

Memorandum

DATE:	January 31, 2025
TO:	John Mefford, Department of Ecology
FROM:	Kyle Johnson, LG / Tom Mergy, LHG
PROJECT:	Coleman Oil Yakima Bulk Plant Site Ecology Agreed Order No. DE 23182 PBS No. 41392.000, Phase 0021, Task 03A
REGARDING:	Preliminary Results of the Bioventing Pilot Test – November 2024

This memorandum provides a summary of the bioventing pilot test conducted at the Coleman Oil Yakima Bulk Plant. The test was conducted on November 6-7, 2024, and performed as outlined in the approved Pilot Test Work Plan (PBS, 2024). The test was designed to evaluate the feasibility of bioventing as a remediation approach to stimulate the in-situ biodegradation of hydrocarbon contamination in the vadose zone, as a contingent component of a combined remedy. The pilot test involved installing vapor monitoring points (VMPs) and a vapor extraction well (VEW), injecting atmospheric air with helium tracer gas, and monitoring changes in soil gas parameters and differential pressure.

WELL INSTALLATION AND SAMPLING

Three vapor monitoring points (VMP1, VMP2, and VMP3) and one vapor extraction well (VEW1) were installed to support the bioventing and soil vapor extraction (SVE) pilot tests. Monitoring points were placed at varying distances to observe subsurface gas movement and microbial activity. VEW1 was drilled to a depth of 12.5 feet below ground surface (bgs) with a 2-inch diameter PVC casing and a 5-foot screen. The depth was chosen to allow a spacing of five feet above the water table. VMP1 and VMP3 were each drilled to 12 feet bgs, with a 6-inch vapor screen at the bottom connected to the surface by 1/4-inch Teflon tubing. VMP2, used as the injection well, was drilled to 16.5 feet bgs with a 6-inch vapor screen placed approximately 1 foot above the water table. The depth to groundwater was measured at 17.5 feet below ground surface (bgs) in MW-4.

- VMP1: 10 feet from VMP2 (injection point) and 10 feet from VEW1.
- VMP2: (Injection point) 20 feet from VEW1.
- VMP3: 20 feet from VMP2 (injection point) and 40 feet from VEW1.

Soil samples were collected from all boreholes at depths of 2–3 feet bgs and from the bottom 1 foot of each hole. Soil samples were analyzed for gasoline range hydrocarbons (TPH-Gx); diesel range hydrocarbons (TPH-Dx); benzene, toluene, ethylbenzene, and xylenes (BTEX); soil moisture; pH; particle sizing; alkalinity; total iron; and nutrients. See Table 1 and Table 4 (appended) for results.

BIOVENTING PILOT TEST

The test was conducted to assess the distribution of injected air and its effects on hydrocarbon biodegradation in the vadose zone. Air was injected into VMP2 at a flow rate of approximately 3 liters per minute (L/min) for six hours. A total of approximately 1,000 liters of atmospheric air were injected during the test, which met the

threshold volume as presented in the work plan. Helium was introduced as a tracer gas to track airflow distribution.

Monitoring points VMP1 (10 ft downgradient from VMP2) and VMP3 (20 ft upgradient from VMP2) were used to monitor soil gas parameters (O₂, CO₂, VOCs, and He) and differential pressure throughout the test and during a 17.5-hour recovery period. A Landtec GEM2000+ instrument was used to collect measurements of Carbon Dioxide, Oxygen, and total volatile organics (VOCs) in the vapor monitoring points, A MGD-2002 helium detector was used to provide real-time helium data. Additionally, vapor samples were collected prior and post injection from VMP1 using Summa canisters and delivered to the laboratory for analysis.

A schematic of the actual bioventing pilot test layout is presented below. The vapor point locations on the project site are shown in Figure 2 (attached).

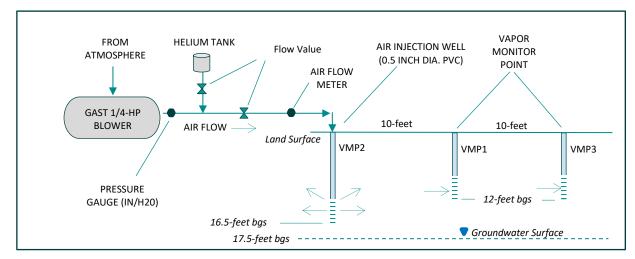


Figure 1: Bioventing pilot test schematic

Results

Baseline Conditions (Before Injection)

Baseline conditions were measured by field meters at all monitoring points prior to the start of injection:

- VMP1: O₂ was measured at 14.3%, CO₂ at 4.6%, and VOCs at 2.3 ppm.
- VMP2 (injection well): O₂ was 19.8%, CO₂ was 1%, and VOCs were 0.2 ppm.
- VMP3: O₂ was 13.1%, CO₂ was 5.3%, and VOCs were 1.5 ppm.

Baseline differential pressure readings were also collected and were used to adjust pressure readings during the injection period.

Initial Stabilization Period (10:00 AM-11:25 AM)

The first 1.42 hours of the test were dedicated to adjusting helium concentrations to the target of ~2%. This process proved challenging due to the design of the valves used, which made fine adjustments difficult. During this period, airflow and helium delivery were inconsistent, limiting the assessment of gas migration and lateral airflow. The data collected during this period reflects this transitional phase and do not represent steady-state injection conditions.

Steady Injection Period (11:25 AM-4:00 PM)

After 1.42 hours (11:25 AM), helium concentrations in the injected air were stabilized at ~2%, and air injection proceeded consistently at 3 L/min. Throughout the injection period, changes in O_2 , CO_2 , VOC, and helium concentrations, as well as differential pressure, were observed at both monitoring points. Rates of change varied, with the most significant impacts in VMP1 which is closer to the injection well.

Oxygen:

- VMP1: O₂ initially decreased to 13.9% during the stabilization period. Following this initial drop, O₂ began to rise, reaching 14.8% by the end of the injection period. The increase was faster earlier in the period (0.24% per hour from 1.52 to 3.28 hours) and slowed later (0.18% per hour from 3.28 to 6.00 hours).
- VMP3: O₂ initially decreased to 12.7% during the stabilization period. Following this initial drop, O₂ began to rise, reaching 13.4% by the end of the injection period, with a consistent average increase of 0.16% per hour.

Carbon dioxide:

- VMP1: CO₂ decreased to 4.2% during the injection period. The decrease was faster early in the period (0.12% per hour from 1.52 to 3.28 hours) and slowed later (0.05% per hour from 3.28 to 6.00 hours).
- VMP3: CO₂ decreased to 4.8% during the injection period. The decrease was faster early in the period (0.15% per hour from 1.62 to 4.82 hours) and slowed later (0.07% per hour from 4.82 to 6.00 hours).

VOCs:

- VMP1: VOCs decreased to 0.8 ppm during the injection period. Early in the injection period, the rate of decline was faster (0.48 ppm per hour from 1.52 to 3.28 hours) but slowed later (0.33 ppm per hour from 3.28 to 6.00 hours).
- VMP3: VOCs decreased to 0.5 ppm during the injection period, with a consistent average decrease of 0.22 ppm per hour.

Differential pressure:

- VMP1: Pressure increased 0.1 inches water (in H₂O) after 2.77 hours and remained stable for the remainder of the injection period.
- VMP3: No noticeable change was observed to the magnehelic gauge at VMP3.

Helium was not detected at either VMP1 or VMP3 during the injection period.

Post-Injection Period (After 4:00 PM, November 6, 2024)

After injection ceased at 4:00 PM on November 6, 2024, O_2 and CO_2 levels continued to change as the subsurface equilibrated through passive diffusion of injected air and microbial respiration. After approximately 17.50 hours post-injection, 9:30 AM on November 7, 2024, both O_2 and CO_2 levels at VMP-1 and VMP-3 had returned to within 5% of their respective baseline values, indicating that soil gas conditions had stabilized.

Oxygen:

- VMP-1: O_2 increased from 14.8% at 6.00 hours to a peak of 18.8% at 16.25 hours before decreasing to 14.2% by 17.50 hours, within 5% of the baseline of 14.3%.
- VMP2 (Injection Well): O₂ increased slightly from 20.3% to 20.5% within approximately 40 minutes postinjection before gradually decreasing to 15.7% by the end of the post injection period, below the baseline of 19.8%.

• VMP3: O₂ increased slightly from 13.4% to 13.6% within approximately 35 minutes post-injection before gradually decreasing to 12.7% by the end of the post injection period, within 5% of the baseline of 13.1%.

Carbon Dioxide:

- VMP1: CO₂ dropped from 4.2% to 2.5% within 28 minutes post-injection before gradually increasing to 4.8%, within 5% of the baseline of 4.6%, within 17.5 hours.
- VMP2 (Injection Well): CO₂ fluctuated between 0.0% and 0.3% throughout the first hour of the postinjection period. By 16.5 hours post-injection, CO₂ had increased to 4.0%, well above the baseline of 1.0%.
- VMP3: CO₂ decreased slightly early in the recovery period and stabilized at 5.5%, within 5% of the baseline of 5.3%, by 15.5 hours post-injection.

VOCs:

- VMP-1: VOCs stabilized at 0.8 ppm, below the baseline of 2.3 ppm.
- VMP-2 (Injection Well): VOCs were initially measured at 0.0 ppm immediately following injection. By the end of the post-injection period, VOCs increased slightly to 0.2 ppm, matching the baseline.
- VMP-3: VOCs stabilized at 0.5 ppm, below the baseline of 1.5 ppm.

Helium:

- VMP-1: Helium was first detected at 125 ppm (~0.0125%) approximately 17.5 hours post-injection (27.5 hours after injection began).
- VMP-2 (Injection Well): Helium increased from 0.34% to 1.76% within the first 49 minutes post injection but returned to the baseline of 0 ppm by 17 hours post-injection recovery period.
- VMP-3: Helium was first detected at 50 ppm (~0.005%) approximately 17.5 hours post-injection (27.5 hours after injection began).

VAPOR SAMPLING

As outlined in the work plan, air samples were collected in Summa canisters to evaluate soil gas composition during the bioventing pilot test. The samples were analyzed for VOCs using EPA Method TO-15, as well as for oxygen, carbon dioxide, other major gasses, and helium. Sampling was conducted at VMP1 to assess hydrocarbon concentrations and oxygen delivery before and after air injection.

- Pre-Injection Sampling: A vapor sample was collected from VMP1 prior to the start of injection to establish baseline soil gas conditions.
- Post-Injection Sampling: A second vapor sample was collected from VMP1 immediately after the completion of the injection period to evaluate the impact of the bioventing.
- Post-Residency Sampling: A final vapor sample was collected from VMP1 following the post-injection (residency) period to assess effectiveness of the system in promoting hydrocarbon biodegradation.

Vapor Sampling Results

The total VOC concentrations decreased over the course of the pilot test, indicating a reduction in hydrocarbon contamination in soil gas. See Table 2 and the laboratory report (appended) for full results.

- Pre-Injection Sample: The total VOC concentration was 178.9 μg/m³, with detected compounds including benzene (47 μg/m³), toluene (110 μg/m³), ethylbenzene (7.9 μg/m³), and xylenes (14 μg/m³). Oxygen and carbon dioxide levels were 14.3% and 4.6%, respectively.
- Post-Injection Sample: Total VOCs decreased to 104.1 μg/m³ (41.8% reduction). Benzene, toluene, ethylbenzene, and xylenes decreased by 57.4%, 36.4%, 43.0%, and 31.4%, respectively. Oxygen

increased to 15.5%, and carbon dioxide decreased to 3.2%, consistent with microbial activity and soil gas displacement.

Post-Residency Sample: Total VOCs further decreased to 81.5 µg/m³ (54.4% reduction). Benzene, toluene, ethylbenzene, and xylenes decreased cumulatively by 74.5%, 48.2%, 51.9%, and 38.1%, respectively. Oxygen levels increased to 17.5%, and carbon dioxide levels decreased to 2.5%, reflecting sustained biodegradation and oxygen utilization during the post-injection phase.

RADIUS OF INFLUENCE

The radius of influence (ROI) for the bioventing pilot test was assessed based on changes in oxygen, carbon dioxide, VOCs, differential pressure, and helium concentrations during the injection and recovery periods. Observations indicate that the test influenced conditions up to 20 feet from the injection well.

