FEDERAL WAY LINK EXTENSION

AE 0044-12 3.7.N Phase II Environmental Site Assessment FL232 Draft 2

Tax Parcel 2500600520

CENTRAL PUGET SOUND
REGIONAL TRANSIT AUTHORITY

Phase II Environmental Site Assessment Report Sound Transit – Federal Way Link Extension Parcel FL232

Restaurant and Used Car Sales Lot 23646 Pacific Highway South Kent, Washington 98032

File No. 4082-039-01

September 11, 2017

Prepared for:

Sound Transit, Inc. 401 South Jackson Street Seattle, Washington 98104-2826 Attention: Mark Menard

Prepared by:

GeoEngineers, Inc. 1101 South Fawcett Avenue, Suite 200 Tacoma, Washington 98402 253.383.4940

Ron M. Bek, LG Geologist

Manhon By

Dana L. Carlisle, PE Principal

RMB:DLC:ch

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Contents

ACRO	NYMS AND ABBREVIATIONS	I\
EXECU	ITIVE SUMMARY	ES-1
Рна	se I ESA Summary	ES-1
Рна	SE II ESA CONCLUSIONS	ES-2
Sou	IND TRANSIT ACQUISITION AND FUTURE CONSTRUCTION RECOMMENDATIONS	ES-3
1.0	INTRODUCTION	1-1
1.1	FWLE PROJECT DESCRIPTION	1-1
1.2	Authorization	
1.3	SITE HISTORY AND SUMMARY OF RECS	
1.4	Purpose and Scope of Services	1-3
2.0	SITE DESCRIPTION	2 -1
2.1	LOCATION AND PROPERTY DESCRIPTION	2-1
2.2		
2.3	Site Reconnaissance	2-1
3.0	PHYSICAL SETTING	3-1
3.1	TOPOGRAPHY AND HYDROGEOLOGIC SETTING	3-1
4.0	CONTAMINANTS OF CONCERN AND CLEANUP LEVELS	4-1
5.0	SUBSURFACE EXPLORATIONS	4-1
5.1	GENERAL	4-1
5.2	GEOPHYSICAL SURVEY	4-1
5.3	SAMPLING AND ANALYSIS PLAN	4-1
6.0	FINDINGS	6-3
6.1	SUBSURFACE OBSERVATIONS AND FIELD SCREENING	6-3
6.2	Analytical Testing Results	6-3
7.0	CONCLUSIONS AND RECOMMENDATIONS	7 -1
7.1	Phase II ESA Conclusions and Recommendations	7-1
7.2	SOUND TRANSIT ACQUISITION AND FUTURE CONSTRUCTION RECOMMENDATIONS	7-2
8.0	LIMITATIONS AND GUIDELINES FOR USE	8-1
9.0	REFERENCES	9-1

List of Tables

Table 1. Summary of Soil Chemical Analytical Results, FWLE FL232

List of Figures

Figure 1. Vicinity Map

Figure 2. Site Plan and Boring Location Map – FL232

Figure 3. Proposed Construction Plan – FL232

List of Appendices

Appendix A. Field Exploration Program

Figure A-1. Key to Exploration Logs

Figures A-2 through A-7. Logs of Borings

Figures A-8 and A-9. Site Photographs

Geophysical Survey Report – May 2017

Appendix B. Laboratory Reports

Appendix C. Report Limitations and Guidelines for Use

RECORD OF REVISIONS

RECORD OF REVISIONS TO FEDERAL WAY LINK EXTENSION, PHASE 3 QUALITY MANAGEMENT PLAN

Revision No.	Revision	Revision Date
0	Draft 1 Report	July 2017
1	Draft 2 Report – Final Report	September 2017

Acronyms and Abbreviations

AST	above-ground storage tank
ASTM	ASTM International
bgs	below ground surface
CLARC	Cleanup Levels and Risk Calculation
Ecology	Washington State Department of Ecology
EPA	United States Environmental Protection Agency
ESA	environmental site assessment
HREC	Historical Recognized Environmental Condition
mg/kg	milligrams per kilogram
MTCA	Model Toxics Control Act
NAVD 88	North American Vertical Datum of 1988
PAH	polycyclic aromatic hydrocarbon
PCBs	polychlorinated biphenyls
PID	photoionization detector
ppm	parts per million
PRT	post-run tubing
QC	quality control
RCRA	Resource Conservation and Recovery Act
REC	Recognized Environmental Condition
TSP	Tacoma Smelter Plume
UST	underground storage tank
VOC	volatile organic compound
WAC	Washington Administrative Code

EXECUTIVE SUMMARY

This report summarizes the results of the Phase II Environmental Site Assessment (ESA) of the property at 23646 Pacific Highway South in Kent, Washington, King County Tax Parcel 2500600520, identified by Sound Transit as Federal Way parcel FL232. The 0.56-acre property is currently developed with a restaurant building in use since the 1940s and a used car sales lot with a mobile office building and shed in use since the late 1980s. Prior to the 1940s, the property was undeveloped. This Phase II ESA was conducted to evaluate potential soil contamination associated with the Recognized Environmental Conditions (RECs) for the property as identified in the Phase I ESA prepared by GeoEngineers, Inc. dated March 2017.

Phase I ESA Summary

The RECs identified for the subject property were:

- The southern portion of the subject property is currently used for used car sales. An auto towing business, limousine business, and auto sales business previously used this portion of the property dating back to the late 1980s. An oil/water separator is currently located north of the mobile office building on the subject property. The oil/water separator is connected to the sanitary sewer which is extends along the eastern margin of the property. Small quantities of used oil were reportedly at a location outside of the used car sales building in 2005, indicating that oil changing had occurred on site in the past. The former auto tow yard with oil/water separator is considered a REC to the subject property based on the potential for possible past leaks, spills or release of automotive-related fluids (e.g., fuels, lube oil, motor oil, used oil). Although the property used an on-site septic system prior to the 1970s, the auto tow yard, auto sales and oil/water separator on the property all apparently occurred after the property had been connected to the municipal sanitary sewer.
- A pad-mounted transformer, presumed to be utility-owned, is located on the subject property southwest of the restaurant building, directly adjacent to Pacific Highway South and the western property entrance drive where numerous vehicles may enter and leave the site. The transformer represents a material threat of a release if it were to be damaged by vehicles; therefore, the transformer meets the ASTM definition of REC in our opinion. However, visual evidence of potential releases from the transformer or damage to the device was not observed. Therefore, none of the Phase II ESA borings were completed in the vicinity of the transformer.
- The subject property is within Ecology's mapped footprint of the Tacoma Smelter Plume (areawide contamination) where arsenic concentrations in surface/near surface soil are predicted to exceed the MTCA Method A cleanup level for unrestricted land use. Therefore, the Tacoma Smelter Plume is considered a REC for the subject property.
- Adjacent properties to the east and south have a history of automotive repair and boat manufacturing and were collectively considered a REC to the subject property based on the potential for contaminant migration to the subject property from possible past leaks, spills or release of automotive-related fluids.

Phase II ESA Conclusions

The purpose of the Phase II ESA was to evaluate the potential for RECs or other potential sources of contamination to affect the subject property, and/or to impact soil that may be encountered during Sound Transit construction activities at the site.

Potential On-Site Sources (Former Auto Towing/Current Auto Sales and Oil/Water Separator)

The geophysical study was used in part to assess the layout of the former septic system and the existing sanitary sewer (Figure 2).

GeoEngineers observed the completion of six environmental borings in the eastern margin of the property in the vicinity of the former auto towing/current auto sales area, oil/water separator and drain line, and off-site potential sources of contamination to the east and south. The borings were completed in May 2017 to depths ranging from 8 to 15 feet below ground surface (bgs) using direct-push drilling methods. Based on chemical analytical results for the nine soil samples tested, we conclude as follows:

- Only one of the samples had contaminants detected at a concentration greater than the MTCA Method A cleanup level: cPAHs were detected in the soil sample from FL232-B5 at 3.5 to 4.5 feet bgs at a concentration (0.14 mg/kg) greater than the MTCA Method A cleanup level of 0.1 mg/kg. Lube oil-range hydrocarbons were also detected in this sample at a concentration of 1,400 mg/kg, which is less than the MTCA Method A cleanup level of 2,000 mg/kg.
- Lube oil-range petroleum hydrocarbons were detected at concentrations less than the MTCA Method A cleanup level of 2,000 mg/kg in soil samples from FL232-B4 at 3.5 to 4.5 feet bgs and at FL232-B5 at 3.5 to 4.5 feet bgs and 7 to 8 feet bgs. Field screening did not indicate evidence of lube-oil range hydrocarbons in the deeper soil samples collected from FL232-B4 at 8 to 9.5 feet bgs and FL232-B5 at 8 to 11 feet bgs. Petroleum hydrocarbons were not detected in the soil samples tested from FL232-B1, FL232-B3 and FL232-B6. VOCs and PAHs were not detected in the soil sample tested from FL232-B3. VOCs were not detected in the soil sample testing from FL232-B5.
- Metals either were not detected in the samples tested or the detected concentrations were less than MTCA Method A or B cleanup levels. The detected concentrations of lead in the soil samples from three of the borings (FL232-B1 at 3.5 to 4.5 feet, FL232B5 at 3.5 to 4.5 feet, and FL232-B6 at 3.5 to 4.5 feet bgs) were greater than the published naturally occurring background concentration for lead.
- Evidence of isolated, perched shallow groundwater was encountered in two of the borings; however, the quantity of groundwater was insufficient for sampling. Based on currently available information and the anticipated depths to groundwater more than 50 feet below ground surface, the risk of groundwater contamination from the identified potential on-site sources is relatively low, in our opinion.

Potential Off-site Sources

In general, the results of the Phase II ESA explorations, sampling and chemical analysis suggest a low risk of significant impact from off-site potential sources of contamination identified on the eastern and southern adjacent properties.

Tacoma Smelter Plume

Residual impacts from the Tacoma Smelter Plume are typically in the upper two feet of the soil profile. No shallow soil samples were obtained from the upper two feet of the soil profile due to drilling recovery issues; therefore, we were unable to fully characterize residual impacts from the Tacoma Smelter Plume during drilling. Additional testing of shallow soil for Tacoma Smelter Plume impacts is recommended during construction.

Sound Transit Acquisition and Future Construction Recommendations

Based on current design information for the Federal Way Link Extension (FWLE) alignment (HDR - Sound Transit, August 2017), Sound Transit proposes a full take on FL232, with building impacts to existing structures (restaurant, mobile office and temporary enclosure/shed). Sound Transit's proposed use for the property is as a staging area during construction (Figure 3). Future use has not been determined. Proposed construction and development activities by Sound Transit could change as project design is refined.

Contaminated soil greater than MTCA cleanup levels was identified during the Phase II ESA and therefore a remediation cost estimate is necessary for FL232. Carcinogenic PAHs (cPAHs) were detected in the soil sample from FL232-B5 at 3.5 to 4.5 feet bgs at a concentration (0.14 mg/kg) greater than the MTCA Method A cleanup level of 0.1 mg/kg.

The cPAH and lube oil-range petroleum hydrocarbon results for sample FL232-B5 at 3.5 to 4.5 feet bgs indicate evidence of a reportable release under MTCA WAC 173-340-300 and Ecology Toxics Cleanup Program Policy 300 in our opinion, given that there was reported used oil storage on the property as of 2005, the most likely sources of petroleum releases based on site history are surface-related, this sample is near surface at 3.5 to 4.5 feet bgs, and the result for cPAHs exceeds the MTCA Method A cleanup level for cPAHs. It is the property owner/operator's responsibility to report the discovery of a release of hazardous substances that may pose a threat to human health and the environment, in accordance with MTCA release reporting criteria in WAC 173-340-300, Site Discovery and Reporting. The MTCA reporting requirement is within ninety calendar days of discovery.

The findings of the Phase II ESA indicate that remediation cost estimates for construction purposes are necessary because evidence of impacted and contaminated soil were identified in soil samples obtained at FL232. In addition, we recommend an impacted and contaminated soil handling plan be prepared prior to construction activities that outlines a soil segregation, handling, stockpiling, and end use/disposal plan with potential follow-up chemical analytical testing as needed. Ecology's "Guidance for Remediation of Petroleum-Contaminated Soil" should be used as a guidance document for soil

handling end use options for petroleum-related soil impacts.

We were unable to fully characterize residual impacts from the Tacoma Smelter Plume during drilling; therefore, additional testing of near surface soil for Tacoma Smelter Plume impacts is recommended during construction.

The table below summarizes the Phase II ESA findings relative to Sound Transit's proposed acquisition and future construction; the findings are grouped by on-site potential sources, potential areawide sources, and off-site potential sources.

Potential Sources of Contamination	Potential Source Within Construction Area	Potential Source Within Acquisition Area	Impacted Soil Present	Contaminated Soil Present	Remedial Cost Estimate Necessary For Acquisition	Remedial Cost Estimate Necessary For Construction
On-Site Potential Sources: Former auto towing/current auto sales, oil/water separator and sewer drain	Yes	Yes	Yes	Yes, cPAHs at F232-B5, sample 3.5 to 4.5 feet bgs	Yes	Yes
Areawide: Tacoma Smelter Plume	Yes	Yes	Yes, lead concentrations not indicative of smelter plume impacts but detected above natural background levels for Puget Sound	No	No	Not specifically due to Tacoma Smelter Plume; however, additional testing of shallow soil for TSP impacts is recommended
Off-Site Potential Sources	No	No	No	No	No	No

This Executive Summary should be used only in the context of the full report for which it is intended.

1.0 Introduction

This report presents the results of the Phase II Environmental Site Assessment (ESA) for the property located at 23646 Pacific Highway South in Kent, Washington, King County Tax Parcel 2500600520 identified by Central Puget Sound Regional Transit Authority (Sound Transit) as Federal Way Link Extension (FWLE) Parcel FL232 ("subject property"). The northern half of the parcel is developed with a restaurant building; the southern half of the property is occupied by a used car sales lot with a mobile office building and a shed. The subject property is shown relative to surrounding physical features on the Vicinity Map, Figure 1. The layout of the subject property and surrounding properties is shown on the Site Plan and Boring Location Map – FL232, Figure 2.

Based on current design information for the FWLE project (HDR, provided in August 2017), Sound Transit plans to acquire all of FL232, with building impacts anticipated. Sound Transit's proposed use for the property is as a staging area during construction (Figure 3). Future use has not been determined. Proposed construction and development activities by Sound Transit could change as project design is refined.

The results of this Phase II ESA will be used by ST as part of their evaluation of potential environmental liabilities associated with ownership of the property and future design and construction of the FWLE. This report has been prepared for the exclusive use of Sound Transit, their agents and project design team. Because this environmental report is not intended for use by others, no one else should rely on this report without first conferring with GeoEngineers, Inc. (GeoEngineers).

Throughout the report, references to "the FWLE", the "project", the "proposed project", "the alignment," or the "light rail corridor" refer to the alignment selected by the Sound Transit Board in January 2017 after publication of the FEIS.

1.1 FWLE Project Description

Sound Transit intends to extend light rail between the cities of SeaTac and Federal Way, through the Federal Way Link Extension Preferred Alternative route. The Sound Transit 2 (ST2) Plan, approved by voters in 2008, included environmental study and design of this extension. This 7.8-mile extension would extend light rail south from the Angle Lake Station terminus of the Central Link system at South 200th Street in SeaTac to the Federal Way Transit Center (FWTC) at South 317th Street. The FWLE would travel within the cities of SeaTac, Des Moines, Kent, and Federal Way in King County.

Link Light Rail is currently operating between University of Washington, Seattle and Sea-Tac International Airport. In 2008 the ST2 program was approved by voters. This package added nearly 36 new miles of service to the north, south, and east, to Sound Transit's initial light rail line, resulting in 55 miles of light rail open for revenue service by 2023. The ST2 program of projects includes construction of light rail from the Angle Lake Station, just south of SeaTac Airport, to Kent/Des Moines Station. ST2 funds were also programmed to provide environmental clearance and preliminary engineering design

to downtown Federal Way.

In June 2016, the ST Board unanimously approved to move forward with a November 2016 ballot asking taxpayers to fund Sound Transit 3 (ST3) which was subsequently passed by the taxpayers. ST3 funds the remaining segments from Kent/Des Moines station to the FWTC. Revenue service to the FWTC Station is targeted to open by 2024.

1.2 Authorization

This report was prepared under the terms of the subcontract between HDR and GeoEngineers dated August 24, 2012, along with Amendments 1 through 9. The subcontract authorizes GeoEngineers to provide environmental services for the Sound Transit Federal Way Link Extension in accordance with Agreement No. RTA/AE 044-12 between HDR and Sound Transit.

1.3 Site History and Summary of RECs

In March 2017, GeoEngineers completed as Phase I ESA for the subject property. A summary of pertinent site history and recognized environmental conditions (RECs) in connection with the subject property are described below.

The earliest development on the subject property was the existing restaurant building constructed in 1946. The existing mobile office located south of the restaurant and currently used in connection with the used car sales lot was first identified on the subject property in the late 1980s. A limousine business, auto towing business, and auto sales business operated in the southern portion of the subject property between the mid-1990s and 2013.

Three septic tanks (1,250-gallon, 750-gallon, and 50-gallon) and one septic drainfield are, or were, situated east of the restaurant building but are no longer in use. The septic system pre-dated use of the southern portion of the property for auto sales, a tow yard and oil-changing. The historic layout of the septic system is shown in Figure 2. The property owner indicated that a septic tank was removed from the subject property when sanitary sewer was installed in the 1970s.

The oil/water separator north of the mobile office was installed in the early 1990s. The oil/water separator has always been connected to the sanitary sewer.

The following RECs were identified in connection with the subject property:

• The southern portion of the subject property is currently used for used car sales. An auto towing business, limousine business, and auto sales business previously used this portion of the property dating back to the late 1980s. An oil/water separator is currently located north of the mobile office building on the subject property. Small quantities of used oil were reportedly at a location outside of the used car sales building in 2005, indicating that oil changing had occurred in the past. The former auto tow yard with oil/water separator is considered a REC to the subject property based on the potential for possible past leaks, spills or release of automotive-related fluids (e.g., fuels, lube oil, motor oil, used oil). In addition, up to about the 1970s, the property used a septic tank

system located east of the restaurant building.

- A pad-mounted transformer is located on the subject property. Although it is assumed to be utilityowned, we did not confirm ownership of the transformer and we were unable to identify whether
 the transformer contains oil or polychlorinated biphenyls (PCBs). The transformer is located directly
 adjacent to Pacific Highway South and the property entrance drive where property usage suggests
 that numerous vehicles may enter and leave the site. The transformer represents a material threat
 of a release if it were to be damaged by vehicles; therefore, the transformer meets the ASTM
 definition of REC in our opinion.
- The subject property is within Ecology's mapped footprint of the Tacoma Smelter Plume (areawide contamination) where arsenic concentrations in surface/near surface soil are predicted to exceed the MTCA Method A cleanup level for unrestricted land use. Therefore, the Tacoma Smelter Plume is considered a REC for the subject property.
- The existing automotive repair shop on the adjacent property to the east was listed as an automotive repair shop (with oil heat) in 2003, 2011, and 2012 and the adjacent property to the south was used for boat manufacturing (with oil heat) from the mid-1940s until at least the 1960s. Automotive service and boat manufacturing activities at adjacent properties are both collectively considered a REC to the subject property based on the potential for contaminant migration to the subject property from possible past leaks, spills or release of automotive-related fluids (e.g., fuels, lube oil, waste oil and degreasing solvents), boat manufacturing-related chemicals (solvents, metals, petroleum products, hazardous manufacturing chemicals), or heating oil.

Our Phase I ESA research did not identify prior environmental reports pertaining specifically to the subject property.

1.4 Purpose and Scope of Services

The purpose of the Phase II ESA is to evaluate the potential for RECs or other potential sources of contamination to affect the subject property, and/or to impact soil that may be encountered during Sound Transit construction activities at the site. GeoEngineers' scope of services consisted of the following:

- 1. Performed a site reconnaissance of the property.
- 2. Developed a health and safety plan for use by our field representatives in accordance with WAC 296-24.
- 3. Coordinated the marking of subsurface utilities at the exploration locations by notifying the one-call locate service for underground utilities in public rights-of-way and a private utility locate service for underground utilities on private property.
- 4. Retained a geophysical survey subcontractor to identify septic and sanitary sewer system piping and drain features.
- 5. Retained a drilling subcontractor to advance 6 direct-push soil borings to evaluate soil

- conditions near potential sources of contamination.
- 6. Obtained continuous core soil samples from each of the direct-push explorations. Field screened the soil samples for evidence of petroleum and volatiles using visual, water sheen and headspace vapor screening methods. Visually classified the samples in general accordance with ASTM D 2488 and maintained a detailed log of each boring.
- 7. Submitted select soil samples for chemical analysis of one or more of the following: hydrocarbon identification by NWTPH-HCID, diesel- and lube oil-range petroleum hydrocarbons by NWTPH-Dx, Resource Conservation and Recovery Act (RCRA) metals by EPA Method 6000/7000 series, PAHs by EPA Method 8270D/SIM, and VOCs by EPA Method 8260.
- 8. Evaluated the soil sampling field and chemical analytical data relative to Model Toxics Control Act (MTCA) cleanup levels and naturally occurring background metals concentrations in Puget Sound region soil.

2.0 Site Description

2.1 Location and Property Description

General location and property description information for the subject property are summarized in Table 2-1 below. The location is shown relative to surrounding physical features in Figure 1. The current layout of the subject property and surrounding properties are shown in Figure 2.

Table 2-1. Subject Property Location and Description

Quarter/Quarter, Section,	SE/SE quarter of Section 16, Township 22, Range 4, Willamette
Township and Range	Meridian
Address	23646 Pacific Highway South, Kent, King County, Washington
Tax Parcel Number	King County Parcel 2500600520
Approximate Area	0.56 acres
Existing Use(s)	Restaurant and used car sales lot with mobile office building

2.2 Site Vicinity and General Characteristics

The subject property is located in an area of predominantly commercial and residential land uses. An auto repair facility is located to the east. Apartment buildings are located to the north. A retail building is located to the south. A dry cleaner and a retail building are located across Pacific Highway South to the west. Figure 2 shows the configuration of the subject property and surrounding properties.

2.3 Site Reconnaissance

GeoEngineers personnel conducted a visual site reconnaissance on May 11, 2017 to evaluate current conditions on the property relative to previously identified RECs, and to assess the property for potential RECs not identified previously. The GeoEngineers representative briefly met with the property owner Louis Gadini and his son Alex Gadini during the May 2017 reconnaissance. We did not enter the restaurant building or mobile office building.

Car washing supplies and a few, retail-sized containers with automotive fluids were observed inside a tarped enclosure (i.e., shed) located north of the mobile office building. The tarped enclosure was apparently used for auto detailing. Oil staining was observed on the pavement within the enclosure. An oil/water separator and nearby catch basin were observed between the mobile office building and the tarped enclosure.

No used oil or used oil containers were observed on the east side of the mobile office building in the area where used oil storage containers had been identified in 2005; however, the overgrown vegetation precluded detailed observation of the ground surface in this area. The area on the east side of the mobile office building could not be accessed with the drill rig and

no Phase II ESA explorations were completed in this area of the property.

No visual evidence of mineral oil releases or device damage was observed at the pad-mounted transformer southwest of the restaurant building, so no Phase II ESA explorations were performed in this area of the property.

3.0 Physical Setting

3.1 Topography and Hydrogeologic Setting

The topography and general hydrogeologic setting of the subject property area are summarized in Table 3-1 below.

Table 3-1. Topography and Hydrogeologic Setting

Approximate Surface Elevation	Approximately 410 feet (North American Vertical Datum of 1988 [NAVD 88], sea level). Land surface at the site is generally flat.
Geologic Setting	Vashon stade till (Qvt)
Soil and Geologic Conditions	Sand and gravel glacial deposits
Depth to Groundwater	Wet soil indicative of perched groundwater was encountered from approximately 8 to 13.5 feet bgs in FL232-B1 and 6 to 7 feet bgs in FL232-B3. A temporary 1-inch diameter PVC well was placed with 10 feet of screen 5 to 15 feet bgs in FL232-B1; no measurable groundwater was observed after one hour.
Inferred Direction of Shallow Groundwater Flow	To the east based on surface topography.

Our knowledge of the general physiographic setting, geology and groundwater occurrence in the vicinity of the subject property is based on our general experience in the area and our recent soil explorations. Subsurface conditions observed during our recent soil explorations are described in the following sections of this report.

3.1.1 Geologic Setting

Glaciation events in the Puget Lowland left thick deposits of glacially-derived and reworked sediments across the region. The upland plateau in the Project area was formed during the latest glacial epoch called the Vashon stade of the continental Fraser glaciation. The advance and retreat of the Vashon-age Puget glacial lobe, approximately 14,000 to 10,000 years ago, deposited most of the near-surface materials and sculpted most of the present landforms within the Puget Lowland.

After the latest glaciation, Holocene period sediments were deposited over the glacial soils. These deposits typically consist of alluvial soils commonly found in river valleys as well as colluvial deposits (landslide materials) on slopes. Peat and other organic soils occur in numerous depressional areas at the surface. Some of these Holocene period sediments have been modified by human activity, including placement of roadway embankment fill for construction of I-5.

3.1.2 Groundwater Conditions

The Phase II ESA explorations did not extend to groundwater. Below is a general description of groundwater conditions throughout the Project area.

Groundwater encountered in the FWLE project area may be grouped into one of three main aquifer types: unconfined, semi-confined and confined artesian. Unconfined aquifers may include groundwater within recent alluvium along streams and creeks, within recessional outwash that is perched above low-permeability glacial till, within discontinuous lenses of permeable layers in glacial till, or within advance outwash that is exposed at the ground surface. The semi-confined aquifer is present in the advance outwash where it is overlain by less permeable soils but the groundwater level is below the confining layer, making the aquifer semi-confined. Confined aquifers encountered in the project area are either flowing artesian (elevated groundwater levels aboveground surface) or sub-artesian (elevated groundwater levels at or near ground surface).

Groundwater was encountered at approximately 71 feet bgs in a monitoring well installed in a boring completed approximately 270 feet to the east for FWLE (FWLE-D04). The groundwater is noted as being in a semi-confined aquifer type (GeoEngineers, January 2017).

4.0 Contaminants of Concern and Cleanup Levels

Potential contaminants in soil are associated with auto towing, auto sales, and auto detailing activities; specifically, the use, storage and handling of automotive fluids in areas where there are or were potential pathways for releases to impact the subsurface (such as the oil/water separator, piping connections to the sewer system, drain pipes or cracks in floor and/or pavement [if any], and previously unpaved areas). Potential contaminants include petroleum hydrocarbon-related constituents, VOCs, metals, and PAHs.

The chemical analytical data for samples obtained during this investigation were compared to the respective Model Toxics Control Act (MTCA) Method A cleanup levels. MTCA Method B cleanup levels were used for analytes where MTCA Method A cleanup levels are not established. Where appropriate, detected concentrations of metals in soil also were compared to naturally occurring background metals concentrations in Puget Sound region soil (Washington State Department of Ecology [Ecology], 1994).

