

5205 Corporate Ctr. Ct. SE, Ste. A Olympia, WA 98503-5901 Phone: 360.570.1700 Fax: 360.570.1777 www.uspioneer.com

February 6, 2025

Mr. Sam Meng Washington State Department of Ecology Toxics Cleanup Program Headquarters 300 Desmond Drive SE Lacey, Washington 98503

Subject: 2023 Groundwater Monitoring Report – Superlon Plastics Property Agreed Order DE 5940

Dear Mr. Meng:

On behalf of the Chemours Company, LLC (Chemours), PIONEER Technologies Corporation (PIONEER) is submitting the attached 2023 Groundwater Monitoring Report for the Superior Plastics Property.

Please contact me at (206) 890-4849 or Jeff King of Pacific Environmental and Redevelopment Corporation (PERC) at (425) 238-2212, if you have any questions or comments about this 2023 Groundwater Monitoring Report.

Respectfully,

all tran

Nathan Starr, WA L.G. #2760

Enclosure

cc: Sebastian Bahr, Chemours (electronic copy only)

Prepared for:

White Birch Group LLC 2116 Taylor Way Tacoma, WA 98401 and The Chemours Company Corporate Remediation Group 1007 Market Street, Room 13116A Wilmington, Delaware 19899

February 6, 2025

North from

Nathan Starr, L.G., Senior Hydrogeologist

Pacific Environmental and Redevelopment Corporation

424 East Meadow Lake Drive Snohomish, Washington 98290

and

PIONEER Technologies Corporation

5205 Corporate Center Ct. SE, Suite A Olympia, Washington 98503-5901

Table of Contents

1.	Intro	oduction	1
	1.1	Overview	1
	1.2	Property Location and Description	1
	1.3	Report Organization	1
2.	Sum	mary of Groundwater Monitoring	2
	2.1	Monitoring Well Locations and Installation Chronology	2
	2.2	Sampling Methods and Procedures	2
	2.3	QA/QC Methods	2
	2.4	Constituent Analyses	3
3.	Gro	undwater Monitoring Results	4
	3.1	Arsenic	4
	3.2	Lead	5
4.	Con	clusions	6
5.	Refe	erences	7

Figures

Figure 1: Superlon Property Location
Figure 2: Property Features
Figure 3: Monitoring Well Locations
Figure 4: Dissolved Arsenic in the Shallow Aquifer
Figure 5: Dissolved Arsenic in the Intermediate Aquifer
Figure 6: Dissolved Lead in the Shallow Aquifer
Figure 7: Dissolved Lead in the Intermediate Aquifer
Figure 8: Dissolved Arsenic Trends in the Shallow Aquifer
Figure 9: Dissolved Arsenic Trends in the Intermediate Aquifer
Figure 10: Dissolved Lead Trends in the Shallow Aquifer
Figure 11: Dissolved Lead Trends in the Intermediate Aquifer

Tables

Table 1: Dissolved Arsenic Concentrations by Well and Groundwater Monitoring Event

Table 2: Dissolved Lead Concentrations by Well and Groundwater Monitoring Event

Table 3: pH by Well and Groundwater Monitoring Event

Table 4: Eh by Well and Groundwater Monitoring Event

Appendices

Appendix A: 2023 Groundwater Sampling Field Notes

Appendix B: 2023 Laboratory Reports and QA/QC Data Validation Reports

Appendix C: Dissolved Arsenic and Lead Trend Graphs including Decommissioned Wells

Acronyms and Abbreviations

Acronym/Abbreviation	Description
Chemours	The Chemours Company FC, LLC
СОРС	Constituent of Potential Concern
Ecology	Washington State Department of Ecology
Eh	Activity of Electrons
GWM	Groundwater Monitoring
mg/L	Milligrams per liter
MW	Groundwater Monitoring Well
MTCA	Model Toxics Control Act
PERC	Pacific Environmental and Redevelopment Corporation
PIONEER	PIONEER Technologies Corporation
Property	Superlon Plastics Property
QA/QC	Quality Assurance / Quality Control
RI	Remedial Investigation
SAP/QAPP	Sampling and Analytical Plan / Quality Assurance Project Plan
USEPA	United States Environmental Protection Agency
White Birch	White Birch Group LLC

1. Introduction

1.1 Overview

On behalf of The Chemours Company FC, LLC (Chemours), Pacific Environmental and Redevelopment Corporation (PERC) and PIONEER Technologies Corporation (PIONEER) have prepared this 2023 Annual Groundwater Monitoring (GWM) Report for the Superlon Plastics Site (Site). The purpose of this report is to document the GWM activities, results, and evaluations associated with Site groundwater samples collected on August 23, 2023 during the 2023 annual GWM sampling event. GWM is conducted at the Site as part of the remedial investigation (RI) for the Site. The RI is a requirement of the Washington State Department of Ecology (Ecology)-approved Agree Order (No. DE 5940) between White Birch Group LLC (White Birch) and the Chemours Company FC, LLC (Chemours). All RI-associated activities are being conducted in accordance with Washington State Model Toxics Control Act (MTCA), Chapter 173-340 of the Washington Administrative Code.

GWM has been conducted at the site since 2011. Initially, GWM was conducted quarterly from the third quarter of 2011 until the fourth quarter of 2015, when the sampling frequency was reduced to one event per year (Ecology 2015). The results of the 2015-2022 GWM events were documented in the 2015, 2016, 2017, 2018, 2019, 2020, 2021, and 2022 GWM Reports (Pacific Environmental and Redevelopment Corporation [PERC] and PIONEER Technologies Corporation [PIONEER] 2015, 2016, 2017, 2018, 2019, 2021a, 2021b, and 2023).

1.2 Site Location and Description

The Site is located at 2116 Taylor Way, Tacoma, Washington in a highly industrial area of the Tacoma Tidal Flats between the Blair and Hylebos Waterways (see Figure 1). The parcel of land located at 2116 Taylor Way is referred to as the Property. Definition of the Site boundaries (per MTCA) and an evaluation of data from other off Property media will be presented in a future RI/Feasibility Study (FS) and Cleanup Action Plan (CAP) for the Site. This approach, which has been approved by Ecology, was adopted in order to continue progress toward a final remedy for on-Property media, while continuing to investigate off-Property issues and to define the Site boundary (Ecology 2013).

The Property is bordered to the northeast by Taylor Way, to the north by a curved rail road right-of-way owned by the City of Tacoma Public Works, to the northwest by Lincoln Avenue and a warehouse operation, and to the southeast by property leased and operated by Gardner-Fields Products, a roofing and waterproofing products manufacturing business (see Figure 2). To the southwest of the Property is a ditch located on the northeast side of a paved trucking yard owned by the Port of Tacoma (see Figure 2).

1.3 Report Organization

The remainder of this report is organized as follows:

- Section 2: Summary of Groundwater Monitoring
- Section 3: Groundwater Monitoring Results
- Section 4: Conclusions
- Section 5: References

2. Summary of Groundwater Monitoring

2.1 Monitoring Well Locations and Installation Chronology

Historically, a total of 26 Shallow and Intermediate Aquifer co-located MWs have been installed at 13 locations on and off the Property. As of 2023, 10 MWs remain in place, while the other 16 have been decommissioned (see Figure 3). A brief history of MW locations is presented below:

- Seven Shallow Aquifer MWs (MW-1S MW-7S) were installed during Phase I RI activities in 2011, in accordance with the Phase I RI Work Plan (PERC 2010).
- One Shallow Aquifer MW (MW-8S) and eight Intermediate Aquifer MWs (MW-1I MW-8I) were installed during Phase III RI activities in 2012, in accordance with the Phase III RI Work Plan (PERC 2012).
- Four Shallow Aquifer MWs (MW-9S MW-12S) and four Intermediate Aquifer MWs (MW9I MW12I) were installed during Phase IV RI activities in 2014, in accordance with the Phase IV RI Work Plan (PERC 2014).
- Sixteen MWs were decommissioned in 2017 (MW-1I, MW-1S, MW-3I, MW-3S, MW-5I, MW-5S, MW-6I, MW-6S, MW-7I, MW-7S, MW-8I, MW-8S, MW-11I, MW-11S, MW-12I, and MW-12S; see Figure 3).
- One Shallow Aquifer MW (MW-13S) and one Intermediate Aquifer MW (MW-13I) were installed in November 2019.¹

2.2 Sampling Methods and Procedures

Groundwater sampling methodology and field quality controls were performed in accordance with the Project Sampling and Analytical Plan (SAP) & Quality Assurance Project Plan (QAPP) for the Superlon Plastics Property (PERC 2022). All samples were sent to a Washington State-certified laboratory in accordance with the SAP/QAPP (PERC 2022). Groundwater sampling field notes are presented in Appendix A.

2.3 QA/QC Methods

Laboratory results were verified for usability by performing Quality Assurance/Quality Control (QA/QC) data validation. QA/QC data validation generally followed the applicable guidance and requirements specified in the following:

- Guidance on Environmental Data Verification and Data Validation (United State Environmental Protection Agency [USEPA] 2002);
- USEPA Contract Laboratory Program, National Functional Guidelines for Superfund Organic Methods Data Review. Final. OSWER 9240.1-45. USEPA/540/R-08/01 (USEPA 2016a);
- USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Superfund Data Review. Final. OSWER 8240.1-51. EPA 540-R-10-011 (USEPA 2016b); and
- Method-specific and laboratory-established QA requirements, as applicable.

¹ MW-13S and MW-13I were installed in the proximate location of MW-3S and MW-3I which were abandoned in 2017 to allow for soil remediation.

QA/QC data validation procedures were performed in accordance with the SAP/QAPP (PERC 2022). The data validation reports are presented with laboratory reports in Appendix B. Overall the data is acceptable for use without qualification.

2.4 Constituent Analyses

The 2023 groundwater samples were analyzed for dissolved arsenic and dissolved lead only, with Ecology approval (Ecology 2015).² The list of constituents evaluated during the monitoring events has been reduced since sampling was initiated in 2011 as other constituents were consistently not detected or were below screening levels (PERC 2015; PERC and PIONEER 2013, 2015).³

2.5 2023 GWM Deviations

There were no deviations for the 2023 GWM event.

² Dissolved arsenic and lead refer to groundwater samples that have been filtered through a 0.45-micron filter (PERC 2022). All arsenic and lead groundwater samples collected in 2023 were filtered in the field during collection of the samples; prior to 2022 the samples were filtered at the laboratory.

³ The constituent list was reduced to focus the monitoring on constituents of potential concern (COPCs) and eliminate the analyses of constituents not detected or infrequently detected during consecutive sampling events.

3. Groundwater Monitoring Results

Shallow and Intermediate Aquifer groundwater samples were collected from ten MWs and analyzed for dissolved arsenic and lead. The laboratory reports and associated QA/QC data validation reports for the 2023 GWM event are presented in Appendix B.

Constituent concentrations are presented by MW and GWM event for arsenic and lead in Tables 1 and 2, respectively. Groundwater pH and Eh⁴ field measurements are presented by MW and GWM event in Tables 3 and 4, respectively. Arsenic and lead concentrations in the Shallow and Intermediate Aquifers are presented on Figures 4 through 7. Concentration trends for arsenic and lead in active MWs are presented on Figures 8 through 11.⁵

3.1 Arsenic

Arsenic concentration trends in the Shallow Aquifer are as follows (see Table 1 and Figure 8):

- Arsenic concentrations in MW-2S and MW-4s have slowly increased since the MWs were installed in 2011 going from detections in the hundredths and thousandths of mg/L to detections in the tenths and ones of mg/L.
- Arsenic concentrations in MW-9S increased from 5.8 mg/L in 2014 to a maximum concentration in 2017 of 88 mg/L, followed by a decrease to 0.54 mg/L in 2022. This was followed by an increase to 1.9 mg/L in 2023.
- Arsenic concentrations in MW-10S slowly increased from 0.42 mg/L in 2014 (when the MW was installed) to 3.3 mg/L in 2020 followed by decreases in 2021 (2.3 mg/L), 2022 (1.7 mg/L), and 2023 (0.90 mg/L).
- Arsenic concentrations in MW-13S have increased since it was installed in 2020 from 9.1 to 25 mg/L. This is similar to the arsenic concentrations measured in MW-3S⁶ between 2012 and 2017 (4.9 to 20 mg/L)

Arsenic concentration trends in the Intermediate Aquifer are as follows (see Table 1 and Figure 9):

- Arsenic concentrations in MW-2I have remained stable and in the range of thousandths to tenths of mg/L since the MW was installed in 2011.
- Arsenic concentrations in MW-4I have remained stable since the MW was installed in 2011 with the highest detection being 0.055 mg/L in 2020, followed by <0.0050 mg/L in 2021, 0.0068 mg/L in 2022, then <0.0050 mg/L in 2023.
- Arsenic concentrations in MW-9I have remained stable and in the range of <0.0050 to 0.019 mg/L since the MW was installed in 2014, with the exception of a detection at 0.18 mg/L in 2016.
- Arsenic concentrations in MW-10I have remained <0.0050 mg/L since the MW was installed in 2014⁷, with the exception of a detection at 0.0078 mg/L in 2022 and 0.0070 mg/L in 2023.
- Arsenic concentrations in MW-13I have decreased from 0.30 mg/l in 2020 to 0.076 mg/l in 2023.

⁴ Eh is referred to as "Activity of Electrons" and is calculated from oxidation reduction potential.

⁵ Dissolved arsenic and lead trend graphs including decommissioned wells are located in Appendix C.

⁶ MW-13S replaced MW-3S and MW-13I replaced MW-3I.

⁷ In 2017 the laboratory diluted the groundwater sample resulting in an elevated reporting limit of 0.10 mg/L (PERC and PIONEER 2017).

Arsenic concentrations in the Shallow Aquifer appear to be responding to the ongoing on-Property soil and perched groundwater interim action removal action with the most significant trend being a nearly two-order of magnitude decrease in MW-9S and a decreasing trend in MW-10S. The small increasing trends in MW-2S and MW-4S have maximum concentrations nearly two-orders of magnitude less than the maximum concentration observed in MW-9S indicating that the increase in dissolved arsenic mass observed in MW-2S and MW-4S is much less than the decrease in dissolved mass observed in MW-9S. Arsenic concentrations in source area MW, MW-13S, remain stable. Arsenic concentrations in the Intermediate Aquifer are generally stable and are less than the Puget Sound groundwater arsenic background threshold value of 0.008 mg/L (Ecology 2022) with the exception of source area MW, MW-13I.

3.2 Lead

Lead concentration trends in the Shallow Aquifer are as follows (see Table 2 and Figure 10):

- Lead concentrations in MW-2S have not been detected above laboratory reporting limits since the MW was installed in 2011.
- Lead concentrations in MW-4S between 2011 and 2021 varied between 0.00015 and 0.0044 mg/L with laboratory reporting limits prior to 2019 being as high as 0.010 mg/L when lead was not detected above the laboratory reporting limit. The lead concentration increased to the low hundredths in 2022 and 2023.
- Lead concentrations in MW-9S have not been detected above the laboratory reporting limits since the MW was installed in 2014.
- Lead concentrations in MW-10S slowly increased after the MW was installed in 2014, to a maximum concentration in 2020 of 0.25 mg/L, followed by a decrease to 0.0078 mg/L in 2022. This was followed by an increase to 0.0280 mg/L in 2023.
- Lead concentrations in MW-13S have remained stable and in the hundredths to tenths of mg/L, which are similar to the concentrations detected in MW-3S between 2013 and 2017.

