TERMINAL 30 2023 ANNUAL SITE PERFORMANCE REPORT – YEAR 4

Terminal 30 Site

February 2025

AECOM

2023 Annual Terminal 30 Site Performance Report

Port of Seattle Terminal 30 Site

Project number: 60681370

February 2025

Delivering a better world

Prepared by	on Ch	ecked by	Verified by		Approved by		
Gus Friedman Environmental Eng	ninoor	ott Larson vironmental Scientist	Jamalyn Green Senior Enginee		Paul Kalina Project Manager		
Revision His	tory						
Revision	Revision date	Details	Authorized	Name	Position		
 Distribution I	_ist						
Distribution I # Hard Copies	List PDF Required	Association / Co	ompany Name				
		Association / Co	ompany Name				
		Association / Co	ompany Name				

Prepared for:

Port of Seattle

Prepared by:

AECOM 1111 Third Avenue Suite 1600 Seattle, WA 98101 aecom.com

Copyright © 2022 by AECOM

All rights reserved. No part of this copyrighted work may be reproduced, distributed, or transmitted in any form or by any means without the prior written permission of AECOM.

Table of Contents

1.	Intro	oduction	1-1
2.	Site	Monitoring	2-1
	2.1	Site Monitoring Methods	2-1
	2.1.1	PSCAA Vapor Sampling Methods	2-1
	2.1.2	Free Product Gauging and Removal Methods	2-2
	2.1.3	Groundwater Sampling Methods	2-2
	2.2	Site Monitoring Deviations from the CMP	2-2
3.	AS/S	SVE System Performance	
	3.1	System Operation	3-1
	3.2	System Performance – Field Data	3-1
	3.3	Soil Vapor Gas Sampling	
	3.3.1	Quality Assurance	3-2
	3.4	System Maintenance	
4.	Free		
	4.1	Free Product Gauging	4-1
	4.2	Free Product Removal	4-1
	4.3	Free Product Recovery Termination	4-2
5.	Grou	undwater Sampling	5-1
	5.1	Performance Monitoring Wells	5-1
	5.2	Interior Monitoring Wells	5-2
	5.3	CPOC Monitoring Wells	5-2
	5.4	Shoreline Water Quality Monitoring Wells	5-2
	5.5	Quality Assurance	5-2
6.	Con	clusions	6-1
	6.1	CMP Modifications and Recommendations	6-1
	6.2	Recommended AS/SVE Adjustments for Year 5	6-1
	6.3	Schedule and Reporting	
7	Refe	erences	7-1

Tables

- Table 1 Indicator Hazardous Substances
- Table 2 Compliance Monitoring Frequency and Analytes
- Table 3 Compliance Monitoring Schedule
- Table 4 AS/SVE and Oxidizer Operational Data
- Table 5 AS/SVE and Oxidizer Analytical Data
- Table 6 LNAPL Gauging and Recovery Results
- Table 7 LNAPL Gauging Results in Monitoring Wells
- Table 8 Performance and Interior Monitoring Well Groudwater Analytical Data
- Table 9 COPC and Shoreline Water Quality Monitoring Well Groundwater Analytical Data TPH and BTEX
- Table 10 COPC and Shoreline Water Quality Monitoring Well Groundwater Analytical Data PAH
- Table 11 Monitoring Well Groundwater Sampling Parameters
- Table 12 Well Construction Information

Figures

- Figure 1 Site Location
- Figure 2 Baseline Extent of Impacts and Location of Cleanup Action
- Figure 3 Compliance Monitoring Well Network With Final 2023 Groundwater Conditions
- Figure 4 End of 2023 Compliance Monitoring Analytical Results
- Figure 5 Period VOC Removal Rates
- Figure 6 Cumulative VOC Mass Removal
- Figure 7 LNAPL Thickness in Recovery Wells
- Figure 8 LNAPL Thickness in Monitoring Wells
- Figure 9 LNAPL Recovery Volumes
- Figure 10 Cumulative LNAPL Recovery Volume
- Figure 11 Performance Monitoring Well TPH-Dx Concentrations

Appendices

- Appendix A O&M Field Forms
- Appendix B Vapor Sampling Field Forms
- Appendix C Vapor Sampling Laboratory Analytical Reports
- Appendix D Vapor Sampling Summary Data Quality Review Reports
- Appendix E LNAPL Gauging and Recovery Field Notes
- Appendix F Groundwater Sampling Field Forms
- Appendix G Groundwater Sampling Laboratory Analytical Reports
- Appendix H Groundwater Sampling Summary Data Quality Review Reports
- Appendix I Select Figures from the Groundwater Compliance Monitoring Plan

Acronyms and Abbreviation

ug/l	miorogram par litar
μg/L AECOM	microgram per liter
AECOM	AECOM Technical Services, Inc.
AS BTEX	air sparging
CAP	benzene, toluene, ethyl-benzene, and total xylenes
-	Cleanup Action Plan
CD	Consent Decree
CMP	Groundwater Compliance Monitoring Plan
cPAH	carcinogenic polynuclear aromatic hydrocarbon
CPOC	conditional point of compliance
COI	contaminant of interest
COC	contaminant of concern
CRETE	CRETE Consulting
CUL	cleanup level
DO	dissolved oxygen
DTW	depth to water
T30 or Site	Terminal 30
EC	equivalent carbons
Ecology	Washington State Department of Ecology
EDR	Engineering Design Report
EPA	United States Environmental Protection Agency
ft	foot/feet
GAC	granular activated carbon
H2K	H2K Solutions Inc.
IHS	indicator hazardous substance
LCS/LCSD	laboratory control sample/ laboratory control sample duplicate
LNAPL	light non-aqueous phase liquid
MDL	method detection limit
MRL	method reporting limit
MS/MSD	matrix spike/ matrix spike duplicate
NAD83	North American Datum of 1983 (horizontal)
NAVD88	North American Vertical Datum of 1988
NOAA	National Oceanic and Atmospheric Administration
NOC	notice of construction
ORP	oxidation-reduction potential
PID	photoionization detector
Port	Port of Seattle
PPMV	parts per million by volume
PSCAA	Puget Sound Clean Air Agency
QA	quality assurance
QAPP	Quality Assurance Project Plan
QC	quality control
RI/FS	Remedial Investigation/Feasibility Study
REL	remediation level
RPD	relative percent difference
scfm	standard cubic feet per minute
SOP	standard operating procedure
SVE	soil vapor extraction
TEF	toxicity equivalency factor
TEQ	toxic equivalent concentration
TPH	total petroleum hydrocarbons
TPH-Dx	total petroleum hydrocarbons – diesel and lube oil range
TPH-Gx	total petroleum hydrocarbons – gasoline range
VOC	volatile organic compound
WAC	Washington Administrative Code
-	J

1. Introduction

In 2019 the Port of Seattle (Port), under the oversight of Washington State Department of Ecology (Ecology), completed construction of the selected cleanup action alternative at the Terminal 30 project site (T30, Site), located at 1901 East Marginal Way South in Seattle, Washington (Figure 1), to satisfy requirements of the Consent Decree (CD) between Ecology and the Port, filed July 19, 2017 (Ecology, 2017). Details of the construction action are documented in the Construction Completion Report (CRETE, 2020a). The selected cleanup action remedy for the T30 site includes an Air Sparging/Soil Vapor Extraction (AS/SVE) system, free product recovery, and compliance monitoring. The construction of the cleanup remedy was completed from July 6, 2019, through November 9, 2019, and cleanup elements included the installation of 3 horizontal SVE wells, 7 vertical SVE wells, 27 AS wells, 10 light non-aqueous phase liquid (LNAPL) recovery wells, an AS/SVE system, and a vapor treatment thermal oxidizer. The purpose of the AS/SVE system is to reduce contaminant mass in shallow groundwater within, and downgradient of, the sheen area. Groundwater flows generally west towards the East Waterway, as shown in Figure 1 of Pacific Groundwater Group's (PGG) 2016 Tidal Study, included as Appendix B of the RI/FS (PGG, 2016), and also included in Appendix A of the Groundwater Compliance Monitoring Plan (CMP) within Appendix E of the Engineering Design Report (EDR) (CRETE 2018). The purpose of free product recovery is to reduce free product thickness to a sheen (less than 0.01 feet). The footprint of the cleanup action is shown on Figure 2.

On September 17, 2021, remedial system operation and compliance monitoring were transferred from CRETE Consulting, Inc (CRETE) to AECOM Technical Services, Inc. (AECOM) by the Port. This annual report (Annual Report) was prepared by AECOM on behalf of the Port and was completed using data collected by AECOM in 2023. This represents the third year of monitoring, referenced as Year 4 in this Annual Report. This Annual Report is based on the monitoring requirements in the CMP and Quality Assurance Project Plan (QAPP) included as Appendix E of the Engineering Design Report (CRETE, 2018). This Annual Report provides the operation and monitoring results for site cleanup actions conducted during Year 4, including performance and confirmational sampling data associated with the operation and monitoring of the AS/SVE system. Groundwater data is compared against site cleanup levels (CULs) and remediation levels¹ (RELs), while AS/SVE system vapor data is compared against criteria identified in the Puget Sound Clean Air Agency (PSCAA) notice of construction (NOC) worksheet (Puget Sound Clean Air Agency, 2019).

¹ The EDR and CMP explain how groundwater CULs and RELs were developed for the site.

2. Site Monitoring

The site cleanup action monitoring plan is detailed in the CMP and summarized briefly in this section. Monitoring includes AS/SVE system performance monitoring, PSCAA vapor compliance sampling, free product gauging and removal, and groundwater sampling.

The AS/SVE system operation and maintenance activities include system checks and collection of PSCAA vapor samples to verify that oxidizer destruction efficiency is above the acceptable limits.

Free product-related activities in Year 4 included product thickness gauging at 9 wells and product removal at 8 wells across the site (Figure 3, Table 6). Groundwater monitoring was completed at 7 Performance Monitoring Wells in Year 4 and included depth to water (DTW) gauging, free product gauging, and groundwater sampling. The groundwater monitoring wells are also shown on Figure 3 and are grouped as follows:

- Performance Monitoring Wells (within the AS/SVE field zones): MW-59, RW-11A, and MW-89
- Performance Monitoring Wells (downgradient of AS/SVE field zones): MW-36A, RW-9, MW-39A, and MW-42
- Interior Monitoring Wells²: RW-1, RW-5A, MW-93
- Conditional Point of Compliance (CPOC) Monitoring Wells: MW-45A, MW-46B, MW-58A, MW-86B, and MW-92
- Shoreline Water Quality Monitoring Wells: MW-84A, MW-85A, MW-86B, and MW-87A
- Free Product Gauging: MW-59, RW-12, RW-101-110, MW-36, MW-39A, MW-89, and MW-93
- Interior Monitoring Wells (Gauging Only): MW-35, MW-36, MW-54, and MW-64

Samples from groundwater monitoring wells are analyzed for the site Indicator Hazardous Substances (IHSs) (Table 1). Samples are collected from performance, select Interior, CPOC, and shoreline water quality monitoring wells according to the compliance monitoring phase and sampling plan. Water quality samples are not collected from free product gauging wells, monitoring wells with free product present, and interior monitoring wells listed above as gauged only. The frequency of groundwater monitoring varies by well group and by compliance monitoring phase (Table 2 and Table 3). Compliance monitoring is divided into three sequential phases:

- Baseline Monitoring A full round of compliance well gauging and sampling that occurred shortly before or during start-up of the AS/SVE system and initiation of free product recovery activities (completed in October 2019 and summarized in the 2020 Annual Report).
- Performance Monitoring (current monitoring phase) Compliance well gauging and sampling that occurs during, and for 2 years following the completion of, AS/SVE system operation and free product recovery to determine whether rebound occurs and if further cleanup actions are needed to achieve RELs.
- Confirmational Monitoring Long-term compliance well gauging and sampling that occurs once RELs and CULs have been achieved in performance and CPOC monitoring wells.

Table 3 illustrates the monitoring schedule by compliance monitoring phase.

2.1 Site Monitoring Methods

Samples were collected in accordance with the CMP and QAPP (CRETE, 2018). This section provides an overview of sampling and product gauging and recovery methods and discusses any deviations from the CMP.

2.1.1 PSCAA Vapor Sampling Methods

Vapor samples were historically collected from two dedicated sampling ports on the treatment system before (SVE effluent) and after the oxidizer (oxidizer effluent). After the disconnection of the oxidizer in March 2023 (see Section

² MW-38 was removed from the Interior Monitoring Well network due to subsurface blockage in 2020 and it was decommissioned in 2021. More information is included in Section 2.2.

3.1), vapor samples have only been collected from the SVE effluent sample port. Samples are collected with laboratoryprovided summa canisters, which when opened create a negative pressure, drawing the sample stream into the sample canister. Low-density polyethylene (LDPE) tubing is used to connect the sampling port to the sample canister.

Data from the vapor samples are used to evaluate SVE performance and determine TPH and BTEX mass removal calculations. The results of these sampling efforts are discussed in Section 3.2.

2.1.2 Free Product Gauging and Removal Methods

Free product removal is completed using a vacuum truck. The vacuum truck uses a multi-lobed positive displacement blower to create a vacuum in the attached holding tank. This tank vacuum in turn pulls fluids through the attached hoses and/or piping. During removal, a down-well "stinger" or pipe is inserted into the well to the target level just below the measured bottom of free product. Prior to 2021 a drum vacuum was used for these removals, but the method was revised to vacuum truck due to its increased efficiency removing fluids (oil and water) from the target wells. Free product removal activities completed during 2023 were in accordance with standard operating procedure (SOP) 505 from the Operation Maintenance & Monitoring Plan (CRETE, 2020b).

2.1.3 Groundwater Sampling Methods

Groundwater samples were collected using the Environmental Protection Agency (EPA) Low-Flow Groundwater Sampling Procedure (US EPA, 2017), detailed in the CMP. Groundwater wells were gauged prior to purging. This information was used to verify that no free product was present and to determine the inlet placement depth for the groundwater sampling tubing. The inlet was maintained near the mid-point of the saturated well screen interval. For wells with significant tidal influence, the inlet was placed at least 2 feet from the bottom of the well. During purging field parameters (temperature, specific conductance, and pH) were measured to determine when conditions had stabilized, indicated by recording three consecutive field parameter measurements measured in 2-minute intervals or greater. Groundwater samples were collected with low-flow pumping rates (~100 to 200 mL/min) to minimize volatilization of constituents. All water samples were collected from the pump discharge lines directly into appropriate laboratory-provided sample containers. Samples submitted for dissolved analyses were filtered in the laboratory using 0.45-micron filters. Sampling equipment was either decontaminated between monitoring wells (such as the water level tape) or new dedicated materials were used (such as tubing and gloves).

A subset of wells at T-30 are sufficiently tidally influenced that they require sampling at specific times to reduce tidal influence on groundwater chemistry. Best practice per the Tidal Study (PGG, 2016) includes sampling at the tidal lag times to ensure a representative sample. Below is a summary tidal lag times³. Note that the CPOC and Shoreline Water Quality Monitoring Wells listed below were not required to be sampled during this reporting period:

- Performance Monitoring Well MW-89: between 130 and 190 minutes after low-low tide
- CPOC Monitoring Well MW-58A: between 70 and 130 minutes after low-low tide
- CPOC Monitoring Well MW-86B: between 130 and 190 minutes after low-low tide
- Shoreline Water Quality Monitoring Wells (MW-84A, MW-85A, MW- 87A): between 130 and 190 minutes after low-low tide
- All other CPOC, performance, and interior monitoring wells have limited tidal influence and do not require coordinating sampling time with tidal lag.

2.2 Site Monitoring Deviations from the CMP

Deviations from the groundwater CMP included the following:

- The CMP does not require LNAPL gauging outside of recovery and sampling events. However, LNAPL gauging was executed on a more frequent monthly basis throughout Year 4.
- LNAPL recovery events were conducted once per quarter during Year 4, a reduction in frequency from the prior bimonthly schedule following approval by Ecology via e-mail on December 7, 2022.

³ Low-low tide is as measured at National Oceanic and Atmospheric Administration (NOAA) Tide Station ID: 9447130

There were no other deviations from the CMP during the reporting period.

3. AS/SVE System Performance

This section summarizes the AS/SVE system performance for Year 4. The AS/SVE system equipment requires routine maintenance, which was performed by Port of Seattle Marine Maintenance staff (Marine Maintenance) on a monthly basis. The system also requires routine performance monitoring and adjustments to achieve optimal VOC removal. AECOM performed monitoring visits twice per month throughout Year 4.

Performance monitoring field forms are included in Appendix A. A layout of the AS/SVE system components is included on Figure 2.

3.1 System Operation

The SVE system ran for 7,482 hours during this reporting period, an operation rate of 86%. The cumulative runtime since startup was over 30,115 hours at year-end (Table 4). The AS system operated for 5,971 hours in Year 4, with 1,512 hours of intentional downtime between August 4, 2023, and the end of the year when the sparge pulse schedule was adjusted from all five zones to Zone 5 only, with the system pulsing on and off at 3-hour intervals. This change was made in response to groundwater monitoring results that indicated contaminant of concern (COC) exceedances were limited to that zone. Other than that intentional downtime, the sparge system also achieved an operational rate of 86% in Year 4. This was up from the previous annual high of 5,609 hours in Year 3 (a 65% operational rate). The sparge system has a cumulative runtime total of 18,235 hours since startup.

The PSCAA permit states that a control device for soil vapor treatment is not needed once removal rates drop below the relevant COC thresholds for two consecutive months. This requirement was met in late 2021 through 2022 (see Table 5). Oxidizer removal was approved by PSCAA via a phone call on December 13, 2022, and on March 14, 2023, the thermal oxidizer was taken offline and replaced with a new SVE effluent emission stack. The TPH emission limit is 1000 lb/year, which equates to 2.74 lb/day. During this reporting period, calculated emission rates based upon results from all four sampling events, and all 23 field events remained below that threshold. As shown in Table 5, BTEX removal rates were also well below regulated emission limits during this reporting period.

Water accumulation from the SVE system was significant over the first four months of 2023. The system storage tank was filled 5 times between January 27 and April 2 3023. On April 11, 2023, the SVE dilution valve was adjusted to reduce manifold vacuum and thus decrease water extraction rates. Wells producing significant water but low vapor mass removal rates were also taken offline, including SVE-5 briefly and SVE-8 for a longer term. In July, the SVE hoses were replaced with longer lengths to mitigate low points where water had been collecting. These combined efforts reduced water accumulation. Consistent with their location in the wellfield, the water removed from the SVE-9 and SVE-10 piping frequently had evidence of product in odor, coloration, and appearance.

On August 4, 2023, the sparging schedule was adjusted to alternate between sparging Zone 5 for three hours and resting for two hours. This change was made after groundwater analytical results showed that elevated COC levels only remained in Zone 5 wells. Prior to that, the system had been pulsing in 4–5-hour intervals alternating between all five zones since April 2022.

The sparge compressor motor overload concerns from 2022 were still present but were successfully mitigated in 2023. Ongoing variable-frequency drive (VFD) notifications were addressed by opening the bleed value at the compressor one full turn to reduce load on the compressor motor.

3.2 System Performance – Field Data

The field data from the biweekly system performance system inspections are presented in Table 4. This includes flow rates, operating temperatures, pressure and vacuum levels, and VOC concentrations in the SVE effluent via photoionization detector (PID). Mass removal rates were calculated based on VOC concentrations and the SVE flowrate. The analytical data from Table 5 are used for the VOC concentrations for the days that a sample was taken; for the non-sampling site visits, the concentration is an adjustment of the PID reading based on the ratio of the most recent lab datum to its associated PID reading. This is further explained in Note 4 of Table 4.

For this reporting period, the influent removal rate ranged from 0.018 pounds (lb) per day (November 29, 2023) to 0.96 lb per day (April 11, 2023) (see Table 4 and Figure 5). The total mass removed for the year is approximately 78 lb. An

asymptotic curve for VOC removal is illustrated on Figure 6, which provides cumulative VOC mass removal through the end of Year 4. In the first three months of system operation following system startup in 2019, the average VOC removal was 423 lb/month. This dropped to 552 lb/month of operation in 2020, 280 lb/month in 2021, 87.6 lb/month in 2022, and 7.4 lb/month in 2023. Per Figure 5, with a few outlier exceptions, this downward trend has been in effect since mid-February of 2021. The cumulative VOC mass removal from startup through the end of this reporting period, as calculated with the field data, is 9,960 lb.

The PSCAA permit requires the SVE flowrate to remain below 375 standard cubic feet per minute (scfm);all readings from this reporting period fell below this limit (Puget Sound Clean Air Agency, 2019). The 2023 flow rates ranged from 115.3 scfm (October & November 2023) to 223.4 scfm (February and March 20234), with an average of 164 scfm (Table 4).

3.3 Soil Vapor Gas Sampling

Soil gas samples were collected on a quarterly basis throughout the reporting period. This was done to demonstrate compliance with PSCAA emissions requirements and to track system operation to optimize mass removal (Puget Sound Clean Air Agency, 2019). Gas samples were collected at the SVE outlet in a 1-liter summa cannister. The samples were delivered to Friedman and Bruya, Inc., located in Seattle, Washington, for analysis of petroleum hydrocarbons by method MA-APH and BTEX by method TO15. The MA-APH method provides data for three petroleum subgroups (EC 5-8 aliphatics, EC 9-12 aliphatics, and EC 9-10 aromatics) that are summed for a TPH estimate. These are the TPH concentrations reported in Table 5. The PSCAA permit requirements are outlined above in Section 3.2.

Soil vapor samples were collected on:03/15/2023, 06/22/2023, 09/28/2023, and 12/27/2023. The analytical data for all samples are presented in Table 5 and are incorporated, with field data, in Figure 5 and Figure 6. Vapor sampling field forms are provided in Appendix B. Laboratory analytical reports are provided in Appendix C.

Laboratory results for the influent samples indicate that 73.2 lb of TPH were extracted from the subsurface in 2023, with 7,780.8 lb extracted cumulatively since startup. These values are 6% and 22% lower, respectively, than the totals calculated with adjusted field data (Table 4). In the first three months of operation in 2019 following system startup, the average lab-analyzed TPH removal was 604 lb/month. In the seven months of operation in 2020 the average was 412 lb/month. In 2021, removals decreased to 223 lb/month, then 34.5 lb/month in 2022, and then 7.0 lb/month in 2023.

3.3.1 Quality Assurance

All samples were delivered to Friedman & Bruya Inc. located in Seattle, Washington. Laboratory reports were reviewed and reporting flags, when applicable, were accepted and are included in Table 5. Per the Summary Data Quality Reviews in Appendix D, all laboratory quality assurance metrics were achieved for this project, the method reporting limits (MRLs) met the project needs for all analytes, and all data were determined to be usable. Laboratory reports and chain-of-custody forms are provided in Appendix C.

3.4 System Maintenance

Notable system maintenance performed during Year 4 are summarized below. They are documented in Table 4. Routine machinery maintenance was completed by Marine Maintenance, which included changing oil, greasing components, checking and replacing filters, checking and replacing belts, and checking levels in moisture separator tanks.

- Air sparging system:
 - No air sparging system maintenance was required this reporting period.
- SVE system:
 - As described in Section 3.1, on March 14, 2023, the thermal oxidizer was taken offline with PSCAA approval after extended operation with low mass removal. A new 10-ft tall emission stack was connected to the existing SVE effluent piping to allow direct emissions. The oxidizer, owned by the Port, remains in place for potential future re-purposing.
 - Extended freezing temperatures mid-December 2022 resulted in freezing pipes at both the moisture separator sight glass and the transfer pipe between the separator and the large water storage tank. A pipe

union and float sensor broke as a result. The broken union was repaired when it was discovered, and the replacement float sensor was replaced on January 27, 2023. The originally installed heat trace, which had failed during the freeze event, was replaced by Marine Maintenance in March 2023.

 In July 2023, the SVE air hoses were replaced between the pipe lateral stub-ups and the piping manifold. This was done to remove the original hoses that had become brittle with weathering, but also to replace them with longer hose lengths that could be given an elevated loop to decrease moisture collection in the rotameters. This was of concern after a winter and spring of significant moisture extraction (>7 gal/day). Together with the valve adjustments mentioned in Section 3.1, water extraction was reduced to less than 0.5 gal/day for the remainder of the reporting period.

• General:

- On January 27, 203, alarm notification functionality was restored to the telemetry with a software upgrade from H2K. Functionality had been lacking since June 2022.
- Various rotameters and gauges replaced throughout the year due to normal wear and tear.

4. Free Product Gauging and Recovery

Free product gauging and recovery events have been executed in accordance with the CMP since January 2020, shortly after system startup. Events were completed on a monthly schedule until November 2020, when the product recovery frequency was reduced from monthly to bimonthly. The recovery frequency was further reduced to quarterly in October 2022. Product gauging has been maintained on a monthly schedule throughout. Year 4 began with nine wells in the gauging/recovery protocol and ended with eight. RW-104 was removed from the protocol following the April 2023 gauging, when it achieved one year of gauging results with product thicknesses less than 0.01 ft.

4.1 Free Product Gauging

As shown in Figure 7 and Figure 8, LNAPL thickness trends in 2023 were generally stable or decreasing. LNAPL was thickest in the recovery wells at the southernmost end of the AS and SVE wellfield, farthest away from the remediation system (see Figure 2). Free product thicknesses and maxima since startup are reported in Tables 6 and 7 and summarized below. See section 4.3 for further information of recovery well termination.

- MW-35 LNAPL thickness ranged from 0.0-0.12 ft (multiple occasions and 7/14/23, respectively). This is down from a historical max of 0.52 ft on 10/8/20.
- MW-59 LNAPL thickness ranged from 0.0-0.21 ft (multiple occasions and 1/12/23, respectively). This is down from a historical max of 2.19 ft on 1/9/20.
- RW-1 LNAPL thickness ranged from 0.0.02-0.09 (twice and twice, respectively). This is down from a historical max of 0.59 ft on 6/19/20.
- RW-12 LNAPL thickness ranged from 0.04-0.31 ft (9/14/23 and 8/10/23, respectively). This is down from a historical max of 0.78 ft on 3/12/20 and 5/16/20.
- RW-103 LNAPL thickness ranged from 0.00-0.40 ft (multiple occasions and 4/13/23, respectively). This is down from a historical max of 1.74 ft on 9/10/20.
- RW-106 LNAPL thickness ranged from 0.00-1.06 ft (1/12/23 and 5/11/23 respectively). This is down from a historical max of 2.09 ft on 11/10/22.
- RW-107 LNAPL thickness ranged from 0.19-0.73 ft (6/19/23 and 9/14/23, respectively). This is down from a historical max of 2.49 ft on 10/8/20.
- RW-110 LNAPL thickness ranged from 0.0-0.05 (multiple occasions and 7/27/23, respectively). This is down from a prior historical max of 0.46 ft on 7/28/20.

During the 2023 LNAPL gauging and recovery events, LNAPL was measured for, but not encountered in, the following wells:

• RW-104 (historical max of .01 ft on 11/11/21). This well was retired from regular gauging following the April event after achieving four consecutive quarters of LNAPL measurements less than 0.01 ft.

LNAPL thickness was also measured at each groundwater sampling well during the groundwater sampling events (discussed in Section 5).

4.2 Free Product Removal

Year 4 LNAPL removal was conducted on a quarterly basis using a vacuum truck as discussed in Section 2.1.2. Table 6 provides a summary of the data collected during the free product removal events since the baseline in October 2019. Approximately 91 gallons of free product were removed in the four events executed in Year 4. This was down from 115 gallons over five events in 2022. Approximately 940 gallons of free product have been removed cumulatively since removals began in January 2020. These volumes are approximations due to the difficulties inherent in measuring LNAPL volume after it separates within the holding tank on the vacuum truck. Detailed gauging tables providing results of the removal events are included Appendix E.

As shown in Figure 9, the volume of LNAPL recovered varies from event to event, and there were no clear trends in LNAPL removal from Year 4. The average removal volume was 23 gallons per event, with a range of 12-34 gallons (Table 6). The maximum removal occurred in June and the minimum was in September. The average removal volume for 2023 matched the 2022 average of 23 gallons per event. Figure 10 shows the cumulative LNAPL recovery since system startup. The LNAPL thickness trends on a well-by-well basis are described above in Section 4.1 and shown in Figure 7 and Figure 8.

4.3 Free Product Recovery Termination

Free product recovery at an individual well can be terminated when product thickness has been reduced to less than a measurable thickness of 0.01 ft for a period of one year. This recovery termination criterion will result in sequential removal of recovery wells from recovery events as the area with measurable free product shrinks. Wells RW-101 through RW-110 will be left in place for one year after the last well meets the termination criteria, after which they will be decommissioned consistent with Washington Administrative Code (WAC) 173-160. During 2023, only RW-104 met these termination requirements and it was retired from regular gauging following the April event.

5. Groundwater Sampling

During Year 4, two groundwater performance monitoring events were conducted. The first performance monitoring event was completed on April 13, 2023, for the performance wells within AS/SVE system radius of influence. The second was on October 12, 2023, and included the performance wells both within and downgradient of the AS/SVE system radius of influence. The interior wells, CPOC wells, and shoreline wells were not scheduled for sampling this year. Table 2 includes a summary of the sampling program and Table 3 includes the monitoring schedule.

Groundwater samples were collected and analyzed consistent with the protocols outlined in the CMP. Water quality parameters including temperature, pH, specific conductance, turbidity, dissolved oxygen (DO) and oxidation-reduction potential (ORP) were measured and recorded continually during purging until stable, representative conditions were met prior to sampling. Results for these water quality parameters are provided in Table 11.

This section provides an overview of groundwater sampling activities at the wells shown on Figure 3 and Figure 4. Construction information and all analytical results and field parameters since system startup are summarized in Tables 8 through 12.

5.1 Performance Monitoring Wells

Per Tables 2 and 3, the spring semiannual sampling event included Performance Monitoring Wells MW-59, RW-11A, and MW-89. The fall annual sampling event included all Performance Monitoring Wells: MW-59, RW-11A, MW-89, MW-36A, MW-39A, RW-9, and MW-42. These seven Performance Monitoring Wells were analyzed for TPH in the gasoline range (TPH-Gx) via NWTPH-Gx, TPH in the diesel and lube oil range (TPH-Dx) via NWTPH-Dx, and BTEX by EPA Methods 8021B and 8260. Groundwater results are summarized in Table 8 and on Figure 4. TPH-Dx data are also shown on Figure 11. Copies of Year 4 sampling field notes are included in Appendix F and laboratory reports are provided in Appendix G.

Per the CMP, a LNAPL gauging well qualifies for sampling once four consecutive quarters of gauging data are collected with product thickness detected <0.01 ft (Table 2, Note 2). The presence of free product is assumed to indicate TPH concentrations above site cleanup goals. As shown in Table 6, MW-59 continued to have free product detected >0.01 in Year 4 and was not sampled during the reporting period. On Figure 11, wells with free product encountered during sampling, or those not sampled due to recent LNAPL encounters, are shown with an arbitrary TPH-Dx concentration of 3,900 micrograms per liter (μ g/L). This value is used only to represent free product and does not reflect actual TPH concentrations in these wells.

As shown in Table 8 and Figure 4, no samples taken during 2023 were found to have COC concentrations above CULs.

RW-11A had a TPH-Dx concentration above the CUL during baseline sampling (1,100 μ g/L) but has not had a concentration in excess of the CUL since. It has not been above site CULs for any other COC.

MW-89 COC concentrations have not exceeded any CUL since the TPH-Dx rebound in October 2021. It has not exceeded site CULs for any other COC.

RW-9 concentrations exceeded the TPH-Dx CUL in 2019 (1,200 μ g/L), stayed below in 2020 (450 μ g/L), and rebounded above again in 2021 (1,590 μ g/L). In 2022 it fell back below to 200 μ g/L and stayed below in 2023 (230 μ g/L). It has not been above site CULs for any other COC.

MW-36A had free product present during baseline sampling and was not sampled until September 2020. At that event TPH-Dx was measured in excess of the CUL (560 μ g/L). Results in 2021 were below the CUL (404 μ g/L), and they stayed below in 2022 (180 μ g/L) and 2023 (130 μ g/L). It has not been above site CULs for any other COC.

MW-39A had free product present during baseline sampling and was not sampled until September 2020. At that event TPH-Dx was measured in excess of both the CUL and REL (2,270 μ g/L). TPH-Dx levels rose further during the 2021 sampling (3,520 μ g/L). Results in 2022 dropped down below the CUL, at 110 μ g/L, and stayed below in 2023 as non-detect.

MW-42 exceeded cleanup levels for both TPH-Gx and benzene during the baseline sampling. All COCs were measured below CULs during the September 2020 and October 2021 events. This trend continued through 2022 and 2023.

5.2 Interior Monitoring Wells

No Interior wells were sampled in 2023. The Interior monitoring wells are located upgradient (east) of the AS/SVE system, within the original "sheen area" with <0.1 ft product thickness (Figure 2 and Figure 3). Interior monitoring wells are sampled for TPH-Gx, -Dx, and BTEX, and are used to track long-term reductions in contaminant mass that are not associated with operation of the AS/SVE system. The Interior Monitoring Wells will next be sampled in fall 2024, in accordance with their biannual schedule.

5.3 CPOC Monitoring Wells

No CPOC wells were sampled in 2023. The CPOC monitoring wells are located downgradient of the Performance and Interior wells, between the source area and the East Waterway. CPOC wells are sampled for the full suite of IHSs (TPH-Gx, -Dx, BTEX, and PAHs) to monitor potential risk to the East Waterway. The CPOC wells will next be sampled in fall 2024, in accordance with their biannual schedule. See Table 9 and Table 10 for historical data.

5.4 Shoreline Water Quality Monitoring Wells

The Shoreline Water Quality Monitoring Wells are located along the T30 apron nearest to the East Waterway (Figure 3). During baseline sampling in 2019, these wells were sampled and analyzed for the full suite of IHSs listed in Table 1 (TPH-Gx, -Dx, BTEX, and PAHs). They are not a part of the ongoing sampling plan outside of contingent actions have not been sampled since (see Appendix I and CMP sections 6.5-6.6). The baseline analytical results are summarized in Tables 9 and 10.

5.5 Quality Assurance

The groundwater CMP includes quality assurance protocols, also detailed in the QAPP. For each groundwater sampling event, at least one duplicate sample and one set of MS/MSD samples were collected to assess field and laboratory precision. This precision is determined by the relative percent difference (RPD) between the original sample and it's duplicate, with an allowable tolerance of +/- 35%. As shown in the Summary Data Quality Reviews in Appendix H, the RPDs were within the project goals for all samples.

Laboratory reports and chain-of-custody forms are provided in Appendix G. The April and October 2023 samples were hand-delivered to Friedman & Bruya Inc. located in Seattle, Washington. Laboratory reports were reviewed and reporting flags, when applicable, were accepted; these are included in Tables 8-10. Precision and accuracy were assessed during data validation using the MS/MSD results and were acceptable in each case. Sampling precision was assessed during data validation using the field duplicate results. Per the Summary Data Quality Reviews in Appendix H, laboratory quality assurance metrics were achieved, the MRLs met the project needs for all COCs, and all data were determined to be usable.

6. Conclusions

This report presents the results of the fourth year of compliance monitoring at the T-30 Cleanup site. Key take-aways from the Year 4 reporting period include:

- Water accumulation in the SVE manifold and moisture separator was successfully reduced with the addition of new hoses and adjustment of vacuum levels in Year 4, and the SVE and AS systems were both successfully operated and maintained through the reporting period (Table 4).
- The SVE system removed COC mass from the subsurface in Year 4 at a lower rate than the prior year. This trend has been observed for each successive year of system operation. As calculated with biweekly PID data from the field (Table 4), the AS/SVE system extracted approximately 78 lb TPH during the reporting period, for a cumulative total of 9,960 lb TPH removed since system startup. These values are lower when calculated with quarterly laboratory data (Table 5), which show the system extracted over 73 lb TPH during the reporting period and 7,781 lb TPH since system startup.
- LNAPL recovery events were reduced from a bimonthly to a quarterly schedule in Year 4 but this did not result in
 a significant change in the volume of product recovered per event. An average of 22.6 gal was recovered per
 event in Year 4, compared with 22.9 gal per event in Year 3. This value had decreased with each successive year
 of system operation, as shown on Figure 10. An estimated 91 gallons of free product were recovered during the
 reporting period, and a cumulative total of 849 gallons have been recovered since removal activities began (Table
 6).
- COCs were not measured above the CUL or REL at any well sampled in Year 4 (Table 8). Free product was still present in MW-59 and RW-1, which prevented sampling of those wells. The CMP recommends that the system be operated until all Performance Monitoring Wells, including MW-59, have fallen below the RELs, or the system is no longer significantly removing contaminant mass.

6.1 CMP Modifications and Recommendations

Data collected from the performance monitoring wells were evaluated and used to make decisions regarding AS/SVE system operation. The flow chart in Figure 5 of the CMP (included for reference in Appendix I) provides guidance on decision making criteria. There are no planned modifications or recommendations to the CMP.

6.2 Recommended AS/SVE Adjustments for Year 5

As stated in the Cleanup Action Plan (CAP), the overall goal of the AS/SVE system is to reduce contaminant mass in the sheen area and downgradient of the sparge wells. The AS/SVE system is not intended to reduce contaminant concentrations in groundwater upgradient of the AS/SVE system. The AS/SVE system will be operated until performance monitoring wells within and downgradient of the AS/SVE field zones (RW-9, RW-11A, MW-42, MW-39A, MW-36A, MW-59, and MW-89) achieve RELs, or if the AS/SVE system is no longer significantly removing contaminant mass⁴. No CUL exceedances were observed in Year 4, but the continued presence of LNAPL at the southern edge of the wellfield (and in Performance Monitoring Well MW-59) was observed. Continued operation of the AS/SVE system and recovery of LNAPL is planned again for Year 5 (2024). The following recommended performance adjustments will also be evaluated and/or implemented:

- Continue to monitor LNAPL recovery volumes and evaluate alternative recovery methods.
- Continue to monitor, analyze, and improve AS compressor operation (e.g., runtime and total flow). Fine-tune the zone pulsing schedule to focus on areas of concern for dissolved-phase COCs (e.g., Zone 5).
- Continue to monitor and manage SVE system water production to improve vapor extraction performance and reduce equipment wear.

⁴ The statement "the AS/SVE system is no longer significantly removing contaminant mass" has not been defined. This standard will need to be negotiated, if necessary, at a future time. This could involve analysis of vapor extraction concentrations, groundwater dissolved oxygen concentrations, performance well groundwater concentrations, or other similar measure.

• Continue to evaluate conditions in Performance Monitoring Well MW-59, which will currently qualify for sampling with one additional month with an LNAPL thickness <0.01 ft.

6.3 Schedule and Reporting

The groundwater monitoring frequencies are provided on Tables 2 and 3. The monitoring schedule will be adjusted as needed based on the performance of the AS/SVE system and timeline of monitoring wells achieving COC remediation levels. Free product will be gauged at least quarterly until termination criteria are achieved. Schedule revisions will be documented in quarterly progress reports.

Annual reports will continue to be prepared for Year 5. Reports will be submitted to Ecology following the end of the annual monitoring cycle.

After 5 years of system operation, an evaluation report will be prepared that will include a summary of the five preceding annual reports and discussions about longer term trends in the groundwater data. The CMP will be reviewed and updated by addendum (with Ecology review) if changes to the monitoring program are appropriate.

7. References

CRETE (CRETE Consulting). 2018. Engineering Design Report. December 20, 2018.

- CRETE. 2020a. Construction Completion Report, Terminal 30 Cleanup Project. February 27, 2020.
- CRETE. 2020b. Terminal 30 Cleanup Project Operation Maintenance & Monitoring Plan. March 2020.
- CRETE. 2021. Monitoring Well MW-38 Decommissioning. May 11, 2021.
- Ecology (Washington State Department of Ecology). 2017. Consent Decree and Cleanup Action Plan. July 19, 2017.
- PGG (Pacific Groundwater Group). 2016. Port of Seattle Terminal 30 Revised 2013 Remedial Investigation/Feasibility Study. January 11, 2016.
- PSCAA (Puget Sound Clean Air Agency). 2019. Notice of Construction (NOC) Worksheet. NOC No. 11885. August 20, 2019.
- US EPA (U.S. Environmental Agency). 2017. Low Stress (Low Flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells. September 19, 2017.

Tables

PORT OF SEATTLE - TERMINAL 30 Table 1 Indicator Hazardous Substances

Constituent (BTEX, SVOC, TPH)	Constituent (PAH)
BTEX Compounds	PAH Compounds (filtered)
Benzene	Acenaphthene
Toluene	Acenaphthylene
Ethylbenzene	Anthracene
Xylenes (total)	Benzo[a]anthracene
Semivolatile Organic Compounds	Benzo[a]pyrene
2-Methylnaphthalene	Benzo[b]fluoranthene
Petroleum Hydrocarbons	Benzo[g,h,i]perylene
TPH, gasoline range organics	Benzo[k]fluoranthene
TPH, diesel range organics	Chrysene
TPH, heavy oils	Dibenzo[a,h]anthracene
	Fluoranthene
	Fluorene
	Indeno[1,2,3-cd]pyrene
	Naphthalene
	Phenanthrene
	Pyrene
	Naphthalene

PORT OF SEATTLE - TERMINAL 30 Table 2 Compliance Monitoring Frequency and Analytes

		Compliance Monitoring Phase	
Well Network	Baseline Sampling	Performance Monitoring*	Confirmational Monitoring
	Groundwater Samplin		
Performance Monitoring Wells – Within (MW-59**, RW-11A, MW- 89** ^b)	Single Event -	Every 6 Months - <u>Sampled: 4/2020, 9/2020,</u> <u>4/2021, 10/2021, 4/2022,</u> <u>10/2022, 4/2023, & 10/2023</u> (NWTPH-G/BTEX, NWTPH-Dx)	
Performance Monitoring Wells – Downgradient (MW-36A, RW-9, MW-39A** ^b , MW-42)	<u>Sampled: 10/2019</u> (NWTPH-G/BTEX, NWTPH-Dx)	Every Year - <u>Sampled: 9/2020, 10/2021,</u> <u>10/2022, & 10/2023</u> (NWTPH-G/BTEX, NWTPH-Dx)	None Scheduled
Interior Monitoring Wells - (MW-38 ^ª , MW-93, RW-1, RW-5A)	Single Event - Sampled: 10/2019 (NWTPH-G/BTEX, NWTPH-Dx)	Every 2 Years - Sampled: 9/2020 & 10/2022 (NWTPH-G/BTEX, NWTPH-Dx)	Every 5 Years (NWTPH-G/BTEX, NWTPH-Dx)
Interior Monitoring Wells, Gauging Only -	Single Event - <u>Gauged: 10/2019</u>	Every 2 Years Gauged: 9/2020 & 10/2022	Every 5 Years
(MW-35, MW-36, MW-54, MW-64)	(Free Product Gauging)	(Free Product Gauging)	(Free Product Gauging)
CPOC Monitoring Wells	Single Event - Sampled: 10/2019	Every 2 Years - Sampled: 9/2020 & 10/2022	Varies – See Table 3
(MW-45A, MW-46B, MW-58A, MW-86B***, MW-92)	(NWTPH-G/BTEX, NWTPH-Dx, PAHs, 2-methylnaphthalene)	(NWTPH-G/BTEX, NWTPH-Dx, PAHs, 2-methylnaphthalene)	(NWTPH-G/BTEX, NWTPH- Dx, PAHs, 2- methylnaphthalene)
Shoreline Water Quality Monitoring Wells (MW-84A, MW-85A, MW-86B***, MW-87A)	Single Event <u>- Sampled:</u> <u>10/2019</u> (NWTPH-G/BTEX, NWTPH-Dx, PAHs, 2-methylnaphthalene)	None Scheduled	None Scheduled
	Free Product Recovery and (Gauging (See Note 2)	
Free Product Gauging Wells (MW-59**, RW-12, New Recovery Wells [RW-101 to 110], MW-36, MW-39A**, MW-89**, MW-93)	Single Event (Free Product Gauging)	Quarterly at minimum (Free Product Gauging)	None Scheduled

Notes:

1. This schedule can be modified based on data collected during system performance.

2. For all monitoring wells, the measurement of free product in a well will trigger free product removal activities. Free product gauging (and removal, if free product is present) will occur quarterly for a minimum of 4 consecutive quarters. ^c

- * Performance monitoring will continue for the duration of AS/SVE system operation plus 2 years, at which time confirmational monitoring will be initiated.
- ** MW-59, MW-39A, and MW-89 will become Performance Monitoring Wells once free product has not been present for four consecutive quarters.^{b,d}
- ***MW-86B is both a CPOC Well and a Shoreline Water Quality Well.
- ^a A below-grade obstruction was observed in MW-38 on 9/18/20 and the well was decomissioned on May 6, 2021.
- ^b MW-89 qualified in October of 2020. MW-39A qualified in August of 2021.
- ^c Per the CMPT, wells qualify for perfomance monitoring analyses once 4 quarters of free product gauging result in product thicknesses of <0.01 ft. If product is encountered during sampling, the well is not to be sampled.
- ^c The original version of Table 2 in the CMP had a typo in the ** note, stating that only two quarters of clean data were required to transition to Performance Monitoring Wells. The text of the CMP stated the duration as four quarters, and the note has been revised.

PORT OF SEATTLE - TERMINAL 30 TABLE 3 Compliance Monitoring Schedule

Post AS/SVE Startup Years:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	22	27	32
Post AS/SVE Shutdown Years:						<u> </u>	1	2	3	4	5	6	7	8	9	10	11	12	17	22	27
Confirmational Monitoring Years						:			1	2	3	4	5	6	7	8	9	10	15	20	25
	Baseline	Perfo	rmanc	e Mon	itoring	Perio	d		Confi	rmatio	nal Mo	onitori	ng Per	iod						·	
CPOC Wells	Once	Biann	ual						Annua	a/				Biann	ual			Every	5 year	s	
MW-45A	Х	Х		Х		Х		Х	Х	Х	Х	Х	Х	Х		Х		Х	Х	X	Х
MW-46B	Х	Х		Х		Х		Х	Х	Х	Х	Х	Х	Х		Х		Х	Х	Х	Х
MW-58A	Х	Х		Х		Х		Х	Х	Х	Х	Х	Х	Х		Х		Х	Х	Х	Х
MW-86B	Х	Х		Х		Х		Х	Х	Х	Х	Х	Х	Х		Х		Х	Х	Х	Х
MW-92	Х	Х		Х		Х		Х	Х	Х	Х	Х	Х	Х		Х		Х	Х	Х	Х
Performance Wells																					
Within	Once	Semia	nnual						None												
MW-59	Х	XX	XX	XX	XX	XX	XX	XX													
MW-89	Х	XX	XX	XX	XX	XX	XX	XX	I												
RW-11A	Х	XX	XX	XX	XX	XX	XX	XX													
Downgradient	Once	Annua	a/						None												
MW-36A	Х	Х	Х	Х	Х	Х	Х	Х													
MW-39A	Х	Х	Х	Х	Х	Х	Х	Х										i			
MW-42	Х	Х	Х	Х	Х	Х	Х	Х													
RW-9	Х	Х	Х	Х	Х	Х	Х	Х													
Interior Wells	Once	Biann	ual						Every	5 year	S										
MW-38¹	X	X		X		X		X					X					<u> </u>	X	X	X
MW-93	Х	Х		Х		Х		Х					Х					Х	Х	Х	Х
RW-1	Х	Х		Х		Х		Х					Х					Х	Х	Х	Х
RW-5A	Х	Х		Х		Х		Х					Х					Х	Х	Х	Х

Notes:

The monitoring frequency for the Shoreline water quality monitoring wells and free product gauging wells are not shown on this table.

1. A below-grade obstruction was observed in MW-38 on 9/18/20 and the well was decomissioned on May 6, 2021.

Abbreviations and Formatting:

AS/SVE = air sparge/soil vapor extraction

CPOC = Conditional Point of Compliance

Date Time 9/19/2019 12:00 9/20/2019 16:04 9/23/2019 13:58 9/24/2019 10:00		SVE Blower	Cumulative	Calculated Cumulative															
9/19/2019 12:00 9/20/2019 16:04 9/23/2019 13:58 9/24/2019 10:00		SVE Blower	Cumulative								Calculated			Calcul	ated		Calculate	:d	
9/19/2019 12:00 9/20/2019 16:04 9/23/2019 13:58 9/24/2019 10:00		SVE Blower			Period SVE	SVE	SVE	SVE	SVE	SVE Discharge	SVE Discharge	Oxidizer Fire	Oxidizer	Oxidizer	Period	Mass	Period	Cumulative	
9/19/2019 12:00 9/20/2019 16:04 9/23/2019 13:58 9/24/2019 10:00	- H	2	SVE Blower	SVE Blower	Blower	Inlet	Inlet	Inlet	Inlet	Total VOC PID	Total VOCs ^{3,4}	Box	Discharge Total	Discharge Total	Destruction	Removal	Mass	Mass	
9/19/2019 12:00 9/20/2019 16:04 9/23/2019 13:58 9/24/2019 10:00		Hr Meter ²	Runtime ²	Runtime	Runtime	Vacuum	ΔΡ	Temp	Flow Rate ¹			Temp [®]	VOC PID'	VOCs ^{3,4,6}	Efficiency ⁷	Rate ⁵	Removal [®]	Removal	
9/20/2019 16:04 9/23/2019 13:58 9/24/2019 10:00		(Hours) 9.9	(Hours)	(Days) START	(Days)	(In. H ₂ O) 35.0	(In. H ₂ O) 0.25	(°F) 72	(scfm) 98	(ppmv)	(μg/m ³) 0	(F)	(ppmv) NM	(µg/m³) NA	(%) NA	(Lb/Day) 0.0	(Lb) 0.0	(Lb) 0.0	Comments/Notes SVE Start; Oxidizer Start
9/23/2019 13:58 9/24/2019 10:00		33.9		1.0	1.0	35.0	0.25	68	99	198	238,228		NM	4.903	NA	2.1	2.1	2.1	
		105.9		4.0	3.0	35.0	0.25	68	99	212	255,073		NM	4,903	NA	2.3	6.8	8.9	
		129.9		5.0	1.0	30.0	0.25	70	99	215	258,682		NM	4,903	NA	2.3	2.3	11.2	
9/25/2019 9:20		153.9		6.0	1.0	34.0	0.25	66	99	218	262,292		NM	4,903	NA	2.3	2.3	13.5	
9/26/2019 9:00 9/28/2019 12:19		176.1 227.5		6.9 9.1	0.9	38.0 46.0	0.25	66 65	98 97	405 440	487,285 529,396		NM NM	4,903 4,903	NA NA	4.3 4.6	4.0	17.5 27.5	
9/30/2019 9:35		272.5		10.9	1.9	56.0	0.25	62	96	463	557.069		NM	4,903	NA	4.8	9.1	36.5	
10/1/2019 9:25		296.6		11.9	1.0	54.0	0.25	61	97	488	587,148		9.4	4,903	99	5.1	5.1	41.6	
10/2/2019 9:20		320.6		12.9	1.0	44.0	0.25	62	98	427	513,755		8.7	4,538	99	4.5	4.5	46.2	
10/3/2019 8:50 10/4/2019 11:40		344.1 371.0		13.9 15.0	1.0	50.0 55.0	0.25	61 66	97 96	457 469	549,850 564,288		NM 7.9	4,538 4,121	NA 99	4.8 4.9	4.7	50.9 56.4	
10/7/2019 11:40		443.4		15.0	1.1	61.0	0.25	65	95	469	560,678		5.2	2,712	100	4.9	5.5	70.9	
10/8/2019 9:05		464.4		18.9	0.9	70.0	0.25	60	95	487	585,945		8.8	4,590	99	5.0	4.4	75.2	
10/9/2019 10:07	:07	489.4		20.0	1.0	73.0	0.25	60	94	494	594,367		7.0	3,651	99	5.0	5.2	80.5	
10/10/2019 10:24		513.7		21.0	1.0	69.0	0.25	61	95	517	622,040		4.1	2,139	100	5.3	5.4	85.8	
10/13/2019 9:33 10/14/2019 9:39		585.7 608.9		24.0 25.0	3.0	78.0 81.0	0.5	60 61	132 131	550 558	661,745 671,370		8.3 NM	4,329 4.329	99 NA	7.9 7.9	23.6	109.4 117.1	
10/14/2019 9:39		632.9		25.0	1.0	81.0	0.5	61	131	667	802,516		5.4	2,817	100	7.9	7.7	117.1 128.7	
10/23/2019 11:20		826.5		34.0	8.1	86.0	1	60	185	662	796,500		8.8	4,590	99	13.2	106.7	235.4	Lab Data
10/24/2019 9:35		848.8		35.0	0.9	93.0	1.5	57	224	637	766,421		7.7	4,016	99	15.5	14.4	249.7	
10/25/2019 9:50		873.0		36.0	1.0	90.0	1.75	58	243	752	904,785		6.3	3,286	100	19.8	20.0	269.7	
10/28/2019 11:00 10/29/2019 9:15		946.1 969.6		39.0 40.0	3.0	85.0 82.0	2.5	56 56	294 295	793 823	954,116 990,211		7.3	3,808 4,016	100	25.2 26.3	76.7	346.4 372.1	
10/29/2019 9:15 10/30/2019 12:30		969.6 995.7		40.0	1.0	82.0 81.0	2.5	56 56	295	823	990,211 895,160		6.7	4,016 3,495	100	26.3	25.7	372.1 398.0	
11/1/2019 14:00		1,045.1		43.1	2.1	79.0	2.5	56	296	734	883,128		6.1	3,182	100	23.5	48.4	446.4	
11/4/2019 16:05		1,120.3		46.3	3.1	80.0	2.75	55	311	660	794,094		4.8	2,504	100	22.2	69.5	515.9	
11/6/2019 10:18		1,162.5		48.0	1.8	86.0	2.75	56	307	670	806,125		4.9	2,556	100	22.3	39.2	555.1	
11/8/2019 9:08 11/12/2019 10:30		1,209.3 1,306.6		50.0 54.0	2.0	86.0 92.0	2.75	55 56	308 290	628 654	755,592 786,875		5.0 3.6	2,608	100 100	20.9 20.5	40.8	595.9 679.2	
11/12/2019 10:30		1,306.6		54.0	4.1	92.0	2.5	56	290	631	759,202		3.6	1,878	100	20.5	83.3 19.0	698.2	
11/15/2019 12:40		1,377.6		57.0	2.0	91.0	2.75	56	305	614	738,748		3.7	1,930	100	20.3	40.5	738.7	
11/25/2019 10:52	:52	1,477.2		61.1	4.2	89.0	2.75	50	308	546	656,932		7.5	3,912	99	18.2	75.5	814.2	SVE & oxidizer down on 11/19/19 at 12:23 due to low propane. Restarted on 11/25/19 at 10:00.
11/26/2019 10:25		1,500.8		62.1	1.0	88.0	2.75	50	308	621	747,170		4.4	2,295	100	20.7	20.3	834.5	
11/27/2019 10:40		1,524.8		63.1	1.0	88.0	2.75	50	308	541	650,916		5.6	1,705	100	18.0	18.1	852.6	Lab Data is questionable and not used in calculations. Destruction Efficiency Based on PID.
12/2/2019 9:53 12/3/2019 14:00		1,644.2		68.1 69.2	5.0	88.0 84.0	2.75	50 50	308 310	424	510,145 611,211		4.0	1,218	100 100	14.1 17.0	70.4	922.9 942.1	
12/6/2019 9:21		1,738.4		72.0	2.8	89.0	2.75	50	308	477	573,913		4.5	1,370	100	17.0	44.5	986.6	SVE system shutdown on 12/3/19 between 12:13 and 13:45 due to power outage.
12/9/2019 9:14		1,810.3		75.0	3.0	98.0	2.75	50	303	469	564,288		4.4	1,340	100	15.4	46.1	1,032.7	
12/16/2019 10:47		1,979.9		82.1	7.1	99.0	2.5	50	289	507	610,008		4.0	1,218	100	15.8	112.0	1,144.7	
12/18/2019 10:34		2,027.4		84.1	2.0	94.0	2.5	50	291	442	531,802		8.2	2,497	100	13.9	27.6	1,172.2	
12/20/2019 9:46 12/23/2019 12:02		2,074.7 2,148.9		86.0 89.1	2.0	94.0 96.0	2	50 50	260 260	734	883,128 1,381,000		4.6	1,401	100 100	20.7 32.2	40.8	1,213.0 1,312.7	Lab Data. Re-sample for 11/27/19.
12/26/2019 9:38		2,218.6		92.0	2.9	90.0	2.25	50	278	375	782,289		6.6	1,515	100	19.6	56.8	1,369.4	Empty water storage tank on 12/24/19.
1/3/2020 15:00		2,416.1		100.3	8.2	88.0	2	50	263	486	1,013,846		4.9	1,125	100	24.0	197.2	1,566.7	· · · · · · · · · · · · · · · · · · ·
1/7/2020 10:25	:25	2,507.7		104.1	3.8	85.0	1.75	50	247	617	1,287,125		5.1	1,171	100	28.6	109.1	1,675.8	Empty water storage tank on 1/7/20.
1/9/2020 10:55		2,556.2		106.1	2.0	81.0	1.75	50	249	432	901,196		4.3	987	100	20.1	40.7	1,716.5	
1/15/2020 11:32 1/17/2020 14:30		2,701.0 2,750.6		112.1 114.2	6.0	84.0 84.0	1.5 1.75	50 50	229 247	353 342	188,970 183,081		6.9 6.0	340 296	100 100	3.9 4.1	23.5	1,740.0 1,748.4	Lab Data.
1/21/2020 10:00		2,750.6		114.2	4.1	84.0	1.75	50	247	465	248,926		3.3	163	100	4.1	22.4	1,748.4	Started air sparging.
1/22/2020 15:12		2,873.1		119.3	1.0	92.0	1.75	50	247	522	279,440		2.6	105	100	6.1	6.4	1,777.3	
1/23/2020 11:00		2,893.3		120.1	0.8	93.0	1.5	50	226	564	301,924		5.0	246	100	6.1	5.2	1,782.4	Empty water storage tank on 1/23/20.
1/27/2020 1:51	51	2,992.2		124.3	4.1	88.0	1.75	50	246	492	263,380		2.5	123	100	5.8	24.0	1,806.4	Empty water storage tank on 1/27/20.
1/30/2020 9:36		3,059.8		127.1	2.8	93.0	1.75	50	244	549	293,894		5.9	291	100	6.4	18.2	1,824.6	Empty water storage tank on 1/30/20.
2/4/2020 13:25		3,183.4		132.2 134.4	5.2	97.0	1.75	50	242	569 638	304,600		6.1 2.8	301	100	6.6 7.0	34.2	1,858.8	Empty water storage tank on 2/5/20.
2/6/2020 16:30 2/11/2020 12:05		3,234.4 3,350.2		134.4 139.2	2.1	84.0 75.0	1.5 1.5	50 50	229 232	638 462	341,538 247.321		2.8	138	100	7.0	15.0 24.9	1,873.7	Collected lab air sample. Sample suspect. Lab data not used in calculations.
2/11/2020 12:03		3,418.1		142.0	2.8	69.0	1.5	50	232	452	247,321		5.6	1,090	99	5.1	14.4	1,913.0	Empty water storage tank on 2/13/20. AS system off from 2/13/20 @ 09:00 to 2/14/20 @ 09:00.
2/17/2020 9:40	40	3,490.3		145.0	3.0	72.0	1.5	50	233	462	247,321		4.1	912	100	5.2	15.6	1,928.6	
2/20/2020 13:45	:45	3,566.4		148.2	3.2	40.0	0.75	52	172	377	201,818		6.3	1,401	99	3.1	9.9	1,938.6	Empty water storage tank on 2/20/20. Approximately 12" in tank. Turned down vacuum to SVE we field to reduce water extracted.
2/26/2020 13:34	:34	3,710.3		154.2	6.0	42.0	1	56	198	377	201,818		NT	1,401	NA	3.6	21.5	1,960.1	Started pulsing AS system. Zones 4 & 5 ON. Pulsing every 8 hours between Zones 1, 2, and 3. AS system down between 08:24 on 2/27/20 and 10:00 on 2/27/20 due to PSH Alarm.
2/28/2020 10:23		3,755.2		156.1	1.9	50.0	1.25	51	220	377	201,818		NT	1,401	NA	4.0	7.5	1,967.5	AS system down between 18:49 on 2/27/20 and 09:00 on 2/28/20 due to PSH Alarm. Pulsing AS system with Zone 5 ON. Pulsing every 6 hours between Zones 1, 2, 3, and 4.
3/6/2020 10:30 3/11/2020 14:30		3,923.5 4.046.3		163.1 168.2	7.0	50.0 50.0	1	52	196 219	401	214,666		NT 5.7	1,401 1.268	NA	3.8	26.6 19.5	1,994.1 2.013.6	
3/11/2020 14:30 3/12/2020 10:15		4,046.3		168.2	0.8	50.0	1.25	52 51	219	360 318	192,717 170,234		5.7	1,268	99	3.8	2.8	2,013.6	Collected Lab air sample. Inlet concentration lab data suspect. Need to re-sample upon start up. La
.,, 10.10	:15	4,211.6		175.1	6.1	50.0	1.25	52	219	284	152,033		3.5	779	99	3.0	18.2	2,034.5	data not used in calculations. System off for 6.5 hours on 3/19/20 to install catalyst in oxidizer.
3/19/2020 14:15 3/24/2020 14:30		4,325.4		179.8	4.7	50.0	1.25	56	219	319	170,769		3.1	690	100	3.4	15.9	2.050.4	System shut off at 15:00 on 3/24/20 due to COVID-19 travel restrictions.

				0	perating Para	meters						Mass R	emoval				Mass Remo	val	
				Calculated							Calculated			Calcul	ated		Calculate	d	
			Cumulative	Cumulative	Period SVE	SVE	SVE	SVE	SVE	SVE Discharge	SVF Discharge	Oxidizer Fire	Oxidizer	Oxidizer	Period	Mass	Period	Cumulative	
		SVE Blower	SVE Blower	SVE Blower	Blower	Inlet	Inlet	Inlet	Inlet	Total VOC PID	Total VOCs ^{3,4}	Box	Discharge Total	Discharge Total	Destruction	Removal	Mass	Mass	
		Hr Meter ²	Runtime ²	Runtime	Runtime	Vacuum	ΔΡ	Temp	Flow Rate ¹		Total VOCS	Temp ⁸	VOC PID ⁷	VOCs ^{3,4,6}	Efficiency ⁷	Rate ⁵	Removal ⁶	Removal ⁹	
Date	Time	(Hours)	(Hours)	(Days)	(Days)	(In. H ₂ O)	(In. H ₂ O)	(°F)	(scfm)	(ppmv)	(ug/m ³)	(F)	(ppmv)	(µg/m ³)	(%)	(Lb/Day)	(Lb)	(Lb)	Comments/Notes
					1														Measurement within 2-hours after system re-start since 3/24/2020. SVE wells being turned on one
., ,	9:59	4,334.7		180.2	0.4	69	1	79	186	147	78,693		1.3	289	100	1.3	0.5	2,050.9	at a time.
8/17/2020	11:50	4,336.9		180.3	0.1	63	1	79	188	141	75,481		0.5	111	100	1.3	0.1	2,051.1	All SVE wells except HSVE-1 and HSVE-2 turned on.
	7:26	4,356.2		181.1	0.8	61	1	79	188	193	103,532		0.5	111	100	1.8	1.4	2,052.5	All SVE wells except HSVE-1 and HSVE-2 turned on.
., .,	8:54	4,357.8		181.2	0.1	63	1.25	79	210	318	170,234		1.5	334	100	3.2	0.2	2,052.7	Extracting at all SVE wells except HSVE-1 (partially open).
	13:39	4,410.7		183.4	2.2	62	1.25	82	210	389	208,028		0.4	89	100	3.9	8.6	2,061.3	Readings prior to individual SVE well adjustments
0/20/2020	14:28	4,411.6		183.4	0.0	58	1.25	82	211	401	214,666		0.8	178	100	4.1	0.2	2,061.5	Readings after to individual SVE well adjustments
	6:51 14:07	4,427.8 4,555.7		184.1 189.4	5.3	60 59	1.25	79 78	211 211	485 408	259,633 2,101,500		0.6	133 6,570	100	4.9 39.9	3.3 212.8	2,064.8 2,277.6	No system adjustments conducted
																			Collected lab gas sample and PID measurements at 1407
8/26/2020	15:18	4,556.3		189.4	0.0	68	1.25	78	209	334	2,101,500		0.6	9,855	100	39.4	1.0	2,278.6	Adjusted Hertz on SVE blower and made individual SVE well adjustments on manifold.
8/28/2020	13:48	4,602.8		191.4	1.9	68	1.25	80	208	303	1,903,305		0.7	11,498	99	35.6	69.0	2,347.7	No appreciable oil in SVE-4 and SVE-5 flow gauges.
8/28/2020	14:39	4,603.6		191.4	0.0	68	1.25	80	208	302	1,898,900		0.5	8,213	100	35.6	1.2	2,348.9	Readings after system adjustments
9/2/2020	11:22	4,719.9		196.3	4.8	64	1.25	81	209	295	1,856,115		0.6	9,855	99	34.9	169.2	2,518.1	Readings pre-adjustments
9/2/2020	14:44	4,723.3		196.4	0.1	63	1.5	81	230	303	1,906,451		0.5	8,213	100	39.4	5.6	2,523.7	Readings post-adjustments. Post AS system re-start since 3/24/2020.
9/4/2020	11:55	4,768.6		198.3	1.9	80	2	80	259	333	2,095,837		0.0	0	100	48.8	92.0	2,615.7	Readings after draining water from SVE-6, SVE-8, SVE-9, and after air sparge schedule and flow
		4.909.0		204.1	5.0	84	2		258	348	2.188.958		0.9	14.783	00	50.7	200.0	2012.2	adjustments
	8:08 8:54	4,909.0		204.1 204.1	5.8	84	2	78 78	258	348	2,188,958 2,071,299		0.9	9.855	99 100	50.7	296.6 0.8	2,912.3 2,913.1	Before system tweaks/adjustments.
	8:54	4,909.4		204.1 209.4	5.2	76	2	78	261	329	2,071,299 2,220,417		0.6	9,855	99	48.6	274.4	2,913.1 3.187.5	After system tweaks/adjustments.
	7:00	5,036.3		209.4	7.7	78	1.75	78	260	353	1,988,560		0.7	11,498	NA	43.8	335.2	3,187.5	Collected measurements without PID/LEL meter. Used averages of before and after values
	9:02	5,366.3		223.2	6.1	78	1.75	78	243	279	1,460,900		0.7	9,570	99	31.9	194.7	3,717.4	Collected lab gas sample
	8:14	5,533.6		230.2	7.0	78	2	69	262	400	2,090,887		1.9	25,976	99	49.3	343.6	4,061.0	
	14:59	5.748.9		239.1	9.0	81	2	66	262	400	2.092.980		1.9	25.976	99	49.3	441.8	4,502.8	Suspect MultiRAE PID probe saturation (biased high measurement). Measurement >999-ppm. Used
		.,			5.0						, <u>,</u>			.,					average of before and after PID measurements.
	8:22	5,910.3		245.9	6.7	82	2	60	263	256	1,339,507		1.0	13,671	99	31.7	212.9	4,715.7	Used MultiRAE PID. No apparent probe saturation.
	8:43	6,006.8		249.9	4.0	82	2	59	263	166	394,000		1.0	5,250	99	9.3	37.5	4,753.2	Collected lab gas sample. Used MultiRAE PID. No apparent probe saturation.
11	14:48	6,158.1		256.2	6.3	80	2	63	263	113	267,967		0.8	4,200	98	6.3	39.9	4,793.1	Used RKI.
		6,348.7 6.349.0		264.1	7.9	86 80	2	54	263	114 129	270,341 304,994		0.8	4,200	98	6.4 7.3	50.7 0.1	4,843.8	Used RKI. Readings SVE flow pre-adjustments.
11/10/2020		6,349.0		264.1 272.1	8.0	80	2	54 52	265 264	129	452.000		1.3	6,825	98 97	10.7	85.4	4,843.9	Used RKI. Readings SVE flow post-adjustments.
11/18/2020	15.50	0,540.1			0.0	04	2	32			432,000			14,400	37	10.7	03.4	4,525.4	Used RKI. Readings SVE flow post-adjustments. Gas sample results suspect. Re-sampling Used MultiRAE. Readings SVE flow pre-adjustments. Run time hour tally reset on PLC, SVE
12/4/2020	13:18	29.4	6,832.3	284.3	12.2	76	2	52	267	107	348,342		1.6	32,914	91	8.4	101.9	5,031.3	cumulative run time hours calculated.
12/4/2020	13:40	29.8	6,832.7	284.3	0.0	79	2	53	266	115	374,663		1.7	34,971	91	9.0	0.1	5.031.4	Used MultiRAE. Readings SVE flow post-adjustments.
																			Used RKI. Probe saturation. Individual PID value not representative. Used average of previous two
12/10/2020	15:37	174.7	6,977.6	290.3	6.0	81	2	51	266	115	361,503		1.7	34,971	90	8.6	52.1	5,083.5	PID values as substitute.
12/16/2020	8:21	305.0	7,107.9	295.7	5.4	83	1.5	50	229	79	1,151,000		1.0	9,170	99	23.7	128.9	5,212.5	Collected lab gas samples. Measurement collected pre-adjustments.
12/29/2020	8:22	617.2	7,420.1	308.8	13.0	84	1.5	50	229	88	1,279,213		1.0	9,170	99	26.4	342.8	5,555.3	No Oxidizer discharge PID hits (checked multiple times).
	8:58	928.4	7,731.3	321.7	13.0	88	1.5	50	228	89	924,000		1.4	8,570	99	18.9	245.3	5,800.6	Collected lab gas samples. Measurement collected pre-adjustments.
	9:05	1,429.9	8,232.8	342.6	20.9	85	1.5	50	229	163.7	1,709,139		0.6	3,673	100	35.2	734.6	6,535.2	Measurements collected before system adjustments.
	13:03	1,669.1	8,472.0	352.6	10.0	80	1.5	49	231	52.4	566,950		0.7	3,160	99	11.8	117.2	6,652.4	Collected lab gas samples. Measurement collected pre-adjustments.
3/2/2021	8:43	1,942.6 2,434.9	8,745.5 9,237.8	364.0 384.5	11.4 20.5	78	1.5	49 58	231	56.4 128.8	610,229 563.000		0.1	451	100 98	12.7	144.7 236.1	6,797.2 7.033.2	Measurements collected before system adjustments.
0/20/2022	15:28	2,434.9	9,237.8	384.5	20.5	84	1.5	58	227	85.8	375.042		0.1	723	100	7.7	87.8	7,033.2	Collected lab gas samples. Measurement collected pre-adjustments.
1.1		,	- 1-								,.							,	Measurements collected before system adjustments. Collected lab gas samples. Measurement collected pre-adjustments. Turned off air sparge system a
4/19/2021	14:50	3,006.1	9,809.0	408.3	12.4	78	1.5	69	227	83.2	641,000		0.7	21,570	97	13.1	161.7	7,282.8	1600 due to observed air sparge blower oil leak.
- /- /																			Air sparge repaired (gasket oil leak) and restarted on 5/4/2021 at ~12:25. No system adjustments
5/5/2021	7:57	3,381.4	10,184.3	423.9	15.6	82	1.5	62	227	134.5	1,036,232		1.0	30,814	97	21.2	331.0	7,613.8	conducted.
5/20/2021	9:09	3.662.5	10.465.4	435.6	11.7	80	1.5	66	227	72.9	420.900		1.4	7.010	98	8.6	100.6	7.714.4	Power outage earlier this morning. Normal system operations for ~2-hours prior to data collection.
5/ 20/ 2021	5.09	5,002.5	10,403.4	455.0	11./	80	1.5	00	227	72.9	420,900		1.4	1,010	38	0.0	100.0	7,714.4	Increased setting on pressure switch.
6/4/2021	8:29	3,957.5	10,760.4	447.9	12.3	81	1.5	71	226	83.1	479,791		0.7	3,505	99	9.7	119.6	7,834.0	Generator maintenance on late afternoon 6/3, system was shutdown from 6/3 ~1530 to 6/4 0740.
		.,	.,					-										,	System running for ~50-minutes prior to collection of readings.
6/16/2021	9:11	4,245.0	11,047.9	459.9	12.0	91	1.5	68	223	133.3	421,000		1.9	5,250	99	8.4	101.0	7,935.0	Collected lab gas samples. Air sparge OFF since 6/15/2021 at 1916. Air sparge to remain OFF
+																			indefinitely due to undetermined blower oil loss.
7/2/2021	10:00	4,628.8	11,431.7	475.9	16.0	80	1.5	80	224	80.4	253,926		1.0	2,763	99	5.1	81.8	8,016.8	Air sparge system still OFF (blower sent out for servicing). Measurements collected prior to system
//2/2021	10:00	4,028.8	11,431.7	4/5.9	10.0	80	1.5	80	224	80.4	253,920		1.0	2,703	39	5.1	81.8	8,010.8	adjustments. Drained fluids out of SVE manifold (hoses and sumps) and then re-adjusted SVE flow rates.
7/19/2021	14:06	5.024.6	11.827.5	492.4	16.5	81	1.5	83	223	81.8	257.000		1.0	5.700	98	5.2	85.0	8.101.8	Collected lab gas samples. Air sparge system still OFF (blower to be re-installed).
1 .1 .	7:22	5,423.6	12,226.5	509.0	16.6	77	1.5	78	225	106.5	334,603		1.4	7,980	98	6.8	112.8	8,214.6	Air sparge re-started 7/24/21
																			Collected lab gas samples. Air sparge bleeder valve wide open, reducing air to AS wells. Air sparge
8/26/2021	14:25	5,935.1	12,738.0	530.3	21.3	77.0	1.5	77	226	66.4	251,000		0.0	4,070	98	5.1	108.6	8,323.2	wells need inspected, maybe cleaned/re-developed. AS flow meters need cleaned.
																			AECOM assumes control of system operations from CRETE. See Footnote 6. Collected lab gas
9/30/2021	13:05	6,640.2	13,443.1	559.7	29.4	78.0	1.5	62	229	56.0	269,500	680	0.9	3,030	99	5.5	162.7	8,485.9	samples. PAH alarms continue to shut down the AS system. Malfunctioning pressure switch likely
																			cause.
10/6/2021	15:20	6,785.5	13,588.4	565.8	6.1	78.0	1.5	65	227.9	144.8	696,850	689	2.5	8,417	99	14.3	86.5	8,572.3	PAH alarms continue to shut down the AS system. Malfunctioning pressure switch likely cause.
	\vdash																	-	
10/14/2021	9:03	6,972.3	13,775.2	573.6	7.8	78.0	1.5	60	229.0	100.2	482,213	684	1.9	6,397	99	9.9	77.3	8,649.6	PAH alarms continue to shut down the AS system. Malfunctioning pressure switch likely cause.
+																		-	Collected lab gas samples. PAH alarms continue to shut down the AS system. Malfunctioning
10/21/2021	14:30	7,141.7	13,944.6	580.6	7.1	76.0	1.5	60	229.7	117.6	108,510	680	2.6	1,900	98	2.2	15.8	8,665.4	pressure switch likely cause.
10/28/2021	14:15	7,309.8	14,112.7	587.6	7.0	80.0	2.0	60	263.6	28.6	26,389	664	0.5	365	99	0.6	4.4	8,669.8	SVE Blower off from 10/21/2021 until 10/28/2021. Could be result of low PID measurement. PAH alarms continue to shut down the AS system. Malfunctioning pressure switch likely cause.

				0	perating Para	meters						Mass R	emoval				Mass Remo	val	
				Calculated							Calculated			Calcul	ated		Calculated	d	
			Cumulative	Cumulative	Period SVE	SVE	SVE	SVE	SVE	SVE Discharge	SVE Discharge	Oxidizer Fire	Oxidizer	Oxidizer	Period	Mass	Period	Cumulative	
		SVE Blower	SVE Blower	SVE Blower	Blower	Inlet	Inlet	Inlet	Inlet	Total VOC PID	Total VOCs ^{3,4}	Box	Discharge Total	Discharge Total	Destruction	Removal	Mass	Mass	
		Hr Meter ²	Runtime ²	Runtime	Runtime	Vacuum	ΔΡ	Temp	Flow Rate ¹		Total VOCS	Temp ⁸	VOC PID ⁷	VOCs ^{3,4,6}	Efficiency ⁷	Rate ⁵	Removal ⁶	Removal ⁹	
Date	Time	(Hours)	(Hours)	(Days)	(Days)	(In. H ₂ O)	(In. H ₂ O)	(°F)	(scfm)	(ppmv)	(μg/m ³)	(F)	(ppmv)	(µg/m ³)	(%)	(Lb/Day)	(Lb)	(Lb)	Comments/Notes
11/5/2021	14:30	7,502.7	14,305.6	595.7	8.0	84.0	2.0	55	263.3	50.6	46,689	681	6.6	4,823	90	1.1	8.9	8,678.7	PAH alarms continue to shut down the AS system. Malfunctioning pressure switch likely cause.
11/11/2021	21:21	7,654.1	14,457.0	602.0	6.3	86.0	1.5	54	227.5	109.7	101,221	680	2.5	1,827	98	2.1	13.1	8,691.8	PAH alarms continue to shut down the AS system. Malfunctioning pressure switch likely cause.
11/18/2021	12:30	7,807.8	14,610.7	608.4	6.4	86.0	1.5	50	228.4	47.6	103,250	686	1.0	1,020	99	2.1	13.6	8,705.3	Collected lab gas samples. Replacement AS Compressor pressure switch installed on 11/17/21 by Marine Maintenance.
11/23/2021		7,932.0	14,734.9	613.5	5.2	86.0	2.0	50	263.7	87.5	189,798	682	0.9	918	100	4.5	23.3	8,728.6	No new PAH alarms since the pressure switch replacement.
12/1/2021	15:55	8,122.9	14,925.8	621.5	8.0	85.0	1.5	55	227.6	19.4	42,081	652	1.1	1,122	97	0.9	6.9	8,735.5	No new PAH alarms since the pressure switch replacement.
12/10/2021		8,337.3	15,140.2	630.4	8.9	86.0	1.5	50	228.4	399.3	866,129	676	0.0	0	100	17.8	158.9	8,894.4	No new PAH alarms since the pressure switch replacement.
12/17/2021		8,499.7	15,302.6	637.2	6.8	88.0	1.5	50	227.7	42.5	92,188	676	0.6	612	99	1.9	12.8	8,907.2	No new PAH alarms since the pressure switch replacement.
12/22/2021		8,616.9	15,419.8	642.1	4.9	90.0	1.5	50	227.0	55.3	109,700	682	0.7	1,250	99	2.2	10.9	8,918.1	Collected lab gas samples. No new PAH alarms since the pressure switch replacement.
1/5/2022	12:41	8,697.9	15,500.8	645.5	3.4	84.0	1.0	50	187.1	52.8	104,741	684	1.2	2,143	98	1.8	5.9	8,924.0	AS bleed valve closed 100% to try to increase airflow to subsurface.
1/21/2022	13:47	9,005.0	15,807.9	658.2	12.8	85.0	1.5	54	227.9	16.3	32,335	672	0.3	536	98	0.7	8.5	8,932.5	New AS PAH alarm on 1/12/22, the first since the pressure switch replacement. AS bleed valve opened up to relieve pressure on 1/13/22. Despite that, PAH alarms continue to shut down the AS system.
2/17/2022	20:20	9,499.3	16,302.2	678.8	20.6	80.0	1.0	50	188.2	383.2	760,163	675	7.9	14,107	98	12.9	264.9	9,197.5	Last AECOM visit under the initial short term service directive. PAH alarms continue to shut down the AS system.
3/31/2022	11:50	10,460.2	17,263.1	718.9	40.0	78.0	0.8	63	161.5	17.0	101,000	697	0.4	1,900	98	1.5	58.7	9,256.2	First AECOM visit under the new service directive. Oxidizer and SVE ON on arrival but AS system OFF due to a PAH alarm. Alarm derend and AS restarted at 10:50. Collected lab gas samples. AS pressure switch tested and determined to be manifunctioning. Switch taken offline to prevent further false
4/12/2022	15:45	10,736.6	17,539.5	730.4	11.5	82.0	1.0	52	187.3	10.5	62,382	708	0.3	1,425	98	1.1	12.1	9,268.3	alarm shut-downs. AS Compressor working as desired since disconnection of pressure switch. Zone sparging re- instituted at 5/5/5/4.5/4.5-hr intervals.
4/28/2022	15:59	11,021.7	17,824.6	742.3	11.9	74.0	1.0	60	188.1	38.5	228,735	670	0.7	3,325	99	3.9	46.0	9,314.2	4.5.22: Rotmeters cleaned for improved reading and operation; vacuum gauges replaced on SVE- 45, 7. 8, -9, and -10 (gauges should have been 0 ^a H ₂ O with system off but were reading from 7- 27 ^a H ₂ O). 4.18.22 - Oxidizer magnehelic gauge replaced. 4.28.22 - Systems ON on arrival operating with zone sparging. Water continues to impede accurate
																			readings of several SVE rotameters.
5/13/2022	15:11	11,337.5	18,140.4	755.4	13.2	78.0	1.5	60	229.0	34.7	206,159	668	0.4	1,900	99	4.2	55.8	9,370.1	
6/21/2022	17:55	11,824.4	18,627.3	775.7	20.3	74.0	1.3	72	212.0	24.3	144,371	672	1.6	7,600	95	2.8	55.8	9,425.9	System down 5/25/22-6/13/22 due to lapsed invoices and lack of propane. Water continues to impede accurate readings of several SVE rotameters. SVE-5 rotameter gets stuck and needs replacing. AS VFD had a motor overload error code flashing (A2010), but the system was operational. AS zone runtimes were adjusted at EOD to add a 30-minute overlap during each transition. If the VFD motor overloads were happening during the zone transitions, this should help avoid them moving forward. Alarm notifications went inactive ~6/8/22 due to outdated telemetry software, fix pending.
7/7/2022	17:09	12,206.1	19,009.0	791.6	15.9	76.0	1.0	64	186.8	13.0	77,235	625	1.0	4,750	94	1.3	20.6	9,446.5	6/29/22 - Collected lab gas samples. No other system readings taken. 7/7/22 - Systems were ON on arrival operating with zone sparging. No system downtime this period. Sparge VFD had the motor overload error code flashing again (A2010) but the system was still running. A5 Zones 2 and 4 were analyzed for breakthrough pressures and valves positions were adjusted for optimal flow distribution. At EOD, PLC was rewired so that the zones on the HMI control the same-named zones in the field. Zone 1 and 2 runtimes swapped at EOD. Alarm notifications have been inactive since ~6/8/22 due to outdated telemetry software, fix pending.
7/22/2022	16:10	12,556.2	19,359.1	806.2	14.6	74.0	1.0	78	184.9	12.1	71,888	681	0.9	4,275	94	1.2	17.4	9,464.0	Systems were ON on arrival operating with zone sparging. No system downtime this period. Rotameters for several SVE wells have observable signs of usage wear and tear. Water in the SVE lines continues to make accurate readings difficult. Alarm notifications have been inactive since ~5/8/22 due to outdated telemetry software, fix pending.
8/5/2022	14:45	12,679.6	19,482.5	811.4	5.1	85.0	1.0	80	181.5	49.6	294,682	677	2.5	11,875	96	4.8	24.7	9,488.7	Systems ON on arrival operating with zone sparging. The systems only operated for ~1/3 of the period due to several Oxidizer alarms that did not trigger notifications due to the telemetry software issue (fix pending). Rotameters for several SVE wells have observable signs of usage wear and tear. Water in the SVE lines continues to make accurate readings difficult.
8/19/2022	15:15	13,014.8	19,817.7	825.3	14.0	74.0	1.0	82	184.2	29.3	174,076	695	2.7	12,825	93	2.9	40.3	9,529.0	Systems were ON on arrival operating with zone sparging. No system downtime this period. Alarm notifications have been inactive since $-6/8/22$ due to outdated telemetry software, fix pending. Rotameters for several SVE wells have observable signs of usage wear and tear. Water in the SVE lines continues to make accurate readings difficult. AS Zone 1 well valve positions were optimized for desired flow distribution.
9/2/2022	14:55	13,294.7	20,097.6	837.0	11.7	72.0	1.5	82	226.3	12.0	71,294	661	2.8	13,300	81	1.5	16.9	9,545.9	Oxidizer and SVE systems ON upon arrival. Sparge system was OFF on arrival due to a Sparge Blower TAH alarm from 14:48 on 8/31/22. Alarm notifications have been inactive since "6/8/22 due to outdated telemetry software, fix pending, AS system restarted at 15:00. Water in the SVE lines continues to make accurate readings difficult.
9/14/2022	9:54	13,567.8	20,370.7	848.4	11.4	72.0	1.5	84	225.9	4.5	32,570	664	0.5	2,070	94	0.7	7.5	9,553.4	Systems ON on arrival operating with zone sparging. No alarms triggered this period (no downtime), but alarm notifications were inactive. During O&M, the AS bleed valve was closed to vent excess air through the pressure relief valve on an as-needed basis instead. SVE-56, and 8 were pumped out until dry using a peristaltic pump: "4 gallons total extracted from the manifold and stub ups.

					perating Para	meters						Mass F	temoval				Mass Remo		
				Calculated							Calculated			Calcul			Calculated		
			Cumulative	Cumulative	Period SVE	SVE	SVE	SVE	SVE	SVE Discharge	SVE Discharge	Oxidizer Fire	Oxidizer	Oxidizer	Period	Mass	Period	Cumulative	
		SVE Blower	SVE Blower	SVE Blower Runtime	Blower Runtime	Inlet Vacuum	Inlet AP	Inlet Temp	Inlet	Total VOC PID	Total VOCs ^{3,4}	Box Temp ⁸	Discharge Total VOC PID ⁷	Discharge Total VOCs ^{3,4,6}	Destruction	Removal	Mass	Mass	
Date	Time	Hr Meter ² (Hours)	(Hours)	(Days)	(Days)	(In. H ₂ O)	(In. H ₂ O)	(°F)	Flow Rate ¹ (scfm)	(ppmv)	(µg/m ³)	(F)	(ppmv)	(ug/m ³)	Efficiency ⁷ (%)	Rate ⁵ (Lb/Day)	Removal ⁶ (Lb)	Removal ⁹ (Lb)	Comments/Notes
09/30/2022	13:10	13,953.2	20,756.1	864.4	16.1	78.0	1.5	72	226.4	56.5	408,934	694	5.7	23,598	94	8.3	133.7		Systems ON on arrival operating with zone sparging. Sparge TAH alarms occurred on 9/14, 9/15, an 9/20, likely due to the bleed valve adjustment made on 9/14/22. Alarm notifications have been inactive since "6/8/22 due to outdated telemetry software, fix pending. The PRV discharges hotter air into the AS enclosure than the bleed valve does, likely impacting the compressed air temperatures. The bleed valve was re-opened "1/2-turn on 9/20/22, resolving the issue for the res of the period. Water was once again visible in SVE-6 and -8, despite dewatering last visit. Water als visible in SVE-9 (not dewatered last visit).
10/13/2022	15:13	14,261.6	21,064.5	877.3	12.9	78.0	2.0	68	262.4	9.3	67,311	667	0.7	2,898	96	1.6	20.4		SVE ON on arrival, but AS OFF due to a VFD motor overtemp fault. The fault occurred on 10/4/22 but was not resolved prior to the 10/13 site visit. System was shut down after O&M for the groundwater sampling sampling event in the evening of October 13, 2022. Both systems were restarted following sampling at 00:15 on 10/14/22. Alarm notifications have been inactive since ~6/8/22 due to outdated telemetry software, fix pending.
10/26/2022	16:00	14,564.8	21,367.7	889.9	12.6	83.0	1.5	58	227.7	21.6	156,336	682	0.7	2,898	98	3.2	40.4	9,747.9	10/17/22 - AS VFD motor overtemp alarm, triggered 10/14/22, was resolved by MM and the system was restarted. 10/19/22 - AS VFD motor overtemp alarm, triggered 10/18/22, was resolved by AECOM during VFD troubleshooting. If backpressure is too high, the VFD sends excessive amps to the motor and faults out. Bleed valve increased to 1 full turn open to relieve pressure. 10/26/22 - Systems ON on arrival. Measured amps in each wire in and out of the VFD. Based on results, ABB tech support believes the motor is having issues, not the VFD. Alarm notifications have been inactive since "6/8/22 due to outdated telemetry software, fix pending.
11/10/22	15:05	14,923.3	21,726.2	904.8	14.9	85.0	1.5	53	228.1	42.6	308,329	681	0.8	3,312	99	6.3	94.4	9,842.4	All systems ON on arrival. Sparge Zone 5 active. Systems ran continuously since last visit. Alarm notifications have been inactive since ~6/8/22 due to outdated telemetry software, fix pending.
11/23/22	15:35	15,228.3	22,031.2	917.6	12.7	86.0	1.8	53	246.0	8.8	63,692	669	1.1	4,554	93	1.4	17.9	9,860.3	All systems ON on arrival. Sparge Zone 5 active. Systems ran nearly continuously since last visit. PliP SVE dewatering piping upgrade was successfully used to dewater SVE-8. SVE header PID readings taken for the first time with new brake bleeder mini knockout tank. ~68% of total mass removal du to HSVE-2 via PID measurements. Alarm notifications have been inactive since ~6/8/22 due to outdated telemetry software, fix pending.
12/09/22	10:45	15,572.4	22,375.3	931.9	14.3	96.0	1.8	50	242.8	11.8	49,650	685	1.0	660	99	1.1	15.5	9,875.8	Judiated referrency software, in perioding. JT28/22: System restarted following UNAPL recovery event and storage tank vac-out. System had shut down due to a Moisture Separator high level alarm at 14:22 on 12/7/22. J12/922: All systems ON on arrival. Sparge Zone 4 active. 74% of total mass removal due to HSVE- via PID measurements. Alarm notifications have been inactive since ~6/8/22 due to outdated telemetry software, fix pending.
12/29/22	15:47	15,730.0	22,532.9	938.5	6.6	>100	1.7	<50	237.8	10.1	42,497	670	1.2	792	98	0.9	6.0	9,881.8	12/19/22: System restarted following vac-out of the storage tank by MM. System had shut down of 12/15/22 at 21:03 due to a Moisture Separator high level alarm. 12/15/22 at 21:03 due to a Moisture Separator high level alarm. 12/28/22: System restarted at 16:00 by MM. System was down due to an oxidizer alarm triggered 3:40 on 12/21/22. Cause unknown. 12/29/22: System OFF on arrival due to a Moisture Separator high level alarm triggered at 18:26 on 12/28/22: A broken union was discovered on the water transfer pipe, presumed due to the freezin temperatures on 12/22/22. Union repaired while on site. Bottom moisture separator float switch also discovered to be broken, also likely due to freezing. Immediate repair not possible, and norm automatic draining capability disabled as a result. The system was nu for several hours under supervision to collect readings but was shut down prior to departure.
02/16/23	15:30	15,942.0	22,744.9	947.3	8.8	100.0	1.5	50	223.4	9.4	39,552	678	0.3	198	99	0.8	7.0	9,888.8	1/27/23: System restarted following float switch repair and telemetry upgrade. Alarm notification functionality restored. 2/6/23: System ON on arrival. The storage full. 2/16/23: System ON on arrival. The storage tank was vacuumed out in the morning and system was restarted at 10:30. Readings collected "5 hrs later. Dewatering valves added to SVE-5, 7, 8, and 9. gol of free product (dark brown/black viscous) was extracted from the SVE-9 deadleg. The deadleg refilled immediately after with a product/water mix. SVE-6 and 8 were both full of water and drained. Both refilled immediately after. "41% of total mass removal due to HSVE-2 via PID measurements.
03/02/23	15:44	16,189.6	22,992.5	957.6	10.3	100.0	1.5	50	223.4	9.6	40,393	680	0.9	594	99	0.8	8.4	9,897.2	2726723: System shut down, water storage full. Telemetry failed to send notifications when floats triggered. 2728/23: Water storage vacuumed out & system restarted. 3/2/23: All systems ON on arrival. SVE wells adjusted at end of day to decrease water production: SVE-4 (30% open) and -8 (10% open). ~65% of total mass removal due to HSVE-2 via PID measurements.
03/15/23	15:36	16,495.7	23,298.6	970.4	12.8	98.0	1.5	52	223.4	12.6	43,370					0.9	11.1	9,908.3	measurements. 3/8/23: Storage Tank LAH triggered. System stayed on. 3/9/23: Storage tank vac'd out following product recovery event. 3/14/23: Oxidizer taken offline with PSCAA approval. New emission stack constructed for direct emissions to atmosphere. 3/15/23: System ON on arrival, with oxidizer offline. Sparge zone 3 active. 7.5 gal pumped from SV deadless77% of total mass removal due to HSVE-2 via PIO measurements.
03/30/23	11:34	16,850.3	23,653.2	985.1	14.8	96.0	1.5	58	223.4	7.3	25,127					0.5	7.5	9,915.7	System ON on arrival. Sparge zone 2 active. 4 gal pumped from SVE deadlegs initially. Water production spiked following a 45-minute shutdown; an additional 4.5 gal recovered in 45 min following restart. "83% of mass removal due to HSVE-2.

				0	perating Para	meters				Mass Removal							Mass Remo	val	
	[Calculated							Calculated			Calcu			Calculate		
			Cumulative	Cumulative	Period SVE	SVE	SVE	SVE	SVE	SVE Discharge	SVE Discharge	Oxidizer Fire	Oxidizer	Oxidizer	Period	Mass	Period	Cumulative	
		SVE Blower	SVE Blower	SVE Blower	Blower	Inlet	Inlet	Inlet	Inlet	Total VOC PID	Total VOCs ^{3,4}	Box	Discharge Total	Discharge Total		Removal	Mass	Mass	
		Hr Meter ²	Runtime ²	Runtime	Runtime	Vacuum	ΔΡ	Temp	Flow Rate ¹			Temp ⁸	VOC PID ⁷	VOCs ^{3,4,6}	Efficiency ⁷	Rate ⁵	Removal [®]	Removal ⁹	
Date	Time	(Hours)	(Hours)	(Days)	(Days)	(In. H ₂ O)	(In. H ₂ O)	(°F)	(scfm)	(ppmv)	(μg/m ³)	(F)	(ppmv)	(µg/m ³)	(%)	(Lb/Day)	(Lb)	(Lb)	Comments/Notes
04/11/23	17:18	17,141.8	23,944.7	997.3	12.1	>100	1.4	55	215.8	14.4	49,566				-	1.0	11.7	9,927.4	4/5/23: Poly tank vac'd out in response to an LAH notification on 4/2/23. 4/11/23: System ON on arrival. Zone 3 active. SVE vacuum >100 "wc. "600 gal water collected total in poly tank since 3/30. SVE dilution valve opened 1 turn from closed to decrease vacauum and water production. SVE dewlater(1)/2 gal of less from each vell. SVE-9 water was murky tan color due to product. "86% of total mass removal due to HSVE-2 via PID measurements.
04/27/23	13:09	17,464.5	24,267.4	1010.7	13.4	76.0	0.8	70	163.1	6.0	20,652					0.3	4.1	9,931.5	System ON on arrival. Zone 5 active. SVE vacuum at 76 "wc with DV open 1 turn. "21 gallons water collected in poly tank since last visit. Dewatered deadlegs - SVE wells 4, 5, 8, 9, and 10 all contained brown/muddy water during dewatering. "85% of total mass removal due to HSVE-2 via PID measurements.
05/09/23	14:32	17,752.3	24,555.2	1022.7	12.0	82.0	0.9	70	168.1	3.2	11,015					0.2	2.0	9,933.5	System ON on arrival. Zone 5 active. SVE vacuum at 82 "wc with DV closed. SVE-5 and -8 off due to high water accumulation and low flow. "O gallons water collected in poly tank since last visit. During dewatering, SVE-9 and -10 had discolored water; all others were clear. "73% of total mass removal due to HSVE-2 via PID measurements.
05/24/23	13:55	18,107.7	24,910.6	1037.5	14.8	85.0	1.0	72	182.4	4.5	15,489					0.3	3.8	9,937.2	System ON on arrival. Zone 5 active. SVE-6 and -8 off due to high water accumulation and low flow. "40 gallons water collected in poly tank since last visit. During dewatering, SVE-4, -9, and -10 had discolored water. All others were clear. "66% of total mass removal due to HSVE-2 via PID measurements. SVE-6 opened at EOD.
06/08/23	13:24	18,465.6	25,268.5	1052.4	14.9	79.0	1.1	75	191.3	6.1	20,997					0.4	5.4	9,942.6	System ON on arrival. Zone 5 active. SVE-8 off due to high water accumulation and low flow. ~27 gallons water collected in poly tank since last visit. During dewatering, only SVE-9 had discolored water; all others were clear. ~53% of total mass removal due to HSVE-2 via PID measurements.
06/22/23	14:27	18,799.3	25,602.2	1066.3	13.9	79.0	1.1	70	191.3	4.9	12,000					0.2	2.9	9,945.5	System ON on arrival. Zone 5 active. SVE-8 off due to high water accumulation and low flow. SVE-9 had protuct in its rotameter. During dewatering. SVE-9 had brown oily water, all others were clear. Poly tank was vaid on 6/3/92 after the 2Q. UARAP recovery event.
07/05/23	11:23	19,105.1	25,908.0	1079.1	12.7	78.0	1.2	69	199.8	3.4	8,327					0.1	1.9	9,947.4	System ON on arrival. Zone 4 active. SVE-8 off due to high water accumulation and low flow. SVE-9 had protuct in its rotameter. During dewatering, SVE-9 had discolored water with some product, while all others were clear. SVE dilution valve opened 1 full turn (from closed) to reduce vacuum and water extraction at manifold. Sparge pulsing adjusted to only run in Zone 2 and Zone 5 based on gw analytical results.
07/19/23	12:27	19,433.7	26,236.6	1092.8	13.7	72.0	0.5	76	122.3	2.6	6,367					0.1	1.0	9,948.3	System ON on arrival. Zone 2 active. SVE-8 off due to water accumulation. SVE-9 had protuct in its rotameter. During dewatering, SVE-4 and 9 had some product in their water, all others were clear.
08/04/23	14:00	19,815.2	26,618.1	1108.7	15.9	52.0	0.8	85	163.1	1.9	4,653					0.1	1.1	9,949.4	System ON on arrival. Zone 5 active. SVE-8 off due to water accumulation. During dewatering SVE-9 had dark brown product water. Sparging adjusted to pulse on and off in Zone 5 only.
08/17/23	13:00	20,122.0	26,924.9	1121.5	12.8	46.0	0.5	86	129.0	5.1	12,490					0.1	1.9	9,951.3	System ON on arrival. No AS zone active. SVE-8 off due to water accumulation. During dewatering, SVE-9 started with clear water but ended with protuct mixed in.
08/30/23	9:22	20,429.1	27,232.0	1134.3	12.8	50.0	0.5	70	129.0	2.1	5,143				-	0.1	0.8	9,952.0	System ON on arrival. SVE-8 off due to water accumulation. During dewatering , SVE-9 had product in water.
09/12/23	9:23	20,739.8	27,542.7	1147.2	12.9	46.0	0.5	68	129.0	3.7	9,061			-	-	0.1	1.4	9,953.4	System ON on arrival. Zone 5 active. SVE-8 off due to water accumulation. During dewatering SVE-4 had large brown flakes in water and SVE-9 had product in water, all others clear.
09/28/23	12:08	21,125.0	27,927.9	1163.2	16.1	47.0	0.4	65	115.3	4.9	10,380					0.1	1.7	9,955.1	System ON on arrival. Zone 5 active. SVE-8 off due to water accumulation. During dewatering SVE-9 had product present.
10/10/23	10:22	21,410.2	28,213.1	1175.1	11.9	48.0	0.5	61	129.0	1.5	3,178					0.0	0.4	9,955.6	System ON on arrival. Zone 5 active. Zone 5 active. SVE-8 off due to water accumulation.
10/26/23	11:56	21,731.6	28,534.5	1188.5	13.4	36.0	0.4	59	115.3	1.6	3,389					0.0	0.5	9,956.0	System ON on arrival. Zone 5 active. SVE-8 off due to water accumulation. During dewatering SVE- 10 had clear water with an odor, SVE-9 had water with product, all other wells were clear. Lower %operational value due to downtime around GWM on 10/12/23.
11/09/23	12:55	22,067.8	28,870.7	1202.5	14.0	30.0	0.4	56	115.3	1.4	2,966					0.0	0.4	9,956.5	System ON on arrival. SVE-8 off due to water accumulation. No AS zone active during site visit.
11/29/23	10:23	22,543.9	29,346.8	1222.4	19.8	30.0	0.4	50	115.3	0.8	1,695					0.0	0.3	9,956.8	During SVE-9 had brown, oily water. System ON on arrival. Zone 5 active. SVE-8 off due to water accumulation. During dewatering SVE-9 had brown and oily water; all other wells were clear.
12/14/23	11:50	22,902.7	29,705.6	1237.3	15.0	42.0	0.7	50	152.6	3.8	8,050			-		0.1	1.7	9,958.5	Systems ON on arrival. Zone 5 active. SVE-8 off due to water accumulation. During dewatering SVE-9 and 10 had brown product-impacted water, SVE-4 had bits of debris, and all other wells were clear.
12/27/23	11:15	23,212.7	30,015.6	1250.2	12.9	48.0	0.7	52	152.6	1.9	7,900					0.1	1.4	9,959.9	Systems ON on arrival. Zone 5 active. SVE-8 off due to water accumulation. During dewatering SVE-9 and 10 had brown product-impacted water, SVE-4 and HSVE-1 had bits of debris, and all other wells were clear.