Oxygen and carbon dioxide showed clear trends of greater impact within 10 lateral feet to the injection well. The changes in O_2 and CO_2 concentrations at VMP1 and VMP3 reflect effective delivery of injected air and the stimulation of microbial activity within the ROI. However, the more moderate changes observed at VMP3, combined with the absence of measurable changes at greater distances, suggest that the influence of injection weakens beyond 20 feet.

Using linear extrapolation of changes in O_2 and CO_2 relative to baseline, the radius at which no measurable change would occur is estimated to be approximately 30 feet.

BIODEGRADATION ANALYSIS

The bioventing test data reveals clear trends in oxygen, carbon dioxide, and VOC concentrations, providing evidence of biodegradation during the injection and post-injection phases.

Injection Phase

During the injection phase, three distinct trends were observed at VMP1. Initially, while helium was being dialed in, O_2 and CO_2 concentrations decreased. This suggests oxygen was consumed by microbial activity during the intermittent air injections. In the second phase, O_2 levels began to increase steadily while CO_2 concentrations continued to decrease, likely reflecting the flushing of existing soil gas and the influx of atmospheric oxygen into the subsurface. During the third phase, O_2 levels continued to rise, but at a slower rate, while CO_2 levels began to slightly increase, suggesting a balance between oxygen delivery and microbial respiration.

VOCs, including benzene, toluene, ethylbenzene, and xylenes (BTEX), decreased by 26% at VMP1 during the injection phase. This reduction is likely due to a combination of volatilization and microbial degradation.

Post-Injection Phase

During the post-injection period, up to 17.5 hours after injection was halted, two distinct trends were observed. Initially, O_2 levels continued to rise while CO_2 decreased, indicating continued oxygen diffusion. After peaking, O_2 concentrations decreased to baseline levels, while CO_2 increased to baseline levels, suggesting renewed microbial activity as the system equilibrated. VOC concentrations continued to decrease, with a total BTEX reduction in soil gas of 55% by the end of the post-injection period compared to baseline levels.

Biodegradation Rates

The oxygen utilization observed during the post-injection phase is a direct indicator of microbial respiration. Using the stoichiometric relationship:

 $C_6H_{14} + 9.5O_2 \rightarrow 6CO_2 + 7H_2O$

This relationship indicates that CO_2 would increase if biodegradation is occurring with infusion of oxygen into the system, which was shown through the measured levels collected during the post-injection period. Oxygen utilization during the post-injection period corresponded to approximately 0.025 moles/hr of hydrocarbon degradation near VMP1.

CONCLUSIONS

The bioventing pilot test demonstrated that injected air effectively reached the monitoring points, as shown by changes in oxygen, carbon dioxide, and VOC concentrations. These changes indicate that the bioventing system effectively delivered air to the subsurface and stimulated microbial respiration.

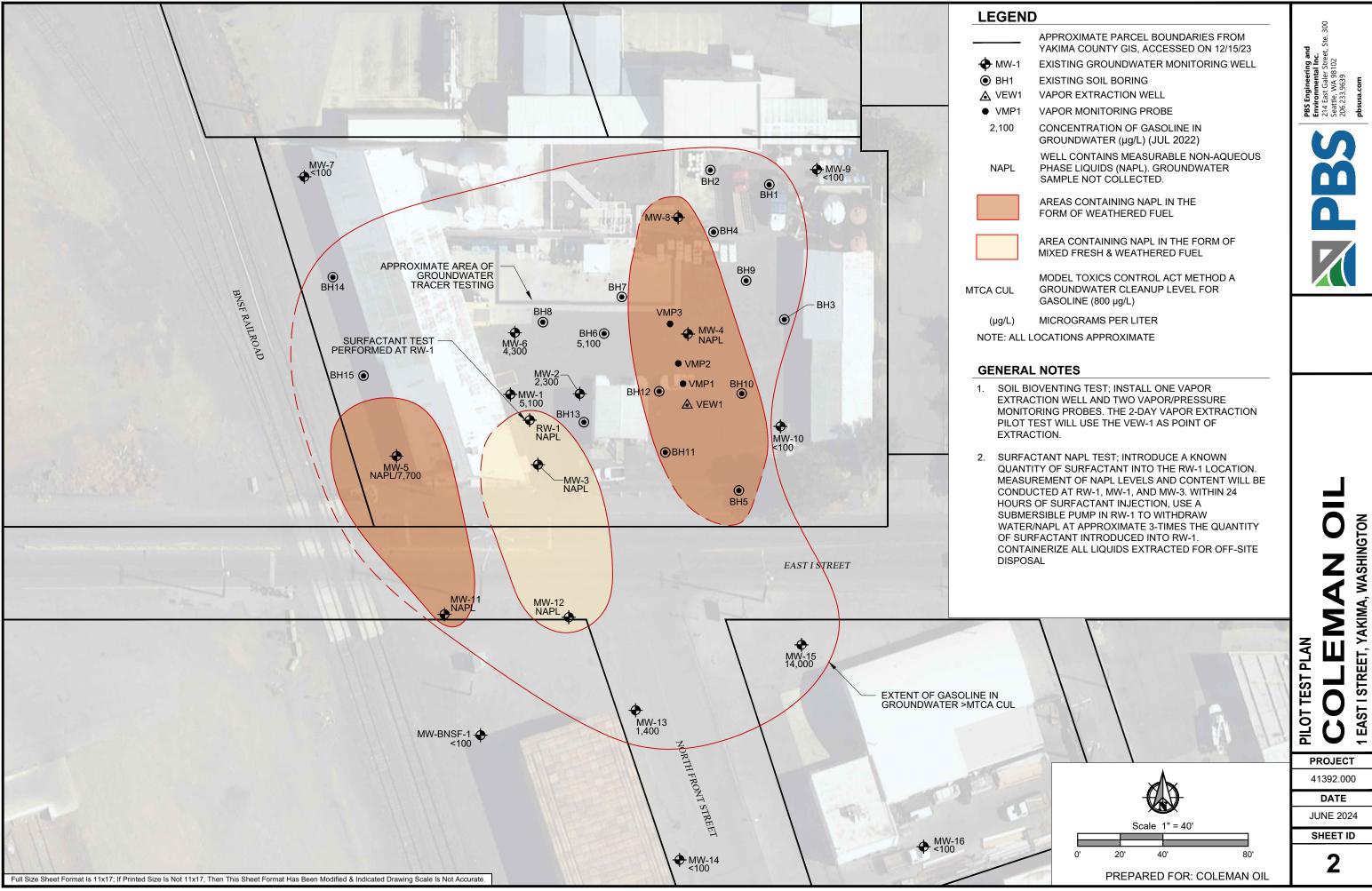
During the injection period, O₂ and CO₂ levels at VMP-1 changed more rapidly early on, with the rate slowing as injection continued. This shift was likely due to the initial displacement of native soil gas and the subsequent stabilization of subsurface airflow. In contrast, VMP-3 exhibited steadier rates of change throughout the injection period, reflecting weaker but more consistent airflow at the more distant monitoring point. These differences suggest that proximity to the injection well influenced the distribution and effectiveness of the injected air.

After injection ceased, passive diffusion became the dominant process influencing soil gas conditions. O₂ levels continued to rise at both monitoring points, peaking post-injection before stabilizing near baseline levels. CO₂ levels followed a complementary pattern, dropping initially and then gradually returning to baseline. Helium, used as a tracer gas, was detected only after injection ceased, with concentrations diminishing with distance from the injection well.

The sustained reductions in VOC concentrations, combined with observed O_2 increases and CO_2 decreases, confirm that microbial respiration was enhanced by bioventing. The radius of influence extended up to 20 feet from the injection well, with diminished effects observed at this distance.

The pilot test confirmed the feasibility of bioventing as a remediation strategy for enhancing aerobic biodegradation of hydrocarbons in the vadose zone.

Sincerely,


Kyle Johnson, LG Project Geologist

Tom Mergy, LHG Principal Geologist

Attachments: Ihomas Figure 2 – Pilot Test Plan Table 1 – Soil Analytical Results Table 2 – Soil Gas Analytical Results Table 4 – Soil Grain Size Distribution Field Notes Analytical Results

Reviewer: TM

TABLE 1 SOIL ANALYTICAL RESULTS PILOT TEST DRILLING

Coleman Oil: 1 East I St., Yakima, WA PBS Project No. 41392.000

				TPH			BT	ΈX		Me	tals		Conven	tional Cl	nemistry	
Location - Depth	Sample Date	Hd	Gasoline	Diesel	Heavy Oil	Benzene	Toluene	Ethyl-benzene	Xylenes	Total Iron	Total Potassium	Total Nitrate + Nitrite	TKN	Total Nitrogen	TOC	Total Phosphorus
Comparison Criteria	MTCA Method A Cleanup Levels For Soil ^a	-	100 30	2,000	2,000	1500	7	6	9	-	-	-	-	-	-	-
VMP1-12.0	11/5/2024	7.0	<5 h	<50 h	<250 h	<0.02 h	<0.02 h	<0.02 h	<0.06 h	34,800	1,050	73.5	153	227	<0.05	655
VMP2-3.0	11/5/2024	8.2	<5	<50	<250	<0.02	<0.02	<0.02	<0.06	38,100	1,380	94.1	402	496	0.162	531
VMP2-16.0	11/5/2024	7.6	<5 h	<50 h	<250 h	<0.02 h	<0.02 h	<0.02 h	<0.06 h	27,800	790	125	148	272	<0.05	498
VMP3-12.0	11/5/2024	7.1	<5 h	<50 h	<250 h	<0.02 h	<0.02 h	<0.02 h	<0.06 h	30,700	719	113	162	275	<0.05	622
VEW1-12.0	11/5/2024	7.2	<5 h	<50 h	<250 h	<0.02 h	<0.02 h	<0.02 h	<0.06 h	34,000	1,300	78.3	132	210	<0.05	525

Notes:

Gasoline analyzed by Northwest Total Petroleum Hydrocarbon Method - Volatile Petroleum Products (Extended) (NWTPH-Gx)

Diesel and Heavy Oil analyzed by Northwest Total Petroleum Hydrocarbon Method - Semi-volatile Petroleum Products (Extended) (NWTPH-Dx)

BTEX constituents analyzed by Environmental Protection Agency Method 8021B

Metals analyzed by EPA Method 6010D

Conventional chemistry analyzed by various standard methods (SM)

Footnotes:

^a From Model Toxics Control Act Table 740-1 Soil Cleanup Levels for Unrestricted Land Use

^h The analysis was performed outside the method or client-specified holding time requirement.

TABLE 2 SOIL GAS ANALYTICAL RESULTS BIO-VENTING PILOT TEST

Coleman Oil: 1 East I St., Yakima, WA

PBS Project No. 41392.000

				Resu	lts (µg/r	n³)							
					Major	Gasses		V	olatile O	rganic C	ompour	ds (VOC	Cs)
Sample Location	Date	Description	Helium (%)	Carbon Dioxide (%)	Nitrogen (%)	Oxygen (%)	Other Major Gasses	Benzene	Toluene	Ethylbenzene	Xylene-o	Xylene-m,p	Other VOCs
BVPT-1	11/6/2024	Pre-injection	<0.6	2.26	87.9	9.87	ND	47	<110	7.9	<6.5	14	ND
BVPT-2	11/6/2024	Post-injection	<0.6	1.84	90.6	7.55	ND	20	70	4.5	4.0	9.6	ND
BVPT-3	11/6/2024	Post-stabilization	<0.6	2.28	89	8.75	ND	12	57	3.8	3.5	8.7	ND

µg/m³ - micrograms per cubic meter

<6.5 - not detected above laboratory method detection limit

ND - not detected above laboratory method detection limit

TABLE 4SOIL GRAIN SIZE DISTRIBUTIONColeman Oil: 1 East I St., Yakima, WAPBS Project No. 41392.000

						Resu	lts (%)							
Sample Location	4.75 mm (Gravel)	4.00 mm	2.00 mm	1.00 mm (Sand)	0.50 mm	0.25 mm	0.125 mm	0.063 mm	0.032 mm (Silt)	0.016 mm	0.008 mm	0.004 mm	0.002 mm (Clay)	<0.001 mm
VMP2-3.0	0.1	0.1	0.1	0.8	3	15.3	19.3	4.2	29.7	8.1	5.3	4.1	1.9	6.2
VMP2-16.0	10	1.5	9	5.8	9.1	24.3	9.3	6.8	4.1	3.2	3.6	2.7	2	7.5
VEW1-12.0	17.5	3.6	11.6	9.5	14	21.8	5.5	4	1.1	2.6	1.9	1.5	1	4
VMP1-12.0	9.7	3.4	13.8	11.5	11.5	14.6	7.2	5.3	4.5	4.5	4.2	2.9	1.5	4.4
VMP3-12.0	16.5	4.5	18.9	11.9	10.9	10.3	4.7	4.7	3.4	4.1	2.9	2.6	1.1	2.9

