

November 7, 2024

Transmitted via email to:

Toxics Cleanup Program Washington Department of Ecology, Northwest Region P.O. Box 330316 Shoreline, WA 98133

Attn: Cecilia Henderson

Re: Response To Ecology Comments on Subsurface Assessment and Remedial Action Report ERTS No. 730872 Koz Development Property 312 West Republic Street Seattle, Washington

Dear Cecilia:

Landau Associates (Landau), on behalf of Koz Development LLC (Koz), is submitting this letter in response to your comments on Landau's Subsurface Assessment and Remedial Action Report (Remedial Action Report), dated March 2024, regarding the property located at 312 West Republican Street in Seattle, Washington (Subject Property). The Remedial Action Report, along with additional historical investigation documents, was submitted to the Washington State Department of Ecology (Ecology) through the Environmental Report Tracking System (ERTS) on May 15, 2024, and the project was assigned ERTS No. 730872. After Ecology's review of these documents, you provided comments regarding the Remedial Action Report in a July 23, 2024 e-mail requesting additional information and collection of additional groundwater monitoring data.

This letter provides responses to your comments and, where applicable, supporting information is attached. Your comments are in italic font.

SOIL COMMENTS

Ecology Comment #1 regarding soil contamination: Please provide additional supporting information regarding the anticipated gas/diesel range overlap in soil sample B1-WSW-16'. A descriptive narrative from the lab may be helpful to include. Include chromatograms for this sample and lab standards used. The chromatograms included in the report do not include this sample.

Response: The amended laboratory report that includes the chromatogram for sample B1-WSW-16' is included in Attachment A. As noted in the amended laboratory report, the chromatogram "showed the presence of middle distillate product, such as diesel fuel. A pattern of peaks indicating the presence of low boiling point or gasoline range product in the sample was not observed." This

chromatogram further supports the conclusion that the gasoline range organics (GRO) reported for this sample were due to overlap of the diesel range organics (DRO) or middle distillates observed in the NWTPH-Dx analysis.

Ecology Comment #2 regarding soil contamination: Regarding the total naphthalenes value reported in post-excavation compliance soil sample B1-WSW-16' at 5.02 mg/kg, I understand this value is close to the MTCA Method A cleanup level of 5.00 mg/kg. However, additional supporting information beyond what is provided in the 2024 report section 4.4 will be necessary to consider this result in compliance with MTCA. Consider evaluating the total naphthalene data via statistical evaluation as described in the Ecology <u>Guidance for Remediation of Petroleum Contaminated Sites</u>. In regard to how to approach the significant number of samples with total naphthalene results below the method quantitation limit, refer to the information provided in the <u>WAC Chapter 173-340-740(7)(f)</u>. Data may be calculated within the Ecology <u>MTCAStat 97: Site Module</u>. Additional information can also be found in the public <u>Statistical Guidance for Ecology Site Managers</u>.

Response: Landau recently conducted a statistical analysis of the total naphthalenes concentrations in the final confirmation soil samples from the 2024 soil excavation consistent with the references listed in the Ecology comment (i.e., MTCA regulation, petroleum guidance document, and the Ecology statistical guidance document). The process used to evaluate the data is presented on the attached flowchart from the Statistical Guidance for Ecology Site Managers in Attachment B. This process is summarized as follows:

- The total naphthalene results (23 samples) from the 2024 final excavation confirmation samples were entered into the MTCAStat 97 (MTCAStat) spreadsheet. For 21 of the 23 samples, the results shown in Table 2 of the Remedial Action Report show that none the three naphthalenes (1-methynaphthalene, 2-methynaphthalene, and naphthalene) that together make up the "total naphthalene" value were detected above the laboratory method reporting limit (MRL) of 0.01 mg/kg. For these samples, one half of the MRL, or 0.005 mg/kg, for each of the three compounds were added together to generate a total naphthalene concentration of 0.015 mg/kg. This approach, though different than that specified in WAC 173-340-740(7)(f), is appropriate given the known source of the contamination (underground storage tank [UST] release), cleanup method (excavation of all soil exceeding cleanup levels), and proximity of the compliance samples to each other.
- 2. Using both the probability plot method and W test to determine the distribution of the data, MTCAStat rejected both the normal and lognormal distributions. From the MTCAStat options for calculating an upper confidence level (UCL) when the data are not normally or lognormally distributed, Landau chose the Z-based UCL method. With this method, MTCAStat calculated a UCL of 0.594, which is well below the cleanup level of 5 mg/kg (see the MTCAStat compliance calculations table in Attachment B). It is important to note that if the MRL values had been used for the analysis, the calculated UCL would still have been well below the cleanup level.

3. For the last two evaluations in the flow chart, no single result was greater than two times the soil cleanup level (i.e., 10 mg/kg), and only 4.3 percent of the samples were greater than the soil cleanup level, less than the required maximum of 10 percent of the results.

Based on these results, the remaining total naphthalenes concentrations at the Site are in compliance with the MTCA Method A soil cleanup level and the Site is considered clean for total naphthalenes in soil (see the flowchart in Attachment B).

GROUNDWATER COMMENTS

Ecology Comment #1 regarding groundwater contamination: Based on available information, characterization of groundwater is incomplete and groundwater is not in compliance with MTCA (refer to the Ecology <u>Guidance for Remediation of Petroleum Contaminated Sites</u>). Groundwater was reported exceeding MTCA Method A cleanup levels in the permanent groundwater monitoring well PG-1 in December 2020, and below Method A in April 2019 and December 2023. The following additional information is necessary to demonstrate compliance with MTCA:

- Alternative A: Collect one additional round of groundwater sampling from well PG-1 for analysis with and without silica gel cleanup (SGC) and provide explanation of the results; please include chromatograms. Include the same analyses as your previous sampling event. Please refer to the Ecology <u>Guidance for Silica Gel Cleanup in Washington State</u>. If results with SGC are reported exceeding Method A, the recommended actions in Alternative B below are needed to demonstrate compliance with MTCA and Ecology would likely recommend the site be listed on the Contaminated Sites List. If results with SGC are reported below Method A, Ecology will evaluate any need for additional groundwater monitoring.
- Alternative B: Install at least two additional permanent groundwater monitoring wells and complete four consecutive quarters of groundwater monitoring events with results below Method A. We recommend placing one well hydraulically upgradient and one downgradient of existing well PG-1. As mentioned above, this would likely include Ecology's recommendation to list the site on the Contaminated Sites List and enroll in an Ecology Voluntary Cleanup Program (VCP).

Response: Landau elected to pursue Alternative A above and collected an additional groundwater sample from monitoring well PG-1 on August 8, 2024 and analyzed the sample for GRO, benzene, toluene, ethylbenzene, total xylenes (BTEX), DRO, and polycyclic aromatic hydrocarbons. For the DRO analysis, the sample was run both with and without SGC. The laboratory report associated with this sampling event, including chromatograms, is included in Attachment C. The GRO and BTEX results were all non-detect. For the DRO results, the analysis without using SGC reported a DRO concentration of 850 micrograms per liter (μ g/L) and the result of the analysis after SGC was 320 μ g/L. Using the approach outlined in the Ecology's *Guidance for Silica Gel Cleanup in Washington State* (SGC Guidance), the DRO concentration is 320 μ g/L (below the cleanup level of 500 ug/L) and the "polar organics" concentration is 530 μ g/L, slightly above the 500 μ g/L MTCA Method A cleanup level.

Based on these results, Landau re-sampled monitoring well PG-1 on September 3, 2024. This sample was only analyzed for DRO with and without SGC. The results of this re-sampling showed the sample

analyzed without SGC contained a DRO concentration of 791 μ g/L and the DRO concentration for the sample tested after SGC was 248 μ g/L. Making the same correction as before, the DRO concentration for the resampling is 248 μ g/L (below the cleanup level) while the polar organics concentration is 543 μ g/L, again, slightly above the 500 μ g/L cleanup level. The DRO and polar organics results from the two sampling events are shown in the table below.

Sample Number	Sample Date	DRO (w/o SGC)	DRO (after SGC)	Polar Organics
PG-1	08/08/2024	850 ug/L	320 ug/L	530 ug/L
PG-1-240903	09/03/2024	791 ug/L	248 ug/L	543 ug/L

The total polar organics concentrations in the groundwater samples from PG-1 may include naturally occurring polar organic compounds that reflect background conditions and, if the total concentration of these naturally occurring polar organic compounds is at or greater than only 43 μ g/L, the polar organic concentrations in the groundwater at PG-1 would be reduced to below the 500 μ g/L cleanup level.

To document the concentration of these naturally occurring organic compounds, Landau proposes installing a new monitoring well approximately 16 feet north (upgradient) of monitoring well PG-1 (see Figure 1). This new well is located north of the Subject Property and at a higher ground surface elevation than PG-1 (property area generally slopes north to south), and it is likely located hydraulically upgradient of PG-1.

The boring for the well will be drilled and sampled by using hollow-stem auger methods. The boring will be advanced to a depth of approximately 5 feet below the groundwater table (approximately 23 feet below ground surface [bgs]) and, during drilling, soil samples will be collected at approximate 2.5-foot intervals. Landau staff will screen the soil samples for the potential presence of petroleum hydrocarbons by using physical appearance, odor, and photoionization detector readings. If there is any field evidence of petroleum, the soil sample that exhibits the greatest evidence of contamination will be submitted to Apex Laboratories (Apex) in Tigard, Oregon for analysis. The soil sample collected from the bottom of the boring would also be submitted to Apex for potential analysis to delineate the vertical extent of contamination, if necessary. If there is no field evidence of contamination in the boring, then the soil sample collected immediately above the groundwater table would be submitted to Apex for analysis. The sample(s) would be analyzed for TPH-Dx and BTEX.

Once installed and developed, this well would be sampled and analyzed for DRO both with and without SGC to determine the background polar organics concentration. Consistent with the approach outlined in the SGC Guidance, this background polar organic concentration can be subtracted from the polar organic concentrations in PG-1, and the resulting adjusted concentrations compared to the 500 μ g/L cleanup level.

Ecology Comment #2 regarding groundwater contamination: *Please provide additional supporting information regarding the anticipated perched groundwater on site, and include at least one detailed*

cross-section showing lithology, water table elevations, explorations, and confirmation sample locations.

Response: The attached Figure 1 provides a site map displaying the extent and depths of the 2024 remedial excavation, final confirmation soil samples from the excavation, well PG-1, the location of the requested geologic cross section, and the pre-excavation soil borings and test pits that were located along this cross section. The attached Figure 2 presents Cross Section A-A', which is oriented approximately northwest-southeast from PG-1 (in the alley west of the Subject Property) through the 2024 excavation area. Prominent features include PG-1, the shoring wall abutting the western property boundary, several soil borings (P05, P07, and P10) drilled in 2019, the lateral and vertical extents of the 2021 UST excavation, 2023 test pits TP-1 and TP-4, and the 2024 remedial excavation with several final confirmation soil samples on the west sidewall (A1-WSW-9.5', A1-WSW-15.5', and A1-WSW-22.0') and in the eastern part of the excavation (B2-B-18.0', B2-ESW-12.0', and B2-ESW-10.0'). For the cross-section, the asphalt or concrete surface elevation was estimated based on a site survey conducted prior to site construction, and the approximate ground surface at the start of the remedial excavation (which was somewhat variable across the site) was estimated based on a review of field notes and site photographs.

As shown on the cross section, the site lithology consists of approximately 5 to 12 feet of primarily sandy, gravelly fill, as well as pea gravel, sand, and gravel backfill as shown in the 2021 UST excavation. The native soil beneath the fill for the majority of the northwest corner of the Subject Property (i.e., the 2024 excavation area) is very hard silt and clay that has been identified as the Lawton Clay. At the western 5 to 10 feet of the excavation area along the western property line, the fill is underlain by dense to very dense sand and silty sand (Vashon Till). As shown on the cross section, the Vashon Till appears to pinch out by boring P07, with only the Lawton Clay present beneath the fill throughout the rest of the excavation area. West of the property in the alley, the boring log for PG-1 (Attachment D and shown on the cross section) shows significantly different lithology than the subsurface beneath the property, with approximately 5 feet of fill underlain by a thicker (24 feet) zone of the Vashon Till, which in turn is underlain by the Lawton Clay.

As with the lithology, the presence or absence of groundwater is different beneath the alley compared to beneath the Subject Property. Since 2019, the groundwater table elevations in PG-1 ranged between approximately 76 and 79 feet (15 to 18 feet bgs) above the NAVD 88 datum, within the dense Vashon Till. As shown on the boring log for PG-1, the Vashon Till at this location is noted as being moist down to approximately 20 feet bgs, where it described as wet and also grading to slightly gravelly compared to the finer-grained soil above. It appears that the groundwater observed at PG-1 is likely located in this coarser-grained lens, which is laterally discontinuous and not present on the property. At PG-1, the Lawton Clay underlying the Vashon Till is described as moist. On the Subject Property, limited perched groundwater (seepage) was observed in two test pits TP-1 and TP-4, both located in or adjacent to the backfilled 2021 UST excavation. The seepage in TP-1 and TP-4 was approximately 3 to 10 ft shallower than groundwater table in PG-1 and occurred just above the underlying finer-grained Vashon Till or Lawton Clay units indicating these are discontinuous, perched

zones. It should also be noted that the boring log for TP-1 notes the soil as only moist down to approximately elevation 74 feet (below the water table seen in the alley at PG-1).