4.1 Contaminated and Impacted Soil Classifications

For purposes of Sound Transit's property acquisition and future construction activities at FL232, impacted soil and contaminated soil are defined as follows:

- Contaminated Soil: Soil containing concentrations of contaminants greater than applicable
 cleanup levels such as MTCA Method A Cleanup Levels for Unrestricted Use, or other
 relevant cleanup levels established by state, local, or federal regulation, law, or permit
 condition, if no Method A level has been developed.
- Impacted Soil: Soil containing detectable concentrations of contaminants that are less than applicable cleanup levels, specifically MTCA Method A Cleanup Levels for Unrestricted Land Use, or other relevant cleanup levels established by state, local, or federal regulation, law, or permit condition, if no Method A level has been developed. Also, soil containing detectable concentrations of total metals that are less than MTCA Cleanup Levels but greater than naturally occurring background metals concentrations in Puget Sound region soil (Ecology, 1994). Impacted soil is not considered contaminated, but may be subject to restrictions or conditions for end use at off-site facilities.

5.0 Subsurface Explorations

5.1 General

The Phase II ESA explorations included 6 direct-push soil borings from which soil samples were obtained to characterize subsurface conditions. The field explorations were completed on May 24, 2017. Holt Services Inc. performed drilling services. Ground surface elevations at the boring locations were determined by Sound Transit personnel.

Six borings (FL232-B1 through FL232-B6) were completed to depths of 8.5 to 15 feet bgs using direct-push methods. Subsurface boring logs and the field exploration program are presented in Appendix A. Boring locations are shown on Figure 2. The site plan and boring locations are shown in Figure 2. Used oil was reportedly stored previously on the east side of the mobile office building at the approximate location shown in Figure 2. However, we were unable to advance a boring to assess soil conditions because the area was not accessible. No visual evidence of mineral oil releases or device damage was observed at the pad-mounted transformer southwest of the restaurant building, so no Phase II ESA explorations were performed in this area of the property.

Explorations were monitored by a representative of GeoEngineers who visually classified and field screened soil samples collected from the explorations for evidence of petroleum and volatiles. Subsurface conditions and field screening results are shown on the exploration logs presented in Appendix A. Soil samples were submitted to OnSite Environmental, Inc. in Redmond, Washington for chemical analysis. The soil chemical analytical results are summarized in Table 1. Copies of the laboratory reports are presented in Appendix B.

5.2 Geophysical Survey

Prior to drilling activities, a geophysical survey was conducted in the vicinity of the auto sales area and the oil/water separator and drain line to the sanitary sewer. Information about the sewer drain line locations and orientation is included in Figure 2. The results of the geophysical survey were used in part to select locations for the Phase II ESA explorations. The geophysics study report is included in Appendix A.

5.3 Sampling and Analysis Plan

Subsurface conditions and field screening results were evaluated to develop the sampling and analysis plan for each boring location. Features of potential concern and analyses completed for each exploration are summarized in the table below.

Table 5.1 Sampling and Analysis Summary

Camanal			Analyses Completed											
General Description of Boring Location	Potential Contamination Source(s)	Direct- Push Boring ID	HCID	Diesel- and Lube-Oil Range PHC	Gasoline- Range PHC	PAHs	VOCs	RCRA 8 Metals	As, Pb					
	auto detailing and previous auto tow yard; subsurface	FL232-B1	S						S					
Vicinity of oil/water		FL232-B2	1		-		1		S					
separator, sewer drain lines		FL232-B3	S			S	S	S ¹	S					
and auto		FL232-B4	S	S										
lot/former tow yard	separator. Near surface	FL232-B5	S	S	1	S	S	S	S					
tow yara	soil TSP As and Pb	FL232-B6	S											

Notes:

HCID = Hydrocarbon Identification PHC = Petroleum Hydrocarbon

¹ Sample analyzed for hexavalent chromium

[&]quot;S" = Soil Sample Analyzed

[&]quot;—" = not analyzed

6.0 Findings

6.1 Subsurface Observations and Field Screening

Borings FL232-B1 through FL232-B6 were advanced to depths of approximately 8.5 to 15 feet bgs using direct-push drilling methods. Continuous-core soil samples were collected from each direct-push boring for field screening and possible chemical analysis. Subsurface soils observed beneath the asphalt concrete pavement generally consisted of fine to coarse sand with silt and silty sand to the total depth explored (15 feet bgs).

Evidence of perched shallow groundwater was encountered in FL232-B1 from approximately 8 to 10 and 13 to 13 ½ feet bgs and FL232-B3 from 6 to 7 feet bgs. However, a sufficient quantity of groundwater for sampling did not accumulate in the borings.

Physical evidence of petroleum or volatiles was not observed in soil samples collected from FL232-B1, FL232-B2, and FL232-B4. Physical evidence of petroleum (slight sheens) were observed in soil samples from borings FL232-B3 from approximately 6 to 7 feet bgs, BL232-B5 from 4 to 5 feet bgs, and FL232-B6 from 11.5 to 12 feet bgs.

6.2 Analytical Testing Results

Nine soil samples collected from direct-push borings were submitted for chemical analysis of one or more of the following: petroleum hydrocarbon identification, diesel- and lube oil-range petroleum hydrocarbons, VOCs, PAHs, and RCRA metals or arsenic and lead.

Petroleum Hydrocarbons

Lube-oil range petroleum hydrocarbons were detected in three samples (FL232-B4-3.5-4.5, FL232-B5-3.5-4.5 and FL232-B5-7-8) at concentrations ranging between 190 and 1,400 mg/kg; these detected concentrations are less than the MTCA Method A cleanup level of 2,000 mg/kg for unrestricted land use. These soil samples were obtained from depths of approximately 3.5 to 8 feet bgs.

Lube-oil range petroleum hydrocarbons were not detected in the remaining soil samples analyzed.

Diesel-range petroleum hydrocarbons were not detected in the soil samples analyzed.

VOCs

VOCs were not detected in the soil samples analyzed.

PAHs

Carcinogenic and other PAHs were not detected in the soil sample analyzed from FL232-B3. Carcinogenic and noncarcinogenic PAHs were detected in soil sample FL232-B5-3.5-4.5, the same sample where lube-oil range hydrocarbons (1,400 mg/kg) also were detected. Non-carcinogenic PAHs (acenaphthene, anthracene, benzo(g,h,i)perylene, fluoranthene, fluorene,

phenanthrene, and pyrene) were detected in FL232-B5-3.5-4.5; the detected concentrations were less than the corresponding MTCA cleanup levels. However, cPAHs were detected at a concentration (0.14 mg/kg) greater than the MTCA Method A cleanup level (0.1 mg/kg) in soil sample FL232-B5-3.5-4.5.

Metals

Metals, including arsenic and lead, either were not detected or were detected at concentrations less than the corresponding MTCA cleanup levels in the soil samples analyzed.

7.0 Conclusions and Recommendations

7.1 Phase II ESA Conclusions and Recommendations

The purpose of the Phase II ESA was to evaluate the potential for RECs or other potential sources of contamination to affect the subject property, and/or to impact soil that may be encountered during Sound Transit construction activities at the site.

7.1.1 Potential On-site Sources (Former Auto Towing/Current Auto Sales and Oil/Water Separator)

The geophysical study was used in part to assess the layout of the former septic system and the existing sanitary sewer (Figure 2).

GeoEngineers observed the completion of six environmental borings in the eastern margin of the property in the vicinity of the former auto towing/current auto sales area, oil/water separator and drain line, and off-site potential sources of contamination to the east and south. The borings were completed in May 2017 to depths ranging from 8 to 15 feet below ground surface (bgs) using direct-push drilling methods. Based on chemical analytical results for the nine soil samples tested, we conclude as follows:

- Only one of the samples had contaminants detected at a concentration greater than the MTCA Method A cleanup level: cPAHs were detected in the soil sample from FL232-B5 at 3.5 to 4.5 feet bgs at a concentration (0.14 mg/kg) greater than the MTCA Method A cleanup level of 0.1 mg/kg. Lube oil-range hydrocarbons were also detected in this sample at a concentration of 1,400 mg/kg, which is less than the MTCA Method A cleanup level of 2,000 mg/kg.
- Lube oil-range petroleum hydrocarbons were detected at concentrations less than the MTCA Method A cleanup level of 2,000 mg/kg in soil samples from FL232-B4 at 3.5 to 4.5 feet bgs and at FL232-B5 at 3.5 to 4.5 feet bgs and 7 to 8 feet bgs. Field screening did not indicate evidence of lube-oil range hydrocarbons in the deeper soil samples collected from FL232-B4 at 8 to 9.5 feet bgs and FL232-B5 at 8 to 11 feet bgs. Petroleum hydrocarbons were not detected in the soil samples tested from FL232-B1, FL232-B3 and FL232-B6. VOCs and PAHs were not detected in the soil sample tested from FL232-B3. VOCs were not detected in the soil sample testing from FL232-B5.
- Metals either were not detected in the samples tested or the detected concentrations were less than MTCA Method A or B cleanup levels. The detected concentrations of lead in the soil samples from three of the borings (FL232-B1 at 3.5 to 4.5 feet, FL232B5 at 3.5 to 4.5 feet bgs, and FL232-B6 at 3.5 to 4.5 feet bgs) were greater than the published naturally occurring background concentration for lead.

 Evidence of isolated, perched shallow groundwater was encountered in two of the borings; however, the quantity of groundwater was insufficient for sampling. Based on currently available information and the anticipated depths to groundwater more than 50 feet below ground surface, the risk of groundwater contamination from the identified potential on-site sources is relatively low, in our opinion.

7.1.2 Potential Off-site Sources

In general, the results of the Phase II ESA explorations, sampling and chemical analysis suggest a low risk of significant impact from off-site potential sources of contamination identified on the eastern and southern adjacent properties.

7.1.3 Tacoma Smelter Plume

Residual impacts from the Tacoma Smelter Plume are typically in the upper two feet of the soil profile. No shallow soil samples were obtained from the upper two feet of the soil profile due to drilling recovery issues; therefore, we were unable to fully characterize residual impacts from the Tacoma Smelter Plume during drilling. Additional testing of shallow soil for Tacoma Smelter Plume impacts is recommended during construction.

7.2 Sound Transit Acquisition and Future Construction Recommendations

Based on current design information for the Federal Way Link Extension (FWLE) alignment (HDR - Sound Transit, August 2017), Sound Transit proposes a full take on FL232, with building impacts to existing structures (restaurant, mobile office and temporary enclosure/shed). Sound Transit's proposed use for the property is as a staging area during construction (Figure 3). Future use has not been determined. Proposed construction and development activities by Sound Transit could change as project design is refined.

Contaminated soil greater than MTCA cleanup levels was identified during the Phase II ESA and therefore a remediation cost estimate is necessary for FL232. Carcinogenic PAHs (cPAHs) were detected in the soil sample from FL232-B5 at 3.5 to 4.5 feet bgs at a concentration (0.14 mg/kg) greater than the MTCA Method A cleanup level of 0.1 mg/kg.

The cPAH and lube oil-range petroleum hydrocarbon results for sample FL232-B5 at 3.5 to 4.5 feet bgs indicate evidence of a reportable release under MTCA WAC 173-340-300 and Ecology Toxics Cleanup Program Policy 300 in our opinion, given that there was reported used oil storage on the property as of 2005, the most likely sources of petroleum releases based on site history are surface-related, this sample is near surface at 3.5 to 4.5 feet bgs, and the result for cPAHs exceeds the MTCA Method A cleanup level for cPAHs. It is the property owner/operator's responsibility to report the discovery of a release of hazardous substances that may pose a threat to human health and the environment, in accordance with MTCA release reporting criteria in WAC 173-340-300, Site Discovery and Reporting. The MTCA

reporting requirement is within ninety calendar days of discovery.

The findings of the Phase II ESA indicate that remediation cost estimates for construction purposes are necessary because evidence of impacted and contaminated soil were identified in soil samples obtained at FL232. In addition, we recommend an impacted and contaminated soil handling plan be prepared prior to construction activities that outlines a soil segregation, handling, stockpiling, and end use/disposal plan with potential follow-up chemical analytical testing as needed. Ecology's "Guidance for Remediation of Petroleum-Contaminated Soil" should be used as a guidance document for soil handling end use options for petroleum-related soil impacts.

We were unable to fully characterize residual impacts from the Tacoma Smelter Plume during drilling; therefore, additional testing of near surface soil for Tacoma Smelter Plume impacts is recommended during construction.

The table below summarizes the Phase II ESA findings relative to Sound Transit's proposed acquisition and future construction; the findings are grouped by on-site potential sources, potential areawide sources, and off-site potential sources.

Potential Sources of Contamination	Potential Source Within Construction Area	Potential Source Within Acquisition Area	Impacted Soil Present	Contaminated Soil Present	Remedial Cost Estimate Necessary For Acquisition	Remedial Cost Estimate Necessary For Construction
On-Site Potential Sources: Former auto towing/current auto sales, oil/water separator and sewer drain	Yes	Yes	Yes	Yes, cPAHs at F232-B5, sample 3.5 to 4.5 feet bgs	Yes	Yes
Areawide: Tacoma Smelter Plume	Yes	Yes	Yes, lead concentrations not indicative of smelter plume impacts but detected above natural background levels for Puget Sound	No	No	Not specifically due to Tacoma Smelter Plume; however, additional testing of shallow soil for TSP impacts is recommended.
Off-Site Potential Sources	No	No	No	No	No	No

8.0 Limitations and Guidelines for Use

These Limitations provide information to help you manage your risks with respect to the use of this report. Some clients, design professionals and contractors may not recognize that the geoscience practices (geotechnical engineering, geology and environmental science) are far less exact than other engineering and natural science disciplines. This lack of understanding can create unrealistic expectations that could lead to disappointments, claims and disputes. GeoEngineers includes these explanatory "limitations" provisions in our reports to help reduce such risks. Please confer with GeoEngineers if you are unclear how these "Limitations and Guidelines for Use" apply to your project or site.

This Phase II ESA has been prepared, in general accordance with the scope and limitations of the subcontract between HDR and GeoEngineers dated August 24, 2012, along with Amendments 1 through 9 and Agreement No. RTA/AE 044-12 between HDR and Sound Transit.

This report has been prepared for the exclusive use of Sound Transit and their agents. This report is not intended for use by others, and the information contained herein is not applicable to other properties. No other party may rely on the product of our services unless we agree in advance to such reliance in writing. This is to provide our firm with reasonable protection against open-ended liability claims by third parties with whom there would otherwise be no contractual limits to their actions. Within the limitations of scope, schedule and budget, our services have been executed in accordance with our Agreement with the Client and generally accepted environmental practices in this area at the time this report was prepared.

Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted environmental science practices in this area at the time this report was prepared. The conclusions and opinions presented in this report are based on our professional knowledge, judgment and experience. No warranty, express or implied, applies to this report.

Any electronic form, facsimile or hard copy of the original document (email, text, table and/or figure), if provided, and any attachments should be considered a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Please refer to the appendix titled "Report Limitations and Guidelines for Use" for additional information pertaining to use of this report.

9.0 References

- GeoEngineers, Inc. January 2017. Federal Way Link Extension, AE 0044-12 3.1.L, Geotechnical Recommendations Report.
- GeoEngineers, Inc. March 2017. Federal Way Link Extension, AE 0044-12 WP 3.S, Phase I Environmental Site Assessment FL232, Tax Parcel 2500600520.
- HDR Electronic Design Drawings provided in August 2017.
- Sound Transit, 2016. Basis of Design Geotechnical report, in press.
- Washington State Department of Ecology. 1994. Natural Background Soil Metals

 Concentrations in Washington State, Washington State Department of Ecology Toxics

 Cleanup Program. Publication No. 94-115. Issued October 1994.
- Washington State Department of Ecology. 2007. Model Toxics Control Act Cleanup Regulation, Chapter 173-340 WAC Washington State Department of Ecology Toxics Cleanup Program. Publication No. 94-06. Issued April 1990, Revised October 12, 2007.
- Washington State Department of Ecology. 2011. "Guidance for Remediation of Petroleum Contaminated Sites" Toxics Cleanup Program Publication No. 10-09-057.
- Washington State Department of Ecology. 2015. "Soil Method B and Groundwater Protection (unrestricted land use)". Cleanup Levels and Risk Calculation (CLARC). Department of Ecology. Web. Accessed June 20, 2017.
 - https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx

Table 1

Summary of Soil Chemical Analytical Results¹ Sound Transit - Federal Way Link Extension FL232 Kent, Washington

					1					1	
Boring Identification	FL232-B1		FL232-B2	32-B2 FL232-B3	FL232-B3 FL232-B4	FL232	-B5	FL2	232-B6		Naturally Occurring
Sample Identification ²	FL232-B1-3.5-4.5	FL232-B1-7.5-8.5	FL232-B2-3.5-4.5	FL232-B3-6.5-7.5	FL232-B4-3.5-4.5	FL232-B5-3.5-4.5	FL232-B5-7-8	FL232-B6-3.5-4.5	FL232-B6-11.5-12.5	1	Background
Sample Date	5/24/2017	5/24/2017	5/24/2017	5/24/2017	5/24/2017	5/24/2017	5/24/2017	5/24/2017	5/24/2017	MTCA Method	Metals in
Sample Start Depth (feet bgs)	3.5	7.5	3.5	6.5	3.5	3.5	7.0	3.5	11.5	A/B Cleanup	Puget Sound
Sample End Depth (feet bgs)	4.5	8.5	4.5	7.5	4.5	4.5	8.0	4.5	12.5	Level ¹⁰	Soils ¹⁴
NWTPH-HCID ³ (mg/kg)											
Gasoline-range hydrocarbons		22 U		22 U	22 U	22 U	-		22 U	30/100 ¹¹	
Diesel-range hydrocarbons		55 U		56 U	54 U	130 U			54 U	2,000	N/A
Lube Oil-range hydrocarbons		110 U		110 U	Detected	Detected			110 U	2,000	1
NWTPH-Dx⁴ (mg/kg)											
Diesel-range hydrocarbons						140 U	28 U			2,000	N/A
Lube Oil-range hydrocarbons					390 Est	1,400	190			2,000	11/7
Metals ⁵ (mg/kg)											
Arsenic	11 U		11 U	11 U		11 U		11 U		20	7
Barium				59		66				16,000	NE
Cadmium				0.56 U		0.55 U				2	1
Chromium				25		33	-		-	2,000 ¹²	48
Chromium, Hexavalent				1.1 U						19	NE
Lead	38		5.7 U	5.6 U		36		66		250	24
Mercury				0.28 U	-	0.28 U	-			2	0.07
Selenium				11 U	-	11 U				400	NE
Silver				1.1 U	-	1.1 U				400	NE
VOCs ⁶ (mg/kg)					-		_			_	
1,1,1,2-Tetrachloroethane				0.00090 U	-	0.00094 U	-			38.5	
1,1,1-Trichloroethane				0.00090 U		0.00094 U				2	
1,1,2,2-Tetrachloroethane				0.00090 U		0.00094 U				5	
1,1,2-Trichloroethane				0.00090 U		0.00094 U				17.5	
1,1-Dichloroethane			-	0.00090 U		0.00094 U	-	-		175	
1,1-Dichloroethene				0.00090 U		0.00094 U	-			4,000	
1,1-Dichloropropene				0.00090 U		0.00094 U	-			NE	
1,2,3-Trichlorobenzene				0.0012 U		0.00094 U				NE	
1,2,3-Trichloropropane				0.00090 U		0.00094 U				0.0333	
1,2,4-Trichlorobenzene				0.0012 U		0.00094 U				34.5	
1,2,4-Trimethylbenzene				0.0012 U		0.00094 U				NE 1.05	N/A
1,2-Dibromo-3-Chloropropane				0.0045 U		0.0047 U	-			1.25	
1,2-Dibromoethane				0.00090 U 0.0012 U		0.00094 U 0.00094 U				0.005 7,200	
1,2-Dichlorobenzene (o-Dichlorobenzene)				0.0012 U		0.00094 U				11	
1,2-Dichloroethane 1,2-Dichloropropane				0.00090 U		0.00094 U				27.8	
1,3,5-Trimethylbenzene				0.00090 U		0.00094 U				800	
1,3-Dichlorobenzene (m-Dichlorobenzene)				0.0012 U		0.00094 U	_			NE	
1,3-Dichloropropane				0.0012 U		0.00094 U	_			NE	
1,4-Dichlorobenzene (p-Dichlorobenzene)				0.00090 U		0.00094 U	_			185	
2,2-Dichloropropane				0.00090 U		0.00094 U	_		_	NE	
2-Butanone (MEK)	-			0.0045 U	_	0.0047 U			_	48,000	

				- 1				_			Naturally
Boring Identification	FL23		FL232-B2	FL232-B3	FL232-B4	FL232			232-B6		Occurring
Sample Identification ²	FL232-B1-3.5-4.5	FL232-B1-7.5-8.5	FL232-B2-3.5-4.5	FL232-B3-6.5-7.5	FL232-B4-3.5-4.5	FL232-B5-3.5-4.5	FL232-B5-7-8	FL232-B6-3.5-4.5	FL232-B6-11.5-12.5		Background
Sample Date	5/24/2017	5/24/2017	5/24/2017	5/24/2017	5/24/2017	5/24/2017	5/24/2017	5/24/2017	5/24/2017	MTCA Method	Metals in
Sample Start Depth (feet bgs)	3.5	7.5	3.5	6.5	3.5	3.5	7.0	3.5	11.5	A/B Cleanup	Puget Sound
Sample End Depth (feet bgs)	4.5	8.5	4.5	7.5	4.5	4.5	8.0	4.5	12.5	Level ¹⁰	Soils ¹⁴
2-Chloroethyl vinyl ether				0.0045 U		0.0073 U				NE	
2-Chlorotoluene	-			0.0012 U		0.00094 U				1,600	
2-Hexanone	-			0.0045 U		0.0047 U				NE	
4-Chlorotoluene				0.0012 U		0.00094 U				NE	
4-Methyl-2-Pentanone (Methyl isobutyl ketone)				0.0045 U	-	0.0047 U				6,400	
Acetone		_	-	0.0045 U	-	0.0094 U				72,000	
Benzene		-		0.00090 U		0.00094 U		-		0.03	
Bromobenzene		-	-	0.00090 U	-	0.00094 U		-		NE	
Bromochloromethane		-		0.00090 U		0.00094 U		-		NE	
Bromodichloromethane		-	-	0.00090 U	-	0.00094 U	-			16.1	
Bromoform (Tribromomethane)				0.0045 U		0.0047 U				127	
Bromomethane		-	-	0.00090 U	-	0.00094 U	-			112	
Carbon Disulfide				0.0013 U		0.00094 U	-	-		8,000	
Carbon Tetrachloride				0.00090 U		0.00094 U				14.3	
Chlorobenzene				0.00090 U		0.00094 U				1,600	
Chloroethane				0.0045 U		0.0047 U				NE	
Chloroform				0.00090 U	-	0.00094 U		-		32.3	
Chloromethane	-			0.0045 U		0.0047 U		_		NE]
cis-1,2-Dichloroethene	-			0.00090 U		0.00094 U		_		160]
cis-1,3-Dichloropropene	-			0.00090 U	-	0.00094 U		-		NE	
Dibromochloromethane	-			0.00090 U		0.00094 U		_		11.9]
Dibromomethane				0.00090 U		0.00094 U				800	1
Dichlorodifluoromethane (CFC-12)	-			0.00090 U	-	0.00094 U		-		16,000	
Ethylbenzene				0.00090 U		0.00094 U				6	N/A
Hexachlorobutadiene	-	-		0.0045 U	-	0.0047 U		-		12.8	
Isopropylbenzene (Cumene)	-	-		0.00090 U	-	0.00094 U				8,000	
Methyl lodide (lodomethane)	-	-		0.0045 U	-	0.0047 U	-	-		NE	
Methyl t-butyl ether	-	-	-	0.00090 U	-	0.00094 U				0.1	
Methylene Chloride				0.0045 U		0.0094 U				0.02	
Naphthalene	-	-	-	0.00090 U	-	0.00094 U	-			5	
n-Butylbenzene				0.00090 U		0.00094 U				4,000	
n-Propylbenzene				0.00090 U		0.00094 U				8,000	
p-lsopropyltoluene				0.0012 U		0.00094 U				NE	
Sec-Butylbenzene	_			0.00090 U		0.00094 U				8,000	
Styrene	-			0.00090 U		0.00094 U			-	16,000	
Tert-Butylbenzene				0.0012 U		0.00094 U				8,000	
Tetrachloroethene	-			0.00090 U		0.00094 U			-	0.05	
Toluene				0.0045 U		0.0047 U				7	
Trans-1,2-Dichloroethene				0.00090 U		0.00094 U				1,600	
Trans-1,3-Dichloropropene				0.00090 U		0.00094 U				NE NE	
Trichloroethene	_	_	_	0.00090 U	_	0.00094 U	_			0.03	
Trichlorofluoromethane (CFC-11)				0.00090 U	-	0.00094 U				24,000	
Vinyl Acetate		_	_	0.0045 U		0.0047 U				80,000	
Vinyl Chloride		-		0.00090 U		0.00094 U				240	
Xylene, m-,p-		_		0.0018 U	-	0.0019 U	_			2-10	
Xylene, o-				0.0018 U		0.0019 U				9	
Total Xylenes ⁷		-		0.0018 U	-	0.00094 U	_			•	

Boring Identification Sample Identification Sample Date Sample Start Depth (feet bgs) Sample End Depth (feet bgs) PAHs ⁸ (mg/kg)	FL232-B1-3.5-4.5 5/24/2017 3.5	52-B1 FL232-B1-7.5-8.5 5/24/2017 7.5 8.5	FL232-B2 FL232-B2-3.5-4.5 5/24/2017 3.5 4.5	FL232-B3 FL232-B3-6.5-7.5 5/24/2017 6.5 7.5	FL232-B4 FL232-B4-3.5-4.5 5/24/2017 3.5 4.5	FL232 FL232-B5-3.5-4.5 5/24/2017 3.5 4.5	B5 FL232-B5-7-8 5/24/2017 7.0 8.0	FL232-B6-3.5-4.5 5/24/2017 3.5 4.5	232-B6 FL232-B6-11.5-12.5 5/24/2017 11.5 12.5	MTCA Method A/B Cleanup Level ¹⁰	Naturally Occurring Background Metals in Puget Sound Soils ¹⁴
1-Methylnaphthalene				0.0074 U		0.0073 U					
2-Methylnaphthalene				0.0074 U		0.0073 U			-	1 _	
Naphthalene		-	-	0.0074 U	-	0.0073 U	-	-		5	
Total Naphthalenes ⁹		-		0.0074 U	-	0.0073 U			-	1	
Acenaphthene		-	-	0.0074 U		0.013				4,800	1
Acenaphthylene		-	-	0.0074 U		0.0073 U			-	NE	1
Anthracene		-	-	0.0074 U	-	0.027				24,000	
Benzo(a)anthracene (TEF 0.1)	-			0.0074 U		0.11				See cPAHs	1
Benzo(a)pyrene (TEF 1)		-		0.0074 U		0.10				See cPAHs]
Benzo(b)fluoranthene (TEF 0.1)		-	-	0.0074 U		0.12				See cPAHs	N/A
Benzo(g,h,i)perylene		-	-	0.0074 U		0.086		-		NE	IN/ A
Benzo(j,k)fluoranthene (TEF 0.1)		-	-	0.0074 U		0.037		-		See cPAHs	
Chrysene (TEF 0.01)		-	-	0.0074 U		0.12		-		See cPAHs	
Dibenzo(a,h)anthracene (TEF 0.1)		_	-	0.0074 U		0.016			-	See cPAHs	
Fluoranthene		-	-	0.0074 U		0.19		-		3,200	
Fluorene		-	-	0.0074 U		0.010				3,200 See cPAHs NE 2,400	
Indeno(1,2,3-c,d)pyrene (TEF 0.1)		_	_	0.0074 U		0.086			-]
Phenanthrene		_	_	0.0074 U		0.14			-]
Pyrene		-	_	0.0074 U		0.17			-]
cPAHs (benzo(a)pyrene toxicity equivalent concentration) ¹³	-	-	-	0.0056 U		0.14		-		0.1	

Notes:

"_" = not tested bgs = below ground surface MTCA = Model Toxics Control Act
mg/kg = milligrams per kilogram NE = not established N/A = not applicable

U = Analyte was not detected at or greater than the listed reporting limit.