Footnotes:

1. Standard flow (scfm) is calculated using differential pressure, pressure, and temperature as recorded in the field per the equation below (as identified with green highlighting in the table). The PSCAA permit requires the SVE flowrate to be less than or equal to 375 scfm.

Pitot Tube Flow Equation for Any Gas Notes:

Q (SCFM) = 12	8.8 x K x D^	2 x SQRT ((P x delta P)/(T +460) x Ss)	From Dwyer Bulletin F-50
Q	SCFM	Flow in standard cubic feet per minute	See Table for Calculation from Gauge Reading
K	0.67	Flow Coefficient for 3 and 4-inch pipe	From Dwyer Bulletin F-50
D	3.79	Inside Diameter of Pipe measured in inches	SVE Sch. 80 PVC Pipe Inside Diameter
Т	50	Degrees Fahrenheit	Average Temp of Extracted Air
delta P	0.4	Differential Pressure read on Magnehelic Gauge	See Table for Gauge Reading (in H2O)
V	-3.0	Pressure (vacuum psig) inside pipe	Field Measurements Recorded as in H20. Conversion is 1.00 in H20 = 0.0361 psig
P	11.7	Static Line Pressure (psia) = 14.7 + V	PSIA plus Vacuum. Calculate Vacuum as a Negative Number.
Ss	1.00	Specific Gravity (SG) of Air at 60 degrees F	SG is Unitless

2. On 12/03/20, the blower hour meter was reset after an extended power outage and changeover to generator power.

Abbreviations, Symbols, and Notes:

-- = not analyzed or not applicable $\Delta P = Differential Pressure$ $H_Q = Water$ Hr = Hour ^oF = Degrees Fahrenheit In. = Inch Lb = pound ppmv = Parts per million volume scfm = Standard Cubic Feet Per Minute

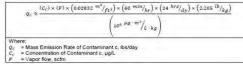
μg/m³ = micrograms per cubic meter

Red values indicate approximated values or averaged values as placeholder for data not recorded in the field.

		Operating Parameters								Mass Removal						Mass Removal			
		Calculated									Calculated			Calcul	ated		Calculate	d	
			Cumulative	Cumulative	Period SVE	SVE	SVE	SVE	SVE	SVE Discharge	SVE Discharge	Oxidizer Fire	Oxidizer	Oxidizer	Period	Mass	Period	Cumulative	
		SVE Blower	SVE Blower	SVE Blower	Blower	Inlet	Inlet	Inlet	Inlet		Total VOCs ^{3,4}		Discharge Total	Discharge Total	Destruction	Removal	Mass	Mass	
		Hr Meter ²	Runtime ²	Runtime	Runtime	Vacuum	ΔP	Temp	Flow Rate ¹		Total VOCS	Temp ⁸	VOC PID ⁷	VOCs ^{3,4,6}	Efficiency ⁷	Rate⁵	Removal ⁶	Removal ⁹	
Date	Time	(Hours)	(Hours)	(Days)	(Days)	(In. H ₂ O)	(In. H ₂ O)	(°F)	(scfm)	(ppmv)	(µg/m ³)	(F)	(ppmv)	(µg/m ³)	(%)	(Lb/Day)	(Lb)	(Lb)	Comments/Notes
3. The TPH o	The TPH concentration is the sum of APH ECS-8 alighatics, APH EC9-12 alighatics, and APH EC9-10 aromatics. If one of these was not detected, a conservative approach of 1x the reporting limit was used in Blue values indicate data collected by CRETE but input by AECOM, or calculated by AECOM with data previously																		

collected by CRETE.

3. The TPH concentration is the sum of APH EC5-8 aliphatics, APH EC9-12 aliphatics, and APH EC9-10 aromatics. If one of these was not detected, a conservative approach of 1x the reporting limit was used in the calculation.


4. For dates with laboratory data, the Total VOC Concentration equals the laboratory TPH concentration. For dates without laboratory data, the Total VOC Concentration is calculated by adjusting the PID

measurement with a correction factor. This correction factor is calculated by dividing the laboratory-measured TPH concentration from the most recent sampling event by the field-collected PID measurement

from the same day.

		Operating Parameters										Mass I	Removal			Mass Removal			
				Calculated							Calculated			Calcul	ated		Calculated	ł	
			Cumulative	Cumulative	Period SVE	SVE	SVE	SVE	SVE	SVE Discharge	SVE Discharge	Oxidizer Fire	Oxidizer	Oxidizer	Period	Mass	Period	Cumulative	
		SVE Blower	SVE Blower	SVE Blower	Blower	Inlet	Inlet	Inlet	Inlet	Total VOC PID	Total VOCs ^{3,4}	Box	Discharge Total		Destruction	Removal	Mass	Mass	
		Hr Meter ²	Runtime ²	Runtime	Runtime	Vacuum	ΔΡ	Temp	Flow Rate ¹		Total vocs	Temp ⁸	VOC PID ⁷	VOCs ^{3,4,6}	Efficiency ⁷	Rate⁵	Removal ⁶	Removal ⁹	
Date	Time	e (Hours)	(Hours)	(Days)	(Days)	(In. H ₂ O)	(In. H ₂ O)	(°F)	(scfm)	(ppmv)	(µg/m ³)	(F)	(ppmv)	(µg/m ³)	(%)	(Lb/Day)	(Lb)	(Lb)	Comments/Notes

5. Removal rates are calculated via:

6. Unless otherwise indicated, all data from before 9/30/2021 was collected by CRETE and was not reviewed or validated by AECOM.

7. Destruction efficiency is calculated with the Total VOC Oxidizer Outlet Concentration and the Total VOC Oxidizer Inlet Concentration. The PSCAA permit dictates that:

At all times during operation of the SVE system, the abatement device shall meet the following requirements, as applicable:

a) ≥98.5% control efficiency if inlet TPH ≥2,000 ppmv, measured as hexane or its equivalent; or

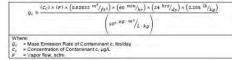
b) ≥97% control efficiency if inlet TPH ≥200 ppmv and <2,000 ppmv, measured as hexane or its equivalent; or

c) ≥90% control efficiency if inlet TPH <200 ppmv, measured as hexane or its equivalent; or

d) \leq 10 ppmv at the outlet of the control device, measured as hexane or its equivalent.

8. The PSCAA permit states that: The minimum operating temperature at the fire box of the thermal oxidizer shall be at least 1,400°F, on an hourly average. When the thermal oxidizer was retrofitted to a

catalytic oxidizer on 3/19/20, the minimum operating temperature became 600°F. The hourly requirement is met by the shut-down alarm programmed if the temperature drops below the permitted threshold.


9. This calculation was revised by AECOM to use the mass removal rate from the single day's data rather than the average with the previous visit as CRETE had done.

r	SVE Field Data Laboratory SVE Discharge Results							Mass Removal ³						Laboratory Oxidizer Discharge Results										
		Calculated		Calcul		atory SVE D	nscharge Re	esults		Calculated						Calcu	lated	Laboratory	oxiaizer Di	sunarge Ri	sults	Calculated		
		Curculated		Calcul				1						Ĭ	ТРН	TPH	Calco		1				curcuidteu	1
	Cumulative	Period SVE	SVE Inlet												Period	Cumulative							TPH	
	SVE Blower	Blower	Vapor Flow					Ethyl-	Total				Ethyl-	Total	Mass	Mass					Ethyl-	Total	Destruction	
	Runtime ¹	Runtime ¹	Rate ¹	TPH ²	TPH ^{7,8}	Benzene	Toluene	benzene	Xylenes	TPH ^{2,9}	Benzene ⁹	Toluene ⁹	benzene ⁹	Xylene ⁹	Removed	Removed	TPH ²	TPH7,8	Benzene	Toluene	benzene	Xylenes	Efficiency ^{4,8}	
Date	(Days)	(Days)	(scfm)	(µg/m ³)	(ppmv)	(µg/m ³)	(µg/m ³)	$(\mu g/m^3)$	(µg/m ³)	(lbs/day)	(lbs/day)	(lbs/day)	(lbs/day)	(lbs/day)	(lb)	(lb)	(µg/m ³)	(ppmv)) (µg/m ³)	(µg/m ³)	(µg/m ³)	(µg/m ³)	(%)	Comments
10/23/2019	34.03	34.03	185	796,500	194.8	160	7,200	170	500	13.23	0.0027	0.120	0.003	0.008	450.1	450.1	4,590	1.1	210	150	4	18	99.4	SVE was started on 9/19/2019.
11/27/2019	63.12	29.10	308	917	0.2	1	58	1	4	18.04				-	525.0	975.1	1,705	0.4	130	64	1.5	4.5	99.7	Lab Data is guestionable and not used in calculations. See Note 5.
12/23/2019	89.13	26.00	260	1,381,000	337.7	320	770	54	96	32.24	0.0075	0.018	0.001	0.002	838.3	1,813.3	1,125	0.3	18	57	1.3	3.9	99.9	
1/15/2020	112.13	23.00	229	188,970	46.2	23	730	17	51	3.89	0.0005	0.015	0.000	0.001	89.6	1,902.9	340	0.1	2.6	60	1.4	4.2	99.8	
2/11/2020	139.18	27.05	232	94,970	23.2	12	730	17	51	1.98	0.0003	0.015	0.000	0.001	53.7	1,956.5	1,090	0.3	2.6	150	3.5	10.5	98.9	
3/12/2020	169.00	29.83	220	641	0.2	1	62	1	4	3.36				-	100.3	2,056.8	515	0.1	0.96	57	1.3	3.9	99.7	Inlet concentration lab data suspect. Need to re-sample upon start up. Lab data not used in calculations. See Note 5.
8/26/2020	189.43	20.43	134	2,101,500	513.9	260	680	97	251	25.26	0.0031	0.008	0.001	0.003	516.0	2,572.9	6,570	1.6	11	660	15	45	99.7	System was off line March 24 - August 17, 2020 due to the Covid 19 Pandemic
9/29/2020	223.18	33.75	243.2	1,460,900	357.2	120	680	56	118	31.94	0.0026	0.015	0.001	0.003	1,078.1	3,650.9	9,570	2.3	11	660	15	45	99.3	
10/27/2020	249.87	26.69	263.1	394,000	96.3	270	16,000	370	1,120	9.32	0.0064	0.378	0.009	0.026	248.7	3,899.7	5,250	1.3	4.5	260	6.1	18.1	98.7	
11/18/2020	272.09	22.22	264.0	452,000	110.5	140	8,100	190	560	10.73	0.0033	0.192	0.005	0.013	238.5	4,138.1	14,400	3.5	12	680	16	47	99.0 ⁵	
12/16/2020	295.75	23.66	229.5	1,151,000	281.5	73	2,600	61	181	23.75	0.0015	0.054	0.001	0.004	561.8	4,699.9	9,170	2.2	4.8	280	6.5	31.5	99.2	
1/12/2021	321.72	25.98	227.7	924,000	225.9	86	3,000	69	209	18.92	0.0018	0.061	0.001	0.004	491.4	5,191.3	8,570	2.1	4.8	280	9.1	53.3	99.1	
2/17/2021	352.59	30.86	230.7	566,950	138.6	50	720	28	50	11.76	0.0010	0.015	0.001	0.001	363.1	5,554.4	3,160	0.8	50.0	720	28	50	99.4	
3/23/2021	384.49	31.91	227.3	563,000	137.7	140	8,500	200	590	11.51	0.0029	0.174	0.004	0.012	367.2	5,921.6	10,850	2.7	5.8	340	32	83	98.1	
4/19/2021	408.29	23.80	227.0	641,000	156.7	140	8,300	190	570	13.09	0.0029	0.169	0.004	0.012	311.4	6,233.0	21,570	5.3	4.8	280	59	217	96.6	AS blower shut down due to oil leak.
5/20/2021	435.64	27.35	227.0	420,900	102.9	17	680	24	47	8.59	0.0003	0.014	0.000	0.001	235.0	6,468.0	7,010	1.7	1.5	87	69	233	98.3	AS blower restarted on 5/4/21 with repaired oil gasket.
6/16/2021	459.92	24.27	222.7	421,000	102.9	140	8,100	190	560	8.43	0.0028	0.162	0.004	0.011	204.6	6,672.6	5,250	1.3	4.5	260	6.1	18.1	98.8	AS system down since 6/15/21 for blower servicing.
7/19/2021	492.40	32.48	223.1	257,000	62.8	150	8,700	200	600	5.15	0.0030	0.175	0.004	0.012	167.4	6,840.1	5,700	1.4	5.1	300	6.9	20.9	97.8	AS system down since 6/15/21 for blower servicing.
8/26/2021	530.34	37.94	225.7	251,000	61.4	150 U	8,900 U	J 200 U	610 U	5.09	0.0030	0.181	0.004	0.012	193.2	7,033.3	4,070	1.0	4.8 L	J 280 U	6.5 U	19.5 U	98.4	AS system restarted 7/24/21. PAH alarms continue to shut down the AS system. Malfunctioning pressure switch likely cause.
9/30/2021	559.72	29.38	228.5	269,500 J	65.9	83 U	4,900 U	110 U	340 U	5.54	0.0017	0.101	0.002	0.007	162.7	7,196.0	3,030	0.7	1.9 U	110 U	2.6 L	7.7 U	98.9	AECOM takes over system operation. See Footnote 6. SVE and Oxidizer running smoothly. PAH alarms continue to shut down the AS system. Malfunctioning pressure switch likely cause.
10/21/2021	580.61	20.90	229.7	108,510 J	26.5	6.0	340 L	J 10	24 U	2.24	0.0001	0.007	0.000	0.000	46.8	7,242.9	1,900	0.5	1.9 l	J 110 U	2.5 L	7.5 U	98.2	PAH alarms continue to shut down the AS system. Malfunctioning pressure switch likely cause.
11/18/2021	608.37	27.75	228.4	103,250 J	25.2	7.5	340 L	J 11 J	24 UJ	2.12	0.0002	0.007	0.000	0.000	58.9	7,301.7	1,020	0.2	1.9 l	J 110 U	2.6 L	7.9 U	99.0	SVE and Oxidizer running smoothly with the exception of SVE downtime 10/21- 10/28. Replacement AS Compressor pressure switch installed on 11/17/21 by Marine Maintenance. AS system running smoothly since.
12/22/2021	642.08	33.71	227.0	109,700	26.8	56 U	3,300 L	J 76 U	226 U	2.24	0.0011	0.067	0.002	0.005	75.5	7,377.2	1,250	0.3	1.8 l	J 110 U	2.5 U	7.5 U	98.9	AS, SVE, and Oxidizer running smoothly. No new AS PAH alarms since the pressure switch replacement.
3/31/2022	718.88	76.80	161.5	101,000 J	24.7	13 U	790 L	J 18 U	54 U	1.47	0.0002	0.011	0.000	0.001	112.6	7,489.8	1,900	0.5	1.9 l	J 110 U	2.6 L	7.9 U	98.1	Oxidizer and SVE ON on arrival but AS system OFF due to a PAH alarm. Alarm cleared and AS restarted at 10:50. Sample taken at
6/29/2022	775.72	56.84	212.0	73,100 J	17.9	15 U	870 U	J 20	60 U	1.39	0.0003	0.017	0.000	0.001	79.2	7,569.0	800	0.2	1.9 U	J 110 U	2.6 L	7.8 U	98.9	Sample collected but biweekly system readings not recorded. AS system down on arrival due to a THA alarm from 6/25/22. Samples collected after 30 min AS runtime and PID readings within expected range (18.4 ppmv intake; 0.7 ppmv discharge). Zone 5 active.
9/14/2022	848.37	72.64	225.9	32,570 J	8.0	6.1 U	360 U	J 8.3 U	25 U	0.66	0.0001	0.007	0.000	0.001	48.1	7,617.1	2,070	0.5	2.1 L				93.6	All systems ON on arrival. Zone 4 active.
12/9/2022	931.89	83.53	242.8	49,650	12.1	12 U	720 L	J 17 U	50 U	1.08	0.0003	0.016	0.000	0.001	90.5	7,707.6	660	0.2	1.6 L	J 94 U	2.2 L	6.5 U	98.7	All systems ON on arrival. Zone 4 active.
3/15/2023	970.36	38.47	223.4	43,370	10.6	4.8 U	280 L	J 6.5 U	20 U	0.87	0.0001	0.006	0.000	0.000	33.5	7,741.1		-						Sytem ON on arrival, Zone 3 active. Oxidizer taken offline 3/14 with PSCAA
																		-		-				approval. New emission stack constructed for direct emission to atmosphere.
6/22/2023	1066.34	95.98	191	12,000	2.934	2.7 U	63 L	J 3.6 U	11 U	0.21	0.0000	0.0011	0.0001	0.0002	19.8	7,761.0		-						System ON on arrival. Zone 5 active. SVE-8 off due to high water accumulation and low flow.
9/28/2023	1163.25	96.90	115	10,380	2.538	2.4 U	56 L	J 3.2 U	10 U	0.11	0.0000	0.0006	0.0000	0.0001	10.4	7,771.4		-						System ON on arrival. Zone 5 active. SVE-8 off due to high water accumulation and low flow. System ON on arrival. Zone 5 active. SVE-8 off due to high water accumulation
12/27/2023	1250.24	86.99	153	7,900	1.932	2.5 U	60 L	J 3.4 U	10 U	0.11	0.0000	0.0008	0.0000	0.0001	9.4	7,780.8				-				system UN on arrival. Zone 5 active. SVE-8 off due to high water accumulation and low flow.
							I		2019	2071	0	4	0	0										
								Cumulative Removed	2020	3212	0.4	16.5	0.4	1.3	1									
								(vr) ⁹ :	2021	2433 374	0.6	31.5 4.2	0.7	2.2	1									

Footnotes:

1. Refer to Table 4 for details and calculations. The PSCAA permit requires the SVE flowrate to be less than or equal to 375 8. The PSCAA permit dictates that: scfm.

2. The TPH concentration is the sum of APH EC5-8 aliphatics, APH EC9-12 aliphatics, and APH EC9-10 aromatics. If one of these was not detected, a consertaive approach of 1x the reporting limit was used in the calculation. 3. Mass emission and removal rates are calculated by variations of:

4. Destruction efficiency is calculated with the Total VOC Oxidizer Outlet Concentration and the Total VOC Oxidizer Inlet Concentration.

5. TPH calculations are based on the Table 4 adjusted field PID readings as the samples may have been diluted. 6. Unless otherwise indicated, all data from before 9/30/2021 was collected by CRETE and was not reviewed or validated

by AECOM. 7. 100 g/mol is used as the average molecular weight of TPH-G used to calculate ppmv. In the equation below, P is

atmospheric pressure at sea level, or 101.325 kPa. T is standard temperautre, 298 K.

 $ppmV = \frac{ug}{L} \times \frac{1}{Molecular Weight_{contaminant}[g/mold]} \times 83144 \left[\frac{L \cdot kPa}{mol \cdot K}\right] \times T_{abs}[K] \times \frac{1}{P_{abs}[kPa]}$

6.62

1,000

> 3.3 0.1 0.2

PSCAA Permit Threshold fo

Control Device Need (lbs/yr)9

2023 105 0.1

- At all times during operation of the SVE system, the abatement device shall meet the following requirements, as applicable: a) 298.5% control efficiency if inlet TPH ≥2,000 ppmv, measured as hexane or its equivalent; or
 b) 297% control efficiency if inlet TPH ≥200 ppmv and <2,000 ppmv, measured as hexane or its equivalent; or
- c) ≥90% control efficiency if inlet TPH <200 ppmv, measured as hexane or its equivalent; or d) ≤10 ppmv at the outlet of the control device, measured as hexane or its equivalent.

76.9 ---

9. The PSCAA permit dictates the following. Values in excess of the permit are indicated with bold formatting. The owner or operator may operate the SVE system without the control device when inlet sampling data from two or more c onsecutive months

- a) Pre-control TPH emission rate is equal to or less than 2.74 lbs/day [eq 1,000 lb/yr];
- b) Pre-control benzene emission rate is equal to or less than 0.018 lbs/day [eq 6.62lbs/yr];
 c) Pre-control ethylbenzene emission rate is equal to or less than 0.21 lbs/day [eq 76.9 lbs/yr];

d) Pre-control toluene emission rate is equal to or less than 657 lbs/day [no annual equivalent]; and e) Pre-control xylene emission rate is equal to or less than 29.0 lbs/day [no annual equivalent].

Abbreviations, Symbols, and Notes:

µg/m³ = micrograms per cubic meter J = Estimated value NA = Not Applicable lb = pound lbs/yr = pounds per year NL = Not listed scfm = standard cubic feet per minute SQER = Small Quantity Emission Rates TPH = Total Petroleum Hydrocarbons U = Concentration is below the laboratory reporting limit, so the reporting limit is shown Red values indicate approximated values or averaged values as placeholder for data not recorded in the field.

Blue values indicate data collected by CRETE but input by AECOM, or calculated by AECOM with data previously collected by CRETE.

Bold values = exceeds PSCAA permit limit for removal of control device

PORT OF SEATTLE - TERMINAL 30 Table 6 LNAPL Gauging and Recovery Results

		Tidal I	Position		Period	Cumulative	MW-	35 ^{к,м}	MW	MW-36 ^M		MW-36A ^M		MW-39A	
		Time of	Time of	Average	Product	Product	Initial LNAPL	Final LNAPL	Initial LNAPL	Final LNAPL	Initial LNAPL	Final LNAPL	Initial LNAPL	Final LNAPL	
	Time of	Nearest	Nearest	DTW (FT.)	Removed	Removed	Thickness	Thickness ^H	Thickness	Thickness ^H	Thickness	Thickness ^H	Thickness	Thickness ^H	
Date	Fieldwork	Low Tide [⊦]	High Tide [⊧]	(FT)	(Gal)	(Gal)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	
Baseline'	NA				NA	NA	NM		0.18		0.04		0.05		
01/09/2020	NM				46.7	46.7	NM	NM	0.14	0.00	<0.01		<0.01		
02/13/2020	NM				21.3	68	NM	NM	0.00		<0.01		<0.01		
03/12/2020	NM				48.4	116.4	NM	NM	0.00		<0.01		<0.01		
05/16/2020	NM				20	136.4	NM	NM	0.04	0.00	0.00		0.35	0.00	
06/19/2020	NM				156	292.4	NM	NM	1.00	0.01	0.00		0.16	<0.01	
07/28/2020	NM				35	327.4	NM	NM	0.95	<0.01	0.00		0.10	0.01	
08/21/2020	NM				32	359.4	NM	NM	0.16	0.00	<0.01		0.04	<0.01	
09/10/2020	NM				16.4	375.8	NM	NM	0.00		0.00		TRACE		
10/08/2020	15:30-21:51	20:24	14:24		35.1	410.9	0.52	0.00	0.00		0.00		0.00		
11/11/2020	07:50-14:45	05:48	12:18		99	509.9	0.19	DRY	0.00		0.00		0.00		
12/10/2020 ^C	16:12-17:46	17:24	12:12		NA	509.9	0.02		0.00		0.00		0.00		
01/15/2021	07:53-16:02	07:42	15:06		39	548.9	0.28	0.00	0.00		0.00		0.00		
2/12/2021 ^{C,I}	08:07-10:07	11:49	06:09		NA	548.9	0.06		0.00		0.00		0.00		
03/05/2021	07:15-13:14	11:00	05:54		39 ^D	587.9	0.10	0.00	0.00		0.00		0.00		
4/15/2021 ^C	16:33-18:35	20:42	13:54		NA	587.9	0.42		0.00		0.00		0.00		
05/13/2021	16:01-20:39	19:30	13:00		24	611.9	0.04	0.00	0.00		0.00		0.00		
6/10/2021 ^C	15:05-17:29	18:36	11:48		NA	611.9	0.02		0.00		0.00		0.00		
08/12/2021	16:31-20:26	21:03	14:50		78	689.9	0.02	0.00	0.02	0.00	0.00		TRACE		
11/11/2021 ^G	15:25-21:20	11:18	19:06	8.77	44.3	734.2	0.00		0.00		0.00		0.00		
1/18/2022 ^c	16:37-17:57	19:54	14:30	7.87	NA	734.2	NM	NM	0.00		NM	NM	0.00		
02/17/2022	16:42-19:08	19:48	14:06	8.65	31.48	765.68	0.05	0.00	0.00		0.00		0.00		
4/14/2022 ^C	18:27-19:57	17:48	23:24	8.74	NA	765.68	0.00		0.00		0.00		0.00		
05/12/2022	16:30-21:05	16:24	22:18	9.10	13.3	778.98	0.00		0.00		0.00		0.00		
6/20/2022 ^C	08:31-10:14	05:25	10:07	9.01	NA	778.98	0.00		0.00		0.00		0.00		
07/14/2022	16:29-20:48	11:55	19:33	8.83	10.12	789.1	0.00		0.00		0.00		0.00		
08/11/2022 ^C	16:40-17:23	18:00	11:00	8.98	NA	789.1	0.01		0.00		0.00		0.00		
09/08/2022	16:40-17:49	22:47	17:13	9.53	11.14	800.24	TRACE		0.00		0.00		0.00		
10/13/2022 ^C	17:19-18:12	19:11	14:04	9.44	NA	800.24	0.02		0.00		NA ^O	NA ⁰	NA ^O	NA ^O	
11/10/2022	18:00-18:49	23:54	16:51	8.68	NA	800.24	<0.01		0.00		NA	NA	NA	NA	
12/08/2022	16:51-20:30	22:55	15:45	8.79	48.55	848.79	0.03		NA ^O	NA ^O	NA	NA	NA	NA	
01/12/2023 °	17:20-17:55	19:41	12:11	7.92	NA	848.79	0.00		NA	NA	NA	NA	NA	NA	
02/09/2023 ^C	16:55-17:36	17:00	13:33	8.50	NA	848.79	0.00		NA	NA	NA	NA	NA	NA	
03/09/2023	16:57-20:10	12:17	20:11	8.57	32.78	881.57	0.01	0.00	NA	NA	NA	NA	NA	NA	
04/13/2023 ^c	18:07 -18:50	17:36	10:00	8.53	NA	881.57	<0.01		NA	NA	NA	NA	NA	NA	
05/11/2023 °	18:11-18:46	16:09	08:41	8.48	NA	881.57	0.04		NA	NA	NA	NA	NA	NA	
06/19/2023	08:45-13:20	12:18	05:05	9.01	34.06	915.63	0.07	0.00	NA	NA	NA	NA	NA	NA	
07/27/2023 ^C	16:38-17:02	18:31	14:31	9.27	NA	915.63	TRACE		NA	NA	NA	NA	NA	NA	
08/10/2023 ^C	16:42-17:00	20:11	15:28	8.68	NA 11.7	915.63	0.03		NA	NA	NA	NA	NA	NA	
09/14/2023 10/12/2023 ^C	17:00-22:00 17:52-18:28	23:58 23:01	18:00 16:40	9.08 9.79	11.7 NA	927.33 927.33	0.12	0.00	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
10/12/2023	17:52-18:28	23:01	16:40	9.79 8.90	NA	927.33	0.05		NA	NA	NA	NA	NA	NA	
12/14/2023	16:25-21:00	16:20	23:58	8.43	12.04	939.37	0.00		NA	NA	NA	NA	NA	NA	

PORT OF SEATTLE - TERMINAL 30 Table 6 LNAPL Gauging and Recovery Results

	MW-59		MW	-89	MW	-93 ^M	RW	-1 ^M		RW-12		RW-101	
	Initial LNAPL	Final LNAPL	Initial LNAPL	Final LNAPL	Initial LNAPL	Final LNAPL	Initial LNAPL	Final LNAPL	Initial LNAPL	Final LNAPL		Initial LNAPL	Final LNAPL
	Thickness	Thickness ^H	Thickness	Thickness ^H	Thickness	Thickness ^H	Thickness	Thickness ^H	Thickness	Thickness ^H	DTW ^Q	Thickness	Thickness ^H
Date	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft BTOC)	(Ft)	(Ft)
Baseline	0.90		2.39		1.04		0.55		0.00			0.02	
01/09/2020	2.19	0.00	<0.01 ^A		<0.01		0.03	0.01 ^B	0.71	0.03 ^B		0.02	<0.01
02/13/2020	0.23	0.10 ^B	<0.01		<0.01		0.01	<0.01	0.25	0.03 ^B		<0.01	NM
03/12/2020	0.09	<0.01	<0.01		<0.01		0.05	<0.01	0.78	0.08 ^B		0.03	<0.01
05/16/2020	1.06	0.00	0.00		0.10	0.00	0.56	0.22 ^B	0.78	0.05 ^B		0.08	
06/19/2020	0.93	<0.01	0.00		0.18	<0.01	0.59	0.08 ^B	0.59	0.00		0.07 ^B	0.05 ^B
07/28/2020	0.76	0.01	0.00		0.18	0.00	0.47	0.02 ^B	0.60	0.00		0.09	0.00
08/21/2020	1.12	<0.01	0.00		0.05	<0.01	0.32	0.01 ^B	0.35	0.02 ^B		0.00	
09/10/2020	0.00	NM	0.00		TRACE	TRACE	0.20	<0.01	0.24	0.02 ^B		0.00	
10/08/2020	<0.01	0.00	0.00		0.00		0.11	0.01B	0.45	0.02 ^B		0.05	0.00
11/11/2020	0.00		0.00		0.00		0.28	0.09 ^B	0.43	NM		<0.01	0.00
12/10/2020 ^C	0.00		0.00		0.00		0.04		0.16			0.00	
01/15/2021	0.00		0.00		0.00		0.06	0.01 ^B	0.18	0.01 ^B		0.00	
2/12/2021 ^{C,I}	0.00		0.00		0.00		0.03		0.03			0.00	
03/05/2021	0.09	0.00	0.00		0.00		0.17	0.01 ^B	0.05	0.00		0.00	
4/15/2021 ^c	0.01		0.00		0.00		0.11		0.25			0.00	
05/13/2021	0.62	0.00	0.00		0.00		0.17	0.02 ^B	>0.10	0.00		WI	WI
6/10/2021 ^C	0.86		0.00		0.00		0.26		0.21			0.01	
08/12/2021	WI	WI	0.00		0.00		0.27	0.1 ^B	0.31	0.01 ^B		0.00	
11/11/2021 ^G	0.20	0.00	0.00		0.00		0.15	0.00	0.30	0.00	9.40	0.00	
1/18/2022 ^C	0.39		NM	NM	0.00		NM	NM	0.07		8.26	0.00	
02/17/2022	1.36	0.00	0.00		0.00		0.06	0.01	0.05	0.01	9.15	0.00	
4/14/2022 ^C	0.00		0.00		0.00		0.03		0.06		9.04	0.00	
05/12/2022	0.00		0.00		0.00		0.08	<0.01	0.09	0.00	9.50	0.00	
6/20/2022 ^C	0.12		0.00		0.00		0.08		0.01		9.20	0.00	
07/14/2022	0.00		0.00		0.00		0.09	0.00	0.13	0.00	9.46	0.00	
08/11/2022 ^C	0.00		0.00		0.00		0.06		0.17		9.43	0.00	
09/08/2022	0.19	0.01	0.00		0.00		0.10	0.01	0.32	TRACE	9.57	0.00	
10/13/2022 ^C	0.00		NA ^O	NA ^O	NA ^O	NA ^O	0.06		0.29		9.73	NA ⁰	NA ^O
11/10/2022 ^C	0.00		NA	NA	NA	NA	0.07		0.33		9.18	NA	NA
12/08/2022	0.05	0.00	NA	NA	NA	NA	0.04	0.00	0.38	<0.01	9.27	NA	NA
01/12/2023 ^C	0.21		NA	NA	NA	NA	0.03		0.06		8.12	NA	NA
02/09/2023 ^C	0.00		NA	NA	NA	NA	0.05		0.07		8.83	NA	NA
03/09/2023	0.00		NA	NA	NA	NA	0.02	0.00	0.09	0.00	8.91	NA	NA
04/13/2023 ^c	0.00		NA	NA	NA	NA	0.03		0.07		9.09	NA	NA
05/11/2023 ^c	0.00		NA	NA	NA	NA	0.09		0.06		8.81	NA	NA
06/19/2023	0.00		NA	NA	NA	NA	0.02	0.00	0.10	0.00	9.26	NA	NA
07/27/2023 ^C	0.00		NA	NA	NA	NA	0.02		0.18		9.68	NA	NA
08/10/2023 ^C	0.00		NA	NA	NA	NA	0.07		0.13		8.82	NA	NA
09/14/2023	0.00		NA	NA	NA	NA	0.08	0.00	0.04	0.00	9.47	NA	NA
10/12/2023 ^C	0.00		NA	NA	NA	NA	0.06		0.21		10.09	NA	NA
11/9/2023 ^C	0.00		NA	NA	NA	NA	0.05		0.30		9.11	NA	NA
12/14/2023	0.00		NA	NA	NA	NA	0.05	0.00	0.25	0.00	8.67	NA	NA

PORT OF SEATTLE - TERMINAL 30 Table 6 LNAPL Gauging and Recovery Results

	RW-	102	RW-	103	RW-	104	RW-	105		RW-106		RW-107		
	Initial LNAPL	Final LNAPL	Initial LNAPL Final LNAPL		Initial LNAPL	Final LNAPL	Initial LNAPL	Final LNAPL	Initial LNAPL	Final LNAPL		Initial LNAPL Final LNAPL		
	Thickness	Thickness ^H	Thickness	Thickness ^H	Thickness	Thickness ^H	Thickness	Thickness ^H	Thickness	Thickness ^H	DTW ^Q	Thickness	Thickness ^H	DTW ^Q
Date	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft BTOC)	(Ft)	(Ft)	(Ft BTOC)
Baseline ^J	0.00		1.16		0.00		0.00		1.00			0.98		
01/09/2020	0.00	NM	1.16	<0.01	0.00	NM	0.00	NM	1.00	<0.01		0.98	<0.01	
02/13/2020	WI	WI	WI	WI	NM	NM	NM	NM	1.40	<0.01		0.34	0.09 ^B	
03/12/2020	0.00	NM	0.71	0.01 ^B	0.00	NM	0.00	NM	1.05	0.06 ^B		1.37	<0.01	
05/16/2020	0.00		0.45	0.01 ^B	0.00		0.00		1.10	0.00		0.84	0.00	
06/19/2020	0.00		0.29	0.01 ^B	0.00		0.00		1.01	0.00		1.09	0.27 ^B	
07/28/2020	0.00		0.31 ^B		0.00		0.00		0.77	<0.01		1.19	<0.01	
08/21/2020	0.00		0.23	0.01 ^B	0.00		0.00		0.73	0.00		1.41	0.00	
09/10/2020	0.00		1.74	0.00	0.00		0.00		1.55	0.00		2.17	0.00	
10/08/2020	< 0.01 ^B		0.86	0.00	0.00		0.00		0.73	0.00		2.49	NM	
11/11/2020	0.00		1.01	0.00	0.00		0.00		0.80	0.00		1.83	0.00	
12/10/2020 ^C	0.00		0.40		0.00		0.00		0.84			1.05		
01/15/2021	0.00		0.75	0.00	0.00		0.00		1.13	0.00		0.78	0.00	
2/12/2021 ^{C,I}	0.00		0.87		0.00		0.00		1.19			1.00		
03/05/2021	0.00		0.49	0.00	0.00		0.00		1.08	0.00		0.96	0.00	
4/15/2021 ^C	0.00		0.31		0.00		0.00		0.78			0.74		
05/13/2021	0.00		0.23	0.00	0.00		0.00		0.71	0.00		0.59	0.00	
6/10/2021 ^C	WI	WI	WI	WI	0.00		0.00		0.58			0.61		
08/12/2021	WI	WI	WI	WI	0.00		0.00		0.59	0.00		0.72	0.02 ^B	
11/11/2021 ^G	0.00		0.61	0.00	0.01	0.00	0.00		1.05	0.00	8.50	0.02	0.00	9.02
1/18/2022 ^C	NM	NM	1.29		0.00		0.00		1.85		7.37	1.45		7.65
02/17/2022	0.00		NM	NM	0.00		0.00		0.92	0.02	8.09	0.65	0.02	8.44
4/14/2022 ^C	0.00		0.60		0.00		0.00		1.12		8.13	0.80		8.41
05/12/2022	0.00		0.29	0.00	0.00		0.00		0.38	0.00	8.64	0.75	0.00	8.87
6/20/2022 ^c	0.00		0.00		0.00		0.00		0.00		8.76	0.00		9.03
07/14/2022	0.00		0.27	0.00	0.00		0.00		0.82	0.00	8.50	0.61	0.00	8.82
08/11/2022 ^C	0.00		0.00		0.00		0.00		0.05		9.03	0.49		9.34
09/08/2022	0.00		0.00		0.00		0.00		0.04	0.01	9.15	0.49	0.37 ^N	9.44
10/13/2022 ^C	NA ^O	NA ⁰	0.00		0.00		NA ^O	NA ^O	0.01		9.27	0.41		9.57
11/10/2022 ^C	NA	NA	0.28		0.00		NA	NA	2.09		7.24	0.18		8.61
12/08/2022	NA	NA	0.15	0.00	0.00		NA	NA	0.32	0.00	8.52	0.44	0.00	8.77
01/12/2023 ^C	NA	NA	0.00		0.00		NA	NA	0.00		7.52	0.32		8.02
02/09/2023 ^c	NA	NA	0.00		0.00		NA	NA	0.05		8.36	0.37		8.72
03/09/2023	NA	NA	0.00		0.00		NA	NA	0.10	0.01	8.51	0.55	0.10	8.81
04/13/2023 ^c	NA	NA	0.40		0.00		NA	NA	0.54		8.12	0.66		8.38
05/11/2023 ^c	NA	NA	0.24		NA ⁰	NA ^O	NA	NA	1.06		7.70	0.60		9.44
06/19/2023	NA	NA	0.00		NA	NA	NA	NA	0.01	0.00	8.92	0.19	0.70 ^P	9.22
07/27/2023 ^C	NA	NA	0.19		NA	NA	NA	NA	0.74		8.99	0.59		9.23
08/10/2023 ^C	NA	NA	0.00		NA	NA	NA	NA	0.02		8.25	0.64		8.76
09/14/2023	NA	NA	0.00		NA	NA	NA	NA	0.05	0.00	9.04	0.73	0.00	9.52
10/12/2023 ^C	NA	NA	0.00		NA	NA	NA	NA	0.27		9.83	0.66		9.96
11/9/2023 ^C	NA	NA	0.00		NA	NA	NA	NA	0.01		8.81	0.56		9.05
12/14/2023	NA	NA	0.00		NA	NA	NA	NA	0.03	0.00	8.41	0.55	0.00	8.48

PORT OF SEATTLE - TERMINAL 30 Table 6 **LNAPL Gauging and Recovery Results**

	RW-		RW-		RW-	-	
	Initial LNAPL	Final LNAPL	Initial LNAPL	Final LNAPL	Initial LNAPL	Final LNAPL	
	Thickness	Thickness ^H	Thickness	Thickness ^H	Thickness	Thickness ^H	Abbreviations, Syn
Date	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	Ft = Feet
Baseline	0.00		0.00		0.02		Gal = Gallon
01/09/2020	0.00	NM	0.00	NM	0.02	<0.01	LNAPL = Light Non-
02/13/2020	0.00	NM	0.00	NM	0.09	<0.01	Phase Liquid
03/12/2020	0.00	NM	0.00	NM	0.04	<0.01	NM = Not Measure
05/16/2020	0.00		0.00		0.10	0.00	NA = Well not inter
06/19/2020	0.00		0.00		0.34	0.00	gauged/vacuumed
07/28/2020	0.00		0.00		0.46	<0.01	WI = Well inaccess
08/21/2020	0.00		0.00		0.30	0.00	
09/10/2020	0.00		0.00		0.00		Notes:
10/08/2020	0.00		0.00		0.01	<0.01	A. Approximately 4
11/11/2020	0.00		0.00		0.02	0.00	November 14, 201
12/10/2020 ^C	0.00		0.00		0.00		B. Vacuum remova
01/15/2021	0.00		0.00		0.00		C. LNAPL gauging
2/12/2021 ^{C,I}	0.00		0.00		0.19		D. Measurement n
03/05/2021	0.00		0.00		0.17	0.00	the prior product v
4/15/2021 ^C	0.00		0.00		0.10		E. MW-38 was four
05/13/2021	0.00		0.00		0.20	0.00	monitored thereaf
6/10/2021 ^C	0.00		0.00		0.25		F. Tidal information
08/12/2021	0.00		0.00		0.48	0.00	html?id=9447130
11/11/2021 ^G	0.00		0.00		0.01	0.00	G. Unless otherwis
1/18/2022 ^C	0.00		0.00		0.00		reviewed or valida
02/17/2022	0.00		0.00		0.02	Trace	H. The final LNAPL
4/14/2022 ^C	0.00		0.00		0.00		complete. Recover
05/12/2022	0.00		0.00		0.00		three recovery cyc
6/20/2022 ^C	0.00		0.00		0.00		I. The data previou
07/14/2022	0.00		0.00		0.00		have been updated
08/11/2022 ^C	0.00		0.00		0.00		J. Baseline LNAPL o
09/08/2022	0.00		0.00		0.00		and during to the f
10/13/2022 ^C	NA ^O	NA ^O	NA ⁰	NA ^O	0.00		and revised all wel
11/10/2022 ^C	NA	NA	NA	NA	0.00		values of <0.01 ft.
12/08/2022	NA	NA	NA	NA	0.00		gauging on 10/8/2
01/12/2023 ^C	NA	NA	NA	NA	0.00		K. MW-35 was initi
02/09/2023 ^C	NA	NA	NA	NA	0.00		in the well on 10/9
03/09/2023	NA	NA	NA	NA	0.00		L. Product volume
04/13/2023 ^c	NA	NA	NA	NA	0.01		in the truck tank to
05/11/2023 ^c	NA	NA	NA	NA	0.00		M. These monitori
06/19/2023	NA	NA	NA	NA	0.00		during gauging act
07/27/2023 ^C	NA	NA	NA	NA	0.00		is encountered, an
08/10/2023 ^C	NA	NA	NA	NA	0.00		consecutive quarte
09/14/2023	NA	NA	NA	NA	0.00		N. RW-107 was ext
10/12/2023 ^C	NA	NA	NA	NA	0.00		thickness. The vac
11/9/2023 ^C	NA	NA	NA	NA	0.00		O. The prior results
12/14/2023	NA	NA	NA	NA	0.00		the well from the p

mbols, and Formatting:

--- = Data not needed/relevant

Red values = approximated values or averaged values as placeholder -Aqueous for data not recorded in the field. Blue values = data collected by CRETE but input by AECOM, or ed

nded to be sible

calculated by AECOM with data previously collected by CRETE. = Interior Monitoring Well

= Performance Monitoring well

4 gallons of LNAPL and water were previously removed from this well (MW-89) on 19.

al was not executed.

event; no LNAPL removal.

not taken. The total volume extracted was similar to the prior removal event, so volume was repeated as an estimate.

ind to be obstructed during during field activities on 09/18/2020. It was not fter and was decomissioned on 05/06/2021.

on source: https://tidesandcurrents.noaa.gov/stationhome.

se indicated, all data prior to 10/14/2021 was collected by CRETE and was not ated by AECOM.

thickness is the value measured after the final recovery cycle at a well is ry is determined complete when the LNAPL thickness is reduced to <0.01 ft or cles have been executed within a single event.

usly entered for the 2/12/21 gauging event did not match the field notes. Values d by AECOM as needed.

data was collected during the 10/16/19-10/18/19 gauging and sampling event first LNAPL recovery event on 1/9/20. AECOM reviewed the historical field notes Ils that had non-detect LNAPL thicknesses to 0.0 ft from the previously reported Depth to product was not successfully measured/recorded at MW-35 prior to 20.

tially identified as a biannual gauging well in the CMP. After LNAPL was measured 9/20 it entered into the monthly gauging/removal protocol.

estimated by the vac truck contractor after allowing the water and free product o separate out over night.

ing wells temporarily became recovery wells when product was encountered tivities. The CMP dictates that they be monitored at least quarterly after product d sample data cannot be used for performance monitoring purposes until 4 ers occur with measurements of ≤0.01 ft.

tracted by vac truck 3 times for a total of 110 minutes with little impact on LNAPL truck was confirmed to be working.

ts marked at least 1 year of measurements < 0.01 ft, resulting in the removal of product monitoring/recovery protocol.

PORT OF SEATTLE - TERMINAL 30 Table 7 LNAPL Gauging Results in Non-LNAPL Wells

		Tidal	Position	MW-35	MW-36	MW-38 ^B	MW-42	MW-45A	MW-46B	MW-54	MW-58A	MW-64	MW-84A
		Time of	Time of	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL
	Time of	Nearest	Nearest High	Thickness	Thickness	Thickness	Thickness	Thickness	Thickness	Thickness	Thickness	Thickness	Thickness
Date	Fieldwork	Low Tide ^A	Tide ^A	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)	(Ft)
Baseline ^C	NA			NM	0.18	0.0	0.0	0.0	0.0	NM	0.0	NM	0.0
10/8/2020 ^D	NM			0.52 ^E	0.00	NA	NA	NA	NA	NM	NA	NM	NA
6/20/2022 ^F	09:38	05:25	10:07	NA	NA	NA	NA	NA	NA	NA	NA	0.0	NA
10/13/2022 ^D	17:33	19:11	14:04	0.02	0.00	NA	NA	NA	NA	0.0	NA	0.0	NA

Abbreviations, Symbols, and Formatting:

Ft = Feet

LNAPL = Light Non-Aqueous Phase Liquid NM = Not Measured NA = Well not intended to be gauged/vacuumed WI = Well inaccessible --- = Data not needed/relevant Blue values = data collected by CRETE

but input by AECOM

Notes:

A. Tidal information sourced from https://tidesandcurrents.noaa.gov/stationhome.html?id=9447130

B. MW-38 was found to be obstructed during during field activities on 09/18/2020. It was not monitored thereafter and was decomissioned on 05/06/2021.

C. Baseline LNAPL data was collected during the gauging and sampling event from 10/16/19-10/18/19. Depth to product was not successfully measured/recorded at MW-54 or MW-64. All wells with thicknesses of 0.0 were corrected from the previously reported values of <0.01 ft after a review of the field notes. Depth to product was not successfully measured/recorded at MW-35 prior to the gauging on 10/8/20.

D. Biannual gauging event for MW-35, MW-36, MW-54, and MW-64.

E. MW-35 was initially identified as a biannual gauging well in the CMP. After LNAPL was measured in the well on 10/9/20 it entered into the product gauging/removal protocol. That data is shown in Table 6.

F. MW-64 was added to the 6/20/22 routine LNAPL gauging event when AECOM discovered that it had not been previously gauged as planned in the CMP schedule.

Interior Monitoring WellPerformance Monitoring wellCPOC Monitoring Well

= Shoreline Monitoring Well

PORT OF SEATTLE - TERMINAL 30 Table 7 LNAPL Gauging Results in Non-LNAPL Wells

	MW-85A	MW-86B	MW-87A	MW-92	RW-5A	RW-9	RW-11A
	LNAPL						
	Thickness						
Date	(Ft)						
Baseline ^C	0.0	0.0	0.0	0.0	0.0	0.0	0.0
10/8/2020 ^D	NA						
6/20/2022 ^F	NA						
10/13/2022 ^D	NA						

Abbreviations, Symbols, and Formatting:

Ft = Feet LNAPL = Light Non-Aqueous Phase Liquid NM = Not Measured NA = Well not intended to be gauged/vacuumed WI = Well inaccessible ---- = Data not needed/relevant Blue values = data collected by CRETE but

input by AECOM

Interior Monitoring Well
Performance Monitoring well
CPOC Monitoring Well
Shoreline Monitoring Well

PORT OF SEATTLE - TERMINAL 30 Table 8 Performance and Interior Groundwater Analytical Data

					Diesel							
			Diesel		Range		TPH-Dx	Gasoline				
			Range		Organics	Lube Oil	(Diesel +	Range			Ethyl-	Total
			Organics	Lube Oil	SGC	SGC	Lube Oil) ^a	Organics	Benzene	Toluene	benzene	Xylenes
	Well ID	Sample Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Well		GW CULs (µg/L)					500	1,000/800 ^e		15,000	2,100	1,000
Туре		GW RELs (µg/L)					2,085	2,085	47	30,000	4,200	2,000
	RW-11A	10/17/19	5,600	1,100 ^b	1,100	250 U	1,100	260	1 U	1 U	1 U	3.0
		4/11/20	3,700 ^b	440 ^b	140	250 U	140	100 U	1 U	1 U	1 U	3 U
		4/11/20 DUP	4,400 ^b	480 ^b	160	250 U	160	100 U	1 U	1 U	1 U	3 U
		9/18/20	2,800	330 ^b	98	250 U	98	100 U	1 U	1 U	1 U	3 U
		4/3/21	NAn	NAn	50 U	250 U	250 U	100 U	1 U	10	1 U	3 U
		10/14/21	1,230	163 U	133 ^d	157 U	133	100 U	0.200 U	1.00 U	0.500 U	1.50 U
		4/14/22	1,700 ^b	440 ^b	50 U	250 U	250 U	100 U	1 U	1 U	1 U	3 U
		10/13/22	4,800	410 ^b	50 U	250 U	250 U	100 U	0.35 U	1 U	1 U	3 U
		10/13/22 DUP	4,900	510 ^b	50 U	250 U	250 U	100 U	0.35 U	1 U	1 U	3 U
slls		4/13/23	780 ^b	250 U	50 U	250 U	250 U	100 U	0.35 U	1 U	1 U	3 U
Ň		4/13/23 DUP	700 ^b	250 U	50 U	250 U	250 U	100 U	0.35 U	1 U	1 U	3 U
Performance Wells		10/12/23	12,000 ^b	680 ^b	91	250 U	91	230	0.35 U	1 U	1 U	3 U
ma	MW-59	10/17/19					sampled; free p					
for		4/11/20					sampled; free p	I				
Pel		9/29/2020 ^f	1,600	250 U	830	250 U	830	100 U	1 U	1 U	1 U	3 U
		4/3/21					sampled; free p					
		10/14/21					sampled; free p					
	-	4/14/22					e product enco		•		•	
		10/13/22					e product enco					
		4/13/23 10/12/23					e product enco e product enco					
	MW-89	10/12/23		Weil Hot a	sampled pe	-	sampled; free product enco				uarters	
		4/11/2020 ^f	1,500 ^b	420 ^b	50 U	250 U	250 U	100 U	1 U	1 U	1 U	3 U
		9/29/2020 ^f	6,000	540 ^b	550	250 U	550	140 ^b	1 U	10	10	3 U
		4/3/21	NAn	NAn	93	250 U	93	100 U	10	10	1 U	3 U
		4/3/21 DUP	NAn	NAn	88	250 U	88	100 U	1 U	10	1 U	3 U
		10/14/21	827	334	410 ^d	265	675	100 U	0.200 U	1.00 U	0.500 U	1.50 U
		4/15/22	780 ^b	440 ^b	54	250 U	54	100 U	1 U	1 UJ	1 U	3 U

PORT OF SEATTLE - TERMINAL 30 Table 8 Performance and Interior Groundwater Analytical Data

					Diesel							
			Diesel		Range		TPH-Dx	Gasoline				
			Range		Organics	Lube Oil	(Diesel +	Range			Ethyl-	Total
			Organics	Lube Oil	SGC	SGC	Lube Oil) ^a	Organics	Benzene	Toluene	benzene	Xylenes
	Well ID	Sample Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Well		GW CULs (µg/L)					500	1,000/800 ^e	23	15,000	2,100	1,000
Туре		GW RELs (µg/L)					2,085	2,085	47	30,000	4,200	2,000
	(MW-89 cont'd)	4/15/22 DUP	910 ^b	480 ^b	50 U	250 U	250 U	170	1 U	6.8 J	1.4	7.7
		10/19/22	550 ^b	250 U	61	250 U	61	100 U	0.35 U	1 U	1 U	3 U
		4/13/23	410 ^b	250 U	50 U	250 U	50 U	100 U	0.35 U	1 U	1 U	3 U
		10/12/23	600 ^b	250 U	50 U	250 U	250 U	100 U	0.35 U	1 U	1 U	3 U
	RW-9	10/17/19	3,100	750 b	1200	250 U	1,200	720	1 U	1 U	1.6	3.9
		9/18/20	3,300	440 b	450	250 U	450	430	1 U	1.4	1 U	3 U
		10/14/21	6,360	150 U	1,590	165 U	1,590	227	0.200 U	1.00 U	0.500 U	1.50 U
		10/13/22	9,500 J ^b	2,000 J ^b	200	250 U	200	100 U	0.35 U	1 U	1 U	3 U
ť'd)		10/12/23	12,000 ^b	620 ^b	230	250 U	230	160	0.35 U	1 U	1 U	3 U
Performance Wells (Cont'd)		10/12/2023 DUP	11,000 ^b	590 ^b	210	250 U	210	200	0.35 U	1 U	1 U	3 U
s (C	MW-36A	10/17/19				Well not s	sampled; free p	product encou	untered		-	
/ell		9/19/2020 ^f	3,100	360 ^b	560	250 U	560	120	1 U	1 U	1 U	3 U
e K		10/14/21	2,610	178 U	404	167 U	404	100 U	0.200 U	1.00 U	0.500 U	1.50 U
anc		10/13/22	4,900	460 ^b	180	250 U	180	100 U	0.35 U	1 U	1 U	3 U
Ľ		10/12/23	4,800 ^b	250 U	130	250 U	130	100 U	0.35 U	1 U	1 U	3 U
erfo	MW-39A	10/17/19				Well not s	sampled; free p	product encou	untered		-	
ھ		9/19/2020 ^f	3,100	1,100	1,500	770	2,270	160	1 U	1 U	1 U	3 U
		10/14/21	2,870	1,760	1,980 ^d	1,540	3,520	100 U	0.200 U	1.00 U	0.500 U	1.50 U
		10/13/22	6,800 ^b	1,200 ^b	110	250 U	110	100 U	0.35 U	1 U	1 U	3 U
		10/12/23	1,500 ^b	250 U	50 U	250 U	250 U	100 U	0.35 U	1 U	1 U	3 U
	MW-42	10/17/19	6,600	2,600 ^b	330 ^b	250 U	330 ^b	2,100	37	17	5.1	16
	-	9/18/20	5,500	1,300 ^b	110 ^b	250 U	110 ^b	620	5.2	3.5	1 U	7.4
		10/14/21	4,780	165 U	315 [°]	150 U	315 ^c	248	1.31	1.00 U	0.500 U	1.50 U
		10/13/22	5,600 ^b	1,400 ^b	120	250 U	120	260	0.35	1 U	1 U	3 U
		10/12/23	8,800 ^b	1,500 ^b	60	250 U	60	270	0.35 U	1 U	1 U	3 U

PORT OF SEATTLE - TERMINAL 30 Table 8 Performance and Interior Groundwater Analytical Data

					Diesel								
			Diesel		Range		TPH-Dx	Gasoline					
			Range		Organics	Lube Oil	(Diesel +	Range			Ethyl-	Total	
			Organics	Lube Oil	SGC	SGC	Lube Oil) ^a	Organics	Benzene	Toluene	benzene	Xylenes	
	Well ID	Sample Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	
Well		GW CULs (µg/L)					500	1,000/800 ^e	23	15,000	2,100	1,000	
Туре		GW RELs (µg/L)					2,085	2,085	47	30,000	4,200	2,000	
	RW-1	10/17/19				Well not a	sampled; free p	product encou	untered				
		9/19/20				Well not a	sampled; free p	product encou	untered				
		10/13/22		Well not sampled per CMP; free product encountered within the preceding four quarters									
<u>ى</u>	RW-5A	10/17/19	1,300	810 ^b	290 ^b	250 U	290 ^b	190	1 U	1 U	1 U	3 U	
Wells		9/18/20	1,700	330 ^b	120 ^b	250 U	120 ^b	230	1 U	1 U	1 U	3 U	
<u> </u>		10/13/22	1,400 ^b	310 ^b	84	250 U	84	110	0.35 U	1 U	1 U	3 U	
nterio	MW-38	10/16/19	Well not sampled; water volume insufficient.										
5		9/18/20		Well obse	erved broke	en below g	rade, not samp	led. Well dec	omissione	d on May 6	, 2021.		
	MW-93	10/17/19				Well not	sampled; free p	product encou	untered				
		9/19/2020 ^f	8,700	4,100	5,400	3,200	8,600	280	1 U	1 U	1 U	3 U	
		10/13/22	2,300 ^b	590 ^b	50 U	250 U	250 U	100 U	0.35 U	1 U	1 U	3 U	

Notes:

^a Total TPH D + lube oil is the sum of the Silica Gel Cleanup results.

^b The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

^c Result is estimated due to overlap from Gasoline Range Organics or other VOCs.

^d The sample chromatographic pattern indicates possible weathered diesel, mineral oil, or a contribution from a related component

^e If benzene is present below method detection limits, the TPH-Gx cleanup level is 1000 µg/L. If not, the TPH-Gx cleanup level is 800 µg/L.

^f Data is not to be used for performance monitoring purposes. Free product was present in excess of 0.01 ft during the four quarters prior to the sampling event, rendering the well ineligible per CMP guidance on qualifaction for performance monitoring sampling.

Abbreviations and Formatting:

- **BOLD** = result was detected above the CUL
- **BOLD** = result was detected above the REL
- μ g/L = micrograms per liter
- CUL = cleanup level
- GW = groundwater
- J = estimated value

NR = not reported NAn = not analyzed (analysis was not requested) REL = remediation level SGC = silica gel cleanup U = not detected above the value shown

PORT OF SEATTLE - TERMINAL 30 Table 9 CPOC and Shoreline Groundwater Analytical Data - TPH and BTEX

		Comula Data	Diesel Range Organics	Lube Oil	Diesel Range Organics w/ SGC	Lube Oil w/ SGC	TPH-Dx (Diesel + Lube Oil) ^a	Gasoline Range Organics	Benzene	Toluene	Ethyl- benzene	Total Xylenes
Well	Well ID	Sample Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Type		GW CULs (ug/L) GW RELs (ug/L)					500 2085	1000/800 2085	23 47	15,000 30,000	2,100 4,200	1,000 2,000
Type	MW-45A	10/21/19	610 ^b	250 U	71 ^b	250 U	71 ^b	100 U	1 U	1 U	1 U	2,000 3 U
	1111-404		600 ^b		66 ^b		66 ^b		-	-	-	
		10/21/19 DUP		250 U	54 ^b	250 U		100 U	10	1 U	10	3 U
		9/18/20	490 1,100 ^b	250 U		250 U	54 b	100 U	1 U	1 U	1 U	3 U
		10/13/22		300 U	72	300 U	72	100 U	0.35 U	1 U	1 U	3 U
	MW-46B	10/16/19	1,500	380 ^b	150 ^b	250 U	150 ^b	100 U	1 U	1 U	1 U	3 U
		9/18/20	1,300	250 U	81 ^b	250 U	81 b	110	1 U	1 U	1 U	3 U
		10/13/22	890 ^b	250 U	73	250 U	73	100 U	0.35 U	1 U	1 U	3 U
CPOC Wells	MW-58A	10/17/19	1,900	610 ^b	280 ^b	250 U	280 ^b	360	1 U	1 U	1 U	3 U
3		9/24/20	3,000	320 ^b	420	250 U	420	390	1 U	1 U	1 U	4.7
Ö		10/19/22	6,300 J ^b	900 J ^b	240	250 U	240	130	0.35 U	1 U	1 U	3 U
5	MW-86B	10/17/19	1,500	610 ^b	1600	250 U	1600	360	1 U	1 U	1 U	3 U
		9/24/20	650	250 U	95	250 U	95	130	1 U	1 U	1 U	3 U
		9/24/20 DUP	890	250 U	94	250 U	94	100	1 U	1 U	1 U	3 U
		10/19/22	1,600 ^b	400 ^b	63	250 U	63	100 U	0.35 U	1 U	1 U	3 U
		10/19/22 DUP	1,600 ^b	420 ^b	89	250 U	89	100 U	0.35 U	1 U	1 U	3 U
	MW-92	10/16/19	5,200	1100 ^b	120 ^b	250 U	120 ^b	250	1 U	1 U	1.2	3 U
		9/18/20	4,800	720 ^b	75 ^b	250 U	75 ^b	200	1 U	1 U	1 U	3 U
		10/19/22	2,400 ^b	410 ^b	81	250 U	81	100 U	0.35 U	1 U	1 U	3 U
e lity	MW-84A	10/17/19	1,100	250 U	410 ^b	250 U	410 ^b	100 U	1 U	1 U	1 U	3 U
alin Qua IIs	MW-85A	10/18/19	130 ^b	250 U	50 U	250 U	250 U	100 U	1 U	1 U	1 U	3 U
Shoreline Water Quality Wells		10/18/19 DUP	130 ^b	250 U	50 U	250 U	250 U	100 U	1 U	1 U	1 U	3 U
S A	MW-87A	10/18/19	420 ^b	570 ^b	50 U	250 U	250 U	100 U	1 U	1 U	1 U	3 U

Notes :

^a Total TPH (Diesel + lube oil) is the sum of the Silica Gel Cleanup results.

^b The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Abbreviations/formatting

BOLD = result was detected above the CUL

BOLD = result was detected above the REL

ug/L = micrograms per liter

CPOC = Conditional Point of Compliance

CUL = cleanup level

GW = groundwater

REL = remediation level

SGC = silica gel cleanup

U - not detected above the laboratory reporting limit

PORT OF SEATTLE - TERMINAL 30 Table 10 CPOC and Shoreline Groundwater Analytical Data - PAHs

Well		Sample Date	Naphth- alene (µg/L)	Acenaph- thylene (µg/L)		Fluorene (µg/L)	Phen- anthrene (µg/L)	Anthracene (µg/L)	Fluoran- thene (µg/L)	Pyrene (µg/L)	Benzo (g,h,i) perylene (µg/L)	1-Methyl naphthalene (µg/L)	2-Methyl naphthalene (µg/L)	Benzo[a] anthracene (µg/L)	Chrysene (µg/L)	Benzo[a] pyrene (µg/L)	Benzo[b] fluoran- thene (µg/L)	Benzo[k] fluoran- thene (µg/L)	Indeno [1,2,3-cd] pyrene (μg/L)	Dibenzo [a,h] anthracene (µg/L)	Total cPAH TEQ ^a (μg/L)
Туре		W CULs (µg/L)	4,940		643	3,460		25,900	90	2,590						See	Total cPAH	TEQ ^b			0.018
	MW-45A	10/21/19	0.1 U	0.039	4.0	0.35	0.77	0.01 U	0.032	0.017	0.01 U	NR	0.1 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.008
		10/21/19 DUP	Nan	NAn	NAn	Nan	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn
		9/18/20	0.11	NAn	4.3	0.17	0.21	0.022	0.014	0.012	0.02 U	0.11	0.1 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.008
		10/13/22	0.2 U	0.02 U	3.7 J	0.039	0.02 U	0.02 U	0.02 U	0.02 U	0.04 U	0.2 U	0.2 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.015
	MW-46B	10/16/19	0.1 U	NAn	3.1	0.036	0.080	0.01 U	0.049	0.035	0.01 U	NR	0.1 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.008
		9/18/20	0.1 U	NAn	2.3	0.01 U	0.052 J	0.013	0.017	0.017	0.02 U	0.1 U	0.1 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.008
		10/13/22	0.2 U	0.02 U	0.29	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.04 U	0.2 U	0.2 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.015
S I	MW-58A	10/17/19	0.96	NAn	5.8	1.3	4.2	0.34	1.0	0.51	0.01 U	NR	0.52	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.008
Wells		9/24/20	0.65	NAn	6.0	2.1	0.054	0.33	0.52	0.26	0.02 U	0.24	0.1 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.008
срос		10/19/22	0.2 U	0.02 U	2.8	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.04 U	0.2 U	0.2 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.015
<u>р</u>	MW-86B	10/17/19	0.1 U	NAn	3.2	0.079	0.17	0.15	0.51	0.26	0.01 U	NR	0.1 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.008
		9/24/20	0.1 U	NAn	1.9	0.01 U	0.016	0.041	0.49	0.31	0.02 U	0.1 U	0.1 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.008
		9/24/20 DUP	0.1 U	NAn	2.2	0.01 U	0.012	0.048	0.53	0.38	0.02 U	0.1 U	0.1 U	0.011	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.008
		10/19/22	0.2 U	0.02 U	0.96 J	0.02 U	0.02 U	0.02 U	0.084	0.060	0.04 U	0.2 U	0.2 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.015
		10/19/22 DUP	0.2 U	0.02 U	2.6 J	0.02 U	0.02 U	0.02 U	0.041	0.028	0.04 U	0.2 U	0.2 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.015
	MW-92	10/16/19	0.1 U	NAn	0.071	0.027	0.029	0.01 U	0.01 U	0.01 U	0.01 U	NR	0.1 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.008
		9/18/20	0.1 U	NAn	0.087	0.01 U	0.02 J	0.013	0.01 U	0.01 U	0.02 U	0.1 U	0.1 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.008
		10/13/22	0.2 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.04 U	0.2 U	0.2 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.015
e lity	MW-84A	10/17/19	0.1 U	NAn	64	0.74	1.3	0.05	0.031	0.033	0.01 U	NR	0.1 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.008
reline Quality ells	MW-85A	10/18/19	0.1 U	NAn	49	0.51	0.90	0.034	0.018	0.018	0.01 U	NR	0.1 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.008
shor ter (We		10/18/19 DUP	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn	NAn
S a	MW-87A	10/18/19	0.1 U	NAn	0.14	0.015	0.019	0.01 U	0.01 U	0.01 U	0.01 U	NR	0.1 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.008

Notes:

used as the concentration.

^b Individual cPAH compounds do not have remediation levels

^a cPAH TEQ values are calculated by multiplying the laboratory concentrations by the TEFs provided in MTCA Table 708-2 (WAC 173- 340-900). For ND values, 1/2 of the reporting limit is BOLD = result was detected above the CUL

MTCA = Model Toxics Control Act

-- = No Value

- µg/L = micrograms per liter cPAH = carcinogenic polyaromatic hydrocarbon CPOC = Conditional Point of Compliance
- CUL = cleanup level
- GW = groundwater

NAn = not analyzed (analysis was not requested)

NR = not reported

PAH = polyaromatic hydrocarbon

TEF = toxicity equivalency factor

TEQ = toxic equivalent concentration

U = not detected above the laboratory reporting limit WAC = Washington Administrative Code

J = estimated value

PORT OF SEATTLE - TERMINAL 30 Table 11 Monitoring Well Groundwater Sampling Parameters

	Well ID	Total Well Depth (ft)	MP Elevation (ft NAD 83)	MP Elevation (ft NAVD 88)	Sample Date	Depth to LNAPL (ft BTOC)	Depth to Groundwater (ft BTOC)	Groundwater Elevation (ft NAD 83)	Groundwater Elevation (ft NAVD 88)	LNAPL Thickness (ft)	TEMP (°F)	TEMP (°C)	рН	Conductivity (μS/cm)	Specific Conductance (µS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	ORP (mV)
	RW-11A	20	18.02		10/17/19													
					04/11/20													
					09/18/20													
					04/03/21	ND	9.37	8.65		0	64.0	17.8	6.47	1.03		6.6	0.03	-33
					10/14/21	ND	9.7	8.32		0	70.2	21.2	7.42	1.28		7.3	0.97	27
					04/14/22	ND	9.38	8.64		0	60.4	15.79	6.66	1.21		3.6	2.58	49
					10/13/22	ND	9.9	8.12		0	70.2	21.2	6.92		1,390	3.45	0.22	-29.4
					04/13/23	ND	9.4	8.62		0	61.9	16.6	6.78		1,051	15.6	2.1	96.6
					10/12/23	ND	10.26	7.76		0	69.4	20.8	6.81		668	19.0	0.14	-117.4
	MW-59				10/17/19							•		product encoun				
					04/11/20						Well not s	ampled du	e to free	product encoun				
					9/29/20													
					04/03/21									product encoun				
					10/14/21	9.31	10.70			1.39					ountered within t		•	
					04/14/22	9.24	9.25			0.01				•	ountered within t		• •	
					10/13/22	ND	9.40			0					untered within t			
					04/13/23	ND	8.79			0				•	ountered within t			
					10/12/23	ND	9.91			0	Well not s	ampled pe	r CMP; fre	ee product enco	untered within t	the precedir	ng four quart	ers
	MW-89	20	17.91		10/18/19													
					04/11/20													
					09/29/20													
					04/03/21													
Performance					10/14/21	ND	9.87	8.04		0	69.7	20.94	4.37	4.56		38.1	3.6	460
Wells					04/15/22	ND	10.22	7.69		0	64.9	18.29	4.72	1.50		4.8	7.43	150
					10/19/22	ND	10.7	7.21		0	72.3	22.4	3.48		2,947	1.2	5.26	227
					04/13/23	ND	10.43	7.48		0	59.4	15.2	3.71		2,406	1.1	5.43	-50.4
					10/12/23	ND	10.22	7.69		0	68.4	20.2	3.89		3,109	2.88	0.15	314.5
	RW-9				10/17/19													
					09/18/20													
					10/14/21	ND	9.33			0	73.9	23.26	7.13	1.10		5.1	0	-107
					10/13/22	ND	9.33			0	73.6	23.1	6.94		1,072	0.86	0.13	-127.5
					10/12/23	ND	9.60			0	69.3	20.7	6.98		1,276	3.50	0.09	-144.6
	MW-36A	20.5	NM	NM	10/17/19						Well not s	ampled du	e to free	product encoun	tered			
					09/19/20													
					10/14/21	ND	10.05			0	66.5	19.18	7.73	2.61		12.8	0.54	-318
					10/13/22	ND	11.7			0	66.9	19.4	6.99		1,902.00	73.0	0.19	-139
					10/12/23	ND	11.17			0	65.5	18.6	7.00		1,440	3.52	0.17	-136.1
	MW-39A	20.5	NM	NM	10/17/19						Well not s	ampled du	e to free	product encoun	tered			
					09/19/20													
					10/14/21	ND	9.4			0	68.8	20.44	7.25	1.12		3.8	0.13	-142
					10/13/22	ND	9.25			0	69.4	20.8	6.92		1,426.00	9.5	0.1	-141.8
					10/12/23	ND	9.21			0	66.6	19.2	6.79		937	3.04	0.18	-164.3
	MW-42				10/17/19													
					09/18/20													
					10/14/21	ND	10.08			0	67.1	19.51	7.55	1.87		1.4	0.3	-168
					10/13/22	ND	10.85			0	66.4	19.1	6.73		1,496.00	51.9	0.23	-115.8
					10/12/23	ND	10.08			0	66.4	19.1	6.77		1,419	1.53	0.28	-171.0

PORT OF SEATTLE - TERMINAL 30 Table 11 Monitoring Well Groundwater Sampling Parameters

	Well ID	Total Well Depth (ft)		MP Elevation (ft NAVD 88)	Sample Date	Depth to LNAPL (ft BTOC)	Depth to Groundwater (ft BTOC)	Groundwater Elevation (ft NAD 83)	Groundwater Elevation (ft NAVD 88)	LNAPL Thickness (ft)	TEMP (°F)	TEMP (°C)	pН	Conductivity (μS/cm)	Specific Conductance (μS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	ORP (mV)
	RW-1				10/17/19						Well not s	ampled due	e to free	product encount	tered			
					09/19/20						Well not s	ampled due	e to free	product encount	tered			
					10/13/22	9.13	9.19			0.06	Well not s	ampled per	CMP; fre	e product enco	untered within t	he precedir	ig four quart	ers
	RW-5A	20	18.07		10/17/19													
					09/18/20													
nterior Wells					10/13/22	ND	8.88	9.19		0	61.88	16.6	6.80		878	60	0.20	-138.6
	MW-38				10/16/19						Well not s	ampled; wa	ater volur	ne insufficient.				
					9/18/20			W	ell observed bro	oken below	grade, not	sampled. W	/ell decoi	nissioned on Ma	ay 6, 2021.			
	MW-93	20.5	NM	NM	10/17/19						Well not s	ampled due	e to free	product encount	tered			
					09/19/20													
					10/13/22	ND	9.74			0	68.9	20.5	6.44		1,198	103.8	0.68	-71.6
CPOC Wells	MW-45A	20.1		16.52	10/21/19													
CPOC wens					09/18/20													
					10/13/22	ND	10.51		6.01	0	63.7	17.6	6.73		876	6.45	0.19	-95.1
	MW-46B	20.3		16.07	10/16/19													
					09/18/20													
					10/13/22	ND	10.64		5.43	0	63.9	17.7	6.71		1,080	6.45	1.01	-63.5
	MW-58A	25	NM	NM	10/17/19													
CDOC MAN					09/24/20													
CPOC Wells Cont'd					10/19/22	ND	11.02			0	66.6	19.2	6.76		1,157	17.5	0.12	-124.2
Cont d	MW-86B	20	18.28		10/17/19													
					09/24/20													
					10/19/22	ND	12.48	5.8		0	65.5	18.6	7.13		1,917	1.07	0.15	-116.8
	MW-92	20	NM	NM	10/16/19													
					09/18/20													
					10/13/22	ND	9.93			0	64.0	17.8	6.60		933	253.1	0.20	-132.6
Shoreline	MW-84A	40	NM	NM	10/17/19													
Nater Quality	MW-85A	20	18.09		10/18/19													
Wells	MW-87A	20	17.98		10/18/19													

Notes:

All gw parameter data presented in this table was recorded at the time of sampling after stabilization was achieved in accordance with EPA's low-flow sampling procedures.

This table was initially created by AECOM in October 2021. Any water quality parameters collected by CRETE prior to AECOM involvement are not included, but are available in the relevant historical field forms.

Abbreviations/Formatting:

PORT OF SEATTLE - TERMINAL 30 Table 12 Well Construction Information

	Well Identification	Date of Installation	Casing Diameter (inch)	Well Screen Interval (ft BGS)	Well Depth (ft BGS)	Northing (ft)	Easting (ft)	MP Elevation (ft NAD83/NAVD88)
	RW-9		6					
	RW-11A	04/24/08	4	5 - 20	20.0	216683.94	1268216.99	18.02 ^a
	MW-36A	10/15/16	2	5 - 20	20.5	NM	NM	NM
Performance Wells	MW-39A	10/15/17	2	5 - 20	20.5	NM	NM	NM
	MW-42		2					
	MW-59		2					
	MW-89	04/22/08	2	5 - 20	20.0	217003.93	1268079.62	17.91 ^a
	RW-1							
Interior Wells	RW-5A	04/25/08	4	5 - 20	20.0	216931.12	1268445.78	18.07 ^a
	MW-38 ^c							
	MW-93	10/15/17	2	5 - 20	20.5	NM	NM	NM
	MW-45A	11/17/16	2	5.1 - 20.1	20.1	216490.82	1268124.80	16.52 ^b
	MW-46B	11/14/16	2	5.3 - 20.3	20.3	216602.90	1268114.90	16.07 ^b
CPOC Wells	MW-58A	08/29/13	2	5 - 25	25.0	NM	NM	NM
	MW-86B	04/22/08	2	5 - 20	20.0	216946.15	126807.76	18.28 ^a
	MW-92	08/30/13	2	5 - 20	20.0	NM	NM	NM
Charaline Water	MW-84A	04/29/09	2	30-40	40.0	NM	NM	NM
Shoreline Water	MW-85A	04/24/08	2	5 - 20	20.0	216682.46	1268002.20	18.09 ^a
Quality Wells	MW-87A	04/22/08	2	5 - 20	20.0	217186.75	1268010.28	17.98 ^a

Notes:

^a Monitoring Point (MP) and water table elevations in ft (NAD 83)

^b Monitoring Point (MP) and water table elevations in ft (NAVD 88)

^c MW-38 decomission May 6, 2021 due to a subsurface obstruction.

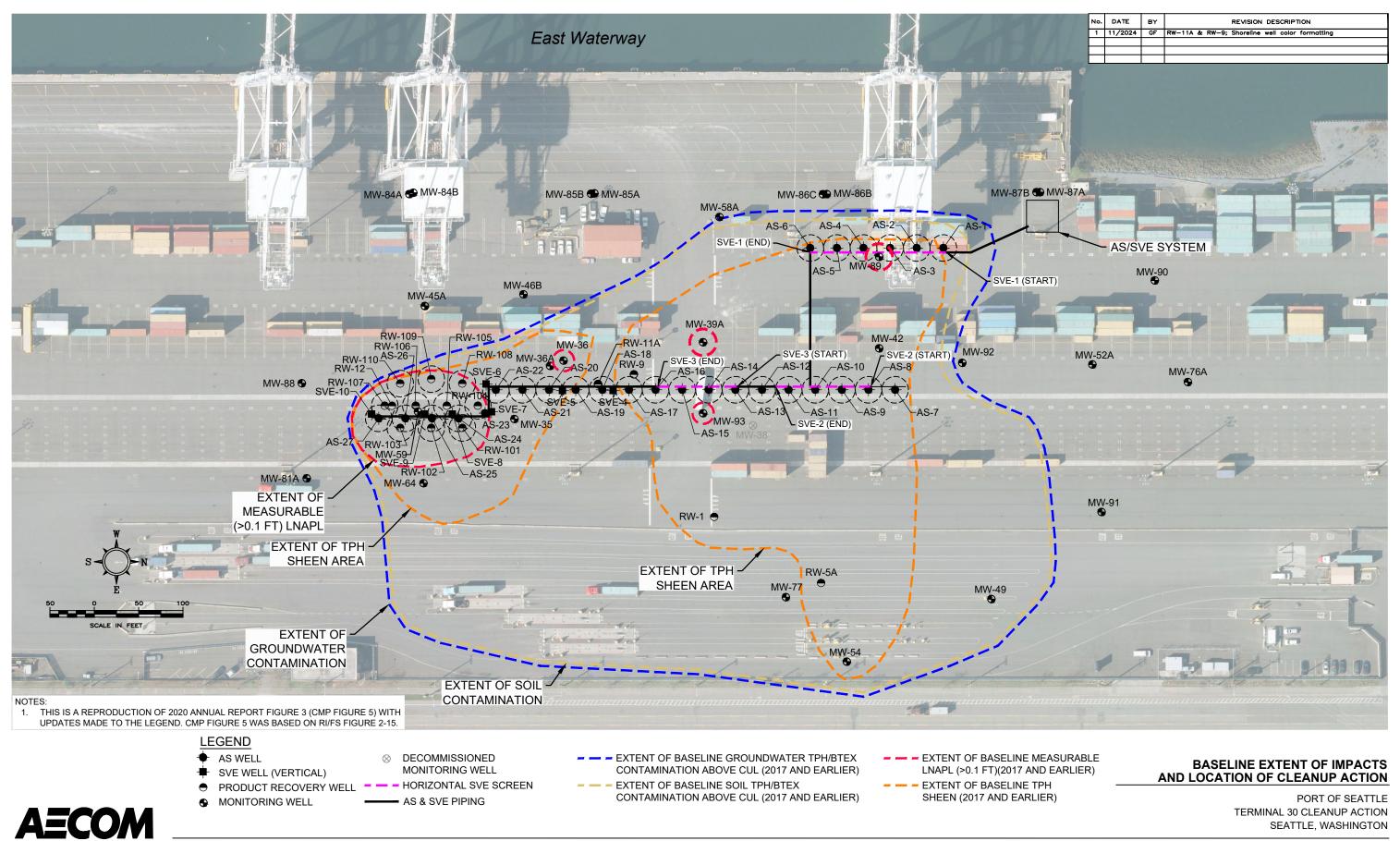
Abbreviations/Formatting:

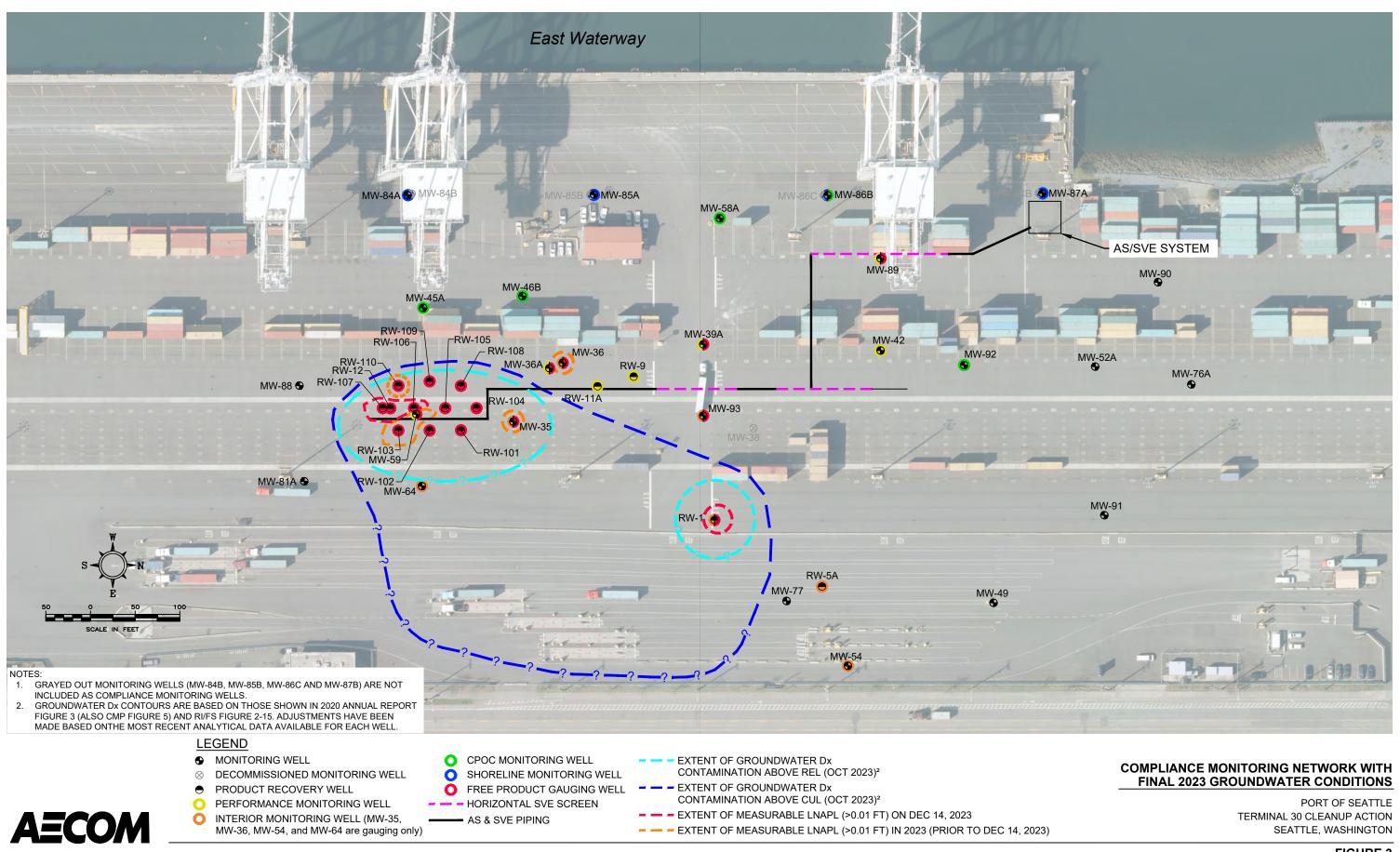
-- = data not available

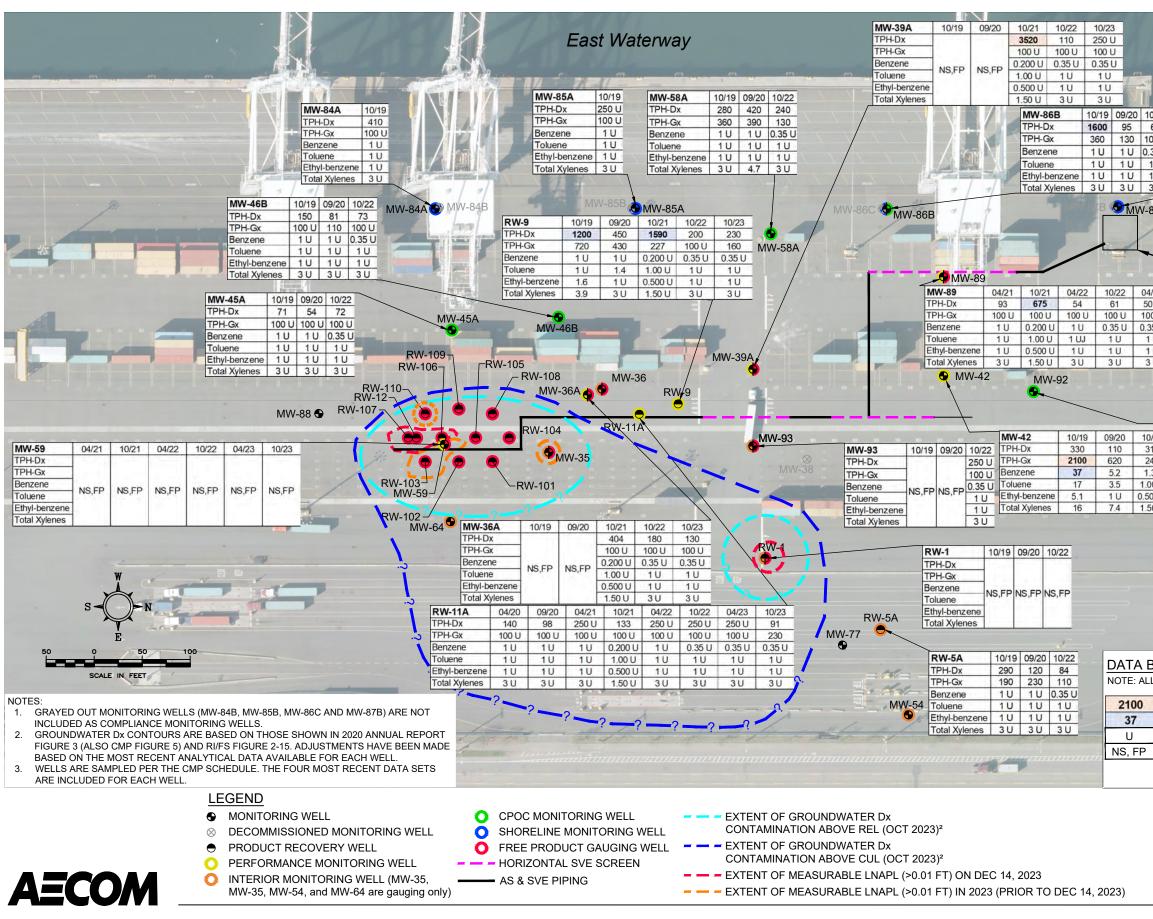
BGS = below ground surface

- CPOC = Conditional Point of Compliance
- MP = monitoring ponit

NM - not measured

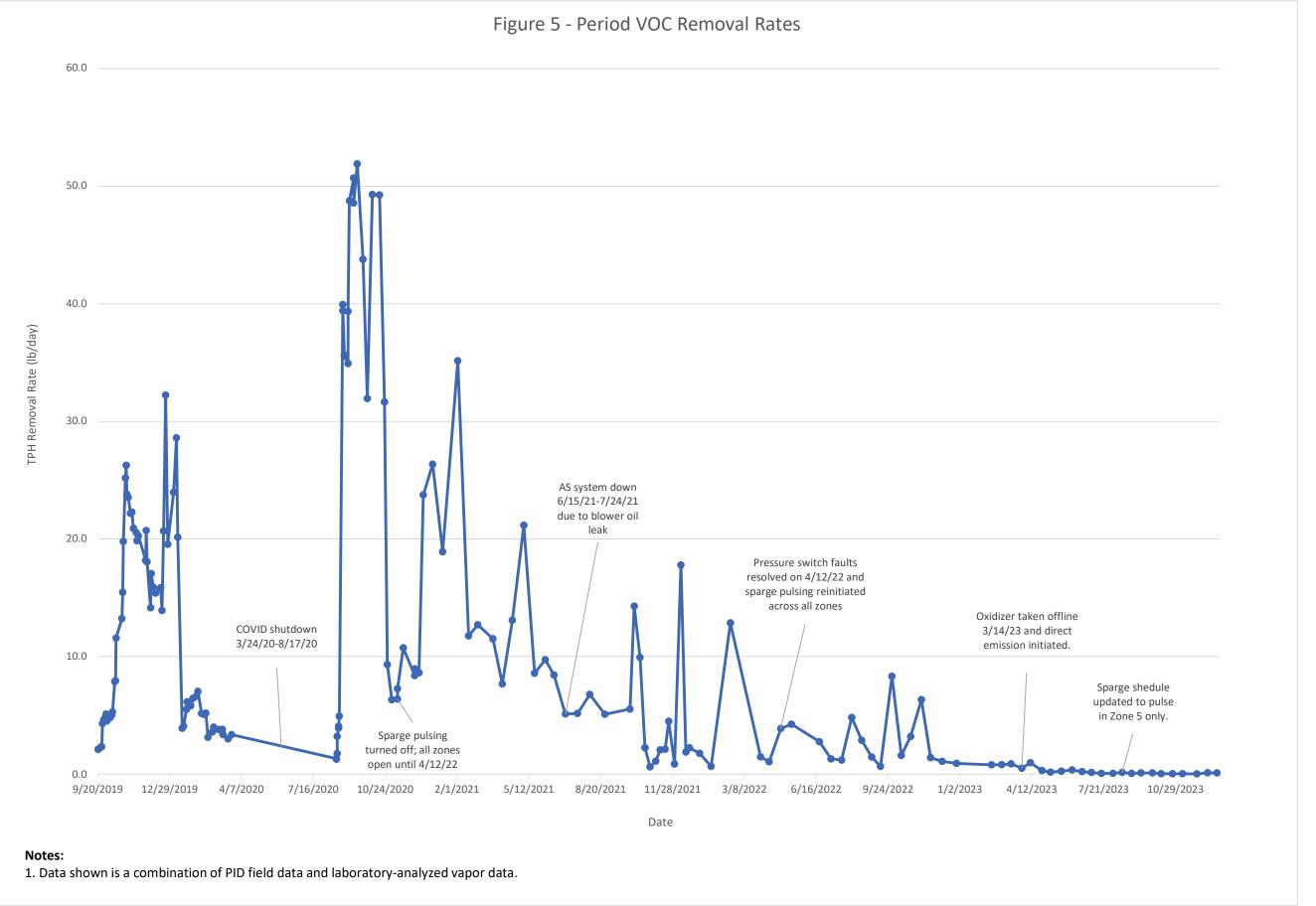

Figures

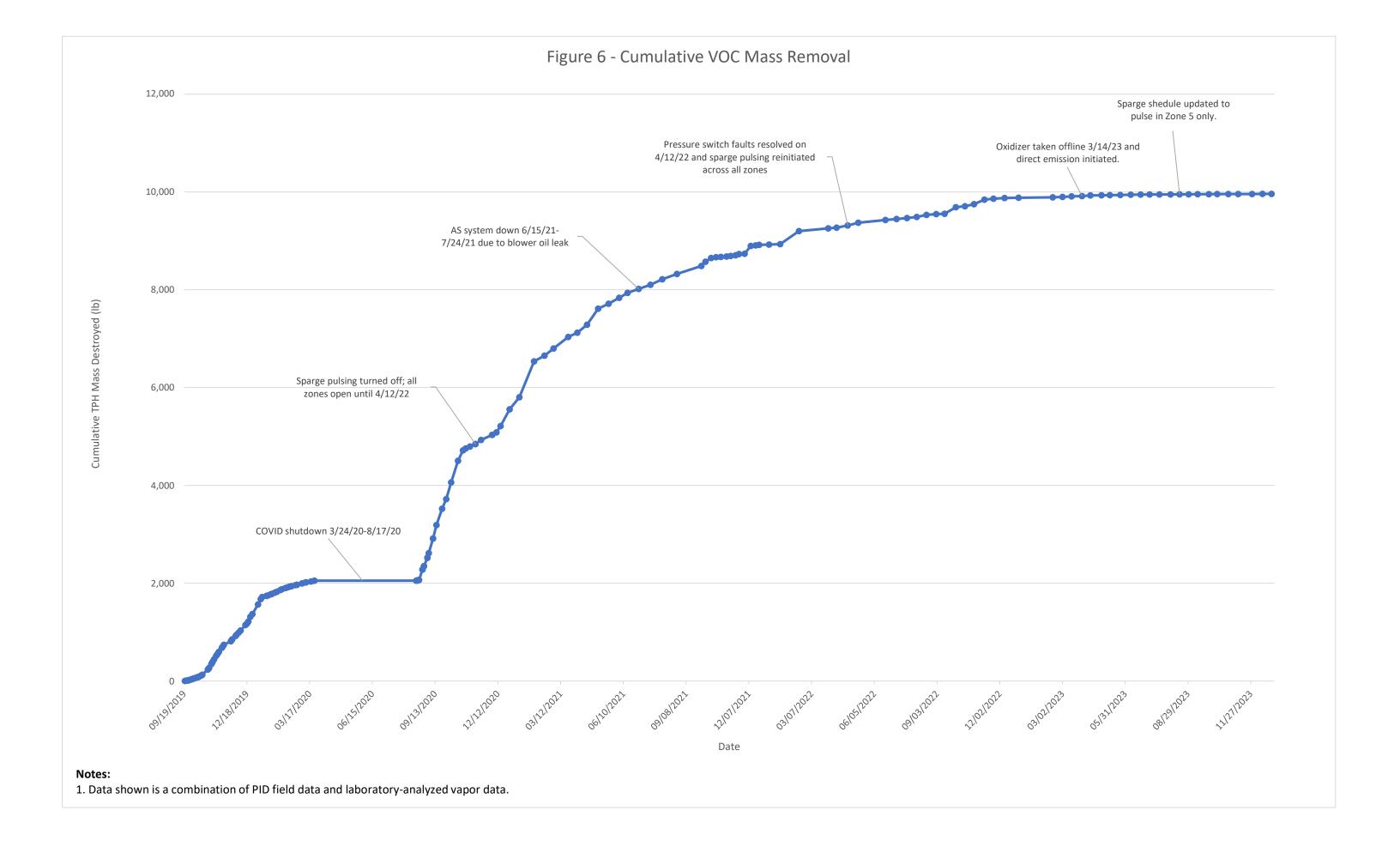


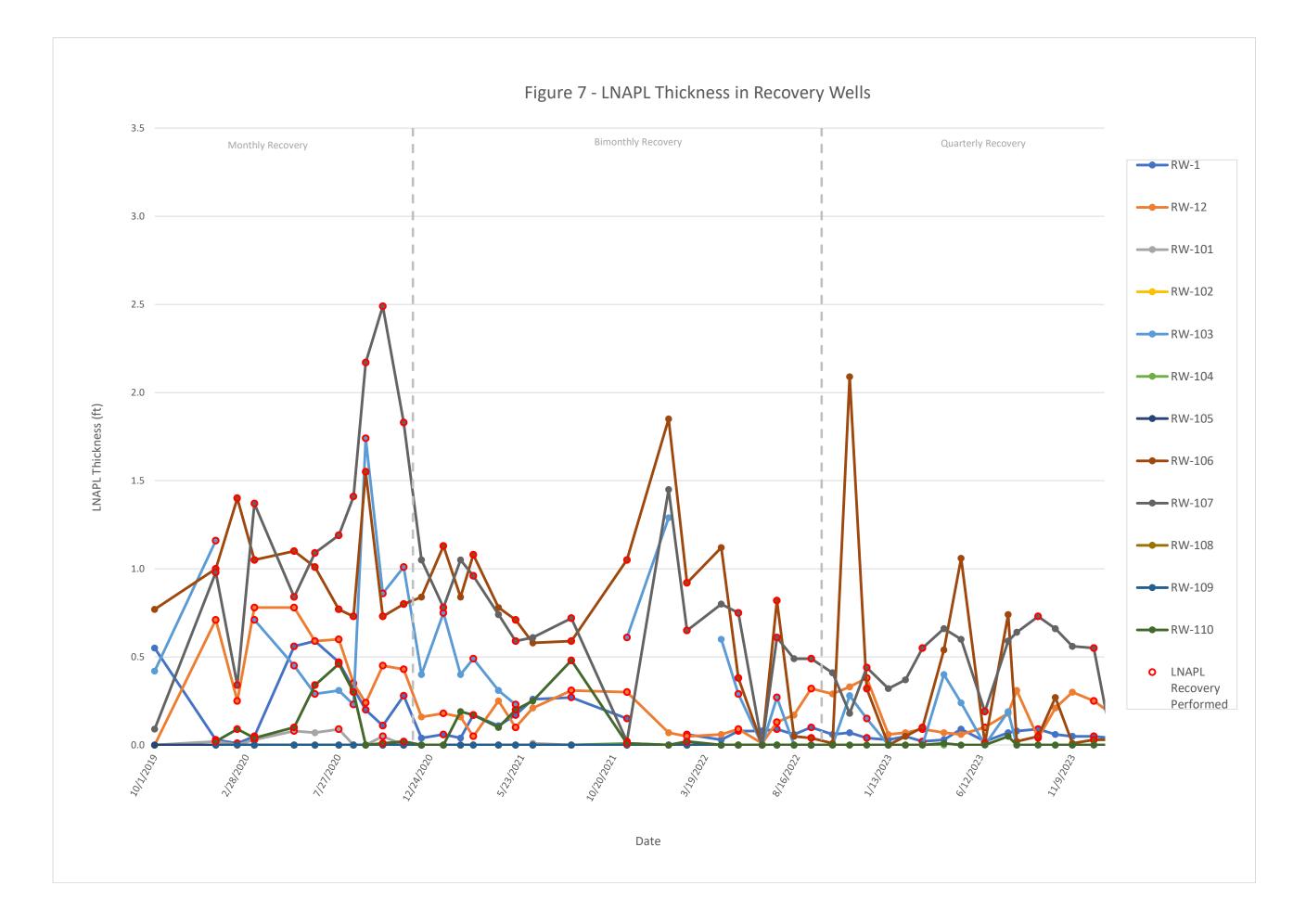

SITE LOCATION

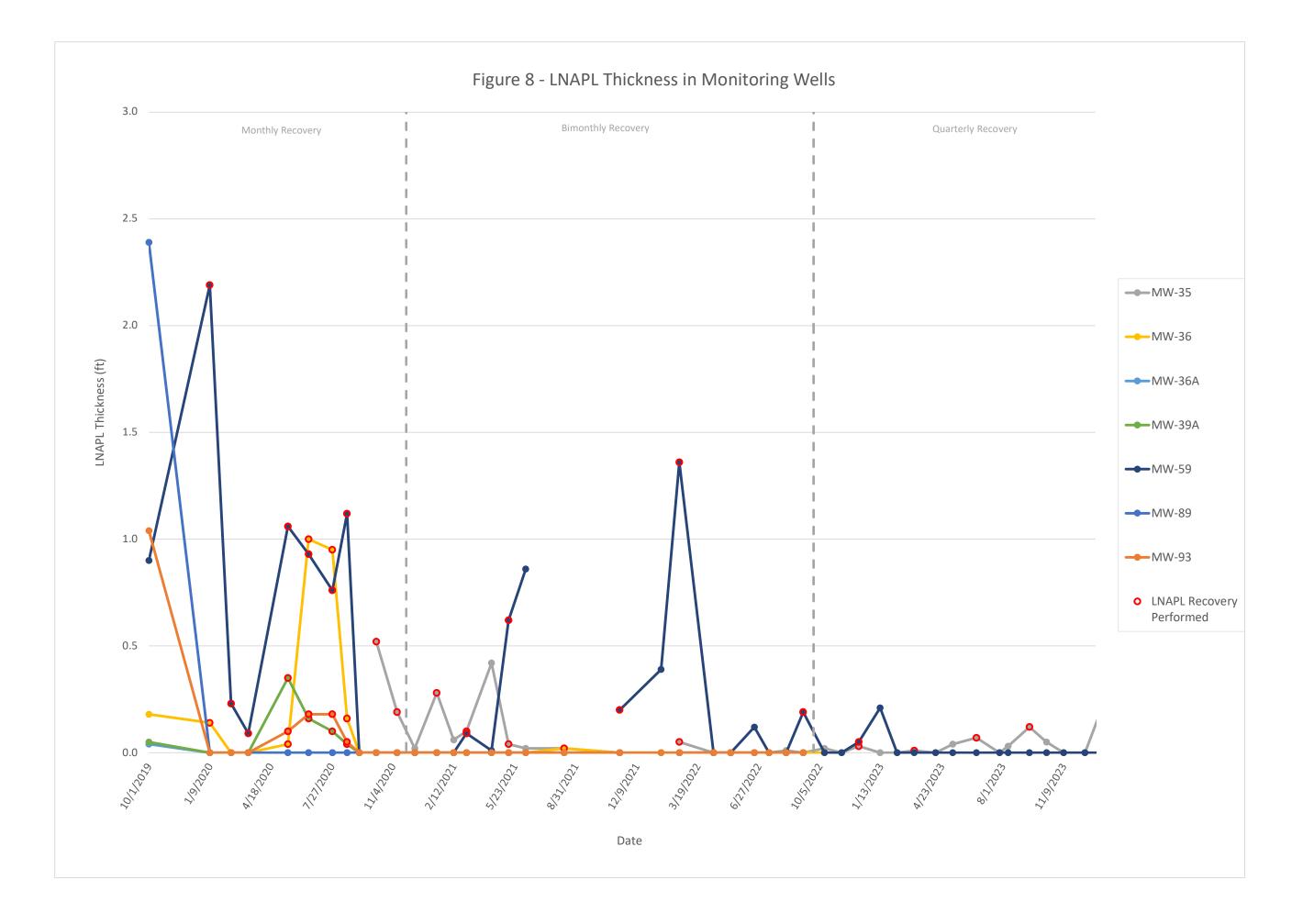
PORT OF SEATTLE TERMINAL 30 CLEANUP ACTION SEATTLE, WASHINGTON

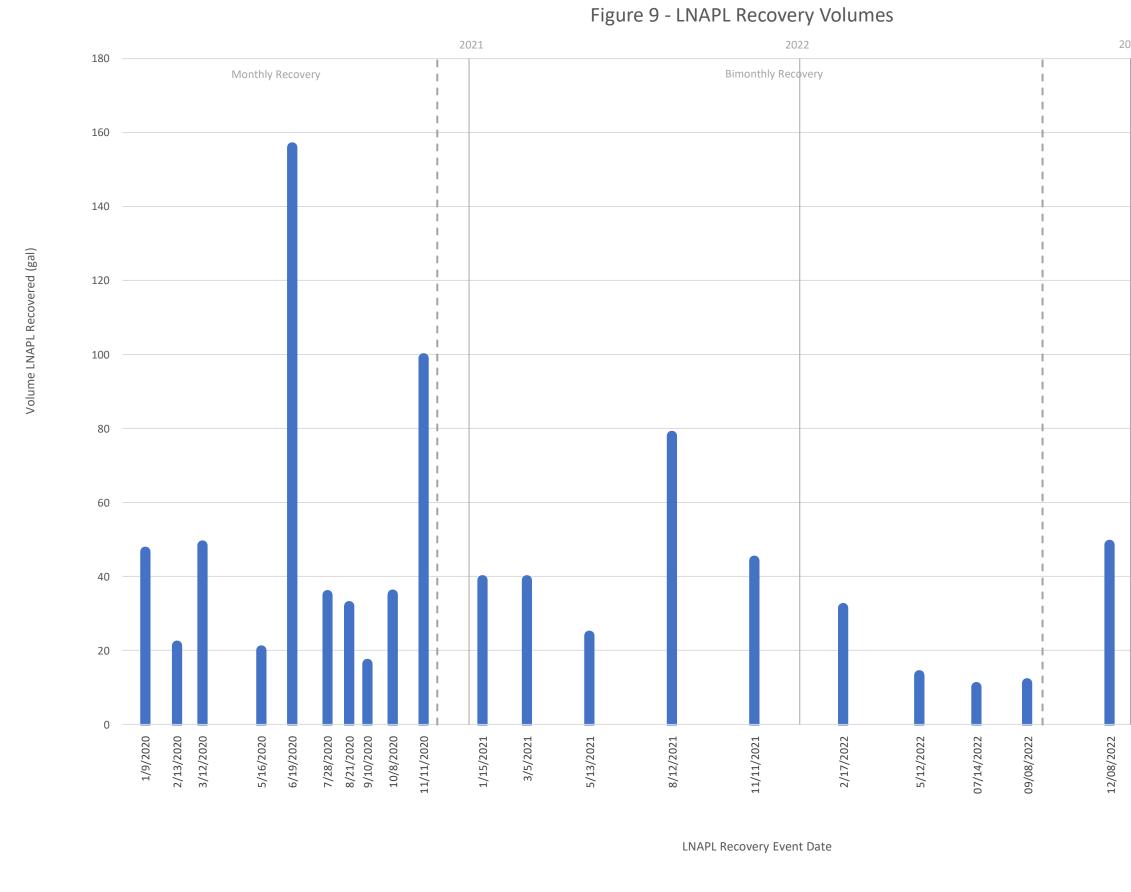
MAY 2022

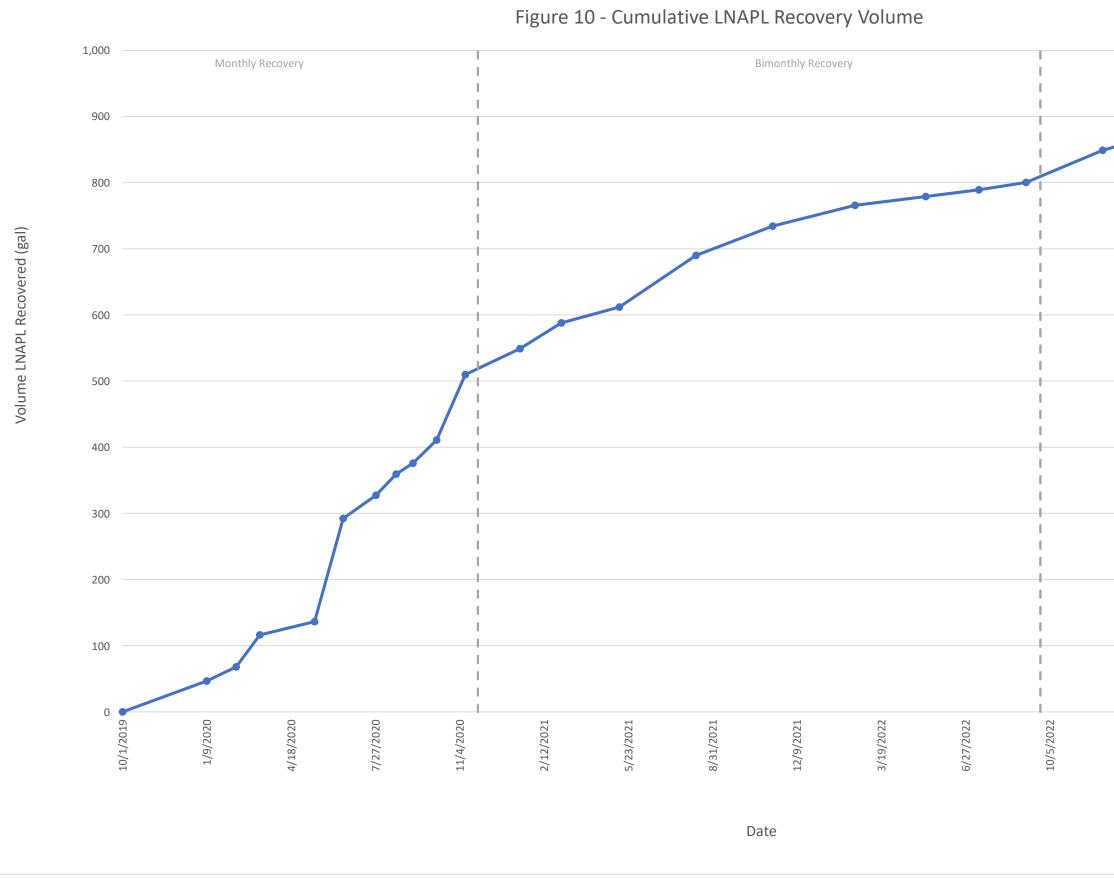


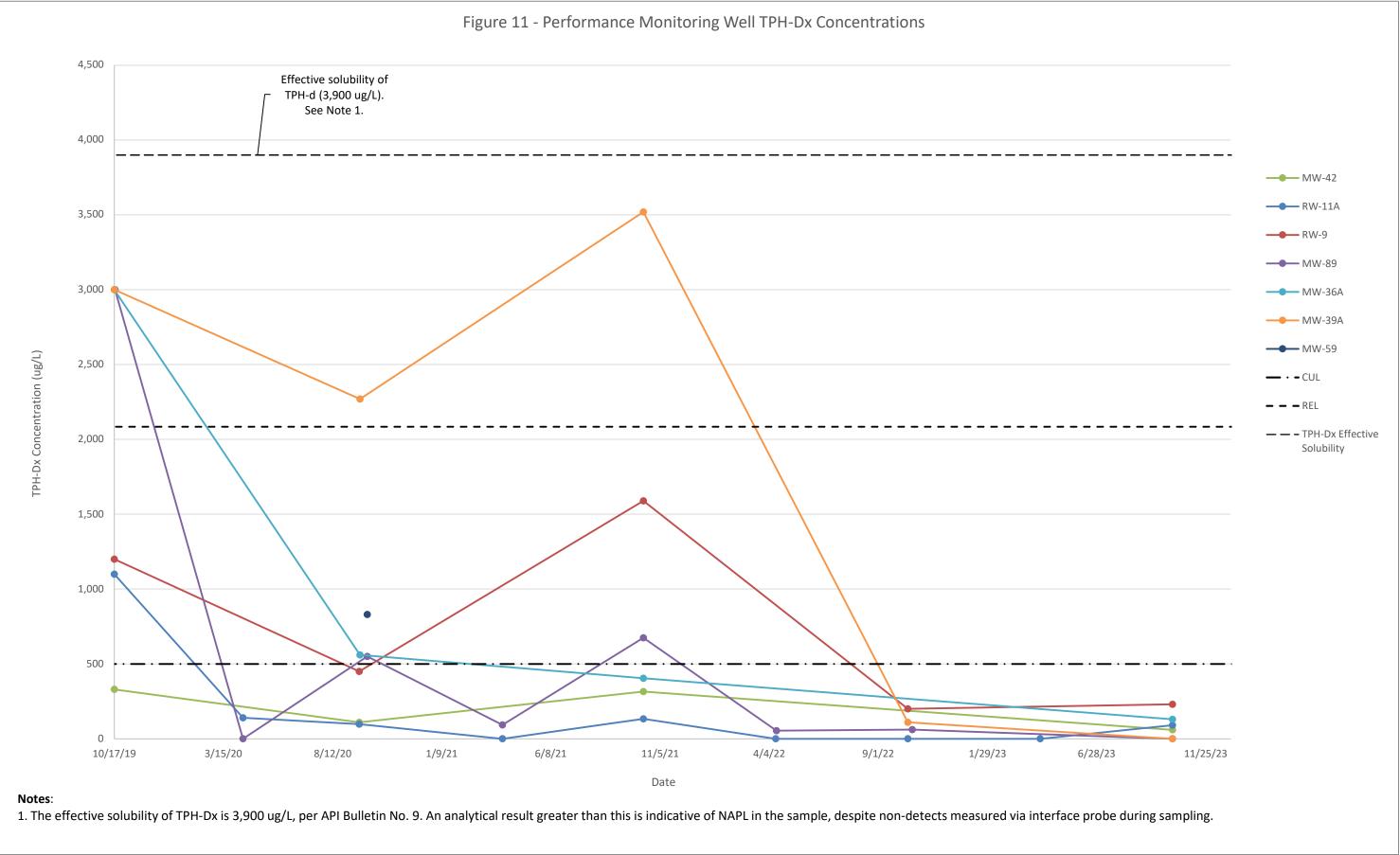

	63 100 U 0.35 U 1 U 1 U	TPI TPI Ber Tol Eth	V-87A H-Dx H-Gx nzene uene yl-benzenu al Xylenes	10/19 250 U 100 U 1 U 1 U 3 U				4		100		
-				SYSTEM							-	
119	- · · .	- A3				Y -			-		-	
ć	04/23 50 U	10/23 250 U	MW-9	0								
	100 U	100 U	-							-	-	
	0.35 U 1 U	0.35 U 1 U	= 1	1.1.1		-		-				
	1 U	1U										
	3 U	3 U							1			
	MV	V-52A										
				MW-76A								
/		_		MW-92	10/19	09/20	10/22					
_	10/21 315	10/22 120	10/23 60	TPH-Dx	120	75	81					
	248	260	270	TPH-Gx	250	200 1 U	100 U 0.35 U				40	
	1.31	0.35	0.35 U	Benzene Toluene	1U 1U	10	10.350				4	
	1.00 U 0.500 U	1U 1U	1U 1U	Ethyl-benzene	1.2	1 U	10					
i.	1.50 U	30	30	Total Xylenes	30	3 U	3 U				-	
			· · · ·								••	
	1	MW-91										
		•										
							1			1		
							4			- Ar	7	
							5	- 1	1		-) <u>v</u>	
									-			
T						1.4		1 - 1	-			
	A BOX			ARE REPORTE	D IN ur	1/L (MIC	CROGE	RAMS	8 PER	LITEF	ج) ا	
											·	
-				N EXCEEDS						L)		
37		UNCEN	IRATIO	N EXCEEDS	ULEAI	NUPL	EVEL	(00	L)			


CONCENTRATION NOT DETECTED ABOVE THE VALUE SHOWN WELL NOT SAMPLED DUE TO PRESENCE OF >0.01 FT FREE PRODUCT WITHIN THE PREVIOUS FOUR QUARTERS


END OF 2023 COMPLIANCE MONITORING ANALYTICAL RESULTS


PORT OF SEATTLE **TERMINAL 30 CLEANUP ACTION** SEATTLE, WASHINGTON





0	023			
	Quarterly Re	ecovery		
	03/09/2023	06/19/2023	09/14/2023	12/14/2023

Quarterly Recovery	ı.
1/13/2023 4/23/2023 8/1/2023 11/9/2023	

Appendices

<u>Appendix A</u>

O&M Field Forms

Project Information Pag				
Project Name:	7-30	Location:	5000	
Project/Task No.:		Weather:		
Date:	1/25/23	Personnel:	GFCB	

Observations

	Time	Observation Description
1	0930	'Gif angite
2		· Safetz Tailacite
3		·Scope: H&K system upgrades Ploat switch replacement in KOT
4		Plant switch replacement in KOT
5	0531	Mtg w/ MM re stack design
6	4	· Power disconnected to gatem @ brenker. Locked out.
7	2945	· [est voltage at VI) continued no power
8		· Planed at whe install of sport confirmation to pandy CHOK
9		He revised the VFD terminals for the the SIT wires from 16
10		to 17.
11		. Added the following loads:
12		SVE
13		81t from VFD from 17 to 81t terminal on terminal block
14		114 from WD term 19 to 114 terminal on term block
15		AS
16		SIT from VFD tem 17 to Sit term on term block
17		110 1/5 from VFD form 19 to 115 term on term block
18	130	· Swapped the new think drive from Mark into the MMI port
19		in place of the old are
20		· respired pouls
21		. Followed plack instructions to react the MMI/PLC. All want
22		as planned until the actual file pland step, which failed
23		after 10-15 min of Loading
24	1200	Marina I John arrived Fran MM, & C Brown from Heam.
25		Stack location I degign aptions were discussed. John
Com	ments / Site Acti	vities / Personnel Tracking

Project Information				Page 2 of 3
Project Name:	7.20	Location:		
Project/Task No.:		Weather:		
Date:	1/25/23	Personnel:	GVF CB	

Obs	ervations		
	Time	Observation Description	
1		proposed general good alternatives. #1 is to remare the theside	
2		pipe partion & add air plaine from the near floring. Do a quick	
3		turn to the SVE blover baging & install stuck pie. Add	
4		unistrut to the outside of the hersite & damp stack to	
5		those han	
6		- John & hur my will pun it by Silcox, who has to approve	
7		it first. If they need anything from its they'll let is	
8		thow	
9		· Discussed the maintenance decklist from the odm	
10		manual & mode revisions to match the Equipment on	
11		Gite at staffing realities, see wors@ bottom.	
12	XX	-7 cleak of marina to see : F MM has been greasing	
13		both the blovers and motors mowthly. The	
.14		deadist says to do the blavers weekan it the motors	
15		annually, we are fire with both dave monthly if	
16		that is what has been fore to derte.	
17		. Notried that the Poly tank was asked & realized it	
18		was floating in voter in the 2' containment. I' ripped	
19		Soveral of the earthquake andrar botts art. Marina	
20		got are of their voic trucks to come vac it out.	
21	XX	are will figure out how to repair the anchor boths.	
22	1300	Marina of John officite	
23		. Did a power cycle at the MME + aftempted the exp	
24		drive upland again, but no luck. Same result.	
25		· Helped CB take apart the KOT Flogt Switch. Got the	
Comments / Site Activities / Personnel Tracking			
	New AFECOM for KG: D cleck SVE & AS oil levels biveling. Alert MM: Frley		
q i	replot the	high or low. 2) Quarterly open up filler hunding to empty water t	
		· · · · ·	

C /Users/gus triedman/Documents Field Forms - GENERAL Field Forms - GF xls(Darly Field Log) 3/22/2021

~ •

...

Project Information	on			Page \underline{S} of $\underline{3}$
Project Name:	7-20	Location:		
Project/Task No.:		Weather:		
Date:	1/25/03	Personnel:	GF CB	

Obs	ervations		
	Time	Observation Description	
1		Old float off & confirmed it had filled al whether Added	
2		the en float in its place, but reed Gone Grap ring pliers	
3		to complete the install.	
4	1345	CB offsite	
5		· Attemptet are more MMI parer cycle but some result. · Called Dandy + left a VM w/ update, but be was alfeady due for the Jay.	
6		Called Rondy + left a VM w/ update, but be was	
7		alfendy die for the day.	
8		Cloner of oller of	
9		- having prought I rear threaded built value for the	
10		GVE manifold, didn't realize we veeled more (5?).	
11	**	Confirm count for ler.	
12	1420	· officite. will return in the AM to complete the	
13		fagels.	
14			
15			
16			
17			
18			
19)	
20			
21		GF	
22		1/23/23	
23			
24			
25			

Comments / Site Activities / Personnel Tracking

. Jacks

Recommended	Task	Comment
Frequency		
	Centri	fugal Pump
6 Months/Yearly	Disassemble,- inspect, and clean	May require service more often based on the site operating conditions. if related for impection
Yearly	Grease motor with NGLI #2, if applicable	N/A
	Heat	Exchanger
As Needed	Cleaning and Inspection	Fan blades should be inspected for tightness. Coil fins that become flattened can be combed back into position.
tani tali ori		Inspect the entire heat exchanger and motor/fan assembly for loosened bolts, loose connections, broken components, rust spots, corrosion, fin/coil clogging, or external leakage. Make immediate repairs to all affected areas prior to restarting and operating the heat exchanger or its components.
6 to 9 Months	Grease blower motor bearings with NLGI #2 grease.	NIA
Land Bland	Air Spa	irge Blower
Weekly Binelkly AECOXA	Check sparge oil by opening lower side plug to see if there is enough oil.	Air sparge blower must be off.
After first 100 hours, 1,000 hours (monthly thereafter)	Sparge oil change. Use non-detergent SAE 40 oil or equivalent synthetic.	
Weekty Monthly	Grease sparge blower bearings with NLGI #2.	
Monthly	Check belt tension and wear.	

Table 13 Terminal 30 SVE/AS Maintenance Schedule

2. 1

lapattely

\$

Recommended	Task	Comment	
Frequency			
North	Grease motor with NLGI #2.		
		Blower	
Weekly old	Check SVE oil by	SVE blower must be off.	
Billeenvod	opening lower side		
Riverban	plug to see if there		
•	is enough oil.		
After first 100	SVE oil change. Use		
hours, 1,000 hours	non-detergent SAE		
(monthly	40 oil or equivalent		
thereafter)	synthetic.		
Weekly (Grease SVE blower	* MA sticker is on on ne motor. make sure the block pressing has been a heir list you	
Monthy	bearings with NGLI	I make five the Wooder palesing	
	#2.	how been a feir 1.35 you	
Monthly	Check belt tension		-
,	and wear.		
Yearly 1	Grease motor with		
nonthly	NGLI #2.		
	Moistu	re Separator	
As Needed.	Clean/Replace	When differential pressure across the filter	45
Recommended to	demister.	exceeds 15" of water.	Stice
check monthly	Clean sump site	As needed, depending on water quality.	will To
during blower oil	glass, pump down	Recommend initial inspection after 6	1 sht
changes.	switch.	months.	4.0
			+ roht mm -s roeced
E.		VILLE de la Cilter hough t	Necec
MM annual	V	and weak fill add	
	AECOM	Also cleck filter housing t empty water as readed. Guarterly basis	
	runche	ry red basis	
	9/) buchtery .	

Component	Test	Frequency
Fan Mounting Bolts	Tightness	Quarterly
Fan Motor Bearings	Lubrication	Quarterly
Fan Motor Amperage	Windings	Quarterly
Electric Heater Amperage	Output	Quarterly
Dilution and Process Valves	Verify Valves Moves	Monthly
	Freely	
Filter Inspection and Cleaning	Check for Congestion	Monthly
	and Wash as Needed	
	(Reusable)	
Instrumentation	Drain Condensate	Monthly
Temperature Controller	Accuracy	Annually
Electrical Wiring Terminals	Tightness	Semi-Annual
Flame Arrestor	Pressure Drop	Annually
Catalyst	Signs of Plugging or	Annually
	Discoloration	
Chart Recorder	Download Data	Quarterly
Destruction Efficiency	Calculated	Monthly

Table 14 Terminal 30 Oxidizer Maintenance Checklist

H

Oxidizer going offlice, no relation address

AECOM Daily Tailgate Meeting Summary

Project information

Project Name	T-30
Project Number	60681370
Project Manager	Paul Kalina
Project Manager Phone #	2063105097
Muster Point location	Clubhouse
Meeting date	1/25/2023
Business Line	Environment
SH&E Manager	Tim Gilles
SH&E Manager Phone #	3128335991
First Aid Kit Location	Conex
Prepared by	Friedman, Gus

Meeting Summary

Attendees	
Location	SODO
Tasks to be performed	H2K system upgrades Float switch replacement MM stack meeting
Hazards to be considered today	motion, electrical
Will there be Lone Workers?	No
Hierarchy of controls	engineering, ppe
Personal Protective Equipment	Task Specific: gloves Mandatory: longpants, reflectivevest, workboots
High Risk Events	
Topic of the week	Road Safety - speed, signs, awareness, distractions
Other topics discussed	

End of the day comments. The supervisor confirms that the site is being left in a safe condition and work crew checked out as fit unless otherwise specified here

Project Information	Dn			Page of
Project Name:	4-30	Location:	Seattle	
Project/Task No.:		Weather:	·	
Date:	1/26/23	Personnel:	GF	

Observations

Obse	Time	Observation Description		
_	Time	Observation Description		
1	0920	'onsite		
2		·Scope: Complet KOT Float replacement & MMI update.		
3		Genfetz tailgat. Pinch paints & traffic		
4		· (alled Randy at Hok & left a nessage. He will reed to		
5		try the parte remotely & if it fails, we'll read to send the		
6		HAT to him.		
7		· completed install of the Emoprings on the KOT rod		
8		+ reinstalled it. Confirmed the new float floats.		
9	10:00	. Still waiting on Ranch. killed time by adding the dewarking		
10		ball value to SVE- le u/ the are ball value than a got for		
11		04.		
12		- had to replace the close nipple polow the rotaneter which		
13		I noticed had cracked broken. Luckily plenty of		
14		Goves in the conex.		
15	10:50	. Randy called back. Took a while, but we successfully		
16		got the update campleted.		
17		· Asked about the oxidizer "mper wire & he recommanded		
18		disconnecting the wire(s) going from terminal 101 out		
19		to the midzer + capping of a wire not.		
20	11:50	. Restarted the oxidizer		
21		>> Shut down due to a flane relay alarm. I'm not familiar		
22		but was able to dear it & restart again		
23	12:00	· SVE the kicked on		
24		- Zore 5 active. Very little Plan, ~1.5 Sching to AS-24 4 -25		
25		and O to the others		

Comments / Site Activities / Personnel Tracking

Project Information	Page 2 of 2
Project Name:	T-30 Location: Sentille
Project/Task No.:	Weather:
Date:	1/26/23 Personnel: GF
Observations	
Time	Observation Description
1	- Lots of water in SVE-6, -8, -9, 4-10.
2	-SVE-4 is consistently dirty water
3	- SUE- S totally Stulk. Could Swepin a loumper from
4	are at the HSVE retempters as a step-gap
5	- SVE-8 still seen no flow
6	· Fright Several alarma to test the notifications but they
7	• Fripped Several alarma to test the notifications but they still appear to be maifunctioning. An error appeared
8	on the HMI referencing the entrils of more were veceived.
9	> Rondy (H2K) already done for pleday but I left
10	him a vaicemail explaining.
11	- Teste pe Kot floats + they work as intended.
12	· Clanned pot locked up
13 13.10	
14	
15	
16	
17	
18	
19	
20	- GF
21	GF 120123
22	
23	
24	
25	

Comments / Site Activities / Personnel Tracking

Friedman, Gus

From: Sent: To: Subject: rcarlson@h2ktech.com Monday, October 31, 2022 6:57 AM Friedman, Gus RE: Seattle Terminal-30 VFD questions

This Message Is From an External Sender

This message came from outside your organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Report Suspicious

Gus,

See my responses to your questions below in RED. Let me know you have further questions or comments.

- Is the system set up to be able to run without the oxidizer? If not, can that option be added in? We are actively considering switching to GAC, and have the potential to run the system without filtration in the near future. Yes, all you would have to do it put a jumper wire across terminals 81+ and 101 to simulate the Oxidizer is running. The SVE system won't know the difference and run just like it does with the oxidizer running.
- 2. Is the temp sensor at the sparge compressor feeding actual temp data to the PLC or just signaling when a high temp is triggered? If the former, can the temperatures be shown on the HMI? If you are referring to the SPARGE BLOWER TSH wired to terminals 162 and 163, that is just a switch. You would have to add a temp transmitter, analog PLC card, and programming to the PLC and HMI to view a real time Sparge temperature.
- 3. What triggers an "SVE/AS System Failed to Run" alarm? That must be an alarm triggered by the oxidizer control panel. You would have to talk to Intellishare directly to see what creates that alarm.
- 4. I'm not seeing any VFD failure alarms is that correct? Is there a way to program in new alarms if the VFDs fail? If you need to know if the VFD's fail/fault, you would have to wire in the "VFD FAULT" output from the VFD to a spare PLC input. Then programming in the PLC and HMI would have to be done to accommodate that fault signal.
- 5. When is the heat exchanger set to run? What triggers operation? The HX will run after the SPARGE BLOWER has run for 10 seconds and no alarms in the system are active.

Regards, Randy Carlson

Controls Manager H2K Technologies

<u>rcarlson@h2ktech.com</u> | (o) 763-746-9900 x118 | (f) 763-746-9903 7550 Commerce St. Corcoran, MN 55340 | <u>www.H2Ktech.com</u>

Project information

Project Name	T-30	
Project Number	60681370	
Project Manager	Paul Kalina	
Project Manager Phone #	2063105097	
Muster Point location	Clubhouse	
Meeting date	1/26/2023	
Business Line	Environment	
SH&E Manager	Tim Gilles	
SH&E Manager Phone #	3128335991	
First Aid Kit Location	Conex	
Prepared by	Friedman, Gus	

Location	SODO
Attendees (Workers)	Gus Friedman;
Attendees (Visitors)	
Tasks to be performed	Complete KOT float install & HMI update
Hazards to be considered today	motion
Will there be Lone Workers?	Yes
Hierarchy of controls	рре
Personal Protective Equipment	Task Specific: Mandatory: safetyglasses, longpants, reflectivevest, workboots
High Risk Events	

Topic of the week	Road Safety - speed, signs, awareness, distractions
Other topics discussed	
Mid day reviews	
End of the day comments.The supervisor confirms that the site is being left in a safe condition and work crew checked out as fit unless otherwise specified here	All tasks completed safely and successfully
Hazards	• <u>Motion</u>

Project Informatio	on			Page of
Project Name:	T-30	Location.		
Project/Task No		Weather		
Date:	1/27/23	Personnel:	GrF	

Observations

	Time	Observation Description
1	1700	onite
2		·Gape: restart System of test enail / Ext notifications
3		Sufer tailate
4		·System OFF on arrival as expected. Rendy (HOK) Said
5		The thought be accidentally Shut it down reprotely.
6		· Email notifications seem to be working except they don't
7		if a phone number is also on the list. I tried mize with
8		just the area cade and also with a 1 at the front,
9		but reither worked.
10	1715	· restured the oxidizer, but it faulted at during startyp
11		with a "Dilutton Unlive not open" fault
12	1720	· Restarted oxidizer again but it again foulted out ?
13		during the strong sequence, this time due ton)
14		Fland relay issue. This are happared yesterday too
15	1723	- Restanted ple oxidizeras Third time this are worked
16	1730	- ASJGVE Hicked on
17		- Zone active. AS-2 & AS-3 are very shike.
18		AS-1 bos lots of debris in it. Air leak from top of AS-2
19		- pecalled push sming be would goon up the big
20		Ball value One and of the manifold after long
21		Shut downs. I did this & a gup ming amont
22		of water Accome at blasting to the Poly tank.
23	1755	offsite
24		
25)GF

Project information

Project Name	T-30	
Project Number	60681370	
Project Manager	Paul Kalina	
Project Manager Phone #	2063105097	
Muster Point location	Clubhouse	
Meeting date	1/27/2023	
Business Line	Environment	
SH&E Manager	Tim Gilles	
SH&E Manager Phone #	3128335991	
First Aid Kit Location	Conex	
Prepared by	Friedman, Gus	

Location	SODO
Attendees (Workers)	Gus Friedman;
Attendees (Visitors)	
Tasks to be performed	Restart system Check notifications
Hazards to be considered today	noise
Will there be Lone Workers?	Yes
Hierarchy of controls	рре
Personal Protective Equipment	Task Specific: gloves Mandatory: safetyglasses, longpants, reflectivevest, workboots
High Risk Events	

Topic of the week	Road Safety - speed, signs, awareness, distractions
Other topics discussed	
Mid day reviews	
End of the day comments.The supervisor confirms that the site is being left in a safe condition and work crew checked out as fit unless otherwise specified here	All tasks completed safely and successfully
Hazards	• <u>Noise</u>

Project Informatio	on Page of
Project Name:	T-30 Location:
Project/Task No.:	Weather:
Date:	2/2/23 Personnel: CIF
Observations	
Time	Observation Description
1 0945	- onsite
2	Scape: Regalive SVE/AS Failed to Run glarm & restrict
3	Gistem
4	Safety Thillagte
5 0950	
6	was no longer active, which was unexpected.
7	· CLECKEd the KOT. + water level was at the bottom of
8	the sight days pelow the bottom Ploat. Marina had
9	mid de only availed it to 1/2 or 1/4 full.
10	-> Carn's thought had been that the bottom float
11	
12	, , , , , , , , , , , , , , , , , , , ,
13	I'm series. Alarm 50,6 dearchivated 0970 m Hat. 12:09 on 1/51
14	A A A A A A A A A A A A A A A A A A A
15	· called Moniver. She by Oxidizer a larm shows it triggered
16	left Kot ~ 50% and didn't at 9:30 on 1/31 likely while
17	de any Fisher Verrix Marine was bere.
18 0956	SVE & AS Killed on Zuns
19	· Maybe the pump auto-drained the Kot around at 2:09 + for the
20	the alarm outo-reget? The last time the poly toute 13 110
21	filled I got unid at the Kor drained itself the
22	didn't go through an of this.
23	· There is still a woird PUC harder notification appearing
24	on the HMI - "PLC-026: DEVOO2 - PLC convection Timeout"
25 1003	· Clocped AG bleed value to try to trisker a VFD Fault & test new abrom
	Activities / Personnel Tracking

Project Information	n				Page 2 of 2
Project Name:	7-30		Location:	Southe	
Project/Task No.:			Weather:		
Date:	2/2/23		Personnel:	GF	
Observations					
Time			Observation Descrip	tion	
1 1011	AS VFD	is pulling 11.	4 Amps	· · · · · · · · · · · · · · · · · · ·	
2	-Zae 4 a	etive. Not as	cat airf	In everal Ida	ed closed
3		Flow	lot thing	e_	
4	A5-17	4.4	9.	0	
5	AS-18	O (not shok)	G.	5	
6	A5-19	1.2	G.,	25	
7	AS-20	1.7	9.	5	
8	A5-21	~71	10.	25	
9	A5 -22	1.8	9.	5	
10 10 40	AS VED		an Az	210 fault 40	it it is
11	Still on.	There is no	alam	showing on th	e HMI
12	Not Give	what happen	ed.	spice Ser 10	<u> </u>
13 1044		I clock fro		1 +0 1044	
14 1045				two open, 2	Pore 4
15	Still ac.	tive :		per per la c	
16	1 11	Flow	Pre	Shure	
17	A5-17	2.9		8.0	
18	A5-14	0.0		5.25	
19	A5-19	1.1		8.0	
20	A6-20	0.0		8.5	
21	A5-21	0.0		8.75	
22	A5-02	61		80	
23	· accued or	10 Page Jane K	e lutto	~60 %	
24 1055		p. offaite	7, 10101		
25	100-04 0	-, 011041C_	\leq		
	tivities / Personnel Tracking		\rightarrow	CTF	
	ed. Settings on arrival	Updated settings:		212123	
1: 17:00-22:30 2: 22:00-03:30	0	1: 03:00-08:00 2: 07:30-12:30 4:	17:00-22:30	,	
3: 03:00-08:00	·	3: 12:00-17:30 5:			

Project information

Project Name	T-30	
Project Number	60681370	
Project Manager	Paul Kalina	
Project Manager Phone #	2063105097	
Muster Point location	Clubhouse	
Meeting date	2/2/2023	
Business Line	Environment	
SH&E Manager	Tim Gilles	
SH&E Manager Phone #	3128335991	
First Aid Kit Location	Conex	
Prepared by	Friedman, Gus	

Location	Downtown Seattle
Attendees (Workers)	Gus Friedman;
Attendees (Visitors)	
Tasks to be performed	Clear alarm and restart system
Hazards to be considered today	noise
Will there be Lone Workers?	Yes
Hierarchy of controls	рре
Personal Protective Equipment	Task Specific: gloves Mandatory: longpants, reflectivevest, workboots
High Risk Events	

Topic of the week	Preventing Texting Injuries - Ergonomics, habits
Other topics discussed	
Mid day reviews	
End of the day comments.The supervisor confirms that the site is being left in a safe condition and work crew checked out as fit unless otherwise specified here	All tasks completed safely and successfully
Hazards	• <u>Noise</u>

Project Information	Page of <u>2</u>										
Project Name:	T-30 Location: Seattle										
Project/Task No.:	Weather:										
Date:	2/16/23 Personnel: GF, AB										
Observations											
Time	Observation Description										
1 1515	GIF AR angite										
2	"Scope: bireckh Ot M; rotaneter repairs; dewatering										
4	- Safety Taileate										
5	-GLGEM ON in ZOR 3. Marina & DH Vacid out										
6	The tank this AM and got the system restarted										
7	at 10:30										
8	· Odm readings collected										
9	> Influent 9.4 ppm										
10	> Effluent 0.3 pmV										
11	* replace SuE influent vac gauge al 0-150 "Hjo?										
12	We have been maxing out the existing 0-100" gauge										
13	of fiplace 14 rometer? Hard to read we to opiquetes										
14	+ Transfer pump keeps torning on for ~1 second at										
15	a time seemingly randomly. The KOT herel is										
16	blow the bottom fort. I've hatild this the past										
17	PEW Visits.										
18 1630	. Added dewatching values to SUE 5, -7, 4-9. Need to										
19	add one to SNE-4 Still.										
20	· SVE-9 was full of dark brown/black viscung product,										
21	~2 gal worth. Once drained of turned back on, it										
22	immediately refilled with dirty water. We drained a										
23	addition to the product. Then gate of.										
24	addition to the product. Then gate of.										
25	· SVE-6 + - 8 yere both ful of water a refilled almost										

Comments / Site Activities / Personnel Tracking

Proje	ct Information	Page 2 of 2
Projec	t Name:	T-ZD Location:
Projec	t/Task No.:	Weather:
Date:		2/16/23 Personnel: Gif AB
Obser	vations	
	Time	Observation Description
1	<u>-</u>	immediately after getting pumpled day.
2		· Called C Brown to discuss the recommended
3		- Keep SVE-9 open it is remaring product. Unexpected,
4		but good big-pitture
5		- clock down while just producing venter + low on PIDS.
6		Did this for SVE-6 & -8. Vid not seem to impact
7		overall voic levels, mon Dilution value cracked to bring tot vo
8		- 100K into the transfer pump. Don't want to burn it out.
9		Turnet the control to OFF @ 17:20 to see if the
10		Kot fills at all. It should given current trends
11		I the water in the manifold.
12	1500	AB offsite for the night
13		. Kot has risen to 25-to full.
14		- Remark Plant assembly from Sites ass then torred
15		pump back to auto. Lith the high Float down,
16		raising the low float caused the pump to turn on,
17		which shouldn't happen. It wasn't consistent
18		Though, so even beirder. Reducing it brock in the
19		Sight days caused it to Kick on orgain as the
20		bottom plant was floating. Might read more
21		troubleshowting in the AM to get it figured out.
22	K845	
23	1850	
24		GF
25		22/16/23

Comments / Site Activities / Personnel Tracking

PORT OF SEATTLE - TERMINAL 30

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-		.11			1 21	AS & SVE Man	ifold Rea	dings			1999 - 1999 1999	131	1981
SVE Wells VIE View View Prove Value Pox Dewater PID Comments Well View PiD Comments PID View PiD Comments View PiD View PiD Comments View PiD View PiD Com HSVE-2 29 76 10 - 14.5 SVE-3 SVE-9 76 0 1 2.25 0.4 pide SVE-4 76 10 - 1.35 diret SVE-6 79 16 - 0.5 0.4 Wide 0.5 0.4 <				>										
Weil Prove value Pos. Dewster PIO Comments PIO (***) Pio Pio Pio Pio	Field lea	ch(s):	ar, Al	5			SVE V	Vells		Equipmen	(1.0. #:			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Well	Vacuum	Flow	Valve Pos.	Dewater	PID			Vacuum	Flow	Valve Pos.	Dewater	PID	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ID	("H2O)	(SCFMG)	(% Open)	(Gal)	(ppmv)	Comments	ID .	("H2O)	(SCFMG)	(% Open)	(Gal)	(ppmv)	Comments
SVE-4 76 6 100 0.5 10.5 bouncing, issues SVE-8 81 0 90 0.5 0.1 wate SVE-5 14 14 1 - 1.4 SVE-6 79 16 90 0.5 0.4 Wate SVE-5 18 0 92 0.5 0.4 Wate 90 0.5 0.4 Wate SVE-7 64 92 0.55 1.4 92 0.5 0.4 Wate SVE-7 64 92 0.55 1.4 94 <td>HSVE-2</td> <td>29</td> <td>76</td> <td>10</td> <td>-</td> <td>14.5</td> <td>~</td> <td>SVE-10</td> <td>76</td> <td>20</td> <td>100</td> <td>-</td> <td>1</td> <td>bouncing</td>	HSVE-2	29	76	10	-	14.5	~	SVE-10	76	20	100	-	1	bouncing
SVE-4 76 6 100 0.5 10.5 bouncing, issues SVE-8 81 0 90 0.5 0.1 wate SVE-5 14 14 1 - 1.4 SVE-6 79 16 90 0.5 0.4 Wate SVE-5 18 0 92 0.5 0.4 Wate 90 0.5 0.4 Wate SVE-7 64 92 0.55 1.4 92 0.5 0.4 Wate SVE-7 64 92 0.55 1.4 94 <td>HSVE-3</td> <td>34</td> <td>72</td> <td>10</td> <td>-</td> <td>9.3</td> <td>V</td> <td>SVE-9</td> <td>740</td> <td>0</td> <td></td> <td>120</td> <td>G.1</td> <td>water, dirt stuck?</td>	HSVE-3	34	72	10	-	9.3	V	SVE-9	740	0		120	G.1	water, dirt stuck?
SVE-5 $\frac{14}{15}$ $\frac{14}{02}$ 1 $ 1$ $\frac{1}{00}$ $\frac{1}{00}$ $\frac{1}{0}$ $\frac{1}$	SVE-4	76	16	100			borneing, dirty	SVE-8	81	0	30	0.5	0.1	water
SVE-7 64 92 6.25 $n.1$ bum ring, water HSVE-1 12 72 10 -1.5 v Abiled dowatering values to SVE-5 $7.4-9$ $32.4-9$ <	SVE-5	74 198		10	-	2		SVE-6	79	16	-70			Water
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					G.25	1.4	buncing, Water					-		V
Zone 2 Zone 4 AS-7 Image: Solution of the state of t		1		1	<u> </u>							- upp		
A5-7 Image: Matrix of the	ID	(PSIG)	(SCFMG)			Com	ments	ID	(PSIG)	(SCFMG)		<u> </u>	Con	nments
AS-8 Image: Sector of the	AS 7			201				AS-17			2011		-	
AS-9 Image: Matrix of the second												-		
AS-10 Image: constraint of the second s					1-2-								-	
AS-11 Image: Constraint of the second s					-	-							-	
AS-12 S.O Q.6 IOI IOI AS-22 IOI AS-12 S.O Q.6 IOI IOI AS-1 IOI IOI AS-13 7.5 I.9 IOI AS-1 IOI IOI AS-13 7.5 I.9 IOI AS-2 IOI IOI AS-14 725 7.0 IOI Opagve floight AS-3 IOI IOI AS-15 7.5 I.9 IOI IOI AS-4 IOI IOI AS-15 7.5 I.9 IOI IOI IOI IOI IOI AS-16 7.75 I.9 IOI IOI IOI IOI IOI AS-16 7.75 J.0 IOI IOI IOI IOI IOI AS-16 7.75 J.0 IOI IOI IOI IOI IOI AS-23 IOI IOI IOI IOI IOI IOI IOI AS-23 IOI IOI IOI IOI IOI IOI IOI AS-25 IOI IOI IOI IOI IOI IOI IOI AS-26 IOI IOI IOI												-	-	
Zone 3 Zone 1 AS-12 NO Q. 6 IOI AS-1 Cone 1 AS-13 7.5 I.9 V AS-2 Cone 1 AS-14 7.5 I.9 Opague floight AS-3 Cone 1 AS-15 7.5 I.9 Opague floight AS-3 Cone 1 AS-16 7.75 I.9 Opague floight AS-3 Cone 1 AS-16 7.75 I.9 Downling 1-2.2 AS-4 Cone 1 AS-16 7.75 I.9 Downling 1-2.2 AS-5 Cone 1 AS-16 7.75 I.9 Downling 1-2.2 AS-5 Cone 1 AS-20 Xone 5 AS-6 Cone 5 AS-6 Cone 5 AS-23 AS-24 AS-25 Cone 5 AS-6 Cone 5 AS-26 Cone 5 Cone 5 Cone 5 Cone 5 Cone 5 AS-27 Cone 5 Cone 5 Cone 5 Cone 5 Cone 5 AS-27 Cone 5 Cone 5 Cone 5 Cone 5 Cone 5 AS-27 Cone 5 <td>AS-11</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>AS-21</td> <td>ļ</td> <td></td> <td></td> <td></td> <td></td> <td></td>	AS-11							AS-21	ļ					
AS-12 F · O D · F I O AS-1 Image: Constraint of the state of t			1		1			AS-22						
AS-13 7.5 4.9 / AS-2 Image: Constraint of the second seco		5. 17	0 1					AC 1	<u> </u>	1	Zon	e 1		
AS-14 725 7.0 000000000000000000000000000000000000	······			100										
AS-15 7.5 1.9 Journing 1-2.2 AS-4 Image: Constraint of the state of		+		-									_	
AS-16 7.75 3.0 AS-5 Image: Sector of the sector of			1								ļ			
Image: Series of the series					bour	reing	1-2.2							-
AS-23 Image: Constraint of the second se	AS-16	-1.75	3.0											
AS-24 Image: Constraint of the constra				Zor	ie 5			AS-6						
AS-25 Image: Constraint of the const	AS-23													
AS-27	AS-24													
AS-27 AS-27	AS-25													
	AS-26													
Notes:	AS-27												1	
Abbreviations:		iations:												

" H₂O = Inches of water

deg F - degrees Fahrenheit

ahh ppmv = Parts per million volume

PSIG = Pounds per square inch gauge Page 2 of 3

0101-		tem Data Collection Form	
Date: 2/16/23	Field Tech(s): GFA	5	
Actual Time: 1930	AS/SVE HMI Time: 1530		
SVE/AS System			
SVE Blower VFD Setpoints	42/14.9/62.5	AS Blower VFD Setpoints	52/9.2/79.0
(Hertz/Amps/Torque %) - <i>VFD</i> SVE Blower Runtime	611U.1140.5	(Hertz/Amps/Torque %) - VFD AS Blower Runtime	30-1 1. de 1 1. 0 - A
Hours)	15942.0	(Hours) - Sparge Blower	9514.0 HA
Transfer Pump Runtime	4.7	AS Heat Exchanger Runtime	9511.1
(Hours) - MS Pump	-1.1	(Hours) Sparge Zone 4 Time	1011.1
Sparge Zone 1 Time Span(s) Operational:	0300-0800 HM	Span(s) Operational:	1700 - 2230
parge Zone 2 Time		Sparge Zone 5 Time	0200 077
span(s) Operational:	0730-1230	Span(s) Operational:	2200-0330
Sparge Zone 3 Time Span(s) Operational:	1200 - 1730	Sparge Zone Active:	3
AS Blower Intake Pressure		SVE Blower Filter Differential	\land
" H2O) - <i>DPI-500</i>	1.0	Pressure (" H20) - DPI-200	0
AS Blower Discharge Pressure (PSI) - PI-501	6.25	SVE Blower Inlet Differential Pressure (" H20) - <i>FI-200</i>	1.5
AS Bleed Valve	Q.0- J	Transfer Pump Discharge Pressure	
(# turns open) -		(PSI) - PI-300	
AS Heat Exchanger Discharge Temp (°F) - TI-500	64	SVE Blower Discharge Pressure ("H ₂ O) - PI-400	9.8
SVE Blower Inlet Temperature		SVE Blower Discharge Temperature	
(°F) - <i>TI-200</i>	50	(°F) - <i>TI-400</i>	100
SVE Blower Inlet Vacuum (" H ₂ 0) - <i>VI-200</i>	100	SVE Blower Dilution Valve (# turns open) -	0
Oxidizer System			
Oxidizer Inlet Differential Pressure " H2O) - FI-1	0.20	Combustion Valve Position (%)	9.2
nlet Temperature (°F)	050	Process Blower Runtime (Hours)	22794
Burner Chamber Temperature (°F)	678	Combustion Fan Runtime (Hours)	22794
Outlet Temperature (°F)	656	Burner Runtime (Hours)	22782
Inlet Limit Controller Temperature (°F)	673	Processing Vapors Runtime (Hours)	22764
Outlet Limit Controller	650	Panel Temperature (°F)	68
Temperature (°F)	650		
Process Fan Valve Position (Open/Closed)	OVEN	Flame Signal (Volts)	5.0
Dilution Valve Position (%)	0.0		
SVE Discharge PID (ppmv)	9.4	Oxidizer Discharge PID (ppmv)	0.3
Other Components			I
Knockout Tank Level	64.		ST.
(Sightglass % Full) ¹	0%	Propane Tank A Level (%)	05
Water Depth in Storage Tank ² (DTF/WD (calc in ft))	6.8 0.12	Propane Tank B Level (%)	50

Abbreviations:

" H₂O = Inches of Water

°F = Degrees Fahrenheit PSI = Pounds per Square Inch

% = Percent

DTF - Depth to Fluid DTB - Depth to Bottom

MP - Measuring Point

WD - Water Depth

Notes:

1. Low float = 0% full. Mid float = 100% full.

2. Calculate the water depth by measuring DTF from the MP and

then subtracting that from 6.92 ft (DTB).

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

Instrument ID	46330		
Description	Solinst Pump		
	2/15/2023 2:16:21PM		
Manufacturer	Solinst	State Certified	
Model Number	Pump	Status	Pass
Serial Number/ Lot	na	Temp °C	17
Number			
Location	Seattle	Humidity %	31
Department			
	Calibration	Specifications	
Group	# 1		
Group Nar	ne		
Test Performed: Yes	As Found Result: Pass	As Left Result: I	Pass
Test Instruments Used D Test Standard ID Descrip		<u>Serial Number</u> Model Number Lot Number	(As Of Cal Entry Date) / <u>Next Cal Date /</u> Last Cal Date/ Expiration Date Opened Date

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Dzung Pham

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

Instrum	nent ID	38726							
Desc	ription	MiniRAE 300	00						
	-	2/15/2023 2:							
Manuf	acturer	Rae Systems			St	ate Certifie	d		
Model N	Number	PGM7320				Statu	s Pa	SS	
Serial Numb	oer/ Lot	592-920494				Temp °	C 17		
N	Number								
L	ocation	Seattle				Humidity %	6 31		
Depa	rtment								
			Calibra	tion Specificatio	ns				
	Group	# 1			Ra	nge Acc %	0.00	00	
Gr	oup Nan	ne VOC			Read	ing Acc %	3.00	00	
St	ated Ac	cy Pct of Read	ding		F	Plus/Minus	0.0		
<u>Nom In Val / In V</u>	<u>al</u>	In Type	Out Val	Out Type	Fn	d As	<u>Lft A</u>	<u>.s</u> <u>Dev%</u>	Pass/Fail
100.0 / 100.0		PPM	100.0	PPM	10	0.0	100.	0 0.00%	Pass
						1.2	-		
Test Instruments	Used D	uring the Cali	bration					(As Of Cal Entr	ry Date)
						Serial Numb			ext Cal Date /
<u>Test Standard ID</u>	Descrip	<u>tion</u>	<u>Manufacturer</u>	<u>Model Number</u>	-	Lot Number		Last Cal Date/ Ex	cpiration Date
SEA ISO Isobutylene (C4H8) 100 Airgas			x02ai99cp342066 0pened Date 11/16/202						
100PPM	PPM								61. SUP 5 PF
304-402235157-									

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Dzung Pham

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

Project information

i roject information	
Project Name	T-30
Project Number	60681370
Project Manager	Paul Kalina
Project Manager Phone #	2063105097
Muster Point location	Clubhouse
Meeting date	2/16/2023
Business Line	Environment
SH&E Manager	Tim Gilles
SH&E Manager Phone #	3128335991
First Aid Kit Location	Conex
Prepared by	Friedman, Gus

Location	Seattle					
Attendees (Workers)	Bragg, Austin;Friedman, Gus;					
Attendees (Visitors)						
Tasks to be performed	Biweekly O&M Rotameter & dewatering repairs					
Hazards to be considered today	pressure, motion, mechanical					
Will there be Lone Workers?	No					
Hierarchy of controls	elimination, engineering, ppe					
Personal Protective Equipment	Task Specific: gloves Mandatory: safetyglasses, longpants, reflectivevest, workboots					
High Risk Events						

Topic of the week	Preventing Texting Injuries - Ergonomics, habits
Other topics discussed	
Mid day reviews	
End of the day comments.The supervisor confirms that the site is being left in a safe condition and work crew checked out as fit unless otherwise specified here	
Hazards	 <u>Mechanical</u> <u>Motion</u> <u>Pressure</u>

Project	Information	Page of
Project	Name:	Port of Sectile
Project/	Task No.:	Weather: LIG Cloudy
Date:	141,14	J223 Personnel: Austin Bragg
Observa	ations	
Ti	me	Observation Description
1 7	31515	arrived on-site; had trouble opening lock
2	334	began taking readings on SVE system
3	15341	completed daily tailgate
4 1	713	Begun taking manifold readings
5	1737	Began de-watering rotometers- Itaving
6		trouble w/peri pump; also do not have
7		correct tool to open up rotometer caps
8		that don't have a value - talked to Paul
9		and we decided to skip dewatering of
10		rotometers this time
11 /	750	Began taking PED readings
12 14	812	Adjusted SVE-4 & SVE-5 to hit ideal
13		jacuum levels; adjusted SVE-8 \$ 9 to hit
14	112	ideal vac, levels - however float is stick
15		so I could not read flow
16		SVE-9 100% open - rotometers with
17	- A	SVE-8 10% open rotometers with
18		SVE-8 10% open Forometers with SVE-5 100% open Water in them
19		SVE-4 30% open
	to	
_	820	Cleaning up; offsite @ 6:20
22		
23		
24		
25		

Comments / Site Activities / Personnel Tracking

PORT OF SEATTLE - TERMINAL 30

Date:	and the second se	1 1 1 1	一 地 泉 1 史 7 日	1 August	N.	AS & SVE Manif	fold Read	ings	12.00	L Hand	Card State	B (19.20)	NEW CONTRACT	1
Field Tec	-h(s):	12/23	2	-		and the state of the state	-			114	1			
Tield Tee		R	~			SVE W	/ells		quipment	1.D. #:	-	-		-
Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	Dewater (Gal)	PID (ppmv)	Comments	Well ID	Vacuum ("H2O)		Valve Pos. (% Open)	Dewater (Gal)	PID (ppmv)	Comments	
HSVE-2	32	74	10	1	12.2		SVE-10	77年	22	100	-	1.5	no coor	49-
HSVE-3	38	70	10	1	2.1	no water	SVE-9	78	0	100	1	0.7	Cierce: O	-
SVE-4	78	14	100	-	1.4	vac: 69 flow: 12	SVE-8	6.8	0	75	1	1.2	frow : 10	- 51
SVE-5	170	0	100	1	15	Vac: 69 Plow:15	SVE-6	70	16	16	-	1.4	no work	er
SVE-7	71	16	100	1	1.8	10	HSVE-1	14	70	10)	3:	now	etei
Notes:	11				-			1		1.30	1	-	all the second	
							S Parts	1992				1		_
	197-19				St. C	AS V	Vells			Livelue Ber	10000	in the second	1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	-
Well ID	Pressure (PSIG)	Flow (SCFMG)	Valve Pos. (% Open)		Con	nments	Well ID	Pressure (PSIG)	Flow (SCFMG)	Valve Pos (% Open)		Co	mments	-
10	AL	(0011110)	Zon	e 2	and the second				1000	Zo	ne 4			-
AS-7	0.0		100	1.			AS-17	69.				7 - 5 - 5 - 5		
AS-8	V	/	A	1 del	a de la		AS-18	122			13.18	13.52		-
AS-9	200	-	11				AS-19		1			100	New York	-
AS-10	1333		14/	1. State	1 1/2 1		AS-20	1			1		1000	
AS-11			Ju				AS-21			a later	1 5/15	and the second		
1.428.04	*	3.345	T		And in the		AS-22					4		
1 1 1 1			Zor	ie 3		1997				Za	one 1			100
AS-12	6.5	2.5	100	Sec. 14			AS-1	1 Stars				10.00		
		0.75		1.5.3.5			AS-2	1 1 1 1 1				-	1	
	5.5	0		1.1.1		A CONTRACTOR	AS-3			2		Res .		
		0.75		1.15.19	1.5	Star And	AS-4							
	6.0	1	4	C.F.	and the		AS-5	124						
	w. J		Zor	ne 5	and and	n the said	AS-6					1	-	100
AS-23				12.30		are for the	a familie							
		The state	1.132	2.3.54	12 200									
AS-24							Alle							
AS-25	1					L. States								
AS-26					100	-		1 HAR				SALA	14 1 2 2 1	Mar
AS-27			Jacob Same	A State of the second	AND IN THE REAL		1 25 4 7 4	AND STREET	the second states of the	and the second second				

Abbreviations:

% = Percent " H₂O = Inches of water deg F - degrees Fahrenheit N/A = Not applicable ppmv = Parts per million volume PSIG = Pounds per square inch gauge SCFMG = Standard cubic feet per minute gauge

Page 2 of 3

Marca and Andrews	SVE/AS & Oxidian Syste	em Data Collection Form	
Date: 3/2/23	Frend Territoria AB		
ACTUALTINAS ISHH	ASSVETIME TIME 1544		
SVE/AS System		In Element With Enimeters	1 1
SVE Blower VED Setsointe Dientz/Amps/Tengue %1 - VED -	42.04/17.14/63	AS Prover VFD Serports Pretty/Asia/Tornae SJ + VFD - AS Prover fourture	52.0Hz/9.2A/70
SVE Blower Burlane (Heurs)	16189.6	AS Rower Rontons (Hours) - Sparge Blower	9761.4
Transfer Pump Rumme (Hours) - MS Pump	5.5	AS Meat Exchanger Romone (Hours)	9758.4
Sparge Zome 1 Time	0300-0800	Spanjes Zone 4 Time Spanješ Operational:	1700-2230
Spaned Operational Spange Zone 2 Time	6730-1230	Sparge Zone S Time Span(s) Operational	2200-0330
Span(s) Operational: Spange Zone 3 Time	the second se	Sparge Zone Active	2
Span(s) Operational: AS Brower Intake Pressure	1200-1730	SVI Blower Fiber Differential	6
" N2O) - DPI-500	1.2	Pressure (* H20) - DPJ-200	6
AS Blower Discharge Pressure (PSI) - PI-SCI	6.5	SVE Blower Inlet Differential Pressure (* H20) - /1-200	1.5
AS Bleed Valve	1	Transfer Pump Discharge Pressure	
(# turns open) - AS Neat Exchanger Discharge Temp	-10	(PSI) - PI-800 SVE Blower Discharge Pressure	9.8
(°T) · 71-500	56°	(* H ₂ O) - PI-400 SVE Blower Discharge Temperature	
SVE Blower Inlet Temperature (FF) - 17-200	50°	(°F) - TI-400	100
SVE Blower Inlet Vacuum (* HJO) - VI-200	100	SVE Blower Dilution Valve	0
Oxidizer System	100	Through the start	
Oxidizer Inlet Differential Pressure	0.15	Combustion Valve Position (%)	13.4%
(" H2O) - /1-1 inlet.Temperature ("F)	614	Process Blower Runtime (Hours)	23043
Burner Chamber Temperature ("F)	640	Combustion Fan Runtime (Hours)	23044
Dutlet Temperature ("F)	625	Burner Runtime (Hours)	23032
inlet Lime Controller Temperature	66210083	Processing Vapors Runtime (Hours	23014
(*F) Dudlet Limit Controller	639 644	Panel Temperature ("F)	66
Temperature ("F) Papcess Fan Valve Position	6010011	Hame Signal (Volts)	5.0V
Open/Closed}	open	umue zičusi (Aoizh	2.00
Dilution Valve Position (%)	0.0%		A limit the second
SVE Discharge PID	9.6	Oxiditizer Discharge PID (opmix)	0.9
Other Components			1 6
Khockout Tank Level (Sightglass % Full) ¹	0%	Propane Tank A Level (N)	50%
Water Depth in Storage Tank		Propane Tank 8 Level (%)	412%
DTF/WD (calc in Itil		Tropies failed setter tra	and the second se
NOTES:			
	orr Gamp to Fluid		100% 40%.
Abbreviations: * H ₂ O = Inches of Water	DTF - Depth to Fluid	Notes: 1. Low float = 0% full. Mid float = 2. Calculate the water itspth by i	100% 100.

Page 1 of 3

T-30 Field Notes

3/14/2023 Field Staff: GF, CB, John Gibson (POS)

- 0815 GF on site, meet J Gibson
 - Scope: Construct new SVE emission stack, install jumper wire to take oxidizer offline. Misc O&M tasks.
 - Safety tailgate. JG will be using a power saw and drill for construction. Power disconnected to the oxidizer and blowers but retained at the GFCI for power tools. Panel locked out by GF. Crane operated training underway outside the fenced area.
 - Zone 1 is on on arrival, everything running smoothly. Air leak observed from the top of the AS-2 rotameter. AS-1 rotameter is full of crud.
 - Several other rotameters are stuck in the up position from prior operation. AS 8, 10, 11, 16, 27, 19.
 - Knockout tank is at the low float level, but that is where the transfer pump has been keeping it due to its abnormal operation.
 - Storage tank is 2 ft full. <1 ft est left until the LAH float trips.
 - LAH alarm shows as having tripped on the 8th at 9:50 am. DH vacced it during product recovery on the 9th – fortuitous.
- 0830 System shut down. All breakers OFF except main power for use of the outlet. Cabinet locked out.
- 0845 SVE repairs. Sve-4,5,&7 need lower stoppers replaced.
 - Replaced all 3 and cleaned out the rotameters.
 - SVE-4 pipe clamp bolt was seized and needed to be broken to make the repairs. Need to get a replacement.
 - Dewatering ball valve added to SVE-4 deadleg.
- 1000 CSB onsite. Brief safety tailgate.
- 1015 Wiring investigations
 - 81+ wire going to the ox was on terminal 103 in the main control cabinet. Jumper needs to go from front 101 to back 103 (though any 81+ terminal would probably work)
 - Confirmed wiring with CSB using volt meter and ohms test. 81+ working has 24v DC coming from the main control cabinet. 101 wire likely completes circuit back from the oxidizer, indicating operation or not.
- 1115 John offsite, stack completed. Looks great.
 - Added dewatering valve to sve-4
 - Installed jumper wire with labels
- 1145 restarted system. Fired right up.
 - Left oxidizer breaker off.
- 1200 Troubleshooted transfer pump. It was turning on as soon as the bottom float lifted at all, even though the top float was down. Once we took the float assembly out of the sightglass it was not reproducible. Rather it worked reliably as designed. After reinstalling the assembly in the sightglass it operated as desired with the previously observed problems resolved. We didn't change anything, so need to keep an eye on it.

- SVE-4 seems to be bringing in a lot of water, even with the valve barely open and vacuum down in the 50-60 range.
- Total vacuum was reading ~96
- 12:45 locked up, offsite

Project information

Project Name	T-30
Project Number	60681370
Project Manager	Paul Kalina
Project Manager Phone #	2063105097
Muster Point location	Clubhouse
Meeting date	3/14/2023
Business Line	Environment
SH&E Manager	Tim Gilles
SH&E Manager Phone #	3128335991
First Aid Kit Location	Conex
Prepared by	Friedman, Gus

Location	SODO	
Attendees (Workers)	Brown, Cary;John Gibson;Friedman, Gus;	
Attendees (Visitors)		
Tasks to be performed	SVE stack construction	
Hazards to be considered today	pressure, noise, motion, electrical	
Will there be Lone Workers?	No	
Hierarchy of controls	elimination, administrativecontrols, ppe	
Personal Protective Equipment	Task Specific: gloves Mandatory: safetyglasses, longpants, reflectivevest, workboots	
High Risk Events		

Topic of the week	<u>Eye Wellness</u>
Other topics discussed	
Mid day reviews	
End of the day comments.The supervisor confirms that the site is being left in a safe condition and work crew checked out as fit unless otherwise specified here	All tasks completed safely and successfully
Hazards	Motion Noise Pressure Electrical

Project Information	n Page of
Project Name:	T-30 Location: Seattle
Project/Task No.:	Weather: US dove
Date:	3/15/23 Personnel: GF
Observations	
Time	Observation Description
1 1500	Gif angite
2	Supe: Bineekly ofm: 10 uper Sompling
3	Sucer Jailage
4	System ON on orrival. Zone 3 active.
5	start taking down System reasings
6	> EFF PIS @ Q. B. B MMV
7 LONGT	· Combiled SVE UNC 7100" NC, the gauges limit. Cracked
8	the diwtion value to bring it under 100.
	i Suis man area innere to have its large interio
9	· SVE rotaneters uppear to have much less water in
10	pen than providesly descreet.
11	The transfer pump is not kicking itself on at the
12	wrong times any mare
13	· Storage faultis reaty to the LAH Plant. ~ 0.33 ft left
14	to spare. A little less than 2 ft to go until the LAMM.
15	(wright water depth was 2.92 ft, 50 ~ 3/5 full from the
16	LAHH.
17 615	· collected SVE effluent upor Sample SVE. Eff-031523
18	· its Recorded SUE Leader PIDS. 11SVE:2 once again the
19	winner @ 12 pmv (next niglest was 2.3 pmv).
20	. Tried to adjust beader vacuums below water extraction
21	thesholds.
22	- SVE-7 thru - 10 were above the 170 " we target, For
23	Some reason, turning them off + on auguin dropped them
24	
25	The of open the started at. Od.
	tivities / Personnel Tracking

Project Information				Page 2 of 2
Project Name:	7-30	Location:	Sentfle	
Project/Task No.:		Weather:	45 clarky	
Date:	3/15/23	Personnel:	GFJ	

Observations

Tim	ne	Observation Description
1		· Devoking volve assembly added to SVE-10. Now all vertical
2		wells have them. No opporent need on the porizontal wells.
3		· Thing added to the existing devotering drawn values at the
4		bace of the deadleds. This sature is easier to dewrite from
5		as the troope was hard to smake down the ball value to
6		The back of the sendley. The ball volves are still useful
7		reeded to clear water but if the rationaters themselves.
8		·SVE-7 was the main Source of water beday. It hept refilli
9		until I dropped the une down to readine, at which "
10		print it staged day
11		SVE-10 had dirightermilified mater in the deadles of
12		rotameter. It cartinued to be in the rotameter Even after
13		demontering & dropping the none down to 60" we.
14		·SVE-55 hept OFF, but doubles dewatered.
15		·No gal fotal extracted from deadlass
16 F	815	· Spoke w/ p kaling & agreed to change the estim SVE
17	1	discharge samples from the previous nonenclature
.8 2	á	Inlet - unddyn (inlet to oxidizer) to new nomenclottere
9		"SVE-EFF-minddyg"
20		· cloned up loubed up.
1	840	·GFOFFSile
2		
23		656
24		3/5/22
15)

Comments / Site Activities / Personnel Tracking

PORT OF SEATTLE - TERMINAL 30

P. C.		1184.5-1945-1-1	1	17	10.24	AS & SVE Mai	nifold Rea	dings		24	1010	1 -	188 . 12
	3/15/2		_							536			
ield Te	ch(s): 6	FF				SVE	Wells		Equipmen	t l.D. #:			
Well	Vacuum	Flow	Valve Pos.	Dewater	PID	345	Well	Vacuum	Flow	Valve Pos.	Dewater	PID	1
ID	("H2O)	(SCFMG)	(% Open)	(Gal)	(ppmv)	Comments	ID	("H2O)	(SCFMG)	(% Open)	(Gal)	(ppmv)	Comments
HSVE-2	29.0	74	10	1/6	17.2	\checkmark	SVE-10	73	18, 7-20 10-51	100	44	2.3	dirtz water
HSVE-3	34¢	69	10	1/48	2.3	\checkmark	SVE-9	ଝଠ	O	100	14	0.4	dirty
SVE-4	58.0	9	55	44	1.6	\checkmark	SVE-8	-	-	0	<i>"</i> 1/2	-	off to minio
SVE-5	73.0	13	100	1/4	1.5	V	SVE-6	74	14	5	1/4	0.7	V
SVE-7	74.0	16	100	20	1.7	bouncing,	HSVE-1	12	70	(6	1/2	1.5	V
SVE	Pressure		Valve Pos.	Elle	gand	endsified	Wells Well	Pressure		Valve Pos.		ηρ	
ID	(PSIG)	(SCFMG)	(% Open)		Com	ments	ID	(PSIG)	(SCFMG)	(% Open)		Com	nments
			Zon	le 2				1		Zon	e 4		
45-7		 					AS-17					_	
\ S-8	ļ						AS-18						
\S-9							AS-19	ļ					
S-10							AS-20						
S-11					1.00		AS-21						
	1						AS-22						
	F		Zon	1 .			-		1	Zon	e 1		
S-12	7.0	2.4	100				AS-1						
S-13	125	4.5	 	V			AS-2				_		
S-14	7.0	2.0		V			AS-3						
S-15	7.0	1.2		V			AS-4						
AS-16	7.5	3.1		V			AS-5						
			Zon	ie 5			AS-6						
S-23						50. <u> </u>	1		111		TR		
AS-24						19							
AS-25													
AS-26													S. 14. 1
AS-27													10.000
	1		L					-		4 - 4	1.01.01	Sec.	
Notes: Abbrevi	ations:												

% = Percent " H₂O = Inches of water N/A = Not applicable

ppmv = Parts per million volume PSIG = Pounds per square inch gauge SCFMG = Standard cubic feet per minute gauge

deg F - degrees Fahrenheit

Page 2 of 3

PORT OF SEATTLE - TERMINAL 30

	SVE/AS & Ouidison Sunt	m Data Collection Form	
Date: 21/127		em Data Collection Form	
7/0/07	Field Tech(s): G1	-	
Actual Time: 1536	AS/SVE HMI Time: 1533		
SVE Blower VFD Setpoints		AS Blower VFD Setpoints	
Hertz/Amps/Torque %) - VFD	42.0/20.1/73.5	(Hertz/Amps/Torque %) - VFD	520/9.1/77.8M
SVE Blower Runtime	ILLAGE 7	AS Blower Runtime	10067.5
Hours)		(Hours) - Sparge Blower	
Transfer Pump Runtime (Hours) - <i>MS Pump</i>	6.6	AS Heat Exchanger Runtime (Hours)	10064.4
Sparge Zone 1 Time		Sparge Zone 4 Time	
Span(s) Operational:	0300-0800 HM	Span(s) Operational:	1700-2230
Sparge Zone 2 Time	A70 -10 - 0	Sparge Zone 5 Time	
Span(s) Operational:	0720 -19 30 HM	Span(s) Operational:	2200-0330
Sparge Zone 3 Time Span(s) Operational:	1200-15770 M	Sparge Zone Active:	3
AS Blower Intake Pressure		SVE Blower Filter Differential	
" H2O) - <i>DPI-500</i>	1.25	Pressure (" H20) - <i>DPI-200</i>	0.25
AS Blower Discharge Pressure	6.0	SVE Blower Inlet Differential	1.5
PSI) - <i>PI-501</i> AS Bleed Valve		Pressure ("H20) - FI-200 Transfer Pump Discharge Pressure	1. 2
AS Bleed Valve (# turns open) -	1.0	(PSI) - PI-300	1×0.0
AS Heat Exchanger Discharge Temp	70	SVE Blower Discharge Pressure	
°F) - <i>TI-500</i>		(" H ₂ O) - <i>PI-400</i>	2.4
SVE Blower Inlet Temperature	52	SVE Blower Discharge Temperature	110
°F) - TI-200 SVE Blower Inlet Vacuum		(°F) - <i>TI-400</i> SVE Blower Dilution Valve	
" H ₂ 0) - VI-200	98	(# turns open) -	Vorely coacked to
Dxidizer System			verp)val plov (g
Oxidizer Inlet Differential Pressure	1	Combustion Valve Position (%)	
" H2O) - <i>FI-1</i>			HM
nlet Temperature (°F)		Process Blower Runtime (Hours)	His
Burner Chamber Temperature (°F)	HIMI HIMI	Combustion Fan Runtime (Hours)	HM
Dutlet Temperature (°F)	HM	Burner Runtime (Hours)	
nlet Limit Controller Temperature °F)	- Filth	Processing Vapors Runtime (Hours)	HSMI
Dutlet Limit Controller		Panel Temperature (°F)	
emperature (°F)	500	raner reinperature (F)	hM
rocess Fan Valve Position Open/Closed)		Flame Signal (Volts)	
Narolini I.			HM
ilution Valve Position (%)	EMI		1
VE Discharge PID	12.6	Oxidizer Discharge PID	
ppmv) Dther Components		(ppmv)	
Knockout Tank Level	20 50 m		00
Sightglass % Full) ¹	SU separture	Propane Tank A Level (%)	65
Water Depth in Storage Tank ² DTF/WD (calc in ft))	4.0 2.92		60
	de la	Propane Tank B Level (%)	

offlive

AECOM

T-30 Summa Can Vapor Sampling Field Form

Project: Terminal 30	Site Address: <u>1901 East Marginal Way South, Seattle, WA</u>
Date: 3/15/23	Field Personnel: GF
Weather: 45 Cloudy	Weather Barometric Pressure (in Hg):
Sample ID: SVE-EFF-02	(INLET/DISCHARGE-mmddyy)
Sample Port Description:	discharge pipe

Conditions at Sample Port:

Pressure (PSI)	Temperature (°F)	VOCs via PID (ppmv)	SVE Runtime (hrs)
2.4" WC	110	12.6	16496.7

Before Sampling:

Yes or No (Y/N)Install clean tubing on the
sample portPurge the tubing (30-60
seconds)

Summa Can Leak Test¹:

Initial Canister Reading	Duration of Test (2 min	Final Canister Reading
(in-Hg)	recommended)	(in-Hg)
30	15:59-16:07	30

¹ For the summa can leak test, connect the flow controller to the can with the cap nut secured. No air should enter the can when the can valve is opened. Once this is confirmed, open the summa can valve and record the initial vacuum. Wait for two minutes and then record the vacuum again. If the two readings do not match there is a leak and a new can and valve should be acquired before sampling.

Sampling Information²:

Sample Canister LAB ID	Flow Controller LAB ID	Sample Canister Size	Initial Canister Reading (in-Hg) ³	Sample Times	Sample Date(s)	Final Canister Reading (in-Hg) ³
9990	242	11	30	1615	e End	5.0
Analyses Requested:	TOIS-BIE	x /11	Н	lle 20	3/15/23	

² The flow controller should be for a 4-5 minute integrated sample

³ Canisters measured using a standard vacuum gauge

Sample Collection Notes and General Observations:

V New sample nonerclature since the oxidizer is now offlire. No longer "Inlet", now "SVE-EFF".

SAMPLE CHAIN OF CUSTODY

	0		171.	SAM	IPLERS (sign	ature)	1.						1	P	Page #	of
Report To CRS K. Com	m (t Vau	Kalh	<u>n</u>												JAROUND TIME
Company AECOM				PRC	JECT NAME	& ADI	DRES			PO	#			Star RUS	ndard SH	
Report To Grs Fridem Company AECOM Address IIII 3rd fre	#1	600		τ.	-30								R			es authorized by:
City, State, ZIP	er	1 980		1101					IN	VOIC	E T) 6		Defa	SAM	PLE DISPOSAL lean following
Phone 206 \$ 344 76 Em	uail 90	us fried	mm C	alconcor	n				400	1 0.0		- •		fina	l repo	ort delivery may apply):
SAMPLE INFORMATION		aul. Kerl	-260	econ.con	1					ANA	LYS	IS R	EQU	EST	'ED	
				Reporting Level:	r					r015 Full Scan	TO15 BTEXN	TO15 cVOCs	APH	lium	く成行メ	
			Flow	IA=Indoor A	Air	Initial	Field	Final	Field	15]	015	015		He		
Somple Nome	Lab ID	Canister ID	Cont. ID	SG=Soil Ga (Circle One		Vac. ("Hg)	Initial Time	Vac. ("Hg)	Final Time	ę	Ĕ	Ē			67	Notes
SVE-EFF-031523		9990	242					S	1620		-		X		X	INOLES
215-74-02222		Frio	ond	IA / SG	2 210125	0	NOIS	7								
				IA / SG	+											
				IA / SG	r l											
				IA / SG	1											
				IA / SG	ł											3
				IA / SG	. 1											
				IA / SG	+											
				IA / SG	+											

Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
5500 4th Avenue South	Relinquished by:	Gis Frildman	AECOM	3/16/23	1610
Seattle, WA 98108	Received by: Nesley End	Wesley End	PB1	3114/25	1610
Ph. (206) 285-8282	Relinquished by:				ч.,
Fax (206) 283-5044	Received by:				

FORMS\COC\COCTO-15.DOC

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

Description Solinst Pump Calibrated 3/14/2023 12:11:14PM Manufacturer Solinst State Certified Model Number Pump Status Pass Serial Number/ Lot na Temp °C 16 Number Value Number Number	
ManufacturerSolinstState CertifiedModel NumberPumpStatusPassSerial Number/ LotnaTemp °C16	
Model NumberPumpStatusPassSerial Number/ LotnaTemp °C16	
Serial Number/ Lot na Temp °C 16	
Location Scattle Humidity % 40	
Department	
Calibration Specifications Group # 1 Group Name	
Test Performed: Yes As Found Result: Pass As Left Result: Pass	
Test Instruments Used During the Calibration (As Of Cal Entry Date) Test Standard ID Description Manufacturer Model Number Lot Number Last Cal Date/ Expiration D Opened Date Opened Date	

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Dzung Pham

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

Instru	ment ID R	R11309							
Des	cription N	/iniRae 3000							
Ca	librated 3	/14/2023 1:04	:37PM						
Manu	facturer R	Rae Systems	11993 t 1 t 1		State	e Certifie	d		
Model I	Number P	GM-7320				Statu	s Pas	S	
Serial Num	ber/Lot 5	92-000171				Temp °C	C 17		
•	Number								
L	ocation S	leattle			Ηı	ımidity %	6 40		
Depa	artment								
			Calibra	tion Specificatior	15				
	Group #	1			Rang	e Acc %	0.000	0	
Gr	oup Name	Isobutylene		ł	Reading	g Acc %	3.000	0	
S	tated Accy	Pct of Readin	ng		Plu	s/Minus	0.00		
<u>Nom In Val / In V</u>	<u>/al Ir</u>	<u>n Type</u>	<u>Out Val</u>	Out Type	Fnd A	<u>s</u>	Lft As	Dev%	<u>Pass/Fai</u>
100.00 / 100.00	Р	PM	100.00	PPM	100.1	0	100.0	0.00%	6 Pass
Fest Instruments	Used Dur	ing the Calibr	ation					As Of Cal E	
Fest Standard ID	Descriptio	n	Manufacturer	Model Number		rial Numb of Number		.ast Cal Date/	Next Cal Da Expiration I
		_						Opened Date	
SEA ISO		ne (C4H8) 100	Airgas	x02ai99cp3420	66				11/16/2025
00PPM	PPM								
304-402235157-									
1									

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Dzung Pham

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

Project information

Project Name	T-30				
Project Number	60681370				
Project Manager	Paul Kalina				
Project Manager Phone #	2063105097				
Muster Point location	Clubhouse				
Meeting date	3/15/2023				
Business Line	Environment				
SH&E Manager	Tim Gilles				
SH&E Manager Phone #	3128335991				
First Aid Kit Location	Conex				
Prepared by	Friedman, Gus				

Location	SODO
Attendees (Workers)	Gus Friedman;
Attendees (Visitors)	
Tasks to be performed	Biweekly O&M 1Q vapor sampling
Hazards to be considered today	pressure, noise, motion, mechanical
Will there be Lone Workers?	Yes
Hierarchy of controls	рре
Personal Protective Equipment	Task Specific: gloves Mandatory: safetyglasses, longpants, reflectivevest, workboots
High Risk Events	

Topic of the week	<u>Eye Wellness</u>
Other topics discussed	
Mid day reviews	
End of the day comments. The supervisor confirms that the site is being left in a safe condition and work crew checked out as fit unless otherwise specified here	All tasks completed safely and successfully
Hazards	 <u>Mechanical</u> <u>Motion</u> <u>Noise</u> <u>Pressure</u>

Project Informatio			Page of
Project Name:	7-30	Location:	Seatule
Project/Task No.:		Weather:	
Date:	3/20/23	Personnel:	GIF, AB, LC
Observations			
Time		Observation Descrip	ption
1 1100	GF, LL, AB on G	ite	
2	·Grupe: 10 Oth		
3	Safety tailgate.	Traffic tripe	5 noise
4	· Start taking down	Sigtim reac	ing Zae 2 active. Stern
5	tank level is just		tom of the low float.
6 1145		our pump at	the office officite to get
7	it shile AB + LC	continue on	,)
8	J Zac 2 notine	and the second se	and delayed to give eather
9	time to get do		
10 1215			when a dewatering the SUE
11	lives)
12	> Not much wat	r present in	the rotaneters consistent
13			the last two visits
14	JSUE-16 Showing	emulsified ,	rater in the rotameter.
15	· dedied may gaing	ESESVE. BO	m readed slight adjustmen
16	to zero. Both par		digital manometer
17	· realted to pres	me gauges.	0
18	- 15-25 real 1/2	PSI Jow	
19	- A5-21 + 22 10	od 1/2 PSI los	\sim
20	-AS-1 read 1/2 p	SI high . As	-6 read 1/2 851 low
21	· deduced the rotan		
22	- AS-2 had an	aic leak due	to bad O-rive. Replaced
23	The O-mine + re	solved the lea	ak Ended up replacing whole
24	- AS-1 had lots	of debric in	it. Rotem, rotometer.
25			placed he whole thing.
Comments / Site A	ctivities / Personnel Tracking	1	9.

Project Information	1				Pa	age 2 of 3
Project Name:	T-30		Location:	Seat	He	
Project/Task No.:			Weather:			
Date:	3/30/23		Personnel:	GF,	ABLC	
Observations						
Time	1		Observation Des	· ·		
1 1515		urned OFF.	r locked	out for Me	egger read	ings.
2		pression			1	
3	winding	REGistainc				stance (Mayu Oh
4	840	049	1244	GdZ	G+0	GAY
5 AS	1.68	1-661.66	1.66	0.14	0.15	0.16
6 SUE	0.92	0.92	0.92	10-12	0.14	0.15
7						
8 1545	Tested flo	vat switches	, in Poly t	ank & Kot	- All wor	k.
9 ¥60	· Scubbed	out Kots	ichtglass			
10 1000		funed back				
11	· NOT Mur	wally pumple	down for	m ~ 3046.	to 0	
12	· win 10	min Kot	was back	2 to 30 to	- SVE - 4, -	79410
13		in wrater in				
14	- 5VE-9	was already	parely open	n. Adjusted	to 0% pe	en.
15	14 - Droduc	tion slowed	but Shill	visible. Ke	70504	
16		s initiated.				
17		al dirty 5		From SUIE - (1	0	
18	-1 -1		m SVE -7			
19	-2.5			raild pump	dry tren a	~ s soon
20	05 V			st we de		langter
21		Brin ball vo				- REPRODUCES
22		al fines				
23			alled by 1.	fing the hox	L Spreral 1	2?) extra
24	F.	ef of the		nanifold. End	6 Coloninte	Jere 1
25		17 " WC and)-7 Sofme.	(ma) flow	marke
	I ivities / Personnel Track		when and the			<u> </u>

		DAILIFI	ELD LUG	
Proj	ect Information			Page of
Proje	ct Name:	7-30	Location:	Seattle
Proje	ct/Task No.:		Weather:	
Date:		3(30/23	Personnel:	GE, t3, LC
Obse	rvations			
	Time	O	oservation Descriptio	n
1		because wellfield lateral	is full a	of water?
2	1648	HOT QNSSTO, GO WA	ter produ	cton have bagically
3		Stopped. Seems like it	had Son	of water? cttor has bagically nething to do with the t producing anything
4		Instem dourtime? I	t wasni	+ producing anything
5		like this prior.		
6	1765	GELC AS SFRIK		
7				
8				
9				
10				
11				
12				
13				
14				Ont
15				3/30/22
16				
			/	

Comments / Site Activities / Personnel Tracking

0 ⁶	SVE/AS & Oxidizer Syste		
Date: 3 30 23	Field Tech(s): AR, LC	67	
Actual Time: 11:34	AS/SVE HMI Time: 11-35	Z	
SVE/AS System			
SVE Blower VFD Setpoints	i . 1	AS Blower VFD Setpoints	
(Hertz/Amps/Torque %) - VFD	42.0/17.5/64.31	(Hertz/Amps/Torque %) - VFD	52.0/9.3/80.2
SVE Blower Runtime		AS Blower Runtime	
(Hours)	6850.3 HM	(Hours) - Sparge Blower	10422.1 H
Transfer Pump Runtime	11	AS Heat Exchanger Runtime	
(Hours) - MS Pump	HM. HM	(Hours)	104188
Sparge Zone 1 Time	0300-0900	Sparge Zone 4 Time	1000 2220
Span(s) Operational:	HMI	Span(s) Operational:	1700 - 2230
Sparge Zone 2 Time	0730 1720	Sparge Zone 5 Time	2200 - 0300
Span(s) Operational:	0730 - 1230 HM	Span(s) Operational:	2200-0300
Sparge Zone 3 Time	1200-1700	Sparge Zone Active:	2
Span(s) Operational:	1200 - 1730 Him		4
AS Blower Intake Pressure	1.5	SVE Blower Filter Differential	(7)
" H2O) - DPI-500		Pressure (" H20) - <i>DPI-200</i>	
AS Blower Discharge Pressure	-	SVE Blower Inlet Differential	1.5
PSI) - PI-501		Pressure ("H20) - FI-200	
AS Bleed Valve		Transfer Pump Discharge Pressure	
# turns open) - AS Heat Exchanger Discharge Temp	100	(PSI) - PI-300 SVE Blower Discharge Pressure	0
°F) - <i>TI-500</i>	(.)	(" H ₂ O) - <i>PI-400</i>	1.6
SVE Blower Inlet Temperature		SVE Blower Discharge Temperature	
°F) - TI-200	58°	(°F) - TI-400	1110
SVE Blower Inlet Vacuum		SVE Blower Dilution Valve	
(" H ₂ 0) - VI-200	\$ 9(a)	(# turns open) -	
Dxidizer System			
Oxidizer System Oxidizer Inlet Differential Pressure		1	1.()
" H2O) - FI-1	NA	Combustion Valve Position (%)	N/A H
nlet Temperature (°F)	HM.	Process Blower Runtime (Hours)	H
Burner Chamber Temperature (°F)	EM	Combustion Fan Runtime (Hours)	E. Fit
Dutlet Temperature (°F)		Burner Runtime (Hours)	
	H/MI		31
nlet Limit Controller Temperature ^o F)	- HMI	Processing Vapors Runtime (Hours)	E EI
Dutlet Limit Controller			
remperature (°F)	HMI HMI	Panel Temperature (°F)	
Process Fan Valve Position		Flame Signal (Volts)	
Open/Closed)	: HM		Н
Dilution Valve Position (%)	HM		
SVE Discharge PID		Oxidizer Discharge PID	
ppmv)	1.3	(ppmv)	
Other Components			
Knockout Tank Level	201		A.C.
Sightglass % Full) ¹	001.	Propane Tank A Level (%)	05
Water Depth in Storage Tank ²	25		65 56
	3.42		

Abbreviations:

" H₂O = Inches of Water

°F = Degrees Fahrenheit PSI = Pounds per Square Inch % = Percent

DTF - Depth to Fluid DTB - Depth to Bottom MP - Measuring Point

WD - Water Depth

Notes:

1. Low float = 0% full. Mid float = 100% full.

2. Calculate the water depth by measuring DTF from the MP and then subtracting that from 6.92 ft (DTB).

342

Page 1 of 3

PORT OF SEATTLE - TERMINAL 30

			100		-	PORT OF SEATT				St. married	- hereite		
Date:		0.00			1999	AS & SVE Mar	nitold Rea	aings	Time:		A.	4	
Date: Field Te	ch(s):								Equipmen	t I.D. #:			
	,,,					SVE	Wells						
Well	Vacuum	Flow	Valve Pos.	Dewater	PID	Commente	Well ID	Vacuum	Flow	Valve Pos.	Dewater	PID	Comments
ID	("H2O)	(SCFMG)	(% Open)	(Gal)	(ppmv)	Comments		("H2O)	(SCFMG)	(% Open)	(Gal)	(ppmv)	Comments Wither had
HSVE-2	25	75	(10)	0.25	6.4	Particulates in water	SVE-10	61	15	20	0.5	63	odor and brownish ada
HSVE-3	36	79	-10-	0	0.1		SVE-9	74	8	50	0.25	03	V
SVE-4	62	10	20	0.5	0	Particulary in water	SVE-8	-	-	0	O	-	~
SVE-5	61	10	100	0.125	()		SVE-6	56	14	10	0.5	0-7	\checkmark
SVE-7	64	12	30	1.5	0	1	HSVE-1	14	74	² 10	0.5	1.0	V
Notes:									<u> </u>				
									-				C P
						AS V	Vells					1.1	
Well ID	Pressure (PSIG)	Flow (SCFMG)	Valve Pos. (% Open)		Com	ments	Well ID	Pressure (PSIG)	Flow (SCFMG)	Valve Pos. (% Open)		Com	ments
	(1510)		Zon	e 2	com	incinto		(10)0)	(0011110)	Zone	e 4		
AS-7	7.5	55	106	1			AS-17	-					
AS-8	7	1.8	100				AS-18						
AS-9	7.5	1	100	/			AS-19					2	
AS-10	7.5	0	100	not 4	itvok,	true O	AS-20				1		
AS-11 ·	7.5	3.8	100	~			AS-21						
	(1945		AS-22						
			Zon	e 3						Zone	≥1		
AS-12			l.				AS-1		-				
AS-13							AS-2						
AS-14							AS-3						
AS-15			-			<	AS-4						
AS-16							AS-5						
2	·····		Zon	e 5			AS-6						
AS-23						2	1.13						345 8 T
AS-24													
AS-25							1.						
AS-26					$\overline{}$				1				Dista i
AS-27													
Notes:	L	L											1
Abbrevi	ations:					1-		Chandrad					

% = Percent

" H₂O = Inches of water deg F - degrees Fahrenheit N/A = Not applicable ppmv = Parts per million volume PSIG = Pounds per square inch gauge SCFMG = Standard cubic feet per minute gauge

Page 2 of 3

T-30 Quarterly O&M Checklist

REG	JLAR TASKS
Syste	em ON:
-	Test poly tank floats switches
	Test KO tank float switches
V	Confirm mag gauges w/ a manometer gwges good
V	Test AS pressure gauge accuracy (turn zone on and off. All gauges should equilibrate)
X	If possible: Check AS pressure on individual well heads in the well field and compare to readings at the manifold
Syste	em OFF:
V	Zero out mag gauges minor adjustments made
×	Check SVE vac gauges for zeroing
	Scrub out KOT sightglass
	Megger test SVE & AS motors
- 200	Confirm-mag gauges w/ a manometer
	Clean out any garbage/weeds from the system area
x	LOTO electrical and tighten wire lugs/terminals on all control and electrical connections inside cabinet
	Exercise all valves (open valves normally closed and then return to original position)

EXTRA TASKS

Pilot test a new SVE air hose -- need a hot water kettle?

	Replace SVE inlot mag gauge with better range (0-2? 0-5?)	abeady
X	Troubleshoot SVE-8?	J

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

Instrument ID	46330		
	Solinst Pump		
Calibrated	3/27/2023 8:30:13PM		
Manufacturer	Solinst	State Certified	
Model Number	Pump	Status	Pass
Serial Number/ Lot	na	Temp °C	19
Number			
Location	Seattle	Humidity %	29
Department			
	Calibrat	tion Specifications	
Group	9 # 1		
Group Nan	ne		
Test Performed: Yes	As Found Result: Pass	As Left Result: F	ass
Test Instruments Used Du	uring the Calibration	Serial Number	(As Of Cal Entry Date) Next Cal Date /
Test Standard ID Descript	tion <u>Manufacturer</u>	Model Number Lot Number	<u>Last Cal Date/ Expiration Date</u> <u>Opened Date</u>

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated JUSTIN THOMPSON

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

INSTRUMENT CALIBRATION R

P

Pine Environmental Services, Inc.