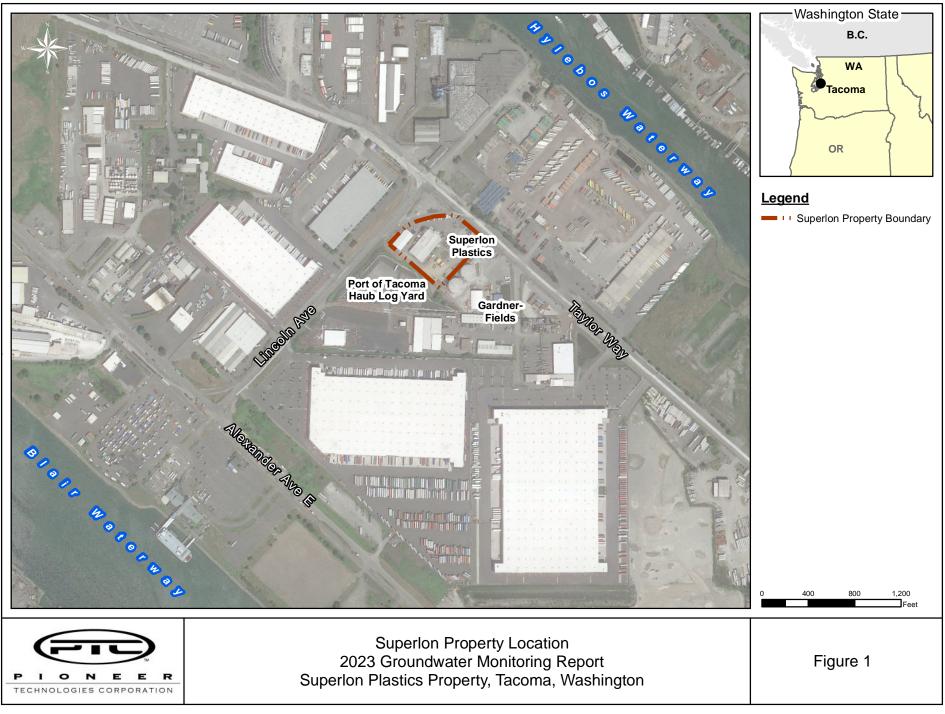
Lead concentration trends in the Intermediate Aquifer are as follows (see Table 2 and Figure 11):

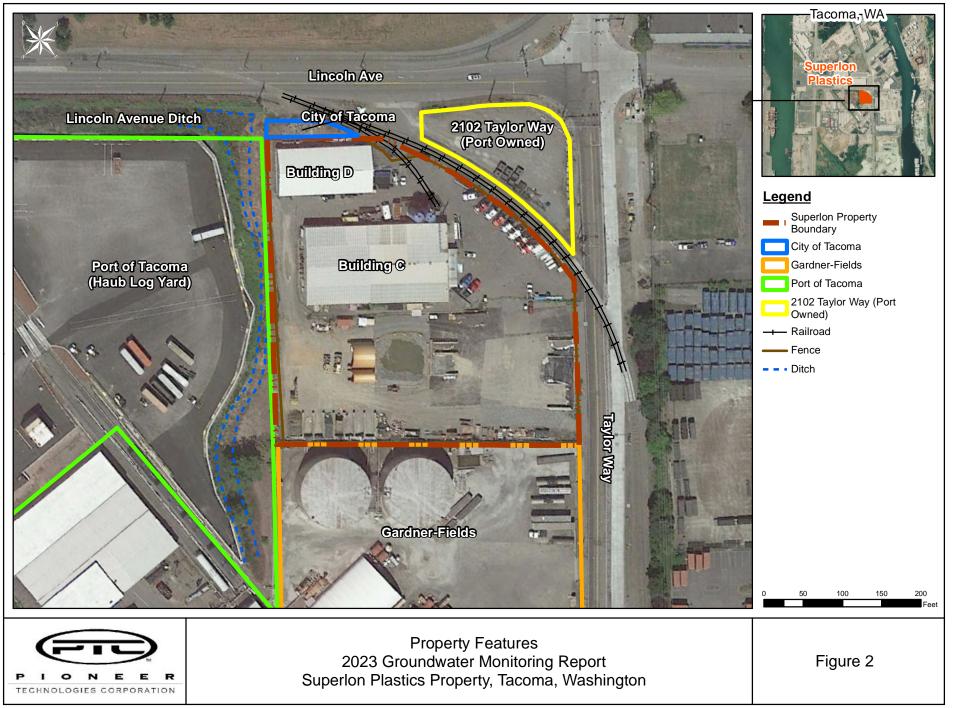
- Lead concentrations in MW-2I, MW-4I, MW-9I, and MW-10I have remained below the laboratory reporting limits in the ten thousandths to thousandths of mg/L since 2015.
- Lead concentrations in MW-13I have remained stable in the range of less than the laboratory reporting limit in the thousandths of mg/L to detections in the thousandths of mg/L, which are similar to the concentrations detected in MW-3I between 2013 and 2017 (with the exception of a detection in 2013 of 0.014 mg/L).

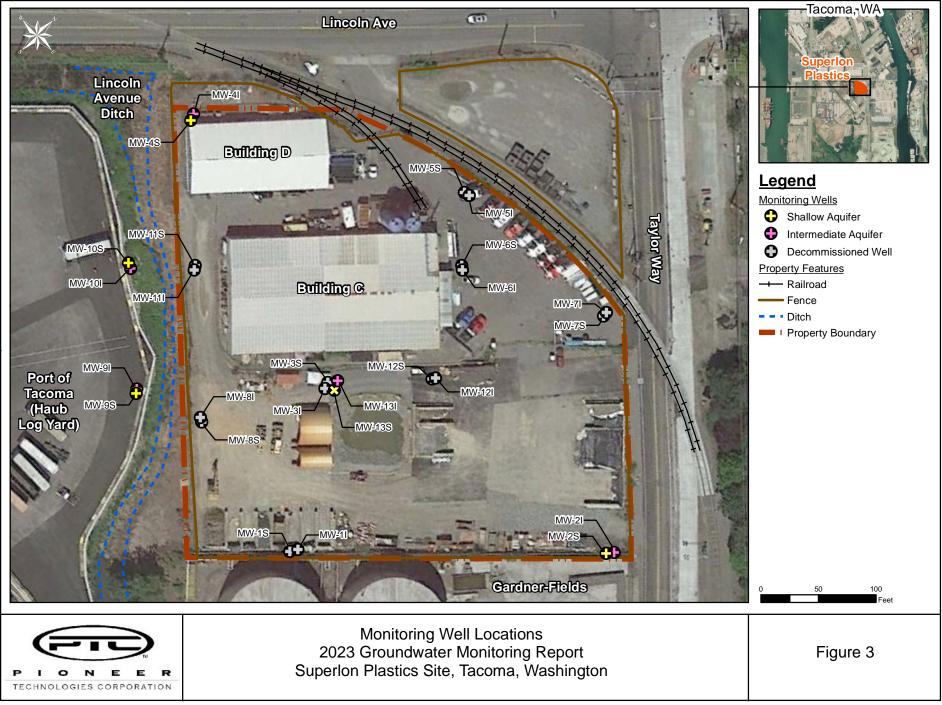
Lead concentrations are generally one to three-orders of magnitude less than arsenic concentrations with lead only being detected in three shallow MWs (i.e., MW-4S, MW-10S and MW-13S) and in no intermediate MWs in 2023. Lead concentrations in the Shallow Aquifer are similar to the arsenic trends with the most significant lead trend being a one-order of magnitude decrease in MW-10S since 2020. Lead concentrations in the Intermediate Aquifer are stable.

4. Conclusions

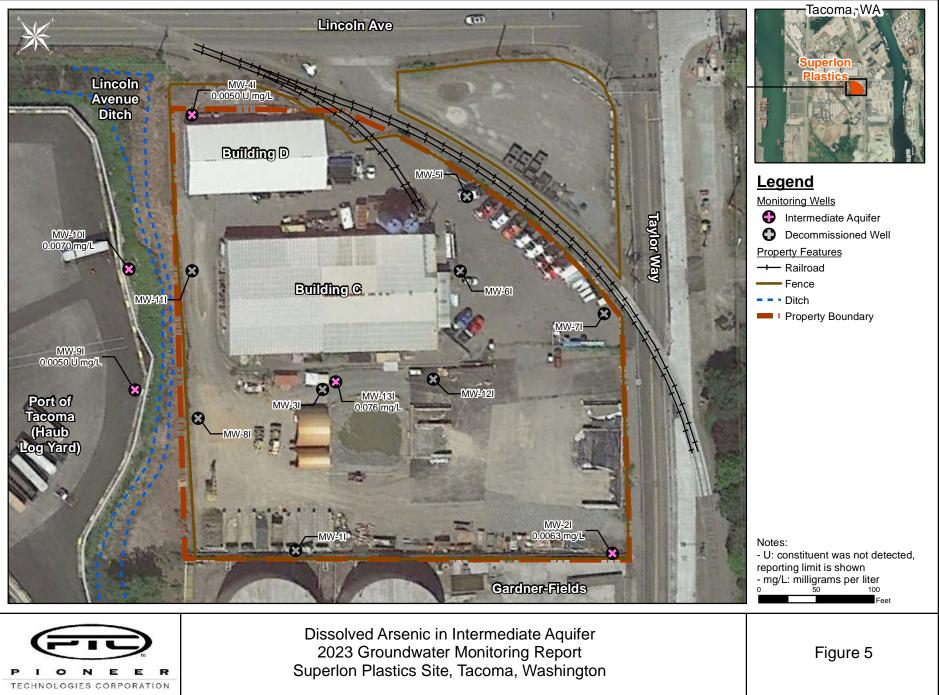
Overall, arsenic and lead concentrations in the Shallow Aquifer appear to be responding to the ongoing on-Property soil and perched groundwater interim action removal action with significant decreases of arsenic in MW-9S and MW-10S. While other MWs have small increasing trends of arsenic and lead the maximum concentrations detected in these MWs is orders of magnitude less than the maximum concentrations observed in the MWs with decreasing trends indicating that the increase in dissolved mass observed in the increasing MWs is much less than the decrease in dissolved mass observed in the MWs with decreasing trends. It is expected that arsenic and lead concentrations will continue to decrease in the Shallow Aquifer in response to the on-Property soil and perched groundwater interim action removal action. Arsenic and lead concentrations in the Intermediate Aquifer are stable.

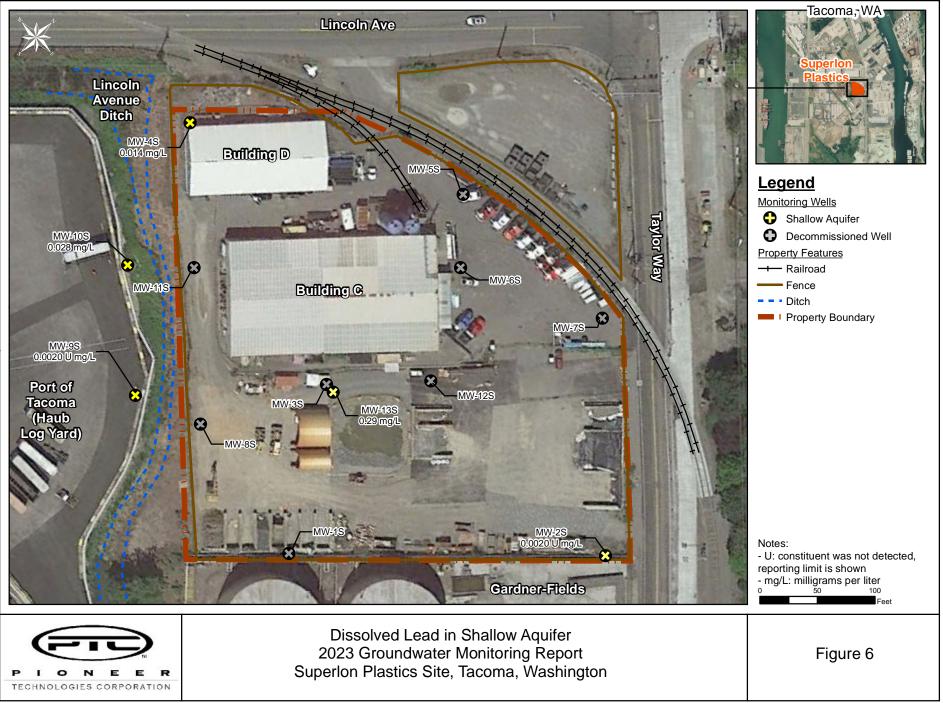

All MWs will continue to be sampled annually. Following delineation of the plume using hydropunches, new MWs will be installed following the completion of the ongoing soil and perched groundwater interim action and added to the GWM program.

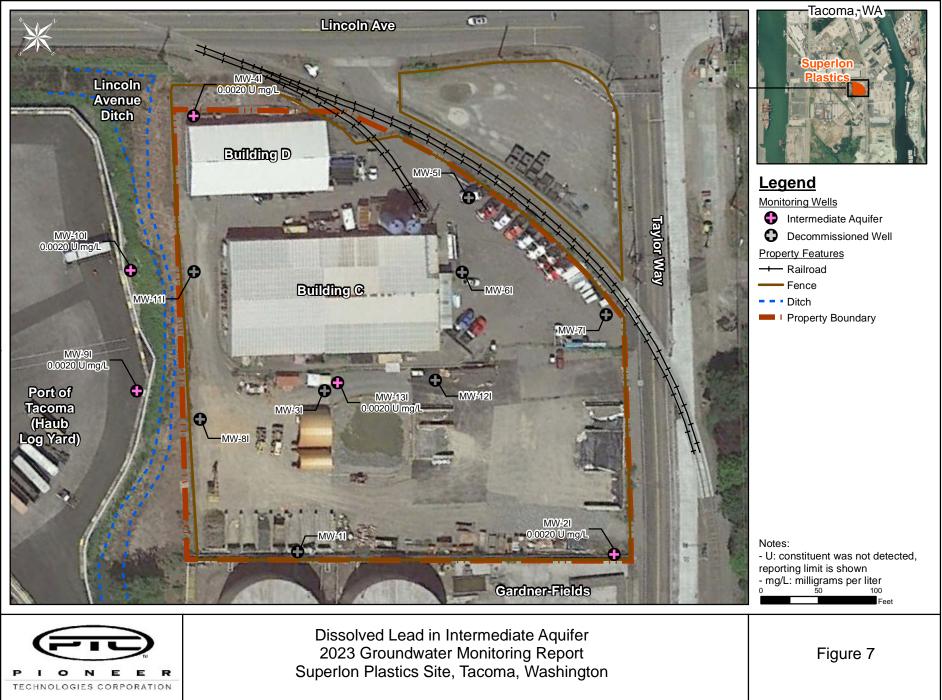

5. References

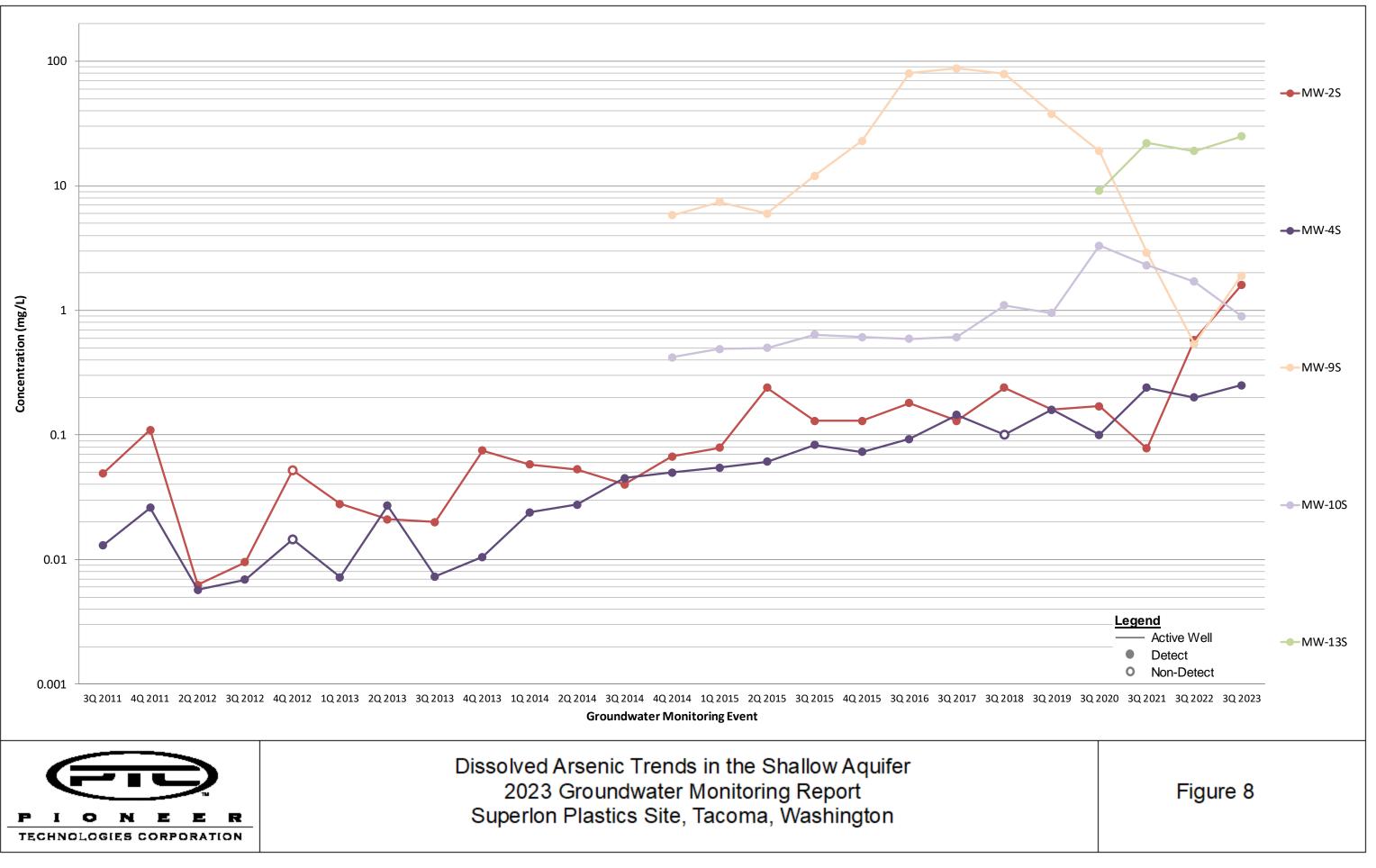

Ecology. 2013. Electronic mail from Marv Coleman to Tim Bingman regarding Ecology approval to separate onproperty soils investigations into a separate Remedial Investigation and Feasibility Study track. January 13.