TEF = Toxicity Equivalency Factor as defined in WAC 173-340-900 Table 708-2.

Est = Estimated from NWTPH-HCID chromatogram

Bold font type indicates that the analyte was detected at a concentration greater than the respective laboratory reporting limit.

Gray shading indicates that the detected result exceeds the specified MTCA Cleanup Level.

¹Chemical analysis performed by OnSite Environmental, Inc., of Redmond, Washington.

² Sample ID = Parcel ID - boring number - depth of sample [feet bgs]. FL232-B1-3.5-4.5 = Boring 1 from Parcel FL232, collected from a depth of 3.5 to 4.5 feet bgs.

³ Petroleum Hydrocarbon Identification by Northwest Method NWTPH-HCID.

⁴ Diesel- and lube oil-range petroleum hydrocarbons by Northwest Method NWTPH-Dx.

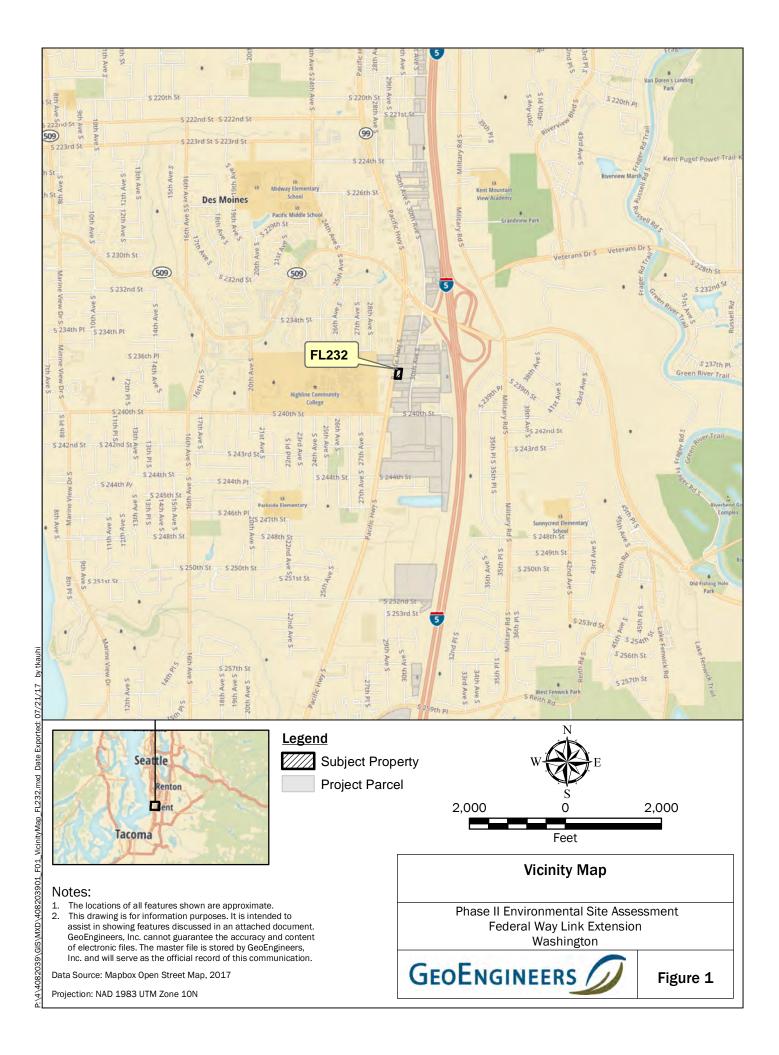
⁵ Resource Conservation Recovery Act (RCRA) metals analyzed by EPA 6000/7000 series method.

⁶ Volatile organic compounds (VOCs) analyzed by United States Environmental Protection Agency (EPA) Method 8260C.

⁷ Total xylenes consists of m,p- and o- xylenes. The higher detection limit is used for non-detects.

 $^{^8}$ Polycyclic aromatic hydrocarbons (PAHs) and carcinogenic PAHs (cPAHs) analyzed by EPA Method 8270D/SIM.

⁹ Total naphthalenes consists of 1-methylnaphthalene, 2-methylnaphthalene and naphthalene.


 $^{^{\}rm 10}$ MTCA Method B cleanup level used when Method A cleanup level has not been established.

¹¹ Model Toxics Control Act (MTCA) Method A cleanup level for gasoline is 30 mg/kg if benzene is detected or if the sum of toluene, ethylbenzene and xylenes are greater than or equal to 1% of the total gasoline detection.

¹² MTCA Method A cleanup level for Trivalent Chromium.

¹³ Results for cPAHs are shown as the sum of the benzo[a]pyrene toxicity equivalent concentrations, calculated by multiplying each individual cPAH concentration by its corresponding TEF. In this sum, nondetects are represented as ½ of the corresponding analyte reporting limit multiplied by the TEF.

¹⁴ 90th Percentile for natural background soil metals concentrations in Puget Sound region, Department of Ecology, publication #94-115, dated October 1994.

- Historic Sewer Line Fee Take

Notes:


Site Feature

1. Based on current design information for the FWLE project (HDR, provided in June 2017)

2. The locations of all features shown are approximate. 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: Aerial and road names from King County 2015.

Parcel #: 2500600520 Address: 23646 PACIFIC HWY S City: Kent Owner: GADINI, LOUIS A. Current Use: Restaurant/Lounge

Federal Way Link Extension Washington

Figure 2

Notes:

1. Based on current design information for the FWLE project (HDR, provided in June 2017)

2. The locations of all features shown are approximate. 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: Aerial and road names from King County 2015.

Parcel #: 2500600520 Address: 23646 PACIFIC HWY S City: Kent Owner: GADINI, LOUIS A. Current Use: Restaurant/Lounge

Federal Way Link Extension Washington

Figure 3

APPENDIX A FIELD EXPLORATION PROGRAM

APPENDIX A FIELD PROCEDURES AND BORING LOGS

Underground Utility Locate

Prior to drilling activities, an underground utility locate was conducted in the areas of the proposed boring locations to identify subsurface utilities and/or potential underground physical hazards. The underground utility check consisted of contacting a local utility alert service (one-call) and hiring a private utility locating service.

Geophysical Survey

Prior to drilling activities, a geophysical survey was conducted at the site to identify features associated with the prior use of a septic system on the property.

Soil Sampling

The direct-push explorations were completed using direct-push drilling equipment. Soil samples were obtained using a 5-foot-long core sampler. The sampler was driven into the soil using a pneumatic hammer. Upon retrieval, the sampler was opened and a GeoEngineers representative examined the soil and performed field screening tests. The boring logs are presented in Figures A-2 through A-7. Selected photographs taken during the Phase II ESA drilling are presented as Figures A-8 and A-9.

Selected soil samples were obtained in glass jars (supplied by the analytical laboratory), labeled and stored in a cooler with ice pending delivery to the laboratory. VOC samples were collected first, directly from the sample sleeve using the 5035A sampling method. Following the VOC sample collection, the remaining soil was placed in sample containers provided by the analytical laboratory. All sampling equipment was decontaminated between samples using a Liqui-Nox® wash solution and distilled water rinse.

Soil samples obtained from the direct-push explorations were collected from the sampler with a stainless-steel knife, a stainless-steel trowel and/or new gloves. A portion of each sample was placed in laboratory-prepared sample jars for possible chemical analysis. The remaining portion of each sample was used for field screening.

The samples collected from the direct-push borings were identified using the following identification system: FL232-B1-3.5-4.5, where FL232 is the identified Federal Way Link Extension parcel on which the boring was located, B1 is the direct-push boring number and the approximate depth at which the sample was obtained (e.g., FL232-B1-3.5-4.5 was collected from the FL232 parcel at boring B1 at a depth of approximately 3.5 to 4.5 feet bgs).

Selected samples from the explorations were submitted for chemical analysis based on field

screening results. The soil samples were placed in a cooler with ice for transport to the laboratory. Standard chain-of-custody procedures were followed in transporting the soil samples to the laboratory. Drill cuttings were placed in drums pending disposal.

Field Screening of Soil Samples

Soil samples obtained from the borings were screened in the field for evidence of contamination using: 1) visual examination; 2) sheen screening and 3) vapor headspace screening with a photo-ionization detector (PID). The results of headspace and sheen screening are included in the boring logs.

Visual screening consists of inspecting the soil for stains indicative of petroleum-related contamination. Visual screening is generally more effective when contamination is related to heavy petroleum hydrocarbons, such as motor oil or hydraulic oil, or when hydrocarbon concentrations are high. Sheen screening and headspace vapor screening are more sensitive methods that have been effective in detecting contamination at concentrations less than regulatory cleanup guidelines. Sheen screening involves placing soil in a pan of water and observing the water surface for signs of sheen. Sheen classifications are as follows:

No Sheen (NS) No visible sheen on water surface.

Slight Sheen (SS) Light, colorless, dull sheen; spread is irregular, not rapid; sheen

dissipates rapidly.

Moderate Sheen (MS) Light to heavy sheen, may have some color/iridescence; spread is

irregular to flowing; few remaining areas of no sheen on water

surface.

Heavy Sheen (HS) Heavy sheen with color/iridescence; spread is rapid; entire water

surface may be covered with sheen.

Headspace vapor screening involves placing a soil sample in a plastic sample bag. Air is captured in the bag and the bag is shaken to expose the soil to the air trapped in the bag. The probe of a PID is inserted in the bag and the instrument measures the concentration of combustible vapor in the air removed from the sample headspace. The PID measures concentrations in ppm (parts per million) and is calibrated to isobutylene. The PID is designed to quantify combustible gas and organic vapor concentrations up to 2,500 ppm. A lower threshold of significance of 1 ppm was used in this application. Field screening results are site-specific and vary with soil type, soil moisture content, temperature and type of contaminant.

Groundwater Sampling

Direct-Push Borings

Temporary drill casing and well screen were left in place in one boring to collect a groundwater

sample. Groundwater did not accumulate in the temporary drill casing and well screen after one hour. The temporary casing and well screen was removed from the boring and the boring location abandoned in accordance with Washington State regulations.

SOIL CLASSIFICATION CHART

	AAJOR DIVIS	IONE	SYM	BOLS	TYPICAL	
I'	MAJUR DIVIS	IUNS	GRAPH	LETTER	DESCRIPTIONS	
	GRAVEL	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES	
	AND GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES	
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES	
SULS	FRACTION RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES	
MORE THAN 50%	SAND	CLEAN SANDS		sw	WELL-GRADED SANDS, GRAVELLY SANDS	
RETAINED ON NO. 200 SIEVE	AND SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND	
	MORE THAN 50% OF COARSE FRACTION PASSING	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURE	
	ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		sc	CLAYEY SANDS, SAND - CLAY MIXTURES	
				ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY	
FINE GRAINED	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS	
SOILS				OL	ORGANIC SILTS AND ORGANIC SILTS CLAYS OF LOW PLASTICITY	
MORE THAN 50% PASSING NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS	
	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY	
				ОН	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY	
	HIGHLY ORGANIC	SOILS		PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS	

NOTE: Multiple symbols are used to indicate borderline or dual soil classifications

Sampler Symbol Descriptions

2.4-inch I.D. split barrel Standard Penetration Test (SPT) Shelby tube

Piston

Direct-Push

Bulk or grab

Continuous Coring

Blowcount is recorded for driven samplers as the number of blows required to advance sampler 12 inches (or distance noted). See exploration log for hammer weight and drop.

"P" indicates sampler pushed using the weight of the drill rig.

"WOH" indicates sampler pushed using the weight of the hammer.

ADDITIONAL MATERIAL SYMBOLS

SYM	BOLS	TYPICAL		
GRAPH	LETTER	DESCRIPTIONS		
	AC	Asphalt Concrete		
	cc	Cement Concrete		
33	CR	Crushed Rock/ Quarry Spalls		
1	SOD	Sod/Forest Duff		
	TS	Topsoil		

Groundwater Contact

Measured groundwater level in exploration, well, or piezometer

Measured free product in well or piezometer

Graphic Log Contact

Distinct contact between soil strata

Approximate contact between soil strata

Material Description Contact

Contact between geologic units

Contact between soil of the same geologic

Laboratory / Field Tests

Percent fines %F %G Percent gravel ΑL Atterberg limits CA Chemical analysis CP CS Laboratory compaction test

Consolidation test

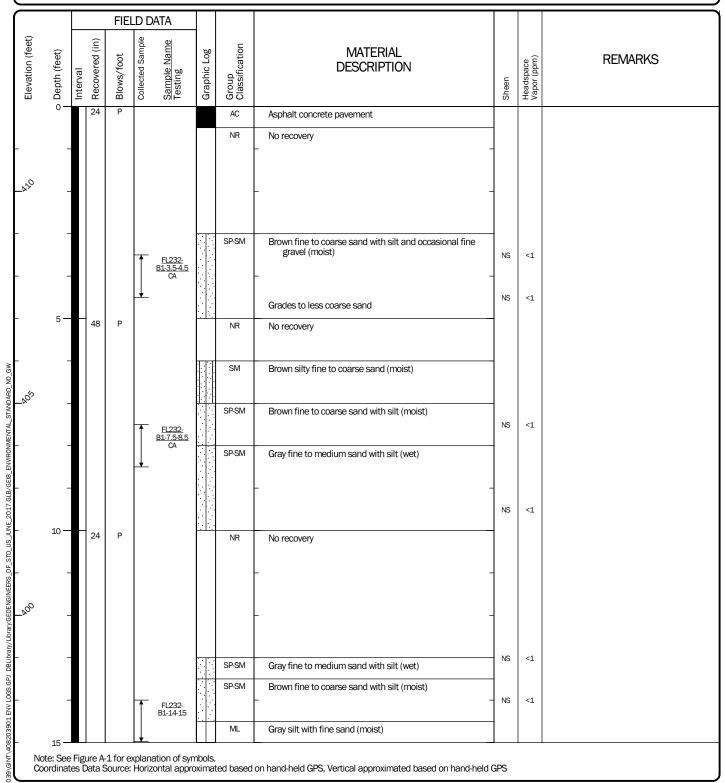
DD Dry density DS Direct shear ΗĀ Hydrometer analysis MC Moisture content MD Moisture content and dry density

Mohs Mohs hardness scale OC **Organic content**

PM Permeability or hydraulic conductivity ы Plasticity index

PP Pocket penetrometer SA Sieve analysis TX Triaxial compression UC Unconfined compression Vane shear

Sheen Classification

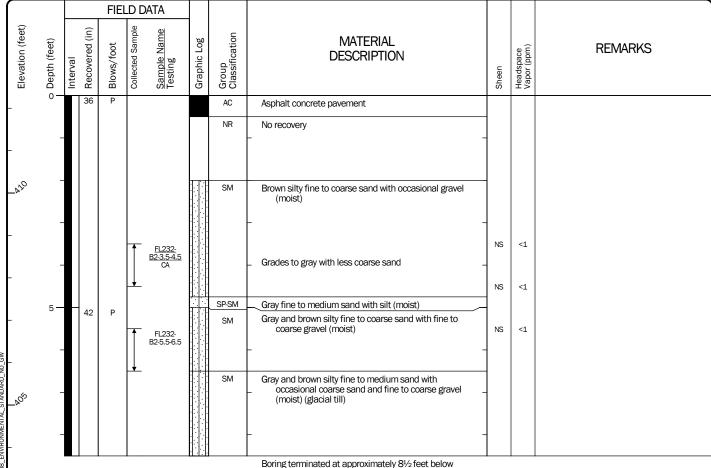

NS No Visible Sheen SS Slight Sheen MS **Moderate Sheen Heavy Sheen**

NOTE: The reader must refer to the discussion in the report text and the logs of explorations for a proper understanding of subsurface conditions. Descriptions on the logs apply only at the specific exploration locations and at the time the explorations were made; they are not warranted to be representative of subsurface conditions at other locations or times.

Key to Exploration Logs

<u>Start</u> Drilled 5/24/2017	<u>End</u> 5/24/2017	Total Depth (ft)	15	Logged By Checked By	PDR DLC	Driller Holt Services, Inc.		Drilling Method Direct-Push		
Surface Elevation (ft) Vertical Datum		412 VD88		Hammer Data			Drilling Equipment	Geoprobe 7800		
Easting (X) Northing (Y)		261.4746 16.5345	System:				Groundwater not observed at time of exploration			
Notes:										

Log of Direct-Push Boring FL232-B1



Project: Sound Transit - Federal Way Link Extension FL232 Project Location: 23646 Pacific Highway S., Kent, Washington

Project Number: 4082-039-01

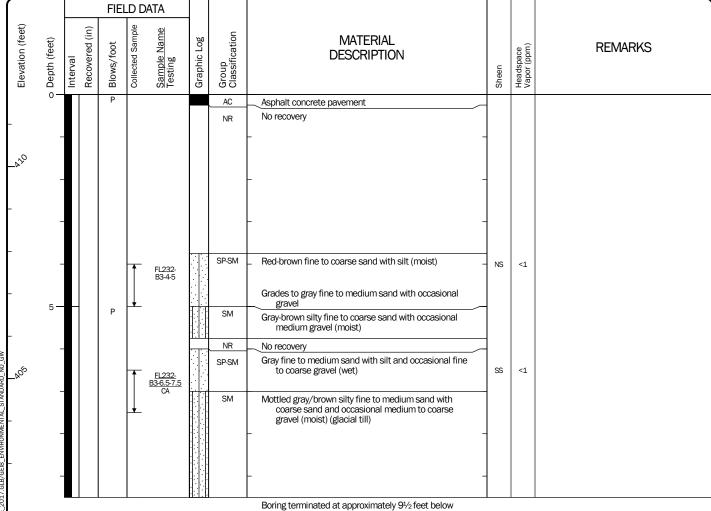
Figure A-2 Sheet 1 of 1

<u>Start</u> Drilled 5/24/2017	<u>End</u> 5/24/2017	Total Depth (ft)	8.5	Logged By Checked By	PDR DLC	Driller Holt Services, Inc.		Drilling Method Direct-Push		
Surface Elevation (ft) Vertical Datum		12.3 VD88		Hammer Data			Drilling Equipment	Geoprobe 7800		
Easting (X) Northing (Y)		244.4244 84.5995		System Datum				Groundwater not observed at time of exploration		
Notes:										

Boring terminated at approximately 81/2 feet below ground surface due to refusal

Note: See Figure A-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on hand-held GPS, Vertical approximated based on hand-held GPS

Log of Direct-Push Boring FL232-B2



Project: Sound Transit - Federal Way Link Extension FL232 Project Location: 23646 Pacific Highway S., Kent, Washington

Project Number: 4082-039-01

Figure A-3 Sheet 1 of 1

<u>Start</u> Drilled 5/24/2017	<u>End</u> 5/24/2017	Total Depth (ft)	9.5	Logged By Checked By	PDR DLC	Driller Holt Services, Inc.		Drilling Direct-Push
Surface Elevation (ft) Vertical Datum		11.7 VD88		Hammer Data			Drilling Equipment	Geoprobe 7800
Easting (X) Northing (Y)			A State Plane North NAD83	Groundwater not observed at time of exploration				
Notes:								

Boring terminated at approximately 9½ feet below ground surface due to refusal

Note: See Figure A-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on hand-held GPS, Vertical approximated based on hand-held GPS

Log of Direct-Push Boring FL232-B3

Project: Sound Transit - Federal Way Link Extension FL232 Project Location: 23646 Pacific Highway S., Kent, Washington

Project Number: 4082-039-01

Figure A-4 Sheet 1 of 1

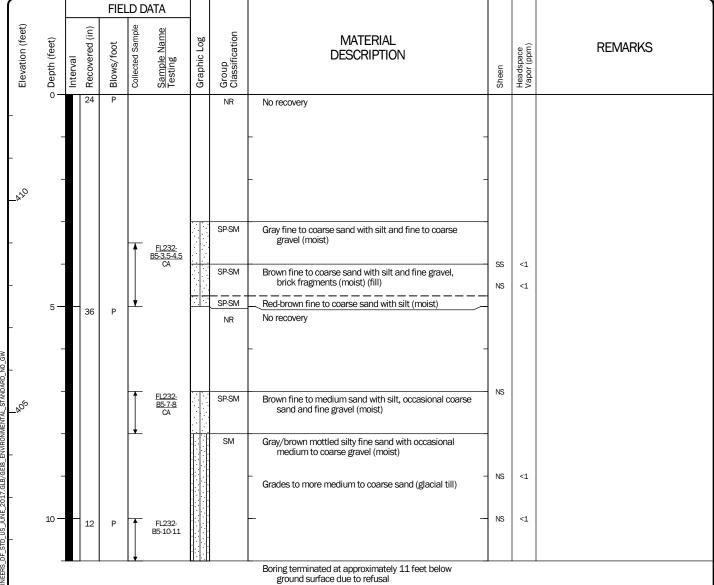
<u>Start</u> Drilled 5/24/2017	<u>End</u> 5/24/2017	Total Depth (ft)	9.5	Logged By Checked By	PDR DLC	Driller Holt Services, Inc.		Drilling Method Direct-Push		
Surface Elevation (ft) Vertical Datum		12.4 VD88		Hammer Data			Drilling Equipment	Geoprobe 7800		
Easting (X) Northing (Y)		290.8656 27.1368		System Datum				Groundwater not observed at time of exploration		
Notes:										

FIELD DATA Elevation (feet) Collected Sample Sample Name Testing Group Classification **MATERIAL** Graphic Log **REMARKS** Blows/foot **DESCRIPTION** Interval AC Asphalt concrete pavement No recovery -470 Gray/brown silty fine to coarse sand with fine to coarse <1 FL232-B4-3.5-4.5 CA 18 No recovery FL232-B4-8-9 SP-SM Gray fine to medium sand with silt, occasional coarse sand and gravel (moist) Mottled silty fine to medium sand with occasional coarse gravel (glacial till) Boring terminated at approximately 9½ feet below

ground surface due to refusal

Note: See Figure A-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on hand-held GPS, Vertical approximated based on hand-held GPS

Log of Direct-Push Boring FL232-B4



Project: Sound Transit - Federal Way Link Extension FL232 Project Location: 23646 Pacific Highway S., Kent, Washington

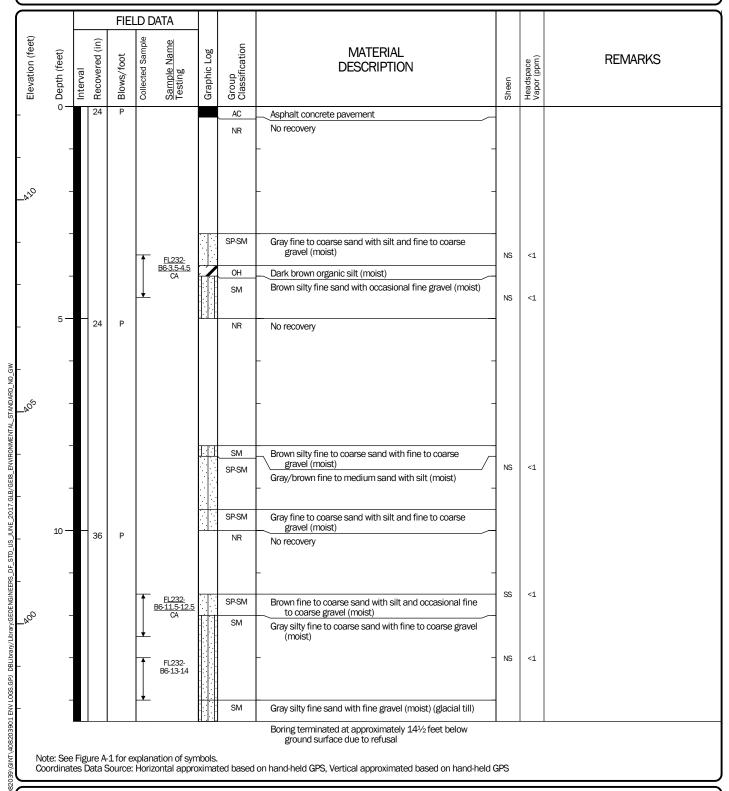
Project Number: 4082-039-01

Figure A-5 Sheet 1 of 1

Start Drilled 5/24/2017	<u>End</u> 5/24/2017	Total Depth (ft)	11	Logged By Checked By	PDR DLC	Driller Holt Services, Inc.		Drilling Direct-Push	
Surface Elevation (ft) Vertical Datum		12.5 VD88		Hammer Data			Drilling Equipment	Geoprobe 7800	
Easting (X) 1278282.8617 Northing (Y) 145245.2254				System Datum	W	A State Plane North NAD83	Groundwater not observed at time of exploration		
Notes:									

Note: See Figure A-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on hand-held GPS, Vertical approximated based on hand-held GPS

Log of Direct-Push Boring FL232-B5



Project: Sound Transit - Federal Way Link Extension FL232 Project Location: 23646 Pacific Highway S., Kent, Washington

Project Number: 4082-039-01

Figure A-6 Sheet 1 of 1

<u>Start</u> Drilled 5/24/2017	<u>End</u> 5/24/2017	Total Depth (ft)	14.5	Logged By Checked By	PDR DLC	Driller Holt Services, Inc.		Drilling Direct-Push
Surface Elevation (ft) Vertical Datum		12.2 VD88		Hammer Data			Drilling Equipment	Geoprobe 7800
Easting (X) Northing (Y)	7			A State Plane North NAD83	Groundwate	r not observed at time of exploration		
Notes:								

Log of Direct-Push Boring FL232-B6

Project: Sound Transit - Federal Way Link Extension FL232 Project Location: 23646 Pacific Highway S., Kent, Washington

Project Number: 4082-039-01

Figure A-7 Sheet 1 of 1

Photograph 1 – Drilling FL232-B1 in front of the auto detailing enclosure, view to east.