During the 2024 excavation activities, nearly all of the water observed was associated with stormwater run-on from the northern property boundary into the excavation area and rainfall directly into the excavation. This stormwater run-on is the likely source of water that collected within the 2021 excavation backfill and was observed slowly seeping into test pits TP-1 and TP-4. In addition to this stormwater run-on, minimal groundwater seepage was observed in the portion of the 2024 excavation that extended below the groundwater table at PG-1 and no groundwater accumulated in bottom of the excavation that was at least partially open for over two to three weeks. The lack of groundwater was due to the shoring wall holding back any groundwater in the Vashon Till at the property line and the high silt and clay content and density of the Lawton Clay beneath the property. Note that the top of the Lawton Clay beneath the property is at an elevation above the groundwater level observed in PG-1.

The minimal perched groundwater beneath the northwestern part of the Subject Property was removed during the 2024 soil excavation, and the area has been "capped" by a building and concrete footing to prevent additional stormwater run-on to the property. It is likely that there is no groundwater beneath the property that could be hydraulically connected to the off-property groundwater in PG-1.

Ecology Comment #3 regarding groundwater contamination: *Please include depth to groundwater measurements in the groundwater data table or as a separate table for ease of reference.*

Response: The table in Attachment E provides groundwater level measurements in monitoring well PG-1, which have ranged from 15.81 to 19.05 feet below the top of the well casing from April 2019 through September 2024.

SUBSEQUENT COMMUNICATIONS WITH ECOLOGY

On October 9, 2024, Mike Staton of Landau spoke with you to discuss the August and September 2024 groundwater sample analytical results from PG-1 and our plan to install and sample an upgradient monitoring well to assess the background polar organics concentrations that could be present in the groundwater at PG-1. After evaluating the groundwater sample analytical results, you prepared an email dated October 24, 2024 that provided additional comments and recommendations. The responses above were designed to also respond to the comments provided in said email.

RECOMMENDATIONS AND CONCLUSIONS

Landau recommends installing the new upgradient well at the location shown on Figure 1, and sampling this well for DRO with and without SGC to determine the background polar organic concentration, if any. We do not believe that any additional action should be conducted at this time.

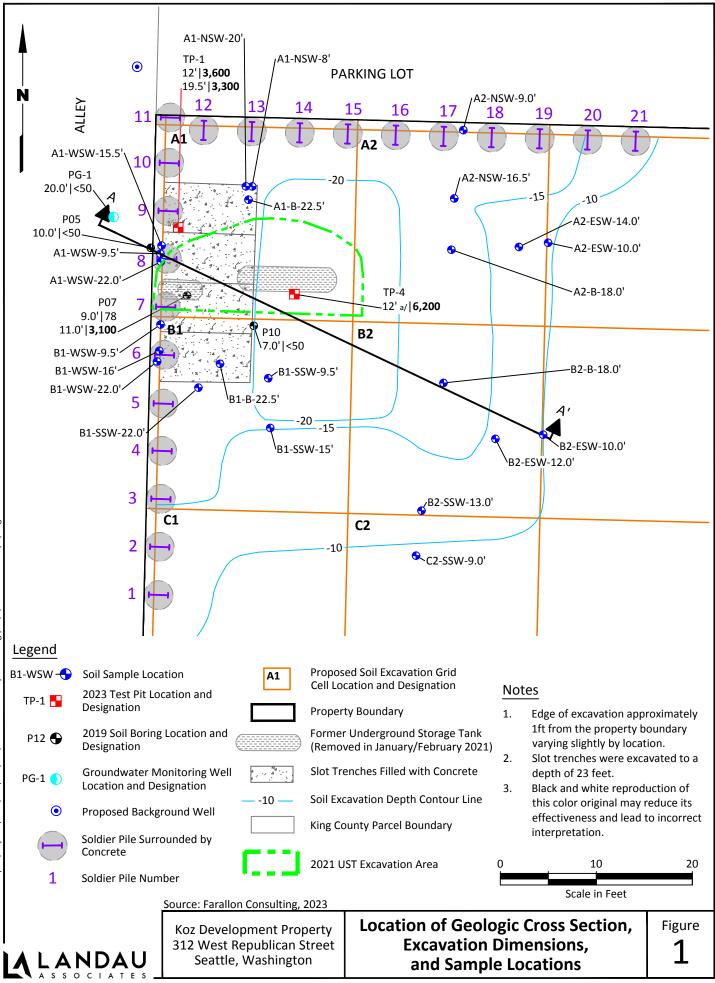
The background polar organic concentration would be used to correct the August and September 2024 polar organics concentrations from PG-1, as appropriate. If the adjusted polar organic

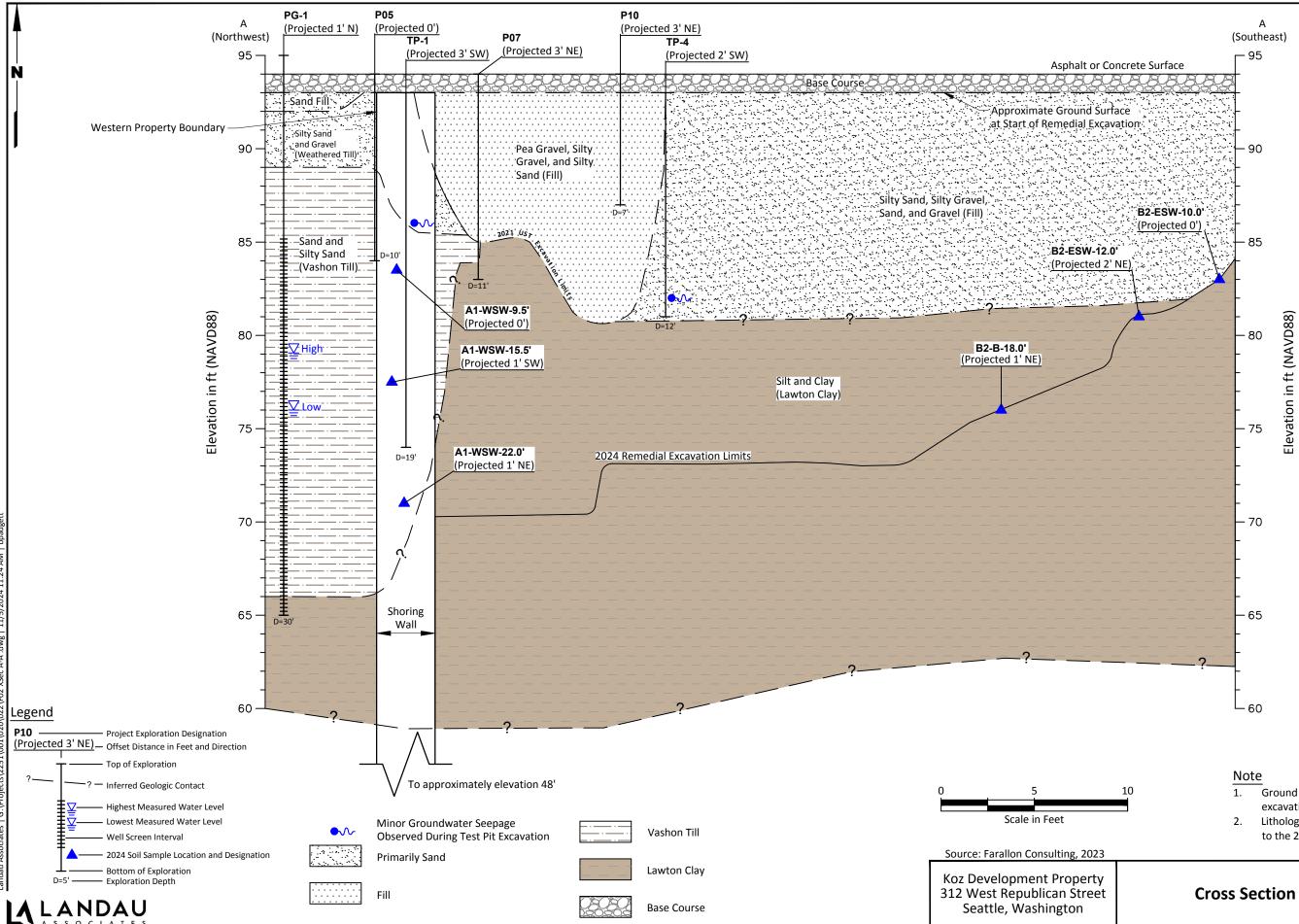
concentrations in PG-1 are below the cleanup level, then the available data would document that the groundwater adjacent to the Subject Property does not contain DRO or polar organics concentrations above the MTCA Method A cleanup levels. This result (if confirmed), in conjunction with the complete removal of contaminated soil and perched groundwater exceeding cleanup levels on the property (documented in the March 2024 Remedial Action Report), would support the determination that no further action is required at this Site.

Landau appreciates the opportunity to submit this response letter. If you have questions or require additional information, please contact Bian O'Neal at (425) 241-2627 or <u>boneal@landauinc.com</u>.

LANDAU ASSOCIATES, INC.

Brian O'Neal, PE Senior Associate


Mike Staton, LG Senior Principal


BDO/MDS/SEL/tmh

[\\EDMDATA01\PROJECTS\2251\001\020\R\ERTS 730872 ECOLOGY COMMENTS RESPONSE\LANDAU RESPONSE TO ECOLOGY COMMENTS - REVISED DRAFT 110524.DOCX]

Attachments:

- Figure 1.Location of Geologic Cross Section, Excavation Dimensions, and Sample LocationsFigure 2.Cross Section A-A'
- Attachment A. Amended Laboratory Report for sample B1-WSW-16
- Attachment B. Statistical Evaluation of Total Naphthalene Results
- Attachment C. Laboratory Reports for August and September 2024 Sampling of PG-1
- Attachment D. Well PG-1 Boring Log
- Attachment E. Water Level Elevation Measurement Data

- Ground surface at the start of the remedial excavation approximated.
- 2. Lithology shown is what was present prior to the 2024 excavation work.

Figure **Cross Section A-A'** 2

ATTACHMENT A

Amended Laboratory Report for sample B1-WSW-16

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Ave South Seattle, WA 98108-2419 (206) 285-8282 office@friedmanandbruya.com www.friedmanandbruya.com

August 2, 2024

Brian O'Neal, Project Manager Landau Associates, Inc. 155 NE 100th St, Suite 302 Seattle, WA 98125

Dear Mr O'Neal:

Included is the amended report from the testing of material submitted on February 7, 2024 from the Koz Development 2251001.010.015, F&BI 402101 project. The case narrative was updated.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: data@landauinc.com LDU0208R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Ave South Seattle, WA 98108-2419 (206) 285-8282 office@friedmanandbruya.com www.friedmanandbruya.com

February 8, 2024

Brian O'Neal, Project Manager Landau Associates, Inc. 155 NE 100th St, Suite 302 Seattle, WA 98125

Dear Mr O'Neal:

Included are the results from the testing of material submitted on February 7, 2024 from the Koz Development 2251001.010.015, F&BI 402101 project. There are 14 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

ale

Michael Erdahl Project Manager

Enclosures c: data@landauinc.com LDU0208R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 7, 2024 by Friedman & Bruya, Inc. from the Landau Associates Koz Development 2251001.010.015, F&BI 402101 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Landau Associates</u>
402101 -01	A1-WSW-15.5'
402101 -02	B1-WSW-16'

Review of the NWTPH-Dx chromatogram for sample B1-WSW-16' showed the presence of a middle distillate product, such as diesel fuel. A pattern of peaks indicating the presence of a low boiling or gasoline range product in the sample was not observed. The NWTPH-Gx concentration in B1-WSW-16' was qualified accordingly.

Benzo(g,h,i)perylene in the 8270E laboratory control sample did not meet the acceptance criteria. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 02/08/24 Date Received: 02/07/24 Project: Koz Development 2251001.010.015, F&BI 402101 Date Extracted: 02/08/24 Date Analyzed: 02/08/24

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
A1-WSW-15.5' 402101-01	<5	111
B1-WSW-16' 402101-02 1/5	1,200 x	ip
Method Blank ^{04-204 MB}	<5	117

ENVIRONMENTAL CHEMISTS

Date of Report: 02/08/24 Date Received: 02/07/24 Project: Koz Development 2251001.010.015, F&BI 402101 Date Extracted: 02/07/24 Date Analyzed: 02/07/24

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 50-150)
A1-WSW-15.5' 402101-01	<50	<80 j	95
B1-WSW-16' 402101-02	1,900	<80 j	100
Method Blank ^{04-323 MB}	<50	<80 j	94