Grain size distribution was analyzed using ASTM D422

PROJECT: Coleman Oil	- Bioventina	Pilot Test	DATE:	11/6-11/7/2024

AUTHO	R:						0			F	REVIE	WER:			
	UMF	>1						V.	MP2	(injec	tion	Point	•)		
11/6/	ખ	He	CHy	Cor	02	vocs	Pressure		5/44	•		w		vocs	Pressure
Boseline		0	0	4.6	14.3	2.3	1/5		0958		0	1.0	18.9		1.5/5
	1030	0	0	4.4	14.0	2.5	1/5		1000						
	1131	0	0	4.3	13.9	2.1	1/5		1203	2.2					84
	1147	D	0	4.3	13,8	1.8	1/5		1224	2.1					8315
	1212	0	0	4.2	14.]	1.6	1/5		1245						8415
	1246	U	0	4.2	14.1	1.5	1.5/5		1258	1.6					8415
	1325	0	0	42	14.3	1.3	1.5/s		1315	1.7		1. 14	ected	1 . 6	e these
	1445	0	0	43	14.2	1.3	1.5/5		1348	1.8	Γ			sted c	S there
	1525	0	0	4.3	14.5	1.1	1.5/5		1420	1.6		ti,	nes		
	1551	0	0	4.4	14.5	1,0	1.5/5		1448	1.6					8415
	1618	0	σ	4.4	14.8	0.8	1.5/5		1530	1.7					
	1628	0	0	2.5	17.3	0.9	15/5		1550						
	1637	0	0	2.6	17.2	0,9	1/5		1607	0.34	0	0	70.3	0	1.5/5
7	1645	D	0	4.3	15,1	0.6	1.5/5		1621	0.64	0	0	20.4	0	
11/7/2									1633	0.72	0	0	20.5	0	
	0816	0	o	1.5	18.8	Q.1	1/5		1640		0	0.1	70.2	0	
	0913	0	0	2.7	16.0				1649		0	0.3	19.2	0	
	0926	0	0	4.8		0.5		11/7							
	0936		0	4.8	14.2				0923	0	0	4.0	15.7	0.2	
	VMP	5								*****			*****	****	
11/6/		He	CHY	(0-	0.	Nor.	Pressure								
Baseline	0941	0	D	5.3	13.1	1.5	2/5								
Grigotinge	1038	D	D	5.1	12.8		2/5								
	1137	0	D	5.0	12.7	1.3	2/5								
***********	1151	b	0	4.9	12.7	1.1	2/5		*******					*******	
	1216	0	Ð	4.9	12.9										
	1249	0	0	4.8	12.9	1.0	2/5								
	1326	0	0	4.9	132	0.9 0.7	1.5/5								
	1449	0	0	4,9	13.1		2/5				-				
******		0	0	and a second second		0.8	1.5/5		*****			****		*********	
	1530			5.0	13.3	0.7									
		0	0 0	S.I	13.3	0.6	1.5/5								
	1615	0	0	5.1	13.4		1.5/5								
	1626	0		5.1	13.5	0.6									
	1635	Q	0	5.1	13.6	0.6	1.5/5			******		*****		********	
	1643	0	0	5.1	13.6	0-5	1/5								
	1656	0	0	5.2	13.6	0.6	1.5/5								
147	4/24		~												
	6827	0	0		13.5	0.3	1.5/5								
	0915	50	0	5.5	12.6	0.2			* *****						
	0930		0	5.5	12.9							() MA	DE WITH I	RECYCLE	

pbsusa.com

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Ave South Seattle, WA 98108-2419 (206) 285-8282 office@friedmanandbruya.com www.friedmanandbruya.com

January 20, 2025

Kyle Johnson, Project Manager PBS Engineering and Environmental, Inc. 214 E. Galer St, Suite 300 Seattle, WA 98102

Dear Mr Johnson:

Included are the additional results from the testing of material submitted on November 6, 2024 from the Coleman Oil-Yakima Bulk Plant 41392.000 T.0021 Ph.03B, F&BI 411078 project. There are 6 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

lify

Michael Erdahl Project Manager

Enclosures PBS0120R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 6, 2025 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental Coleman Oil-Yakima Bulk Plant 41392.000 T.0021 Ph.03B, F&BI 411078 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	PBS Engineering and Environmental
411078 -01	VMP2-3.0
411078 -02	VMP2-16.0
411078 -03	VEW1-3.0
411078 -04	VEW1-12.0
411078 -05	VMP1-3.0
411078 -06	VMP1-12.0
411078 -07	VMP3-3.0
411078 -08	VMP3-12.0
411078 -09	Trip Blank

The NWTPH-Dx and NWTPH-Gx samples were extracted outside the method recommended holding time. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 01/20/25 Date Received: 11/06/24 Project: Coleman Oil-Yakima Bulk Plant 41392.000 T.0021 Ph.03B, F&BI 411078 Date Extracted: 01/16/25 Date Analyzed: 01/16/25

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
VMP2-16.0 ht 411078-02	< 0.02	< 0.02	< 0.02	< 0.06	<5	94
VEW1-12.0 ht 411078-04	< 0.02	< 0.02	< 0.02	<0.06	<5	91
VMP1-12.0 ht 411078-06	< 0.02	< 0.02	< 0.02	<0.06	<5	88
VMP3-12.0 ht 411078-08	< 0.02	< 0.02	< 0.02	<0.06	<5	89
Method Blank ^{05-047 MB2}	< 0.02	< 0.02	< 0.02	< 0.06	<5	92

ENVIRONMENTAL CHEMISTS

Date of Report: 01/20/25 Date Received: 11/06/24 Project: Coleman Oil-Yakima Bulk Plant 41392.000 T.0021 Ph.03B, F&BI 411078 Date Extracted: 01/14/25 Date Analyzed: 01/14/25

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 50-150)
VMP2-16.0 ht 411078-02	<50	<250	84
VEW1-12.0 ht 411078-04	<50	<250	91
VMP1-12.0 ht 411078-06	<50	<250	89
VMP3-12.0 ht 411078-08	<50	<250	87
Method Blank ^{05-185 MB}	<50	<250	91

ENVIRONMENTAL CHEMISTS

Date of Report: 01/20/25 Date Received: 11/06/24 Project: Coleman Oil-Yakima Bulk Plant 41392.000 T.0021 Ph.03B, F&BI 411078

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 501138-01 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	1.0	77	70-130
Toluene	mg/kg (ppm)	1.0	77	70-130
Ethylbenzene	mg/kg (ppm)	1.0	75	70-130
Xylenes	mg/kg (ppm)	3.0	77	70-130
Gasoline	mg/kg (ppm)	40	70	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 01/20/25 Date Received: 11/06/24 Project: Coleman Oil-Yakima Bulk Plant 41392.000 T.0021 Ph.03B, F&BI 411078

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	501123-01 (Matri	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	102	100	63-146	2
Laboratory Code:	Laboratory Conti	ol Samp	le				
			Percent	t			
	Reporting	Spike	Recover	y Accep	tance		
Analyte	Units	Level	LCS	Crit	eria		
Diesel Extended	mg/kg (ppm)	5,000	102	77-3	123		

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

 ${\rm j}$ - The analyte concentration is reported between the method detection limit and the lowest calibration point. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Seattle WA 98108 5500 4th Ave S. Friedman & Bruya, Inc. office@fried.manandbruya.com VMP2 - 3.0 (206) 285-8282 UMP2 - 16.0 Phone 541, 233. 3202 Email Kyla. Johnson Project specific RLs? . Yes / No City, State, ZIP Bend, OK 97707 Address 141 NW Greenwood Are. 1 Company TBS Engineering & Environmental Report To Kyle Sharson Vau - 3.0 Ump1-3.0 VEW1 - 12.0 VMP3-3.0 VMP1 - #12.0 840114 UMP 3-12.0 Trip Blank Sample ID Relinquished by: Relinquished by: Received by: Received by: 02 2 to 60 90 5 09 A-B 80 0 Lab ID A-F SIGNATURE 11/5/24 h2/5/m 11/2/24 11/5/24 m/5/m 11/S/24 h2/5/11 11/5/24 Sampled I Date SAMPLE CHAIN OF CUSTODY IHSS SHE Sampled 1150 1505 1350 1330 1130 8 Coleman Oit-Yakima SAMPLERS (signature) 1 PROJECT NAME Time REMARKS Bulk Plant Sample Water Type 5 Fe 5 5 5 S 5 5 Anh Phan Johnson # of Jars 2 PRINT NAME 5 5 5 5 5 5 5 5 \otimes \bigotimes × × X × × $\left(\times\right)$ NWTPH-Dx S X \otimes × × × × X NWTPH-Gx ই \bigotimes \otimes × × (X)× BTEX EPA 8021 41392.000 T.0021 NWTPH-HCID INVOICE TO INALYSES REQUESTED VOCs EPA 8260 PO# h 8/90/11 PBS PAHs EPA 8270 PL 038 EPT Samples received at 4 PCBs EPA 8082 COMPANY X × × × PH/ × X × × 10, stus X イ X × × X × \times Alkalin+y Default: Dispose after 30 days Archive samples Rush charges authorized by: D RUSH X Standard turnaround PN/1/WY 0 Other × X × × × × \times Total I ran × TURNAROUND TIME Page # SAMPLE DISPOSAL X X X × 7 X X Nutrients Hord MANACO HOLD 11/5/24 NUMBER OF Houd **HEAMINGS** 1106/24 08:39 **Bithium** Added at lab Ap 11/06 DATE 8 13/25 ME per KJ Notes ef I 6 1630 TIME

SAMPLE CONDITION UPON RECEIPT CHE	CKLIST	ſ	
PROJECT # 411078 CLIENT PLS	INITIAL DATE:	si AP 11/06	124
If custody seals are present on cooler, are they intact?	Ø NA	□ YES	🗆 NO
Cooler/Sample temperature	Ther	mometer ID: Flu	°C ke 96312917
Were samples received on ice/cold packs?		Ø YES	🗆 NO
How did samples arrive?	E FedE	UPS/GSO	
Is there a Chain-of-Custody* (COC)?	Init Dat	ials/ AP e:11/06	24
Number of days samples have been sitting prior to receipt at	laborat	ory	_ days
Are the samples clearly identified? (explain "no" answer below)		□ YES	₽ NO
Were all sample containers received intact (i.e. not broken, leaking etc.)? (explain "no" answer below)		y YES	o no
Were appropriate sample containers used?		0 D U	nknown
If custody seals are present on samples, are they intact?	₽ NA	D YES	o NO
Are samples requiring no headspace, headspace free?	🗆 NA	Ø YES	o NO
Is the following information provided on the COC, and does i (explain "no" answer below)	t match	the sampl	e label?
Sample ID's ØYes DNo	(⊐ Not on CO	OC/label
Date Sampled A Yes D No	. (□ Not on CC)C/label
Time Sampled Ites I No Ites I No Time Sampled Yes I No Ites I No # of Containers Yes I No Added Trip Blank at lab. Relinquished I Yes I No	3-12	⊐ Not on CC	C/label
# of Containers	(08C-F)		
Relinquished / Yes 🗆 No			
Requested analysis Z Yes D On Hold			·
Other comments (use a separate page if needed)			
Air Samples: Were any additional canisters/tubes received? Number of unused TO15 canisters Number of unus	ø NA	\Box YES ,	D NO
FRIEDMAN & BRUYA, INC./FORMS/CHECKIN/SAMPLECONDITION.doc			05/01/24

Am Test Inc. 13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com

Professional Analytical Services

December 12, 2024

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Attention: MICHAEL ERDAHL

Project: Friedman & Bruya (CHEM) Project Number: 411078 COC Number: 411078

MICHAEL ERDAHL:

Enclosed please find the analytical data for your Friedman & Bruya (CHEM) project.

Your sample(s) were received on Thursday, November 7, 2024 and properly maintained prior to the subsequent analysis. The analytical procedures used at AmTest are well documented and are typically derived from the protocols of the EPA, USDA, FDA, Standard Methods or the Army Corps of Engineers.