 $Photograph\ 2-Drilling\ FL232-B4\ north\ of\ the\ auto\ detailing\ enclosure,\ view\ to\ south.$

Site Photographs May 2017 FL232

Phase II Environmental Site Assessment Federal Way Link Extension Washington

Photograph 3 - Soil from FL232-B5, 0 to 5 feet below ground surface.

Photograph 4 - Soil from FL232-B5, 5 to 10 feet below ground surface.

Site Photographs May 2017 FL232

Phase II Environmental Site Assessment Federal Way Link Extension Washington

Global Geophysics

P. O. Box 2229 Redmond, WA 98053 Tel: 425-890-4321 Fax: 360-805-0259

July 12, 2017 Our Ref.: 107-0428-002.000

GeoEngineers, Inc. 1101 Fawcett Avenue, Suite 200 Tacoma, WA 98402

Attention: Ms.Tricia DeOme

RE: REPORT ON THE GEOPHYSICAL SURVEY AT 23646 PACIFIC HIGHWAY S, KENT, WA

Dear Ms. DeOme:

Global Geophysics conducted geophysical survey on May 17, 2017 at 23646 Pacific Highway S, Kent, WA. The proposed objective of the geophysical investigation is to assist in locating a potential septic tank.

METHODOLOGY AND INSTRUMENTATION

GPR and EM61 were used for this study. The following paragraphs describe the methods and field procedures.

Time Domain Electromagnetic (EM61)

The time-domain electromagnetic system is capable of detecting buried metal objects. It transmits a pulsed electromagnetic field into the ground, which induces eddy currents in buried metallic objects. These eddy currents generate secondary electromagnetic fields that are detected by the system. The time duration or decay rate, of the secondary EM field is related to the electrical conductivity characteristics of the buried object.

A four-channel (gate) high sensitivity metal detector, Geonics EM61 Mk2, will be used to collect the data along the same traverses as the GPR. The low channel number (1) represents anomalies produced by shallow objects and the high channel number (4) represents anomalies produced by deeper objects. The subsurface depth range is from approximately 1 to 15 feet. The data will be stored digitally and downloaded after the survey for analysis and mapping.

Ground Penetrating Radar

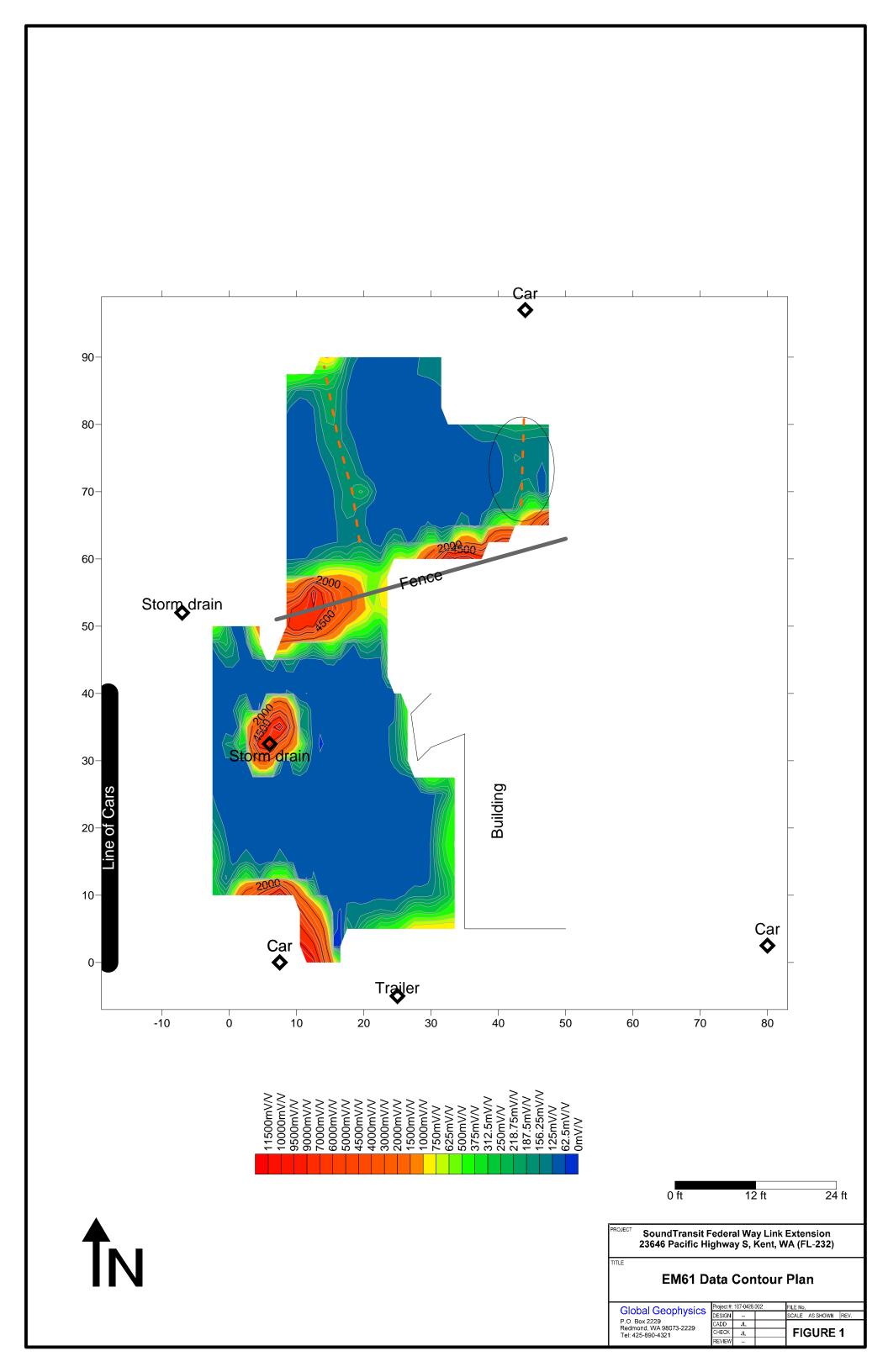
The GPR method uses electromagnetic pulses, emitted at regular intervals by an antenna to map subsurface features. The electromagnetic pulses are reflected where changes in electrical properties of materials occur such as changes in lithology or where underground utilities are present. The reflected electromagnetic energy is received by an antenna, converted into an electrical signal, and recorded on the GPR unit. The data is recorded and viewed in real time on a graphical display that depicts a continuous profile or cross-section image of the subsurface directly beneath the path of the antenna.

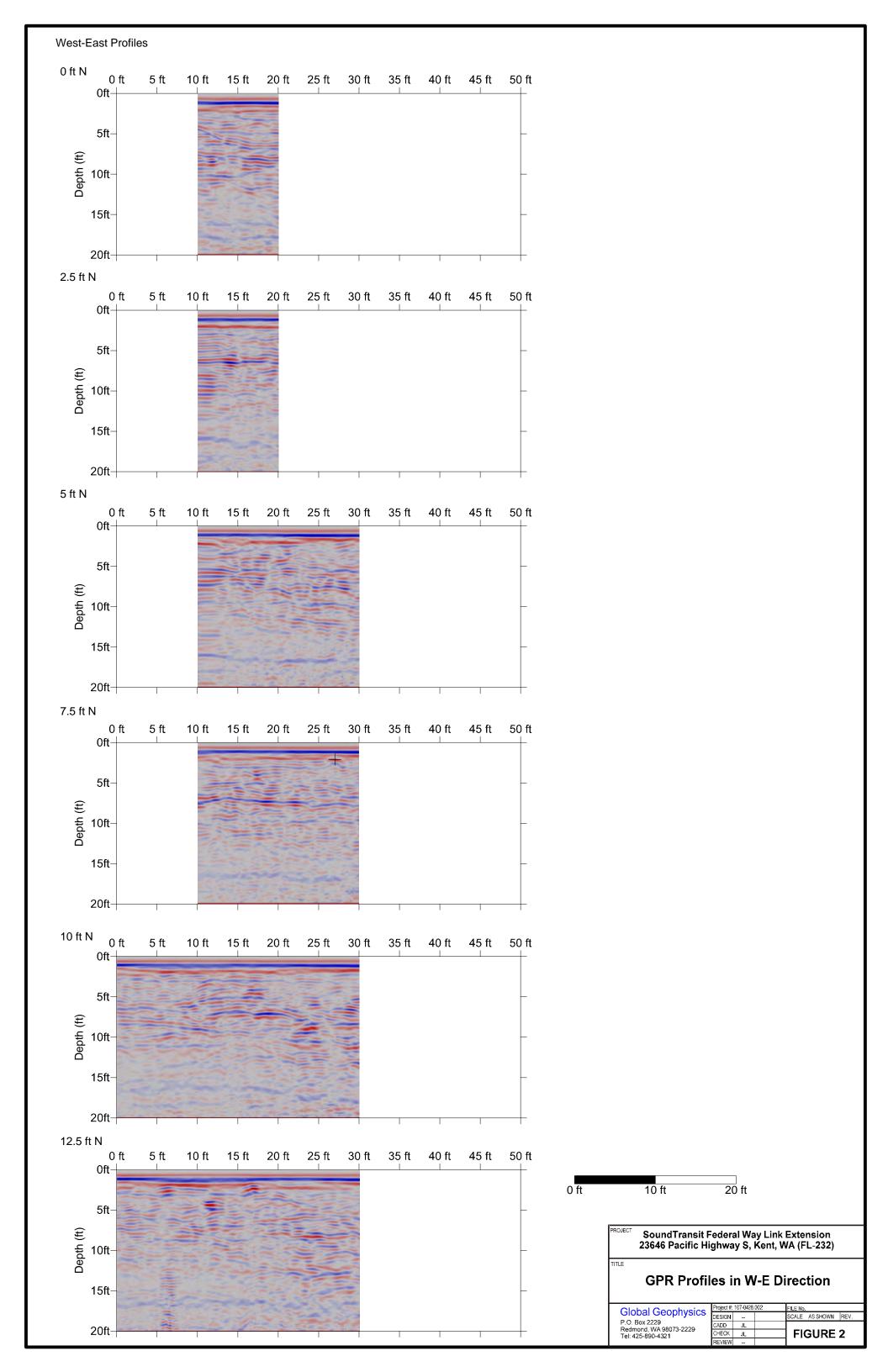
The depth of penetration of the GPR signal varies according to antenna frequency and the conductivity of the subsurface material. The depth of subsurface penetration with GPR decreases with an increase in the frequency of the antenna and an increase in soil conductivity. Low frequency antennas (50 to 500 MHz) provide the best compromise between obtaining good subsurface penetration and resolution.

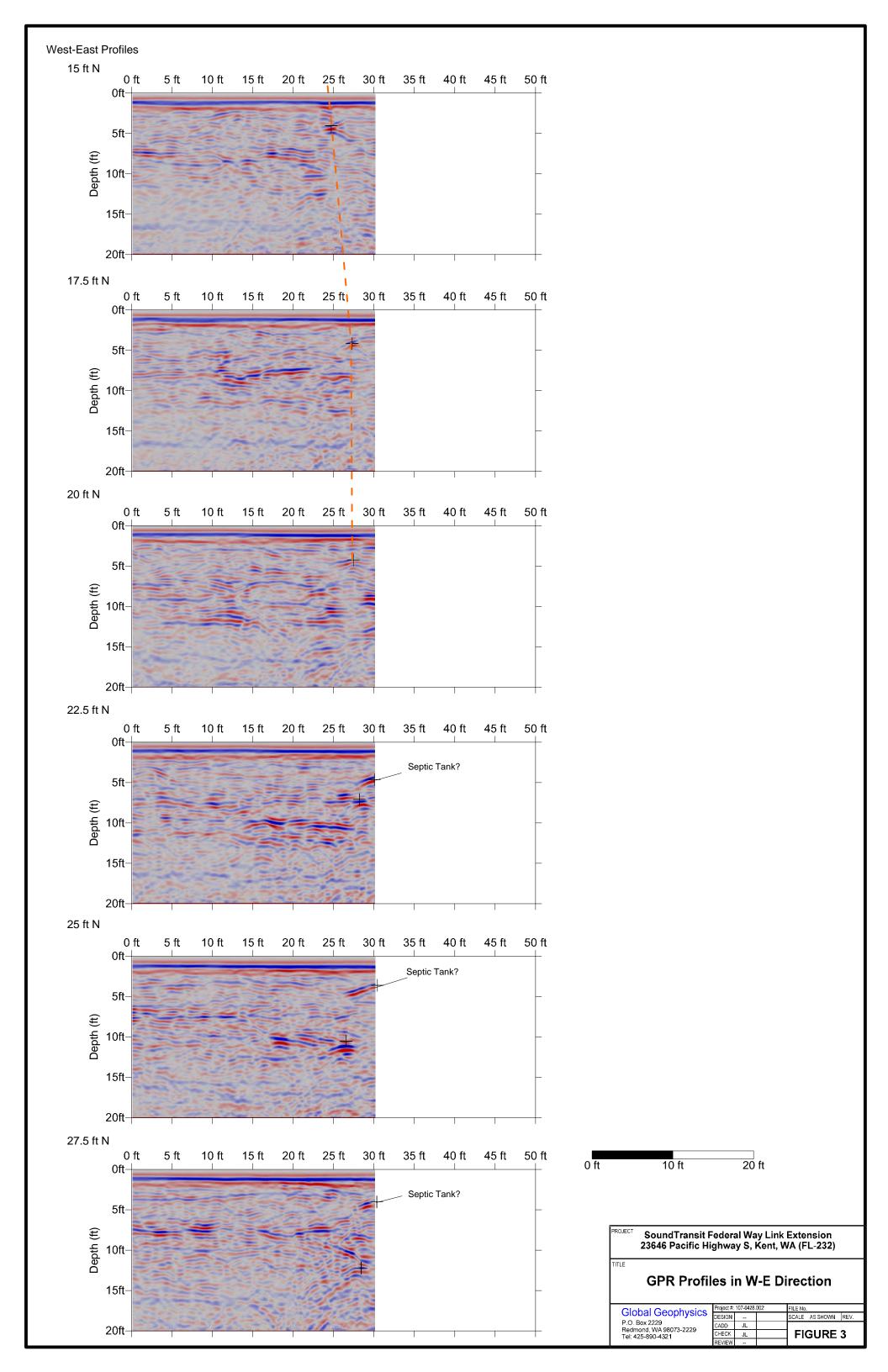
The data were collected along the same EM transects using Geophysical Survey Systems, Inc. (GSSI) SIR 2000 GPR system with antennas having a center frequency of 200 MHz. The data was digitally recorded for post processing.

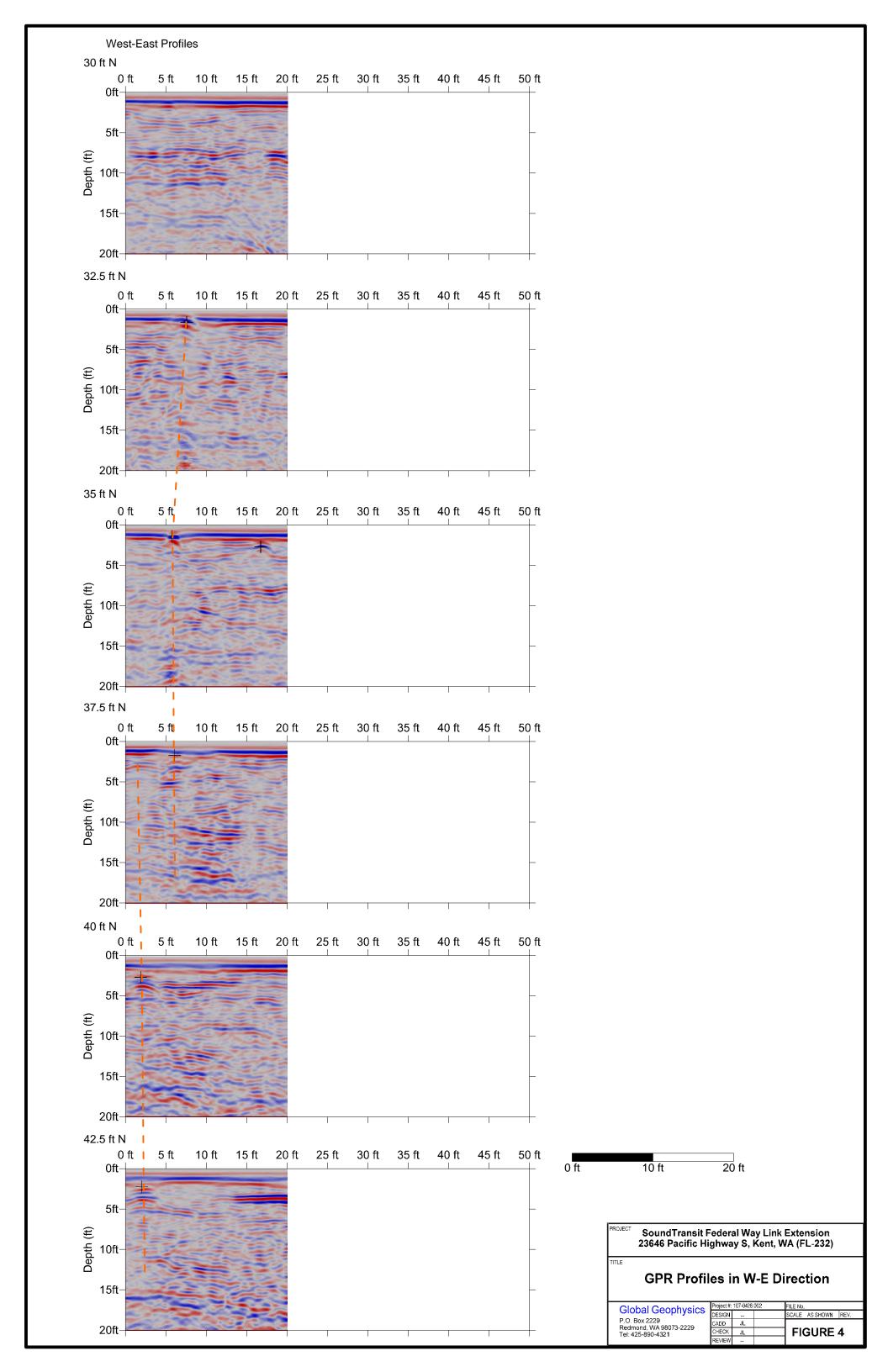
RESULTS

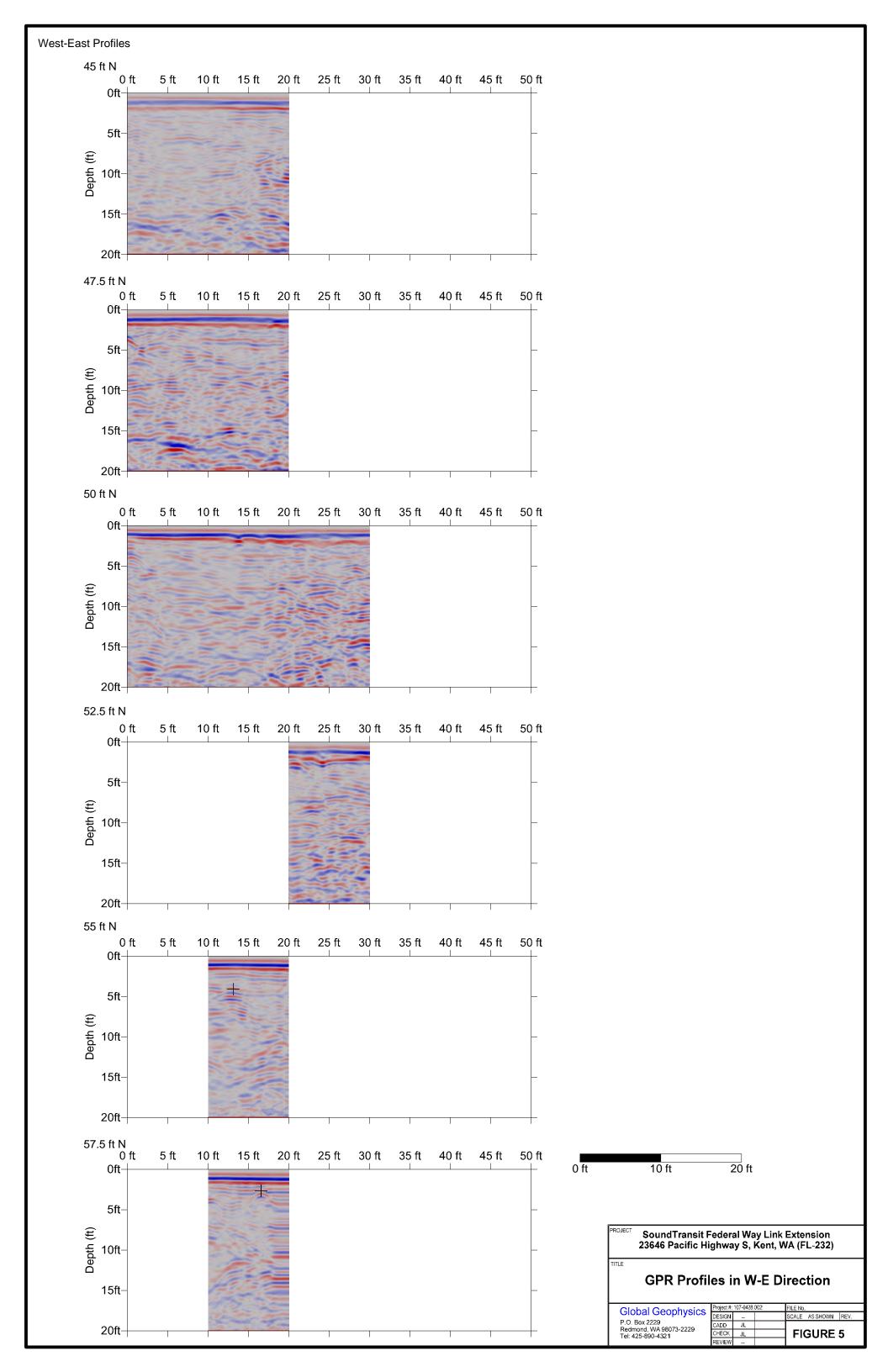
The EM61 data are contoured and presented in Figure 1. GPR profiles are shown in Figures 2 -13. The interpreted GPR anomalies are overlaid on the EM61 data. The interpreted locations of potential septic tank is marked on the map. Other linear GPR anomalies are likely to be utilities.

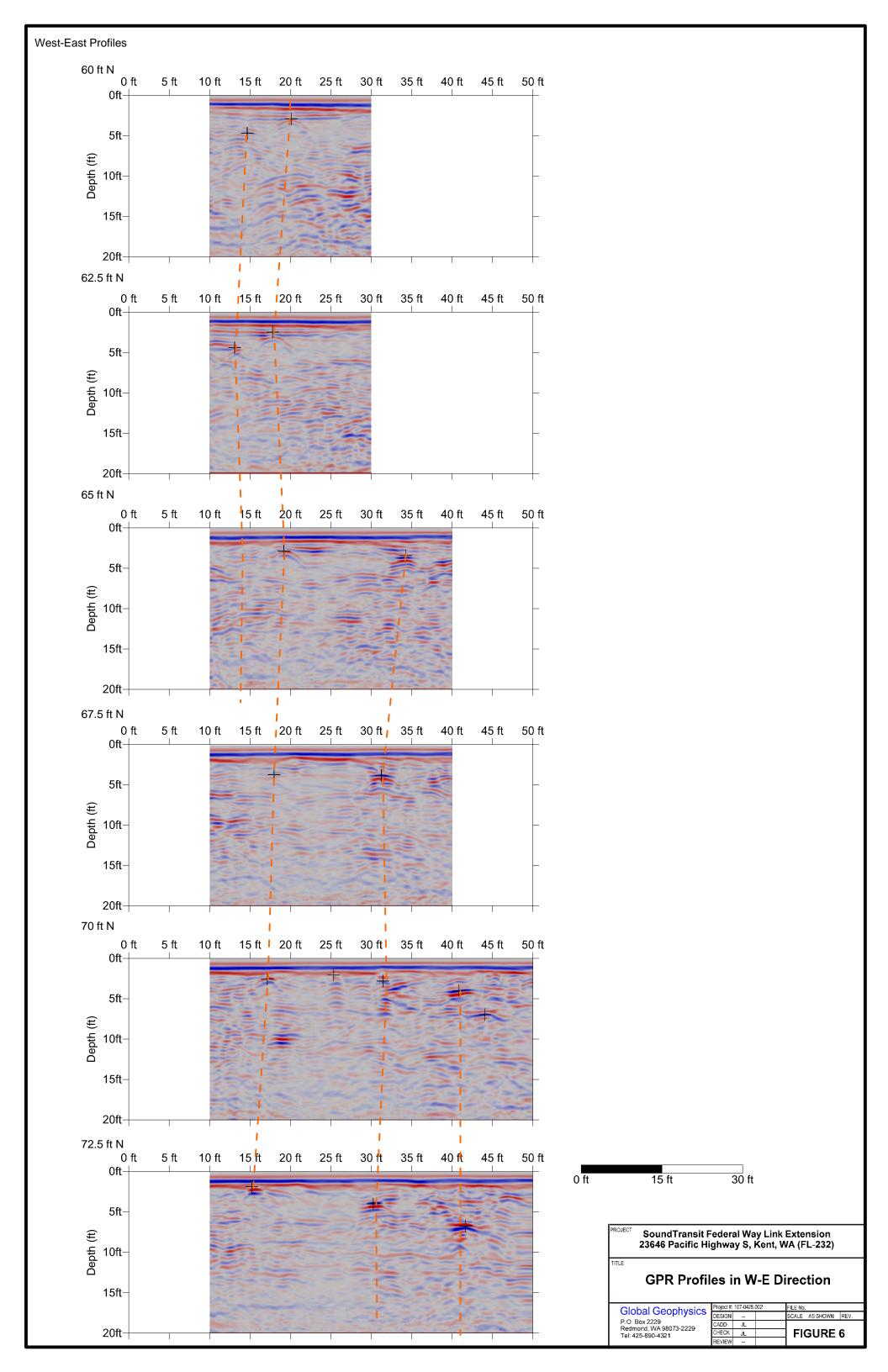

LIMITATIONS OF THE GEOPHYSICAL METHOD

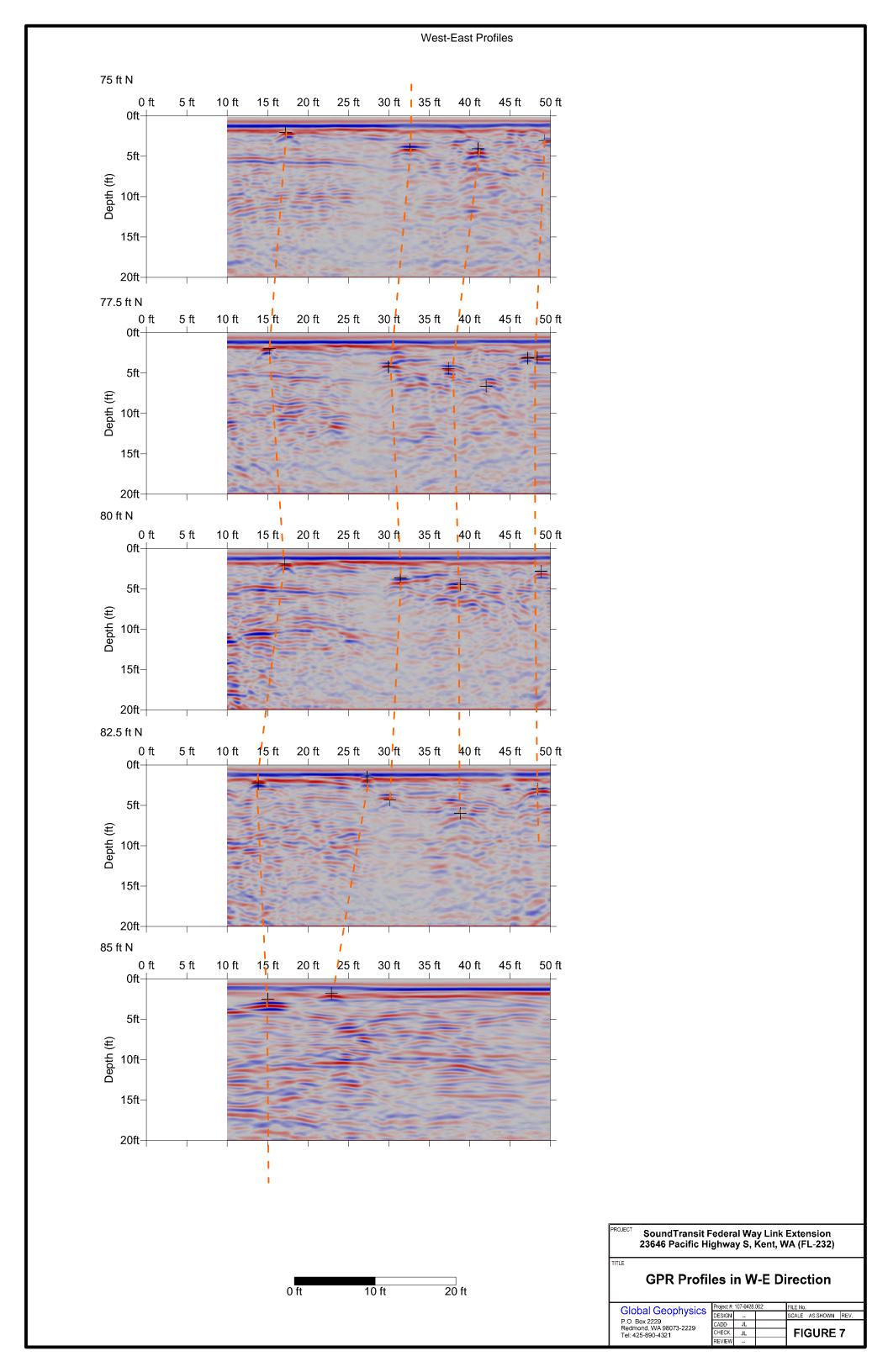

Global geophysics services are conducted in a manner consistent with the level of care and skill ordinarily exercised by other members of the geophysical community currently practicing under similar conditions subject to the time limits and financial and physical constraints applicable to the services. GPR and EM are remote sensing geophysical methods that may not detect all subsurface conditions due to the limitations of the methods, soil conditions, size of the features and their depths.