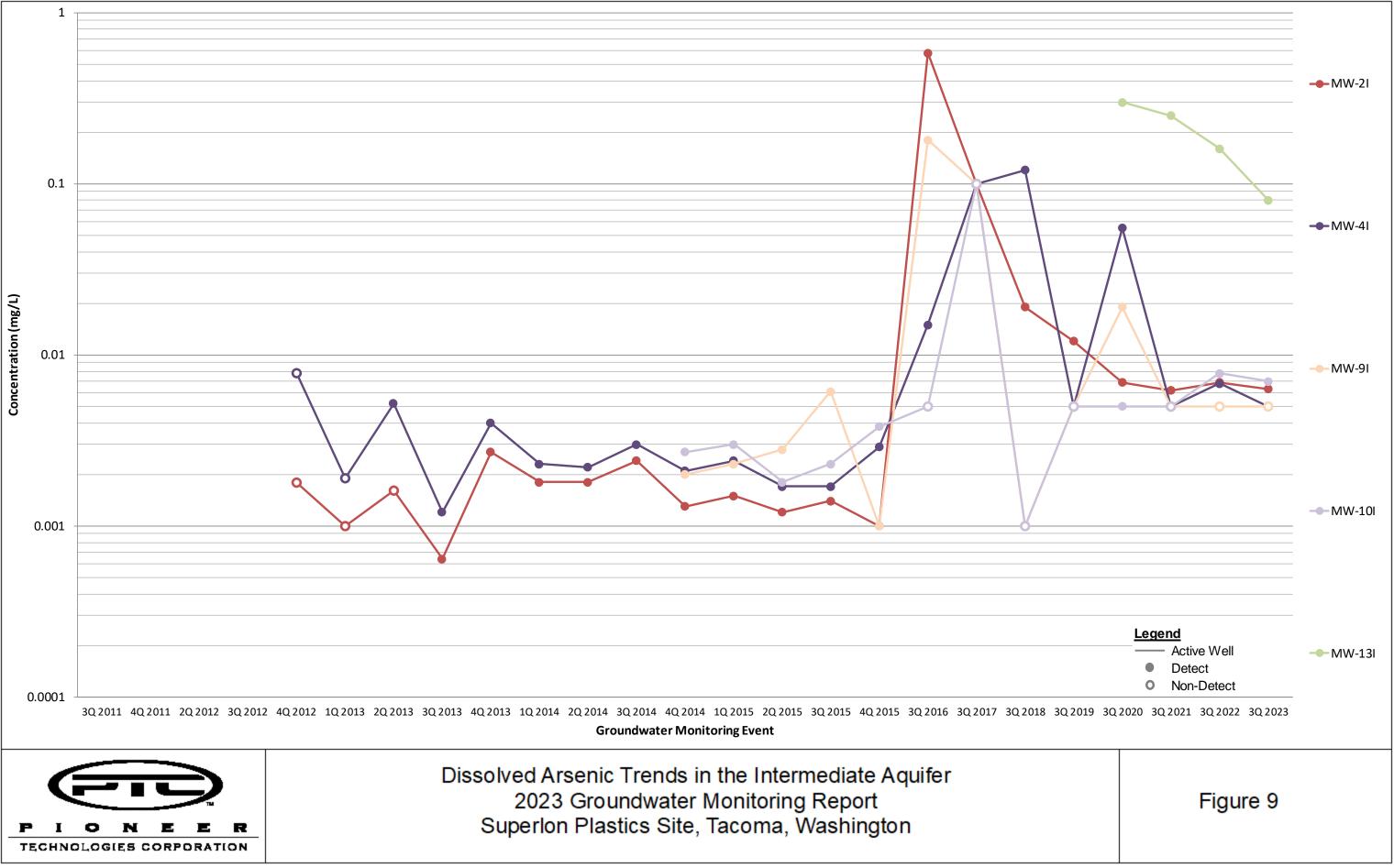
- Ecology. 2015. Electronic mail from Marv Coleman to Jeff King with the subject "Reduction in groundwater monitoring." November 12.
- Ecology, 2022. Natural Background Groundwater Arsenic Concentrations in Washington State: Study Results. January
- PERC. 2010. Phase I Remedial Investigation Work Plan, for the Superlon Plastics Site, Tacoma, Washington. February.
- PERC. 2012. Phase III Remedial Investigation Work Plan, for the Superlon Plastics Site, Tacoma, Washington. July.
- PERC. 2014. Work Plan: Remedial Investigation for Groundwater Phase IV. February 20.
- PERC. 2015. Letter from Jeff King (PERC) to Marv Coleman (Ecology) regarding Proposed Revisions to the Current Groundwater Monitoring Program at the Superlon Plastics Property. September 14.
- PERC. 2022. Sampling and Analysis Plan & Quality Assurance Project Plan for the Superlon Plastics Site, Tacoma, Washington. February 2022.
- PERC and PIONEER. 2013. Proposed Reduction in Analysis Groundwater Monitoring at the Superlon Plastics Site. September 16.
- PERC and PIONEER. 2015. 2015 Groundwater Monitoring Report Superlon Plastics Property. March 9.
- PERC and PIONEER. 2016. 2016 Groundwater Monitoring Report Superlon Plastics Property. October 26.
- PERC and PIONEER. 2017. 2017 Groundwater Monitoring Report Superlon Plastics Property. October 6.
- PERC and PIONEER. 2018. 2018 Groundwater Monitoring Report Superlon Plastics Property. October 16.
- PERC and PIONEER. 2019. 2019 Groundwater Monitoring Report Superlon Plastics Property. October 21.
- PERC and PIONEER. 2021a. 2020 Groundwater Monitoring Report Superlon Plastics Property. March 3.
- PERC and PIONEER. 2021b. 2021 Groundwater Monitoring Report Superlon Plastics Property. November 30.
- PERC and PIONEER. 2023. 2022 Groundwater Monitoring Report Superlon Plastics Property. March 28.
- USEPA. 2002. Guidance on Environmental Data Verification and Data Validation. EPA QA/G-8. EPA/240/R-02/004. November 2002.
- USEPA. 2016a. USEPA Contract Laboratory Program, National Functional Guidelines for Superfund Organic Methods Data Review. Final. OSWER 9240.1-45. USEPA/540/R-08/01. September 2016.
- USEPA. 2016b. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Superfund Data Review. Final. OSWER 9240.1-51. EPA 540-R-10-011. September 2016.

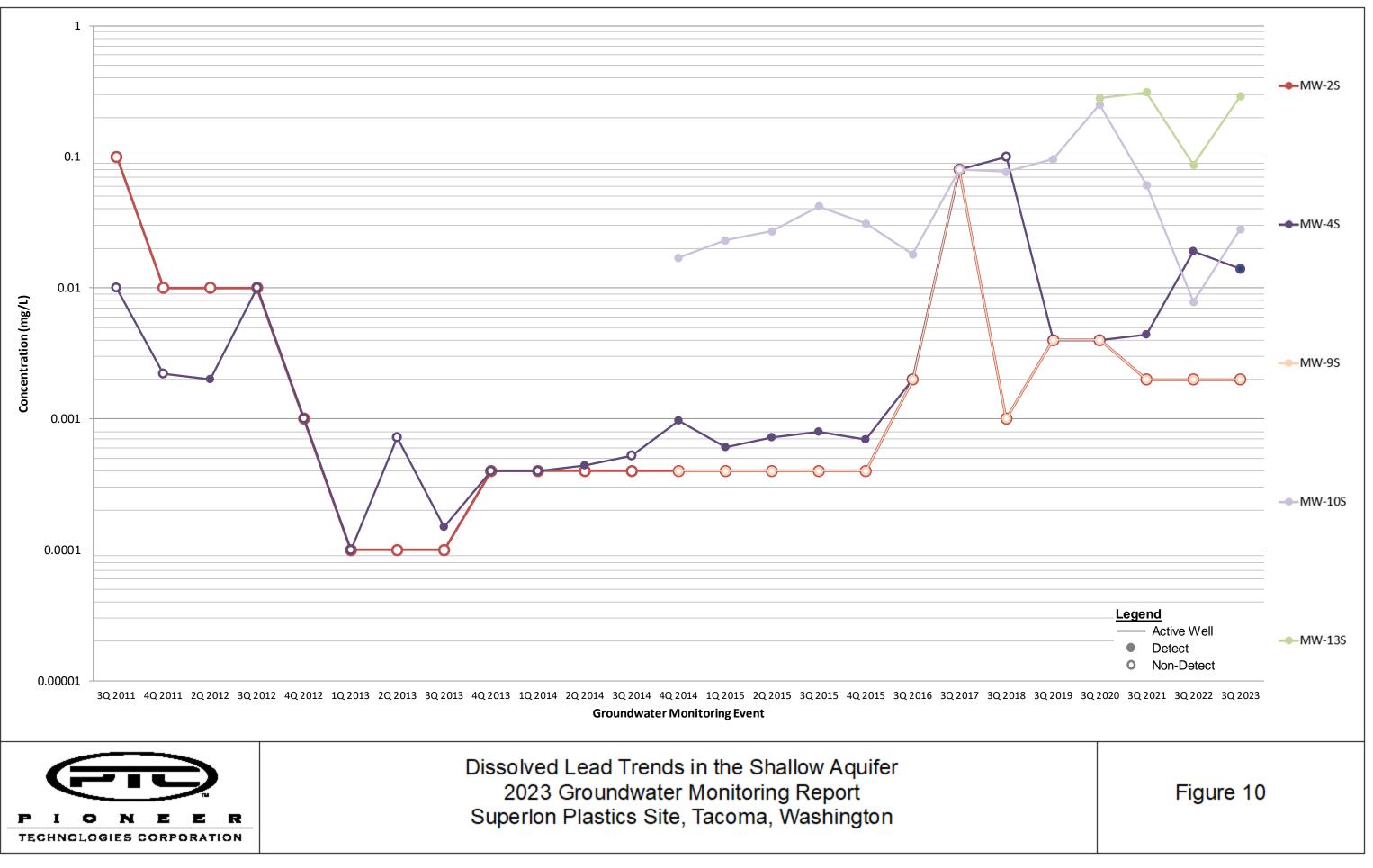

Figures

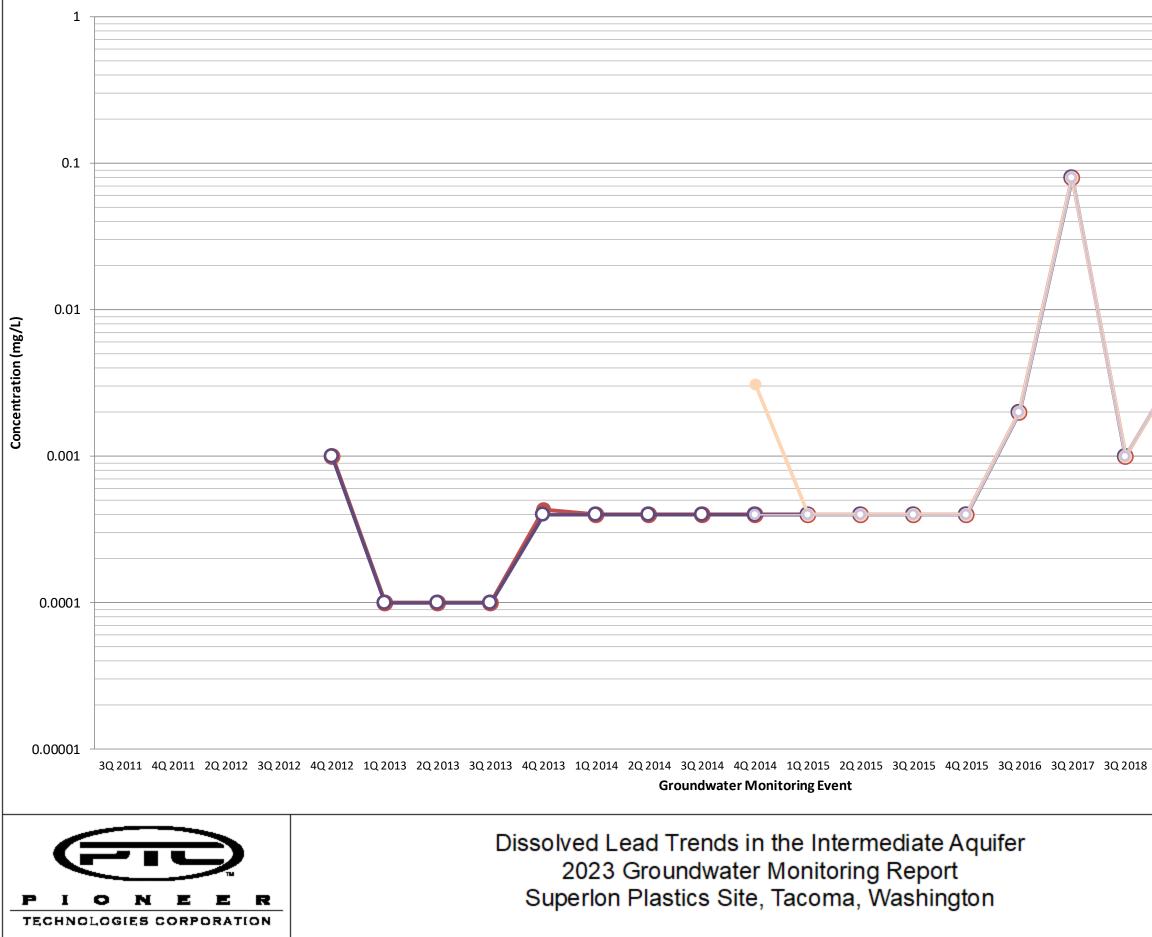












	-MW-2I
	MW-4I
	MW-9I
	MW-10I
Legend Active Well Detect Non-Detect 3 3Q 2019 3Q 2020 3Q 2021 3Q 2022 3Q 2023	MW-13I
Figure 11	

Tables

Well ID	3Q 2011	Qual	4Q 2011	Qual	2Q 2012	Qual	3Q 2012	Qual	4Q 2012	Qual	1Q 2013	Qual	2Q 2013	Qual	3Q 2013	Qual	4Q 2013	Qual	1Q 2014	Qual	2Q 2014	Qual	3Q 2014	Qual	4Q 2014	Qual	1Q 2015	Qual	2Q 2015	Qual
MW-1S	0.0052	J	0.0063	J	0.0026	J	0.0071	J	0.013	UB	0.0093	В	0.0060	UB	0.019		0.010		0.0083		0.011		0.037		0.044		0.057		0.13	
MW-2S	0.049		0.11		0.0063	J	0.0095	J	0.052	UB	0.028	В	0.021	В	0.020		0.075		0.058		0.053		0.040		0.067		0.079		0.24	
MW-3S	4.0		15		11		4.9		5.8	В	5.0	В	4.6	В	4.9		7.8		12		16		16		14		13		14	
MW-4S	0.013	J	0.026		0.0057	J	0.0069	J	0.015	UB	0.0072	UB	0.027	В	0.0073		0.011		0.024		0.028		0.045		0.050		0.055		0.061	
MW-5S	0.36		0.28		0.41		0.51		0.45	В	0.48	В	0.32	В	0.37		0.54		0.34		0.24		0.28		0.40		0.40		0.50	
MW-6S	1.3		2.0		1.8		1.7		1.8	В	1.8	В	1.4	В	1.9		1.9		1.7		1.6		0.50		1.9		1.8		1.5	
MW-7S	0.0032	J	0.0041	J	0.020	U	0.0032	J	0.0025	UB	0.0020	UB	0.0016	UB	0.0014		0.0030		0.0019		0.0022		0.0025		0.0047		0.0021		0.0019	
MW-8S	NS		NS		NS		NS		21	В	13	В	21	В	7.7		8.9		27		0.66		13		25		5.5		40	
MW-9S	NS		NS		NS		NS		NS		NS		5.8		7.4		6.0													
MW-10S	NS		NS		NS		NS		NS		NS		0.42		0.49		0.50													
MW-11S	NS		NS		NS		NS		NS		NS		1.4		2.2		2.2													
MW-12S	NS		NS		NS		NS		NS		NS		100		71		90													
MW-13S	NS		NS		NS		NS		NS		NS		NS		NS		NS													
MW-1I	NS		NS		NS		NS		0.0042	UB	0.0011	UB	0.0031	UB	0.0028		0.0025		0.0024		0.0018		0.0026		0.0011		0.0015		0.0010	
MW-2I	NS		NS		NS		NS		0.0018	UB	0.0010	UB	0.0016	UB	0.00064		0.0027		0.0018		0.0018		0.0024		0.0013		0.0015		0.0012	
MW-3I	NS		NS		NS		NS		1.6	В	0.91	В	0.86	В	0.69		0.56		0.54		0.42		0.48		0.49		0.45		0.32	
MW-4I	NS		NS		NS		NS		0.0078	UB	0.0019	UB	0.0052	В	0.0012		0.0040		0.0023		0.0022		0.0030		0.0021		0.0024		0.0017	
MW-5I	NS		NS		NS		NS		0.0047	UB	0.0034	UB	0.0049	В	0.000088		0.0027		0.0017		0.0017		0.0026		0.0013		0.0014		0.0016	
MW-6I	NS		NS		NS		NS		0.0075	UB	0.0013	UB	0.0023	UB	0.0020		0.0033		0.0021		0.0020		0.0012		0.0014		0.0016		0.0011	
MW-7I	NS		NS		NS		1.5		0.0017	UB	0.00073	UB	0.0011	UB	0.00070		0.0029		0.0018		0.0017		0.0027		0.0019		0.0013		0.0010	U
MW-8I	NS		NS		NS		NS		0.021	UB	0.0027	UB	0.0040	UB	0.0017		0.0043		0.0026		0.0023		0.012		0.0063		0.0016		0.0048	
MW-9I	NS		NS	1	NS		NS		NS		NS		NS		NS		0.0020		0.0023		0.0028									
MW-10I	NS		NS	Γ	NS		NS		NS		NS		NS		NS		0.0027		0.0030		0.0018									
MW-11I	NS		NS		NS		NS		NS		NS		0.0025		0.086		0.097													
MW-12I	NS		NS		NS		NS		NS		NS		0.29		0.22		0.15													
MW-13I	NS		NS	1	NS		NS		NS		NS		NS		NS		NS		NS		NS									

Table 1: Dissolved Arsenic Concentrations by Well and Groundwater Monitoring Event

Notes:

- Results shown are in mg/L.

