
# **Cleanup Action Plan Addendum**

# Riverside HVOC Site

**Prepared for** City of Bothell

February 2025 DRAFT







# LIMITATIONS This report has been prepared for the exclusive use of the City of Bothell, their authorized agents, and regulatory agencies. It has been prepared following the described methods and information available at the time of the work. No other party should use this report for any purpose other than that originally intended, unless Floyd|Snider agrees in advance to such reliance in writing. The information contained herein should not be utilized for any purpose or project except the one originally intended. Under no circumstances shall this document be altered, updated, or revised without written authorization of Floyd|Snider. The interpretations and conclusions contained in this report are based in part on site characterization data collected by others and provided by the City of Bothell. Floyd|Snider cannot assure the accuracy of this information.

### **Table of Contents**

| 1.0        | Intro  | Introduction                                                   |     |  |  |
|------------|--------|----------------------------------------------------------------|-----|--|--|
|            | 1.1    | DECLARATION                                                    | 1-1 |  |  |
|            | 1.2    | CLEANUP STANDARDS                                              | 1-1 |  |  |
|            | 1.3    | UPDATES TO THE ADMINISTRATIVE RECORD                           | 1-2 |  |  |
| 2.0        | Supp   | lemental Data Collection                                       | 2-1 |  |  |
|            | 2.1    | GROUNDWATER                                                    |     |  |  |
|            | 2.2    | SOIL                                                           | 2-2 |  |  |
|            | 2.3    | RISKS TO HUMAN HEALTH AND ENVIRONMENT                          | 2-2 |  |  |
| 3.0        | Clear  | nup Action Selection                                           | 3-1 |  |  |
|            | 3.1    | 1 SUMMARY OF 2023 CAP CLEANUP ACTION                           |     |  |  |
|            | 3.2    | EVALUATION OF 2023 CAP CLEANUP ACTION                          | 3-1 |  |  |
|            |        | 3.2.1 Achievement of Remedial Action Objectives                | 3-1 |  |  |
|            | 3.3    | OVERVIEW OF REVISED CLEANUP ACTION                             | 3-3 |  |  |
|            | 3.4    | DECISION                                                       | 3-4 |  |  |
| 4.0        | Refer  | ences                                                          | 4-1 |  |  |
|            |        | List of Tables                                                 |     |  |  |
| Table 1.1  |        | Cleanup Standards from the 2023 Cleanup Action Plan (embedded) |     |  |  |
|            |        | List of Figures                                                |     |  |  |
| Figure 3.1 |        | 2023 CAP Cleanup Action                                        |     |  |  |
| Figure 3.2 |        | Revised Cleanup Action                                         |     |  |  |
|            |        | List of Appendices                                             |     |  |  |
| Anne       | ndix A | Pre-Engineering Design Investigation Data Report               |     |  |  |

### **List of Abbreviations**

Abbreviation Definition

ARAR Applicable or relevant and appropriate requirement

bgs Below ground surface
CAP Cleanup Action Plan

CUL Cleanup level

Ecology Washington State Department of Ecology
HVOC Halogenated volatile organic compound

μg/L Micrograms per liter

MTCA Model Toxics Control Act

PCE Tetrachloroethene

PDI Pre-engineering design investigation

RAO Remedial action objective

RI/FS Remediation Investigation and Feasibility Study

Site Riverside Halogenated Volatile Organic Compound Site

SVE Soil vapor extraction

TCE Trichloroethene

WAC Washington Administrative Code

ZVI Zero-valent iron

### 1.0 Introduction

This document is an addendum to the Washington State Department of Ecology's (Ecology's) Cleanup Action Plan (CAP) for the Riverside Halogenated Volatile Organic Compound (HVOC) Site (Site) issued by Ecology in March 2023 as Exhibit B of Agreed Order No. DE 21531 (Ecology 2023). This addendum provides details for a revised cleanup action to address Site conditions observed during the pre-engineering design investigation, which was conducted in 2024 as documented in the Pre-Engineering Design Investigation (PDI) Data Report (Appendix A). The cleanup action described in the CAP is superseded by this document.

### 1.1 DECLARATION

Ecology has revised the selected cleanup action based on current Site conditions to be protective of human health and the environment and to minimize cost, treatment time, and impact to the environment during cleanup action implementation. Furthermore, the selected cleanup action is consistent with the State of Washington's preference for permanent solutions, as stated in RCW 70A.305.040(1)(b). Ecology will consider all public input received during the public comment period for this CAP Addendum to the extent possible.

### 1.2 CLEANUP STANDARDS

Site-specific cleanup standards were developed in the CAP as a part of an overall remediation process under Ecology oversight for this Site using the authority of the Model Toxics Control Act (MTCA). The two primary components of cleanup standards are cleanup levels (CULs) and points of compliance.

There are no changes to the cleanup standards presented in the CAP. However, because soil contamination exceedances of tetrachloroethene (PCE) and trichloroethene (TCE) CULs are all in the saturated zone and soil cleanup standards for these COCs were developed for protection of groundwater, compliance with soil cleanup standards can be empirically demonstrated by meeting groundwater cleanup standards for the Site. Table 1.1 presents a summary of the cleanup standards for Site soil and groundwater.

Table 1.1
Cleanup Standards from the 2023 Cleanup Action Plan

| Analyte        | Unit  | Cleanup Level |  |  |
|----------------|-------|---------------|--|--|
| Soil           |       |               |  |  |
| PCE            | mg/kg | 0.05          |  |  |
| TCE            | mg/kg | 0.03          |  |  |
| cis-1,2-DCE    | mg/kg | 160           |  |  |
| Vinyl chloride | mg/kg | 0.67          |  |  |
| Groundwater    |       |               |  |  |
| PCE            | μg/L  | 4.9           |  |  |
| TCE            | μg/L  | 0.38          |  |  |
| cis-1,2-DCE    | μg/L  | 16            |  |  |
| Vinyl chloride | μg/L  | 0.02          |  |  |

Notes:

cis-1,2-DCE cis-1,2-Dichloroethene μg/L Micrograms per kilogram mg/kg Milligrams per kilogram

### 1.3 UPDATES TO THE ADMINISTRATIVE RECORD

The documents used to make the decisions discussed in the CAP and this CAP Addendum are on file in the administrative record for the Site. Major documents supporting this CAP Addendum are listed in the References section or attached as Appendix A. The entire administrative record for the Site is available for public review by appointment at Ecology's Northwest Regional Office, located at 15700 Dayton Avenue N, Shoreline, Washington 98133. Results from applicable studies and reports are summarized to provide background information related to the CAP Addendum. These studies and reports include the following:

- Pre-Engineering Design Investigation Data Report, Riverside HVOC Site, December 2024
- Supplemental Remedial Investigation & Feasibility Study, Riverside HVOC Site, Bothell, Washington, February 2022

### 2.0 Supplemental Data Collection

In 2024, additional soil and groundwater data were collected to inform design of the cleanup action for the Site:

- Hydrogeologic data were collected to inform the suitability of the conceptual biorecirculation system design (or other variations of groundwater pump and treat systems) and to inform any necessary adjustments to support engineering design and injection parameters such as rates and quantities of treatment materials.
- Data on HVOC distribution and geochemistry in groundwater were collected to confirm
  the current horizontal extents of the HVOC plume, to assess the vertical distribution
  and flux of HVOCs in groundwater, and to assess geochemical parameters such as redox
  conditions to inform efficient formulation and delivery of treatment materials.
- Data on HVOC distribution in soil were collected to inform the likely mass of HVOCs in the vadose zone that would need to be targeted by soil vapor extraction (SVE) and to more precisely delineate the extent of HVOCs in the presumed source area to inform design of soil treatment in the saturated zone.

All results discussed in this section, as well as laboratory analytical reports for 2024 sampling, are presented in the PDI Data Report (Appendix A).

### 2.1 GROUNDWATER

Prior to 2024, the most recent groundwater sampling occurred in 2020. In 2024, groundwater samples were collected to document current HVOC concentrations after continued groundwater extraction since 2020<sup>1</sup> and to further refine the lateral extent of HVOCs in groundwater exceeding CULs. In general, the most recent 2024 results collected from monitoring wells Sitewide show HVOC concentrations have reduced since 2020 and prior results that were used to inform the selected cleanup action in the CAP:

- PCE concentrations ranged from not detected to 9.8 micrograms per liter ( $\mu$ g/L), compared with the 2020 maximum concentration of 26  $\mu$ g/L (CUL: 4.9  $\mu$ g/L).
- TCE concentrations ranged from not detected to 3.4  $\mu$ g/L, compared with the 2020 maximum concentration of 23  $\mu$ g/L (CUL: 0.38  $\mu$ g/L).
- Vinyl chloride concentrations ranged from not detected to 6.2  $\mu$ g/L, compared with the 2020 maximum concentration of 28  $\mu$ g/L (CUL: 0.020  $\mu$ g/L). Although the most elevated concentration of vinyl chloride remains at the farthest downgradient monitoring point (RMW-7), a declining trend has been observed in this area.

\_

<sup>&</sup>lt;sup>1</sup> Groundwater extraction continues to be performed as part of an interaction required by Agreed Order No. DE 6295 and its Amendment No. 2.

The 2024 geochemical results confirm that site conditions are favorable for anaerobic biodegradation of HVOCs by reductive dechlorination (Appendix A). Anaerobic biodegradation remains the preferred primary treatment technology for HVOCs in Site groundwater.

Because of the groundwater extraction pumping between 2020 and 2024, groundwater source contamination mass has been reduced as described above. These reductions are such that remaining source contamination can be addressed by a single treatment event using direct-push drilling, instead of the continuous injection, extraction, and recirculation treatment presented in the CAP.

The PDI additionally documented that downgradient migration of vinyl chloride appeared to be exacerbated by groundwater extraction pumping. Addition of an in situ treatment barrier is recommended to fully treat vinyl chloride at the point of discharge to the Sammamish River.

### **2.2 SOIL**

Soil samples were collected to inform design of SVE in the vadose zone and soil treatment in the saturated zone.

HVOCs that exceed CULs in soil include PCE and TCE. Based on PDI sample results and historical sample results, the shallowest occurrences of HVOC CUL exceedances in soil occurred at the water table (approximately 12 to 13 feet below ground surface [bgs] at sample location SB-06), and concentrations in shallower (vadose zone) samples were less than CULs. Data indicate that vadose soil does not require SVE treatment; SVE would not remove the soil contaminant mass located in the saturated zone.

The PDI determined that vertical and horizontal extents of PCE and TCE exceeding CULs are sufficiently defined in the vicinity of the former machine shop, and the concentrations that occur in saturated soil are sufficiently low to be treated concurrently with in situ groundwater treatment.

### 2.3 RISKS TO HUMAN HEALTH AND ENVIRONMENT

PDI samples from 2024 indicated no CUL exceedances of HVOCs in vadose zone soil above 12 feet bgs; therefore, the soil direct contact pathway for terrestrial biota no longer applies, because soil to the point of compliance for terrestrial biota (6 feet bgs) meets Site CULs. The soil direct contact pathway should be considered complete only for human exposures with a point of compliance to 15 feet bgs. However, Site soil PCE and TCE CULs are based on protection of groundwater quality and the groundwater to surface water pathway, and this finding does not impact the application of the Site CULs. HVOC concentrations in Site soil do not exceed the MTCA Method B CULs for direct contact in any samples (Ecology 2025).

### 3.0 Cleanup Action Selection

The following sections describe the proposed changes to the 2023 CAP cleanup action based on the findings of the PDI.

### 3.1 SUMMARY OF 2023 CAP CLEANUP ACTION

The 2023 CAP cleanup action includes SVE and Site-wide recirculation of groundwater amended with a soluble organic carbon substrate electron donor (CarBstrate™) to enhance biodegradation of HVOCs (Ecology 2023). The elements of the 2023 CAP cleanup action are shown on Figure 3.1, which is reproduced from the CAP.