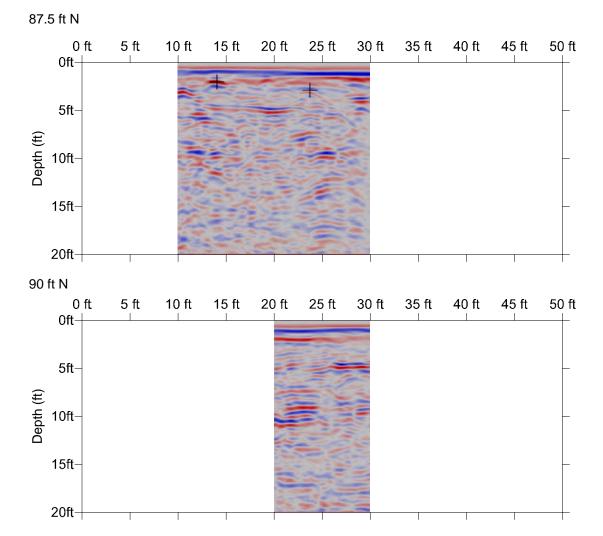

Sincerely,

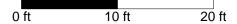

Global Geophysics


John Liu, Ph.D., R.G. Principal Geophysicist

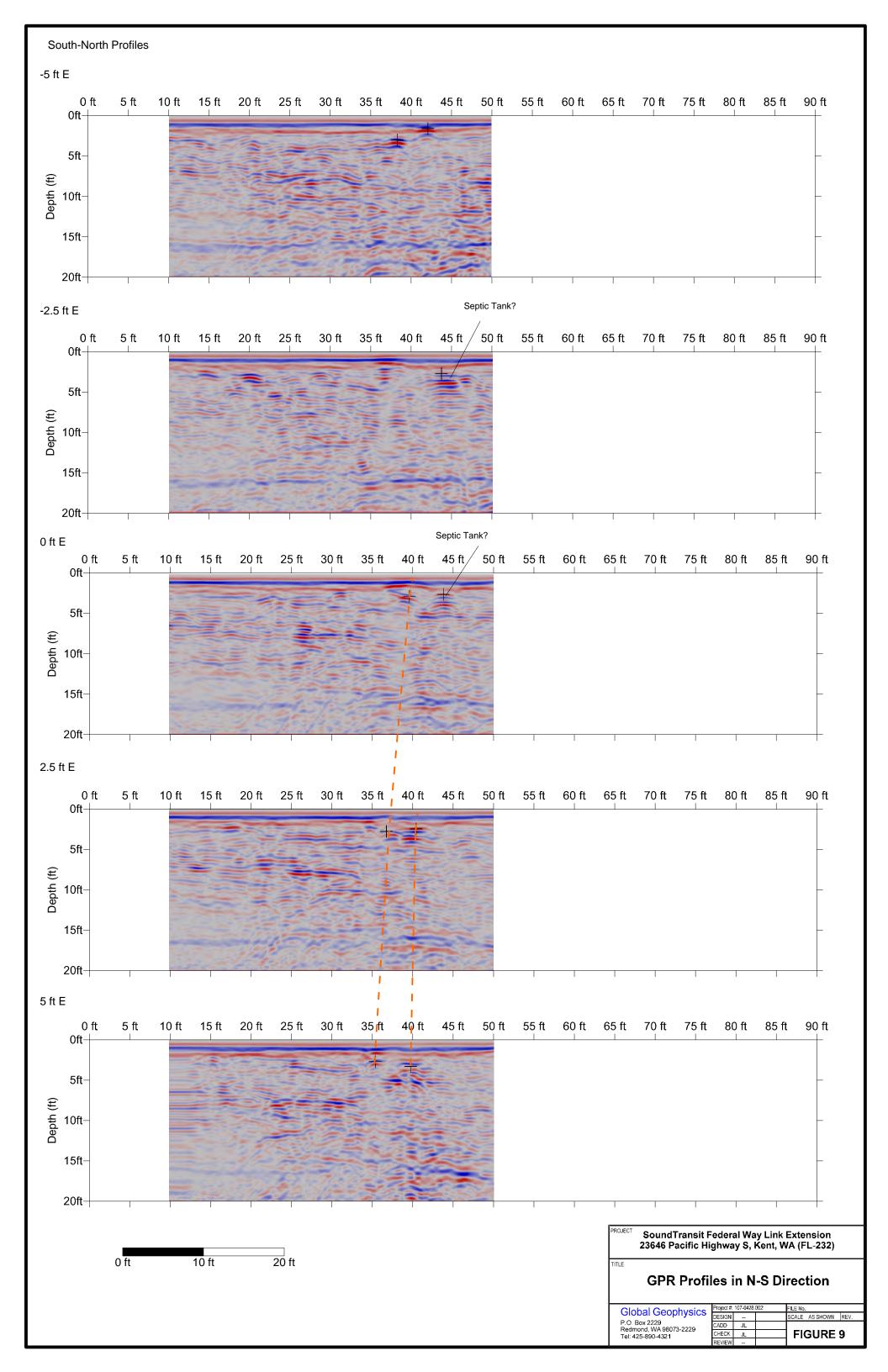


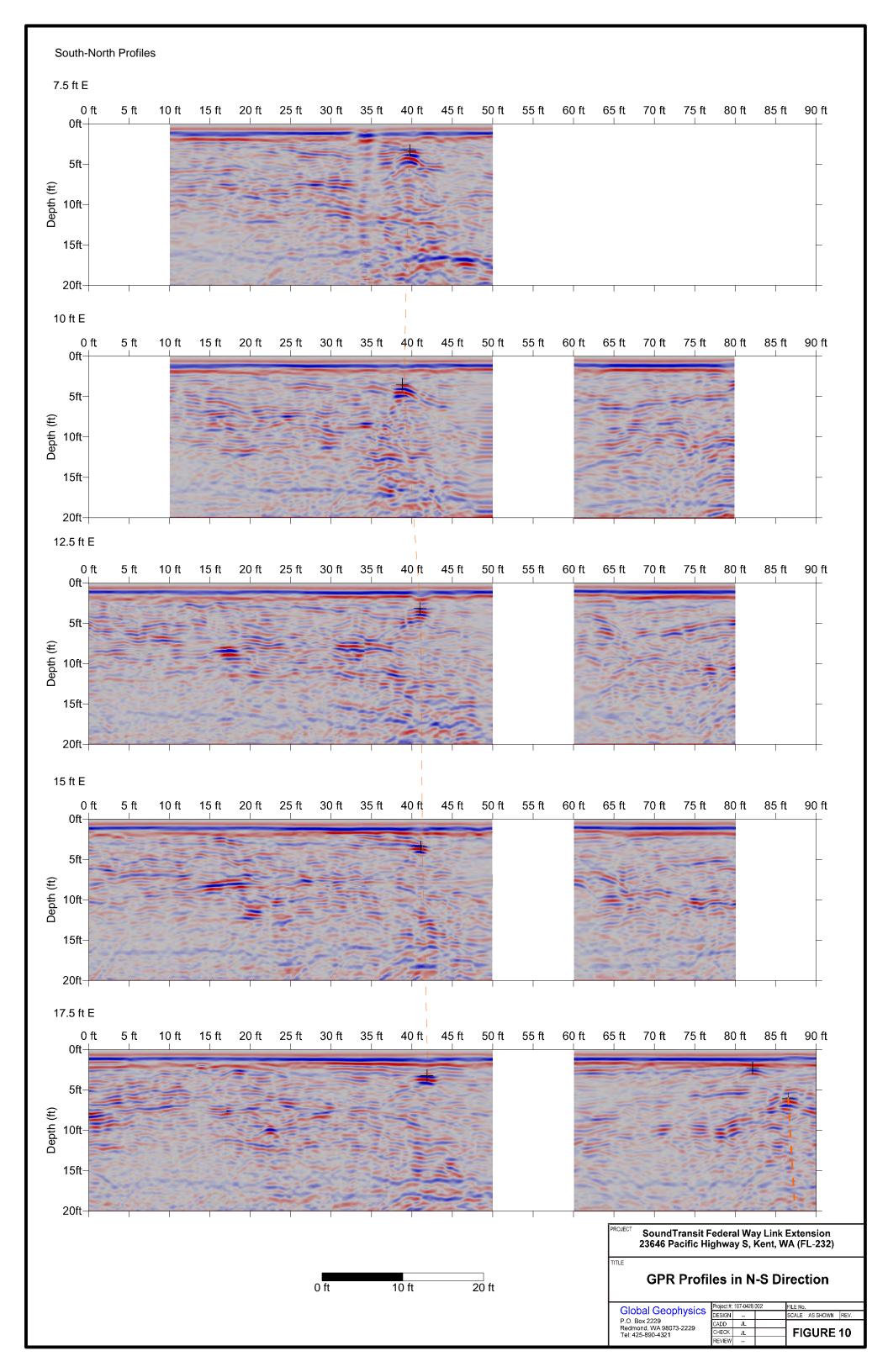


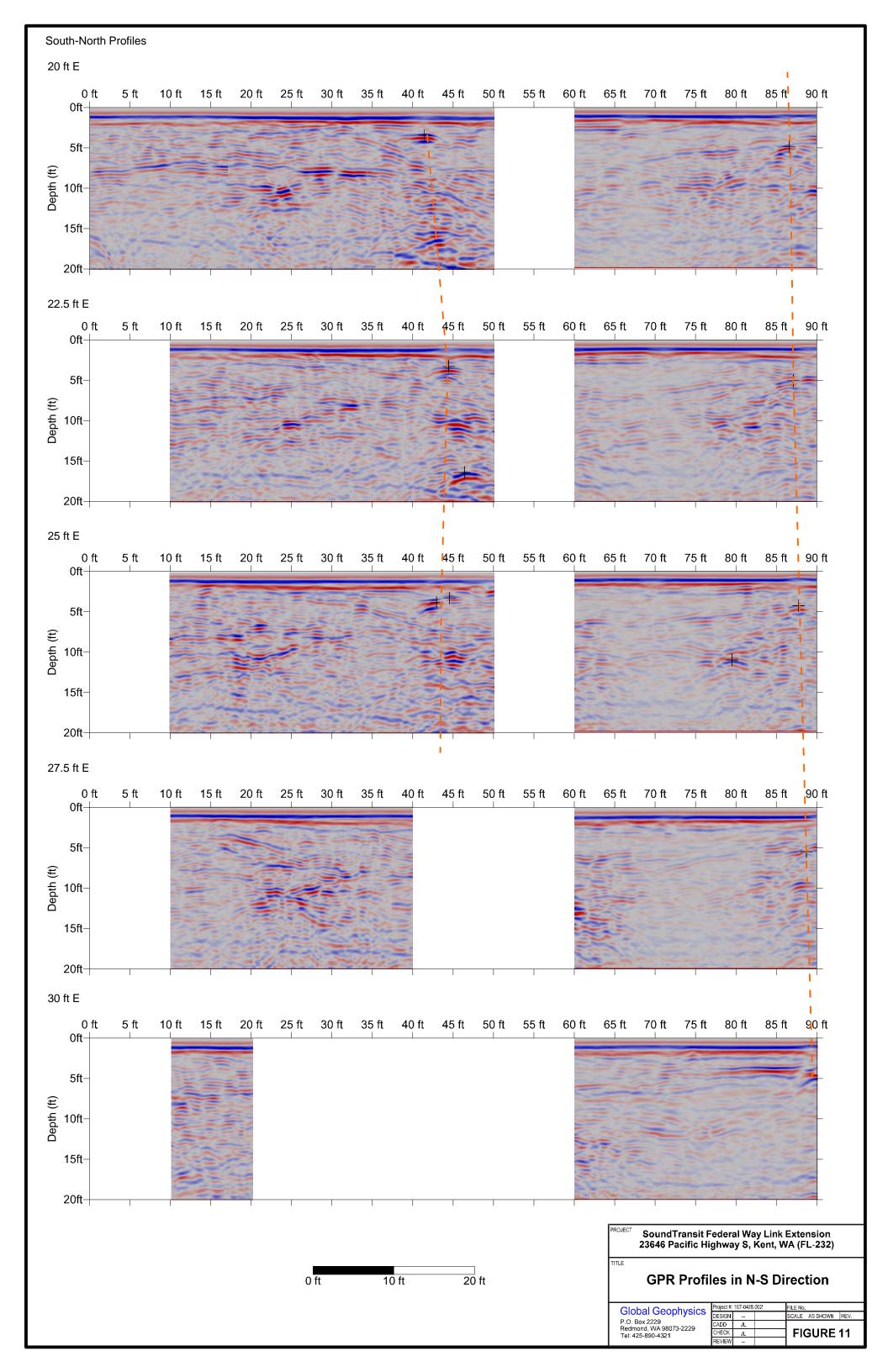


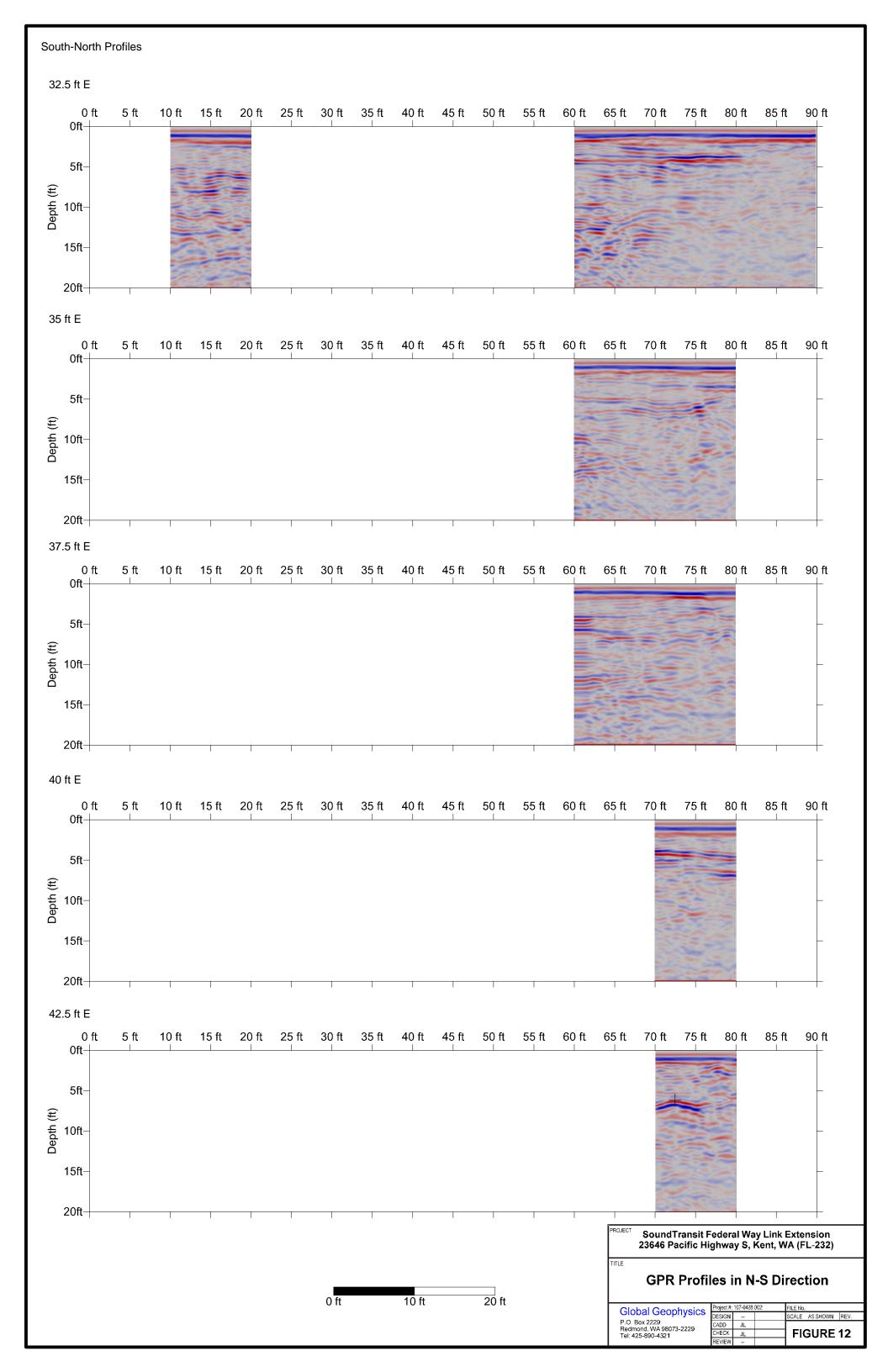


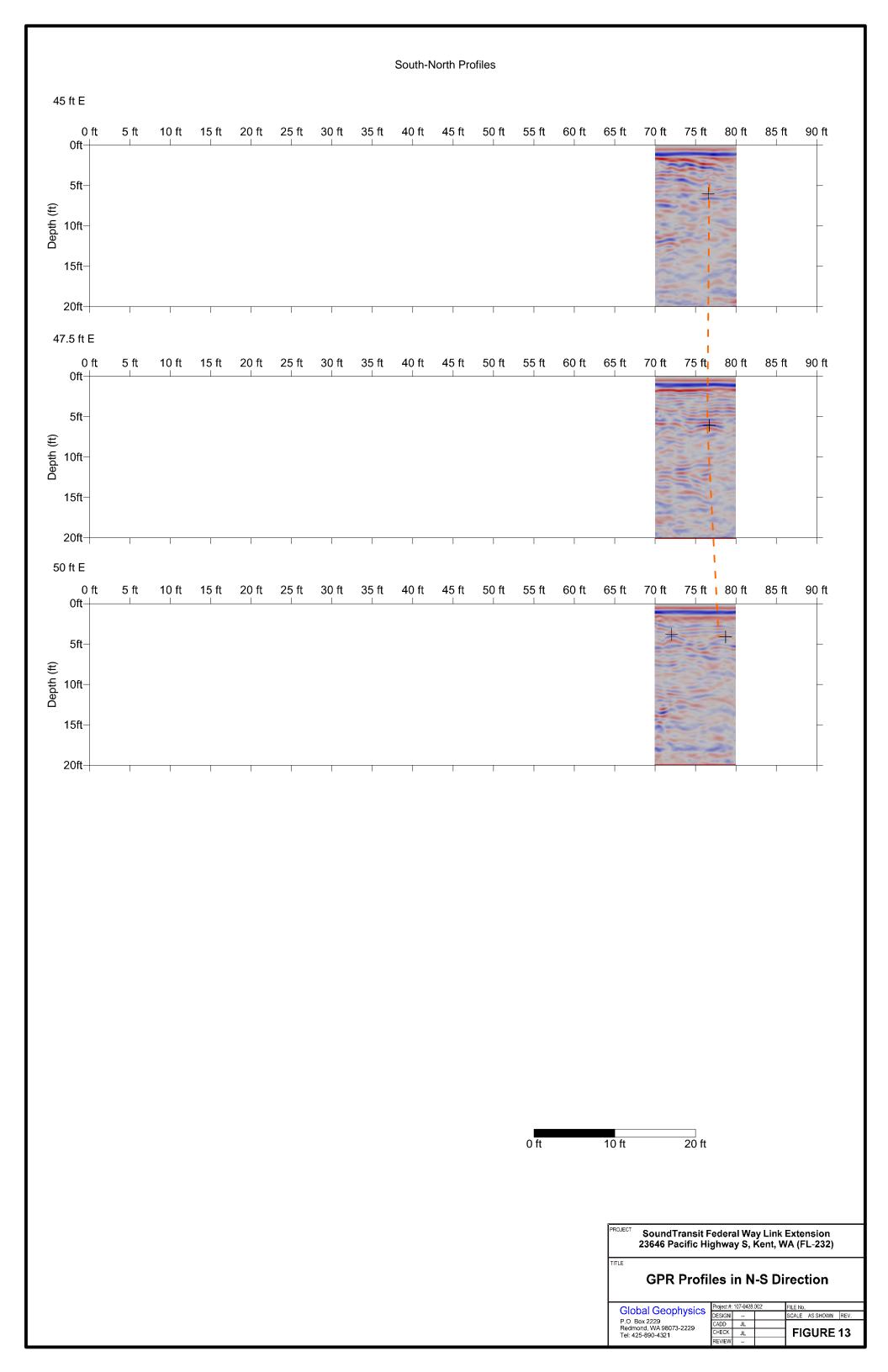
West-East Profiles


SoundTransit Federal Way Link Extension 23646 Pacific Highway S, Kent, WA (FL-232)


TITLE


GPR Profiles in W-E Direction


FILE NO.
SCALE AS SHOWN REV.
FIGURE 8


Global Geophysics	Project #:	107-0428.	002
	DESIGN	-	
	CADD	JL	
Tel: 425-890-4321	CHECK	JL	
	REVIEW	-	

APPENDIX B CHEMICAL ANALYTICAL PROGRAM

APPENDIX B CHEMICAL ANALYTICAL DATA

Analytical Methods

Chain-of-custody procedures were followed during the transport of the soil and groundwater samples to the analytical laboratory. The samples were held in cold storage pending extraction and/or analysis. The analytical results, analytical methods reference and laboratory quality control (QC) records are included in this appendix. The analytical results are also summarized in the text and tables of this report.

Analytical Data Review

The laboratory maintains an internal quality assurance program as documented in its laboratory quality assurance manual. The laboratory uses a combination of blanks, surrogate recoveries, duplicates, matrix spike recoveries, matrix spike duplicate recoveries, blank spike recoveries and blank spike duplicate recoveries to evaluate the validity of the analytical results. The laboratory also uses data quality goals for individual chemicals or groups of chemicals based on the long-term performance of the test methods. The data quality goals were included in the laboratory reports. The laboratory compared each group of samples with the existing data quality goals and noted any exceptions in the laboratory report. Data quality exceptions documented by the accredited laboratory were reviewed by GeoEngineers and are addressed in the data quality exception section of this appendix.

Analytical Data Review Summary

The following data quality exceptions were noted in the laboratory reports during our review:

- Sample FL232-B3-6.5-7.5 was extracted 2 days out of holding time; this data quality
 exception is not significant given that the sample was analyzed for lube oil-range
 hydrocarbons which are generally not volatile.
- Lube oil-range hydrocarbons in sample FL232-B4-3.5-4.5 were estimated by the laboratory from the NWTPH-HCID chromatogram.

Based on our data quality review, it is our opinion that the laboratory data qualifiers listed for the sample above are not significant with regard to the use of the data for characterization purposes. The samples/results were considered of acceptable quality for their intended use in this report.