Following the analytical results you will find the Quality Control (QA/QC) results.

Please note that the detection limits that are listed in the body of the report refer to the Practical Quantitation Limits (PQL's), as opposed to the Method Detection Limits (MDL's).

If you should have any questions pertaining to the data package, please feel free to contact me. Sincerely,

Aavon Y J

Aaron Young President aarony@amtestlab.com

13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com

Friedman & Bruya, Inc.

3012 16th Avenue West Seattle, WA 98119-2029 Attention: MICHAEL ERDAHL Project Name: Friedman & Bruya (CHEM) Project #: 411078

ANALYSIS REPORT

Professional Analytical Services

Date Received: 11/07/24 **Date Reported:** 12/12/24

Reported Samples

Lab ID	Sample	Matrix	Qualifiers	Date Sampled	Date Received
A24K0137-01	VMP2-3.0	Solid		11/05/2024	11/07/2024
A24K0137-02	VMP2-16.0	Solid		11/05/2024	11/07/2024
A24K0137-04	VEW1-12.0	Solid		11/05/2024	11/07/2024
A24K0137-06	VMP1-12.0	Solid		11/05/2024	11/07/2024
A24K0137-08	VMP3-12.0	Solid		11/05/2024	11/07/2024

13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com

ANALYSIS REPORT

Professional Analytical Services

Friedman & Bruya, Inc.

3012 16th Avenue West Seattle, WA 98119-2029 Attention: MICHAEL ERDAHL Project Name: Friedman & Bruya (CHEM) Project #: 411078

AMTEST Identification Number: A24K0137-01 Client Identification: VMP2-3.0 Sampling Date: 11/05/24 11:30

Metals by EPA 6000/7000 Series Methods

PARAMETER	RESULT	UNITS	Q	R.L.	METHOD	ANALYST	DATE
Total Iron	38,100	mg/kg dry		76.5	EPA 6010D	AY	11/14/2024
Total Potassium	1,380	mg/kg dry		51.0	EPA 6010D	AY	11/14/2024

Conventional Chemistry Parameters by APHA/EPA Methods

RESULT	UNITS	Q	R.L.	METHOD	ANALYST	DATE
83.8	%			SM 2540G_2011	HV	11/18/2024
94.1	mg/kg dry		1.19	SM 4500-NO3-F_2011	LF	11/11/2024
8.2	pH Units			SM 4500-H+B_2011	KH	12/06/2024
402	mg/kg dry		6.0	SM 4500Norg C_2011	LF	11/22/2024
496	mg/kg dry			Calculated	LF	11/22/2024
0.162	%		0.0500	EPA 9060A_1_2004	AS	12/01/2024
531	mg/kg dry		1.6	SM 4500-P F_2011	LF	11/22/2024
	83.8 94.1 8.2 402 496 0.162	83.8 % 94.1 mg/kg dry 8.2 pH Units 402 mg/kg dry 496 mg/kg dry 0.162 %	83.8 % 94.1 mg/kg dry 8.2 pH Units 402 mg/kg dry 496 mg/kg dry 0.162 %	83.8 % 94.1 mg/kg dry 1.19 8.2 pH Units 402 402 mg/kg dry 6.0 496 mg/kg dry 0.152	83.8 % SM 2540G_2011 94.1 mg/kg dry 1.19 SM 4500-NO3-F_2011 8.2 pH Units SM 4500-H+B_2011 402 mg/kg dry 6.0 SM 4500Norg C_2011 496 mg/kg dry Calculated 0.162 % 0.0500 EPA 9060A_1_2004	83.8 % SM 2540G_2011 HV 94.1 mg/kg dry 1.19 SM 4500-NO3-F_2011 LF 8.2 pH Units SM 4500-H+B_2011 KH 402 mg/kg dry 6.0 SM 4500Norg C_2011 LF 496 mg/kg dry Calculated LF 0.162 % 0.0500 EPA 9060A_1_2004 AS

PARAMETER	RESULT	UNITS	Q	R.L.	METHOD	ANALYST	DATE
PHI -2.25 (4.75 mm) Gravel	1.1	%		0.1	ASTM D422	HV	11/19/2024
PHI -2.00 (4.00 mm)	ND	%		0.1	ASTM D422	HV	11/19/2024
PHI -1.00 (2.00 mm)	0.1	%		0.1	ASTM D422	HV	11/19/2024
PHI 0.00 (1.00 mm) Sand	0.8	%		0.1	ASTM D422	HV	11/19/2024
PHI +1.00 (0.50 mm)	3.0	%		0.1	ASTM D422	HV	11/19/2024
PHI +2.00 (0.25 mm)	15.3	%		0.1	ASTM D422	HV	11/19/2024
PHI +3.00 (0.125 mm)	19.3	%		0.1	ASTM D422	HV	11/19/2024
PHI +4.00 (0.063 mm)	4.2	%		0.1	ASTM D422	HV	11/19/2024
PHI +5.00 (0.032 mm) Silt	29.7	%		0.1	ASTM D422	HV	11/19/2024
PHI +6.00 (0.016 mm)	8.1	%		0.1	ASTM D422	HV	11/19/2024
PHI +7.00 (0.008 mm)	5.3	%		0.1	ASTM D422	HV	11/19/2024
PHI +8.00 (0.004 mm)	4.1	%		0.1	ASTM D422	HV	11/19/2024
PHI +9.00 (0.002 mm) Clay	1.9	%		0.1	ASTM D422	HV	11/19/2024
PHI +10.0 (0.001 mm)	0.9	%		0.1	ASTM D422	HV	11/19/2024
PHI >10.0 (< 0.001 mm)	6.2	%		0.1	ASTM D422	HV	11/19/2024

Am Test Inc. 13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com

ANALYSIS REPORT

Professional Analytical Services

Date Received: 11/07/24 **Date Reported:** 12/12/24

Friedman & Bruya, Inc.

3012 16th Avenue West Seattle, WA 98119-2029 Attention: MICHAEL ERDAHL Project Name: Friedman & Bruya (CHEM) Project #: 411078

AMTEST Identification Number: A24K0137-01 Client Identification: VMP2-3.0 Sampling Date: 11/05/24 11:30

13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com

ANALYSIS REPORT

Professional Analytical Services

Friedman & Bruya, Inc.

3012 16th Avenue West Seattle, WA 98119-2029 Attention: MICHAEL ERDAHL Project Name: Friedman & Bruya (CHEM) Project #: 411078

AMTEST Identification Number: A24K0137-02 Client Identification: VMP2-16.0 Sampling Date: 11/05/24 11:50

Metals by EPA 6000/7000 Series Methods

PARAMETER	RESULT	UNITS	Q	R.L.	METHOD	ANALYST	DATE
Total Iron	27,800	mg/kg dry		62.2	EPA 6010D	AY	11/14/2024
Total Potassium	970	mg/kg dry		41.5	EPA 6010D	AY	11/14/2024

Conventional Chemistry Parameters by APHA/EPA Methods

PARAMETER	RESULT	UNITS	Q	R.L.	METHOD	ANALYST	DATE
% Solids	88.0	%			SM 2540G_2011	HV	11/18/2024
Total Nitrate + Nitrite	124	mg/kg dry		1.14	SM 4500-NO3-F_2011	LF	11/11/2024
pH	7.2	pH Units			SM 4500-H+B_2011	КН	12/06/2024
Total Kjeldahl Nitrogen	148	mg/kg dry		5.7	SM 4500Norg C_2011	LF	11/22/2024
Total Nitrogen	272	mg/kg dry			Calculated	LF	11/22/2024
Total Organic Carbon (TOC)	ND	%	U	0.0500	EPA 9060A_1_2004	AS	12/01/2024
Total Phosphorus (TP)	498	mg/kg dry		1.4	SM 4500-P F_2011	LF	11/22/2024

PARAMETER	RESULT	UNITS	Q	R.L.	METHOD	ANALYST	DATE
PHI -2.25 (4.75 mm) Gravel	10.0	%		0.1	ASTM D422	HV	11/19/2024
PHI -2.00 (4.00 mm)	1.5	%		0.1	ASTM D422	HV	11/19/2024
PHI -1.00 (2.00 mm)	9.0	%		0.1	ASTM D422	HV	11/19/2024
PHI 0.00 (1.00 mm) Sand	5.8	%		0.1	ASTM D422	HV	11/19/2024
PHI +1.00 (0.50 mm)	9.1	%		0.1	ASTM D422	HV	11/19/2024
PHI +2.00 (0.25 mm)	24.3	%		0.1	ASTM D422	HV	11/19/2024
PHI +3.00 (0.125 mm)	9.3	%		0.1	ASTM D422	HV	11/19/2024
PHI +4.00 (0.063 mm)	6.8	%		0.1	ASTM D422	HV	11/19/2024
PHI +5.00 (0.032 mm) Silt	4.1	%		0.1	ASTM D422	HV	11/19/2024
PHI +6.00 (0.016 mm)	3.2	%		0.1	ASTM D422	HV	11/19/2024
PHI +7.00 (0.008 mm)	3.6	%		0.1	ASTM D422	HV	11/19/2024
PHI +8.00 (0.004 mm)	2.7	%		0.1	ASTM D422	HV	11/19/2024
PHI +9.00 (0.002 mm) Clay	2.0	%		0.1	ASTM D422	HV	11/19/2024
PHI +10.0 (0.001 mm)	1.1	%		0.1	ASTM D422	HV	11/19/2024
PHI >10.0 (< 0.001 mm)	7.5	%		0.1	ASTM D422	HV	11/19/2024

13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com

ANALYSIS REPORT

Professional Analytical Services

Friedman & Bruya, Inc.

3012 16th Avenue West Seattle, WA 98119-2029 Attention: MICHAEL ERDAHL Project Name: Friedman & Bruya (CHEM) Project #: 411078

AMTEST Identification Number: A24K0137-04 Client Identification: VEW1-12.0 Sampling Date: 11/05/24 13:00

Metals by EPA 6000/7000 Series Methods

PARAMETER	RESULT	UNITS	Q	R.L.	METHOD	ANALYST	DATE
Total Iron	34,000	mg/kg dry		73.9	EPA 6010D	AY	11/14/2024
Total Potassium	1,300	mg/kg dry		49.3	EPA 6010D	AY	11/14/2024

Conventional Chemistry Parameters by APHA/EPA Methods

PARAMETER	RESULT	UNITS	Q	R.L.	METHOD	ANALYST	DATE
% Solids	94.6	%			SM 2540G_2011	HV	11/18/2024
Total Nitrate + Nitrite	78.3	mg/kg dry		1.06	SM 4500-NO3-F_2011	LF	11/11/2024
pH	7.2	pH Units			SM 4500-H+B_2011	КН	12/06/2024
Total Kjeldahl Nitrogen	132	mg/kg dry		5.3	SM 4500Norg C_2011	LF	11/22/2024
Total Nitrogen	210	mg/kg dry			Calculated	LF	11/22/2024
Total Organic Carbon (TOC)	ND	%	U	0.0500	EPA 9060A_1_2004	AS	12/01/2024
Total Phosphorus (TP)	525	mg/kg dry		1.3	SM 4500-P F_2011	LF	11/22/2024

PARAMETER	RESULT	UNITS	Q	R.L.	METHOD	ANALYST	DATE
PHI -2.25 (4.75 mm) Gravel	17.5	%		0.1	ASTM D422	HV	11/19/2024
PHI -2.00 (4.00 mm)	3.6	%		0.1	ASTM D422	HV	11/19/2024
PHI -1.00 (2.00 mm)	11.6	%		0.1	ASTM D422	HV	11/19/2024
PHI 0.00 (1.00 mm) Sand	9.5	%		0.1	ASTM D422	HV	11/19/2024
PHI +1.00 (0.50 mm)	14.0	%		0.1	ASTM D422	HV	11/19/2024
PHI +2.00 (0.25 mm)	21.8	%		0.1	ASTM D422	HV	11/19/2024
PHI +3.00 (0.125 mm)	5.5	%		0.1	ASTM D422	HV	11/19/2024
PHI +4.00 (0.063 mm)	4.0	%		0.1	ASTM D422	HV	11/19/2024
PHI +5.00 (0.032 mm) Silt	1.1	%		0.1	ASTM D422	HV	11/19/2024
PHI +6.00 (0.016 mm)	2.6	%		0.1	ASTM D422	HV	11/19/2024
PHI +7.00 (0.008 mm)	1.9	%		0.1	ASTM D422	HV	11/19/2024
PHI +8.00 (0.004 mm)	1.5	%		0.1	ASTM D422	HV	11/19/2024
PHI +9.00 (0.002 mm) Clay	1.0	%		0.1	ASTM D422	HV	11/19/2024
PHI +10.0 (0.001 mm)	0.5	%		0.1	ASTM D422	HV	11/19/2024
PHI >10.0 (< 0.001 mm)	4.0	%		0.1	ASTM D422	HV	11/19/2024

13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com

ANALYSIS REPORT

Professional Analytical Services

Friedman & Bruya, Inc.