The 2023 CAP cleanup action included proposed installation of the following components:

- 12 soil vapor extraction wells
- Vapor collection piping and blowers and a vapor treatment system to remove HVOCs prior to discharge
- Six injection wells and two extraction wells (plus conversion of two existing extraction/monitoring wells for injection)
- Injection delivery and recovery piping, groundwater treatment system to remove remaining HVOCs prior to reinjection, and injection delivery control system

Implementation of the cleanup action would include regular operation and maintenance including weekly application of CarBstrate and periodic changeout of carbon vessels for both the SVE and bio-recirculation systems. It was estimated that the SVE system would run for 3 years and that the bio-recirculation system would run for 2 years. The estimated restoration time frame for this cleanup action is 5 years. The estimated cost for this cleanup action, adjusted to present value costs estimated in December 2024, is \$2,732,602 (Appendix A).

### 3.2 EVALUATION OF 2023 CAP CLEANUP ACTION

In response to the finding of the PDI, which concluded that HVOC concentrations in groundwater have decreased due to ongoing groundwater extraction, a re-evaluation of remedial alternatives was performed as described in the PDI Report. This evaluation included the 2023 CAP cleanup action as well as two new alternatives that were developed based on current HVOC conditions at the Site.

### 3.2.1 Achievement of Remedial Action Objectives

Remedial action objectives (RAOs) describe the actions necessary to protect human health and the environment by eliminating, reducing, or otherwise controlling risks posed through each exposure pathway and migration route. They identify goals that should be accomplished to meet the requirements of the MTCA Cleanup Regulations (Washington Administrative Code [WAC] 173-340).

RAOs may be informed by current or future property use. RAOs were not previously defined for the Site; therefore, the following RAOs are defined for the Site:

- Protect humans and the environment (ecological receptors) from exposure to Site contamination that exceeds applicable CULs.
  - Achieve CULs in groundwater to protect surface water quality of the adjacent Sammamish River, prioritizing rapid achievement of CULs at the point of discharge to surface water.
  - Address residual contaminated soil to reduce exposure to hazardous substances via leaching to groundwater.
- Comply with local, state, and federal laws and other applicable or relevant and appropriate requirement (ARARs; WAC 173-340-710) and Site-specific cleanup standards. ARARs are limited to applicable federal and state laws and those that Ecology determines are relevant and appropriate.
- Remediate contaminants in a manner that minimizes impacts to public use of park space at the Site.
- Provide compliance monitoring to evaluate (1) the effectiveness of the preferred cleanup action and (2) when the cleanup standards are met.

Some elements of the 2023 CAP cleanup action may not support progress toward achieving these RAOs.

- The available soil data suggest that SVE will not reduce exposures to contaminated soil because it will not reach the contaminated soil mass that lies fully below the groundwater table.
- The available groundwater data suggest that Site-wide groundwater recirculation, which includes downgradient groundwater extraction, may not achieve CULs at the point of discharge to the Sammamish River because extraction could exacerbate migration of vinyl chloride toward the river.
- Aerobic conditions that may be created by the remediation technologies and compete
  with the desired anaerobic biodegradation process in groundwater are also of
  concern, primarily for SVE but also potentially for the mechanical process of extraction
  and injection.

Site soil data demonstrate that excavation and SVE with air sparging, technologies considered in the Remedial Investigation and Feasibility Study (RI/FS; Kane 2022), remain impractical at the Site; excavation to depths of almost 20 feet below the water table is cost prohibitive and unsafe adjacent to State Route 522, and air sparging would create adverse geochemical conditions for anaerobic biodegradation of HVOCs in groundwater.

Another treatment technology for groundwater considered in the RI/FS included injection of organic carbon (edible oil) without recirculation. The Site groundwater data suggest that

treatment of groundwater cleanup via passive migration is a viable alternative technology because it would not exacerbate downgradient vinyl chloride migration.

### 3.3 OVERVIEW OF REVISED CLEANUP ACTION

The 2024 PDI data indicate that vadose soil does not require treatment and that the remaining source contamination in saturated soil and groundwater is reduced from 2020 concentrations and is able to be treated with a single treatment event using direct-push drilling, instead of continuous injection, extraction, and recirculation treatment. The revised cleanup action makes the following adjustments to adapt the remedial action to current Site conditions based on the findings of the PDI:

- SVE is eliminated.
- Soluble organic carbon and *Dehalococcoides* treatment in the source area is achieved by direct-push injection, which is supplemented with zero-valent iron (ZVI). A lesser amount of supplemental ZVI is also added in the western plume.
- Downgradient soluble organic carbon and *Dehalococcoides* treatment are supplemented with ZVI and colloidal activated carbon (such as PlumeStop) to form in situ treatment barriers.
- A controlled-release source of organic carbon is used.

The elements of the revised cleanup action are shown on Figure 3.2. This alternative supplements source area treatment with ZVI to achieve prompt abiotic degradation of PCE and TCE and ensure ongoing reducing conditions to promote anaerobic biodegradation. The addition of ZVI, combined with a controlled-release form of organic carbon, allows for a single direct-push application of the treatment materials in lieu of recirculation to degrade the remaining HVOC mass. The addition of colloidal activated carbon downgradient is designed to adsorb HVOCs and allow longer contact time with the treatment materials, which will allow for more rapid cleanup of downgradient groundwater. A double row of injections is assumed in order to form a highly effective barrier. The estimated restoration time frame for this cleanup action is 3 years. The estimated cost for this cleanup action is \$1,655,362.

ARARs were established in the CAP for the 2023 CAP cleanup action. The same ARARs generally apply to the revised cleanup action; however, SVE was eliminated for the revised cleanup action and ARARs presented in the CAP related to air quality and air permitting are no longer applicable.

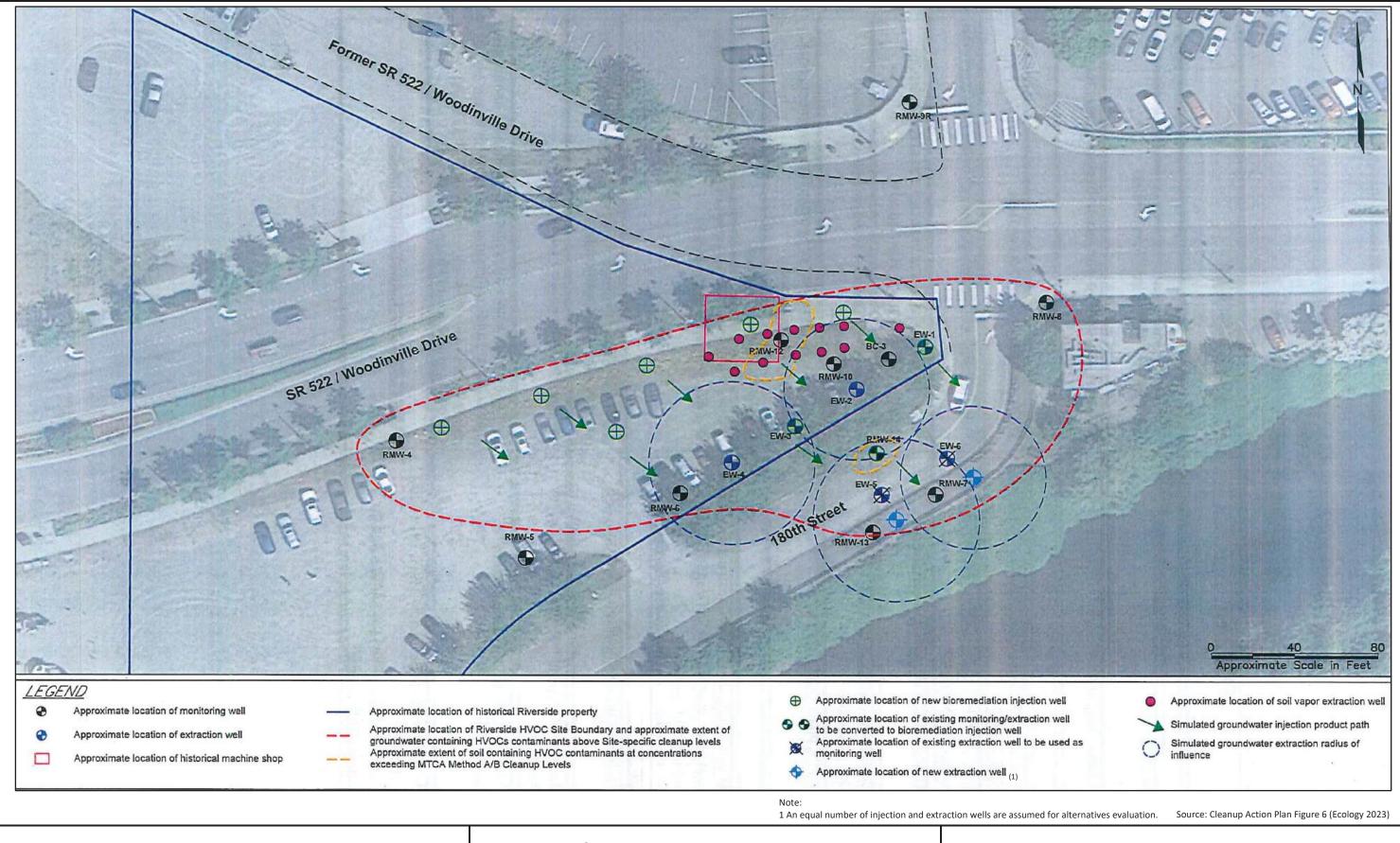
Institutional controls are not anticipated to be required at the Site.

Additional details about the revised cleanup action including remedial design, monitoring, and reporting as required by MTCA; remedy costs; and disproportionate cost analysis for the revised cleanup action will be implemented as described in the PDI Data Report (Appendix A).

### 3.4 DECISION

Based on the analysis described in the previous sections, Ecology has eliminated SVE treatment of vadose soil and revised the in situ groundwater treatment as shown on Figure 3.2 to address contamination in saturated soil and groundwater at the Site. This revised cleanup action will remediate contaminants in saturated soil and groundwater, treat contaminated groundwater flowing through downgradient in situ treatment barriers before reaching the Sammamish River, and protect human health and the environment at reduced cost and faster restoration time frame than the 2023 CAP cleanup action.