- Detection limit changed in 3Q17 event due to the analytical laboratory changing the analytical method for testing.

NS: Not sampled

Data Qualifiers:

U: Constituent was not detected, reporting limit is shown

J: Constituent was detected, concentration is estimated

Well ID	3Q 2015	Qual	4Q 2015	Qual	3Q 2016	Qual	3Q 2017	Qual	3Q 2018	Qual	3Q 2019	Qual	3Q 2020	Qual	3Q 2021	Qual	3Q 2022	Qual	3Q 2023	Qual
MW-1S	0.11		1.2		44	Ŭ	57		NS		NS		NS		NS	Ŭ	NS		NS	r -
MW-2S	0.13		0.13		0.18		0.13		0.24		0.16		0.17		0.078		0.58		1.6	
MW-3S	15		13		14		20		NS											
MW-4S	0.083		0.073		0.093		0.15		0.10	U	0.16		0.10		0.24		0.20		0.25	
MW-5S	0.49		0.50		1.1		0.86		NS											
MW-6S	1.6		1.4		1.6		1.1		NS											
MW-7S	0.0019		0.0023		0.0050	U	0.10	U	NS											
MW-8S	32		32		40		41		NS											
MW-9S	12		23		80		88		79		38		19		2.9		0.54		1.9	
MW-10S	0.64		0.61		0.59		0.61		1.1		0.95		3.3		2.3		1.7		0.90	
MW-11S	2.5		1.8		3.6		9.7		NS											
MW-12S	120		110		67		59		NS											
MW-13S	NS		9.1		22		19		25											
MW-1I	0.0012		0.0025		0.83		0.13		NS											
MW-2I	0.0014		0.0010		0.58		0.10	U	0.019		0.012		0.0069		0.0062		0.0069		0.0063	
MW-3I	0.39		0.39		0.38		0.10	U	NS											
MW-4I	0.0017		0.0029		0.015		0.10	U	0.12		0.0050	U	0.055		0.0050	U	0.0068		0.0050	U
MW-5I	0.0014		0.0025		0.0050	U	0.10	U	NS											
MW-6I	0.0015		0.0028		0.0050	U	0.13		NS											
MW-71	0.0012		0.0026		0.0059		0.10	U	NS											
MW-8I	0.011		0.0012		0.0050	U	0.10	U	NS											
MW-9I	0.0061		0.0010		0.18		0.10	U	0.0010	U	0.0050	U	0.019		0.0050	U	0.0050	U	0.0050	U
MW-10I	0.0023		0.0038		0.0050	U	0.10	U	0.0010	U	0.0050	U	0.0050	U	0.0050	U	0.0078		0.0070	
MW-11I	0.067		0.025		0.12		0.80		NS											
MW-12I	0.13		0.22		0.098		1.0		NS											
MW-13I	NS		0.30		0.25		0.16		0.076											

Table 1: Dissolved Arsenic Concentrations by Well and Groundwater Monitoring Event

Notes:

- Results shown are in mg/L.

- Detection limit changed in 3Q17 event due to the analytical laboratory changing the analytical method for testing.

NS: Not sampled

Data Qualifiers:

U: Constituent was not detected, reporting limit is shown

J: Constituent was detected, concentration is estimated

Well ID	3Q 2011	Qual	4Q 2011	Qual	2Q 2012	Qual	3Q 2012	Qual	4Q 2012	Qual	1Q 2013	Qual	2Q 2013	Qual	3Q 2013	Qual	4Q 2013	Qual	1Q 2014	Qual	2Q 2014	Qual	3Q 2014	Qual	4Q 2014	Qual	1Q 2015	Qual	2Q 2015	Qual
MW-1S	0.010	U	0.010	U	0.010	U	0.010	U	0.0010	U	0.00010	U	0.00010	U	0.00010	U	0.00040	U												
MW-2S	0.010	U	0.010	U	0.010	U	0.010	U	0.0010	U	0.00010	U	0.00010	U	0.00010	U	0.00040	U												
MW-3S	0.0052	J	0.30		0.28		0.034		0.13		0.11	В	0.15	В	0.090		0.18		0.13		0.083		0.094		0.14		0.15		0.14	
MW-4S	0.010	U	0.0022	J	0.0020	J	0.010	U	0.0010	U	0.00010	U	0.00072	UB	0.00015		0.00040	U	0.00040	U	0.00044		0.00053		0.00097		0.00061		0.00072	
MW-5S	0.010	U	0.010	U	0.010	U	0.010	U	0.0010	U	0.00010	U	0.00010	U	0.00010	U	0.00040	U												
MW-6S	0.022		0.0032	J	0.010	U	0.010	U	0.0031		0.00062	UB	0.00081	В	0.00037		0.00040	U	0.00040	U	0.00064		0.0013		0.00092		0.0012		0.00042	
MW-7S	0.012		0.010	U	0.010	U	0.010	U	0.0010	U	0.00010	U	0.00010	U	0.00010	U	0.00040	U	0.00040	U	0.00040	U	0.00065		0.00040	U	0.0012		0.00040	U
MW-8S	NS		NS		NS		NS		0.0012		0.00010	U	0.00010	U	0.00024		0.00040	U												
MW-9S	NS		0.00040	U	0.00040	U	0.00040	U																						
MW-10S	NS		0.017		0.023		0.027																							
MW-11S	NS		0.027		0.052		0.047																							
MW-12S	NS		0.087		0.010		0.019																							
MW-13S	NS																													
MW-1I	NS		NS		NS		NS		0.0010	U	0.00010	U	0.00010	U	0.00010	U	0.00040	U												
MW-2I	NS		NS		NS		NS		0.0010	U	0.00010	U	0.00010	U	0.00010	U	0.00043		0.00040	U										
MW-3I	NS		NS		NS		NS		0.014		0.00084	UB	0.0010	UB	0.00026		0.00040	U	0.00040	U	0.0011		0.00040	U	0.00040	U	0.00040	U	0.00040	U
MW-4I	NS		NS		NS		NS		0.0010	U	0.00010	U	0.00010	U	0.00010	U	0.00040	U												
MW-5I	NS		NS		NS		NS		0.0010	U	0.00010	UB	0.00011	UB	0.00010	U	0.00040	U												
MW-6I	NS		NS		NS		NS		0.0010	U	0.00010	U	0.00010	U	0.00010	U	0.00040	U												
MW-7I	NS		NS		NS		1.5		0.0010	U	0.00010	U	0.00010	U	0.00010	U	0.00040	U												
MW-8I	NS		NS		NS		NS		0.0010	U	0.00050	U	0.00010	UB	0.00010	U	0.00040	U												
MW-9I	NS		0.0031		0.00040	U	0.00040	U																						
MW-10I	NS		0.00040	U	0.00040	U	0.00040	U																						
MW-11I	NS		0.00040	U	0.015		0.023																							
MW-12I	NS		0.00097		0.00040	U	0.00040	U																						
MW-13I	NS																													

Table 2: Dissolved Lead Concentrations by Well and Groundwater Monitoring Event

Notes:

- Results shown are in mg/L.

- Detection limit changed in 3Q17 event due to the analytical laboratory changing the analytical method for testing.

NS: Not sampled

Data Qualifiers:

U: Constituent was not detected, reporting limit is shown

J: Constituent was detected, concentration is estimated

Well ID	3Q 2015	Qual	4Q 2015	Qual	3Q 2016	Qual	3Q 2017	Qual	3Q 2018	Qual	3Q 2019	Qual	3Q 2020	Qual	3Q 2021	Qual	3Q 2022	Qual	3Q 2023	Qual
MW-1S	0.00040	U	0.00040	U	0.0020	U	0.080	U	NS											
MW-2S	0.00040	U	0.00040	U	0.0020	U	0.080	U	0.0010	U	0.0040	U	0.0040	U	0.0020	U	0.0020	U	0.0020	U
MW-3S	0.083		0.14		0.10		0.11		NS											
MW-4S	0.00080		0.00070		0.0020	U	0.080	U	0.10	U	0.0040	U	0.0040	U	0.0044		0.019		0.014	
MW-5S	0.00040	U	0.00040	U	0.0020	U	0.080	U	NS											
MW-6S	0.0013		0.0012		0.0020	U	0.080	U	NS											
MW-7S	0.00040	U	0.00040	U	0.0020	U	0.080	U	NS											
MW-8S	0.00040	U	0.00040	U	0.0020	U	0.080	U	NS											
MW-9S	0.00040	U	0.00040	U	0.0020	U	0.080	U	0.0010	U	0.0040	U	0.0040	U	0.0020	U	0.0020	U	0.0020	U
MW-10S	0.042		0.031		0.018		0.080	U	0.077		0.096		0.25		0.061		0.0078		0.028	
MW-11S	0.058		0.087		0.15		0.27		NS											
MW-12S	0.060		0.051		0.0020	U	0.080	U	NS											
MW-13S	NS		0.28		0.31		0.087		0.29											
MW-1I	0.00040	U	0.00040	U	0.0020	U	0.080	U	NS											
MW-2I	0.00040	U	0.00040	U	0.0020	U	0.080	U	0.0010	U	0.0040	U	0.0040	U	0.0020	U	0.0020	U	0.0020	U
MW-3I	0.00040	U	0.00040	U	0.0020	U	0.080	U	NS											
MW-4I	0.00040	U	0.00040	U	0.0020	U	0.080	U	0.0010	U	0.0040	U	0.0040	U	0.0020	U	0.0020	U	0.0020	U
MW-5I	0.00040	U	0.00040	U	0.0020	U	0.080	U	NS											
MW-6I	0.00040	U	0.00040	U	0.0020	U	0.080	U	NS											
MW-71	0.00040	U	0.00040	U	0.0020	U	0.080	U	NS											
MW-8I	0.00040	U	0.00040	U	0.0020	U	0.080	U	NS											
MW-9I	0.00040	U	0.00040	U	0.0020	U	0.080	U	0.0010	U	0.0040	U	0.0040	U	0.0020	U	0.0020	U	0.0020	U
MW-10I	0.00040	U	0.00040	U	0.0020	U	0.080	U	0.0010	U	0.0040	U	0.0040	U	0.0020	U	0.0020	U	0.0020	U
MW-11I	0.014		0.0040		0.042		0.12		NS											
MW-12I	0.00040	U	0.0011		0.0020	U	0.080	U	NS											
MW-13I	NS		0.0067		0.0020	U	0.0020		0.0020	U										

Table 2: Dissolved Lead Concentrations by Well and Groundwater Monitoring Event

Notes:

- Results shown are in mg/L.

- Detection limit changed in 3Q17 event due to the analytical laboratory changing the analytical method for testing.

NS: Not sampled

Data Qualifiers:

U: Constituent was not detected, reporting limit is shown

J: Constituent was detected, concentration is estimated

Table 3: pH by Well and Groundwater Monitoring Event

Well ID	3Q11	4Q11	2Q12	3Q12	4Q12	1Q13	2Q13	3Q13	4Q13	1Q14	2Q14	3Q14	4Q14	1Q15	2Q15	3Q15	4Q15	3Q16	3Q17	3Q18	3Q19	3Q20	3Q21	3Q22	3Q23
MW-1S	6.7	6.6	6.5	6.8	6.8	8.5	6.7	6.5	6.6	7.1	6.0	7.0	6.6	6.5	6.7	7.5	6.3	6.6	6.6	NS	NS	NS	NS	NS	NS
MW-2S	6.8	7.0	6.4	6.7	6.7	8.5	6.7	6.7	6.7	7.0	6.5	6.9	6.6	6.5	6.9	7.5	6.3	6.5	6.5	6.7	6.8	6.4	6.7	6.5	6.7
MW-3S	7.5	7.1	7.0	7.6	7.4	8.5	7.2	7.5	7.6	7.6	6.4	7.7	7.0	6.9	7.1	7.9	6.8	7.1	7.1	NS	NS	NS	NS	NS	NS
MW-4S	9.1	6.7	6.5	7.0	6.7	8.3	6.1	6.9	6.5	6.9	6.2	7.0	6.6	6.5	6.7	7.5	6.1	6.7	7.5	6.8	6.9	7.0	6.9	6.9	6.8
MW-5S	8.5	6.8	6.1	6.7	6.4	7.9	6.4	6.5	6.4	6.8	5.8	6.9	6.4	6.4	6.7	6.9	6.3	6.7	6.5	NS	NS	NS	NS	NS	NS
MW-6S	7.3	6.9	6.5	7.0	6.8	7.9	6.3	6.3	6.6	8.9	5.9	6.8	6.6	6.5	6.7	7.2	6.1	6.7	6.5	NS	NS	NS	NS	NS	NS
MW-7S	11	7.0	6.6	7.3	6.9	9.1	6.9	7.2	6.9	7.2	6.2	7.1	6.8	6.8	6.9	7.6	6.6	6.8	6.5	NS	NS	NS	NS	NS	NS
MW-8S	NS	NS	NS	NS	7.0	NS	7.0	7.4	7.6	7.5	7.5	8.3	7.3	7.5	7.4	8.4	7.1	7.2	6.8	NS	NS	NS	NS	NS	NS
MW-9S	NS	6.7	6.6	6.9	7.7	6.5	6.8	6.5	6.8	7.0	7.0	7.2	4.4	6.8											
MW-10S	NS	6.8	6.6	6.9	7.6	6.4	6.8	6.7	6.3	6.8	7.0	6.9	6.9	6.1											
MW-11S	NS	6.4	6.5	6.8	7.6	6.4	6.7	7.5	NS	NS	NS	NS	NS	NS											
MW-12S	NS	6.8	6.5	6.7	7.6	6.3	6.5	6.3	NS	NS	NS	NS	NS	NS											
MW-13S	NS	12	12	12	12																				
MW-1I	NS	NS	NS	NS	7.2	8.1	6.9	6.8	6.9	7.2	6.5	7.3	6.8	6.7	7.0	7.7	6.6	6.9	6.7	NS	NS	NS	NS	NS	NS
MW-2I	NS	NS	NS	NS	7.8	8.6	7.0	7.0	7.1	7.4	7.1	7.4	6.9	6.8	7.2	7.9	6.8	6.9	6.7	7.1	7.6	7.4	7.8	8.1	8.1
MW-3I	NS	NS	NS	NS	8.7	9.2	7.6	7.6	7.7	8.0	8.1	8.4	7.5	7.5	7.7	8.5	7.3	7.6	7.5	NS	NS	NS	NS	NS	NS
MW-4I	NS	NS	NS	NS	8.1	7.9	7.0	7.3	7.2	7.4	6.4	7.6	7.3	7.0	7.2	8.0	6.7	7.2	6.9	7.1	7.6	7.5	7.6	7.6	7.4
MW-5I	NS	NS	NS	NS	7.7	8.0	9.0	7.2	7.2	7.4	6.1	7.6	7.1	7.0	7.2	7.6	6.7	7.1	6.8	NS	NS	NS	NS	NS	NS
MW-6I	NS	NS	NS	NS	7.4	7.5	7.0	6.5	6.8	7.0	6.5	6.9	6.8	6.0	6.8	7.5	6.4	6.8	6.4	NS	NS	NS	NS	NS	NS
MW-7I	NS	NS	NS	NS	7.2	8.9	1.5	7.2	7.0	7.3	6.6	7.2	6.8	6.8	7.0	8.3	6.6	6.8	6.6	NS	NS	NS	NS	NS	NS
MW-8I	NS	NS	NS	NS	8.0	8.7	7.4	7.3	7.6	7.8	7.1	7.9	7.0	7.2	7.6	8.4	7.3	7.5	7.3	NS	NS	NS	NS	NS	NS
MW-9I	NS	7.2	7.4	7.6	8.6	7.4	7.6	7.1	7.3	8.0	8.1	8.0	8.2	7.6											
MW-10I	NS	7.2	7.0	7.4	8.1	7.1	7.2	7.0	7.3	7.1	7.3	7.2	7.3	7.5											
MW-11I	NS	7.5	7.4	7.6	NS	7.3	7.1	6.8	NS	NS	NS	NS	NS	NS											
MW-12I	NS	7.5	7.5	7.7	8.5	7.3	7.6	7.2	NS	NS	NS	NS	NS	NS											
MW-13I	NS	7.5	7.8	8.0	7.8																				