Instrum	nent ID	13814			-		
		MiniRae 30	000				
			7:59:51PM				
Cal	Ibrated	3/28/2023	7:59:51 FIVI				
		Rae System			State		
		PGM-7320					
Serial Numb		592-90108	3				
	lumber	- //-			T.L.		
2	ocation	Seattle			Hu		
Depa	rtment						
			Calibra	ation Specificatio	ns		
	Group	# 1			Rang		
Gr	-	ne Isobutyl	ene		Reading		
St	ated Ac	ey Pct of R	eading		Plu		
Nom In Val / In V	al	In Type	Out Val	Out Type	<u>Fnd A</u>		
100.0 / 100.0		PPM	100.0	PPM	100.8		
T I	Und D	uning the C	althustion				
Test Instruments	Usea D	Iring the C	andration		C -		
Test Standard ID	Descrip	<u>tion</u>	Manufacturer	Model Number	<u>Se</u> Lo		
SEA ISO	Isobutv	lene (C4H8) 100 Airgas	31721	30		
100PPM	PPM	`	, 0		-1		
304-402321612-							
1							

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated JUSTIN THOMPSON

All instruments are calibrated by Pine Environmental Services LLC specifications, but it is the customer's responsibility to calibrate and mai manufacturer's specifications and/or the customer's o Notify Pine Environmental Services LLC of any defect within 2 Please call 800-301-9663 for Technical As

AECOM Daily Tailgate Meeting Summary

Project information

Project Name	T-30
Project Number	60681370
Project Manager	Paul Kalina
Project Manager Phone #	2063105097
Muster Point location	Clubhouse
Meeting date	3/30/2023
Business Line	Environment
SH&E Manager	Tim Gilles
SH&E Manager Phone #	3128335991
First Aid Kit Location	Conex
Prepared by	Friedman, Gus

Shift Summary

Location	SODO
Attendees (Workers)	Bragg, Austin;Celovsky, Lillian;Friedman, Gus;
Attendees (Visitors)	
Tasks to be performed	1Q O&M
Hazards to be considered today	pressure, noise, motion, mechanical
Will there be Lone Workers?	No
Hierarchy of controls	elimination, ppe
Personal Protective Equipment	Task Specific: gloves Mandatory: safetyglasses, longpants, reflectivevest, workboots
High Risk Events	

Topic of the week	Spring Pause 2023
Other topics discussed	
Mid day reviews	
End of the day comments. The supervisor confirms that the site is being left in a safe condition and work crew checked out as fit unless otherwise specified here	All tasks completed safely and successfully!
Hazards	 <u>Mechanical</u> <u>Motion</u> <u>Noise</u> <u>Pressure</u>

Project Information	I					Page of 2
Project Name:	T-20			Location:	5	eattle
Project/Task No.:			- · · ·	Weather:		
Date:	4/11/23			Personnel:	E	1F
Observations						
Time				Observation De	scription	
1 645	GF ons					
2	Sope :	And	Barell	ch orm		
3	Galetz	failge	16: 6	ins trips	·pl	ssurrized Sigten
4	. 535Km	UN	on ar	rival. Zo	es 3	Skrized S, ≤ ten ♦ 4 cotive transitioning
5	+ Za	е Ц.	Zac	3 exter	ded d	Zore 4 delayed for
6	041	n_{\perp}				
7	- SVE	vac is	v hk	ih well o	bore	le 100 "we max of
8	thego	nuge. S	しいしょう	value w	ras le	ff closed last visit.
9	· Combin	ed PIC	I nea	aguill at	14.4	le 100 "wi max of ff closed last visit. pmv
10	> ma	jority f	ian H	SVE-2 0	sain.	Highest flow of concentrat
11				9 Amu)	0	•
12	· Transf	er am	0 was	deino The	N.Y.C	Dusing thing again
13	when	ever th	low f	loct trigg	erld.	Touc out the float
14	allem	12 + -	lested it	+ it had	raves a	s designed. Re-installed
15	1			me esdu		
16	· Starage	tank	1.67 f	i full - D	H mu	st have come by to
17	vac it	t out,	557 0	al left	to the	LAH Floct.
18 1730	· 54€ de	watered	· 125	al or lese	from	lor due to product. levels to desired:
19	SUE-9	water	wis	a morky	tan co	lor due to product.
20	- prior	- to de	water, he	adjusted	I vac	levels to desired:
21	Y	Vac	/ Flow	Value Pus.	Lom	nents
22	HSVE-2	10	82	10	V	rot. clear
23	HSVE-3	34	70	25	J.L	<u></u>
24	SVE-4		6	10	N	
25	SVE-5	69	6	100	4	
	tivities Personner	racking	}			

Project Information	1				Page 2 of 2		
Project Name:	T-30			Location:			
Project/Task No.:				Weather:			
Date:	4/11/23			Personnel:	GF		
Observations							
Time				Observation Des	•		
1	Van	Vac	Flow	Value fors			
2	GUE-7	20	10	10	Well filled w/ concher 42 gal water while optimizing, prior to final setting Rot. clear.		
3	505-10	53	9	10	V IST. CLECK		
4	SUE-9	76	6	10	float ust borning. Valve barely		
5	SUE-8		-	0	<u> </u>		
6	5VE -6	64	Ц	085	rot clear. volve bacely apendix		
7	HSVE - 1	14	76	25	V rot clear		
8	Dilution Va	we (torns	open):	1 turn			
9	Total va			4			
10	· As blow	ert Jalu	e is 2	25" IC	Stell, female threads		
11 1915	· Swapped	lnew	rotane	ters in	for AS-13 +-15.		
12 **	Jonh	2 500	we not	aneters	left. order a few more		
13	·SVEN	mifold	has h	eld stee	dy stil no water in		
14					@ 86 " WC. 1407 ~10 % full.		
15 🕊 🗼					that Zone 5 is during the		
16	day for	monito	inc. TL	eary bei	ing it has the most product		
17	left in	The 0.9	soved p	lase to	be sparced.		
18 1945	·cleaned		Ø		4 0		
19	·System	System shut down in advance of GIWM Scontrol cabinet locked 10+ 50 no are can restart it.					
20	Scent	rol cab	met loc	Ked 10+	So no are can restart it.		
21	for	er still	On.				
22 2000		up, at	Fsite		-		
23			<				
24) GF			
25				5 4/11	ləz		

Comments / Site Activities / Personnel Tracking

PORT OF SEATTLE - TERMINAL 30 SVE/AS System Data

Date: 4/11/27	Field Tech(s): CrF		Actual Time: 718
PID ID:	Weather: 52, Sun		HMI Time: 1715
SVE/AS Control Panel			
SVE Blower VFD Setpoints (Hertz/Amps/Torque %) - <i>VFD</i>	42.0/20.9/76.91	Sparge Zone 1 Time	0300 -0800 HMI
SVE Blower Runtime			
(Hours) 7	520/8.8/74.2%	Span(s) Operational:	0730 - 1230 HMI
Transfer Pump Runtime		Sparge Zone 3 Time	
Hours) - MS Pump	7.4 HMI	Span(s) Operational:	12-00-1730 HMI
AS Blower VFD Setpoints	In 1111	Sparge Zone 4 Time	
(Hertz/Amps/Torque %) - VFD	17141.8 HMI	Span(s) Operational:	100 - 2230 HMI
AS Blower Runtime	107177	Sparge Zone 5 Time	2200-0530
(Hours) - Sparge Blower	10713.7 HM	Span(s) Operational:	HMI
AS Heat Exchanger Runtime (Hours)	10710.4 HM	Sparge Zone Active:	3 - juntine ex 04M
SVE/AS System Settings & Readings			oth
AS Heat Exchanger Discharge Temp		SVE Blower Dilution Valve	0
(°F) - <i>TI-500</i>	70.0	(# turns open)	0
AS Blower Intake Pressure	10	SVE Blower Filter Differential	0.5
(" H2O) - <i>DPI-500</i>	1.5	Pressure (" H20) - DPI-200	0. 5
AS Bleed Valve	1	SVE Blower Inlet Differential	1.4
(# turns open)		Pressure (" H20) - <i>FI-200</i>	1. 9
AS Blower Discharge Pressure	6.25 1100 55	Transfer Pump Discharge Pressure	0
(PSI) - <i>PI-501</i>	<u> </u>	(PSI) - <i>PI-300</i>	
SVE Blower Inlet Temperature	-4100 65	SVE Blower Discharge Pressure	2.)
(°F) - <i>TI-200</i>	4900 35	(" H ₂ O) - <i>PI-400</i>	<u></u>
SVE Blower Inlet Vacuum	7100	SVE Blower Discharge Temperature	122
(" H ₂ 0) - <i>VI-200</i>	7100	(°F) - <i>TI-400</i>	102
Knockout Tank Level	0		
(Sightglass % Full) ¹			
SVE Discharge PID	14.4	Treated Vapor Discharge PID	MA
(ppmv)	19.9	(ppmv) ²	7-171
Other Components			
AS Compressor Oil Level ³		SVE Compressor Oil Level ³	
(% full sightglass)		(% full sightglass)	
DTF in Storage Tank		Water Depth in Storage Tank ⁴	117
(ft)		(ft)	1.67
Water Volume in Storage Tank ⁵	UUC 7	Gal to LAH	6072
(gal)	445.3	001 10 0111	557.3

Abbreviations:

Notes:

" H₂O = Inches of Water

2. If applicable

°F = Degrees Fahrenheit PSI = Pounds per Square Inch

% = Percent

4. Calculate WD by measuring DTF from the tank rim and subtract from 6.92 ft (DTB).

1. Low float = 0% full. Mid float = 100% full.

WD at the low float trigger = 3.76 ft. WD at the high float trigger = 4.26 ft.

3. Oil level should be at the middle of the sightglass with the machine not operating.

5. WD*266.67 gal/ft = gal in storage tank (2000 gal; 7.25' dia x 7.5' H)

MP - Measuring Point WD - Water Depth

DTF - Depth to Fluid

DTB - Depth to Bottom

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings

her: 5250 Vacuum/Flow readings Vacuum/Flow readings Vacuum/F	ie: 4/11/23			Time:	174.	
Vacuum/Flow readings Vacuum Flow Value Pos. Comments ID Vacuum (Flow) Value Pos. Comments 2 29 84 25 V SVE-10 52 8 L0 V 3 41 77 25 V SVE-9 61 6 100 brown oily reader $*00$ 9 10 V SVE-9 61 6 100 brown oily reader $*00$ 9 10 V SVE-8 - - O well closed to ionit $*00$ 9 10 V SVE-8 - - O well closed to ionit $*00$ 10 100 (otag of welder) SVE-8 - - O well closed to ionit $*00$ 10 100 (otag of welder) SVE-8 - - O well closed to ionit well closed to ion	d Tech(s): GF			PID ID:	159	61
Vacuum (1+20)Flow (SCFMG)Value Pos. (% Open)CommentsWell IDValue Pos. (% Open)Comments22984247SVE-10528LO734177257SVE-9916100brown oily residue caering rotanety309107SVE-9916100brown oily residue caering rotanety36101001012 of under. Float Under. Float Under. Float Under. Float Under.SVE-80370101001012 of under. Float Under. Float Under. Float Under. HSVE-1SVE-6701210WK701410miler Under Under.HSVE-1147224V701410miler Under Under Under Float Under (Gal)PID Dewater (Gal)Front SVE-10Comments701410miler Under Under Under (Gal)PID Dewater (Gal)Front SVE-10Comments701410miler Under Under Under (Gal)PID Dewater (Gal)Front SVE-10Comments701410Miler Under Under (Gal)No.512SVE-10Comments701410Miler Under SVE-10SVE-100.512SVE-10Comments701512SVE-100.512SVE-10SVE-10SVE-10SVE-10	ather: 52 Sun			Pump ID:		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			-	Flat	Notes Dece	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				1		Comments
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1E-2 29 84 25 V	SVE-10	કર્વ	8	10	V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1E-3 41 77 25 V	SVE-9	91	6	100	brown oily residue carering rotanets
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4 5 0 9 10 V	SVE-8	-	-	0	well closed to limit
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5 85 10 100 lots of float	bouncing SVE-6	70	12	10	
FinalPID and DewateringFinalPID (ppmv)Dewater (Gal)Value posCommentsWell IDPID (ppmv)Dewater (Gal)Value posComments2IS.93/46see See SeedClear HgDSVE-100.51/2See SeedSeebilieSeebilie31.03/8Seebilie SeebilieClear HgDSVE-90.51/2100 Seebiliemarket for setonets setonets31.03/8Seebilie SeebilieClear HgDSVE-90.51/2100 Seebiliemarket for setonets setonets31.03/8Clear HgDSVE-90.51/2100 Seebiliemarket for setonets setonets0.43/46Clear HgDSVE-8MA SVE-8-Left of f0.41/4Clear HgDSVE-6G.81/2Clear HgD0.51/21Clear HgDSVE-6G.81/2Clear HgD0.51/21Clear HgDSVE-6G.81/2Clear HgD	7 70 14 10 milor 0	HSVE-1	14	72	25	V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
0.4 $3/8$ $0err H_{30}$ sve-8 $0H_{3}$ $ ell of f$ 0.4 $1/4$ $0err H_{30}$ $sve-6$ 0.58 $1/2$ $0err H_{30}$ 0.5 $1/2$ $0err H_{30}$ $HSVE-1$ 1.6 $1/2$ $0err H_{30}$				Dewater		Comments
0.4 3/8 alerry 50 sve-8 010 - Lell off 0.4 1/4 alerry 5 sve-6 0.58 1/2 alerry 5 0.5 1/2 alerry 50 HSVE-1 1.6 1/2 alerry 5	/ell PID Dewater D (ppmv) (Gal) Comme	nts Well	PID			
0.4 3/8 alerry 50 sve-8 010 - Lell of f 0.4 1/4 alerry 5 sve-6 0.58 1/2 alerry 5 0.5 1/2 alerry 50 HSVE-1 1.6 1/2 alerry 5	PID Dewater Pilve Pos Comme D (ppmv) (Gal) Valve Pos Comme	nts Well ID	PID (ppmv)	(Gal)	value pe See field	
0.5 1/2 / dear theo HSVE-1 1.6 1/2 Cear ingo	PID (ppmv) Dewater (Gal) Value pos Comme D (ppmv) Gal) See Gal /E-2 15.9 3/4 See Gal /E-3 1.0 3/8 See Gal	nts Well ID SVE-10 - Ug O SVE-9	PID (ppmv) 0.5 0.5	(Gal) 1/2 1/2	value pe See field	Graying has w/ black Sectiments / chunks munks tim water. only 1/2 gul but roten web from
0.3 12 1 HSVE-1 1.6 12	PID (ppmv) Dewater (Gal) Value (M Comme /E-2 15,9 $3/4$ see See Cent /E-3 1.0 $3/8$ M Cent /-4 0.4 $3/6$ Cent	nts Well ID SVE-10 - U20 SVE-9 SVE-8	PID (ppmv) 0.5 0.5	(Gal) 1/2 1/2	value pe See field	Graying has w/ black sectiments / chunks municy tim water. only 1/2 gul but rotem www. Fray Lell OFF
Dilution value	PID (ppmv) Dewater (Gal) Value (M Comme /E-2 15,9 $3/8$ See Seld Cent /E-3 1.0 $3/8$ M Cent -4 G, U $3/8$ M M	nts Well ID - Had SVE-10 - Had SVE-9 Mad SVE-8	PID (ppmv) 0.5 0.5 MA 016	(Gal) 1/2 -	value pe See field	Graying has w/ black sectiments / chunks municy tim water. only 1/2 gul but rotem www. Fray Lell OFF
	PID Dewater Pilve Pos Comme D (ppmv) Call Pilve Pos Comme $IE-2$ 15.9 $3/4$ See Clear Clear $IE-3$ 1.0 $3/8$ $26/3$ Clear Clear $I-4$ 0.11 $3/8$ $26/3$ Clear Clear $I-5$ 0.4 $1/4$ Clear Clear Clear	nts Well ID - Had SVE-10 - Had SVE-9 Mad SVE-8 120 SVE-6 Had SVE-6	PID (ppmv) 0.5 0.5 MA 0.6	(Gal) 1/2 1/2 - 2/2	Value Pe See frold log	Graying HgO W/ black Seciments / chunks more tim water. only 1/2 gul but roten web first Lell Off Clear Hz O
	PID Dewater Pilve Pos Comme D (ppmv) Call Pilve Pos Comme $IE-2$ 15.9 $3/4$ See Clear Clear $IE-3$ 1.0 $3/8$ $26/3$ Clear Clear $I-4$ 0.11 $3/8$ $26/3$ Clear Clear $I-5$ 0.4 $1/4$ Clear Clear Clear	nts Well ID - H&O SVE-10 - H&O SVE-9 MO SVE-9 SVE-9 SVE-8 NO SVE-6 HO HSVE-1	PID (ppmv) 0.5 0.5 MA 0.6	(Gal) ¹ /2 ¹ /2 ⁻ ⁻ ⁻ ⁻ ⁻ ⁻ ⁻ ⁻	Value Pe See frold log	Graying HgO W/ black Seciments / chunks more tim water. only 1/2 gul but roten web first Lell Off Clear Hz O
	PID D Dewater (Gal) Value pos Comme $VE-2$ 15.9 $3/4$ see seld Clear $VE-3$ 1.0 $3/8$ $3/8$ Clear $VE-3$ 0.0 $3/8$ $3/8$ Clear $VE-3$ 0.5 $1/4$ Clear $3/8$	nts Well ID - H&O SVE-10 - H&O SVE-9 MO SVE-9 SVE-9 SVE-8 NO SVE-6 HO HSVE-1	PID (ppmv) 0.5 0.5 MA 0.6	(Gal) ¹ /2 ¹ /2 ⁻ ⁻ ⁻ ⁻ ⁻ ⁻ ⁻ ⁻	Value Pe See frold log	Graying HgO W/ black Seciments / chunks more tim water. only 1/2 gul but roten web first Lell Off Clear Hz O
eviations:	PID D Dewater (Gal) Value pos Comme $VE-2$ 15.9 $3/4$ see seld Clear $VE-3$ 1.0 $3/8$ $3/8$ Clear $VE-3$ 0.0 $3/8$ $3/8$ Clear $VE-3$ 0.5 $1/4$ Clear $3/8$	nts Well ID - H&O SVE-10 - H&O SVE-9 MO SVE-9 SVE-9 SVE-8 NO SVE-6 HO HSVE-1	PID (ppmv) 0.5 0.5 MA 0.6	(Gal) ¹ /2 ¹ /2 ⁻ ⁻ ⁻ ⁻ ⁻ ⁻ ⁻ ⁻	Value Pe See frold log	Graying HgO W/ black Seciments / chunks more tim water. only 1/2 gul but roten web first Lell Off Clear Hz O

% = Percent " H₂O = Inches of water

deg F - degrees Fahrenheit

N/A = Not applicable

ppmv = Parts per million volume PSIG = Pounds per square inch gauge SCFMG = Standard cubic feet per minute gauge

PORT OF SEATTLE - TERMINAL 30 AS Manifold Readings

				Pressure/F	low Reading	çs			
Well ID	Pressure (PSIG)	Flow (SCFMG)	Valve Pos. (% Open) Zone 2	Comments	Well ID	Pressure (PSIG)	Flow (SCFMG)	Vaive Pos. (% Open) Zone 4	Comments
5-7					AS-17			20110 4	
S-8					AS-18				
S-9					AS-19				
S-10					AS-20				
S-11					AS-21				
					AS-22				
	1		Zone 3					Zone 1	
S-12	7.25	2.5	100		AS-1				
\S-13	7.0	?		Ploat stuck: rotam replaced Ploat bouncing Sticks float: rotam replaced	AS-2				
AS-14	6.75	3.4		Plant becoming	AS-3				
AS-15	6.75 7.0 7.0	2.0		sticky float.	AS-4				
\S-16	7.0	3.9			AS-5				
					AS-6				
	15.		Zone 5		-				12.30年2015年
AS-23									
AS-24									
AS-25									
AS-26									
AS-27				•					
Notes:	· · · · · ·	·	-		-				

% = Percent

" H₂O = Inches of water

deg F - degrees Fahrenheit

N/A = Not applicable

ppmv = Parts per million volume

PSIG = Pounds per square inch gauge SCFMG = Standard cubic feet per minute gauge

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

Instrument ID Description	46330 Solinst Pump		
	4/10/2023 6:09:57PM		
Manufacturer	Solinst	State Certified	
Model Number	Pump	Status	Pass
Serial Number/ Lot	na	Temp °C 2	20
Number			
Location	Seattle	Humidity %	39
Department			
	Calibrat	tion Specifications	
Group			
Group Nar			
Test Performed: Yes	As Found Result: Pass	As Left Result: P	ass
Test Instruments Used D		<u>Serial Number</u> Model Number <u>Lot Number</u>	(As Of Cal Entry Date) / <u>Next Cal Date /</u> Last Cal Date/ Expiration Date Opened Date

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Dzung Pham

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

AECOM Daily Tailgate Meeting Summary

Project information

Project Name	T-30
Project Number	60681370
Project Manager	Paul Kalina
Project Manager Phone #	2063105097
Muster Point location	Clubhouse
Meeting date	4/11/2023
Business Line	Environment
SH&E Manager	Tim Gilles
SH&E Manager Phone #	3128335991
First Aid Kit Location	Conex
Prepared by	Friedman, Gus

Shift Summary

Location	SODO
Attendees (Workers)	Gus Friedman;
Attendees (Visitors)	
Tasks to be performed	Biweekly O&M
Hazards to be considered today	pressure, noise, motion
Will there be Lone Workers?	Yes
Hierarchy of controls	рре
Personal Protective Equipment	Task Specific: gloves Mandatory: safetyglasses, longpants, reflectivevest, workboots
High Risk Events	

Topic of the week	Prevent Distracted Driving
Other topics discussed	
Mid day reviews	
End of the day comments.The supervisor confirms that the site is being left in a safe condition and work crew checked out as fit unless otherwise specified here	
Hazards	 <u>Motion</u> <u>Noise</u> <u>Pressure</u>

Proj	ect Information		Page of
Proje	ct Name	T-30 Location	Port of Seattle
Proje	ct/Task No	Weather	55° Sunny
Date		<u>4/27/23</u> Personnel	AB
Obse	rvations		
	Time	Observation Description	
1	1245	on-site, system on-began	taking readings
2		Scope: biweekly ORM	
3		70ne 5 is active	
4	1342	SVE discharge PID = 6.) pomv
5	1402	Twittal val & Arus reguling	Heleen Ann

SVE

ar

manis

regan

22

0

readino

C

taking

king

down

pre-

mai

Comments / Site Activities / Personnel Tracking

A

29

fi

0

eadi

20

nD

6

7

8

9

10

11

12

21 22 23

24 25 473

508

1540

54

zone

erine

rin

Я

a

 $\boldsymbol{\upsilon}$

PORT OF SEATTLE - TERMINAL 30 SVE/AS System Data

Date: 4/27/23	Field Tech(s): AB		Actual Time: 1309
PIDID: 048423	Weather: 55° SUNI	14	HMI Time: 1309
VE/AS Control Panel		/	
SVE Blower Runtime	17464.5 HM	Sparge Zone 1 Time	
Hours)	LI-LO-L-J HM	Span(s) Operational:	1700-22304
Fransfer Pump Runtime Hours) - <i>MS Pump</i>	7.4	Sparge Zone 2 Time Span(s) Operational:	2200 - 0330
AS Blower Runtime		Sparge Zone 3 Time	
Hours) - Sparge Blower	11036-2 HM	Span(s) Operational:	0300-0800
AS Heat Exchanger Runtime	11032.8	Sparge Zone 4 Time	
Hours)	1 1 1 1 1	Span(s) Operational:	0730 - 1230 H
SVE Blower VFD Setpoints	42.0 Hz/15 414/567	Sparge Zone 5 Time	1200-1730
Hertz/Amps/Torque %) - VFD	15.7K/56L	Span(s) Operational:	1200-1730
AS Blower VFD Setpoints Hertz/Amps/Torque %) - VFD	52.0Hz/9.9A 867	Sparge Zone Active:	5
VE/AS System Settings & Readings	52. 1. 1. 1. 1. 00 1		
AS Heat Exchanger Discharge Temp	STOR	SVE Blower Dilution Valve	
°F) - <i>TI-500</i>	85°F	(# turns open)	
AS Blower Intake Pressure	1.5	SVE Blower Filter Differential	05
" H2O) - DPI-500	1.3	Pressure (" H20) - <i>DPI-200</i>	0.0
AS Bleed Valve # turns open)	1	SVE Blower Inlet Differential Pressure (" H20) - <i>FI-200</i>	0.8
AS Blower Discharge Pressure	1 5	Transfer Pump Discharge Pressure	6
PSI) - PI-501	6.5	(PSI) - <i>PI-300</i>	0
VE Blower Inlet Temperature °F) - <i>TI-200</i>	JOP	SVE Blower Discharge Pressure ("H ₂ O) - PI-400	3
SVE Blower Inlet Vacuum " H ₂ 0) - <i>VI-200</i>	76	SVE Blower Discharge Temperature (°F) - TI-400	112°F
Knockout Tank Level	50		
Sightglass % Full) ¹			
VE Discharge PID ppmv)	6.0	Treated Vapor Discharge PID (ppmv) ²	NIA
Other Components			1
S Compressor Oil Level ³		SVE Compressor Oil Level ³	[
% full sightglass)		(% full sightglass)	-
DTF in Storage Tank ft)	×	WD in Storage Tank ⁴ (ft)	1.75
Vater Volume in Storage Tank ⁵	466.125	Spare Volume to LAH float ⁶ (gal)	536.075

Abbreviations:

Notes:

" H₂O = Inches of Water ^oF = Degrees Fahrenheit

2. If applicable

PSI = Pounds per Square Inch

- % = Percent
- DTF Depth to Fluid

1. Low float = 0% full. Mid float = 100% full.

DTB - Depth to Bottom

MP - Measuring Point

WD - Water Depth

3. Oil level should be at the middle of the sightglass with the machine not operating.

4. WD = 6.92-DTF OR as measured with the dipstick

WD at the LAH float = 3.76 ft (1002.8 gal).; WD at the LAHH float = 4.26 ft (1136.1 gal).

5. Water vol = WD*266.7

The tank holds 266.7 gal/ft (2000 gal; 7.25' dia x 7.5' H)

6. Spare vol to LAH float = 1002.8-current water volume

PORT OF SEATTLE - TERMINAL 30

SVE Manifold Readings (1 of 3)

Date:	4127							Time:	1402	-	
Field Te	ch(s):	AB		,				PID ID:	04.81	123	
Weathe	r:	550	sunny								
**Instru	ictions: Ta			OR to dewa	tering or adjusting vac/flow. Mini kr	nockout al	lows PID r	eadings to	be taken ev	en if water	is present in the rotameters.
				-	Vacuum/F	-					
Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	PID (ppmv)	Comments	Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	PID (ppmv)	Comments
HSVE-2	20	79	25	15.0		SVE-10	47	13	10	0.1	ACT.
HSVE-3	24	54	25	1.9		SVE-9	57	2*	100	1.1	* Float stuck - appears to be due to product inside no.
SVE-4	42	10	10	3.4		SVE-8	G	O	0	5.3	closed
SVE-5	\bigcirc	0	•	4.7	Closed	SVE-6	48	1)	10	0.7	
SVE-7	20	1)	10	0.6		HSVE-1	10	54	25	0,9	
Dilution	Valve	# Turns Or Vacuum ("			76						
Notes:		I					in a				
Abbrevi % = Perc				N/A = Not a	applicable	SCFMG =	- Standard	l cubic feet	per minute	gauge	

" H₂O = Inches of water

deg F - degrees Fahrenheit

ppmv = Parts per million volume PSIG = Pounds per square inch gauge AECOM

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (2 of 3)

Date: 427				Time: 1423			
Field Tech	(s):	AB	Pump ID:	Pump ID: 410			
Weather:	5	5° Sunny					
		-	SVE Dewatering				
Well ID	Dewater (Gal)	Comments	Well ID	Dewater (Gal)	Comments		
HSVE-2	1/4	clear 120	SVE-10	1/2	Brown muddy water		
HSVE-3	1/3	clear 120	SVE-9		brown muddy water, could only be pumped out when red value on back was open		
SVE-4	Y2	Mostly clear the o w/sa black particulates		2	hulf clears the hulf brown and cloudy H20 -opened to demater us		
SVE-5	1	opened to dewater-in clear, then brown Hz C	nitially) SVE-6	2/3	clear H2O		
SVE-7	1/2	Clear HzO	HSVE-1	13	clear 1420		
Notes:							
Abbreviat	ions:	Gal = gallons			AECOM		

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (3 of 3)

Date:	4/2	723				Time: 1510				
Field Te		AB					Weather:	SUMM	560	
**Instru	ctions: Take	these readin	gs AFTER de	watering and adjusting vac/flow to limi	t water prod	duction.	·	The state of		
	FINAL Vacuum/Flow readings									
Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	Comments	Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	Comments	
HSVE-2	19	79	25		SVE-10	46	tl	16		
HSVE-3	23	54	25		SVE-9	60	*	100	*stuck	
SVE-4	ЦЦ	6	10		SVE-8	0	C	0	clased	
SVE-5	\bigcirc	\bigcirc	0	closed	SVE-6	53	12	10		
SVE-7	28	11.5	10		HSVE-1	9	54	25		
Dilution	Valve	# Turns Ope	n:	1.25					and the second second	
Diracion	Valve	Vacuum ("H	20):	80						
Notes: Abbrevia	ations:	÷		. /						

% = Percent

" H₂O = Inches of water

SCFMG = Standard cubic feet per minute gauge

PORT OF SEATTLE - TERMINAL 30 AS Manifold Readings

sure Flow IG) (SCFMG	Valve Pos. (% Open) Zone 2	Comments	Well ID AS-17 AS-18	Pressure (PSIG)	Flow (SCFMG)	Valve Pos. (% Open) Zone 4	Comments
	Zone 2	Comments	A5-17			Zone 4	Comments
			AS-18				
			M2-19			1 1	
			AS-19				
						\searrow	
			AS-20				
		\searrow —					
			AS-21				
			AS-22				
	Zone 3					Zone 1	
			AS-1				
			AS-2				
\rightarrow			_		\geq		
	\downarrow		AS-3				
	\rightarrow						
			AS-4				
			-	<u> </u>			
			AS-5				
	the cost	Contraction of the second					
			AS-6				
1	Zone 5					19 E	
512	1000						
	100	01 11	-				
5 193	1 1	float bornei	3				
		loat not chief	4				
nel 1		bolding Stud	-				
75 3		-					
MIL							
0.0	H					3	
	4						
	15 1.90 15 1.90 15 7. 15 7.	Zone 5 5 1.2 LOO 25 1.96 1 75 7. F 75 7.	Zone 5 5 1.2 100 15 1.8 1 Float barnei 75 7. Float barnei 15 7. 1	Zone 3 AS-1 AS-2 AS-3 AS-3 AS-4 AS-5 AS-6 Zone 5 S 1.2 LOO DS 1.95 + Float bouncing TS 7. Float stuck bothing tuck DS 1.2 LOO	Zone 3 AS-1 AS-2 AS-3 AS-4 AS-4 AS-4 AS-5 AS-5 AS-6 Zone 5 S 1.2 LOO IS 1.2 LO	Zone 3 AS-1 AS-2 AS-3 AS-3 AS-4 AS-5 AS-6 Zone 5 S 1.2 LOD IS 1.2 LOD IS 1.4 Float buncing TS 7. Float stuck bulking stuck	Zone 3 Zone 1 AS-1 AS-2 AS-3 AS-3 AS-4 AS-5 AS-6 Zone 5 S 1.2 100 S 1.2 100

% = Percent

" H₂O = Inches of water

deg F - degrees Fahrenheit

N/A = Not applicable

ppmv = Parts per million volume

PSIG = Pounds per square inch gauge SCFMG = Standard cubic feet per minute gauge

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

Instrument ID	46330							
Description	Solinst Pump							
Calibrated	4/26/2023 6:33:16PM							
Manufacturer	Solinst	State Certified						
Model Number	Pump	Status	Pass					
Serial Number/ Lot	na	Temp °C	20					
Number								
Location	Seattle	Humidity %	38					
Department								
Calibration Specifications								
Group	# 1							
Group Nan	ne							
Test Performed: Yes	As Found Result: Pass	As Left Result:	Pass					
Test Instruments Used Du Test Standard ID Descrip		<u>Serial Numbe</u> Model Number Lot Number	(As Of Cal Entry Date) r / Next Cal Date / Last Cal Date/ Expiration Date Opened Date					

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Dzung Pham

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

Instru	ment ID	48423						
Des	cription	MiniRAE 3000						
	-	4/26/2023 6:48						
Manu	facturer	Rae Systems			State Certific	ed		
		MiniRAE 3000			Stat	us Pa	SS	
Serial Num	ber/ Lot	592-921123			Temp °	C 20		
	Number							
L L	ocation	Seattle			Humidity ⁴	% 38		
Dep	artment							
		10						
			Calib	ration Specificatio	ns			
	Group	# 1			Range Acc %	0.00	00	
Gr	-	ne Isobutylene			Reading Acc %			
	-	cy Pct of Readir	Ig		Plus/Minus			
Nom In Val / In V	/al	In Type	Out Val	Out Type	Fnd As	Lft A	s Dev%	Pass/Fail
100.0 / 100.0		PPM	100.0	PPM	100.2	100.0	0 0.00%	Pass
Test Instruments	Used Du	uring the Calibr	ation				(As Of Cal Ent	ry Date)
	-				Serial Num			ext Cal Date /
Test Standard ID	Descript	tion	Manufacture	er <u>Model Number</u>	Lot Number	-	Last Cal Date/ Ex Opened Date	<u>kpiration Date</u>
SEA ISO	Isobuty	lene (C4H8) 100	Airgas	31721	304-40232			2/29/2025
100PPM	PPM	(2			-1			
304-402321612-								
1								
			· · · · · · · ·					

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Dzung Pham

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

Project Information	n			Page of
Project Name	T-30	Location	Port of	Seattle
Project/Task No	60681370	Weather	Sunny 60)0
Date	5923	Personnel	AB	

Observations

(41)

	Time	Observation Description
1	1415	on-site, system hunning
2		Scope biweekly Of M), safety tailgate
3	1425	Began taking readiness of SVE System
4		Sparge zone B active
5	1456	Taking SVE discharge PID. 3.2 ppinu
6	1509	Taking manifold readings
7	1526	SVE-5 & SVE-8 closed - taking zone readings
8	1540	Taking SVE pre-dewatering PID readings
9	1605	Dewatering ,
10	1631	Wells dewatered besides SVE-5 & SVE-8 (closed)
11		Taking post dewatering readings
12	1645	Called Gus to discuss yeadings
13		I cracked open SVE-4 from 10% to 20%
14		is vac went from 34 -> 48 and there's now
15		water in rotemeter
16	17396	Adjusted welks for water production of flow
17		wrapped up and heading out
18		11 1
19		
20		
21		
22		
23		
24		
25		

Comments / Site Activities / Personnel Tracking

PORT OF SEATTLE - TERMINAL 30 SVE/AS System Data

Date: 5923	Field Tech(s):		Actual Time: 14:32
PID 10: 644423	Weather: 60° Sunn	4	HMI Time: 4:30
SVE/AS Control Panel			
SVE Blower Runtime	100-0	Sparge Zone 1 Time	1000 2722
(Hours)	17752.3 HM	Span(s) Operational:	1700-2230
Transfer Pump Runtime	7.4 HM	Sparge Zone 2 Time	7701-1127 1
(Hours) - MS Pump	І. Т нмі	Span(s) Operational:	2200-0330
AS Blower Runtime	11274 ()	Sparge Zone 3 Time	0300-0800+
(Hours) - Sparge Blower	11324.0 нм	Span(s) Operational:	0,00-0,000
AS Heat Exchanger Runtime (Hours)	1320.5 HM	Sparge Zone 4 Time Span(s) Operational:	0730 - 1230
SVE Blower VFD Setpoints	(1520.5 Rivi	Sparge Zone 5 Time	0100 1200
(Hertz/Amps/Torque %) - VFD	42.0 Hz/16.3A/60%	Sparge Zone 5 mine	1200-1730
AS Blower VFD Setpoints	16.0 110.34 001		
(Hertz/Amps/Torque %) - VFD	520H2 9.8A/84.9/M	Sparge Zone Active:	5
SVE/AS System Settings & Reading			
AS Heat Exchanger Discharge Temp	9.00	SVE Blower Dilution Valve	
(°F) - <i>TI-500</i>	80°	(# turns open)	
AS Blower Intake Pressure	10	SVE Blower Filter Differential	A.F.
(<u>"</u> H2O) - <i>DPI-500</i>	1.5	Pressure (" H20) - DPI-200	0.5
AS Bleed Valve		SVE Blower Inlet Differential	380
(# turns open)		Pressure (" H20) - <i>FI-200</i>	0.85
AS Blower Discharge Pressure (PSI) - PI-501	7.5	Transfer Pump Discharge Pressure (PSI) - <i>PI-300</i>	0
SVE Blower Inlet Temperature	-10°	SVE Blower Discharge Pressure	2.8
(°F) - <i>TI-200</i>	-10	(" H ₂ O) - <i>PI-400</i>	2.0
SVE Blower Inlet Vacuum (" H ₂ 0) - <i>VI-200</i>	82	SVE Blower Discharge Temperature (°F) - TI-400	1120
Knockout Tank Level	0.0.1		
(Sightglass % Full) ¹	801		
SVE Discharge PID	20	Treated Vapor Discharge PID	A 110
(ppmv)	3.2	(ppmv) ²	NA
Other Components			
AS Compressor Oil Level ³		SVE Compressor Oil Level ³	
(% full sightglass)		(% full sightglass)	
DTF in Storage Tank		WD in Storage Tank ⁴	1.70
(ft)		(ft)	1.75
Water Volume in Storage Tank ⁵	1111 -12	Spare Volume to LAH float ⁶	571
(gal)	466.73	(gal)	536.07

Abbreviations:

Notes:

" H₂O = Inches of Water

°F = Degrees Fahrenheit

PSI = Pounds per Square Inch

% = Percent

DTF - Depth to Fluid

DTB - Depth to Bottom

MP - Measuring Point

WD - Water Depth

1. Low float = 0% full. Mid float = 100% full.

2. If applicable

3. Oil level should be at the middle of the sightglass with the machine not operating.

4. WD = 6.92-DTF OR as measured with the dipstick

WD at the LAH float = 3.76 ft (1002.8 gal).; WD at the LAHH float = 4.26 ft (1136.1 gal).

5. Water vol = WD*266.7

The tank holds 266.7 gal/ft (2000 gal; 7.25' dia x 7.5' H)

6. Spare vol to LAH float = 1002.8-current water volume

* each tick on pole is 6 in.

PORT OF SEATTLE - TERMINAL 30 AS Manifold Readings

		and the	2		low Reading	gs	1		i internet
Well	Pressure	Flow	Valve Pos.		Well	Pressure	Flow	Valve Pos.	_
ID	(PSIG)	(SCFMG)	(% Open) Zone 2	Comments	TR	(PSIG)	(SCFMG)	(% Open) Zone 4	Comments
$\overline{}$								20110 4	
AS-7					AS-17				
					1		<u> </u>		
AS-8					AS-18				
				· · · · · · · · · · · · · · · · · · ·	1			$\overline{}$	· · ·
AS-9					AS-19				
									/
AS-10					AS-20				
AC 11					46.24				
AS-11					AS-21				
				/	45.33				
			-		AS-22				
	1		Zone 3			1		Zone 1	
AS-12					AS-1				
AS-13					AS-2				
AS-14					AS-3				
AS-15					AS-4				
AS-16					AS-5				
		1.11-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2	L						
					AS-6				
			Zone 5						1
AS-23	8.0	10	Our	12					4.
-J-2J	4.0	1.4	100						
AS-24	7.5	20		float bouncing)					
		25)					
AS-25	-1 (1)	1.5							
AS-26	8.25	2		Float stucks					
	0.67			VICALI STUCO					
AS-27	B.0	1.8							
10 E/	\ <u>\</u> ' \\	11 V	1					Sugar-	

Abbreviations:

% = Percent

" H₂O = Inches of water

deg F - degrees Fahrenheit N/A = Not applicable

ppmv = Parts per million volume

PSIG = Pounds per square inch gauge SCFMG = Standard cubic feet per minute gauge

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (1 of 3)

					572 (10010)		50 (- 0.	-,			
Date:	5	19/22	5					Time:	512		S
Field Te	ch(s):	AB						PID ID: 048423			
Weathe	r: (010 3	unn-/								
**Instru			s down PRIC	OR to dewa	tering or adjusting vac/flow. Mini kn	ockout all	ows PID r	eadings to	be taken ev	en if water i	is present in the rotameters.
	Vacuum/Flow readings										
Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	PID (ppmv)	Comments	Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	PID (ppmv)	Comments
HSVE-2	23	88	50	10.9	•	SVE-10	53	13	25	2.6	
HSVE-3	21	56	50	2.9		SVE-9	63	6	100	2.1	1
SVE-4	34	ø	10	1.7	Float stuck	SVE-8	Ø	ø	Ø	49	closed
SVE-5	Ø	ø	Ø	10.5	#closed PIR fluctuating between 10.1-10.9	SVE-6	59	12	(0_	23	
SVE-7	48	12	10	-1-1		HSVE-1	10	57	50	17	
Dilution		# Turns O	pen:		O		1				•
Dilution	vaive	Vacuum ("	'H2O):	•	82						
Notes:											
Abbrevi % = Per				N/A = Not a	applicable	SCFMG =	Standard	l cubic feet	per minute	gauge	

" H₂O = Inches of water

deg F - degrees Fahrenheit

ppmv = Parts per million volume PSIG = Pounds per square inch gauge SCFMG = Standard cubic feet per minute gauge

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (2 of 3)

Date:	5 9 2	3	Time: 1405					
Field Tech	(s): A3	3	Pump ID: 46330					
Weather:	610 8	junny			<u>.</u>			
	Star 25		watering					
Well ID	Dewater (Gal)	Comments	Well ID	Dewater (Gal)	Comments			
HSVE-2	X C	No water coming out	SVE-10	1/4	Brewnish water			
HSVE-3	1/4	Clear H20	SVE-9	1/2	Itad to open red value to pull water-water is brown			
SVE-4	1/2	Particulates came out at first then clear H20	SVE-8	-	*closed			
SVE-5	_	* Clused	SVE-6	Y2	Clear 1+20			
SVE-7	42	Clear 1+20	HSVE-1	Yy	clear H20			
Notes:								
Abbreviat	ions:	Gal = gallons			A=COM			

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (3 of 3)

Date:	5/9/	123					Time: 14	1637	,
Field Te		AB					Weather:	60° S	unh-j
**Instru	ictions: Take	these readin	gs AFTER de	watering and adjusting vac/flow to limit	t water proo	duction.			
			20 20	FINAL Vacuu	um/Flow re	adings			
Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	Comments	Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	Comments
HSVE-2	24	74	50		SVE-10	46	14	16	Flocit bobbing
HSVE-3	32	64	60		SVE-9	50	to Co	100	Float stuck
SVE-4	54	17	25	Float bobbing	SVE-8	Ø	Ø	0	closed
SVE-5	26	6	10		SVE-6	62	14	25	
SVE-7	35	14	20	opened more and too much water bac came in - brought bac	HSVE-1	\$10	55	30	
Dilution	Value	# Turns Ope	n:	0					
Dilution	valve	Vacuum ("H	20):	82					
Notes:									

% = Percent

" H₂O = Inches of water

SCFMG = Standard cubic feet per minute gauge

Project Information	Project Information Page of									
Project Name:	130	Location:	Port of Seattle							
Project/Task No.:	}	Weather:	66° sum							
Date:	52423	Personnel:	AB							

Observations Time Observation Description 33 ate unlocked \mathcal{O} UDOV 1 2 3 4 1355 5 À 6 Ŵ no 430 ge for SVE d me o 7 8 7 m l 2 mah U ~ SLA 9 10 readings 11 Mani 12 erin 13 14 00 15 ð vo 16 limit 17 υC $\gamma\gamma OO$ E-81 bu 18 19 openi 19 20 and ~ 0 ras 21 Ce Qni ing 22 tes a no К dina 23 1650 24 1700 25 Comments / Site Activities / Personnel Tracking

Project Information			Page of
Project Name:	130	Location:	Port of Seattle
Project/Task No.:		Weather:	66° sum
Date:	52423	Personnel:	<u></u>

Observations Time Observation Description 33 ate unlocked \mathcal{O} UDOV 1 2 3 4 1355 5 À 6 Ŵ no 430 ge for SVE d me o 7 8 7 m l 2 mah U ~ SLA 9 10 readings 11 Mani 12 erin 13 14 00 15 ð vo 16 limit 17 υC $\gamma\gamma OO$ E-81 bu 18 19 openi 19 20 and ~ 0 ras 21 Ce Qni ing 22 tes a no К dina 23 1650 24 1700 25 Comments / Site Activities / Personnel Tracking

PORT OF SEATTLE - TERMINAL 30 SVE/AS System Data

ate: 5/24/23	Field Tech(s):		Actual Time:
10 1D: 048423	Weather: 66°	sunny	HMI Time: 1352
VE/AS Control Panel		~ /	
VE Blower Runtime	191077	Sparge Zone 1 Time	1-1- 2020
lours)	18107.7	HMI Span(s) Operational:	1760-2230
ransfer Pump Runtime	74	Sparge Zone 2 Time	2200-0330
lours) - MS Pump		HMI Span(s) Operational:	2200-0000
S Blower Runtime	11679.4	Sparge Zone 3 Time	0300-0800
lours) - Sparge Blower	101.1	HMI Span(s) Operational:	
S Heat Exchanger Runtime	11675.7	Sparge Zone 4 Time	0730-230
lours) VE Blower VFD Setpoints		HMI Span(s) Operational:	0100 400
lertz/Amps/Torque %) - VFD	42.0 Hr/16.9A/6:	Sparge Zone 5 Time Span(s) Operational:	1200-1730
S Blower VFD Setpoints	~ 12~ m / 10. 1790	Span(s) Operational.	1200 1700
lertz/Amps/Torque %) - VFD	52.0Hz/9.8A 85.	Sparge Zone Active:	5
VE/AS System Settings & Reading			V
S Heat Exchanger Discharge Temp		SVE Blower Dilution Valve	C.
F) - <i>TI-500</i>	48	(# turns open)	
S Blower Intake Pressure		SVE Blower Filter Differential	
H2O) - <i>DPI-500</i>	1.5	Pressure (" H20) - <i>DPI-200</i>	$\mid 0.5$
S Bleed Valve	1	SVE Blower Inlet Differential	
turns open)		Pressure (" H20) - <i>FI-200</i>	1.0
S Blower Discharge Pressure	مسور است	Transfer Pump Discharge Pressure	R
PSI) - <i>PI-501</i>	1.5	(PSI) - <i>PI-300</i>	
VE Blower Inlet Temperature	70*	SVE Blower Discharge Pressure	01
F) - <i>TI-200</i>	12	(" H ₂ O) - <i>PI-400</i>	2.1
VE Blower Inlet Vacuum	Om	SVE Blower Discharge Temperature	1170
H ₂ 0) - <i>VI-200</i>	60	(°F) - <i>TI-400</i>	
nockout Tank Level	. 9-5-1		
ightglass % Full) ¹	4457		
VE Discharge PID	1.5	Treated Vapor Discharge PID	s.lh
opmv)	<u>4.</u>	(ppmv) ²	N M
ther Components			
S Compressor Oil Level ³	Terretory In the every linear and	SVE Compressor Oil Level ³	
6 full sightglass)		(% full sightglass)	6- AGITOMINA MARKAN
TF in Storage Tank	distant and the	WD in Storage Tank ⁴	10
t)	Garden Charles Charles and Charles	(ft)	1.1
/ater Volume in Storage Tank⁵	6A1 70	Spare Volume to LAH float ⁶	Lar an
(al)	506.73	(gal)	496.07
OTES:			

Abbreviations:

Notes:

" H_2O = Inches of Water

°F = Degrees Fahrenheit

PSI = Pounds per Square Inch

% = Percent

DTF - Depth to Fluid

DTB - Depth to Bottom

MP - Measuring Point

WD - Water Depth

1. Low float = 0% full. Mid float = 100% full.

2. If applicable

3. Oil level should be at the middle of the sightglass with the machine not operating.

4. WD = 6.92-DTF OR as measured with the dipstick

WD at the LAH float = 3.76 ft (1002.8 gal).; WD at the LAHH float = 4.26 ft (1136.1 gal).

5. Water vol = WD*266.7

The tank holds 266.7 gal/ft (2000 gal; 7.25' dia x 7.5' H)

6. Spare vol to LAH float = 1002.8-current water volume

PORT OF SEATTLE - TERMINAL 30 **AS Manifold Readings**

Pressure/Flow Readings									
Well ID	Pressure (PSIG)	Flow (SCFMG)	Valve Pos. (% Open)	Comments	Well ID	Pressure (PSIG)	Flow (SCFMG)	Valve Pos. (% Open)	Comments
S-7 Car			Zone 2		AS-17			Zone 4	
S-8	No. No.				AS-18				
S-9		A A A A A A A A A A A A A A A A A A A			AS-19		An and a second s		
5-10					AS-20				
S-11					AS-21				
					AS-22				
			Zone 3					Zone 1	
S-12 Contraction					AS-1				
S-13	Sold and the second				AS-2	a second			
S-14		Strategy and			AS-3		N. S.		
S-15					AS-4				~
S-16					AS-5				
					AS-6				No. And No.
	1		Zone 5		_	1		I	
S-23	H	6	100						
S-24	7.5	713							
S-25	7	1.3							
S-26	S	12.8							
S-27	G	1.7	4						
otes:									

% = Percent

" H_2O = Inches of water

deg F - degrees Fahrenheit

N/A = Not applicable

ppmv = Parts per million volume

PSIG = Pounds per square inch gauge

SCFMG = Standard cubic feet per minute gauge

PORT OF SEATTLE - TERMINAL 30

SVE Manifold Readings (1 of 3)

SVE IVIANIIOIU READINGS (1 01 5)											
Date:	Date: 3/24/23										
Field Te	Field Tech(s):						PID ID:	04	842	3	
Weathe	r:	6	G	Sunn	Ý					•	
**Instru	ictions: Ta	ke reading	s down PRIC	DR to dewa	tering or adjusting vac/flow. Mini kn	ockout all	ows PID r	eadings to	be taken ev	en if water	is present in the rotameters.
Vacuum/Flow readings											
Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	PID (ppmv)	Comments	Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	PID (ppmv)	Comments
HSVE-2	26	86	25	8.C		SVE-10	48	13	15	1	Floot bobbing
HSVE-3	33	68	25	2.2		SVE-9	do	Ø	$[\infty]$	1.6	plant stuck Lots of water
SVE-4	64	18	15	2.	Float bobbing	SVE-8	8	Ø	Ø	9.1	closed
SVE-5	18	Ø	10	2.6	float stuck	SVE-6	Ø	Ø	Ø	5.8	closed
SVE-7	25	13	15	1.9		HSVE-1	9	58	15	2.4	
Dilution Valve		# Turns Open:			0	-					
Vacuum ("H2O):			\$5								
Notes: Abbreviations:											

SCFMG = Standard cubic feet per minute gauge

% = Percent

" H_2O = Inches of water

deg F - degrees Fahrenheit

ppmv = Parts per million volume PSIG = Pounds per square inch gauge

N/A = Not applicable

AECOM

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (2 of 3)

Date:	5/2	4/23		Time:	ł.	1520			
Field Tech	(s):	AB		Pump ID:	4	ſŎ			
Weather:	6	6° Sunn	4		l	•			
				watering					
Well ID	Dewater (Gal)		Comments	Well ID	Dewater (Gal)		Comments		
HSVE-2	1/4	clean	H20	SVE-10	1/2	muddy b water	snowh		
HSVE-3	48	clear	420	SVE-9	1/2	muddy b coming out	brown was t in smal	ter (1 sect not c	ions ontinuous
SVE-4	13	Brown LOTS of	2 particulates	SVE-8	В	*902	ed		
SVE-5	1/4	clear	- H20	SVE-6	1/3	clear	Hzo		
SVE-7	1/2	clear	H20 with ik particulates	HSVE-1	1/ Inj	Clear	H2C)		
Notes:			,						
Abbreviat	ions:	Gal = gallons					AEC	OM	

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (3 of 3)

Date:	5	1241	23				Time:]	617
Field Teo	ch(s):	, ,	A	-B			Weather:	66	SUNNY
**Instru	ictions: Take	these readin	gs AFTER dev	watering and adjusting vac/flow to limit v				•	U
				FINAL Vacuum	-	-			
Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	Comments	Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	Comments
HSVE-2	23	9 55	30		SVE-10	58	21	20	Float bobbing Opened slightly
HSVE-3	36	71	90	Vac gauge bobbing	SVE-9	68	-	10	Float stuck Adjusted to lessen
SVE-4	40	8	15	Float Slightly Stuck	SVE-8	-	etaingunger,,		closed
SVE-5	46	S.	15	Floert bobbing	SVE-6	14	8	10	opened to 10%.
SVE-7	Ø	1)	20	vac zero: Not sure why opened 5%	HSVE-1	12	68	25	opened from 15% to 25%.
Dilution	Valve	# Turns Ope Vacuum ("H		10					
Notes: Abbrevia	-+:			- •					

Abbreviations:

% = Percent

" H_2O = Inches of water

SCFMG = Standard cubic feet per minute gauge

Project Information			Page of
Project Name:	730	Location:	Port of Seattle
Project/Task No.:	60681370	Weather:	69° cloudy
Date:	6/8/23	Personnel:	AB

Observations

Obse	rvations	
	Time	Observation Description
1	1306	on-site, Safety tailgate, system on upon arrival
2		Scope: Liweekly Of M
3	1321	Taking SUE system readings
4	1353	Effluent PID reading initially read 2.7 ppmv
5		then began to dip to 2.2 after 30 seconds
6		Taking another reading @ 3.2 ppmv, then
7		started to dip again - recalibrating PID
8		PID after zeroing out: 3.0 ppmv
9		Lastill dipping after reading to 1.4 ppmv
10		1.0 after removing bag and putting it back on
11		Taking third reading w/PID: 3.6 ppmv
12		Ladipping to 0.6 after 90 seconds
13	1408	Moving on to zone readings
14	1414	Talked to Gus-turning PID of on again
15		and taking another reading
16		Ly Fluctuating between 2.2ppmv - 2.4 ppmv
17	1421	Taking manifold readings
18)421	Taking pre-dewatering PTS readings from manifold
19	1446	Had to zero out PID again
20	1456	Tedlar bag broke - looking for replacement
21	1513	After talking to Gus, I'm going to take PID
22		readings without bag straight into PID from well
23		PID taking 60 seconds to return to 0
24	1543	Taking effluent PID without bag: 6. 1 ppmv
25	1559	Begin dewatering
Com	ments / Site Acti	vities / Personnel Tracking

Project Information	I.		Page of
Project Name:	T30	Location:	Port of Seattle
Project/Task No.:	60681370	Weather:	69° cloudy
Date:	6/4/23	Personnel:	AB

Observations

Obse	ervations	
	Time	Observation Description
1	1634	Began taking post dewatering readings
2	1657	Adjusted values to increase flow without
3		water production
4		HSVE-2: no change HSVE-3: 10% increase
5		
6		SVE-4: 5% increase
7		SVE-5: no change
8		SVE-7: 5% increase
9		SVE-10: 10% increase
10		SVE-9: 5% increase
11		SVE-9: remained closed
12		SVE-6: 5% increase
13	17.	HSVE-1: 10% increase
14	1703	Cloving down and wrapping up
15	1710	Called Gus to go over changes
16	1717	Leaving for office to drop off equipment
17) , ,
18		
19		
20		
21		
22		
23		
24		
25		

Comments / Site Activities / Personnel Tracking

PORT OF SEATTLE - TERMINAL 30 SVE/AS System Data

Date: 6/8/23	Field Tech(s): AB		Actual Time: 22
PIDID: GOLOSG	Weather: 6.9° c	oudy	HMI Time: 132
SVE/AS Control Panel			
SVE Blower Runtime	Icula 1	Sparge Zone 1 Time	
(Hours)	18465,6 нмі	Span(s) Operational:	1700-2230 HMI
Transfer Pump Runtime	7.5	Sparge Zone 2 Time	2200-0330M 0300-0800M
(Hours) - <i>MS Pump</i>	И И И И И И И И И И И И И И И И И И И	Span(s) Operational:	2200 -083 QM
AS Blower Runtime	12037.3 HMI	Sparge Zone 3 Time	0200 0600
(Hours) - Sparge Blower		Span(s) Operational:	0200-0800
AS Heat Exchanger Runtime	17022 5	sparge zone 4 mile	
(Hours)	12033.5 HMI	Span(s) Operational:	0730-123 O HMI
SVE Blower VFD Setpoints	and the selection of	Sparge Zone 5 Time	10
(Hertz/Amps/Torque %) - VFD	42.0Hz/15.7A/57.5/HMI	Span(s) Operational:	1200 - 1730 HMI
AS Blower VFD Setpoints	En all la a Kik E !!	Sparge Zone Active:	
(Hertz/Amps/Torque %) - VFD	52.0Hz/9.8A/45.5/HMI		
SVE/AS System Settings & Readings	· 1		
AS Heat Exchanger Discharge Temp	A10	SVE Blower Dilution Valve	
(°F) - <i>TI-500</i>		(# turns open)	
AS Blower Intake Pressure	15	SVE Blower Filter Differential	AT
(" H2O) - <i>DPI-500</i>	I · J	Pressure (" H20) - <i>DPI-200</i>	
AS Bleed Valve	1	SVE Blower Inlet Differential	
(# turns open)		Pressure (" H20) - <i>FI-200</i>	
AS Blower Discharge Pressure	~~~	Transfer Pump Discharge Pressure	\square
(PSI) - <i>PI-501</i>	1.5	(PSI) - <i>PI-300</i>	
SVE Blower Inlet Temperature	750	SVE Blower Discharge Pressure	19
(°F) - <i>TI-200</i>	/3	(" H ₂ O) - <i>PI-400</i>	4.)
SVE Blower Inlet Vacuum	70	SVE Blower Discharge Temperature	1100
(" H ₂ 0) - <i>VI-200</i>	/5	(°F) - <i>TI-400</i>	
Knockout Tank Level			
(Sightglass % Full) ¹	55%		
SVE Discharge PID		Treated Vapor Discharge PID	/ 0.10
(ppmv)		(ppmv) ²	$ \Lambda \rangle R$
Other Components		(pp)	
AS Compressor Oil Level ³		SVE Compressor Oil Level ³	
(% full sightglass)		(% full sightglass)	
DTF in Storage Tank		WD in Storage Tank ⁴	
(ft)		(ft)	7
Water Volume in Storage Tank ⁵		Spare Volume to LAH float ⁶	
(gal)	533.4	(gal)	4694
Effluent	PID: 2.3 u	v/bag	
	6.1 W		
	$\bigcirc \cdot \iota \lor$		
Abbreviations:	Notes:		

" H₂O = Inches of Water

1. Low float = 0% full. Mid float = 100% full.

2. If applicable

- °F = Degrees Fahrenheit PSI = Pounds per Square Inch
- % = Percent
- DTF Depth to Fluid
- DTB Depth to Bottom
- MP Measuring Point
- WD Water Depth

- 3. Oil level should be at the middle of the sightglass with the machine not operating.
- - 4. WD = 6.92-DTF OR as measured with the dipstick
 - WD at the LAH float = 3.76 ft (1002.8 gal).; WD at the LAHH float = 4.26 ft (1136.1 gal).

5. Water vol = WD*266.7

The tank holds 266.7 gal/ft (2000 gal; 7.25' dia x 7.5' H)

6. Spare vol to LAH float = 1002.8-current water volume

PORT OF SEATTLE - TERMINAL 30 AS Manifold Readings

				Pressure/	Flow Reading	s			
Well	Pressure	Flow	Valve Pos.	_	Well	Pressure	Flow	Valve Pos.	_
ID	(PSIG)	(SCFMG)	(% Open) Zone 2	Comments	ID	(PSIG)	(SCFMG)	(% Open) Zone 4	Comments
AS-7	$\left[\right]$				AS-17				
AS-8					AS-18				
AS-9					AS-19				
AS-10					AS-20				
AS-11					AS-21				
					AS-22				
6			Zone 3					Zone 1	
AS-12					AS-1				
AS-13					AS-2				
AS-14					AS-3				
AS-15					AS-4				
AS-16					AS-5				
					AS-6				
	_		Zone 5				·		
AS-23	8	1.2	100	Float bobbing Float high					
AS-24	7.5	>13							
AS-25	7	1.3		Flourt bobbing					
AS-26	8.25	12.8							
AS-27	S	1.6	4	Float bobbing					
Notes:									

Abbreviations:

% = Percent

" H_2O = Inches of water

deg F - degrees Fahrenheit

N/A = Not applicable

ppmv = Parts per million volume

PSIG = Pounds per square inch gauge

SCFMG = Standard cubic feet per minute gauge

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (1 of 3)

Date:	C	a/&/:	23					Time:	142	-2	
Field Te	-		AB	>				PID ID:	50	1080	1
Weathe	r:		. 6	9° cl	undy				-	、	
**Instru	ictions: Ta	ke reading			tering or adjusting vac/flow. Mini kn	ockout all	ows PID re	eadings to	be taken ev	en if water i	s present in the rotameters.
					Vacuum/Fl	ow readir	ngs				
Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	PID (ppmv)	Comments	Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	PID (ppmv)	Comments
HSVE-2	23	82	30	10.9	7.2 w/bag 10.9 w/o	SVE-10	55	13	20	3.8	Float bobbing a lot
HSVE-3	33	74	90	3.9	2.3 w/bag 3.9 w/o	SVE-9	39))0	3.3	Float Stuck
SVE-4	34	٩	15	4.3	Minimal H20 Float bobbing	SVE-8	-	-	Ċ	8.8	
SVE-5	50	12	15		medium amount of H2O Float bobbing	SVE-6	2)1	9	10	2.6	minimal H20
SVE-7	4	11	20	3.2	J	HSVE-1	12	69	25	4.1	
Dilution	Valve	# Turns Op Vacuum ("			0						
Notes:	SVE	-4	PND: L	1.9 ω 1.3 μ		- P_	10:	1.9 5.5	w/ba ~ w/č)	

SCFMG = Standard cubic feet per minute gauge

Abbreviations:

% = Percent

" H_2O = Inches of water

deg F - degrees Fahrenheit

N/A = Not applicable

ppmv = Parts per million volume PSIG = Pounds per square inch gauge AECOM

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (2 of 3)

Date:	6/9	\$ 23	Time:	1550	٦
Field Tech	n(s):	AB	Pump ID:	463	530
Weather:		69° Sunny			
			Dewatering		
Well ID	Dewater (Gal)	Comments	Well ID	Dewater (Gal)	Comments
HSVE-2	1/4	Clear HzO	SVE-10	\bigcirc	
HSVE-3	1/4	clear H20	SVE-9	3/4	Started clear H20 brown H20 at end
SVE-4	1/2	clear H20	SVE-8	1/2	Clear H2 O
SVE-5	3/4	Clear H2 O	SVE-6	3/4	Clear H2 O rotometer hes H2C
SVE-7	1/4	Clear HzO	HSVE-1	1/4	clear Hz O
Notes:					
Abbreviat	tions:	Gal = gallons			ΑΞϹΟΜ

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (3 of 3)

Date:	(/	0/46/2	3				Time:	1639	
Field Teo	ch(s):		A	2			Weather:	. 🗸 —	69° sunny
**Instru	ctions: Take	these readin	gs AFTER de	watering and adjusting vac/flow to limit v	vater proc	luction.	•		/
				FINAL Vacuum	n/Flow rea	adings			
Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	Comments	Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	Comments
HSVE-2	22	82	30		SVE-10	51)Ц	30	Float bobbing; opened 5-1
HSVE-3	34	74	160	trace H2Oj opened fully	SVE-9	56		15	Float stuck Opened 5-1.
SVE-4	40	12	20	Float bobbing; opened 5.1.	SVE-8			}	closed
SVE-5	48	14)5	Float bobbing; minimal H20	SVE-6	50	12	15	opened 5.1
SVE-7	0	()	25	Tried opening slightly H2O increased a lot	HSVE-1	13	77	35	opened 10%
Dilution	Valve	# Turns Ope Vacuum ("H		079					
Notes:	ations								

% = Percent

" H_2O = Inches of water

SCFMG = Standard cubic feet per minute gauge

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Instrument ID 46330	
Description Solinst Pump Calibrated 6/7/2023 4:46:00PM	
Manufacturer Solinst	State Certified Status Pass
Model Number Pump Serial Number/ Lot na	Temp °C 25
Number Location Seattle Department	Humidity % 30
Calibrati	on Specifications
Group # 1 Group Name Test Performed: Yes As Found Result: Pass	As Left Result: Pass

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Dzung Pham

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.
Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment

Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Instrument ID 801089 Description MIniRae 3000_F Calibrated 6/7/2023 5:07:52		2A				
Manufacturer Rae Systems			State Certifie	s Pass		
Model Number MiniRAE 3000			Temp °C			
Serial Number/ Lot 592-602191 Number Location Seattle Department			Humidity %			
	Calibrat	ion Specification	s			
Group # 1 Group Name isobutylene Stated Accy Pct of Reading			Range Acc % Reading Acc % Plus/Minus	5.0000		
	<u>Out Val</u> 100.00	<u>Out Type</u> PPM	<u>Fnd As</u> 100.10	<u>Lft As</u> 100.00	<u>Dev%</u> 0.00%	Pass/Fail Pass
Test Instruments Used During the Calibra Test Standard ID Description SEA ISO Isobutylene (C4H8) 100 100PPM PPM 304-402321612-	<u>Manufacturer</u>	<u>Model Number</u> 31721	<u>Serial Nun</u> Lot Number 304-40232 -1	<u>iber /</u> er Last (Opene	Cal Date/ E ed Date	ry Date) ext Cal Date xpiration Da 2/29/2025
1 Notes about this calibration						
Calibration Result Calibration Succ	essful					
Who Calibrated Dzung Pham	D' Faria	annantal Comi	and LLC acc	ording to t	he man	facturer's
All instruments are calibrated by pecifications, but it is the customer's manufacturer's spe	responsibil	ity to calibrate and/or the custo	omer's own s	pecific ne	eds.	uance wit
Notify Pine Environmental Ser	CITTORETORIE					

Pine Environmental Services LLC Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-90 www.pine-environmental.com

Project Information	_		Page of
Project Name:	1-30	Location:	Port of Seattle
Project/Task No.:	60691370	Weather:	70° sunny
Date:	6/22/23	Personnel:	AB

Obse	ervations	
	Time	Observation Description
1	1530	on-site, safety tailoate, system on
2		Scope: biweekly Oak M and summa can sempling
3		Setting up Summa can sampling !!
4	421	Finished Summa Oan Sampling, doing
5		regular OOM now '''
6	1450	JPID @effluent: 4.9 ppmv
7	150%	No water in any of rotometers
8		45mall amount of oily product in SVE-9
9		rotometer - taking PID readings
10	1529	Begin dewatering
11	1413	Pewatering complete - taking post-
12		devatering readings
13	1417	O&M complete, closing down-calling GUS
14		to debrief
15	1430	Heading to lab to drop off samples
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		

Comments / Site Activities / Personnel Tracking

PORT OF SEATTLE - TERMINAL 30 SVE/AS System Data

Date: 6122123	Field Tech(s): AB		Actual Time: 1427
PID ID: 041530	Weather: 70° 54	nny	HMI Time: 1424
SVE/AS Control Panel		ĺ	· · ·
SVE Blower Runtime	1x 200 2	Sparge Zone 1 Time	1710 27.20
Hours)	К 799.3 нм	Span(s) Operational:	1700-2230HI
Transfer Pump Runtime (Hours) - <i>MS Pump</i>	7.6	Sparge Zone 2 Time Span(s) Operational:	2200-03301
AS Blower Runtime		Sparge Zone 3 Time	
(Hours) - Sparge Blower		Span(s) Operational:	0300-08001
AS Heat Exchanger Runtime	12367. ZHM	Sparge Zone 4 Time	1794 1730
Hours)	1 C NO 1. L'HM	Span(s) Operational:	0730-1230
SVE Blower VFD Setpoints	42.0/15.6/57.4'L HM	Sparge Zone 5 Time	1200-1730
(Hertz/Amps/Torque %) - VFD	<u>92.015.057.47 нм</u>	Span(s) Operational:	1200 1104
AS Blower VFD Setpoints (Hertz/Amps/Torque %) - VFD	52.0/9.7/83.9% HM	Sparge Zone Active:	5
SVE/AS System Settings & Readings			-
AS Heat Exchanger Discharge Temp	<u>A</u> IO	SVE Blower Dilution Valve	\frown
(°F) - <i>TI-500</i>	910	(# turns open)	0
AS Blower Intake Pressure		SVE Blower Filter Differential	0.5
" H2O) - <i>DPI-500</i>	1.75	Pressure (" H20) - DPI-200	0.3
AS Bleed Valve		SVE Blower Inlet Differential	
(# turns open)	1	Pressure (" H20) - <i>FI-200</i>	
AS Blower Discharge Pressure	775	Transfer Pump Discharge Pressure	
(PSI) - <i>PI-501</i> SVE Blower Inlet Temperature	1.25	(PSI) - <i>PI-300</i>	
(°F) - <i>TI-200</i>	70°	SVE Blower Discharge Pressure (" H ₂ O) - <i>PI-400</i>	2.7
SVE Blower Inlet Vacuum		SVE Blower Discharge Temperature	
(" H ₂ 0) - <i>VI-200</i>	79	(°F) - <i>TI-400</i>	
Knockout Tank Level	051		
(Sightglass % Full) ¹	L 25%.		
SVE Discharge PID	11 0	Treated Vapor Discharge PID	
(ppmv)	9.9	(ppmv) ²	
Other Components			
AS Compressor Oil Level ³		SVE Compressor Oil Level ³	~
(% full sightglass)		(% full sightglass)	
DTF in Storage Tank		WD in Storage Tank ⁴	$0\leq$
(ft) 5		(ft)	0.5
Water Volume in Storage Tank ⁵	133.35	Spare Volume to LAH float ⁶	869.45
(gal)	1 172.25	(gal)	001.77

Abbreviations:	Notes:
" H_2O = Inches of Water	1. Low float = 0% full. Mid float = 100% full.
°F = Degrees Fahrenheit	2. If applicable
PSI = Pounds per Square Inch	3. Oil level should be at the middle of the sightglass with the machine not operating.
% - Percent	4 WD = 6.92-DTE OB as measured with the directick

% = Percent

DTF - Depth to Fluid

DTB - Depth to Bottom

MP - Measuring Point

WD - Water Depth

4. WD = 6.92-DTF OR as measured with the dipstick

WD at the LAH float = 3.76 ft (1002.8 gal).; WD at the LAHH float = 4.26 ft (1136.1 gal).

5. Water vol = WD*266.7

The tank holds 266.7 gal/ft (2000 gal; 7.25' dia x 7.5' H)

6. Spare vol to LAH float = 1002.8-current water volume

PORT OF SEATTLE - TERMINAL 30 AS Manifold Readings

	Pressure/Flow Readings												
Well ID	Pressure (PSIG)	Flow (SCFMG)	Valve Pos. (% Open)	Comments	Well ID	Pressure (PSIG)	Flow (SCFMG)	Valve Pos. (% Open)	Comments				
			Zone 2					Zone 4					
AS-7					AS-17								
AS-8					AS-18								
AS-9					AS-19			\backslash					
AS-10					AS-20								
AS-11					AS-21								
					AS-22								
			Zone 3					Zone 1					
AS-12					AS-1		<u> </u>						
AS-13					AS-2								
AS-14					AS-3								
AS-15					AS-4								
AS-16					AS-5								
					AS-6								
	1		Zone 5										
AS-23	50	1.3	100										
AS-24	7.5	>13		Float high									
AS-25	7.0	1.3											
AS-26	8.5	12.8											
	8.0	1.7	L										
Notes:													
Abbreviati	ions:												

Abbreviations:

% = Percent

" H₂O = Inches of water

deg F - degrees Fahrenheit

N/A = Not applicable

ppmv = Parts per million volume

PSIG = Pounds per square inch gauge

SCFMG = Standard cubic feet per minute gauge

1

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (1 of 3)

Date:		(e 22	23			5- (Time:	1421					
Field Te	ch(s):		AB					PID ID:	0472	530				
Weathe	r:		70) sun	<i>i</i> ny					• • <u>-</u>				
**Instru	i ctions : Ta	ke reading	s down PRIC	DR to dewat	tering or adjusting vac/flow. Mini kn	ockout all	ows PID r	eadings to	be taken eve	en if water	is present in the rotameters.			
				-	Vacuum/F		ngs							
Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	PID (ppmv)	Comments	Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	PID (ppmv)	Comments			
HSVE-2	26	7)	30	13.4		SVE-10	57	16	20	2.4	Float bobbing			
HSVE-3	37	72	90	6.1		SVE-9	59	1	١O	1.4	Float stuck and oily			
SVE-4	44	12	15	4.0		SVE-8	_	}	Ø	<u> </u>	closed			
SVE-5	52	12	15	46	Float	SVE-6	52	B)6	2.3	Float stuck & bobbing			
SVE-7	12	9	20	2.2		HSVE-1	15	78	25	2.7	~			
Dilution Valve		# Turns Open: Vacuum ("H2O):			0 79									
Notes: Abbrevi	Notes:													

SCFMG = Standard cubic feet per minute gauge

% = Percent

" H_2O = Inches of water

deg F - degrees Fahrenheit

ppmv = Parts per million volume PSIG = Pounds per square inch gauge

N/A = Not applicable

AECOM

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (2 of 3)

Date:	6	22 23	Time:	1530								
Field Tech		- AB	Pump ID:	4	6330							
Weather:		70° smny										
	_		E Dewatering									
Well ID	Dewater (Gal)	Comments	Well ID	Dewater (Gal)	Comments							
HSVE-2	1/2	clear H20	SVE-10	1/2	Clear HzO							
HSVE-3	1/21	clear H20	SVE-9	1/2	brown oily H20							
SVE-4	1/2	clear 420	SVE-8	Ø								
SVE-5	314	Clear H20	SVE-6	2/3	clear H20							
SVE-7	1/2	clear H2 O	HSVE-1	1/2	Clear H20							
Notes:												
Abbreviat	tions:	Gal = gallons										
					AECOM							

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (3 of 3)

Date:		6	22/2	3			Time:).	415		
Field Tec	:h(s):	•	1 (AB			Weather:	Ż)° sunny		
**Instru	ctions: Take	these reading	gs AFTER dev	watering and adjusting vac/flow to limit v	vater proc	luction.		<i>,</i> ~	~ 0		
				FINAL Vacuur	n/Flow rea	adings			/		
Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	Comments	Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	Comments		
HSVE-2	26	71	30		SVE-10	55	١١	26			
HSVE-3	37	N	90		SVE-9	To		10	Float stuckj oily residue		
SVE-4	42	{ }	15		SVE-8	J	~	6			
SVE-5	49	15	15	Float	SVE-6	51	$\langle \rangle$	10			
SVE-7	10	9	20		HSVE-1	15	78	25			
Dilution '	Dilution Valve Vacuum ("H2O):			0 -14	-						
Notes: Abbrevia											

% = Percent

" H₂O = Inches of water

SCFMG = Standard cubic feet per minute gauge

Tukwila, WA 98168 425-285-9102

De	ment ID 47530 scription RAE MiniRA alibrated 6/21/2023 2:4	E 3000 44:36PM				1						
Manu	facturer Rae Systems		State Certified Status Pass									
	Number PGM-7320		Temp °C 19									
	ber/ Lot 592-918777 Number			Tem	p c r							
	Location Seattle			Humidi	ty % 49							
	artment											
	Group # 1 roup Name Isobutylene tated Accy Pct of Rang		Range Acc % 3.0000Reading Acc % 0.0000Plus/Minus 0.0									
Nom In Val / In V	/al In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail					
100.0 / 100.0	PPM	100.0	PPM	99.9	100.0	0.00%	Pass					
Test Instruments Test Standard ID SEA ISO 100PPM 304-402321612-	Used During the Cali Description Isobutylene (C4H8) 1 PPM	<u>Manufacturer</u>	<u>Model Number</u> 31721	<u>Serial N</u> Lot Nun 304-402 -1	umber / 1ber Last Open	Cal Date/ Ex ed Date	ry Date) ext Cal Date / epiration Dat /29/2025					

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Dzung Pham

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs. Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.	
Instrument ID 46330 Description Solinst Pump Calibrated 6/21/2023 2:28:14PM	
Manufacturer Solinst Model Number Pump Serial Number/ Lot na	State Certified Status Pass Temp °C 19
Number Location Seattle Department	Humidity % 49
	oration Specifications
Group # 1 Group Name Test Performed: Yes As Found Result: Pass	As Left Result: Pass
Test Instruments Used During the Calibration Test Standard ID Description	rer Model Number <u>Serial Number</u> <u>Serial Number</u> <u>Next Cal Date /</u> <u>Lot Number</u> <u>Last Cal Date / Expiration Date</u> <u>Opened Date</u>
Notes about this calibration	

Calibration Result Calibration Successful

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs. Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

SAMPLE CHAIN OF CUSTODY

Report To Paul Kal	-	1 Ca	Frie	SAMP	LERS (sign	ature)	2.	- 6	7]		age #	
Report To Our Lan	ina	1 203	1114		LERS (sign CCT NAME	(Junte	5 6	ent	¥					_	NAROUND TIME
CompanyHECO	m			- PROJE		5 & AD1	DRESS		19	PO	#			RUS	idard H	
Address 1111 3rd Ave Ste 1600 1-30									R			es authorized by:				
City, State, ZIP Seattle WA 98101 NOTES: INVOICE TO												PLE DISPOSAL				
Phone 206 - 438 - 210 Email Paul. Kaling Occum. com Gas. friedman Caecom. com SAMPLE INFORMATION ANALYSIS REQUESTED																
SAMPLE INFORMATION ANALYSIS REQUESTED																
Sample Name	Lab ID	Canister ID	Flow Cont. ID	Reporting Level: IA=Indoor Air SG=Soil Gas (Circle One)	Date Sampled	Initial Vac. ("Hg)	Field Initial Time	Final Vac. ("Hg)	Field Final Time	TO15 Full Scan	TO15 BTEXN	TO15 cVOCs	APH	Helium	TOIS GREX	Notes
TBUS-EFF-062223		3390	111	IA / 6G	6/22/23										Ň	10000
				IA / SG							8					
· · · · · · · · · · · · · · · · · · ·				IA / SG												
щ.				IA / SG												
				IA / SG									ſ			
				IA / SG												
				IA / SG												
				IA / SG												

Friedman & Bruya, Inc.	. SIGNATURE	PRINT NAME	' COMPANY	DATE	TIME
5500 4 th Avenue South	Relinquished by:	Austin Bragg	AECOM	6/22/22	4:450
Seattle, WA 98108	Received by	Lou Change	EB	2/52/52	11/480
Ph. (206) 285-8282	Relinquisted by:	Con for a		y ages	10 p
Fax (206) 283-5044	Received by:				
FORMS\COC\COCTO-15.DOC				_	

Project Informatio	Page of
Project Name:	T-30 Location: Seattle
roject/Task No.:	Weather:
Date:	Personnel: GF, LC
Observations	
Time	Observation Description
1 100	
2	· Safety tailacte. Much reaved taffic risk, pinch points,
3	Slips-trips motion hazards.
4	Creepe: 250+M + reparement part install's
5	· System ON an arrival in Zare 4. Normal runtime
6	goes to 12:20 with The 5 Vicking on at 12:00.
7	Aar Temporarily adjusted to maintain Zne 4
8	throughout of m
9 1115	· Began taking down system readings
10	" SVE-9 has mahaging - brown lique (Small amt) Sloshing
11	around.
12	· SUE-5 3 quite dirty, SUE-4 1864 50
13	· Took PID reaches but everything rane in really high.
14	Effluent @ 40.1. KVE-2@73 most others in the
15 1230	
16 1330	Take (Pire) drapped det the replacement PID. Seems
17	warked consistent with past persurements here.
18	3.4 ppm @ effluent: 89 pm @ 1KVE-2.
19	· Installed camplock adapter at AS plewoff value
20	· Added brace to AS-1+-2 rotaneters u/ Small piece of
21	unistrut. New rotanetors are taller than old ones.
22	· Built I new saw horse for SVE Losses
23 1430	
24	for SUE-6 @ the Stub-up. Opened idowoff to blew later
25	· started dewatering
	Activities / Personnel Tracking

Comments / Site Activities / Personnel Tracking

Project Informa	tion		Page 2 of 3
Project Name:	7-30	Location:	Seattle
Project/Task No.:	:	Weather:	
Date:	715123	Personnel:	GT-LC
Observations			
Time		Observation Descrip	
1	· When As have was di	sconnected	I from stub up it was
2	99991 Slightly press	withd 3/	4 gal pumped from
3	dendley & no additi	mal water	- visible pulline in.
4			· let run for a few minute
5	When disconnected	pas quite	pressuized & hose put
6			- started coming up out
7	of the stub up		
8	: Same thing as about	e nopen	ed at SVF - Smand -9
9 1500			on SVE hoses - Replaced
10			Left SVE-8 disconnected
11			ed down vied apone
12			rossible (reld Gochers sty
13	it on lotte ended ind		ver old ones as needed.
14 England	-Ordered the wrong		ne spare can locks / extra
		plus type	not sockets.
15 vew res			Goffeld hoses for
17 Josefs	cambolk remove		
18		etroleum; e	elle for installe in sent
19	remaining nen	0	9 1 1 2 1 2 1 2 1
20		antalass	
21	· opened Particulate	XI.O	ansferred water ~ keggl
22	from the carge - Fill	er appears	in fre condition. Rikte
23	partions observed +	photogr	gold in inver wall of
24	the filter use	g · 0	
25 1640	D - took megger readings	s. Shut do	un pover.
Comments / Site .	Activities / Personnel Tracking		1

Project Informati	on Page <u>3</u> of <u>3</u>
Project Name:	T-30 Location: Seattle
Project/Task No.:	Weather:
Date:	715123 Personnel: G7F, LC
Observations	
Time	Observation Description
1	· Out of time for the day. will return another day
2	· Out of time for the day. Will return another day to complete SUE hose replacements & do the SUE rotameter repairs.
3	SVE rotemeter repairs.
4	· cloured up. Disposed of ald air hoses. Stored remaining new hose in the conex. -GF + 10 affsite
5	remaining new hose in the contex.
6 1100	-GF + LC affaite
7	
9	
10	
11	
12	
13	7/5173 GIE
14	GF
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

Comments / Site Activities / Personnel Tracking

PORT OF SEATTLE - TERMINAL 30 SVE/AS System Data

Date: 7/5/23	Field Tech(s): GF dL	C	Actual Time: 1123		
PID ID:	Weather:	Weather:			
SVE/AS Control Panel			HMI Time: \1(7		
SVE Blower Runtime	10105 1	Sparge Zone 1 Time			
(Hours)	19105.1 _H	Mt Span(s) Operational:	1700 -37230		
Transfer Pump Runtime	J-6	Sparge Zone 2 Time	1		
(Hours) - <i>MS Pump</i> AS Blower Runtime		MI Span(s) Operational:	2200-0330		
(Hours) - Sparge Blower	12676.9	Sparge Zone 3 Time MI Span(s) Operational:	0300-0800		
AS Heat Exchanger Runtime		Sparge Zone 4 Time			
(Hours)	12672.8	MI Span(s) Operational:	0730 - 1230 HM		
SVE Blower VFD Setpoints	2 1 1	C			
(Hertz/Amps/Torque %) - VFD	42.0Hz/15.3A/2	Sparge Zone 5 Time Span(s) Operational:	1200-1730 HM		
AS Blower VFD Setpoints	520H2/9.5A/822	4 Sparge Zone Active	U		
(Hertz/Amps/Torque %) - VFD		/0			
SVE/AS System Settings & Reading					
AS Heat Exchanger Discharge Ten	1P 56 96°F	SVE Blower Dilution Valve	1 6.000		
°F) - <i>TI-500</i>	<u> </u>	(# turns open)	Iturn		
AS Blower Intake Pressure " H2O) - <i>DPI-500</i>	2" H20	SVE Blower Filter Differential	0.5		
AS Bleed Valve		Pressure (" H20) - DPI-200 SVE Blower Inlet Differential			
# turns open)	1 turn	Pressure (" H20) - <i>FI-200</i>	(.2		
AS Blower Discharge Pressure	~)	Transfer Pump Discharge Pressure	2		
PSI) - PI-501	7.hosi	(PSI) - <i>PI-300</i>	0		
SVE Blower Inlet Temperature	69"F	SVE Blower Discharge Pressure	0.0		
(°F) - <i>TI-200</i>	Q 1	(" H ₂ O) - <i>PI-400</i>	3.0		
SVE Blower Inlet Vacuum	78	SVE Blower Discharge Temperature	30000		
"H ₂ 0) - <i>VI-200</i>	10	(°F) - <i>TI-400</i>	120°F		
Knockout Tank Level	75%				
Sightglass % Full) ¹	1010				
SVE Discharge PID ppmv)	042 34	Treated Vapor Discharge PID	NA		
	TAS	(ppmv) ²	/**		
Other Components	U.V.				
AS Compressor Oil Level ³	NM	SVE Compressor Oil Level ³	NIM		
% full sightglass)		(% full sightglass)	1010		
DTF in Storage Tank ft)	X	WD in Storage Tank ⁴	2in = 0.17ft		
Water Volume in Storage Tank ⁵		(ft) Spare Volume to LAH float ⁶	L'III UITTE		
gal)	44.45 gal	(gal)	958.35 gal		
NOTES:		10-11			

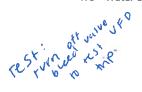
Abbreviations:

Notes:

" H₂O = Inches of Water

- ^oF = Degrees Fahrenheit 3. Oil level should be at the middle of the sightglass with the machine not operating.

% = Percent


DTF - Depth to Fluid

1. Low float = 0% full. Mid float = 100% full.

2. If applicable

5. Water vol = WD*266.7

- PSI = Pounds per Square Inch
- DTB Depth to Bottom
- MP Measuring Point
- WD Water Depth

The tank holds 266.7 gal/ft (2000 gal; 7.25' dia x 7.5' H) 6. Spare vol to LAH float = 1002.8-current water volume

WD at the LAH float = 3.76 ft (1002.8 gal).; WD at the LAHH float = 4.26 ft (1136.1 gal).

4. WD = 6.92-DTF OR as measured with the dipstick

PORT OF SEATTLE - TERMINAL 30 AS Manifold Readings

and the second se				Pressu	re/Flow Reading	Service - Lamps	S		
Well	Pressure	Flow	Valve Pos.		Well	Pressure	Flow	Valve Pos.	
ID	(PSIG)	(SCFMG)	(% Open) Zone 2	Comments	ID	(PSIG)	(SCFMG)	(% Open) Zone 4	Comments
			Lone Z				- 4	Lone 4	
AS-7					AS-17	7.5	3.4	50%	
					46.40	_	<i>c</i> ^		
NS-8					AS-18	7.5	6.0	100%	
NS-9					AS-19	7.5	0.0	100%.	
						7· J		100 10	
S-10					AS-20	0. F	1-5	100 "1.	
									Ounde noude
NS-11					AS-21 5.0		0.0	100%	gauge reads
					1		1 1	Lacott	gauge reads
					AS-22	7.0	1.0	WU7.	gauge reads -12 psi
1			Zone 3			I	1	Zone 1	
S-12					AS-1				
S-13					AS-2				
\S-14					AS-3				
\S-15			<u> </u>		AS-4				
/2-12					A3-4				
S-16					AS-5				
					AS-6				
			Zone 5						
s 73									
S-23									
S-24									
S-25									
				<					
6.36									
\S-26				7	12.262				
AS-26				× .					

Abbreviations: % = Percent

70 - Tercenc

" H_zO = Inches of water

deg F - degrees Fahrenheit N/A = Not applicable

ppmv = Parts per million volume

PSIG = Pounds per square inch gauge SCFMG = Standard cubic feet per minute gauge

PORT OF SEATTLE - TERMINAL 30

SVE Manifold Readings (1 of 3)

	1-1-							-	1015		
Date: 🏹	1512	23						Time:	1215	-	
Field Te	ield Tech(s): LC GF						PID ID: 310590 40222				
Weathe	r: pave	M SU	nny	75°F							
				OR to dewa	tering or adjusting vac/flow. M	lini knockout all	ows PID r	eadings to	be taken ev	en if water	is present in the rotameters.
					Initial Vacu	um/Flow reading	ngs				
Well	Vacuum	Flow	Valve Pos.	PID		Well	Vacuum	Flow	Valve Pos.	PID	
ID	("H2O)	(SCFMG)	(% Open)	(ppmv)	Comments	ID	("H2O)	(SCFMG)	(% Open)	(ppmv)	Comments
HSVE-2	22	60	25	73.2		SVE-10	52	ما	25	1.2	bouncing
HSVE-3	32	72	100	2.9		SVE-9	56	6	15	1202	brown Fivid in memifold bouncing
SVE-4	32	14	20	17.7		SVE-8	0	0	0	10.9	Closed, pip taken and was very high reading equilibrit
SVE-5	46	13	20	2.4	bouncing	SVE-6	48	13	20	15-4	bushcing
SVE-7	14	10	20	9.5	bouncmy	HSVE-1	14	78	25	2800 1.6	
Dilution		# Turns Op	pen:		1						
Dilution	valve	Vacuum ("	'H2O):		78						
Notes: 13- Gimil		u Ged histori	sare e	levated	readings for all	neagure	nente	5, Rep	lacem	ent pI	D gave rendings

Abbreviations:

% = Percent

" H₂O = Inches of water deg F = degrees Fahrenheit ppmv = Parts per million volume PSIG = Pounds per square inch gauge

N/A = Not applicable

SCFMG = Standard cubic feet per minute gauge

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (2 of 3)

Date:	7(51)	73	Time:		
Field Tech	n(s): Gif	F. LC	Pump ID:		
Weather:					
		SI	VE Dewatering		and an advantation of the second s
Well ID	Dewater (Gal)	Comments	Well ID	Dewater (Gal)	Comments
HSVE-2	1	Not attempted, on out at time	SVE-10	_	Not attempted, ran at of fine
HSVE-3	-		SVE-9	1/4	brown (tan, product
SVE-4	-		SVE-8	0	-
SVE-5	-		SVE-6	3/4	clear Hoo. Float sticky/ rod croubed?
SVE-7	1		HSVE-1	146	
Notes:					
Abbreviat	tions:	Gal = gallons			AECOM

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (3 of 3)

Date:	7/5/	23					Time:	Time:				
Field Te	ch(s):								Weather:			
**Instru	ictions: Take	these readin	gs AFTER dewate	ring and adjusting vac/flow to lim	it water proc	uction.						
FINAL Vacuum/Flow readings												
Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	Comments	Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	Comments			
HSVE-2					SVE-10							
HSVE-3				No) _{SVE-9}	/						
SVE-4		-		Change	SVE-8	,						
SVE-5				0	SVE-6							
SVE-7					HSVE-1							
Dilution	Value	# Turns Ope	n:									
		Vacuum ("H	20):									
Notes:												

% = Percent

" H₂O = Inches of water

SCFMG = Standard cubic feet per minute gauge

PORT OF SEATTLE - TERMINAL 30 Megger Testing of Motor Windings

Field Tech(s) 640 Date:

Equipment ID:

Megger T1306

	Baseline Readings (See Note 2)								
	Motor	AS Com	pressor	SVE B	lower				
		Winding	Insulation	Winding	Insulation				
Motor		Resistance	Resistance	Resistance	Resistance				
Wires	Date	(Ohms)	(Megaohms)	(Ohms)	(Megaohms)				
G&B	N/A	N/A (>100.0)	NM	N/A (>100.0)	NM				
G&O	N/A	N/A (>100.0)	NM	N/A (>100.0)	NM				
G&Y	N/A	N/A (>100.0)	NM	N/A (>100.0)	NM				
B&O	N/A	NM	N/A (0.00)	NM	N/A (0.00)				
0&Y	N/A	NM	N/A (0.00)	NM	N/A (0.00)				
B & Y	N/A	NM	N/A (0.00)	NM	N/A (0.00)				

Legend: G= Gro

G= Ground Wire B= Brown Wire O= Orange Wire Y= Yellow Wire N/A= Not applicable

Notes:

1 These tests check for a breakdown of insulation within the internal motor windings over time. Use a Megger Model MIT 220.

2 Baseline data is unavailable. Testing was not conducted by CRETE and readings were only initiated once issues with the AS motor were identified.

