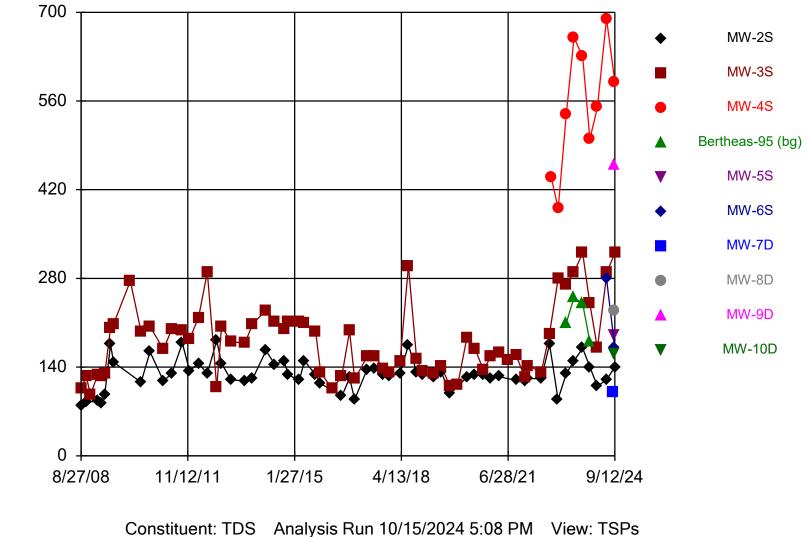

Time Series

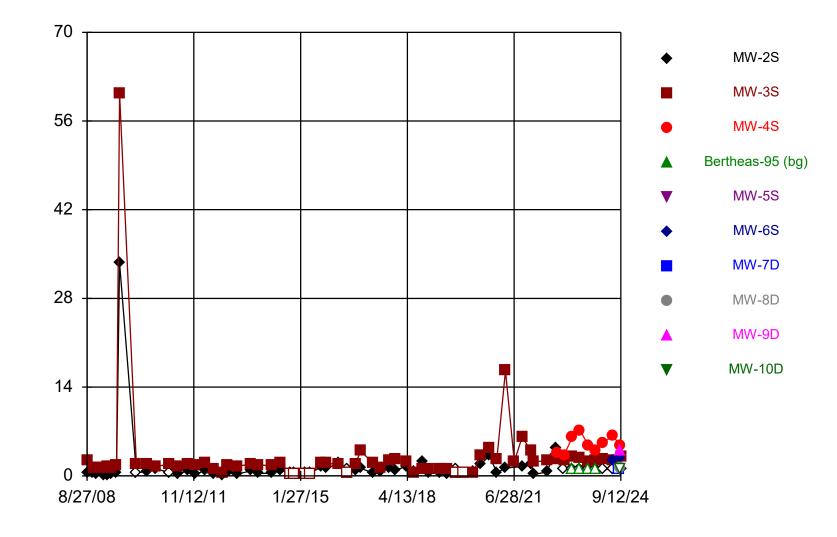
Constituent: pH Analysis Run 10/15/2024 5:08 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats


none

Constituent: Potassium, Dissolved Analysis Run 10/15/2024 5:08 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Time Series


Constituent: Sodium, Dissolved Analysis Run 10/15/2024 5:08 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats


Constituent: Sulfate Analysis Run 10/15/2024 5:08 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Time Series

Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Constituent: Total Organic Carbon Analysis Run 10/15/2024 5:08 PM View: TSPs Yakima Limited Purpose Landfill Client: DTG Data: DTG Yakima LPL Stats