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

June 19, 2017

Marsi Beeson GeoEngineers, Inc. 15055 SW Sequoia Parkway, Suite 140 Portland, OR 97224

Re: Analytical Data for Project 4082-039-01

Laboratory Reference No. 1705-315

Dear Marsi:

Enclosed are the analytical results and associated quality control data for samples submitted on May 25, 2017.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 4082-039-01

Case Narrative

Samples were collected on May 24, 2017 and received by the laboratory on May 25, 2017. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx and Volatiles EPA 8260C Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

PAHs EPA 8270D/SIM

Sample FL232-B3-6.5-7.5 was extracted 2 days out of holding time.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 4082-039-01

ANALYTICAL REPORT FOR SAMPLES

Client ID	Laboratory ID	Matrix	Date Sampled	Date Received	Notes
FL232-B1-3.5-4.5	05-315-01	Soil	5-24-17	5-25-17	
FL232-B1-7.5-8.5	05-315-02	Soil	5-24-17	5-25-17	
FL232-B2-3.5-4.5	05-315-04	Soil	5-24-17	5-25-17	
FL232-B3-6.5-7.5	05-315-07	Soil	5-24-17	5-25-17	
FL232-B4-3.5-4.5	05-315-08	Soil	5-24-17	5-25-17	
FL232-B5-3.5-4.5	05-315-10	Soil	5-24-17	5-25-17	
FL232-B5-7-8	05-315-11	Soil	5-24-17	5-25-17	
FL232-B6-3.5-4.5	05-315-13	Soil	5-24-17	5-25-17	
FL232-B6-11.5-12.5	05-315-14	Soil	5-24-17	5-25-17	
FL232-DRUM-1	05-315-16	Soil	5-24-17	5-25-17	

Project: 4082-039-01

NWTPH-HCID

Matrix: Soil

Units: mg/Kg (ppm)

onits. mg/kg (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FL232-B1-7.5-8.5					
Laboratory ID:	05-315-02					
Gasoline Range Organics	ND	22	NWTPH-HCID	5-30-17	5-30-17	
Diesel Range Organics	ND	55	NWTPH-HCID	5-30-17	5-30-17	
Lube Oil Range Organics	ND	110	NWTPH-HCID	5-30-17	5-30-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	105	50-150				
Client ID:	FL232-B3-6.5-7.5					
Laboratory ID:	05-315-07					
Gasoline Range Organics	ND	22	NWTPH-HCID	5-30-17	5-30-17	
Diesel Range Organics	ND	56	NWTPH-HCID	5-30-17	5-30-17	
Lube Oil Range Organics	ND	110	NWTPH-HCID	5-30-17	5-30-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	114	50-150				
Client ID:	FL232-B4-3.5-4.5					
Laboratory ID:	05-315-08					
Gasoline Range Organics	ND	22	NWTPH-HCID	5-30-17	5-31-17	
Diesel Range Organics	ND	54	NWTPH-HCID	5-30-17	5-31-17	
Lube Oil	Detected	110	NWTPH-HCID	5-30-17	5-31-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	119	50-150				
Client ID:	FL232-B5-3.5-4.5					
Laboratory ID:	05-315-10					
Gasoline Range Organics	ND	22	NWTPH-HCID	5-30-17	5-31-17	
Diesel Range Organics	ND	130	NWTPH-HCID	5-30-17	5-31-17	U1
Lube Oil	Detected	110	NWTPH-HCID	5-30-17	5-31-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	107	50-150				
Client ID:	FL232-B6-11.5-12.5					
Laboratory ID:	05-315-14					
Gasoline Range Organics	ND	22	NWTPH-HCID	5-30-17	5-30-17	
Diesel Range Organics	ND	54	NWTPH-HCID	5-30-17	5-30-17	
Lube Oil Range Organics	ND	110	NWTPH-HCID	5-30-17	5-30-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	114	50-150				
. ,						

Project: 4082-039-01

NWTPH-Gx

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FL232-DRUM-1					
Laboratory ID:	05-315-16					
Gasoline	ND	5.6	NWTPH-Gx	5-26-17	5-26-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	75	63-124				

Project: 4082-039-01

NWTPH-Dx

Matrix: Soil

Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Elogo
Client ID:	FL232-DRUM-1	PQL	Wethou	Prepared	Allalyzeu	Flags
Laboratory ID:	05-315-16					
Diesel Range Organics	ND	140	NWTPH-Dx	5-26-17	5-30-17	·
Lube Oil	730	280	NWTPH-Dx	5-26-17	5-30-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	92	50-150				

Project: 4082-039-01

NWTPH-Dx

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FL232-B5-3.5-4.5					
Laboratory ID:	05-315-10					
Diesel Range Organics	ND	140	NWTPH-Dx	5-31-17	6-1-17	
Lube Oil	1400	280	NWTPH-Dx	5-31-17	6-1-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	82	50-150				
Client ID:	FL232-B5-7-8					
Laboratory ID:	05-315-11					
Diesel Range Organics	ND	28	NWTPH-Dx	5-31-17	6-1-17	
Lube Oil	190	56	NWTPH-Dx	5-31-17	6-1-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	74	50-150				

Project: 4082-039-01

VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FL232-B3-6.5-7.5					
Laboratory ID:	05-315-07					
Dichlorodifluoromethane	ND	0.00090	EPA 8260C	5-26-17	5-26-17	·
Chloromethane	ND	0.0045	EPA 8260C	5-26-17	5-26-17	
Vinyl Chloride	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
Bromomethane	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
Chloroethane	ND	0.0045	EPA 8260C	5-26-17	5-26-17	
Trichlorofluoromethane	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
1,1-Dichloroethene	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
Acetone	ND	0.0045	EPA 8260C	5-26-17	5-26-17	
Iodomethane	ND	0.0045	EPA 8260C	5-26-17	5-26-17	
Carbon Disulfide	ND	0.0013	EPA 8260C	5-26-17	5-26-17	
Methylene Chloride	ND	0.0045	EPA 8260C	5-26-17	5-26-17	
(trans) 1,2-Dichloroethene	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
Methyl t-Butyl Ether	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
1,1-Dichloroethane	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
Vinyl Acetate	ND	0.0045	EPA 8260C	5-26-17	5-26-17	
2,2-Dichloropropane	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
(cis) 1,2-Dichloroethene	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
2-Butanone	ND	0.0045	EPA 8260C	5-26-17	5-26-17	
Bromochloromethane	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
Chloroform	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
1,1,1-Trichloroethane	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
Carbon Tetrachloride	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
1,1-Dichloropropene	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
Benzene	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
1,2-Dichloroethane	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
Trichloroethene	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
1,2-Dichloropropane	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
Dibromomethane	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
Bromodichloromethane	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
2-Chloroethyl Vinyl Ether	ND	0.0045	EPA 8260C	5-26-17	5-26-17	
(cis) 1,3-Dichloropropene	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
Methyl Isobutyl Ketone	ND	0.0045	EPA 8260C	5-26-17	5-26-17	
Toluene	ND	0.0045	EPA 8260C	5-26-17	5-26-17	
(trans) 1,3-Dichloropropene	ND	0.00090	EPA 8260C	5-26-17	5-26-17	

Date of Report: June 19, 2017 Samples Submitted: May 25, 2017 Laboratory Reference: 1705-315

Project: 4082-039-01

VOLATILES EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
	FL232-B3-6.5-7.5					
Laboratory ID:	05-315-07					
1,1,2-Trichloroethane	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
Tetrachloroethene	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
1,3-Dichloropropane	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
2-Hexanone	ND	0.0045	EPA 8260C	5-26-17	5-26-17	
Dibromochloromethane	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
1,2-Dibromoethane	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
Chlorobenzene	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
1,1,1,2-Tetrachloroethane	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
Ethylbenzene	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
m,p-Xylene	ND	0.0018	EPA 8260C	5-26-17	5-26-17	
o-Xylene	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
Styrene	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
Bromoform	ND	0.0045	EPA 8260C	5-26-17	5-26-17	
sopropylbenzene	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
Bromobenzene	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
1,1,2,2-Tetrachloroethane	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
1,2,3-Trichloropropane	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
n-Propylbenzene	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
2-Chlorotoluene	ND	0.0012	EPA 8260C	5-26-17	5-26-17	
4-Chlorotoluene	ND	0.0012	EPA 8260C	5-26-17	5-26-17	
1,3,5-Trimethylbenzene	ND	0.0012	EPA 8260C	5-26-17	5-26-17	
ert-Butylbenzene	ND	0.0012	EPA 8260C	5-26-17	5-26-17	
1,2,4-Trimethylbenzene	ND	0.0012	EPA 8260C	5-26-17	5-26-17	
sec-Butylbenzene	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
1,3-Dichlorobenzene	ND	0.0012	EPA 8260C	5-26-17	5-26-17	
o-Isopropyltoluene	ND	0.0012	EPA 8260C	5-26-17	5-26-17	
1,4-Dichlorobenzene	ND	0.0012	EPA 8260C	5-26-17	5-26-17	
1,2-Dichlorobenzene	ND	0.0012	EPA 8260C	5-26-17	5-26-17	
n-Butylbenzene	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
1,2-Dibromo-3-chloropropane		0.0045	EPA 8260C	5-26-17	5-26-17	
1,2,4-Trichlorobenzene	ND	0.0012	EPA 8260C	5-26-17	5-26-17	
Hexachlorobutadiene	ND	0.0045	EPA 8260C	5-26-17	5-26-17	
Naphthalene	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
1,2,3-Trichlorobenzene	ND	0.00090	EPA 8260C	5-26-17	5-26-17	
Surrogate:	Percent Recovery	Control Limits	L1 A 02000	J-2U-11	J-2U-11	
Surrogate. Dibromofluoromethane	78	73-134				
Dibromondoromethane Toluene-d8	78 91	73-13 4 81-124				
4-Bromofluorobenzene	116	80-131				

Project: 4082-039-01

VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FL232-DRUM-1					
Laboratory ID:	05-315-16					
Dichlorodifluoromethane	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
Chloromethane	ND	0.0054	EPA 8260C	5-26-17	5-26-17	
Vinyl Chloride	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
Bromomethane	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
Chloroethane	ND	0.0054	EPA 8260C	5-26-17	5-26-17	
Trichlorofluoromethane	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
1,1-Dichloroethene	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
Acetone	0.0090	0.0054	EPA 8260C	5-26-17	5-26-17	
lodomethane	ND	0.0054	EPA 8260C	5-26-17	5-26-17	
Carbon Disulfide	ND	0.0015	EPA 8260C	5-26-17	5-26-17	
Methylene Chloride	ND	0.0054	EPA 8260C	5-26-17	5-26-17	
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
Methyl t-Butyl Ether	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
1,1-Dichloroethane	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
Vinyl Acetate	ND	0.0054	EPA 8260C	5-26-17	5-26-17	
2,2-Dichloropropane	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
2-Butanone	ND	0.0054	EPA 8260C	5-26-17	5-26-17	
Bromochloromethane	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
Chloroform	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
1,1,1-Trichloroethane	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
Carbon Tetrachloride	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
1,1-Dichloropropene	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
Benzene	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
1,2-Dichloroethane	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
Trichloroethene	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
1,2-Dichloropropane	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
Dibromomethane	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
Bromodichloromethane	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
2-Chloroethyl Vinyl Ether	ND	0.0054	EPA 8260C	5-26-17	5-26-17	
(cis) 1,3-Dichloropropene	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
Methyl Isobutyl Ketone	ND	0.0054	EPA 8260C	5-26-17	5-26-17	
Toluene	ND	0.0054	EPA 8260C	5-26-17	5-26-17	
(trans) 1,3-Dichloropropene	ND	0.0011	EPA 8260C	5-26-17	5-26-17	

Project: 4082-039-01

VOLATILES EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FL232-DRUM-1					
_aboratory ID:	05-315-16					
1,1,2-Trichloroethane	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
Tetrachloroethene	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
1,3-Dichloropropane	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
2-Hexanone	ND	0.0054	EPA 8260C	5-26-17	5-26-17	
Dibromochloromethane	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
,2-Dibromoethane	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
Chlorobenzene	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
,1,1,2-Tetrachloroethane	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
Ethylbenzene	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
n,p-Xylene	ND	0.0022	EPA 8260C	5-26-17	5-26-17	
o-Xylene	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
Styrene	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
Bromoform	ND	0.0054	EPA 8260C	5-26-17	5-26-17	
sopropylbenzene	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
Bromobenzene	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
,1,2,2-Tetrachloroethane	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
,2,3-Trichloropropane	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
n-Propylbenzene	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
2-Chlorotoluene	ND	0.0014	EPA 8260C	5-26-17	5-26-17	
I-Chlorotoluene	ND	0.0014	EPA 8260C	5-26-17	5-26-17	
,3,5-Trimethylbenzene	ND	0.0014	EPA 8260C	5-26-17	5-26-17	
ert-Butylbenzene	ND	0.0014	EPA 8260C	5-26-17	5-26-17	
,2,4-Trimethylbenzene	ND	0.0014	EPA 8260C	5-26-17	5-26-17	
sec-Butylbenzene	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
,3-Dichlorobenzene	ND	0.0014	EPA 8260C	5-26-17	5-26-17	
o-Isopropyltoluene	ND	0.0014	EPA 8260C	5-26-17	5-26-17	
,4-Dichlorobenzene	ND	0.0014	EPA 8260C	5-26-17	5-26-17	
,2-Dichlorobenzene	ND	0.0014	EPA 8260C	5-26-17	5-26-17	
n-Butylbenzene	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
,2-Dibromo-3-chloropropane	ND	0.0054	EPA 8260C	5-26-17	5-26-17	
,2,4-Trichlorobenzene	ND	0.0014	EPA 8260C	5-26-17	5-26-17	
lexachlorobutadiene	ND	0.0054	EPA 8260C	5-26-17	5-26-17	
laphthalene	ND	0.0011	EPA 8260C	5-26-17	5-26-17	
,2,3-Trichlorobenzene	ND	0.0014	EPA 8260C	5-26-17	5-26-17	
Surrogate:	Percent Recovery	Control Limits	2.7102000	0 20 11	0 20 11	
Dibromofluoromethane	80	73-134				
Foluene-d8	94	81-124				
1-Bromofluorobenzene		80-131				
+-DI OHIUHUUHUDEHZEHE	114	00-131				

Project: 4082-039-01

VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FL232-B5-3.5-4.5					
Laboratory ID:	05-315-10					
Dichlorodifluoromethane	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
Chloromethane	ND	0.0047	EPA 8260C	6-2-17	6-2-17	
Vinyl Chloride	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
Bromomethane	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
Chloroethane	ND	0.0047	EPA 8260C	6-2-17	6-2-17	
Trichlorofluoromethane	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
1,1-Dichloroethene	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
Acetone	ND	0.0094	EPA 8260C	6-2-17	6-2-17	
lodomethane	ND	0.0047	EPA 8260C	6-2-17	6-2-17	
Carbon Disulfide	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
Methylene Chloride	ND	0.0094	EPA 8260C	6-2-17	6-2-17	
(trans) 1,2-Dichloroethene	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
Methyl t-Butyl Ether	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
1,1-Dichloroethane	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
Vinyl Acetate	ND	0.0047	EPA 8260C	6-2-17	6-2-17	
2,2-Dichloropropane	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
(cis) 1,2-Dichloroethene	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
2-Butanone	ND	0.0047	EPA 8260C	6-2-17	6-2-17	
Bromochloromethane	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
Chloroform	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
1,1,1-Trichloroethane	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
Carbon Tetrachloride	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
1,1-Dichloropropene	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
Benzene	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
1,2-Dichloroethane	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
Trichloroethene	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
1,2-Dichloropropane	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
Dibromomethane	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
Bromodichloromethane	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
2-Chloroethyl Vinyl Ether	ND	0.0073	EPA 8260C	6-2-17	6-2-17	
(cis) 1,3-Dichloropropene	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
Methyl Isobutyl Ketone	ND	0.0047	EPA 8260C	6-2-17	6-2-17	
Toluene	ND	0.0047	EPA 8260C	6-2-17	6-2-17	
(trans) 1,3-Dichloropropene	. ND	0.00094	EPA 8260C	6-2-17	6-2-17	

Project: 4082-039-01

VOLATILES EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FL232-B5-3.5-4.5					
Laboratory ID:	05-315-10					
1,1,2-Trichloroethane	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
Tetrachloroethene	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
1,3-Dichloropropane	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
2-Hexanone	ND	0.0047	EPA 8260C	6-2-17	6-2-17	
Dibromochloromethane	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
1,2-Dibromoethane	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
Chlorobenzene	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
1,1,1,2-Tetrachloroethane	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
Ethylbenzene	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
m,p-Xylene	ND	0.0019	EPA 8260C	6-2-17	6-2-17	
o-Xylene	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
Styrene	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
Bromoform	ND	0.0047	EPA 8260C	6-2-17	6-2-17	
sopropylbenzene	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
Bromobenzene	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
1,1,2,2-Tetrachloroethane	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
1,2,3-Trichloropropane	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
n-Propylbenzene	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
2-Chlorotoluene	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
4-Chlorotoluene	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
1,3,5-Trimethylbenzene	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
ert-Butylbenzene	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
1,2,4-Trimethylbenzene	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
sec-Butylbenzene	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
1,3-Dichlorobenzene	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
o-Isopropyltoluene	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
1,4-Dichlorobenzene	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
1,2-Dichlorobenzene	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
n-Butylbenzene	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
1,2-Dibromo-3-chloropropane		0.0047	EPA 8260C	6-2-17	6-2-17	
1,2,4-Trichlorobenzene	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
Hexachlorobutadiene	ND	0.0047	EPA 8260C	6-2-17	6-2-17	
Naphthalene	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
1,2,3-Trichlorobenzene	ND	0.00094	EPA 8260C	6-2-17	6-2-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	117	73-134				
Toluene-d8	110	81-124				
4-Bromofluorobenzene	98	80-131				
		00 101				

Project: 4082-039-01

PAHs EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FL232-B5-3.5-4.5					
Laboratory ID:	05-315-10					
Naphthalene	ND	0.0073	EPA 8270D/SIM	6-5-17	6-5-17	
2-Methylnaphthalene	ND	0.0073	EPA 8270D/SIM	6-5-17	6-5-17	
1-Methylnaphthalene	ND	0.0073	EPA 8270D/SIM	6-5-17	6-5-17	
Acenaphthylene	ND	0.0073	EPA 8270D/SIM	6-5-17	6-5-17	
Acenaphthene	0.013	0.0073	EPA 8270D/SIM	6-5-17	6-5-17	
Fluorene	0.010	0.0073	EPA 8270D/SIM	6-5-17	6-5-17	
Phenanthrene	0.14	0.0073	EPA 8270D/SIM	6-5-17	6-5-17	
Anthracene	0.027	0.0073	EPA 8270D/SIM	6-5-17	6-5-17	
Fluoranthene	0.19	0.0073	EPA 8270D/SIM	6-5-17	6-5-17	
Pyrene	0.17	0.0073	EPA 8270D/SIM	6-5-17	6-5-17	
Benzo[a]anthracene	0.11	0.0073	EPA 8270D/SIM	6-5-17	6-5-17	
Chrysene	0.12	0.0073	EPA 8270D/SIM	6-5-17	6-5-17	
Benzo[b]fluoranthene	0.12	0.0073	EPA 8270D/SIM	6-5-17	6-5-17	
Benzo(j,k)fluoranthene	0.037	0.0073	EPA 8270D/SIM	6-5-17	6-5-17	
Benzo[a]pyrene	0.10	0.0073	EPA 8270D/SIM	6-5-17	6-5-17	
Indeno(1,2,3-c,d)pyrene	0.086	0.0073	EPA 8270D/SIM	6-5-17	6-5-17	
Dibenz[a,h]anthracene	0.016	0.0073	EPA 8270D/SIM	6-5-17	6-5-17	
Benzo[g,h,i]perylene	0.086	0.0073	EPA 8270D/SIM	6-5-17	6-5-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	76	32 - 122				
Pyrene-d10	65	33 - 125				
Terphenyl-d14	83	36 - 118				

Flags

Date

Analyzed

Date

Prepared

Date of Report: June 19, 2017 Samples Submitted: May 25, 2017 Laboratory Reference: 1705-315

Project: 4082-039-01

TOTAL METALS EPA 6010C/7471B

PQL

Matrix: Soil

Analyte

Units: mg/kg (ppm)

Result

Lab ID:	05-315-01					
Client ID:	FL232-B1-3.5-4.5					
Arsenic	ND	11	6010C	5-31-17	5-31-17	
Lead	38	5.6	6010C	5-31-17	5-31-17	
Lab ID:	05-315-04					
Client ID:	FL232-B2-3.5-4.5					
Arsenic	ND	11	6010C	5-31-17	5-31-17	
Lead	ND	5.7	6010C	5-31-17	5-31-17	
Lab ID:	05-315-07					
Client ID:	FL232-B3-6.5-7.5					
Arsenic	ND	11	6010C	5-31-17	5-31-17	
Barium	59	2.8	6010C	5-31-17	5-31-17	
Cadmium	ND	0.56	6010C	5-31-17	5-31-17	
Chromium	25	0.56	6010C	5-31-17	5-31-17	
Lead	ND	5.6	6010C	5-31-17	5-31-17	
Mercury	ND	0.28	7471B	5-26-17	5-26-17	
Selenium	ND	11	6010C	5-31-17	5-31-17	
Silver	ND	1.1	6010C	5-31-17	5-31-17	
Lab ID:	05-315-10					
Client ID:	FL232-B5-3.5-4.5					
Arsenic	ND	11	6010C	5-31-17	5-31-17	
Lead	36	5.5	6010C	5-31-17	5-31-17	

EPA Method

Project: 4082-039-01

TOTAL METALS EPA 6010C/7471B

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	05-315-13					
Client ID:	FL232-B6-3.5-4.5					
Arsenic	ND	11	6010C	5-31-17	5-31-17	
Lead	66	5.6	6010C	5-31-17	5-31-17	

Lab ID:	05-315-16					
Client ID:	FL232-DRUM-1					
Arsenic	ND	11	6010C	5-31-17	5-31-17	
Barium	49	2.8	6010C	5-31-17	5-31-17	
Cadmium	ND	0.55	6010C	5-31-17	5-31-17	
Chromium	49	0.55	6010C	5-31-17	5-31-17	
Lead	ND	5.5	6010C	5-31-17	5-31-17	
Mercury	ND	0.28	7471B	5-26-17	5-26-17	
Selenium	ND	11	6010C	5-31-17	5-31-17	
Silver	ND	1.1	6010C	5-31-17	5-31-17	

Project: 4082-039-01

TOTAL METALS EPA 6010C/7471B

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	05-315-10 FL232-B5-3.5-4.5					
Barium	66	2.8	6010C	6-1-17	6-1-17	
Cadmium	ND	0.55	6010C	6-1-17	6-1-17	
Chromium	33	0.55	6010C	6-1-17	6-1-17	
Mercury	ND	0.28	7471B	6-12-17	6-12-17	
Selenium	ND	11	6010C	6-1-17	6-1-17	
Silver	ND	1.1	6010C	6-1-17	6-1-17	

Project: 4082-039-01

PAHs EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FL232-B3-6.5-7.5					
Laboratory ID:	05-315-07					
Naphthalene	ND	0.0074	EPA 8270D/SIM	6-14-17	6-16-17	
2-Methylnaphthalene	ND	0.0074	EPA 8270D/SIM	6-14-17	6-16-17	
1-Methylnaphthalene	ND	0.0074	EPA 8270D/SIM	6-14-17	6-16-17	
Acenaphthylene	ND	0.0074	EPA 8270D/SIM	6-14-17	6-16-17	
Acenaphthene	ND	0.0074	EPA 8270D/SIM	6-14-17	6-16-17	
Fluorene	ND	0.0074	EPA 8270D/SIM	6-14-17	6-16-17	
Phenanthrene	ND	0.0074	EPA 8270D/SIM	6-14-17	6-16-17	
Anthracene	ND	0.0074	EPA 8270D/SIM	6-14-17	6-16-17	
Fluoranthene	ND	0.0074	EPA 8270D/SIM	6-14-17	6-16-17	
Pyrene	ND	0.0074	EPA 8270D/SIM	6-14-17	6-16-17	
Benzo[a]anthracene	ND	0.0074	EPA 8270D/SIM	6-14-17	6-16-17	
Chrysene	ND	0.0074	EPA 8270D/SIM	6-14-17	6-16-17	
Benzo[b]fluoranthene	ND	0.0074	EPA 8270D/SIM	6-14-17	6-16-17	
Benzo(j,k)fluoranthene	ND	0.0074	EPA 8270D/SIM	6-14-17	6-16-17	
Benzo[a]pyrene	ND	0.0074	EPA 8270D/SIM	6-14-17	6-16-17	
Indeno(1,2,3-c,d)pyrene	ND	0.0074	EPA 8270D/SIM	6-14-17	6-16-17	
Dibenz[a,h]anthracene	ND	0.0074	EPA 8270D/SIM	6-14-17	6-16-17	
Benzo[g,h,i]perylene	ND	0.0074	EPA 8270D/SIM	6-14-17	6-16-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	67	32 - 122				
Pyrene-d10	77	33 - 125				
Ternhenyl-d14	86	36 - 118				

Project: 4082-039-01

SOLUBLE HEXAVALENT CHROMIUM WATER EXTRACTION EPA 7196A

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	05-315-07					
Client ID:	FL232-B3-6.5-7.5					
Hexavalent Chromium	ND	1.1	7196A mod	6-14-17	6-14-17	

Project: 4082-039-01

NWTPH-HCID QUALITY CONTROL

Matrix: Soil

Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						_
Laboratory ID:	MB0530S1					
Gasoline Range Organics	ND	20	NWTPH-HCID	5-30-17	5-30-17	_
Diesel Range Organics	ND	50	NWTPH-HCID	5-30-17	5-30-17	
Lube Oil Range Organics	ND	100	NWTPH-HCID	5-30-17	5-30-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	101	50-150				

Project: 4082-039-01

NWTPH-Gx QUALITY CONTROL

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0526S1					
Gasoline	ND	5.0	NWTPH-Gx	5-26-17	5-26-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	71	63-124				

Analyte	Res	sult	Spike	Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE										
Laboratory ID:	05-3	14-07								
	ORIG	DUP								
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:										
Fluorobenzene						81 83	63-124			

Project: 4082-039-01

NWTPH-Dx QUALITY CONTROL

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						_
Laboratory ID:	MB0526S2					
Diesel Range Organics	ND	25	NWTPH-Dx	5-26-17	5-26-17	
Lube Oil Range Organics	ND	50	NWTPH-Dx	5-26-17	5-26-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	72	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	05-29	97-04								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenvl						65 62	50-150			

Project: 4082-039-01

NWTPH-Dx QUALITY CONTROL

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						·
Laboratory ID:	MB0531S3					
Diesel Range Organics	ND	25	NWTPH-Dx	5-31-17	6-1-17	
Lube Oil Range Organics	ND	50	NWTPH-Dx	5-31-17	6-1-17	
Surrogate:	Percent Recovery	Control Limits				·
o-Terphenyl	85	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	05-3	14-01								
	ORIG	DUP								
Diesel Range Organics	313	152	NA	NA		NA	NA	69	NA	
Lube Oil Range Organics	872	657	NA	NA		NA	NA	28	NA	
Surrogate:										
o-Terphenyl						68 78	50-150			

Project: 4082-039-01

VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL

page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0526S2					
Dichlorodifluoromethane	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
Chloromethane	ND	0.0050	EPA 8260C	5-26-17	5-26-17	
Vinyl Chloride	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
Bromomethane	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
Chloroethane	ND	0.0050	EPA 8260C	5-26-17	5-26-17	
Trichlorofluoromethane	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
Acetone	ND	0.010	EPA 8260C	5-26-17	5-26-17	
lodomethane	ND	0.0050	EPA 8260C	5-26-17	5-26-17	
Carbon Disulfide	ND	0.0014	EPA 8260C	5-26-17	5-26-17	
Methylene Chloride	ND	0.0050	EPA 8260C	5-26-17	5-26-17	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
1,1-Dichloroethane	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
Vinyl Acetate	ND	0.0050	EPA 8260C	5-26-17	5-26-17	
2,2-Dichloropropane	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
2-Butanone	ND	0.0050	EPA 8260C	5-26-17	5-26-17	
Bromochloromethane	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
Chloroform	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
Carbon Tetrachloride	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
1,1-Dichloropropene	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
Benzene	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
1,2-Dichloroethane	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
Trichloroethene	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
1,2-Dichloropropane	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
Dibromomethane	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
Bromodichloromethane	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
2-Chloroethyl Vinyl Ether	ND	0.0050	EPA 8260C	5-26-17	5-26-17	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
Methyl Isobutyl Ketone	ND	0.0050	EPA 8260C	5-26-17	5-26-17	
Toluene	ND	0.0050	EPA 8260C	5-26-17	5-26-17	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	5-26-17	5-26-17	

