

PHASE II ENVIRONMENTAL SITE ASSESSMENT:

SUBSURFACE INVESTIGATION REPORT

King County Parcel #6844700005 9418 35th Avenue NE Seattle, WA 98115

September 26, 2024

Prepared for:

LMJ Enterprises 11845 NE 85th Street Kirkland, WA 98033

Prepared by:

Dixon Environmental Services LLC 4010 N 7th Street Tacoma, WA 98406

Brian A. Dixon President/Principal Environmental Scientist

John Blake

Andrew Blake, L.G. Licensed Geologist #2928

Table of Contents

1.0	Introduction	3
2.0	Property Location, Description, and Background	3
2.1	Property Land Use History	4
2.2	Physical Setting	4
2.3	Previous Environmental Investigations	6
3.0	Subsurface Investigation Tasks and Methodology	7
3.1	Approved Scope of Work	7
3.2	Contaminants of Concern	8
3.3	Pre-Field Activities	8
3.4	Field Activities	8
4.0	Investigation Results and Analysis	10
4.1	Soil Analytical Results	10
4.2	Data Analysis	10
4	2.1 Upper Confidence Limit Rule	11
4	2.2. 10% Rule	11
4	2.3 Single Sample Rule	11
5.0	Summary, Conclusions, and Recommendations	11
6.0	Statement of Quality Assurance	11
7.0	References	12

Exhibit A: Figures

- Figure 1: Topographic Map
- Figure 2: Site Plan

Exhibit B: Tables

- Table 1: Summary of Soil Analytical Results Petroleum Hydrocarbons and Select VOCs
- Table 2: Summary of Soil Analytical Results Chlorinated VOCs

Exhibit C: Boring Logs

Exhibit D: Supporting Documents

Exhibit E: Laboratory Analytical Reports

Exhibit F: Statistical Compliance Calculations

1.0 Introduction

On behalf of LMJ Enterprises, Dixon Environmental Services (Dixon ES) has prepared this Phase II Environmental Site Assessment (ESA): Subsurface Investigation (SI) Report for the parcel addressed at 9418 35th Avenue NE in Seattle, Washington (the Property) (Figures 1 and 2). This SI was conducted to evaluate the environmental quality of the Property due to the current and historical use of the Property as an automotive repair facility, and historical use as a gas station.

Previous investigations, discussed within the body of this report, indicate that the environmental quality of the Property had been impacted by the former land use, but that conditions were remediated to the satisfaction of the Washington State Department of Ecology (Ecology). Upon Ecology's review of the compliance sampling data, a No Further Action Detmerination was issued, dated April 23, 2012.

Dixon ES reviewed the information presented in the closure documents and performed a site visit, then determined that the following conditions remained as potential environmental concerns for the Property:

- The automotive repair facility is equipped with two active underground hydraulic hoists and one inactive underground hydraulic hoist. These units are likely equipped with oil reservoirs which could leak into the subsurface.
- There are three floor drains present within the automotive repair facility. If the structural integrity of these drains were to be compromised, this would act as a conduit to the subsurface for any hazardous materials used in business operations such as used oil, gasoline, or parts cleaning solvents.
- An above ground waste oil tank and several drums were staged on the eastern side of the building, without appropriate secondary containment.

This SI Report details site activities and observations, investigation methodology, sample analytical results, and provides conclusions based on the investigation findings.

2.0 Property Location, Description, and Background

The Property consists of a single King County Tax Parcel (#6844700005), 0.27 acres in size, addressed at 9418 35th Avenue NE in Seattle, Washington (Figures 1 and 2).

The Property is currently improved with a 1,680 square foot auto service facility, generally positioned on the southern portion of the parcel. At the time of this investigation, the tenant for the repair facility was Johnson's Auto Repair. The current Property layout is depicted on Figure 2.

2.1 Property Land Use History

Based on a review of historical aerial photographs and archived tax records, it appears the Property was originally developed with a single-family domestic dwelling sometime prior to 1936. In 1954, the Property was developed with a fuel/service facility, which was then replaced by a second vintage facility in 1967.

The fuel distribution system was reportedly decommissioned in 1990, after which the Property operated solely as an automotive service facility.

Category	Description	Source
Topographic Characteristi	cs	
Site Elevation	270 feet above mean sea level.	USGS Topographic Map Seattle North, WA (2020)
Topographic Gradient	The general topographic gradient at the Property is from southwest to northeast.	Field Observations, USGS Topographic Map Seattle North, WA (2020)
Hydrologic Characteristics	5	
Surface Water Runoff	Runoff at the Property appears to be managed via drain basins installed within the asphalt parking areas.	Field Observations
Nearest Water Body	Thorton Creek: Approximately 2,300 feet to the northeast of the Property.	USGS Topographic Map Seattle North, WA (2020)
Flood Zones	Zone X: Areas Determined to be Outside the 0.2% Annual Flood Hazard zone.	FEMA Map Panel 53033C0333G
Wetlands	The Property does not appear to lie within the National Wetland Inventory.	USGS Topographic Map Seattle North, WA (2020)

2.2 Physical Setting

Category	Description	Source
Geologic Characteristics		
Primary Soil Types	Soil encountered during this investigation generally consisted of fine to medium grained sand with variable silt and gravel content to the maximum depth explored of 15 feet below ground surface (bgs).	Drilling Observations (Exhibit C: Boring Logs)
Fill Material	Apparent fill material was encountered in the borings advanced within the former tank and dry well excavation areas (Section 2.3).	Drilling Observations (Exhibit C: Boring Logs)
Hydrogeologic Characteris	stics	
Depth to Nearest Groundwater	Groundwater was not encountered during this investigation, nor was it encountered during previous investigations/interim actions to the maximum depth explored of 17 feet bgs. The nearest drilling log that could be found through a search of Ecology's well log repository was addressed at 3544 NE 91 st Street, which is located less than 1,000 feet to the south of the Property. Groundwater was reportedly not encountered in this boring, which was terminated at 35 feet bgs.	Drilling Observations (Exhibit C: Boring Logs)
Groundwater Flow Direction	Based on a review of regional topography and geomorphology, it appears that shallow- seated groundwater (if present), may flow in a northeasterly direction toward localized low-lying areas.	USGS Topographic Map Seattle North, WA (2020)
Nearest Groundwater Supply Wells	There do not appear to be any active groundwater supply wells located within 1- mile of the Property.	Ecology Well Log Search

2.3 Previous Environmental Investigations

According to a Report of Remedial Action Underground Storage Tank Removal, prepared by GeoEngineers, dated February 13, 1991, 5 USTs were removed from the Property in 1967, when Unocal began occupying the Property. The tank contents and capacities were as follows: one 3,000-gallon gasoline UST, one 4,000-gallon gasoline UST, one 5,000-gallon gasoline UST, one 550-gallon heating oil UST, and one 280-gallon waste oil UST.

The original tanks were reportedly replaced with two 10,000-gallon gasoline USTs, one 550-gallon heating oil UST, and one 550-gallon waste oil UST, which were then removed in 1989.

The last vintage of USTs on the Property included two 12,000-gallon gasoline USTs, and one 550-gallon waste oil UST, which were removed in 1990 along with the vent lines, pump island, canopy, and a dry well. Historical site features are presented on Figure 2.

The report referenced above details a comprehensive subsurface assessment that was conducted during the 1990 fuel station decommissioning, which is included as Exhibit D.

During the removal of the two 12,000-gallon gasoline USTs, no evidence of contamination was noted and 10 confirmation soil samples were collected from the sidewalls and base of the excavation. The samples were analyzed for the presence of petroleum hydrocarbons and benzene, toluene, ethylbenzene, and xylenes (BTEX). These contaminants were not detected above the laboratory reporting limits in any of the ten samples.

During the removal of the 550-gallon waste oil UST, no evidence of contamination was noted and 5 confirmation soil samples were collected from the sidewalls and base of the excavation. All 5 samples were analyzed for the presence petroleum hydrocarbons and 1 was also analyzed for the presence of chlorinated solvents. These contaminants were either not detected above laboratory reporting limits, or were detected at concentrations below their respective MTCA Method A Cleanup Levels.

During the removal of the product and vent lines, no evidence of contamination was noted and 8 confirmation soil samples were collected from the sidewalls and base of the excavation. The samples were analyzed for the presence of petroleum hydrocarbons and BTEX. These contaminants were either not detected above laboratory reporting limits, or were detected at concentrations below their respective MTCA Method A Cleanup Levels.

During the removal of the pump island, field screening and performance sampling indicated the presence of contamination, which resulted in the removal of approximately 25 cubic yards of petroleum contaminated soil (PCS). While excavating in this area, additional petroleum contamination was encountered in the vicinity of the 1967 vintage USTs. This resulted in the removal of an additional approximately 200 cubic yards of PCS. Thirteen confirmation soil samples were

collected from the sidewalls and base of the final limits of the excavation. The samples were analyzed for the presence of petroleum hydrocarbons and BTEX. These contaminants were either not detected above laboratory reporting limits, or were detected at concentrations below their respective MTCA Method A Cleanup Levels.

During the removal of the dry well, field screening and performance sampling indicated the presence of contamination, which resulted in the removal of approximately 400 cubic yards of PCS. Ten confirmation soil samples were collected from the sidewalls and base of the final limits of the excavation. All 10 samples were analyzed for the presence of petroleum hydrocarbons and 1 was also analyzed for the presence of chlorinated solvents. These contaminants were either not detected above laboratory reporting limits, or were detected at concentrations below their respective MTCA Method A Cleanup Levels.

The cleanup report indicated that the 625 yards of PCS was pending approval for disposal at Kitsap County Landfill.

The cleanup documentation was reviewed by Ecology in 2012, who subsequently issued a No Further Action Determination associated with the releases (Exhibit D).

Based on these findings, it appeared that the remaining potential environmental concerns associated with the auto repair facility included: the presence of underground hydraulic hoists; the presence of an interior drain system; and exterior staging of hazardous materials without appropriate secondary containment.

3.0 Subsurface Investigation Tasks and Methodology

3.1 Approved Scope of Work

The approved scope of work for this SI included:

- Development of a project work plan;
- Identification of public and private utilities;
- Oversight of direct push drilling activities;
- Collection and laboratory analysis of soil samples; and,
- Preparation of this report.

3.2 Contaminants of Concern

Based on the research conducted by Dixon ES, the contaminants of concern (COCs) for the Property include:

- Gasoline-range Petroleum Hydrocarbons (GRPH);
- Diesel-range Petroleum Hydrocarbons (DRPH);
- Oil-range Petroleum Hydrocarbons (ORPH);
- BTEX; and,
- Chlorinated VOCs (cVOCs) commonly present in parts cleaning solvents, including: tetrachloroethylene (PCE), trichloroethylene (TCE), cis- 1,2 dichloroethylene (cis- 1,2 DCE), trans- 1,2 dichloroethylene (trans- 1,2 DCE), and vinyl chloride (VC).

The concentrations of these contaminants in the samples collected during this investigation will be compared to the Model Toxics Control Act (MTCA) Method A or B Cleanup Levels, as appropriate, to determine the need for additional assessment or remedial activities.

3.3 Pre-Field Activities

Prior to subsurface work, Dixon ES contacted the Washington Utility Notification Center to submit a public utility locate request (Ticket #24353263), and contracted with Mountainview Locating Services (Mountainview) of Bonney Lake, Washington to perform a private utility sweep to trace the shop drainage system and clear any potential drilling conflicts.

Dixon ES also prepared a site-specific health and safety plan which identified physical and chemical hazards associated with the project.

3.4 Field Activities

On August 30, 2024, Dixon ES oversaw the advancement of seven (7) borings (B1 through B7) by Holocene Drilling of Puyallup Washington, using direct push drilling techniques. Borings B1 and B2 were placed adjacent to the interior hydraulic hoists and floor drains; boring B3 was placed adjacent to an interior floor drain, hydraulic hoist, and near the area of the hazardous material staging; and boring B4 as placed adjacent to the drainage lateral existing the building. It was also determined that while mobilized, additional data could be collected in the former areas of remediation. Boring B5 was placed to the south of the former pump island; boring B6 was placed to the north of the former pump island and within the former tank nest; and boring B7 was placed to the east of the former pump island and north of the former dry well. Boring locations are depicted on Figure 2.

Soil was extracted from each completed boring using 5-foot long, 2.25-inch MacroCore samplers, with 5-foot interior acetate liners. Soil was continuously screened for the presence of contamination using

a photoionization detector (PID), as well as visual and olfactory observations, and was characterized in accordance with the Unified Soil Classification System (USCS) (Exhibit C: Boring Logs).

A total of 17 soil samples were collected from the 5 borings at depths between 5 and 15 feet bgs, summarized in the table below. Groundwater was not encountered during this investigation.

Boring ID	Sample ID	SAMPLE DEPTH (FT)	Contaminants of Concern
B1	B1-5	5	DRPH, ORPH, GRPH, BTEX, VOCs
B1	B1-10	10	DRPH, ORPH, GRPH
B2	B2-5	5	DRPH, ORPH, GRPH, BTEX, VOCs
B2	B2-10	10	DRPH, ORPH, GRPH, VOCs
В3	B3-5	5	DRPH, ORPH, GRPH, BTEX, VOCs
В3	B3-10	10	DRPH, ORPH, GRPH
B4	B4-5	5	DRPH, ORPH, GRPH, BTEX, VOCs
B4	B4-10	10	DRPH, ORPH, GRPH, BTEX, VOCs
B4	B4-15	15	DRPH, ORPH, GRPH, BTEX, VOCs
B5	B5-5	5	DRPH, ORPH, GRPH, BTEX, PCE
B5	B5-10	10	DRPH, ORPH, GRPH, BTEX
B6	B6-5	5	DRPH, ORPH, GRPH, BTEX, PCE
B6	B6-10	10	DRPH, ORPH, GRPH, BTEX
B6	B6-15	15	DRPH, ORPH, GRPH, BTEX, PCE
В7	B7-5	5	DRPH, ORPH, GRPH, BTEX, VOCs
В7	B7-10	10	DRPH, ORPH, GRPH
В7	B7-12	12	DRPH, ORPH, GRPH, BTEX, VOCs

Soil samples were collected directly from the acetate liners, extracted from the MacroCore samplers, and transferred into clean laboratory provided glassware, including 4oz jars and 40ml volatile organic analysis (VOA) vials. Samples collected for VOC analysis were done so in accordance with EPA Method 5035 Sampling Techniques.

Samples were placed in a cooler and kept on ice until delivered to a Washington State Department of Ecology (Ecology) Accredited Laboratory, Friedman and Bruya, Inc. (F&BI) of Seattle, Washington under standard chain of custody protocols. Laboratory analytical methods for the site specific COCs are presented below:

- GRPH Northwest Method NWTPH-HCID
- DRPH Northwest Method NWTPH- HCID or NTWPH-Dx

- ORPH Northwest Method NWTPH- HCID or NTWPH-Dx
- BTEX EPA Method 8021B or 8260D
- VOCs EPA Method 8260D

4.0 Investigation Results and Analysis

4.1 Soil Analytical Results

- Soils samples B1-5, B3-5, B4-5, and B4-15 contained detectable concentrations of PCE, however the values were below its MTCA Method A Cleanup Level.
- Soil sample B2-5 contained a concentration of PCE that slightly exceeded its MTCA Method A Cleanup Level.
- Soil sample B3-5 contained detectable concentrations of DRPH and ORPH, however the values were below their respective MTCA Method A Cleanup Levels. Additionally, the DRPH concentration was flagged by the laboratory for not representing the fuel standard used for quantitation; this is likely carryover from the oil-range.
- None of the remaining soil samples contained detectable concentrations of Property-specific COCs.

Soil sample analytical results are summarized on Tables 1 and 2. Laboratory analytical reports are included in Exhibit E.

4.2 Data Analysis

In accordance with WAC 173-340-740 (7)(c)(iv)(d), a site can demonstrate statistical compliance with MTCA if all 3 of the following conditions are met:

- The upper 95th percentile confidence limit on the true mean concentration at the site must be less than the soil cleanup level;
- Less than 10% of the samples can exceed the soil cleanup level; and,
- No single sample can be greater than two times the soil cleanup level.

The statistical evaluation shown below was conducted using Ecology's MTCA Stat97 Site Module. Samples with no detectable concentrations of PCE were assigned a value of half the laboratory detection limit. The statistical analysis is included as Exhibit F.

4.2.1 Upper Confidence Limit Rule

The true mean (lognormal mean) of the data set was calculated to be 0.008 mg/kg. The 95th percentile confidence limit on this value equals 0.0426 mg/kg, which is below the MTCA Method A Cleanup Level of 0.05 mg/kg.

4.2.2 10% Rule

A total of 11 soil samples were analyzed for PCE during this subsurface investigation. Only one of the 11 samples contained a PCE concentration that exceeds the MTCA Method A Cleanup Level. One out of 11 equals 9% of the total number of samples, which is less than 10%.

4.2.3 Single Sample Rule

The maximum concentration of PCE detected on the Property was 0.056 mg/kg.

This value is less than two times the MTCA Method A Cleanup Level, which would equal 0.1 mg/kg.

5.0 Summary, Conclusions, and Recommendations

On August 30, 2024, Dixon ES collected soil samples beneath the Property to evaluate the potential for environmental impacts associated with the current operation of an automotive service facility and associated site features.

The results of the investigation, detailed within this report, indicate that the structural integrity of the drainage system may be somewhat compromised, as low-level concentrations of PCE were detected in several soil samples in the vicinity of the floor drains and side-sewer connections. Additionally, a small leak may have occurred associated with the eastern most hoist.

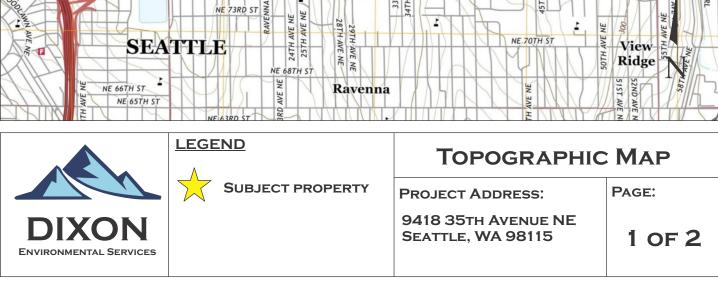
These findings are notable, and should be accounted for when considering current and future business operations; however, as discussed in Section 4, the current contaminant concentrations present beneath the Property do not appear to warrant remedial action under MTCA.