Notes:

NS: not sampled

Table 4: Eh by Well and Groundwater Monitoring Event

Well ID	3Q11	4Q11	2Q12	3Q12	4Q12	1Q13	2Q13	3Q13	4Q13	1Q14	2Q14	3Q14	4Q14	1Q15	2Q15	3Q15	4Q15	3Q16	3Q17	3Q18	3Q19	3Q20	3Q21	3Q22	3Q23
MW-1S	121	82	66	98	103	96	55	103	82	39	104	-28	81	-6.0	-16	10.0	41	30	71	NS	NS	NS	NS	NS	NS
MW-2S	89	55	62	98	100	80	45	82	69	32	48	-20	88	-19	-58	20	41	31	63	143	107	147	104	64	102
MW-3S	58	78	36	62	112	90	49	48	45	33	60	-47	59	-32	14	-10.0	5.0	-1.0	89	NS	NS	NS	NS	NS	NS
MW-4S	58	92	49	3.0	97	68	76	32	42	31	27	-27	58	-14	113	6.0	27	17	82	425	109	79	118	6.0	102
MW-5S	69	89	1.0	102	119	90	53	69	66	42	60	-17	80	-22	6.0	14	31	24	60	NS	NS	NS	NS	NS	NS
MW-6S	32	60	59	89	77	80	84	100	78	45	81	-22	75	-16	51	8.0	45	29	69	NS	NS	NS	NS	NS	NS
MW-7S	58	66	76	90	53	82	52	52	64	38	29	-38	81	-7.0	-6.0	-5.0	18	24	87	NS	NS	NS	NS	NS	NS
MW-8S	NS	NS	NS	NS	93	NS	24	56	36	20	-1.0	-65	38	-49	-65	-20	5.0	2.0	61	NS	NS	NS	NS	NS	NS
MW-9S	NS	62	-74	-60	-20	12	10.0	47	282	54	65	32	169	151											
MW-10S	NS	92	-92	-34	-6.0	27	27	63	270	89	77	78	47	340											
MW-11S	NS	31	-23	-27	-6.0	21	31	76	NS	NS	NS	NS	NS	NS											
MW-12S	NS	100	15	30	40	45	71	120	NS	NS	NS	NS	NS	NS											
MW-13S	NS	NS	NS	NS	NS	NS	25	-129	-105	20															
MW-1I	NS	NS	NS	NS	132	143	94	134	115	77	104	15	126	39	31	24	65	58	262	NS	NS	NS	NS	NS	NS
MW-2I	NS	NS	NS	NS	82	87	50	104	79	45	93	-18	91	-8.0	-36	-2.0	30	37	90	270	58	340	400	185	433
MW-3I	NS	NS	NS	NS	183	30	11	73	31	-5.0	-34	-66	28	-64	-79	-36	-15	-10.0	187	NS	NS	NS	NS	NS	NS
MW-4I	NS	NS	NS	NS	138	101	70	68	49	31	54	-32	59	-7.0	116	-6.0	40	26	72	469	307	110	68	77	93
MW-5I	NS	NS	NS	NS	82	89	-72	76	62	32	77	-36	51	-18	55	2.0	42	34	60	NS	NS	NS	NS	NS	NS
MW-6I	NS	NS	NS	NS	102	122	74	125	95	76	74	5.0	97	-2.0	73	6.0	46	36	86	NS	NS	NS	NS	NS	NS
MW-7I	NS	NS	NS	NS	74	66	1.5	80	65	39	23	-21	92	-1.0	7.0	2.0	41	50	115	NS	NS	NS	NS	NS	NS
MW-8I	NS	NS	NS	NS	104	79	39	79	53	18	45	-38	46	-17	2.0	-16	23	5.0	53	NS	NS	NS	NS	NS	NS
MW-9I	NS	57	-129	-81	-56	-23	-21	46	366	18	11	36	NR	51											
MW-10I	NS	89	-30	1.0	-14	29	21	71	365	306	77	93	NR	54											
MW-11I	NS	21	-42	-30	NS	13	45	91	NS	NS	NS	NS	NS	NS											
MW-12I	NS	37	-72	-70	-36	-15	-7.0	50	NS	NS	NS	NS	NS	NS											
MW-13I	NS	NS	NS	NS	NS	NS	99	151	76	101															

Notes:

- Activity of Electrons (Eh) values were calculated from the final field oxidation reduction potential results during water quality parameter stabilization (see Appendix A) by adding the correction factor of 200. Eh

values are shown in millivolts (mV).

NS: not sampled

NR: no reading

Appendix A

Stabilization:	
SWL < 0.33 ft	Turb <u>+</u> 10%
pH <u>+</u> 0.1	DO + 0.3 mg/L
SC, Temp + 3%	ORP <u>+</u> 10 mV

SITE NAME: Superlon

FIELD TECHNICIAN(S): Michael Kurrov & Christian Oakley

DATE: August 23, 2023

6	11	WELL I	NFO	1	D.	TW						-	URGIN	IC			-		1		Louis	
		-			-	Depth						2		Stabilizat	ion				SAN	PLE COLLECTION	PUR	GE WATER
Well ID	Total Depth (ft)	Screen Interval (ft)	Current Condition (e.g., seal, cover, cap, casing, lock)	Time	to	to Water (ft)	NAPL	Pump Type	Intake Depth (ft)		Flow Rate (L/min)	SWL (ft)	Temp (°C)		Spec. Cond.) pH	ORP (mV)	- 40.000000	Time	Field Kit Results / General Comments	Vol (gal)	Disposal Storage Comments
MW- 4I	SP. SS			855		5.83		feri J		9:03 9:06 9:09 9:12 9:15 9:18		5.91 5.91 5.91 5.91 5.92 5.93	16.3 16.1 16.1 15.8 15.7 15.5	1.03 0.71 0.58 0.35 0.28 0.28	1.453 1.600 1.704 1.784 1.864	7.44 7.43 7.38 7.37 7.36 7.36 7.36	151.7 51.1 -5.3 -310 -54.4	7.15 15:42 26:33		Clear No Odor Dd not	~Q7	Pond on site
21										9.21 9.24 9.27 9.30 9:33		593 593 593 593 593 594	15.4 15.2 15.2 15.1 14.9	0.23 0.18 0.18 0.17 0.12	1.912 1.957 1.966 1.979 1.989	7.3	-725 -71.0 -159 -1007	98:93 78:12 89:82 108:07	0:35	Stabilize		V
MW- 2I	46.2			10:19		10.55			6	10:27 10:33 10:31		10.81 10.71 10.71 10.71	14.7	4.78 4.41 4.35 4.21	1.726 1.744 1.750 1.750	8.16 8.13 8.12 8.12	225.8	3.87 2.22 2.23 2.32	. 40 10:	clear no obor	E,an	
135				11:12		651				11:17 11:20 11:23 11:24 11:29 11:32		6.92 6.92 6.92 6.92 6.92 6.92	18.8	0.44 0.30 0.19 0.14 0.24 0.25	1.636 (.707 (.353 (.953 1.962 2.021, 2.025	11-77 11.77 11.80	-98.8 -140.9 -166.1 -180.4	6.48		Brown transparent	~0.5	
MW- 35	55.	1					and and a second	di D		11:35 11:35 11:38 11:41 11:41 11:44		6.82 6.82 6.82 6.82	13	0.48	2.107 2.128 2.148 2.58	11.85	-165.7 -165.3 -167.0	11.01 13.99 17.30	11:47	dd not stabilize		
	1												<u>.</u> 	<u>y</u>								

<u>Stabilization:</u> SWL < 0.33 ft pH <u>+</u> 0.1

SC, Temp + 3%

DATE: 8/23/23

Turb <u>+</u> 10% DO <u>+</u> 0.3 mg/L ORP <u>+</u> 10 mV

SITE NAME: Superion

15.1

FIELD TECHNICIAN(S): CO & MK

		WELL I	NFO	DTW								P	URGIN	G	SAM	IPLE COLLECTION	PUR	PURGE WATER				
	Total	Screen		2	Depth to	Depth to	NAPL		Intake	Elaps.	Flow		S	tabilizat	on Spec.	1						1
Well ID	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Interval (ft)	Current Condition (e.g., seal, cover, cap, casing, lock)	Time		Water (ft)	12000000000	Pump Type	Depth (ft)	Time	Rate (L/min)	SWL (ft)	Temp (°C)	D.O. (mg/L)	Cond. (mS/cm)	рН	ORP (mV)	Turb (NTU)	Time	Field Kit Results / General Comments	Vol (gal)	Disposal / Storage Comments
1000-15	ری. ری				1	5:32		Qui J		9:02 9:05 9:06 9:11 9:14	· · · · · · · · · · · · · · · · · · ·	5.36	14.5	1.24 0.37 0.21 0.14 0.14	2.632 2.624 2.628 2.628	6.84	-75.2 -98.5	1.92 2.09 2.10 2.12 2.12 2.16	9:19au	Translu cent brown Smell	1	Poped
NW	29.5					i0,02		V	1.	10:23 10:29 10:31 10:34 10:37		10.02	15.1	0.53	6168	6.78 6.74 6.73 6.72 6.71	-929	3.63 3.21 3.50 3.66 4.29	10:4 ⁰¹⁰		I	
NW	29.07					7.05		~~>	All .	11.17 11.20 1023 11.20 11.29 11.32		7.06 7.07 7.07 7.09 7.04	(4.4 (4.3 (3.9 (3.9 (3.9 (3.9 (3.9)	0-57 0-30 0-23 0-13 0-16	2.906 2.910 2.908 2.908 2.908 2.908	1-10	-491,7 -59:6 -69:1	8,18	-			
CALES AN										11-35 11-38 11-91 11-91 11-91 11-91 11-91		7.01 7.01 7.01 7.01 7.01	14.2	0-12	2.904 2.907 2.908 2.907 2.907	7.79 7.79 7.79	-91.4 -93.5 -96.1	1. 11	11.59	Did not instabuliek		
wy-95	2.9			*		916	1	\searrow		13.26 13.27 13.27 13.25 13.35 13.28 13.28 13.28		(0.0(10.17 10.02 10.02 10.02 10.02	19.0	9.41 0.26 0.2(0.17	0.314 0.300 0.247 0.300 0.297 0.297 0.297	6.62 6.99 6.99 6.99 6.98 6.97	-52.4 -52.4 -9.2 -9.2	26.91 31.25 32.89 36-17				
										13:49	新	(0.02 9.85 9.85	190 (9.3 (9.3 (9.3)	()_() 0_() 0_09 0_07	0-269 0-269 0-249 0-248	646 645 643 643	467 -99,17 -99,17 -48,9	60.22 24.76 26.66 36-17		Old not stubulice		

Stabilization: Turb <u>+</u> 10% SWL < 0.33 ft DO <u>+</u> 0.3 mg/L ORP <u>+</u> 10 mV pH <u>+</u> 0.1 SC, Temp + 3%

SITE	NAME:	Super	lon

1

FIELD TECHNICIAN(S): Michael Kurkar & Christian Oakley

DATE: AUDIST 23, 2023

WELL INFO					DTW							F	SAM	IPLE COLLECTION	PUR	PURGE WATER						
					Depth	Depth					Stabilization											
	Total	Screen			to		NAPL		Intake	Elaps.	Flow				Spec.							Dispessel
Well	Depth		Current Condition (e.g., seal, cover,		NAPL		Thick.	Pump	Depth		Rate	SWL	Temp	D.O.	1000		ORP	Turb		Field Kit Results /	Vol	Disposal / Storage
ID	(ft)	(ft)	cap, casing, lock)	Time	and the second	(ft)	(ft)	Туре	(ft)	(min)	(L/min)				(mS/cm)	pH			Time	General Comments	(gal)	Comments
	(,	(oup, ousing, looky		(14)	1.4	((12:27	, , , , , , , , , , , , , , , , , , ,	_	_		6.620			11.70				
			_							13:30				0.38	6632	261	4415	11.80		denr	0.7	on
NW		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		3:18		9.50				13:33		9.62		0.28	6.632 6.637	7.62	4424	11.02	13.40	010	0.7	site
1		NB23		р.						13:37		9.63	10.5	0.22	6.616	7.62	-149 1	12 12				pond
aí										19:57		0.00	(8.1	0.00	10.010	1.02	100.0	12.10				
																	-					
								0.		14:30		10.03	119	IGAI	8.2.68 8.156 8.184 8.184 8.161	7.46	-1001	42.93	-			
								Peri		(1:38		098	19.1	P.PS	8.15/	7.46	-1251	60 44				
m	1.0	1	5 S							19:36		2.98	12.1	(9.29	8.104	19.46	-132.5	76 39				
	45.1									18:39		0 99	17.4	0.23	8.16	7.46	-137	91.2				V
Nur				ý.						14.42		9.98 9.98	17.5	0.19	8.142	7.46	-190	112.55				
			2					V		19:42		9.98	17.4	P.IT	8.135	7.46	-111.8	125.93				
								10		1- 19		9.98	17.9	DIE	\$ 100	7.46	-1930	25.95		Dibett		
						-		1		17.48		9.98	174	012	8.120	7.46	- HH	11.77		Dibert Statelise		
										10-14		9.96	174	012	5.081	747	1452	809	150	Jenne		
			1	· · ·			c = 0	8	6	19:19 (4:55		9.98	174	Alz	8.056	947	1462	65.33				
							6	V		1		1110	10.00	0.00	61970	1.51						
								-								-			È.	20		
									-													
								0.12														
																						·~
								· .														
																				1		
									-						-							
		- ·																				
				· ·											-		-		6			
				-		-											-					
																	-		-			
																						-
					1																	
								-														L

 Stabilization:

 SWL < 0.33 ft</td>
 Turb ± 10%

 pH ± 0.1
 DO ± 0.3 mg/L

 SC, Temp ± 3%
 ORP ± 10 mV

SITE NAME:

FIELD TECHNICIAN(S):

DATE:

WELL INFO DTW													SAM	PLE COLLECTION	PURGE WATER							
-	1	WELLI	NFO	Depth Depth			PURGING Stabilization												FLECOLLECTION	101		
Well	Total Depth (ft)		Current Condition (e.g., seal, cover, cap, casing, lock)	Time	to NAPL	to	NAPL Thick. (ft)	Pump Type		Elaps. Time (min)	Flow Rate (L/min)	SWL (ft)	Temp (°C)	D.O. (mg/L)	Spec. Cond. (mS/cm)	pН	ORP (mV)	Turb (NTU)	Time	Field Kit Results / General Comments	Vol (gal)	Disposal / Storage Comments
Jan 10		2				9.94		Peri		(4:33 (9:33 (9:36 (1:39) (1:39) (1:42)	5	10.03 (0.03 (0.03 10.03 10.03	713 28.3 28-1 27.2 266	5.99 6.25 6.36 6.90 6.42	0.002 0.002 0.002 0.002 0.002	6.28 6.09 6.05 6.08 6.13	NG.9 136.2 1905 1905 1921 1929	34.02 34.73 74.92 376.69 376.69	(47.45 ,	Brown, & translocant		
																					10	
										•												

YSI ProDSS RENTAL CALIBRATION CERTIFICATE

SERVICE TECHNICIAN M RENTAL CUSTOMER: Prover INSTRUMENT INFORMATION RENTAL I.D. NUMBER: YSI-ProDSS. 05 SERIAL NUMBER: 167102616

EQUIPCO

RENTALS

CALIBRATION INFORMATION

PARAN	AETER:	STANDARD:	PASS()	LOT #
	1. CONDUCTIVITY	1,000 µMhos	×	057939
	2. pH ZERO	pH 7	4	065579
	pH SLOPE	pH 4	\mathbf{Y}	062494
	pH SLOPE	pH 10	×	062496
	3. DISSOLVED OXYGEN	Air Calibration Barometric pressure = 760mmHg	×	N/A
	4. TURBIDITY ZERO	0.0 NTU's	$\stackrel{\sim}{\succ}$	N/A
	TURBIDITY SPAN	100 NTU's	×	N/A
	5. REDOX (ORP)	231mV (YSI Zobell solution)	Ý.	040621

DATE: 8/17/23

YSI ProDSS RENTAL CALIBRATION CERTIFICATE

SERVICE TECHNICIAN: RENTAL CUSTOMER: NSTRUMENT INFORMATION RENTAL I.D. NUMBER: YSI-ProDSS.