3 Insulation resistance testing was completed between winding phase at 500 volts over approximately 30 seconds

4 >1,000 Mohm readings generally means you have an open curcuit

5 0.00 Mohm readings mean that the phase being tested is shorted to Ground

6 Ideally the phase-to-phase winding resistance readings between each phase should be the same or at least very close

7 Phase-to-phase winding resistance readings should not be 0 ohms (i.e. short) or OL (overload) or infinity

8 Generally high resistance readings (greater than 10 Mohms) indicate the motor insulation is good

Motor			AS Compr	essor Motor			Co
Test		Winding Resistanc	e				
Motor Wires	B & O	0&Y	B&Y	G & B	G & O	G & Y	
Date/Time	(Ohms)	(Ohms)	(Ohms)	(Megaohms)	(Megaohms)	(Megaohms)	
Baseline	N/A	N/A	N/A	N/A	N/A	N/A	
	1.70	1-69	1.70	0.12	0-12	0.12	

Motor			Comments				
Test	1	Winding Resistance	9		nsulation Resistanc		
Motor Wires	B & O	0 & Y	B & Y	G & B	G & O	G & Y	
Date/Time	(Ohms)	(Ohms)	(Ohms)	(Megaohms)	(Megaohms)	(Megaohms)	
Baseline	N/A	N/A	N/A	N/A	N/A	N/A	
	0.874	4 J. 60	- 1 90	0.14	0.14	0.14	

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

Instrument ID	46330		
Description	Solinst Pump		
Calibrated	6/30/2023 1:42:14PM		
Manufacturer		State Certified	
Model Number	Pump	Status	Pass
Serial Number/ Lot	na	Temp °C	24
Number			
Location	Seattle	Humidity %	48
Department			
	Calibration	n Specifications	
Group)# 1		
Group Nan	ne		
Test Performed: Yes	As Found Result: Pass	As Left Result:	Pass
Test Instruments Used Du Test Standard ID Descrip		<u>Serial Numbe</u> <u>Model Number</u> <u>Lot Number</u>	(As Of Cal Entry Date) r / <u>Next Cal Date /</u> Last Cal Date/ Expiration Date Opened Date

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Dzung Pham

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

		_						DO INTERNO
	nent ID 402							
Dese	cription RA	E MiniRAE	3000+					
Cal	librated 7/5	/2023 3:45:	59PM					
	acturer Ra				State Certifie	ed		
Model N	Number PG	M7320			Stat	us Pass		
Serial Numb	ber/Lot 592	2-920963			Temp of	C 26		
r	Number							
L	ocation Sea	attle			Humidity 9	% 34		
Depa	artment							
			Calibra	tion Specification	ns			
	Group #	1			Range Acc %	0.0000		
Gr	oup Name				Reading Acc %			
	tated Accy		ng		Plus/Minus			
Nom In Val / In V		Гуре	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
100.0 / 100.0	PPI	М	100.0	PPM	100.0	100.0	0.00%	Pass
fest Instruments	Ilsod Durin	g the Calib	ration			(As	Of Cal Ent	ry Data)
est mstruments	<u>Oscu Durin</u>	g the Calib	ation		Control Norm	_		
est Standard ID	Description		Manufacturer	Model Number	<u>Serial Num</u> Lot Numbe			ext Cal Date xpiration Dat
cst Standard ID	Deserption		Manufacturer	model (umber	<u>Lot rumbe</u>	_	ned Date	April attor bas
EA ISO	Isobutylene	(C4H8) 100) Airgas	31721	304-40232			2/29/2025
00PPM	PPM		-		-1			
04-402321612-								

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Dzung Pham

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

Instrum	ent ID 36590						
	ription MiniRAE 30	00					
Cali	brated 6/30/2023 1:	34:25PM					
	cturer Rae Systems			State Certific	d =		
Model N	umber PGM7320			Statu	s Pass		
Serial Numb	er/Lot 592-918212			Temp °	C 24		
N	umber			-			
Lo	cation Seattle			Humidity %	6 48		
Depa	rtment						
······							
		Calibra	tion Specification	IS			
	Group # 1			Range Acc %	0.0000		
Gro	up Name Isobutylen	e	ŀ	Reading Acc %	0.0000		
Sta	Stated Accy Pct of Range Plus/Minus 3.00						
<u>Nom In Val / In Va</u>	I In Type	Out Val	Out Type	Fnd As	<u>Lft As</u>	Dev%	Pass/Fail
100.00 / 100.00	PPM	100.00	PPM	100.10	100.00	0.00%	Pass
						icit.i	
Test Instruments	Jsed During the Cali	bration			<u>(As</u>	Of Cal Entr	ry Date)
Test Standard ID	Description	<u>Manufacturer</u>	Model Number	<u>Serial Numb</u> Lot Number	Last		ext Cal Date / opiration Date
SEA ISO	Isobutylene (C4H8) 1	00 Airgas	31721	304-402321			2/29/2025
	PPM	0		-1			
304-402321612-							
1							

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Dzung Pham

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

AECOM Daily Tailgate Meeting Summary

Project information

Project Name	T-30		
Project Number	60681370		
Project Manager	Paul Kalina		
Project Manager Phone #	2063105097		
Muster Point location	Clubhouse		
Meeting date	7/5/2023		
Business Line	Environment		
SH&E Manager	Tim Gilles		
SH&E Manager Phone #	3128335991		
First Aid Kit Location	Conex		
Prepared by	Friedman, Gus		

Shift Summary

Location	SODO	
Attendees (Workers)	Celovsky, Lillian;Friedman, Gus;	
Attendees (Visitors)		
Tasks to be performed	2Q O&M Replacement part installs	
Hazards to be considered today	pressure, noise, motion, mechanical	
Will there be Lone Workers?	No	
Hierarchy of controls	elimination, ppe	
Personal Protective Equipment	Task Specific: gloves Mandatory: safetyglasses, longpants, reflectivevest, workboots	
High Risk Events		

Topic of the week	<u>Hearing Protection - Stay away from noise, max</u> <u>exposure, use of PPE</u>
Other topics discussed	
Mid day reviews	
End of the day comments. The supervisor confirms that the site is being left in a safe condition and work crew checked out as fit unless otherwise specified here	
Hazards	 <u>Mechanical</u> <u>Motion</u> <u>Noise</u> <u>Pressure</u>

Project Informatio	n Page of
Project Name:	T-30 Location: 5000 seattle
Project/Task No.:	Weather:
Date:	<u>7/7/23</u> Personnel: <u>G7F5C</u>
Observations	
Time	Observation Description
1 1300	Gif & GC ougite
2	·Grape: Contid 20 odm. Replace SVE hoses clean/
3	repair / replace rotaneters, inspect gauges
4	Safety thillcate: pinch points hotwater
5	- Zore 2 active on arrival. VED (graze) read S.S.A
6	indicating capacity to decrease bleed value. FLA = 9.6A
7	Bleed had been I turn open: decreased to 3/4 turn of
8	VED Amps increased to 9.3A.
9 13 15	
10	water to be!
11	-While whiting cleaned SUE rotaneters
12	- SVE-9: Dirty but all components looked in good shape
13	- SUE-4: Unown und floort. Float & guide rad replaced.
14	Sightly dirtz & cleaned. Cracked and cop replaced.
15	- SUE-S: Rife but components looked good cleared
16	- GVE-10: Same, cleaned.
17	SUE-6 could still use a deanine. All others look dear
18	" Removed campolics from several old hoses. Added campool
19	to complete 2 new hoses. Used hot water & petroleum
20	well to help get cambocks into the new hores. Not cose
21	to belp get cambocks into the new hores. Not con, to do, A jelly didn't belp much backs almost spenes
22	to make the hokes summer.
23	- Couldn't get the ynd firthe on the Sut -10 hose on more
24	- Couldn't get the 3rd firthe on the Sult-10 hose on more thou NIS", Gilled C Brown to discuss. He Said if fimly in place of secured w/ band clanp, propably five we
25	in place of secured w/ band clamp, propably five we
Comments / Site A	ctivities / Personnel Tracking

Project Information				Page 2 of 3
Project Name:	7-30	Location:		
Project/Task No.:		Weather:		
Date:	7/7/23	Personnel:	GIF, SC	

Observations

	Time	Observation Description
1	_	took his advice a installed it as-was.
2		- The hose GF installed a few months ago without
3		cutting to gize was much engies to cark with them
4		the brand new hose. IF we revisit these in a few
5		months maybe we can get campacks fully inserted.
6		· Attempted to dewater the Suis-le lateral as the hose
7		had visiting collected rater since the 715 visit.
8		- could not get the Stub up cap off. Likely glued
9		org cizrown believed.
10		- could not get the large - dia LOPE tobing around
11		the elbow from the cambook - Had Success with
12		large dia silicare tubing, but couldn't get any water
13		up with it. Either wasn't deep enough or here
14		wasn't sufficient water in the lateral.
15	¥¥	> Tapping the cap with apart tubing could ppe inserted
16		into would work. Could just plug it when not
17		in use.
18		· Repailed AS-23 +-24 rotaneters (zore 5)
19	* *	-> Need to arder more replacements. 3 more for
20		Zore 5 and at least 2 for zore 2 8 total?
21		"Replaced GVE met vac gauge. Old ore was reading 6" we at rest. New one is to 140" we not 100.
22		6" we at rest. New one is to 140"we not 100.
23	1815	·SC offsile for the day
24		· System restarted. New hoses at 1, 6, 8 a + 10.
25		still need to replace 7, 543, 22.

Comments / Site Activities / Personnel Tracking

Project Informatio)n			Page <u>5</u> of <u>3</u>
Project Name:	T-30	Location:	Scattle	
Project/Task No.:		Weather:		
Date:	7/7/23	Personnel:	GF SC	
Observations	-			-
Time	0	bservation Descrip	otion	
1	- SVE-5 Starked p	Illing in	, water eso" w	K Vac
2	atter ~10 min			
3	- Realized SVE-7 d	init ho	we a hose on it	F. TEMP
4	fixed by moving	the Su	1E -8 (104Rd) 4	rose over.
5	fixed by moving Will more pack is	len pe	restof the hos	es are
6	monde yp.			
7	- Notice & a wolde i.	n the Su	E-4 reteneto.	
8 343	·Sustem off to fix SV			
9	upper & loner netal qu	mles	B. One fipe a	long the
10	rod (upper) + the sta	les does	not (lover)	0
11 1900				
12	- could only get flor	sto SI	IE-S b. HAR	rtlin
13	164E-1 2-3 ball	= to 50	ofm. Even Vi	th the+
14	not Sure it will Su		Carrie poort	
15	· AS bleed value / UFD		2	
16	• • •		active, 7.9 A	4 85.7%
17	- ul o turn open + -			96, 40
18	SRG (= 12)		re closed + has	Line Cault
	The noter nine		sts FLA at 19:	16.6 Ga
19	220/460 V .			11 a oper
20 21 1930		o (tw	in one - An ar	Valle in
	9.0.	01 10	r gran inmps	- 202 FD
22	· Next visit Ghould of	o l'ant	Kieckesven	
23	Vert VSI BUDGE	a lent	<u>ceczententen</u>	AMITOR
24	Peolo Car Louis F	d	0 -1	
25	Frenance broken J		n KW-SA	
2 2 2 Contractor	ctivities / Personnel Tracking	le ul.	GIF offile	
	1 vervee of . coo			
		\langle	GIF	
	dmaniDocuments Field Forms - GENERAL Field Forms - GF x1s(Daily Field Log)) 7/7/23	Jacob and States and
3/22/2021		(3 22 21
		- <i>1</i> ,		

AECOM Daily Tailgate Meeting Summary

Project information

Project Name	T-30
Project Number	60681370
Project Manager	Paul Kalina
Project Manager Phone #	2063105097
Muster Point location	Clubhouse
Meeting date	7/7/2023
Business Line	Environment
SH&E Manager	Tim Gilles
SH&E Manager Phone #	3128335991
First Aid Kit Location	Conex
Prepared by	Friedman, Gus

Shift Summary

Location	SODO		
Attendees (Workers)	Catlin, Suzanne;Friedman, Gus;		
Attendees (Visitors)			
Tasks to be performed	Continued 2Q O&M. Equipment repairs & replacements		
Hazards to be considered today	pressure, noise, motion		
Will there be Lone Workers?	No		
Hierarchy of controls	elimination, ppe		
Personal Protective Equipment	Task Specific: gloves Mandatory: safetyglasses, longpants, reflectivevest, workboots		
High Risk Events			

Topic of the week	<u>Hearing Protection - Stay away from noise, max</u> <u>exposure, use of PPE</u>
Other topics discussed	
Mid day reviews	
End of the day comments.The supervisor confirms that the site is being left in a safe condition and work crew checked out as fit unless otherwise specified here	
Hazards	• <u>Motion</u> • <u>Noise</u> • <u>Pressure</u>

Project Information Page of								
Project Name:	T-30	Location:	Port of Seattle					
Project/Task No.:	I	Weather:	15° sunny					
Date:	7 19 23	Personnel:	AB '					

Observations

	rvations Time	Observation Description
	11111e 1159	
1	1101	Arriving on-site, system on upon arrival
2	10.7	Safety tailgate, scope: biweekly OEM
3	1215	Began SUE system data collection
4	1256	PID reading at effluent: 2.6 ppmv
5		Taking zone readings
6		Taking manifold readings and PFD
7	1340	Begin de-watering
8	1417	Taking post dewater readings
9	1429	Calling/Gbs to discuss readings
10	1445	wrapped up and dropping off pine
11	• • •	Equipment at office
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
24		
23		

Comments / Site Activities / Personnel Tracking

PORT OF SEATTLE - TERMINAL 30 SVE/AS System Data

Date: 7/19/23	Field Tech(s):		Actual Time: 1227	l
PIDID: 048423	Weather: 75° S	junny	HMI Time: 1222	
SVE/AS Control Panel		j		
SVE Blower Runtime	101122 7	Sparge Zone 1 Time		
(Hours)	19433.7 нмі	Span(s) Operational:	HMI	
Transfer Pump Runtime		Sparge Zone 2 Time	0200-0530,1000.	- (33
(Hours) - <i>MS Pump</i>	Гі О нмі	Span(s) Operational:	HMI 0200-0530,1000 1800-2130 HMI	
AS Blower Runtime	12000 2	Sparge Zone 3 Time		
(Hours) - Sparge Blower	13005.3 HMI	Span(s) Operational:	HMI	
AS Heat Exchanger Runtime	13001.2 HMI	Sparge Zone 4 Time		
(Hours)		Span(s) Operational:	HMI	
SVE Blower VFD Setpoints	110	Sparge Zone 5 Time	2100-0230,0500-1030	
(Hertz/Amps/Torque %) - VFD	42.0Hz/17.0A/62.7	Span(s) Operational:	1300 - 1830 HMI	
AS Blower VFD Setpoints (Hertz/Amps/Torque %) - VFD	52.0Hz/8.94/75.1M	Sparge Zone Active:	2	
SVE/AS System Settings & Readings	· · · · · · · · · · · · · · · · · · ·			
AS Heat Exchanger Discharge Temp		SVE Blower Dilution Valve	1	
(°F) - TI-500	90°	(# turns open)		
AS Blower Intake Pressure		SVE Blower Filter Differential	,	
(" H2O) - <i>DPI-500</i>	20	Pressure (" H20) - <i>DPI-200</i>	0.5	
AS Bleed Valve		SVE Blower Inlet Differential		
(# turns open)		Pressure (" H20) - <i>FI-200</i>	.45	
AS Blower Discharge Pressure	1	Transfer Pump Discharge Pressure		
(PSI) - <i>PI-501</i>	6.15	(PSI) - <i>PI-300</i>	(\mathcal{I})	
SVE Blower Inlet Temperature		SVE Blower Discharge Pressure	21	
(°F) - <i>TI-200</i>	16	(" H ₂ O) - <i>PI-400</i>	2.1	
SVE Blower Inlet Vacuum		SVE Blower Discharge Temperature	17110	
(" H ₂ 0) - <i>VI-200</i>	=12	(°F) - <i>TI-400</i>	127	
Knockout Tank Level	1			
(Sightglass % Full) ¹	45%			
SVE Discharge PID		Treated Vapor Discharge PID		
(ppmv)	2.6	(ppmv) ²		
Other Components		1		
AS Compressor Oil Level ³	·····	SVE Compressor Oil Level ³		1
(% full sightglass)		(% full sightglass)		
DTF in Storage Tank		WD in Storage Tank ⁴		
(ft)		(ft)	\bigcirc	
Water Volume in Storage Tank⁵	12225	Spare Volume to LAH float ⁶	alalia	
(gal)	133.35	(gal)	869.45	1
NOTES:				
				1
				1

Ab	brev	/iatio	ons:

Notes:

" H₂O = Inches of Water

°F = Degrees Fahrenheit

PSI = Pounds per Square Inch

% = Percent

DTF - Depth to Fluid

DTB - Depth to Bottom

MP - Measuring Point

WD - Water Depth

1. Low float = 0% full. Mid float = 100% full.

2. If applicable

3. Oil level should be at the middle of the sightglass with the machine not operating.

4. WD = 6.92-DTF OR as measured with the dipstick

WD at the LAH float = 3.76 ft (1002.8 gal).; WD at the LAHH float = 4.26 ft (1136.1 gal).

5. Water vol = WD*266.7

The tank holds 266.7 gal/ft (2000 gal; 7.25' dia x 7.5' H)

6. Spare vol to LAH float = 1002.8-current water volume

PORT OF SEATTLE - TERMINAL 30 AS Manifold Readings

	-			Pressure/	Flow Reading				
Well	Pressure	Flow	Valve Pos.		Well	Pressure	Flow	Valve Pos.	
ID	(PSIG)	(SCFMG)	(% Open)	Comments	ID	(PSIG)	(SCFMG)	(% Open)	Comments
			Zone 2		+			Zone 4	
S-7	15	u <	ino		AS-17				
	.J	1.)	(00						
\S-8		-12	1		AS-18				
13-0	1.2	715			A3-10				
\S-9	7.5	<u>ک</u> ا			AS-19				
S-10	8.0	$ \mathcal{L} $			AS-20				
	0.0	1							\rightarrow \rightarrow
S-11	7.75	9.0			AS-21				
	1.10	1.0	→						
					AS-22				
			Zone 3		$+ \mathbf{x}$			Zone 1	
S-12	\downarrow				AS-1	\searrow			
						\mid			
S-13					AS-2		\sim		
12-12			L		A3-2				
			$\overline{\ }$						
S-14					AS-3			$ $ \backslash	
	1								$\overline{}$
S-15					AS-4				
S-16					AS-5				
					\sim				
					AS-6				
	1		Zone 5						
S-23	\downarrow								
	$\left \right\rangle$								
\S-24									
J-74			K						
			\sim						
S-25									
	1								
S-26									
					4				
S-27									
lotes:									

% = Percent

" H_2O = Inches of water

deg F - degrees Fahrenheit

N/A = Not applicable

ppmv = Parts per million volume

PSIG = Pounds per square inch gauge

SCFMG = Standard cubic feet per minute gauge

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (1 of 3)

			1				50 (= 0.1	Time:			,
Date: 7/19.23										1301	f
Field Tech(s):								PID ID:	CL	184	23
Weathe	r:	-	75° 51	unn.	1						
**Instru	ictions: Ta	ke reading	s down PRIC	DR to dewat	tering or adjusting vac/flow. Mini kn	ockout all	ows PID r	eadings to	be taken ev	en if water i	is present in the rotameters.
Vacuum/Flow readings											
Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	PID (ppmv)	Comments	Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	PID (ppmv)	Comments
HSVE-2		14	50	3.1		SVE-10	61	10- 25	75].0	
HSVE-3	22	2))	50	2.4		SVE-9	do	Ø	40	0.5	Float stuck 17 oduct in notu
SVE-4	61	13.5	50	3.1		SVE-8					
SVE-5	40	2-10	40	3.5	*Fleart bobbing	SVE-6	71	10- 25	50	0.7	Float bobbing
SVE-7	17	<u>N</u>	ŜÒ	0.7		HSVE-1	Ç	40	40	1.9	
Dilution Valve # Turns Open: Vacuum ("H2O):			1	-							
Notes: Abbrevi											

SCFMG = Standard cubic feet per minute gauge

% = Percent

" H_2O = Inches of water

deg F - degrees Fahrenheit

ppmv = Parts per million volume PSIG = Pounds per square inch gauge

N/A = Not applicable

AECOM

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (2 of 3)

		1					
Date:		1/19/23	Time:		1340		
Field Tech	n(s):	-B	Pump ID: 46230				
Weather:	•	75° sunnu/			V -		
			watering				
Well ID	Dewater (Gal)	Comments	Well ID	Dewater (Gal)	Comments		
HSVE-2	1/2	clear U20	SVE-10	14	cleanish 120		
HSVE-3	1/2	clear H2 clear H2O	SVE-9	1/4	Brown 1+20 & remnants of product		
SVE-4	42	Clear H20 with some bits of product	SVE-8				
SVE-5	1/2	cheer HzO	SVE-6	12	Clear H20 Clear H20		
SVE-7	1/2	clear H2 O	HSVE-1	1/2	clear H20		
Notes:							
Abbreviat	tions:	Gal = gallons			AECOM		

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (3 of 3)

Date:		7	19 23				Time:	(2	117	
Field Te	ch(s):	- j	1	AR			Weather:		75° runny	
**Instru	**Instructions: Take these readings AFTER dewatering and adjusting vac/flow to limit water production.									
	FINAL Vacuum/Flow readings									
Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	Comments	Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	Comments	
HSVE-2	15	14	50		SVE-10	67	0- 25	75	Float Bobbing Float	
HSVE-3	22	41	50		SVE-9	66	1	40	Float Stuck	
SVE-4	6)	14	50		SVE-8	-				
SVE-5	40	(j-12	UO	Float	SVE-6	70	Q- 15	50	Float Dobbing	
SVE-7	16	12.5	50		HSVE-1	S	39	40		
# Turns Open: Dilution Valve Vacuum ("H2O):			12							
Notes: Abbrevi										

AECOM

% = Percent

" H_2O = Inches of water

SCFMG = Standard cubic feet per minute gauge

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

3225 South 116th St Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Instrument ID 46330 Description Solinst Pump Calibrated 7/18/2023 2:07:25PM	
Manufacturer Solinst Model Number Pump	State Certified Status Pass
Serial Number/ Lot na Number	Temp °C 24
Location Seattle Department	Humidity % 38
Crown # 1	pecifications
Group # 1 Group Name Test Performed: Yes As Found Result: Pass	As Left Result: Pass

Calibration Result Calibration Successful Who Calibrated Dzung Pham

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

3225 South 116th St. Building | Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

		1 000 00					
Instrum	ient ID 48423						
Desc	ription MiniRAE 300	00					
Cali	brated 7/18/2023 1:	52:07PM					
Manufa	ecturer Rao Sustan			State Certific	d		
Model	umber MiniRAF 300	00		State Certific	is Pas	s	
Serial Numb	cr/ Lot 592-921123			Temp °			
	umber						
Dens	rtment			Humidity %	6 38		
	10 C	Calibra	tion Specification	S			
6-	Group # 1			Range Acc %			
	ated Accy Pct of Read		F	Reading Acc %		0	
Nom In Val / In Va			52	Plus/Minus			Dise/Eatl
100.0 / 100.0	al <u>In Type</u> PPM	Out Val	Out Type	Fnd As	Lft As		Pass/Fail
100.07 100.0	PPM	100.0	PPM	100.2	100.0	0.00%	Pass
est Instruments	Used During the Cali	bration			1	As Of Cal En	try Date)
		1.1.1.1.1.1.1.1	1.00	Serial Num			Next Cal Date
Test Standard ID	Description	Manufacturer	Model Number	Lot Number	-	Last Cal Date/ I Opened Date	Expiration Dat
SEA ISO	Isobutylene (C4H8) 1	00 Airgas	31721	304-40232			2/29/2025
IOOPPM	PPM			-1			
304-402321612-							

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Dzung Pham

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

Project Informatio	Page of 2
Project Name:	T-30 Location: Sparthe
Project/Task No.:	Weather: 75,500
Date:	<u>-614/23</u> Personnel: <u>_61F</u>
Observations	
Time	Observation Description
1 1345	
2	· Scepe: bivelly of
3	Safety tailgate: Traffix Sun pirchpaint hazards
4	- Sicking ON on arrival - Zore's active.
5	-GVE looks good no Significant vater in votaneter
6	water visible in pokes attend (on stub p side) of
7	SVE-1,-2,-3-5, (-6), and -9.
8	- water visible in hores on manifold side of SVE-S,
9	-6, and -9.
10	> 100,06 Geen to be working to keep water out of
11	manifold, but laterals in st be filling. No good
12	way to pump them out currently. Did my best
13	by opening the values to (00% but in most fall cases
14	this was inefficient a best what he ver hardle of the
15	Gaw horses.
16	* Biggest impact is at Hove-2 which would have much
17	greater flow if we could open it up more. Diff bu
18	W & TO Same.
19	ASVE-9 not getting Plan even @ 100% open 60"WC
20	· ilosed down As bleed to lest autione. Compressor pressure
21	hovered N/D RSI + Flows @ manifold increased of the 3
22	Well's getting a.r. PRU actuely distarging successfully
23	ran for 15 hrs. Then tested in Zore 2, & only ran
24	for 6 min before faulting out (A 2010, then FOODA)!
25	Only restarted by hitting the oxit button. Never Gent a
	ctivities / Personnel Tracking
* A 20	9(0 = Motor Temp alarm; FOUDG = Motor avertemp Fault

Project Information				Page <u>2</u> of <u>2</u>
Project Name:	7-30	Location:	Seattle	
Project/Task No.:		Weather:	80 Sm	
Date:	414/23	Personnel:	GF	

Obs	ervations	
	Time	Observation Description
1		notification but I thought we added that ability in? Gave
2		it K min but it cover sent. Touk photos for comenting its
3		fault conditions.
4		respired in Zre 2 + observed amps at 10.8A Switched
5		buck to zere 5 and emps where the same so not Sure what caused the fault. Nevertheless took zeres
6		Sure what caused the fault. Neverhelegs took zores
7		offlive & aguske zone 5 to 3 his on 2 his off.
8		3/2/3/2/3/2/3/2/2/2 - Started that Cude CM25.
9		. In Zore 5, AS-23 & -24 Jon't get flow even al press
10		4 to 9/95.
11		· Put transfer pump in fland to make KOT water to Poly
12		tank
13	1500	· cleaned p locked p offosite.
14		
15		
16		
17		- GI-
18		0/4/22
19		0/4/00
20		
21		
22		
23		
24		
25		

Comments / Site Activities / Personnel Tracking

PORT OF SEATTLE - TERMINAL 30 SVE/AS System Data

Date: \$/1/22	Field Tech(s): GrF		Actual Time: 1400
PID ID:	Weather: 80 Sun		HMI Time:
VE/AS Control Panel			
VE Blower Runtime		Sparge Zone 1 Time	
Hours)	A815.2 H	MI Span(s) Operational:	
ransfer Pump Runtime	~ /	Sparge Zone 2 Time	0,00-0530; 6000-13
Hours) - MS Pump	П.(9 н	Span(s) Operational:	15(7)-2170 HM
AS Blower Runtime		Sparge Zone 3 Time	
Hours) - Sparge Blower	32466.9 H	MI Span(s) Operational:	
AS Heat Exchanger Runtime	1710 1	Sparge Zone 4 Time	
Hours)		MI Span(s) Operational:	
VE Blower VFD Setpoints	42.0/14.1/51.3	Sparge Zone 5 Time	0500-1030; 1300-183
Hertz/Amps/Torque %) - VFD	201141121.21	MI Span(s) Operational:	2100-0230, HM
AS Blower VFD Setpoints		Sparge Zone Active:	5 00:00-62:00
Hertz/Amps/Torque %) - VFD			D. 00-62. a
VE/AS System Settings & Readings			5 00.00-62.00 1000 - 13.00; 1
AS Heat Exchanger Discharge Temp		SVE Blower Dilution Valve	20.00-2
°F) - <i>TI-500</i>	102°	(# turns open)	
AS Blower Intake Pressure		SVE Blower Filter Differential	0.5
" H2O) - <i>DPI-500</i>	2.0	Pressure (" H20) - DPI-200	0:5
AS Bleed Valve	1.0 ->00	SVE Blower Inlet Differential	0.8
# turns open)	1.0		
AS Blower Discharge Pressure	6.5	Transfer Pump Discharge Pressure	\square
PSI) - <i>PI-501</i>		(PSI) - <i>PI-300</i>	
VE Blower Inlet Temperature	85	SVE Blower Discharge Pressure	3.0
°F) - <i>TI-200</i>	0.5	(" H ₂ O) - <i>PI-400</i>	7.0
SVE Blower Inlet Vacuum	52	SVE Blower Discharge Temperature	120
" H ₂ 0) - <i>VI-200</i>	Ja	(°F) - <i>TI-400</i>	120
Knockout Tank Level	60	A she was a set of the	
Sightglass % Full) ¹	50		
VE Discharge PID	1.6	Treated Vapor Discharge PID	IN A
ppmv)	1.9	(ppmv) ²	NA
Other Components			
AS Compressor Oil Level ³	1/10	SVE Compressor Oil Level ³	
% full sightglass)	NM	(% full sightglass)	NM
DTF in Storage Tank		WD in Storage Tank ⁴	
ft)	-	(ft)	0.25
	-	Spare Volume to LAH float ⁶	936.12
Nater Volume in Storage Tank ⁵	(06.6-6		

Abbreviations:

Notes:

" H₂O = Inches of Water

1. Low float = 0% full. Mid float = 100% full.

^oF = Degrees Fahrenheit PSI = Pounds per Square Inch

% = Percent

DTF - Depth to Fluid DTB - Depth to Bottom

MP - Measuring Point

WD - Water Depth

2. If applicable

3. Oil level should be at the middle of the sightglass with the machine not operating.

4. WD = 6.92-DTF OR as measured with the dipstick

WD at the LAH float = 3.76 ft (1002.8 gal).; WD at the LAHH float = 4.26 ft (1136.1 gal).

5. Water vol = WD*266.7

The tank holds 266.7 gal/ft (2000 gal; 7.25' dia x 7.5' H)

6. Spare vol to LAH float = 1002.8-current water volume

PORT OF SEATTLE - TERMINAL 30 AS Manifold Readings

8/4/23 GIF

				Pressure/F	low Reading	ps			
Well	Pressure	Flow	Valve Pos.		Well	Pressure	Flow	Valve Pos.	
ID	(PSIG)	(SCFMG)	(% Open) Zone 2	Comments	ID	(PSIG)	(SCFMG)	(% Open) Zone 4	Comments
	T		20112 2		1	1		20112 4	
AS-7					AS-17				
					1	+			
AS-8					AS-18				
	1					1			
AS-9					AS-19				
					1.0.00				
AS-10				1 2004 - 10000-00	AS-20				
AC 11					AS 21				
AS-11					AS-21				
011	00,4	itered	to te	St. Compr @ 10 PSI fault, 13.8A?	AS-22				
017	06 A2	20100	verload	fault, 13.8A?					
01	120 1	Pate	Zone 3	9. "Exit" cleared	·			Zone 1	
AS-12	5.0			- restarted.	AS-1				
	The fo	witar							
AS-13	Ampl	SH	for N	0.5	AS-2				
0.				· · · · · · ·					
A1-94 1-	125,51	witcled	back	to Zore 5. Amps	AS-3		ĺ		
4	it a	arl	0.94	. Pressure @ DS 19	4 ,				
AS-15	Y ····			. However Crawly	AS-4				
	1								
AS-16					AS-5				
			171.			- and			
					AS-6~ 14	, uo	0	1700	
			Zone 5	W Heed	PSI	40	ting 13	1 Sching	
AS-23	7.0	0	1000	Closes	9.2	- () Ig	-60	malther
	1.0		100	- w	10		->	1000	ouge @9.5F
AS-24	6.5	0			8:	10 (D R.	509	auge @ T.S.F
	6.2				0.			+	DU ILA
AS-25	C D	0			7.0	2dz	.51	365	PRV active
	3.0	-			1.0				
AS-26	7.5	2			G.	54	1.47.	5 5.2	
					-			100	
AS-27	7.5	2.2			9.0	510	5.81	52	
Notori									
Notes:	<u> </u>	1							
			94000						
Abbreviat	ions:								

% = Percent

" H₂O = Inches of water

deg F - degrees Fahrenheit

N/A = Not applicable

ppmv = Parts per million volume

PSIG = Pounds per square inch gauge

SCFMG = Standard cubic feet per minute gauge

PORT OF SEATTLE - TERMINAL 30

SVE Manifold Readings (1 of 3)

Date:	ate: <u>S/U/23</u>									Time: KOD			
Field Te	Field Tech(s): GIF									PID 1D: 029604			
Weathe	Veather: 40 Sun												
**Instru	*Instructions: Take readings down PRIOR to dewatering or adjusting vac/flow. Mini knockout allows PID readings to be taken even if water is present in the rotameters.									is present in the rotameters.			
					Vacuum/F	-							
Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	PID (ppmv)	Comments	Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	PID (ppmv)	Comments		
HSVE-2	23	42	Эө	(.8		SVE-10	50	20	30	1.7	large bounce		
HSVE-3	26	45	20	1.6	\checkmark	SVE-9	42	0	10	1.2	product residue in coteneter		
SVE-4	43	16	15	1.7		SVE-8	_	_	0	-	classes		
SVE-5	42	7	5	3.3	miner water, buincing	SVE-6	54	18	20	0.7	large banne, miver water		
SVE-7	72	17	20	1.0	\checkmark	HSVE-1	[0	34	15	1.3	\checkmark		
Dilution	# Turns Open:												
Dilution	Dilution Valve Vacuum ("H2O): 52												
Notes:	lotes:												

SCFMG = Standard cubic feet per minute gauge

% = Percent

" H₂O = Inches of water

deg F - degrees Fahrenheit

ppmv = Parts per million volume PSIG = Pounds per square inch gauge

N/A = Not applicable

AECOM

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (3 of 3)

Date:	8/4/	8/4/23							Time: 1720		
Field Tec		,[=				Weather: 80 Sm					
**Instru	ctions: Take	these reading	gs AFTER de	watering and adjusting vac/flow to limit v	vater proc	uction.					
				FINAL Vacuun	n/Flow rea	adings					
Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	Comments	Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	Comments		
HSVE-2	23	40	20	water in hose @ Stub up but not getting over the hump setting	SVE-10	43	17 barring	15	good		
HSVE-3	20	36	20		SVE-9	46	0	(0	derk prown product weter & sub up		
SVE-4	48	[7	20	11	SVE-8	0	0	0			
SVE-5	44	7 bouncire	10	11	SVE-6	42	19	50	500d		
SVE-7	36	21	86	all good	HSVE-1	9	50	20	2000		
Dilution Valve Vacuum ("H2O):		1 54									
Notes: Abbrevia											

% = Percent

" H₂O = Inches of water

SCFMG = Standard cubic feet per minute gauge

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (2 of 3)

Date: <	8/4/23		Time:	1500			
Field Tech	n(s): GF	·	Pump ID:	4633	O Somst 410		
	40						
		SVE De	watering				
Well ID	Dewater (Gal)	Comments	Well ID	Dewater (Gal)	Comments		
HSVE-1 HSVE2	0.5	clear water. W/ value 100% open only gets to ~20 "wc. water can't avercome the loup.	SVE-10	14	(LOAr M.O. apening value from 30-3100 had (ittle effect. Starled at 50"wc, minor M.D. visible in hose @ stick.p		
HSVE-3	5/6	Clear water 24" w C@ 100 to apen, big vareage in flow (60 sching). Lots of the estub p, tricking over hump.	SVE-9	3/4	Cloer worter in deadley, but brown product in hose / lateral. 55" will 100% nearly pulling water vover the hump.		
SVE-4	0.5	Clear Hoo. 46" WC @ 100 to open, No change to flow Minor Hoe left in hose, Notr clace to hump.	SVE-8	NG			
SVE-5	1.5	Aler ugter. 53." NC @ 100% open. Enough to get Small ants over the hump. Lots loft in hose onstickup 5. de. Voc only dropped @ ~ 10 do apen, to 45 "NC	SVE-6	5/4	Clear water, Slight Seen. 50 "We at 100 to open. Min. water visible in huse e end.		
SVE-7	0.5	Clear M20. 90" 27" WC C 100 to open No vater in hose.	HSWEA HSVE-2		(llear water. 33" w (@ 100% open of able to suck water over the hump. Net Sure how? At least 36" 6095 of n60" above lateral. #		
Notes: O end of pumping, water visible in hoses @ stick p of SVE-1, -2, -3, -5, -9, and -10. All clear except SVE-9, which is back brown. No water clearly getting over the humps							
	Abbreviations: Gal = gallons						
#@3	\$ Q25 PSt 4 50 Sching, there is minor visible vater getting over the hump any more.						

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

Instrument ID	46330		
Description	Solinst Pump		
	8/3/2023 1:06:58PM		
Manufacturer	Solinst	State Certified	
Model Number	Pump	Status	Pass
Serial Number/ Lot	na	Temp °C	27
Number			
Location	Seattle	Humidity %	36
Department			
	Calibrati	on Specifications	
Group)# 1		
Group Nan			
Test Performed: Yes	As Found Result: Pass	As Left Result:	Pass
<u>Test Instruments Used D</u> <u>Test Standard ID</u> <u>Descrip</u>		<u>Serial Number</u> Model Number Lot Number	(As Of Cal Entry Date) / <u>Next Cal Date /</u> Last Cal Date/ Expiration Date Opened Date

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Dzung Pham

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

AECOM Daily Tailgate Meeting Summary

Project information

· · · · · · · · · · · · · · · · · · ·	
Project Name	T-30
Project Number	60681370
Project Manager	Paul Kalina
Project Manager Phone #	2063105097
Muster Point location	Clubhouse
Meeting date	8/4/2023
Business Line	Environment
SH&E Manager	Tim Gilles
SH&E Manager Phone #	3128335991
First Aid Kit Location	Conex
Prepared by	Friedman, Gus

Meeting Summary

Attendees	Gus Friedman
Location	SODO
Tasks to be performed	Bi-weekly o&m
Hazards to be considered today	pressure, noise, motion, chemical
Will there be Lone Workers?	No
Hierarchy of controls	elimination, ppe
Personal Protective Equipment	Task Specific: gloves Mandatory: safetyglasses, longpants, reflectivevest, workboots
High Risk Events	
Topic of the week	Stinging Insects

Other topics discussed	
Hazards	Motion Noise Pressure Chemical

End of the day comments. The supervisor confirms that the site is being left in a safe condition and work crew checked out as fit unless otherwise specified here

Project Information	Page $\underline{1}$ of $\underline{2}$
Project Name:	T-30 Location: Santtle
Project/Task No.:	Weather: 80 Sun
Date:	<u>8/9/23</u> Personnel: <u>GF</u>
Observations	
Time	Observation Description
1 600	GF on Gite
2	Srope: leftert angtern as readed, inspect AS VFD Fault.
3	· Tailgate: 5/105 trips Son hazards
4	"SUE ON an arrival but AS AS tout exchange is OFF.
5	- AS UFD reads FOODS motor overtemp the same
6	code and last visit (Friday). Rendy of Make activated
7	the alarm in the programming this marning regulting
8	in the notification
9	AVED Forcineters @ fine of fault (EPART > [04] > [0404
10	through 0409]
11	· 534 cpm, 16.7 12 670V, 13.64, 69.64
12	* FOOD is get by parameter 35 dt, which is programmed
13	to 0 ne default Getting
14	2003 (hax (wirent) = 1.6. In = 1.6.9.6 = 15.36 5 at 22 not
15	9906 (notor nomine) = 9.6 A Z Sue why
16	- 9 Par 2003 changed from 22 to 15.4
17	after talking ul (Brown
18 1720	- System restorted
19	- System restorted - 10.5 PSF @ compressor
20	- 8.5-10 PST & manifold
21 735	-Flows: 1.5/2.0/1.0/1.3/1.4) all 100% open
22	* AG-25, 26, -27 red new rotaneters.
23	· PRV is discharging hot air, not insignificant flow · leat exchanger Screen needs cleaning · Sparge VFD reading 19994 11.14
24	· Leat exchanges Sween needs cleaning
25	· Sparge VFD reading 1999 (11.1 A)

Comments / Site Activities / Personnel Tracking

roject Name:	7-20	Location:	Seattle
roject/Task No		Weather:	40 F Sun
Date:	6/9/22	Personnel:	<u> </u>
Diservations Time		Observation Descript	
1 174	11 · Flows: 15/3	all all class	
		.011.011.7/2.1	27 A A'll 11 1
2			p? Amps still 11.1.
3		value la turn.	
4	- Amps dopp	1 1 1 1 1	
5	- Flows 101	25/17/13/19	
6		ike this of we'll a	
7	. SVE rotanete	is are clear of	- water, but it is
8	visible in a	number of the	hoses (1,23,4,59
9	SNOT 6 7	or 10, all of.	which are getting good
0	flow (15	- 20 Sisma)	
11		se water is black.	Value is 1004 apen
12		getting any flow.	
13	76JE-84	il closed de to	writer + 100 flain
14 176		VFD down to 10.	
.5	Locked 10		
	55 GIF officite		
	of there		~
.7			
8			
.9	(
20		LE	
21		GF 819123	2
22		814103	5
23			
24		/	
25			

AECOM Daily Tailgate Meeting Summary

Project information

Project Name	T-30
Project Number	60681370
Project Manager	Paul Kalina
Project Manager Phone #	2063105097
Muster Point location	Clubhouse
Meeting date	8/8/2023
Business Line	Environment
SH&E Manager	Tim Gilles
SH&E Manager Phone #	3128335991
First Aid Kit Location	Conex
Prepared by	Friedman, Gus

Shift Summary

Location	SODO
Attendees (Workers)	Gus Friedman;
Attendees (Visitors)	
Tasks to be performed	System restart, VFD alarm inspection
Hazards to be considered today	pressure, motion
Will there be Lone Workers?	No
Hierarchy of controls	elimination, ppe
Personal Protective Equipment	Task Specific: gloves Mandatory: safetyglasses, longpants, reflectivevest, workboots
High Risk Events	

Topic of the week	Stinging Insects
Other topics discussed	
Mid day reviews	
End of the day comments.The supervisor confirms that the site is being left in a safe condition and work crew checked out as fit unless otherwise specified here	
Hazards	• <u>Motion</u> • <u>Pressure</u>

Project Information					Page of
Project Name:	T-	- 30)	Location:	Port of Secitile
Project/Task No.:			1	Weather:	82° sunn
Date:	L.	17	23	Personnel:	AB

Observations

	rvations	
	Time	Observation Description
1	12.25	Arrived on site, system on upon arrival
2		Safety tailgate, Scope: biweekely Ot.M
3		MS Pump sparge blower, and heat exchange
4		all say ""stopped" - Active alarm reading
5		"Sparge blower TAH exists at 13:57 on 8/15/23"
6		Alarm reset and system back on running
7	1255	Begin SVE system duta collection
8	1330	SVE Discharge PID: 5,] ZPMV
9		Taking manifold & zone readings
10		Taking PID readings
11	1432	Begin dewatering
12	1516	Taking final SUE final Manifold reading)
13		Calling Gus to discuss readings
14)540	Cleaning up & dosing down
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		

Comments / Site Activities / Personnel Tracking

PORT OF SEATTLE - TERMINAL 30 SVE/AS System Data

Date: 8/17/23	Field Tech(s):		Actual Time: 1300
PID ID: 051267	Weather: 82° Sun	iny	HMI Time: 1255
SVE/AS Control Panel			
SVE Blower Runtime	nalaa m	Sparge Zone 1 Time	
(Hours)	20122.0 HM	Span(s) Operational:	HMI
Transfer Pump Runtime	7.6 нм	Sparge Zone 2 Time	
(Hours) - MS Pump	1.6 нм	Span(s) Operational:	HMI
AS Blower Runtime	124941	Sparge Zone 3 Time	
(Hours) - Sparge Blower		Span(s) Operational:	HMI
AS Heat Exchanger Runtime (Hours)	12479.7	Sparge Zone 4 Time Span(s) Operational:	
SVE Blower VFD Setpoints		Sparge Zone 5 Time	0000-0300.0500-0800
(Hertz/Amps/Torque %) - VFD	42.0/13.5/48.21/	Span(s) Operational:	0000-0300,0500-0800 1000-1300,15007800200
AS Blower VFD Setpoints	12.0/(3.5/-10.2/		
(Hertz/Amps/Torque %) - VFD	52.0/11.0/96.7 /M	Sparge Zone Active:	
SVE/AS System Settings & Readings			
AS Heat Exchanger Discharge Temp	0.18	SVE Blower Dilution Valve	15
(°F) - <i>TI-500</i>	86°	(# turns open)	(.)
AS Blower Intake Pressure	d	SVE Blower Filter Differential	AS
(" H2O) - <i>DPI-500</i>	$ \bigcirc $	Pressure (" H20) - <i>DPI-200</i>	0.5
AS Bleed Valve		SVE Blower Inlet Differential	07
(# turns open)	12	Pressure (" H20) - <i>FI-200</i>	0.5
AS Blower Discharge Pressure	X'	Transfer Pump Discharge Pressure	X
(PSI) - <i>PI-501</i>		(PSI) - <i>PI-300</i>	\mathcal{P}
SVE Blower Inlet Temperature	$ \langle Q \rangle $	SVE Blower Discharge Pressure	27
(°F) - <i>TI-200</i>	00	(" H ₂ O) - <i>PI-400</i>). 2
SVE Blower Inlet Vacuum	11/	SVE Blower Discharge Temperature	11-70
(" H ₂ 0) - <i>VI-200</i>	40	(°F) - <i>TI-400</i>	
Knockout Tank Level	t sil		
(Sightglass % Full) ¹	50%		
SVE Discharge PID	51	Treated Vapor Discharge PID	
(ppmv)		(ppmv) ²	_
Other Components			
AS Compressor Oil Level ³		SVE Compressor Oil Level ³	
(% full sightglass)	<u> </u>	(% full sightglass)	
DTF in Storage Tank		WD in Storage Tank ⁴	
(ft)		(ft)	
Water Volume in Storage Tank⁵	122 25	Spare Volume to LAH float ⁶	$\left \left \left$
(gal)	133.35	(gal)	869.45
NOTES:			

Abbreviations:

Notes:

" H_2O = Inches of Water

°F = Degrees Fahrenheit

PSI = Pounds per Square Inch

% = Percent

DTF - Depth to Fluid

DTB - Depth to Bottom

MP - Measuring Point

WD - Water Depth

1. Low float = 0% full. Mid float = 100% full.

2. If applicable

3. Oil level should be at the middle of the sightglass with the machine not operating.

4. WD = 6.92-DTF OR as measured with the dipstick

WD at the LAH float = 3.76 ft (1002.8 gal).; WD at the LAHH float = 4.26 ft (1136.1 gal).

5. Water vol = WD*266.7

The tank holds 266.7 gal/ft (2000 gal; 7.25' dia x 7.5' H)

6. Spare vol to LAH float = 1002.8-current water volume

PORT OF SEATTLE - TERMINAL 30 AS Manifold Readings

ID S-7	Pressure (PSIG)	Flow (SCFMG)	Valve Pos. (% Open) Zone 2	Comments	Well⊶ ID	Pressure (PSIG)	Flow (SCFMG)	Valve Pos. (% Open)	Comments
.S-7 .S-8			Zone 2						
								Zone 4	
		\			AC 17				
\S-8					AS-17				
\S-8			\mathbf{X}						
					AS-18		Ì		
							/		
S-9					AS-19				
S-10					AS-20				
				<u></u>					
S-11					AS-21				
				\backslash	AS-22				
					A5-22				
			Zone 3			r r		Zone 1	
5-12	<u> </u>				AS-1				
J-12					A3-1		N.		
	N	`					\backslash		
S-13		\backslash			AS-2		\backslash		
		$\overline{}$							
S-14					AS-3				
				<u></u>					
S-15					AS-4				
									<u> </u>
S-16					AS-5				
					AS-6				
	<u> </u>		Zone 5						
S-23	\sim								
		$\overline{\ }$							
S-24									
3-24			\mathbf{i}						
S-25									
S-26									
S-27									
lataci						$\overline{}$			
lotes:						<u> </u>			

% = Percent

" H_2O = Inches of water

deg F - degrees Fahrenheit

N/A = Not applicable

ppmv = Parts per million volume

PSIG = Pounds per square inch gauge

SCFMG = Standard cubic feet per minute gauge

(

PORT OF SEATTLE - TERMINAL 30

SVE Manifold Readings (1 of 3)

	/				SVE Manifold	neuum	5 (± 01 .	<i>.</i> ,			
Date:	~{	172	3					Time:	13	44	
Field Te	eld Tech(s): AB									-12.6	1
Weathe	Neather: 83° SUNNY										1
**Instru	*Instructions: Take readings down PRIOR to dewatering or adjusting vac/flow. Mini knockout allows PID readings to be taken even if water is present in the rotameters.										
Vacuum/Flow readings											
Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	PID (ppmv)	Comments	Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	PID (ppmv)	Comments
HSVE-2	22	36	5G	4.9	comments	SVE-10	25	10- 20	30		Float bobbing
HSVE-3	24	26	40	6. -	Vacuum gauge Fluctuating	SVE-9	41	_	100	2.5	Flocit Stuck
SVE-4	32	13	36	4.8		SVE-8	~	[1	~	Closed
SVE-5	35	Ц	36	93	Float bobbing	SVE-6	52	17	75	2.0	
SVE-7	42	18	90	4.8		HSVE-1	9	38	40	3.2	
Dilution	Valvo	# Turns Op	pen:		1.5						
Dilution Valve Vacuum ("H2O): U G											
Notes:	Notes:										

SCFMG = Standard cubic feet per minute gauge

% = Percent

" H_2O = Inches of water

deg F - degrees Fahrenheit

ppmv = Parts per million volume PSIG = Pounds per square inch gauge

N/A = Not applicable

AECOM

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (2 of 3)

Date:	4	17/23	Time:	143	5			
Field Tech	ı(s):	AB	Pump ID:	Pump ID: $\mu 6330$				
Weather:		82° sunny		•				
			Dewatering					
Well ID	Dewater (Gal)	/ Comments	Well ID	Dewater (Gal)	Comments			
HSVE-2	1/2	clear H20	SVE-10	K	Clear Hz C			
HSVE-3	1/2	clean HzC	SVE-9	2/3	Clear H2O ending with product at end of pumping	ha		
SVE-4	1/2	clear H2C	SVE-8		closed)		
SVE-5	h	Clear H2C	SVE-6	1/2	clear 120			
SVE-7	1/2	clear H20	HSVE-1	1/3	clear HzO			
Notes:								
Abbreviat	ions:	Gal = gallons			AECOM			

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (3 of 3)

Date:	Date: 8 17 23 Time: 1925								
Field Teo	Field Tech(s): KS Weather: SUNN								
**Instru	**Instructions: Take these readings AFTER dewatering and adjusting vac/flow to limit water production.								
				FINAL Vacuum	n/Flow rea	adings			,
Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	Comments	Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	Comments
HSVE-2	24	36	50		SVE-10	36	10-20	30	Floatbobing
HSVE-3	25	26	46	Vacuum gauge bobbing	SVE-9	L[]		100	Flogtstuck
SVE-4	32	13	30		SVE-8	1		<u>_</u>	
SVE-5	34	\bigcirc	30	Float stuck	SVE-6	52	17	75	
SVE-7	42	14	90		HSVE-1	7	38	40	
Dilution Valve		# Turns Open: Vacuum ("H2O):		1.5					
				46					
Notes:	Notes:								
Abbrevi	ations:								

AECOM

% = Percent

" H_2O = Inches of water

SCFMG = Standard cubic feet per minute gauge

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

Instrument ID 46330 Description Solinst Pump Calibrated 8/16/2023 3:17:45PM Manufacturer Solinst State Certified Model Number Pump Status Pass Serial Number/ Lot na Temp °C 29 Number Location Seattle Humidity % 37 Department **Calibration Specifications** Group# 1 **Group Name** Test Performed: Yes As Found Result: Pass As Left Result: Pass Test Instruments Used During the Calibration (As Of Cal Entry Date) Serial Number / Next Cal Date / Test Standard ID Description Manufacturer Model Number Lot Number Last Cal Date/ Expiration Date **Opened Date** Notes about this calibration

> Calibration Result Calibration Successful Who Calibrated Dzung Pham

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

Descri Calib	ent ID 51267 ption RAE MiniR. rated 8/16/2023 1	:23:17PM	ARE_2.22A				
Manufact Model Nur	nber PGM7320			State Cert	tatus Pass		
	Lot 592-601348				ip °C 27		
Loc Depart	ation Seattle ment			Humidity % 41			
		Calibra	tion Specificatio	ns			
Gro Sta	Group # 1 up Name Isobutyle ited Accy Pct of Re			Range Acc % Reading Acc % Plus/Minu	% 3.0000		
<u>Nom In Val / In Va</u> 100.0 / 100.0	l In Type PPM	<u>Out Val</u> 100.0	Out Type PPM	<u>Fnd As</u> 100.3	Lft As 100.0	<u>Dev%</u> 0.00%	Pass/Fail Pass
Test Instruments	Used During the Ca	libration	1 120	J. K.	(As O	f Cal Entr	y Date)
Test Standard ID	Description	Manufacturer	Model Number	Serial Num Lot Number	ber / Last Ca	Al Date/ Exp	t Cal Date
SEA ISO 100PPM 304-402321612-	Isobutylene (C4H8) PPM	100 Airgas	31721	304-402321 -1	Opened 1612		9/2025

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Dzung Pham

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

Project Information	Page of
Project Name:	T-30 Location: seattle
Project/Task No.:	Weather: 71° cloudy
Date:	<u>8/30/23</u> Personnel: <u>GF, LC</u>
Observations	
Time	Observation Description
1 0845	GFJLC ansite
2	·Scope: bivelich 0+h; top + thread test SVE- Stub-up
3	dewartening.
4	Safety tailsate slipstops, taffic,
5	· System an (SVE), but AS its an off-cycle. Zone S will
6	(are an 0 10:00.
7	· Lots of water in rotometers sug-5 + 9
8	· Lots of water in hoses SUE -1, -2, -4 + -10
9	· Lots of water in hoses SVE -1, -2, -4, + -10 suby is here water in pleabove rotaneters but not
10	neir associated hoses?
11	· Effluent PID: 2.
12 10 20	
_13	> after apening bull values to clear SUE-St-9
_14	rotometers, observed water in the hoses at the
15	Stub-UPS del place wagn't any before.
16 100	· Tapped & threaded SVE-5. 2/4" plug.
17	-water visible at bottom of pipe through topped hole
18	-only ~ 0.75 gal initially able to pump out. Then
19	-only ~ 0.75 gal initially able to pump out. Then meched with the dendley ball value + apening up the
20	well more. The first time van drapped to O while
21	pumping out as it was open to atmosphere & the well
22	pumping out as it was open to atmosphere & the well was somewhat throttled back Adjusting for those
23	we got water back visible in the horse. Roying with
24	We got water back vizible in the horse. Anying with that, the water trapped out into the lateral, but came back up once voic hit 30 in we.
25	back up once vac hit 30 in wc.

Comments / Site Activities / Personnel Tracking

Project Information	n			Page 2 of 3
Project Name:	7-20	Location:	Seattle	
Project/Task No.:		Weather:	67 Sun	
Date:	8130123	Personnel:	GF, LC	

Observations

	Time	Observation Description
1		- Pumped at lateral again, this time all well fully
2		open, resulting in a 20" We vac, Removed an
3		additional 2.75 gal for a tot of 3.5 gal.
4		- Plugged site up part & dunped the bucket.
5		- Mass water very quickly (LI min) returned to
6		pe have as perell was look upon & vac
7		was high (40" wc). Stated pumping again
8		a got another 1.75 gal. opened & dosed the
9		part a few times to surge the water of got
10		more to show in the hose. Storted pumping again.
11		Particulates observed in water. QTS gal further
12		removed. Grand total legal removed. No
13		more vator came up after even ul Guzing.
14		End of testing @ 12:00.
15		· Pipe measurements:
16		- bot of (atom (to bot of outlet: 2.7 Ft = 32.4"
17		- but of outlet to Lop of hose (ap: 2.8 ft = 33:6"
18		At Ideally lateral is now mostly clear. DTW at last
19		gauging event was 8-9 Pt giving us conservatively
20		55 ft from water Gurface to bottom of pipe at the
21		Interal. 5.5 Ft = 66 "wc.
22		JSVE-5 is 100% open of sunning at 42" wc. If it is
23		clear of water next visit (in the lateral) that's good indication the theory held.
24		indication the theory held.
25		. If we expand the lateral dewatering to the other wells,
Com	monte / Site Act	ivities / Personnel Tracking

Comments / Site Activities / Personnel Tracking

DAILY FIELD LOG

Project Information				Page <u>3</u> of <u>3</u>
Project Name:	T-30	Location:	Seattle	
Project/Task No.:		Weather:	67 Sun	
Date:	8130/23	Personnel:	GF, LC	

Obse	rvations

	Time	Observation Description
1		it rould be nicest to use a ball value instead of the ply. If the bu can't accomodate the tubing then a nipple, coupling, and plug combo would be best to avoid over-use of tapped threads & risk cross-threading. • Took final SVE manifold readings. LC offsite • Cleaned p + baked pp. • GIF offsite
2		du. If the box can't accomodate the tubing then
3		a nipple, coupling, and plug combo would be best to
4		avoid over-use of tanked threads & risk cross-threading.
5	1215	· Took final SVE manifold readines. LC office
6		· Cleaned p + locked p.
7	1300	· GIF OFFRITE
8		
9		
10		
11		Can we assume Sch 80
12		would be the same?
13		
14		
15		
16		CE
17		8/30/23
18		0, 10 1
19		
20		
21		
22		
23		
24		
25)

Comments / Site Activities / Personnel Tracking

PORT OF SEATTLE - TERMINAL 30 SVE/AS System Data

VE/AS Control Panel VVE/AS Control Panel VVE Blower Runtime Hours) Transfer Pump Runtime Hours) - MS Pump VS Blower Runtime Hours) - Sparge Blower VS Heat Exchanger Runtime Hours) VE Blower VFD Setpoints Hertz/Amps/Torque %) - VFD VE Blower VFD Setpoints	7.6 3653.8 HMI 13649.2 HMI	Sparge Zone 1 Time Span(s) Operational: Sparge Zone 2 Time Span(s) Operational: Sparge Zone 3 Time Span(s) Operational: Sparge Zone 4 Time Span(s) Operational:	HMI Time: 0915	
Hours) Fransfer Pump Runtime (Hours) - <i>MS Pump</i> AS Blower Runtime (Hours) - <i>Sparge Blower</i> AS Heat Exchanger Runtime (Hours) SVE Blower VFD Setpoints Hertz/Amps/Torque %) - VFD	7.6 3653.8 HMI 13649.2 HMI	Span(s) Operational: Sparge Zone 2 Time Span(s) Operational: Sparge Zone 3 Time Span(s) Operational: Sparge Zone 4 Time		
Transfer Pump Runtime (Hours) - <i>MS Pump</i> AS Blower Runtime (Hours) - <i>Sparge Blower</i> AS Heat Exchanger Runtime (Hours) SVE Blower VFD Setpoints (Hertz/Amps/Torque %) - VFD	7.6 3653.8 HMI 13649.2 HMI	Span(s) Operational: Sparge Zone 2 Time Span(s) Operational: Sparge Zone 3 Time Span(s) Operational: Sparge Zone 4 Time	Н	
Transfer Pump Runtime (Hours) - <i>MS Pump</i> AS Blower Runtime (Hours) - <i>Sparge Blower</i> AS Heat Exchanger Runtime (Hours) SVE Blower VFD Setpoints (Hertz/Amps/Torque %) - VFD	7.6 3653.8 HMI 13649.2 HMI	Sparge Zone 2 Time Span(s) Operational: Sparge Zone 3 Time Span(s) Operational: Sparge Zone 4 Time		
(Hours) - MS Pump AS Blower Runtime (Hours) - Sparge Blower AS Heat Exchanger Runtime (Hours) SVE Blower VFD Setpoints (Hertz/Amps/Torque %) - VFD	3653.8 HMI 13649.2 HMI	Span(s) Operational: Sparge Zone 3 Time Span(s) Operational: Sparge Zone 4 Time	н :	
AS Blower Runtime (Hours) - <i>Sparge Blower</i> AS Heat Exchanger Runtime (Hours) SVE Blower VFD Setpoints (Hertz/Amps/Torque %) - VFD	3653.8 HMI 13649.2 HMI	Sparge Zone 3 Time Span(s) Operational: Sparge Zone 4 Time	н	
(Hours) - Sparge Blower AS Heat Exchanger Runtime (Hours) SVE Blower VFD Setpoints (Hertz/Amps/Torque %) - VFD	13649.2 HMI	Span(s) Operational: Sparge Zone 4 Time	н	
AS Heat Exchanger Runtime (Hours) SVE Blower VFD Setpoints (Hertz/Amps/Torque %) - VFD	13649.2 HMI	Sparge Zone 4 Time		
(Hours) SVE Blower VFD Setpoints (Hertz/Amps/Torque %) - VFD				
SVE Blower VFD Setpoints (Hertz/Amps/Torque %) - VFD		(Span(s) Operational:		-2
(Hertz/Amps/Torque %) - VFD	12.0/129/561			
AS Blower VED Setacists		Sparge Zone 5 Time Span(s) Operational:	12-315-8110-131	15-18
(Hertz/Amps/Torque %) - VFD		Span(s) Operational:	12-315-8110-13	20-
(nertz/Amps/rorque /a) - vrb	52.0/10.6/93.2	Sparge Zone Active:	5	
SVE/AS System Settings & Readings				
AS Heat Exchanger Discharge Temp	01	SVE Blower Dilution Valve	1	
(°F) - TI-500	86	(# turns open)	1.5	
AS Blower Intake Pressure	-	SVE Blower Filter Differential		
(" H2O) - <i>DPI-500</i>	3	Pressure (" H20) - DPI-200	0.5	
AS Bleed Valve	A	SVE Blower Inlet Differential		
(# turns open)	0.5	Pressure (" H20) - <i>FI-200</i>	0.5	
AS Blower Discharge Pressure	9.0	Transfer Pump Discharge Pressure	<u> </u>	
(PSI) - <i>PI-501</i>	9.5	(PSI) - PI-300	0	
SVE Blower Inlet Temperature	1.	SVE Blower Discharge Pressure		
(°F) - <i>TI-200</i>	70	(" H ₂ O) - <i>PI-400</i>	3.2	
SVE Blower Inlet Vacuum	Ch	SVE Blower Discharge Temperature		
(" H ₂ 0) - <i>VI-200</i>	50	(°F) - <i>TI-400</i>	06	
Knockout Tank Level	1.0			
(Sightglass % Full) ¹	60			
SVE Discharge PID		Treated Vapor Discharge PID		
(ppmv)	2.	(ppmv) ²		
Other Components		[(ppm))		
AS Compressor Oil Level ³		SVE Compressor Oil Level ³		
(% full sightglass)	·	(% full sightglass)		
DTF in Storage Tank		WD in Storage Tank ⁴		
(ft)		(ft)	0.42	
Water Volume in Storage Tank ⁵		Spare Volume to LAH float ⁶		
(gal)	I II.I	(gal)	891.7	

Abbreviations:

int an

Notes:

" H₂O = Inches of Water

^oF = Degrees Fahrenheit PSI = Pounds per Square Inch

% = Percent

DTF - Depth to Fluid

DTB - Depth to Bottom

MP - Measuring Point

WD - Water Depth

1. Low float = 0% full. Mid float = 100% full.

2. If applicable 3. Oil level should be at the middle of the sightglass with the machine not operating.

4. WD = 6.92-DTF OR as measured with the dipstick

WD at the LAH float = 3.76 ft (1002.8 gal).; WD at the LAHH float = 4.26 ft (1136.1 gal).

5. Water vol = WD*266.7

The tank holds 266.7 gal/ft (2000 gal; 7.25' dia x 7.5' H)

6. Spare vol to LAH float = 1002.8-current water volume

PORT OF SEATTLE - TERMINAL 30 AS Manifold Readings

				Pressure/F	low Readin	gs		C DESTR	
Well ID	Pressure (PSIG)	Flow (SCFMG)	Valve Pos.	Commente	Well ID	Pressure	Flow	Valve Pos.	<u> </u>
IU	(PSIG)	(SCFIVIG)	(% Open) Zone 2	Comments	U	(PSIG)	(SCFMG)	(% Open) Zone 4	Comments
AS-7					AS-17				
AS-8					AS-18				
AS-9					AS-19				
AS-10					AS-20				
AS-11					AS-21				
					AS-22				
	T		Zone 3			1		Zone 1	
AS-12					AS-1				
AS-13					AS-2				
AS-14					AS-3				
AS-15					AS-4				
AS-16					AS-5				17.71 1
					AS-6				
			Zone 5	n na su se su s			and the second		10000
AS-23	9.5	5.0	(00)						
AS-24	8.5	5.5	100						
AS-25	8.5	3.D	98	rads - 1/2 psi ladded 0.5 to read	ing)				
AS-26	9.5	3.8	98						
AS-27	9.0		100						
Notes:								Patra	

Abbreviations:

% = Percent

" H₂O = Inches of water

deg F - degrees Fahrenheit

N/A = Not applicable

ppmv = Parts per million volume

PSIG = Pounds per square inch gauge

SCFMG = Standard cubic feet per minute gauge

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (1 of 3)

Date:	8/30/	23					Time: 1000				
Field Te	:h(s): L	C GF	-				PID ID: 39880				
Weathe	Veather: CIDUAY 60°F										
**Instru	**Instructions: Take readings down PRIOR to dewatering or adjusting vac/flow. Mini knockout allows PID readings to be taken even if water is present in the rotameters.										
	Vacuum/Flow readings										
Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	PID (ppmv)	Comments	Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	PID (ppmv)	Comments
HSVE-2	24	36	25	2.5	1	SVE-10	38	15	25	9-8	bouncing
HSVE-3	28	26	25	5.2	\checkmark	SVE-9	44-	5	95	5.5	water product
SVE-4	40	15	25	3.4	boun cing-	SVE-8	0	0	0	_	closed
SVE-5	40	5	5	6.6	water	SVE-6	54	21	60	2.4	bouncing water
SVE-7	47	18	65	6 .0	\checkmark	HSVE-1	12	36	45	LC 2.9	\checkmark
Dilution Valve # Turns Open: 1.5					4						
Notes: Abbrevi	Notes:										
% = Perc	ent			N/A = Not a	applicable	SCFMG =	Standard	l cubic feet	per minute	gauge	

% = Percent

" H₂O = Inches of water

deg Fædegrees Fahrenheit

ppmv = Parts per million volume PSIG = Pounds per square inch gauge

-

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (2 of 3)

Date:	8 30 23		Time:	Time: 1020					
Field Tech	(s): LC	GF	Pump ID:	Pump ID: 46330					
Weather:	Clad	y 60°F							
			Dewatering	watering					
Well ID	Dewater (Gal)	Comments	Well ID	Dewater (Gal)	Comments				
HSVE-2	0.5	~	SVE-10	0.1	Very little water Water observed in hose				
HSVE-3	0.5	~	SVE-9	0.5	product Water chared from votomater				
SVE-4	0.75		SVE-8		closed				
SVE-5	0.5	water cleared from rotometer	SVE-6	6.5	water cleared from rotumeter				
SVE-7	0.5	~	HSVE-1	0.5	~				
Notes:									
Abbreviat	ions:	Gal = gallons			ΔΞϹΟΜ				

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (3 of 3)

Date:	8/30/23								100 (240	
Field Teo	ch(s):	C GF	-			Weather:	Cloud	760°F			
**Instru	ctions: Take	these readin	gs AFTER de	watering and adjusting vac/	flow to limit w	vater proc	luction.				
	1.2		Last Ball	F	INAL Vacuum	/Flow re	adings				
Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	Comments		Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	C	omments
HSVE-2	24	33	25		vater in Nose	SVE-10	27	15	25	~	
HSVE-3	32	36	25	Vac & float bouncing	vater in vose	SVE-9	48	0	100	oily res	ide in writer the the he
SVE-4	35	12	20		Vater hose	SVE-8	ء		0	-	
SVE-5	41	15	100	rotameter valls w/ a grey-ish f	opeque	SVE-6	45	15	70	\checkmark	
SVE-7	40	18	100	\checkmark		HSVE-1	12	35	25	V	water in hose
Dilution	Valve	# Turns Open:		1.5							
Vacuum ("H2O): 43											
Notes:											
Abbrevia	ations:										

% = Percent

" H_2O = Inches of water

SCFMG = Standard cubic feet per minute gauge

AECOM

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

Instru	nent ID	39880						
Des	cription	MiniRAE 3000						
	-	8/25/2023 4:58						
		Rae Systems			State Certific	ed	·····	
Model I	Number	PGM-7320			Stat	us Pas	S	
Serial Numl		592-920683			Temp °	C 26		
-	Number							
	ocation	Seattle			Humidity ⁶	% 49		
Depa	rtment							
			Calibra	tion Specifications	1			
	Group	# 1	0411014	•		0 000	0	
Gr	oup Nan				Range Acc % eading Acc %			
	-	y Pct of Reading		N	Plus/Minus		0	
		-	-	A				
Nom In Val / In V		<u>In Type</u>	<u>Out Val</u>		<u>Fnd As</u>	Lft As		<u>Pass/Fail</u>
100.0 / 100.0		PPM	100.0	PPM	63.5	100.8	0.80%	Pass
	11							
Test Instruments	Used Du	iring the Calibi	ation			_	As Of Cal Enti	
<u>Fest Standard ID</u>	Descript	ion	Manufacturer	Model Number	Serial Num Lot Number		<u>Ne</u> Last Cal Date/ Ex	ext Cal Date
					Botttamoo		Opened Date	
SEA ISO 100	Isobutyl	ene (C4H8) 100	Airgas	x02ai99cp34206	6 304-40257			/31/2026
PM	PPM				-1			
04-402570647-								

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Hakam Benlashher

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

Instrument ID Description	46330 Solinst Pump								
Calibrated	8/28/2023 1:38:11PM								
Manufacturer	Solinst	State Certified							
Model Number	Pump	Status	Pass						
Serial Number/ Lot	na	Temp °C	25						
Number									
Location	Seattle	Humidity %	45						
Department									
	Calibration Specifications								
Group	o # 1								
Group Nan	me								
Test Performed: Yes	As Found Result: Pass	As Left Result:	Pass						
Test Instruments Used D		<u>Serial Number</u> Model Number Lot Number	(As Of Cal Entry Date) / <u>Next Cal Date /</u> Last Cal Date/ Expiration Date						
			Opened Date						

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Dzung Pham

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

AECOM Daily Tailgate Meeting Summary

Project information

Project Name	T-30
Project Number	60681370
Project Manager	Paul Kalina
Project Manager Phone #	2063105097
Muster Point location	Clubhouse
Meeting date	8/30/2023
Business Line	Environment
SH&E Manager	Tim Gilles
SH&E Manager Phone #	3128335991
First Aid Kit Location	Car
Prepared by	Friedman, Gus

Shift Summary

Location	SODO
Attendees (Workers)	Celovsky, Lillian;Friedman, Gus;
Attendees (Visitors)	
Tasks to be performed	Biweekly O&M
Hazards to be considered today	pressure, motion
Will there be Lone Workers?	No
Hierarchy of controls	elimination, ppe
Personal Protective Equipment	Task Specific: gloves Mandatory: safetyglasses, longpants, reflectivevest, workboots
High Risk Events	

Topic of the week	Regulatory Inspections
Other topics discussed	
Mid day reviews	
End of the day comments. The supervisor confirms that the site is being left in a safe condition and work crew checked out as fit unless otherwise specified here	
Hazards	• <u>Motion</u> • <u>Pressure</u>

DAILY FIELD LOG

Project Inform	nation	Page of
Project Name:	T-30 0+M (biWeek-14) Location	Terminal 30
Project/Task N	o.: 60681370 Weather	CLOUDY 65°F
Date:	<u>91223</u> Personne	el: <u>LC</u>
Observations		
Time	Observatio	n Description
1 090	D Arrive on site. Note to	erminal is very busy.

1	UTUU	ATTIVE ON STRE. NOR FERMINAL IS VERY BUSY.
2		extra caution takin when driving to site. Start taking readings from HMI and completing
3	0920	start taking readings from HMI and completing
4	ľ	tasks
5	1000	While PIDS were taken on SVE wells, PID semie
6		to be reading very high even with ambient air.
7		Dist some troubleshouting - switched out rediar by
8		- on loff PID
9		- send ambient air through
10		Tedlar + PID
11		Trouble shooting seconed to fix the high readings.
2	1055	start dewatering and cleaning out intometers of
3		SVE wells. Water does not seem to be re-enteri
14		Dionuters, product seen in SVE-9
15	1130	Finish final tasks. & Inspect hoses and observe
16		water + moisture in most fit all hoses but
17		not as much getting over the suddle horses.
18		System sems stabu
9	1200	Leave site. Take caution when leaving
20		terminal.
21		
2		
23		
24		
25		

Comments / Site Activities / Personnel Tracking

PORT OF SEATTLE - TERMINAL 30 SVE/AS System Data

Date: 9 12 23	Field Tech(s): L. CELOVS	FY	Actual Time: 1923
PID ID: 051267	Weather: CLOUQU 60°		HMI Time: 0910
SVE/AS Control Panel			
SVE Blower Runtime	20779 02	Sparge Zone 1 Time	-
(Hours)	20739.8 HM	Span(s) Operational:	
Transfer Pump Runtime (Hours) - <i>MS Pump</i>	+3029.8 7.7 M	Sparge Zone 2 Time Span(s) Operational:	
AS Blower Runtime		Sparge Zone 3 Time	
(Hours) - Sparge Blower	13034.6	Span(s) Operational:	
AS Heat Exchanger Runtime		Sparge Zone 4 Time	
(Hours)	13829.8 HM	Span(s) Operational:	
SVE Blower VFD Setpoints	42.0 /13.4 48.2	Sparge Zone 5 Time	12-3,5-8,10-13
(Hertz/Amps/Torque %) - VFD	42.0 / 13.4 48.2	Span(s) Operational:	15-18,20-22
AS Blower VFD Setpoints (Hertz/Amps/Torque %) - VFD	52.0/10.4/91.0	Sparge Zone Active:	5
SVE/AS System Settings & Readings			
AS Heat Exchanger Discharge Temp	9086	SVE Blower Dilution Valve	15
(°F) - <i>TI-500</i>	90°F	(# turns open)	1.5
AS Blower Intake Pressure (" H2O) - <i>DPI-500</i>	L0"H20	SVE Blower Filter Differential Pressure (" H20) - DPI-200	0.5 "H20
AS Bleed Valve (# turns open)	0.5	SVE Blower Inlet Differential Pressure (" H20) - <i>FI-200</i>	0.5 " 420
AS Blower Discharge Pressure (PSI) - <i>PI-501</i>	9.5 psi	Transfer Pump Discharge Pressure (PSI) - PI-300	1.0 psi
SVE Blower Inlet Temperature (°F) - <i>TI-200</i>	68°F	SVE Blower Discharge Pressure (" H ₂ O) - <i>PI-400</i>	3.4 "H2D
SVE Blower Inlet Vacuum (" H ₂ 0) - <i>VI-200</i>	46 "H20	SVE Blower Discharge Temperature (°F) - TI-400	102°F
Knockout Tank Level (Sightglass % Full) ¹	40%		
SVE Discharge PID	27	Treated Vapor Discharge PID	
(ppmv)	3.7 ppmv	(ppmv) ²	4.8 4.9. 3
Other Components			
AS Compressor Oil Level ³ (% full sightglass)		SVE Compressor Oil Level ³ (% full sightglass)	C.C. 6.9
DTF in Storage Tank (ft)	6.34	WD in Storage Tank ⁴ (ft)	0.58
Water Volume in Storage Tank ⁵ (gal)	154.69	Spare Volume to LAH float ⁶	848-11

Abbreviations: Notes: " H₂O = Inches of Water 1. Low float = 0% full. Mid float = 100% full. °F = Degrees Fahrenheit 2. If applicable PSI = Pounds per Square Inch 3. Oil level should be at the middle of the sightglass with the machine not operating. % = Percent 4. WD = 6.92-DTF OR as measured with the dipstick DTF - Depth to Fluid WD at the LAH float = 3.76 ft (1002.8 gal).; WD at the LAHH float = 4.26 ft (1136.1 gal). DTB - Depth to Bottom 5. Water vol = WD*266.7 AECOM MP - Measuring Point The tank holds 266.7 gal/ft (2000 gal; 7.25' dia x 7.5' H) WD - Water Depth 6. Spare vol to LAH float = 1002.8-current water volume

PORT OF SEATTLE - TERMINAL 30 AS Manifold Readings

Well	Pressure	Flow	Valve Pos.		Well	Pressure	Flow	Valve Pos.	
ID	(PSIG)	(SCFMG)	(% Open) Zone 2	Comments	ID	(PSIG)	(SCFMG)	(% Open) Zone 4	Comments
AS-7					AS-17				
43-7				£	A3-17				
AS-8					AS-18	с. н. 1. с. х.	- C		
AS-9					AS-19				
				<u> </u>	A3-13		-		
AS-10					AS-20			J	
AS-11	· .				AS-21				
	,	i i			1				
					AS-22				
7			Zone 3					Zone 1	
AS-12					AS-1				
AS-13					AS-2				
AS-14					AS-3				
AS-15					AS-4				
AS-16					AS-5				
					AS-6				
			Zone 5						
AS-23	9.5	5.0	100		1.13		4		
AC 34	1								
AS-24	8.5	5.5	100						
AS-25	8.5	3.D	95	veads -0.5psi					
AS-26	9.5	1	1		1.4.4				
AJ-20					- 2.3				
A5-27	8.5	6.6	100						
Notes:	1			A			0.000		

Abbreviations:

% = Percent

" H₂O = Inches of water

deg F - degrees Fahrenheit

N/A = Not applicable

ppmv = Parts per million volume

PSIG = Pounds per square inch gauge SCFMG = Standard cubic feet per minute gauge

PORT OF SEATTLE - TERMINAL 30

SVE Manifold Readings (1 of 3)

Date:	9/12	23						Time:	0955	5	
Field Te		LC						PID ID:	0512		
Weathe	r: 0\\	ercas	r 60°	Ϋ́Ε							
**Instru					tering or adjusting vac/flow. Mini kr	nockout al	lows PID r	eadings to	be taken ev	en if water i	s present in the rotameters.
					Vacuum/F	low readi	ngs				
Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	PID (ppmv)	Comments	Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	PID (ppmv)	Comments
HSVE-2	24	34	25	7.3	the percent.	SVE-10	28	12	20	10.0 10.0 10.0	water in intometer
HSVE-3	26	38	25	13.7	in the second	SVE-9	36	5	98	4.2	in rotonuser
SVE-4	36	13	15	8-6	bouncing, water in rotameter	SVE-8	6	0	0		Shut off
SVE-5	38	8	100	14.9	bouncing 110ts of Water in rotometer	SVE-6	54	17	50	0.8	bouncing, water in votometer
SVE-7	40	17	95	9.9	slight bouncing, minimal water in rot.	HSVE-1	12	36	25	1.8	\checkmark
Dilution	Valve	# Turns O Vacuum ('		5	and the second s						
Notes: AFIC W Abbrevi	alore	king p to ve	1D OF	-lo SVE-6 Mading	, PID readings were b s. seemed to won	ugh;	played	anound	d with	tedlar	bay and PID to

" H₂O = Inches of water

ppmv = Parts per million volume

deg F - degrees Fahrenheit

PSIG = Pounds per square inch gauge

AECOM

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (2 of 3)

Date: 0	12 23	· · · ·	Time: 1055							
Field Tech			Pump ID: 46330							
Weather:	CLOUDY	60°F								
SVE Dewatering										
Well ID	Dewater (Gal)	Comments	Well ID	Dewater (Gal)	Comments					
HSVE-2	0.5	\checkmark	SVE-10	0.5	votometer cleared					
HSVE-3	0.25	\checkmark	SVE-9	0.75	product in water, votometer deared					
SVE-4	0.5	brown flakes in water	SVE-8	-	Shut off, no dewatering					
SVE-5	0.75	rotometer chared	SVE-6	0.25	water cleared from rotometer					
SVE-7	0.5	little water but rotometer Still cleared	HSVE-1	0.5						
Notes:										
Abbreviat	ions:	Gal = gallons	· · · · · ·							

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (3 of 3)

Date: 0	1/12/2	3	0.				Time:	20		
Field Tech(s):								Weather: CLOUDY 60°F		
*Instru	ctions: Take	these readin	gs AFTER de	watering and adjusting vac/flow to limit	water proc	uction.			· · · · · · · · · · · · · · · · · · ·	
				FINAL Vacuu	m/Flow rea	adings		A Marth		
Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	Comments	Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	Comments	
ISVE-2	24	32	25	stable	SVE-10	28	18	25	stabu	
ISVE-3	26	38	25	stable	SVE-9	42	5	100	stable	
VE-4	26		15	Stabu	SVE-8	_			- Shurt off	
VE-5	40	9	95	still bounces but no water	SVE-6	42	16	70	Stable	
VE-7	40	20	95	Stable	HSVE-1	12	34-	30	Stable	
ilution	Valve	# Turns Ope Vacuum ("H		1.5 42						
otes: bbrevi a		e to		water intering ho	tomet	ers a	tter	Clearin	z dunny	

% = Percent

" H₂O = Inches of water

SCFMG = Standard cubic feet per minute gauge

AECOM

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

	nent ID 51267 cription RAE MiniRAE	2000 EIDMW	ADE 2 22 A		
	ibrated 9/11/2023 6:14		AKE_2.22A		
	acturer Rae Systems			State Certified	
	Number PGM7320			Status	
	oer/ Lot 592-601348 Number			Temp °C	25
_	ocation Seattle artment			Humidity %	42
	Group# 1	Calibra	tion Specification	Range Acc % 0.	
	oup Name Isobutylene ated Accy Pct of Readi	ng]	Reading Acc % 3. Plus/Minus 0.	
<u>Nom In Val / In V</u> 100.0 / 100.0	al <u>In Type</u> PPM	<u>Out Val</u> 100.0	<u>Out Type</u> PPM		t AsDev%Pass/Fail00.00.00%Pass
Test Instruments	Used During the Calib	ration			(As Of Cal Entry Date)
Test Standard ID	Description	<u>Manufacturer</u>	<u>Model Number</u>	<u>Serial Number</u> Lot Number	/ <u>Next Cal Date /</u> Last Cal Date/ Expiration Date Opened Date
SEA ISO 100PPM 304-402321612-	Isobutylene (C4H8) 100 PPM) Airgas	31721	304-40232161 -1	
1					

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Dzung Pham

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

DAILY FIELD LOG

Project Inform	nation	Page of
Project Name:	T-30 0+M (biWeek-14) Location	Terminal 30
Project/Task N	o.: 60681370 Weather	CLOUDY 65°F
Date:	<u>91223</u> Personne	el: <u>LC</u>
Observations		
Time	Observatio	n Description
1 090	D Arrive on site. Note to	erminal is very busy.

1	UTUU	ATTIVE ON STRE. NOR FERMINAL IS VERY BUSY.
2		extra caution takin when driving to site. Start taking readings from HMI and completing
3	0920	start taking readings from HMI and completing
4	ľ	tasks
5	1000	While PIDS were taken on SVE wells, PID semie
6		to be reading very high even with ambient air.
7		Dist some troubleshouting - switched out rediar by
8		- on loff PID
9		- send ambient air through
10		Tedlar + PID
11		Trouble shooting seconed to fix the high readings.
2	1055	start dewatering and cleaning out intometers of
3		SVE wells. Water does not seem to be re-enteri
14		Dionuters, product seen in SVE-9
15	1130	Finish final tasks. & Inspect hoses and observe
16		water + moisture in most fit all hoses but
17		not as much getting over the suddle horses.
18		System sems stabu
9	1200	Leave site. Take caution when leaving
20		terminal.
21		
2		
23		
24		
25		

Comments / Site Activities / Personnel Tracking

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

	nent ID 51267 cription RAE MiniRAE	2000 EIDMW	ADE 2 22 A		
	ibrated 9/11/2023 6:14		AKE_2.22A		
	acturer Rae Systems			State Certified	
	Number PGM7320			Status	
	oer/ Lot 592-601348 Number			Temp °C	25
_	ocation Seattle artment			Humidity %	42
	Group# 1	Calibra	tion Specification	Range Acc % 0.	
	oup Name Isobutylene ated Accy Pct of Readi	ng]	Reading Acc % 3. Plus/Minus 0.	
<u>Nom In Val / In V</u> 100.0 / 100.0	al <u>In Type</u> PPM	<u>Out Val</u> 100.0	<u>Out Type</u> PPM		t AsDev%Pass/Fail00.00.00%Pass
Test Instruments	Used During the Calib	ration			(As Of Cal Entry Date)
Test Standard ID	Description	<u>Manufacturer</u>	<u>Model Number</u>	<u>Serial Number</u> Lot Number	/ <u>Next Cal Date /</u> Last Cal Date/ Expiration Date Opened Date
SEA ISO 100PPM 304-402321612-	Isobutylene (C4H8) 100 PPM) Airgas	31721	304-40232161 -1	
1					

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Dzung Pham

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

DAILY FIELD LOG

Proje	ect Information	Page of
Proje	ct Name:	T-30 Location: Port of Seaffle
Proje	ct/Task No.:	Weather: 60° cloud y
Date:		<u>9/28/23</u> Personnel: <u>AB</u>
Obse	rvations	
	Time	Observation Description
1	1135	on-site system on upon anival safety failgate
2		Scope: biweekly O&M. Svmma can sampling
3	1150	Begin taking HMt & System readings
4	1230	Summa can sampling - gauge reading 12
5		when I took it out of the boy
6	1300	Summa can sample, tedlar sample, and
7		initial PID reading complete
8		PIP: 4.9 ppmv J
9		Thunderstorm coming in - going to run
10		summa can samples to the lab whike
11		storm passes 1
12	1421	Back' on-site from dropping off air
13		Samples - proceeding with hest of system
14		readings and 1770 readings
15	1509	Begin dewatering rotometers
16	1554	Dewatering complete - taking final readings
17		then calling Gus
18	1610	Talked with Gus - SVE 7's flow increase significantly after dewatering
19		significantly after dewatering
20	•	Begin closing Up
21	1615	off-site ,
22		
23		
24		
25		

Comments / Site Activities / Personnel Tracking

PORT OF SEATTLE - TERMINAL 30 SVE/AS System Data

Date: 9/28/23	Field Tech(s):		Actual Time: 120 8	
PIDID: 42994	Weather:	cloudy	HMI Time: 1201	
SVE/AS Control Panel				
SVE Blower Runtime		Sparge Zone 1 Time		
(Hours)	21125.0 HMI	Span(s) Operational:	HMI	
Transfer Pump Runtime		Sparge Zone 2 Time		
(Hours) - MS Pump	нмі	Span(s) Operational:	HMI	
AS Blower Runtime	1110001	Sparge Zone 3 Time		
(Hours) - Sparge Blower	14059.1 нм	Span(s) Operational:	HMI	
AS Heat Exchanger Runtime	110540	Sparge Zone 4 Time		
(Hours)	14054.2 HMI	Span(s) Operational:	HMI	
SVE Blower VFD Setpoints	1 1/10/11	Sparge Zone 5 Time	0000 -0300,0500 -0800 1000-1300, 1500-1800 200	-2200
(Hertz/Amps/Torque %) - VFD	H2.0/13.7/49.44M	Span(s) Operational:	1000-1300, 1500-1000 HMI	
AS Blower VFD Setpoints	- 1 lag astrong	Sparge Zone Active:	5	
	52.0/10.6/93.01/HM		.	
SVE/AS System Settings & Readings				
AS Heat Exchanger Discharge Temp	910	SVE Blower Dilution Valve	15	
(°F) - <i>TI-500</i>	01	(# turns open)	1.5	
AS Blower Intake Pressure	1.75	SVE Blower Filter Differential	0.5	
(" H2O) - <i>DPI-500</i>		Pressure (" H20) - <i>DPI-200</i>		
AS Bleed Valve		SVE Blower Inlet Differential	O.4	
(# turns open) AS Blower Discharge Pressure		Pressure (" H20) - <i>FI-200</i> Transfer Pump Discharge Pressure		
(PSI) - PI-501	9.25	(PSI) - <i>PI-300</i>	2	
SVE Blower Inlet Temperature		SVE Blower Discharge Pressure		
(°F) - <i>TI-200</i>	$\left(a5^{\circ}\right)$	(" H ₂ O) - <i>PI-400</i>	3.4	
SVE Blower Inlet Vacuum	Ĩ.	SVE Blower Discharge Temperature	1.0	
(" H ₂ 0) - <i>VI-200</i>	141	(°F) - <i>TI-400</i>	103	
Knockout Tank Level	2 ·/			
(Sightglass % Full) ¹	O_{i}			
SVE Discharge PID	110	Treated Vapor Discharge PID		
(ppmv)	4.9	(ppmv) ²		
Other Components	· · · · · · · · · · · · · · · · · · ·	·		
AS Compressor Oil Level ³		SVE Compressor Oil Level ³		
(% full sightglass)		(% full sightglass)		
DTF in Storage Tank		WD in Storage Tank ^{4}	1	
(ft)		(ft))	
Water Volume in Storage Tank⁵	011-1	Spare Volume to LAH float ⁶	7011	
(gal)	1 266.1	(gal)	736.]	
NOTES:	266-7 tick)			
L	tice)			
Abbreviations:	Notes:			

Abbreviations:

- " H_2O = Inches of Water
- °F = Degrees Fahrenheit
- PSI = Pounds per Square Inch
- % = Percent
- DTF Depth to Fluid
- DTB Depth to Bottom
- MP Measuring Point
- WD Water Depth

- Notes:
- 1. Low float = 0% full. Mid float = 100% full.

2. If applicable

- 3. Oil level should be at the middle of the sightglass with the machine not operating.
 - 4. WD = 6.92-DTF OR as measured with the dipstick
 - WD at the LAH float = 3.76 ft (1002.8 gal).; WD at the LAHH float = 4.26 ft (1136.1 gal).
- 5. Water vol = WD*266.7
 - The tank holds 266.7 gal/ft (2000 gal; 7.25' dia x 7.5' H)

6. Spare vol to LAH float = 1002.8-current water volume

PORT OF SEATTLE - TERMINAL 30 AS Manifold Readings

				Pressure/F	low Reading	s			
Well	Pressure	Flow	Valve Pos.		Well	Pressure	Flow	Valve Pos.	
)Q	(PSIG)	(SCFMG)	(% Open) Zone 2	Comments	-di	(PSIG)	(SCFMG)	(% Open) Zone 4	Comments
AS-7					AS-17				
AS-8					AS-18				
AS-9					AS-19				
AS-10					AS-20				
AS-11					AS-21				
	`				AS-22				
		1	Zone 3					Zone 1	
AS-12					AS-1				`
AS-13					AS-2				
AS-14					AS-3				
AS-15					AS-4				
AS-16					AS-5				
					AS-6				
	4		Zone 5		_				
AS-23		-							
AS-24									
AS-25									
AS-26									
AS-27									
Notes:		1	1						
ſ	Vo	aef	ive	zones (o		4:2	.2		

Abbreviations:

- % = Percent
- " H_2O = Inches of water

deg F - degrees Fahrenheit

N/A = Not applicable

ppmv = Parts per million volume

PSIG = Pounds per square inch gauge

SCFMG = Standard cubic feet per minute gauge

PORT OF SEATTLE - TERMINAL 30

SVE Manifold Readings (1 of 3)

		1 -	1		SVE Manifold	Reading	gs (1 of	3)			
Date:	C	1/2.5	123	>				Time:	142	-6	
Field Te	ch(s):	AB	v –					PID ID:	U?	,994	-
Weathe	er:	Rai	\sim						0		
**Instru	u ctions : Ta	ike reading	s down PRIC	DR to dewa	tering or adjusting vac/flow. Mini kn			eadings to	be taken ev	en if water i	s present in the rotameters.
					Vacuum/Fl		-				
Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	PID (ppmv)	Comments	Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	PID (ppmv)	Comments
HSVE-2	28	22	25	3.0		SVE-10	33	15	15	5.9	
HSVE-3	32	- 36'	20	95		SVE-9	40	~	106	£. 6	Brown HZO in roto Float stuck
SVE-4	46		10	3.7	Float and rod disconnected	SVE-8	~		O		
SVE-5	38	20	100	G.	Hzo in roto	SVE-6	41	12	100	2.1	
SVE-7	41	19	001	2.6		HSVE-1	18	34 '	25	3.2	
Dilution	Value	# Turns Op	oen:	-	1.5		-		-		
Dilution	valve	Vacuum ("	H2O):		43	1					
Notes: Abbrevi											

SCFMG = Standard cubic feet per minute gauge

% = Percent

" H_2O = Inches of water

deg F - degrees Fahrenheit

ppmv = Parts per million volume PSIG = Pounds per square inch gauge

N/A = Not applicable

AECOM

PORT OF SEATTLE - TERMINAL 30

SVE Manifold Readings (2 of 3)

		, (ioiu keauli	igs (2 01 5	5)
Date:	C	7/28/23	Time:	1512	
Field Tech	n(s):	1B	Pump ID:	L	10
Weather:	Ra	in			•
		SVE D	Dewatering		
Well ID	Dewater (Gal)	Comments	Well ID	Dewater (Gal)	Comments
HSVE-2	1/2	olear H20	SVE-10	1/2	clear H20; had to open red value for H20 to flow
HSVE-3	Yy	clear HzO	SVE-9	3/4	Brown H20 w/bits of product
SVE-4	1/2	clear 1-120	SVE-8	-	closed
SVE-5	13	Clear H2	SVE-6	1/2	Clean H2O
SVE-7	1/3	Clear Hz O	HSVE-1	1/2	clear 140
Notes:					
Abbreviat	tions:	Gal = gallons			ΑΞϹΟΜ

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (3 of 3)

Date:	9	28	23				Time:	550)
Field Teo	ch(s):	、 (A	tB			Weather:	59	° rain
**Instru	ctions: Take	these reading	gs AFTER de	watering and adjusting vac/flow to limit v	vater proc	duction.			
				FINAL Vacuun	n/Flow rea	adings			
Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	Comments	Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	Comments
HSVE-2	26	32	25		SVE-10	Z	15	15	
HSVE-3	32	36	20		SVE-9	40	}	100	Float Stuck Brown Hz O
SVE-4	44		10	roto off axis	SVE-8	-	>	\bigcirc	closed
SVE-5	39	۱۱	100	H20 in voto	SVE-6	38		100	ر
SVE-7	43	58	100		HSVE-1	15	35	25	
Dilution	Valve	# Turns Ope	n:	1.5					
		Vacuum ("H	20):	42					
Notes:									
Abbrevi	ations								

AECOM

% = Percent

" H_2O = Inches of water

SCFMG = Standard cubic feet per minute gauge

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

Instrument ID	46330		
Description	Solinst Pump		
Calibrated	9/27/2023 5:32:46PM		
Manufacturer Model Number Serial Number/ Lot Number Location Department	Solinst Pump na	State Certified Status Temp °C Humidity %	Pass 19
Group Group Nam	# 1	ion Specifications	
Test Performed: Yes	As Found Result: Pass	As Left Result:	Pass
Test Instruments Used Du	ring the Calibration	Serial Numbe	(As Of Cal Entry Date) r/ Next Cal Date /
Test Standard ID Description	ion <u>Manufacturer</u>	Model Number Lot Number	Last Cal Date/ Expiration Date Opened Date

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Larry Lorenzano

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

INSTRUMENT CALIBRATION REPORT

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

	rument ID 43994						
	escription MiniRAE 30						
	Calibrated 9/27/2023 5:	30:06PM					
	Number PGM-7320			State Certifi			
1 1 2 2 7 7 2 22	ber/ Lot 592-925645				us Pass		
	Number			Temp	C 19		
	Location Seattle			Humidity	% 63		
	artment			inditity	/0 05		
					_		
		Calibra	tion Specification	s			
	Group # 1			Range Acc %	3.0000		
Gr	oup Name VOC		F	Reading Acc %	0.0000		
	tated Accy Pct of Rang	e		Plus/Minus	0.0		
Nom In Val / In V	al In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
100.0 / 100.0	PPM	100.0	PPM	103.0	100.1	0.10%	Pass
						1.5.2.5	
est Instruments	Used During the Calib	ration			(As	Of Cal Entr	v Date)
Sec. 2				Serial Numb	ber /		xt Cal Date /
est Standard ID	Description	Manufacturer	Model Number	Lot Number		Cal Date/ Ex	piration Date
EA ISO	Isobutylene (C4H8) 100) Airgas	x02ai99cp34206	56	Open		16/2025
004-402235157-	PPM						

Calibration Result Calibration Successful Who Calibrated Warren Baxter

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

Fax (206) 283-5044	Ph. (206) 285-8282	Seattle, WA 98108	5500 4th Avenue South	Friedman & Bruya, Inc.			ž. store				SVE-EFF-092823	SVE - EFF - 092823	Sample Name	SAMPLE INFORMATION		Report To Iow Kaling & Gus Friedman SAMPLERS (signature)
Received by:	Relinquished by:	Received by:	Relinqui				•					3	Lab ID		Seattle WA Seattle WA 6-2700 Paul 1	mina
by:	shed by:	by:	Relinquished by:	SIGN							WA, tella	225	Canister ID		Ste 16	4 G
		4		SIGNATURE									Flow Cont. ID		1600 al 5101 inn Oceco	Fri
				C.	IA / SG	IA / SG	IA / SG	IA / SG	IA / SG	IA / SG	IA (SC)	IA / SG	Reporting Level: IA=Indoor Air SG=Soil Gas (Circle One)		>	edman SAME PROJ
			-								9/25/23	9/28/23	Date Sampled		is is	PROJECT NAME & ADDRESS
		AN		PRI				1			4/2	730.0	Initial Vac. 1 ("Hg)		50	nature) E & AD
		ANHP		PRINT NAME							1326	1313	Field Initial Time			DRESS
		HAN		ME	-						NA	5.0	Final Vac. ("Hg)			Bie
								1			1321	1320	Field Final Time		17	101
1													TO15 Full Scan	ANA	INVOICE TO	PO#
		T		CO				-	-	-	-	-	TO15 BTEXN TO15 cVOCs	SISA	TO	
		FSK		COMPANY	-	-	-	-	+	-		X	APH	REQU		RO
				Y					-	-	X	X	TOIS GBIE	ANALYSIS REQUESTED	Default final r Hold (F	TURNA Standard RUSH
+	X Include	09/28/23		DATE									Notes		SAMPLE DISPOSAL Default: Olean following final report delivery Hold (Fee may apply):	Standard RUSH Rush charges authorized by:
T		13:59		TIME											AL	by:

DAILY FIELD LOG

Project Informatio	n			Page of
roject Name:	<u> </u>	Location:	5000	
roject/Task No		Weather:	<u>59 rain</u>	
ate:	10/10/22	Personnel:	GF SC	
bservations				
Time		Observation Descript	ion	
19:45	GF9 SC ONGIR			
2	5,000: 30 00	fin		
3	Safety tailgate:	crue practize	Lis active.	Velp cars
4 -	parties a reagon	uble difference	e at Joint cul	Koutside
5	Geten enclosy	ve without look	ing up first	
6	·GESEMON N	n arrival, 20	es active	
7	. 76.6 Signa	total going th	south zee 5	Bleed
8	Value 1/2 thr	n open. Della	re prefure (95 RSI
9	WI Amps @ p.	6 (FLA=9.4)	forque @ 93	to .
10	· collected AS of	SVE rendine	<	
11	· Reparola rot	meters a ks-	25 -20 and	5 -27
12	· Pumpet out n	le SVE-5 lat	kral	
13 24	· Shave Man	ing bus 10 3/	4" PVC close v	violes +
14	ball valu	es U		00
15 13'.00		wh for mes	Kers testila.	Realis
16	· Fixed SVE-4		od got code les	00)
17	· Replaced SVE- S	5 pottom bu	0	(sinceled)
18 1415	· TOUL Weggers		7	(mereo)
19		- slass		
20	· emptica pri		with (minima	1 all and other
20	· Drained poly for			and a second surface of the second se
22		PFF for GNM.		cability.
23			AS hoges ulstrus	
23 24 A X	· Have manne	order Br 234	1" backings of 3	> 2" bullion
25 15 15	151 delite			
comments Site	· GE THING HACK	c Grandon conti +	aught pan not	(5)
onnichts 7 ORC A	currics resound reaching -			
		6		
			hE	

C: Usersigua firedman/Documents Field Forms - GENERAL Field Forms - GF xls(Daily Field Log) 3/22/2021

5 vilors

7 22 2021

PORT OF SEATTLE - TERMINAL 30 SVE/AS System Data

Date: 10/16/22	Field Tech(s): GF 46		Actual Time: 10 22
PIDID: 029604	Weather: 59 mil	1	HMI Time: 10 15
VE/AS Control Panel			
VE Blower Runtime Hours)	21410.2	Sparge Zone 1 Time Span(s) Operational:	-
Transfer Pump Runtime Hours) - <i>MS Pump</i>	7.7	Sparge Zone 2 Time Span(s) Operational:	-
AS Blower Runtime Hours) - <i>Sparge Blower</i>	14724.4	Sparge Zone 3 Time Span(s) Operational:	-
AS Heat Exchanger Runtime Hours)	14219.2	Sparge Zone 4 Time Span(s) Operational:	-
SVE Blower VFD Setpoints Hertz/Amps/Torque %) - VFD	42/135A/480970	Sparge Zone 5 Time Span(s) Operational:	12:00-3:00
AS Blower VFD Setpoints Hertz/Amps/Torque %) - VFD	52/10/0A/93/0	Sparge Zone Active: 5	10:00-13:00
SVE/AS System Settings & Readings	5		20:00-77:4
AS Heat Exchanger Discharge Temp •F) - <i>TI-500</i>	71	SVE Blower Dilution Valve (# turns open)	1.5
AS Blower Intake Pressure " H2O) - <i>DPI-500</i>	1.9	SVE Blower Filter Differential Pressure (" H20) - DPI-200	0.5
AS Bleed Valve # turns open)	1/2	SVE Blower Inlet Differential Pressure (" H20) - <i>FI-200</i>	0.5
AS Blower Discharge Pressure PSI) - PI-501	9.5	Transfer Pump Discharge Pressure (PSI) - <i>PI-300</i>	0.0
SVE Blower Inlet Temperature °F) - <i>TI-200</i>	61.0	SVE Blower Discharge Pressure {" H ₂ O} - <i>PI-400</i>	3.4
5VE Blower Inlet Vacuum " H ₂ 0) - <i>VI-200</i>	48.0	SVE Blower Discharge Temperature (°F) - TI-400	96-0
Knockout Tank Level Sightglass % Full) ¹	15		
SVE Discharge PID ppmv)	1.5	Treated Vapor Discharge PID (ppmv) ²	N/A
Other Components			
AS Compressor Oil Level ³ % full sightglass)		SVE Compressor Oil Level ³ (% full sightglass)	1. (C.) 1. (C.) (S.
DTF in Storage Tank ft)	-	WD in Storage Tank ⁴ (ft) ⁻	0.5
Vater Volume in Storage Tank ⁵ gal)	133.4	Spare Volume to LAH float ⁶ (gal)	869.4

Abbreviations:

Notes:

" H₂O = Inches of Water

°F = Degrees Fahrenheit

- PSI = Pounds per Square Inch
- % = Percent
- DTF Depth to Fluid DTB - Depth to Bottom
- **MP Measuring Point**

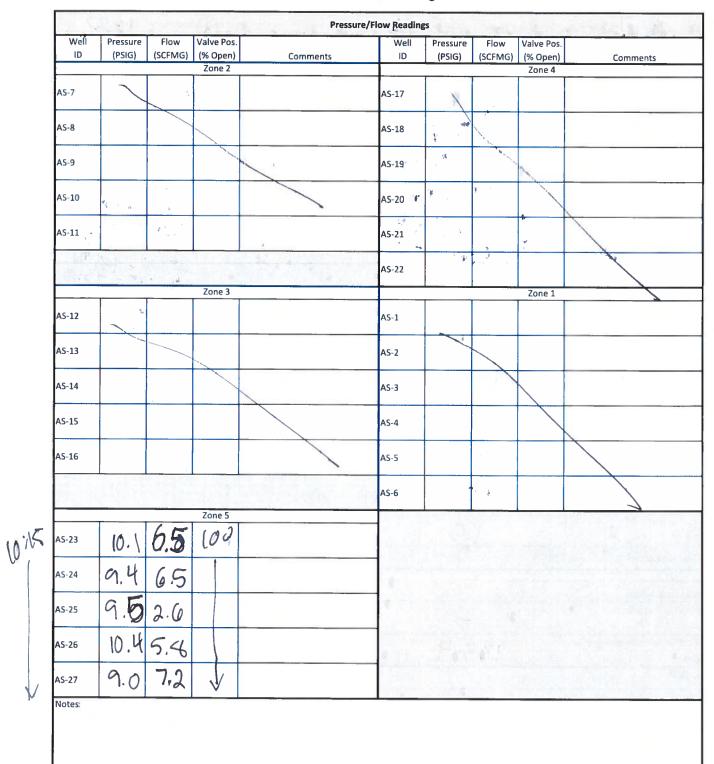
WD - Water Depth

1. Low float = 0% full. Mid float = 100% full.

2. If applicable

3. Oil level should be at the middle of the sightglass with the machine not operating.

4. WD = 6.92-DTF OR as measured with the dipstick


WD at the LAH float = 3.76 ft (1002.8 gal).; WD at the LAHH float = 4.26 ft (1136.1 gal). 5. Water vol = WD*266.7

The tank holds 266.7 gal/ft (2000 gal; 7.25' dia x 7.5' H)

6. Spare vol to LAH float = 1002.8-current water volume

PORT OF SEATTLE - TERMINAL 30 AS Manifold Readings

Abbreviations:

% = Percent

" H₂O = Inches of water

deg F - degrees Fahrenheit

N/A = Not applicable

ppmv = Parts per million volume

PSIG = Pounds per square inch gauge SCFMG = Standard cubic feet per minute gauge

AECOM

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (1 of 3)

	Date:	10	10/23						Time:			A CARTER AND A	
	Field Te		GR.C						PID ID: (1296	04		
	Weathe		ig ra	-							2		
vin	**Instru	uctions: Ta	ake reading	s down PRI	DR to dewa	tering or adjusting vac/flow. Mini kn			readings to	be taken ev	en if water	is present in the rotameters.	In
win hose?	Well	Vacuum	Flow	Valve Pos.	PID	Vacuum/F		-	Flaur	Malue Day	010		weter,
Nose i	ID	("H2O)	(SCFMG)	(% Open)	(ppmv)	Comments	Well ID	Vacuum ("H2O)		Valve Pos. (% Open)	PID (ppmv)	Comments	STR 10
4	HSVE-2	24	31	50	0.2	~	SVE-10	22	16:5	40	1.3	\checkmark	N
4	HSVE-3	31	36	40	2.9		SVE-9	37	0	100	1.3	lots of worker dirly rotometr	N
Y	SVE-4	43	NM	30	0.9	rotmeter rod displaced	SVE-8	1	3-	0	29	well dosed	N
N	SVE-5	346	10	100	2.4	lots of working	SVE-6	40	14	60	0.7	hata	N
N	SVE-7	40	17	100	0.9	~	HSVE-1	14	34	40	0.5	V	Ý
-		107	# Turns Op	pen:		1.5							
6	Dilution	Valve	Vacuum ("	H2O):		48							
	Notes:					1		1					-
	1.1												
	Abbrevi			-									

" H₂O = Inches of water deg F - degrees Fahrenheit

PSIG = Pounds per square inch gauge

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (2 of 3)

Date: LO	5/10/23		Time:		
	(s): GAF	40	Pump ID:		
Weather:		ra,n			
			Dewatering		State of the second second
Well ID	Dewater (Gal)	Comments	Well ID	Dewater (Gal)	Comments
HSVE-2	5mall 0.76 0.75 2.55-2.75 2.40 1.15ga		SVE-10	0-0.4 0.40 9.4	
HSVE-3	8.15-1.2. D. 45 gel		SVE-9	0.u-1.5= 0.9 0.4 $q al$	
SVE-4	1.2-1.75 = 10.55 gal		SVE-8	1.5= 1.0= O.lgal	
SVE-5	1.75-2.15= 0.40 gal 4.10gal	2.75-4=1.25 5-2.45,2.45 -40 4.10	SVE-6	1.6-1.9 0.3gal	
SVE-7	2.15-2.5 0.359-l		HSVE-1	1.8-2.36= 0.45 gal	
Notes:	ions:	Gal = gallons			
-vvvi evidt	ions:				AECON

. .