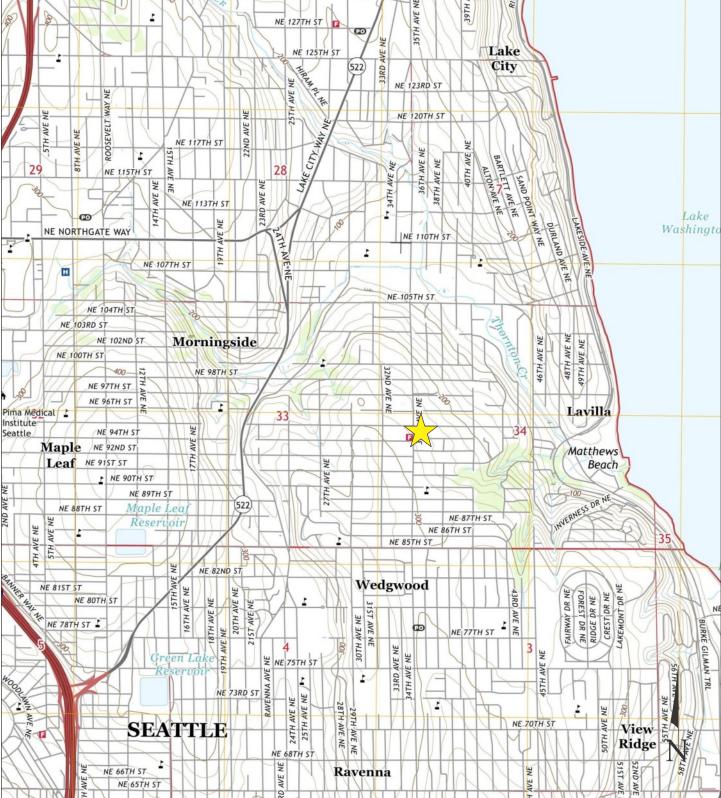
Based on these findings, no further environmental assessment appears warranted.

6.0 Statement of Quality Assurance

Dixon ES has performed this Phase II ESA: SI in accordance with current generally accepted environmental practices and procedures. Dixon ES has employed the degree of care and skill ordinarily exercised under similar circumstances by reputable environmental professionals practicing in this area.

Conclusions presented within this report were based on the analytical results from a limited data set, as such, there remains a possibility that additional areas or sources of contamination exist on the Property that were not identified during this assessment. No warranty, expressed or implied, is made as to the environmental quality of the Property or risk associated with potential contamination.


7.0 References


GeoEngineers. 1991. Report of Remedial Action Underground Storage Tank Removal. February 13.

United States Geological Survey (USGS). 2020. *Topographic Map of North Seattle, Washington Quadrangle*.

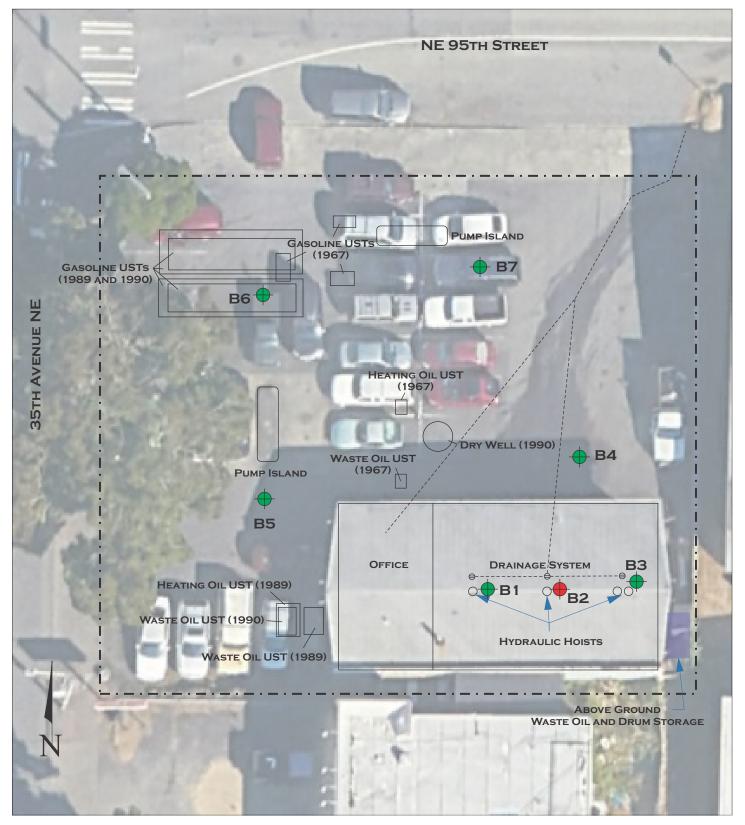

Washington State Department of Ecology. 2012. *No Further Action Determination Unocal 3921*. April 23.

Exhibit A: Figures

¥

		SITE PLAI	Ν
DIXON ENVIRONMENTAL SERVICES	PROPERTY BOUNDARY	PROJECT ADDRESS: 9418 35TH AVENUE NE SEATTLE, WA 98115	Page: 2 OF 2

Exhibit B: Tables

SOIL SAMPLE ID	Sample Depth	Date Sampled	Petroleu	JM HYDROCARBONS	5 (MG∕KG)	Selec	SELECT VOLATILE ORGANIC COMPOUNDS (MG/KG)				
JUIL JAMPLE ID	(FT)		Gasoline-Range	DIESEL-RANGE	Oil-Range	Benzene	TOLUENE	Ethylbenzene	TOTAL XYLENES		
B1-5	5	8/30/2024	<20	<50	<250	<0.002	<0.002	<0.002	<0.006		
B1-10	10	8/30/2024	<20	<50	<250	-	-	-	-		
B2-5	5	8/30/2024	<20	<50	<250	<0.002	<0.002	<0.002	<0.006		
B2-10	10	8/30/2024	<20	<50	<250	-	-	-	-		
B3-5	5	8/30/2024	<20	220x	370	<0.002	<0.002	<0.002	<0.006		
B3-10	10	8/30/2024	<20	<50	<250	-	-	-	-		
B4-5	5	8/30/2024	<20	<50	<250	<0.002	<0.002	<0.002	<0.006		
B4-10	10	8/30/2024	<20	<50	<250	-	-	-	-		
B4-15	15	8/30/2024	<20	<50	<250	<0.002	<0.002	<0.002	<0.006		
B5-5	5	8/30/2024	<20	<50	<250	<0.02	<0.02	<0.02	<0.06		
B5-10	10	8/30/2024	<20	<50	<250	<0.02	<0.02	<0.02	<0.06		
B6-5	5	8/30/2024	<20	<50	<250	<0.02	<0.02	<0.02	<0.06		
B6-10	10	8/30/2024	<20	<50	<250	<0.02	<0.02	<0.02	<0.06		
B6-15	15	8/30/2024	<20	<50	<250	<0.02	<0.02	<0.02	<0.06		
B7-5	5	8/30/2024	<20	<50	<250	<0.002	<0.002	<0.002	<0.006		
B7-10	10	8/30/2024	<20	<50	<250	-	-	-	-		
B7-12	12	8/30/2024	<20	<50	<250	<0.002	<0.002	<0.002	<0.006		
ECOLOGY MTCA METHOD A CLEANUP LEVELS UNLESS OTHERWISE SPECIFIED			100/30 ¹	2,000	2,000	0.03	7	6	9		

NOTES:

MG/KG = MILLIGRAMS PER KILOGRAM

MTCA = MODEL TOXICS CONTROL ACT

- = NOT ANALYZED FOR THIS CONTAMINANT

< = NOT DETECTED ABOVE LABORATORY DETECTION LIMITS

BOLD INDICATES A DETECTED CONCENTRATION THAT IS BELOW ECOLOGY MTCA METHOD A CLEANUP LEVELS

BOLD RED INDICATES THE DETECTED CONCENTRATION EXCEEDS ECOLOGY MTCA METHOD A CLEANUP LEVELS

¹ GASOLINE MIXTURES WITHOUT BENZENE AND THE TOTAL OF ETHYLBENZENE, TOLUENE AND XYLENES ARE LESS THAN 1% OF THE GASOLINE MIXTURE HAVE A CLEANUP LEVEL OF 100 MG/KG. ALL OTHER GASOLINE MIXTURES HAVE A CLEANUP LEVEL OF 30 MG/KG.

X THE SAMPLE CHROMATOGRAPHIC PATTERN DOES NOT RESEMBLE THE FUEL STANDARD USE FOR QUANTITATION.

SOIL SAMPLE ID	Sample Depth	DATE SAMPLED	Chlorinated Volatile Organic Compounds (mg/kg)							
	(FT)		PCE	TCE	CIS-1,2 DCE	TRANS- 1,2 DCE	VC			
B1-5	5	8/30/2024	0.0099	<0.002	<0.002	<0.002	<0.002			
B2-5	5	8/30/2024	0.056	<0.002	<0.002	<0.002	<0.002			
B2-10	10	8/30/2024	<0.0022	<0.002	<0.002	<0.002	<0.002			
B3-5	5	8/30/2024	0.0088	<0.002	<0.002	<0.002	<0.002			
B4-5	B4-5 5		0.0056	<0.002	<0.002	<0.002	<0.002			
B4-15	B4-15 15		0.0071	<0.002	<0.002	<0.002	<0.002			
B5-5	5	8/30/2024	<0.002	-	-	-	-			
B6-5	5	8/30/2024	<0.002	-	-	-	-			
B6-15	15	8/30/2024	<0.002	-	-	-	-			
B7-5 5		8/30/2024	<0.002	<0.002	<0.002	<0.002	<0.002			
B7-12	12	8/30/2024	<0.002	<0.002	<0.002	<0.002	<0.002			
ECOLOGY MTCA M UNLESS OTH			0.05	0.03	160 ¹	1,600 ¹	0.67 ²			

NOTES:

MG/KG = MILLIGRAMS PER KILOGRAM

MTCA = MODEL TOXICS CONTROL ACT

- = NOT ANALYZED FOR THIS CONTAMINANT

< = NOT DETECTED ABOVE SPECIFIED LABORATORY DETECTION LIMITS

ND = NOT DETECTED ABOVE VARIABLE LABORATORY DETECTION LIMITS

BOLD INDICATES A DETECTED CONCENTRATION THAT IS BELOW ECOLOGY MTCA METHOD A CLEANUP LEVELS

BOLD RED INDICATES THE DETECTED CONCENTRATION MEETS OR EXCEEDS ECOLOGY MTCA METHOD A CLEANUP LEVELS

¹ = MTCA METHOD B PUBLISHED VALUE (NON-CANCER)

² = MTCA METHOD B PUBLISHED VALUE (CANCER)

PCE = TETRACHLOROETHYLENE

TCE = TRICHLOROETHYLENE

DCE = DICHOROETHYLENE

VC = VINYL CHLORIDE

Exhibit C: Boring Logs

					Project:		Johnson's Auto	B	oring ID:	В	81
		N		ON ENTAL SERVICES	Location:	94 ⁻	18 35th Avenue NE Seattle, WA		Project Number:	001	9-23
					Client:						
D	ate Start/Fin	ish:	8/30/2024		Drilling Met		Direct Push		GW WELL-GRADED GRAV	EL, FINE TO COA	
	Logged By	:	B. Dixon		Auger ID/OI		NA	NON-COHESIVE SOILS	GP POORLY-GRADED GRA	AVEL	
	Checked By	/:	A. Blake		Borehole ID	D/OD:	2-inch	HESINE	GC CLAYEY GRAVEL SW WELL-GRADED SAND,		SE SAND
	Contractor	:	Holocene		Sampler:		5' Macro Core	ON-CO	SP POORLY-GRADED SAM SM SILTY SAND	ND	
	Operator:		Don Harnde		Hammer Wt		NA	z	SC CLAYEY SAND ML SILT CL CLAY		
B	oring Locati		West Servi	ce Bay	Ground Ele		~270ft AMSL	SOILS	OL ORGANIC SILT, ORGAN MH SILT OF HIGH PLASTIC		т
	Coordinates	5:	NA			Water Deptn: NA					
	Weather:		Sunny		Boring Dep	Boring Depth: 15'					Well Construction Detail
Depth (ft bgs)	Sample Number	Time	PID Reading	Remarks		Soil and Rock Description					
1											
2						Brow	n, fine to medium grained	silty SAI	ND.	SM	
3											
4											
5	B1-5	930	0.0								
6											
7					Ligh	ht brown, m	edium grained poorly grac	ded SAN	ID. Trace silt.	SP	
8											
9					_						
10	B1-10	935	0.0		_						
11					_		Same as above.			SP	
12					_						
13					4						
14					-						
15											
16					-		Boring terminated at 15 fe	et bgs.			
17					-						
18					-						
19					-						
20 Notes	:										
TAOLES	<u>-</u>										

			DIX	ÓN	Project:	Johnson's Auto 418 35th Avenue NE	Boring ID:	B	2		
		Y		INTAL SERVICES	Location:	Seattle, WA	Project Number:	001	9-23		
Di	ate Start/Fin	ish:	8/30/2024		Drilling Method:	Direct Push	Unified Soil Class	ification Syst	em		
	Logged By		B. Dixon		Auger ID/OD:	NA	GW WELL-GRADED GRAV		RSE		
	Checked By		A. Blake		Borehole ID/OD:	2-inch	GP POORLY-GRADED GF G GM SILTY GRAVEL G GC CLAYEY GRAVEL G SW WELL-GRADED SANC G SP POORLY-GRADED SANC G SP POORLY-GRADED SANC Z SM SILTY SAND Z SC CLAYEY SAND				
	Contractor		Holocene		Sampler:	5' Macro Core	SW WELL-GRADED SANE		E SAND		
	Operator:		Don Harnde	n	Hammer Wt./Fall:	NA					
В	oring Locati		Central Ser		Ground Elevation:		ML SILT CL CLAY				
	Coordinates		NA			Water Depth: NA 21 Of AWGL 01 ORGANIC SILT,					
	Weather:		Sunny		Boring Depth:	Boring Depth: 10'					
Depth (ft bgs)	Sample Number	Time	PID Reading	Remarks		Soil and Rock Description					
1					Bro	own, fine to medium grained	l silty SAND.	SM			
2					_	,	, - ·				
3											
4					_						
5	B2-5	1000	0.0								
6					_						
7					Ligh	t brown, medium grained gr	avelly SAND.	SW			
8					_						
9											
	B2-10	1010	0.0								
10								_			
11						Boring terminated at 10 fe	eet bgs.				
10											
12					-						
13											
14											
15					_						
16											
17					_						
18											
19					_						
20											
Notes	<u>:</u>										

Date Start/Finish: D02024 Drilling Method: Dress Park O19-23 Orgent By: A. Biake Borehole DD00: N.A. Image: Contract Start Image: Contract I				עוס		Project:	Johnson's Auto 418 35th Avenue NE	Boring ID:	В	3
Date Start/Finish: 8:00/024 Drilling Method: Drec Puph Under Start/Finish: Under Start/Finish: Discon Auger 10/00: NA Term of the Start/Finish:			N			Location:		Project Number:	001	9-23
Logged By: B. Dison Auger ID/OD: NA Image: Contraction of the contraction		ate Start/Fin	ish:	8/30/2024			Direct Push			
Deperator: Lot nation nation <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>RSE</td></th<>										RSE
Deperator: Lot nation nation <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>GM SILTY GRAVEL</td><td></td><td></td></th<>								GM SILTY GRAVEL		
Depresent: Lot maintain nammer wurker: Lot maintain nammer wurker: Lot maintain nammer wurker: Lot maintain nammer wurker: NA Gound Elevation: East maintain automation and the second and								SW WELL-GRADED SAND		SE SAND
Boring Location: Eastern Service Bay Ground Elevation: 2701 AMSL. NA Water Depth: NA NA Water Depth: NA NA Water Depth: NA NA NA Water Depth: NA NA NA Water Depth: NA NA					en	-				
Coordinates: NA Water Depth: NA Office Image: Source and the product of the pr	в	-						CL CLAX		
Instrumentation Instrument					The Day			OL ORGANIC SILT, ORGA	CITY, ELASTIC SIL	т
Instrumentation Instrument						-				
2 Brown, medium grained gravely SAND with silt. SM 3	Depth (ft bgs)		Time		Remarks				Unified Classification	Well Construction Detail
2	1									
4 0	2					Brown	n, medium grained gravelly S	SAND with silt.	SM	
4 0 0 0 5 B3-6 1030 4.4 0 6 0 0 0 0 7 0 0 0 0 8 0 0 0 0 9 0 0 0 0 10 B3-10 1035 0.0 0 11 0 0 0 0 12 0 0 0 0 13 0 0 0 0 14 0 0 0 0 15 0 0 0 0 16 0 0 0 0 19 0 0 0 0	3									
B3-5 1030 4.4										
6 SP 7 <td></td> <td>B3-5</td> <td>1030</td> <td>4.4</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td>		B3-5	1030	4.4		_				
7 Light brown, medium grained poorly graded SAND. Trace sit. SP 8										
9 10 B3-10 1035 0.0 11 11 12 13 14 15 16 17 18 19 20						Light brown,	medium grained poorly grad	ded SAND. Trace silt.	SP	
10 B3-10 1035 0.0 11 Boring terminated at 10 feet bgs. 12 13 14 15 16 17 18 19 20	8									
10 11 11 11 11 12 11 13 11 14 11 15 11 16 11 17 11 18 11 19 11 20 11	9									
11	10	B3-10	1035	0.0						
13	11					_	Boring terminated at 10 fe	et bgs.		
14	12			_		_				
15	13					_				
16	14					_				
17	15					_				
18	16					-				
19	17					_				
20	18					_				
						-				
Notes:	20 Notes	<u>:</u>								