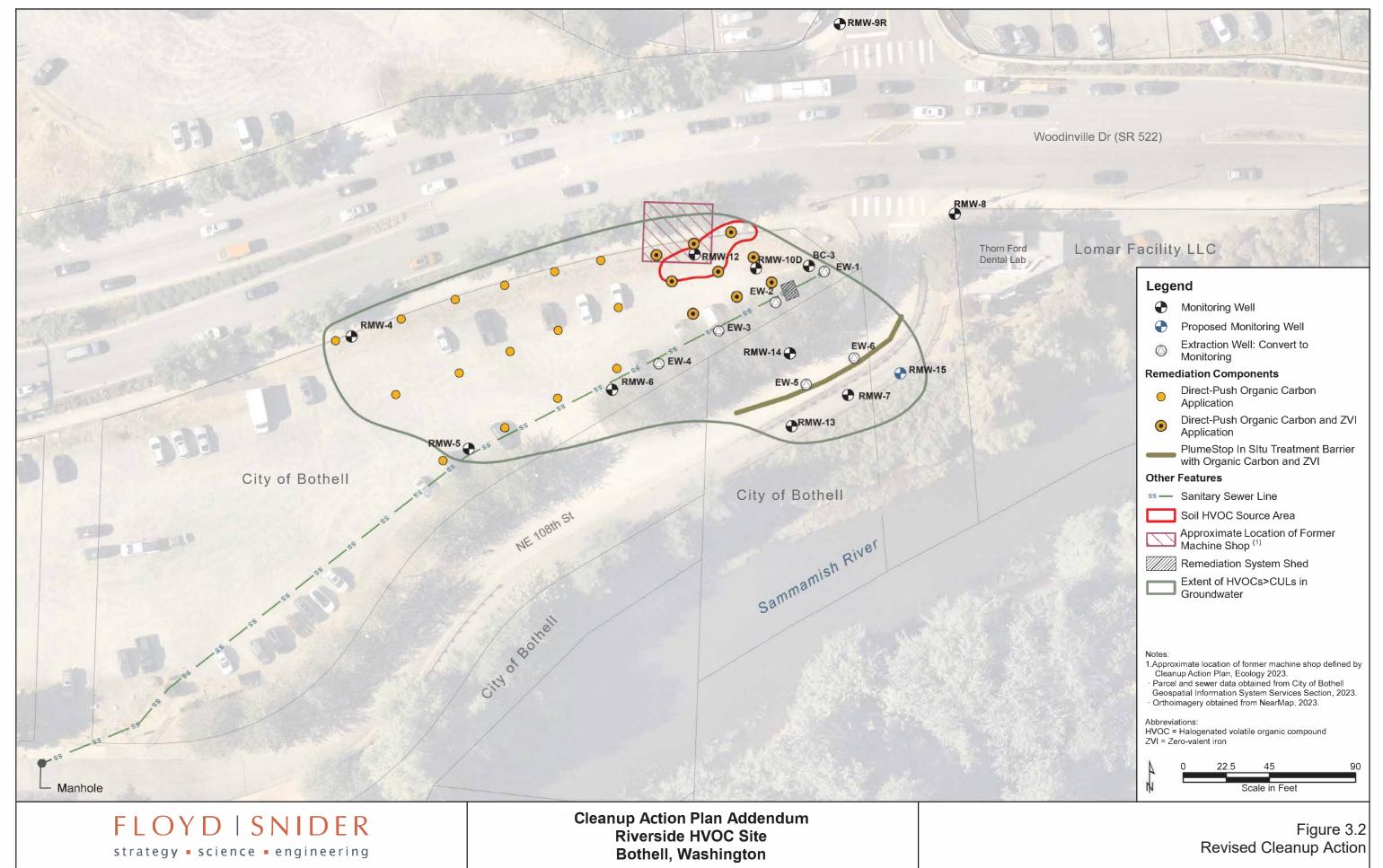
Consistent with the CAP and MTCA, the revised cleanup action will include compliance monitoring, including protection, performance, and confirmation monitoring, as further detailed in the PDI Data Report (Appendix A). Compliance monitoring will be further described in a Construction Compliance Monitoring Plan as part of the Engineering Design Report and a post-remedy Long-Term Compliance Monitoring Plan, which will include a Groundwater Monitoring Plan.


# 4.0 References

| Kane Environmental, Inc. (Kane). 2022. Supplemental Remedial Investigation & Feasibility Study, Riverside HVOC Site, Bothell, Washington. Prepared for City of Bothell. 22 February.                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Washington State Department of Ecology (Ecology). 2023. Agreed Order No. DE 21531. 22 March.                                                                                                            |
| 2025. Cleanup Levels and Risk Calculation (CLARC) Workbook. January. Available: https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC/Data-tables |

# **Cleanup Action Plan Addendum**

Riverside HVOC Site


**Figures** 



FLOYD | SNIDER strategy • science • engineering

Cleanup Action Plan Addendum Riverside HVOC Site Bothell, Washington

Figure 3.1 2023 CAP Cleanup Action

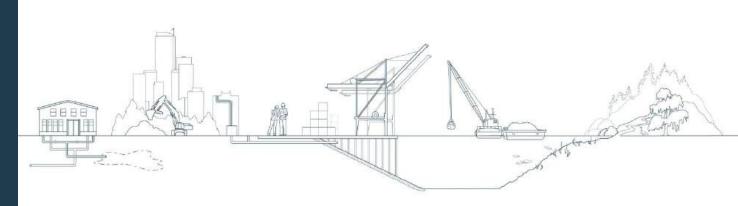


I:\GIS\Projects\COBothell-Riverside\02-Map Documents\03-Pre-Engineering Design Data Summary Report\01 - HVOC\HVOC.aprx 12/16/2024

# **Cleanup Action Plan Addendum**

Riverside HVOC Site

Appendix A
Pre-Engineering Design
Investigation Data Report


# **Pre-Engineering Design Investigation Data Report**

# Riverside HVOC Site

# **Prepared for**

City of Bothell

December 2024 DRAFT







# LIMITATIONS This report has been prepared for the exclusive use of the City of Bothell, their authorized agents, and regulatory agencies. It has been prepared following the described methods and information available at the time of the work. No other party should use this report for any purpose other than that originally intended, unless Floyd|Snider agrees in advance to such reliance in writing. The information contained herein should not be utilized for any purpose or project except the one originally intended. Under no circumstances shall this document be altered, updated, or revised without written authorization of Floyd|Snider. The interpretations and conclusions contained in this report are based in part on Site characterization data collected by others and provided by the City of Bothell. Floyd|Snider cannot assure the accuracy of this information.

# **Pre-Engineering Design Investigation Data Report**

This document was prepared for The City of Bothell under the supervision of:



Name: Kristin Anderson Date: 12/17/2024

# **Table of Contents**

| 1.0 | Intro | duction                                                       |                                                     | 1-1 |  |
|-----|-------|---------------------------------------------------------------|-----------------------------------------------------|-----|--|
|     | 1.1   | BACKGROUND                                                    |                                                     |     |  |
|     |       | 1.1.1                                                         | Site Regulatory History                             | 1-1 |  |
|     |       | 1.1.2                                                         | Purpose of the Pre-Engineering Design Investigation | 1-2 |  |
|     | 1.2   | REPOR                                                         | T OUTLINE                                           | 1-2 |  |
| 2.0 | Pre-E | Pre-Engineering Design Investigation Summary                  |                                                     |     |  |
|     | 2.1   | HYDRC                                                         | HYDROGEOLOGIC STUDY                                 |     |  |
|     |       | 2.1.1                                                         | Groundwater Extraction System Maintenance           | 2-1 |  |
|     |       | 2.1.2                                                         | Hydrogeologic Study Field Investigation             | 2-2 |  |
|     |       | 2.1.3                                                         | Hydrogeologic Study Findings                        | 2-2 |  |
|     | 2.2   | GROUI                                                         | NDWATER MONITORING                                  | 2-3 |  |
|     |       | 2.2.1                                                         | Groundwater Monitoring Field Investigation          | 2-3 |  |
|     |       | 2.2.2                                                         | Groundwater Monitoring Results                      | 2-5 |  |
|     | 2.3   | SOIL SAMPLING                                                 |                                                     |     |  |
|     |       | 2.3.1                                                         | Soil Sampling Field Investigation                   | 2-9 |  |
|     |       | 2.3.2                                                         | Soil Sampling Results                               | 2-9 |  |
| 3.0 | Upda  | Updated Conceptual Site Model                                 |                                                     |     |  |
|     | 3.1   | NATURE AND EXTENT OF HVOCS IN GROUNDWATER                     |                                                     |     |  |
|     |       | 3.1.1                                                         | HVOC Source Area and Upgradient Plume               | 3-2 |  |
|     |       | 3.1.2                                                         | Downgradient HVOC Plume                             | 3-2 |  |
|     |       | 3.1.3                                                         | Western HVOC Plume                                  | 3-3 |  |
|     |       | 3.1.4                                                         | Riverbank Area of the Sammamish River               | 3-4 |  |
|     | 3.2   | NATURE AND EXTENT OF HVOCS IN SOIL3-4                         |                                                     |     |  |
|     | 3.3   | EXPOSURE PATHWAYS AND CLEANUP STANDARDS3-                     |                                                     |     |  |
|     | 3.4   | IMPLIC                                                        | 3-5                                                 |     |  |
|     |       | 3.4.1                                                         | Soil Vapor Extraction                               | 3-5 |  |
|     |       | 3.4.2                                                         | Groundwater Bio-Recirculation                       | 3-5 |  |
| 4.0 | Ident | Identification of Supplemental Cleanup Action Alternatives 4- |                                                     |     |  |
|     | 4.1   | 1 SUMMARY OF 2023 CAP CLEANUP ACTION4-                        |                                                     |     |  |
|     | 4.2   | REMEDIAL ACTION OBJECTIVES AND TECHNOLOGIES4-1                |                                                     |     |  |

|            | 4.3    | REVISED CLEANUP ALTERNATIVE 1: TARGETED BIO-RECIRCULATION WITH IN SITU TREATMENT INJECTION4 |                                                  |     |  |
|------------|--------|---------------------------------------------------------------------------------------------|--------------------------------------------------|-----|--|
| 4.4<br>4.5 |        | REVISED CLEANUP ALTERNATIVE 2: IN SITU TREATMENT INJECTION                                  |                                                  |     |  |
|            |        | SUPPLEMENTAL ALTERNATIVES ANALYSIS                                                          |                                                  |     |  |
|            |        | 4.5.1                                                                                       | Supplemental Disproportionate Cost Analysis      | 4-4 |  |
|            |        | 4.5.2                                                                                       | Preferred Cleanup Action Alternative             | 4-7 |  |
| 5.0        | Prefer | red Revi                                                                                    | sed Cleanup Action                               | 5-1 |  |
|            | 5.1    | DESCRI                                                                                      | PTION OF PREFERRED REVISED CLEANUP ACTION        | 5-1 |  |
|            |        | 5.1.1                                                                                       | In Situ Groundwater Treatment                    | 5-1 |  |
|            |        | 5.1.2                                                                                       | Groundwater Monitoring                           | 5-1 |  |
|            |        | 5.1.3                                                                                       | Institutional Controls                           | 5-2 |  |
|            | 5.2    | COMPL                                                                                       | IANCE MONITORING REQUIREMENTS                    | 5-2 |  |
|            | 5.3    | CONTIN                                                                                      | NGENCY ACTIONS                                   | 5-3 |  |
| 5.4<br>5.5 |        | COMPLIANCE WITH THE MODEL TOXIC CONTROL ACT                                                 |                                                  |     |  |
|            |        | COMPLIANCE WITH APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS                         |                                                  |     |  |
|            | 5.6    | COMPL                                                                                       | IANCE WITH REMEDIAL ACTION OBJECTIVES            | 5-5 |  |
|            | 5.7    |                                                                                             | AND AMOUNTS OF HAZARDOUS SUBSTANCES TO REMAIN IN | 5-5 |  |
|            | 5.8    | RESTORATION TIME FRAME                                                                      |                                                  | 5-5 |  |
|            | 5.9    | SUMM                                                                                        | ARY OF THE ESTIMATED REMEDY COSTS                | 5-6 |  |
| 6.0        | Refere | ences                                                                                       |                                                  | 6-1 |  |
|            |        |                                                                                             | List of Tables                                   |     |  |
| Table      | 2.1    | Well Co                                                                                     | onstruction and Water Level Data                 |     |  |
| Table 2.2  |        | Groundwater HVOC Results                                                                    |                                                  |     |  |
| Table 2.3  |        | Groundwater Geochemical Parameter Results                                                   |                                                  |     |  |
| Table 2.4  |        | Soil HVOC Results                                                                           |                                                  |     |  |
| Table 4.1  |        | Disproportionate Cost Analysis Alternative Evaluation                                       |                                                  |     |  |
| Table 4.2  |        | Disproportionate Cost Analysis Summary                                                      |                                                  |     |  |