CALIBRATION INFORMATION

PARAMETER:	STANDARD:	PASS()	LOT #
1. CONDUCTIVITY	1,000 µMhos	<u>\</u>	057939
2. pH ZERO	pH 7	x	065579
pH SLOPE	pH 4	q	062494
pH SLOPE	pH 10	b	062496
3. DISSOLVED OXYGEN	Air Calibration Barometric pressure = 760mmHg	à	N/A
4. TURBIDITY ZERO	0.0 NTU's	K	N/A
TURBIDITY SPAN	100 NTU's	x	N/A
5. REDOX (ORP)	231mV (YSI Zobell solution)	¥	040621

DATE: 8(7/23

Appendix B

QA/QC SOLUTIONS, LLC

James J. Mc Ateer, Jr., BS, MRSC Managing Member 7532 Champion Hill Rd. SE Salem, Oregon 97306 Telephone: 503.763.6948 Facsimile: 503.566.2114 Cellular: 503.881.1501 email: jjmcateer@msn.com

September 25, 2023

Jeff King, L.G. Pacific Environmental and Redevelopment (PERC-NW) 8424 East Meadow Lake Drive Snohomish, WA 98290

Subject: Data Validation Review for the Superlon Plastics Site Annual 2023 Groundwater Monitoring Well Sampling Event Task Order No.: Not Specified QA/QC Solutions, LLC Project No.: 090723.1

Sent via e-mail to jking@perc-nw.com on September 25, 2023

Dear Jeff:

This letter documents the results of the data validation review for the analysis of dissolved arsenic and dissolved lead completed on groundwater samples associated with Superlon Plastic Site Annual 2023 groundwater monitoring well sampling event.

The data reported were validated to verify applicable laboratory quality assurance and quality control (QA/QC) procedures were documented and of sufficient quality to support its intended purpose(s). A summary of the overall assessment of data quality, the data set, a summary of the analytical methods used to complete the chemical analyses, a summary of the data validation procedures, summary of data that may have been qualified, and general comments is presented below.

Overall Assessment of Data Quality

Overall, the data reported are of good quality and the results for the applicable QA/QC procedures that were used by the laboratory during the analysis of the samples were acceptable. During data validation no results required qualification as estimated (J), restatement as undetected (U), or rejection (R).

Data Set

The data set consisted of 11 groundwater samples, (10 filtered samples and 1 filtered field duplicate sample) collected on August 23, 2023. *QA/QC Solutions, LLC* received the abbreviated data summary and electronic data deliverable (EDD) from Pioneer Technologies, Inc. on September 7, 2023.

A summary of the samples collected and analyses completed for dissolved arsenic and dissolved lead is presented in Table 1. All samples were analyzed by Eurofins Seattle located in Tacoma, Washington under Laboratory Job ID 580-130818-1.

Jeff King September 25, 2023 Page 2

Analytical Methods

Analyses for dissolved arsenic and lead was completed by filtration through 0.45-µm filter in the field, the samples pH was adjusted to <2, and the analyses completed by inductively coupled plasma-mass spectrometry (ICP-MS) using U.S. EPA SW-846 Method 6020B (U.S. EPA 2023).

Data Validation Procedures

Data validation procedures included evaluating a summary of the sample results and applicable quality control results that were reported by the laboratory. This level of validation is also referred to as a Stage 2A (U.S. EPA 2009) or also as an abbreviated data review. The analytical data were validated generally following the applicable guidance and requirements specified in:

- Method-specific and laboratory-established quality control requirements, as applicable.
- *Guidance on Environmental Data Verification and Validation* (U.S. EPA 2002).
- Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use. OSWER No. 9200.1-85. EPA 540-R-08-005. (U.S. EPA 2009).
- National Functional Guidelines for Inorganic Data Superfund Data Review. Final. OLEM 9240.1-66 EPA 542-R-20-006 November 2020. U.S. Environmental Protection Agency (EPA), Office of Superfund Remediation and Technology Innovation (OSRTI), Washington, DC. (U.S. EPA 2020).

The laboratory data deliverables that were validated included the following:

- > Case narrative discussing analytical problems (if any) and procedures.
- > Chain-of-custody (COC) documentation to verify completeness of the data set.
- > Laboratory summary result forms to verify analytical holding times were met.
- Results for the method blank to determine whether an analyte that was reported as detected in any sample was the result of possible contamination introduced at the laboratory.
- Results for laboratory control sample (LCS) (i.e., blank spike) and duplicate LCS, recoveries to assess analytical accuracy. Note, a matrix spike (MS), and matrix spike duplicate (MSD) were not reported in this data report.
- Results for duplicate LCS analysis to assess analytical precision. Note, a laboratory duplicate sample nor MSD were reported in this data report.
- Results for the field duplicate samples to provide additional information in support of the quality assurance review.
- > Laboratory summaries of analytical results.

Verification and validation of 100-percent of all applicable laboratory calculations, transcriptions, review of instrument printouts, and review of bench sheets were not completed during the data validation review. There may be analytical problems that could only be identified by reviewing every instrument printouts and associated analytical quality control results. Verification of all possible factors that could result in the degradation of data quality was not completed nor should be inferred at this time. The laboratory case Jeff King September 25, 2023 Page 3

narrative did not indicate any significant problems with data that were not reviewed during data validation. The adequacy of the sampling procedures was not completed during the data validation.

Performance based control limits established by the laboratory, applicable control limits specified in the analytical methods, and best professional judgement were used to evaluate data quality and to determine if specific data required qualification. Data qualifiers were assigned during data validation following guidance specified by U.S. EPA (2002 and 2020) to the EDD when applicable QC measurement criteria were not met, and qualification of the data was warranted.

Reasons for Data Qualification

No sample results required qualification.

General Comments

- Data users should refer to the laboratory data package for complete information pertinent to the analyses completed.
- ➤ Data users should note that filtration through 0.45-µm filter is an "operational" definition and is not indicative of a "truly dissolved" aqueous fraction.
- > Results were reported as a non-detect were at the applicable reporting limit.
- > Sample results were reported from a dilution factor of 5.

This concludes the data validation review. Should you have any questions regarding the information presented herein, please contact me by telephone at 503.763.6948 or by e-mail at jjmcateer@msn.com.

Cordially,

James J. Mc Ateer, Jr., BS, MRSC Managing Member

cc: Brad Grimsted, Pioneer Technologies Corporation via email at grimstedb@uspioneer.com Nathan Starr, Pioneer Technologies Corporation via email at starrn@uspioneer.com

Attachment

Jeff King September 25, 2023 Page 4

References

U.S. EPA 2002. Guidance on Environmental Data Verification and Data Validation. EPA QA/G-8. EPA/240/R-02/004. November 2002. U.S. Environmental Protection Agency, Office of Environmental Information, Washington DC.

U.S. EPA 2009. Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use. OSWER No. 9200.1-85. EPA 540-R-08-005. January 13, 2009.U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, DC.

U.S. EPA 2020. National Functional Guidelines for Inorganic Data Superfund Data Review. Final. OLEM 9240.1-66 EPA 542-R-20-006. November 2020. Office of Superfund Remediation and Technology Innovation (OSRTI), U.S. Environmental Protection Agency.

U.S. EPA 2023. SW-846 Compendium. Test methods for evaluating solid wastes, physical/chemical methods. https://www.epa.gov/hw-sw846/sw-846-compendium (last updated on June 21, 2023). U.S. Environmental Protection Agency, Office of Solid Waste, Washington, DC.

Sample Number	Laboratory Sample Number	Sample Date	Time Collected	Dissolved Arsenic and Lead by 6020B
GW-MW-2S-082323	580-130818-1	08/30/22	10:10	\checkmark
GW-MW-2I-082323	580-130818-2	08/30/22	10:40	\checkmark
GW-MW-4S-082323	580-130818-3	08/30/22	9:15	\checkmark
GW-MW-41-082323	580-130818-4	08/30/22	9:35	\checkmark
GW-MW-9S-082323	580-130818-5	08/30/22	13"58	\checkmark
GW-MW-9I-082323	580-130818-6	08/30/22	13:40	\checkmark
GW-GW-SAMPL A-082323	580-130818-7	08/30/22	13:40	\checkmark
GW-MW-10S-082323	580-130818-8	08/30/22	14:45	\checkmark
GW-MW-10I-082323	580-130818-9	08/30/22	15:02	\checkmark
GW-MW-13SI082323	580-130818-10	08/30/22	11:52	\checkmark
GW-MW-13S-082323	580-130818-11	08/30/22	11:47	✓

Table 1. Summary of Samples Collected and Analyses Completed

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Nathan Starr Pioneer Technologies Corp 5205 Corporate Center Ct SE Suite A Olympia, Washington 98503 Generated 8/29/2023 12:52:42 PM

JOB DESCRIPTION

Superion Plastics

JOB NUMBER

580-130818-1

Eurofins Seattle 5755 8th Street East Tacoma WA 98424

Eurofins Seattle

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northwest, LLC Project Manager.

Authorization

Authorized for release by Katie Grant, Project Manager I Katie.Grant@et.eurofinsus.com (253)922-2310

Generated

8/29/2023 12:52:42 PM

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Definitions	5
Client Sample Results	6
QC Sample Results	17
Chronicle	18
Certification Summary	20
Sample Summary	21
Chain of Custody	22
Receipt Checklists	23

Laboratory: Eurofins Seattle

Narrative

Job Narrative 580-130818-1

Receipt

The samples were received on 8/23/2023 4:10 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.3°C

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Definitions/Glossary

Client: Pioneer Technologies Corp Project/Site: Superlon Plastics

RPD

TEF

TEQ

TNTC

Glossary		3
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	4
%R	Percent Recovery	
CFL	Contains Free Liquid	5
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	6
DER	Duplicate Error Ratio (normalized absolute difference)	0
Dil Fac	Dilution Factor	-7
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	8
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	9
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	10
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	11
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	

Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Client Sample ID: GW-MW-2S-082323 Lab Sample ID: 580-130818-1 Date Collected: 08/23/23 10:10 Matrix: Water Date Received: 08/23/23 16:10 Matrix: Water Method: SW846 6020B - Metals (ICP/MS) - Dissolved Analyte Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Method: SW846 6020B - Metals (ICI	P/MS) - DISS	oivea								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
Arsenic	1.6		0.0050		mg/L		08/25/23 17:26	08/28/23 12:39	5	
Lead	ND		0.0020		mg/L		08/25/23 17:26	08/28/23 12:39	5	6

Client Sample ID: GW-MW-2I-082323 Lab Sample ID: 580-130818-2 Date Collected: 08/23/23 10:40 Matrix: Water Date Received: 08/23/23 16:10 Matrix: Water

Method: SW846 6020B - Metals (IC)	P/IVIS) - DISSO	Dived								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
Arsenic	0.0063		0.0050		mg/L		08/25/23 17:26	08/28/23 12:42	5	
Lead	ND		0.0020		mg/L		08/25/23 17:26	08/28/23 12:42	5	6

Client Sample ID: GW-MW-4S-082323 Lab Sample ID: 580-130818-3 Date Collected: 08/23/23 09:15 Matrix: Water Date Received: 08/23/23 16:10 Matrix: Water Method: SW846 6020B - Metals (ICP/MS) - Dissolved Analyte Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Method: SW846 6020B - Metals (IC)	P/IVIS) - DISSO	Divea							
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	5
Arsenic	0.25		0.0050	mg/L		08/25/23 17:26	08/28/23 13:16	5	
Lead	0.014		0.0020	mg/L		08/25/23 17:26	08/28/23 13:16	5	6

Client Sample ID: GW-MW-4I-082323 Lab Sample ID: 580-130818-4 Date Collected: 08/23/23 09:35 Matrix: Water Date Received: 08/23/23 16:10 Matrix: Water Method: SW846 6020B - Metals (ICP/MS) - Dissolved Image: Collected State Sta

Method: SW846 6020B - Metals (IC	P/MS) - DISS	Dived								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
Arsenic	ND		0.0050		mg/L		08/25/23 17:26	08/28/23 12:47	5	
Lead	ND		0.0020		mg/L		08/25/23 17:26	08/28/23 12:47	5	6

Client Sample ID: GW-MW-9S-082323 Lab Sample ID: 580-130818-5 Date Collected: 08/23/23 13:58 Matrix: Water Date Received: 08/23/23 16:10 Matrix: Water Method: SW846 6020B - Metals (ICP/MS) - Dissolved Prepared Analyte Result Qualifier

Method: SW846 6020B - Metals (ICI	P/IVIS) - DISSO	Dived							
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	5
Arsenic	1.9		0.0050	mg/L		08/25/23 17:26	08/28/23 12:50	5	
Lead	ND		0.0020	mg/L		08/25/23 17:26	08/28/23 12:50	5	6

Client Sample ID: GW-MW-9I-082323 Lab Sample ID: 580-130818-6 Date Collected: 08/23/23 13:40 Matrix: Water Date Received: 08/23/23 16:10

Method: SW846 6020B - Metals (IC	P/MS) - Disse	Dived								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
Arsenic	ND		0.0050		mg/L		08/25/23 17:26	08/28/23 12:52	5	
Lead	ND		0.0020		mg/L		08/25/23 17:26	08/28/23 12:52	5	6

Client Sample ID: GW-SAMPLE A-082323 Lab Sample ID: 580-130818-7 Date Collected: 08/23/23 13:40 Matrix: Water Date Received: 08/23/23 16:10

Method: SW846 6020B - Metals (IC	P/MS) - Disse	Dived								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
Arsenic	ND		0.0050		mg/L		08/25/23 17:26	08/28/23 12:44	5	
Lead	ND		0.0020		mg/L		08/25/23 17:26	08/28/23 12:44	5	6

Lab Sample ID: 580-130818-8 Matrix: Water Г

Euro	fins	Sea	ttle
Laio		000	

Client Sample ID: GW-MW-10S-08	2323
Date Collected: 08/23/23 14:45	
Date Received: 08/23/23 16:10	

Method: SW846 6020B - Metals (ICF	P/MS) - Diss	olved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.90		0.0050		mg/L		08/25/23 17:26	08/28/23 13:19	5
Lead	0.028		0.0020		mg/L		08/25/23 17:26	08/28/23 13:19	5

5

Client Sample ID: GW-MW-10I-082323 Lab Sample ID: 580-130818-9 Date Collected: 08/23/23 15:02 Matrix: Water Date Received: 08/23/23 16:10 Matrix: Water Method: SW846 6020B - Metals (ICP/MS) - Dissolved Dissolved

Analyte	Result	Qualifier	RL	MDL	Unit	 D	Prepared	Analyzed	Dil Fac
Arsenic	0.0070		0.0050		mg/L	_	08/25/23 17:26	08/28/23 12:55	5
Lead	ND		0.0020		mg/L		08/25/23 17:26	08/28/23 12:55	5

Matrix: Water

5

Client Sample ID: GW-MW-13I-082323 Lab Sample ID: 580-130818-10 Date Collected: 08/23/23 11:52 Date Received: 08/23/23 16:10 Method: SW846 6020B - Metals (ICP/MS) - Dissolved

Welliou. Swo40 0020B - Weldis (ICI	-/IVIS) - DISSU	nveu								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Arsenic	0.076		0.0050		mg/L		08/25/23 17:26	08/28/23 12:57	5	ī
Lead	ND		0.0020		mg/L		08/25/23 17:26	08/28/23 12:57	5	

Matrix: Water

Client Sample ID: GW-MW-13S-082323 Lab Sample ID: 580-130818-11 Date Collected: 08/23/23 11:47 Date Received: 08/23/23 16:10 Method: SW846 6020B - Metals (ICP/MS) - Dissolved

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	25		0.0050		mg/L		08/25/23 17:26	08/28/23 13:14	5
Lead	0.29		0.0020		mg/L		08/25/23 17:26	08/28/23 13:14	5