3012 16th Avenue West Seattle, WA 98119-2029 Attention: MICHAEL ERDAHL Project Name: Friedman & Bruya (CHEM) Project #: 411078

AMTEST Identification Number: A24K0137-06 Client Identification: VMP1-12.0 Sampling Date: 11/05/24 13:50

Metals by EPA 6000/7000 Series Methods

PARAMETER	RESULT	UNITS	Q	R.L.	METHOD	ANALYST	DATE
Total Iron	34,800	mg/kg dry		62.8	EPA 6010D	AY	11/14/2024
Total Potassium	1,050	mg/kg dry		41.9	EPA 6010D	AY	11/14/2024

Conventional Chemistry Parameters by APHA/EPA Methods

PARAMETER	RESULT	UNITS Q		R.L.	METHOD	ANALYST	DATE
% Solids	95.6	%			SM 2540G_2011	HV	11/18/2024
Total Nitrate + Nitrite	73.5	mg/kg dry		1.05	SM 4500-NO3-F_2011	LF	11/11/2024
pH	7.0	pH Units			SM 4500-H+B_2011	КН	12/06/2024
Total Kjeldahl Nitrogen	153	mg/kg dry		5.2	SM 4500Norg C_2011	LF	11/22/2024
Total Nitrogen	227	mg/kg dry			Calculated	LF	11/22/2024
Total Organic Carbon (TOC)	ND	%	U	0.0500	EPA 9060A_1_2004	AS	12/01/2024
Total Phosphorus (TP)	655	mg/kg dry		1.3	SM 4500-P F_2011	LF	11/22/2024

PARAMETER	RESULT	UNITS	Q	R.L.	METHOD	ANALYST	DATE
PHI -2.25 (4.75 mm) Gravel	9.7	%		0.1	ASTM D422	HV	11/19/2024
PHI -2.00 (4.00 mm)	3.4	%		0.1	ASTM D422	HV	11/19/2024
PHI -1.00 (2.00 mm)	13.8	%		0.1	ASTM D422	HV	11/19/2024
PHI 0.00 (1.00 mm) Sand	11.5	%		0.1	ASTM D422	HV	11/19/2024
PHI +1.00 (0.50 mm)	11.5	%		0.1	ASTM D422	HV	11/19/2024
PHI +2.00 (0.25 mm)	14.6	%		0.1	ASTM D422	HV	11/19/2024
PHI +3.00 (0.125 mm)	7.2	%		0.1	ASTM D422	HV	11/19/2024
PHI +4.00 (0.063 mm)	5.3	%		0.1	ASTM D422	HV	11/19/2024
PHI +5.00 (0.032 mm) Silt	4.5	%		0.1	ASTM D422	HV	11/19/2024
PHI +6.00 (0.016 mm)	4.5	%		0.1	ASTM D422	HV	11/19/2024
PHI +7.00 (0.008 mm)	4.2	%		0.1	ASTM D422	HV	11/19/2024
PHI +8.00 (0.004 mm)	2.9	%		0.1	ASTM D422	HV	11/19/2024
PHI +9.00 (0.002 mm) Clay	1.5	%		0.1	ASTM D422	HV	11/19/2024
PHI +10.0 (0.001 mm)	0.8	%		0.1	ASTM D422	HV	11/19/2024
PHI >10.0 (< 0.001 mm)	4.4	%		0.1	ASTM D422	HV	11/19/2024

13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com

ANALYSIS REPORT

Professional Analytical Services

Friedman & Bruya, Inc.

3012 16th Avenue West Seattle, WA 98119-2029 Attention: MICHAEL ERDAHL Project Name: Friedman & Bruya (CHEM) Project #: 411078

AMTEST Identification Number: A24K0137-08 Client Identification: VMP3-12.0 Sampling Date: 11/05/24 15:05

Metals by EPA 6000/7000 Series Methods

PARAMETER	RESULT	UNITS	Q	R.L.	METHOD	ANALYST	DATE
Total Iron	30,700	mg/kg dry		58.2	EPA 6010D	AY	11/14/2024
Total Potassium	719	mg/kg dry		38.8	EPA 6010D	AY	11/14/2024

Conventional Chemistry Parameters by APHA/EPA Methods

PARAMETER	RESULT	UNITS	Q	R.L.	METHOD	ANALYST	DATE
% Solids	96.8	%			SM 2540G_2011	HV	11/18/2024
Total Nitrate + Nitrite	113	mg/kg dry		1.03	SM 4500-NO3-F_2011	LF	11/11/2024
pH	7.1	pH Units			SM 4500-H+B_2011	КН	12/06/2024
Total Kjeldahl Nitrogen	162	mg/kg dry		5.2	SM 4500Norg C_2011	LF	11/22/2024
Total Nitrogen	275	mg/kg dry			Calculated	LF	11/22/2024
Total Organic Carbon (TOC)	ND	%	U	0.0500	EPA 9060A_1_2004	AS	12/01/2024
Total Phosphorus (TP)	622	mg/kg dry		1.3	SM 4500-P F_2011	LF	11/22/2024

PARAMETER	RESULT	UNITS	Q	R.L.	METHOD	ANALYST	DATE
PHI -2.25 (4.75 mm) Gravel	16.5	%		0.1	ASTM D422	HV	11/19/2024
PHI -2.00 (4.00 mm)	4.5	%		0.1	ASTM D422	HV	11/19/2024
PHI -1.00 (2.00 mm)	18.9	%		0.1	ASTM D422	HV	11/19/2024
PHI 0.00 (1.00 mm) Sand	11.9	%		0.1	ASTM D422	HV	11/19/2024
PHI +1.00 (0.50 mm)	10.9	%		0.1	ASTM D422	HV	11/19/2024
PHI +2.00 (0.25 mm)	10.3	%		0.1	ASTM D422	HV	11/19/2024
PHI +3.00 (0.125 mm)	4.7	%		0.1	ASTM D422	HV	11/19/2024
PHI +4.00 (0.063 mm)	4.7	%		0.1	ASTM D422	HV	11/19/2024
PHI +5.00 (0.032 mm) Silt	3.4	%		0.1	ASTM D422	HV	11/19/2024
PHI +6.00 (0.016 mm)	4.1	%		0.1	ASTM D422	HV	11/19/2024
PHI +7.00 (0.008 mm)	2.9	%		0.1	ASTM D422	HV	11/19/2024
PHI +8.00 (0.004 mm)	2.6	%		0.1	ASTM D422	HV	11/19/2024
PHI +9.00 (0.002 mm) Clay	1.1	%		0.1	ASTM D422	HV	11/19/2024
PHI +10.0 (0.001 mm)	0.5	%		0.1	ASTM D422	HV	11/19/2024
PHI >10.0 (< 0.001 mm)	2.9	%		0.1	ASTM D422	HV	11/19/2024

13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com

Friedman & Bruya, Inc.

3012 16th Avenue West Seattle, WA 98119-2029 Attention: MICHAEL ERDAHL Project Name: Friedman & Bruya (CHEM) Project #: 411078

ANALYSIS REPORT

Professional Analytical Services

Date Received: 11/07/24 **Date Reported:** 12/12/24

13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com

Friedman & Bruya, Inc.

3012 16th Avenue West Seattle, WA 98119-2029 Attention: MICHAEL ERDAHL Project Name: Friedman & Bruya (CHEM) Project #: 411078

ANALYSIS REPORT

Professional Analytical Services

Date Received: 11/07/24 **Date Reported:** 12/12/24

Quality Control

Metals by EPA 6000/7000 Series Methods

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BBK0168 - EPA 3050A (A	cid Digest - S	Soil)								
Blank (BBK0168-BLK1)				Pre	pared: 11/1	.3/24 Analyz	ed: 11/14/2	4		
Iron	ND	U	0.150	mg/kg wet						
Potassium	ND	U	1.00	mg/kg wet						
LCS (BBK0168-BS1)				Pre	pared: 11/1	3/24 Analyz	ed: 11/14/2	4		
Iron	2.02		0.150	mg/kg wet	2.000		101%	85-115%		
Potassium	1.76		1.00	mg/kg wet	2.000		88%	85-115%		
Calibration Blank (BBK0168-CCB1)				Pre	pared: 11/1	.3/24 Analyz	ed: 11/14/2	4		
Iron	ND	U		mg/kg wet						
Potassium	ND	U		mg/kg wet						
Calibration Check (BBK0168-CCV1)				Pre	pared: 11/1	.3/24 Analyz	ed: 11/14/2	4		
Iron	2.02		0.150	mg/kg wet	2.000		101%	85-115%		
Potassium	4.00		1.00	mg/kg wet	4.000		100%	85-115%		
Matrix Spike (BBK0168-MS1)		Source: A	A24K0137-08	Pre	pared: 11/1	.3/24 Analyz	ed: 11/14/2	4		
Potassium	833		41.5	mg/kg dry	83.03	719	137%	70-130%		
Matrix Spike Dup (BBK0168-MSD1)		Source: A	A24K0137-08	Pre	pared: 11/1	.3/24 Analyz	ed: 11/14/2	4		
Potassium	804		40.2	mg/kg dry	80.39	719	106%	70-130%	4	25

Quality Control

Conventional Chemistry Parameters by APHA/EPA Methods

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BBK0133 - No Prep - WC S	Soil									
Calibration Blank (BBK0133-CCB1)				Prep	oared: 11/2	l/24 Analyze	d: 11/22/2	4		
Total Kjeldahl Nitrogen	1.7			mg/kg wet						
Calibration Check (BBK0133-CCV1)				Prep	oared: 11/2	l/24 Analyze	d: 11/22/2	4		
Total Kjeldahl Nitrogen	20.0		5.0	mg/kg wet	20.00		100%	85-115%		
Duplicate (BBK0133-DUP1)		Source: A2	4K0137-08	Prep	oared: 11/2	L/24 Analyze	d: 11/22/2	4		

The contents of this report apply to the sample(s) analyzed in accordance with the chain of custody document. No duplication of this report is allowed, except in its entirety.

13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com

Friedman & Bruya, Inc.

3012 16th Avenue West Seattle, WA 98119-2029 Attention: MICHAEL ERDAHL Project Name: Friedman & Bruya (CHEM) Project #: 411078

ANALYSIS REPORT

Professional Analytical Services

Date Received: 11/07/24 **Date Reported:** 12/12/24

Quality Control

(Continued)

Conventional Chemistry Parameters by APHA/EPA Methods (Continued)

		0	Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BBK0133 - No Prep - WC	Soil (Conti	nued)								
Duplicate (BBK0133-DUP1)		Source: A	24K0137-08	Pre	pared: 11/2	1/24 Analyze	ed: 11/22/2	4		
Total Kjeldahl Nitrogen	154		5.2	mg/kg dry		162			5	25
Batch: BBK0134 - No Prep - WC S	Soil									
Blank (BBK0134-BLK1)					Prepared 8	Analyzed: 1	.1/11/24			
Total Nitrate + Nitrite	ND	U	1.00	mg/kg wet						
-CS (BBK0134-BS1)					Prepared 8	Analyzed: 1	.1/11/24			
Total Nitrate + Nitrite	25.9		1.00	mg/kg wet	25.00		104%	90-110%		
Calibration Blank (BBK0134-CCB1)					Prepared 8	Analyzed: 1	.1/11/24			
Total Nitrate + Nitrite	0.0009			mg/kg wet						
Calibration Check (BBK0134-CCV1)					Prepared 8	Analyzed: 1	1/11/24			
Total Nitrate + Nitrite	49.6		1.00	mg/kg wet	50.00		99%	85-115%		
Duplicate (BBK0134-DUP1)		Source: A	24K0137-08		Prepared 8	Analyzed: 1	.1/11/24			
Total Nitrate + Nitrite	122		1.03	mg/kg dry		113			7	20
latrix Spike (BBK0134-MS1)		Source: A	24K0137-08		Prepared 8	Analyzed: 1	.1/11/24			
Total Nitrate + Nitrite	2,840		1.03	mg/kg dry	2,789	113	98%	70-130%		
Batch: BBK0248 - No Prep - WC S	Soil									
Blank (BBK0248-BLK1)				Pre	pared: 11/2	1/24 Analyze	ed: 11/22/2	4		
Total Phosphorus (TP)	ND	U	0.5	mg/kg wet						
.CS (BBK0248-BS1)				Pre	pared: 11/2	1/24 Analyze	ed: 11/22/2	4		
Total Phosphorus (TP)	5.1		0.5	mg/kg wet	5.000		102%	70-130%		
Calibration Blank (BBK0248-CCB1)				Pre	pared: 11/2	1/24 Analyze	ed: 11/22/2	.4		
Total Phosphorus (TP)	0.004			mg/kg wet						
Calibration Check (BBK0248-CCV1)				Pre	pared: 11/2	1/24 Analyze	ed: 11/22/2	4		
Total Phosphorus (TP)	10.8		0.5	mg/kg wet	10.00		108%	85-115%		
Duplicate (BBK0248-DUP1)		Source: A	24K0137-08	Pre	pared: 11/2	1/24 Analyze	ed: 11/22/2	4		

The contents of this report apply to the sample(s) analyzed in accordance with the chain of custody document. No duplication of this report is allowed, except in its entirety.