# **List of Figures**

| Figure 1.1 | Site Map                                                    |
|------------|-------------------------------------------------------------|
| Figure 2.1 | Groundwater Elevations                                      |
| Figure 2.2 | Groundwater HVOC Conditions                                 |
| Figure 2.3 | Soil HVOC Conditions                                        |
| Figure 2.4 | Cross Section A-A'                                          |
| Figure 3.1 | HVOC Molar Concentrations: Source Area and Upgradient Plume |
| Figure 3.2 | HVOC Molar Concentrations: Downgradient Plume               |
| Figure 3.3 | HVOC Molar Concentrations: Western Plume                    |
| Figure 4.1 | 2023 CAP Cleanup Action                                     |
| Figure 4.2 | Revised Alternative 1                                       |
| Figure 4.3 | Revised Alternative 2                                       |
|            |                                                             |

# **List of Appendices**

| Appendix A | Hydrogeologic Study Results |
|------------|-----------------------------|
| Appendix B | Laboratory Reports          |
| Appendix C | Field Boring Logs           |
| Appendix D | Detailed Cost Estimates     |

### **List of Abbreviations**

| Abbreviation | Definition                                         |
|--------------|----------------------------------------------------|
| AO           | Agreed Order                                       |
| ARAR         | Applicable or relevant and appropriate requirement |
| bgs          | Below ground surface                               |
| CAP          | Cleanup Action Plan                                |
| CCMP         | Construction Compliance Monitoring Plan            |
| City         | City of Bothell                                    |
| cm/day       | Centimeters per day                                |
| COC          | Contaminant of concern                             |
| CUL          | Cleanup level                                      |

**Abbreviation Definition** 

DCE Dichloroethene

DO Dissolved oxygen

Ecology Washington State Department of Ecology

ft/ft Feet per foot

g/mol Grams per mole

GMP Groundwater monitoring plan

HASP Health and Safety Plan

HVOC Halogenated volatile organic compound

HWA HWA Geosciences

IC Institutional control

μg/L Micrograms per liter

mg/kg Milligrams per kilogram

mg/L Milligrams per liter

MNA Monitored natural attenuation

MTCA Model Toxics Control Act

mV Millivolts

NAVD 88 North American Vertical Datum of 1988

O&M Operation and maintenance

ORP Oxidation-reduction potential

PCE Tetrachloroethene

PDI Pre-Engineering Design Investigation

PDI Data Report Pre-Engineering Design Investigation Data Report

PDI Work Plan Pre-Design Investigation Work Plan

PFM Passive flux meter

RAO Remedial action objective

RI/FS Remediation Investigation and Feasibility Study

ROW Right-of-way

Site Riverside Halogenated Volatile Organic Compound Site

SR State Route

SVE Soil vapor extraction

| Abbreviation | Definition           |
|--------------|----------------------|
| TCE          | Trichloroethene      |
| TOC          | Total organic carbon |
| ZVI          | Zero-valent iron     |

### 1.0 Introduction

### 1.1 BACKGROUND

This Pre-Engineering Design Investigation (PDI) Data Report (PDI Data Report) has been prepared on behalf of the City of Bothell (City) for the Riverside Halogenated Volatile Organic Compound (HVOC) Site (Site) located at NE 108<sup>th</sup> Street and Woodinville Drive (State Route [SR] 522) in Bothell, Washington (refer to Figure 1.1). This PDI Data Report presents the results of the sampling conducted as presented in the Pre-Design Investigation Work Plan (PDI Work Plan; Floyd|Snider 2024) to inform the design and modification of the cleanup action for the Site.

### 1.1.1 Site Regulatory History

The Site is located on the eastern portion of King County Assessor's parcel 082605-9120 (the Site property), which is currently owned by the City. The Site is located in the easternmost portion of the City's Park at Bothell Landing administered by the Parks and Recreation Department and is currently used as a public, unpaved parking lot. The Site is bounded to the north by SR 522 and to the south by the Sammamish River (refer to Figure 1.1).

The Site is defined by the extents of soil and groundwater contamination likely resulting from releases of tetrachloroethene (PCE) to the ground at a former machine shop (Figure 1.1) that operated in the northeast portion of the current parking area from 1944 until 1973.

An interim action for the Site was approved by the Washington State Department of Ecology (Ecology) to temporarily address HVOC groundwater discharge to the Sammamish River using groundwater extraction. In 2013, the groundwater extraction system was installed by HWA Geosciences (HWA), consisting of four extraction wells (EW-1 through EW-4) that discharge to the sanitary sewer under a King County Industrial Waste discharge permit. In 2016, HWA installed two more extraction wells (EW-5 and EW-6) in closer proximity to the river (refer to Figure 1.1). This system is still in operation in a limited capacity.

A Supplemental Remedial Investigation/Feasibility Study was completed for the Site in 2022 (Kane 2022) and a Cleanup Action Plan (CAP) was issued by Ecology in March 2023 as Exhibit B of Agreed Order (AO) No. DE 21531 (Ecology 2023). The CAP defines the extent of HVOC contamination, contaminants of concern (COCs), and cleanup levels (CULs) for the Site. The COCs in soil and groundwater are PCE, trichloroethene (TCE), *cis*-1,2-dichloroethene (DCE), and vinyl chloride. Due to the proximity of the HVOC-contaminated groundwater to the Sammamish River, CULs were selected to be protective of surface water. The selected cleanup alternative summarized in the CAP is a combination of soil vapor extraction (SVE) in the presumed PCE source area near the former machine shop and Site-wide groundwater treatment by bio-recirculation with an organic carbon amendment to promote anaerobic biodegradation of HVOCs.

As required by the AO, Floyd|Snider prepared a PDI Work Plan for the Site, which was approved by Ecology in June 2024.

### 1.1.2 Purpose of the Pre-Engineering Design Investigation

The PDI Work Plan presented a revised scope for investigation to support design and implementation of cleanup at the Site. It provided details for additional proposed soil and groundwater data collection that will inform the design of the cleanup action. The following additional data collection objectives were identified, and the data obtained are summarized in this PDI Data Report:

**Hydrogeologic study:** More hydrogeologic data were needed to inform the suitability of the conceptual bio-recirculation system design (or other variations of groundwater pump and treat systems) and any necessary adjustments to support engineering design, as well as to inform injection parameters such as rates and quantities of treatment materials.

**HVOC** distribution and geochemistry in groundwater: More recent data were needed to confirm the current horizontal extents of the HVOC plume, and additional data were needed to assess the vertical distribution and flux of HVOCs in groundwater and geochemical parameters such as redox conditions that will inform the efficient formulation and delivery of treatment materials.

**HVOC** distribution in soil: Additional data were needed to inform the likely mass of HVOCs in the vadose zone that would be targeted by SVE and to more precisely delineate the extent of HVOCs in the presumed source area to inform the design of soil treatment in the saturated zone.

### 1.2 REPORT OUTLINE

The remaining sections of this report are organized as follows:

- Section 2.0 Pre-Engineering Design Investigation Summary. Discusses the scope and results of pre-engineering design data collection. Includes supporting Appendices A (Hydrogeologic Study Results), B (Laboratory Reports), and C (Field Boring Logs)
- Section 3.0 Updated Conceptual Site Model. Incorporates the findings of the PDI into a more thorough understanding of the nature, extent, and behavior of HVOC contamination at the Site.
- Section 4.0. Identification of Supplemental Cleanup Action Alternatives. Presents
  potential amendments to the 2023 CAP Cleanup Action responsive to the findings of
  the PDI and evaluates the cost-benefit of potential alternatives to the cleanup action
  to identify a Preferred Revised Cleanup Action. Includes supporting Appendix D
  (Detailed Costs).
- Section 5.0 Preferred Revised Cleanup Action. Describes the elements of a revised preferred cleanup action, including compliance with the Model Toxics Control Act, applicable or relevant and appropriate requirements (ARARs), and remedial action objectives (RAOs).
- **Section 6.0 References.** Provides reference information for documents cited in this report.

### 2.0 Pre-Engineering Design Investigation Summary

### 2.1 HYDROGEOLOGIC STUDY

Hydrogeologic study activities included groundwater extraction system maintenance, synoptic water level measurement, and water level measurement during pumping and non-pumping conditions. The scope and results of hydrogeologic study are discussed in the following sections.

### 2.1.1 Groundwater Extraction System Maintenance

Prior to the implementation of the PDI Work Plan, several maintenance and repair tasks were addressed so that the groundwater extraction system was operating as intended for the hydrogeologic study. In 2023, decreases in sewer discharge rates combined with increased electrical power usage indicated that pump failure was likely occurring at upgradient extraction wells. Additionally, the downgradient extraction wells had both become stuck in the well screens at EW-5 and EW-6 and ceased to properly function sometime before 2023. To address this issue, a secondary pump was placed on top of the stuck pump in EW-6 in late 2023 and pumps in EW-1, EW-3, and EW-4 were replaced in early 2024; however, pump performance did not improve acceptably after replacement.

In coordination with the City and Ecology, it was determined that EW-2, EW-3, and EW-6 in the most contaminated portion of the HVOC plume would be prioritized for maintenance.

The original extraction well pumps were inspected and found to be severely damaged by siltation, which is expected when pumps are set at the base of the well. The manufacturer specifications require a minimum distance of 10 feet between the base of the well and pump inlet. The pump rotors were replaced, and the motors were serviced to improve pump functionality.

After completing repairs, the rigid polyvinyl chloride piping was replaced with more flexible hose and the pumps were set at a shallower depth in the well to operate within the manufacturer's recommended installation guidelines. An exception to this is EW-6, which could only be set just below the water level due to the former extraction pump and inactive discharge line stuck in the well.

In addition to these in-well changes, flow control globe valves were also added inside the remediation shed. The globe valves are intended to appropriately slow flow from the extraction pumps and work with the existing check valves to create uniform flow through the extraction system. The flow controls were added because surplus pump capacity was found to cause excess drawdown and cycling of the pumps in the generally fine-grained saturated zone at the Site. The drawdown may also be partially addressed by periodic redevelopment of the extraction wells.

### 2.1.2 Hydrogeologic Study Field Investigation

### 2.1.2.1 Synoptic Water Levels

Four rounds of synoptic water levels were collected at the Site in accordance with the PDI Work Plan between July 25 and August 22, 2024:

- As a baseline with the system operating under normal pumping conditions (completed July 25)
- After downgradient extraction well EW-6 had been shut off for at least 48 hours (completed July 29)
- After upgradient extraction wells EW-2 and EW-3 had been shut off for at least 48 hours (completed July 31)
- Under baseline non-pumping conditions prior to Site-wide groundwater monitoring (completed August 22)

A survey of horizontal position, top of casing elevation, and ground surface elevation was additionally completed by a licensed surveyor for all monitoring and extraction wells during the hydrogeologic study.

### 2.1.2.2 Transducer Study

A transducer study was conducted at monitoring wells adjacent to groundwater extraction wells to monitor water level responses during baseline pumping conditions, the phased downgradient and upgradient shut-off, and post-shut-off conditions as described in Section 2.1.2.1.

Transducers were set in RMW-10D and BC-3 (nearest to EW-2), RMW-7 and RMW-14 (nearest to EW-6) and RMW-13 (downgradient west of EW-5) and set to record at 0.5-second intervals during each pump shut-off event. The transducers were set to begin recording, then the pumps were turned off in series while monitoring the water level manually within the well casing. A representative pumping to shut-off period could not be obtained for EW-6, however, because the water level was close to the pump intake and triggered an automatic dry-run condition circuit fault of the pump controller.

During the equilibration periods between shut-off events, the transducers were reset to record at 5-minute intervals.

### 2.1.3 Hydrogeologic Study Findings

### 2.1.3.1 Groundwater Occurrence and Flow Directions

Depth to groundwater varied at the Site between approximately 10 and 20.5 feet below ground surface (bgs) during the four synoptic water level events. These measurements were generally consistent with previous depth to water measurements collected at the Site. A summary of

monitoring well construction details and available depth-to-water measurements is provided in Table 2.1.