Project: 4082-039-01

VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL

page 2 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
•		·		•	<u> </u>	
Laboratory ID:	MB0526S2					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
Tetrachloroethene	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
1,3-Dichloropropane	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
2-Hexanone	ND	0.0050	EPA 8260C	5-26-17	5-26-17	
Dibromochloromethane	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
1,2-Dibromoethane	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
Chlorobenzene	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
Ethylbenzene	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
n,p-Xylene	ND	0.0020	EPA 8260C	5-26-17	5-26-17	
o-Xylene	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
Styrene	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
Bromoform	ND	0.0050	EPA 8260C	5-26-17	5-26-17	
sopropylbenzene	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
Bromobenzene	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
n-Propylbenzene	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
2-Chlorotoluene	ND	0.0013	EPA 8260C	5-26-17	5-26-17	
4-Chlorotoluene	ND	0.0013	EPA 8260C	5-26-17	5-26-17	
1,3,5-Trimethylbenzene	ND	0.0013	EPA 8260C	5-26-17	5-26-17	
ert-Butylbenzene	ND	0.0013	EPA 8260C	5-26-17	5-26-17	
1,2,4-Trimethylbenzene	ND	0.0013	EPA 8260C	5-26-17	5-26-17	
sec-Butylbenzene	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
1,3-Dichlorobenzene	ND	0.0013	EPA 8260C	5-26-17	5-26-17	
o-Isopropyltoluene	ND	0.0013	EPA 8260C	5-26-17	5-26-17	
1,4-Dichlorobenzene	ND	0.0013	EPA 8260C	5-26-17	5-26-17	
1,2-Dichlorobenzene	ND	0.0013	EPA 8260C	5-26-17	5-26-17	
n-Butylbenzene	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
1,2-Dibromo-3-chloropropane	ND	0.0050	EPA 8260C	5-26-17	5-26-17	
1,2,4-Trichlorobenzene	ND	0.0013	EPA 8260C	5-26-17	5-26-17	
Hexachlorobutadiene	ND	0.0050	EPA 8260C	5-26-17	5-26-17	
Naphthalene	ND	0.0010	EPA 8260C	5-26-17	5-26-17	
1,2,3-Trichlorobenzene	ND	0.0013	EPA 8260C	5-26-17	5-26-17	
Surrogate:	Percent Recovery	Control Limits	·			
Dibromofluoromethane	79	73-134				
Toluene-d8	04	91-12 <i>1</i>				

Toluene-d8 94 81-124 4-Bromofluorobenzene 116 80-131

Project: 4082-039-01

VOLATILES by EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/kg

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB05	26S2								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0504	0.0471	0.0500	0.0500	101	94	66-127	7	15	
Benzene	0.0548	0.0511	0.0500	0.0500	110	102	76-122	7	15	
Trichloroethene	0.0556	0.0509	0.0500	0.0500	111	102	78-120	9	15	
Toluene	0.0588	0.0551	0.0500	0.0500	118	110	83-120	6	15	
Chlorobenzene	0.0503	0.0467	0.0500	0.0500	101	93	81-120	7	15	
Surrogate:										
Dibromofluoromethane					77	75	73-134			
Toluene-d8					89	89	81-124			
4-Bromofluorobenzene					116	112	80-131			

Project: 4082-039-01

VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL

page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0602S1					
Dichlorodifluoromethane	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
Chloromethane	ND	0.0050	EPA 8260C	6-2-17	6-2-17	
Vinyl Chloride	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
Bromomethane	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
Chloroethane	ND	0.0050	EPA 8260C	6-2-17	6-2-17	
Trichlorofluoromethane	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
Acetone	ND	0.010	EPA 8260C	6-2-17	6-2-17	
lodomethane	ND	0.0050	EPA 8260C	6-2-17	6-2-17	
Carbon Disulfide	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
Methylene Chloride	ND	0.010	EPA 8260C	6-2-17	6-2-17	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
1,1-Dichloroethane	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
Vinyl Acetate	ND	0.0050	EPA 8260C	6-2-17	6-2-17	
2,2-Dichloropropane	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
2-Butanone	ND	0.0050	EPA 8260C	6-2-17	6-2-17	
Bromochloromethane	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
Chloroform	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
Carbon Tetrachloride	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
1,1-Dichloropropene	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
Benzene	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
1,2-Dichloroethane	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
Trichloroethene	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
1,2-Dichloropropane	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
Dibromomethane	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
Bromodichloromethane	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
2-Chloroethyl Vinyl Ether	ND	0.0078	EPA 8260C	6-2-17	6-2-17	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
Methyl Isobutyl Ketone	ND	0.0050	EPA 8260C	6-2-17	6-2-17	
Toluene	ND	0.0050	EPA 8260C	6-2-17	6-2-17	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	6-2-17	6-2-17	

Project: 4082-039-01

VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL

page 2 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
				•		
Laboratory ID:	MB0602S1					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
Tetrachloroethene	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
1,3-Dichloropropane	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
2-Hexanone	ND	0.0050	EPA 8260C	6-2-17	6-2-17	
Dibromochloromethane	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
1,2-Dibromoethane	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
Chlorobenzene	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
Ethylbenzene	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
m,p-Xylene	ND	0.0020	EPA 8260C	6-2-17	6-2-17	
o-Xylene	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
Styrene	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
Bromoform	ND	0.0050	EPA 8260C	6-2-17	6-2-17	
sopropylbenzene	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
Bromobenzene	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
n-Propylbenzene	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
2-Chlorotoluene	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
4-Chlorotoluene	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
1,3,5-Trimethylbenzene	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
ert-Butylbenzene	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
1,2,4-Trimethylbenzene	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
sec-Butylbenzene	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
o-Isopropyltoluene	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
n-Butylbenzene	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
1,2-Dibromo-3-chloropropane	ND	0.0050	EPA 8260C	6-2-17	6-2-17	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
Hexachlorobutadiene	ND	0.0050	EPA 8260C	6-2-17	6-2-17	
Naphthalene	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260C	6-2-17	6-2-17	
Surrogate:	Percent Recovery	Control Limits		<u> </u>	<u> </u>	
Dibromofluoromethane	113	73-134				
Toluono do	113	73-73 -7 91 12 <i>1</i>				

Dibromofluoromethane 113 73-134
Toluene-d8 112 81-124
4-Bromofluorobenzene 106 80-131

Project: 4082-039-01

VOLATILES by EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/kg

					Per	cent	Recovery		RPD	
Analyte	Result		Spike Level		Recovery		Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB06	02S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0626	0.0632	0.0500	0.0500	125	126	66-127	1	15	_
Benzene	0.0568	0.0581	0.0500	0.0500	114	116	76-122	2	15	
Trichloroethene	0.0549	0.0547	0.0500	0.0500	110	109	78-120	0	15	
Toluene	0.0558	0.0574	0.0500	0.0500	112	115	83-120	3	15	
Chlorobenzene	0.0503	0.0497	0.0500	0.0500	101	99	81-120	1	15	
Surrogate:										_
Dibromofluoromethane					105	104	73-134			
Toluene-d8					110	109	81-124			
4-Bromofluorobenzene					101	102	80-131			

Project: 4082-039-01

PAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0605S1					
Naphthalene	ND	0.0067	EPA 8270D/SIM	6-5-17	6-5-17	
2-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	6-5-17	6-5-17	
1-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	6-5-17	6-5-17	
Acenaphthylene	ND	0.0067	EPA 8270D/SIM	6-5-17	6-5-17	
Acenaphthene	ND	0.0067	EPA 8270D/SIM	6-5-17	6-5-17	
Fluorene	ND	0.0067	EPA 8270D/SIM	6-5-17	6-5-17	
Phenanthrene	ND	0.0067	EPA 8270D/SIM	6-5-17	6-5-17	
Anthracene	ND	0.0067	EPA 8270D/SIM	6-5-17	6-5-17	
Fluoranthene	ND	0.0067	EPA 8270D/SIM	6-5-17	6-5-17	
Pyrene	ND	0.0067	EPA 8270D/SIM	6-5-17	6-5-17	
Benzo[a]anthracene	ND	0.0067	EPA 8270D/SIM	6-5-17	6-5-17	
Chrysene	ND	0.0067	EPA 8270D/SIM	6-5-17	6-5-17	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270D/SIM	6-5-17	6-5-17	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270D/SIM	6-5-17	6-5-17	
Benzo[a]pyrene	ND	0.0067	EPA 8270D/SIM	6-5-17	6-5-17	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270D/SIM	6-5-17	6-5-17	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270D/SIM	6-5-17	6-5-17	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270D/SIM	6-5-17	6-5-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	92	32 - 122				
Pyrene-d10	85	33 - 125				
Temhenyl-d14	98	36 - 118				

Terphenyl-d14 98 36 - 118

Project: 4082-039-01

PAHS EPA 8270D/SIM MS/MSD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	05-28	81-10									
	MS	MSD	MS	MSD		MS	MSD				
Naphthalene	0.0657	0.0710	0.0833	0.0833	ND	79	85	39 - 112	8	27	
Acenaphthylene	0.0672	0.0739	0.0833	0.0833	ND	81	89	40 - 121	9	34	
Acenaphthene	0.0665	0.0722	0.0833	0.0833	ND	80	87	44 - 113	8	28	
Fluorene	0.0686	0.0729	0.0833	0.0833	ND	82	88	43 - 119	6	27	
Phenanthrene	0.0622	0.0674	0.0833	0.0833	ND	75	81	35 - 124	8	30	
Anthracene	0.0680	0.0722	0.0833	0.0833	ND	82	87	30 - 140	6	26	
Fluoranthene	0.0658	0.0703	0.0833	0.0833	ND	79	84	29 - 136	7	32	
Pyrene	0.0651	0.0686	0.0833	0.0833	ND	78	82	35 - 128	5	33	
Benzo[a]anthracene	0.0747	0.0801	0.0833	0.0833	ND	90	96	30 - 143	7	31	
Chrysene	0.0726	0.0783	0.0833	0.0833	ND	87	94	32 - 129	8	33	
Benzo[b]fluoranthene	0.0693	0.0740	0.0833	0.0833	ND	83	89	23 - 140	7	29	
Benzo(j,k)fluoranthene	0.0709	0.0766	0.0833	0.0833	ND	85	92	32 - 119	8	30	
Benzo[a]pyrene	0.0703	0.0761	0.0833	0.0833	ND	84	91	31 - 131	8	32	
Indeno(1,2,3-c,d)pyrene	0.0698	0.0744	0.0833	0.0833	ND	84	89	31 - 130	6	28	
Dibenz[a,h]anthracene	0.0670	0.0731	0.0833	0.0833	ND	80	88	40 - 119	9	27	
Benzo[g,h,i]perylene	0.0696	0.0752	0.0833	0.0833	ND	84	90	39 - 119	8	29	
Surrogate:											
2-Fluorobiphenyl						83	90	32 - 122			
Pyrene-d10						76	79	33 - 125			
Terphenyl-d14						96	100	36 - 118			

Project: 4082-039-01

TOTAL METALS EPA 6010C METHOD BLANK QUALITY CONTROL

Date Extracted: 5-31-17
Date Analyzed: 5-31-17

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0531SM1

Analyte	Method	Result	PQL
Arsenic	6010C	ND	10
Barium	6010C	ND	2.5
Cadmium	6010C	ND	0.50
Chromium	6010C	ND	0.50
Lead	6010C	ND	5.0
Selenium	6010C	ND	10
Silver	6010C	ND	1.0

Project: 4082-039-01

TOTAL MERCURY EPA 7471B METHOD BLANK QUALITY CONTROL

Date Extracted: 5-26-17 Date Analyzed: 5-26-17

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0526S3

Analyte Method Result PQL

Mercury 7471B **ND** 0.25

Project: 4082-039-01

TOTAL METALS EPA 6010C DUPLICATE QUALITY CONTROL

Date Extracted: 5-31-17
Date Analyzed: 5-31-17

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 05-315-07

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	10	
Barium	52.9	52.0	2	2.5	
Cadmium	ND	ND	NA	0.50	
Chromium	22.6	21.8	3	0.50	
Lead	ND	ND	NA	5.0	
Selenium	ND	ND	NA	10	
Silver	ND	ND	NA	1.0	

Project: 4082-039-01

TOTAL MERCURY EPA 7471B DUPLICATE QUALITY CONTROL

Date Extracted: 5-26-17
Date Analyzed: 5-26-17

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 05-312-02

Analyte Sample Duplicate
Result Result RPD PQL Flags

Mercury ND ND NA 0.25

Project: 4082-039-01

TOTAL METALS EPA 6010C MS/MSD QUALITY CONTROL

Date Extracted: 5-31-17
Date Analyzed: 5-31-17

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 05-315-07

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	100	88.5	88	86.0	86	3	
Barium	100	145	92	141	88	3	
Cadmium	50.0	46.4	93	45.9	92	1	
Chromium	100	112	89	113	91	2	
Lead	250	227	91	224	89	2	
Selenium	100	86.2	86	87.6	88	2	
Silver	25.0	19.9	79	19.7	79	1	

Project: 4082-039-01

TOTAL MERCURY EPA 7471B MS/MSD QUALITY CONTROL

Date Extracted: 5-26-17
Date Analyzed: 5-26-17

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 05-312-02

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Mercury	0.500	0.531	106	0.530	106	0	

Project: 4082-039-01

TOTAL METALS EPA 6010C METHOD BLANK QUALITY CONTROL

Date Extracted: 6-1-17
Date Analyzed: 6-1-17

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0601SM1

Analyte	Method	Result	PQL
Barium	6010C	ND	2.5
Cadmium	6010C	ND	0.50
Chromium	6010C	ND	0.50
Selenium	6010C	ND	10
Silver	6010C	ND	1.0

Project: 4082-039-01

TOTAL MERCURY EPA 7471B METHOD BLANK QUALITY CONTROL

Date Extracted: 6-12-17
Date Analyzed: 6-12-17

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0612S1

Analyte Method Result PQL

Mercury 7471B **ND** 0.25

Project: 4082-039-01

TOTAL METALS EPA 6010C DUPLICATE QUALITY CONTROL

Date Extracted: 6-1-17
Date Analyzed: 6-1-17

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 05-348-02

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Barium	15.9	15.1	5	2.5	
Cadmium	ND	ND	NA	0.50	
Chromium	13.1	11.6	12	0.50	
Selenium	ND	ND	NA	10	
Silver	ND	ND	NA	1.0	

Project: 4082-039-01

TOTAL MERCURY EPA 7471B DUPLICATE QUALITY CONTROL

Date Extracted: 6-12-17
Date Analyzed: 6-12-17

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 06-127-06

Sample Duplicate

Analyte Result Result RPD PQL Flags

Mercury ND ND NA 0.25

Project: 4082-039-01

TOTAL METALS EPA 6010C MS/MSD QUALITY CONTROL

Date Extracted: 6-1-17
Date Analyzed: 6-1-17

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 05-348-02

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Barium	100	109	93	111	95	2	
Cadmium	50.0	48.1	96	48.4	97	1	
Chromium	100	110	97	111	98	1	
Selenium	100	92.2	92	91.8	92	0	
Silver	25.0	21.1	84	20.8	83	1	

Project: 4082-039-01

TOTAL MERCURY EPA 7471B MS/MSD QUALITY CONTROL

Date Extracted: 6-12-17
Date Analyzed: 6-12-17

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 06-127-06

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Mercury	0.500	0.524	105	0.515	103	2	

Project: 4082-039-01

PAHS EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0614S1					
Naphthalene	ND	0.0067	EPA 8270D/SIM	6-14-17	6-15-17	
2-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	6-14-17	6-15-17	
1-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	6-14-17	6-15-17	
Acenaphthylene	ND	0.0067	EPA 8270D/SIM	6-14-17	6-15-17	
Acenaphthene	ND	0.0067	EPA 8270D/SIM	6-14-17	6-15-17	
Fluorene	ND	0.0067	EPA 8270D/SIM	6-14-17	6-15-17	
Phenanthrene	ND	0.0067	EPA 8270D/SIM	6-14-17	6-15-17	
Anthracene	ND	0.0067	EPA 8270D/SIM	6-14-17	6-15-17	
Fluoranthene	ND	0.0067	EPA 8270D/SIM	6-14-17	6-15-17	
Pyrene	ND	0.0067	EPA 8270D/SIM	6-14-17	6-15-17	
Benzo[a]anthracene	ND	0.0067	EPA 8270D/SIM	6-14-17	6-15-17	
Chrysene	ND	0.0067	EPA 8270D/SIM	6-14-17	6-15-17	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270D/SIM	6-14-17	6-15-17	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270D/SIM	6-14-17	6-15-17	
Benzo[a]pyrene	ND	0.0067	EPA 8270D/SIM	6-14-17	6-15-17	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270D/SIM	6-14-17	6-15-17	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270D/SIM	6-14-17	6-15-17	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270D/SIM	6-14-17	6-15-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	89	32 - 122				
Pyrene-d10	94	33 - 125				
Terphenyl-d14	110	36 - 118				

Project: 4082-039-01

PAHS EPA 8270D/SIM MS/MSD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	06-08	38-04									
	MS	MSD	MS	MSD		MS	MSD				
Naphthalene	0.0657	0.0700	0.0833	0.0833	ND	79	84	39 - 112	6	27	
Acenaphthylene	0.0610	0.0651	0.0833	0.0833	ND	73	78	40 - 121	7	34	
Acenaphthene	0.0645	0.0675	0.0833	0.0833	ND	77	81	44 - 113	5	28	
Fluorene	0.0716	0.0751	0.0833	0.0833	ND	86	90	43 - 119	5	27	
Phenanthrene	0.0565	0.0582	0.0833	0.0833	ND	68	70	35 - 124	3	30	
Anthracene	0.0829	0.0861	0.0833	0.0833	ND	100	103	30 - 140	4	26	
Fluoranthene	0.0716	0.0733	0.0833	0.0833	ND	86	88	29 - 136	2	32	
Pyrene	0.0709	0.0738	0.0833	0.0833	ND	85	89	35 - 128	4	33	
Benzo[a]anthracene	0.0638	0.0650	0.0833	0.0833	ND	77	78	30 - 143	2	31	
Chrysene	0.0823	0.0852	0.0833	0.0833	ND	99	102	32 - 129	3	33	
Benzo[b]fluoranthene	0.0614	0.0630	0.0833	0.0833	ND	74	76	23 - 140	3	29	
Benzo(j,k)fluoranthene	0.0831	0.0850	0.0833	0.0833	ND	100	102	32 - 119	2	30	
Benzo[a]pyrene	0.0729	0.0755	0.0833	0.0833	ND	88	91	31 - 131	4	32	
Indeno(1,2,3-c,d)pyrene	0.0611	0.0638	0.0833	0.0833	ND	73	77	31 - 130	4	28	
Dibenz[a,h]anthracene	0.0651	0.0682	0.0833	0.0833	ND	78	82	40 - 119	5	27	
Benzo[g,h,i]perylene	0.0687	0.0714	0.0833	0.0833	ND	82	86	39 - 119	4	29	
Surrogate:											
2-Fluorobiphenyl						77	85	32 - 122			
Pyrene-d10						84	86	33 - 125			
Terphenyl-d14						98	105	36 - 118			

Project: 4082-039-01

SOLUBLE HEXAVALENT CHROMIUM WATER EXTRACTION EPA 7196A METHOD BLANK QUALITY CONTROL

Date Extracted: 6-14-17
Date Analyzed: 6-14-17

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0614S1

Analyte Method Result PQL

Hexavalent Chromium 7196A mod **ND** 1.0

Project: 4082-039-01

SOLUBLE HEXAVALENT CHROMIUM WATER EXTRACTION EPA 7196A DUPLICATE QUALITY CONTROL

Date Extracted: 6-14-17
Date Analyzed: 6-14-17

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 05-281-08

Analyte Sample Duplicate

Result Result RPD PQL Flags

Hexavalent Chromium ND ND NA 1.0

Project: 4082-039-01

SOLUBLE HEXAVALENT CHROMIUM WATER EXTRACTION EPA 7196A MS/MSD QUALITY CONTROL

Date Extracted: 6-14-17
Date Analyzed: 6-14-17

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 05-281-08

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Hexavalent Chromium	5.00	4.01	80	3.92	78	2	

Project: 4082-039-01

% MOISTURE

Date Analyzed: 5-26,30&31-17

Client ID	Lab ID	% Moisture
FL232-B1-3.5-4.5	05-315-01	11
FL232-B1-7.5-8.5	05-315-02	9
FL232-B2-3.5-4.5	05-315-04	12
FL232-B3-6.5-7.5	05-315-07	10
FL232-B4-3.5-4.5	05-315-08	7
FL232-B5-3.5-4.5	05-315-10	9
FL232-B5-7-8	05-315-11	11
FL232-B6-3.5-4.5	05-315-13	10
FL232-B6-11.5-12.5	05-315-14	8
FL232-DRUM-1	05-315-16	10

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Environmental Inc. Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 980

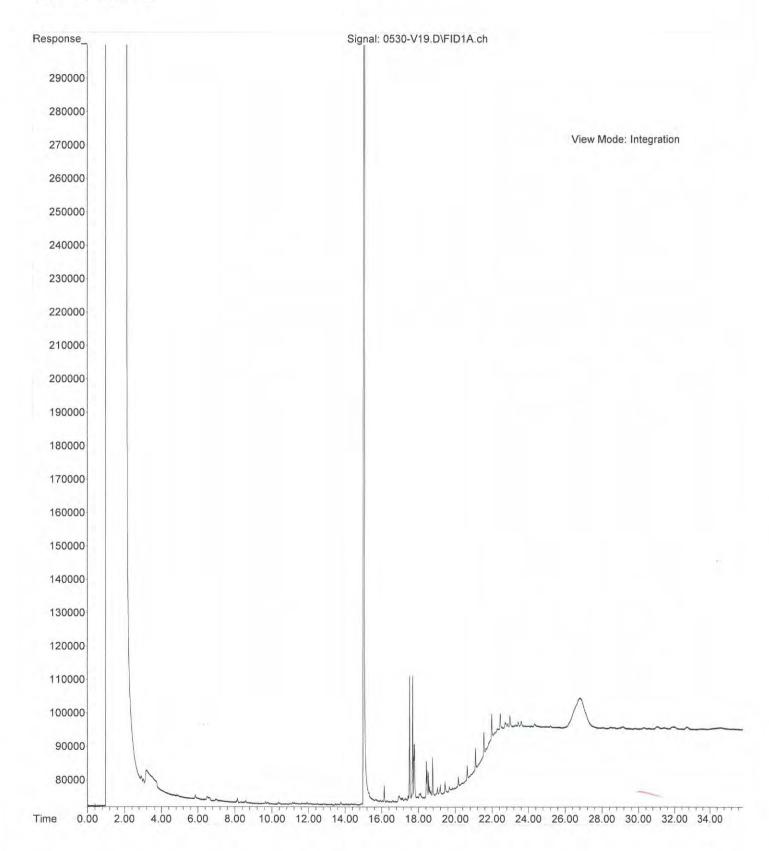
Chain of Custody

Pag	
je	
0	
0	
	Page of C

Reviewed/Date	Received	Relinquished (Maken	Received I Mun Fan	Relinquished RAD CA	Received	Relinquished Famulal S	Signature	10 FL232-85-3.5-4	9 FL233-B4-8-9	8 FL232-84-3,5-4	FL232-163-6.5-7	6 PL232-103-4-5	5 FL232-B2-5.5-6.5	4 PL232-82-3.5-4.5	3 FL232-B1-14-15	9 FURSH-18-85	1 A33-B1-3,5-4,5	Lab ID Sample Identification	Paul Pabinette + Chelsey Go	Mars. Becson	ST PM& 2	4082-039-0	Company: GE	14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com
Reviewed/Date	2000	rock Steady	rus SPERDY	SEC	CHET	JE1	Company	4.S 1	100	4,5 10 45 5	.5 1020 5	1010 5	5 955 5	950 5	935 5	Seb Seb	5/24/17915 S	d Matrix	Or (other)	Contain	(TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(in working days)
Chromat	5/25/1) 1323 Data Pa	15/20/123	5/25/17/220	5/2-/2 12:20pm	Shy/2 1530 O	8/24/12 1530 Q	Date Time Comme	× 0		×	×					×		NWTF NWTF NWTF Volati Halog EDB I Semin (with	PH-HCI PH-Gx/ PH-Dx (les 826 lenated EPA 80 volatiles low-lev	BTEX	s 82600 ers Only)		Laboratory Number: U O
Chromatograms with final report Electronic Data Deliverables	Package: Standard Level III Level IV	· · · · · · · · · · · · · · · · · · ·	•	Added 6/181,7. DB(57A)	Added G/MA DB (STA)	ALS) &C. EU16/5 POPPEU	Comments/Special Instructions	0	The same of the sa		×	~	*	×	*		×	PCBs Organ Organ Chlor Total Total TCLP HEM	RCRA I MTCA Metals (oil and	phorus Acid He Metals Metals I grease	Pesticides Pesticides	081B es 8270 8151A	D/SIM	
(EDDs)								X		-	X			×		~	×	% Mo		Ch	NON			