					Project:		Johnson's Auto	B	oring ID:	B	4
		Y		ON	Location:	94	18 35th Avenue NE Seattle, WA		-		-
			LNVIRONME	NTAL SERVICES	Client:			_	Project Number:	001	9-23
D	ate Start/Fin	ish:	8/30/2024		Drilling Met	thod:	Direct Push	-	Unified Soil Class		
	Logged By	<i>ı</i> :	B. Dixon		Auger ID/O	D:	NA	SOILS	GP POORLY-GRADED GR GM SILTY GRAVEL		
	Checked B	y:	A. Blake		Borehole ID	D/OD:	2-inch	NON-COHESIVE SOILS	GC CLAYEY GRAVEL SW WELL-GRADED SAND	, FINE TO COARS	E SAND
	Contractor	:	Holocene		Sampler:		5' Macro Core	N-COH	SP POORLY-GRADED SAU SM SILTY SAND	ND	
	Operator:		Don Harnde	en	Hammer W	t./Fall:	NA	Q	SC CLAYEY SAND ML SILT		
B	Boring Locat	ion:	North of Se	rvice Bays	Ground Ele	vation:	~270ft AMSL	SOILS	CL CLAY OL ORGANIC SILT, ORGA		
	Coordinate	s:	NA		-	Ground Elevation: ~270ft AMSL OL OL ORANIC SILT, ORG/ ORANIC SILT, ORG/ MH Water Depth: NA SILT OF HIGH PLAST CH CL ORANIC SILT, ORG/ MH SILT OF HIGH PLAST CH Boring Depth: 15' OH ORGANIC CLAY, ORG					T
	Weather:		Sunny		Boring Depth: 15' To ORGANIC CLAY, OR PT PEAT					ANIC SILI	
Depth (ft bgs)	Sample Number	Time	PID Reading	Remarks		Soil and Rock Description					Well Construction Detail
1											
1					_	Brow	vn, fine to medium grained	silty SA	ND.	SM	
2					_		-	-			
3					_						
4					_						
5	B4-5	1100	0.0								
6											
7						Gray, med	ium grained poorly graded	SAND.	Trace silt.	SP	
8											
9											
10	B4-10	1110	0.0								
							Same as above.			SP	
11					-						
12					_						
13					-						
14											
15	B4-15	1115	0.0								
16					_		Boring terminated at 15 fe	et bgs.			
17											
18											
19											
20											
Notes	<u>:</u>										

					Project:	Johnson's Auto 9418 35th Avenue NE	Boring ID:	B	5		
		M		INTAL SERVICES	Location:	Seattle, WA	Project Number:	001	9-23		
D	ate Start/Fin	ish:	8/30/2024		Drilling Method:	Direct Push	Unified Soil Clas				
	Logged By		B. Dixon		Auger ID/OD:	NA	GW WELL-GRADED GRA		RSE		
	Checked By		A. Blake		Borehole ID/OD:	2-inch	GM SILTY GRAVEL				
	Contractor		Holocene		Sampler:	5' Macro Core	GP POORLY-GRADED G G GM SILTY GRAVEL US G CLAVEY GRAVEL SW WELL-GRADED SAN G SP POORLY-GRADED S SW SILTY SAND S SC CLAVEY SAND		E SAND		
	Operator:		Don Harnde	en	Hammer Wt./Fall:	NA					
в	oring Locati		South of Pu		Ground Elevation:		ML SILT CL CLAY				
	Coordinates		NA			Ground Elevation: ~270ft AMSL or CL ORGANIC SULT, Water Depth: Water Depth: NA Boring Depth: 10'					
	Weather:		Sunny		Boring Depth:	TICITY, FAT CLAY GANIC SILT					
Depth (ft bgs)	Sample Number	Time	PID Reading	Remarks		Soil and Rock Descri		Unified Classification	Well Construction Detail		
1					_						
2					Brown,	fine grained poorly graded \$	SAND. Trace silt.	SP			
2											
3					_						
4											
5	B5-5	1200	0.0								
5											
6					_						
7					Light	brown, fine grained poorly	graded SAND.	SP			
					_						
8											
9											
	B5-10	1210	0.0								
10								-			
11						Boring terminated at 10 fe	eet bgs.				
12											
13											
14											
14											
15					_						
16											
					7						
17					_						
18											
					7						
19											
20											
Notes	<u> </u>										

					Project:	Johnson's Auto 1418 35th Avenue NE	Boring ID:	B	6
		N		INTAL SERVICES	Location:	Seattle, WA	Project Number:	001	9-23
	oto Stort/Ein	lah.	8/20/2024		Client: Drilling Method:	Direct Push	Unified Soil Class	ification Syst	em
Date Start/Finish: Logged By:		8/30/2024 B. Dixon		Auger ID/OD:		GW WELL-GRADED GRAVEL, FINE TO		RSE	
Checked By:		A. Blake		Auger ID/OD: NA GP FOULT Server Borehole ID/OD: 2-inch GC CLAYY GRAVEL					
Checked By: Contractor:		A. Blake Holocene		Sampler: 5' Macro Core 5 POORLY-GRADED SAND, FIN			E SAND		
			Don Harnden		Hammer Wt./Fall:	NA			
в	Operator:		Don Harnden North of Pump Island		Ground Elevation:				
	Boring Location: Coordinates:		North of Pump Island		Water Depth:	NA	OL ORGANIC SILT, ORGANIC CLAY ORGANIC SILT, ORGANIC CLAY MH SILT OF HIGH PLASTICITY, ELASTIC SILT CH CLAY OF HIGH PLASTICITY, FAT CLAY OH ORGANIC CLAY, ORGANIC SILT OF PT PT PAT		T
	Coordinates: Weather:		NA		Boring Depth:	15'			
	weather.		Sunny		Bornig Deptil.	13	O PT PEAT		_
Depth (ft bgs)	Sample Number	Time	PID Reading	Remarks		Soil and Rock Descri	iption	Unified Classification	Well Construction Detail
1									
2					Brown, med	dium grained poorly graded \$	SAND. Trace gravel.	SP	
					_				
3					-				
4	B6-5	1240	0.0		_				
5		-			-				
6					_				
7					Light brow	<i>i</i> n, fine grained poorly grade	d SAND. Trace silt.	SP	
8					_				
9					_				
10	B6-10	1245	0.0						
11						Same as above.		SP	
12									
13									
14					1	Pea gravel.		GP	
14	B6-15	1250	0.0		1				
						Boring terminated at 15 fe	eet bgs.	1	
16					-				
17					-				
18					-				
19					_				
20	_								
<u>Notes</u>	<u>.</u>								

					Project:	Johnson's Auto 418 35th Avenue NE	Boring ID:	В	57
		M		INTAL SERVICES	Location:	Seattle, WA	Project Number:	001	9-23
	ate Start/Fin	ich:	8/30/2024		Client: Drilling Method:	Direct Push	Unified Soil Class	ification Syst	em
Logged By:		8/30/2024 B. Dixon		Auger ID/OD:	NA	GW WELL-GRADED GRAV		RSE	
Checked By:		A. Blake		Borehole ID/OD: 2-inch GC CLAYEY (GRAVEL GC CLAYEY (GRAVEL Sampler: 5' Macro Core					
Checked By: Contractor:		Holocene							
Operator:		Don Harnden		Hammer Wt./Fall:	NA	SM SILTY SAND SC CLAYEY SAND ML SILT			
В	Boring Location:		North Property		Ground Elevation:		CL CLAX		
	Coordinates:		NA		Water Depth:	NA	OL ORGANIC SILT, ORGA	¥	
Weather:			Sunny		Boring Depth:	15'	CH CLAY OF HIGH PLAST U OH ORGANIC CLAY, ORG. O PT PEAT		
Depth (ft bgs)	Sample Number	Time	PID Reading	Remarks		Soil and Rock Descri		Unified Classification	Well Construction Detail
1					_				
2					Brown, fi	ine to medium grained silty S	SAND with gravel.	SM	
3					_				
4					_				
5	B7-5	1310	0.0						
6									
7					Light brown,	medium grained poorly grad	ded SAND. Trace silt.	SP	
8					_				
9					_				
10	B7-10	1312	0.0			Same as above.		SP	
11						Pea gravel.		GP	
12	B7-12	1315	0.0		_				
13									
14									
15								-	
16						Boring terminated at 15 fe	eet bgs.		
17			_		_				
18									
19					_				
20									
<u>Notes</u>	<u>:</u>								

RESOURCE PROTECTION WELL REPORT

This is a report of the activities of a licensed Washington well driller and serves as the official record of work done within the borehole and casing and describes the amount of water encountered.

Construction Type of Well: Geotech Soil Boring Number of Wells: 1 Type of Work: New Method: Auger Drilling Start Date: 2/19/2019 Drilling Completion Date: 2/19/2019 Received by Ecology: 3/11/2019 5:18 PM Dimensions: Borehole Diameter: 6 in Depth of completed well: 35 ft 0 in	Construction Notice of Intent Number: SE69055 Decommissioning Notice of Intent Number: AE53428 Unique Ecology Well ID Tag Number: N/A Property Owner Name: TURNER Property Owner Address: 3544 NE 91ST ST, SEATTLE, WA 98115 Well Location: Well Street Address: City, State, Zip: WA County: King Township: 26N Range: 4E Section: 34 in the NW 1/4 of the SW 1/4			
Construction Details Casings:	Well Head Elevation: Elevation Datum: Elevation Method:			
From Depth To Depth Type Diameter Stickup N/A	Latitude (DD): Longitude (DD): Datum: Horizontal Coordinate Collection Method:			
Perforations: Type Size Total From To	Tax parcel No.:			
TypeSizeTotalFromToPerforationsDepthDepth	-			
N/A	Lithology			
Screens: Manufacturer Type Dia- Slot From To	Layer: Describe by color, character, size of material and structure, and the kind and nature of the material in each layer penetrated, with at least one entry for each change of information.			
meter Size Depth Depth	From To Material			
N/A	0 ft 0 in 35 ft 0 in SAND			
Sand/Gravel Packings:				
Sand/Gravel Packings:MaterialFromToDepthDepth				
Material From To				
Material From To Depth Depth	Image:			
Material From To Depth Depth N/A Individual Well Details	Image: second			
MaterialFrom DepthTo DepthN/AIndividual Well DetailsWellDriller's IdentifierWater Level1Dry HoleAdditionstructionstruction	Image: second			
MaterialFrom DepthTo DepthN/AIndividual Well DetailsWellDriller's IdentifierWater Level1Dry Hole	Image: second			
MaterialFrom DepthTo DepthN/AIndividual Well DetailsWellDriller's IdentifierWater Level1Dry HoleAdditionstructionstruction	Image: second			
MaterialFrom DepthTo DepthN/AIndividual Well DetailsWellDriller's IdentifierWater Level1Dry HoleAdditionstructionstruction	Image:			
MaterialFrom DepthTo DepthN/AIndividual Well DetailsWellDriller's IdentifierWater Level1Dry HoleAdditionstructionstruction	Image:			
MaterialFrom DepthTo DepthN/AIndividual Well DetailsWellDriller's IdentifierWater Level1Dry HoleAdditionstructionstruction				
MaterialFrom DepthTo DepthN/AIndividual Well DetailsWellDriller's IdentifierWater Level1Dry HoleAdditionstructionstruction				
MaterialFrom DepthTo DepthN/AIndividual Well DetailsWellDriller's IdentifierWater Level1Dry HoleAdditionstructionstruction	Image: section of the section of th			
MaterialFrom DepthTo DepthN/AIndividual Well DetailsWellDriller's IdentifierWater Level1Dry HoleAdditionstructionstruction	Image: set of the			

Well Construction Certification: I constructed and/or accept responsibility for construction of this well and its compliance with all Washington well construction standards. Material used and information reported above are true to the best of my knowledge and belief.

Driller/Engineer/Trainee Printed Name: JEREMY COLEMAN	Drilling Company: GEOLOGIC DRILL PARTNERS INC
Driller or trainee License Number: 3242	Address: 137 118th AVE SE
If trainee, Driller's License Number:	City, State, Zip: BELLEVUE, WA, 98005

Exhibit D: Supporting Documents

REPORT OF REMEDIAL ACTION UNDERGROUND STORAGE TANK REMOVAL UNOCAL SERVICE STATION 3921 SEATTLE, WASHINGTON FOR UNOCAL

1

February 13, 1991

Consulting Geotechnical Engineers and Geologists

Unocal P.O. Box 76 Seattle, Washington 98111

Attention: Mr. Leigh Carlson

We are submitting five copies of our report of remedial actions for Unocal Service Station 3921 in Seattle, Washington. Our services for this project were authorized verbally by Mr. Leigh Carlson of Unocal on August 20, 1990. Contractual terms for our service are listed in blanket contract number B1982C.

We appreciate the opportunity to be of continued service to Unocal. Please call if you have questions regarding this report or our services.

Yours very truly,

GeoEngineers, Inc.

amer

James A. Miller, P.E. Principal

JJW: JAM: wd

cc: Mr. Joseph Hickey Washington State Dept. of Ecology Northwest Regional Office 4350 - 150th Ave. N.E. Redmond, WA 98052-5301

File No. 0161-199-B04

GeoEngineers, Inc. 2405 140th Ave. NE, Suite 105 Bellevue. WA 98005 Telephone (206) 746-5200 Fax. (206) 746-5068

TABLE OF CONTENTS

INTRODUCTION SCOPE REMEDIAL ACTIVITIES GENERAL CLEANUP GUIDELINES	<u>Page No.</u> 1 2 2 2 3
GASOLINE TANK EXCAVATION WASTE OIL TANK EXCAVATION PRODUCT AND VENT LINE EXCAVATIONS NORTHERN SERVICE ISLAND EXCAVATION DRYWELL EXCAVATION SOIL DISPOSAL CONCLUSIONS LIMITATIONS	4 5 5 5 7 7 7 7
List of Tables	
SUMMARY OF SOIL ANALYTICAL DATA	<u>Table No.</u>
GASOLINE STORAGE TANK EXCAVATION SUMMARY OF SOIL ANALYTICAL DATA	1
WASTE OIL TANK EXCAVATION SUMMARY OF SOIL ANALYTICAL DATA PRODUCT LINE EXCAVATIONS	2
SUMMARY OF SOIL ANALYTICAL DATA SERVICE ISLAND EXCAVATION SUMMARY OF SOIL ANALYTICAL DATA	4
DRYWELL EXCAVATION	5
List of Figures	
	Figure No.
VICINITY MAP SITE PLAN FINAL LIMITS OF EXCAVATION AND SOIL SAMPLE LOCATIONS	1 2 3
APPENDIX A	

	Page No.
FIELD SCREENING OF SOIL SAMPLES	A - 1
CHEMICAL ANALYTICAL PROGRAM	A - 2

APPENDIX B

Page No.

CHEMICAL ANALYTICAL DATA

B-1 through B-213

REPORT OF REMEDIAL ACTION UNDERGROUND STORAGE TANK REMOVAL UNOCAL SERVICE STATION 3921 SEATTLE, WASHINGTON FOR

UNOCAL

INTRODUCTION

This report summarizes the results of our observations during the removal of three USTs (underground storage tanks), the associated product lines and one drywell at Unocal Service Station 3921 in Seattle, Washington. The site is located southeast of the intersection between Northeast 95th Street and 35th Avenue Northeast. The site location is shown relative to surrounding physical features in Figure 1. The general layout of the site is shown in Figure 2.

Two 12,000-gallon, fiberglass-coated steel gasoline storage tanks and one 550-gallon, fiberglass-coated steel waste oil tank were removed between October 10 and October 11, 1990 from the locations shown in Figure 2. An abandoned drywell was excavated and removed from the site on November 5, 1990. The associated underground product and vent lines were removed between October 10 and October 22, 1990. The waste oil tank, the two gasoline tanks, the drywell and the associated product and vent lines were not replaced.

A representative from GeoEngineers observed the removal of two 10,000-gallon steel gasoline storage tanks, one 550-gallon steel heating oil tank, and one 550-gallon steel waste oil tank in June 1989. The USTs were replaced with the steel-lined fiberglass tanks which were subsequently removed in October 1990. The heating oil tank was not replaced during the 1989 tank replacement activities. No residual soil contamination of regulatory significance was detected at the limits of the excavations completed for the removal of the tanks in 1989. The results of the June 1989 tank removal activities are presented in our "Report of Remedial Action, Underground Storage Tank Removal, Unocal Service Station 3921, Seattle Washington, for Unocal" dated October 23, 1989.

Information supplied by Unocal indicates that a service station occupied the site prior to the construction of Unocal Service Station 3921 in 1967. Three underground steel gasoline storage tanks (3,000, 4,000 and 5,000 gallons), one 550-gallon steel heating oil tank, and one 280-gallon

waste oil tank were removed from the locations indicated on Figure 2 prior to the construction of the Unocal service station in 1967. The approximate locations of the USTs removed in 1967, 1989 and 1990 are shown in Figure 2.

SCOPE

The purpose of our most recent services was to observe and evaluate subsurface soil conditions in the UST, product line and drywell excavations and to develop a remedial action plan, if necessary. GeoEngineers' scope of services completed for this project is as follows:

- 1. Observe and document the removal of three USTs, the associated product and vent lines and one drywell at the site.
- 2. Obtain soil samples from the limits of the excavations for chemical analyses of petroleum-related contaminants. Field screening was conducted on each soil sample for evidence of contamination using visual, water sheen and headspace vapor screening methods. Field screening methods are described in Appendix A.
- 3. Submit selected soil samples from the limits of the excavations for one or more of the following chemical analyses: BETX (benzeme, ethylbenzene, toluene, and xylenes) by EPA Method 8020, fuel hydrocarbons by modified EPA Method 8015, TPH (total petroleum hydrocarbons) by EPA Method 418.1, metals by EP Toxicity methods, PCBs (polychlorinated biphenyls) by EPA Method 8080, and chlorinated hydrocarbons by EPA Method 8010.
- 4. Evaluate the field and laboratory data with regard to current regulatory concerns.