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	A1-WSW-15.8 02/07/24 02/07/24 02/07/24 Soil mg/kg (ppm)		Client: Project: Lab ID: Data File: Instrument: Operator:	Landau Associates Koz Development 2251001.010.015 402101-01 020727.D GCMS4 MD
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz	-d4	% Recovery: 101 96 102	Lower Limit: 86 86 83	Upper Limit: 114 115 116
Compounds:	-	Concentration mg/kg (ppm)		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene		<0.03 <0.05 <0.05 <0.1 <0.05		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B1-WSW-16' 02/07/24 02/07/24 02/07/24 Soil mg/kg (ppm)	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Landau Associates Koz Development 2251001.010.015 402101-02 020728.D GCMS4 MD
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 106 111 86	Lower Limit: 86 86 83	Upper Limit: 114 115 116
Compounds:		Concentration mg/kg (ppm)		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene		<0.03 <0.05 1.2 1.7 2.4		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 02/07/24 02/07/24 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Landau Associates Koz Development 2251001.010.015 04-0283 mb 020706.D GCMS4 MD
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz	101	Lower Limit: 86 86 83	Upper Limit: 114 115 116
Compounds:	Concentration mg/kg (ppm)	1	
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene	<0.03 <0.05 <0.05 <0.1 <0.05		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	A1-WSW-15.5' 02/07/24 02/08/24 O2/08/24 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Landau Associates Koz Development 2251001.010.015 402101-01 1/5 020809.D GCMS12 VM
Surrogates: Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	% Recovery: 90 ca 74 nol 66 72	Lower Limit: 16 46 17 31	Upper Limit: 137 122 154 167
Compounds:	Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene	$ \begin{array}{c} < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \end{array} $		
Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	ene <0.01 rene <0.01 cene <0.01		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B1-WSW-16' 02/07/24 02/07/24 02/08/24 Soil mg/kg (ppm) D	Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Landau Associates Koz Development 2251001.010.015 402101-02 1/5 020810.D GCMS12 VM
Surrogates: Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14		6 Recovery: 109 ca 70 65 62	Lower Limit: 16 46 17 31	Upper Limit: 137 122 154 167
Compounds:		oncentration ng/kg (ppm)		
Naphthalene		0.62		
2-Methylnaphthale	ne	2.2		
1-Methylnaphthale	ne	2.2		
Acenaphthylene		< 0.01		
Acenaphthene		0.065		
Fluorene		< 0.01		
Phenanthrene		1.0		
Anthracene		< 0.01		
Fluoranthene		0.017		
Pyrene		0.081		
Benz(a)anthracene		< 0.01		
Chrysene		0.012		
Benzo(a)pyrene		< 0.01		
Benzo(b)fluoranthe	ne	< 0.01		
Benzo(k)fluoranthe		< 0.01		
Indeno(1,2,3-cd)pyr		< 0.01		
Dibenz(a,h)anthrac	ene	< 0.01		
Benzo(g,h,i)perylen	le	<0.01 jl		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 02/07/24 02/08/24 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Landau Associates Koz Development 2251001.010.015 04-0330 mb 1/5 020808.D GCMS12 VM
Surrogates: Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	% Recovery: 95 ca 78 nol 68 75	Lower Limit: 16 46 17 31	Upper Limit: 137 122 154 167
Compounds:	Concentration mg/kg (ppm)		
Compounds: Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe	$ \begin{array}{c} < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \end{array} $		
Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	ene <0.01 cene <0.01 cene <0.01		

ENVIRONMENTAL CHEMISTS

Date of Report: 02/08/24 Date Received: 02/07/24 Project: Koz Development 2251001.010.015, F&BI 402101

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 402097-01 (Duplicate)						
		Samp	ole Du	plicate		
	Reporting	Resu	lt F	lesult	RPD	
Analyte	Units	(Wet V	Wt) (W	et Wt)	(Limit 20)	
Gasoline	mg/kg (ppm)	<5		<5	nm	
Laboratory Code: L	aboratory Contro	ol Sample	e Percent			
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria	_	
Gasoline	mg/kg (ppm)	40	117	70-130		

ENVIRONMENTAL CHEMISTS

Date of Report: 02/08/24 Date Received: 02/07/24 Project: Koz Development 2251001.010.015, F&BI 402101

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 4	02071-02 (Matrix	x Spike)					
			(Wet wt)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	350	85	85	64-136	0
Laboratory Code: Laboratory Control Sample							
	Departing	Coileo	Percent		am a a		
A 1 /	Reporting	Spike	Recovery	-			
Analyte	Units	Level	LCS	Crite	ria		
Diesel Extended	mg/kg (ppm)	5,000	80	78-12	21		

ENVIRONMENTAL CHEMISTS

Date of Report: 02/08/24 Date Received: 02/07/24 Project: Koz Development 2251001.010.015, F&BI 402101

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 402083-01 (Matrix Spike)

	(1.1401111 ~ p1110)		Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Benzene	mg/kg (ppm)	2	< 0.03	82	73	29 - 129	12
Toluene	mg/kg (ppm)	2	< 0.05	86	79	35 - 130	8
Ethylbenzene	mg/kg (ppm)	2	< 0.05	90	81	32 - 137	11
m,p-Xylene	mg/kg (ppm)	4	< 0.1	88	80	34 - 136	10
o-Xylene	mg/kg (ppm)	2	< 0.05	88	76	33 - 134	15

Laboratory Code: Laboratory Control Sample

Laboratory Couc. Laboratory C	Sincion Sample		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	2	97	65-136
Toluene	mg/kg (ppm)	2	98	66 - 126
Ethylbenzene	mg/kg (ppm)	2	102	64-123
m,p-Xylene	mg/kg (ppm)	4	97	68 - 128
o-Xylene	mg/kg (ppm)	2	96	67 - 129

ENVIRONMENTAL CHEMISTS

Date of Report: 02/08/24 Date Received: 02/07/24 Project: Koz Development 2251001.010.015, F&BI 402101

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: 402101-01 1/5 (Matrix Spike)

Laboratory Code: 402101-01 1/5 (Matrix Spike)							
·	,	-	Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Ūnits 🗍	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.83	< 0.01	70	73	50 - 150	4
2-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	74	76	50-150	3
1-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	71	73	50 - 150	3
Acenaphthylene	mg/kg (ppm)	0.83	< 0.01	75	75	50-150	0
Acenaphthene	mg/kg (ppm)	0.83	< 0.01	74	75	50 - 150	1
Fluorene	mg/kg (ppm)	0.83	< 0.01	75	75	50 - 150	0
Phenanthrene	mg/kg (ppm)	0.83	< 0.01	76	73	10-170	4
Anthracene	mg/kg (ppm)	0.83	< 0.01	74	75	37-139	1
Fluoranthene	mg/kg (ppm)	0.83	< 0.01	76	78	10-203	3
Pyrene	mg/kg (ppm)	0.83	< 0.01	77	78	10-208	1
Benz(a)anthracene	mg/kg (ppm)	0.83	< 0.01	78	78	37-146	0
Chrysene	mg/kg (ppm)	0.83	< 0.01	81	80	36-144	1
Benzo(a)pyrene	mg/kg (ppm)	0.83	< 0.01	80	83	40-150	4
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	< 0.01	78	82	45 - 157	5
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	< 0.01	77	83	50 - 150	7
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	< 0.01	75	71	24 - 145	5
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	< 0.01	75	71	31-137	5
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	< 0.01	66	64	14-141	3

Laboratory Code: Laboratory Control Sample 1/5

Laboratory Code: Laboratory	Control San	npie i/o		
			Percent	
	Reporting	Spike	Recovery	Acceptance
A 1 /				
Analyte	Units	Level	LCS	Criteria
Naphthalene	mg/kg (ppm)	0.83	77	59-105
2-Methylnaphthalene	mg/kg (ppm)	0.83	82	62-108
1-Methylnaphthalene	mg/kg (ppm)	0.83	79	62-108
Acenaphthylene	mg/kg (ppm)	0.83	84	61-111
Acenaphthene	mg/kg (ppm)	0.83	85	61-110
Fluorene	mg/kg (ppm)	0.83	84	62-114
Phenanthrene	mg/kg (ppm)	0.83	83	64-112
Anthracene	mg/kg (ppm)	0.83	82	63-111
Fluoranthene	mg/kg (ppm)	0.83	82	66-115
Pyrene	mg/kg (ppm)	0.83	80	65-112
Benz(a)anthracene	mg/kg (ppm)	0.83	83	64-116
Chrysene	mg/kg (ppm)	0.83	88	66-119
Benzo(a)pyrene	mg/kg (ppm)	0.83	89	62-116
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	87	61-118
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	88	65-119
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	73	64-130
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	72	67-131
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	60 vo	67-126

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

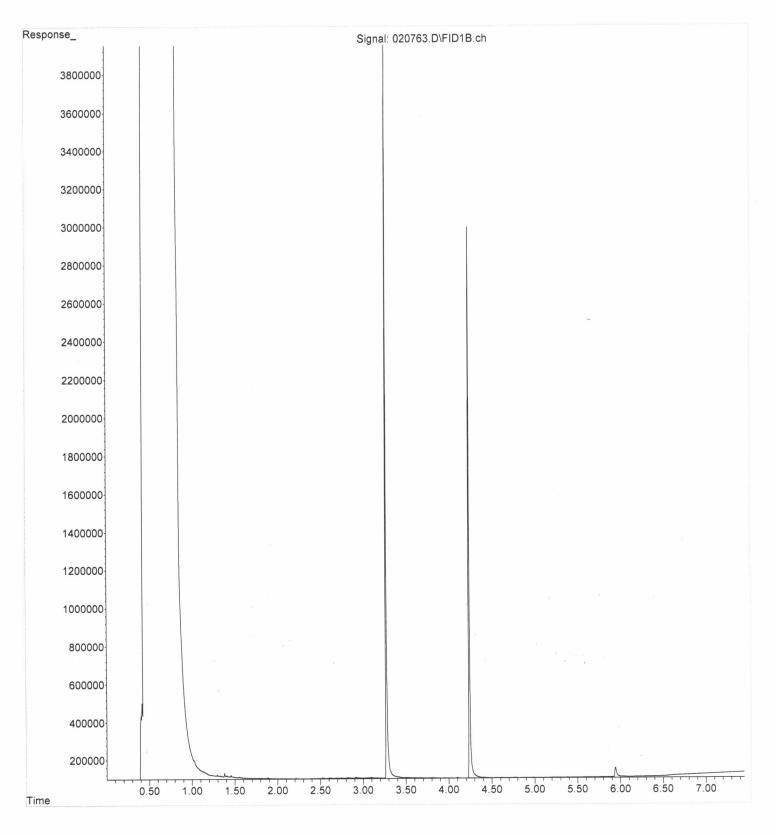
lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

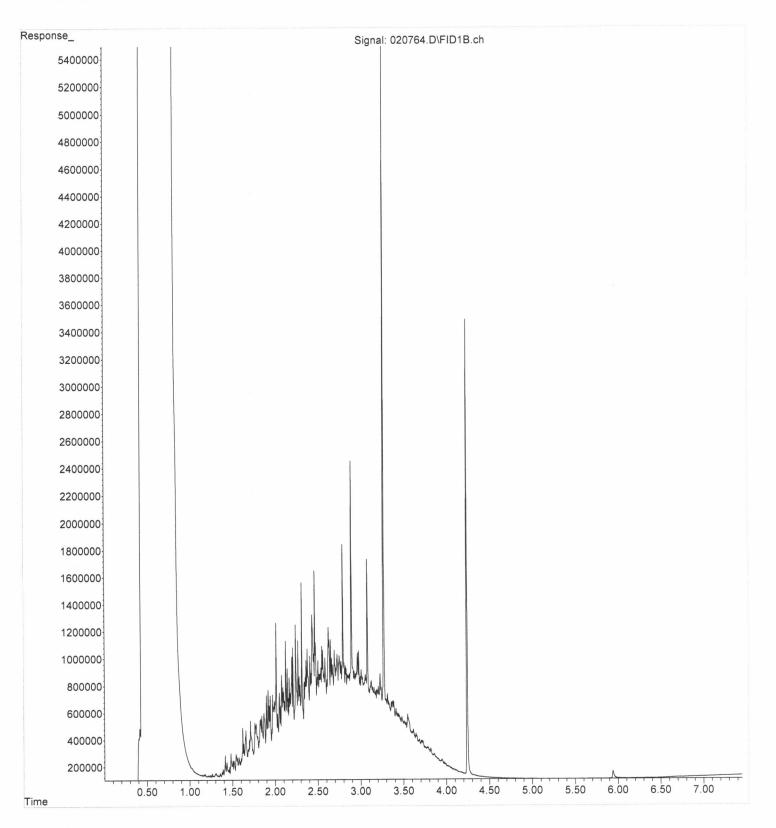
nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

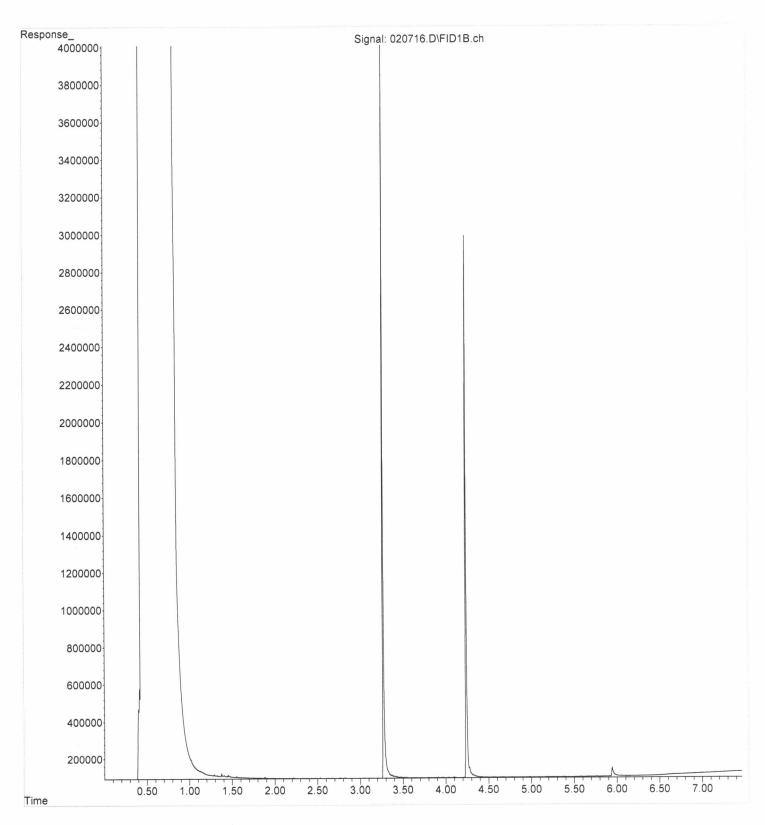
ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

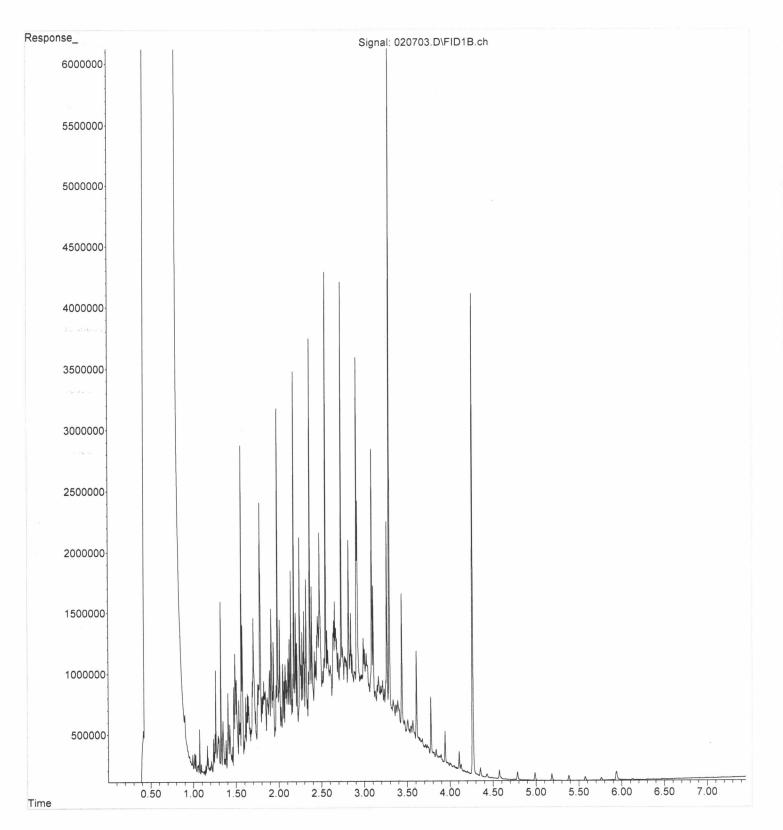

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.