13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com

Friedman & Bruya, Inc.

3012 16th Avenue West Seattle, WA 98119-2029 Attention: MICHAEL ERDAHL Project Name: Friedman & Bruya (CHEM) Project #: 411078

ANALYSIS REPORT

Professional Analytical Services

Date Received: 11/07/24 **Date Reported:** 12/12/24

Quality Control

(Continued)

Conventional Chemistry Parameters by APHA/EPA Methods (Continued)

A	D - "	01	Reporting		Spike	Source	0/ 556	%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limi
Batch: BBK0248 - No Prep - WC S	oil (Conti	inued)								
Duplicate (BBK0248-DUP1)		Source: A	24K0137-08	Pre	epared: 11/2	1/24 Analyze	ed: 11/22/2	4		
Total Phosphorus (TP)	671		1.3	mg/kg dry		622			7	40
Matrix Spike (BBK0248-MS1)		Source: A	24K0137-08	Pre	epared: 11/2	1/24 Analyze	ed: 11/22/2	4		
Total Phosphorus (TP)	1,760		1.3	mg/kg dry	1,052	622	108%	65-135%		
Batch: BBK0295 - No Prep - WC S	oil									
Duplicate (BBK0295-DUP1)		Source: A	24K0284-05		Prepared 8	& Analyzed: 1	1/18/24			
% Solids	72.7			%		72.8			0.2	20
Duplicate (BBK0295-DUP2)		Source: A	24K0284-05		Prepared 8	& Analyzed: 1	1/18/24			
% Solids	72.4			%		72.8			0.6	20
Batch: BBL0091 - No Prep - WC So	bil									
Calibration Check (BBL0091-CCV1)				Pre	epared: 12/0	5/24 Analyze	ed: 12/06/2	4		
рН	6.9			pH Units	6.860		100%	85-115%		
Calibration Check (BBL0091-CCV2)				Pre	epared: 12/0	5/24 Analyze	ed: 12/06/2	4		
рН	6.9			pH Units	6.860		100%	85-115%		
Duplicate (BBL0091-DUP1)		Source: A	24L0112-01	Pre	epared: 12/0	5/24 Analyze	ed: 12/06/2	4		
pH	5.6			pH Units		5.6			0.7	10
Duplicate (BBL0091-DUP2)		Source: A	24L0112-05	Pre	epared: 12/0	5/24 Analyze	ed: 12/06/2	4		
рН	5.2			pH Units		5.2			0.2	10
Batch: BBL0110 - No Prep - WC Se	bil									
Blank (BBL0110-BLK1)					Prepared 8	& Analyzed: 1	2/01/24			
Total Organic Carbon (TOC)	ND	U	0.0500	%						
Calibration Blank (BBL0110-CCB1)					Prepared 8	& Analyzed: 1	2/01/24			
Total Organic Carbon (TOC)	ND	U		%						
Calibration Check (BBL0110-CCV1)					Prepared 8	& Analyzed: 1	2/01/24			
Total Organic Carbon (TOC)	53.4		0.0500	%	47.00		114%	75-125%		

The contents of this report apply to the sample(s) analyzed in accordance with the chain of custody document. No duplication of this report is allowed, except in its entirety.

13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com

Friedman & Bruya, Inc.

3012 16th Avenue West Seattle, WA 98119-2029 Attention: MICHAEL ERDAHL Project Name: Friedman & Bruya (CHEM) Project #: 411078

ANALYSIS REPORT

Professional Analytical Services

Quality Control

(Continued)

Conventional Chemistry Parameters by APHA/EPA Methods (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit

Quality Control

(Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BBK0297 - Hydrometer	/Sieve									
Duplicate (BBK0297-DUP1)		Source: A	24K0284-05		Prepared 8	Analyzed: 1	1/19/24			
PHI +1.00 (0.50 mm)	43.2		0.1	%		39.6			9	200
PHI +10.0 (0.001 mm)	ND		0.1	%		ND				200
PHI +2.00 (0.25 mm)	36.8		0.1	%		39.5			7	200
PHI +3.00 (0.125 mm)	2.5		0.1	%		3.8			41	200
PHI +4.00 (0.063 mm)	0.1		0.1	%		0.5			133	200
PHI +5.00 (0.032 mm) Silt	ND		0.1	%		0.8			200	200
PHI +6.00 (0.016 mm)	ND		0.1	%		ND				200
PHI +7.00 (0.008 mm)	ND		0.1	%		ND				200
PHI +8.00 (0.004 mm)	ND		0.1	%		ND				200
PHI +9.00 (0.002 mm) Clay	ND		0.1	%		ND				200
PHI >10.0 (< 0.001 mm)	2.7		0.1	%		2.7			0	200
PHI 0.00 (1.00 mm) Sand	12.4		0.1	%		11.2			10	200
PHI -1.00 (2.00 mm)	2.2		0.1	%		1.8			20	200
PHI -2.00 (4.00 mm)	0.1		0.1	%		0.1			0	200
PHI -2.25 (4.75 mm) Gravel	ND		0.1	%		ND				200
ouplicate (BBK0297-DUP2)		Source: A	24K0284-05		Prepared 8	Analyzed: 1	1/19/24			
PHI +1.00 (0.50 mm)	41.2		0.1	%		39.6			4	200
PHI +10.0 (0.001 mm)	ND		0.1	%		ND				200
PHI +2.00 (0.25 mm)	36.3		0.1	%		39.5			8	200
PHI +3.00 (0.125 mm)	2.3		0.1	%		3.8			49	200
PHI +4.00 (0.063 mm)	0.1		0.1	%		0.5			133	200
PHI +5.00 (0.032 mm) Silt	0.1		0.1	%		0.8			156	200
PHI +6.00 (0.016 mm)	ND		0.1	%		ND				200
PHI +7.00 (0.008 mm)	ND		0.1	%		ND				200
PHI +8.00 (0.004 mm)	ND		0.1	%		ND				200
PHI +9.00 (0.002 mm) Clay	ND		0.1	%		ND				200
PHI >10.0 (< 0.001 mm)	2.7		0.1	%		2.7			0	200
PHI 0.00 (1.00 mm) Sand	15.2		0.1	%		11.2			30	200

13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com

Friedman & Bruya, Inc.

3012 16th Avenue West Seattle, WA 98119-2029 Attention: MICHAEL ERDAHL Project Name: Friedman & Bruya (CHEM) Project #: 411078

ANALYSIS REPORT

Professional Analytical Services

Date Received: 11/07/24 **Date Reported:** 12/12/24

Quality Control

(Continued)

Full Grain Size (Hydrometer/Sieve) (Continued)

Analyte Batch: BBK0297 - Hydrometer/	Result Sieve (Conti	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Duplicate (BBK0297-DUP2)		Source: A24	K0284-05		Prepared &	Analyzed: 1	1/19/24			
PHI -1.00 (2.00 mm)	2.1		0.1	%		1.8			15	200
PHI -2.00 (4.00 mm)	0.1		0.1	%		0.1			0	200
PHI -2.25 (4.75 mm) Gravel	ND		0.1	%		ND				200

Am Test Inc.

13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com

Friedman & Bruya, Inc.

3012 16th Avenue West Seattle, WA 98119-2029 Attention: MICHAEL ERDAHL Project Name: Friedman & Bruya (CHEM) Project #: 411078

ANALYSIS REPORT

Professional Analytical Services

Date Received: 11/07/24 **Date Reported:** 12/12/24

Notes and Definitions

Item	Definition
U	The compound was analyzed for but was not detected (Non-detect) at or above the MRL/MDL.
Dry	Sample results reported on a dry weight basis.
ND	Analyte NOT DETECTED at or above the reporting limit.
RPD	Relative Percent Difference
%REC	Percent Recovery
Source	Sample that was matrix spiked or duplicated.

								So	ta	do	S.0	04-94 10	50 50	62	0)								
	Fax (206) 283-5044	Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	Friedman & Bruya, Inc.			VMP3-12.0	VMP3-3.0	VMP1-12.0	VMP1-3.0	04-94 VEW1-12.0	VEW1-3.0	VMP2-16.0	VMP2-3.0	Sample ID		Phone # <u>(206) 285-</u> {	ite, ZIP			Send Report <u>To Mi</u>	
1					,.											Lab ID		<u>3282</u> п	attle, W	5500 4 th Ave S	edman	<u>Michael Erdahl</u>	
	Received by:	Relinquished by:	Received by:	Relinquished by:	IS 🦢			11/5/2024	11/5/2024	11/5/2024	11/5/2024	11/5/2024	11/5/2024	11/5/2024	11/5/2024	Date Sampled		(206) 285-8282_merdahl@friedmanandbruya.com	Seattle, WA 98108	Ive S	Friedman and Bruya, Inc.	3rdahl	
				2	SIGNATURE			1505 soil	1455	1350	1330	1300	1245	1150	1130 soil	Time Sampled		nanandbruya.			<u>1C.</u>		SUBCON
								soil	1455 soil	1350 soil	1330 soil	1300 soil	1245 soil	1150 soil	soil	Matrix		ов В	REMARKS		PROJ	SUBC	SUBCONTRACT SAMPLE CHAIN OF CUSTODY
				Micha		2		Ţ	1	سر	1	1	1	1	1	# of jars			ARKS		PROJECT NAME/NO.	SUBCONTRACTER	SAMI
			S	Michael Erdahl	PJ			x	×	x	k	x	×	x	x	Particle Size		-		411078	'AME/	ACTE	PLE (
			n	ahl	PRINT NAME			x	¥	x	X	x	X	x	x	Alkalinity		:		00	NO.	RAnt	CHAI
					VAME			x	×	×	×	х	X	x	x	Total Iron	A		-			1	N OF
201								x	×	x	×	x	¥	x	х	Nutrients	ANALYSES		F	Ē			cus
																				E-203	PO #		TOD
			\rightarrow	riedm													EQUI			v	#		Ŷ
			ANTES	Friedman & Bruya	COMPANY												REQUESTED]
			-	3ruya	ANA													Retu Will	Disp	Rush c	IN St		2CA
																		Return samples Will call with in	SAMP ose afte	harges	Standard TAT RUSH	TURN	2
			h7/2/1	1/24	DATE				- HOLD		Hord Hord		H a LA					Return samples Will call with instructions	SAMPLE DISPOSAL Dispose after 30 days	Rush charges authorized by:	TAT	Page # _ 1 of _ TURNAROUND TIME	ANNOIST
									4		-D		5			Notes		uctions	POSAL ys	zed by:		D TIME	1
	- - -			0530	TIME														-				
							<u> </u>	•		•						· · · · · · · · · · · · · · · · · · ·	i	L	l			J`	

1 < 5 < -

AMKO137

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Ave South Seattle, WA 98108-2419 (206) 285-8282 office@friedmanandbruya.com www.friedmanandbruya.com

November 27, 2024

Kyle Johnson, Project Manager PBS Engineering and Environmental, Inc. 141 NW Greenwood Ave Bend, OR 97703

Dear Mr Johnson:

Included are the results from the testing of material submitted on November 8, 2024 from the Coleman Oil- Yakima Bulk Plant 41392.000 T.0021 Ph.03B, F&BI 411133 project. There are 10 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

lify

Michael Erdahl Project Manager

Enclosures PBS1127R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 8, 2024 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental Coleman Oil- Yakima Bulk Plant 41392.000 T.0021 Ph.03B, F&BI 411133 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	PBS Engineering and Environmental
411133 -01	BVPT-1
411133 -02	BVPT-2
411133 -03	BVPT-3

Non-petroleum compounds identified in the air phase hydrocarbon (APH) ranges were subtracted per the MA-APH method.