REMEDIAL ACTIVITIES

GENERAL

JHC (Joe Hall Construction) removed the three USTs, the associated product and vent lines, the north service island and canopy, one drywell, and contaminated soil encountered in the excavations between October 10 and November 20, 1990. A representative of GeoEngineers was present to observe the removal of the USTs, product lines, drywell, the soil excavation activities and to obtain soil samples from the limits of the excavations. Field screening techniques were used to delineate the limits of the excavations. Field screening and soil sampling techniques are described in Appendix A. Native soil consisting of fine to medium sand with occasional

Geo

gravel and a trace of silt was observed in the walls and base of the gasoline tank, waste oil tank, product line, and drywell excavations. UST and product line backfill consisted of sand with silt and occasional gravel. Ground water was not encountered in the excavations. Based on the geology of the area, we anticipate that the depth to ground water at the site is greater than 50 feet.

A total of 54 discrete soil samples were obtained from the excavations for chemical analysis. Soil removed from the excavations was placed in temporary on-site stockpiles. The stockpiles were segregated according to the apparent source and degree of contamination. Eight composite soil samples were collected from the soil stockpiles for chemical analysis.

The locations of the former underground storage tanks, final limits of the excavations and soil sample locations are shown in Figures 2 and 3. Tables 1 through 5 summarize the soil analytical and field screening data. Laboratory reports are included in Appendix B.

CLEANUP GUIDELINES

Ecology (Washington State Department of Ecology) is adopting new cleanup standards for underground storage tank sites under the MTCA (Model Toxics Control Act). Ecology's MTCA soil CCLs (compliance cleanup levels) are listed below.

	MTCA
Compound	Compliance Cleanup Levels for Soil (mg/kg)
TPH (gasoline)	100
TPH (diesel)	200
TPH (other)	200
Benzene	0.5
Ethylbenzene	20
Toluene	40
Xylenes	20

Note: mg/kg = milligrams per kilogram

Geo

GASOLINE TANK EXCAVATION

No exterior damage or corrosion was apparent on the two 12,000-gallon, fiberglass-coated steel underground gasoline storage tanks during the removal procedure. The gasoline tank excavation was completed 12.0 to 17.0 feet below existing grade.

Field screening methods did not indicate the presence of petroleumrelated contamination in the walls and base of the excavation or in the excavated tank backfill material. Ten discrete soil samples (G-1 through G-10) were obtained from the walls and base of the excavation (Figure 3). The soil samples were submitted to ATI (Analytical Technologies, Inc.) for analysis of BETX and fuel hydrocarbons. Laboratory analyses indicated that the concentration of fuel hydrocarbons and BETX in the soil samples obtained from the limits of the gasoline storage tank excavation were less than laboratory detection limits.

Approximately 400 cubic yards of tank backfill were removed and stockpiled on-site as a part of the gasoline tank removal activities. Three composite soil samples (GSP-1, GSP-2 and GSP-3) were obtained from the stockpiled tank backfill material. One composite soil sample (GF) was obtained from tank backfill that remained in the tank excavation after tank removal. These samples were analyzed for the presence of fuel hydrocarbons and BETX. Laboratory analyses indicated that the concentrations of fuel hydrocarbons and BETX in the soil samples obtained from the tank backfill either were less than laboratory detection limits or less than current CCLs. The stockpiled soil was used as backfill in the gasoline tank excavation. Laboratory results are summarized in Table 1.

WASTE OIL TANK EXCAVATION

No exterior damage or corrosion was apparent in the underground waste oil storage tank during excavation. The excavation was completed to a depth of approximately 8.0 feet below existing grade. Approximately 50 cubic yards of tank backfill were excavated as a part of the tank removal activities.

Field screening did not indicate the presence of petroleum-related soil contamination in the waste oil tank excavation and backfill material. Five soil samples (WO-1 through WO-5), collected from the walls and base of the waste oil tank excavation, were submitted to ATI for analysis of TPH. Sample WO-3 also was analyzed for the presence of chlorinated hydrocarbons.

Laboratory analyses indicated that the concentrations of TPH in soil samples obtained from limits of the waste oil tank excavation ranged from 10 mg/kg (WO-4) to 25 mg/kg (WO-1). These concentrations are less than current CCLs for TPH. Chlorinated hydrocarbons were not detected in sample WO-3.

One composite soil sample (WSP) was collected from the stockpiled soil removed from the waste oil tank excavation and analyzed for the presence of TPH. The concentration of TPH detected in composite soil sample WSP was less than current CCLs. The stockpiled soil was used as backfill in the waste oil tank excavation. Analytical and field screening results for soil samples from the waste oil tank excavation are summarized in Table 2.

PRODUCT AND VENT LINE EXCAVATIONS

Field screening did not indicate the presence of petroleum-related contamination in soils exposed in the product and vent line excavation. Eight soil samples (PL-1, PL-2, PL-4 through PL-6, and VL-1, VL-2 and VL-3) were collected from the product and vent line excavations at the locations shown in Figure 3. These samples were submitted for analysis of fuel hydrocarbons and BETX. Soil samples obtained from product and vent line excavations in the vicinity of the north service island are discussed in the following section entitled northern service island excavation.

Laboratory analyses indicated that the concentrations of fuel hydrocarbons and BETX in the soil samples obtained from the product line excavations either were less than current CCLs or less than laboratory detection limits. Laboratory and field screening results are summarized in Table 3.

NORTHERN SERVICE ISLAND EXCAVATION

Field screening of soil samples obtained from near the northern fuel service island indicated the possible presence of petroleum-contaminated soil. The soil contamination appeared to encompass a small area in the vicinity of the north service island and the canopy footing. Chemical analysis of soil sample SI-7, obtained to characterize the contamination, indicated that the contaminant was gasoline (4,000 mg/kg). Approximately 15 cubic yards of gasoline-contaminated soil were excavated from this area. The excavation of the contaminated soil was suspended temporarily pending removal of the service island, canopy and canopy footing. Following the removal of the service island and canopy, an additional 10 cubic yards of gasoline-contaminated soil were removed from around the former footing

5

location. This soil was spread on-site for aeration. However, adverse weather conditions required that the soil stockpile be covered with plastic to prevent surface water runoff.

While excavating in the vicinity of the northern service island, additional petroleum-contaminated soil was discovered in what appeared to be the former locations of the 3,000-gallon, 4,000-gallon and 5,000-gallon underground gasoline storage tanks which were removed in 1967. Piping, sheet metal and old cans were found in the tank backfill. Approximately 200 cubic yards of contaminated tank backfill were removed from the former tank locations.

Thirteen soil samples (SI-1 through SI-3, PL-3, SI-8, S1-10 through S1-12 and S1-13 through S1-17) were obtained from the final limits of the excavation, as shown in Figure 3. These samples were submitted for analysis of fuel hydrocarbons and/or BETX and TPH. Chemical analysis of soil samples obtained from the limits of the excavation indicated that the concentrations of fuel hydrocarbons and/or BETX and TPH either were less than current CCLs or less than laboratory detection limits. One composite soil sample (SI-Comp), which was obtained from the stockpiled soil excavated from the former tank locations, was submitted for analysis of TPH and fuel hydrocarbons. The concentration of TPH in composite soil sample SI COMP was 280 mg/kg. Laboratory and field screening results are summarized in Table 4.

DRYWELL EXCAVATION

On November 5, 1990, an excavation was begun in the vicinity of the former 280-gallon waste oil tank removed in 1967. An abandoned concrete drywell was discovered immediately north of the former tank location at a depth of approximately 4 feet below existing grade. Field screening indicated the presence of petroleum-contaminated soil within and adjacent to the drywell. Composite soil sample DW-1, obtained from a depth between 6 and 8 feet, was tested for TPH, chlorinated hydrocarbons, BETX, PCBs and EP Toxicity metals. Laboratory analysis of sample DW-1 detected a TPH concentration of 5,400 mg/kg. Concentrations of chlorinated hydrocarbons, BETX, PCBs and EP Toxicity metals in soil sample DW-1 either were less than detection limits or less than Ecology compliance cleanup levels (Appendix B).

Additional soil was removed and nine soil samples (DW-2 through DW-8, DW-10 and DW-11) were obtained from the initial limits of the drywell excavation (Figure 3). The soil samples were submitted for chemical analysis of TPH. Laboratory analyses indicated that the concentration of TPH in sample DW-6 (640 mg/kg) exceeded Ecology's compliance cleanup levels. Additional soil was removed from the area near DW-6 and soil samples DW-13 and DW-14 were obtained. Concentrations of TPH less than Ecology cleanup levels were detected in soil samples DW-13 (19 mg/kg) and DW-14 (15 mg/kg). Soil sample DW-4 also was analyzed for chlorinated hydrocarbons. Concentrations of chlorinated hydrocarbons were less than analytical detection limits in DW-4.

Approximately 400 cubic yards of contaminated soil were removed from the drywell excavation and stockpiled on-site. TPH concentrations in composite soil samples DW-12 and DW-9, obtained from the stockpiled soil, were 84 mg/kg and 540 mg/kg, respectively. The average TPH concentration for these soil samples is 312 mg/kg. The concentrations of BETX, chlorinated hydrocarbons and EP Toxicity metals either were less than Ecology's compliance cleanup levels or less than laboratory detection limits. Laboratory and field screening results are summarized in Table 5.

SOIL DISPOSAL

Joe Hall excavated approximately 225 cubic yards of contaminated so il from the service island excavation and 400 cubic yards from the drywell excavation. The soil is currently stockpiled pending issuance of permission for disposal at Kitsap County Landfill.

CONCLUSIONS

Based on the results of our field observations and chemical analytical testing, it is our opinion that actions to remove subsurface petroleumrelated contamination at the site of former Unocal Service Station 3921 have been completed successfully. No residual soil contamination of regulatory significance was detected at the limits of the excavations at this site.

LIMITATIONS

We have prepared this report for use by Unocal. This report may be made available to future property owners and to regulatory agencies. This report is not intended for use by others and the information contained herein is not applicable to other sites.

Geo

Our interpretation of soil conditions during remediation is based on field observations and chemical analytical data. It is always possible that areas with contamination may exist in portions of the site that were not excavated or analyzed.

Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted practices in this area at the time the report was prepared. No other conditions, express or implied, should be understood.

Respectfully submitted,

GeoEngineers, Inc.

James J. Whitbread Geological Engineer

i. Tuille ames

James A. Miller, P.E. Principal

JJW:JAM:cs

TABLE 1 SUMMARY OF SOIL ANALYTICAL DATA GASOLINE STORAGE TANK EXCAVATION

-			T	T	T	T	T	T	1	T	T	T	1		1	1	
		General Sample Location	East wall	South wall	North wall	Base of excavation below fill port, north tank	Base of excevation below fill port, south tank	West wall	South wall	Base of excavation below fill port, south tank	Base of excavation below fill port, north tank	North wall	Composite of tank backfill remaining in	excevation after tank removal	Soil stockpile, excavated tank backfill material	Soil stockpile, excavated tank backfill material	Soil stockpile, excavated tank backfill material
ig Results (b)	Sheen	Test	NS	NS	NS	NS	SS	SS	SS	SS	NS	NS	SS		NS	SS	SS
Field Screening Results (b)	Headspace	Vapors (ppm)	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	I		<100	<100	<100
Field Hydrocarbons (mg/kg)	Method 8015	Diesel	<5 S	<5	<5 5	<5	<5	<5	<5	<5	<5	<5	<5		<5	<5	<5
	Modified EPA	Gasoline	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5		<5	<5	<5
	(×	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025		<0.025	<0.025	<0.025
(mg/kg)	10d 802(F	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.055		<0.025	<0.025	<0.025
BETX(a) (mg/kg)	(EPA Method 8020)	ш	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025		<0.025	<0.025	<0.025
	E)	8	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025		<0.025	<0.025	<0.025
Depth of	Sample	(feet)	13.0	13.0	12.0	12.0	12.0	17.0	17.0	17.0	17.0	17.0	Composite		Composite	Composite	Composite
	Date	Sampled	10/11/90	10/11/90	10/11/90	10/11/90	10/11/90	10/15/90	10/15/90	10/15/90	10/15/90	10/15/90	10/12/90		10/10/90	10/11/90	10/11/90
Soll	Sample	Number	G-1	G-2	G-3	G-4	G-5	8-9 0	G-7	G-8	G-0	G-10	GF		GSP-1	GSP-2	GSP3

Notes:

(a) B = benzene, E = ethylbenzene, T = toluene, X = total xylenes. Detection limits are given in Appendix B.

(b) Refer to Appendix A for field screening methods.

"--" = not tested

NS = no sheen

SS = slight sheen

mg/kg = milligrams per kilogram

TABLE 2 SUMMARY OF SOIL ANALYTICAL DATA WASTE OIL TANK EXCAVATION

(q)		General Sample Location	North wall	West wall	Base of excavation below tank fill port	South wall	East wall	Soil stockpile, excavated tank backfill material
ng Results	Sheen	Test	SS	NS	NS	NS	SS	SS
Field Screening Results (b)	Headspace	Vapors (ppm)	<100	<100	<100	<100	<100	<100
	TPH(a) (mg/kg)	(EPA Method 418.1)	25	18	14	10	15	25
Depth of	Sample	(feet)	8.0	8.0	8.0	8.0	8.0	Composite
	Date	Sampled	10/11/90	10/11/90	10/11/90	10/11/90	10/11/90	10/11/90
Soil	Sample	Number	W0-1	W0-2	-		W0-5	WSP

Notes:

(a) TPH = total petroleum hydrocarbons. Detection limits are given in Appendix B.

(b) Refer to Appendix A for field screening methods.

(c) Soil sample WO3 was also analyzed for the presence of chlorinated hydrocarbons by EPA Method 8010.

Chlorinated hydrocarbons were not detected in sample WO3. Detection limits are Given in Appendix B.

NS = no sheen

SS = slight sheen

mg/kg = milligrams per kilogram

TABLE 3 SUMMARY OF SOIL ANALYTICAL DATA PRODUCT LINE EXCAVATIONS

		General Sample Location	Adjacent to west service island	Northeast of west service island	West of service station building	East of west service island	East of west service island	West of west service island	West of west service island	West of west service island
ng Results (b)	Sheen	Test	NS	SS	NS	SS	NS	NS	NS	NS
Field Screening Results (b)	Headspace	Vapors (ppm)	<100	<100	<100	<100	<100	<100	<100	<100
Field Hydrocarbons (mg/kg)	Modified EPA Method 8015	Diesel	<5	<5	<5	<5	13	<5	<5	<5
Field Hydroca	Modified EPA	Gasoline	<5	<5	<5	\$5	10	<5	<5	<5
		X	<0.025	<0.025	<0.025	<0.025	0.050	<0.025	<0.025	0.054
(mg/kg)	(EPA Method 8020)	۲	<0.025	<0.025	<0.025	0.072	<0.025	<0.025	<0.025	0.038
BETX(a)	(EPA Met	ш	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
		8	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
Depth of	Sample	(feet)	2.0	2.0	3.5	2.0	1.0	1.5	1.5	1.3
	Date	Sampled	10/10/90	10/11/90	10/11/90	10/12/90	10/15/90	10/22/90	10/22/90	10/22/90
Soil	Sample	Number	PL-1	PL-2	VL-1	VL-2	VL-3	PL-4	PL-5	PL-8

Notes:

(a) B = benzene, E = ethylbenzene, T = toluene, X = total xylenes. Detection limits are given in Appendix B.

(b) Refer to Appendix A for field screening methods.