َرِ 10/2018	WHITE COPY - Laboratory YELLOW COPY - Project File PINK COPY - Client Representative	
Date Time	Date 2/2/24 Time 100 b Date Time Time	Date 2 7 24 Time 2:10
Company		dow)
Printed Name	, hum	tsch
Signature	$ \rangle$	Signature ADIM VICE VICE
Received by	Received by A , A Relinquished by	Relinquished by
3		•
	· · · · ·	
Other		
2		
Dissolved metal samples were field filtered		
- Silica gel cleanup 🔲		
NWTPH-Dx - Acid wash cleanup		
aliquot from clear portion \Box	×7	1-W/W -16
Allow water samples to settle, collect		41-WSW - 15,5 217124
	Soil S Contraction	COUNTRY
Observations/Comments	Dr	Sample I.D. Date
(1 # M 10 60/	With Jul Working @ varup
Stored on ice: Yes No	NOT SX	Sand Bartha T. B. D. S. C. Mallon day
Shipment Method: Pick MP	JE C	Project Contact BVIMM OV
	Chevers Ch	Sampler's Name HASINUCON G
Special Handling Requirements:	Narocarboin /12/19	Project Location/Event Scattle, WA
	development Project No. 2251001,010,015 /2 Thesting Parameters	Project Name 402 development
f	Page	Record
22-t Turnaround Time: Standard	Violation Display Display <thdisplay< th=""> <</thdisplay<>	A LANDAU Chain-of-Custody
01	24 VSBI	101604

)


File :P:\Proc_GC13\02-07-24\020763.D
Operator : TL
Acquired : 07 Feb 2024 10:23 pm using AcqMethod Dx.M
Instrument : GC13
Sample Name: 402101-01
Misc Info :
Vial Number: 56


File :P:\Proc_GC13\02-07-24\020764.D
Operator : TL
Acquired : 07 Feb 2024 10:34 pm using AcqMethod Dx.M
Instrument : GC13
Sample Name: 402101-02
Misc Info :
Vial Number: 57

File :P:\Proc_GC13\02-07-24\020716.D
Operator : TL
Acquired : 07 Feb 2024 01:36 pm using AcqMethod Dx.M
Instrument : GC13
Sample Name: 04-323 mb
Misc Info :
Vial Number: 15

File :P:\Proc_GC13\02-07-24\020703.D Operator : TL Acquired : 07 Feb 2024 08:16 am using AcqMethod Dx.M Instrument : GC13 Sample Name: 500 Dx 70-26F Misc Info : Vial Number: 3

ATTACHMENT B

Statistical Evaluation of Total Naphthalene Results

Compliance calculations

Uncensored values

Lognormal mean

Mean

Std. devn.

Median

Min.

Max.

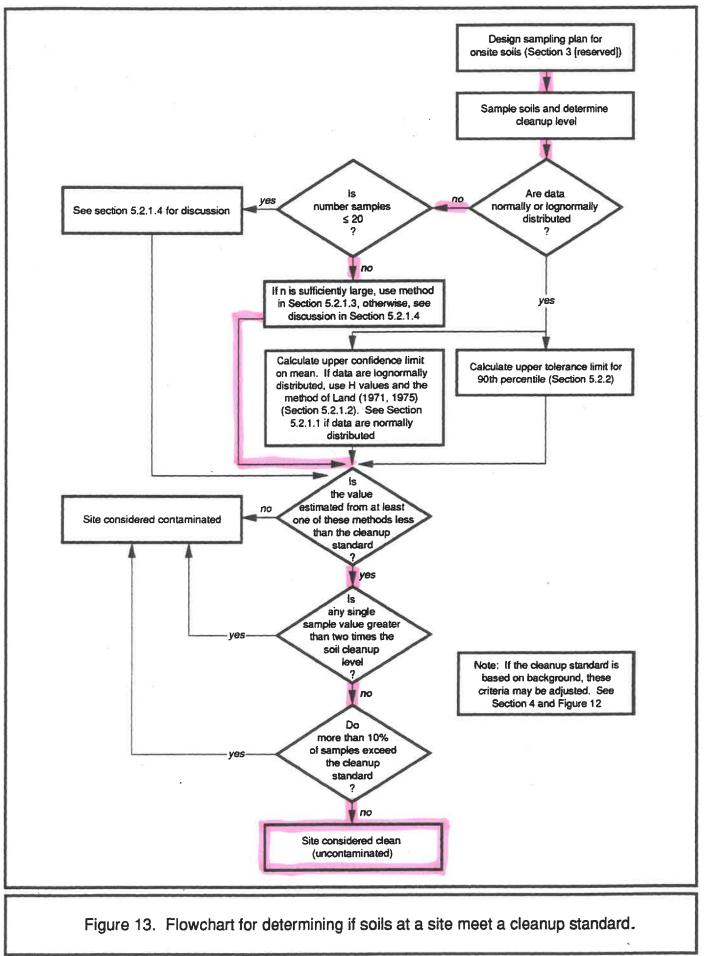
0.194

0.24

0.05

0.015

0.015


5.02

1.04299571

0.015 1 Naphthalene Upper Confidence Limit Calculation, MTCAStat 970.015 2 Koz Development Property, Seattle, Washington

0.015	3		-
0.015	4		
0.015	5	Number of samples	Uncensor
0.015	6	Uncensored 23	
0.015	7	Censored	Lognor
0.015	8	Detection limit or PQL	:
0.015	9	Method detection limit	
0.015	10	TOTAL 23	
0.015	11		
0.015	12		
0.015	13		
0.015	14		
0.015	15	Lognormal distribution? Norm	al distribution?
0.015	16	r-squared is: 0.272 r-squa	ared is:
0.015	17	Recommendations:	
0.015	18	Reject lognormal distribution.	
0.015	19	W value is 0.2984. This is less than the tabled va	alue of 0.914
0.015	20	Reject normal distribution.	
0.015	21	W value is 0.2206. This is less than the tabled va	alue of 0.914
0.094	22		
5.02	23		
		UCL (based on t-statistic) is 0.609456017694122	2

UCL (based on Z-statistic) is 0.594

C704-19-09 0392

Laboratory Reports for August and September 2024 Sampling of PG-1

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Ave South Seattle, WA 98108-2419 (206) 285-8282 office@friedmanandbruya.com www.friedmanandbruya.com

August 16, 2024

Brian O'Neal, Project Manager Landau Associates, Inc. 155 NE 100th St, Suite 302 Seattle, WA 98125

Dear Mr O'Neal:

Included are the results from the testing of material submitted on August 8, 2024 from the KOZ GW 2251001.020.021, F&BI 408169 project. There are 11 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data@LandauInc.com LDU0816R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on August 8, 2024 by Friedman & Bruya, Inc. from the Landau Associates KOZ GW 2251001.020.021, F&BI 408169 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Landau Associates
408169 -01	PG-1-240808

Phenanthrene in the 8270E method blank was detected above the reporting limit. Sample PG-1-240808 contained this analyte at a level greater than ten times the concentration observed in the method blank, therefore the data were reported.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 08/16/24 Date Received: 08/08/24 Project: KOZ GW 2251001.020.021, F&BI 408169 Date Extracted: 08/13/24 Date Analyzed: 08/13/24

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
PG-1-240808 408169-01	<1	<1	<1	<3	<100	98

Results Reported as ug/L (ppb)

Method Blank	<1	<1	<1	<3	<100	97
04-1755 MB						

ENVIRONMENTAL CHEMISTS

Date of Report: 08/16/24 Date Received: 08/08/24 Project: KOZ GW 2251001.020.021, F&BI 408169 Date Extracted: 08/09/24 Date Analyzed: 08/14/24

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
PG-1-240808 408169-01	320	<250	100
Method Blank 04-1900 MB	<50	<250	100

ENVIRONMENTAL CHEMISTS

Date of Report: 08/16/24 Date Received: 08/08/24 Project: KOZ GW 2251001.020.021, F&BI 408169 Date Extracted: 08/09/24 Date Analyzed: 08/09/24

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 50-150)
PG-1-240808 408169-01	850	<250	94
Method Blank 04-1900 MB	<50	<250	88

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	PG-1-24080 08/08/24 08/13/24 08/14/24 Water ug/L (ppb)	98	Client: Project: Lab ID: Data File: Instrument: Operator:	Landau Associates KOZ GW 2251001.020.021 408169-01 081416.D GCMS9 VM
Surrogates: Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophe Terphenyl-d14	nol	% Recovery:	Lower Limit: 15 25 10 41	Upper Limit: 144 128 142 138
Compounds:		Concentration ug/L (ppb)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe	ene	5.6 3.3 11 <0.02 0.62 1.1 1.7 0.054 <0.02 0.050 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02		
Benzo(k)fluoranthe Indeno(1,2,3-cd)py Dibenz(a,h)anthrae Benzo(g,h,i)peryler	ene rene cene	<0.02 <0.02 <0.02 <0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 08/13/24 08/15/24 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Landau Associates KOZ GW 2251001.020.021 04-1915 mb 081441.D GCMS12 VM
Surrogates: Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	nol	% Recovery: 79 76 71 95	$\begin{matrix} \text{Lower} \\ 11 \\ 25 \\ 10 \\ 50 \end{matrix}$	Upper Limit: 173 128 140 150
Compounds:		Concentration ug/L (ppb)		
Compounds: Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene	ene	ug/L (ppb) <0.2 <0.2 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02		
Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	ene rene cene	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Date of Report: 08/16/24 Date Received: 08/08/24 Project: KOZ GW 2251001.020.021, F&BI 408169

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 408169-01 (Duplicate)								
	Reporting	Sample	Duplicate	RPD				
Analyte	Units	Result	Result	(Limit 20)				
Benzene	ug/L (ppb)	<1	<1	nm				
Toluene	ug/L (ppb)	<1	<1	nm				
Ethylbenzene	ug/L (ppb)	<1	<1	nm				
Xylenes	ug/L (ppb)	<3	<3	nm				
Gasoline	ug/L (ppb)	<100	<100	nm				

Laboratory Code: Laboratory Control Sample

		Percent					
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria			
Benzene	ug/L (ppb)	50	94	70-130			
Toluene	ug/L (ppb)	50	90	70-130			
Ethylbenzene	ug/L (ppb)	50	86	70-130			
Xylenes	ug/L (ppb)	150	87	70-130			
Gasoline	ug/L (ppb)	1,000	90	70-130			

ENVIRONMENTAL CHEMISTS

Date of Report: 08/16/24 Date Received: 08/08/24 Project: KOZ GW 2251001.020.021, F&BI 408169

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample Silica Gel							
Percent Percent							
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD	
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)	
Diesel Extended	ug/L (ppb)	2,500	80	92	65 - 151	14	

ENVIRONMENTAL CHEMISTS

Date of Report: 08/16/24 Date Received: 08/08/24 Project: KOZ GW 2251001.020.021, F&BI 408169

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	76	80	65 - 151	5

ENVIRONMENTAL CHEMISTS

Date of Report: 08/16/24 Date Received: 08/08/24 Project: KOZ GW 2251001.020.021, F&BI 408169