The direction of groundwater flow was to the southeast toward the Sammamish River, consistent with Site topography, as shown in Figure 2.1. Groundwater elevations ranged from approximately 26 to 19 feet North American Vertical Datum of 1988 (NAVD 88) within the Site boundary, resulting in measured horizontal gradients of 0.06 to 0.07 feet per foot (ft/ft).

### 2.1.3.2 Groundwater Extraction System Evaluation

Water level responses measured during phased shut-off of the extraction well system showed limited influence at adjacent well locations, as shown on the hydrogeologic study plots presented in Appendix A. During the first downgradient shut-off at EW-6, water level trends were not discernable at RMW-7 or RMW-13; however, the groundwater level increased slightly at RMW-14 after shut-off. During the upgradient shut-off at EW-2 and EW-3, water levels appeared to decrease slightly at BC-3 and RMW-10D. However, because the changes are on the order of hundredths of a foot, these observations may reflect normal variability rather than responses to the pumping system.

During the first downgradient equilibration period, uniform fluctuations in water levels were observed at all shallow well locations for approximately the first day of the period. The cause of this fluctuation is unknown and not correlated with rainfall or related water level impacts to the Sammamish River and were not replicated during the second upgradient equilibration period.

The inconclusive results of the hydrogeologic study are likely due to the limitations of the current extraction pumping system, which uses high-capacity pumps that cause rapid drawdown in the relatively fine-grained saturated zone despite the flow control measures that were added during 2024 maintenance. This rapid drawdown causes frequent on/off cycles at the extraction well pumps and limits the radius of influence of pumping.

### 2.2 GROUNDWATER MONITORING

Groundwater monitoring activities included sample collection from reconnaissance borings and permanent wells for HVOCs and geochemical parameters and measurement of HVOC flux at targeted locations. The scope and results of groundwater monitoring are discussed in the following sections.

### 2.2.1 Groundwater Monitoring Field Investigation

The most recent comprehensive groundwater sampling event before the implementation of the PDI Work Plan was completed in 2020.

Therefore, groundwater samples were collected to document current HVOC concentrations after continued groundwater extraction between 2020 and 2024 and to further refine the lateral extent of HVOCs in groundwater exceeding CULs. These samples were collected from existing monitoring wells, passive flux meters (PFMs), and temporary borings.

### 2.2.1.1 Low-Flow Groundwater Sampling

As described in the PDI Work Plan, groundwater samples were collected from the Site wells during three separate events. Sampling events were conducted at targeted wells concurrently with the hydrogeologic study and during a Site-wide sampling event.

During the first targeted sampling event, HVOC samples and field water quality parameters were collected from extraction wells EW-5 and EW-6 at the wellhead, downgradient well RMW-7 and upgradient well RMW-12 via low-flow sampling while the extraction system was running. Field water quality parameters were additionally collected from extraction wells EW-2 and EW-3 at the wellhead via low-flow sampling after a 48-hour equilibration period with EW-6 shut off but with the upgradient extraction system running.

Finally, after another 48-hour equilibration period with the extraction system fully shut off, EW-5, EW-6, RMW-7, and RMW-12 were sampled again for HVOCs, as described above.

The PDI was then paused to allow HVOC conditions to equilibrate without pumping prior to collecting groundwater data to define the current baseline conditions. The equilibration period is the estimated time for groundwater to migrate from the upgradient extraction wells to the farthest downgradient monitoring well (RMW-7), a distance of approximately 60 feet. The seepage velocity of groundwater was estimated from previous slug testing data collected at the Site, where an average groundwater flow of 2.5 feet per day was established (HWA 2013). The resulting calculated equilibration period was 3 weeks. After this equilibration time, a Site-wide groundwater sampling event was conducted via low-flow sampling at all monitoring and extraction wells to establish current baseline groundwater HVOC and geochemical condition data.

### 2.2.1.2 Groundwater Reconnaissance Sampling

Groundwater samples were collected from temporary soil borings using retractable direct-push screens. Angled borings were implemented to collect samples in locations with limited access, specifically beneath the sidewalk that is located closest to the Sammamish River. A total of six direct-push borings were advanced for collection of groundwater reconnaissance samples to delineate the current extent of the HVOC plume exceeding CULs, as shown on Figure 2.2 and summarized in Table 2.2, including the following:

- Four borings at the presumed downgradient edge of the plume to inform the extent
  of potential groundwater treatment (GWB-03 through GWB-06), with samples for
  HVOC analysis collected from the 15- to 20-, 20- to 25-, and 25- to 30-foot intervals
  except where groundwater was not present in the 15- to 20-foot interval at GWB-05
  and GWB-06.
- One boring to vertically delineate HVOCs within the plume downgradient of the source area (GWB-07), with samples collected from the 35- to 40- and 40- to 45-foot intervals.

- One contingency boring was drilled to delineate cross-gradient HVOCs to the west (GWB-08) after a review of the updated baseline groundwater sample results. A groundwater sample was collected from the 15- to 20-foot interval.
- Originally, two borings were also planned to determine current groundwater HVOC conditions in the upgradient direction to the north (GWB-01, GWB-02), but due to the close proximity to Puget Sound Energy power lines running under the north-adjacent sidewalk where the borings were planned and the observed declining PCE results from RMW-12, these locations were removed from the sampling plan. Contingency borings GWB-10 and GWB-11 on the eastern side of the Site were also determined not to be necessary based on results at EW-1 and RWM-8.

### 2.2.1.3 Passive Flux Meter Sampling

As described in the PDI Work Plan, PFMs were deployed on August 26 and retrieved on September 16, 2024, for a sampling period of 3 weeks. Two 5-foot PFM samplers were installed in each well screen; however, the upper 2 feet of the well screen at RWM-7 (from 15 to 17 feet bgs) was likely not saturated for most of the sampling based on depth to water measurements collected during the synoptic water level events. The extraction system remained off during PFM deployment to capture baseline groundwater and HVOC flux conditions. After retrieval, samples of the PFM media were collected from 2-foot intervals and analyzed for HVOC flux and Darcy velocity. PFM samplers were provided and analyzed by EnviroFlux, Inc., and the resulting data are presented in Appendix B.

### 2.2.2 Groundwater Monitoring Results

Groundwater monitoring results for monitoring well and reconnaissance water samples and passive flux meter media samples are summarized in the following sections. Laboratory analytical reports are provided in Appendix B.

### 2.2.2.1 HVOC Results

Groundwater samples were analyzed for PCE, TCE, *cis*- and *trans*-1,2-DCE, and vinyl chloride. Groundwater monitoring results for the PDI and all available historical sampling events are shown in Table 2.2. Key groundwater results for PCE and vinyl chloride (the final toxic degradation product of PCE) are also shown in Figure 2.2.

**PCE:** PCE concentrations at monitoring wells ranged from not detected to a maximum detection of 9.8 micrograms per liter ( $\mu$ g/L) at downgradient well RMW-14, compared to a Site-wide maximum concentration in 2020 of 26  $\mu$ g/L at EW-3. PCE exceedances of the CUL of 4.9  $\mu$ g/L were detected at RMW-12 in the presumed upgradient source area, upgradient extraction well EW-2 and downgradient extraction well EW-6. PCE was also detected at reconnaissance borings GWB-05 and GWB-06 to the southeast of the current permanent well network. The extents of PCE concentrations exceeding the CUL are well-defined to the west, east, south, and southwest; however, the southeastern extent of PCE in the vicinity of GWB-06 is a potential data gap for

installation of a permanent monitoring well to assess compliance with CULs and complete engineering design in this area.

**TCE:** TCE concentrations at monitoring wells ranged from not detected to a maximum detection of 3.4  $\mu$ g/L at EW-3, compared to a Site-wide maximum concentration in 2020 of 23  $\mu$ g/L at EW-3. TCE exceedances of the CUL of 0.38  $\mu$ g/L were also detected at upgradient source area well RMW-12 and downgradient wells RMW-14 and RMW-7, as well as at RMW-4 and RMW-5 crossgradient to the west of the presumed source area. Similar to PCE, TCE was also detected at GWB-05 and GWB-06 as well as at GWB-04. The extents of TCE concentrations exceeding the CUL are delineated to the east and southwest, and are sufficiently defined for engineering design by low-level exceedances to the west and south. The southeastern extent of TCE is not fully delineated and is a potential data gap for engineering design.

*cis-*1,2-DCE: *cis-*1,2-DCE concentrations exceeded the CUL of 16  $\mu$ g/L only at downgradient monitoring well RMW-7 and was additionally detected at GWB-06. *cis-*1,2-DCE concentrations exceeding the CUL are sufficiently defined for engineering design with low-level exceedances to the east/southeast.

Vinyl chloride: Vinyl chloride concentrations at monitoring and extraction wells ranged from not detected to a maximum detection of 6.2  $\mu$ g/L at RMW-7, compared to a Site-wide maximum concentration in 2020 of 28  $\mu$ g/L at RMW-7. Vinyl chloride exceedances of the CUL of 0.020  $\mu$ g/L were also detected at upgradient source area well RMW-12, upgradient extraction wells EW-3 and EW-4, downgradient wells RMW-13 and RMW-16, and cross-gradient wells RMW-5 and RMW-6 to the west-southwest. Vinyl chloride was additionally detected at reconnaissance borings GWB-04 and GWB-06 downgradient and GWB-08 to the west. Vinyl chloride concentrations are generally well-defined for the purposes of engineering design; the most elevated concentrations of vinyl chloride remain at the farthest available downgradient monitoring point (RMW-7); however, a trend of declining vinyl chloride has been observed in this area since 2020.

The vertical extent of all HVOCs exceeding CULs is well-defined above 35 feet bgs by samples collected at RMW-10D (screened 32 to 42 feet bgs) and at GWB-07 (collected from 35 to 40 feet bgs and 40 to 45 feet bgs), which had non-detect results for all HVOCs.

### 2.2.2.2 HVOC Flux

Flux refers to the mass of water and contaminants flowing per unit area at a measured point in a well screen, averaged over the time during which the samples were collected. Groundwater flux is measured by tracers in the PFM media, whose rate of consumption can be used to determine the rate of groundwater flow through the sample interval.

The average ambient groundwater flux, or Darcy velocity, ranged from 3.0 to 5.4 centimeters per day (cm/day) at RMW-12 and 0.7 to 4.0 cm/day at RMW-7. Darcy velocity was generally uniform across the screened intervals and between the wells except in the water table interval at RMW-7, where the minimum value of 0.7 cm/day was observed.

Contaminant flux values for HVOC, which are defined as contaminant mass/unit area/time, were calculated for the HVOCs vinyl chloride, *cis*-1,2-DCE, TCE, and PCE. The HVOC flux values are calculated using the HVOC mass sorbed to the PFM media combined with the groundwater flux described above; the HVOC flux values are additionally averaged over the width of the aquifer to obtain an average flux in micrograms per liter.

At upgradient well RMW-12, HVOC flux values were uniformly low, ranging from 0.9 to 3.4  $\mu$ g/L for PCE, TCE, and *cis*-1,2-DCE at all intervals. There was only measurable vinyl chloride flux in the 19- to 21-foot interval, which was also the most transmissive interval (i.e., maximum observed Darcy velocity).

At downgradient well RMW-7, HVOC flux values were greater overall compared to upgradient flux values, which also increased with the relative mobility of the HVOCs. The greatest fluxes at RMW-7 were vinyl chloride, which ranged from 16 to 186  $\mu$ g/L.