NS = no sheen

SS = slight sheen

mg/kg = milligrams per kilogram

SUMMARY OF SOIL ANALYTICAL DATA SERVICE ISLAND EXCAVATION TABLE 4

Headspace Sheen Vapors (ppm) Test <100 SS <100 SS <100 NS MS NS NS NS NS NS NS NS -120 SS -120 NS SS SS	Soll	Depth of		DEIVIJO	DCIA(a) (IIIU/KU)		LIBIO LINIOC	LIBIU TYUI UCAI DUIIS (III UKU)	(BX/BW) (0)H41	FIEID SCREENING HESUITS (D)	(a) sjinsey bu	
Der Sampled (1e0) B T X Gasoline 0166 116 Vapors (ppm) Test 1 10/1206 1:5 0.047 0.14 0.040 0.85 < 100 N N				(EPA Met	(hod 8020)		Modified EPA	A Method 8015	EPA Method	Headspace	Sheen	1
101200 15 0047 014 0040 085 <th>-</th> <th></th> <th>8</th> <th>ш</th> <th>٢</th> <th>×</th> <th>Gasoline</th> <th>Diesel</th> <th>418.1</th> <th>Vapors (ppm)</th> <th>Test</th> <th>General Sample Location</th>	-		8	ш	٢	×	Gasoline	Diesel	418.1	Vapors (ppm)	Test	General Sample Location
1 101/200 15 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02			0.047	0.14	0.040	0.85	<5	91		<100	SS	South of north service island
1011200 15 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <td></td> <td>_</td> <td><0.025</td> <td><0.025</td> <td><0.025</td> <td>0.072</td> <td><5</td> <td><5</td> <td></td> <td>. <100</td> <td>NS</td> <td>South of north service Island</td>		_	<0.025	<0.025	<0.025	0.072	<5	<5		. <100	NS	South of north service Island
1011200 1.0 0.041 0.13 0.065 0.87 28 45 2.0 0.01 1.00 1.00 1.00 1.00 0.01 1.01 1.00 0.01 1.00 0.01 1.00 0.005 4.6 2.0 4.0 2.0 0.01 2.00 0.012 <td></td> <td>_</td> <td><0.025</td> <td><0.025</td> <td><0.025</td> <td><0.025</td> <td><5</td> <td><5</td> <td>-</td> <td><100</td> <td>NS</td> <td>Southeast of north service island</td>		_	<0.025	<0.025	<0.025	<0.025	<5	<5	-	<100	NS	Southeast of north service island
10/1290 10 0.006 4.6 2.6 4.2 1100 </td <td></td> <td>_</td> <td>0.041</td> <td>0.13</td> <td>0.060</td> <td>0.87</td> <td>28</td> <td><5</td> <td>-</td> <td><100</td> <td>NS</td> <td>North of north service island</td>		_	0.041	0.13	0.060	0.87	28	<5	-	<100	NS	North of north service island
1011200 2.0 0.042 C.0.26 0.21 5.0 0.01 5.0 5.5 1 1011200 3.0 0.27 28 9.4 200 4000 <6.6		_	0.095	4.6	2.6	42	1100	<25	4		MS	Beneath north service island
1 10/1200 3.0 0.27 28 0.43 200 400 </td <td>-</td> <td>_</td> <td>0.042</td> <td><0.026</td> <td>0.21</td> <td>5.9</td> <td>660</td> <td><5</td> <td>-</td> <td>-</td> <td>SS</td> <td>South of north service island</td>	-	_	0.042	<0.026	0.21	5.9	660	<5	-	-	SS	South of north service island
0 10/15/00 10 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.026 0.025 0.026 <td></td> <td></td> <td>0.27</td> <td>28</td> <td>9.4</td> <td>200</td> <td>4000</td> <td><60</td> <td>1</td> <td></td> <td>HS</td> <td>Beneath north service island</td>			0.27	28	9.4	200	4000	<60	1		HS	Beneath north service island
1 10/15/60 1.5 0.048 0.27 0.50 4.8 <5 <5 <5 <100 SS 0 10/16/60 3.5 0.070 1.3 0.036 9.0 <5	-	_	<0.025	0.085	0.028	0.055	<5	<5		<100	SS	South of north service island
0 10/16/ko 3.6 0070 1.3 0.036 9.0 140 NS 1 10/16/ko 4.0 <0.025			0.049	0.27	0.50	4.8	<5	<5	and a second	<100	SS	Adjacent to north service island
0 10/19/90 4.0 C0.025 C0.025 C0.025 C0.025 C0.026 C0.011 T/2 C <thc< th=""> <thc< th=""> C</thc<></thc<>			0.070	1.3	0.039	9.0		410	-	140	SN	Beneath north service island
1 10/19/P0 4.0 C0.25 C0.025			<0.025	<0.025	<0.025	0.068	<5	<5		120	NS	Beneath north service island
-4 10/19/60 Composite 0.041 1.5 0.50 17 <5 770 SS SS SS SS SS NS NS NS NS NS<	-	_	<0.025	<0.025	<0.025	0.059	<5	<5		<100	NS	South of north service Island
2 10/22/90 1.0				1.5	0.50	17	<5	770	844	1	ł	Soil stockpile, soil excavated
2 10/22/90 1.0 <0.025 0.18 0.038 1.1 74 <5 <100 SS 3 11/05/90 6.5 0.045 0.042 0.050 0.091 <5												trom vicinity of service Island
3 11/05/90 6.5 0.045 0.042 0.050 0.091 <5 S 4 11/06/90 5.5 S S 5 11/06/90 5.5 S S 6 11/06/90 6.0 S S S 7 11/06/90 8.0 S<			<0.025	0.18	0.038	1.1	74	<5		<100	SS	North of north service island
4 11/06/90 5.5 NS 5 11/06/90 6.0 SS NS 6 11/06/90 6.0 SS SS 7 11/06/90 8.0 SS SS SS SS SS SS SS SS SS SS SS SS SS SS SS SS SS SS SS		_	0.045	0.042	0.050	0.091	<5	<5	1	-	SS	Beneath service island
5 11/06/90 6.0 <- <- <- S Is SS 7 11/06/90 8.0 <-	+		1	-			<5	<5	58		NS	North wall service island excevation
6 11/06/90 6.0 - NS 7 11/06/90 8.0 <5	-		1	1	1	1	<5	<5	18		SS	West wall service island excavation
7 11/06/90 8.0 55 55 7 SS mp 11/06/90 Composite 56 130 280 MS mp 11/06/90 Composite 56 130 280 MS mp another 56 130 280 MS mp another - 56 130 280 MS mp - - - - 56 - -	-		1	-	1	-	<5	<5	15	Total	NS	South wall service Island excavation
mp 11/06/90 Composite 58 130 280 MS # benzene, E = ethylbenzene, T = toluene, X = total xylenes. Detection limits are given in Appendix B. MS MS	+		1	-	1		<5	<5	7	1	SS	Base of service Island excavation
les:) B ≈ benzene, E ≈ ethytbenzene, T = toluene, X = total xytenes. Detection limits are given in Appandix B.) TPH = total petroleum hydrocarbons. Detection limits are given in Appandix B.			-		I	ww	58	130	280	-	WS	Soil stockpile, composite of excavated tank backfill
	9S: B ≃ benzene, E ≃ TPH = total petro	i ethylbenzene, leum hydrocart	. T = toluen bons. Dete	e, X = total) ction limits (xylenes. De are given in	tection limit Appendix B	s are given in Ap	pendix B.				

NS ≡ no sheen, SS ≝ slight sheen, MS ≡ moderate sheen, HS ≡ heavy sheen mg/kg ≔ milligrams per kilogram ppm ≞ parts per million

TABLE 5 SUMMARY OF SOIL ANALYTICAL DATA DRYWELL EXCAVATION

Soil		Depth of		Field Screenin	g Results (b)	
Sample	Date	Sample	TPH(a) (mg/kg)	Headspace	Sheen	
Number	Sampled	(feet)	(EPA Method 418.1)	Vapors (ppm)	Test	General Sample Location
DW1 (c)	11/06/90	6 - 8	5400		HS	Composite soil sample obtained along the excavation wall for charaterization of contamination
DW-2	11/07/90	15	18		NS	South wall
DW-3	11/07/90	8	11		SS	South wall
DW-4(d)	11/07/90	17	10		SS	Base of excavation
DWP-5	11/07/90	15	15		NS	East wall
DW-6	11/07/90	8	640		SS	East wall
DW-7	11/07/90	15	6		SS	West wall
DW-8	11/07/90	8	5		SS	West wall
DW-9(e)	11/08/90	Composite	540		MS	Soil stockpile, excavated from dry well excavation
DW-10	11/08/90	15	18		SS	North wall
DW-11	11/08/90	8	21		SS	North wall
DW-12(f)	11/08/90	Composite	84		MS	Soil stockpile, excavated from dry well excavation
DW-13	11/20/90	8	19	<100	NS	East wall
DW-14	11/20/90	10	15	<100	NS	East wall

Notes:

(a) TPH = total petroleum hydrocarbons. Detection limits are given in Appendix B.

(b) Refer to Appendix A for field screening methods.

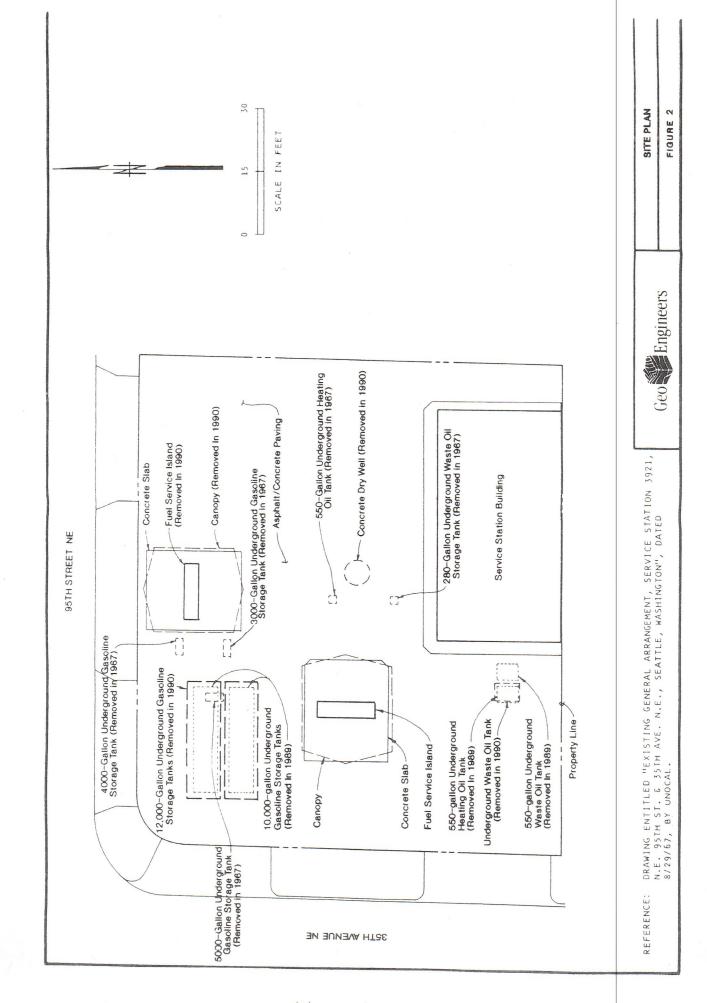
(c) Sample DW-1 was analyzed for chlorinated hydrocarbons by EPA Method 8010, BETX by EPA Method 8020, PCBs by EPA Method 8080 and metals by EP Toxicity methods. Laboratory analyses indicate that the concentrations of contaminants were either detected at concentrations below MTCA compliance cleanup levels or below laboratory detection limits. Detection limits are given in Appendix B.

(d) Sample DW-4 was analyzed for chlorinated hydrocarbons by EPA Method 8010. Laboratory analyses indicated the concentrations of chlorinated hydrocarbons was below laboratory detection limits. Detection limits are given in Appendix B.

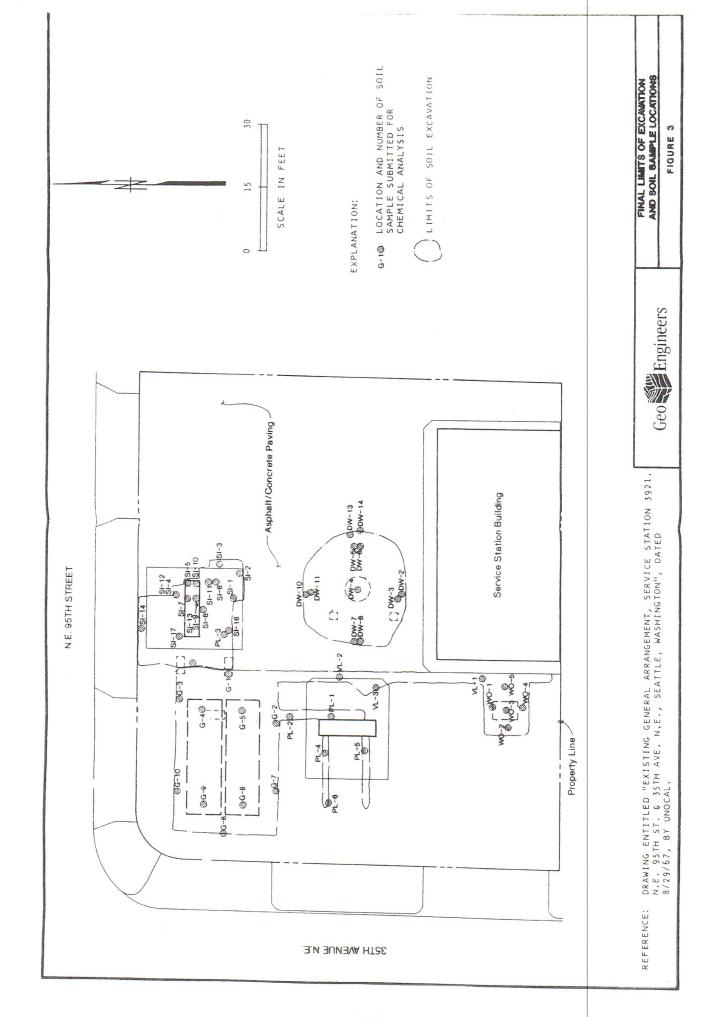
(e) Sample DW-9 was analyzed for chlorinated hydrocarbons by EPA Method 8010, BETX by EPA Method 8020 and metals by EP Toxicity methods. Laboratory analyses indicate that the concentrations of contaminants were below laboratory detection limits. Detection limits are given in Appendix B.

(f) Sample DW-12 was analyzed for chlorinated hydrocarbons by EPA Method 8010 and BETX by EPA Method 8020. Laboratory analyses indicate the concentrations of contaminants were below laboratory detection limits. Detection limits are given in Appendix B.

"-" = not tested


NS = no sheen, SS = slight sheen, MS = moderate sheen, HS = heavy sheen

Shading indicates additional soil was removed from this area


mg/kg = milligrams per kilogram

0161-199.804 JF: KET 9.8.89

.

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

Northwest Regional Office • 3190 160th Ave SE • Bellevue, WA 98008-5452 • 425-649-7000 711 for Washington Relay Service • Persons with a speech disability can call 877-833-6341

April 23, 2012

PROPERTY OWNER Unocal 3921 9418 - 35th NE Seattle, WA 98115

Re: No Further Action (NFA) Determination associated with Leaking Underground Storage Tank (LUST) Site:

- Site Name: Unocal 3921
- Property Address: 9418 35th NE, Seattle, WA 98115
- Facility/Site No.: 46936387
- LUST ID: 1545

Dear Property Owner:

Based on the historical information in our files and the last documents submitted to us on 10/24/1989, the Washington State Department of Ecology (Ecology) has determined that the Unocal 3921 site has met the substantive requirements for cleanup under the Model Toxics Control Act (MTCA) regulation Chapter 70.105D RCW, and its implementing regulations, Chapter 173-340 WAC (collectively "substantive requirements of MTCA").

The MTCA regulation sets strict cleanup standards for sites in Washington State to ensure that the quality of the cleanup is appropriate and is protective of human health and the environment. Depending on the site circumstances and location, one of the three cleanup criteria established under MTCA is used to assess the quality of the cleanup remedy. These are:

- Method A Cleanup levels: Used in simple sites with few contaminants of concern (COCs). The Method A cleanup levels consist of a list of the most common hazardous substances for soil and groundwater. The Method A Cleanup levels are very strict, and if met, they allow the property to be used for unrestricted land use.
- Method B Cleanup levels: These cleanup levels are established using applicable state and federal laws and the risk assessment equations and other requirements defined in MTCA. Method B is used in more complex sites where the COCs are not included within the set criteria listed on the Method A tables.

Unocal 3921 April 23, 2012

• Method C Cleanup levels: Method C uses the same risk assessment equations and other requirements defined in MTCA but also require a full site-specific risk assessment and an Terrestrial Ecological Evaluation (TEE). Method C is used in industrial sites, when Methods A and C are technically unattainable or lower that background concentrations, and when a significant threat to human health or the environment has been identified.

After a site meets the criteria for soil and groundwater (if applicable), the cleanup is considered to be complete and an NFA letter can be issued.

According to our records, you have conducted cleanup independently and your site meets the Method A Cleanup levels.

- LUST ID No.: 1545,
- Release Notification Date: 6/1/1995,
- Contaminants of Concern: Gas, BTEX, WO, heating oil,
- Soil is affected: Yes,
- Groundwater is affected: No.

Based on this information, Ecology has determined that no further remedial action is necessary at the Property to clean up contamination associated with the LUST. This determination is made only for impacts associated to releases from LUST No. 1545. Based on this opinion, Ecology will update the status of remedial action at the Site on our database of hazardous waste sites and will initiate the process of removing the Site from our lists of hazardous waste sites, including (if applicable):

- Hazardous Sites List.
- Confirmed and Suspected Contaminated Sites List.
- Leaking Underground Storage Tank List.

Removing your site from these lists may include a public notice and/or a public comment period. Based on the comments received, Ecology will either remove the Site from the applicable lists or withdraw this opinion.

Please understand that this opinion does not settle liability with the state. Liable persons are strictly liable, jointly and severally, for all remedial action costs and for all natural resource damages resulting from the release or releases of hazardous substances at the Site. This opinion **does not**:

- Change the boundaries of the Site.
- Resolve or alter a person's liability to the state.
- Protect liable persons from contribution claims by third parties.

Unocal 3921 April 23, 2012

To settle liability with the state and obtain protection from contribution claims, a person must enter into a consent decree with Ecology under RCW 70.105D.040(4).

In addition, this opinion does not constitute a determination of substantial equivalence. To recover remedial action costs from other liable persons under MTCA, one must demonstrate that the action is the substantial equivalent of an Ecology-conducted or Ecology-supervised action. This opinion does not determine whether the action you proposed will be substantially equivalent. Courts make that determination. See RCW 70.105D.080 and WAC 173-340-545.

Lastly, the state, Ecology, and its officers and employees are immune from all liability, and no cause of action of any nature may arise from any act or omission in providing this opinion. See RCW 70.105D.030(1)(i).

If you have any questions about this opinion, please contact me by e-mail at russ.olsen@ecy.wa.gov or by phone at (425) 649-7038.

Sincerely,

prassell Ear

Russell E. Olsen, MPA Voluntary Cleanup Unit Supervisor Northwest Regional Office Toxics Cleanup Program

SF: sf

Exhibit E: Laboratory Analytical Reports

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Ave South Seattle, WA 98108-2419 (206) 285-8282 office@friedmanandbruya.com www.friedmanandbruya.com

September 18, 2024

Brian Dixon, Project Manager Dixon Environmental Services 4010 N 7th Street Tacoma, WA 98406

Dear Mr Dixon:

Included are the results from the testing of material submitted on August 30, 2024 from the Johnson's 0019-23, F&BI 408557 project. There are 26 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures DXN0918R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on August 30, 2024 by Friedman & Bruya, Inc. from the Dixon Environmental Services Johnson's 0019-23, F&BI 408557 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Dixon Environmental Services
408557 -01	B1-5
408557 -02	B1-10
408557 -03	B2-5
408557 -04	B2-10
408557 -05	B3-5
408557 -06	B3-10
408557 -07	B4-5
408557 -08	B4-10
408557 -09	B4-15
408557 -10	B5-5
408557 -11	B5-10
408557 -12	B6-5
408557 -13	B6-10
408557 -14	B6-15
408557 -15	B7-5
408557 -16	B7-12
408557 -17	B7-10
408557 -18	Trip Blank

The 8260D calibration standard did not meet the acceptance criteria for several analytes. The data were flagged accordingly.

The 8260D matrix spike and matrix spike duplicate exceeded the relative percent difference acceptance criteria for methylene chloride. The analyte was not detected therefore the data were acceptable.