4

2

Sec. 27.

190

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (3 of 3)

Date:	10/10/2	23					Time:		
Field Teo	-	F, SC				Weather: 59° rain			
**Instru	ctions: Take	these readin	gs AFTER de	watering and adjusting vac/flow to	limit water prod	uction.			
1				FINAL	/acuum/Flow rea	dings			
Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	Comments	Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	Comments
HSVE-2	NM	NM	100		SVE-10	NM	NM	No Charge	
HSVE-3			(00)		SVE-9				
SVE-4			No Charge	1	SVE-8				
SVE-5					SVE-6				
SVE-7			l		HSVE-1	V	X	V	
Dilution	ilution Valve			a tanayar					
Dirucion	Vacuum ("H2O):								
Notes:									
Abbrevia	ations:			10 million (10 million)					

% = Percent

" H₂O = Inches of water

SCFMG = Standard cubic feet per minute gauge

Megger Testing of Motor Windings PORT OF SEATTLE - TERMINAL 30

Field Tech(s): GTF

Equipment ID:

	Motor	AS Con	AS Compressor	SVEB	SVE Blower
		Winding	Insulation	Winding	Insulation
Motor		Resistance	Resistance	Resistance	Resistance
Wires	Date	(Ohms)	(Megaohms)	(Ohms)	(Megaohms)
G&B	N/A	N/A (>100.0)	MN	N/A (>100.0)	MN
G&O	N/A	N/A (>100.0)	NM	N/A (>100.0)	MN
G&Y	N/A	N/A (>100.0)	NM	N/A (>100.0)	NM
B&O	N/A	MN	N/A (0.00)	NN	N/A (0.00)
0&Y	N/A	NM	N/A (0.00)	NM	N/A (0.00)
B&Y	N/A	MN	N/A (0.00)	NM	N/A (0.00)

N/A= Not applicable G= Ground Wire O= Orange Wire Y= Yellow Wire B= Brown Wire Legend:

Notes:

These tests check for a breakdown of insulation within the internal motor windings over time. Use a Megger Model MIT 220.

Baseline data is unavailable. Testing was not conducted by CRETE and readings were only initiated once issues with the AS motor were identified.

Insulation resistance testing was completed between winding phase at 500 volts over approximately 30 seconds

>1,000 Mohm readings generally means you have an open curcuit

0.00 Mohm readings mean that the phase being tested is shorted to Ground

Ideally the phase-to-phase winding resistance readings between each phase should be the same or at least very close

Phase-to-phase winding resistance readings should not be 0 ohms (i.e. short) or OL (overload) or infinity ~ ∞

Generally high resistance readings (greater than 10 Mohms) indicate the motor insulation is good

Winding Resistance B & O O & Y B & (Ohms) O & Y B & (Ohms) O/A N/A N/ N/A N/A N/A N N/A N/A N/A N N/B I. U G I N N N/A N N N N/A N/A N N N N/A N/A N N N N/A N/A N N N O G G B & Ohms) (Ohms) (Ohms) (Oh	AS Compressor Motor		and the second s	Comments
B & O O & Y B & 0 (Ohms) (Ohms) (Ohms) (Oh N/A N/A N/A N N/A N/A N/A N N N N/A N N N N N N N N/A N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N	lce	Insulation Resistance	9	
(Ohms) (Ohms) (Oh N/A N/A N/A N/ N/A N/A N/ N/A N/A (Ohms) (Ohms) (Ohms) (Ohms) (Ohms) (Ohms) (Ohms)	B&Y G&B	G&O	G&Y	
N/A N/A N/A N N/B 1.09 1.09 1.0 N/B 0.0 0.0 0.0 B 0.0 0.0 0.0 (Ohms) (Ohms) (Ohms) (Ohms)	(Ohms) (Megaohms)) (Megaohms)	(Megaohms)	
V.U.S I.U.S I.U.S V. Ninding Resistance B.8 Ohms) (Ohms) (Ohms)	N/A N/A	N/A	N/A	
Winding Resistance B & O 0 & Y B & (Ohms) (Ohms) (Oh	1.68 0.1	610	61.0	
Winding Resistance B & O 0 & Y B & (Ohms) (Ohms) (Oh				
Winding Resistance B & O O & Y (Ohms) (Ohms)	SVE Blower Motor			Comments
B & O O & Y (Ohms) (Ohms)	Ice	Insulation Resistance	9	
(Ohms) (Ohms)	B&Y G&B	G&O	G&Y	
	(Ohms) (Megaohms)	(Megaohms)	(Megaohms)	
Baseline N/A N/A N/A	N/A N/A	N/A	N/A	

210

C1.0

05

080

0630

0.81

Field Tech(s): GFSCDate: 10/10/23

-

T-30 Quarterly O&M Checklist

REGULAR TASKS

System ON:
Zero out mag gauges
Confirm mag gauges w/ a manometer
Test AS pressure gauge accuracy (turn zone on and off, All gauges should equilibrate)
If possible: Check AS pressure on individual well heads in the well field and compare to readings at the manifold
System OFF:
Test poly tank float switches
Test KO tank float switches
Check SVE vac gauges for zeroing
Scrub out KOT sightglass
Check particulate filter housing for water accumulation. Empty if needed. Visually inspect filter.
Megger test SVE & AS motors
Clean out any garbage/weeds from the system area
LOTO electrical and tighten wire lugs/terminals on all control and electrical connections inside cabinet
Exercise all valves (open valves normally closed and then return to original position)
5

EXTRA TASKS

	and and a second	
•	4	
-		
	*	13

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

Instrument ID	46330			
Description	Solinst Pump			
	10/10/2023 11:23:04AM			
Manufacturer	Solinst		State Certified	
Model Number	Pump		Status P.	ass
Serial Number/ Lot	na		Temp °C 1	9
Number				
Location	Seattle		Humidity % 5	5
Department				
	Calibrati	on Specification	S	
Group	# 1			
Group Nan	ne			
Test Performed: Yes	As Found Result: Pass		As Left Result: Pa	SS
Test Instruments Used D	uring the Calibration			(As Of Cal Entry Date)
Test Standard ID Descrip	tion <u>Manufacturer</u>	<u>Model Number</u>	<u>Serial Number /</u> Lot Number	<u>Next Cal Date /</u> Last Cal Date/ Expiration Date Opened Date

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Dzung Pham

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

Desc	-	4 MiniRAE 3000 0/2023 10:45:40AM					
	cturer Rae S			State Cert			
Serial Numbe	umber PGM er/ Lot 592-9 umber				atus Pass p°C 18		
	cation Seattl	e		Humidit	y % 59		
Depa	rtment						
		Cal	libration Specifica	tions			
	Group # 1			Range Acc			
	up Name Iso	-		Reading Acc			
	ited Accy Pci	e	Out Turn	Plus/Min		D9/	Pass/Fail
<u>Nom In Val / In Va</u> 100.0 / 100.0	<u>I In Typ</u> PPM	<u>De</u> <u>Out Val</u> 100.0	<u>Out Type</u> PPM	<u>Fnd As</u> 100.6	<u>Lft As</u> 100.0	<u>Dev%</u> 0.00%	Pass/Fail Pass
est Instruments l	Used During (the Calibration				Of Cal Ent	
<u>Fest Standard ID</u>	<u>Description</u>	Manufact	urer <u>Model Num</u>	<u>Serial Nu</u> ber Lot Num	ber Last		<u>ext Cal Date /</u> <u>xpiration Date</u>
	Isobutylene (C PPM	C4H8) 100 Airgas	x02ai99cp3	42066 302-402 -1			28/2026

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Dzung Pham

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

AECOM Daily Tailgate Meeting Summary

Project information

r reject mornation	
Project Name	T-30
Project Number	60681370
Project Manager	Paul Kalina
Project Manager Phone #	2063105097
Muster Point location	Clubhouse
Meeting date	10/10/2023
Business Line	Environment
SH&E Manager	Tim Gilles
SH&E Manager Phone #	3128335991
First Aid Kit Location	Car
Prepared by	Friedman, Gus

Meeting Summary

Attendees	Friedman, Gus;Catlin, Suzanne;
Location	SODO
Tasks to be performed	Quarterly O&M (3Q)
Hazards to be considered today	pressure, noise, motion, mechanical, electrical
Will there be Lone Workers?	No
Hierarchy of controls	elimination, ppe
Personal Protective Equipment	Task Specific: gloves Mandatory: safetyglasses, longpants, reflectivevest, workboots
High Risk Events	
Topic of the week	Hearing Conservation

Other topics discussed	
Hazards	 Mechanical Motion Noise Pressure Electrical

End of the day comments. The supervisor confirms that the site is being left in a safe condition and work crew checked out as fit unless otherwise specified here

Project Information					Page of
Project Name:	7-30		Location:	Spattle	
Project/Task No.:			Weather:		
Date:	10/20/22		Personnel:	OF	
Observations					
Time			Observation Description		
1 1715	GF ongite				
2	GLOPE: TO	the gas	neativer	nents il GEN	h5000
3	CH4 (0,	62			
4	0.0 1.9	19.0			
5	00	.0.0			
6	SVED AS	onin	zae 5		
7	FILLELL	flow	Vac/Pressu	re	
8	USVE-1	24	20		
9	-2	52	26		
10	-3	50	33		
11	SVE-4	9	28		
12	-5	7	30	JEN WC	
13	-6	17	33		1944 Aug. 197
14	- 7	17	30		
15	-4		- OF	E)	
16	-9.	0	36		
17	-10	10	30		
18	AL -27	5	10		
19	24	5	925	1	
20	-25	2.5	9.0	(nr-	
20	-260	45	10.24	- SPSI	
22	-10 A5-23 -24 -25 -26 -27	4.5 5.5	9.0)	
1-70	GF offite		1.0		
	CT DIGIC		5		
24) GF		
25	tivities / Personnel Tracking		6/06/01	3	

Project Informati	on Page of
Project Name:	T-30 Location: Port of Seattle
Project/Task No.:	Weather: 46° SUNNY
Date:	0/26/23 Personnel: A-B
Observations	
Time	Observation Description
1 1126	on-site, system on upon arrival, safety tailgate Scope: biweekly OtiM
2	Sure .
3	
4 1202	Taking zone reading while active
5	Taking rest of system readings
6 123	5 SVE Jeffivent PID: 1. Coppmv
7	Begin taking manifold readings
8 308	
9	readings at manifold - changing battery
10 330	> Begin. dewatering
11 346	Solinust pump external battery also dead
12	After attempting to fix it, I called Pine
13	and they are bringing me a spare
14 1424	Got a working battery-begin dewatering
15 1441	Solinist pump not furning on halfway
16	thru dewatering-moving on to post
17	dewatering readings -
18 1450	" Calling Gus to discuss how I should adjust
19	value positions
20 515	Adjusted values per convo w/Gus
21	Closing down
22 1522	- Leaving site - dropping off equipment at

))

Comments / Site Activities / Personnel Tracking

()

tice

0

23

24 25 \cup

 \mathcal{V}

PORT OF SEATTLE - TERMINAL 30 SVE/AS System Data

PID ID: <u>439999</u> SVE/AS Control Panel SVE Blower Runtime (Hours) Transfer Pump Runtime (Hours) - <i>MS Pump</i> AS Blower Runtime (Hours) - <i>Sparge Blower</i> AS Heat Exchanger Runtime (Hours) SVE Blower VFD Setpoints	Weather: 46° 21731.6 7.8	Syarge Zone 1 Time Span(s) Operational: Sparge Zone 2 Time HMI Span(s) Operational:	HMI Time: 1149 HMI
SVE Blower Runtime (Hours) Transfer Pump Runtime (Hours) - <i>MS Pump</i> AS Blower Runtime (Hours) - <i>Sparge Blower</i> AS Heat Exchanger Runtime (Hours)		HMISpan(s)Operational:Sparge Zone 2 Time	HMI
(Hours) Transfer Pump Runtime (Hours) - <i>MS Pump</i> AS Blower Runtime (Hours) - <i>Sparge Blower</i> AS Heat Exchanger Runtime (Hours)		HMISpan(s)Operational:Sparge Zone 2 Time	HMI
Transfer Pump Runtime (Hours) - <i>MS Pump</i> AS Blower Runtime (Hours) - <i>Sparge Blower</i> AS Heat Exchanger Runtime (Hours)		Sparge Zone 2 Time	HMI
(Hours) - <i>MS Pump</i> AS Blower Runtime (Hours) - <i>Sparge Blower</i> AS Heat Exchanger Runtime (Hours)	7.8		
AS Blower Runtime (Hours) - <i>Sparge Blower</i> AS Heat Exchanger Runtime (Hours)	1.0	HMI Span(s) Operational:	Contraction of the Institute
(Hours) - <i>Sparge Blower</i> AS Heat Exchanger Runtime (Hours)	111119	spanle, spanalonan	HMI
AS Heat Exchanger Runtime (Hours)		Sparge Zone 3 Time	
(Hours)	14-11.1	HMI Span(s) Operational:	HMI
	IN LING	Sparge Zone 4 Time	
SVE Blower VFD Setpoints	19906.	Span(s) Operational:	HMI
		Sparge Zone 5 Time	0000-0300,0300-0800
(Hertz/Amps/Torque %) - VFD	42.0/12.7/45.6	AMI Span(s) Operational:	0000 - 0300,0300 - 0800 1000 - 1300, 1500 - 1800,2000
AS Blower VFD Setpoints	1. 10-		
(Hertz/Amps/Torque %) - VFD	52.0/10.6/93.5	MI Sparge Zone Active.	J
SVE/AS System Settings & Readings	. /		
AS Heat Exchanger Discharge Temp	700	SVE Blower Dilution Valve	
(°F) - <i>TI-500</i>	12	(# turns open)	1.3
AS Blower Intake Pressure	1 11-	SVE Blower Filter Differential	0.5
(" H2O) - <i>DPI-500</i>	1.75	Pressure (" H20) - <i>DPI-200</i>	0.5
AS Bleed Valve	11	SVE Blower Inlet Differential	
(# turns open)	1/2	Pressure (" H20) - <i>FI-200</i>	0.4
AS Blower Discharge Pressure	0.00	Transfer Pump Discharge Pressure	
(PSI) - <i>PI-501</i>	4.25	(PSI) - <i>PI-300</i>	G
SVE Blower Inlet Temperature	EGO	SVE Blower Discharge Pressure	3.8
(°F) - <i>TI-200</i>	590	(" H ₂ O) - <i>PI-400</i>	2.0
SVE Blower Inlet Vacuum		SVE Blower Discharge Temperature	
(" H ₂ 0) - <i>VI-200</i>	36	(°F) - <i>TI-400</i>	90°
Knockout Tank Level			
(Sightglass % Full) ¹	75%		
SVE Discharge PID		Treated Vapor Discharge PID	
-		(ppmv) ²	
(ppmv)	1. 0	(ppmv)	
Other Components			
AS Compressor Oil Level ³		SVE Compressor Oil Level ³	
(% full sightglass)		(% full sightglass)	
DTF in Storage Tank		WD in Storage Tank ⁴	
(ft)		(ft)	
Water Volume in Storage Tank⁵	266.7	Spare Volume to LAH float ⁶	7211
(gal) NOTES:	266-1	(gal)	736.1

Abbreviations:

Notes:

" H_2O = Inches of Water

°F = Degrees Fahrenheit

PSI = Pounds per Square Inch

% = Percent

DTF - Depth to Fluid

DTB - Depth to Bottom

MP - Measuring Point

WD - Water Depth

1. Low float = 0% full. Mid float = 100% full.

2. If applicable

3. Oil level should be at the middle of the sightglass with the machine not operating.

4. WD = 6.92-DTF OR as measured with the dipstick

WD at the LAH float = 3.76 ft (1002.8 gal).; WD at the LAHH float = 4.26 ft (1136.1 gal).

5. Water vol = WD*266.7

The tank holds 266.7 gal/ft (2000 gal; 7.25' dia x 7.5' H)

6. Spare vol to LAH float = 1002.8-current water volume

PORT OF SEATTLE - TERMINAL 30 AS Manifold Readings

				Pressure/F	low Reading	gs			
Well ID	Pressure (PSIG)	Flow (SCFMG)	Valve Pos. (% Open)	Comments	Well ID	Pressure (PSIG)	Flow (SCFMG)	Valve Pos. (% Open)	Comments
	(1310)		Zone 2	connents		(1310)		Zone 4	comments
AS-7					AS-17				
AS-8					AS-18				
4 S-9					AS-19				
AS-10					AS-20				
AS-11					AS-21				
		<u>.</u>			AS-22				
<u>``</u>			Zone 3		\square	Ι		Zone 1	
AS-12					AS-1				
AS-13					AS-2				
AS-14					AS-3				
AS-15					AS-4				
AS-16					AS-5				
					AS-6				
			Zone 5						
AS-23	9.5	5-6	100	Flort bobbing					
AS-24	9	5.5-65	1						
AS-25	8.75 10.25	3.5							
AS-26	10.25	4.5-5							
AS-27	9	6							
Notes:									

Abbreviations:

% = Percent

" H₂O = Inches of water

deg F - degrees Fahrenheit

N/A = Not applicable

ppmv = Parts per million volume

PSIG = Pounds per square inch gauge

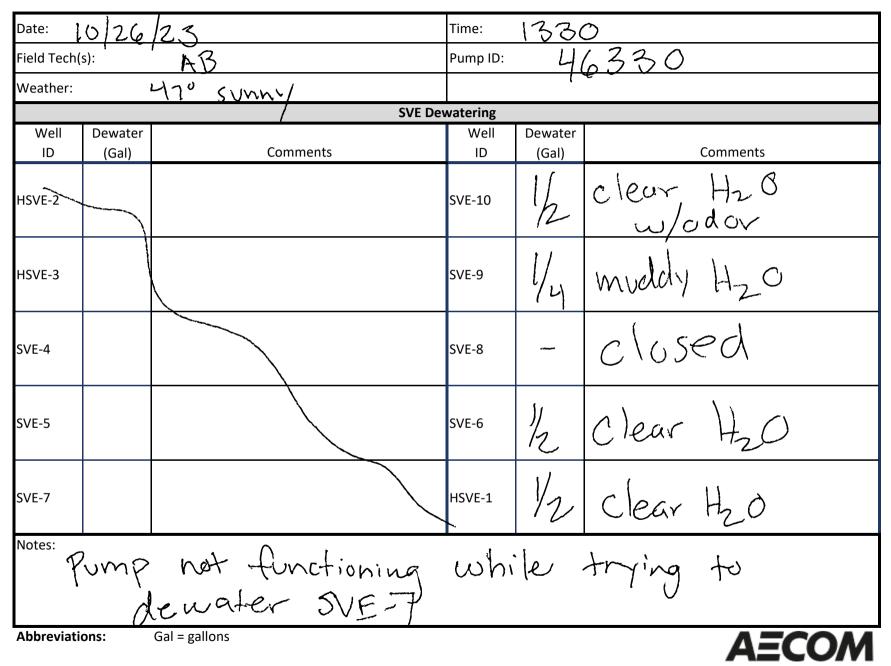
PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (1 of 3)

Date:	rate: 10/26/27 Time: 1240											
									PID ID:	1399		
	Veather: 46° SUNWY										1	
**Instru	*Instructions: Take readings down PRIOR to dewatering or adjusting vac/flow. Mini knockout allows PID readings to be taken even if water is present in the rotameters.											
	Vacuum/Flow readings											
Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve (% O		PID (ppmv)	Comments	Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	PID (ppmv)	Comments
HSVE-2	27	51	10	X	2.7		SVE-10	29	6-16	30	3.0	Float babbing
HSVE-3	34	50			47		SVE-9	35		100	2.4	Float Stuck
SVE-4	30	16			1.8	float broken off rod	SVE-8	~		O		
SVE-5	30	23			2.1		SVE-6	28	$\langle \rangle$	100	0.Y	Float Stuck
SVE-7	27	37	-		G.2		HSVE-1	18- 20	30	50	3.8	
Dilution	# Turns Open: 1, 5											
Dilution	vition Valve Vacuum ("H2O): 36											
Notes:												
Apprevi	Abbreviations:											

SCFMG = Standard cubic feet per minute gauge

% = Percent

" H_2O = Inches of water


deg F - degrees Fahrenheit

ppmv = Parts per million volume PSIG = Pounds per square inch gauge

N/A = Not applicable

AECOM

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (2 of 3)

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (3 of 3)

Date:	Date: 10/26/23										
Field Teo	•	,	4B			Weather:	460	cloudy			
**Instru	**Instructions: Take these readings AFTER dewatering and adjusting vac/flow to limit water production.										
	FINAL Vacuum/Flow readings										
Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	Comments	Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	Comments		
HSVE-2	26	47	100		SVE-10	27	10-20	50	Float stuce		
HSVE-3	32	46			SVE-9	34	-	100	Float stude		
SVE-4	27			Float broken eff rod	SVE-8	_		\bigcirc			
SVE-5	26	21*		*Floct bobbing, water pushing down	SVE-6	30	12	(00)			
SVE-7	25	15			HSVE-1	22	54	100			
Dilution	# Turns Open: Dilution Valve Vacuum ("H2O):			1.5							
Notes: Abbrevi	ations			· · · · · · · · · · · · · · · · · · ·							

AECOM

% = Percent

" H_2O = Inches of water

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

Instrument ID Description Calibrated	46330 Solinst Pump 10/25/2023 4:34:40PM		State Certified		
Manufacturer Model Number	Solinst Pump		Status P Temp °C 1		
Serial Number/ Lot Number Location Department	na Seattle		Humidity % 4(0	
		ion Specifications			
Group Group Nat Test Performed: Yes		As Left Result: Pass			
Test Instruments Used D Test Standard ID Descrip	S.C. Continuer	Model Number	<u>Serial Number /</u> Lot Number	(As Of Cal Entry Date) <u>Next Cal Date /</u> Last Cal Date/ Expiration Date Opened Date	

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Dzung Pham

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Takwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

	43994						
Description	MiniRAE 30	000					
Calibrated	10/23/2023	6:46:21PM					
Manufacturer Model Number Serial Number/ Lot Number Location Departmen	PGM-7320 592-925645 Seattle			State Certific State Temp ° Humidity 9	us Pass C 18		
		Calib	oration Specific	ations			
Grou	1 p # 1	Calib	oration Specific		3.0000		
	up# 1 ame VOC	Calib	oration Specific	Range Acc %			
Group Na	•		oration Specific		0.0000		
Group Na	ame VOC		oration Specific	Range Acc % Reading Acc %	0.0000	Dev%	Pass/Fai

est moti unicitto	Used During the Callor	ation			(As Of Cal Entry Date)
Test Standard ID	Description	Manufacturer	Model Number	<u>Serial Number /</u> Lot Number	<u>Next Cal Date /</u> Last Cal Date/ Expiration Date
SEA ISO 100PPM 304-402817044-	Isobutylene (C4H8) 100 PPM	Airgas	x02ai99cp342066	304-402817044 -1	<u>Opened Date</u> 8/11/2027

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Warren Baxter

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

Project Information					Page of	
Project Name:	1-3	5		Location:	Port of Seattle	
Project/Task No.:				Weather:	48° cloudy	_
Date:	11	91	23	Personnel:	<u>AB</u>	_

Obse	rvations	
	Time	Observation Description
1	1155	arrived on-site, system on upon arrival, safety thilgate
2		scope: bimeekely OEM
3	1223	when taking HMII readings, sparge blower and heat
4		exchanger both off/stopped-no alarms
5		On the phone wigers and Carry to decide
6		if sparge is broken -sporge is functional
7	255	Taking system readings
8		PJD for effluent: 1.4 ppmv
9	1323	taking SVE readings and PID readings
10	1357	Begin dewatering
11	1445	Deviatoring done - taking final readings
12		Calling Cours before to discuss
13	1508	Adjusting value positions to observe changes
14		in flow I and Vacuum
15	1525	System functioning well- closing down
16	1520	Leaving site for office
17		
18		
19		
20		
21		
22		
23		
24		
25		

Comments / Site Activities / Personnel Tracking

PORT OF SEATTLE - TERMINAL 30 SVE/AS System Data

Date: 11/9/23	Field Tech(s):	AF,	Actual Time: 1255
PIDID: 43994	Weather:	8° olouchy	HMI Time: 1347
SVE/AS Control Panel		/	
SVE Blower Runtime	2001-0	Sparge Zone 1 Time	
(Hours)	22067.8	HMI Span(s) Operational:	HN
Transfer Pump Runtime	70	Sparge Zone 2 Time	
(Hours) - <i>MS Pump</i>	1.)	HMI Span(s) Operational:	HN
AS Blower Runtime	11/ 07 0	Sparge Zone 3 Time	
(Hours) - Sparge Blower	14607.9	HMI Span(s) Operational:	HN
AS Heat Exchanger Runtime	14602.3	Sparge Zone 4 Time	
(Hours)	191402.0	mini Span(s) Operational.	HN
SVE Blower VFD Setpoints		Sparge Zone 5 Time	0000-6300,0500-0800
(Hertz/Amps/Torque %) - VFD	<u>H2.0/12.1/42.7%</u>	HMI Span(s) Operational:	1000-1300, 1500- 18010
AS Blower VFD Setpoints		Sparge Zone Active:	
(Hertz/Amps/Torque %) - VFD	0/0/0	HMI Sparge Zone Active.	
SVE/AS System Settings & Readings	s / · ·		
AS Heat Exchanger Discharge Temp	710	SVE Blower Dilution Valve	
(°F) - <i>TI-500</i>	16	(# turns open)	
AS Blower Intake Pressure	\bigcirc	SVE Blower Filter Differential	65
(" H2O) - <i>DPI-500</i>		Pressure (" H20) - DPI-200	0.2
AS Bleed Valve	1/2	SVE Blower Inlet Differential	0.4
(# turns open)	12	Pressure (" H20) - <i>FI-200</i>	0.1
AS Blower Discharge Pressure	\bigcirc	Transfer Pump Discharge Pressure	(\cdot)
(PSI) - <i>PI-501</i> SVE Blower Inlet Temperature		(PSI) - <i>PI-300</i>	
	56	SVE Blower Discharge Pressure	HO
(°F) - <i>TI-200</i>	56	(" H ₂ O) - <i>PI-400</i>	-7.0
SVE Blower Inlet Vacuum	20	SVE Blower Discharge Temperature	allo
(" H ₂ 0) - <i>VI-200</i>		(°F) - <i>TI-400</i>	-0 /
Knockout Tank Level	751		
(Sightglass % Full) ¹	101.		
SVE Discharge PID	1.4	Treated Vapor Discharge PID	
(ppmv)	1.4	(ppmv) ²	-
Other Components			
AS Compressor Oil Level ³		SVE Compressor Oil Level ³	
(% full sightglass)		(% full sightglass)	
DTF in Storage Tank		WD in Storage Tank ⁴	1
(ft)		(ft)	
Water Volume in Storage Tank⁵	266.7	Spare Volume to LAH float ⁶	
(gal)	1266-1	(gal)	736.1
NOTES:	1	1	

Abbreviations:	Notes:
" H_2O = Inches of Water	1. Low float = 0% full. Mid float = 100% full.
°F = Degrees Fahrenheit	2. If applicable
PSI = Pounds per Square Inch	3. Oil level should be at the middle of the sightglass with the machine not operating.
% = Percent	4. WD = 6.92-DTF OR as measured with the dipstick
DTF - Depth to Fluid	WD at the LAH float = 3.76 ft (1002.8 gal).; WD at the LAHH float = 4.26 ft (1136.1 gal).
DTB - Depth to Bottom	5. Water vol = WD*266.7

MP - Measuring Point

WD - Water Depth

The tank holds 266.7 gal/ft (2000 gal; 7.25' dia x 7.5' H)

6. Spare vol to LAH float = 1002.8-current water volume

PORT OF SEATTLE - TERMINAL 30 AS Manifold Readings

				Pressure/Fl	ow Reading	s				
Well	Pressure	Flow	Valve Pos.		Well	Pressure	Flow	Valve Pos.		
ID	(PSIG)	(SCFMG)	(% Open)	Comments	ID	(PSIG)	(SCFMG)	(% Open)	Co	mments
			Zone 2			r		Zone 4		
AS-7					AS-17					
AS-8					AS-18					
AS-9				<u>`</u>	AS-19					
AS-10					AS-20					
AS-11					AS-21					
			<u> </u>		AS-22					
			Zone 3			n	1	Zone 1		
AS-12					AS-1)
AS-13					AS-2					
AS-14					AS-3					
AS-15					AS-4					
AS-16					AS-5					
					AS-6					
			Zone 5							`
AS-23										
AS-24										
AS-25										
AS-26				\						
AS-27										
Notes:	I	1	1							
	No	200	ne5	active						

Abbreviations:

- % = Percent
- " H₂O = Inches of water

deg F - degrees Fahrenheit

N/A = Not applicable

ppmv = Parts per million volume

PSIG = Pounds per square inch gauge SCFMG = Standard cubic feet per minute gauge

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (1 of 3)

Date:	11/4	9							Time:	132	3	
Field Tech(s): AB								PID ID:	42	3994		
Weathe	r:	40'		clu	udy					,	- 1	
**Instru	i ctions : Ta			n PRIC	OR to dewat	tering or adjusting vac/flow. Mini kn	ockout all	ows PID r	eadings to	be taken ev	en if water i	s present in the rotameters.
						Vacuum/F	low readir	ngs				
Well ID	Vacuum ("H2O)	Flow (SCFMG)		e Pos. Open)	PID (ppmv)	Comments	Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	PID (ppmv)	Comments
HSVE-2	26	46	1	00	1.9		SVE-10	24	17	50	2.4	Float stuck
HSVE-3	32	48		1	3,0		SVE-9	35		100	2.2	Float stuck
SVE-4	24].4	ploat off rod	SVE-8	*	ļ	O	~	
SVE-5	25	19			2.4	Float bobbing	SVE-6	22	10 - 15	100	S.7	
SVE-7	25	23	-		1.1	Float bobbing	HSVE-1	16	6)	100]. j	
Dilution		# Turns O	pen:			1.5						
		Vacuum ('	'H2O)	:		30						
Notes: Abbrevi	-+:											

SCFMG = Standard cubic feet per minute gauge

% = Percent

" H_2O = Inches of water

deg F - degrees Fahrenheit

ppmv = Parts per million volume PSIG = Pounds per square inch gauge

N/A = Not applicable

AECOM

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (2 of 3)

Date:	119		Time:		1357
Field Tech	(s):	tB	Pump ID:	463	330
Weather:	L	19° cloudy			~
			Dewatering	_	
Well ID	Dewater (Gal)	Comments	Well ID	Dewater (Gal)	Comments
HSVE-2	1/2	clear	SVE-10	1/2	clear, open red value to get all water out
HSVE-3	1/4	clear	SVE-9	1/8	Brown, oily
SVE-4	1/2	clear	SVE-8	-	well closed
SVE-5	1/2	clear	SVE-6	1/2	clear
SVE-7	1/2	clear	HSVE-1	1/2	Clear
Notes:					
Abbreviat	ions:	Gal = gallons			ΔΞϹΟΜ

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (3 of 3)

Date:	11	9					Time:	445	·
Field Teo	ch(s):	AT	B				Weather:		49° cloudy
**Instru	*Instructions: Take these readings AFTER dewatering and adjusting vac/flow to limit water production.								
				FINAL Vacuun	n/Flow rea	adings			/
Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	Comments	Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	Comments
HSVE-2	25	45	100		SVE-10	2)	15	50	
HSVE-3	32	44			SVE-9	34		100	
SVE-4	22			Float broken	SVE-8				closed
SVE-5	26	10-15			SVE-6	26	10-15	100	
SVE-7	27	10-30		Float bolbing	HSVE-1	16	60	100	
Dilution	Valve	# Turns Ope	n:	1.5					
2		Vacuum ("H	20):	30					
Notes:									
Abbrevi	ations								

% = Percent

" H₂O = Inches of water

INSTRUMENT CALIB Pine Environmental Services, Inc.	BRATION REPORT Pine Environmental Services LLC 3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102
Instrument ID 46330 Description Solinst Pump Calibrated 11/8/2023 2:06:35PM	
Manufacturer Solinst Model Number Pump	
Serial Number/ Lot na	State Certified
Number	Status Pass
Location Seattle	Temp °C 18
Department	Humidity % 40
Calibration S Group # 1 Group Name	pecifications
Test Performed: Yes As Found Result: Pass	As Left Result: Pass
Test Instruments Used During the Calibration	
Test Standard ID Description	(As Of Cal Entry Date) Serial Number / Next Cal Date Iodel Number Last Cal Date/ Expiration Opened Date Opened Date

Calibration Result Calibration Successful Who Calibrated Dzung Pham

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

Project Information	Page of 2
Project Name:	<u>7-30</u> Location: <u>5070</u>
roject/Task No.:	Weather: 38° F cloud
Date:	11/29/23 Personnel: 617
Observations	
Time	Observation Description
1 1430	·GIF onsite
2	· Scope: Repair SUE-4 rotameter; made dewatering
3	improvements
4	, safety tailsate - Slups trips pinch paints
5	· System ON on arrival.
6	-SUE-9 rotaneter ver dirte
7	- SUE-10 pot. has a woird black sugariant bot to top
8	-SNE-4 rod is loose off-center
9	· Gterted work on dewatering after Shutting Sicten
0	dan one stub up was previously drilled & tagged.
11	All 9 oners drilled a tapped for 3/4" NPT Sch 80
12	mode & ball values added to all ten.
3 1620	
4	none of the other parts appear off. Rod re-aligned of
15	rotameto replaced.
6	· SUE - 7 rotometer repair - noticed the bottom rad
7	lamper was smalled down. Rosaneto remared & lamper
8	to-rive replaced. All coop.
0 1700	
0	aftire flaw from SUE-9, which is where we still have
1	product.
2	- tested some fulakes & breaktive pressure is sted in us
23	he've seen runne ~ 30 m we to beaule pater production
24	· Pumped y gal from SiF - 9 lateral
25	· Pumped 2 gal from SUE-4 lateral

Comments / Site Activities / Personnel Tracking

Project Information	Page 2 of 2
Project Name:	T-30 Location: Scattle
Project/Task No.:	Weather: 38° cloud
Date:	Personnel: Gri U
Observations	
Time	Observation Description
	· Emptild ms water for the poly tank & containant
2	· Pumped I gal from SVE 3 latoral (to ta)
3	· Pumped 1 gal from SVE-2 lateral (to fry)
4	· Ormoed Sut - 9 deadles (1/2 - 3/4 Gai) to other
5	rotaneters got water during the prior tinkering.
6	· SVE-le + - to floats vere stick at porton but
7	barton pungers appen fore an each. A good smeck
8	released plem
9 × ×	- SVE-10 hus a really strong perfect in the flow. Smark
10	ne purper millide times por should be herd to
11	keep on ere on the langer. Amport lateral
12	rext the?
13 7 %	· The 4-in to 2-in theaded bushing manne got were any
14	treaded on the sin a sipan the 4. Need 3 of the
15	right Kind.
16 1800	· Git offsite. System laft ON. Gates locked.
17	
18	
19	
20) GE
21	11/20/22
22	into ites
23	
24	
25	
Comments / Site Act	etivities / Personnel Tracking

AECOM Daily Tailgate Meeting Summary

Project information

Project Name	T-30				
Project Number	60681370				
Project Manager	Paul Kalina				
Project Manager Phone #	2063105097				
Muster Point location	Clubhouse				
Meeting date	11/29/2023				
Business Line	Environment				
SH&E Manager	Tim Gilles				
SH&E Manager Phone #	3128335991				
First Aid Kit Location	Car				
Prepared by	Friedman, Gus				

Shift Summary

Location	Terminal 30 Seattle
Attendees (Workers)	Gus Friedman;
Attendees (Visitors)	
Tasks to be performed	Dewatering upgrades SVE 4 repair
Hazards to be considered today	pressure, motion
Will there be Lone Workers?	No
Hierarchy of controls	elimination, ppe
Personal Protective Equipment	Task Specific: gloves Mandatory: safetyglasses, longpants, reflectivevest, workboots
High Risk Events	

Topic of the week	Cold Weather PPE
Other topics discussed	
Mid day reviews	
End of the day comments.The supervisor confirms that the site is being left in a safe condition and work crew checked out as fit unless otherwise specified here	
Hazards	• <u>Motion</u> • <u>Pressure</u>

Proj	ect Information			Page of
Proje	ct Name:	T-30	Location:	Port of Seattle
Proje	ct/Task No.:		Weather:	36° cloudy
Date	:	11/29/23	Personnel:	<u>AB</u>
Obse	ervations			
	Time		Observation Descriptio	n
1	0950	Arrived on-site, Sy	istem on up	on arrival, sately tailque
2		Scope: biweekly	DEM	
3	1010	Taking HMIF !	system readi	ngs
4	10417	SVE discharge	PID: O.S p	pmv
5		Taking zone r	eading 5	
6	1122	Taking manifol	d reading	s and PID readings
7	12.00	Begin dewate	ring U	
8	1240	Taking final	readings	and calling GUS
9	1305	Jallked w/ Gus	- heading	back to Joffice
10		to drop off	equipment	
11	1310	off-site		
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				

Comments / Site Activities / Personnel Tracking

PORT OF SEATTLE - TERMINAL 30 SVE/AS System Data

pate: $1 12, 2, 12, 3$ Field Tech(s): A B Actual Time: 10223 PD D: 2, 7, 16, 2 Weather: 36, 0, 10, 0, 0, 10, 10, 10, 10, 10, 10, 1					-
SVE/AS Control PanelSVE Blower Runtime2.2.5.43.9Sparge Zone 1.Time(Hours)Transfer Pump Runtime7.9Sparge Zone 2.Time(Hours).MS PumpHMISparge Zone 2.Time(Hours).MS PumpHMISparge Zone 2.Time(Hours).MS PumpHMISparge Zone 2.Time(Hours).MS PumpHMISparge Zone 3.Time(Hours).Sparge Zone 3.TimeHMISA Blower RuntimeI.4.6.5.4.1.4.1.5.0.1.5.0.0 perational:HMISVE Blower VPD SetpointsI.4.6.7.4.1.4.1.5.0.1.5.0.0 perational:Cocolor -0.30.0.05.500 -0.800SVE Blower VPD SetpointsI.2.0.1.2.1.4.1.4.3.0.1.4.1.5.0.0.0 perational:Icool - 10.0.0.1.5.00 -0.800SVE AS System Settings & ReadingsSparge Zone Active:Stellower ProceedingsSVE/AS System Settings & ReadingsSVE Blower Filter DifferentialC. 5SVE/AS System Settings & ReadingsC. 5SVE Blower Intake PressureC. 5SVE Blower Intake PressureC. 5SVE Blower Discharge PressureC. 5(F1) - 71-500C. 5SVE Blower Discharge PressureG. 5SVE Blower Inlet TemperatureC. 5SVE Blower Discharge PressureG. 5(F1) - 71-200SVE Blower Discharge PressureG. 5SVE Blower Discharge PressureG. 5(F1) - 71-200SVE Blower Discharge PressureG. 5SVE Blower Discharge PressureG. 5(F1) - 71-200SVE Blower Discharge PressureG. 5SVE Blower Discharge PressureG. 5(F1) - 71-200 <t< td=""><td></td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td>Actual Time: 1023</td><td></td></t<>			· · · · · · · · · · · · · · · · · · ·	Actual Time: 1023	
SVE Blower Runtime 2.2.5.4.3.9 Sparge Zone 1 Time HMI (Hours) 7.9 Sparge Zone 2 Time HMI Transfer Pump Runtime 7.9 Sparge Zone 2 Time HMI AS Blower Runtime 1.4.6.5.4.4.1.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	PID ID: 2762	Weather: 36° c	oudy	HMI Time:	
(Hours)2253.5.1HAMSpar(s) Operational:HAMTransfer Pump Runtime7.9Sparge Zone 2 TimeHAM(Hours) - MS PumpHAMSpar(s) Operational:HAMAS Blower Runtime1.4.9.5.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4	SVE/AS Control Panel		/		
$ \begin{array}{c} (TOUS) \\ (TOUS) \\ Transfer Pump Runtime \\ (Hours) - Sparge Zone 2 Time \\ (Hours) - Sparge Blower \\ (Heurs) - Sparge Blower \\ (Hours) - Sparge Blower \\ (Hours) - Sparge Blower \\ (Hurns - Moure) \\ (F) - Tr-200 \\ (F) - Tr$	SVE Blower Runtime	77542 9		~	
(Hours) - MS PumpIIIIHMISparis) Operational:HMIAS Blower Runtime 146644.4 HMISparge Zone 3 TimeHMI(Hours) - Sparge Blower 146676.6 Sparge Zone 4 TimeHMISk Blower VFD Setpoints 14676.6 Sparge Zone 5 TimeCOCO - 3363, C5500 - 0860(Hours) - Sparge Zone 5 TimeCOCO - 3363, C5500 - 0860Sparge Zone 5 TimeCOCO - 0266, 15500 - 0860SVE Blower VFD Setpoints $12.0/12.2/143.0$ HMISparge Zone 5 TimeCOCO - 0266, 15500 - 0860(Hertz/Amps/Torque %) - VFD $22.0/16.7/94.3$ HMISparge Zone 6 TimeCOCO - 0266, 15500 - 0860AS Blower VFD Setpoints $52.0/16.7/94.3$ HMISparge Zone 6 TimeCOCO - 0266, 15500 - 0860(Hertz/Amps/Torque %) - VFD $52.0/16.7/94.3$ HMISparge Zone Active:SVEIAS System Settings & ReadingsAS Heat Exchanger Discharge Temp $52.0/16.7/94.3$ HMISparge Zone 2 TimeCOCO - 0266, 15500 - 08600AS Blower Intake Pressure 7.5 Pressure ("H20). DPI-200 0.5 (H20) - DPI-500 2.5 Pressure ("H20). DPI-200 0.4 AS Blower Discharge Pressure (1.5) 7.500 9.5 SVE Blower Initet Temperature $(7.5)^{-1}$ 7.200 7.5 SVE Blower Discharge Pressure $(1.5)^{-1}$ 7.200 7.5 SVE Blower Discharge Pressure $(1.5)^{-1}$ 7.400 7.3^{-1} SVE Blower Discharge Pressure $(1.5)^{-1}$ 7.20^{-1} 7.20^{-1} SVE Blower Discharge Pressure $(1.$, ,	СЕОТО НМ		H	IIV
AS Blower Runtime $144\%\%$, 44 , 44 , 44 , 55 parge 20ne 3 Time		7.9			
(Hours) - Sparge Blower 14%%%%%% HMI (Spark) Operational: HMI AS Heat Exchanger Runtime 14%%%%%% Sparge Zone 4 Time HMI SVE Blower VFD Setpoints 42.0/12.2/43.0 Sparge Zone 5 Time 0000 - 036 0, 0500 - 0500 10000 - 1800, 1800 AS Blower VFD Setpoints 42.0/12.2/43.0 HMI (Spark) Operational: 10000 - 036 0, 0500 - 0500 10000 - 1800, 1800 AS Blower VFD Setpoints 42.0/12.2/43.0 HMI (Spark) Operational: 10000 - 036 0, 0500 - 0500 10000 - 1800, 1800 AS Blower VFD Setpoints 52.0/16.7/94.3 HMI (Spark) Operational: 10000 - 036 0, 0500 - 0500 10000 - 1800, 1800 AS Blower VFD Setpoints 52.0/16.7/94.3 HMI (Spark) Operational: 10000 - 036 0, 0500 - 0500 10000 - 1800, 1800 SVE/AS System Settings & Readings AS AS AS Blower Inlet Spark (Hz U) (Janual		HM		H	<u> </u>
AS Heat Exchanger Runtime (Hours) Sparge Zone 4 Time (Hours) Sparge Zone 4 Time (Hours) Sparge Zone 5 Time (Figure WFD Setpoints (Hertz/Amps/Torque %) - VFD $\frac{1}{2.2} - \frac{1}{4.3.0} + \frac{1}{4.0}$ (Hours) Sparge Zone 5 Time (Goo - Goo, 15 co - 18 ger) Sparge Zone 5 Time (Goo - Goo, 15 co - 18 ger) Sparge Zone 5 Time (Hertz/Amps/Torque %) - VFD $\frac{1}{2.2} - \frac{1}{4.3.0} + \frac{1}{4.0}$ (Hours) Sparge Zone Active: $\frac{5}{1000} - \frac{1000}{1000} + 100$		14884.4			./1
(Hours)M & T & G HMSpan(s) Operational:HMMSVE Blower VFD Setpoints $y_2 \circ / (2 . 2 / 43.0 HM)$ Sparge Zone S TimeC000 - 33 \circ 0.55 00 - 0800(Hertz/Amps/Torque %) - VFD $y_2 \circ / (2 . 2 / 43.0 HM)$ Sparge Zone S TimeC000 - 33 \circ 0.55 00 - 0800AS Blower VFD Setpoints $y_2 \circ / (2 . 2 / 43.0 HM)$ Sparge Zone Active: $y_{1000} - 13 \circ o$.(Hertz/Amps/Torque %) - VFD $y_2 \circ / 16.7 / 94.3 HMI$ Sparge Zone Active: $y_{1000} - 13 \circ o$.SVE/AS System Settings & ReadingsAS Heat Exchanger Discharge Temp $f = 2 \circ o$ $f = 2 \circ o$ (F) - $Tr.500$ $2 \cdot 5$ SVE Blower Dilution Valve $f \cdot 5$ AS Blower Intake Pressure $2 \cdot 5$ SVE Blower Filter Differential $O \cdot 5$ (F) - $Tr.200$ $O \cdot 5$ SVE Blower Discharge Pressure $G \cdot 4$ (Fsl) - $PI-501$ $X \in Blower Discharge PressureG \cdot 4SVE Blower Inlet Temperature(PSI) - PI-300SVE Blower Discharge Pressure(F) - Tr.200X = 0 \cdot f = 0 \cdot $		ни			VII
SVE Blower VFD Setpoints (Hertz/Amps/Torque %) - VFDSparge Zone 5 Time Sparge Zone 70 Sporge Zone 70 Spor	_	14478. (SHM	1 0	Н	AL .
AS Blower VFD Setpoints $\frac{52.0/16.7/94.3}{1.5}$ HMI Sparge Zone Active: 5 SVE/AS System Settings & Readings AS Heat Exchanger Discharge Temp 5.0° (W turns open) (I 5) AS Blower Intake Pressure 2.5 SVE Blower Filter Differential 0.5 Pressure ("H20)-DPI-200 0.5 AS Blower Intake Pressure 0.5 SVE Blower Inlet Differential 0.5 AS Blower Discharge Pressure 0.5 SVE Blower Inlet Differential 0.5 SVE Blower Inlet Differential 0.5 SVE Blower Discharge Pressure $(*120)$ - $FI-200$ 0.4 AS Blower Discharge Pressure 0.5 SVE Blower Discharge Pressure $(*12)$ - $FI-200$ 0.4 AS Blower Inlet Temperature $(-5)^{\circ}$ SVE Blower Discharge Pressure $(-120)^{\circ}$ SVE Discharge PID 0.4 Treated Vapor Discharge PID $(-120)^{\circ}$ SVE Discharge PID $(-120)^{\circ}$ SVE Compressor Oil Level ³ (% full sightglass) $ (-150)^{\circ}$ SVE Compressor Oil Level ³ (% full sightglass) $ (-150)^{\circ}$ SVE Compressor Oil Level ³ (% full sightglass) $ (-120)^{\circ}$ SVE Discharge Tank $(-110)^{\circ}$ SPE POIUm to LAH float ⁶ $ (-120)^{\circ}$ SPE Volume in Storage Tank $ (-120)^{\circ}$ SPE Volume to LAH float ⁶ $ (-120)^{\circ}$				0000-0300,0500-080	0
AS Blower VFD Setpoints $\frac{52.0/16.7/94.3}{1.5}$ HMI Sparge Zone Active: 5 SVE/AS System Settings & Readings AS Heat Exchanger Discharge Temp 5.0° (W turns open) (I 5) AS Blower Intake Pressure 2.5 SVE Blower Filter Differential 0.5 Pressure ("H20)-DPI-200 0.5 AS Blower Intake Pressure 0.5 SVE Blower Inlet Differential 0.5 AS Blower Discharge Pressure 0.5 SVE Blower Inlet Differential 0.5 SVE Blower Inlet Differential 0.5 SVE Blower Discharge Pressure $(*120)$ - $FI-200$ 0.4 AS Blower Discharge Pressure 0.5 SVE Blower Discharge Pressure $(*12)$ - $FI-200$ 0.4 AS Blower Inlet Temperature $(-5)^{\circ}$ SVE Blower Discharge Pressure $(-120)^{\circ}$ SVE Discharge PID 0.4 Treated Vapor Discharge PID $(-120)^{\circ}$ SVE Discharge PID $(-120)^{\circ}$ SVE Compressor Oil Level ³ (% full sightglass) $ (-150)^{\circ}$ SVE Compressor Oil Level ³ (% full sightglass) $ (-150)^{\circ}$ SVE Compressor Oil Level ³ (% full sightglass) $ (-120)^{\circ}$ SVE Discharge Tank $(-110)^{\circ}$ SPE POIUm to LAH float ⁶ $ (-120)^{\circ}$ SPE Volume in Storage Tank $ (-120)^{\circ}$ SPE Volume to LAH float ⁶ $ (-120)^{\circ}$		42.0/12.2/43.0 HM		1000-1300, 1300-1801	M 2000-2200
INTERPOS OF THE SECOND SECON			Canada Zana Astiva		
AS Heat Exchanger Discharge Temp SVE Blower Dilution Valve $(1, 5)$ ("F) - 71-500 SVE Blower Filter Differential $0, 5$ AS Blower Intake Pressure $2, 5$ SVE Blower Filter Differential $0, 5$ AS Bled Valve $0, 5$ SVE Blower Inlet Differential $0, 4$ AS Blower Discharge Pressure $0, 5$ SVE Blower Inlet Differential $0, 4$ AS Blower Discharge Pressure $0, 5$ SVE Blower Inlet Differential $0, 4$ AS Blower Discharge Pressure $0, 5$ SVE Blower Inlet Differential $0, 4$ AS Blower Discharge Pressure $0, 5$ SVE Blower Discharge Pressure 2 (PSI) - PI-501 $0, 5$ SVE Blower Discharge Pressure 2 ("H ₂ O) - VI-200 30 SVE Blower Discharge Pressure 4 ("H ₂ O) - VI-200 30 SVE Blower Discharge Temperature 72° ("H ₂ O) - VI-200 30 SVE Blower Discharge Temperature 72° (Sightglass % Full) ³ $0, 4$ Treated Vapor Discharge PID 72° (ppmv) $0, 4$ SVE Compressor Oil Level ³ $(% full sightglass)$ 71° 75° <tr< td=""><td>(Hertz/Amps/Torque %) - VFD</td><td><u> 52.0/10.7/94.3 нм</u></td><td>Sparge Zone Active:</td><td></td><td></td></tr<>	(Hertz/Amps/Torque %) - VFD	<u> 52.0/10.7/94.3 нм</u>	Sparge Zone Active:		
(*F) - 77-500(# turns open)1.5AS Blower Intake Pressure2.5SVE Blower Filter Differential0.5(*H 20) - DPI-5002.5Pressure ("H 20) - DPI-2000.4AS Blower Discharge Pressure0.5SVE Blower Inlet Differential0.4(# turns open)AS Blower Discharge Pressure0.5Pressure ("H 20) - FI-2000.4AS Blower Discharge Pressure9.5Transfer Pump Discharge Pressure0.4(*F) - 71-2009.5SVE Blower Discharge Pressure9.5SVE Blower Inlet Temperature2.59SVE Blower Discharge Pressure9(*F) - 71-2009SVE Blower Discharge Pressure99SVE Blower Inlet Vacuum3.0SVE Blower Discharge Pressure99(*H 20) - VI-2009SVE Blower Discharge Temperature77(*H 20) - VI-20091111SVE Blower Discharge PID0.5Treated Vapor Discharge PID7(sightglass % Full) ¹ 0.5SVE Compressor Oil Level ³ SVE Discharge PID0.5SVE Compressor Oil Level ³ (*full sightglass)DTF in Storage Tank(*full sightglass)DTF in Storage Tank(*full(*full(*full sightglass)	SVE/AS System Settings & Readings	, ,			
AS Blower Intake Pressure (" H2O) - DPI-5002.5SVE Blower Filter Differential Pressure (" H2O) - DPI-2000.5AS Bleed Valve (# turns open)0.5SVE Blower Inlet Differential Pressure (" H2O) - FI-2000.4AS Blower Discharge Pressure (PSI) - PI-5010.5SVE Blower Inlet Differential Pressure (" H2O) - FI-2000.4SVE Blower Inlet Temperature ("F) - 7I-200 4.5 SVE Blower Discharge Pressure ("H2O) - PI-400 3.5 SVE Blower Inlet Vacuum ("H2O) - VI-200 3.5 SVE Blower Discharge Pressure ("H2O) - PI-400 4.6 SVE Blower Inlet Vacuum ("H2O) - VI-200 3.5 SVE Blower Discharge Pressure ("H2O) - PI-400 4.6 SVE Blower Inlet Vacuum ("H2O) - VI-200 3.5 SVE Blower Discharge Pressure ("H2O) - PI-400 4.6 SVE Blower Inlet Vacuum ("H2O) - VI-200 3.5 SVE Blower Discharge Temperature ("F) - TI-400 7.3 SVE Blower Inlet Vacuum ("H2O) - VI-200 3.5 SVE Blower Discharge Temperature ("F) - TI-400 7.3 SVE Blower Inlet Vacuum ("H2O) - VI-200 3.5 SVE Blower Discharge Temperature ("F) - TI-400 7.3 SVE Discharge PID (ppmv) 0.6 5.6 SVE Compressor Oil Level³ (% full sightglass) 7.5 Other Components 4.5 5.5 SVE Compressor Oil Level³ (% full sightglass) 7.5 DTF in Storage Tank (t) 7.5 5.5 Spare Volume to LAH float 6 $6.02.7.5$ Water Volume in Storage Tank^5 (gal) 4.00 6.5 Spare Volume to LAH float 6 $6.02.7.5$ <td>AS Heat Exchanger Discharge Temp</td> <td>Fa?</td> <td>SVE Blower Dilution Valve</td> <td>15</td> <td></td>	AS Heat Exchanger Discharge Temp	Fa?	SVE Blower Dilution Valve	15	
("H20) - DPI-500 2.5 Pressure ("H20) - DPI-200 0.5 AS Bleed Valve 0.5 SVE Blower Inlet Differential 0.4 (# turns open) 0.5 SVE Blower Inlet Differential 0.4 AS Blower Discharge Pressure 0.5 Transfer Pump Discharge Pressure 3 (PS1) - PI-501 Transfer Pump Discharge Pressure 3 SVE Blower Inlet Temperature 4.5 0° SVE Blower Discharge Pressure 4 (PS1) - PI-200 2.5 0° SVE Blower Discharge Pressure 4 4 SVE Blower Inlet Vacuum 3.0° SVE Blower Discharge Temperature 73° ("H ₂ O) - VI-200 3.0° SVE Blower Discharge Temperature 73° Knockout Tank Level 0.4° 1.5° 73° SVE Discharge PID 0.4° $(ppmv)^{2}$ $$ Other Components 8° 8° $(\% full sightglass)$ $$ DTF in Storage Tank WD in Storage Tank ⁴ 1.5° (ft) Water Volume in Storage Tank ⁵ 400° , 6° Spare Volume to LAH float ⁶ 6027.5° <td>(°F) - <i>TI-500</i></td> <td>-3 -</td> <td>(# turns open)</td> <td>l· J</td> <td></td>	(°F) - <i>TI-500</i>	-3 -	(# turns open)	l· J	
AS Bleed Valve $0, 5$ SVE Blower Inlet Differential $0, 4$ (# turns open) $0, 5$ Transfer Pump Discharge Pressure $0, 4$ AS Blower Discharge Pressure $0, 5$ Transfer Pump Discharge Pressure 3 SVE Blower Inlet Temperature $4, 5$ $0, 4$ $7, 300$ SVE Blower Inlet Temperature $4, 5$ 0° SVE Blower Discharge Pressure 3 SVE Blower Inlet Vacuum $4, 5$ 0° SVE Blower Discharge Pressure 4 4 SVE Blower Inlet Vacuum $3, 0$ SVE Blower Discharge Pressure 4 4 SVE Blower Inlet Vacuum $3, 0$ SVE Blower Discharge Temperature $7, 3^{\circ}$ SVE Blower Inlet Vacuum $3, 0$ 5 SVE Blower Discharge Temperature $7, 3^{\circ}$ SVE Discharge PID $0, 4$ Treated Vapor Discharge PID $7, 4$ $7, 5^{\circ}$ (ppmv) $0, 4$ $7, 5^{\circ}$ $7, 5^{\circ}$ $7, 5^{\circ}$ $7, 5^{\circ}$ Other Components $4, 5^{\circ}$ $7, 5^{\circ}$ $7, 5^{\circ}$ $7, 5^{\circ}$ $7, 5^{\circ}$ $7, 5^{\circ}$ OF in Storage Tank $7, 5^{\circ}$ $7, 5$	AS Blower Intake Pressure	24	SVE Blower Filter Differential	0.5	
(# turns open)U. \Im Pressure ("H20) - FI-200U. 4AS Blower Discharge Pressure (PSI) - PI-501 \Im . \Im Transfer Pump Discharge Pressure (PSI) - PI-300 \Im SVE Blower Inlet Temperature (°F) - TI-200 4 \Im SVE Blower Discharge Pressure ("H20) - PI-400 4 SVE Blower Inlet Vacuum (°F) - TI-200 \Im SVE Blower Discharge Pressure ("H20) - PI-400 4 SVE Blower Inlet Vacuum (°F) - TI-200 \Im SVE Blower Discharge Temperature (°F) - TI-400 7 SVE Blower Inlet Vacuum ('H20) - VI-200 \Im \Im SVE Blower Discharge Temperature (°F) - TI-400 7 SVE Discharge PID (ppmv) \bigcirc (f) \square \square \square SVE Discharge PID (ppmv) \bigcirc \langle \square \square \square AS Compressor Oil Level ³ (% full sightglass) \square \square \square DTF in Storage Tank (ft) \square \square \square \square WD in Storage Tank (gal) \square \square \square \square (ft) \square \square \square \square \square		2.7			
In units open 1 Image: Pressure (Pressure (Pressure (Psi) - Pr-200) AS Blower Discharge Pressure (Psi) - Pr-501 Transfer Pump Discharge Pressure (Psi) - Pr-300 SVE Blower Inlet Temperature (Psi) - Pr-200 Image: Amage: Ama		05		GU	
(PSI) - PI-501 $(PSI) - PI-300$ $(PSI) - PI-300$ SVE Blower Inlet Temperature (°F) - TI-200 $(2 - 5)^{\circ}$ SVE Blower Discharge Pressure ("H ₂ O) - PI-400 $(4 - 5)^{\circ}$ SVE Blower Inlet Vacuum ("H ₂ O) - VI-200 $3O$ SVE Blower Discharge Temperature (°F) - TI-400 73° Knockout Tank Level (Sightglass % Full)^1 O '[. $(2 - 7)^2$ 73° SVE Discharge PID (ppmv) O . G Treated Vapor Discharge PID (ppmv)^2 O Other Components $SVE Compressor Oil Level^3$ (% full sightglass) O G DTF in Storage Tank (ft) O . G Spare Volume to LAH float (gal) I . 50°		0.2		O , N	_
SVE Blower Inlet Temperature 450° SVE Blower Discharge Pressure 44° $(^{\circ}F) - 7I - 200$ 30° SVE Blower Discharge Temperature 73° SVE Blower Inlet Vacuum 30° SVE Blower Discharge Temperature 73° $("H_20) - VI - 200$ 30° SVE Blower Discharge Temperature 73° Knockout Tank Level 0° (\cdot) 73° SVE Discharge PID 0° (\cdot) (\cdot) (ppmv) 0° (\cdot) (\cdot) Other Components AS Compressor Oil Level ³ $(\%$ full sightglass) $(\%$ full sightglass) $(\%$ full sightglass) DTF in Storage Tank WD in Storage Tank ⁴ 1.5 (ft) $\mathcal{UOO} \cdot \odot \mathcal{S}$ Spare Volume to LAH float ⁶ $602.7.75$	_	9.5		2	
$ \begin{pmatrix} {}^{\circ}F \\ J & J \\ J$					-
(" H_20) - VI -200 50 (°F) - TI -400 73 Knockout Tank Level (Sightglass % Full) ¹ O' i i SVE Discharge PID (ppmv) O' i Treated Vapor Discharge PID (ppmv) ² Other Components O' i i AS Compressor Oil Level ³ (% full sightglass) i i DTF in Storage Tank (ft) i i i WD in Storage Tank (gal) i <td< td=""><td></td><td>(-25)</td><td>-</td><td>4</td><td></td></td<>		(-25)	-	4	
Knockout Tank Level O I (Sightglass % Full) ¹ O I SVE Discharge PID O I (ppmv) O I Other Components SVE Compressor Oil Level ³ Image: Compressor Oil Level ³ (% full sightglass) Image: Compressor Oil Level ³ Image: Compressor Oil Level ³ DTF in Storage Tank Image: Compressor Oil Level ³ Image: Compressor Oil Level ³ (ft) Image: Compressor Oil Level ³ Image: Compressor Oil Level ³ (% full sightglass) Image: Compressor Oil Level ³ Image: Compressor Oil Level ³ (% full sightglass) Image: Compressor Oil Level ³ Image: Compressor Oil Level ³ (% full sightglass) Image: Compressor Oil Level ³ Image: Compressor Oil Level ³ (ft) Image: Compressor Oil Level ³ Image: Compressor Oil Level ³ Image: Compressor Oil Level ³ (ft) Image: Compressor Oil Level ³ Image: Compressor Oil Level ³ Image: Compressor Oil Level ³ (gal) Image: Compressor Oil Level ³ Image: Compressor Oil Level ³ Image: Compressor Oil Level ³ (gal) Image: Compressor Oil Level ³ Image: Compressor Oil Level ³ Image: Compressor Oil Level ³	SVE Blower Inlet Vacuum	20	SVE Blower Discharge Temperature	100	-
(Sightglass % Full) ¹ () (. Image: constraint of the state	(" H ₂ 0) - <i>VI-200</i>	50	(°F) - <i>TI-400</i>	12	
SVE Discharge PID (ppmv) Treated Vapor Discharge PID (ppmv) ² Other Components SVE Compressor Oil Level ³ (% full sightglass) AS Compressor Oil Level ³ SVE Compressor Oil Level ³ (% full sightglass) DTF in Storage Tank (ft) WD in Storage Tank ⁴ (ft) I. 5 Water Volume in Storage Tank ⁵ \mathcal{UOO} Spare Volume to LAH float ⁶ $\mathcal{GO2}$ \mathcal{I}	Knockout Tank Level	$\sim \cdot$			
(ppmv) (ppmv) ² Other Components AS Compressor Oil Level ³ SVE Compressor Oil Level ³ (% full sightglass) (% full sightglass) DTF in Storage Tank (% full sightglass) (ft) WD in Storage Tank ⁴ (ft) (ft) Water Volume in Storage Tank ⁵ UOO . S (gal) Spare Volume to LAH float ⁶	(Sightglass % Full) ¹	\bigcup (.			
Other Components AS Compressor Oil Level ³ (% full sightglass) DTF in Storage Tank (ft) Water Volume in Storage Tank ⁵ (gal) SVE Compressor Oil Level ³ (% full sightglass) (SVE Discharge PID		Treated Vapor Discharge PID		
AS Compressor Oil Level3SVE Compressor Oil Level3(% full sightglass)(% full sightglass)DTF in Storage Tank(% full sightglass)(ft)(ft)Water Volume in Storage Tank5 $\mathcal{UOO} \cdot \mathfrak{OS}$ (gal)Spare Volume to LAH float6	(ppmv)	0.8	(ppmv) ²	And the same contact and a same	
(% full sightglass)(% full sightglass)DTF in Storage TankWD in Storage Tank ⁴ (ft)(ft)Water Volume in Storage Tank ⁵ $\mathcal{UOO} \cdot \mathfrak{OS}$ (gal)Spare Volume to LAH float ⁶ (gal) $\mathcal{OO2} \cdot \mathfrak{OS}$	Other Components				
(% full sightglass)(% full sightglass)DTF in Storage TankWD in Storage Tank ⁴ (ft)(ft)Water Volume in Storage Tank ⁵ $\mathcal{UOO} \cdot \mathfrak{OS}$ (gal)Spare Volume to LAH float ⁶ (gal) $\mathcal{OO2} \cdot \mathfrak{OS}$	AS Compressor Oil Level ³		SVE Compressor Oil Level ³		-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(-		
(ft)(ft) $/ \cdot D$ Water Volume in Storage Tank ⁵ $\mathcal{HOO} \cdot \mathfrak{OS}$ Spare Volume to LAH float ⁶ (gal) $\mathcal{GOQ} \cdot \mathfrak{OS}$ (gal)				1.000	
	(ft)	,	_	/. D	
	Water Volume in Storage Tank⁵	1100.05	Spare Volume to LAH float ⁶	10175	
NOTES:	(gal)	-70 00	(gal)	602.0	
	NOTES:				
	1				
Abbassistions	L				

Abbreviations:

Notes:

" H_2O = Inches of Water

°F = Degrees Fahrenheit

- PSI = Pounds per Square Inch
- % = Percent
- DTF Depth to Fluid
- DTB Depth to Bottom
- MP Measuring Point
- WD Water Depth

1. Low float = 0% full. Mid float = 100% full.

2. If applicable

3. Oil level should be at the middle of the sightglass with the machine not operating.

4. WD = 6.92-DTF OR as measured with the dipstick

WD at the LAH float = 3.76 ft (1002.8 gal).; WD at the LAHH float = 4.26 ft (1136.1 gal).

5. Water vol = WD*266.7

The tank holds 266.7 gal/ft (2000 gal; 7.25' dia x 7.5' H)

6. Spare vol to LAH float = 1002.8-current water volume

PORT OF SEATTLE - TERMINAL 30 AS Manifold Readings

	Pressure/Flow Readings								
Well	Pressure	Flow	Valve Pos.		Well	Pressure	Flow	Valve Pos.	
ID	(PSIG)	(SCFMG)	(% Open) Zone 2	Comments	ID	(PSIG)	(SCFMG)	(% Open) Zone 4	Comments
<u> </u>						\square			
AS-7					AS-17				
AS-8					AS-18				
							$ \rightarrow $		
AS-9					AS-19		١		
								\mathbf{h}	
AS-10					AS-20			\backslash	
AS-11					AS-21				
					AS-22				
			Zone 3			<u> </u>		Zone 1	
AS-12					AS-1				
••••		\searrow			 				
AS-13					AS-2				
			\land						
AS-14					AS-3				
AS-15					AS-4				ľ,
					-				<u>_</u>
AS-16					AS-5				
		<u> </u>	<u> </u>						
					AS-6				
			Zone 5		-				
AS-23	10	5.0	100						
					1				
AS-24	9.25	S.J							
		2.0							
					-				
AS-26	16.25	4.5							
					1				
AS-27	9.0	5.5	A						
Notes:									

% = Percent

" H_2O = Inches of water

deg F - degrees Fahrenheit

N/A = Not applicable

ppmv = Parts per million volume

PSIG = Pounds per square inch gauge

PORT OF SEATTLE - TERMINAL 30

SVE Manifold Readings (1 of 3)

Date: 11/29/23									Time:	112				
Field Te	ield Tech(s):										PID ID: 2762			
Weathe	Neather: 3%° cloudy										•			
**Instru	i ctions : Ta					ering or adjusting vac/flow. Mini kno	ockout all	ows PID r	eadings to	be taken ev	en if water i	s present in the rotameters.		
						Vacuum/Fl		-						
Well ID	Vacuum ("H2O)	Flow (SCFMG)		e Pos.)pen)	PID (ppmv)	Comments	Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	PID (ppmv)	Comments		
HSVE-2	23	46	10	0	06		SVE-10	22	21	50	[.2			
HSVE-3	32	48	,		1.9		SVE-9	34	1	106	0.7	Float Stuck		
SVE-4	24	}			0./	Float rool disconnected	SVE-8		-	O)			
SVE-5	29	12			2.2	•	SVE-6	34	36	00	0.\			
SVE-7	24	(L)	-		0.3		HSVE-1	16	58	100				
# Turns Open: 1.5														
Dilution Valve Vacuum ("H2O):														
Notes:														
Abbreviations:														

% = Percent

" H_2O = Inches of water

deg F - degrees Fahrenheit

ppmv = Parts per million volume PSIG = Pounds per square inch gauge

N/A = Not applicable

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (2 of 3)

•

Date:	11/29	23	Time:	1200	
Field Tech	•	' AB	Pump ID:	4(,330
Weather:		36° cloudy			
			SVE Dewatering		
Well ID	Dewater (Gal)	/ Comments	Well ID	Dewater (Gal)	Comments
HSVE-2	1/4	Clear	SVE-10	1/2	Clear
HSVE-3	(2	clear	SVE-9	1/4	brown, muddy
SVE-4	1/2	Clear	SVE-8		closed
SVE-5	1/2	clear	SVE-6	1/3	clear
SVE-7	1/2	clear	HSVE-1	1/2	clear
Notes:					
Abbreviat	ions:	Gal = gallons			AECOM

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (3 of 3)

Date:	11/2	9 23			Time:	124	5			
Field Teo	eld Tech(s): AB Weather: 36° cloudy									
**Instru	ctions : Tak	e these readir	igs AFTER de	watering and adjusting vac/flow to limit v	vater proc	luction.	•)	
				FINAL Vacuum		adings				
Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	Comments	Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	Comments	
HSVE-2	21	46	100		SVE-10	20	12	50		
HSVE-3	32	- 5			SVE-9	32	~	100)	Float stuck	
SVE-4	22			float rod disconnected	SVE-8			\bigcirc	closed	
SVE-5	24	15			SVE-6	19	5	100		
SVE-7	24	15			HSVE-1	15	59	100		
Dilution Valve		# Turns Ope	en:	1.5			1			
Vacuum ("H2O): 27										
Notes:	lotes:									
Abbrevia	ations:									

% = Percent

" H₂O = Inches of water

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

Des	ment ID 27621 cription RAE MiniR/ librated 11/27/2023	and the second sec					
Model N Serial Numb	acturer Rae Systems Jumber PGM7320 er/Lot 592-913341 umber			State Certifie State Temp °	us Pass		
Lo	rtment			Humidity '	% 36		
		Calibra	tion Specifications				
	Group # 1 oup Name VOC tated Accy Pct of Read	ling		Range Acc % ading Acc % Plus/Minus	3.0000		
<u>Nom In Val / In V</u> 100.0 / 100.0	<u>al In Type</u> PPM	<u>Out Val</u> 100.0	1 2 2 3 2 3 2 1 2 1 1 1 1 1 1 1 1 1 1 1	<u>End As</u> 103.5	<u>Lft As</u> 100.0	<u>Dev%</u> 0.00%	Pass/Fail Pass
Fest Instruments	Used During the Cali	bration			(As	Of Cal Entr	y Date)
Test Standard ID	Description	Manufacturer	Model Number	Serial Numb Lot Number	Last	Cal Date/ Ex	xt Cal Date /
SEA ISO 100PPM 304-402817044- 1	Isobutylene (C4H8) 10 PPM	00 Airgas	x02ai99cp342066	304-402817 -1		ed Date 8/1	1/2027

Calibration Result Calibration Successful Who Calibrated Hakam Benlashher

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the

manufacturer's specifications and/or the customer's own specific needs. Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

Instrument ID	46330				
Description	Solinst Pump				
	11/28/2023 4:57:21PM				
Manufacturer Model Number Serial Number/ Lot Number	Pump na	State Certified Status Temp °C			
Location Department		Humidity % 35			
Grouj Group Nai	p # 1	ion Specifications			
Test Performed: Yes	As Found Result: Pass	As Left Result:	Pass		
Test Instruments Used D	uring the Calibration		(As Of Cal Entry Date)		
Test Standard ID Descrip	tion <u>Manufacturer</u>	Serial Number Model Number Lot Number	<u>r /</u> <u>Next Cal Date /</u> <u>Last Cal Date/ Expiration Date</u> <u>Opened Date</u>		

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Warren Baxter

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Project Informatio	n		Page of
Project Name:	T30	Location:	Port of Seattle
Project/Task No.:		Weather:	45° cloudy
Date:	12/14/23	Personnel:	AB
Observations	•		
Time		Observation Descriptio	
1 1115	Arrived on-site;	safety taily	ate, system on upon
2	arrival - Scope:	biweekly	OEM
3 135	Taking HMI	readings	
4 1150	Begin taking su	ystem please	lings
5 215	Taking zone	readings	1
6	SVE dischard	je PID:	3. GppmV
7 1235	Taking vac &	PID read	lings from wells
8 1330	Begin dewate	eriha	<i>J</i>
9 1400	Taking post d	ewatering	reading S
10 1420	Calling cus	to dise	,50 readings
11 1435	Heading to	the office	ce to drop equipment
12 1530	Back Jon-sit	e, vac +	ruck already here
13 1125	5 Port traffic ha	is cleared	- begin gauging
14	RW-107		
15 2036	Recovery event (jomplete ~	had to you RW-107
16	three times -	Vacummir	y poly fant
17 2/13	Leaving site	/	
18	J		
19			
20			
21			
22			
23			
24			
25			

Comments / Site Activities / Personnel Tracking

PORT OF SEATTLE - TERMINAL 30 SVE/AS System Data

Date: 12/14/23	Field Tech(s): AB		Actual Time: 1150
PID ID: 36590	Weather: 45°	cloudy	HMI Time: 1240
SVE/AS Control Panel	· · · · ·		
SVE Blower Runtime	22/1027	Sparge Zone 1 Time	
(Hours)	22902.7 HM	Span(s) Operational:	HM
Transfer Pump Runtime	79	Sparge Zone 2 Time	
Hours) - <i>MS Pump</i>	HM	Span(s) Operational:	HM
AS Blower Runtime	150020	Sparge Zone 3 Time	
(Hours) - Sparge Blower	10093.4	Span(s) Operational:	HM
AS Heat Exchanger Runtime	100870	Sparge Zone 4 Time	
Hours)	15001.2	Span(s) Operational:	HM
SVE Blower VFD Setpoints	110 0/17 1/11/10/10/	Sparge Zone 5 Time	0000 - 0300, 0500 - 0800
(Hertz/Amps/Torque %) - VFD	42.0/13.4/48.5 MM	Span(s) Operational:	1000-1300, 1500-1890
AS Blower VFD Setpoints	100 alia 1/02 11-1	Sparge Zone Active:	5
Hertz/Amps/Torque %) - VFD	52.0/10.6/93.47		
SVE/AS System Settings & Readings			
AS Heat Exchanger Discharge Temp	$(a q^{\circ})$	SVE Blower Dilution Valve	1
(°F) - <i>TI-500</i>	69	(# turns open)	
AS Blower Intake Pressure	115	SVE Blower Filter Differential	05
" H2O) - <i>DPI-500</i>	2.20	Pressure (" H20) - DPI-200	0.5
AS Bleed Valve	$M \leq 1$	SVE Blower Inlet Differential	07
# turns open)	0.5	Pressure (" H20) - <i>FI-200</i>	0.7
AS Blower Discharge Pressure	OM	Transfer Pump Discharge Pressure	
(PSI) - <i>PI-501</i>		(PSI) - <i>PI-300</i>	
SVE Blower Inlet Temperature	50°	SVE Blower Discharge Pressure	26
°F) - <i>TI-200</i>	00 3	(" H ₂ O) - <i>PI-400</i>	5.6
SVE Blower Inlet Vacuum	110	SVE Blower Discharge Temperature	Sel o
" H ₂ 0) - <i>VI-200</i>	42	(°F) - <i>TI-400</i>	00
Knockout Tank Level	Cost		
Sightglass % Full) ¹	$ 0 \rangle$		
SVE Discharge PID	20	Treated Vapor Discharge PID	
(ppmv)	3.8	(ppmv) ²	
Other Components			
AS Compressor Oil Level ³		SVE Compressor Oil Level ³	
, (% full sightglass)		(% full sightglass)	
DTF in Storage Tank	_	WD in Storage Tank ⁴	15
(ft)		(ft)	1.5
Water Volume in Storage Tank ⁵	11	Spare Volume to LAH float ⁶	10010
(gal)	400.05	(gal)	602.15
		1.0 /	

Abbreviations:	
----------------	--

Notes:

" H₂O = Inches of Water

°F = Degrees Fahrenheit

PSI = Pounds per Square Inch

% = Percent

DTF - Depth to Fluid

DTB - Depth to Bottom

MP - Measuring Point

WD - Water Depth

1. Low float = 0% full. Mid float = 100% full.

2. If applicable

3. Oil level should be at the middle of the sightglass with the machine not operating.

4. WD = 6.92-DTF OR as measured with the dipstick

WD at the LAH float = 3.76 ft (1002.8 gal).; WD at the LAHH float = 4.26 ft (1136.1 gal).

5. Water vol = WD*266.7

The tank holds 266.7 gal/ft (2000 gal; 7.25' dia x 7.5' H)

6. Spare vol to LAH float = 1002.8-current water volume

PORT OF SEATTLE - TERMINAL 30 AS Manifold Readings

AS-8 AS-18 AS-9 AS-19 AS-10 AS-20 AS-10 AS-20 AS-11 AS-20 AS-11 AS-20 AS-11 AS-20 AS-12 AS-11 AS-12 AS-11 AS-13 AS-12 AS-14 AS-2 AS-15 AS-1 AS-16 AS-5 AS-26 R.0 AS-27 7.0					Pressure/F	low Reading	s			
Zone 2 Zone 4 AS:7 AS:17 AS:8 AS:17 AS:8 AS:19 AS:9 AS:19 AS:10 AS:20 AS:11 AS:21 AS:11 AS:22 AS:12 AS:1 AS:13 AS:2 AS:14 AS:3 AS:15 AS:4 AS:16 AS:5 AS:23 7.15 AS:24 7.0 AS:25 7.6 AS:26 8.0 AS:27 7.0									Valve Pos.	
AS-7 AS-17 AS-8 AS-17 AS-8 AS-18 AS-9 AS-19 AS-10 AS-20 AS-11 AS-20 AS-12 AS-14 AS-13 AS-1 AS-14 AS-2 AS-15 AS-4 AS-16 AS-6 X2000 AS-6	ID	(PSIG)	(SCFMG)	(% Open)	Comments	ID	5-(PSIG)	<u>(SCFMG)</u>	(% Open)	Comments
AS-9 AS-19 AS-10 AS-20 AS-11 AS-20 AS-11 AS-21 AS-11 AS-22 AS-12 AS-1 AS-13 AS-1 AS-14 AS-3 AS-15 AS-4 AS-16 AS-5 Zone 5 AS-23 7.15 AS-24 7.0 AS-25 AS-1 AS-26 8.0	AS-7					AS-17				
A5:10 A5:20 A5:11 A5:20 A5:11 A5:21 A5:12 A5:1 A5:12 A5:1 A5:13 A5:2 A5:14 A5:3 A5:15 A5:4 A5:16 A5:5 X5:23 7.15 X5:23 7.15 X5:25 7.6 X5:25 7.6 X5:26 8.0 X5:27 7.0	AS-8			· · · · ·		AS-18				
AS-11 AS-21 AS-22 AS-22 AS-22 AS-12 AS-13 AS-14 AS-15 AS-16 AS-16 AS-1 AS-1 AS-1 AS-1 AS-13 AS-14 AS-15 AS-16 AS-16 AS-16 AS-27 7.0 AS-28 8.0 AS-27 7.0	4S-9					AS-19				
Zone 3 Zone 1 AS-12 AS-1 AS-13 AS-1 AS-13 AS-2 AS-14 AS-3 AS-15 AS-4 AS-16 AS-5 AS-16 AS-6 AS-23 7.15 AS-24 7.0 AS-25 7.0 AS-26 8.0 AS-27 7.0	4S-10					AS-20				
Zone 3 Zone 1 A5-12 A5-1 A5-13 A5-2 A5-14 A5-3 A5-15 A5-4 A5-16 A5-5 Zone 5 A5-23 7.15 A5-2 A5-6	AS-11					AS-21				
AS-12 AS-12 AS-13 AS-13 AS-14 AS-14 AS-14 AS-14 AS-3 AS-3 AS-4 AS-4 AS-5 AS-6						AS-22				
i AS-13 AS-2 AS-14 AS-3 AS-15 AS-4 AS-16 AS-5 XS-16 AS-5 XS-23 7.15 XS-23 7.15 XS-25 7.0 AS-26 8.0 AS-27 7.0				Zone 3					Zone 1	
AS-14 AS-3 AS-3 AS-4 AS-5 AS-6 AS-23 7.15 - 100 AS-24 7.0 - 1 AS-25 7.6 - 1 AS-26 8.0 - 1 AS-27 7.0 - 1 AS-27 7.0 - 1 AS-27 7.0 - 1 AS-27 7.0 - 1 AS-26 8.0	AS-12					AS-1				\
AS-15 AS-4 AS-16 AS-5 AS-6 AS-6 AS-23 7.15 - 100 AS-24 7.0 - 1 AS-25 7.6 - 1 AS-26 8.0 - 1 AS-27 7.0 - 1	AS-13					AS-2				
AS-16 AS-5 AS-23 7.75 - 100 AS-23 7.75 - 100 AS-24 7.0 - 1 AS-25 7.6 - 1 AS-26 8.0 - 1 AS-27 7.0 - 1	AS-14					AS-3				
AS-23 AS-23 AS-23 AS-24 AS-26 B.0 AS-27 T.0 AS-27 AS-27 AS-27 AS-26 AS-27 AS-26 AS-27 AS-26 AS-27 AS-26 AS-27 AS-26 AS-27 AS-26 AS-27 AS-26 AS-27	AS-15					AS-4				
Zone 5 AS-23 7.15 - 100 AS-24 7.0 - 1 AS-25 7.6 - 1 AS-26 8.0 - 1 AS-27 7.0 - 1	AS-16					AS-5				
AS-23 7.75 $ 100$ AS-24 7.0 $ -$ AS-25 7.6 $ -$ AS-26 8.0 $ -$ AS-27 7.0 $ -$						AS-6				
AS-24 7.0 $ -$ AS-25 7.0 $ -$ AS-26 8.0 $ -$ AS-27 7.0 $ -$				Zone 5		-				
AS-25 7.0 - AS-27 - AS	AS-23	7.15		100		_				
AS-26 8.0 - AS-27 7.0	AS-24	7.0	-							
AS-27 7.0 -	AS-25	7.0	-							
	AS-26	8.0	~							
		7.0								
	Abbreviatio									

% = Percent

" H_2O = Inches of water

deg F - degrees Fahrenheit

N/A = Not applicable

ppmv = Parts per million volume

PSIG = Pounds per square inch gauge

PORT OF SEATTLE - TERMINAL 30

SVE Manifold Readings (1 of 3)

Date:				12/	14/23	\sim		Time: 1235				
Field Te	ch(s):	Ą	R	ί	l				PID ID:	3654	70	
Weathe	r:	450		200	sdy							
**Instru	nstructions: Take readings down PRIOR to dewatering or adjusting vac/flow. Mini knockout allows PID readings to be taken even if water is present in the rotameters.											
	Vacuum/Flow readings											
Well ID	Vacuum ("H2O)	Flow (SCFMG)		/e Pos. Open)	PID (ppmv)	Comments	Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	PID (ppmv)	Comments
HSVE-2	30	59)(\mathcal{C}	2.0		SVE-10	42	20	(∞)	1.3	, , , , , , , , , , , , , , , , , , ,
HSVE-3	39	56	1		1.4		SVE-9	48)00	1.6	Float Stuck
SVE-4	39	[]			1.0		SVE-8)		\bigcirc	(Clused
SVE-5	42	20			1.2	Water in Voto	SVE-6	44	П	100	1.9	
SVE-7	42	17	/		6.8		HSVE-1):H	65	20	1.2	
		# Turns Op	oen:			1						
Dilution		Vacuum ("	'H2O):		42						
Notes:												
Abbrevi	ations:											

SCFMG = Standard cubic feet per minute gauge

% = Percent

" H_2O = Inches of water

deg F - degrees Fahrenheit

ppmv = Parts per million volume PSIG = Pounds per square inch gauge

N/A = Not applicable

AECOM

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (2 of 3)

Date:	12/12	123	Time:	1330	Ċ
Field Tech	(s):	AB	Pump ID:	OLI	.4106
Weather:		45° cloudy			
		/ S	VE Dewatering		
Well ID	Dewater (Gal)	Comments	Well ID	Dewater (Gal)	Comments
HSVE-2	Ø		SVE-10		brown, moddy
HSVE-3	21/4	Trace amounts of wate	SVE-9	1/4	brown, mudely
SVE-4	1/4	clear w/bits of debris?	SVE-8		Closed
SVE-5	1/2	Clear	SVE-6	1/2	clear
SVE-7	1/4	clear	HSVE-1	1/2	Clear
Notes:			-		
Abbreviat	ions:	Gal = gallons			ΑΞϹΟΜ

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (3 of 3)

Date:		12/14	23				Time:	1415	•		
Field Te	ch(s):	-1	Að	δ			Weather:	450 0	cloudy		
**Instru	*Instructions: Take these readings AFTER dewatering and adjusting vac/flow to limit water production.										
	FINAL Vacuum/Flow readings										
Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	Comments	Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	Comments		
HSVE-2	31	60	100		SVE-10	40	17	106	product in roto		
HSVE-3	39	57			SVE-9	50	-	100	product in roto product in roto		
SVE-4	43	16			SVE-8	1		в			
SVE-5	52	43			SVE-6	30	13	100			
SVE-7	41	20			HSVE-1	14	65	50			
Dilution Valve		# Turns Open: Vacuum ("H2O):		48							
Notes: Abbrevi	ations										

% = Percent

" H₂O = Inches of water

SCFMG = Standard cubic feet per minute gauge

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

530 Pylon Drive Raleigh, NC 27606 Phone: (919) 713-0008

Instrument ID 36950 Description MIniRae 3000 V2.22A Calibrated 12/12/2023 11:26:34AM Manufacturer Rae Systems State Certified Model Number MiniRAE 3000 Status Pass Serial Number/ Lot 592-918800 Temp °C 16 Number Location North Carolina Humidity % 51 Department **Calibration Specifications** Range Acc % 0.0000 Group # 1 Reading Acc % 3.0000 Group Name Isobutylene Plus/Minus 0.00 Stated Accy Pct of Reading Pass/Fail Dev% Lft As Fnd As Nom In Val / In Val In Type **Out Val Out Type** Pass -0.20% 104.00 99.80 100.00 / 100.00 PPM 100.00 PPM (As Of Cal Entry Date) Test Instruments Used During the Calibration Next Cal Date / Serial Number / Last Cal Date/ Expiration Date Test Standard ID Manufacturer Model Number Lot Number Description **Opened Date** x02ai99cp342066 304-402817044 8/11/2027 Isobutylene (C4H8) 100 Airgas SEA ISO -1 PPM 100PPM 304-402817044-1

Pine Environmental Services, Inc.

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Warren Baxter

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

29 Washington Avenue, Unit A Scarborough, ME 04074 Toll-free: (888) 779-PINE (7463)

Pine Environmental Services, Inc.

Instrument ID	44106		
Description	Solinst Pump		
Calibrated	12/12/2023 5:48:40PM		
Manufacturer	Solinst	State Certified	
Model Number	Pump	Status	Pass
Serial Number/ Lot	na	Temp °C	18
Number			
Location	Maine	Humidity %	43
Department			
Group Na	ıp# 1	tion Specifications	
Test Performed: Yes	As Found Result: Pass	As Left Result: Pa	355
fest Instruments Used Du	ring the Calibration		(As Of Cal Entry Date)

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Warren Baxter

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

DAILY FIELD LOG

Project Informatio	Page of of
Project Name:	7-20 Location: Seattle
roject/Task No.:	Weather:
Date:	12/27/23 Personnel: GIF A3
bservations	
Time	Observation Description
1 100	· GIF of AB on site
2	· Sustem and & looking good. Zore 5 active
3	· Safety teilgate. Traffic (Sug tata) pinch pants trips
4	· GLODE: 40 of M W/ vaper Sample
5	· SUE deck - SUE - Sof - 10 placts are sticking some debis
5	Visible. SVE-E dim ul product.
7	. As samples have some water in mem but love doer ago
3	· SVE monetors pracally dear of writer. SVE hoses it
) ¹	water present: 12 3 4
0 1(:39	
1 11:44	
2	· Condeted empirine Id OAN tasks
3	- SVE-10 water is an emulsified apague brown different
4	
5	- No flow Q GUB-9 Still
6	- vater accomplation petty minimal. Several Surps not
7	full. Got the most from the SVE-10 (gteral (2299)
8	SUE-2 + -3 houses retuined some negter even after
9	pumping out the lateral poro-60
0	- Decreased flows at have 1, -2, 4-3 to burp flowse
1	the other wells, specifically SVE-4 + - 5. Got frem consis
2	up to ~ 10 Seting.
3 1.	- the comple port the at SVE-2 is loose I think it's a
4	broken clock night both the tel and the bushing a memi for
5	I've emailed Marina asking for new "14" MPT nindes.

C 11 sersigus friedman/Documents Field Forms - GENERAL Field Forms - GF xls(Daily Field Log) 3 22 2021

DAILY FIELD LOG

Project Name:	7-30	Location:	seathe			
roject/Task No.:		Weather				
ate:	12/27/23	Personnel:	GIF, AB			
bservations						
Time		Observation Descri	ption			
1 1400	Rysten Shut dan	in for told mainte	enance			
2	- tested allows	, Polytank low d	high floots + MOT flo			
3 KK	MALL GOOD Di	not received ,	potifications Semonil Hole			
4	- decked the p.	articulate filter le	Thes god			
5	-Scrubbed he	407 & yeared	he and of floats			
6	- No monones	or on site to C	I he may gauges			
7	I pe influe	int flow gauge 5	inelow has concare			
8	acconde	ite on the juside	of the face dark, Tubing			
9	has beer	Kept disconnectly	d for mon this now.			
0	- lemand SI	15-09 rotaneter to	i deaning + the bottom			
11 infle rocked in half. Remark the halves of						
2	tienique.	Cleared & Prinst	alled the potempter.			
13	- that darn	poner & took	Megger rendings			
4	- exercises a		re			
.5	- decked 7	ove 5 prethine	gauges Ranged 15-10 ps			
6	No variance		enough to mark or			
7	whereast o	a quice replacen	ent.			
8	- cleaded Sw	E GUUGES. SVE-3	vas no "vc arest of go			
9	replaced. Su	everal others appe	ared high but topped to			
0	zero len.	tapped	V			
1 510	· System rester	rted				
2	· Aren cleaned	up a gentes low	hed of.			
3 520	·GFdA3 off	K, E.B.				
4		5				
5			M-			
omments / Site Ac	ctivities / Personnel Tracking		2127123			

Field Tech(s):

Date:

T-30 Quarterly O&M Checklist

AB,GF 12/27/23

REGULAR TASKS

System ON:

Zero out mag gauges

Confirm mag gauges w/a manometer - no manometer on-site

V Test AS pressure gauge accuracy (turn zone on and off. All gauges should equilibrate)

If possible: Check AS pressure on individual well heads in the well field and compare to readings at the manifold

System OFF:

V Test poly tank float switches

Fest KO tank float switches

Aheck SVE vac gauges for zeroing

Scrub out KOT sightglass

Check particulate filter housing for water accumulation. Empty if needed. Visually inspect filter.