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: Laboratory Control Sample

Analyte	Reporting Units	Spike Level	Percent Recovery LCS	Percent Recovery LCSD	Acceptance Criteria	RPD (Limit 20)
0						(Limit 20)
Naphthalene	ug/L (ppb)	10	72	74	58-93	3
2-Methylnaphthalene	ug/L (ppb)	10	74	76	63-97	3
1-Methylnaphthalene	ug/L (ppb)	10	74	76	62-99	3
Acenaphthylene	ug/L (ppb)	10	87	89	68-111	2
Acenaphthene	ug/L (ppb)	10	87	89	67-104	2
Fluorene	ug/L (ppb)	10	89	93	70-130	4
Phenanthrene	ug/L (ppb)	10	93	96	70-130	3
Anthracene	ug/L (ppb)	10	91	95	70-130	4
Fluoranthene	ug/L (ppb)	10	97	101	70-130	4
Pyrene	ug/L (ppb)	10	95	97	70-130	2
Benz(a)anthracene	ug/L (ppb)	10	97	101	70-130	4
Chrysene	ug/L (ppb)	10	94	98	70-130	4
Benzo(a)pyrene	ug/L (ppb)	10	96	100	70-130	4
Benzo(b)fluoranthene	ug/L (ppb)	10	101	104	70-130	3
Benzo(k)fluoranthene	ug/L (ppb)	10	97	100	70-130	3
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	10	88	88	70-130	0
Dibenz(a,h)anthracene	ug/L (ppb)	10	89	89	70-130	0
Benzo(g,h,i)perylene	ug/L (ppb)	10	81	81	68-131	0

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

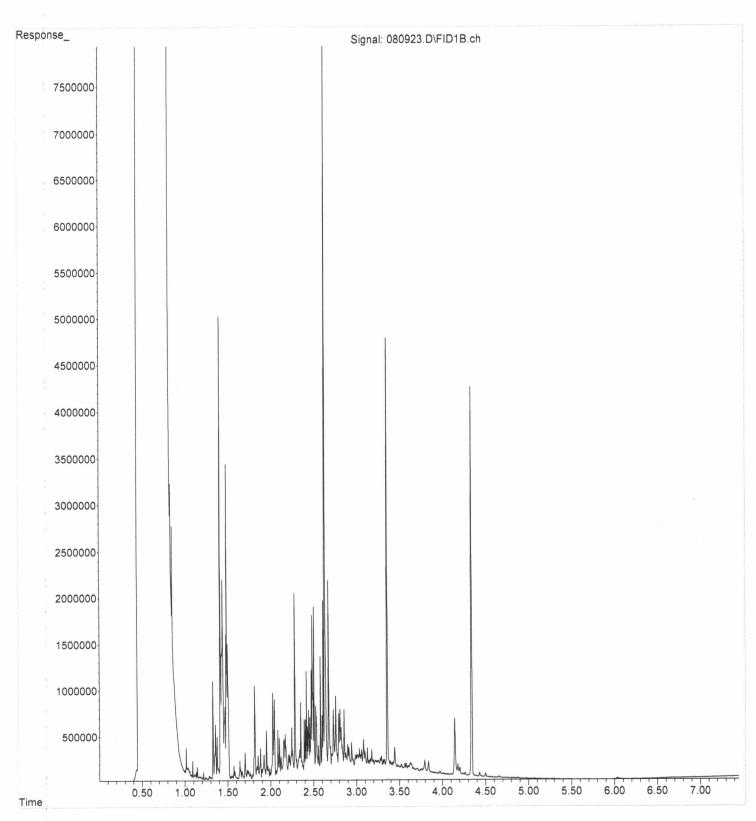
lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

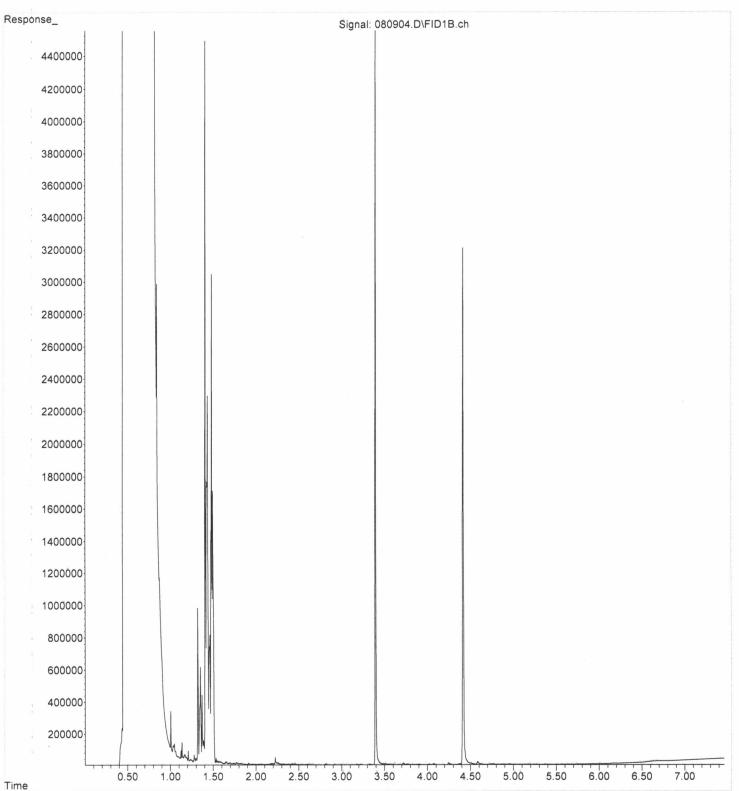
nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

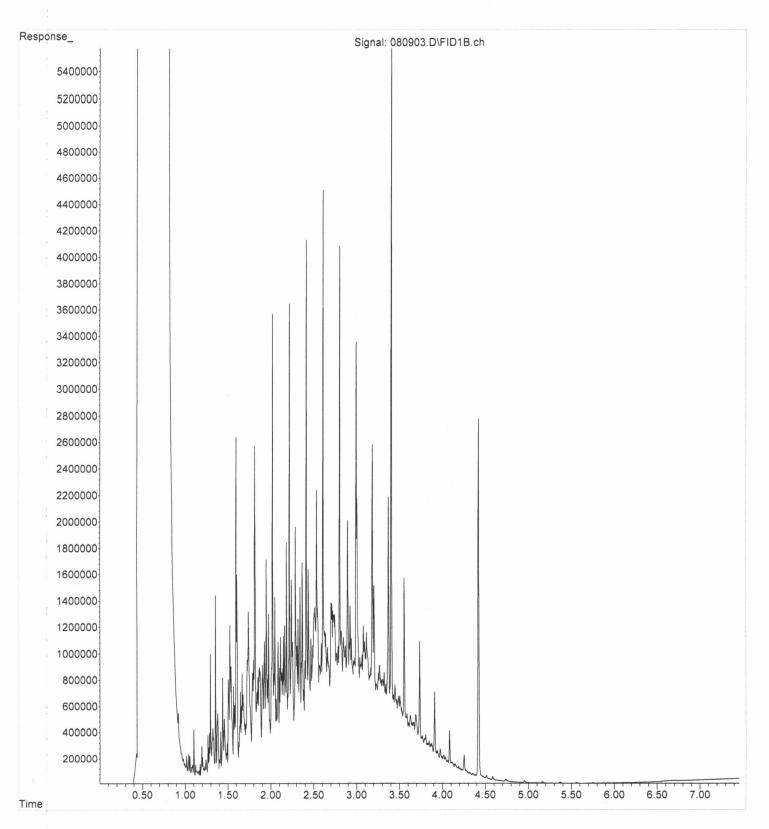
ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.


vo - The value reported fell outside the control limits established for this analyte.

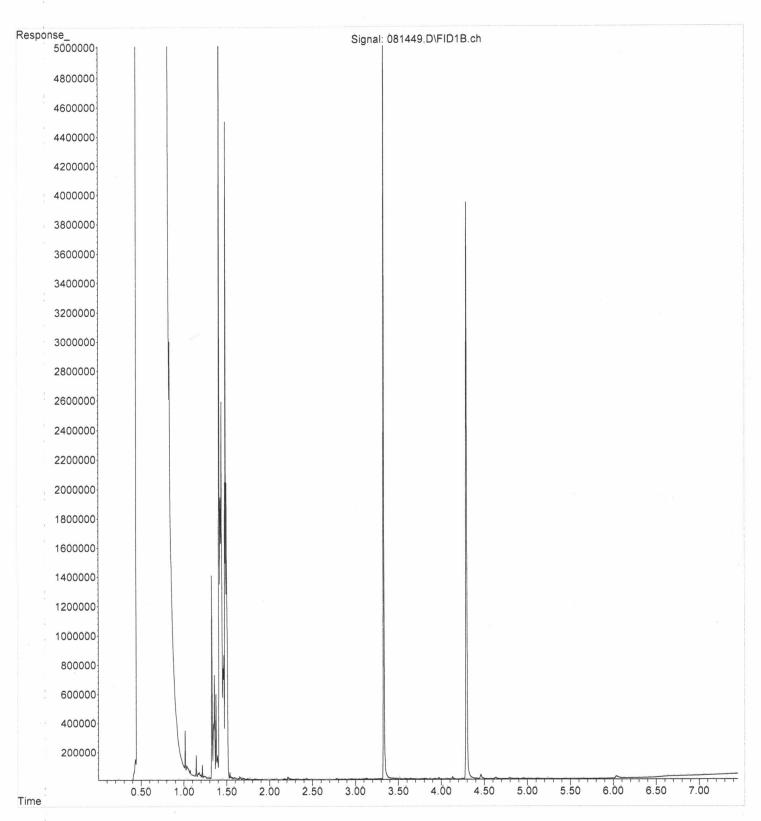
x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

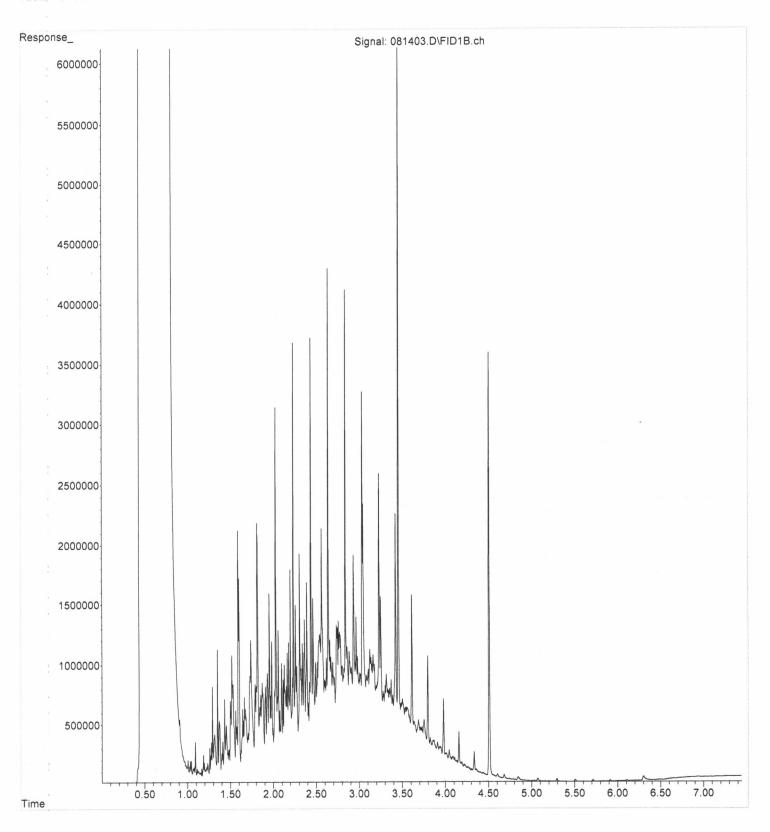

	Seattle WA 98108 (206) 285-8282 office@friedmanandbruya.com	Friedman & Bruya, Inc. 5500 4th. Ave S.									r	PG-1-240808	Sample ID		Phone 425 967 ZodeEmail BONes albordau in ion	City, State, ZIP Sealt	Address NW 155 NELOOM St	Company Landau Associates	408/69 SI
Received by:	Received by Relinquished by:	Relinquished by:	S									01A-J	Lab ID		ii Bolleala	seattle, WA 98125	oth st.	lociates	RONE
		pr	SIGNATURE							-		8/8/24	Date Sampled		lomday ini ior	8125			alajantur
		•							1. J. A			1300	Time Sampled			- REMARF	hoz G		
	Q	Darius										ÄQ	Sample Type		Project specific RLs? -	3	GW	PROJECT NAME	SAMPLERS (signature)
	-E	so	PRI								Gub	A	# of Jars		1.			2	OF (
	Owl	5	PRINT NAME									8	NWTPH-Dx	\Box	Yes / No			4	SUC
	Nr.	; throw	VAM			ţ						Я.	NWTPH-Gx						DI /
		201	F									R	BTEX EPA 8021		2251001 020.021		22		M N
													NWTPH-HCID	A	000	IN	5		2
						0				ļ		~	VOCs EPA 8260	NAL	0	VOI	8	PO#	1 3
		F		·		an			 			8	PAHs EPA 8270	YSES	02.	INVOICE TO	070	#	1 Xe
	4	B	0			amples			 			-	PCBs EPA 8082	REG	30	C	51001.070.07		õ
	3	mon	COMPANY					ļ				<	SILICA GEL	ANALYSES REQUESTED			Ē		68-08-24
		Γ	ANY			received			 				29 g.	TED	De		1		do l
						Ve								-	Default	Sf urchiv		Q Standa RUSH	Page #
						9				-		E' N		-	: Dis	SAMPLE DI Archive samples		ard tu	RNAI
1	10	8/6/24	DATE		aus	162	4				Sisteme churcan lab	L EXHA HOOUS F.IN		•	Default: Dispose after 30 days	SAMPLE DISPOSAL		A Standard turnaround	Page # of TURNAROUND TIME
	1 - Pe	124	TE			ဂိ					- Contraction	ease of Silva	ZA C		after	orua		ound	VD TI
		K									2	Sil	Nites 8	7	30 d	AL		by:) V
	50	i Ka	TIME								C.S.S	a	3		ays				Vw2/
		÷.											4						(ii)