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 580-435873/23-A Matrix: Water											ample ID:		
Analysis Batch: 436030										Prep	Type: Tota	Batch: 4	
Analysis Batch. 430030	МВ	мв									Flep	Daten.	133073
Analyte	Result		RL		MDL	Unit		D	Pi	repared	Analyz	ed	Dil Fac
Arsenic	ND		0.0050			mg/L		_		5/23 17:26	08/28/23		
Lead	ND		0.0020			mg/L			08/2	5/23 17:26	08/28/23	12:01	:
Lab Sample ID: LCS 580-435873/24-A								С	lient	Sample	ID: Lab Co	ontrol S	ample
Matrix: Water										Prep ⁻	Type: Tota		verabl
Analysis Batch: 436030												Batch: 4	
-			Spike	LCS	LCS						%Rec		
Analyte			Added	Result	Qual	ifier	Unit		D	%Rec	Limits		
Arsenic			1.00	1.01			mg/L		_	101	80 - 120		
Lead			1.00	0.975			mg/L			97	80 - 120		
Lab Sample ID: LCSD 580-435873/25-A							CI	ient	Sam	ple ID: L	ab Contro	ol Samp	le Du
Matrix: Water										Prep ⁻	Type: Tota	Recov	erabl
Analysis Batch: 436030											Prep I	Batch: 4	13587
-			Spike	LCSD	LCSI	5					%Rec		RP
Analyte			Added	Result	Qual	ifier	Unit		D	%Rec	Limits	RPD	Lim
Arsenic			1.00	1.01			mg/L		_	101	80 - 120	0	2
Lead			1.00	0.995			mg/L			99	80 - 120	2	2

Dissolved

Analysis

6020B

Client Sampl	e ID: GW-M	W-2S-082323						Lab Sample ID:	580-130818-
Date Collected:									Matrix: Wate
Date Received:	08/23/23 16:10)							
_	Batch	Batch		Dilution	Batch			Prepared	
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	
Dissolved	Prep	3005A			435873	ТМН	EET SEA	08/25/23 17:26	
Dissolved	Analysis	6020B		5	436030	FCW	EET SEA	08/28/23 12:39	
Client Sampl	e ID: GW-M	W-2I-082323						Lab Sample ID:	580-130818-
Date Collected: Date Received:									Matrix: Wate
-	Batch	Batch		Dilution	Batch			Prepared	
Prep Type	Туре	Method	Run	Factor		Analyst	Lab	or Analyzed	
Dissolved	Prep				435873	TMH	EET SEA	08/25/23 17:26	
Dissolved	Analysis	6020B		5	436030		EET SEA	08/28/23 12:42	
Client Sampl	e ID: GW-M	W-4S-082323						Lab Sample ID:	580-130818-
Date Collected:	08/23/23 09:1	5							Matrix: Wate
Date Received:	08/23/23 16:10)							
	Batch	Batch		Dilution	Batch			Prepared	
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	
Dissolved	Prep	3005A			435873	ТМН	EET SEA	08/25/23 17:26	
Dissolved	Analysis	6020B		5	436030	FCW	EET SEA	08/28/23 13:16	
Client Sampl	e ID: GW-M	W-4I-082323						Lab Sample ID:	580-130818-
Date Collected:	08/23/23 09:3	5							Matrix: Wate
Date Received:	08/23/23 16:10)							
_	Batch	Batch		Dilution	Batch			Prepared	
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	
Dissolved	Prep	3005A			435873	ТМН	EET SEA	08/25/23 17:26	
Dissolved	Analysis	6020B		5	436030	FCW	EET SEA	08/28/23 12:47	
Client Sampl	e ID: GW-M	W-9S-082323						Lab Sample ID:	580-130818-
Date Collected:	08/23/23 13:5	8							Matrix: Wate
Date Received:	08/23/23 16:10)							
-	Batch	Batch		Dilution	Batch			Prepared	
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	
Dissolved	Prep	3005A			435873	ТМН	EET SEA	08/25/23 17:26	
Dissolved	Analysis	6020B		5	436030	FCW	EET SEA	08/28/23 12:50	
Client Sampl	e ID: GW-M	W-9I-082323						Lab Sample ID:	580-130818-
Date Collected:									Matrix: Wate
Date Received:	08/23/23 16:10	J							
	Batch	Batch		Dilution	Batch			Prepared	
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	
Dissolved	Prep	3005A			435873	ТМН	EET SEA	08/25/23 17:26	

5

436030 FCW

EET SEA

08/28/23 12:52

Client Sample ID: GW-SAMPLE A-082323 Date Collected: 08/23/23 13:40

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3005A			435873	тмн	EET SEA	08/25/23 17:26
Dissolved	Analysis	6020B		5	436030	FCW	EET SEA	08/28/23 12:44

Client Sample ID: GW-MW-10S-082323 Date Collected: 08/23/23 14:45 Date Received: 08/23/23 16:10

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3005A			435873	ТМН	EET SEA	08/25/23 17:26
Dissolved	Analysis	6020B		5	436030	FCW	EET SEA	08/28/23 13:19

Client Sample ID: GW-MW-10I-082323

Lab Sample ID: 580-130818-9 Matrix: Water

Lab Sample ID: 580-130818-10

Lab Sample ID: 580-130818-11

Lab Sample ID: 580-130818-8

Date Collected: 08/23/23 15:02 Date Received: 08/23/23 16:10

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3005A			435873	ТМН	EET SEA	08/25/23 17:26
Dissolved	Analysis	6020B		5	436030	FCW	EET SEA	08/28/23 12:55

Client Sample ID: GW-MW-13I-082323

Date Collected: 08/23/23 11:52

Date Received: 08/23/23 16:10

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3005A			435873	ТМН	EET SEA	08/25/23 17:26
Dissolved	Analysis	6020B		5	436030	FCW	EET SEA	08/28/23 12:57

Client Sample ID: GW-MW-13S-082323

Date Collected: 08/23/23 11:47 Date Received: 08/23/23 16:10

_								
	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Dissolved	Prep	3005A			435873	ТМН	EET SEA	08/25/23 17:26
Dissolved	Analysis	6020B		5	436030	FCW	EET SEA	08/28/23 13:14

Laboratory References:

EET SEA = Eurofins Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Matrix: Water

Matrix: Water

Matrix: Water

Job ID: 580-130818-1

3 4 5 Client: Pioneer Technologies Corp Project/Site: Superion Plastics

Laboratory: Eurofins Seattle

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Washington	State	C788	07-13-23 *

Sample Summary

Client: Pioneer Technologies Corp Project/Site: Superion Plastics

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-130818-1	GW-MW-2S-082323	Water	08/23/23 10:10	08/23/23 16:10
580-130818-2	GW-MW-2I-082323	Water	08/23/23 10:40	08/23/23 16:10
580-130818-3	GW-MW-4S-082323	Water	08/23/23 09:15	08/23/23 16:10
580-130818-4	GW-MW-4I-082323	Water	08/23/23 09:35	08/23/23 16:10
580-130818-5	GW-MW-9S-082323	Water	08/23/23 13:58	08/23/23 16:10
580-130818-6	GW-MW-9I-082323	Water	08/23/23 13:40	08/23/23 16:10
580-130818-7	GW-SAMPLE A-082323	Water	08/23/23 13:40	08/23/23 16:10
580-130818-8	GW-MW-10S-082323	Water	08/23/23 14:45	08/23/23 16:10
580-130818-9	GW-MW-10I-082323	Water	08/23/23 15:02	08/23/23 16:10
580-130818-10	GW-MW-13I-082323	Water	08/23/23 11:52	08/23/23 16:10
580-130818-11	GW-MW-13S-082323	Water	08/23/23 11:47	08/23/23 16:10

Contraction Marrier ////// Construction Construction M_{0} /M/M M_{1} /M/M M_{1} /M Marrier Marrier Marrier M_{1} /M/M M_{1} /M M_{1} /M Marrier Marrier Marrier M_{1} /M/M M_{2} /M M_{1} /M Marrier Marrier Marrier M_{1} /M/M M_{2} /M M_{1} /M Marrier Marrier Marrier M_{1} /M/M M_{2} /M M_{1} /M Marrier Marrier Marrier M_{1} /M/M M_{2} /M M_{1} /M Marrier Marrier Marrier M_{1} /M/M M_{2} /M M_{1} /M Marrier Marrier Marrier M_{1} /M/M M_{2} /M M_{1}/M M_{1}/M M_{2}/M M_{1}/M $M_{1}/M/M$ M_{2} /M M_{1}/M M_{2}/M M_{1}/M M_{2}/M $M_{1}/M/M$ M_{2} /M $M_{1}/M/M$ $M_{2}/M/M$ $M_{1}/M/M$ $M_{2}/M/M$ $M_{2}/M/M$ $M_{1}/M/M$ $M_{2}/M/M$ $M_{1}/M/M$ $M_{2}/M/M/M$ $M_{1}/M/M/M$ $M_{1}/M/M/M$ $M_{1}/M/M/M/M/M/M/M/M/M/M/M/M/M/M/M/M/M/M/M$	Ver. 01/16/2019 8/29/2023			of 23	Page 22 of 23				ļ
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			ure(s) °C and Other Remarks	Cooler Temperat				Custody Seal No.:	stody Seals Inte
	Company		Date/Time:	Received by:	Dompany		e/Time:	Da	Relinquished by:
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Company		Date/Time:	Received by:	Company		e/Time:	Da	Relinquished by:
onnation main high (C) form high (C) form main main <thmain< th=""> main main m</thmain<>	Company	BIZS ILL	C / C Contectinge	Received by:	Company	16-10	12213	C Onkly 5	1.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Method of Shipment:	ne:					ly Kit Relinquist
Same AT My (C) Conv Protein Same Analysis Requested Same Conv Same C			ins/QC Requirements:	Special Instructio				ited: I, II, III, IV, Other (specify)	erable Request
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Archive For	Client Disposal By Lab	Return To		Radiological	Unknown	ant [Non-Hazard
n output $(A + V_{c}) / (C)$ output output <t< td=""><td>1 month)</td><td>re retained longer than</td><td>may be assessed if samples</td><td>Sample Disposa</td><td></td><td></td><td></td><td></td><td>sible Hazard Io</td></t<>	1 month)	re retained longer than	may be assessed if samples	Sample Disposa					sible Hazard Io
n convert $ $	0000	16 N		X	3	6	23/23 11	35 -092323	V - MV
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Other: Chart		Blue Ic	X	3	6	123/23 ((.5	-121-082323	V -MV
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	UPS:		Packin	×	3	1 ·	123/23 (5)	-102-082323	ST I M
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	iad Ex.		Cooler	X	ج ح		(23/23	-105-082323	Nov - Nov
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ς. Σ ί ση Γ	た	Therm	X	X X		22	EA-082323	N-SAN
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				×	ج ۲	1	23/23	-9I-082323	Gw-Mw
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	stody	0-130818 Chain of Cut	58	×	S V			-95-082323	Sw - MA
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				×	X	<u>†</u>	-	~45~082323	$\zeta - M$
n Sample: It K/C Late Mit Came indexing (MO) Control (MO) AL Tech Mithing Fire Evaluation Same of Organ Page at of 1 AL Tech Mithing Fire Prove: Fire Same of Organ Page at of 1 AL Tech Mithing Fire Prove: Fire Same of Organ Page at of 1 OLGONATA Clip Lip Lip Lip Lip Lip Lip Lip Lip Lip L				×				-45-082323	
n Sumpler N M (C) Later Mit Came Tracking Wolf: Came Tracking Wolf: Comment Tra				×				25-082323	SW - M
n Sample Figure 1 Sample Matrix Came 1 reacting hold; COC No: MMin Year Prone P				×	8			25-082323	JU-M
n Partype: N V(0) Lat Mail Came including No(3) Constraints MMn Yesto Proce Proce Proce Source of Ongon Page 1 of 1 MMn Yesto Proce Proce Proce Source of Ongon Page 1 of 1 MMn Yesto No Proce Proce Page 1 of 1 MMn Yesto Analysis Requested Page 1 of 1 Page 1 of 1 MM Source of Ongon Page 1 of 1 Page 1 of 1 Page 1 of 1 MM Compliance Project: A for Xest A No Page 1 of 1 Page 1 of 1 TO Por Port Compliance Project: A for Xest A No Page 1 of 1 TO Por Port Page 1 of 1 Page 1 of 1 Page 1 of 1 TO Por Port Page 1 of 1 Page 1 of 1 Page 1 of 1 TO Por Port Page 1 of 1 Page 1 of 1 Page 1 of 1 TO Port Port Page 1 of 1 Page 1 Page 1 of 1 TO Port Page 1 of 1 Page 1 Page 1 Page 1 TO Port Sample Page 1 Page 1 Page 1 Page 1 To		X		X	KANZAN	Preserve			
Information Sumpler: A K/(C) Lat Mit Came Tracking NOE; Complete Tracking NOE; Page 1 of 1 P10 h L/ T/L/M (L/L) Due Date Requested: PMSID: Evalue Page 1 of 1 Page 1 of 1 P10 h L/ T/L/M (L/L) Due Date Requested: PMSID: Analysis Requested: Page 1 of 1 P10 h L/ T/L/M (L/L) Due Date Requested: PMSID: Analysis Requested: Page 1 of 1 P10 h L/ T/L/M (L/L) Due Date Requested: PMSID: Analysis Requested: Page 1 of 1 P10 h L/ T/L/M (L/L) T/L/M (L/L) Pole: A 'K's a No Page 1 of 1 Page 1 of 1 P10 h L/ T/L/M (L/L) Compliance Project: A 'K's a No Preservation Cod Preservation Cod P10 h L/ P10 h L/L Pole: Pole: A 'K's a No Preservation Cod Preservation Cod P10 h L/L P10 h L/L Pole: Pole: A 'K's a No' Preservation Cod Preservation Cod P10 h L/L P0 h L/L Pole: Pole: Pole: Pole: Pole: Pole: </td <td>Instructions/Note:</td> <td>0.0535240</td> <td></td> <td></td> <td>~~</td> <td></td> <td> </td> <td></td> <td>ple Identificat</td>	Instructions/Note:	0.0535240			~~		 		ple Identificat
Information Description: At K/C Lap MX Camer Tracking N(s): Conform Page art MATMM, Start Prone: Prone: E-Meit: State of Origin: Page Page 101 P10 halv Tat Malling Contraction Prove: E-Meit: State of Origin: Page Page 101 P10 halv Tat Malling Contraction Prove: E-Meit: State of Origin: Page Page 101 P10 halv Tat Malling Compliance Project: A No State of Origin: Page 101 P10 halv Tat Requested Marysis Compliance Project: A No State of Origin: Preservation Code P10 halv Tat Malling Compliance Project: A No State of No State of No State of Origin: Preservation Code P10 halv FOR Compliance Project: A No State of No State of No State of No State of No P10 halv Up of the form Prosecutific A visit State of No State of No State of No P10 halv Prosecutific No Prosecutific A visit State of No State of No State of No P10 halv Prosecutific		al Number		form MS/			Sample		
Information Sample:: A K/(0) Lab Mit Came Tracking No(5); COC No: act WALMAN, Start Frome: Frome: E-Mail: State of Origin: Frage: Frace: Frace: Frace: Frace: Frace: Frace:		Contrate Contra		K DA	Samp		SOW#	WA	Tacom
Information Sample:: N K/CO Lab PM: Camer Tracking No(s): Connect Tracking No	vy - pri 4-3 Z - other (specify)			85 57	le (Ye		roject #:		Project Name: 5
Information Sample: If K/CO Lab PM: Camer Tracking No(s): Conner Tracking No(s): Page:				No)	S OF N		/O #:	ON OUSpioneer.com	1
Information Sampler: I K/CO Lab PM: Camer Tracking No(s): Concernance act: MAMAN, Start Phone: File E-Mail: State of Origin: Page: act: MAMAN, Start Fhone: E-Mail: State of Origin: Page: Page: act: MAMAN, Start State of Origin: Page: Page: Page: Page: act: State of Origin: Page: Page: Page: Page: Page: act: State of Origin: Page: Page: Page: Page: Page: act: State of Origin: Arrow State of Origin: Page: Page: Page: act: State of Origin: State of Origin: Page: Arrow Page: Page: act: State of Origin: Arrow State of Origin: Arrow Page: Arrow act: State of Origin: Arrow State of Origin: Arrow Arrow Arrow act: State of Origin: State of Origin: Arrow Arrow Arrow Arrow act: State of Origin: State of Origin: Arrow Arrow Arrow Arrow act: State of Origin: </td <td></td> <td>G - Amethor H - Ascorbic Aci</td> <td></td> <td>N.</td> <td>0)</td> <td>red</td> <td>o⊯: \urchase Order not requ</td> <td>1700</td> <td>1</td>		G - Amethor H - Ascorbic Aci		N.	0)	red	o⊯: \urchase Order not requ	1700	1
Information Sampler: If K/CO Lab PM: Camer Tracking No(s): Core is an information act: MATMAR State of Origin: Phone: E-Mail: State of Origin: Page: act: MATMAR State of Origin: Page: Page: Page: Page: PID NELV Technology (LS) Phone: Phone: E-Mail: State of Origin: Page 1 of 1 PiD NELV Technology (LS) Preservation Cod Phone: Preservation Cod Preservation Cod PLY M L A TA TA requested (days): TAT Requested (days): Preservation Cod A-HCL A-HCL D L Y M L A State of State of Code and the code an		E - NaHSO4	· · · · · · · · · · · · · · · · · · ·	<u>L</u>		\sim	Mian	46303	
Information Sample: It K/CO Lab PM: Camer Tracking No(s): Core is a construction of the construction of		B - NaOH C - Zn Acetate		<u>nd</u>		Re	AT Requested (days): $\int tan day day day day day day day day day day$	-	$\frac{\text{City:}}{\text{State. Zip:}} O \downarrow Y$
Information Sample: N K/CO Lab PM: Camer Tracking No(s) COC No act M A M MA State of Ongin: Phone: E-Mail: State of Ongin: Page: P1O N A V Ta M M A M Mig COC Phone: E-Mail: State of Ongin: Page: P1O N A V Ta M M A Mig COC Provide E-Mail: State of Ongin: Page: P1O N A V Ta M M A Mig COC Provide E-Mail: State of Ongin: Page:	Codes:	Preservation to					ue Date Requested:	Corporate Ctrict SE St	S
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Job #:	lysis			PWSID:		Technologi 1.4	P
Sampler: AV K/ (C) Lab HW: Camer Tracking No(s):		Page: Page 1 of 1	State of Origin:		E-Mait		hone:	m Starr	act:
		CÕC No:	Carrier Tracking No(s):		Lab PM:		X		ent Informa
	Environment Testing	4		\$COLO	Chain of Custody Record		Cliqu	424	Tacoma, WA 98424