Megger test SVE & AS motors

Clean out any garbage/weeds from the system area

LOT electrical and tighten wire lugs/terminals on all control and electrical connections inside cabinet

Exercise all valves (open valves normally closed and then return to original position)

EXTRA TASKS

PORT OF SEATTLE - TERMINAL 30 SVE/AS System Data

<u></u>				1
Date: 12 27 23	Field Tech(s): HBG	<u> </u>	Actual Time: 1115	
PID ID: 41369	Weather: 53°F	Cloudy	HMI Time: 1208	
SVE/AS Control Panel		/		
SVE Blower Runtime	000.07	Sparge Zone 1 Time		
(Hours)	23212.7 нмі	Span(s) Operational:	HMI	
Transfer Pump Runtime	79	Sparge Zone 2 Time		
(Hours) - <i>MS Pump</i>	HMI	Span(s) Operational:	HMI	
AS Blower Runtime	15273,3 ны	Sparge Zone 3 Time		
(Hours) - <i>Sparge Blower</i> AS Heat Exchanger Runtime		Span(s) Operational: Sparge Zone 4 Time	HMI	
(Hours)	15267. нмі	Span(s) Operational:	HMI	
SVE Blower VFD Setpoints	, ,	Sparge Zone 5 Time	0000-0300) 0500-0800	
(Hertz/Amps/Torque %) - VFD	42.0/13,9/50.1/.HM	Span(s) Operational:	0000-0300) 0500-0800 1000-1300, 1500 MIK	an
AS Blower VFD Setpoints				
(Hertz/Amps/Torque %) - VFD	52.0/10.6/93.64	Sparge Zone Active:	5	20002200
SVE/AS System Settings & Readings				
AS Heat Exchanger Discharge Temp	~1/0	SVE Blower Dilution Valve	1	
(°F) - <i>TI-500</i>	/ 6	(# turns open)	1.2	
AS Blower Intake Pressure	05	SVE Blower Filter Differential	20	
(" H2O) - <i>DPI-500</i>	2.0	Pressure (" H20) - DPI-200	$\cup \cdot \circ$	
AS Bleed Valve	me	SVE Blower Inlet Differential	Λ 7	
(# turns open)		Pressure (" H20) - <i>FI-200</i>	\cup . (
AS Blower Discharge Pressure (PSI) - <i>PI-501</i>	8.5	Transfer Pump Discharge Pressure (PSI) - <i>PI-300</i>	C	
SVE Blower Inlet Temperature	r-10	SVE Blower Discharge Pressure	RU	
(°F) - <i>TI-200</i>	1 52	(" H ₂ O) - <i>PI-400</i>		
SVE Blower Inlet Vacuum	110	SVE Blower Discharge Temperature	G n o	
(" H ₂ 0) - <i>VI-200</i>	40	(°F) - <i>TI-400</i>	10	
Knockout Tank Level	coul			
(Sightglass % Full) ¹	$ $ \cup $ $.			
SVE Discharge PID	10	Treated Vapor Discharge PID		
(ppmv)		(ppmv) ²		
Other Components				
AS Compressor Oil Level ³		SVE Compressor Oil Level ³		
(% full sightglass)		(% full sightglass)		
DTF in Storage Tank		WD in Storage Tank ⁴	1/	
(ft)		(ft)	12.	
Water Volume in Storage Tank ⁵	133.35	Spare Volume to LAH float ⁶	869.45	
(gal)		(gal)	067.10	
NOTES:				
Abbroviations:	Notoci			J

Abbreviations:

Notes:

" H₂O = Inches of Water

°F = Degrees Fahrenheit

PSI = Pounds per Square Inch

% = Percent

- DTF Depth to Fluid
- DTB Depth to Bottom
- MP Measuring Point

WD - Water Depth

1. Low float = 0% full. Mid float = 100% full.

2. If applicable

5. Water vol = WD*266.7

- The tank holds 266.7 gal/ft (2000 gal; 7.25' dia x 7.5' H)

6. Spare vol to LAH float = 1002.8-current water volume

4. WD = 6.92-DTF OR as measured with the dipstick

3. Oil level should be at the middle of the sightglass with the machine not operating.

WD at the LAH float = 3.76 ft (1002.8 gal).; WD at the LAHH float = 4.26 ft (1136.1 gal).

PORT OF SEATTLE - TERMINAL 30 AS Manifold Readings

	Pressure/Flow Readings									
Well	Pressure	Flow	Valve Pos.		Well	Pressure		Valve Pos.		
ID	(PSIG)	(SCFMG)	(% Open) Zone 2	Comments	ID	(PSIG)	(SCFMG)	(% Open) Zone 4	Comments	
AS-7	and the second second				AS-17					
								\searrow		
AS-8					AS-18					
AS-9					AS-19				<u>\</u>	
AS-10					AS-20					
				$\overline{\}$						
AS-11					AS-21					
					AS-22					
			Zone 3					Zone 1		
AS-12					AS-1					
([~5 I			$ \rangle$		
AS-13	Ì		\backslash		AS-2					
AS-14					AS-3				<u>\</u>	
AS-15					AS-4					
					_					
AS-16					AS-5					
					AS-6					
			Zone 5							
AS-23	0.	110								
HJ-2J	9.0	4.0	100		_					
AS-24	8.5	4.5								
		1.0			-					
AS-25	G. 25	1.5								
AS-26	9.15	4.0								
	•									
AS-27	9.0	4.5	1							
Notes:										

Abbreviations:

% = Percent

" H₂O = Inches of water

deg F - degrees Fahrenheit

N/A = Not applicable

ppmv = Parts per million volume

PSIG = Pounds per square inch gauge

SCFMG = Standard cubic feet per minute gauge

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (1 of 3)

Date:			10	ス					Time:	1154		
	1	221	12)							
Field Te	ch(s):		`	AR	S, GF			PID ID:	413	69		
Weathe	r:	55°	C	lou	,dy				_	·		
**Instru	**Instructions: Take readings down PRIOR to dewatering or adjusting vac/flow. Mini knockout allows PID readings to be taken even if water is present in the rotameters.											is present in the rotameters.
	Vacuum/Flow readings											
Well ID	Vacuum ("H2O)	Flow (SCFMG)		e Pos. Open)	PID (ppmv)	Comments	Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	PID (ppmv)	Comments
HSVE-2	31	60)6	0.4		SVE-10	28		100	1.3	Float Stuck
HSVE-3	2]]	56	١		0.5		SVE-9	51	1	00	1.4	Float Stuck Closed
SVE-4	40	10			0.5		SVE-8	~	{	Ø	~	closed
SVE-5	48	9			0.5		SVE-6	45	13	100	(). F	
SVE-7	45	2)			0.4		HSVE-1	18	65	50	0.7	
		# Turns Op	oen:			1.2						
Dilution		Vacuum ("	'H2O):	:		49						
Notes:						· · ·	-					

Abbreviations:

% = Percent

" H_2O = Inches of water

deg F - degrees Fahrenheit

ppmv = Parts per million volume PSIG = Pounds per square inch gauge

N/A = Not applicable

SCFMG = Standard cubic feet per minute gauge

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (2 of 3)

Date:	12/	21/23	Time:	Time: 1220				
Field Tech	,	AB, CF	Pump ID:	OL	14106			
Weather:	55	° cloudy						
Well ID	Dewater (Gal)	Comments	Well ID	Dewater (Gal)	Comments			
HSVE-2	Ø		SVE-10	1/2	very brown and muddy			
HSVE-3	trace	Clear	SVE-9	trace	Small amount of brown water			
SVE-4	1/3	clear w/bits of debris	SVE-8	>	closed			
SVE-5		clear	SVE-6	1/3	clear			
SVE-7	次	clear	HSVE-1	1/3	clear w/bits of debris			
Notes:	3/4 gal	out of Hove.	-1 latera	I - clee	$ur H_2O$			
2 Y	4 gal	out of SVE-10) latera	l - dir	ty brown H20			
Abbreviat	tions: V	Gal = gallons out of SVE out of SVE						

PORT OF SEATTLE - TERMINAL 30 SVE Manifold Readings (3 of 3)

Date:	12	221:	23				Time: 1325 Weather: 55° Cloud Y				
Field Te	ch(s):	• •	Ă	G.G.F.			Weather:	55 0	cloudy		
**Instru	ctions: Take	these reading	gs AFTER de	watering and adjusting vac/flow to limit	water proc	luction.			/		
	FINAL Vacuum/Flow readings										
Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	Comments	Well ID	Vacuum ("H2O)	Flow (SCFMG)	Valve Pos. (% Open)	Comments		
HSVE-2	30	(ω)	100		SVE-10	213	17-27	100			
HSVE-3	38	56			SVE-9	49	~	100	Float Stuck		
SVE-4	39	7			SVE-8	-		0	closed		
SVE-5	42	q			SVE-6	45	12	100			
SVE-7	41	12			HSVE-1	16	65	50			
		# Turns Ope	n:	1.2							
Dilution	valve	Vacuum ("H	20):	45							
Notes:				·····	-						

Abbreviations:

% = Percent

" H_2O = Inches of water

SCFMG = Standard cubic feet per minute gauge

.

PORT OF SEATTLE - TERMINAL 30 Megger Testing of Motor Windings

Field Tech(s): AB, GF Date:

Equipment ID:

	Baseline Readings (See Note 2)										
	Motor AS Compressor			SVE B	lower						
		Winding	Insulation	Winding	Insulation						
Motor		Resistance	Resistance	Resistance	Resistance						
Wires	Date	(Ohms)	(Megaohms)	(Ohms)	(Megaohms)						
G & B	N/A	N/A (>100.0)	NM	N/A (>100.0)	NM						
G & O	N/A	N/A (>100.0)	NM	N/A (>100.0)	NM						
G & Y	N/A	N/A (>100.0)	NM	N/A (>100.0)	NM						
B & O	N/A	NM	N/A (0.00)	NM	N/A (0.00)						
0 & Y	N/A	NM	N/A (0.00)	NM	N/A (0.00)						
B & Y	N/A	NM	N/A (0.00)	NM	N/A (0.00)						

Legend: G= Ground Wire B= Brown Wire O= Orange Wire Y= Yellow Wire N/A= Not applicable

Notes:

1 These tests check for a breakdown of insulation within the internal motor windings over time. Use a Megger Model MIT 220.

2 Baseline data is unavailable. Testing was not conducted by CRETE and readings were only initiated once issues with the AS motor were identified.

3 Insulation resistance testing was completed between winding phase at 500 volts over approximately 30 seconds

4 >1,000 Mohm readings generally means you have an open curcuit

5 0.00 Mohm readings mean that the phase being tested is shorted to Ground

6 Ideally the phase-to-phase winding resistance readings between each phase should be the same or at least very close

7 Phase-to-phase winding resistance readings should not be 0 ohms (i.e. short) or OL (overload) or infinity

8 Generally high resistance readings (greater than 10 Mohms) indicate the motor insulation is good

Motor			Comments				
Test	Winding Resistance Insulation Resistance						
Motor Wires	B & O	0 & Y	B & Y	G & B	G & O	G & Y	
Date/Time	(Ohms)	(Ohms)	(Ohms)	(Megaohms)	(Megaohms)	(Megaohms)	
Baseline	N/A	N/A	N/A	N/A	N/A	N/A	
	1.63	1.61	1.61	0.12	0.12	0.13	

Motor			Comments				
Test		Winding Resistance					
Motor Wires	В&О	O & Y	B & Y	G & B	G & O	G & Y	
Date/Time	(Ohms)	(Ohms)	(Ohms)	(Megaohms)	(Megaohms)	(Megaohms)	
Baseline	N/A	N/A	N/A	N/A	N/A	N/A	
	0.85	0.85	0.85	0.12	0.12	0.12	

T-30 Summa Can Vapor Sampling Field Form

Project: Terminal 30	Site Address: _ 1901 East Marginal Way South, Seattle, V	WA
Date: 12/27/23	Field Personnel: AB, GF	
Weather: 55° Clove	Weather Barometric Pressure (in Hg):	29.80
Sample ID: SVE - EFF	- 122723 (INLET/DISCHARGE-mmddyy)	
Sample Port Description:	VE Effluent	

Conditions at Sample Port:

Pressure (PSI)	Temperature (°F)	VOCs via PID (ppmv)	SVE Runtime (hrs)
3.4	90°F	1.9	23212.7

Before Sampling:

	Yes or No (Y/N)
Install clean tubing on the	V V
sample port	1
Purge the tubing (30-60	Ň
seconds)	7

Summa Can Leak Test¹:

(in-Hg)	recommended)	(in-Hg)
Initial Canister	Duration of	Final Canister
Reading	Test (2 min	Reading

¹ For the summa can leak test, connect the flow controller to the can with the cap nut secured. No air should enter the can when the can valve is opened. Once this is confirmed, open the summa can valve and record the initial vacuum. Wait for two minutes and then record the vacuum again. If the two readings do not match there is a leak and a new can and valve should be acquired before sampling.

Sampling Information²:

Sample Canister LAB ID	Flow Controller LAB ID	Sample Canister Size	Initial Canister Reading (in-Hg) ³	Sample Times	Sample Date(s)	Final Canister Reading (in-Hg) ³
22 95	lu	12	30	1157	ble Start 12/21/23 le End	5.0
Analyses Requested: TO15 -	BTEX	APH		1203	12/27/23	

² The flow controller should be for a 4.5 minute integrated sample

³Canisters measured using a standard vacuum gauge

Also took Tedlar for CHy, CO2, OZ

SAMPLE CHAIN OF CUSTODY

Report To Paul Kalina		Lu Ca	1100	SAMPI	ERS (sign	ature)	a.d	2_]			of
		1009 Hr	cow													VAROUND TIME
Company AECOM				_ PROJE	CT NAME	& AD	DRESS			PO	#			Star	Idaro	l
Address III 3rd Ave	Se	1600		Term	ninal Z	50	•						R			es authorized by:
City, State, ZIP Seatt	le, v	A 981	01	– NOTES	5:		2		IN	VOIC	CE T	0				PLE DISPOSAL Clean following
Phone 206 438 - 2700 Em	ail 1	W. Kalina	eal a	m. con rerningan												ort delivery may apply):
SAMPLE INFORMATION					,			_		ANA	LYS	IS R	EQU	EST	'ED	
Sample Name	Lab ID	Canister ID	Flow Cont. ID	Reporting Level: IA=Indoor Air SG=Soil Gas (Circle One)	Date	Initial Vac.	Initial	Final Vac.	Field Final	TO15 Full Scan	TO15 BTEX	TO15 cVOC8		Helium	(My Co. 0.	
	110	2295	100000		Sampled	("Hg)		("Hg) 5	Time		./					Notes
WE-EFF-122723		NIA.	111	IA / SG	12/27/23	50	11:57	2	12:03		Х		\times			
E-EFF-122723		Tedlar	NIA	IA / SG)	12/27/23	NA	11:58	NI4	NA			:			$\boldsymbol{\lambda}$	
				IA / SG												
				IA / SG												
				IA / SG												
				IA / SG												
				IA / SG												
				IA / SG												

Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATE TIME
5500 4th Avenue South	Relinquished by:	GUS Fridman	AECOM	p/27/22 15 43
Seattle, WA 98108	Received by:	ANIHPHAN	FSB	12/27/2915:40
Ph. (206) 285-8282	Relinquished by:			
Fax (206) 283-5044	Received by:			*
FORMS\COC\COCTO-15,DOC				-l

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

Instrume	nt ID 41369						
Descri	ption MIniRae	3000					
Calib	rated 12/19/202	23 12:29:16PM					
	turer Rae Syste						
Model Nu	mber PGM 732	0		State Cert	ified		
Serial Number	/ Lot 592-9223	75			tatus Pa	SS	
Nu	mber			Tem	p°C 18	1	
Loc	ation Seattle						
Depar				Humidi	ty % 48		
Gro Sta	Group # 1 up Name Isobut ited Accy Pct of	tylene	tion Specifications I Re	Range Acc ading Acc Plus/Min	% 3.00	00 00	
<u>Nom In Val / In Va</u> 100.0 / 100.0	<u>I In Type</u> PPM	<u>Out Val</u> 100.0	DDM	Fnd As 106.8	Lft A 100.	-	
Test Instruments	Used During the	Calibration				(As Of Cal	Entry Data)
Test Standard ID	Description	Manufacturer	Model Number	<u>Serial N</u> Lot Nur	umber / nber	Last Cal Dat	Next Cal Date
SEA ISO 100PPM	Isobutylene (C4) PPM	H8) 100 Airgas	x02ai99cp34206	6 304-402 -1	2817044	Opened Date	8/11/2027
304-402817044- 1							

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Hakam Benlashher

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Fukwila, WA 98168 425-285-9102

Pine	Environmental Ser	vices.	Inc.
I IIIC	CHITH CHINE HERE SET		

Instrument ID 44106 Description Solinst Pump Calibrated 12/20/2023 12:53:08PM	
Manufacturer Solinst Model Number Pump Serial Number/ Lot na Number	State Certified Status Pass Temp °C 18
Location Seattle Department	Humidity % 47
Calibra	ation Specifications
Group # 1 Group Name	to f Devela Deve
Test Performed: Yes As Found Result: Pass	As Left Result: Pass
Test Instruments Used During the Calibration	(As Of Cal Entry Date) Serial Number / <u>Next Cal Date /</u>
Test Standard ID Description Manufacture	r <u>Model Number</u> <u>Lot Number</u> <u>Last Cal Date/ Expiration Date</u> <u>Opened Date</u>
Notes about this calibration	

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Hakam Benlashher

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance Appendix B

Vapor Sampling Field Forms

T-30 Summa Can Vapor Sampling Field Form

Project: Terminal 30	Site Address: <u>1901 East Marginal Way South, Seattle, WA</u>
Date: 3/15/23	Field Personnel: GF
Weather: 45 Cloudy	Weather Barometric Pressure (in Hg):
Sample ID: SVE-EFF-02	(INLET/DISCHARGE-mmddyy)
Sample Port Description:	discharge pipe

Conditions at Sample Port:

Pressure (PSI)	Temperature (°F)	VOCs via PID (ppmv)	SVE Runtime (hrs)
2.4" WC	110	12.6	16496.7

Before Sampling:

Yes or No (Y/N)Install clean tubing on the
sample portPurge the tubing (30-60
seconds)

Summa Can Leak Test¹:

Initial Canister Reading	Duration of Test (2 min	Final Canister Reading
(in-Hg)	recommended)	(in-Hg)
30	15:59-16:07	30

¹ For the summa can leak test, connect the flow controller to the can with the cap nut secured. No air should enter the can when the can valve is opened. Once this is confirmed, open the summa can valve and record the initial vacuum. Wait for two minutes and then record the vacuum again. If the two readings do not match there is a leak and a new can and valve should be acquired before sampling.

Sampling Information²:

Sample Canister LAB ID	Flow Controller LAB ID	Sample Canister Size	Initial Canister Reading (in-Hg) ³	Sample Times	Sample Date(s)	Final Canister Reading (in-Hg) ³
9990	242	11	30	1615	e End	5.0
Analyses Requested:	TOIS-BIE	× ///	Н	lle 20	3/15/23	

² The flow controller should be for a 4-5 minute integrated sample

³ Canisters measured using a standard vacuum gauge

V New Sample nonerclature Gince the oxidizer is now offlire. No longer "Inlet", now "SVE-EFF".

T-30 Summa Can Vapor Sampling Field Form

	Site Address: 1901 East Marginal Way South, Seattle, WA
Date: 6122123	Field Personnel: A3
Weather: 70 F	Weather Barometric Pressure (in Hg):
Sample ID: SVE - EFF - 06;	
Sample Port Description: 51	Efflicent

Conditions at Sample Port:

 conditions at b			
Pressure (PSI)	Temperature (°F)	VOCs via PID (ppmv)	SVE Runtime (hrs)
2.9	1(6°	4.9	18799.3

Before Sampling:

seconds)

Yes or No (Y/N) Initial clean tubing on the sample port Purge the tubing (30-60 Y

Summa Can Leak Test¹:

Y/N)	Initial Canister	Duration of	Final Canister
	Reading	Test (2 min	Reading
	(in-Hg)	recommended)	(in-Hg)
	30	/	30

¹ For the summa can leak test, connect the flow controller to the can with the cap nut secured. No air should enter the can when the can valve is opened. Once this is confirmed, open the summa can valve and record the initial vacuum. Wait for two minutes and then record the vacuum again. If the two readings do not match there is a leak and a new can and valve should be acquired before sampling.

Sampling Information²:

Sample Canister LAB ID	Flow Controller LAB ID	Sample Canister Size	Initial Canister Reading (in-Hg) ³	Sample Times	Sample Date(s)	Final Canister Reading (in-Hg) ³
3390	111	IL	30	Samp 1405 Samp	le Start 6/72	5
Analyses Requested:	TOIS GR	TEX		1412	6122	

² The flow controller should be for a 4-5 minute integrated sample

³Canisters measured using a standard vacuum gauge

T-30 Summa Can Vapor Sampling Field Form

Project: Terminal 30	Site Address: _190	01 East Marginal Way South, Seattle, WA
Date: 9/28/23	Field Personnel: _	AB
Weather: 60° cloudy		Weather Barometric Pressure (in Hg):
Sample ID: SVE · EFF - 0	192823	(INLET/DISCHARGE-mmddyy)
Sample Port Description:	E effluen	t

Conditions at Sample Port:

Pressure (PSI)	Temperature (°F)	VOCs via PID (ppmv)	SVE Runtime (hrs)
3.4	103-	4.9	21125.0

Before Sampling:

	Yes or No (Y/N)
Install clean tubing on the sample port	Y
Purge the tubing (30-60 seconds)	Y

Summa Can Leak Test¹:

Initial Canister	Duration of	Final Canister
Reading	Test (2 min	Reading
(in-Hg)	recommended)	(in-Hg)
730	2 min	

¹ For the summa can leak test, connect the flow controller to the can with the cap nut secured. No air should enter the can when the can valve is opened. Once this is confirmed, open the summa can valve and record the initial vacuum. Wait for two minutes and then record the vacuum again. If the two readings do not match there is a leak and a new can and valve should be acquired before sampling.

Sampling Information²:

Sample Canister LAB ID	Flow Controller LAB ID	Sample Canister Size	Initial Canister Reading (in-Hg) ³	Sample Times	Sample Date(s)	Final Canister Reading (in-Hg) ³
225	NM	IL	730	Samp 1313	le Start 9 12-8	5
				Sampl	e End	
Analyses Requested: TOIS	GBTEX,	1320	9128			

² The flow controller should be for a 4-5 minute integrated sample

³ Canisters measured using a standard vacuum gauge

T-30 Summa Can Vapor Sampling Field Form

Project: Terminal 30	Site Address: _ 1901 East Marginal Way South, Seattle, V	WA
Date: 12/27/23	Field Personnel: AB, GF	
Weather: 55° Clove	Weather Barometric Pressure (in Hg):	29.80
Sample ID: SVE - EFF	- 122723 (INLET/DISCHARGE-mmddyy)	
Sample Port Description:	VE Effluent	

Conditions at Sample Port:

Pressure (PSI)	Temperature (°F)	VOCs via PID (ppmv)	SVE Runtime (hrs)
3.4	90°F	1.9	23212.7

Before Sampling:

	Yes or No (Y/N)
Install clean tubing on the	V V
sample port	1
Purge the tubing (30-60	Ň
seconds)	7

Summa Can Leak Test¹:

(in-Hg)	recommended)	(in-Hg)
Initial Canister	Duration of	Final Canister
Reading	Test (2 min	Reading

¹ For the summa can leak test, connect the flow controller to the can with the cap nut secured. No air should enter the can when the can valve is opened. Once this is confirmed, open the summa can valve and record the initial vacuum. Wait for two minutes and then record the vacuum again. If the two readings do not match there is a leak and a new can and valve should be acquired before sampling.

Sampling Information²:

Sample Canister LAB ID	Flow Controller LAB ID	Sample Canister Size	Initial Canister Reading (in-Hg) ³	Sample Times	Sample Date(s)	Final Canister Reading (in-Hg) ³
22 95	lu	12	30	1157	ble Start 12/21/23 le End	5.0
Analyses Requested: TO15 -	BTEX	1203	12/27/23			

² The flow controller should be for a 4.5 minute integrated sample

³Canisters measured using a standard vacuum gauge

Also took Tedlar for CHy, CO2, OZ

<u>Appendix C</u> Vapor Sampling Laboratory Analytical Reports

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 28, 2023

Paul Kalina, Project Manager AECOM 1111 3rd Ave, Suite 1600 Seattle, WA 98101

Dear Mr Kalina:

Included are the results from the testing of material submitted on March 16, 2023 from the T-30, F&BI 303280 project. There are 8 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Gus Friedman AEC0328R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 16, 2023 by Friedman & Bruya, Inc. from the AECOM T-30, F&BI 303280 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	AECOM
303280 -01	SVE-Eff-031523

Non-petroleum compounds identified in the air phase hydrocarbon (APH) ranges were subtracted per the MA-APH method.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SVE-Eff-031523 03/16/23 03/15/23 03/22/23 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		AECOM T-30, F&BI 303280 303280-01 1/15 032130.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 96	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			

Compounds:	ug/m3
APH EC5-8 aliphatics APH EC9-12 aliphatics	29,000 14,000
APH EC9-10 aromatics	<370

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

<25

APH EC9-10 aromatics

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 03/21/23 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		AECOM T-30, F&BI 303280 03-0663 MB 032112.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 79	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 aliphatics<75APH EC9-12 aliphatics<25				

3

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Date Received:03/16/23Date Collected:03/15/23Date Analyzed:03/22/23Matrix:Air		t: et: D: File: ument: utor:	AECOM T-30, F&BI 303280 303280-01 1/15 032130.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: ene 107	Lower Limit: 70	Upper Limit: 130	
		ntration	150	
Compounds:	ug/m3	ppbv		
Benzene	<4.8	<1.5		
Toluene	<280	<75		
Ethylbenzene	< 6.5	<1.5		
m,p-Xylene	<13	<3		
o-Xylene	< 6.5	<1.5		
Naphthalene	<3.9	< 0.75		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 03/21/23 Air ug/m3	Clien Proje Lab I Data Instru Opera	ct: D: File: ument:	AECOM T-30, F&BI 303280 03-0663 MB 032112.D GCMS7 bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene 82	70	130	
	Conce	ntration		
Compounds:	ug/m3	ppbv		
Benzene	< 0.32	< 0.1		
Toluene	<19	<5		
Ethylbenzene	< 0.43	< 0.1		
m,p-Xylene	< 0.87	< 0.2		
o-Xylene	< 0.43	< 0.1		
Naphthalene	< 0.26	< 0.05		
-				

ENVIRONMENTAL CHEMISTS

Date of Report: 03/28/23 Date Received: 03/16/23 Project: T-30, F&BI 303280

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 303269-01 1/4.7 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	<350	<350	nm
APH EC9-12 aliphatics	ug/m3	<120	<120	nm
APH EC9-10 aromatics	ug/m3	<120	<120	nm

Laboratory Code: Laboratory Control Sample

Laboratory code. Laboratory con	or or sumpro		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	71	70-130
APH EC9-12 aliphatics	ug/m3	67	94	70-130
APH EC9-10 aromatics	ug/m3	67	93	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 03/28/23 Date Received: 03/16/23 Project: T-30, F&BI 303280

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 303269-01 1/4.7 (Duplicate)

Analyte	Reporting Units	Sample Result	Duplicate Result	RPD (Limit 30)
Benzene	ug/m3	<1.5	<1.5	nm
Toluene	ug/m3	<89	<89	nm
Ethylbenzene	ug/m3	<2	<2	nm
m,p-Xylene	ug/m3	<4.1	<4.1	nm
o-Xylene	ug/m3	<2	<2	nm
Naphthalene	ug/m3	<1.2	<1.2	nm

Laboratory Code: Laboratory Control Sample

Laboratory Could. Laboratory Cor	itioi sampie		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/m3	43	83	70-130
Toluene	ug/m3	51	90	70-130
Ethylbenzene	ug/m3	59	79	70-130
m,p-Xylene	ug/m3	120	91	70-130
o-Xylene	ug/m3	59	93	70-130
Naphthalene	ug/m3	71	80	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased high; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 ${\bf k}-{\bf The}$ calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

				FORMS\COC\COCTO-15.DOC	
	Dettright Treatment and		Received by:	Fax (206) 283-5044	2
1 10 00			Relinquished by:	Ph. (206) 285-8282	<i>"</i> "
3114107 1000	TUL	Wesley End	Received by: Neshing Dry		
	NECO1	(Jiz Foldman	Relinquished by: (742)	Friedman & Bruya, Inc. 5500 Ath Avenue South Relinc	
_	COMPANY	PRINT NAME	SIGNATURE		
-					
		-	IA / SG		
			IA / SG		
			IA / SG		
			IA / SG		
		V	IA / SG		
			IA / SG		
ar.			IA / SG		
(E/av		3/6/23 30 10/5 50/21	GONO 242 IA (SG)	10 223	
	2		ID (Circle Une)	──	
OK BI	TO15 Full S TO15 Full S TO15 CVC APH Helium	Initial Field Final Vac. Initial Vac.	<u> </u>	Lab	
	CXN DCs			SAMPLE INFORMATION	
	ANALYSIS REQUESTED		J. Kerling ODE constant	Phone 200 7 77 1 1 5 5 man 1/6	
Hold (Fee may apply):	Hold (Fiedmin Calconcom	mc-ezult rate mail aux fiedman Calconcom	
final report delivery	for the main interior		agio1 Notes:	Address IIP Sentile WA asio!	
Kush charges authorized by. SAMPLE DISPOSAL				Company HELOIT	
HENAROOND LIME	PO # Rosh	PROJECT NAME & ADDRES		11	
	03/16/23 Page #	SAMPLE CHAIN OF CUSTODY		303275600 303280	303

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

July 5, 2023

Paul Kalina, Project Manager AECOM 1111 3rd Ave, Suite 1600 Seattle, WA 98101

Dear Mr Kalina:

Included are the results from the testing of material submitted on June 22, 2023 from the T-30, F&BI 306367 project. There are 5 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Gus Friedman AEC0705R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 22, 2023 by Friedman & Bruya, Inc. from the AECOM T-30, F&BI 306367 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	AECOM
306367 -01	SVE-EFF-062223

The TO-15 gasoline range concentrations were quantified using a single point calibration at 80 ppbv.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SVE-EFF-062223 06/22/23 06/22/23 06/29/23 Air ug/m3	Clien Proje Lab I Data Instru Opera	ct: D: File: ument:	AECOM T-30, F&BI 306367 306367-01 1/8.3 062832.D GCMS7 bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ene 109	70	130	
	Conce	entration		
Compounds:	ug/m3	ppbv		
Benzene	<2.7	< 0.83		
Toluene	<63	<17		
Ethylbenzene	<3.6	< 0.83		
m,p-Xylene	<7.2	<1.7		
o-Xylene	<3.6	< 0.83		
Gasoline Range Org	ganics 12,000	3,000		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 06/28/23 Air ug/m3	Clien Proje Lab I Data Instr Opera	ct: D: File: ument:	AECOM T-30, F&BI 306367 03-1467 MB 062817.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: ene 89	Lower Limit: 70	Upper Limit: 130	
	Conce	entration		
Compounds:	ug/m3	ppbv		
Benzene	< 0.32	< 0.1		
Toluene	<7.5	<2		
Ethylbenzene	< 0.43	< 0.1		
m,p-Xylene	< 0.87	< 0.2		
o-Xylene	< 0.43	< 0.1		
Gasoline Range Or	ganics <330	<80		

ENVIRONMENTAL CHEMISTS

Date of Report: 07/05/23 Date Received: 06/22/23 Project: T-30, F&BI 306367

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 306421-01 1/5.1 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Benzene	ug/m3	<1.6	<1.6	nm
Toluene	ug/m3	<38	<38	nm
Ethylbenzene	ug/m3	<2.2	<2.2	nm
m,p-Xylene	ug/m3	8.4	8.2	2
o-Xylene	ug/m3	4.5	4.3	5

Laboratory Code: Laboratory Control Sample

	control Sample		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/m3	43	109	70-130
Toluene	ug/m3	51	107	70-130
Ethylbenzene	ug/m3	59	104	70-130
m,p-Xylene	ug/m3	120	97	70-130
o-Xylene	ug/m3	59	107	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 ${\bf k}-{\bf The}$ calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

		Received by:	Fax (206) 283-5044 Re
		Relinguisted by:	Ph. (206) 285-8282
F-13 12/2/23 16 450	Lar Unin and	Received by	r
AECOM 6/24/25 4:45P	Hustin Bragg	Relinquished by: For the Martin Control of the second seco	outh
COMPANY DATE TIME	PRINT NAME	SIGNATURE	لينا ئ
		i	
Samples received at		IA / SG	
	5.0	3390 111 IA / 6G)	T30-EFF-062223 01
TO15 TO15 A	InitialFieldFinalFDateVac.InitialVac.FSampled("Hg)Time("Hg)T	LabFlowIA=Indoor AirLabCanisterCont.SG=Soil GasIDIDID(Circle One)	Lab Sample Name ID
Full Scan BTEXN cVOCs PH lium 2 8TE X		Reporting	
ANALYSIS REQUESTED			SAMPLE INFORMATION
final report delivery Hold (Fee may apply):		paul. Kaling Orecom.com	Phone 206 - 458 - 27 Email Dawl. Kaling Oder on com
INVOICE TO SAMPLE DISPOSAL Oefault-Clean following		WA 98101 NOTES:	City, State, ZIP Seattle WA 98101
Rush charges authorized by:	7-30		Address 111 3rd 1
PO # Standard	PROJECT NAME & ADDRESS	& bus privation	Company AE COM
00 1 1 2 3 Page # 1 of 1			11
	SAMPLE CHAIN OF CHISTODY	SAMPL	306367

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 16, 2023

Paul Kalina, Project Manager AECOM 1111 3rd Ave, Suite 1600 Seattle, WA 98101

Dear Mr Kalina:

Included are the results from the testing of material submitted on September 28, 2023 from the T-30, F&BI 309495 project. There are 8 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Gus Freidman AEC1016R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 28, 2023 by Friedman & Bruya, Inc. from the AECOM T-30, F&BI 309495 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	AECOM
309495 -01	SVE-EFF-092823
309495 -02	SVE-EFF-092823

Non-petroleum compounds identified in the air phase hydrocarbon (APH) ranges were subtracted per the MA-APH method.

Sample SVE-EFF-092823 was sent to Fremont Analytical for major gases analysis. The report is enclosed.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SVE-EFF-092823 09/28/23 09/28/23 10/07/23 Air ug/m3	Client: Project Lab II Data F Instru Operat	t:): File: ment:	AECOM T-30, F&BI 309495 309495-01 1/7.4 100633.D GCMS7 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 112	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics 3,100			

0
~
4

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 10/06/23 Air ug/m3	Client Projec Lab II Data J Instru Opera	t: D: File: iment:	AECOM T-30, F&BI 309495 03-2319 MB 100612.D GCMS7 bat
Surrogates: 4-Bromofluoroben:	% Recovery: zene 86	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics <25			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SVE-EFF-092823 09/28/23 09/28/23 10/07/23 Air ug/m3	Client Projec Lab I Data Instru Opera	ct: D: File: ument:	AECOM T-30, F&BI 309495 309495-01 1/7.4 100633.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: ene 112	Lower Limit: 70	Upper Limit: 130	
Compounds:	Conce ug/m3	ntration ppbv		
Benzene Toluene Ethylbenzene	<2.4 <56 <3.2	<0.74 <15 <0.74		
m,p-Xylene o-Xylene	<6.4 <3.2	<1.5 <0.74		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 10/06/23 Air ug/m3	Clien Proje Lab I Data Instr Opera	ct: D: File: ument:	AECOM T-30, F&BI 309495 03-2319 MB 100612.D GCMS7 bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene 85	70	130	
	Conce	ntration		
Compounds:	ug/m3	ppbv		
Benzene	< 0.32	< 0.1		
Toluene	<7.5	<2		
Ethylbenzene	< 0.43	< 0.1		
m,p-Xylene	< 0.87	< 0.2		
o-Xylene	< 0.43	< 0.1		

ENVIRONMENTAL CHEMISTS

Date of Report: 10/16/23 Date Received: 09/28/23 Project: T-30, F&BI 309495

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 310114-01 1/4.9 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	570	580	2
APH EC9-12 aliphatics	ug/m3	<120	<120	nm
APH EC9-10 aromatics	ug/m3	<120	<120	nm

Laboratory Code: Laboratory Control Sample

Laboratory code. Laboratory con	uoi sumpio		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	85	70-130
APH EC9-12 aliphatics	ug/m3	67	105	70-130
APH EC9-10 aromatics	ug/m3	67	84	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 10/16/23 Date Received: 09/28/23 Project: T-30, F&BI 309495

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 310114-01 1/4.9 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Benzene	ug/m3	<1.6	<1.6	nm
Toluene	ug/m3	<37	<37	nm
Ethylbenzene	ug/m3	12	12	0
m,p-Xylene	ug/m3	6.4	6.1	5
o-Xylene	ug/m3	2.4	2.1	13

Laboratory Code: Laboratory Control Sample

	F		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/m3	43	96	70-130
Toluene	ug/m3	51	106	70-130
Ethylbenzene	ug/m3	59	99	70-130
m,p-Xylene	ug/m3	120	104	70-130
o-Xylene	ug/m3	59	110	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

								ed by:	Received by:	Fax (206) 283-5044
								Relinquished by:	Relinqu	Ph. (206) 285-8282
F8 7		Z Z	ANHPHE	AN			hard	ed by:	Received by:	Seattle, WA 98108
Allcon	AFE	518	en e	Autic	A	Bol	n N	Relinquished by:	Relinqu	5500 4th Avenue South
COMPANY	CC	E	PRINT NAME	PRIN	\ \	εE	SIGNATURE	SIC		Friedman & Bruya, Inc.
						IA / SG				
						IA / SG				
mples received	Sa					IA / SG				
						IA / SG				
						IA / SG				
						IA / SG		,		
X	2	N/A 1321	1326	A/N	9/25/23 N/A	IA (SC)		N/A, tella	02	102
×	1320	50 13	1313	730.6	9/25/23	IA / SG		225	01	SVE - EFF - 092823
TO15 CVOCs APH CU2/CH4/O2 HOUS GBIEX	TO15 BTEXN	Final F Vac. Fi ("Hg) T	Field Initial Time	Initial Vac. ("Hg)	Date Sampled	Reporting Level: IA=Indoor Air SG=Soil Gas (Circle One)	Flow Cont. ID	Canister ID	Lab ID	Sample Name
ANALYSIS REQUESTED	ANALYS									SAMPLE INFORMATION
Défault:Glean following final report delivery Hold (Fee may apply):						Com Com	Ocecor An Ocu	J. Kalina S. foiedm	مع nail مر	Phone <u>7.06 - 473 & JOU part. Kalina Ocecom.com</u> Phone <u>7.06 - 473 & JOU Email gus. Enicolman Ocecom.</u>
	INVOICE TO	-			-	NOTES:	0	200	· ·	and an South Link of SICI
Rush charges authorized by:				e	1700		č	Ste 1600	Ve .	Address 1111 3rd Ave
TURNAROUND TIME	P0 #	the g	DRESS	E & ADJ	PROJECT NAME & ADDRESS	dman PROJE	frie	8 (505	1 22	Report To (au) Kaling & Gus Friedman PROJECT NAME & AI
25 Page #	58/86/60	YQC	CUST	N OF	E CHAI	SAMPLE CHAIN OF CUSTO	ι.	 >		36442

FORMS\COC\COCTO-15.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 10, 2024

Paul Kalina, Project Manager AECOM 1111 3rd Ave, Suite 1600 Seattle, WA 98101

Dear Mr Kalina:

Included are the results from the testing of material submitted on December 27, 2023 from the Terminal 30 PN 60681370, F&BI 312443 project. There are 8 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures c: Gus Friedman AEC0110R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 27, 2023 by Friedman & Bruya, Inc. from the AECOM Terminal 30, F&BI 312443 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	AECOM
312443 -01	SVE-EFF-122723
312443 -02	SVE-EFF-122723

Sample SVE-EFF-122723 was sent to Fremont Analytical for major gases analysis. The report is enclosed.

Non-petroleum compounds identified in the air phase hydrocarbon (APH) ranges were subtracted per the MA-APH method.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

 $<\!\!200$

APH EC9-10 aromatics

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SVE-EFF-122723 12/27/23 12/24/23 01/03/24 Air ug/m3	Client Projec Lab I Data Instru Opera	et: D: File: ument:	AECOM Terminal 30 PN 60681370 312443-01 1/7.9 010228.D GCMS8 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 95	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph				

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

<25

APH EC9-10 aromatics

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 01/02/24 Air ug/m3	Client Projec Lab II Data Instru Opera	et: D: File: ument:	AECOM Terminal 30 PN 60681370 04-0043 mb 010211.D GCMS8 bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 90	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concentration ug/m3			
APH EC5-8 alipha APH EC9-12 aliph				

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SVE-EFF-122723 12/27/23 12/27/23 01/03/24 Air ug/m3	Instr	ect:	AECOM Terminal 30 PN 60681370 312443-01 1/7.9 010228.D GCMS8 bat
Surrogates:	% Recovery:	Lower Limit:	Upper Limit:	
4-Bromofluorobenz	ene 95	70	130	
Compounds:	Conce ug/m3	ntration ppbv		
Benzene	<2.5	< 0.79		
Toluene	<60	<16		
Ethylbenzene	<3.4	< 0.79		
m,p-Xylene	<6.9	<1.6		
o-Xylene	<3.4	< 0.79		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 01/02/24 Air ug/m3	Clien Proje Lab I Data Instr Oper	ct: D: File: ument:	AECOM Terminal 30 PN 60681370 04-0043 mb 010211.D GCMS8 bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene 88	70	130	
	Conce	ntration		
Compounds:	ug/m3	ppbv		
Benzene	< 0.32	< 0.1		
Toluene	<7.5	<2		
Ethylbenzene	< 0.43	< 0.1		
m,p-Xylene	< 0.87	< 0.2		
o-Xylene	< 0.43	< 0.1		

ENVIRONMENTAL CHEMISTS

Date of Report: 01/10/24 Date Received: 12/27/23 Project: Terminal 30, F&BI 312443

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 312443-01 1/7.9 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	5,600	5,400	4
APH EC9-12 aliphatics	ug/m3	2,100	2,000	5
APH EC9-10 aromatics	ug/m3	<200	<200	nm

Laboratory Code: Laboratory Control Sample

Laboratory Coue. Laboratory Con	cioi sumpio		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	84	70-130
APH EC9-12 aliphatics	ug/m3	67	94	70-130
APH EC9-10 aromatics	ug/m3	67	90	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 01/10/24 Date Received: 12/27/23 Project: Terminal 30, F&BI 312443

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 312443-01 1/7.9 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Benzene	ug/m3	<2.5	<2.5	nm
Toluene	ug/m3	<60	<60	nm
Ethylbenzene	ug/m3	<3.4	<3.4	nm
m,p-Xylene	ug/m3	<6.9	<6.9	nm
o-Xylene	ug/m3	<3.4	<3.4	nm

Laboratory Code: Laboratory Control Sample

hasofatory coue. hasofatory			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/m3	43	88	70-130
Toluene	ug/m3	51	101	70-130
Ethylbenzene	ug/m3	59	96	70-130
m,p-Xylene	ug/m3	120	98	70-130
o-Xylene	ug/m3	59	101	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
A GWG Frildwin SAMPLERS (signature) JUG PROJECT NAME & ADDRESS PO # Temin (M. Maha (D alcam, con mail (M. Maha (D alcam, con Lavel: ID) D) D) D) D) D) D) D) D) D)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
a Cruch Church SAMPLERS (signature) PROJECT NAME & ADDRESS PO # Standard British Mail A 160 Teminal Teminal Standard British PO # Standard British Inail INA. Value @ alcon. (on Cruch & alcon. con Cruch & alcon. co
a Cruc En Comen SAMPLERS (signature) AU PROJECT NAME & ADDRESS PO # RU Teminel 30 He, UA 98101 Maii Invi 98101 NOTES: INVOICE TO INVOICE TO ANALYSIS REQUEST Reporting E V H B
a bus Enlann SAMPLERS (signature) a bus Enland PROJECT NAME & ADDRESS PO # Sta PROJECT NAME & ADDRESS PO # Sta Notes: Po # Rush Notes: Po # Rush Invoice To Definition Invoice To Definition ANALYSIS REQUEST
ACI Lalina, buch Fridmen SAMPLERS (signature) AE COM PROJECT NAME & ADDRESS PO # III Zr' Ac Ge (600 PROJECT NAME & ADDRESS PO # III Zr' Ac Ge (600 PROJECT NAME & ADDRESS PO # III Zr' Ac Ge (600 PO # Rush III Zr' Ac Ge (600 NOTES: INVOICE TO III Stamman Eaclow, con INVOICE TO DEE
Action SAMPLERS (signature) Accom FROJECT NAME & ADDRESS Accom General Accom Accom Accom General Accom Accom Accom
AECOM AECOM 111 3rd Ae 160 III 3rd Ae 160
AECOM SAMPLERS (signature) AUG PROJECT NAME & ADDRESS PO #
The lating but Follower SAMPLERS (signature) and

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 5500 4th Ave S Seattle, WA 98108

RE: 312443 Work Order Number: 2312580

January 02, 2024

Attention Michael Erdahl:

Fremont Analytical, Inc. received 1 sample(s) on 12/28/2023 for the analyses presented in the following report.

Major Gases by EPA Method 3C

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Original

CLIENT: Project: Work Order:	Friedman & Bruya 312443 2312580	Work Order S	Sample Summary
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2312580-001	SVE-EFF-122723	12/27/2023 11:58 AM	12/28/2023 2:02 PM

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Case Narrative

WO#: **2312580** Date: **1/2/2024**

CLIENT:Friedman & BruyaProject:312443

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Major gases are reported as % ratio of the Major Gases analyzed (Carbon dioxide, Carbon Monoxide, Methane, Nitrogen, Oxygen and Hydrogen).

The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS). The LCS is processed with the samples to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Note: The estimated BTU calculation is based off of the methane result.

Qualifiers & Acronyms

 WO#:
 2312580

 Date Reported:
 1/2/2024

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery **CCB** - Continued Calibration Blank **CCV** - Continued Calibration Verification **DF** - Dilution Factor **DUP - Sample Duplicate** HEM - Hexane Extractable Material ICV - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MCL - Maximum Contaminant Level MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **REP - Sample Replicate RL** - Reporting Limit **RPD** - Relative Percent Difference **SD** - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

Analytical Report

Work Order:	2312580
Date Reported:	1/2/2024

CLIENT: Friedman & Bruya

Project: 312443

Lab ID: 2312580-001 Client Sample ID: SVE-EFF-12272	23		Collection Matrix: A		: 12/27/2023 11:58:00 AM
Analyses	Result	RL Qual	Units	DF	Date Analyzed
Major Gases by EPA Method 3C			Batch	ID: R	88656 Analyst: NR
Carbon Dioxide	1.39	0.0500	%	1	12/29/2023 2:47:00 PM
Carbon Monoxide	ND	0.0500	%	1	12/29/2023 2:47:00 PM
Methane	ND	0.0500	%	1	12/29/2023 2:47:00 PM
Nitrogen	78.1	0.0500	%	1	12/29/2023 2:47:00 PM
Oxygen	20.5	0.0500	%	1	12/29/2023 2:47:00 PM
Hydrogen	ND	0.0500	%	1	12/29/2023 2:47:00 PM
BTU	ND		BTU/ft ³	1	12/29/2023 2:47:00 PM

Work Order: 2312580

CLIENT: Friedman & Bruya

Project: 312443

QC SUMMARY REPORT

Major Gases by EPA Method 3C

Sample ID: LCS-R88656	SampType: LCS			Units: %		Prep Date	e: 12/29/2	023	RunNo: 886	56	
Client ID: LCSW	Batch ID: R88656	i				Analysis Date	e: 12/29/2	023	SeqNo: 185	1798	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon Dioxide	99.5	0.0500	100.0	0	99.5	70	130				
Carbon Monoxide	99.4	0.0500	100.0	0	99.4	70	130				
Methane	99.5	0.0500	100.0	0	99.5	70	130				
Nitrogen	100	0.0500	100.0	0	100	70	130				
Oxygen	99.7	0.0500	100.0	0	99.7	70	130				
Hydrogen	97.8	0.0500	100.0	0	97.8	70	130				
Sample ID: 2312580-001AREP	SampType: REP			Units: %		Prep Date	e: 12/29/2	023	RunNo: 886	56	
Client ID: SVE-EFF-122723	Batch ID: R88656	i				Analysis Date	e: 12/29/2	023	SeqNo: 185	1797	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon Dioxide	1.42	0.0500						1.394	1.52	30	
	1.72	0.0000						1.004			
Carbon Monoxide	ND	0.0500						0		30	
Carbon Monoxide Methane										30 30	
	ND	0.0500						0	0.0291		
Methane	ND ND	0.0500 0.0500						0 0		30	
Methane Nitrogen	ND ND 78.1	0.0500 0.0500 0.0500						0 0 78.14	0.0291	30 30	

Sample Log-In Check List

Client Name:	FB	Work Order Numb	per: 2312580	
Logged by:	Clare Griggs	Date Received:	12/28/202	3 2:02:00 PM
Chain of Cust	tody			
1. Is Chain of C	Custody complete?	Yes 🖌	No 🗌	Not Present
	sample delivered?	<u>Client</u>		
<u>Log In</u>				
	ls present on shipping container/cooler? ments for Custody Seals not intact)	Yes	No 🗌	Not Present 🗹
4. Was an atten	npt made to cool the samples?	Yes	No 🗌	NA 🗹
5. Were all item	s received at a temperature of $>2^{\circ}C$ to $6^{\circ}C$ *	Yes	No 🗌	NA 🔽
6. Sample(s) in	proper container(s)?	Yes 🖌	No 🗌	
7. Sufficient sar	nple volume for indicated test(s)?	Yes 🖌	No 🗌	
8. Are samples	properly preserved?	Yes 🗹	No 🗌	
9. Was preserva	ative added to bottles?	Yes	No 🗹	NA 🗌
10. Is there head	space in the VOA vials?	Yes	No 🗌	NA 🔽
11. Did all sampl	es containers arrive in good condition(unbroken)?	Yes 🗹	No 🗌	
12. Does paperw	ork match bottle labels?	Yes 🗹	No 🗌	
13. Are matrices	correctly identified on Chain of Custody?	Yes 🖌	No 🗌	
14. Is it clear what	at analyses were requested?	Yes 🗹	No 🗌	
15. Were all hold be met?	times (except field parameters, pH e.g.) able to	Yes 🖌	No 🗌	
<u>Special Hand</u>	ling (if applicable)			
16. Was client r	notified of all discrepancies with this order?	Yes	No 🗌	NA 🗹
Persor	Notified: Date	e:		
By Wh	om: Via:	🗌 eMail 📃 Ph	none 🗌 Fax	In Person
Regard	ling:			
Client	Instructions:			

17. Additional remarks:

Item Information

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

														Received by:		Fax (206) 283-5044	
r	Zohi	12/2910			TA			3	villier		13		ary lud	by:		Ph. (206) 285-8282	
~	840	[2]32 21	bruya	nan œ	rriedman & bruya			1		1 Erdai		X	2000	11		Seattle, WA 98119-2029	
Е	TIME		ANY	COMPANY				NAME	T	PRI	Misharl	D	SIGNATURE	Balinouischart ha		Friedman & Bruya, Inc.	
						+											
						+											
					-												
					-		_	_	_								
				\square	\square		\square			x	1	1158 vapor	1158	12/27/2023		SVE-EFF-122723	1
	Notes	No			TOC	dissolved gases	ferrous iron	ferrous iron	aluminum	major gases dissolved	# of jars	Matrix	Time Sampled	Date Sampled	Lab ID	Sample ID	
			D	ESTE	REQUESTED	ALYSES I	NALY	AN			Ц						
	ons	Return samples Will call with instructions	Return samples Will call with in							EQuIS	F	om	anandbruya.c	(206) 285-8282 merdahl@friedmanandbruya.com	<u>282</u> m	Phone # (206) 285-8	
	3AL	SAMPLE DISPOSAL Dispose after 30 days	SAN Dispose a								RKS	REMARKS		A 98108	Seattle, WA	ate, ZIP	
Page	by:	Rush charges authorized by:	Rush charg		S	D-605	н			312443	ω			we S	5500 4 th Ave S		
		·d TAT	Standard TAT		#	PO#			0.	ME/N	PROJECT NAME/NO.	PROJ	9	Friedman and Bruva, Inc.	edman		
	IME	Page # 1 of TURNAROUND TIME	TUR						1005	'RACTER Fremont	SUBCONTRACTER Fremont	_ SUBC		Grdahl	Michael Erdahl	Send Report To Mi	
		2312580	231		YC	CUSTODY		N OF	HAI	LEC	SAMP	TRACTS	SUBCONTRACT SAMPLE CHAIN OF				

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

ıч

<u>Appendix D</u>

Vapor Sampling Summary Data Quality Review Reports

AECOM 1111 3rd Ave Suite 1600 Seattle, WA 98101 www.aecom.com 206 438 2700 tel 866 495 5288 fax

Memorandum

То	Paul Kalina, Project Manager	Info	FINAL
	Summary Data Quality Review		
	Port of Seattle – T-30		
Subject	Vapor Sampling – March 2023		
	Lucy Panteleeff, Chemist		
From	Jennifer Garner, Chemist		
Date	March 30, 2023		

The summary data quality review of one vapor sample collected on March 15, 2023, has been completed. The samples were analyzed at Friedman & Bruya, Inc. located in Seattle, Washington for aliphatic hydrocarbons (APHs) by Massachusetts Department of Environmental Protection Method MA-APH, and benzene, toluene, ethylbenzene, and total xylenes (BTEX), and naphthalene by EPA Method TO-15. The laboratory provided a summary report containing sample results and associated quality assurance (QA) and quality control (QC) data for all samples. The following samples are associated with Friedman & Bruya, Inc. laboratory group 303280:

Sample ID	Laboratory ID
SVE-Eff-031523	303280 -01

Data were evaluated based on validation criteria established in the *National Functional Guidelines for Organic Superfund Methods Data Review*, November 2020.

The following data components were reviewed during the limited data validation procedure for compliance with method specific or laboratory control charted criteria where appropriate: chain of custody forms, holding times, method/trip/instrument blanks, surrogate recoveries, matrix spike/matrix spike duplicate recoveries, laboratory and field duplicate results, laboratory control sample/laboratory control sample duplicate recoveries, reporting limits, and electronic data deliverables.

A summary of qualifiers that may be assigned to results in this laboratory group are included in Table 1. Qualifiers that may be assigned to results include:

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- DNR Do Not Report. Another result is available that is more reliable or appropriate.

Summary Data Quality Review Port of Seattle - T 30 Vapor Sampling – March 2022 Laboratory Group: 303280

Sample Receipt

Upon receipt by the laboratory, the sample container information was compared to the chain-ofcustody (COC). No discrepancies related to sample identification were noted by the laboratory.

Organic Analyses

The sample was analyzed for APHs, BTEX, and naphthalene by the methods identified in the introduction of this report.

- 1. Holding Times Acceptable
- 2. Blanks Acceptable
- 3. Surrogates Acceptable
- 4. Laboratory Control Sample (LCS) Acceptable
- 5. Laboratory Duplicate Acceptable

<u>General</u> – Laboratory duplicates were performed using samples from unrelated projects. Results were comparable.

6. Reporting Limits – Acceptable

<u>General</u> – The reporting limits were raised for all analyses due to dilution and/or sample cannister pressure.

Overall Assessment of Data

The data reported in this laboratory group, as qualified, are considered to be usable for meeting project objectives. The completeness for Friedman & Bruya, Inc. laboratory group 303280 is 100%.

Table 1. Summary of Qualified Data

Sample ID	Lab ID	Analyte	Result	Units	Final Result
	No Data Q	ualifiers Were Assigned Base	ed on This Dat	a Review.	

AECOM 1111 3rd Ave Suite 1600 Seattle, WA 98101 www.aecom.com 206 438 2700 tel 866 495 5288 fax

Memorandum

То	Paul Kalina, Project Manager	Info	FINAL
	Summary Data Quality Review		
	Port of Seattle – T-30		
Subject	Vapor Sampling – June 2023		
	Amelia McArthur, Chemist		
From	Lucy Panteleeff, Chemist		
Date	August 9, 2023		

The summary data quality review of one vapor sample collected on June 22, 2023, has been completed. The sample was analyzed at Friedman & Bruya, Inc. located in Seattle, Washington for benzene, toluene, ethylbenzene, and total xylenes (BTEX) and gasoline-range TPH by EPA Method TO-15. The laboratory provided a summary report containing sample results and associated quality assurance (QA) and quality control (QC) data for all samples. The following samples are associated with Friedman & Bruya, Inc. laboratory group 306367:

Sample ID	Laboratory ID
SVE-EFF-062223	306367 -01

Data were evaluated based on validation criteria established in the *National Functional Guidelines for Organic Superfund Methods Data Review*, November 2020.

The following data components were reviewed during the limited data validation procedure for compliance with method specific or laboratory control charted criteria where appropriate: chain of custody forms, holding times, method blanks, surrogate recoveries, matrix spike and/or matrix spike duplicate recoveries, laboratory and field duplicate results, laboratory control sample and/or laboratory control sample duplicate recoveries, reporting limits, and electronic data deliverables.

A summary of qualifiers that may be assigned to results in this laboratory group are included in Table 1. Qualifiers that may be assigned to results include:

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- DNR Do Not Report. Another result is available that is more reliable or appropriate.

Summary Data Quality Review Port of Seattle - T 30 Vapor Sampling – June 2023 Laboratory Group: 306367

Sample Receipt

Upon receipt by the laboratory, the sample container information was compared to the chain-ofcustody (COC). No discrepancies related to sample identification were noted by the laboratory.

Organic Analyses

The sample was analyzed for BTEX, and gasoline-range organics by EPA Method TO-15.

- 1. Holding Times Acceptable
- 2. Blanks Acceptable
- 3. Surrogates Acceptable
- 4. Laboratory Control Sample (LCS) Acceptable
- 5. Laboratory Duplicate Acceptable

<u>General</u> – Laboratory duplicates were performed using a sample from an unrelated project. Results were comparable.

6. Reporting Limits – Acceptable

<u>General</u> – The reporting limits were raised for BTEX due to dilution and/or sample cannister pressure.

Overall Assessment of Data

The data reported in this laboratory group, as qualified, are usable for meeting project objectives. The completeness for Friedman & Bruya, Inc. laboratory group 306367 is 100%.

Table 1. Summary of Qualified Data

Sample ID	Lab ID	Analyte	Result	Units	Final Result
	No Data Q	ualifiers Were Assigned Base	ed on This Dat	a Review.	

AECOM 1111 3rd Ave Suite 1600 Seattle, WA 98101 www.aecom.com 206 438 2700 tel 866 495 5288 fax

Memorandum

То	Paul Kalina, Project Manager	Info	FINAL
	Summary Data Quality Review		
	Port of Seattle – T-30		
Subject	Vapor Sampling – September 2023		
	Amelia McArthur, Chemist		
From	Lucy Panteleeff, Chemist		
Date	November 1, 2023		

The summary data quality review of one vapor sample collected on September 28, 2023, has been completed. The sample was analyzed at Friedman & Bruya, Inc. located in Seattle, Washington for Air-phase Petroleum Hydrocarbons (APHs) by Massachusetts Department of Environmental Protection Method MA-APH and benzene, toluene, ethylbenzene, and total xylenes (BTEX) by EPA Method TO-15. The sample was subcontracted to Fremont Analytical located in Seattle, Washington and analyzed for and gases carbon dioxide, methane, and oxygen by EPA Method 3C. The laboratory provided a summary report containing sample results and associated quality assurance (QA) and quality control (QC) data for all samples. The following samples are associated with Friedman & Bruya, Inc. laboratory group 309495:

Sample ID	Laboratory ID	Requested Analyses
SVE-EFF-092823	309495 -01	APH, BTEX
SVE-EFF-092823	309495 -02	Carbon dioxide, Methane, Oxygen

Data were evaluated based on validation criteria established in the *National Functional Guidelines for Organic Superfund Methods Data Review*, November 2020.

The following data components were reviewed during the limited data validation procedure for compliance with method specific or laboratory control charted criteria where appropriate: chain of custody forms, holding times, method blanks, surrogate recoveries, matrix spike and/or matrix spike duplicate recoveries, laboratory and field duplicate results, laboratory control sample and/or laboratory control sample duplicate recoveries, reporting limits, and electronic data deliverables.

A summary of qualifiers that may be assigned to results in this laboratory group are included in Table 1. Qualifiers that may be assigned to results include:

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- DNR Do Not Report. Another result is available that is more reliable or appropriate.

Summary Data Quality Review Port of Seattle - T 30 Vapor Sampling – September 2023 Laboratory Group: 309495

Sample Receipt

Upon receipt by the laboratory, the sample container information was compared to the chain-ofcustody (COC). No discrepancies related to sample identification were noted by the laboratory.

Organic Analyses

The sample was analyzed for BTEX, APHs and gases by the methods described in the introduction of this report.

- 1. Holding Times Acceptable
- 2. Blanks Acceptable
- 3. Surrogates Acceptable
- 4. Laboratory Control Sample (LCS) Acceptable
- 5. Laboratory Duplicate Acceptable

<u>General</u> – Laboratory duplicates were performed using a sample from an unrelated project. Results were comparable.

6. Reporting Limits – Acceptable

<u>General</u> – The reporting limits were raised for C9-10 aromatics and BTEX due to dilution and/or sample cannister pressure.

Overall Assessment of Data

The data reported in this laboratory group, as qualified, are usable for meeting project objectives. The completeness for Friedman & Bruya, Inc. laboratory group 309495 is 100%.

Table 1. Summary of Qualified Data

Sample ID	Lab ID	Analyte	Result	Units	Final Result
	No Data Q	ualifiers Were Assigned Base	ed on This Dat	a Review.	

AECOM 1111 3rd Ave Suite 1600 Seattle, WA 98101 www.aecom.com 206 438 2700 tel 866 495 5288 fax

Memorandum

То	Paul Kalina, Project Manager	Info	FINAL
	Summary Data Quality Review		
	Port of Seattle – T-30		
Subject	Vapor Sampling – December 2023		
	Lucy Panteleeff, Chemist		
From	Jennifer B. Garner, Chemist		
Date	January 23, 2024		

The summary data quality review of one vapor sample collected on December 27, 2023, has been completed. The sample was analyzed at Friedman & Bruya, Inc. located in Seattle, Washington for Air-phase Petroleum Hydrocarbons (APHs) by Massachusetts Department of Environmental Protection Method MA-APH and benzene, toluene, ethylbenzene, and total xylenes (BTEX) by EPA Method TO-15. The sample was subcontracted to Fremont Analytical located in Seattle, Washington and analyzed for and gases (carbon dioxide, methane, and oxygen) by EPA Method 3C. The laboratories provided summary reports containing sample results and associated quality assurance (QA) and quality control (QC) data for all samples. The following samples are associated with Friedman & Bruya, Inc. laboratory group 312443:

Sample ID	Laboratory ID	Requested Analyses
SVE-EFF-122723	312443 -01	APH, BTEX
SVE-EFF-122723	312443 -02	Carbon dioxide, Methane, Oxygen

Data were evaluated based on validation criteria established in the *National Functional Guidelines for Organic Superfund Methods Data Review*, November 2020.

The following data components were reviewed during the limited data validation procedure for compliance with method specific or laboratory control charted criteria where appropriate: chain of custody forms, holding times, method blanks, surrogate recoveries, matrix spike and/or matrix spike duplicate recoveries, laboratory and field duplicate results, laboratory control sample and/or laboratory control sample duplicate recoveries, reporting limits, and electronic data deliverables.

A summary of qualifiers that may be assigned to results in this laboratory group are included in Table 1. Qualifiers that may be assigned to results include:

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- DNR Do Not Report. Another result is available that is more reliable or appropriate.

Summary Data Quality Review Port of Seattle - T-30 Vapor Sampling – September 2023 Laboratory Group: 312443

Sample Receipt

Upon receipt by the laboratories, the sample container information was compared to the associated chain-of-custody (COC). No discrepancies related to sample identification were noted by the laboratories.

Organic Analyses

The sample was analyzed for BTEX, APHs and gases by the methods described in the introduction of this report.

- 1. Holding Times Acceptable
- 2. Blanks Acceptable
- 3. Surrogates Acceptable where applicable
- 4. Laboratory Control Sample (LCS) Acceptable
- 5. Laboratory Duplicate Acceptable

<u>BTEX by EPA TO-15</u> – A laboratory duplicate was performed using SVE-EFF-122723. Results were comparable.

<u>APHs by MA-APH</u> – A laboratory duplicate was performed using SVE-EFF-122723. Results were comparable.

<u>Gases by EPA 3C</u> – A laboratory duplicate was performed using SVE-EFF-122723. Results were comparable.

6. Reporting Limits – Acceptable

<u>General</u> – Reporting limits for one or more analytes reported as not detected were raised due to dilution and/or sample cannister pressure.

Overall Assessment of Data

The data reported in this laboratory group are usable for meeting project objectives. The completeness for Friedman & Bruya, Inc. laboratory group 312443 is 100%.

Table 1. Summary of Qualified Data

Sample ID	Lab ID	Analyte	Result	Units	Final Result
	No Data Q	ualifiers Were Assigned Bas	ed on This Dat	a Review.	

<u>Appendix E</u> LNAPL Gauging and Recovery Field Notes

Port of	Seattle	Terminal	30 LNAF	^P L Gaugi	ng Event (January 12, 2023)							
Closest Lov	v Tide:	19:41			Avg								
Closest Hig	h Tide:	12:11			7.91								
Well ID	Time of Gauging	Depth to LNAPL (Feet BTOC)	Depth to Water (Feet	Vater Thickness D		Comments							
MW-35	1720		8.24	0.00	8.24								
MW-36	Removed from LNAPL monitoring protocol following 11/10/22 event												
MW-36A	Removed from LNAPL monitoring protocol following 9/8/22 event												
MW-39A	Removed ;	from LNAPL	monitoring	protocol fo	llowing 9/8/2	2 event							
MW-59	1724	7.84	8.05	0.21	7.85								
MW-89	Removed ;	from LNAPL	monitoring	protocol fo	llowing 9/8/2	22 event							
MW-93	Removed ;	from LNAPL	monitoring	protocol fo	llowing 9/8/2	2 event							
RW-1	1755	7.60	7.63	0.03	7.60	Product dark & viscous on probe							
RW-12	1751	8.12	8.18	0.06	8.12								
RW-101	Removed ;	from LNAPL	monitoring	protocol fo	llowing 9/8/2	2 event							
RW-102	Removed ;	from LNAPL	monitoring	protocol fo	llowing 9/8/2	2 event							
RW-103	1728		7.69	0.00	7.69								
RW-104	1742		7.85	0.00	7.85								
RW-105	Removed ;	from LNAPL	monitoring	protocol fo	llowing 9/8/2	2 event							
RW-106	1749		7.52	0.00	7.52								
RW-107	1730	8.00	8.32	0.32	8.02								
RW-108	Removed ;	from LNAPL	monitoring	protocol fo	llowing 9/8/2	2 event							
RW-109	Removed ;	from LNAPL	monitoring	protocol fo	llowing 9/8/2	2 event							
RW-110	1738		8.28	0.00	8.28								

Notes:

1. The DTW correction when LNAPL is present is based off of the specific gravity of diesel (0.94).

Abbreviations

Feet BTOC = Feet below top of well casing.

LNAPL = Light Non-Aqueous Phase Liquid

ND = LNAPL not detected using interface probe.

NA - Not Available (not able to detect or measure)

TRACE, MINOR, VERY TRACE - Indications of LNAPL present, but no accurate measurement or below measurable amount.

Port of Seattle Terminal 30 LNAPL Gauging Event (February 9, 2023)

Closest Lo	w Tide:	13:33			Avg								
Closest H	igh Tide:	17:00			8.49								
Well ID	Time of Gauging	Depth to LNAPL (Feet BTOC)	Depth to Water (Feet BTOC)	LNAPL Thickness (Feet)	Corrected DTW (Feet	Comments							
MW-35	1655		8.46	0.00	8.46	Odor							
MW-36	Removed from LNAPL monitoring protocol following 11/10/22 event												
MW-36A	Removed from LNAPL monitoring protocol following 9/8/22 event												
MW-39A	Removed from LNAPL monitoring protocol following 9/8/22 event												
MW-59	1713		8.58	0.00	8.58	Odor							
MW-89	Removed from LNAPL monitoring protocol following 9/8/22 event												
MW-93	Removed	from LNAPL n	nonitoring pro	tocol follow	ving 9/8/22	event							
RW-1	1736	7.95	8.00	0.05	7.95	Very strong odor							
RW-12	1722	8.83	8.90	0.07	8.83								
RW-101	Removed	from LNAPL n	nonitoring pro	tocol follow	ving 9/8/22	event							
RW-102	Removed	from LNAPL n	nonitoring pro	tocol follow	ving 9/8/22	event							
RW-103	1704		8.35	0.00	8.35								
RW-104	1732		8.10	0.00	8.10								
RW-105	Removed	from LNAPL n	nonitoring pro	tocol follow	ving 9/8/22	event							
RW-106	1659	8.36	8.41	0.05	8.36	Strong odor							
RW-107	1726	8.70	9.07	0.37	8.72								
RW-108	Removed	from LNAPL n	nonitoring pro	tocol follow	ing 9/8/22	event							
RW-109	Removed	from LNAPL n	nonitoring pro	tocol follow	ving 9/8/22	event							
RW-110	1728		9.02	0	9.02								

Notes:

1. The DTW correction when LNAPL is present is based off of the specific gravity of diesel (0.94).

Abbreviations

Feet BTOC = Feet below top of well casing.

LNAPL = Light Non-Aqueous Phase Liquid

ND = LNAPL not detected using interface probe.

NA - Not Available (not able to detect or measure)

TRACE, MINOR, VERY TRACE - Indications of LNAPL present, but no accurate measurement or below measurable amount.

= Product encountered >0.01 ft

Port of Seattl Event (March		30 LNAPL R	emoval	Avg DTW:	8.55			Nearest	: High Tide:	18:11	Neare	st Low Tide:	12:17																		
		Initia	Gauging					Fi	irst Remov	/al					Se	cond Rem	oval					Т	hird Remov	/al					End of Da	ay	
Well ID	Time of Gauging	Initial Depth to LNAPL (Ft BTOC)	Initial Depth to Water (Ft BTOC)	LNAPL Thickness (Feet)	Corrected DTW (Feet BTOC)	LNAPL Extraction Duration (Minutes)	Extraction Start Time (Approx.)	Extraction End Time (Approx.)	Time of Gauging	Depth to LNAPL (Ft BTOC)	Depth to Water (Feet TOC)	LNAPL Thickness (Feet)	LNAPL Extraction Duration (Minutes)	Extraction Start Time (Approx.)	Extraction End Time (Approx.)	Time of Gauging	Depth to LNAPL (Ft BTOC)	Depth to Water (Ft BTOC)	LNAPL Thickness (Feet)	LNAPL Extraction Duration (Minutes)	Extraction Start Time (Approx.)	Extraction End Time (Approx.)	Time of Gauging	Depth to LNAPL (Ft BTOC)	Depth to Water (Ft BTOC)	LNAPL Thickness (Feet)	Time of Gauging	Depth to LNAPL (Ft BTOC)	Depth to Water (Ft BTOC)	LNAPL Thickness (Feet)	Time Lapse Since Extraction (minutes)
MW-35	1657	8.37	8.38	0.01	8.37	20	2020	2040	2040		10.94												Guuging								
MW-36	Removed fro	m LNAPL monit	orina protocol fo	llowing 11/10/22	event																										
MW-36A																															
MW-39A				llowing 09/08/22																											
MW-59	1721		8.56	0.00	8.56									-										-							
MW-89	Removed from	m LNAPL monit	oring protocol fo	llowing 09/08/22	event	<u> </u>										1			1	4			1	1	1						
MW-93	Removed fro	m LNAPL monit	oring protocol fo	llowing 09/08/22	event		_		-					_								-				-					
RW-1	1728	7.99	8.01	0.02	7.99	20	1920	1940	1940		11.01																		-		
RW-12	1714	8.9	8.99	0.09	8.91	20	1800	1820	1820		11.14																				-
RW-101	Removed fro	m LNAPL monit	oring protocol fo	llowing 09/08/22	event						<u>ا</u> ــــــــــــــــــــــــــــــــــــ																				
RW-102	Removed fro	m LNAPL monit	oring protocol fo	llowing 09/08/22	event		•																			•					
RW-103	1711		8.51	0.00	8.51													-													
RW-104	1702		8.16	0.00	8.16						-																		-		
RW-105	Removed fro	m LNAPL monit	oring protocol fo	llowing 09/08/22	event																										
RW-106	1706	8.5	8.6	0.1	8.51	20	1820	1840	1840	9.15	9.16	0.01		-										-					-		
RW-107	1652	8.78	9.33	0.55	8.81	60	1700	1800	1800	9.46	9.79	0.33	30	1840	1910	1910	9.91	10.24	0.33	30	1950	2010	2010	9.55	9.65	0.1					
RW-108	Removed fro	m LNAPL monit	oring protocol fo	llowing 09/08/22	event		<u> </u>				II			<u> </u>																	
RW-109	Removed fro	m LNAPL monit	oring protocol fo	llowing 09/08/22	event																										
RW-110	1718		9.11	0.00	9.11					-	-			-										-					-		
Estimated volume Estimated volume						AND APPROXIM	IATED TOTALS		1400	466			ot vac'd furt	her as the th a second tir													-				
Estimated combin									1602.7																						
> Estima	ated product p	portion (gal):					32.78																								
> Estima	ated water po	rtion (gal):					1569.92																								
Guidelines:								Abbreviations 8	& Formatting																						
- If product thickr	ness is 0.01 - 0).25 ft, vac for a	prox 20 min					BTOC = Feet be																							
	If product thickness is 0.26 - 0.5 ft, vac for approx 30-40 min LNAPL = Light Non-Aqueous Phase Liquid																														
	If product thickness is greater than 0.51 ft, vac for approx 60 min ND = LNAPL not detected using interface probe.																														
- Repeat vac ever	ıts until produ	ict thickness is «	0.01 ft or three v	ac events have b	een completed			NA - Not Availa	ible (not able t	o detect or mea	isure)																				
- Perform an end-	of-day DTW/p	product gauge f	or any well that i	nitially had >0.25	ft of product			TRACE, MINOR	- LNAPL prese	ent, but no accu	rate measureme																				
Notes:								Red wells extra	cted by DH En	vironmental wit	h vacuum truck.																				

1. During the 10/6/22 Ops Meeting, agreed that wells measured <0.01 ft for 1 yr can be removed from monitoring schedule.

2. The DTW correction when LNAPL is present is based off of the specific gravity of diesel (0.94).

Port of Seattle Terminal 30 LNAPL Gauging Event (April 13, 2023)

Closest Lov	w Tide:	1736			Avg					
Closest Hi	gh Tide:	1000			8.40					
Well ID	Time of Gauging	Depth to LNAPL (Feet BTOC)	Depth to Water (Feet BTOC)	LNAPL Thickness (Feet)	Corrected DTW (Feet	Comments				
MW-35	1836	8.55	8.55	<0.01; SHEEN	8.55	Water in monument				
MW-36	Removed fi	rom LNAPL mor	nitoring protoco	ol following 2	11/10/22 eve	ent				
MW-36A	Removed fi	rom LNAPL moi	nitoring protoco	ol following s	9/8/22 event	t				
MW-39A	Removed fi	rom LNAPL moi	nitoring protoco	ol following s	9/8/22 event	t				
MW-59	1824		8.79	0.00	8.79	Water in monument				
MW-89	Removed fi	rom LNAPL moi	nitoring protoco	ol following s	9/8/22 event	t				
MW-93	Removed from LNAPL monitoring protocol following 9/8/22 event									
RW-1	1850	8.32	8.35	0.03	8.32	Thick product				
RW-12	1812	9.09	9.16	0.07	9.09					
RW-101	Removed fi	rom LNAPL moi	nitoring protoco	ol following s	9/8/22 event	t				
RW-102	Removed fi	rom LNAPL moi	nitoring protoco	ol following s	9/8/22 event	t				
RW-103	1831	7.98	8.38	0.40	8.00					
RW-104	1840		7.71	0.00	7.71					
RW-105	Removed fi	rom LNAPL moi	nitoring protoco	ol following s	9/8/22 event	t				
RW-106	1826	8.09	8.63	0.54	8.12	Monument full of sediment up to TOC				
RW-107	1807	8.34	9.00	0.66	8.38					
RW-108	Removed fr	rom LNAPL moi	nitoring protoco	ol following S	9/8/22 event	t				
RW-109	Removed fi	rom LNAPL moi	nitoring protoco	ol following S	9/8/22 event	t				
RW-110	1843	8.63	8.64	0.01	8.63	Monument full of sediment nearly to TOC				

Notes:

1. The DTW correction when LNAPL is present is based off of the specific gravity of diesel (0.94).

Abbreviations

Feet BTOC = Feet below top of well casing.

LNAPL = Light Non-Aqueous Phase Liquid

ND = LNAPL not detected using interface probe.

NA - Not Available (not able to detect or measure)

TRACE, MINOR, VERY TRACE - Indications of LNAPL present, but no accurate measurement or below measurable amount.

= Product encountered >0.01 ft

Port of Seattle Terminal 30 LNAPL Gauging Event (May 11, 2023)

Closest Lo	ow Tide:	16:09			<u>Avg</u>	
Closest H	igh Tide:	8:41			8.43	
Well ID	Time of Gauging	Depth to LNAPL (Feet BTOC)	Depth to Water (Feet BTOC)	LNAPL Thickness (Feet)	Corrected DTW (Feet	Comments
MW-35	18:38	8.51	8.55	0.04	8.51	Thick, globby beige substance on the probe when pulled up
MW-36	Removed	from LNAPL n	nonitoring pro	tocol follow	ving 11/10/.	22 event
MW-36A	Removed	from LNAPL n	nonitoring pro	tocol follow	ving 9/8/22	event
MW-39A	Removed	from LNAPL n	nonitoring pro	tocol follow	ing 9/8/22	event
MW-59	18:20		8.34	0.00	8.34	
MW-89	Removed	from LNAPL n	nonitoring pro	tocol follow	ing 9/8/22	event
MW-93	Removed	from LNAPL n	nonitoring pro	tocol follow	ving 9/8/22	event
RW-1	18:46	8.46	8.55	0.09	8.47	Thick dark brown product consistent with prior observations
RW-12	18:14	8.81	8.87	0.06	8.81	
RW-101	Removed	from LNAPL n	nonitoring pro	tocol follow	ving 9/8/22	event
RW-102	Removed	from LNAPL n	nonitoring pro	tocol follow	ing 9/8/22	event
RW-103	18:24	7.70	7.94	0.24	7.71	
RW-104	Removed	from LNAPL n	nonitoring pro	tocol follow	ving 4/13/2.	3 event
RW-105	Removed	from LNAPL n	nonitoring pro	tocol follow	ving 9/8/22	event
RW-106	18:16	7.64	8.70	1.06	7.70	
RW-107	18:11	9.40	10.00	0.60	9.44	
RW-108	Removed	from LNAPL n	nonitoring pro	tocol follow	ing 9/8/22	event
RW-109	Removed	from LNAPL n	nonitoring pro	tocol follow	ving 9/8/22	event
RW-110	18.26		8.44	0.00	8.44	Well gauged several times & the probe never sensed product, but each time the probe came up coated with a petroleum- smelling brown residue.

Notes:

1. The DTW correction when LNAPL is present is based off of the specific gravity of diesel (0.94).

Abbreviations

Feet BTOC = Feet below top of well casing.

LNAPL = Light Non-Aqueous Phase Liquid

ND = LNAPL not detected using interface probe.

NA - Not Available (not able to detect or measure)

TRACE, MINOR, VERY TRACE - Indications of LNAPL present, but no accurate measurement or below measurable amount.

= Product encountered >0.01 ft

Port of S	Seattle Terminal 30 L		val Event	Avg DTW																										
	(June 19, 20	123)		9.00	Closest Lo	ow Tide:	12:18	Closest Hi	gh Tide:	5:05																				
		Initial Gaug	ging	1		-	F	irst Remov	/al	1			1	Se	cond Rem	oval				1	Т	hird Remo	val	-				End of D	ay	
	Initial Depth to LNAPL Time of	to Water	LNAPL Thickness	Corrected Depth to Water ²	LNAPL Extraction Duration	Extraction Start Time	Extraction End Time	Time of	Depth to LNAPL	Depth to Water	LNAPL Thickness	LNAPL Extraction Duration	Extraction Start Time	Extraction End Time	Time of	Depth to LNAPL	Depth to Water	LNAPL Thickness	LNAPL Extraction Duration	Extraction Start Time	Extraction End Time	Time of	Depth to LNAPL	Depth to Water	LNAPL Thickness	Time of	Depth to LNAPL	Depth to Water	LNAPL Thickness	Time Lapse Since Extraction
Well ID	Gauging (Ft BTOC)	(Ft BTOC)	(Feet)	(Ft BTOC)	(Minutes)	(Approx.)	(Approx.)	Gauging	(Ft BTOC)	(Feet TOC)	(Feet)	(Minutes)	(Approx.)	(Approx.)	Gauging	(Ft BTOC)	(Ft BTOC)	(Feet)	(Minutes)	(Approx.)	(Approx.)	Gauging	(Ft BTOC)	(Ft BTOC)	(Feet)	Gauging	(Ft BTOC)	(Ft BTOC)	(Feet)	(minutes)
MW-35	9:05 8.79	8.86	0.07	8.79	20	11:08	11:29	11:30		9.97	0.00					-	-													
MW-36	Removed from LNAPL monit	÷																												
MW-36A MW-39A	Removed from LNAPL monit Removed from LNAPL monit		-																											
			1110Willy 03/08/22		1							1							1							1				
MW-59	9:10	8.95	0.00	8.95	-												-													
MW-89 MW-93	Removed from LNAPL monit Removed from LNAPL monit																													
RW-1	9:15 8.5	8.52	0.02	8.50	20	11:42	12:02	12:04		9.45	0.00																			
RW-12	8:47 9.25	9.35	0.10	9.26	20	9:15	0:35	9:37		10.60	0.00				-															
RW-101	Removed from LNAPL monit	oring protocol fo	allowing 09/08/22	event			<u> </u>										ļ	<u> </u>						-			<u> </u>			
RW-101	Removed from LNAPL monit		-																											
RW-103	8:57	8.90	0.00	8.90											-		-													
RW-104	Removed from LNAPL monit	oring protocol fo	ollowing 40/13/23	event				1		1	1		1	1			1						1							
RW-105	Removed from LNAPL monit	toring protocol fo	ollowing 09/08/22	event		-			-													-					_	-		
RW-106	8:55 8.92	8.93	0.01	8.92	20	10:36	10:55	10:57		9.35	0.00				-	-				-									-	
RW-107	8:45 9.21	9.40	0.19	9.22	20	8:55	9"15	9:17	9.41	10.07	0.66	50	9:40	10:30	10:30	9.27	9.9	0.63	60	12:19	13:19	13:20	9.65	10.35	0.70					
RW-108	Removed from LNAPL monit		-																											
RW-109	Removed from LNAPL monit	toring protocol fo	ollowing 09/08/22	event	1		1	1		1	1		1	1	1	1	1		1	1	1		1	-	1	1	r			1
RW-110	8:54	9.44	0.00	9.44																										
	<u> </u>		VACUUM TRU	ICK MEASURED A	AND APPROXIM	ATED TOTALS				1	COMMEN	TS:	1	1	1				1				1							
Estimated volum	e in vac truck after completio	n of LNAPL recov	ery (prior to hold	ing tank) (gal):				3	43.68				ed at RW-10	7. Increased	l from an i	nitial 0.19 f	thickness t	o 0.66 ft aft	er a 20-min	removal and	d then not s	ubstantially	/ changing tl	hereafter (0	.63 ft and 0.	70 ft) desit	e 2 more ho	urs of recov	ery effort.	
Estimated volum	e in vac truck at end of day (i	ncluding holding	tank) (gal):					850																						
Estimated combi	ined volume, measured by DH	the following da	ıy (gal):					855.48																						
> Estim	nated product portion (gal):					34.06																								
> Estim	nated water portion (gal):					821.42																								
Guidelines:							Abbreviations	& Formatting																						
- If product thick	ness is 0.01 - 0.25 ft, vac for a	pprox 20 min					BTOC = Feet b	elow top of we	Il casing.																					
- If product thick	ness is 0.26 - 0.5 ft, vac for ap	prox 30-40 min					LNAPL = Light	Non-Aqueous	Phase Liquid																					
	ness is greater than 0.51 ft, v						ND = LNAPL no	ot detected usi	ng interface pro	be.																				
	nts until product thickness is						NA - Not Avail	able (not able	to detect or mea	asure)																				
	l-of-day DTW/product gauge i	for any well that i	initially had >0.25	ft of product					ent, but no accu																					
Notes:							Red wells extr	acted by DH Er	wironmental wit	th vacuum truck.																				

1. During the 10/6/22 Ops Meeting, agreed that wells measured <0.01 ft for 1 yr can be removed from monitoring schedule.

2. The DTW correction when LNAPL is present is based off of the specific gravity of diesel (0.94).

Port of Seattle Terminal 30 LNAPL Gauging Event (July 27, 2023)

Closest Lo	w Tide:	18:31			Avg	
Closest H	igh Tide:	14:31			9.22	
Well ID	Time of Gauging	Depth to LNAPL (Feet BTOC)	Depth to Water (Feet BTOC)	LNAPL Thickness (Feet)	Corrected DTW ¹ (Feet BTOC)	Comments
MW-35	16:38	9.01	9.01	TRACE	9.01	Strong odor on probe
MW-36	Removed ;	from LNAPL m	nonitoring prot	tocol follow	ing 11/10/22	event
MW-36A	Removed ;	from LNAPL m	onitoring prot	tocol follow	ing 9/8/22 ev	vent
MW-39A	Removed ;	from LNAPL m	nonitoring prot	tocol follow	ing 9/8/22 ev	vent
MW-59	16:42		9.68	0.00	9.68	
MW-89	Removed ;	from LNAPL m	nonitoring prot	tocol follow	ing 9/8/22 ev	vent
MW-93	Removed ;	from LNAPL m	nonitoring prot	tocol follow	ing 9/8/22 ev	vent
RW-1	17:02	8.91	8.98	0.07	8.91	Thick, dark residue on probe
RW-12	16:49	9.67	9.85	0.18	9.68	TPH odor
RW-101	Removed ;	from LNAPL m	nonitoring prot	tocol follow	ing 9/8/22 ev	vent
RW-102	Removed ;	from LNAPL m	nonitoring prot	tocol follow	ing 9/8/22 ev	vent
RW-103	16:55	8.81	9.00	0.19	8.82	TPH odor; tan-colored droplets off of probe
RW-104	Removed ;	from LNAPL m	nonitoring prot	tocol follow	ing 4/13/23 e	event
RW-105	Removed ;	from LNAPL m	nonitoring prot	tocol follow	ing 9/8/22 ev	vent
RW-106	16:44	8.95	9.69	0.74	8.99	TPH odor
RW-107	16:52	9.19	9.78	0.59	9.23	TPH odor; brown/tan-colored droplets off of probe
RW-108	Removed ;	from LNAPL m	nonitoring prot	tocol follow	ing 9/8/22 ev	vent
RW-109	Removed	from LNAPL m	nonitoring prot	tocol follow	ing 9/8/22 ev	vent
RW-110	16:58	9.41	9.46	0.05	9.41	TPH odor; probe discolored brown

Notes:

1. The DTW correction when LNAPL is present is based off of the specific gravity of diesel (0.94).

Abbreviations

Feet BTOC = Feet below top of well casing.

LNAPL = Light Non-Aqueous Phase Liquid

ND = LNAPL not detected using interface probe.

NA - Not Available (not able to detect or measure)

TRACE, MINOR, VERY TRACE - Indications of LNAPL present, but no accurate measurement or below measurable amount.

= Product encountered >0.01 ft

Port of Seattle Terminal 30 LNAPL Gauging Event (August 10, 2023)

Closest Lo	w Tide:	20:11			<u>Avg</u>		
Closest H	igh Tide:	15:28			8.66		
Well ID	Time of Gauging	Depth to LNAPL (Feet BTOC)	Depth to Water (Feet BTOC)	LNAPL Thickness (Feet)	Corrected DTW ¹ (Feet BTOC)	Comments	
MW-35	16:42	8.70	8.73	0.03	8.70		
MW-36	Removed ;	from LNAPL m	onitoring prot	ocol follow	ing 11/10/22	event	
MW-36A	Removed ;	from LNAPL m	onitoring prot	ocol follow	ing 9/8/22 ev	ent	
MW-39A	Removed ;	from LNAPL m	onitoring prot	ocol follow	ing 9/8/22 ev	ent	
MW-59	16:57		8.43	0.00	8.43		
MW-89	Removed ;	from LNAPL m	onitoring prot	ocol follow	ing 9/8/22 ev	ent	
MW-93	Removed from LNAPL monitoring protocol following 9/8/22 event						
RW-1	17:00	8.92	9.00	0.08	8.92		
RW-12	16:49	8.80	9.11	0.31	8.82		
RW-101	Removed ;	from LNAPL m	onitoring prot	ocol follow	ing 9/8/22 ev	ent	
RW-102	Removed ;	from LNAPL m	onitoring prot	ocol follow	ing 9/8/22 ev	ent	
RW-103	16:47		8.35	0.00	8.35		
RW-104	Removed ;	from LNAPL m	onitoring prot	ocol follow	ing 4/13/23 e	vent	
RW-105	Removed ;	from LNAPL m	onitoring prot	ocol follow	ing 9/8/22 ev	ent	
RW-106	16:45	8.25	8.27	0.02	8.25		
RW-107	16:51	8.72	9.36	0.64	8.76		
RW-108	Removed	from LNAPL m	onitoring prot	ocol follow	ing 9/8/22 ev	ent	
RW-109	Removed ;	from LNAPL m	onitoring prot	ocol follow	ing 9/8/22 ev	ent	
RW-110	16:54		9.01	0.00	9.01		

Notes:

1. The DTW correction when LNAPL is present is based off of the specific gravity of diesel (0.94).

Abbreviations

Feet BTOC = Feet below top of well casing.

LNAPL = Light Non-Aqueous Phase Liquid

ND = LNAPL not detected using interface probe.

NA - Not Available (not able to detect or measure)

TRACE, MINOR, VERY TRACE - Indications of LNAPL present, but no accurate measurement or below measurable amount.

= Product encountered >0.01 ft

Port of		tember 14,	IAPL Remova 2023)	ai Event	Avg DTW	<i>a</i> 1																										
-			Initial Causel		9.08	Closest Lo	w Tide:		Closest Hi	-	18:00				6-					1						Ford of D						
		Initial Depth	Initial Gaugi	ng LNAPL	Corrected Depth to	LNAPL Extraction	Extraction	FI	irst Remov	/al Depth to	Depth to	LNAPL	LNAPL	Extraction	Extraction	ond Rem	Depth to	Depth to	LNAPL		Depth to	Depth to		Time Lapse Since	% of Initial	End of D LNAPL Extraction	Extraction Start	Extraction				
	Time of	to LNAPL	to Water	Thickness	Water ²	Duration	Start Time	End Time	Time of	LNAPL	Water	Thickness	Duration	Start Time	End Time	Time of	LNAPL	Water	Thickness	Time of	LNAPL	Water	LNAPL Thickness	Extraction	LNAPL Thickness	Duration	Time	End Time				LNAPL Thickness
Well ID	Gauging 17:02	(Ft BTOC) 9.19	(Ft BTOC) 9.31	(Feet) 0.12	(Ft BTOC) 9.22	(Minutes)	(Approx.) 19:35	(Approx.) 19:55	Gauging 19:57	(Ft BTOC)	(Feet TOC) 13.95; well	(Feet) 0.00	(Minutes)	(Approx.)	(Approx.)	Gauging	(Ft BTOC)	(Ft BTOC)	(Feet)	Gauging	(Ft BTOC)	(Ft BTOC)	(Feet)	(minutes)	(%)	(Minutes)	(Approx.)	(Approx.)	Time of Gauging	g (Ft BTOC)	(Ft BTOC)	(Feet)
MW-35 MW-36			9.51 ring protocol follo			20	19:35	19:55	19:57		pumped dry	0.00			-						-											-
MW-36A			ring protocol follo ring protocol follo																													
MW-39A			ring protocol follo																													
MW-59	17:37		7.50	0.00	7.50		-																-					-				-
MW-89	Removed from	m LNAPL monito	ring protocol follo	wing 09/08/22 e	vent						1																					
MW-93	Removed from	m LNAPL monito	ring protocol follo	wing 09/08/22 e	vent	-														_			-									
RW-1	17:28	9.09	9.18	0.09	9.11	20	20:10	20:30	20:31		11.65	0.00			-				-				-					-			-	-
RW-12	17:20	9.46	9.50	0.04	9.47	20	17:55	18:15	18:17	9.98	10.03	0.05	20	18:45	19:05	19:05		11.85	0.00				-			-		-			-	-
RW-101			ring protocol follo																													
RW-102	-	m LNAPL monito	ring protocol follo			r —	1		1		1						1	1		1			1				1	1	1			1
RW-103	16:55		9.05	0.00	9.05										-								-									
RW-104 RW-105			ring protocol follo ring protocol follo																													
		II LINAPL MONICO	ning protocol jolio	wing 03/08/22 e		1														1												
RW-106	17:08	9.03	9.08	0.05	9.04	20	18:15	18:36	18:42	9.22	9.27	0.05	20	19:05	19:25	19:26		9.64	0.00				-					-			-	-
RW-107	16:40	9.32	10.05	0.73	9.52	60	16:55	17:55	17:59		9.00	0.00			-				-	20:00	9.63	10.26	0.63	2:05	86%	50	20:40	21:30	21:42	9.90	10.50	0.60
RW-108			ring protocol follo																													
RW-109		n LNAPL MONIC	ring protocol follo																	I												
RW-110	16:51		9.69	0.00	9.69		-								-				-				-		-	-		-			-	-
				VACUUM TRU	CK MEASURED A	ND APPROXIMA	TED TOTALS					COMMENT																				
Estimated volum	e in vac truck a	fter completion	of LNAPL recovery	(prior to holding	tank) (gal):				5	09.83		0.73 ft initi	ally in RW-1	.07 was pun	nped to 0 ft	in the first	t 60-min att	empt. Wher	auged aga	ain 2 hours	later it had	rebounded	back to 0.63	ft. The subse	equent 50 -mi	in vac only go	ot the thickne	ess back down	n to 0.60 ft.			
Estimated volum	e in vac truck a	t end of day (inc	uding holding tank	k) (gal):					800			MW-35 pu	mped dry d	uring the in	tial 20-min	vac.																
Estimated combi	ined volume, me	easured by DH t	ne following day (g	al):					780																							
> Estir	nated product p	oortion (gal):					11.7																									
> Estir	nated water po	rtion (gal):					768.3																									
Guidelines:								Abbreviations 8	& Formatting																							
- If product thick	ness is 0.01 - 0.	25 ft, vac for ap	prox 20 min					BTOC = Feet bel	low top of wel	l casing.																						
- If product thick								LNAPL = Light N	Ion-Aqueous P	hase Liquid																						
			for approx 60 min					ND = LNAPL not																								
			.01 ft or three vac					NA - Not Availal																								
	l-of-day DTW/p	roduct gauge for	any well that initi	ally had >0.25 ft o	of product					nt, but no accura																						
Notes:	6/22 Opr Moot	ing agreed that	wells measured <	0.01 ft for 1 yr ca	n he removed fr	om monitoring c	ehodulo	Red wells extrac	ctéd by DH Én	vironmental with	vacuum truck.																					