SAM	IPLE CONDIT	TION UPON	RECEI	PT CHE	CKI	LIST			
PROJECT # 408(6	CLIENT_	ANDAU	· · · · · · · · · · · · · · · · · · ·		INI' DA'		D	081	10/24
If custody seals are p	resent on coo	ler, are the	y intact?		φΛ	NA	ΟY	ES	D NO
Cooler/Sample tempe	rature	(•	-	Therm	ometer	ID: Fluke	°C 96312917
Were samples receive	d on ice/cold	packs?		E.			ØY	ES	□ NO
How did samples arri	ve? Counter	Picked up	by F&BI			edEx/	UPS	/GSO	
Is there a Chain-of-Cu *or other representative docu	* ustody* (COC uments, letters, a))] nd/or shipping r	Ø YES nemos	D NO		Initi Date		E WB/8	
Number of days samp	oles have been	n sitting pri	or to rec	ceipt at	labo	orato	ry _	0	days
Are the samples clean							Z I	ÆS	D NO
Were all sample cont leaking etc.)? (explain "	ainers receiv no" answer below	e d intact (i.)	e. not br	oken,	n		P 1	ÆS	D NO
Were appropriate sam	mple contain	ers used?	•	Ø YES	5	D NO)	🗆 Ur	nknown
If custody seals are p	present on sar	nples, are t	hey inta	ct?	1	NA		YES	D NO
Are samples requirin	ıg no headspa	ace, headspa	ace free?		6	NA		YES	DNO.
Is the following infor	rmation provi	ided on the	COC, an	d does					
Comple ID's	Ver I No					C] Not	on CO	C/label
Data Compled	V Voe T No					L	1 1400	011 00	Orido of
Time Sampled	🗹 Yes 🗆 No						11100	011 00	
# of Containers	🗹 Yes 🗆 No								
Relinquished	′ I Yes □ No								
Requested analysis	Ø Yes □ On I	Hold					,		
Other comments (use	e a separate pa	ge if needed)	5						
Air Samples: Were a Number of unused T	ny additiona	l canisters/t	ubes rec	eived?	ø	NA		YES	D NO
FRIEDMAN & BRUYA, INC./FO									05/01/24


File :P:\Proc_GC14\08-09-24\080923.D
Operator : TL
Acquired : 09 Aug 2024 12:48 pm using AcqMethod DX.M
Instrument : GC14
Sample Name: 408169-01
Misc Info :
Vial Number: 106

File :P:\Proc_GC14\08-09-24\080904.D Operator : TL Acquired : 09 Aug 2024 08:51 am using AcqMethod DX.M Instrument : GC14 Sample Name: 04-1900 mb Misc Info : Vial Number: 6


File :P:\Proc_GC14\08-09-24\080903.D
Operator : TL
Acquired : 09 Aug 2024 08:39 am using AcqMethod DX.M
Instrument : GC14
Sample Name: 500 Dx 71-152C
Misc Info :
Vial Number: 3


File :P:\Proc_GC14\08-14-24\081452.D
Operator : TL
Acquired : 14 Aug 2024 09:23 pm using AcqMethod DX.M
Instrument : GC14
Sample Name: 408169-01 sg
Misc Info :
Vial Number: 41

File :P:\Proc_GC14\08-14-24\081449.D Operator : TL Acquired : 14 Aug 2024 08:47 pm using AcqMethod DX.M Instrument : GC14 Sample Name: 04-1900 mb sg Misc Info : Vial Number: 38

File :P:\Proc_GC14\08-14-24\081403.D Operator : TL Acquired : 14 Aug 2024 08:31 am using AcqMethod DX.M Instrument : GC14 Sample Name: 500 Dx 71-152C Misc Info : Vial Number: 3

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Wednesday, October 30, 2024

Mike Staton Landau Associates (Northgate) 155 NE 100th St #302 Seattle, WA 98125

RE: A4I0854 - KOZ GW - 2251001.020.021

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A4I0854, which was received by the laboratory on 9/5/2024 at 10:39:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <u>mpoquiz@apex-labs.com</u>, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information
Acceptable Receipt Temperature is less than, or equal to, 6 degC (not frozen), or received on ice the same day as sampling.
(See Cooler Receipt Form for details)
Default Cooler 4.8 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Landau Associates (Northgate)	Project: KOZ GW	
155 NE 100th St #302	Project Number: 2251001.020.021	<u>Report ID:</u>
Seattle, WA 98125	Project Manager: Mike Staton	A4I0854 - 10 30 24 1603

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INF	ORMATION	
Client Sample ID	Laboratory ID	Matrix	Date Sampled Date Received
PG-1-240903	A4I0854-01	Water	09/03/24 13:20 09/05/24 10:39

Apex Laboratories

mulale 09-

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Landau Associates (Northgate)	Project: KOZ GW
155 NE 100th St #302	Project Number: 2251001.020.021
Seattle, WA 98125	Project Manager: Mike Staton

<u>Report ID:</u> A4I0854 - 10 30 24 1603

ANALYTICAL SAMPLE RESULTS

	Diesel and/or Oil Hydrocarbons by NWTPH-Dx										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
PG-1-240903 (A4I0854-01)				Matrix: Wate	ər	Batch: 24I0278					
Diesel	791	38.5	76.9	ug/L	1	09/10/24 20:09	NWTPH-Dx LL	F-13			
Oil	ND	76.9	154	ug/L	1	09/10/24 20:09	NWTPH-Dx LL				
Surrogate: o-Terphenyl (Surr)		Reco	very: 80 %	Limits: 50-150 %	6 I	09/10/24 20:09	NWTPH-Dx LL				

Apex Laboratories

mulale 695

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Landau Associates (Northgate)
155 NE 100th St #302

Seattle, WA 98125

Project: KOZ GW Project Number: 2251001.020.021 Project Manager: Mike Staton

<u>Report ID:</u> A4I0854 - 10 30 24 1603

ANALYTICAL SAMPLE RESULTS

	Diesel and/or Oil Hydrocarbons by NWTPH-Dx with Silica Gel Column Cleanup										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
PG-1-240903 (A4I0854-01)				Matrix: Wate	ər	Batch: 2410523					
Diesel	248	38.5	76.9	ug/L	1	09/17/24 21:32	NWTPH-Dx/SGC	F-13			
Oil	ND	76.9	154	ug/L	1	09/17/24 21:32	NWTPH-Dx/SGC				
Surrogate: o-Terphenyl (Surr)		Reco	very: 71 %	Limits: 50-150 %	5 I	09/17/24 21:32	NWTPH-Dx/SGC				

Apex Laboratories

milule 695

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Landau Associates (Northgate) 155 NE 100th St #302 Seattle, WA 98125 Project: KOZ GW

Project Number: 2251001.020.021 Project Manager: Mike Staton

<u>Report ID:</u> A4I0854 - 10 30 24 1603

QUALITY CONTROL (QC) SAMPLE RESULTS

		Di	iesel and/o	or Oil Hyd	Irocarbor	is by NW1	[PH-Dx					
Analyte	Result	Detection L Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24I0278 - EPA 3510C (I	Fuels/Acid	Ext.)					Wa	ter				
Blank (24I0278-BLK1)			Prepareo	1: 09/10/24	11:06 Ana	lyzed: 09/10	/24 18:59					
NWTPH-Dx LL												
Diesel	ND	40.0	80.0	ug/L	1							
Oil	ND	80.0	160	ug/L	1							
Surr: o-Terphenyl (Surr)		Reco	wery: 81 %	Limits: 50	0-150 %	Dilt	ution: 1x					
LCS (24I0278-BS1)			Prepared	1: 09/10/24	11:06 Ana	lyzed: 09/10	/24 19:22					
NWTPH-Dx LL												
Diesel	333	40.0	80.0	ug/L	1	500		67	36-132%			
Surr: o-Terphenyl (Surr)		Reco	wery: 80 %	Limits: 50	0-150 %	Dilt	ution: 1x					
LCS Dup (24I0278-BSD1)			Prepareo	1: 09/10/24	11:06 Ana	lyzed: 09/10	/24 19:45					Q-1
NWTPH-Dx LL												
Diesel	338	40.0	80.0	ug/L	1	500		68	36-132%	1	30%	
Surr: o-Terphenyl (Surr)		Reco	wery: 82 %	Limits: 50)-150 %	Dilı	ution: 1x					

Apex Laboratories

milule 695

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Landau Associates (Northgate) 155 NE 100th St #302

Seattle, WA 98125

 Project:
 KOZ GW

 Project Number:
 2251001.020.021

Project Manager: Mike Staton

<u>Report ID:</u> A4I0854 - 10 30 24 1603

QUALITY CONTROL (QC) SAMPLE RESULTS

	Diesel	and/or Oil I	lydrocarb	ons by N	WTPH-D>	with Silic	ca Gel Co	olumn Cle	anup			
Analyte	Result	Detection L Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24I0523 - EPA 3510C (Fuels/Acid	Ext.) w/SGC					Wa	ter				
Blank (24I0523-BLK1)			Prepare	d: 09/10/24	11:06 Ana	lyzed: 09/17	/24 20:22					
NWTPH-Dx/SGC												
Diesel	ND	40.0	80.0	ug/L	1							
Oil	ND	80.0	160	ug/L	1							
Surr: o-Terphenyl (Surr)		Reco	wery: 71 %	Limits: 50)-150 %	Dilı	ution: 1x					
LCS (24I0523-BS1)			Prepare	d: 09/10/24	11:06 Ana	lyzed: 09/17	/24 20:45					
NWTPH-Dx/SGC												
Diesel	319	40.0	80.0	ug/L	1	500		64	36-132%			
Surr: o-Terphenyl (Surr)		Reco	wery: 73 %	Limits: 50)-150 %	Dilt	ution: 1x					
LCS Dup (24I0523-BSD1)			Prepare	d: 09/10/24	11:06 Ana	lyzed: 09/17	/24 21:09					Q-
NWTPH-Dx/SGC												
Diesel	333	40.0	80.0	ug/L	1	500		67	36-132%	4	30%	
Surr: o-Terphenyl (Surr)		Reco	wery: 77 %	Limits: 50)-150 %	Dilı	ution: 1x					

Apex Laboratories

milule 695

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Landau Associates (N</u> 155 NE 100th St #30 Seattle, WA 98125		F	<u>Report ID:</u> A4I0854 - 10 30 24 1603				
		SAMPLE	PREPARATION I	NFORMATION			
		Diesel and	l/or Oil Hydrocarbor	is by NWTPH-Dx			
Prep: EPA 3510C (Fu Lab Number	uels/Acid Ext.) Matrix	Method	Sampled	Prepared	Sample Initial/Final	Default Initial/Final	RL Prep Factor
<u>Batch: 2410278</u> A4I0854-01	Water	NWTPH-Dx LL	09/03/24 13:20	09/10/24 11:06	1040mL/2mL	1000mL/2mL	0.96
	Dies	el and/or Oil Hydrocar	bons by NWTPH-D	with Silica Gel Col	umn Cleanup		
Prep: EPA 3510C (Fu	uels/Acid Ext.) w/s	SGC			Sample	Default	RL Prep
Lab Number Batch: 2410523	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A4I0854-01	Water	NWTPH-Dx/SGC	09/03/24 13:20	09/10/24 11:06	1040mL/2mL	1000mL/2mL	0.96

Apex Laboratories

mulale 093

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Landau Associates (Northgate) 155 NE 100th St #302 Seattle, WA 98125 Project: KOZ GW

Project Number: 2251001.020.021 Project Manager: Mike Staton <u>Report ID:</u> A4I0854 - 10 30 24 1603

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

- F-13 The chromatographic pattern does not resemble the fuel standard used for quantitation
- Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.

Apex Laboratories

milule 695

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Landau Associates (Northgate) 155 NE 100th St #302

Seattle, WA 98125

Project: KOZ GW

Project Number: 2251001.020.021 Project Manager: Mike Staton <u>Report ID:</u> A4I0854 - 10 30 24 1603

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the de	etection or reporting limit.
---	------------------------------

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Validated Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ). If no value is listed ('-----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as " dry", " wet", or " " (blank) designation.

- " dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry") See Percent Solids section for details of dry weight analysis.
- "wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"____ Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"--- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"*** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Landau Associates (Northgate) 155 NE 100th St #302 Seattle, WA 98125

Project: KOZ GW

Project Number: 2251001.020.021 Project Manager: Mike Staton <u>Report ID:</u> A4I0854 - 10 30 24 1603

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to one half of the Reporting Limit (RL).

Blank results for gravimetric analyses are evaluated to the Reporting Level, not to half of the Reporting Level.

-For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.