### 2.2.2.3 Geochemistry

Key geochemical data suggest that current conditions at the Site are favorable for anaerobic biodegradation of HVOCs by reductive dechlorination. Key geochemical parameters include the following, which are summarized in Table 2.3:

**Dissolved oxygen (DO)**: DO measures the amount of oxygen, an electron acceptor, available in groundwater. DO was generally low within the plume, with values of 0.5 milligrams per liter (mg/L) or less. Typical target DO concentrations for anaerobic biodegradation are less than 1.0 mg/L (Arcadis 2002). DO concentrations greater than 1 mg/L were measured in the upgradient and deep wells that are not impacted by HVOCs (RMW-9R and RMW-10D). Greater DO was also measured at EW-6, which is attributed to localized perturbations caused by frequent on/off cycles with the pump inlet set near the groundwater table during the sampling period, because DO was significantly lower at adjacent non-pumping well EW-5.

**Oxidation–reduction potential (ORP):** ORP measures the capacity for electron transfer in groundwater in millivolts (mV); positive ORP indicates that conditions are oxidizing (i.e., groundwater has a tendency to lose electrons), whereas negative ORP indicates that conditions are reducing (i.e., groundwater has a tendency to accept electrons). At the Site, ORP values were generally near zero or negative within the HVOC plume, indicating that baseline conditions are reducing and conducive to anaerobic biodegradation. More strongly positive ORP values were measured at MR-9R, MW-10D, and EW-6, consistent with greater DO at these locations. More strongly positive ORP was also measured at RMW-12, indicating that this well is likely near the upgradient edge of the HVOC plume.

**pH:** pH across the Site ranged from 5.95 to 7.10. Most biological activity in groundwater, including biodegradation, is most effective in near-neutral pH conditions consistent with those observed at the Site.

**Nitrate and sulfate:** Nitrate and sulfate ions are electron acceptors that, along with DO, may compete with HVOCs for electrons and inhibit reducing processes that degrade HVOCs. Nitrate concentrations in Site groundwater ranged from 0.052 to 2.6 mg/L, and sulfate concentrations in Site groundwater ranged from not detected to 34 mg/L. These values are generally low; USEPA drinking water standards are 10 mg/L for nitrate 250 mg/L for sulfate. This result indicates limited potential for background electron acceptors to inhibit reduction.

**Total organic carbon (TOC):** Organic carbon acts as an electron donor that can facilitate anaerobic biodegradation by the process of reductive dechlorination. TOC concentrations in Site groundwater were relatively low, ranging from not detected to  $11 \,\mu\text{g/L}$ . TOC concentrations of approximately 50 mg/L are required to sustain biodegradation and initial TOC concentrations up to 500 mg/L are generally targeted when soluble organic carbon is added as a treatment material to facilitate biodegradation (Arcadis 2002).

Dissolved gases (ethene, ethane, and methane): Dissolved gases are the end products of anaerobic biodegradation. Of the dissolved gases, ethene and ethane are shorter-lived in the environment and detection of these gases indicates that more rapid biodegradation is occurring, whereas methane is longer-lived and indicates slower rates of biodegradation. At the Site, ethene and ethane were not detected but methane ranged between 2,200  $\mu$ g/L and 8,200  $\mu$ g/L at downgradient wells including EW-5, EW-6, RMW-7, and RMW-14. These methane detections indicate that anaerobic biodegradation, likely at slow rates, is occurring in the downgradient portion of the HVOC plume. Target dissolved gas concentrations for anaerobic biodegradation are generally greater than 1,000  $\mu$ g/L (USEPA 2023).

Calcium, iron, and magnesium: The presence of metals including calcium, iron, and magnesium is an indicator of hardness in groundwater. Hardness inhibits the migration of some treatment materials such as activated carbon and zero-valent iron, and therefore, calcium is often added to in situ treatment barriers to ensure their accurate placement. Total calcium concentrations in Site groundwater ranged from 38,000 to 64,000  $\mu$ g/L (38 to 64 mg/L), total iron concentrations ranged from not detected to 31,000  $\mu$ g/L (31 mg/L), and total magnesium concentrations ranged from 11,000 to 19,000  $\mu$ g/L (11 to 19 mg/L). Similar values were observed for dissolved metals. Combined, the detected metals in Site water classify it as moderately hard (USGS 2018). These results indicate that other treatment materials, if needed, could be injected with accuracy at the Site.

Other parameters such as alkalinity, chloride, nitrite, and sulfide provide useful baseline measurements for comparison during future groundwater treatment. Increases in concentrations of these parameters are indicators of the occurrence of biodegradation by reductive dechlorination (ITRC and RTDF 1999).

### 2.3 SOIL SAMPLING

Soil samples were collected from direct-push soil borings for HVOC and grain size analysis. The scope and results of soil sampling are discussed in the following sections.

### 2.3.1 Soil Sampling Field Investigation

The conceptual design of the SVE system presented in the CAP includes treatment of vadose zone soil in the presumed source area to the depth of the water table, which is encountered at approximately 8 feet bgs on the northern portion of the Site and deepens to approximately 16 feet bgs on the southern portion of the Site. The depth to water table varies by approximately 2 to 5 feet seasonally at individual well locations. There were limited existing soil data in the target SVE treatment zone, and additional data were needed to determine the mass of HVOCs that may be mobilized and recovered by SVE. Additionally, more precise horizontal and vertical delineation of HVOCs in the saturated zone within the source area was needed to determine the extent of soil to be targeted by treatment. Soil grain size data were also needed to inform injection rates and quantities of groundwater treatment materials.

Collection of additional HVOC data in soil was proposed to update current conditions and refine current understanding of the lateral and vertical extent of soil with HVOC concentrations exceeding CULs. The implemented soil quality assessment included nine direct-push borings for collection of soil samples to delineate HVOCs. Two of the originally planned direct-push borings were removed from the soil quality assessment due to their proximity to Puget Sound Energy electrical feeder lines that run underneath the north-adjacent sidewalk at the Site.

### 2.3.2 Soil Sampling Results

Field geological observations for soil and results for soil laboratory analysis are summarized in the following sections. Soil analytical data are presented in Table 2.4 and Figure 2.3, and a cross-section of Site soil types and the occurrence of HVOC contamination is presented in Figure 2.4. Laboratory analytical reports are provided in Appendix B and observations for individual borings are described in detail in the soil boring logs provided in Appendix C.

### 2.3.2.1 Geology

Soils encountered at the Site consisted of an uppermost fill unit underlain by alluvium deposits. The fill was composed of varying amounts of well-graded sand, silty sand, and gravel and contained occasional anthropogenic debris. The contact between the fill and native alluvium was characterized by a peaty silt consistent with marsh deposits approximately 2 feet thick. Below the peaty deposit, soils consisted of interbedded fine sand and silty sand. Alluvium was observed to the deepest depth of 40 feet bgs explored during the PDI. Historical boring logs noted deeper occurrences of a stiff silt (for example, beginning at 40 feet bgs at RMW-10), which was interpreted to be a glacially deposited unit in prior reports.

The results of qualitative grain size analysis showed that saturated soils consisted primarily of fine to very fine sand with at least 20% silt and an average of approximately 30% silt. These results were confirmed with laboratory grain size analyses that showed similar grain size distribution.

# 2.3.2.2 Vertical and Horizontal Extents of HVOCs

Soil samples were analyzed for PCE, TCE, *cis*- and *trans*-1,2-DCE, and vinyl chloride, as shown in Table 2.4. Key soil results are also shown in Figures 2.3 and 2.4.

PCE exceeding the CUL of 0.05 milligrams per kilogram (mg/kg) was detected only in the 12- to 14-foot-bgs and 24- to 26-foot-bgs samples at SB-06 in the presumed source area of the former machine shop. Samples above 12 feet bgs, between 14 and 24 feet bgs, and between 28 and 40 feet bgs at SB-06 had HVOC concentrations that were not detected or were less than CULs.

HVOCs did not exceed CULs in any samples collected at SB-03, SB-04, SB-05, and SB-08, which were collected to verify the lateral extents of the upgradient PCE source area. HVOCs also did not exceed CULs at SB-07, SB-09, SB-10, or SB-11, which were sampled to investigate a potential secondary HVOC source area in the downgradient direction that was suggested by the historical soil dataset.

The vertical and horizontal extents of HVOCs exceeding CULs in soil are well-defined in the vicinity of the former machine shop. As shown in Figure 2.3, a limited area of contamination appears to extend into the City right-of-way (ROW) in the vicinity of RB-25, where PCE exceeding the CUL was detected at 13 feet bgs.

# 3.0 Updated Conceptual Site Model

The results of the PDI sampling provide key updates to the understanding of the nature and extent of HVOC contamination in groundwater and soil at the Site, as well as the mechanisms of migration and potential degradation of HVOCs.

#### 3.1 NATURE AND EXTENT OF HVOCS IN GROUNDWATER

The most recent data show that the overall magnitude of HVOC source mass in groundwater has decreased significantly within the footprint of the groundwater extraction interim action since the extraction system began running in 2013. This is demonstrated by declining PCE and other HVOC concentrations at most Site wells, as shown in Table 2.2.

For consideration of nature and extent of HVOCs, as well as migration and degradation mechanisms, the Site HVOC plume can be subdivided into four subareas (refer to HVOC results presented in Figure 2.2):

- HVOC source area and upgradient plume
  - Within the former machine shop source area and the assumed pumping footprint of the upgradient extraction well row: RMW-12, BC-3, EW-1 through EW-4, and deep well RMW-10D
  - Immediately adjacent to the assumed extraction pumping footprint: RMW-6, RMW-8
- Downgradient HVOC plume
  - Within the assumed pumping footprint of downgradient extraction well row:
     RMW-14, EW-5, EW-6, RMW-7, and PDI reconnaissance samples from GWB-07
  - Immediately adjacent to the extraction pumping radius: RMW-13
- Western HVOC plume
  - Cross-gradient and farther outside the footprint of groundwater extraction: RMW 4, RMW-5, and PDI reconnaissance sample from GWB-08
- Riverbank area of the Sammamish River
  - Reconnaissance samples from GWB-03 through GWB-06

The current HVOC conditions and trends in each subarea are described in the following sections.

For the permanent monitoring and extraction wells, the progress of mass removal and contaminant degradation within each subarea of the HVOC plume discussed above are further illustrated by analyzing changes in total HVOC molar concentrations and molar fractions of individual HVOCs over time. A molar concentration is a measure of the number of molecules of a given contaminant in a sample, which is obtained by normalizing the bulk concentration reported by the laboratory (in micrograms per liter) with the molecular weight of the compound

(in grams per mole [g/mol]). Molar weights are useful for compounds such as HVOCs that undergo a degradation process (dechlorination) that produces toxic daughter products with lesser molecular weights than the source contaminant. Molar concentrations of HVOCs in a sample, therefore, provide more precise information versus bulk concentrations to determine whether dechlorination is occurring, as well as the relative contributions of dechlorination versus physical extraction to the removal of HVOC molecules from Site groundwater.

# 3.1.1 HVOC Source Area and Upgradient Plume

Within the source area and upgradient portions of the plume, the total molar concentration of HVOCs has declined since the start of groundwater extraction pumping. Prior to the start of active groundwater treatment, a maximum PCE concentration during low-flow sampling of 170  $\mu$ g/L was detected at BC-3 in 2009. As shown on the total HVOC mass trend plots in Figure 3.1, most wells have experienced an approximately 10-fold decrease in HVOC concentrations since their first year of monitoring data. In PDI sample results, the maximum detected PCE concentration in this area is 9.6  $\mu$ g/L at RMW-12, 2 times the Site CUL. The vertical extent of HVOCs in groundwater is presumed to extend from the water table to approximately 35 feet bgs or less in this area, based on non-detect results at RMW-10D, which is screened 32 to 42 feet.