The 8260D calibration standard did not meet the acceptance criteria for several analytes. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/24 Date Received: 08/30/24 Project: Johnson's 0019-23, F&BI 408557 Date Extracted: 09/04/24 Date Analyzed: 09/04/24

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR GASOLINE, DIESEL AND HEAVY OIL BY NWTPH-HCID

Results Reported on a Dry Weight Basis Results Reported as Not Detected (ND) or Detected (D)

THE DATA PROVIDED BELOW WAS PERFORMED PER THE GUIDELINES ESTABLISHED BY THE WASHINGTON DEPARTMENT OF ECOLOGY AND WERE NOT DESIGNED TO PROVIDE INFORMATION WITH REGARDS TO THE ACTUAL IDENTIFICATION OF ANY MATERIAL PRESENT

<u>Sample ID</u> Laboratory ID	<u>Gasoline</u>	<u>Diesel</u>	<u>Heavy Oil</u>	Surrogate <u>(% Recovery)</u> (Limit 50-150)
B1-5 408557-01	ND	ND	ND	95
B1-10 408557-02	ND	ND	ND	99
B2-5 408557-03	ND	ND	ND	99
B2-10 408557-04	ND	ND	ND	96
B3-5 408557-05	ND	ND	D	94
B3-10 408557-06	ND	ND	ND	96
B4-5 408557-07	ND	ND	ND	93
B4-10 408557-08	ND	ND	ND	97
B4-15 408557-09	ND	ND	ND	98
B5-5 408557-10	ND	ND	ND	94
B5-10 408557-11	ND	ND	ND	95

ND - Material not detected at or above 20 mg/kg gas, 50 mg/kg diesel and 250 mg/kg heavy oil.

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/24 Date Received: 08/30/24 Project: Johnson's 0019-23, F&BI 408557 Date Extracted: 09/04/24 Date Analyzed: 09/04/24

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR GASOLINE, DIESEL AND HEAVY OIL BY NWTPH-HCID

Results Reported on a Dry Weight Basis Results Reported as Not Detected (ND) or Detected (D)

THE DATA PROVIDED BELOW WAS PERFORMED PER THE GUIDELINES ESTABLISHED BY THE WASHINGTON DEPARTMENT OF ECOLOGY AND WERE NOT DESIGNED TO PROVIDE INFORMATION WITH REGARDS TO THE ACTUAL IDENTIFICATION OF ANY MATERIAL PRESENT

<u>Sample ID</u> Laboratory ID	<u>Gasoline</u>	<u>Diesel</u>	<u>Heavy Oil</u>	Surrogate <u>(% Recovery)</u> (Limit 50-150)
B6-5 408557-12	ND	ND	ND	96
B6-10 408557-13	ND	ND	ND	94
B6-15 408557-14	ND	ND	ND	93
B7-5 408557-15	ND	ND	ND	97
B7-12 408557-16	ND	ND	ND	96
B7-10 408557-17	ND	ND	ND	94
Method Blank ^{04-2144 MB}	ND	ND	ND	96

ND - Material not detected at or above 20 mg/kg gas, 50 mg/kg diesel and 250 mg/kg heavy oil.

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/24 Date Received: 08/30/24 Project: Johnson's 0019-23, F&BI 408557 Date Extracted: 09/06/24 Date Analyzed: 09/06/24

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES USING EPA METHOD 8021B

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
B5-5 408557-10	< 0.02	< 0.02	< 0.02	< 0.06	90
B5-10 408557-11	< 0.02	< 0.02	< 0.02	< 0.06	91
B6-5 408557-12	< 0.02	< 0.02	< 0.02	<0.06	93
B6-10 408557-13	< 0.02	< 0.02	< 0.02	< 0.06	87
B6-15 408557-14	< 0.02	< 0.02	< 0.02	<0.06	92
Method Blank 04-1980 MB	< 0.02	< 0.02	< 0.02	< 0.06	92

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/24 Date Received: 08/30/24 Project: Johnson's 0019-23, F&BI 408557 Date Extracted: 09/06/24 Date Analyzed: 09/06/24

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 50-150)
B3-5 408557-05	220 x	370	97
Method Blank 04-2164 MB	<50	<250	97

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B1-5 08/30/24 09/05/24 09/05/24 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	l Services &BI 408557	
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:	
1,2-Dichloroethane	e-d4	93	79	128	
Toluene-d8		99	84	121	
4-Bromofluorobenz	ene	112	84	116	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	thene	<0.5	_		
Chloromethane	ethane	<0.5 <0.5 ca		loropropane loroethene	$< 0.05 \\ 0.0099$
Vinyl chloride		<0.002		ochloromethane	< 0.05
Bromomethane		<0.5		omoethane (EDB)	< 0.005
Chloroethane		< 0.1	Chlorob	. ,	< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylber	nzene	< 0.002
Acetone		<5 ca	1,1,1,2-7	Tetrachloroethane	< 0.05
1,1-Dichloroethene		< 0.002	m,p-Xyle		< 0.004
Hexane		< 0.25	o-Xylene	e	< 0.002
Methylene chloride		<0.4	Styrene	11	< 0.05
Methyl t-butyl ethe		< 0.002		lbenzene	< 0.05
trans-1,2-Dichloroe 1,1-Dichloroethane		< 0.002	Bromofo		< 0.05 < 0.05
2,2-Dichloropropan		<0.002 <0.05	Bromobe	lbenzene	<0.05
cis-1,2-Dichloroeth		<0.002		imethylbenzene	<0.05
Chloroform	ene	<0.05		Tetrachloroethane	< 0.05
2-Butanone (MEK)		<1 ca		ichloropropane	< 0.05
1,2-Dichloroethane		< 0.003	2-Chloro		< 0.05
1,1,1-Trichloroetha	ine	< 0.002	4-Chloro	otoluene	< 0.05
1,1-Dichloropropen		< 0.05		ylbenzene	< 0.05
Carbon tetrachlori	de	< 0.05		imethylbenzene	< 0.05
Benzene		< 0.002		lbenzene	< 0.05
Trichloroethene		< 0.002		pyltoluene	< 0.05
1,2-Dichloropropar Bromodichloromet		<0.05		lorobenzene lorobenzene	< 0.05 < 0.05
Dibromomethane	nane	<0.05 <0.05	,	lorobenzene	< 0.05
4-Methyl-2-pentan	one	<0.05 <1		omo-3-chloropropane	<0.05
cis-1,3-Dichloropro		<0.05		ichlorobenzene	<0.25
Toluene	F	< 0.002		orobutadiene	<0.25
trans-1,3-Dichlorop	oropene	< 0.05	Naphtha		< 0.01
1,1,2-Trichloroetha	-	< 0.05	-	ichlorobenzene	< 0.25
2-Hexanone		<1 ca			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B2-5 08/30/24 09/05/24 09/05/24 Soil mg/kg (ppn	n) Dry Weight			
C		0/ D	Lower	Upper	
Surrogates: 1,2-Dichloroethane	d4	% Recovery: 97	Limit: 79	Limit: 128	
Toluene-d8	-u4	101	84	128	
4-Bromofluorobenz	ene	101	84	116	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5		loropropane	< 0.05
Chloromethane		<0.5 ca		loroethene	0.056
Vinyl chloride		< 0.002		ochloromethane	< 0.05
Bromomethane		<0.5		omoethane (EDB)	< 0.005
Chloroethane Trichlorofluoromet	h	<0.1 <0.5	Chlorobe		< 0.05
Acetone	nane	<0.5 <5 ca	Ethylber 1 1 1 2 7	Tetrachloroethane	<0.002 <0.05
1,1-Dichloroethene		<0.002	m,p-Xyle		< 0.004
Hexane		<0.25	o-Xylene		< 0.002
Methylene chloride	e	< 0.4	Styrene		< 0.05
Methyl t-butyl ethe		< 0.002	•	lbenzene	< 0.05
trans-1,2-Dichloroe	ethene	< 0.002	Bromofo	orm	< 0.05
1,1-Dichloroethane		< 0.002		lbenzene	< 0.05
2,2-Dichloropropan		< 0.05	Bromobe		< 0.05
cis-1,2-Dichloroeth	ene	< 0.002		imethylbenzene	< 0.05
Chloroform		< 0.05		Tetrachloroethane	< 0.05
2-Butanone (MEK) 1,2-Dichloroethane		<1 ca <0.003	1,2,3-1ri 2-Chloro	ichloropropane	< 0.05 < 0.05
1,1,1-Trichloroetha		< 0.003	4-Chlore		<0.05
1,1-Dichloropropen		< 0.05		ylbenzene	< 0.05
Carbon tetrachlori		< 0.05		imethylbenzene	< 0.05
Benzene		< 0.002		vlbenzene	< 0.05
Trichloroethene		< 0.002		pyltoluene	< 0.05
1,2-Dichloropropan		< 0.05	1,3-Dich	lorobenzene	< 0.05
Bromodichloromet	hane	< 0.05		lorobenzene	< 0.05
Dibromomethane		< 0.05		lorobenzene	< 0.05
4-Methyl-2-pentan		<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	< 0.05		ichlorobenzene	< 0.25
Toluene		<0.002		orobutadiene	< 0.25
trans-1,3-Dichlorop	-	<0.05 <0.05	Naphtha 1 2 3 Tri	alene ichlorobenzene	<0.01 <0.25
1,1,2-Trichloroetha 2-Hexanone	uie	<0.05 <1 ca	1,2, 5 -11	icmorobenzene	~0.20
		~1 Ca			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B2-10 08/30/24 09/12/24 09/12/24 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Dixon Environmental Services Johnson's 0019-23, F&BI 408557 408557-04 1/0.5 091214.D GCMS11 IJL
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 97 101 104	Lower Limit: 79 84 84	Upper Limit: 128 121 116
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroet 1,1-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	ethene ene (EDC)	<0.002 <0.1 <0.002 <0.4 <0.002 <0.002 <0.002 <0.003 <0.002 <0.002 <0.002 <0.0022		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B3-5 08/30/24 09/05/24 09/05/24 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Dixon Environmenta Johnson's 0019-23, F 408557-05 1/0.5 090527.D GCMS11 MD	
C		0/ D	Lower	Upper	
Surrogates: 1,2-Dichloroethane	d4	% Recovery: 91	Limit: 79	Limit: 128	
Toluene-d8	-u4	101	75 84	128	
4-Bromofluorobenz	ene	109	84	116	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5		loropropane	< 0.05
Chloromethane		<0.5 ca		loroethene	0.0088
Vinyl chloride		< 0.002		ochloromethane	< 0.05
Bromomethane		<0.5		omoethane (EDB)	< 0.005
Chloroethane Trichlorofluoromet	hana	<0.1 <0.5	Chlorobe		< 0.05
Acetone	nane	<0.5 <5 ca	Ethylber 1 1 1 2 7	Tetrachloroethane	<0.002 <0.05
1,1-Dichloroethene		<0.002	m,p-Xyle		< 0.004
Hexane		<0.25	o-Xylene		< 0.002
Methylene chloride	e	< 0.4	Styrene		< 0.05
Methyl t-butyl ether (MTBE)		< 0.002	Isopropylbenzene		< 0.05
trans-1,2-Dichloroe	ethene	< 0.002	Bromoform		< 0.05
1,1-Dichloroethane		< 0.002	n-Propylbenzene		< 0.05
2,2-Dichloropropan		< 0.05	Bromobenzene		< 0.05
cis-1,2-Dichloroeth	ene	< 0.002		imethylbenzene	< 0.05
Chloroform		< 0.05		Tetrachloroethane	< 0.05
2-Butanone (MEK) 1,2-Dichloroethane		<1 ca <0.003	1,2,3-1ri 2-Chloro	ichloropropane	< 0.05 < 0.05
1,1,1-Trichloroetha		< 0.003	4-Chlore		<0.05
1,1-Dichloropropen		< 0.05		ylbenzene	<0.05
Carbon tetrachlori		< 0.05		imethylbenzene	< 0.05
Benzene		< 0.002		lbenzene	< 0.05
Trichloroethene		< 0.002		pyltoluene	< 0.05
1,2-Dichloropropan		< 0.05	1,3-Dich	lorobenzene	< 0.05
Bromodichloromet	hane	< 0.05		lorobenzene	< 0.05
Dibromomethane		< 0.05		lorobenzene	< 0.05
4-Methyl-2-pentan		<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	< 0.05		ichlorobenzene	< 0.25
Toluene		<0.002		orobutadiene	< 0.25
trans-1,3-Dichlorop	-	<0.05	Naphtha 1 2 2 Tra	alene ichlorobenzene	<0.01 <0.25
1,1,2-Trichloroetha 2-Hexanone	uie	<0.05 <1 ca	1,2, 5 -11	icmorobenzene	~0.20
		si ta			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B4-5 08/30/24 09/05/24 09/05/24 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator: Lower	Dixon Environmental Johnson's 0019-23, Fo 408557-07 1/0.5 090528.D GCMS11 MD Upper	
Surrogates:	.1.4	% Recovery:	Limit:	Limit:	
1,2-Dichloroethane Toluene-d8	9-04	$\frac{96}{101}$	$79\\84$	$128 \\ 121$	
4-Bromofluorobenz	ene	113	84	116	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5	1.3-Dich	loropropane	< 0.05
Chloromethane	, circuito	<0.5 ca		loroethene	0.0056
Vinyl chloride		< 0.002		ochloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.005
Chloroethane		< 0.1	Chlorob	enzene	< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylber		< 0.002
Acetone		<5 ca		Cetrachloroethane	< 0.05
1,1-Dichloroethene	!	< 0.002	m,p-Xyle		< 0.004
Hexane Matherian a shlarida		<0.25	o-Xylene		< 0.002
Methylene chloride Methyl t-butyl ethe		<0.4 <0.002	Styrene	lbenzene	$< 0.05 \\ < 0.05$
trans-1,2-Dichloroe		<0.002 <0.002	Bromofo		<0.05
1,1-Dichloroethane		<0.002		lbenzene	<0.05
2,2-Dichloropropan		< 0.05	Bromobe		< 0.05
cis-1,2-Dichloroeth		< 0.002		imethylbenzene	< 0.05
Chloroform		< 0.05		Cetrachloroethane	< 0.05
2-Butanone (MEK)		<1 ca		ichloropropane	< 0.05
1,2-Dichloroethane	. ,	< 0.003	2-Chloro		< 0.05
1,1,1-Trichloroetha		< 0.002	4-Chloro		< 0.05
1,1-Dichloropropen		< 0.05		ylbenzene	< 0.05
Carbon tetrachlorie	de	< 0.05		imethylbenzene	<0.05
Benzene Trichloroethene		<0.002 <0.002	•	vlbenzene pyltoluene	$< 0.05 \\ < 0.05$
1,2-Dichloropropan		<0.05		lorobenzene	<0.05
Bromodichloromet		< 0.05		lorobenzene	< 0.05
Dibromomethane	liulie	< 0.05		lorobenzene	< 0.05
4-Methyl-2-pentan	one	<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro		< 0.05		ichlorobenzene	< 0.25
Toluene		< 0.002		orobutadiene	< 0.25
trans-1,3-Dichlorop		< 0.05	Naphtha		< 0.01
1,1,2-Trichloroetha	ine	< 0.05	1,2,3-Tr	ichlorobenzene	< 0.25
2-Hexanone		<1 ca			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B4-15 08/30/24 09/05/24 09/05/24 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Dixon Environmenta Johnson's 0019-23, F 408557-09 1/0.5 090529.D GCMS11 MD	
C ,		0/ D	Lower	Upper	
Surrogates: 1,2-Dichloroethane	d4	% Recovery: 99	Limit: 79	Limit: 128	
Toluene-d8	-44	$\frac{33}{102}$	84	128	
4-Bromofluorobenz	ene	111	84	116	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5		loropropane	< 0.05
Chloromethane		<0.5 ca		oroethene	0.0071
Vinyl chloride		< 0.002		ochloromethane	< 0.05
Bromomethane		<0.5		omoethane (EDB)	< 0.005
Chloroethane	1	<0.1	Chlorobe		< 0.05
Trichlorofluoromet Acetone	nane	<0.5 <5 ca	Ethylber	nzene Yetrachloroethane	<0.002 <0.05
1,1-Dichloroethene		<5 ca <0.002	1,1,1,2-1 m,p-Xyle		< 0.003
Hexane		<0.25	o-Xylene		< 0.002
Methylene chloride	9	<0.4	Styrene		< 0.05
Methyl t-butyl ether (MTBE)		< 0.002	Isopropylbenzene		< 0.05
trans-1,2-Dichloroe		< 0.002	Bromoform		< 0.05
1,1-Dichloroethane		< 0.002	n-Propylbenzene		< 0.05
2,2-Dichloropropar		< 0.05	Bromobenzene		< 0.05
cis-1,2-Dichloroeth	ene	< 0.002		imethylbenzene	< 0.05
Chloroform		< 0.05		etrachloroethane	< 0.05
2-Butanone (MEK)		<1 ca		ichloropropane	<0.05
1,2-Dichloroethane 1,1,1-Trichloroetha	· /	<0.003 <0.002	2-Chloro 4-Chloro		$< 0.05 \\ < 0.05$
1,1-Dichloropropen		<0.05		ylbenzene	<0.05
Carbon tetrachlori		<0.05		imethylbenzene	< 0.05
Benzene		< 0.002		lbenzene	< 0.05
Trichloroethene		< 0.002		pyltoluene	< 0.05
1,2-Dichloropropar	ie	< 0.05		lorobenzene	< 0.05
Bromodichloromet	hane	< 0.05		lorobenzene	< 0.05
Dibromomethane		< 0.05		lorobenzene	< 0.05
4-Methyl-2-pentan		<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	< 0.05		ichlorobenzene	< 0.25
Toluene		< 0.002		orobutadiene	< 0.25
trans-1,3-Dichlorog	-	<0.05	Naphtha 1 2 2 Trai		<0.01
1,1,2-Trichloroetha 2-Hexanone	me	<0.05 <1 ca	1,2,3-1r	ichlorobenzene	< 0.25
2-110Aa110110		<u><u></u> </u>			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B5-5 08/30/24 09/13/24 09/13/24 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Dixon Environmental Services Johnson's 0019-23, F&BI 408557 408557-10 1/0.5 091318.D GCMS13 IJL
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	97	84	120
Toluene-d8		94	73	128
4-Bromofluorobenz	ene	104	57	146
Compounds:		Concentration mg/kg (ppm)		
Tetrachloroethene		< 0.002		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B6-5 08/30/24 09/13/24 09/13/24 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Dixon Environmental Services Johnson's 0019-23, F&BI 408557 408557-12 1/0.5 091319.D GCMS13 IJL
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	98	84	120
Toluene-d8		95	73	128
4-Bromofluorobenz	ene	101	57	146
Compounds:		Concentration mg/kg (ppm)		
Tetrachloroethene		< 0.002		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B6-15 08/30/24 09/13/24 09/13/24 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Dixon Environmental Services Johnson's 0019-23, F&BI 408557 408557-14 1/0.5 091320.D GCMS13 IJL
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	101	84	120
Toluene-d8		96	73	128
4-Bromofluorobenz	ene	102	57	146
Compounds:		Concentration mg/kg (ppm)		
Tetrachloroethene		< 0.002		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B7-5 08/30/24 09/05/24 09/05/24 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Dixon Environmenta Johnson's 0019-23, F 408557-15 1/0.5 090530.D GCMS11 MD	
C A		0/ D	Lower	Upper	
Surrogates: 1,2-Dichloroethane	d4	% Recovery: 96	Limit: 79	Limit: 128	
Toluene-d8	-44	90 101	79 84	128	
4-Bromofluorobenz	ene	101	84	116	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5		loroethene	< 0.002
Vinyl chloride		< 0.002		ochloromethane	< 0.05
Bromomethane		< 0.5		romoethane (EDB)	< 0.005
Chloroethane		<0.1 ca	Chlorob		< 0.05
Trichlorofluoromet	hane	<0.5	Ethylber		< 0.002
Acetone		<5 ca	1,1,1,2-1 m,p-Xyle	Fetrachloroethane	<0.05 <0.004
1,1-Dichloroethene Hexane		<0.002 <0.25	o-Xylene		<0.004
Methylene chloride	2	<0.25	Styrene	5	< 0.05
Methyl t-butyl ether (MTBE)		<0.002	Isopropylbenzene		< 0.05
trans-1,2-Dichloroe		< 0.002	Bromoform		< 0.05
1,1-Dichloroethane		< 0.002	n-Propylbenzene		< 0.05
2,2-Dichloropropar	ne	< 0.05	Bromobenzene		< 0.05
cis-1,2-Dichloroeth	ene	< 0.002		imethylbenzene	< 0.05
Chloroform		< 0.05		Fetrachloroethane	< 0.05
2-Butanone (MEK)		<1 ca		ichloropropane	< 0.05
1,2-Dichloroethane		< 0.003	2-Chloro 4-Chloro		<0.05
1,1,1-Trichloroetha 1,1-Dichloropropen		<0.002 <0.05		ylbenzene	$< 0.05 \\ < 0.05$
Carbon tetrachlorie		<0.05		imethylbenzene	<0.05
Benzene	ue	< 0.002		vlbenzene	< 0.05
Trichloroethene		< 0.002		pyltoluene	< 0.05
1,2-Dichloropropar	ne	< 0.05		lorobenzene	< 0.05
Bromodichloromet	hane	< 0.05	1,4-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05		lorobenzene	< 0.05
4-Methyl-2-pentan		<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	< 0.05		ichlorobenzene	< 0.25
Toluene		< 0.002		orobutadiene	< 0.25
trans-1,3-Dichlorop		<0.05	Naphtha 1 2 2 Trai		< 0.01
1,1,2-Trichloroetha 2-Hexanone	ine	< 0.05	1,2,3-Tr	ichlorobenzene	< 0.25
2-mexamone		<1 ca			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B7-12 08/30/24 09/05/24 09/05/24 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Dixon Environmenta Johnson's 0019-23, F 408557-16 1/0.5 090531.D GCMS11 MD	
~			Lower	Upper	
Surrogates:	14	% Recovery:	Limit:	Limit:	
1,2-Dichloroethane Toluene-d8	e-d4	$\frac{102}{103}$	$79\\84$	$128\\121$	
4-Bromofluorobenz	ene	$\frac{103}{115}$	84 84	121 116	
1 Diomondoi obenz			01	110	~
0 1		Concentration	C	1	Concentration
Compounds:		mg/kg (ppm)	Compou	nas:	mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5		loropropane	< 0.05
Chloromethane		<0.5 ca		loroethene	< 0.002
Vinyl chloride		< 0.002		ochloromethane	< 0.05
Bromomethane		<0.5		romoethane (EDB)	< 0.005
Chloroethane Trichlorofluoromet	hana	<0.1 <0.5	Chlorobe		< 0.05
Acetone	nane	<0.5 <5 ca	Ethylber 1 1 1 2 7	Tetrachloroethane	<0.002 <0.05
1,1-Dichloroethene		<0.002	m,p-Xyle		< 0.004
Hexane		<0.25	o-Xylene		< 0.002
Methylene chloride	9	< 0.4	Styrene	-	< 0.05
Methyl t-butyl ether (MTBE)		< 0.002	Isopropylbenzene		< 0.05
trans-1,2-Dichloroe	ethene	< 0.002	Bromoform		< 0.05
1,1-Dichloroethane		< 0.002	n-Propylbenzene		< 0.05
2,2-Dichloropropan		< 0.05	Bromobenzene		< 0.05
cis-1,2-Dichloroeth	ene	< 0.002		imethylbenzene	< 0.05
Chloroform		< 0.05		Tetrachloroethane	<0.05
2-Butanone (MEK) 1,2-Dichloroethane		<1 ca <0.003	1,2,3-11 2-Chloro	ichloropropane	$< 0.05 \\ < 0.05$
1,1,1-Trichloroetha		< 0.003	4-Chlore		<0.05
1,1-Dichloropropen		< 0.05		ylbenzene	< 0.05
Carbon tetrachlorie		< 0.05		imethylbenzene	< 0.05
Benzene		< 0.002		lbenzene	< 0.05
Trichloroethene		< 0.002		pyltoluene	< 0.05
1,2-Dichloropropan		< 0.05		lorobenzene	< 0.05
Bromodichlorometh	hane	< 0.05		lorobenzene	< 0.05
Dibromomethane		< 0.05		lorobenzene	< 0.05
4-Methyl-2-pentan		<1		omo-3-chloropropane	<0.5
cis-1,3-Dichloropro Toluene	herre	<0.05 <0.002		ichlorobenzene orobutadiene	<0.25 <0.25
trans-1,3-Dichlorop	ronene	<0.002 <0.05	Naphtha		<0.25
1,1,2-Trichloroetha		< 0.05	-	ichlorobenzene	<0.25
2-Hexanone	-	<1 ca	-,-,		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 09/05/24 09/05/24 Soil mg/kg (ppn		Client: Project: Lab ID: Data File: Instrument: Operator:	Dixon Environmenta Johnson's 0019-23, F 04-2113 mb 1/0.5 090519.D GCMS11 MD	
C		0/ D	Lower	Upper	
Surrogates: 1,2-Dichloroethane	d4	% Recovery: 100	Limit: 79	Limit: 128	
Toluene-d8	-44	100	84	128	
4-Bromofluorobenz	ene	103	84	116	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		<0.5 ca	Tetrachl	loroethene	< 0.002
Vinyl chloride		< 0.002		ochloromethane	< 0.05
Bromomethane		< 0.5		omoethane (EDB)	< 0.005
Chloroethane	_	< 0.1	Chlorob		< 0.05
Trichlorofluoromet	hane	<0.5	Ethylber		< 0.002
Acetone		<5 ca		Tetrachloroethane	< 0.05
1,1-Dichloroethene		<0.002 <0.25	m,p-Xyle o-Xylene		<0.004 <0.002
Hexane Methylene chloride		<0.25 <0.4	Styrene		<0.002 <0.05
Methyl t-butyl ether (MTBE)		<0.4 <0.002	Isopropylbenzene		<0.05
trans-1,2-Dichloroethene		< 0.002	Bromoform		<0.05
1,1-Dichloroethane		< 0.002	n-Propylbenzene		< 0.05
2,2-Dichloropropan		< 0.05	Bromobenzene		< 0.05
cis-1,2-Dichloroeth		< 0.002	1,3,5-Tr	imethylbenzene	< 0.05
Chloroform		< 0.05		Tetrachloroethane	< 0.05
2-Butanone (MEK)		<1 ca		ichloropropane	< 0.05
1,2-Dichloroethane		< 0.003	2-Chloro		< 0.05
1,1,1-Trichloroetha		< 0.002	4-Chloro		< 0.05
1,1-Dichloropropen		<0.05		ylbenzene	< 0.05
Carbon tetrachlorie	ae	<0.05 <0.002		imethylbenzene	< 0.05 < 0.05
Benzene Trichloroethene		<0.002 <0.002		vlbenzene pyltoluene	<0.05
1,2-Dichloropropan		<0.05		lorobenzene	<0.05
Bromodichlorometh		< 0.05		lorobenzene	< 0.05
Dibromomethane		< 0.05	,	lorobenzene	< 0.05
4-Methyl-2-pentan	one	<1		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro		< 0.05		ichlorobenzene	< 0.25
Toluene		< 0.002	Hexachl	orobutadiene	< 0.25
trans-1,3-Dichlorop	-	< 0.05	Naphtha		< 0.01
1,1,2-Trichloroetha	ne	< 0.05	1,2,3-Tr	ichlorobenzene	< 0.25
2-Hexanone		<1 ca			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blar Not Applical 09/12/24 09/12/24 Soil mg/kg (ppm)	le	Client: Project: Lab ID: Data File: Instrument: Operator:	Dixon Environmental Services Johnson's 0019-23, F&BI 408557 04-2133 mb 1/0.5 091209.D GCMS13 MD
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 96 94 105	Lower Limit: 84 73 57	Upper Limit: 120 128 146
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroet 1,1-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	ene (EDC)	<0.002 <0.1 <0.002 <0.4 <0.002 <0.002 <0.002 <0.003 <0.002 <0.002 <0.002 <0.002		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 09/13/24 09/13/24 Soil mg/kg (ppm) Dry Weigh	Client: Project: Lab ID: Data File: Instrument: Mt Operator:	Dixon Environmental Services Johnson's 0019-23, F&BI 408557 04-2191 mb 1/0.5 091309.D GCMS13 MD
		Lower	Upper
Surrogates:	% Recover	y: Limit:	Limit:
1,2-Dichloroethane	-d4 95	84	120
Toluene-d8	94	73	128
4-Bromofluorobenz	ene 103	57	146
Compounds:	Concentrat: mg/kg (ppr		
Tetrachloroethene	< 0.002		