-For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

-Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Landau Associates (Northgate) 155 NE 100th St #302 Seattle, WA 98125 Project: KOZ GW Project Number: 2251001.020.021 Project Manager: Mike Staton

<u>Report ID:</u> A4I0854 - 10 30 24 1603

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex	Laboratories	

Matrix	Analysis	TNI_ID	Analyte	TNI_ID	Accreditation
All reported analytes are included in Apex I aboratories' current ORELAP scope					

Secondary Accreditations

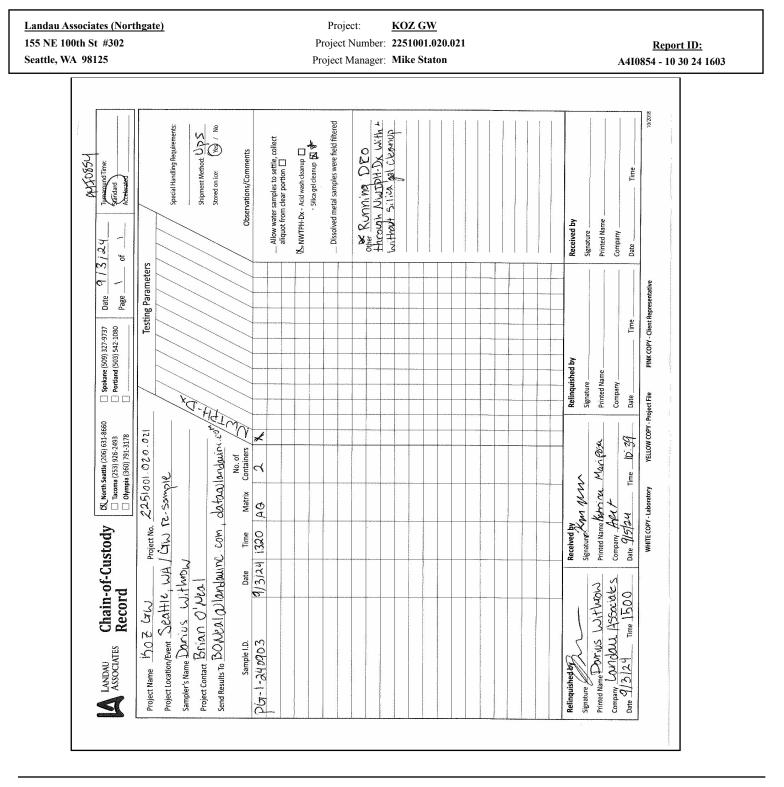
Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation. Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.


Apex Laboratories

milule 09

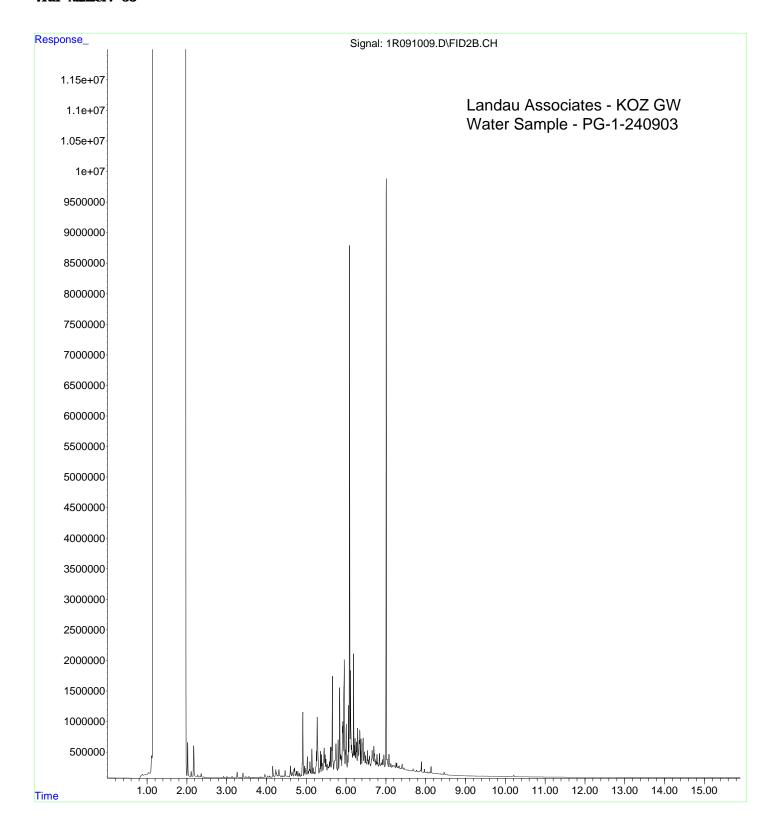
Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

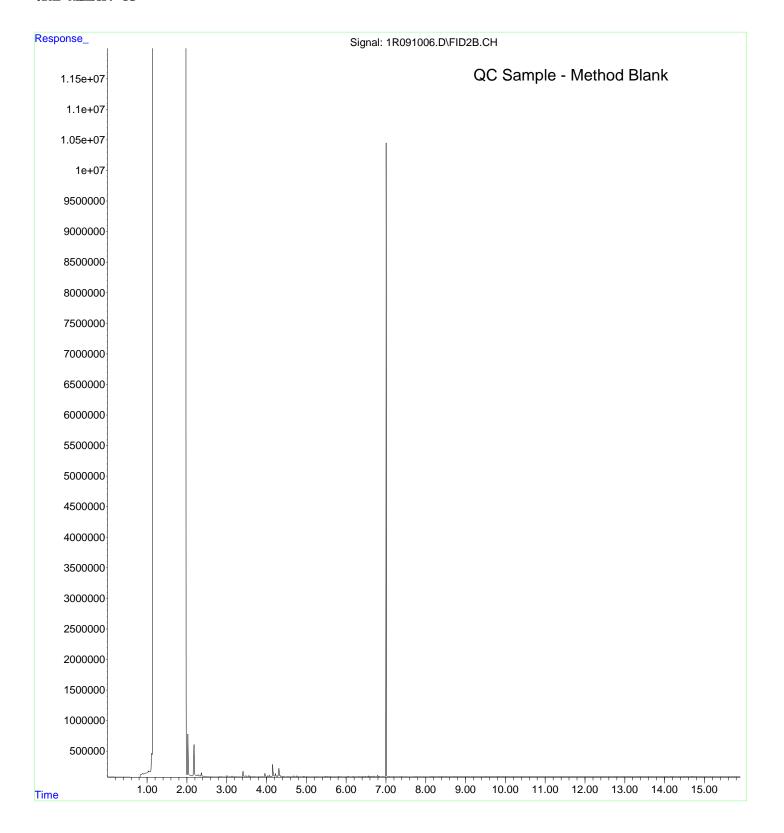
Apex Laboratories

milal 69.

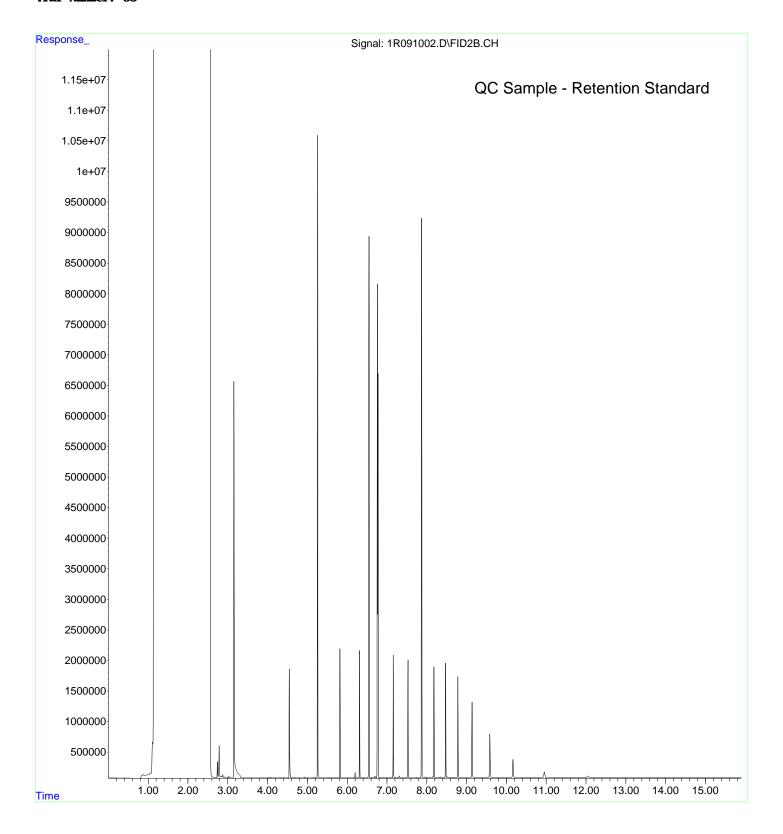
Apex Laboratories, LLC

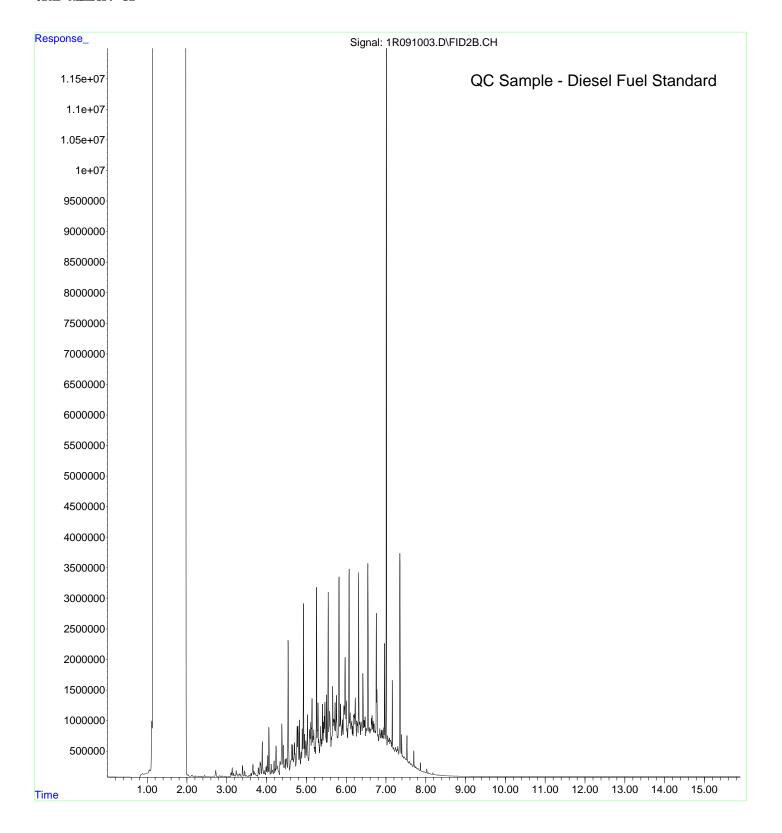

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

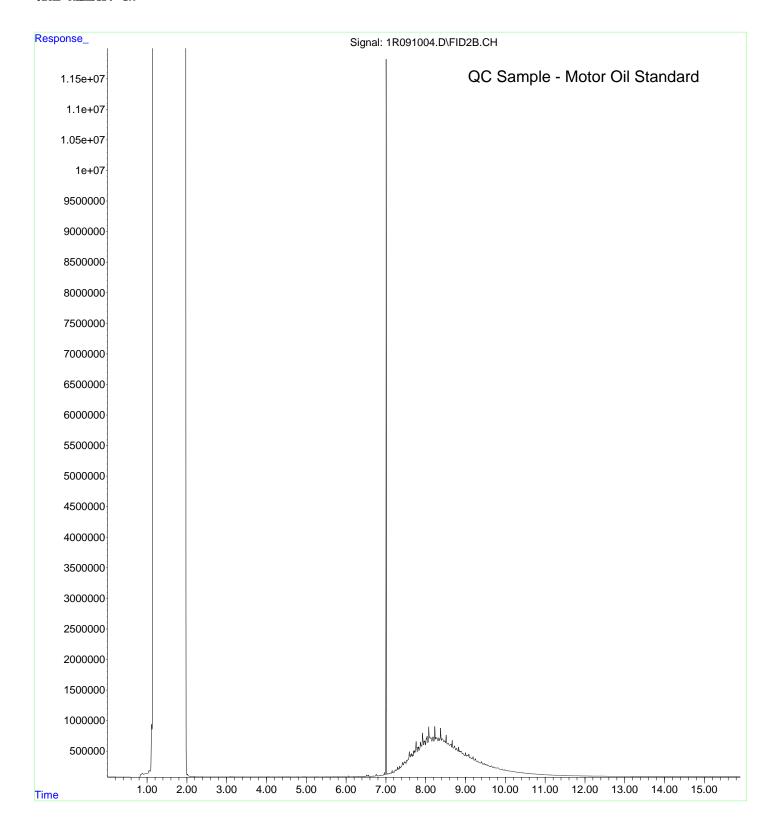
ndau Associates (Northgate)	Project: KOZ GW	
5 NE 100th St #302	Project Number: 2251001.020.021	Report ID:
attle, WA 98125	Project Manager: Mike Staton	A4I0854 - 10 30 24 160
Client: Londan Astoric Project/Project #: Koz C Delivery Info: Date/time received: Instant Dolivered by: Apex_Client_ From USDA Regulated Origin <u>Cooler Inspection</u> Date/time Chain of Custody included? Signed/dated by client? Contains USDA Reg. Soils? Contains USDA Reg. Soils? Custody seals? (Y/N) Received on ice? (Y/N) Temp. blanks? (Y/N)	AFEXLABS COOLER RECEIPT FORM Element WO#: $A4 5 0$ %50 Element WO#: $A4 5 0$ %50 GW / 225 1001.020.021 @ $10:32$ By: $\mathcal{K}2M$	
Temp. blanks? (Y/N) Ice type: (Gel/Real/Other) Condition (In/Out): Cooler out of temp? (Y/N) of Green dots applied to out of te Out of temperature samples fo	$\frac{y}{y}$ $\frac{y}{k_{e_{i_{1}}}}$ $\frac{k_{e_{i_{1}}}}{N}$ ssible reason why:	
	No Comments: es No Comments:	
COC/container discrepancies	form initiated? Yes No Comments:	
Comments	adspace? Yes No NA X	1172
12 26E 748 03 9571 914 Labeled by:	Witness: Cooler Inspected by:	3 R-02 -