The samples were sent to Alliance Technical Group for major gases analysis. The report is enclosed.

The TO-15 calibration standard for vinyl chloride and 1,1,2-trichloroethane exceeded the acceptance criteria. The compounds were not detected, therefore this did not represent an out of control condition, and were qualified with a "k" qualifier.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	BVPT- 11/08/2 11/06/2 11/13/2 Air ug/m3	24 24	Pro Lak Dat Ins	ent: ject: o ID: ta File: trument: erator:	PBS Engineering and Environmental Coleman Oil- Yakima Bulk Plant 411133-01 1/15 111319.D GCMS8 bat
Surrogates: 4-Bromofluorobenz	ene	% Recovery: 96	Lower Limit: 70	Upper Limit: 130	
		Conce	entration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<3.8 k	<1.5 k		
Chloroethane		<40	<15		
1,1-Dichloroethene		<5.9	<1.5		
trans-1,2-Dichloroe	ethene	<5.9	<1.5		
1,1-Dichloroethane		< 6.1	<1.5		
cis-1,2-Dichloroeth	ene	<5.9	<1.5		
1,2-Dichloroethane	(EDC)	< 0.61	< 0.15		
1,1,1-Trichloroetha	ne	<8.2	<1.5		
Benzene		47	15		
Trichloroethene		<1.6	< 0.3		
Toluene		<110	<30		
1,1,2-Trichloroetha	ne	<0.82 k	<0.15 k		
Tetrachloroethene		<100	<15		
Ethylbenzene		7.9	1.8		
m,p-Xylene		14	3.3		
o-Xylene		<6.5	<1.5		
Naphthalene		<3.9	< 0.75		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	BVPT-2 11/08/24 11/06/24 11/13/24 Air ug/m3	4 4	Pro Lak Dat Ins	ent: ject:) ID: ta File: trument: erator:	PBS Engineering and Environmental Coleman Oil- Yakima Bulk Plant 411133-02 1/7.4 111318.D GCMS8 bat
Surrogates: 4-Bromofluorobenz		% Recovery: 96	Lower Limit: 70	Upper Limit: 130	
		Conce	entration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<1.9 k	<0.74 k		
Chloroethane		<20	<7.4		
1,1-Dichloroethene		<2.9	< 0.74		
trans-1,2-Dichloroe	ethene	<2.9	< 0.74		
1,1-Dichloroethane		<3	< 0.74		
cis-1,2-Dichloroeth	ene	<2.9	< 0.74		
1,2-Dichloroethane	(EDC)	< 0.3	< 0.074		
1,1,1-Trichloroetha	ne	<4	< 0.74		
Benzene		20	6.3		
Trichloroethene		< 0.8	< 0.15		
Toluene		70	19		
1,1,2-Trichloroetha	ne	<0.4 k	<0.074 k		
Tetrachloroethene		<50	<7.4		
Ethylbenzene		4.5	1.0		
m,p-Xylene		9.6	2.2		
o-Xylene		4.0	0.92		
Naphthalene		<1.9	< 0.37		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	BVPT-: 11/08/2 11/06/2 11/13/2 Air ug/m3	4 4	Pro Lal Da Ins	ent: oject: o ID: ta File: trument: erator:	PBS Engineering and Environmental Coleman Oil- Yakima Bulk Plant 411133-03 1/7.5 111316.D GCMS8 bat
C ,		%	Lower	Upper	
Surrogates: 4-Bromofluorobenz		Recovery: 97	Limit: 70	Limit: 130	
		Conce	entration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<1.9 k	<0.75 k		
Chloroethane		<20	<7.5		
1,1-Dichloroethene		<3	< 0.75		
trans-1,2-Dichloroe	thene	<3	< 0.75		
1,1-Dichloroethane		<3	< 0.75		
cis-1,2-Dichloroethe	ene	<3	< 0.75		
1,2-Dichloroethane	(EDC)	< 0.3	< 0.075		
1,1,1-Trichloroetha	ne	<4.1	< 0.75		
Benzene		12	3.9		
Trichloroethene		< 0.81	< 0.15		
Toluene		57	15		
1,1,2-Trichloroetha	ne	<0.41 k	<0.075 k		
Tetrachloroethene		<51	<7.5		
Ethylbenzene		3.8	0.88		
m,p-Xylene		8.7	2.0		
o-Xylene		3.5	0.80		
Naphthalene		<2	< 0.37		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Not A		Lab Dat Inst	ent: ject: o ID: a File: trument: erator:	PBS Engineering and Environmental Coleman Oil- Yakima Bulk Plant 04-2768 mb 111312.D GCMS8 bat
Surrogates: 4-Bromofluorobenz		% Recovery:	Lower Limit: 70	Upper Limit: 130	
4-bromolluorobenz	ene	85	70	150	
		Conce	ntration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<0.26 k	<0.1 k		
Chloroethane		<2.6	<1		
1,1-Dichloroethene		< 0.4	< 0.1		
trans-1,2-Dichloroe	ethene	< 0.4	< 0.1		
1,1-Dichloroethane	!	< 0.4	< 0.1		
cis-1,2-Dichloroeth	ene	< 0.4	< 0.1		
1,2-Dichloroethane	(EDC)	< 0.04	< 0.01		
1,1,1-Trichloroetha	ne	< 0.55	< 0.1		
Benzene		< 0.32	< 0.1		
Trichloroethene		< 0.11	< 0.02		
Toluene		<7.5	<2		
1,1,2-Trichloroetha	ne	<0.055 k	<0.01 k		
Tetrachloroethene		<6.8	<1		
Ethylbenzene		< 0.43	< 0.1		
m,p-Xylene		< 0.87	< 0.2		
o-Xylene		< 0.43	< 0.1		
Naphthalene		< 0.26	< 0.05		

ENVIRONMENTAL CHEMISTS

Date of Report: 11/27/24 Date Received: 11/08/24 Project: Coleman Oil- Yakima Bulk Plant 41392.000 T.0021 Ph.03B, F&BI 411133 Date Extracted: 11/18/24 Date Analyzed: 11/19/24

RESULTS FROM THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Results Reported as % Helium

<u>Sample ID</u> Laboratory ID	<u>Helium</u>
BVPT-1 411133-01	<0.6
BVPT-2 411133-02	<0.6
BVPT-3 411133-03	<0.6
Method Blank 04-2846 MB	<0.6

ENVIRONMENTAL CHEMISTS

Date of Report: 11/27/24 Date Received: 11/08/24 Project: Coleman Oil- Yakima Bulk Plant 41392.000 T.0021 Ph.03B, F&BI 411133

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 411133-03 1/7.5 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Vinyl chloride	ug/m3	<1.9	<1.9	nm
Chloroethane	ug/m3	<20	<20	nm
1,1-Dichloroethene	ug/m3	<3	<3	nm
trans-1,2-Dichloroethene	ug/m3	<3	<3	nm
1,1-Dichloroethane	ug/m3	<3	<3	nm
cis-1,2-Dichloroethene	ug/m3	<3	<3	nm
1,2-Dichloroethane (EDC)	ug/m3	< 0.3	<0.3	nm
1,1,1-Trichloroethane	ug/m3	<4.1	<4.1	nm
Benzene	ug/m3	12	13	8
Trichloroethene	ug/m3	< 0.81	< 0.81	nm
Toluene	ug/m3	57	$<\!\!57$	nm
1,1,2-Trichloroethane	ug/m3	< 0.41	< 0.41	nm
Tetrachloroethene	ug/m3	<51	<51	nm
Ethylbenzene	ug/m3	3.8	3.7	3
m,p-Xylene	ug/m3	8.7	8.6	1
o-Xylene	ug/m3	3.5	3.4	3
Naphthalene	ug/m3	<2	2.0	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 11/27/24 Date Received: 11/08/24 Project: Coleman Oil- Yakima Bulk Plant 41392.000 T.0021 Ph.03B, F&BI 411133

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

Laboratory Coue. Laboratory Col	ittoi bainpie			
			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	ug/m3	35	141 vo	70-130
Chloroethane	ug/m3	36	123	70-130
1,1-Dichloroethene	ug/m3	54	123	70-130
trans-1,2-Dichloroethene	ug/m3	54	119	70-130
1,1-Dichloroethane	ug/m3	55	130	70-130
cis-1,2-Dichloroethene	ug/m3	54	112	70-130
1,2-Dichloroethane (EDC)	ug/m3	55	123	70-130
1,1,1-Trichloroethane	ug/m3	74	124	70-130
Benzene	ug/m3	43	115	70-130
Trichloroethene	ug/m3	73	123	70-130
Toluene	ug/m3	51	112	70-130
1,1,2-Trichloroethane	ug/m3	74	137 vo	70-130
Tetrachloroethene	ug/m3	92	129	70-130
Ethylbenzene	ug/m3	59	109	70-130
m,p-Xylene	ug/m3	120	104	70-130
o-Xylene	ug/m3	59	112	70-130
Naphthalene	ug/m3	71	82	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 11/27/24 Date Received: 11/08/24 Project: Coleman Oil- Yakima Bulk Plant 41392.000 T.0021 Ph.03B, F&BI 411133

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Laboratory Code:	(Duplicate)			
	Sample	Duplicate	Relative	
Analyte	Result	Result	Percent	Acceptance
	(%)	(%)	Difference	Criteria
Helium	<0.6	<0.6	nm	0-20

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

 ${\rm j}$ - The analyte concentration is reported between the method detection limit and the lowest calibration point. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Samples received at <u>18</u> °C	Samples								Relinquished by: Received by:	Relinquished Received by:	Ph. (206) 285-8282 Fax (206) 283-5044
	FBT			W	Anh Phan	Anh	٤	1	ed by:	Received by:	Seattle, WA 98108
h2/2/1	53	PBS		5	Jourson	Kyle .)	131	Relinquished by:	Relinq	5500 4 th Avenue South
NY DATE	COMPANY		E	PRINT NAME	PRIM		E	SIGNATURE	SIG		Friedman & Bruya, Inc.
							IA / SG				
						8	IA / SG				
~	•						IA / SG				
							IA / SG				
				1454		57/7/29	IA / SG				
×	×	6959	2 2	0954	82	H2/2/11	IA / SG	117	21295	С ³	BUPT-3
×	× ×	1615	2	1607	28	h2/9/11	IA / SG	234	2296	02	BUPT-2
×	XX	0935	2	P2120	28	11/6/24	IA / SG	61	9899	01	BUPT-1
APH Helium Oz, COz, CH4, N DINY6 Mod	TO15 PTIL DEal TO15 BTEXN TO15 cVOCs	Time TO15 Full Scan	Final Vac. ("Hg)	Field Initial Time	Initial Vac. ("Hg)	Date Sampled	Reporting Level: IA=Indoor Air SG=Soil Gas (Circle One)	Flow Cont. ID	Canister ID	Lab ID	Sample Name
QUESTED	ANALYSIS REQUESTED	AN	_								SAMPLE INFORMATION
tinal report deuvery Hold (Fee may apply):							ia (on	Opheus	e. johnson	nail ky	Phone Stl. 233. 3202 Email Kyle. johnson Opherson Com
SAMPLE DISPOSAL Default:Clean following	INVOICE TO	IOANI	Fest	Bio-Verting Pild Test	Verbi-		NOTES:			207	City, State, ZIP BEND OR
√Standard RUSH Rush charges authorized by:	938 850 850	P0# 41392.000 T. 0021 Ph. 03B	Plant	SRESS Shulk	& ADI Yakin	PROJECT NAME & ADDRESS Coleman Oil -Yakima Bulk Plent	PROJE Colemo		d Aver	e ce (where	C
Page #	hr 80	=	DDY	CUSTO	ature)	SAMPLERS (signature)	SAMPLE CHAIN OF CUSTODY			Sor	411133 Report To Kyle Jourson