Appendix E

Geochemistry

		MW-2S				MW-3S			MW-4S			MW-5S		MW-6S		
	Conversion			Percent												
	Factor ¹	Value	Value	of Total												
	(mg/L to meq/L)	(mg/L)	(meq/L)	(meq/L)												
CATIONS																
Na	0.0435	9.5	0.41	21.91	18	0.78	12.57	21	0.91	9.05	14	0.61	19.51	15	0.65	12.98
Ca	0.0499	13	0.65	34.39	49	2.45	39.27	85	4.24	42.04	24	1.20	38.37	41	2.05	40.70
Mg	0.08229	9.1	0.75	39.70	35	2.88	46.25	58	4.77	47.30	15	1.23	39.54	27	2.22	44.20
Fe(+2)	0.03581	0.028	0.00	0.05	0.028	0.00	0.02	0.028	0.00	0.01	0.26	0.01	0.30	0.028	0.00	0.02
К	0.02558	2.9	0.07	3.93	4.6	0.12	1.89	6.3	0.16	1.60	2.6	0.07	2.13	4.1	0.10	2.09
Mn	0.0364	0.0055	0.00	0.01	0.0055	0.00	0.00	0.0055	0.00	0.00	0.13	0.00	0.15	0.0055	0.00	0.00
		TOTAL	1.89	100.00	TOTAL	6.23	100.00	TOTAL	10.09	100.00	TOTAL	3.12	100.00	TOTAL	5.03	100.00
ANIONS																
HCO ₃ ²	0.02	80	1.60	90.03	96	1.92	28.39	180	3.60	35.31	92	1.84	57.68	82	1.64	31.98
SO ₄	0.02082	5.1	0.11	5.97	96	2.00	29.55	100	2.08	20.42	39	0.81	25.46	52	1.08	21.11
Cl	0.02821	1.0	0.03	1.59	73	2.06	30.45	41	1.16	11.35	19	0.54	16.80	62	1.75	34.10
CO_3^2	0.02	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00
NO ₃ ³	0.0714	0.60	0.04	2.41	11	0.79	11.61	47	3.36	32.92	0.025	0.00	0.06	9.2	0.66	12.81
5		TOTAL	1.78	100.00	TOTAL	6.76	100.00	TOTAL	10.19	100.00	TOTAL	3.19	100.00	TOTAL	5.13	100.00
anion + catior	n Sum (meq/L)		3.66			12.99			20.28			6.31			10.15	
(meq/L catior	ns-anions)/(meq/L															
cations+anior	ns)*100			2.97			-4.13			-0.51			-1.08			-1.01

Cation/Anion Balance Calculations, Rocky Top Environmental Limited Purpose Landfill, Third Quarter 2024

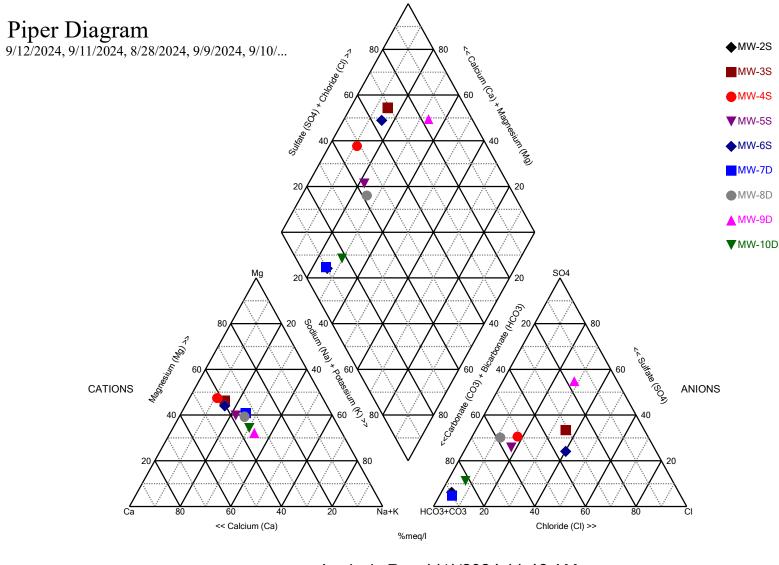
			MW-7D			MW-8D			MW-9D		MW-10D			
	Conversion			Percent			Percent			Percent			Percent	
	Factor ¹ (mg/L to meq/L)	Value (mg/L)	Value (meq/L)	of Total (meq/L)										
CATIONS														
Na	0.0435	11	0.48	21.67	18	0.78	23.19	52	2.26	32.72	15	0.65	27.40	
Ca	0.0499	15	0.75	33.91	24	1.20	35.47	48	2.40	34.65	17	0.85	35.62	
Mg	0.08229	11	0.91	41.00	16	1.32	39.00	27	2.22	32.14	10	0.82	34.55	
Fe(+2)	0.03581	0.071	0.00	0.12	0.028	0.00	0.03	0.39	0.01	0.20	0.028	0.00	0.04	
К	0.02558	2.8	0.07	3.24	3.0	0.08	2.27	0.55	0.01	0.20	2.2	0.06	2.36	
Mn	0.0364	0.035	0.00	0.06	0.026	0.00	0.03	0.17	0.01	0.09	0.021	0.00	0.03	
		TOTAL	2.21	100.00	TOTAL	3.38	100.00	TOTAL	6.91	100.00	TOTAL	2.38	100.00	
ANIONS														
HCO ₃ ²	0.02	100	2.00	93.28	94	1.88	58.08	68	1.36	17.84	94	1.88	79.15	
SO ₄	0.02082	2.5	0.05	2.43	46	0.96	29.59	200	4.16	54.62	12	0.25	10.52	
Cl	0.02821	3.2	0.09	4.21	12	0.34	10.46	74	2.09	27.38	4.9	0.14	5.82	
CO ₃ ²	0.02	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	
NO3 ³	0.0714	0.025	0.00	0.08	0.85	0.06	1.87	0.17	0.01	0.16	1.5	0.11	4.51	
		TOTAL	2.14	100.00	TOTAL	3.24	100.00	TOTAL	7.62	100.00	TOTAL	2.38	100.00	
anion + catio	anion + cation Sum (meq/L)		4.35			6.61			14.54			4.76		
(meq/L catio	ns-anions)/(meq/L													
cations+anio	ns)*100			1.46			2.10			-4.89)		0.14	