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/24 Date Received: 08/30/24 Project: Johnson's 0019-23, F&BI 408557

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES USING EPA METHOD 8021B

Laboratory Code: 409036-01 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	1.0	85	70-130
Toluene	mg/kg (ppm)	1.0	94	70-130
Ethylbenzene	mg/kg (ppm)	1.0	90	70-130
Xylenes	mg/kg (ppm)	3.0	90	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/24 Date Received: 08/30/24 Project: Johnson's 0019-23, F&BI 408557

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	409063-01 (Matri	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	102	108	63-146	6
Laboratory Code:	Laboratory Contr	rol Samp	le				
			Percent	t			
	Reporting	Spike	Recover	y Accep	tance		
Analyte	Units	Level	LCS	Crit	eria		
Diesel Extended	mg/kg (ppm)	5,000	106	77-1	123		

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/24 Date Received: 08/30/24 Project: Johnson's 0019-23, F&BI 408557

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 408557-01 (Matrix Spike)

Sample Percent Percent Reporting Spike Result Recovery Recovery Acceptance	
Analyte Units Level (Wet wt) MS MSD Criteria	(Limit 20)
Dichlorodifluoromethane mg/kg (ppm) 2 <0.5 45 38 10-142	17
Chloromethane mg/kg (ppm) 2 <0.5 61 61 10-126	0
Vinyl chloride mg/kg (ppm) 2 <0.05 66 62 10-138	6
Bromomethane mg/kg (ppm) 2 <0.5 61 61 10-163	0
Chloroethane mg/kg (ppm) 2 <0.5 40 42 10-176	5
Trichlorofluoromethane mg/kg (ppm) 2 <0.5 74 68 10-176	8
Acctone $mg/kg (ppm)$ 10 <5 85 93 10-163	9
1,1-Dichloroethene mg/kg (ppm) 2 <0.05 84 78 10-160 Hexane mg/kg (ppm) 2 <0.25	7
Hexane mg/kg (ppm) 2 <0.25 76 77 10-137 Methylene chloride mg/kg (ppm) 2 <0.5	1 83 vo
Methylt-butylether (MTBE) mg/kg (ppm) 2 < 0.05 84 80 21-145	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8
1.125 (holocothene mg/kg (ppm) 2 < 0.05 81 78 19-140	4
1.22 Dichloropropane mg/kg (ppm) 2 <0.05 82 74 10.158	10
12 - Dichotophysic mg/kg (pm) 2 - 0.05 - 02 - 14 - 10 - 100 - 0000 - 000 - 000 - 000 - 000 - 000 - 000 - 0	7
Chloroform $mg/kg (ppm) = 2 < 0.05 & 83 & 81 & 21.145$	2
2-Butanone (MEK) mg/kg (ppm) 10 <1 83 92 19-147	10
1,2-Dichloroethane (EDC) mg/kg (ppm) 2 <0.05 81 80 12-160	1
1,1,1-Trichloroethane mg/kg (ppm) 2 <0.05 85 78 10-156	9
1,1-Dichloropropene mg/kg (ppm) 2 <0.05 85 81 17-140	5
Carbon tetrachloride mg/kg (ppm) 2 <0.05 85 81 9-164	5
Benzene mg/kg (ppm) 2 <0.03 85 84 29-129	1
Trichloroethene mg/kg (ppm) 2 <0.02 91 88 21-139	3
1,2-Dichloropropane mg/kg (ppm) 2 <0.05 90 89 30-135	1
Bromodichloromethane mg/kg (ppm) 2 <0.05 83 81 23-155	2
Dibromomethane mg/kg (ppm) 2 <0.05 84 84 23-145	0
4-Methyl-2-pentanone mg/kg (ppm) 10 <1 88 93 24-155	6
cis-1,3-Dichloropropene mg/kg (ppm) 2 <0.05 90 91 28-144	1
Toluene mg/kg (ppm) 2 <0.05 88 84 35-130	5
trans-1,3-Dichloropropene mg/kg (ppm) 2 <0.05 89 89 26-149	0
1,1,2-Trichloroethane mg/kg (ppm) 2 <0.05 89 87 10-205	2
2-Hexanone mg/kg (ppm) 10 <1 82 92 15-166	11
1,3-Dichloropropane mg/kg (ppm) 2 <0.05 89 89 31-137 Tetrachloroethene mg/kg (ppm) 2 <0.025	0 6
	6
Dibromochloromethane mg/kg (ppm) 2 <0.05 90 85 28-150 1,2-Dibromoethane (EDB) mg/kg (ppm) 2 <0.05	2
1,2-50070000000000000000000000000000000000	5
Chrotopenzene ingrkg (ppin) 2 <0.05 55 50 32^{-129} Ethylbenzene mg/kg (ppin) 2 <0.05 92 87 32^{-137}	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11
$m_p \cdot X_y = 0.000 + 0.00000 + 0.00000 + 0.00000 + 0.00000 + 0.00000 + 0.00000 + 0.$	5
-Xylene mg/kg (ppm) 2 <0.05 90 83 33-134	8
Styrene $mg/kg (ppm) = 2 - 0.05 - 92 - 90 - 35-137$	2
Isopropylbenzene mg/kg (ppm) 2 <0.05 95 87 31-142	9
Bromoform mg/kg (ppm) 2 <0.05 92 92 21-156	0
n-Propylbenzene mg/kg (ppm) 2 <0.05 86 88 23-146	2
Bromobenzene mg/kg (ppm) 2 <0.05 96 99 34-130	3
1,3,5-Trimethylbenzene mg/kg (ppm) 2 <0.05 87 87 18-149	0
1,1,2,2-Tetrachloroethane mg/kg (ppm) 2 <0.05 85 86 28-140	1
1,2,3 Trichloropropane mg/kg (ppm) 2 <0.05 86 90 25-144	5
2-Chlorotoluene mg/kg (ppm) 2 <0.05 84 83 31-134	1
4-Chlorotoluene mg/kg (ppm) 2 <0.05 86 91 31-136	6
tert-Butylbenzene mg/kg (ppm) 2 <0.05 91 93 30-137	2
1,2,4-Trimethylbenzene mg/kg (ppm) 2 <0.05 87 86 10-182	1
sec-Butylbenzene mg/kg (ppm) 2 <0.05 88 87 23-145	1
p-Isopropyltoluene mg/kg (ppm) 2 <0.05 91 92 21-149 1.3-Dichlorobenzene mg/kg (ppm) 2 <0.05 96 97 30-131	1
	1
1,4-Dichlorobenzene mg/kg (ppm) 2 <0.05 94 98 29-129 1,2-Dichlorobenzene mg/kg (opm) 2 <0.05	4
	1 0
	0 5
1,2,4-Trichlorobenzene mg/kg (ppm) 2 <0.25 95 100 22-142 Hexachlorobutadiene mg/kg (ppm) 2 <0.25	ъ 4
nexachioroottaalene mg/kg (ppm) 2 < 0.25 102 106 10-142 Naphthalene mg/kg (ppm) 2 < 0.05 87 88 14-157	4
Naphthatene mg/kg (ppm) 2 < 0.05 67 66 $14+157$ 1,2,3-Trichlorobenzene mg/kg (ppm) 2 < 0.25 94 93 20-144	1
	1

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/24 Date Received: 08/30/24 Project: Johnson's 0019-23, F&BI 408557