The HVOC contamination within the source area (i.e., at RMW-12, BC-2, and EW-1 through EW-4) prior to groundwater extraction was composed primarily of PCE, with lesser fractions of TCE and *cis*-1,2-DCE and small amounts of vinyl chloride, as shown on the HVOC distribution trend plots in Figure 3.1. At the nearby wells on the plume edges (i.e., RMW-6 and RMW-8), the more mobile degradation products TCE, *cis*-1,2-DCE, and vinyl chloride made up most of the HVOC mixture. The distribution of HVOCs in the source plume has remained largely consistent over the duration of groundwater extraction while the overall concentrations have decreased, indicating that removal by pumping has caused most of the reduction of HVOC mass. There is also some evidence of dechlorination, for example at RMW-3 where the HVOC molar mass is now primarily *cis*-1,2-DCE; however, this appears to be a lesser contribution to overall mass reduction. There is some observed fluctuation of total HVOC molar mass between wet and dry seasons at RMW-8 during more recent sampling events; however, these potential fluctuations are within the context of overall low and relatively stable HVOC mass.

# 3.1.2 Downgradient HVOC Plume

Within the downgradient portion of the plume, the total molar concentrations of HVOCs have declined at a rate similar to the upgradient areas as shown on the mass trend plots in Figure 3.2. Prior to the start of active downgradient groundwater treatment, the maximum PCE concentration during low-flow sampling of 50  $\mu$ g/L was detected at RMW-7 in 2009. In PDI sample results, the maximum detected PCE concentration in this area is 9.8  $\mu$ g/L at RMW-14, 2 times the Site CUL. The vertical extent of HVOCs in groundwater is presumed to extend from the water table to approximately 35 feet bgs based on non-detect results from 35 to 40 feet bgs and 40 to 45 feet bgs at GWB-07.

The initial distribution of HVOCs in the downgradient plume was more variable prior to pumping, with fractions of more highly mobile degradation products (i.e., *cis*-1,2-DCE and vinyl chloride) increasing with distance downgradient from the source area as shown on the distribution trend plots on Figure 3.2.

Similar to the source area and upgradient portions of the plume, the distribution of HVOCs has remained relatively consistent while overall concentrations have decreased, indicating that pumping has caused most of the mass reductions. However, farthest downgradient at RMW-7, remaining HVOCs are primarily *cis*-1,2-DCE and vinyl chloride, suggesting that dechlorination has also occurred.

An additional trend that is demonstrated on Table 2.2 is a positive correlation between mobile HVOC concentrations at the farthest downgradient well RMW-7 and groundwater extraction at EW-5 and EW-6. During upgradient-only groundwater extraction between 2013 and 2017, vinyl chloride was highly variable at RMW-7, but evidence of a decreasing trend began to emerge in late 2016/early 2017. After downgradient extraction began in 2017, vinyl chloride was consistently elevated at concentrations between 25 and 27  $\mu$ g/L. Declining pump performance at EW-5 and EW-6 ultimately resulted in pump failure in both wells between approximately 2020 and 2023; during the same period, vinyl chloride decreased to less than 10  $\mu$ g/L. This trend suggests that steeper horizontal gradients created by groundwater extraction downgradient facilitated downgradient migration of mobile HVOCs. There is some fluctuation observed in overall HVOC mass observed at RMW-7 during more recent sampling events; however, these fluctuations do not appear to have any seasonality and likely reflect the overall analytical variability and heterogeneity of HVOCs in Site groundwater.

#### 3.1.3 Western HVOC Plume

An additional western lobe of the groundwater HVOC plume is represented by RMW-4, RMW-5, and GWB-08, which are farther outside the potential influence of extraction pumping. HVOC concentrations in this area are less elevated relative to the main plume, with PCE concentrations less than the Site CUL and exceedances of CULs only for TCE and vinyl chloride.

Overall HVOC mass has been stable to slightly increasing at the permanent wells in this area as shown on the mass trend plots in Figure 3.3. The HVOC distribution trend suggests that dechlorination has occurred, as illustrated by increases in *cis*-1,2-DCE fractions at both wells and vinyl chloride fraction at EW-5; however, degradation appears to be slow and incomplete based on the relatively flat trends in HVOC concentrations during recent sampling events.

The source of PCE in the western plume is uncertain; however, there is no evidence of upgradient PCE contamination in groundwater or contamination in soil in this area (refer to Section 3.2). Because the footprint of former machine shop operations is not well defined, it is assumed that incidental historical releases to soil may have occurred to the west of the machine shop that have now fully leached into groundwater. It is likely that some PCE mass remains sorbed to fine-grained soil in the saturated zone and will continue to diffuse to groundwater over time until it is depleted.

#### 3.1.4 Riverbank Area of the Sammamish River

Reconnaissance groundwater samples in the riverbank area are intended as a screening tool to demonstrate the presence or absence of the HVOC plume. Because reconnaissance samples are generally biased high due to inherent turbidity associated with grab sample collection, they do not define the extents of HVOC CUL exceedances in groundwater.

The western extent of the HVOC plume at the riverbank is well-defined by non-detect results at GWB-03. HVOC concentrations were found to be increasing from west to east in the riverbank area with the most elevated results at GWB-06, indicating that the most concentrated area of the downgradient plume may lie to the east of the existing permanent well network. As discussed in Section 2.2.2.1, this is a minor data gap for engineering design to treat the horizontal extent of groundwater exceeding CULs.

#### 3.2 NATURE AND EXTENT OF HVOCS IN SOIL

Soil sampling conducted during the PDI provides a more detailed understanding of the vertical and horizontal extents of historical PCE releases to soil, which acted as a source of HVOC contamination to groundwater.

Based on samples collected continuously from above the water table to 40 feet bgs at SB-06 within the source area, there appears to be a stratified PCE soil source remaining at the Site. The shallowest occurrence of PCE concentrations exceeding the Site CULs coincided with the approximate seasonal low water table of 12 to 14 feet bgs, and the overlying vadose zone and underlying saturated zone samples did not have PCE exceedances. This is consistent with the historical soil dataset, which did not have any vadose zone soil exceedances and had one isolated exceedance at 13 feet bgs. This shallower saturated source is correlated with the observed the contact between fill and marsh deposits, which may preferentially sorb PCE due to the presence of organic carbon.

A deeper and more concentrated source zone of PCE occurs in the saturated zone from approximately 20 to 30 feet bgs. This zone is vertically delineated by multiple samples without detectable PCE or other HVOCs to 40 feet bgs at SB-06. The vertical extent of the soil source zone is generally consistent with the vertical extent of groundwater contamination in this area, which is presumed to be 35 feet bgs or less (refer to Section 3.1.2).

The lateral extents of the PCE soil source area were confirmed by PDI borings and are largely consistent with the source area presented in the Supplemental Remediation Investigation & Feasibility Study (RI/FS; Kane 2022) and CAP. The PDI borings downgradient of the soil source area did not have HVOC exceedances in soil, in contrast to the previous low-level exceedances of PCE and TCE at RMW-14 (just over 2 times the CUL for PCE) in the historical dataset. Because historical groundwater concentrations of HVOCs during soil sample collection were several orders of magnitude greater than current conditions, the exceedances in soil at RMW-14 near the centerline of the plume were likely caused by back-diffusion from highly contaminated groundwater. There is not a suspected secondary soil source area in the vicinity of RMW-14.

#### 3.3 EXPOSURE PATHWAYS AND CLEANUP STANDARDS

The exposure pathways identified in the 2023 CAP as complete or potentially complete under future scenarios include the following:

- Direct contact with contaminated soils by humans and terrestrial biota
- Direct contact/ingestion of surface water and ingestion of organisms in impacted surface water by humans and aquatic biota
- Inhalation of soil vapors by humans

The findings of the PDI and the historical dataset generally support these conclusions, with the exception of the soil direct contact pathway. The point of compliance for direct contact with soil is 15 feet bgs for human receptors and 6 feet bgs for terrestrial biota; therefore, the soil direct contact pathway is only complete for human exposures. However, the Site CULs are based on protection of surface water quality, which are more stringent than criteria for direct contact exposures, and this finding does not impact the application of the Site CULs. Site soils do not exceed the Model Toxics Control Act (MTCA) Method B CULs for direct contact in any samples (Ecology 2024).

#### 3.4 IMPLICATIONS FOR CLEANUP ACTION

The updated conceptual site model regarding the nature and extent of HVOC contamination has implications for both cleanup action technologies proposed by the 2023 CAP cleanup action as described in the following sections.

# 3.4.1 Soil Vapor Extraction

The proposed SVE system would be installed only in the vadose zone of the PCE source area, which extends to approximately 12 to 13 feet bgs based on recent depth to water measurements at RMW-12. During the PDI and in historical samples, the shallowest occurrences of HVOC CUL exceedances in soil occurred at the water table (approximately 12 to 13 feet bgs) and concentrations in shallower samples were less than CULs. Therefore, SVE in the vadose zone would not accomplish the goal of soil source mass removal.

#### 3.4.2 Groundwater Bio-Recirculation

The proposed groundwater bio-recirculation with soluble organic carbon treatment is designed to enhance biodegradation via introduction of an electron donor and to increase horizontal groundwater gradients to ensure rapid distribution of the treatment materials.

The results of recent groundwater sampling for HVOCs and geochemical parameters indicate that soluble organic carbon is likely to be an effective treatment technology for stimulating anaerobic biodegradation; the conditions in groundwater naturally trend toward reducing conditions and there are few naturally occurring electron acceptors that would compete with HVOCs for soluble electron donors. The efficacy of soluble organic carbon would likely be enhanced by a minor

adjustment of additionally injecting cultures of *Dehalococcoides* bacteria, which degrade HVOCs. Given the relatively low concentrations of HVOCs in saturated soil, this treatment technology is also expected to result in elimination of the remaining soil source over time as HVOCs are depleted from groundwater, facilitating further diffusion of any sorbed soil mass.

The current nature and extent of HVOCs in groundwater, HVOC flux, and observed historical distribution and trends of HVOCs indicate that a groundwater recirculation system would have mixed results for groundwater treatment.

In the upgradient source plume, HVOC fluxes are generally low, and recirculation is likely to accelerate anaerobic biodegradation by steepening horizontal gradients and resultant groundwater flow velocities, moving the treatment materials more quickly through the saturated zone. Given the small amount of PCE source mass remaining, CULs would likely be achieved rapidly where treatment materials are distributed throughout the saturated zone. However, the fine-grained nature of the saturated zone and limited observed radius of influence of the existing extraction wells indicate that it may not be the most practical and efficient approach to deliver treatment materials evenly into the formation with a limited number of larger diameter extraction wells. The mechanical processes of groundwater extraction and recirculation may additionally increase dissolved oxygen in the recirculation, which would require management to ensure that in situ conditions remain favorable for anaerobic biodegradation.

In downgradient areas of the plume, recirculation may make achieving CULs more difficult. The flux of the most mobile HVOCs is already greater downgradient than in other areas of the Site under baseline conditions, and the historical groundwater data trends additionally indicate that increased downgradient pumping is correlated with downgradient increases in vinyl chloride concentrations. The migration of mobile HVOCs induced by injection and pumping would likely make it more difficult to achieve groundwater CULs at the point of discharge to the Sammamish River by decreasing the time that vinyl chloride is in contact with the treatment materials.

Lastly, the estimated pumping and injection radius of the current extraction system potentially would not reach the eastern portion of the riverbank area in the vicinity of GWB-06, and therefore, an expansion of the system would be needed to treat the area.

# 4.0 Identification of Supplemental Cleanup Action Alternatives

The data collected during the PDI support reevaluation of the cleanup action to ensure that remediation efficiently and thoroughly addresses the remaining Site HVOC contamination. The following sections present and evaluate potential adjustments to the 2023 CAP cleanup action to most efficiently achieve the RAOs for the Site.

#### 4.1 SUMMARY OF 2023 CAP CLEANUP ACTION

The 2023 CAP cleanup action includes soil vapor extraction and Site-wide recirculation of groundwater amended with a soluble organic carbon substrate electron donor (CarBstrate) to enhance biodegradation of HVOCs (Ecology 2023). The elements of the 2023 CAP cleanup action are shown on Figure 4.1, which is reproduced from the CAP.