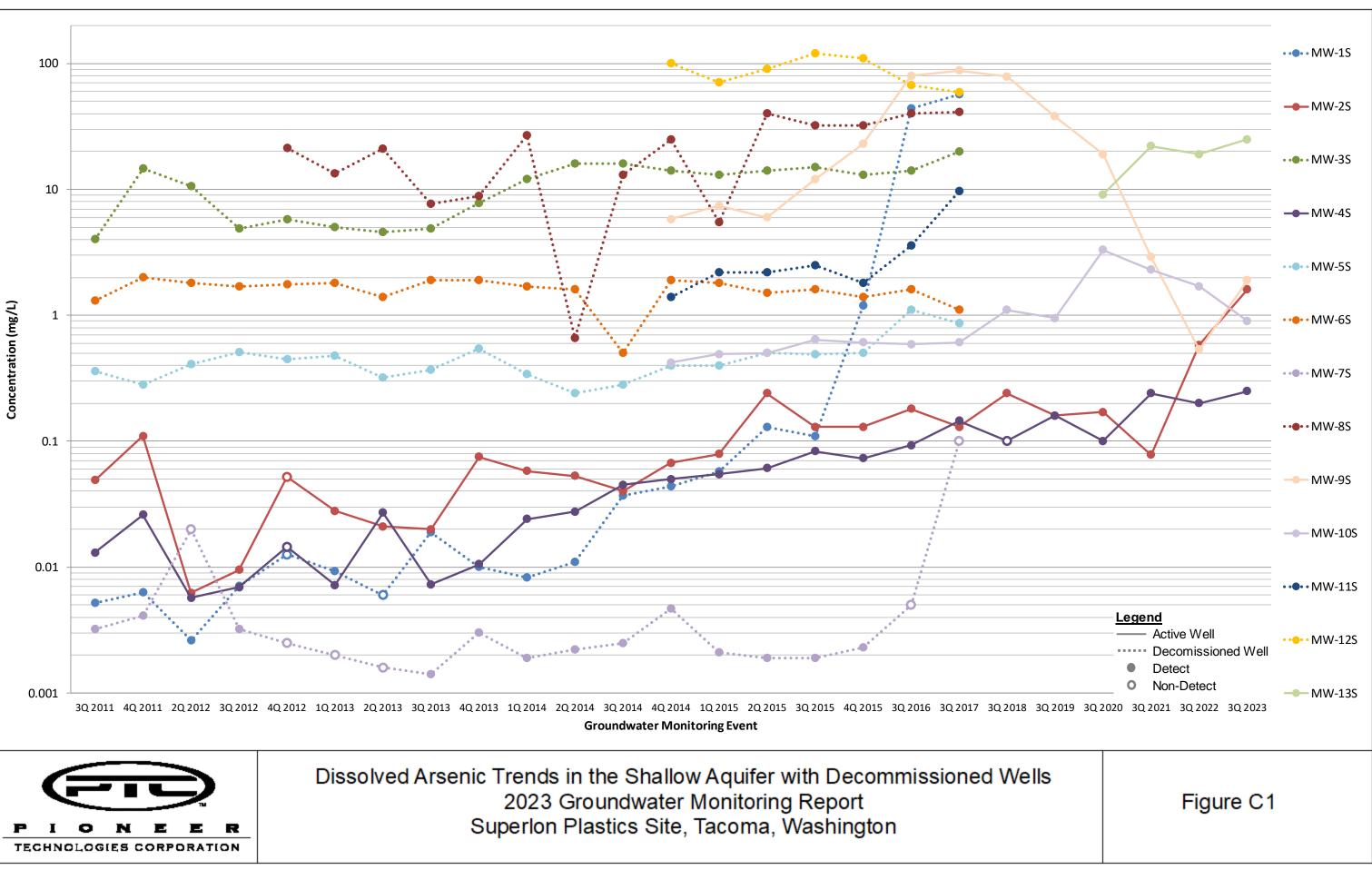
Eurofins Environmental Testing Northwest, LLC 5755 8th Street East

Chain of Custody Da 5 Ś.

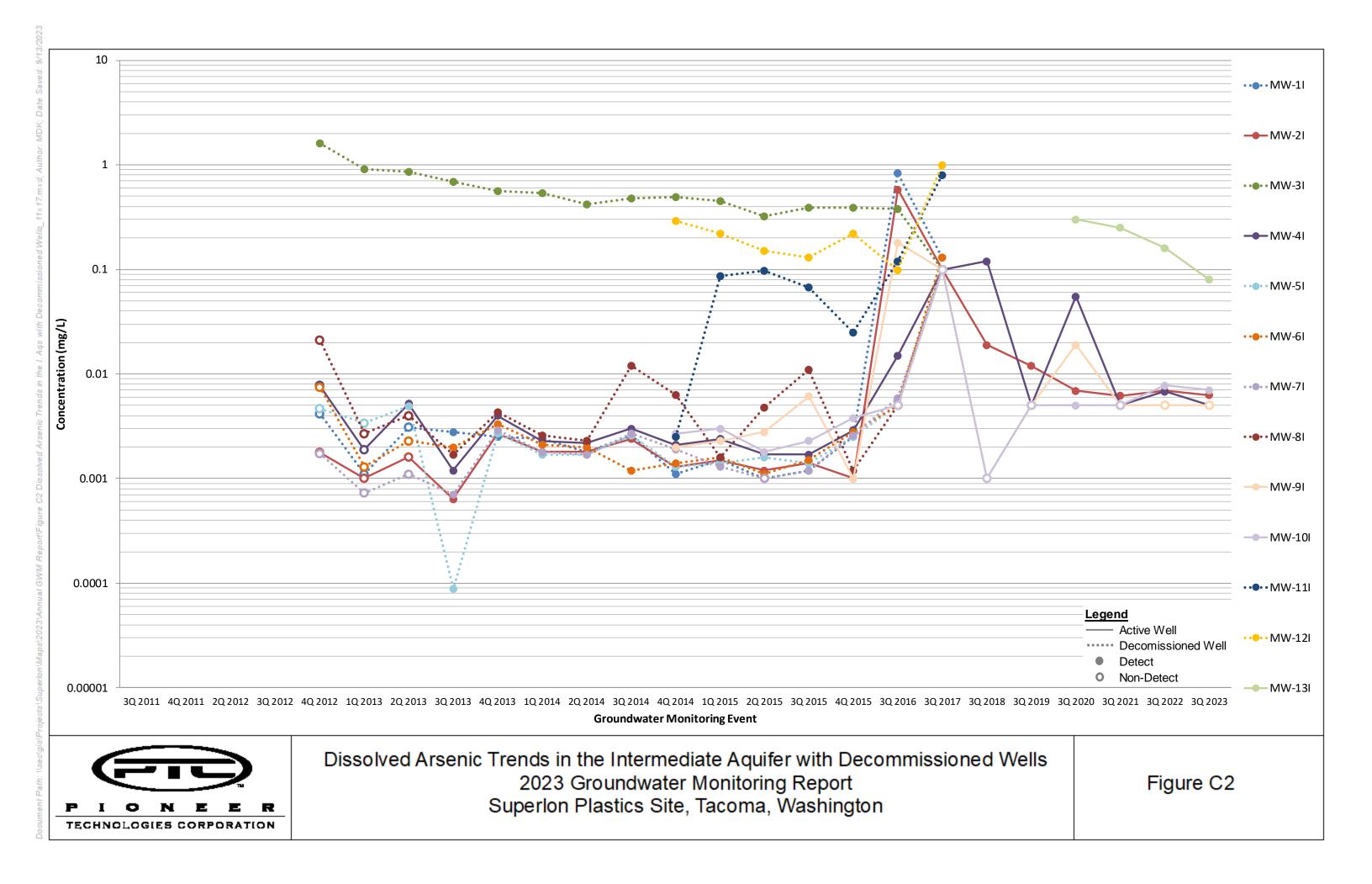
🔅 eurofins

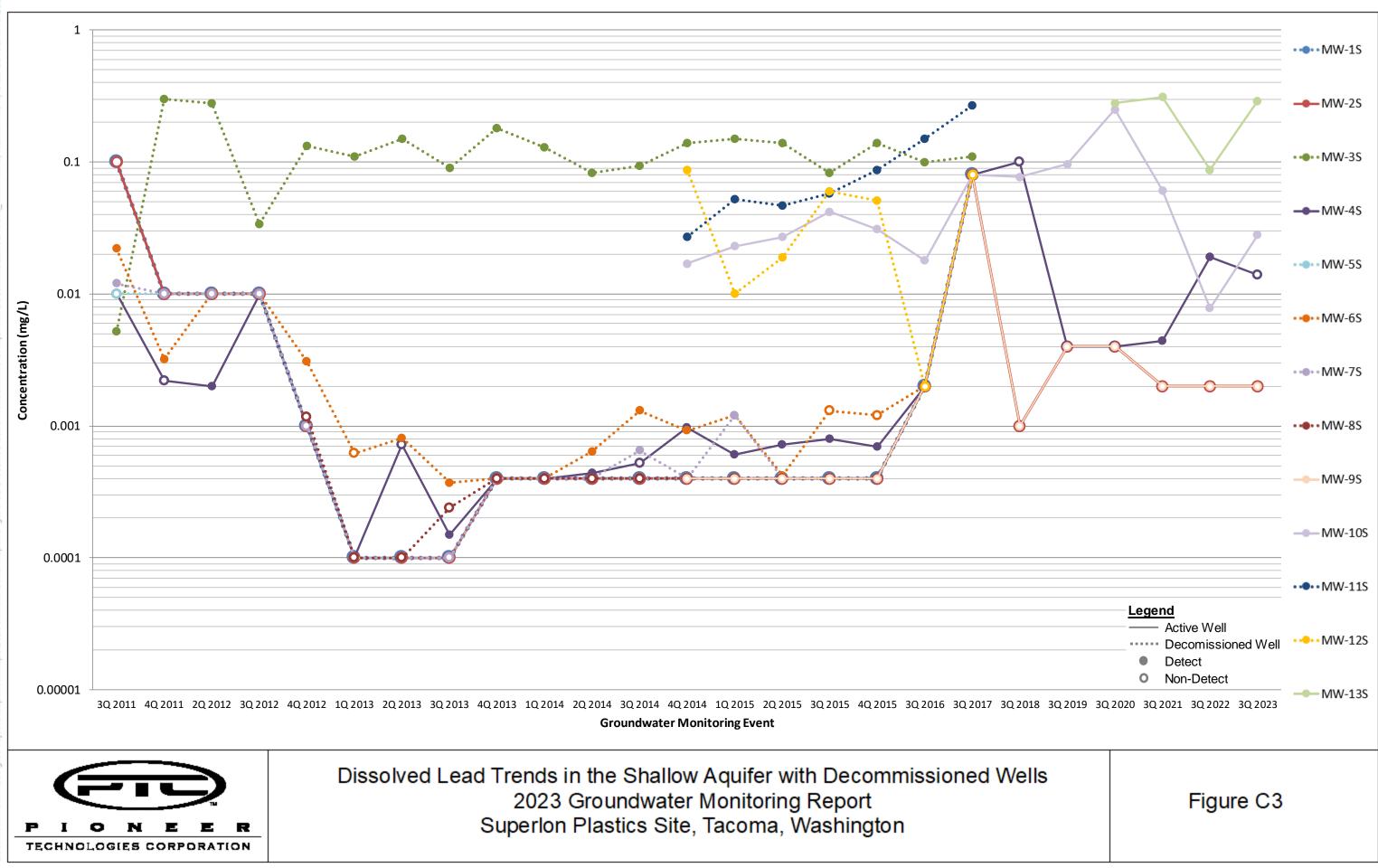
Client: Pioneer Technologies Corp

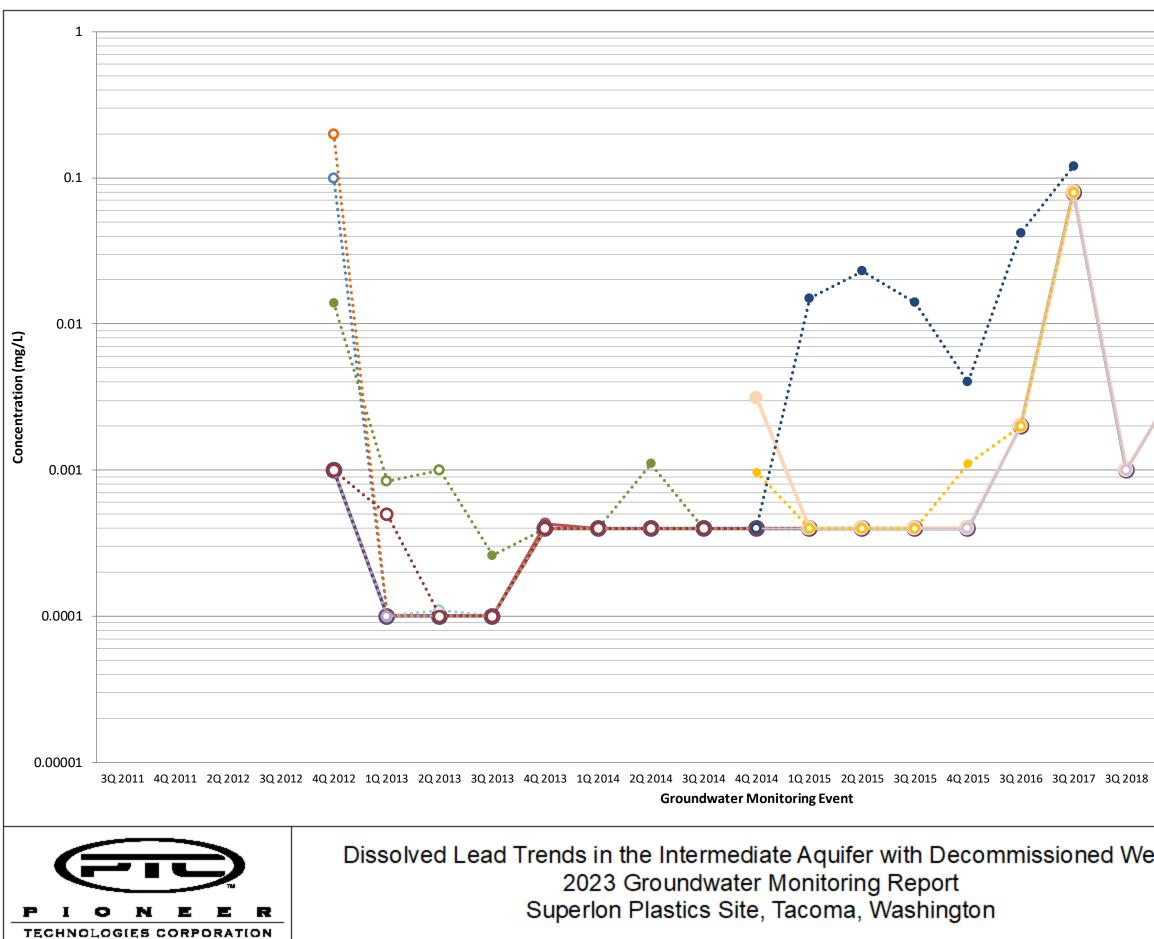
Login Number: 130818 List Number: 1


Creator: Groves, Elizabeth

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	


Job Number: 580-130818-1


List Source: Eurofins Seattle


Appendix C

		••••• MW-1I
		••••• MW-3I
		MW-4I
		••••• MW-51
		••••• MW-6I
		••••• MW-7I
		••••• MW-8I
		MW-91
		••••• MW-11I
	Legend Active Well Decomissioned Well Detect	••••• MW-12I
	Non-Detect	
s 3Q2019 3C	2 2 0 2 0 2 0 2 1 3 0 2 0 2 2 3 0 2 0 2 3 0 2 0 2 3 0 2 0 2	
ells	Figure C4	