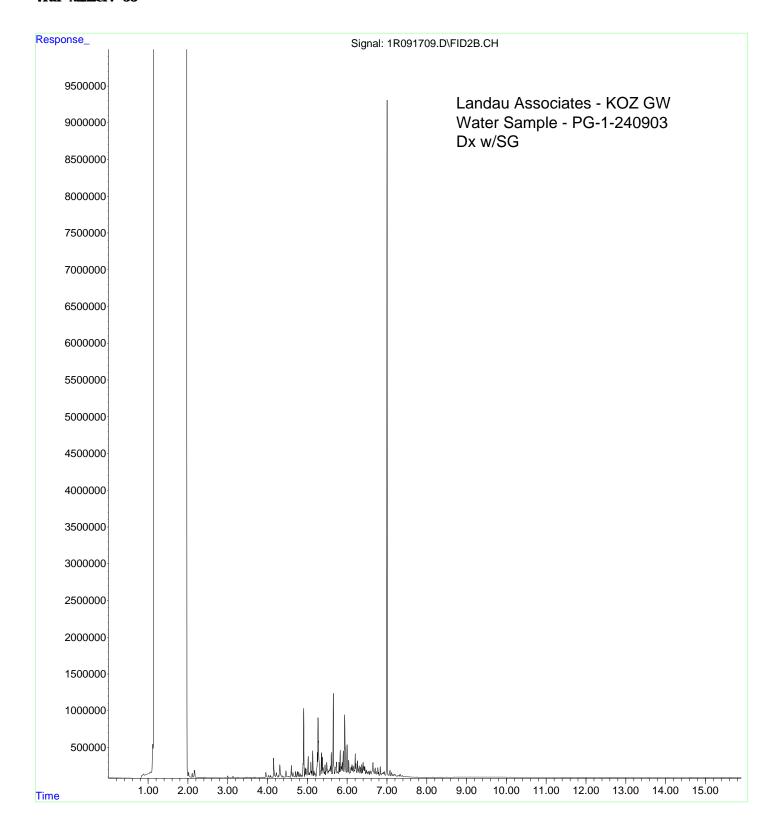

Apex Laboratories

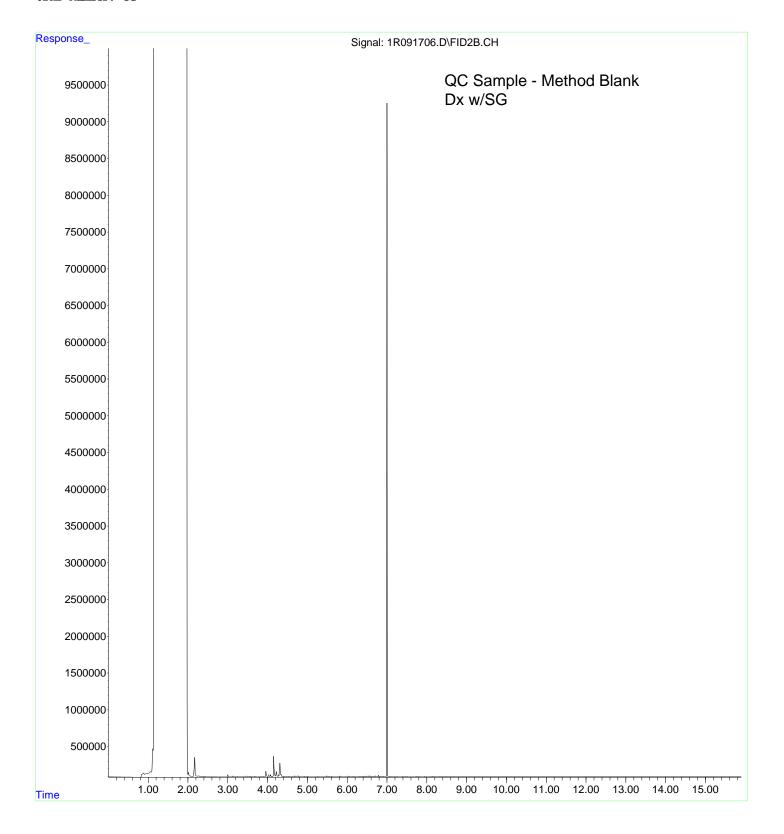
mulale 095


File: C: \nsdchem\1\copied data\4I10062\1R091009. DOperator: BLLAcquired: 10 Sep 20248: 09 pm using AcqMethod A1F40422. MInstrument: HP G1530ASample Name:A4I0854-01Msc Info:Vial Number:56

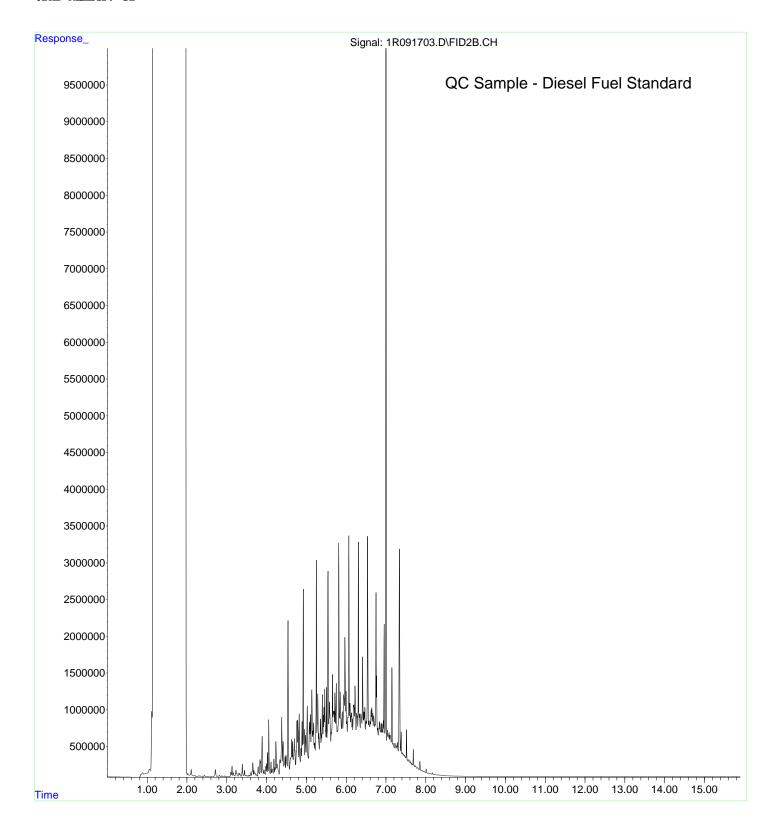

File: C: \nsdchem\1\copied data\4I10062\1R091006. DOperator: BLLAcquired: 10 Sep 20246: 59 pm using AcqMethod A1F40422. MInstrument: HP G1530ASample Name:24I0278- BLKIMisc Info:Vial Number:53

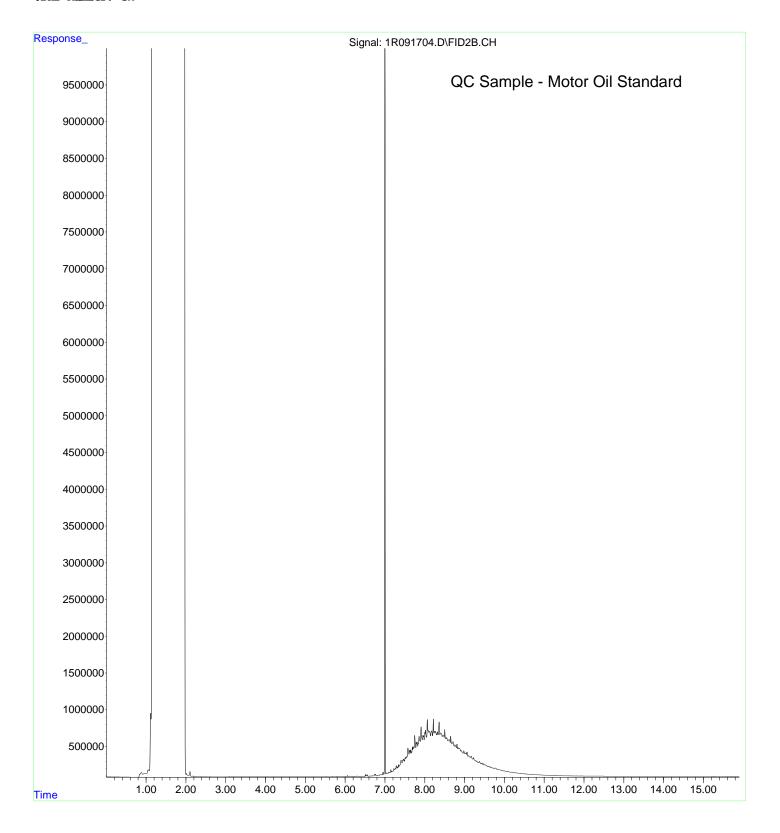

File: C: \nsdchem\1\copied data\4I10062\1R091002. DOperator: BLLAcquired: 10 Sep 20242: 49 pm using AcqMethod A1F40422. MInstrument: HP G1530ASample Name:4I10062- RES1Msc Info:Vial Number:95


File: C: \nsdchem\1\copied data\4I10062\1R091003. DOperator: BLLAcquired: 10 Sep 20243:13 pm using AcqMethod A1F40422. MInstrument: HP G1530ASample Name:4I10062-CCV1Msc Info:Vial Number:51

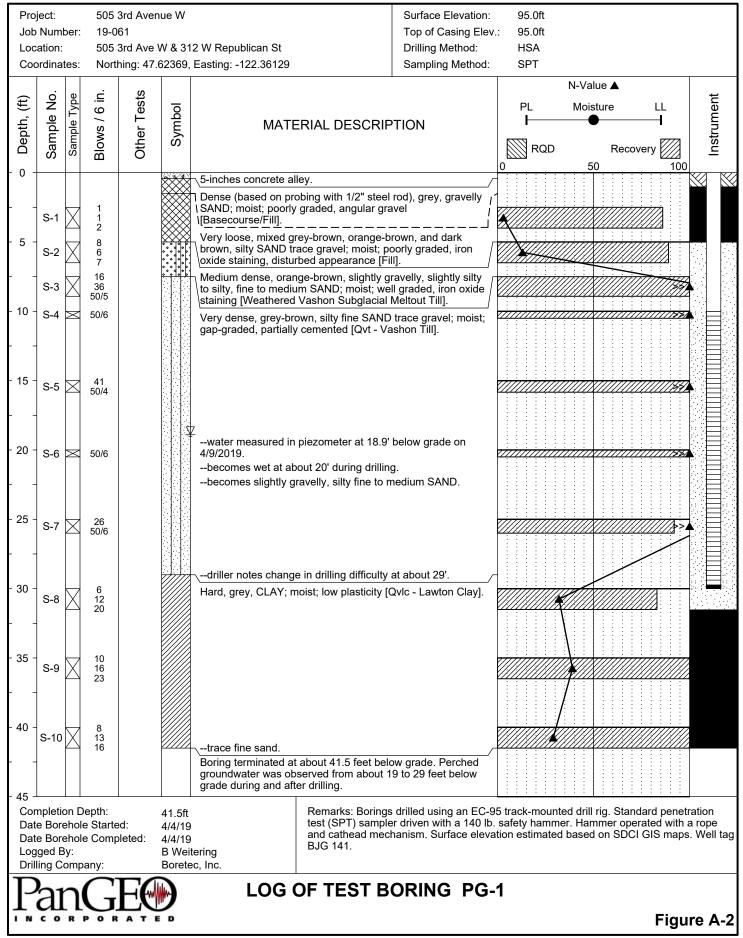

File: C: \nsdchem\1\copied data\4I10062\1R091004. DOperator: BLLAcquired: 10 Sep 20243: 37 pm using AcqMethod A1F40422. MInstrument: HP G1530ASample Name:4I10062-CCV2Msc Info:Vial Number:52


File: C: \nsdchem\1\copied data\4I17072\1R091709. DOperator: BLLAcquired: 17 Sep 20249: 32 pm using AcqMethod A1F40422. MInstrument: HP G1530ASample Name:A4I0854-01Msc Info:Vial Number:56


File: C: \nsdchem\1\copied data\4I17072\1R091706. DOperator: BLLAcquired: 17 Sep 20248: 22 pm using AcqMethod A1F40422. MInstrument: HP G1530ASample Name:24I0523- BLKIMisc Info:Vial Number:53


File:C:\msdchem\1\copied data\4I17072\1R091702.DOperator: HLAcquired: 17 Sep 20243:26 pm using AcqMethod A1F40422.MInstrument: HP G1530ASample Name:4I17072-RES1Msc Info:Vial Number:95

File: C: \nsdchem\1\copied data\4I17072\1R091703. DOperator: BLLAcquired: 17 Sep 20243: 49 pm using AcqMethod A1F40422. MInstrument: HP G1530ASample Name:4I17072- CCV1Msc Info:Vial Number:51



File: C: \nsdchem\1\copied data\4I17072\1R091704. DOperator: BLLAcquired: 17 Sep 20244:13 pm using AcqMethod A1F40422. MInstrument: HP G1530ASample Name:4I17072-CCV2Msc Info:Vial Number:52

ATTACHMENT D

Well PG-1 Boring Log

ATTACHMENT E

Water Level Elevation Measurement Data

Table E-1 **Groundwater Monitoring Data Koz Development Property 312 West Republican Street** Seattle, Washington

Well	Approximate Depth of Well Screen (feet)	Top of Casing Elevation ^a (feet)	Date Measured	Depth to Groundwater (feet)	Free Product Thickness (feet)	Groundwater Elevation (feet)
PG-1	10 to 30	95.0	04/02/19	18.90	NP	76.10
			12/12/23	15.81	NP	79.19
			02/13/24	17.28	NP	77.72
			02/14/24	17.53	NP	77.47
			08/08/24	19.05	NP	75.95
			09/03/24	18.85	NP	76.15
Notes:						

Groundwater elevations are relative to the NAVD 88 datum.

NP = Product was not present in well.

^a Well completion information and well casing elevation from PanGeo Incorporated.

Page 1 of 1