Chain of Custody

Page 2 of 2

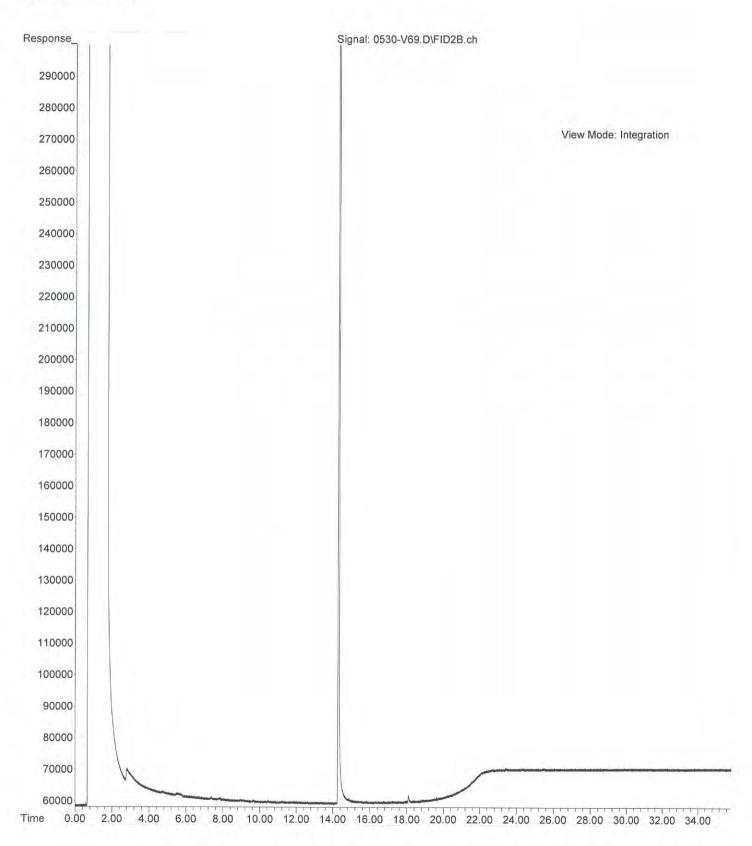

	s with final report □ Electronic Data De	2001 1000	3	Reviewed/Date	Review	Reviewed/Date	Revie
Sample (Ideal Books) Warman Warma	Data Package: Standard ☐ Level III ☐ Level IV ☐	2021 132	20	1,000	V)	seived	Rece
Sumple S		Bell 1:23	Co	498°	200 S	inquished (100 Karuest	Relin
		12/12/20		M 83	4	served Meliatorest	Rece
Sample S		12-12 12:20pm	ν.	77	6	inquished has Dear	Relin
		hy/12 /520	5	17	50	eived the Dear	Rece
Sample S		17	N	7	GE	nquished talktenth	Relin
Photo (CD) 803-881 Invavious Photo (CD) 803-881 Photo (CD) 803-8	Comments/Special Instructions		Da		Company	Signature	
Doi: Representation							
Photo (Ed.) (88.3681 + www.ratilizenv.com)							
Photo Standard Www.ordineenvoord Photo Standard Photo Ph							
Chorinated Acid Herbicides 8151A Total RCRA Metals Total MTCA METAL MTCA METAL M							
Photos: 425 883 4881 488	XXX	×	0.	-	123	FU-31-DNM-1	91
Phone Containers	~		01		2	-B0-	N
Phone (42) 883-8881			X		121	-B6-115-17	A
Phone (42) 83-3881 ** www.onsite-env.com Check One) Phone (42) 83-3881 ** www.onsite-env.com Phone (42) 83-381 ** www.onsite-env.com Phone (42)	×		, or		120	-B6-35-	13
Phone: (425) 883-3881 · www.onsite-env.com Check One	×		01		114	1	7
Sample Identification	×	8	01	S	_	7-8	
Phone: (425) 883-3881 · www.onsite-env.com Check One	(with I PAHs PCBs Organ Organ Chlori Total I TCLP HEM	NWTF NWTF Volatii Halog	NWTF	10		Sample Identification	Lab ID
Phone: (425) 883-3881 · www.onsite-env.com Check One Same Day	88270D 8882A 8082A nochlor nophos RCRA I Metals (oil anc	PH-Gx PH-Dx (les 826 enated	PH-HCI	ther)	(0)		Par
Phone: (425) 883-3881 · www.onsite-env.com (Check One) Same Day	el PAHs /SIM (lo	☐ Acid	D			ics Bason	3
Phone: (425) 883-3881 · www.onsite-env.com (Check One) Check One Check On	e) w-level) ticides 8 Pesticid rbicides	s 82600	ers	Days) s 5 Days)	Standard (7 I	0	Projec
Phone: (425) 883-3881 • www.onsite-env.com (Check One) Same Day 1 Day	081B es 8270)		☐ 3 Days	2 Days	1989-804	Projec
Phone: (425) 883-3881 • www.onsite-env.com (Check One)					Same Day	5	Compa
THE WHITEHOUSE TO SEE THE SECOND SECO	,		-	One)	(Check	Phone: (425) 883-3881 • www.onsite-env.com	

File :X:\DIESELS\VIGO\DATA\V170530\0530-V19.D

Operator :

Acquired : 30 May 2017 20:17 using AcqMethod V170519F.M

Instrument : Vigo Sample Name: 05-315-02

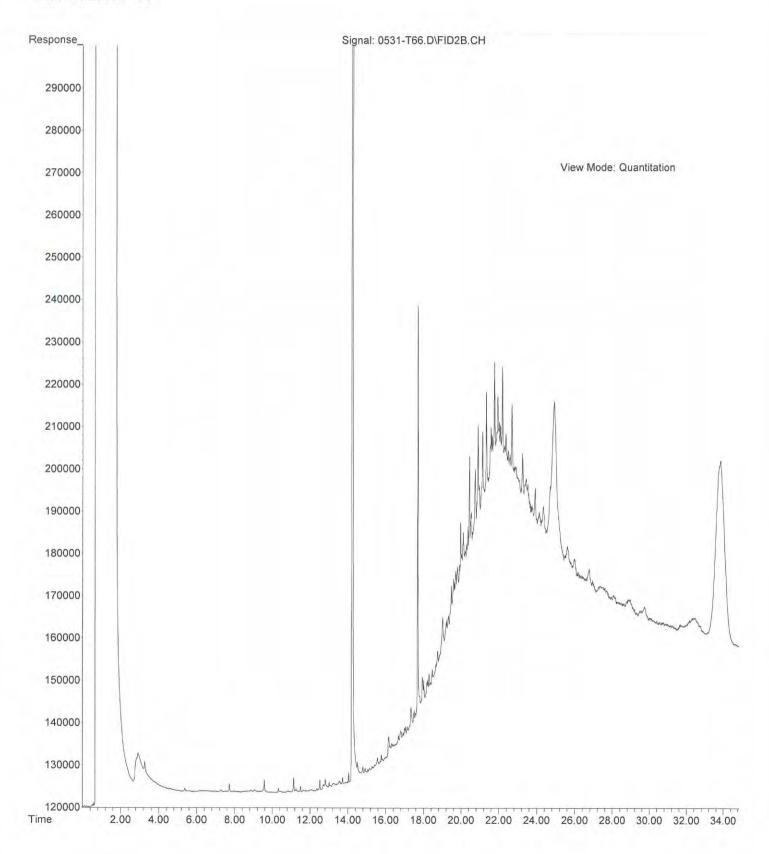


File :X:\DIESELS\VIGO\DATA\V170530.SEC\0530-V69.D

Operator :

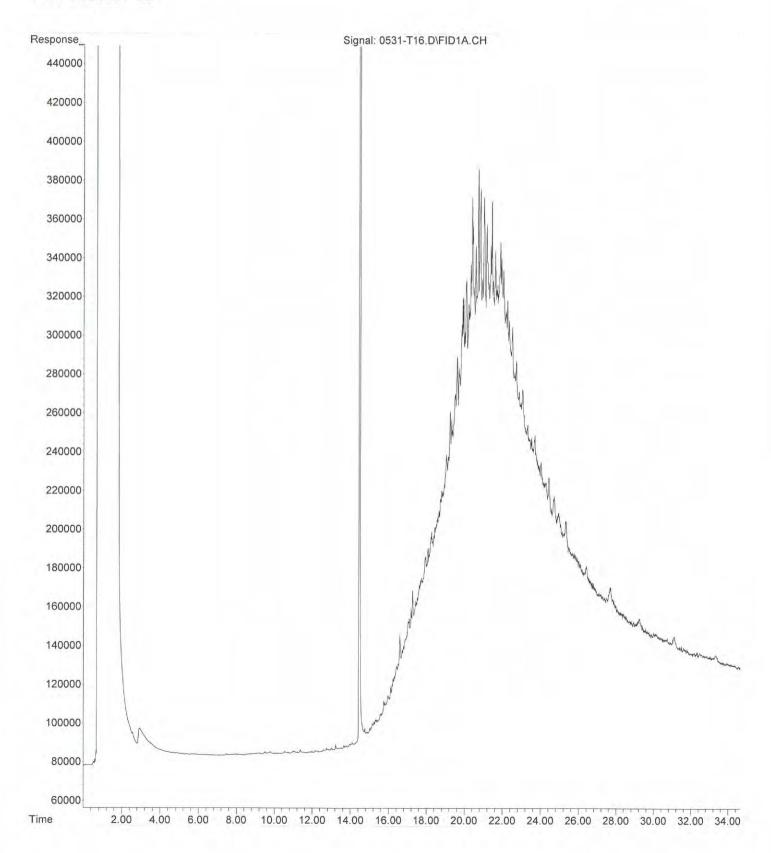
Acquired : 30 May 2017 20:17 using AcqMethod V170519F.M

Instrument : Vigo Sample Name: 05-315-07

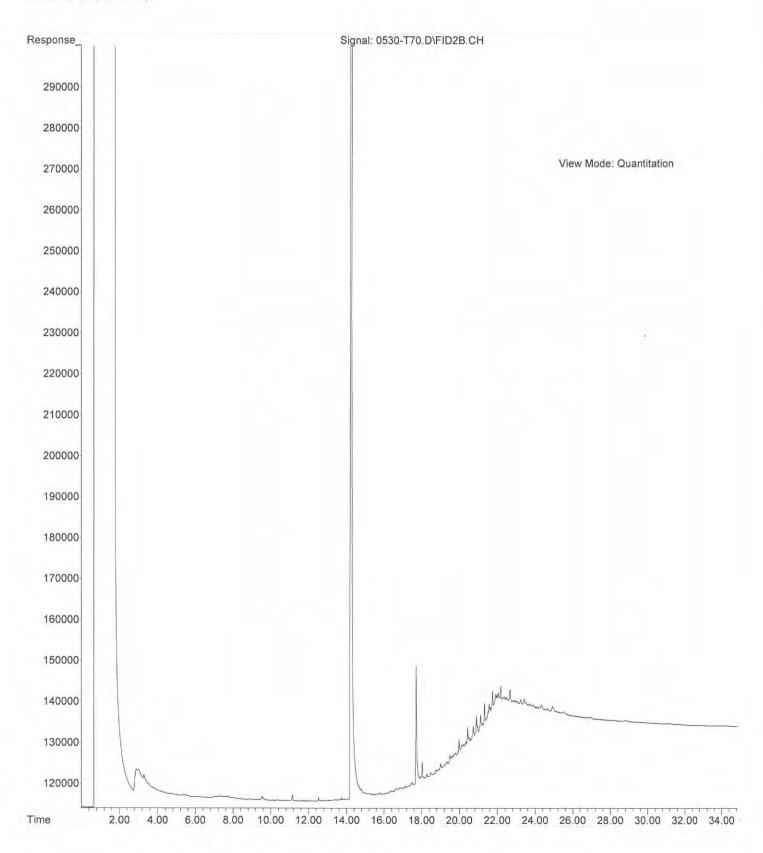


File :X:\DIESELS\TERI\DATA\T170531.SEC\0531-T66.D

Operator : ZT


Acquired : 31 May 2017 18:06 using AcqMethod T161216F.M

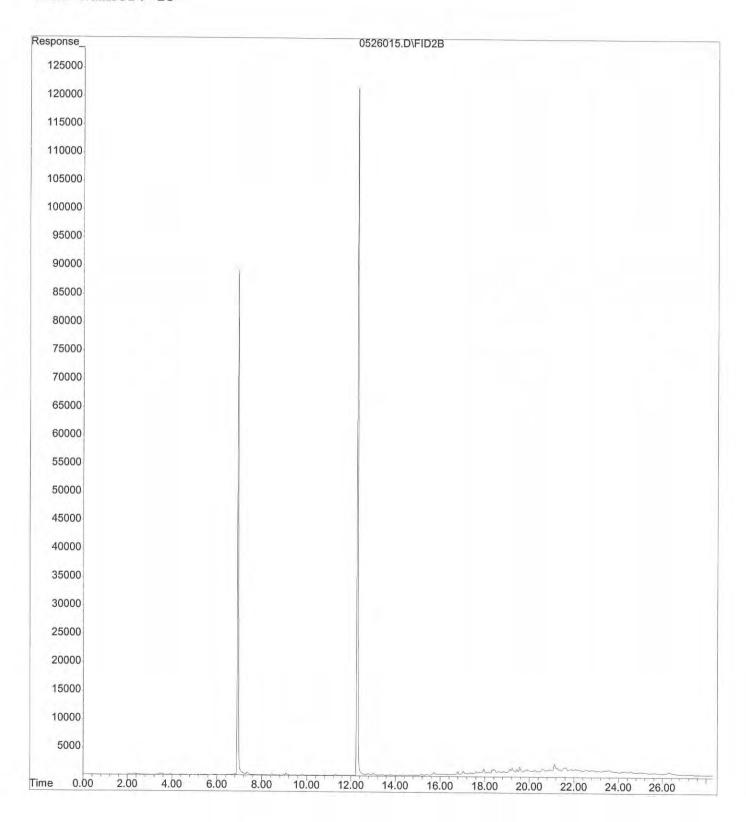
Instrument : Teri Sample Name: 05-315-08


File :X:\DIESELS\TERI\DATA\T170531\0531-T16.D
Operator : ZT
Acquired : 31 May 2017 18:06 using AcqMethod T161216F.M

Instrument : Teri Sample Name: 05-315-10

File :X:\DIESELS\TERI\DATA\T170530.SEC\0530-T70.D
Operator : ZT
Acquired : 30 May 2017 21:37 using AcqMethod T161216F.M

Instrument : Teri Sample Name: 05-315-14

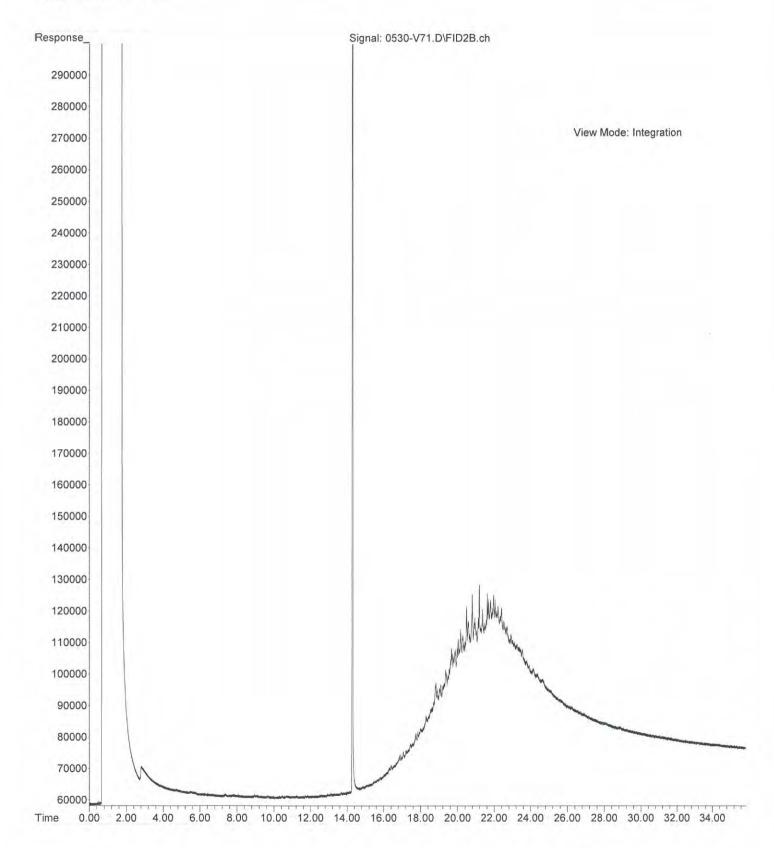


: X:\BTEX\DARYL\DATA\D170526\0526015.D File

Operator :

Acquired : 26 May 2017 19:16 using AcqMethod 170203BB.M

Instrument : Daryl Sample Name: 05-315-16s

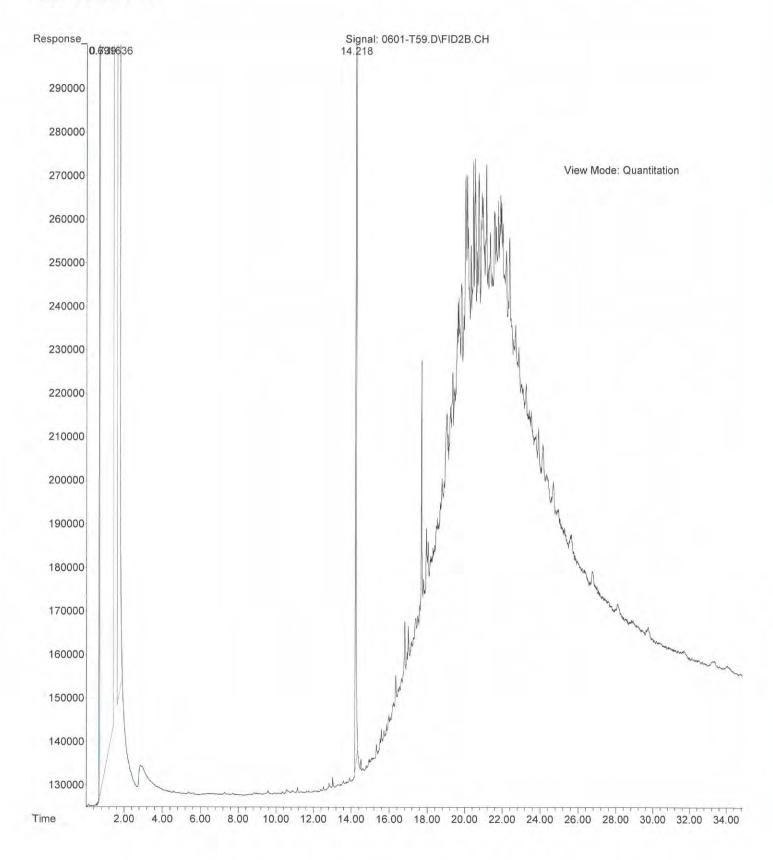


File :X:\DIESELS\VIGO\DATA\V170530.SEC\0530-V71.D

Operator

Acquired : 30 May 2017 21:37 Instrument : Vigo using AcqMethod V170519F.M

Sample Name: 05-315-16 5X

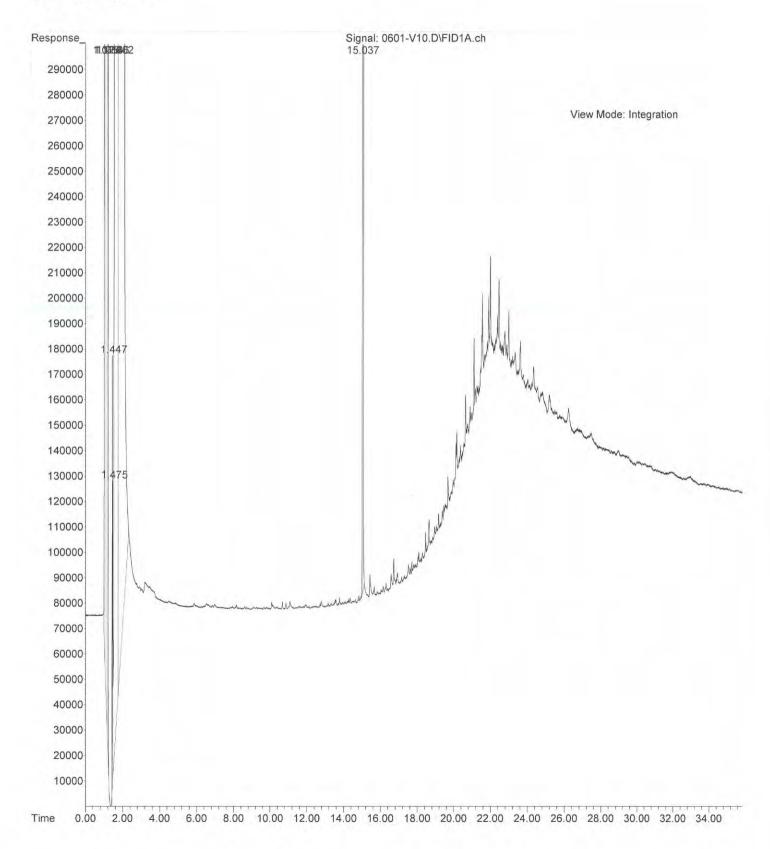

File :X:\DIESELS\TERI\DATA\T170601.SEC\0601-T59.D

Operator : ZT

Acquired : 01 Jun 2017 13:38 using AcqMethod T161216F.M

Instrument : Teri

Sample Name: 05-315-10 5X



File :X:\DIESELS\VIGO\DATA\V170601\0601-V10.D

Operator :

Acquired : 1 Jun 2017 13:49 using AcqMethod V170519F.M

Instrument : Vigo Sample Name: 05-315-11

APPENDIX C REPORT LIMITATIONS AND GUIDELINES FOR USE

APPENDIX C REPORT LIMITATIONS AND GUIDELINES FOR USE¹

This appendix provides information to help you manage your risks with respect to the use of this report. Please confer with GeoEngineers if you need to know more about how these "Report Limitations and Guidelines for Use" apply to your project or property.

Read These Provisions Closely

It is important to recognize that environmental engineering and geoscience practices (geotechnical engineering, geology and environmental science) are less exact than other engineering and natural science disciplines. GeoEngineers includes these explanatory "limitations" provisions in our reports to help reduce the risk of misunderstandings or unrealistic expectations that lead to disappointments, claims and disputes.

Environmental Services Are Performed for Specific Purposes, Persons and Projects

GeoEngineers has performed this Phase II ESA of the property at 23646 Pacific Highway South in Kent, Washington, King County Tax Parcel 2500600520, identified by Sound Transit as Federal Way parcel FL232, in general accordance with the scope and limitations of the subcontract between HDR and GeoEngineers dated August 24, 2012, along with Amendments 1 through 9 and Agreement No. RTA/AE 044-12 between HDR and Sound Transit. This report has been prepared for the exclusive use of Sound Transit and their authorized agents. This report is not intended for use by others, and the information contained herein is not applicable to other properties.

GeoEngineers structures its services to meet the specific needs of its clients. For example, an ESA study conducted for a property owner may not fulfill the needs of a prospective purchaser of the same property. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and property. Use of this report is not recommended for any purpose or project other than as expressly stated in this report.

This Environmental Report is Based on a Unique Set of Project-Specific Factors

This report has been prepared for the property at 23646 Pacific Highway South in Kent, Washington, King County Tax Parcel 2500600520, identified by Sound Transit as Federal Way parcel FL232. GeoEngineers considered a number of unique, project-specific factors when establishing the scope of services for this Project. Unless GeoEngineers specifically indicates

¹ Developed based on material provided by ASFE, Professional Firms Practicing in the Geosciences; www.asfe.org.

otherwise, it is important not to rely on this report if it was:

- not prepared for you,
- not prepared for your Project,
- not prepared for the specific site explored, or
- completed before Project changes were made.

If changes to the Project or property occur after the date of this report, GeoEngineers cannot be responsible for any consequences of such changes in relation to this report unless we have been given the opportunity to review our interpretations and recommendations in the context of such changes. Based on that review, we can provide written modifications or confirmation, as appropriate.

Reliance Conditions for Third Parties

This report was prepared for the exclusive use of Sound Transit and their authorized agents. No other party may rely on the product of our services unless we agree to such reliance in advance and in writing. Within the limitations of the agreed Project scope, schedule and budget, our services have been executed in accordance with our Agreement with the Client and generally accepted environmental practices in this area at the time this report was prepared.

Understand That Geotechnical Issues Have Not Been Addressed

Unless geotechnical engineering was specifically included in our scope of service, this report does not provide any geotechnical findings, conclusions, or recommendations, including but not limited to, the suitability of subsurface materials for construction purposes.

Do Not Separate Documentation from the Report

Environmental reports often include supplemental documentation, such as maps, figures and tables. Do not separate such documentation from the report. Further, do not, and do not permit any other party to redraw or modify any of the supplemental documentation for incorporation into other professionals' instruments of service.

Environmental Regulations Change and Evolve

Some substances may be present in the vicinity of the subject property in quantities or under conditions that may have led, or may lead, to contamination of the subject property, but are not included in current local, state or federal regulatory definitions of hazardous substances or do not otherwise present current potential liability. GeoEngineers cannot be responsible if the standards for appropriate inquiry, or regulatory definitions of hazardous substances, change or if more stringent environmental standards are developed in the future.

Uncertainty May Remain Even After This Phase II ESA is Completed

Performance of a Phase II ESA is intended to reduce uncertainty regarding the potential for contamination in connection with a property, but no ESA can wholly eliminate that uncertainty. Our interpretation of subsurface conditions in this study is based on field observations and chemical analytical data from widely spaced sampling locations. It is always possible that contamination exists in areas that were not explored, sampled or analyzed.

Information Provided by Others

GeoEngineers has relied upon certain data or information provided or compiled by others in the performance of our services. Although we use sources that we reasonably believe to be trustworthy, GeoEngineers cannot warrant or guarantee the accuracy or completeness of information provided or compiled by others.

Subsurface Conditions Can Change

This environmental report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time, by man-made events such as construction on or adjacent to the subject property, by new releases of hazardous substances, new information or technology that become available subsequent to the report date, or by natural events such as floods, earthquakes, slope instability or groundwater fluctuations. Please contact GeoEngineers before applying this report for its intended purpose so that GeoEngineers may evaluate whether changed conditions affect the continued applicability of the report.

Soil and Groundwater End Use

The cleanup levels referenced in this report are site- and situation-specific. The cleanup levels may not be applicable for other properties or for other on-site uses of the affected soil and/or groundwater. Note that hazardous substances may be present in some of the on-site soil and/or groundwater at detectable concentrations that are less than the referenced cleanup levels. GeoEngineers should be contacted prior to the export of soil or groundwater from the subject property or reuse of the affected soil or groundwater on-site to evaluate the potential for associated environmental liabilities. GeoEngineers will not assume responsibility for potential environmental liability arising out of the transfer of soil and/or groundwater from the subject property to another location, or the reuse of such soil and/or groundwater on-site in any instances that we did not recommend, know of, or control.

Our interpretations of subsurface conditions are based on field observations and chemical analytical data from widely spaced sampling locations at the subject property. Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted and/or samples are taken. GeoEngineers reviewed field and laboratory data and then applied

our professional judgment to render an informed opinion about subsurface conditions throughout the property. Actual subsurface conditions may differ significantly from those indicated in this report. Our report, conclusions and interpretations should not be construed as a warranty of the subsurface conditions.

Do Not Redraw the Exploration Logs

Environmental scientists prepare final exploration logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions by others, the logs included in an environmental report should never be redrawn for inclusion in other design documents. Only photographic or electronic reproduction that preserves the entire original exploration log is acceptable, but separating logs from the report can create increase the risk of potential misinterpretation.

Biological Pollutants

GeoEngineers' Scope of Work specifically excludes the investigation, detection, prevention or assessment of the presence of Biological Pollutants. Accordingly, this report does not include any interpretations, recommendations, findings or conclusions regarding the detecting, assessing, preventing or abating of Biological Pollutants, and no conclusions or inferences should be drawn regarding Biological Pollutants as they may relate to this Project. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria and viruses, and/or any of their byproducts.

A Client that desires these specialized services is advised to obtain them from a consultant who offers services in this specialized field.