2. The DTW correction when LNAPL is present is based off of the specific gravity of petroleum, 0.7321.

1. During the 10/6/22 Ops Meeting, agreed that wells measured <0.01 ft for 1 yr can be removed from monitoring schedule.

Port of Seattle Terminal 30 LNAPL Removal Event

Port of Seattle Terminal 30 LNAPL Gauging Event (October 12, 2023)

Closest Lov	w Tide:	23:01			<u>Avg</u>				
Closest Hi	gh Tide:	16:40			9.76				
Well ID	Time of Gauging	Depth to LNAPL (Feet BTOC)	Depth to Water (Feet BTOC)	LNAPL Thickness (Feet)	Corrected DTW ¹ (Feet BTOC)	Comments			
MW-35	18:28	9.42	9.47	0.05	9.42	Odor observed			
MW-36	Removed ;	from LNAPL m	onitoring prot	cocol follow	ing 11/10/22	event			
MW-36A	Removed ;	from LNAPL m	onitoring prot	cocol follow	ing 9/8/22 ev	ent			
MW-39A	Removed ;	from LNAPL m	onitoring prot	cocol follow	ing 9/8/22 ev	ent			
MW-59	18:13		9.91	0.00	9.91	Odor observed			
MW-89	Removed ;	from LNAPL m	onitoring prot	cocol follow	ing 9/8/22 ev	ent			
MW-93	Removed from LNAPL monitoring protocol following 9/8/22 event								
RW-1	17:52	8.88	8.94	0.06	8.88	Odor observed & product on probe			
RW-12	18:02	10.08	10.29	0.21	10.09	Odor observed & product on probe			
RW-101	Removed ;	from LNAPL m	onitoring prot	cocol follow	ing 9/8/22 ev	ent			
RW-102	Removed ;	from LNAPL m	onitoring prot	cocol follow	ing 9/8/22 ev	ent			
RW-103	18:19		9.70	0.00	9.70	No odor, no product observed			
RW-104	Removed ;	from LNAPL m	onitoring prot	cocol follow	ing 4/13/23 e	vent			
RW-105	Removed ;	from LNAPL m	onitoring prot	cocol follow	ing 9/8/22 ev	ent			
RW-106	18:07	9.81	10.08	0.27	9.83	Odor observed & product on probe			
RW-107	17:59	9.92	10.58	0.66	9.96	Odor observed & product on probe			
RW-108	Removed ;	from LNAPL m	onitoring prot	ocol follow	ing 9/8/22 ev	ent			
RW-109	Removed ;	from LNAPL m	onitoring prot	ocol follow	ing 9/8/22 ev	ent			
RW-110	18:17		10.25	0.00	10.25	No odor, no product observed			

Notes:

1. The DTW correction when LNAPL is present is based off of the specific gravity of diesel (0.94).

Abbreviations

Feet BTOC = Feet below top of well casing.

LNAPL = Light Non-Aqueous Phase Liquid

ND = LNAPL not detected using interface probe.

NA - Not Available (not able to detect or measure)

TRACE, MINOR, VERY TRACE - Indications of LNAPL present, but no accurate measurement or below measurable amount.

= Product encountered >0.01 ft

Port of Seattle Terminal 30 LNAPL Gauging Event (November, 2023)

Closest Lo	w Tide:	20:58			Avg			
Closest H	igh Tide:	14:10			8.88			
Well ID	Time of Gauging	Depth to LNAPL (Feet BTOC)	Depth to Water (Feet BTOC)	LNAPL Thickness (Feet)	Corrected DTW ¹ (Feet BTOC)	Comments		
MW-35	1843	-	8.96	0.00	8.96			
MW-36	Removed ;	from LNAPL m	onitoring prot	ocol follow	ing 11/10/22	event		
MW-36A	Removed ;	from LNAPL m	onitoring prot	ocol follow	ing 9/8/22 ev	ent		
MW-39A	Removed ;	from LNAPL m	onitoring prot	cocol follow	ing 9/8/22 ev	ent		
MW-59	1835	-	8.61	0.00	8.61			
MW-89	Removed ;	from LNAPL m	onitoring prot	cocol follow	ing 9/8/22 ev	ent		
MW-93	Removed from LNAPL monitoring protocol following 9/8/22 event							
RW-1	1851	8.50	8.55	0.05	8.50			
RW-12	1825	9.09	9.39	0.30	9.11			
RW-101	Removed ;	from LNAPL m	onitoring prot	cocol follow	ing 9/8/22 ev	ent		
RW-102	Removed ;	from LNAPL m	onitoring prot	cocol follow	ing 9/8/22 ev	ent		
RW-103	1828	-	8.69	0.00	8.69			
RW-104	Removed ;	from LNAPL m	onitoring prot	cocol follow	ing 4/13/23 e	vent		
RW-105	Removed ;	from LNAPL m	onitoring prot	cocol follow	ing 9/8/22 ev	ent		
RW-106	1834	8.81	8.82	0.01	8.81			
RW-107	1822	9.02	9.58	0.56	9.05			
RW-108	Removed ;	from LNAPL m	onitoring prot	ocol follow	ing 9/8/22 ev	ent		
RW-109	Removed ;	from LNAPL m	onitoring prot	ocol follow	ing 9/8/22 ev	ent		
RW-110	1839	-	9.28	0.00	9.28			

Notes:

1. The DTW correction when LNAPL is present is based off of the specific gravity of diesel (0.94).

Abbreviations

Feet BTOC = Feet below top of well casing.

LNAPL = Light Non-Aqueous Phase Liquid

ND = LNAPL not detected using interface probe.

NA - Not Available (not able to detect or measure)

TRACE, MINOR, VERY TRACE - Indications of LNAPL present, but no accurate measurement or below measurable amount.

= Product encountered >0.01 ft

Port of		minal 30 L cember 14	NAPL Rem , 2023)	oval Event	Avg DTW 8 41	Closest Low	v Tide:	23-58	Closest Hi	igh Tide	16:20																													
	1		Initial Gau	uging	0.41	closest con	That:		First Remo	-	10.20		r		Sec	ond Rem	oval			1			Third Remo	val			1						End o	f Dav						
	Time of	Initial Depth to LNAPL	Initial Dept	n LNAPL	Corrected Depth to Water ²	LNAPL Extraction Duration	Extraction Start Time	Extraction End Time	Time of	Depth to LNAPL	Depth to Water	LNAPL Thickness	LNAPL Extraction Duration	Extraction Start Time	Extraction End Time	Time of	Depth to LNAPL	Depth to Water	LNAPL Thickness	LNAPL Extraction Duration	Extraction Start Time	Extraction End Time	Time of	Depth to LNAPL	Depth to Water	LNAPL Thickness	Time of	Depth to LNAPL	Depth to Water	LNAPL Thicknes	Time Lapse Since Extraction	% of Initia LNAPL Thickn	LNAPL Extractio	Extraction			Depth	h to LNAPL De	epth to Water	LNAPL Thickness
Well ID	Gauging	(Ft BTOC)	(Ft BTOC)	(Feet)	(Ft BTOC)	(Minutes)	(Approx.)	(Approx.)	Gauging	(Ft BTOC)	(Feet TOC)	(Feet)	(Minutes)	(Approx.)	(Approx.)	Gauging	(Ft BTOC)	(Ft BTOC)	(Feet)	(Minutes)	(Approx.)	(Approx.)	Gauging	(Ft BTOC)	(Ft BTOC)	(Feet)	Gauging	(Ft BTOC)	(Ft BTOC)	(Feet)	(minutes)	(%)	(Minutes	(Approx	k.) (Appro	ox.) Time of G	Gauging (Ft	t BTOC)	(Ft BTOC)	(Feet)
MW-35	19:33	-	8.48	0.00	8.48					-			-	-		-		-	-	-				-	-		-					-		-	-	-	-		-	-
MW-36	Removed fro	m LNAPL monit	toring protocol fi	ollowing 11/10/22	event		1	1		1												1	1	1		1				1	1									
MW-36A	Removed fro	m LNAPL monit	toring protocol fi	ollowing 09/08/22	event																																			
MW-39A	Removed fro	m LNAPL monit	toring protocol f	ollowing 09/08/22	event								.				1					r		r		r		-		1	1	-		-						
MW-59	19:20		8.12	0.00	8.12					-			-	-		-		-	-	-				-	-							-			-	-	-		-	-
MW-89	Removed fro	m LNAPL monit	toring protocol fi	ollowing 09/08/22	event																													_						
MW-93	Removed fro	m LNAPL monit	toring protocol f	ollowing 09/08/22	event																																			
RW-1	19:48	8.05	8.10	0.05	8.05	20	19:50	20:10	2010	-	9.96	0.00	-	-		-			-	-					-	-	-					-			-		-			-
RW-12	16:55	8.65	8.90	0.25	8.67	20	17:41	18:01	18:01	-	10.68	0.00	-	-		-		-	-	-	-	-		-	-	-						-			-	-	-			-
RW-101	Removed fro	m LNAPL monit	toring protocol f	ollowing 09/08/22	event																																			
RW-102	Removed fro	m LNAPL monit	toring protocol fi	ollowing 09/08/22	event																												_							
RW-103	17:00		8.20	0.00	8.20		-			-			-	-		-		-		-		-		-	-							-			-	-	-		-	-
RW-104	Removed fro	m LNAPL monit	toring protocol f	ollowing 40/13/23	event																																			
RW-105	Removed fro	m LNAPL monit	toring protocol f	ollowing 09/08/22	event			1				1	r				1					r		r		r		r		1		-	-							
RW-106	18:07	8.41	8.44	0.03	8.41	20	19:06	19:26	19:27	-	8.84	0.00	-	-		-		-	-	-		-			-			-		-		-	-	-	-	-	-	-	-	-
RW-107	16:25	8.45	9.00	0.55	8.48	60	16:42	17:40	17:45	8.8	9.45	0.65	60	18:05	19:03	19:05	9.05	9.7	0.65	20	2013	2027	2028	-	8.84	0.00						-			-	-	-		-	-
RW-108				ollowing 09/08/22		•																																		
RW-109	Removed fro	m LNAPL monit	toring protocol f	ollowing 09/08/22	event							r	r									· · · · ·		r		r														
RW-110	17:20		8.85	0.00	8.85		-			-				-	-	-		-	-	-				-	-	-		-				-				-	-		-	-
				VACUUM TI	UCK MEASURED	AND APPROXIMA	ATED TOTALS					COMMEN																												
Estimated volur	ne in vac truck a	fter completion	n of LNAPL recov	ery (prior to holdi	ng tank) (gal):					645		Product th	iickness in R\	N-107 was	measured a	at 0.65 ft i	mmediately	following t	ne second	round of vac	cuuming (1	9:05). An h	our later, at	20:07, it wa	is gauged ag	ain and the	e thickness	had droppe	ed to 0.10 f	t. Thus the th	nird round of	vacuuming	was set for	just 20 minu	utes.					
Estimated volur	ne in vac truck a	it end of day (in	cluding holding	tank) (gal):					960																															
Estimated comb	ined volume, m	easured by DH 1	the following da	y (gal):					863.3																															
> Es	timated produc	t portion (gal):					12.04																																	
\rightarrow Es	timated water	portion (gal):					851.27																																	
Guidelines:								Abbreviations	s & Formatting																															
- If product thid	ness is 0.01 - 0	25 ft, vac for ap	pprox 20 min					BTOC = Feet be	elow top of we	II casing.																														
- If product thid								LNAPL = Light																																
- If product thic										ng interface prob																														
				vac events have be						o detect or meas																														
	d-of-day DTW/p	roduct gauge fo	or any well that i	nitially had >0.25	It of product					ent, but no accura vironmental with																														
Notes: 1. During the 10	/6/22 Ons Mee	ting agreed that	at wells measure	d <0.01 ft for 1 v	can be removed f	rom monitoring s	chedule	Red wells extra	racted by DH En	wronmental with	i vacuum truck.																													

1. During the 10/6/22 Ops Meeting, agreed that wells measured <0.01 ft for 1 yr can be removed from monitoring schedule.

2. The DTW correction when LNAPL is present is based off of the specific gravity of diesel (0.94).

<u>Appendix F</u> Groundwater Sampling Field Forms

DAILY FIELD LOG

Project Informati	on Page of
Project Name:	T-30 Location: Seattle
Project/Task No.:	Weather: 50 Cloudy
Date:	4/13/23 Personnel: GFLC
Observations	
Time	Observation Description
10170	0. GF & LC ansite
2	· Scope : Apr WAPL gauging
3	Spring CAMPANO GWM
4	Satch tailgate Motion pinchpoints, product exposure.
5	· Distributed la lippent got Situated
6 1745	
7	- LNAPL present : 7 wells (-35, -1, -12, -103, -106, -107,
8	4-110)
9	- Issues al sediment fill in the monuments of - 106 of
10	-110. Discuss future action of team. Maybe come out
11	ul - trovel? What is proper disposed of dirt?
12 1900). Investigated SVE wells to get the wellland setup for
13	potential future maintenance.
14	- Tried to open SVE-4 thru 10 the vertical weils lould
15	only get -10 open. Bolts on SVE-4 thru - 9 were
16	socied too tightly would need some sort of pipe or
17	handle extended I to get them open it needed
18	- TOOK photos OF SNE-10, Looked to be 3 Prc reduring
19	budings up to a mini ball value up female threads
20	Monument was in good Shape
21 1930	D. Started to get Set up at MW-89 & RW-11A for
22	Sampling.
23	-RW-ILR U/ DUP (MW-100) Sampled @ 2104
24	- MW-89 WI MS (MGD SAMPLED @ 2040
25 2150) · System restarted, no issues

Comments / Site Activities / Personnel Tracking

DAILY FIELD LOG

Project Information	1			Page 2 of 2
Project Name:	7-30	Location:	Seattle	
Project/Task No.:		Weather:		
Date:	4/13/23	Personnel:	GF, LC	

Observations

Time	Observation Description
1	· cleared on SVE. Total vac ~ 84 in wc. No donious
2	water coming in through rotanetors & all vac
3	levels looking good (similar to the and of last
4	od Muisit.
5	> SVE-G is the high one ~ the "we, but no
6	Significant flow. Also no water production
7	Though as left it as is . Maybe need to
8	lower the HEVE Flows to force air from
9	515-97
10	> Gave the above a shot. Lovered MSVE-14-3
11	to 60 SEFing each. This set the SNE-9
12	float to bounce but not stan up, 50 ~ 6 sofn
	E-5 7 Also observed SVE-S bring lots of
14	all walks in its and is a march of the
	in brown, voc wouldn't drop as I closed the value
16 OW	usited down to I left the well off to avoid
17	water production.
18	- overall was at so "we and eparture
19	-SUE-9 was 10000 gpen @ 65" wC.
20 2	215 · locked up
21 22	20 OFFSite
22	
23	9F 4/13/23
24	4/13/23
25	

Comments / Site Activities / Personnel Tracking

T-30 LOW-FLOW GROUND WATER SAMPLING FORM

Project Name:	T-30					Well ID:	MW-89					
Project Number:	60681370					Sample ID:	MW-89- 04	23	Well ID-MM	YY]		
Date:	4/13	12027	5	-		Well Cond.:	900					
Weather:	hinst	14 50)"F	_		Sampled by:	TC'		_			
		1							_			
PRE-PURGE INF		10.20)			P. /5						
Initial Depth to W		PNF		_		Purge/Sample		Low-Flow				
Depth to Product Product Thicknes		0.0				Purge/Sample Total Well Dep		Peristaltic Pun 20	np			
Water Column (ft		9.60				Screened Inter		5-20				
Water Volume in		1.61		_		Tubing Inlet D	enth (ft has):	15.0				
Inner Casing Dian		2				Sampling Tube		LPDE				
Inner Casing Mate		PVC				ouriping root						
PURGING INFOR					****Tidal	well, sample 13	30-190 min afte	r the low-low 1	tide (173(1	
Start Purge Time:	1052	\mathbf{F}					Total Volum	an Durgod (gal)			1	
start Purge Time:	Purge	Depth to		Specific	Dissolved		Total Volun	ne Purged (gal):			-	
	Rate ²	Water ³	Temp	Conductance	Oxygen	рН	ORP	Turbidity				
Time	(mL/min)	(ft)	(°C)	(µS/cm)	(mg/L)	(SI Units)	mV	(NTU)	Com	ments	ļ	
2004	8D	10.40	13.0	2594	5.49	3.71	-68.1	1.96]	
2009	90	10.41	14.7	2539	5.10	3.69	-58.0	1.61	λ.			
2014	80	10.42	15.1	2512	5.55	3.70	-57.4	1.35			6	
2019	80	(0.42)	15.1	2502	5.10	3.70	-54.5	1.21			1	
2024	80	10.43	15.0	2464	5.46	3.70	-54.4	第1.71			1	
2029	80	10.43	15.2	2439	5.57	3.70	-51.7	1.08			1	
2032	80	10.43	15.3	2425	5.47	3.71	-51.8	2.07			1	
2035	80	10.43	15.3	2417	5.43	3.71	-51.0	1.09			1	
2038	80	10.43	15.2	2406	5.43	3.71	-50.4	1.06			1	
							LL				1	
									\wedge		1	
	DIATION											
SAMPLING INFO	RMATION	Sample							No. of		1	
Sample	ID(s)	time(s)	Ana	alysis	Met	thod	Con	tainer	bottles	Preservative		
ANUL-QU	9.1472	2040	Gx/	втех	NWTPH	-G/BTEX	40 m	L VOA	16	HCL		
JAIM. O	1-014	2010	C	Σх	NWT	PH-Dx	500 m	Amber	1]	
REQUIRED STAE	BILIZATION RA	NGES ²		COMMENTS 8	OBSERVATIO	NS: (slow red	charge, turbidi	y, odor. sheen	, PID readings	5)	1	
Specific Conducta	ince: +/- 5%			MAD CH.		10.			Odar	41	1	
Temperature: +/- pH: +/- 0.1 unit	3 %			in water	f vui		upp	yent	C	01		
PREFERRED ST/		ANGES							01			
Dissolved Oxygen												
Redox Potential: - Turbidity: +/- 10%								SAMPLING E	QUIPMENT M	ODELS & IDs	1	
NOTES				SAMPLING IN				Pump:	034	DID		
1. If parameters d been purged, pro			volumes have					YSI:	142	997		
2" casing: 1 ft = 0.		-		time. Record parameters every 2-5 minutes. Sample once parameters stay within the					Interface Probe:			
4" casing: 1 ft = 0. 2. Flow rate shoul	-			required ranges for 3 consecutive					40-1-06	104	1006	
 Flow rate should Drawdown should 								Turbidity: 214065				

T-30 LOW-FLOW GROUND WATER SAMPLING FORM

Project Name: Project Number: Date: Weather:	4/13/	23 lover of	9			Well ID: Sample ID: Well Cond.: Sampled by:	RW-11A RW-11A-04 Okay ETE	23 Fulofs	[Well ID-MMYY]
PRE-PURGE INF		9.4	0			Purge/Sample	Method:	Low-Flow	
Depth to Product	(ft btoc) :					Purge/Sample	Equipment:	Peristaltic Pum	P
Product Thickness	; (ft):	0				Total Well Dep	th (ft bgs):	20	
Water Column (ft)):	~10.6		uð.		Screened Inter	val (ft bgs):	5-20	·
Water Volume in 1	Well (gal) ¹ :	6.95				Tubing Inlet De	epth (ft bgs):	M14. (ouldn t get
Inner Casing Diam	eter (Inch):	4				Sampling Tube	Material:	LPDE	Jaky uny
Inner Casing Mate	erial:	PVC		,				de	eper dr to
PURGING INFOR Start Purge Time:		4					Total Volur	ne Purged (gal):	n2 gal
	Purge	Depth to		Specific	Dissolved				
Time	Rate ² (mL/min)	Water ³ (ft)	Temp (°C)	Conductance (µS/cm)	Oxygen (mg/L)	pH (SI Units)	© ORP mV	Turbidity (NTU)	Comments
2030	200	NM	164	1043	271	6.41	93.U	32.1	
2035	11		16.6	1046	2.73	6.81	96.1	28.3	
2040	14		16.6	1047	2.53	6.81	97.3	26.0	
2043	41		16.6	1040	2.51	6.79	97.4	20.1	
2046	14		16.6	1047	2.36	6.76	97.7	22.7	
2049	1.		6.6	1049	2.91	6.79	97.3	20.9	
2052	•(16.6	1648	2.25	6.79	97.1	16.1	
2055	11		14.5	105(2.20	6.79	97.2	14.0	
2058	11		16.6	1051	2.07	6.78	96.8	15.1	
2101	61		16.6	1051	2.16	6.78	96.6	15.6	
2104	-4	MPL	FD						

SAMPLING INFORMATION

	Sample ID(s)	Sample time(s)	Analysis	Method	Container	No. of bottles	Preservative
	RW-14-0423	2104	Gx/BTEX	NWTPH-G/BTEX	40 mL VOA	76	HCL
5	MW - 100-0423	2000	Dx	NWTPH-Dx	500 mL Amber	1	-

REQUIRED STABILIZATION RANGES⁴ Specific Conductance: +/- 5%

Temperature: +/- 3 %

pH: +/- 0.1 unit

PREFERRED STABILIZATION RANGES

Dissolved Oxygen: +/- 10%

Redox Potential: +/- 10%

Turbidity: +/- 10%

NOTES 1. If parameters do not stabilize after 3-5 casing volumes have

been purged, proceed with sampling. 2" casing: 1 ft = 0.164 gal = 0.62 L

4" casing: 1 ft = 0.656 gal = 2.48 L

2. Flow rate should be 100-200 mL/min.

3. Drawdown should be limited to <1 ft.

COMMENTS & OBSERVATIONS: (slow recharge, turbidity, odor, sheen, PID readings)

Water clear, odorless DTW not measured - zip tild tubing to the WLM probe to got it to depth.

SAMPLING INFORMATION There is no minimum requirement for purge time. Record parameters every 2-5 minutes. Sample once parameters stay within the required ranges for 3 consecutive recordings.

SAMPLING EQ	UIPMENT MODELS & IDs
Pump:	19550
YSI:	43945
Interface	12201
Probe:	12726
Turbidity:	32784
	Pump: YSI: Interface Probe:

T-30 LOW-FLOW GROUND WATER SAMPLING FORM

Project Name: T-30		Well ID:	MW-59		
Project Number: 60681370		Sample ID:	MW-59-		[Well ID-MMYY]
Date: 4/19	123	Well Cond:	-		
Weather:	•	Sampled by	-		-
PRE-PURGE INFORMATION	6-20	Purge/Sam	ble Method:	Low-Flow	
Depth to Product (ft btoc) :	-	Purge/Sam	ole Equipment:	Peristaltic Pun	np
Product Thickness (ft):	0	Total Well (epth (ft bgs):	Assumed ~20	ft bgs.
Water Column (ft):		Screened In	terval (ft bgs):		umed to match other wells
Water Volume in Well (gal) ¹ :				on site, ~5-20	nt ogs
Inner Casing Diameter (Inch):	2	Tubing Inle	Depth (ft bgs):		
Inner Casing Material:	PVC	Sampling To	ibe Material:	LPDE	

PURGING INFORMATION

irt Purge Time	e						Total Volum	ne Purged (gal):	
Time	Purge Rate ² (mL/min)	Depth to Water ³ (ft)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	pH (SI Units)	ORP mV	Turbidity (NTU)	Comments
			Well not sa	ampled; LNAPL p	present within t	he last year (1/	12/23 most rec	ently)	
							X		

SAMPLING INFORMATION

Sample ID(s)	Sample time(s)	Analysis	Method	Container	No. of bottles	Preservative
		Gx/BTEX	NWTPH-G/BTEX	40 mL VOA	3	HCL
		Dx	NWTPH-Dx	500 mL Amber	1	

REQUIRED STABILIZATION RANGES²

COMMENTS & OBSERVATIONS: (slow recharge, turbidity, odor, sheen, PID readings)

Specific Conductance: +/- 5% Temperature: +/- 3 % pH: +/- 0.1 unit PREFERRED STABILIZATION RANGES Dissolved Oxygen: +/- 10% Redox Potential: +/- 10% Turbidity: +/- 10% NOTES 1. If parameters do not stabilize after 3-5 casing volumes have There is no minimum requirement for purge

been purged, proceed with sampling.

2" casing: 1 ft = 0.164 gal = 0.62 L

4" casing: 1 ft = 0.656 gal = 2.48 L

2. Flow rate should be 100-200 mL/min.

3. Drawdown should be limited to <1 ft.

SAMPLING INFORMATION

time. Record parameters every 2-5 minutes. Sample once parameters stay within the required ranges for 3 consecutive

SAMPLING EQUIPMENT MODELS & IDs

Pump:	
YSI:	
Interface	
Probe:	
Turbidity:	

	Por	t of Seatt	le Termina	1 30 LNA	PL Gaugi	ng Event
Field Tech	nician(s):	F, LC			Client:	Port of Seattle
Date: (4/13/23				Location:	Terminal 30, Seattle
Project Nu	mber:		60681370		Weather:	SOF cloudy
Closest Hig	gh Tide: 10 0	0			Closest Low	Tide: 1736
			Depth to	Depth to	LNAPL	the second s
		Time of	LNAPL	Water	Thickness	
Well ID	Well Location		(Feet BTOC)	(Feet BTOC)	(Feet)	Comments
MW-35	D 314 **	1836	8.55	8.55	LO OL SHEEN	monument had water
MW-36	C 309.5	Removed from	LNAPL monitori	ing protocol follo		event
MW-36A	C 311.5	Removed from	LNAPL monitori	ing protocol follo	wing 09/08/22	event
MW-39A	C 237	Removed from	LNAPL monitori	ing protocol follo	wing 09/08/22	event
MW-59	D 324 **	1824	_	8,79	0	monment full of water
MW-89	A 257	Removed from	LNAPL monitori	ing protocol follo	wing 09/08/22	event
MW-93	D 275	Removed from	LNAPL monitori	ing protocol follo	wing 09/08/22	event
RW-1	Entry lanes W of wall, even w/ D 275	1850	8.32	8.35	0.03	/ Thick product
RW-12	D 327	1612	9.09	9.16	0.07	
RW-101	D 319.5	Removed from	LNAPL monitori	ng protocol follo	wing 09/08/22	event
RW-102	D 322.5 **	Removed from	LNAPL monitori	ing protocol follo	wing 09/08/22	event
RW-103	D 326	1831	7.98	8.38	0.40	\checkmark
RW-104	D 318	1840	1	7.71	0	\checkmark
RW-105	D 321	Removed from	LNAPL monitori	ng protocol follo	wing 09/08/22	event
RW-106	D 324	1826	8.09	8.63	0.54	monument full of Sediment to TOC
RW-107	D 327	407	8.34	9.00	0.66	
RW-108	C/D 320	Removed from	LNAPL monitori	ng protocol follo	wing 09/08/22	event
RW-109	C/D 323	Removed from	LNAPL monitori	ing protocol follo	wing 09/08/22	
RW-110	C/D 326	1843	8.63	8.64	0.01	apprents almost to toc in mohument

Notes:

1. Feet BTOC = Feet below top of well casing.

2. LNAPL = Light Non-Aqueous Phase Liquid

3. ND = LNAPL not detected using interface probe.

4. NA - Not Available (not able to detect or measure)

5. TRACE, MINOR - Indications of LNAPL present, but no accurate measurement or below measurable amount.

6. During the 10/6/22 Ops Meeting, agreed that wells measured <0.01 ft for 1 yr can be removed from monitoring schedule.

304202			SAMPLE	CHAIN	OF	CUS	STO	DY	(04	14	123	,	C.	3/1	/W	3	,
Report To Paul Kalin	na, Gus F	riedman	SAMPL	ERS (signo	^{ature)} (R	Æ	2			-					Page # FURN	INTERIOUND T	
Company AECOM	•	•		CT NAME			Ø	. 1		Р	O #	,			1.2	ndard	l turnaround	
Address UNI 3rd	fre stel	600	τ-	30			•										es authorize	d by:
City, State, ZIP Seat			REMAR	KS 1 hg/	LMQL	- fe	ž	•			ICE						PLE DISPOS samples	SAL
Phone 206 - 310 - 969 2			Project s	STEX EP	h 'OZO 18? - Ye	ου es /	No	Ya	ic	Ve	212	~G	,		Oth	er	vispose after	30 days
	gus.frildn	yn COl (om.com							ΝΔΙ	IVSI	IS RI	EQU			2		
					<u> </u>				_	_	0	n al S				<u> </u>	1	
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX EPA 8021	NWTPH-HCID	VOCs EPA 8260	PAHs EPA 8270	PCBs EPA 808	Muth-Hann	37 Ex 8260	- <u>-</u> *	-	Not	es
RW-11A-6423		4/13/23	2104	GW	7	×	X			-			≺` ×	X				
	OIA-G		- 1		-								· ·			<u> </u>		
MW-100-0423	02 /	4/13/23	2000	Glo	1	\times	X						X	×				
MW-100-0423 MW-89-0423	03 A- U	4/13/23	2040	Gw	21	×	×						×	X			MS/A	15D
Trip blank	04 A-B			water	2												Added at	lab PP
					ļ													
												•	J ot	2	- 0(
								S	m	les	rec	eive	d at	2	`			
																	,	
		GNATURE		·	PRIN	JT N	IAMI	<u></u>		4	1	(COM	PAN	Y		DATE	TIME
Friedman & Bruya, Inc.	Relinquished by:	R		Gus								4	-00				4/14/23	16:12
Ph. (206) 285-8282	Received by:) fait.			ANH	PH.	AN						-8 Ŋ				04/14/23	10:12
	Relinquished by:			1											_			

Received by:

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Instrument	ID 32784						
		0Q Turbidity meter					
-	ed 4/11/2023						
Manufactur	er HACH			State Cert	ified		
Model Numb	er 21000			St	tatus Pass		
Serial Number/ L		052		Tem	p°C 19		
Numb							
Locati	on Seattle			Humidi	ty % 36		
Departme	ent						
		Calibra	tion Specification	IS			
Gro	oup#1			Range Acc	% 0.0000		
	Name Turbidity	/	ŀ	Reading Acc			
-	Accy Pct of Re			Plus/Min			
<u>Nom In Val / In Val</u>	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	<u>Pass/Fail</u>
10.00 / 10.00	NTU	10.00	NTU	9.29	10.00	0.00%	Pass
20.00 / 20.00	NTU	20.00	NTU	18.20	20.00	0.00%	Pass
100.00 / 100.00	NTU	100.00	NTU	90.80	100.00	0.00%	Pass
800.00 / 800.00	NTU	800.00	NTU	764.00	800.00	0.00%	Pass
Fest Instruments Used	During the Ca	libration			<u>(As C</u>	Of Cal Enti	ry Date)
Cest Standard ID Desc	ription	<u>Manufacturer</u>	Model Number	<u>Serial Ni</u> Lot Num	ber Last		<u>ext Cal Date</u> xpiration Da

Pine Environmental Services, Inc.

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Dzung Pham

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

Instrument II	43945						
Descriptio	n YSI Profess	sional Plus					
Calibrate	d 4/10/2023	3:48:30PM					
Manufacture	r YSI			State Certifie	d		
Model Numbe	r Professiona	l Plus			is Pass		
Serial Number/ Lo				Temp o	C 19		
Numbe	100			XX	4.40		
	n Seattle			Humidity %	/0 40		
Departmen	t			Subgraduation of the	10.000	1.1.3	10.091745
				moothing, A contraint			
		Calib	oration Specific				
Grou				Range Acc %			
Group Na				Reading Acc %			
Stated A	ccy Pct of Re	eading		Plus/Minus	0.00		
<u>Nom In Val / In Val</u>	In Type	<u>Out Val</u>	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
7.00 / 7.00	PH	7.00	PH	7.07	7.00	0.00%	Pass
4.00 / 4.00	PH	4.00	РН	4.06	4.00	0.00%	Pass
10.00 / 10.00	PH	10.00	PH	10.08	10.00	0.00%	Pass
Grou	ıp#2			Range Acc %	0.0000		
Group Na	ame Conducti	ivity		Reading Acc %	3.0000		
Stated A	ccy Pct of Re	eading		Plus/Minus	0.000		
<u>Nom In Val / In Val</u>	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
1.413 / 1.413	ms/cm	1.413	ms/cm	1.410	1.413	0.00%	Pass
Grou	ip# 3	- man bu - n	neither or state	Range Acc %	0.0000	-5. kod . akoj	
	me Redox (C	ORP)		Reading Acc %			
	ccy Pct of Re			Plus/Minus	0.00		
<u>Nom In Val / In Val</u>	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	<u>Pass/Fail</u>
240.00 / 240.00	mv	240.00	mv	238.00	240.00	0.00%	Pass
Grou	ıp#4			Range Acc %	0.0000		
Group Na	me Disolved	Oxygen Span		Reading Acc %	3.0000		
Stated A	ccy Pct of Re	eading		Plus/Minus	0.00		
<u>Nom In Val / In Val</u>	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fai
100.00 / 100.00	0/0	100.00	%	102.10	100.00	0.00%	Pass

Pine Environmental Services LLC Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

Instrument ID	19550			
Description	Pine Environmental Peristaltic Pu	mp		
Calibrated	4/11/2023 1:56:15PM			
Manufacturer	Pine Environmental Services, Inc.		State Certified	
Model Number	Geo Pump		Status H	Pass
Serial Number/ Lot	e11004437		Temp °C	9
Number			-	
Location	Seattle		Humidity % 3	37
Department				
Group Group Nan)# 1	on Specification	S	
Test Performed: Yes	As Found Result: Pass		As Left Result: P	ass
Test Instruments Used Du Test Standard ID Descrip		<u>Model Number</u>	<u>Serial Number /</u> Lot Number	<u>(As Of Cal Entry Date)</u> <u>Next Cal Date /</u> Last Cal Date/ Expiration Date <u>Opened Date</u>

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Dzung Pham

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

Instrument II							
Descriptio	n YSI Pro Pl	us					
Calibrate	d 4/10/2023	4:18:00PM					
Manufacture	er YSI			State Certific	d		
Model Numbe	r Professiona	l Plus		Statu	s Pass		
Serial Number/ Lo				Temp o	C 19		
Numbe	-				4 40		
Locatio Departmen	n Seattle			Humidity 9	6 40		
150.000		50001	10321 3	Settlement .			- 115 A 3
		Calib	oration Specific	ations			
Grou	սթ#1 👘			Range Acc %	0.0000		
Group Na				Reading Acc %	3.0000		
Stated A	Accy Pct of Re	eading		Plus/Minus	0.00		
<u>Nom In Val / In Val</u>	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fai
7.00 / 7.00	РН	7.00	PH	7.03	7.00	0.00%	Pass
4.00 / 4.00	PH	4.00	PH	4.04	4.00	0.00%	Pass
10.00 / 10.00	РН	10.00	РН	9.90	10.00	0.00%	Pass
Grou	up#2			Range Acc %			
Group Na	ame Conducti	ivity		Reading Acc %			
Stated A	Accy Pct of Re	eading		Plus/Minus	0.000		
<u>Nom In Val / In Val</u>	In Type	<u>Out Val</u>	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
1.413 / 1.413	ms/cm	1.413	ms/cm	1.420	1.413	0.00%	Pass
Grou	up# 3			Range Acc %	0.0000		
Group Na	ame Redox (C	ORP)		Reading Acc %	3.0000		
Stated A	ccy Pct of Re	ading		Plus/Minus	0.00		
<u>Nom In Val / In Val</u>	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
240.00 / 240.00	mv	240.00	mv	236.10	240.00	0.00%	Pass
Grou	up#4			Range Acc %	0.0000		
Group Na	ame Disolved	Oxygen Span		Reading Acc %	3.0000		
Stated A	Accy Pct of Re	eading		Plus/Minus	0.00		
<u>Nom In Val / In Val</u>	<u>In Type</u>	Out Val	Out Type	Fnd As	<u>Lft As</u>	Dev%	<u>Pass/Fail</u>
100.00 / 100.00	%	100.00	%	101.30	100.00	0.00%	Pass

Pine Environmental Services LLC Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

		Q Turbidity meter 01:13PM					
Manufactur Model Numbe Serial Number/ L Numbe Locatio	er 2100Q ot 22080D0002	71		State Certifi Stat Temp Humidity	tus Pass °C 19	<i>‡</i> : 11034	
Departme	nt						
		Calibra	tion Specification	IS			
Group N	up# 1 ame Turbidity Accy Pct of Rea	ding	F	Range Acc % Reading Acc % Plus/Minus	10.0000		
<u>Nom In Val / In Val</u>	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
10.00 / 10.00	NTU	10.00	NTU	9.65	10.00	0.00%	Pass
20.00 / 20.00	NTU	20.00	NTU	19.80	20.00	0.00%	Pass
100.00 / 100.00	NTU	100.00	NTU	99.60	100.00	0.00%	Pass
800.00 / 800.00	NTU	800.00	NTU	792.00	800.00	0.00%	Pass
Test Instruments Used	During the Cal	<u>ibration</u> <u>Manufacturer</u>	<u>Model Number</u>	<u>Serial Nun</u> Lot Numbe	<u>iber /</u> er Last (ry Date) ext Cal Date / opiration Date

Pine Environmental Services, Inc.

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Dzung Pham

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

Instrument ID	34010		
Description	Geo Pump		
Calibrated	4/11/2023 1:54:52PM		
Manufacturer	Geotech	State Certified	
Model Number		Status	Pass
Serial Number/ Lot	n/a	Temp °C	19
Number			
Location	Seattle	Humidity %	37
Department			
	Calibrat	ion Specifications	
Group	# 1		
Group Nan	ne Functional Test		
Test Performed: Yes	As Found Result: Pass	As Left Result:	Pass
Test Instruments Used Dr Test Standard ID Descript		Serial Number Model Number Lot Number	(As Of Cal Entry Date) / Next Cal Date / Last Cal Date/ Expiration Date Opened Date

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Dzung Pham

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

Instrument ID							110
Description	Solinst IP (200	ft)					
Calibrated	4/11/2023 2:17	7:32PM					
Manufacturer	Solinst	······		State Certifie	d		
Model Number	N/A			Statu	s Pass		
Serial Number/ Lot	312227			Temp °C	C 19		
Number				-			
Location	Seattle			Humidity %	6 36		
Department							
		Calibra	tion Specification				
Group				Range Acc %			
Group Nan			- K	leading Acc %			
Stated Ac	cy			Plus/Minus			
<u>Nom In Val / In Val</u>	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	<u>Pass/Fail</u>
Test Instruments Used D		ration Manufacturer	Model Number	<u>Serial Numb</u> Lot Number	<u>er /</u>	As Of Cal Entr <u>Ne</u> ast Cal Date/ Ex	xt Cal Date /
						pened Date	

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Dzung Pham

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Pine Environmental Services LLC

3225 South 116th St. Building 1 Suite 181 Tukwila, WA 98168 425-285-9102

Pine Environmental Services, Inc.

Description S	Solinst Interface		
Calibrated 4	4/11/2023 2:16:58PM		
Manufacturer S	Solinst	State Certific	d
Model Number 1	Interface	Statu	s Pass
Serial Number/ Lot 0	009446-1	Temp °	C 19
Number			
Location S	Seattle	Humidity %	6 37
Department			
	Calibratio	n Specifications	
Group #	¥ 1		Ř.
Group Name	e		
Test Performed: Yes	As Found Result: Pass	As Left Resul	: Pass
<u>Test Instruments Used Dur</u>	ring the Calibration	Control Number	(As Of Cal Entry Date)
<u>Test Standard ID</u> <u>Description</u>	on <u>Manufacturer</u>	<u>Serial Number</u> Model Number Lot Number	

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Dzung Pham

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

AECOM Daily Tailgate Meeting Summary

Project information

Project Name	T-30		
Project Number	60681370		
Project Manager	Paul Kalina		
Project Manager Phone #	2063105097		
Muster Point location	Clubhouse		
Meeting date	4/13/2023		
Business Line	Environment		
SH&E Manager	Tim Gilles		
SH&E Manager Phone #	3128335991		
First Aid Kit Location	Conex		
Prepared by	Friedman, Gus		

Shift Summary

Location	SODO
Attendees (Workers)	Friedman, Gus;Celovsky, Lillian;
Attendees (Visitors)	
Tasks to be performed	LNAPL gauging & GWM
Hazards to be considered today	motion, chemical
Will there be Lone Workers?	No
Hierarchy of controls	рре
Personal Protective Equipment	Task Specific: gloves Mandatory: safetyglasses, longpants, reflectivevest, workboots
High Risk Events	

Topic of the week	Prevent Distracted Driving
Other topics discussed	
Mid day reviews	
End of the day comments. The supervisor confirms that the site is being left in a safe condition and work crew checked out as fit unless otherwise specified here	All tasks completed safely and successfully
Hazards	• <u>Motion</u> • <u>Chemical</u>

DAILY FIELD LOG

Project Info	mation Page of
Project Name	
Project/Task	
Date:	0 12 23 Personnel: LC SC
Observation	
Time	Observation Description
17	5 LL amves on site.
2 [7]	to sc annues on site. Unlock conex but find keys
3	lett in door + door left open. Not from AZCOM.
4	Nominy appears missing or out of place
5 173	50 Start gauging LNAPL in all LNAPL wells.
6 10	a set up at weils to sample purge. SC at
7	MW-42, LC at R-11A
8	130 LC attempt to set up at MW-36A, spend
9	15 min trying to remove monument lid
10	W/ no success. Move on to next nell
11 20	45 LC Sample RW-9 + take duplicate.
12	SC takes MS/MSD at MW-AZ
13 21	DO SC successfully removes lid at MW-36A,
14	LC cleans up and works on COC/
15	appler while SC sumples MW-36A.
16 2 4	18 SUMPLE MW-36A.
17 22	DUMO PURGE WATER
18 22	04 TURN SYSTEM back on Everything sums to
19	be writing correctly
20 22	O OFF SITE FOR Day.
21	
22	
23	
24	
25	
Comments / S	ite Activities / Personnel Tracking

Project Name:	T-30		Well ID:	RW-11A		~
Project Number:	60681370		Sample ID:	RW-11A-)23	[Well ID-MMYY]
Date:	10/12/23	5	Well Condition:	good		-
Weather:	clear	50 °F	Sampled by:	LC		-
PRE-PURGE INFORMATI	ON	10 01				
Initial Depth to Water (ft bt	oc):	10.01	Purge/Sample Met	hod:	Low-Flow	
Depth to Product (ft btoc) :		N/A	Purge/Sample Equi	ipment:	Peristaltic P	ump
Product Thickness (ft):		NA	Total Well Depth (f	t bgs):	20	
Water Column (ft):		9.99	Screened Interval (ft bgs):	5-20	
Water Volume in Well (gal)	1 ;	6.55	Tubing Inlet Depth	(ft bgs):	15	
Inner Casing Diameter (Inch	n):	4	Sampling Tube Ma	terial:	LPDE	
Inner Casing Material:		PVC				

PURGING INFORMATION 1055

Start Purge Ti	art Purge Time: Total Volume Purged (gal):								
	Purge	Depth to		Specific	Dissolved				1
Time	Rate ² (mL/min)	Water ³ (ft)	Temp (°C)	Conductance (µS/cm)	Oxygen (mg/L)	pH (SI Units)	ORP mV	Turbidity (NTU)	Comments
1859	(00)	10.09	20.4	861	1.02	6.82	-101.0	23.9	YEILOW COLOV
1904	(00)	10.19	21.0	9:107	0.30	6.91	-112.4	20.9	Strong HC odor
1909	100	0.21	20.60	<i>366</i>	0.24	6.00	-113.4	19.5	Ч
1914	(00)	10.24	20.8	966	0.(8	6.91	-115.9	19.3	
1917	100	10.26	20.8	668	0.14	6.9	-117.4	-19.0	ţ.(
	-) le
							4		
	\mathcal{C})				

SAMPLING INFORMATION

Sample ID(s)	Sample time(s)	Analysis	Method	Container	No. of bottles	Preservative
AND 110 1000	1010	Gx/BTEX	NWTPH-G/BTEX	40 mL VOA	3	HCL
RIV-11A-1023	1920	Dx	NWTPH-Dx	500 mL Amber	1	-

REQUIRED STABILIZATION RANGES⁴

Specific Conductance: +/- 5% Temperature: +/- 3 % pH: +/- 0.1 unit PREFERRED STABILIZATION RANGES Dissolved Oxygen: +/- 10% Redox Potential: +/- 10% Turbidity: +/- 10% NOTES

1. If parameters do not stabilize after 3-5 casing volumes have been purged, proceed with sampling.

2" casing: 1 ft = 0.164 gal = 0.62 L 4" casing: 1 ft = 0.656 gal = 2.48 L

2. Flow rate should be 100-200 mL/min.

3. Drawdown should be limited to <1 ft.

COMMENTS & OBSERVATIONS: (slow recharge, turbidity, odor, sheen, PID readings) Strong SMell, Gellow COLOV, MOSTRy CURA.

SAMPLING INFORMATION There is no minimum requirement for purge time. Record parameters every 2-5 minutes. Sample once parameters stay within the required ranges for 3 consecutive recordings.

	SAMPLING	EQUIPMENT MODELS & IDs
geoteen	Pump:	3847
Pro Plus	YSI:	46682
Heiron	Interface Probe:	036342
Hevon Hach	Turbidity:	216544

Project Name:	T-30			Well ID:	MW-89	
Project Number:	60681370			Sample ID:	MW-89- 10	23
Date:	10	112123		Well Cond.:		
Weather:	partu	y cloudy 570		Sampled by:	SU	
PRE-PURGE INF	ORMATION					
Initial Depth to W	/ater (ft btoc):	10.03@112	1	Purge/Sample	Method:	Low-Fl
Depth to Product	(ft btoc) :	·		Purge/Sample	Equipment:	Perista
Product Thicknes	s (ft):			Total Well Dep	pth (ft bgs):	20
Water Column (fi	:):	15 M		Screened Inte	rval (ft bgs):	5-20
Water Volume in	Well (gal) ¹ :	*		Tubing Inlet D	epth (ft bgs):	15
Inner Casing Dian	neter (Inch):	2		Sampling Tube	e Material:	LPDE
Inner Casing Mat	erial:	PVC				

Low-Flow		
Peristaltic Pu	mp	
20		
5-20		
15		
LPDE		

[Well ID-MMYY]

****Tidal well, sample 130-190 min after the low-low tide (1730-1330)*****

Start Purge Time:	1134				5 y		Total Volum	e Purged (gal):	
Time	Purge Rate ² (mL/min)	Depth to Water ³ (ft)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	pH (SI Units)	ORP mV	Turbidity (NTU)	Comments
1139	100	10.15	20.1	3239	0.53	3.83	246.6	1.97	
1144	100	10.17	20.5	3 234	0.42	3.84	2637	2.02	
1149	100	10.18	20.7	3017	0.32	3.85	274.2	9.27	
1154	100	10.19	20.5	3204	020	3.80	282.4	2.23	
1159	100	10.00	80.5	3192	0.21	3.81	290.9	2.51	
1204	100	10.21	20.4	3181	0.19	3.80	295.8	2.48	
1204	100	10.21	20.1	3150	0.16	387	311.0	3.43	
1924	100	10.00	201	3133	0.15	3.88	316.9	3.38	
1234	100	10.00	80.8	3109	0.15	3.89	314.5	2.88	
									SC
/									

SAMPLING INFORMATION

Sample ID(s)	Sample time(s)	Analysis	Method	Container	No. of bottles	Preservative
(A) + A C	1240	Gx/BTEX	NWTPH-G/BTEX	40 mL VOA	3	HCL
MW-89-1023	1840	Dx	NWTPH-Dx	500 mL Amber	1	

COMMENTS & OBSERVATIONS: (slow recharge, turbidity, odor, sheen, PID readings)

REQUIRED STABILIZATION RANGES²

Specific Conductance: +/- 5% Temperature: +/- 3 % pH: +/-0.1 unit

PREFERRED STABILIZATION RANGES

Dissolved Oxygen: +/- 10%

Redox Potential: +/- 10%

Turbidity: +/- 10%

NOTES

PURGING INFORMATION

1. If parameters do not stabilize after 3-5 casing volumes have There is no minimum requirement for purge

been purged, proceed with sampling.

2" casing: 1 ft = 0.164 gal = 0.62 L

4" casing: 1 ft = 0.656 gal = 2.48 L

2. Flow rate should be 100-200 mL/min.

3. Drawdown should be limited to <1 ft.

SAMPLING INFORMATION

time. Record parameters every 2-5 minutes. Sample once parameters stay within the required ranges for 3 consecutive

SAMPLING EQUIPMENT MODELS & IDs

Pump: 049814 Peri

YSI Prof Series 042 32 Interface

Probe: Turbidity Hach 21000

Project Name:	T-30		Well ID: R	W-9		
Project Number:	60681,370		Sample ID: R	w-9- (023	[Well II
Date:	10/12		Well Condition:	DUDV	-seen	
Weather:	cuar	50 °F	Sampled by:	li		
PRE-PURGE INFORM	NOITAN	R i i				
Initial Depth to Water	r (ft btoc):	9.60	Purge/Sample Metho	od:	Low-Flow	
Depth to Product (ft b	otoc) :		Purge/Sample Equip	ment:	Peristaltic	Pump
Product Thickness (ft)	12		Total Well Depth (ft l	ogs):	Assumed ~	·20 ft bgs.

Water Column (ft): Water Volume in Well (gal)¹: Inner Casing Diameter (Inch): Inner Casing Material:

6 PVC

PURGING INFORMATION 2020 Start Purge Time:

LC

Screened Interval (ft bgs):

Tubing Inlet Depth (ft bgs): Sampling Tube Material:

wells on site, ~5-20 ft bgs.

Unknown. Assumed to match other

1023 [Well ID-MMYY]

Start Purge T	ime: <u>20</u>	20					Total Volume	Purged (gal):	
	Purge Rate ²	Depth to Water ³	Tama	Specific	Dissolved				
Time	(mL/min)	(ft)	Temp (°C)	Conductance (µS/cm)	Oxygen (mg/L)	pH (SI Units)	ORP mV	Turbidity (NTU)	Comments
2022	120	9.59	19,9	1205	0.97	7.02	-113.1	4.73	strong odor
2027	120	9.60	20.6	1277	0.22	6.99	-129.2	3.0	ti
2032	120	9.60	20.7	1280	0.14	6.99	-135.3	3.96	tc
2037	120	9.(e)	20.7	1278	0.10	6.98	-141.7	3.60	V(
2040	120	9.60	20.7	1276	0.09	6.98	-144.6	3.50	ч
			•		\longrightarrow				Le
				U			U		

SAMPLING INFORMATION

Sample ID(s)	Sample time(s)	Analysis	Method	Container	No. of bottles	Preservative
BW-9-1023	ODAT	Gx/BTEX	NWTPH-G/BTEX	40 mL VOA	3	HCL
2045	2045	Dx	NWTPH-Dx	500 mL Amber	1	

REQUIRED STABILIZATION RANGES⁴ Specific Conductance: +/- 5% Temperature: +/- 3 % pH: +/- 0.1 unit PREFERRED STABILIZATION RANGES Dissolved Oxygen: +/- 10% Redox Potential: +/- 10% Turbidity: +/- 10%

NOTES 1. If parameters do not stabilize after 3-5 casing volumes have been purged, proceed with sampling. 2" casing: 1 ft = 0.164 gal = 0.62 L

- 4" casing: 1 ft = 0.656 gal = 2.48 L
- 2. Flow rate should be 100-200 mL/min.

3. Drawdown should be limited to <1 ft.

COMMENTS & OBSERVATIONS: (slow recharge, turbidity, odor, sheen, PID readings)

J-plug /well buried in dirt/sediment strong the odor, mostly clear 1016

SAMPLING INFORMATION

There is no minimum requirement for purge time. Record parameters every 2-5 minutes. Sample once parameters stay within the required ranges for 3 consecutive recordings.

SAMPLING EQUIPMENT MODELS & IDs
Pump: 3847
YSI: 466902
Interface 626 2/11
Probe: 03034L
Turbidity: 2 16 544

Project Name:	T-30		Well ID:	MW-36A		
Project Number:	60681370		Sample ID:	MW-36A-	1023	[Well ID-MMYY]
Date:	10/12/2	3	Well Condition:	90	sd	
Weather:		57 °F	Sampled by:	- 5	L	
PRE-PURGE INFORMAT	ION	0				
Initial Depth to Water (ft btoc):		10.550711	Purge/Sample Method:		Low-Flow	
Depth to Product (ft btoc)	:		Purge/Sample Eq	uipment:	Peristaltic P	ump
Product Thickness (ft):			Total Well Depth	(ft bgs):	20.5	
Water Column (ft):		~	Screened Interval	(ft bgs):	5-20	
Water Volume in Well (gal) ¹ :	-	Tubing Inlet Dept	h (ft bgs):	6.5	1. march 1.
Inner Casing Diameter (Inc	:h):	2	Sampling Tube M	aterial:	LPDE	
Inner Casing Material:		PVC				

PURGING INFORMATION

Start Purge T	ime:	19					Total Volume	Purged (gal):	
Time	Purge Rate ² (mL/min)	Depth to Water ³ (ft)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	pH (SI Units)	ORP mV	Turbidity (NTU)	Comments
0/24	115	11.43	19.3	1449	0.46	7.00	-179.8	7.81	
2129	115	11.34	19.0	1453	0.37	7.03	-158.8	15.8	
7134	115	11.71	19.0		0.20	7.03	-147.0	9.78	
2139	115	11.10	18.4	1447	0.17	7.01	-139.8	10.0	
8148	115	11.10	18.0	1440	0.10	7.00	137.0	9.12	
8145	115	11.17	18.4	1440	0.17	7.00 .	134.1	3.58	
									SC
									/
		\bigcirc				\langle		(

SAMPLING INFORMATION

Sample ID(s)	Sample time(s)	Analysis	Method	Container	No. of bottles	Preservative
	Aller	Gx/BTEX	NWTPH-G/BTEX	40 mL VOA	3	HCL
MW-30A-1083	6148	Dx	NWTPH-Dx	500 mL Amber	1	-

REQUIRED STABILIZATION RANGES⁴

Specific Conductance: +/- 5% Temperature: +/- 3 % pH: +/- 0.1 unit **PREFERRED STABILIZATION RANGES** Dissolved Oxygen: +/- 10% Redox Potential: +/- 10% Turbidity: +/- 10% **NOTES** 1. If parameters do not stabilize after 3-5 casing volumes have been purged, proceed with sampling.

2" casing: 1 ft = 0.164 gal = 0.62 L

4" casing: 1 ft = 0.656 gal = 2.48 L

2. Flow rate should be 100-200 mL/min.

3. Drawdown should be limited to <1 ft.

COMMENTS & OBSERVATIONS: (slow recharge, turbidity, odor, sheen, PID readings)

SAMPLING INFORMATION

There is no minimum requirement for purge time. Record parameters every 2-5 minutes. Sample once parameters stay within the required ranges for 3 consecutive recordings.

SAMPLING EQUIPMENT MODELS & IDs

Pump:	
YSI:	
Interface	
Probe:	
Turbidity:	

Project Name: T-	-30	Well ID: N	1W-39A		
Project Number: 60	0681370	Sample ID: N	1W-39A-	1023	[Well ID-MMYY]
Date:	10/12/23	Well Condition:			
Weather:	clear 57F	Sampled by:			
PRE-PURGE INFORMATION					
Initial Depth to Water (ft btoo	9.05@1951	Purge/Sample Meth	od:	Low-Flow	
Depth to Product (ft btoc) :		Purge/Sample Equip	ment:	Peristaltic F	Pump
Product Thickness (ft):		Total Well Depth (ft	bgs):	20.5	
Water Column (ft):		Screened Interval (ft	bgs):	5-20	
Water Volume in Well (gal) ¹ :		Tubing Inlet Depth (ft bgs):	14	
Inner Casing Diameter (Inch):	2	Sampling Tube Mate	rial:	LPDE	

PVC

PURGING INFORMATION

Inner Casing Material:

2004 Start Purge Time:

Start Purge T	ime: 10	04					Total Volume	Purged (gal):	
Time	Purge Rate ² (mL/min)	Depth to Water ³ (ft)	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	pH (SI Units)	ORP mV	Turbidity (NTU)	Comments
2009	100	9.15	19.8	970	0.37	6.80	-147.7	6.87	
2014	100	9.17	19.5	948	0.28	4.78	-152.1	5.49	~
2019	100	9,18	19.0	971	0.22	0.78	-157.3	3.70	
3034	[0]	9.19	19.0	959	0.20	6.79	-140.9	3.94	
2027	100	9.20	19.5	945	0.18		-162.8	3.69	
2020	100	9.21	19.2	931	0.18	6.79	-144.3	3.04	
									- sc
					ξι ₂				
	ζ								

SAMPLING INFORMATION

Sample ID(s)	Sample time(s)	Analysis	Method	Container	No. of bottles	Preservative
	m34	Gx/BTEX	NWTPH-G/BTEX	40 mL VOA	3	HCL
MW-39A-107	5.0001	Dx	NWTPH-Dx	500 mL Amber	1	-

REQUIRED STABILIZATION RANGES⁴

Specific Conductance: +/- 5% Temperature: +/- 3 % pH: +/- 0.1 unit PREFERRED STABILIZATION RANGES Dissolved Oxygen: +/- 10% Redox Potential: +/- 10% Turbidity: +/- 10% NOTES 1. If parameters do not stabilize after 3-5 casing volumes have been purged, proceed with sampling.

2" casing: 1 ft = 0.164 gal = 0.62 L

4" casing: 1 ft = 0.656 gal = 2.48 L

2. Flow rate should be 100-200 mL/min.

3. Drawdown should be limited to <1 ft.

COMMENTS & OBSERVATIONS: (slow recharge, turbidity, odor, sheen, PID readings)

SAMPLING INFORMATION

There is no minimum requirement for purge time. Record parameters every 2-5 minutes. Sample once parameters stay within the required ranges for 3 consecutive recordings. SAMPLING EQUIPMENT MODELS & IDs

Pump:	
YSI:	
Interface Probe:	
Turbidity:	

Project Name:	Т	-30				Well ID:	MW-42		
Project Number:	6	0681370				Sample ID:	MW-42-	023	[Well ID-MMYY]
Date:		10/12/2	3			Well Condition:	9000		
Weather:		clean		'F		Sampled by:	SC		
PRE-PURGE INFORM									
Initial Depth to Water	(ft btoc):	9.	un 6185	0	Purge/Sample Me	ethod:	Low-Flow	
Depth to Product (ft b	toc) :		-			Purge/Sample Eq	uipment:	Peristaltic	Pump
Product Thickness (ft)	:		-		Total Well Depth (ft bgs):		Measured as 19.1 ft bgs on 10/13/22.		
Water Column (ft):			-					Well const	ruction log is missing.
Water Volume in Well	(gal) ¹ :		-			Screened Interval	(ft bgs):		Assumed to
Inner Casing Diameter	(Inch):		2					match oth site_~5-20	er wells on ft bøs
Inner Casing Material:			PVC			Tubing Inlet Dept	h (ft bgs):	15	
PURGING INFORMA	TION					Sampling Tube M	aterial:	LPDE	
Start Purge Time:	185	0					Total Volum	e Purged (ga):
Purg		Depth to	T	Specific	Dissolved			-	

	Purge	Depth to		Specific	Dissolved			}	
Time	Rate ² (mL/min)	Water ³ (ft)	Temp (°C)	Conductance (µ5/cm)	Oxygen (mg/L)	pH (SI Units)	ORP mV	Turbidity (NTU)	Comments
1901	100	10.03	19.4	1433	0.52	4.76 -	135.7	1.30	
1904	100	10.0U	19.3	1422	0.37	4.76	-152.9	4.15	
1911	100	10.07	19.2	1425	0.30	6.74	161.2	4.00	
1910	100	10.07	19.0	1483	0.38	6.74 .	168.0	5.90	
1919	(00	10.08	[9.]	1419	0.28	4.77	-171.0	1.53	
					3				\sim
									/ SC
								C	
									(

SAMPLING INFORMATION

Sample ID(s)	Sample time(s)	Analysis	Method	Container	No. of bottles	Preservative
MW-42-1023	1902	Gx/BTEX	NWTPH-G/BTEX	40 mL VOA	3/9	HCL
Laine de lo by	1100	Dx	NWTPH-Dx	500 mL Amber	13	1. .

REQUIRED STABILIZATION RANGES ² MSMSD	COMMENTS & OBSERVATIONS: (slow recharge, t	urbidity odor sheen PID readings)
Specific Conductance: +/- 5%		sistery, out, should be readings
Temperature: +/- 3 %		
pH: +/- 0.1 unit		
PREFERRED STABILIZATION RANGES		
Dissolved Oxygen: +/- 10%		
Redox Potential: +/- 10%		SAMPLING EQUIPMENT MOD
Turbidity: +/- 10%		Duran David
NOTES	SAMPLING INFORMATION	Pump: PLVi
1. If parameters do not stabilize after 3-5 casing volumes	There is no minimum requirement for purge	YSI: DINK SILLS
have been purged, proceed with sampling.	time. Record parameters every 2-5 minutes.	TST: MUT SUIC
2" casing: 1 ft = 0.164 gal = 0.62 L	Sample once parameters stay within the	Interface

SAMPLING EQUIPMENT MODELS & IDs

Pump: Oli YSI: Prof scries Interface Probe: Turbidity: hach

2. Flow rate should be 100-200 mL/min.

4" casing: 1 ft = 0.656 gal = 2.48 L

3. Drawdown should be limited to <1 ft.

cample once parameters stay within the required ranges for 3 consecutive recordings.

			SAMPLE	CHAIN	OF	CUS	TO	DY									
Report To Paul K	alina		SAMPL	ERS (signo	ature)	1	5	G	n	2	_]_				
Company AECON			PROJEC	CT NAME					0	PO	#			ØStar	ndard	JAROUND T l turnaround	
Address 1111 3rd Al	IP Suite 1	600	T	-30										RUS Rush d		es authorize	d by:
Sprill	O LAID Q	$\alpha(n)$	REMAR	50	di.	(a) (-		IN	VOIC	E TO		- -			PLE DISPO	
City, State, ZIP <u>S</u> COH	7 Daul Vali		. 1	179		P01		D.						Arcl	hive s	amples	
City, State, $ZIP_J(UT)$ Phone $2()6^{-3}()^{-50}E$	mail <u>PUVI·FUI</u>	MALOURION	Project s	BTEX E	<u>s? - Ye</u>	s /]	No	FC	IUL	FU	IIN	1		Oth Defau	er llt:/D	ispose after	: 30 days
							I				SES R	EQU					
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX BPA 8021	NWTPH-HCID	VOCs EPA 8260 PAHs F.PA 8270	PCBs EPA 8082	NWTPH-DX WISHIGG	BTEX 92600			Not	ies
RW-11A-1023		10 12 23	1920	GW	4	X	Ņ	A			1	X	X				
MW-42-1023			1923		12			Ť								MSIMS	D
MW-39A-1023			2034		4			\top			1						5.F
MW-89-1023			1240				11										
RW-9-1023			2045							-							
DUP-1			0000											4			
MW-36A-1023		V	2148	V	\checkmark	V.	J					J	V				
			-110				+	+		+	+						
											_						
											-						
	SI	GNATURE			PRIN	T N/		,		-		COM	DAND			DAME	
Friedman & Bruya, Inc.	Relinquished by:	midela	Th	SUT	ann					- 1	1 6	OV		<u> </u>	\rightarrow	DATE	TIME 8:35
Ph. (206) 285-8282	Received by:	Mul			NH						r						
	Relinquished by:			<i>T</i>	<u> </u>	<u> P</u>	711				<u> </u>	<u>80</u>				10/13/23	08:35
	Received by:																

<u>Appendix G</u> Groundwater Sampling Laboratory Analytical Reports

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 24, 2023

Paul Kalina, Project Manager AECOM 1111 3rd Ave, Suite 1600 Seattle, WA 98101

Dear Mr Kalina:

Included are the results from the testing of material submitted on April 14, 2023 from the T-30, F&BI 304202 project. There are 13 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Gus Friedman AEC0424R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 14, 2023 by Friedman & Bruya, Inc. from the AECOM T-30, F&BI 304202 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	AECOM
304202 -01	RW-11A-0423
304202 -02	MW-100-0423
304202 -03	MW-89-0423
304202 -04	Trip Blank

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/24/23 Date Received: 04/14/23 Project: T-30, F&BI 304202 Date Extracted: 04/17/23 Date Analyzed: 04/17/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
RW-11A-0423 304202-01	<100	93
MW-100-0423 304202-02	<100	103
MW-89-0423 304202-03	<100	103
Method Blank ^{03-778 MB}	<100	106

ENVIRONMENTAL CHEMISTS

Date of Report: 04/24/23 Date Received: 04/14/23 Project: T-30, F&BI 304202 Date Extracted: 04/17/23 Date Analyzed: 04/19/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	$\frac{\text{Diesel Range}}{(\text{C}_{10}\text{-}\text{C}_{25})}$	Motor Oil Range (C25-C36)	Surrogate (% Recovery) (Limit 41-152)
RW-11A-0423 304202-01	<50	<250	119
MW-100-0423 304202-02	<50	<250	126
MW-89-0423 304202-03	<50	<250	132
Method Blank ^{03-908 MB}	<50	<250	117

ENVIRONMENTAL CHEMISTS

Date of Report: 04/24/23 Date Received: 04/14/23 Project: T-30, F&BI 304202 Date Extracted: 04/17/23 Date Analyzed: 04/17/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 50-150)
RW-11A-0423 304202-01	780 x	<250	122
MW-100-0423 304202-02	700 x	<250	135
MW-89-0423 304202-03	410 x	<250	137
Method Blank 03-908 MB	<50	<250	130

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	RW-11A-04 04/14/23 04/17/23 04/17/23 Water ug/L (ppb)	123	Client: Project: Lab ID: Data File: Instrument: Operator:	AECOM T-30, F&BI 304202 304202-01 041720.D GCMS13 MD
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 93 92 109	Lower Limit: 71 68 62	Upper Limit: 132 139 136
Compounds: Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene		Concentration ug/L (ppb) <0.35 <1 <1 <1 <2 <1 <2 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-100-04 04/14/23 04/17/23 04/17/23 Water ug/L (ppb)	23	Client: Project: Lab ID: Data File: Instrument: Operator:	AECOM T-30, F&BI 304202 304202-02 041721.D GCMS13 MD
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 101 105 114	Lower Limit: 71 68 62	Upper Limit: 132 139 136
Compounds:		Concentration ug/L (ppb)		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene		<0.35 <1 <1 <2 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-89-042 04/14/23 04/17/23 04/17/23 Water ug/L (ppb)	:3	Client: Project: Lab ID: Data File: Instrument: Operator:	AECOM T-30, F&BI 304202 304202-03 041722.D GCMS13 MD
Surrogates: 1,2-Dichloroethane Toluene-d8	e-d4	% Recovery: 92 92	Lower Limit: 71 68	Upper Limit: 132 139
4-Bromofluorobenz	æne	117	62	136
Compounds:		Concentration ug/L (ppb)		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene		<0.35 <1 <1 <2 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 04/17/23 04/17/23 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	AECOM T-30, F&BI 304202 03-0745 mb 041707.D GCMS13 MD
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 99 104 105	Lower Limit: 71 68 62	Upper Limit: 132 139 136
Compounds: Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene		Concentration ug/L (ppb) <0.35 <1 <1 <2 <2 <1		

ENVIRONMENTAL CHEMISTS

Date of Report: 04/24/23 Date Received: 04/14/23 Project: T-30, F&BI 304202

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code	e: 304202-03 Matri	ix Spike					
				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Gasoline	ug/L (ppb)	1,000	<100	99	98	50 - 150	1
Laboratory Code	e: Laboratory Cont	rol Samp	le				
			Percent				
	Reporting	Spike	Recovery	Acceptance	9		
Analyte	Units	Level	LCS	Criteria			
Gasoline	ug/L (ppb)	1,000	96	70-130			

9

ENVIRONMENTAL CHEMISTS

Date of Report: 04/24/23 Date Received: 04/14/23 Project: T-30, F&BI 304202

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 3	304202-03 (Matri	x Spike)	Silica Gel						
				Percent	Percent				
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD		
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)		
Diesel Extended	ug/L (ppb)	2,500	<50	115	122	50 - 150	6		
Laboratory Code: Laboratory Control Sample Silica Gel									
			Percent	5					
	Reporting	Spike	Recover	y Accept	ance				
Analyte	Units	Level	LCS	Crite	ria				
Diesel Extended	ug/L (ppb)	2,500	104	70-13	30				

ENVIRONMENTAL CHEMISTS

Date of Report: 04/24/23 Date Received: 04/14/23 Project: T-30, F&BI 304202

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	304202-03 (Matr	ix Spike)							
	Reporting	Spike	Sample	Percent Recovery	Percent Recovery	Acceptance	RPD		
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)		
Diesel Extended	ug/L (ppb)	2,500	520	127	127	70-130	0		
Laboratory Code: Laboratory Control Sample									
			Percent						
	Reporting	Spike	Recovery	Acceptance					
Analyte	Units	Level	LCS	Criteria					
Diesel Extended	ug/L (ppb)	2,500	116	70-130					

Laboratory Code: 304202-03 (Matrix Spike)

ENVIRONMENTAL CHEMISTS

Date of Report: 04/24/23 Date Received: 04/14/23 Project: T-30, F&BI 304202

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 304202-03 (Matrix Spike)

	(in Spino)			Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Benzene	ug/L (ppb)	10	< 0.35	103	91	50 - 150	12
Toluene	ug/L (ppb)	10	<1	104	102	50 - 150	2
Ethylbenzene	ug/L (ppb)	10	<1	107	106	50 - 150	1
m,p-Xylene	ug/L (ppb)	20	<2	110	108	50 - 150	2
o-Xylene	ug/L (ppb)	10	<1	105	112	50 - 150	6
Naphthalene	ug/L (ppb)	10	<1	98	94	50 - 150	4

Laboratory Code: Laboratory Control Sample

Laboratory coue. Laboratory	I I I I I I I I I I I I I I I I I I I		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Benzene	ug/L (ppb)	10	103	104	70-130	1
Toluene	ug/L (ppb)	10	113	103	70-130	9
Ethylbenzene	ug/L (ppb)	10	107	108	70-130	1
m,p-Xylene	ug/L (ppb)	20	102	110	70-130	8
o-Xylene	ug/L (ppb)	10	108	105	70-130	3
Naphthalene	ug/L (ppb)	10	99	104	70-130	5

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased high; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

R	R	1 n. (200) 200-0202 R	ı, Inc.	[]							Trip blank	MW-89-0423	2000-001-MM	R-11-0423	Sample ID		Phone 20, - 510 - JUTE mail Vall, 441, 44 Com of Project specific RLs? - Yes / No		City State ZIP Coattle, WA aslo!	Address 1111 3rd Ave she (600	Company AECOM	Report To Paul Kalina, Gus Frildman	304202
Received by:	Relinquished by:	Received by:	Relinquished by:	SIG							04 A -13	<u> </u>	02 1	. 01A-G	Lab ID	c	Way Litan	A 11-1	, WA 981	re ste (1		, Gus Fr	
			R	SIGNATURE		·						4/13/23 2040	4/17/23	4/13/23	Date Sampled		20000	0.0	01	000		Edman	
				-								2040	2000	2104	Time Sampled		Project s		REMAR	7-30	PROJE	SAMPL	SAMPLE CHAIN OF CUSTODY
			Gus								water	G W	610	GW	Sample Type		<u>pecific RLs</u>	itex Eph	REMARKS I mal hal for	30	PROJECT NAME	SAMPLERS (signature)	CHAIN
		ANHPHAN	ふ	PRINT NAME							20	16	7	1	# of Jars		? - Ye	929	nal			^{ture)} (OF (
		HH	Fildmen	IT N/								×	X	×	NWTPH-Dx		/ S	00	す			5	SUC
		N	500	AME	 							X	×	×	NWTPH-Gx		No		7			S	TOI
			۲				S C S				<u> </u>				BTEX EPA 8021			ñ			· N		YC
							Samples			·.					NWTPH-HCID VOCs EPA 8260	AN		<u>`</u>	INV				0
											+				PAHs EPA 8270	ALYS		lact Lathra	INVOICE TO		PO #		04/14/23
			A				ceiv			1					PCBs EPA 8082	SES I		ž	ETC		<i>+</i>		4/2
		1-8 h	AECON	CON			received at				+	X	x	x	NWTPH-Dx W	ANALYSES REQUESTED						l	2
		3	20	COMPANY			- for					×	×	×	BTEX 8260D	J ÊST	۲		1				
			~	Y			- C				1			`		Ð	Default	□ 2 u curr		Rush	Standa⊄Standa		<u>ر</u> رک
							[<u> </u>			1				· · · · · · · · · · · · · · · · · · ·			ter	SAM	charg	ndaro SH	Page # TURN	C3/VW3
	1.2	04/14/23	4/14/23	DATE							Added at lab (PP)	WS/V			Notes		Dispose after 30 days	oampreo	SAMPLE DISPOSAL	Rush charges authorized by	Standard turnaround	Page # 1 of	`بن س
		10:12		TIME							lab (PP)	/msd			es		30 days		3AL	d by:		IME	-

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 23, 2023

Paul Kalina, Project Manager AECOM 1111 3rd Ave, Suite 1600 Seattle, WA 98101

Dear Mr Kalina:

Included are the results from the testing of material submitted on October 18, 2023 from the T-30, F&BI 310230 project. There are 17 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures AEC1023R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 18, 2023 by Friedman & Bruya, Inc. from the AECOM T-30, F&BI 310230 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>AECOM</u>
310230 -01	RW-11A-1023
310230 -02	MW-4Z-1023
310230 -03	MW-39A-1023
310230 -04	MW-89-1023
310230 -05	RW-9-1023
310230 -06	DUP-1
310230 -07	MW-36A-1023
310230 -08	Trip Blank

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 10/23/23 Date Received: 10/18/23 Project: T-30, F&BI 310230 Date Extracted: 10/18/23 Date Analyzed: 10/18/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
RW-11A-1023 310230-01	230	113
MW-4Z-1023 310230-02	270	102
MW-39A-1023 310230-03	<100	104
MW-89-1023 310230-04	<100	102
RW-9-1023 310230-05	160	106
DUP-1 310230-06	200	107
MW-36A-1023 310230-07	<100	104
Method Blank ^{03-2246 MB}	<100	97

ENVIRONMENTAL CHEMISTS

Date of Report: 10/23/23 Date Received: 10/18/23 Project: T-30, F&BI 310230 Date Extracted: 10/19/23 Date Analyzed: 10/19/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis Results Reported as ug/L (ppb)

Surrogate

<u>Sample ID</u> Laboratory ID	$\frac{\text{Diesel Range}}{(\text{C}_{10}\text{-}\text{C}_{25})}$	Motor Oil Range (C25-C36)	<u>(% Recovery)</u> (Limit 50-150)
RW-11A-1023 310230-01	91	<250	87
MW-4Z-1023 310230-02	60	<250	91
MW-39A-1023 310230-03	<50	<250	98
MW-89-1023 310230-04	<50	<250	106
RW-9-1023 310230-05	230	<250	99
DUP-1 310230-06	210	<250	93
MW-36A-1023 310230-07	130	<250	94
Method Blank ^{03-2449 MB}	<50	<250	98

ENVIRONMENTAL CHEMISTS

Date of Report: 10/23/23 Date Received: 10/18/23 Project: T-30, F&BI 310230 Date Extracted: 10/18/23 Date Analyzed: 10/18/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 50-150)
RW-11A-1023 310230-01	12,000 x	680 x	99
MW-4Z-1023 310230-02	8,800 x	1,500 x	93
MW-39A-1023 310230-03	1,500 x	<250	105
MW-89-1023 310230-04	600 x	<250	116
RW-9-1023 310230-05	12,000 x	620 x	96
DUP-1 310230-06	11,000 x	590 x	93
MW-36A-1023 310230-07	4,800 x	<250	105
Method Blank ^{03-2449 MB}	<50	<250	115

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	RW-11A-10 10/18/23 10/16/23 10/16/23 Water ug/L (ppb)	23	Client: Project: Lab ID: Data File: Instrument: Operator:	AECOM T-30, F&BI 310230 310230-01 101628.D GCMS11 LM
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 99 98 103	Lower Limit: 78 84 72	Upper Limit: 126 115 130
Compounds:		Concentration ug/L (ppb)		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene		<0.35 <1 <1 <2 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-4Z-102 10/18/23 10/16/23 10/16/23 Water ug/L (ppb)	:3	Client: Project: Lab ID: Data File: Instrument: Operator:	AECOM T-30, F&BI 310230 310230-02 101629.D GCMS11 LM
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 105 97 107	Lower Limit: 78 84 72	Upper Limit: 126 115 130
Compounds: Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene		Concentration ug/L (ppb) <0.35 <1 <1 <1 <2 <1 <2 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-39A-10 10/18/23 10/16/23 10/16/23 Water ug/L (ppb)	023	Client: Project: Lab ID: Data File: Instrument: Operator:	AECOM T-30, F&BI 310230 310230-03 101630.D GCMS11 LM
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 101 97 97	Lower Limit: 78 84 72	Upper Limit: 126 115 130
Compounds:		Concentration ug/L (ppb)		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene		<0.35 <1 <1 <2 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-89-102 10/18/23 10/16/23 10/16/23 Water ug/L (ppb)	3	Client: Project: Lab ID: Data File: Instrument: Operator:	AECOM T-30, F&BI 310230 310230-04 101631.D GCMS11 LM
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4		109	78	126
Toluene-d8		94	84	115
4-Bromofluorobenzene		97	72	130
Compounds:		Concentration ug/L (ppb)		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	RW-9-1023 10/18/23 10/16/23 10/16/23 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	AECOM T-30, F&BI 310230 310230-05 101632.D GCMS11 LM
~			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4		102	78	126
Toluene-d8		89	84	115
4-Bromofluorobenzene		95	72	130
Compounds:		Concentration ug/L (ppb)		
Compounds.		ug/Li (ppb)		
Benzene		< 0.35		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	DUP-1 10/18/23 10/16/23 10/16/23 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	AECOM T-30, F&BI 310230 310230-06 101633.D GCMS11 LM
Surrogates: 1,2-Dichloroethane-d4		% Recovery: 101	Lower Limit: 78	Upper Limit: 126
Toluene-d8 4-Bromofluorobenzene		93 99	84 72	$115\\130$
Compounds:		Concentration ug/L (ppb)		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene		<0.35 <1 <1 <2 <1		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-36A-10 10/18/23 10/16/23 10/16/23 Water ug/L (ppb)	023	Client: Project: Lab ID: Data File: Instrument: Operator:	AECOM T-30, F&BI 310230 310230-07 101634.D GCMS11 LM
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 105 93 98	Lower Limit: 78 84 72	Upper Limit: 126 115 130
Compounds: Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene		Concentration ug/L (ppb) <0.35 <1 <1 <1 <2 <1 <2 <1		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 10/16/23 10/16/23 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	AECOM T-30, F&BI 310230 03-2412 mb 101620a.D GCMS11 LM
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 99 95 100	Lower Limit: 78 84 72	Upper Limit: 126 115 130
Compounds: Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene		Concentration ug/L (ppb) <0.35 <1 <1 <1 <2 <1		

ENVIRONMENTAL CHEMISTS

Date of Report: 10/23/23 Date Received: 10/18/23 Project: T-30, F&BI 310230

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Cod	e: 310230-02 Matri	ix Spike					
				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Gasoline	ug/L (ppb)	1,000	270	108	105	50 - 150	3
Laboratory Cod	e: Laboratory Cont	rol Samp	le				
			Percent				
	Reporting	Spike	Recovery	Acceptance	Э		
Analyte	Units	Level	LCS	Criteria			
Gasoline	ug/L (ppb)	1,000	100	70-130			

13

ENVIRONMENTAL CHEMISTS

Date of Report: 10/23/23 Date Received: 10/18/23 Project: T-30, F&BI 310230

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 3	10230-02 (Matri	x Spike)	Silica Gel									
				Percent	Percent							
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD					
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)					
Diesel Extended	ug/L (ppb)	2,500	<250	105	109	50 - 150	4					
Laboratory Code: Laboratory Control Sample Silica Gel												
			Percent	Percent								
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD						
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)						
Diesel Extended	ug/L (ppb)	2,500	105	105	65 - 151	0						

ENVIRONMENTAL CHEMISTS

Date of Report: 10/23/23 Date Received: 10/18/23 Project: T-30, F&BI 310230

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 3.	10230-02 (Matri	ix Spike)									
Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)				
Diesel Extended	ug/L (ppb)	2,500	9,700	157 b	0 b	50 - 150	200 b				
Laboratory Code: Laboratory Control Sample Percent											
	Reporting	Spike	Recovery	Acceptance							
Analyte	Units	Level	LCS	Criteria							
Diesel Extended	ug/L (ppb)	2,500	100	65 - 151	_						

Laboratory Code: 310230-02 (Matrix Spike)

ENVIRONMENTAL CHEMISTS

Date of Report: 10/23/23 Date Received: 10/18/23 Project: T-30, F&BI 310230

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 310230-02 (Matrix Spike)

	······································			Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Benzene	ug/L (ppb)	10	< 0.35	105	107	50 - 150	2
Toluene	ug/L (ppb)	10	<1	105	104	50 - 150	1
Ethylbenzene	ug/L (ppb)	10	<1	107	107	50 - 150	0
m,p-Xylene	ug/L (ppb)	20	<2	104	104	50 - 150	0
o-Xylene	ug/L (ppb)	10	<1	105	104	50 - 150	1

Laboratory Code: Laboratory Control Sample

	• • • • • • • • • • • • • • • • • • •		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Benzene	ug/L (ppb)	10	105	105	70-130	0
Toluene	ug/L (ppb)	10	105	104	70-130	1
Ethylbenzene	ug/L (ppb)	10	105	104	70-130	1
m,p-Xylene	ug/L (ppb)	20	102	101	70-130	1
o-Xylene	ug/L (ppb)	10	101	101	70-130	0

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

			-							_										' .			
Г	R	R	rn. (200) 200-0202	i, Inc.				Trip blank	MW-36A-1023	DUP-1	RW-9-1023	MW-89-1023	MW-39A-1023	MW-42-1025	RIN-11A-1023	Sample ID		Phone 2016-310-50 Ema	e, ZIP	Address 1111 3rd Ave	Company AECOM	aut	310230
	Received by:	Relinquished by:	Received by:	Relinquished by	SI			08 A-B	4 40	06	50	04	03 A-D	02 A-L	01 A-D	, Lab ID)-50 EmailPaul-Valina Oallon.	1418, WA 98101	Svite IV		Kalina	
			fort	marila	SIGNATURE			(ł						10/12/23	Date Sampled		NODOGIAN	1016	000			
				للكلم		~		1	2146	0000	2045	(240	2034	1923	1920	Time Sampled		Project s	REMARKS	-1	PROJEC	SAMPLE	SAMPLE CHAIN OF CU
			£	Suz		~	din .	water	4						GW	Sample Type		Project specific RLs? -	IBW I SS	06	PROJECT NAME	SAMPLERS (signature)	CHAIN
			ANH	Zanne	PRINT NAME			83	-				4	P	4	# of Jars		EPA 62400 Ls? - Yes / N	1			ture) _	OFC
			РН	\frown	TNA				4						X	NWTPH-Dx		°N / Nº	105			N	[USU
			HAN	athe	ME				-from		1980774887	123446.222			X	NWTPH-Gx BTEX EPA-8021	5	0				L'	STODY
				ر									`			NWTPH-HCID		80				Ő,	Y
										·.						VOCs EPA 8260	ANA	Paul Kulina	INVOICE TO		P	V.	10
				X			Sam									PAHs EPA 8270	YSE	20	ICE,		PO #	and and a second	10/13/23
			F80	Ë	0		ples									PCBs EPA 8082	SRE	PS	N			, iber	23
			0	LOW	COMPANY		reco		6						7	NWTPH-Dx wisilicage	ANALYSES REQUESTED						Сч
					ANY		Samples received		6						~>>	BTEX 8260D	TED	Def	ΠA	Rus	R		CH VW2
							2			-								Default:	SAI	h cha	tanda: USH	Page	2
$\left \right $			10	0			4	A						MS		. <u>1</u>		Dispo	SAMPLE DI Archive samples	rges a	rd tur	#	
		•	10/13/23	Eeki M	DATE		4 °C	Added at									1	□ Other Default:/Dispose after 30 days	SAMPLE DISPOSAL hive samples	Rush charges authorized by:	Standard turnaround	Page # 1 of 1 TURNAROUND TIME	
-	-				\square			at						MSD		Notes	.	er 30	OSAI	zed by	nd	TIMI	
			08:35	8:35	TIME		AP 10/13	ab										days					

Appendix H

Groundwater Sampling Summary

Data Quality Review Reports

AECOM 1111 3rd Ave Suite 1600 Seattle, WA 98101 www.aecom.com 206 438 2700 tel 866 495 5288 fax

То	Paul Kalina, Project Manager	Info	FINAL
	Summary Data Quality Review		
	Port of Seattle – T-30		
Subject	April 2023 Groundwater Sampling		
	Chelsey Cook, Chemist		
From	Lucy Panteleeff, Chemist		
Date	May 3, 2023		

The summary data quality review of 3 groundwater samples collected on April 13, 2023, has been completed. The samples were analyzed at Freidman and Bruya, Incorporated (F&BI) located in Seattle, Washington for benzene, toluene, ethylbenzene, and total xylenes (BTEX) by EPA Method 8260D, total petroleum hydrocarbons (TPHs) by Washington State Department of Ecology Methods NWTPH-Gx (gasoline-range TPH) and NWTPH-Dx (diesel-range and motor oil-range TPH) with silica gel cleanup (SGC) and NWTPH-Dx (diesel-range and motor oil-range TPH) without SGC. The laboratory provided a summary report containing sample results and associated quality assurance (QA) and quality control (QC) data for all samples. For this report, the sample identifications (IDs) do not include the sampling date suffixes (-0423). The following samples are associated with F&BI laboratory group 304202:

	Laboratory	Laboratory	
Sample ID	Group	ID	Requested Analyses
RW-11A-0423	304202	304202-01	BTEX, NWTPH-Gx, NWTPH-Dx
MW-100-0423			BTEX, NWTPH-Gx, NWTPH-Dx
(Field Duplicate of RW-11A-0423)		304202-02	BIEA, NWIFH-GX, NWIFH-DX
MW-89-0423		304202-03	BTEX, NWTPH-Gx, NWTPH-Dx
Trip Blank		304202-04	None

Data were evaluated based on laboratory QC criteria and validation criteria established in the *National Functional Guidelines for Organic Superfund Methods Data Review*, November 2020.

The following data components were reviewed during the limited data validation procedure for compliance with method specific or laboratory control charted criteria where appropriate: chain of custody forms, holding times, method/trip/instrument blanks, surrogate recoveries, matrix spike/matrix spike duplicate recoveries, laboratory and field duplicate results, laboratory control sample/laboratory control sample duplicate recoveries, reporting limits, and electronic data deliverables.

A summary of qualifiers that may be assigned to results in these laboratory groups are included in Table 1. Qualifiers that may be assigned to results include:

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Summary Data Quality Review Port of Seattle - T-30 April 2023 Groundwater Sampling Laboratory Groups: 304202

- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- DNR Do Not Report. Another result is available that is more reliable or appropriate.

Sample Receipt

Upon receipt by the laboratory, the sample jar information was compared to the chain-of-custody (COC) and the cooler temperature was recorded. The cooler was received by the laboratory at a temperature within the EPA recommended limits of greater than 0°C and less than or equal to 6°C. The trip blank was inadvertently left off the COC and added by the laboratory. The trip blank was not analyzed. BTEX and gasoline-range TPH were not detected in the associated samples, therefore, data were not qualified based on the absence of trip blank results.

Organic Analyses

Samples were analyzed for BTEX and TPHs by the methods identified in the introduction of this report.

- 1. Holding Times Acceptable
- 2. Blanks Acceptable
- 3. Surrogates Acceptable
- 4. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Acceptable
- 5. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Acceptable

<u>General</u> – An MS/MSD was performed using MW-89 for all analyses. Results were acceptable.

6. Field Duplicate – Acceptable

<u>General</u> – A field duplicate was submitted for RW-11A and identified as MW-100. Results greater than five times the reporting limit were comparable.

- 7. Reporting Limits Acceptable
- 8. Other Items of Note:

<u>Diesel-range and Motor Oil-range TPH by NWTPH-Dx (No SGC)</u> – The laboratory noted that the diesel-range hydrocarbon patterns for all samples reported in laboratory group 304202 did not resemble the fuel standard used for quantitation. No qualifiers were assigned based on these qualitative observations.

Summary Data Quality Review Port of Seattle - T-30 April 2023 Groundwater Sampling Laboratory Groups: 304202

Overall Assessment of Data

The data reported in this laboratory group, as qualified, are considered to be usable for meeting project objectives. The completeness for F&BI laboratory group 304202 is 100%.

Table 1. Summary of Qualified Data

Sample ID	Lab ID	Analyte	Analyte Result							
No	No data qualifiers were assigned in association with laboratory group 304202.									

AECOM 1111 3rd Ave Suite 1600 Seattle, WA 98101 www.aecom.com 206 438 2700 tel 866 495 5288 fax

Memorandum

То	Paul Kalina, Project Manager	Info	FINAL
	Summary Data Quality Review		
	Port of Seattle – T-30		
Subject	October 2023 Groundwater Sampling		
	Amelia McArthur, Chemist		
From	Lucy Panteleeff, Chemist		
Date	November 1, 2023		

The summary data quality review of 7 groundwater samples collected on October 12, 2023, has been completed. The samples were analyzed at Freidman and Bruya, Incorporated (F&BI) located in Seattle, Washington for benzene, toluene, ethylbenzene, and total xylenes (BTEX) by EPA Method 8260D, total petroleum hydrocarbons (TPHs) by Washington State Department of Ecology Methods NWTPH-Gx (gasoline-range TPH) and NWTPH-Dx (diesel-range and motor oil-range TPH) with silica gel cleanup (SGC) and NWTPH-Dx (diesel-range and motor oil-range TPH) with silica gel cleanup (SGC) and NWTPH-Dx (diesel-range and motor oil-range TPH) with silica (QA) and quality control (QC) data for all samples. For this report, the sample identifications (IDs) do not include the sampling date suffixes (-1023). The following samples are associated with F&BI laboratory group 310230:

	Laboratory	
Sample ID	ID	Requested Analyses
RW-11A-1023	310230 -01	BTEX, NWTPH-Gx, NWTPH-Dx
MW-42-1023	310230 -02	BTEX, NWTPH-Gx, NWTPH-Dx
MW-39A-1023	310230 -03	BTEX, NWTPH-Gx, NWTPH-Dx
MW-89-1023	310230 -04	BTEX, NWTPH-Gx, NWTPH-Dx
RW-9-1023	310230 -05	BTEX, NWTPH-Gx, NWTPH-Dx
DUP-1 (field duplicate of RW-9-1023)	310230 -06	BTEX, NWTPH-Gx, NWTPH-Dx
MW-36A-1023	310230 -07	BTEX, NWTPH-Gx, NWTPH-Dx
Trip Blank	310230 -08	None

Data were evaluated based on laboratory QC criteria and validation criteria established in the *National Functional Guidelines for Organic Superfund Methods Data Review*, November 2020.

The following data components were reviewed during the limited data validation procedure for compliance with method specific or laboratory control charted criteria where appropriate: chain of custody forms, holding times, method/trip/instrument blanks, surrogate recoveries, matrix spike/matrix spike duplicate recoveries, laboratory and field duplicate results, laboratory control sample/laboratory control sample duplicate recoveries, reporting limits, and electronic data deliverables.

A summary of qualifiers that may be assigned to results in this laboratory group are included in Table 1. Qualifiers that may be assigned to results include:

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

Summary Data Quality Review Port of Seattle - T-30 October 2023 Groundwater Sampling Laboratory Groups: 310230

- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- DNR Do Not Report. Another result is available that is more reliable or appropriate.

Sample Receipt

Upon receipt by the laboratory, the sample jar information was compared to the chain-of-custody (COC) and the cooler temperature was recorded. The cooler was received by the laboratory at a temperature within the EPA recommended limits of greater than 0°C and less than or equal to 6°C. The trip blank was inadvertently left off the COC and added by the laboratory. The trip blank was not analyzed.

Organic Analyses

Samples were analyzed for BTEX and TPHs by the methods identified in the introduction of this report.

- 1. Holding Times Acceptable
- 2. Blanks Acceptable
- 3. Surrogates Acceptable
- 4. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Acceptable
- 5. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Acceptable

<u>General</u> –MS/MSDs were performed using MW-42 for all analyses. Results were acceptable except as noted below:

<u>NWTPH-Dx</u> – The percent recoveries for diesel-range TPH in the MS (157%), the MSD (0%), and the relative percent difference (RPD) (200%) were outside control limits of 50-150% and 20%, respectively. The concentration of diesel-range TPH was greater than four times the spike concentration; therefore, no data were qualified based on the MS/MSD results.

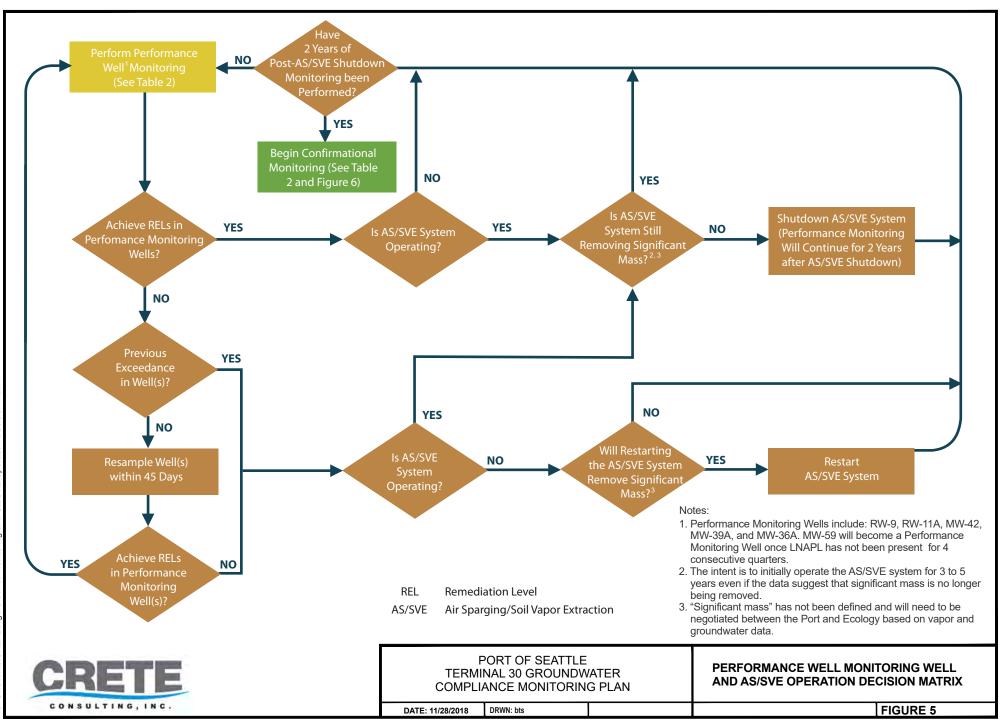
6. Field Duplicate – Acceptable

<u>General</u> – A field duplicate was submitted for RW-9 and identified as DUP-1. Results greater than five times the reporting limit were comparable.

Summary Data Quality Review Port of Seattle - T-30 October 2023 Groundwater Sampling Laboratory Groups: 310230

- 7. Reporting Limits Acceptable
- 8. Other Items of Note:

<u>Diesel-range and Motor Oil-range TPH by NWTPH-Dx (No SGC)</u> – The laboratory noted that the diesel-range and motor-oil-range hydrocarbon patterns for all samples reported in laboratory group 310230 did not resemble the fuel standard used for quantitation. No qualifiers were assigned based on these qualitative observations.


Overall Assessment of Data

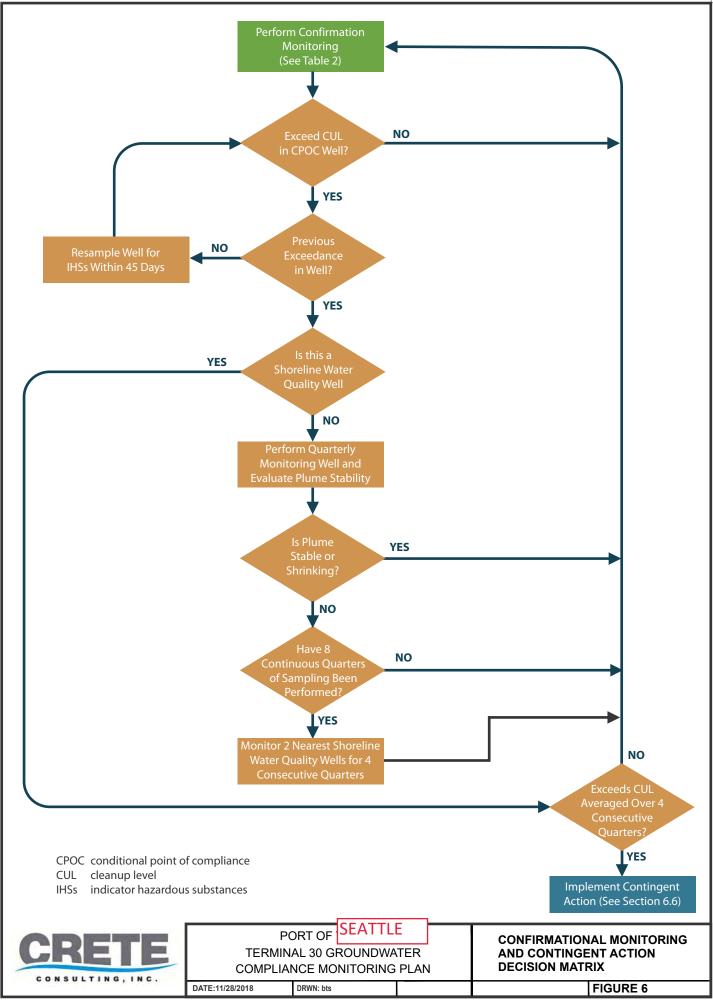

The data reported in this laboratory group, as qualified, are usable for meeting project objectives. The completeness for F&BI laboratory group 310230 is 100%.

Table 1. Summary of Qualified Data

Sample ID	Lab ID	Analyte	Result	Units	Final Result		
No data qualifiers were assigned in association with laboratory group 310230.							

<u>Appendix I</u> Select Figures from the Groundwater Compliance Monitoring Plan