Cation/Anion Balance Calculations, Rocky Top Environmental Limited Purpose Landfill, Third Quarter 2024

¹Reference: Hem 1985.

 2 HCO₃ and CO₃ reported as CaCO₃, conversion factor adjusted accordingly.

 $^{3}NO_{3}$ reported as NO₃-N, conversion factor adjusted accordingly.


= Outside WAC 173-351-420(5)(a) acceptable range

+/-5 percent (for anion plus cation sums greater than 5 meq/L), or

+/-10 percent (for anion plus cation sums less than 5 meq/L)

Note: Values for cations in groundwater samples are measured as dissolved (field-filtered).

5 percent if anion plus cation sum greater than 5 meq/L; 10 percent if anion plus cation sum less than 5 meq/L

Analysis Run 11/1/2024 11:46 AM Yakima Limited Purpose Landfill Client: DTG Data: DTG Piper

Appendix F

Statistics

	Background Data	Upper	Lower		Background	Background	Standard	% Non-	Non-detect			
Constituent Name	Set	Limit	Limit	Observation	N	Mean	Deviation	detects	Adjustment	Transformation	Alpha	Method
MW-2S												
Ammonia (NH3)	2008–2009 only	0.1	n/a	1 future	8	n/a	n/a	100	n/a	n/a	0.0201	NP Intra (NDs) 1 of 2
Chloride (mg/L)	All data	18	n/a	1 future	58	n/a	n/a	41.38	n/a	n/a	0.0005716	NP Intra (normality) 1 of 2
Iron, Dissolved (mg/L)	All data	0.281	n/a	1 future	51	n/a	n/a	68.63	n/a	n/a	0.000728	NP Intra (NDs) 1 of 2
Iron, Total (mg/L)	All data	0.118	n/a	1 future	15	n/a	n/a	80	n/a	n/a	0.007314	NP Intra (NDs) 1 of 2
Manganese, Dissolved (mg/L)	All data	0.1	n/a	1 future	56	n/a	n/a	89.29	n/a	n/a	0.0006163	NP Intra (NDs) 1 of 2
Manganese, Total (mg/L)	All data	0.01	n/a	1 future	14	n/a	n/a	85.71	n/a	n/a	0.008332	NP Intra (NDs) 1 of 2
Nitrate (mg/L)	All data	1.995	n/a	1 future	57	0.5657	0.4465	31.58	Aitchison`s	sqrt(x)	0.001316	Param Intra 1 of 2
pH (none)	2008–2009 only	7.79	6.281	1 future	7	7.036	0.2418	0	None	No	0.0006581	Param Intra 1 of 2
Sulfate (mg/L)	All data	10.51	n/a	1 future	58	4.5	3.175	17.24	Aitchison`s	No	0.001316	Param Intra 1 of 2
TDS (mg/L)	All data	176.8	n/a	1 future	57	129.3	25.07	0	None	No	0.001316	Param Intra 1 of 2
MW-3S												
Ammonia (NH3)	2008–2009 only	0.1	n/a	1 future	8	n/a	n/a	100	n/a	n/a	0.0201	NP Intra (NDs) 1 of 2
Chloride (mg/L)	All data	45.99	n/a	1 future	61	21.8	12.81	6.557	None	No	0.001316	Param Intra 1 of 2
Iron, Dissolved (mg/L)	All data	0.37	n/a	1 future	54	n/a	n/a	51.85	n/a	n/a	0.000661	NP Intra (NDs) 1 of 2
Iron, Total (mg/L)	All data	0.138	n/a	1 future	13	n/a	n/a	61.54	n/a	n/a	0.009354	NP Intra (NDs) 1 of 2
Manganese, Dissolved (mg/L)	All data	0.03	n/a	1 future	58	n/a	n/a	77.59	n/a	n/a	0.0005716	NP Intra (NDs) 1 of 2
Manganese, Total (mg/L)	All data	0.01	n/a	1 future	13	n/a	n/a	84.62	n/a	n/a	0.009354	NP Intra (NDs) 1 of 2
Nitrate (mg/L)	2008-2009 only	9.201	n/a	1 future	8	1.765	0.448	0	None	sqrt(x)	0.001316	Param Intra 1 of 2
pH (none)	2008-2009 only	7.701	6.325	1 future	7	7.013	0.2205	0	None	No	0.0006581	Param Intra 1 of 2
Sulfate (mg/L)	All data	44.84	n/a	1 future	61	22.68	11.73	3.279	None	No	0.001316	Param Intra 1 of 2
TDS (mg/L)	All data	286.3	n/a	1 future	62	13.18	1.982	0	None	sqrt(x)	0.001316	Param Intra 1 of 2