SA	MPLE CONDII	TION UPON RECE	IPT CH	ECKLIST		
PROJECT # <u>411133</u>	CLIENT	PBS		INITIAL DATE:	si AP 11/08	124
If custody seals are	present on coo	ler, are they intac	t?	Ø NA	□ YES	□ NO
Cooler/Sample temp	erature		:	Therr	nometer ID: Flu	°C ke 96312917
Were samples receiv	ved on ice/cold	packs?	9		□ YES	Ø NO
How did samples ar	rive? he Counter	□ Picked up by F&I	BI	FedEx	DPS/GSO	
Is there a Chain-of-(*or other representative do	Custody* (COC) ocuments, letters, ar)?	🗆 NO		ials/ AP e:1101	8/24_
Number of days sam	ples have beer	n sitting prior to r	eceipt a	t laborato	ory	_days
Are the samples clea	arly identified?	(explain "no" answer be	elow)	14	YES YES	□ NO
Were all sample con leaking etc.)? (explain			oroken,		YES	□ NO
Were appropriate sa	ample containe	ers used?	Ø YE	S 🗆 N	0 🗆 U	nknown
If custody seals are	present on san	nples, are they int	act?	D NA	D YES	D NO
Are samples requiri	ing no headspa	ce, headspace free	?	NA DA	D YES	D NO
Is the following info (explain "no" answer below	ormation provi	ded on the COC, a	nd does			
Sample ID's	Yes 🗆 No _				□ Not on CO	
Date Sampled	Yes 🗆 No 🔤				□ Not on CO	C/label
Time Sampled	TYes 🗆 No _				□ Not on CO)C/label
# of Containers	□ Yes □ No					
Relinquished						
Requested analysis	🖞 Yes 🗆 On H	[old				
Other comments (us						
Air Samples: Were a		canisters/tubes re				
Number of unused	TO15 canisters	<u>0</u> Numbe 3252)	r of unu	sed TO17	tubes	
FRIEDMAN & BRUYA, INC./FO			3			05/01/24

3600 Fremont Ave N Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 5500 4th Ave S Seattle, WA 98108

RE: 411133, Work Order Number: 2411384

November 26, 2024

Attention Michael Erdahl:

Fremont Analytical, Inc, an Alliance Technical Group company, received 3 sample(s) on 11/19/2024 for the analyses presented in the following report.

Major Gases by EPA Method 3C

All analyses were performed according to our accredited Quality Assurance program. Please contact the laboratory if you should have any questions about the results.

Please note, while the appearance of our logo and branding will update, our commitment to accuracy, speed, and customer service remain values celebrated and shared by Alliance Technical Group. Thank you for the opportunity to serve you.

Sincerely,

Kelley Lovejoy

Kelley Lovejoy Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.4 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Original

www.fremontanalytical.com

CLIENT: Project: Work Order:	Friedman & Bruya 411133 2411384	Work Order S	Sample Summary					
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received					
2411384-001	BVPT-1	11/19/2024 11:15 AM	11/19/2024 1:20 PM					
2411384-002	BVPT-2	11/19/2024 11:15 AM	11/19/2024 1:20 PM					
2411384-003	BVPT-3	11/19/2024 11:15 AM	11/19/2024 1:20 PM					

WO#: **2411384** Date: **11/26/2024**

CLIENT:Friedman & BruyaProject:411133

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Major gases are reported as % ratio of the Major Gases analyzed (Carbon dioxide, Carbon Monoxide, Methane, Nitrogen, Oxygen and Hydrogen).

The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS). The LCS is processed with the samples to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Note: The estimated BTU calculation is based off of the methane result.

Qualifiers & Acronyms

WO#: 2411384 Date Reported: 11/26/2024

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery **CCB** - Continued Calibration Blank **CCV** - Continued Calibration Verification **DF** - Dilution Factor **DUP - Sample Duplicate** HEM - Hexane Extractable Material ICV - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MCL - Maximum Contaminant Level MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **REP - Sample Replicate RL** - Reporting Limit **RPD** - Relative Percent Difference SD - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

Analytical Report

 Work Order:
 2411384

 Date Reported:
 11/26/2024

CLIENT: Friedman & Bruya

Project: 411133

Lab ID: 2411384-001 Client Sample ID: BVPT-1			Collection Matrix: A		: 11/19/2024 11:15:00 AM
Analyses	Result	RL Qual	Units	DF	Date Analyzed
Major Gases by EPA Method 3C			Batch	n ID: R	95957 Analyst: CO
Carbon Dioxide	2.26	0.0500	%	1	11/20/2024 12:25:00 PM
Carbon Monoxide	ND	0.0500	%	1	11/20/2024 12:25:00 PM
Methane	ND	0.0500	%	1	11/20/2024 12:25:00 PM
Nitrogen	87.9	0.0500	%	1	11/20/2024 12:25:00 PM
Oxygen	9.87	0.0500	%	1	11/20/2024 12:25:00 PM
Hydrogen	ND	0.0500	%	1	11/20/2024 12:25:00 PM
BTU	0.0304		BTU/ft ³	1	11/20/2024 12:25:00 PM

Lab ID: 2411384-002

Client Sample ID: BVPT-2

Collection Date: 11/19/2024 11:15:00 AM Matrix: Air

Analyses	Result	RL Qual	Units	DF	Date Analyzed								
Major Gases by EPA Method 3C			Batch	n ID: R	95957 Analyst: CO								
Carbon Dioxide	1.84	0.0500	%	1	11/20/2024 12:37:00 PM								
Carbon Monoxide	ND	0.0500	%	1	11/20/2024 12:37:00 PM								
Methane	ND	0.0500	%	1	11/20/2024 12:37:00 PM								
Nitrogen	90.6	0.0500	%	1	11/20/2024 12:37:00 PM								
Oxygen	7.55	0.0500	%	1	11/20/2024 12:37:00 PM								
Hydrogen	ND	0.0500	%	1	11/20/2024 12:37:00 PM								
BTU	ND		BTU/ft ³	1	11/20/2024 12:37:00 PM								

Analytical Report

 Work Order:
 2411384

 Date Reported:
 11/26/2024

CLIENT: Friedman & Bruya

Project: 411133

Lab ID: 2411384-003 Client Sample ID: BVPT-3			Collectior Matrix: A		11/19/2024 11:15:00 AM
Analyses	Result	RL Qual	Units	DF	Date Analyzed
Major Gases by EPA Method 3C			Batch	ID: R	95957 Analyst: CO
Carbon Dioxide	2.28	0.0500	%	1	11/20/2024 12:59:00 PM
Carbon Monoxide	ND	0.0500	%	1	11/20/2024 12:59:00 PM
Methane	ND	0.0500	%	1	11/20/2024 12:59:00 PM
Nitrogen	89.0	0.0500	%	1	11/20/2024 12:59:00 PM
Oxygen	8.75	0.0500	%	1	11/20/2024 12:59:00 PM
Hydrogen	ND	0.0500	%	1	11/20/2024 12:59:00 PM
BTU	ND		BTU/ft ³	1	11/20/2024 12:59:00 PM

Work Order: 2411384

CLIENT: Friedman & Bruya

Project: 411133

QC SUMMARY REPORT

Major Gases by EPA Method 3C

Sample ID: LCS-R95957	SampType	SampType: LCS Units: % Prep Date: 1							024	RunNo: 959	RunNo: 95957				
Client ID: LCSW	Batch ID:	R95957					Analysis Dat	e: 11/20/2	024	SeqNo: 2002315					
Analyte	F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual			
Carbon Dioxide		99.1	0.0500	100.0	0	99.1	90	110							
Carbon Monoxide		99.3	0.0500	100.0	0	99.3	90	110							
Methane		99.1	0.0500	100.0	0	99.1	90	110							
Nitrogen		100	0.0500	100.0	0	100	90	110							
Oxygen		101	0.0500	100.0	0	101	90	110							
Hydrogen		99.6	0.0500	100.0	0	99.6	90	110							
Sample ID: 2411384-001AREP	SampType	REP			Units: %		Prep Date	e: 11/20/2	024	RunNo: 959	957				
Client ID: BVPT-1	Batch ID:	R95957					Analysis Dat	e: 11/20/2	024	SeqNo: 2002310					
Analyte	F	Result													
		Vesuit	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual			
Carbon Dioxide		2.26	0.0500	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD 0.0539	RPDLimit 30	Qual			
-				SPK value	SPK Ref Val	%REC	LowLimit	HighLimit				Qual			
Carbon Dioxide		2.26	0.0500	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	2.261		30	Qual			
Carbon Dioxide Carbon Monoxide		2.26 ND	0.0500 0.0500	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	2.261 0		30 30	Qual			
Carbon Dioxide Carbon Monoxide Methane		2.26 ND ND	0.0500 0.0500 0.0500	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	2.261 0 0	0.0539	30 30 30	Qual			
Carbon Dioxide Carbon Monoxide Methane Nitrogen		2.26 ND ND 87.9	0.0500 0.0500 0.0500 0.0500	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	2.261 0 0 87.86	0.0539	30 30 30 30	Qual			

Sample Log-In Check List

res □ res □		:20:00 PM Not Present Not Present NA NA NA
Client Tes □ Tes □	No 🗌 No 🗌	Not Present 🖌 NA 🖌
Client Tes □ Tes □	No 🗌 No 🗌	Not Present 🖌 NA 🖌
es □ es □ es □	No 🗌	
res □ res □	No 🗌	
res □ res □	No 🗌	
ies □	No 🗌	_
es 🗸	_	NA 🗹
_	No 🗌	
es 🖌		
	No 🗌	
es 🖌	No 🗌	
es	No 🗹	NA 🗌
es	No 🗌	NA 🔽
es 🗸	No 🗌	
es 🖌	No 🗌	
es 🗸	No 🗌	
es 🖌	No 🗌	
es 🗹	No 🗌	
Yes	No 🗌	NA 🖌
eMail 🗌 Phone	e 🗌 Fax 🗌	In Person
	res ✔ res ✔ res ✔ res ✔ Yes □	ies ✓ No ies ✓ No ies ✓ No ies ✓ No ies ✓ No

Item Information

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Ph. (206) 285-8282 Fax (206) 283-5044	South WA 98119.9099	2012 16th Avenue West										BVPT-3	BVPT-2	BVPT-1	Sample ID		Phone # (206) 283-82		ite, ZIP	Address 5500	Company Fried		Send Report To Mich
	-	、 ·													Lab ID		m 707	-	tle, W	5500 4th Ave S	dman		Michael Erdahl
Relinquished by: Received by:	Receiventhur	Relinquished by	0									11/19/2024	11/19/2024	11/19/2024	Date Sampled		ergani@friegn	J-Lief.is.	Seattle, WA 98108	ve S	Friedman and Bruya, Inc.		rdahl
rel	1	AUTUNITO	ICNIATITE									11:15	11:15	11:15	Time Sampled		(206) 283-8282 merdam@rriedmanandor dya.com				ic.		
		f										11:15 vapor	vapor	vapor	Matrix		COTT		REMARKS			PROJECT NAME/NO.	SUBCONTRACTER Alliance Technic
an		Micha		,								1	1	1	# of jars				RKS			CTN	ONTR.
ginageirac		Michael Erdahl	P									х	х	х	major gases				0	411133		AME/N	3CONTRACTER Alliance Technical Group
vra		ahl	RINT																			0.	cal Gr
0			PRINT NAME			_		1				L											quo
							_	-	-			_				ANALY							
				_		_	+	-	+	+	-	-	-			ALYSES REQUESTED				E-020		PO#	
	Arch	Friedr		_	$\left \right $	+	+	+	+	+	\vdash	\vdash	-	-		LIDGE				50	5	#	
	57	nan &	COMPANY		$\left \right $	+	+	+	+	┢	╞	┝	\vdash	\vdash		ESTE		_	-				
		Friedman & Bruya	ANY		$\left \right $	-	+	+	┼	┢	+	$\left \right $	┢	-				Ret	Dis	TICHAT	D R		
		-		_	$\left \right $		+	+	╈	+	+	+					- CO	Return samples Will call with in	SAM pose af	cuar 50	RUSH_	Standard TAT	TURN
		11/16/24	DATE									2.0	2.4	1.6	Notes D:1.fin			Return samples Will call with instructions	SAMPLE DISPOSAL Dispose after 30 days	IIIOII CHATECO ANIMATINA OF		4 TAT	Page # _1ot TURNAROUND TIME
-	-	1150	TIME												tes			suc		Page			-

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

2411084