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code. Laboratory			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2	85	10-146
Chloromethane	mg/kg (ppm)	2	88	27-133
Vinyl chloride	mg/kg (ppm)	2	94	22-139
Bromomethane	mg/kg (ppm)	2	89	10-201
Chloroethane	mg/kg (ppm)	2	64	10-163
Trichlorofluoromethane	mg/kg (ppm)	2	94	10-196
Acetone	mg/kg (ppm)	10	127	52-141
1,1-Dichloroethene	mg/kg (ppm)	2	110	47-128
Hexane Methylene chloride	mg/kg (ppm)	$\frac{2}{2}$	108 117	43-142
Methyl t-butyl ether (MTBE)	mg/kg (ppm) mg/kg (ppm)	2	108	10-184 60-123
trans-1,2-Dichloroethene	mg/kg (ppm)	2	103	64-132
1,1-Dichloroethane	mg/kg (ppm)	2	108	64-135
2.2-Dichloropropane	mg/kg (ppm)	2	100	52-170
cis-1,2-Dichloroethene	mg/kg (ppm)	2	112	64-135
Chloroform	mg/kg (ppm)	2	108	61-139
2-Butanone (MEK)	mg/kg (ppm)	10	123	30-197
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2	110	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	2	110	62-131
1,1-Dichloropropene	mg/kg (ppm)	2	111	64-136
Carbon tetrachloride	mg/kg (ppm)	2	113	60-139
Benzene	mg/kg (ppm)	2	112	65-136
Trichloroethene	mg/kg (ppm)	2	117	63-139
1,2-Dichloropropane	mg/kg (ppm)	2	116	61-145
Bromodichloromethane	mg/kg (ppm)	2	108	57-126
Dibromomethane	mg/kg (ppm)	2	111	62-123
4-Methyl-2-pentanone	mg/kg (ppm)	10	122	45-145
cis-1,3-Dichloropropene	mg/kg (ppm)	2	119	65-143
Toluene	mg/kg (ppm)	2 2	98	66-126
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	mg/kg (ppm) mg/kg (ppm)	2	102 97	65-131 62-131
2-Hexanone	mg/kg (ppm)	10	103	33-152
1,3-Dichloropropane	mg/kg (ppm)	2	100	67-128
Tetrachloroethene	mg/kg (ppm)	2	107	68-128
Dibromochloromethane	mg/kg (ppm)	2	98	55-121
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2	105	66-129
Chlorobenzene	mg/kg (ppm)	2	104	67-128
Ethylbenzene	mg/kg (ppm)	2	100	64-123
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2	95	64-121
m,p-Xylene	mg/kg (ppm)	4	103	68-128
o-Xylene	mg/kg (ppm)	2	97	67-129
Styrene	mg/kg (ppm)	2	102	67-129
Isopropylbenzene	mg/kg (ppm)	2	101	68-128
Bromoform	mg/kg (ppm)	2	105	56-132
n-Propylbenzene	mg/kg (ppm)	2 2	92	68-129
Bromobenzene 1,3,5-Trimethylbenzene	mg/kg (ppm)	2	101 93	69-128 69-129
1,3,5-1 rimethylbenzene 1,1,2,2-Tetrachloroethane	mg/kg (ppm) mg/kg (ppm)	2	93 94	56-143
1,2,3-Trichloropropane	mg/kg (ppm)	2	94 91	61-137
2-Chlorotoluene	mg/kg (ppm)	2	91	69-128
4-Chlorotoluene	mg/kg (ppm)	2	92	67-127
tert-Butylbenzene	mg/kg (ppm)	2	98	69-129
1,2,4-Trimethylbenzene	mg/kg (ppm)	2	93	69-128
sec-Butylbenzene	mg/kg (ppm)	2	92	69-130
p-Isopropyltoluene	mg/kg (ppm)	2	99	69-130
1,3-Dichlorobenzene	mg/kg (ppm)	2	104	69-127
1,4-Dichlorobenzene	mg/kg (ppm)	2	102	68-126
1,2-Dichlorobenzene	mg/kg (ppm)	2	97	69-127
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2	80	58-138
1,2,4-Trichlorobenzene	mg/kg (ppm)	2	103	64-135
Hexachlorobutadiene	mg/kg (ppm)	2	111	50-153
Naphthalene	mg/kg (ppm)	2	91	62-128
1,2,3-Trichlorobenzene	mg/kg (ppm)	2	100	61-126

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/24 Date Received: 08/30/24 Project: Johnson's 0019-23, F&BI 408557

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 408557-04 (Matrix Spike)

Laboratory Code: 400007-04	(main opine)		Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
							· /
Vinyl chloride	mg/kg (ppm)	2	< 0.05	68	72	10-138	6
Chloroethane	mg/kg (ppm)	2	< 0.5	46	47	10-176	2
1,1-Dichloroethene	mg/kg (ppm)	2	< 0.05	85	91	10-160	7
Methylene chloride	mg/kg (ppm)	2	< 0.5	92	98	10-156	6
trans-1,2-Dichloroethene	mg/kg (ppm)	2	< 0.05	91	98	14 - 137	7
1,1-Dichloroethane	mg/kg (ppm)	2	< 0.05	85	92	19-140	8
cis-1,2-Dichloroethene	mg/kg (ppm)	2	< 0.05	87	94	25 - 135	8
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2	< 0.05	87	95	12 - 160	9
1,1,1-Trichloroethane	mg/kg (ppm)	2	< 0.05	87	94	10-156	8
Trichloroethene	mg/kg (ppm)	2	< 0.02	94	103	21 - 139	9
Tetrachloroethene	mg/kg (ppm)	2	< 0.025	98	111	20-133	12

	р		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	2	75	22 - 139
Chloroethane	mg/kg (ppm)	2	54	10-163
1,1-Dichloroethene	mg/kg (ppm)	2	86	47 - 128
Methylene chloride	mg/kg (ppm)	2	94	10-184
trans-1,2-Dichloroethene	mg/kg (ppm)	2	94	64 - 132
1,1-Dichloroethane	mg/kg (ppm)	2	85	64 - 135
cis-1,2-Dichloroethene	mg/kg (ppm)	2	90	64 - 135
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2	88	56 - 135
1,1,1-Trichloroethane	mg/kg (ppm)	2	89	62-131
Trichloroethene	mg/kg (ppm)	2	94	63-139
Tetrachloroethene	mg/kg (ppm)	2	100	68-128

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/24 Date Received: 08/30/24 Project: Johnson's 0019-23, F&BI 408557

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 409139-19 (Matrix Spike)

	(Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Tetrachloroethene	mg/kg (ppm)	2	< 0.025	92	89	20-133	3

	Ĩ		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Tetrachloroethene	mg/kg (ppm)	2	98	68-128

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Received by:	(206) 283-8282 office@fried.manandbruya.com Relinquished by:	Seattle WA 98108 Received by:	Friedman & Bruya, Inc. Relin guished by	SIGWARDINE	B5-5 10 V & 1200	SIII 100 SI-ha	01)) 80 OI-43	B4-5 52 1100	B3-10 06 1035	B3-5 05 1030	B2-10 04 1010	82-5 03 1000	507	B1-5 01 A-E 1-30-21 930	Sample ID Lab ID Date Time Sampled Sampled		Phone 257-360-4703 Email Brinne Di Lone S.con Project s	City, State, ZIP Tecono, WA REMARKS		HORO N 7th St.	YOR N 7th St.	Dixon Env. Services PRC Holo N 7th St.	Dixon Env. Services Holo N 7th St.
			(1)		0			0	2	0	0	0		S.	sd Type		Project specific RLs? -	ARKS	2 2020100		DECT INAUX	PROJECT NAME	PROJECT NAME
		Anh Phan	Brian	PRII	4									n	e # of Jars				0	>) 6		
		nan	Digu	PRINT NAME						Α					NWTPH-Dx		Yes / No						
			20	ME				-							NWTPH-Gx BTEX EPA 8021		0						(
					K		\mathbf{X}	\mathbf{X}	$\left \times \right $	X	$\left \times \right $	X	X	×	NWTPH-HCID		-	7 🛱	,	0	0	0	0
						X		\times		\boxtimes		\geq		X	VOCs EPA 8260	ANALYSES REQUESTED	VI NOV	INVOICE TO	-	0		D P	P
						ĺ				-					PAHs EPA 8270	YSE			-	1	91	PO#	9 #
	S														PCBs EPA 8082	SRE		TO		~	22-bl 00	2	2
	Samples	FBT	Dixon	COMPANY							B			-	cVOCs	QU				V	\bigvee	\sim	
	les	H	Š	PAN	0										PCE	EST			1_];				
				R	-		+						1		2	E	Defa	S/ Archiv		Rush	□ RUSH Rush cha	⊒KSta □ RU Rush	⊒KSta □ RU Rush
	received		5			+	+	+	+		-					$\left \right $	ult:	SAI chive her		char	ISH_ char	nda SH_ char	IUn undau ISH_ char
	ad at	0	00	H	-	-						B	~	A	70		Default: Dispose after 30 days	SAMPLE DISPOSAL Archive samples Other		ges a	□ RUSH Rush charges authorized by:	☐ RUSH Rush charges authorize	TOKNAKOOND TIME indard turnaround ISH charges authorized by:
	2	06/30	8-20-27	DATE	10 Neo 6						ME	-per	ME	-per	C-pei ME		ose a	ples		utho	utho	naro	naro utho
	0	124	2	E	5025							BD		BD	r BD 0		ufter	SPOS		rized	rized	rizec	und
	Â	21		TIME	2							B-per BD 09/09/24		A-per BD 09/05/24	C-per BD 09/13/2 ME Notes		30	SAL		l by:	ł by:	1 by:	l by:
		4	1413	IZ	1-							<u>)</u>)5/	13		lay	Jwl		6		1881	550 550

SAMPLE CHAIN OF CUSTOP of 3/2 Dixon Four colspan="2" The SAMPLE CHAIN OF CUSTOP of 3/2 The Sampled Sample Sample NOIS The Sample Sample Sample Noise specific Ha?: Yes 1 No Lub ID Date Sample Sample Sample Sample Sample Sample Sample The Dx X Lub II Ones specific Ha?: Yes 1 No Noise specific Ha?: Yes 1 No III Advance specific Ha?: Yes 1 No III Advance specific Ha?: Yes 1 No Sample Sample Sample Sampl	Recei	uya.com		uya, Inc.	Trup Blank	S.C.	B7-10 added		67-12	87-5	51-99		1.0	85-10	Sample ID		Phone 253-380 - 432 mail Brine	City, State, ZIP a com	Address YOR N TE	Company Dixon ES	408557 Report To Brian Dix	
SAMPLE CHAIN OF CUSTODY $c8/30 [1/1]$ $r_{ne} = 2 \ d$ SAMPLE CHAIN OF CUSTODY $c8/30 [1/1]$ $r_{ne} = 2 \ d$ FROJECT NAME PO# Col $n < 2 \ d$ Time Sample $r_{ne} = 2 \ d$ Time Sample $r_{ne} = 2 \ d$ $r_{ne} = 30 \ d$ $r_{ne} = 2 \ d$ $r_{ne} = 30 \ d$ <th colsp<="" td=""><td>ved by:</td><td>quished by:</td><td>ved by:</td><td>quished by:</td><td>BARB</td><td></td><td></td><td></td><td>IC J</td><td>15</td><td>14</td><td>13</td><td>17</td><td></td><td>Lab ID</td><td></td><td></td><td>WA</td><td>£</td><td>-</td><td>× S</td></th>	<td>ved by:</td> <td>quished by:</td> <td>ved by:</td> <td>quished by:</td> <td>BARB</td> <td></td> <td></td> <td></td> <td>IC J</td> <td>15</td> <td>14</td> <td>13</td> <td>17</td> <td></td> <td>Lab ID</td> <td></td> <td></td> <td>WA</td> <td>£</td> <td>-</td> <td>× S</td>	ved by:	quished by:	ved by:	quishe d by:	BARB				IC J	15	14	13	17		Lab ID			WA	£	-	× S
SAMPLE CHAIN OF CUSTODY $c8/50$ fm PROJECT NAME $protect marked turnshould be REMARKS c_{standard} c_{sta$		/*		INATURE	7				Ð					2-30-24	Date Sampled		VixonE3. (
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									1315	1310	1250	5421	1240		Time Sampled			- REMA		- PROJE	SAMPL	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		And	Orio	ວ			50:1		8					3	Sample Type		specific RL	lKS	John So	CT NAME	E CHAIN	
PO# Fage # C TURNAROUND TIME PO# Ege # C TURNAROUND TIME PO# Fage # C TURNAROUND TIME NUTOR NUTOR AMALYSES REQUESTED AMALYSES REQUESTED AMALYSES REQUESTED AMALYSES REQUESTED Notes Notes PCE Notes AMALYSES REQUESTED Notes PCE Notes Notes Notes PCE Notes PCE Notes PCE Notes PCE Notes PCE Notes PCE PCE Notes PCE PCE PCE PCE		r Ph	Š	PRIN			5,		3					5	# of Jars				Su		N OF	
OS/30/LM Fage # C of TURNAROUND TIME TURNAROUND TIME PO # Standard turnaround L NVOICE TO AMALYSES REQUESTED AMALYSES REQUESTED ANALYSES REQUESTED Notes Notes PCE Notes Other PCE Notes Notes COMPANY DATE TIME DATE TIME COMPANY DATE TIME COMPANY DATE TIME C C C		an	Di	T NAL									-		NWTPH-Dx	T	es / 1				Châ	
OS/30/LM Fage # C of TURNAROUND TIME TURNAROUND TIME PO # Standard turnaround L NVOICE TO AMALYSES REQUESTED AMALYSES REQUESTED ANALYSES REQUESTED Notes Notes PCE Notes Other PCE Notes Notes COMPANY DATE TIME DATE TIME COMPANY DATE TIME COMPANY DATE TIME C C C			Xen	'B		Sar		\rightarrow				$\overline{\mathbf{v}}$	X	$\overline{\mathbf{x}}$		-	Vo				O	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						nple	A		X	Ż		X	X	Ø								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						STe			\triangleleft	X						ANA	ÎX'	INV	8			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				-	_	Celv									PAHs EPA 8270	LYS	2	OICI	9	PO #		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		FB	1×		-+										PCBs EPA 8082	ES R		TO	N	*	102	
Page # 2 of TURNAROUND TIME Standard turnaround A RUSH sh charges authorized by: SAMPLE DISPOSAL Varchive samples Other fault: Dispose after 30 d A-per BD 09/03/24 A-per BD 09/03/24 9-30-25 19/13		H	1	OMP		. 1					\cap		0]	PCE	EQU			\sim		30	
Page # 2 of TURNAROUND TIME Standard turnaround A RUSH sh charges authorized by: SAMPLE DISPOSAL Varchive samples Other fault: Dispose after 30 d A-per BD 09/03/24 A-per BD 09/03/24 9-30-25 19/13			S	ANY		1										EST						
Page # Z of TURNAROUND TIME andard turnaround turnaround this SAMPLE DISPOSAL Vistor SAMPLE DISPOSAL Vistor Vistor hive samples Vistor Vistor ult: Dispose after 30 days Vistor DATE TIME TIME 9-30-251 1413 Vistor 08/50/24 1413 Vistor						2	1									B	Defa		Rush	Sta	•	
# Z of NAROUND TIME d d turnaround ges authorized by: V samples V Jispose after 30 days V DATE TIME A-per BD 09/03/24 ME V 6/50/24 1413 6/50/24 1413		0	-														ult: I	SAN	char	indar	Page	
of OTIME ized by: V OSAL V IZED by: V		120/24	8-30-24	DATE									in per oc	A-ner RD	Z		samples)ispose aft	IPLE DISP	ges authori	d turnarou		
		14:13	1413	TIME										09/03/24 M	lotes		er 30 day;	11		Ind 45		

SA	MPLE CONDI	TION UPON RECE	IPT CH	ECKLIST	I.	
PROJECT # <u>40855</u>	CLIENT	Dixon ES		INITIAL DATE:	SI AP 08/30	124
If custody seals are	present on coo	ler, are they intact	:?	Ø NA	□ YES	□ NO
Cooler/Sample temp	perature			Thern	nometer ID: Flu	2 °C
Were samples receiv	ved on ice/cold	packs?			🖉 YES	🗆 NO
How did samples ar		□ Picked up by F&B	SI	□ FedEx	/UPS/GSC)
Is there a Chain-of- *or other representative do			🗆 NO	Initi Date	als/ :: <u>9/3</u>	T.J
Number of days san	nples have been	n sitting prior to re	eceipt at	laborato	ory <u>6</u>	days
Are the samples clea	arly identified	(explain "no" answer be	low)		□ YES	🖬 NO
Were all sample con leaking etc.)? (explain	¹		roken,		-YES	□ NO
Were appropriate sa	ample containe	ers used?	U.YES	S D NO) D	Jnknown
If custody seals are	present on san	nples, are they inta	ict?	D-NA	D YES	🗆 NO
Are samples requiri	ing no headspa	ce, headspace free	?	□ NA	⊡-YES	🗆 NO
Is the following info (explain "no" answer below	ormation provi	ded on the COC, an	nd does	it match	the samp	le label?
Sample ID's				C	Not on C	OC/label
Date Sampled	T Yes P-No				Not on C	OC/label
Time Sampled	Yes No			C	Not on C	OC/label
# of Containers						
Relinquished						
Requested analysis	□ Yes □ On H	[old	1			
Other comments (us Adled B7-10	FTSip Bla	ak to coc				
Air Samples: Were a Number of unused '	any additional		ceived?	□ NA	D YES	D NO
FRIEDMAN & BRUYA, INC./FC						05/01/24

Exhibit F: Statistical Compliance Calculations

Compliance calculations

0.0099 0.056 0.0011 0.0088	B1-5 B2-5 B2-10 B3-5	Statistical Analysis				
0.0056	B4-5	Number of samples		Uncensored values		
0.0071	B4-15	Uncensored	11	Mean	0.01	
0.001	B5-5	Censored		Lognormal mean	0.01	
0.001	B6-5	Detection limit or PQL		Std. devn.	0.01613902	
0.001	B6-15	Method detection limit		Median	0.0011	
0.001	B7-5	TOTAL	11	Min.	0.001	
0.001	B7-12	_		Max.	0.056	
		Lognormal distribution? r-squared is: Recommendations: UCL (Land's method) is 0.042563		Normal distribution? -squared is: 27		