Calculated UPLs for 1-of-2 2024 Groundwater Monitoring

	Background Data				Background	Standard	% Non-	Adjustment			
Constituent Name	Set	h	SCL	Background N	Mean	Deviation	detects	for NDs	Deseasonalized	Transformation	Method
MW-2S											
Ammonia (NH3)	2008-2009 only	PL=0.1	n/a	8	n/a	n/a	100	None	No	No	NP Intra PL (NDs)
Chloride (mg/L)	All data	PL=18	n/a	58	n/a	n/a	41.38	None	No	No	NP Intra PL (normality)
Iron, Dissolved (mg/L)	All data	PL=0.281	n/a	51	n/a	n/a	68.63	None	No	No	NP Intra PL (NDs)
Iron, Total (mg/L)	All data	PL=0.118	n/a	15	n/a	n/a	80	None	No	No	NP Intra PL (NDs)
Manganese, Dissolved (mg/L)	All data	PL=0.1	n/a	56	n/a	n/a	89.29	None	No	No	NP Intra PL (NDs)
Manganese, Total (mg/L)	All data	PL=0.01	n/a	14	n/a	n/a	85.71	None	No	No	NP Intra PL (NDs)
Nitrate (mg/L)	All data	PL=2.04	n/a	57	n/a	n/a	31.58	None	No	No	NP Intra PL (xf/Cohens)
pH (none)	2008-2009 only	8.245 & 5.827	8.245 & 5.827	7	7.036	0.2418	0	None	No	No	Param Intra
Sulfate (mg/L)	All data	19.01	19.01	58	4.912	2.819	17.24	None	No	No	Param Intra
TDS (mg/L)	All data	PL=182	n/a	57	n/a	n/a	0	None	No	No	NP Intra PL (normality)
MW-3S											
Ammonia (NH3)	2008-2009 only	PL=0.1	n/a	8	n/a	n/a	100	None	No	No	NP Intra PL (NDs)
Chloride (mg/L)	All data	85.84	85.84	61	21.8	12.81	6.557	None	No	No	Param Intra
Iron, Dissolved (mg/L)	All data	PL=0.37	n/a	54	n/a	n/a	51.85	None	No	No	NP Intra PL (NDs)
Iron, Total (mg/L)	All data	PL=0.138	n/a	13	n/a	n/a	61.54	None	No	No	NP Intra PL (NDs)
Manganese, Dissolved (mg/L)	All data	PL=0.03	n/a	58	n/a	n/a	77.59	None	No	No	NP Intra PL (NDs)
Manganese, Total (mg/L)	All data	PL=0.01	n/a	13	n/a	n/a	84.62	None	No	No	NP Intra PL (NDs)
Nitrate (mg/L)	2008-2009 only	18.23	18.23	8	1.453	0.2359	0	None	No	x^(1/3)	Param Intra
pH (none)	2008-2009 only	PL=7.2 & 6.54	n/a	7	n/a	n/a	0	None	No	No	NP Intra PL (normality)
Sulfate (mg/L)	All data	81.34	81.34	61	22.68	11.73	3.279	None	No	No	Param Intra
TDS (mg/L)	All data	533.1	533.1	62	13.18	1.982	0	None	No	sqrt(x)	Param Intra

Calculated Control Charts for 1-of-2 2024 Groundwater Monitoring

Note: PL = prediction limit (two values indicate upper and lower limits)