The 2023 CAP cleanup action would include installation of the following components:

- 12 soil vapor extraction wells
- Vapor collection piping and blowers and a vapor treatment system to remove HVOCs prior to discharge
- Six injection wells and two extraction wells (plus conversion of two existing extraction/monitoring wells for injection)
- Injection delivery and recovery piping, groundwater treatment system to remove remaining HVOCs prior to reinjection, and injection delivery control system

For this analysis, a revised assumption of an equal number of injection and extraction wells was used to evaluate cost-benefit.

Implementation of the cleanup action would include regular operation and maintenance (O&M) including weekly application of CarBstrate and periodic changeout of carbon vessels for both the SVE and bio-recirculation systems. The SVE system is designed to run for 3 years, and the bio-recirculation system is designed to run for 2 years. Progress of the groundwater cleanup would be evaluated through regular groundwater monitoring at existing wells. After completion of bio-recirculation and SVE, compliance with soil CULs would be demonstrated by collecting soil samples in the source area via direct-push drilling. The estimated restoration time frame for this cleanup action is 5 years.

#### 4.2 REMEDIAL ACTION OBJECTIVES AND TECHNOLOGIES

RAOs identify goals that should be accomplished to meet the minimum requirements of the MTCA Cleanup Regulations (WAC 173-340). RAOs may also be informed by current or future

property use. RAOs were not previously defined for the Site. To help guide the evaluation of remedial actions, the following RAOs are defined for the Site:

- Protect humans and the environment (ecological receptors) from exposure to Site contamination that exceeds applicable CULs.
  - Achieve CULs in groundwater to protect surface water quality of the adjacent Sammamish River, prioritizing rapid achievement of CULs at the point of discharge to surface water.
  - Address residual contaminated soil to reduce exposure to hazardous substances via leaching to groundwater.
- Comply with local, state, and federal laws and other ARARs (WAC 173-340-710) and Site-specific cleanup standards. ARARs are limited to applicable federal and state laws and those that Ecology determines are relevant and appropriate.
- Remediate contaminants in a manner that minimizes impacts to public use of park space at the Site.
- Provide compliance monitoring to evaluate the effectiveness of the preferred cleanup action and to evaluate when the cleanup standards are met.

As discussed in Section 3.4, some elements of the 2023 CAP cleanup action may not support progress toward achieving the RAOs. The available soil data suggest that SVE will not reduce exposures to contaminated soil because it will not reach the contaminated soil mass that lies fully below the groundwater table. The available groundwater data suggest that Site-wide groundwater recirculation, which includes downgradient groundwater extraction, may not achieve CULs at the point of discharge to the Sammamish River because extraction could exacerbate migration of vinyl chloride toward the river. Aerobic conditions that may be created by the remediation technologies and compete with the desired anaerobic biodegradation process in groundwater are also of concern, primarily for SVE but also potentially for the mechanical process of extraction and injection.

The other treatment technologies for saturated soil considered in the RI/FS included excavation and SVE with the addition of air sparge. The Site soil data demonstrate that these technologies remain impractical at the Site; excavation to depths of almost 20 feet below the water table is cost prohibitive and unsafe adjacent to SR 522, and air sparging would create adverse geochemical conditions for anaerobic biodegradation of HVOCs in groundwater. The other treatment technology for groundwater considered in the RI/FS included injection of organic carbon (edible oil) without recirculation. The Site groundwater data suggest that treatment of groundwater cleanup via passive migration is a viable alternative technology because it would not exacerbate downgradient vinyl chloride migration. Treatment via passive migration is incorporated into the revised alternatives discussed in the following sections, and additional treatment components to further stimulate biodegradation are also considered in these alternatives.

# 4.3 REVISED CLEANUP ALTERNATIVE 1: TARGETED BIO-RECIRCULATION WITH IN SITU TREATMENT INJECTION

The first revised alternative to the 2023 CAP cleanup action makes the following adjustments to adapt the remediation to current Site conditions based on the findings of the PDI:

- SVE is eliminated.
- Groundwater bio-recirculation with soluble organic carbon (such as CarBstrate) is retained in the upgradient HVOC source area only. The bio-recirculation is enhanced with an initial introduction of *Dehalococcoides* bacterial culture.
- Groundwater treatment with soluble organic carbon and supplemental Dehalococcoides in the downgradient plume is achieved via passive treatment using rows of direct-push injection points. It is assumed that two injection events would be completed approximately 1 to 1.5 years apart to treat the remaining downgradient plume. The western plume, where the overall HVOC source mass is low, is treated with a single direct-push application of the treatment materials.

The elements of Alternative 1 are shown on Figure 4.2. This alternative retains groundwater treatment with a soluble organic carbon electron donor, which is expected to be effective in achieving anaerobic biodegradation of HVOCs at the Site, and supplements this alternative with beneficial cultures of bacteria that degrade HVOCs. It additionally addresses potential downgradient vinyl chloride migration by using the alternate technology of passive treatment in the direction of groundwater flow.

Implementation of the cleanup action would include regular O&M including weekly application of soluble organic carbon and periodic changeout of activated carbon vessels used to remove HVOCs from extracted groundwater prior to recirculation. The bio-recirculation system is designed to run for 2 years. The estimated restoration time frame for this cleanup action is 5 years, because the organic carbon added during active recirculation is expected to form biomass that will continue to provide donor electrons to complete the process of anaerobic degradation.

# 4.4 REVISED CLEANUP ALTERNATIVE 2: IN SITU TREATMENT INJECTION

The second revised alternative to the 2023 CAP cleanup action makes additional adjustments to Alternative 1 to further adapt the remedial action to current Site conditions based on the findings of the PDI. Additional adjustments include the following:

- Soluble organic carbon and *Dehalococcoides* treatment in the source area is achieved by direct-push injection, which is supplemented with zero-valent iron (ZVI). A lesser amount of supplemental ZVI is also added in the western plume.
- Downgradient soluble organic carbon and *Dehalococcoides* treatment are supplemented with ZVI and colloidal activated carbon (such as PlumeStop) to form in situ treatment barriers.
- A controlled-release source of organic carbon is used.

The elements of Alternative 2 are shown on Figure 4.3. This alternative supplements source area treatment with ZVI to achieve prompt abiotic degradation of PCE and TCE and ensure ongoing reducing conditions to promote anaerobic biodegradation. The addition of ZVI, combined with a controlled-release form of organic carbon, allows for a single direct-push application of the treatment materials in lieu of recirculation to degrade the remaining HVOC mass. The addition of colloidal activated carbon downgradient is designed to adsorb HVOCs and allow longer contact time with the treatment materials, which will allow for more rapid cleanup of downgradient groundwater. A double row of injections is assumed in order to form a highly effective barrier. The estimated restoration time frame for this cleanup action is 3 years.

#### 4.5 SUPPLEMENTAL ALTERNATIVES ANALYSIS

This section provides a supplemental analysis of each cleanup action alternative in accordance with MTCA per WAC 173-340-360(3). Each of the proposed alternatives fulfills the mandatory MTCA general requirements for cleanup action:

- Protect human health and the environment
- Comply with cleanup standards
- Comply with applicable state and federal laws
- Prevent or minimize present and future releases of hazardous substances in the environment
- Provide resilience to climate change impacts
- Provide for compliance monitoring
- Not rely primarily on institutional controls (ICs) or dilution and dispersion
- Use permanent solutions to the maximum extent practicable
- Provide for a reasonable restoration time frame
  - The predicted restoration time frame for groundwater to meet proposed cleanup standards for HVOCs for each Alternative is as follows:
    - 2023 CAP Cleanup Action: 5 years
    - Alternative 1: 5 years
    - Alternative 2: 3 years

#### 4.5.1 Supplemental Disproportionate Cost Analysis

The MTCA disproportionate cost analysis (DCA) procedure is used to evaluate whether a cleanup action uses permanent solutions to the maximum extent practicable as determined by the level of attainment of specific criteria defined in WAC 173-340-360(5)(d) and also factoring public concerns (WAC 173-340-360(5)(c)(i)(C). For the DCA, each alternative is assigned a numerical score for each DCA criterion on a scale of 1 to 10 and then multiplied by a weighting value, and

the scores are summed to determine the total alternative benefit score. Finally, the ratio of the cost of each alternative to its total benefit score is calculated.

An evaluation of each of the alternatives relative to the MTCA criteria and the weighting of each of the criteria is summarized as follows:

- Protectiveness (30%). Overall protectiveness of human health and the environment, including the degree to which existing risks are reduced, the time required to reduce these risks, and the overall improvement in environmental quality. All the alternatives are protective of human health and the environment. All the alternatives are expected to be equally protective in the HVOC source area, where rapid degradation of HVOCs can be achieved either by bio-recirculation or by addition of ZVI to supplement treatment with abiotic degradation. Alternative 2 has the highest degree of protectiveness for discharges to surface water because it uses an in situ treatment barrier to trap and fully degrade HVOCs. Overall, Alternative 2 is considered the most protective. The 2023 CAP cleanup action is considered the least protective of surface water receptors due to concerns with downgradient vinyl chloride migration during groundwater extraction.
- Permanence (20%). The degree to which the alternative permanently reduces the toxicity, mobility, or volume of hazardous substances. All of the alternatives are designed to achieve CULs Site-wide through degradation of HVOCs and are, therefore, considered permanent. However, because the current alternative would install the greatest number of permanent injection and extraction wells that could be operated indefinitely if needed, this alternative is considered the most permanent. Alternative 2, which uses only direct-push injection, is the least permanent and may require more than one injection event to achieve CULs.
- Effectiveness over the long term (20%). Long-term effectiveness consists of the degree of certainty that the alternative will be successful, the reliability of the alternative during the time during that hazardous substances are expected to remain at the Site at concentrations greater than CULs, the magnitude of the residual risk with the alternatives in place, and the effectiveness of controls in place to control risk while contaminants remain at the Site. All the alternatives are designed to fully degrade HVOCs; however, Alternative 2 is expected to be most effective because it includes the most aggressive downgradient treatment.
- Management of short-term risks (10%). Short-term risks comprise the risk to human health and the environment associated with the alternative during construction and implementation and the effectiveness of measures taken to control those risks. The 2023 CAP cleanup alternative poses the most short-term risk because it involves the most ground-disturbing construction, production of waste soils and waters, and installation of permanent infrastructure such as conveyance piping and underground power in close proximity to the Sammamish River. Alternative 2 poses the least short-term risk because it involves the least ground disturbance and includes limited permanent infrastructure.

- Technical and administrative implementability (10%). The ability of the alternative to be implemented is based on whether the alternative is technically possible and meets administrative and regulatory requirements, and if all necessary services, supplies, and facilities are readily available. The 2023 CAP cleanup action is the most technically difficult to implement because it involves multiple types of equipment and construction methodologies. Alternative 2 is the least technically difficult to implement because it involves the fewest types of equipment and methodologies. The necessary materials and facilities for all alternatives are readily available.
- Consideration of public concerns and tribal rights and interests (10%). These considerations take into account whether the community has concerns regarding the alternative and if so, to what extent the alternative addresses those concerns. The alternatives all address public concerns regarding contamination with equal effectiveness. The 2023 CAP cleanup action is expected to raise more public concerns due to more permanent cleanup infrastructure that would be constructed in a public park space that may limit Site use and potential short-term surface water impacts from vinyl chloride. Alternative 2 has the least permanent infrastructure and poses the fewest limitations on Site use and additionally prioritizes cleanup at the point of groundwater discharge to surface water.
- **Cost.** The cost to implement the alternative consists of construction, net present value of any long-term costs, and agency oversight costs that are recoverable. Detailed costs for the alternatives are presented in Appendix D and summarized as follows:

o 2023 CAP Cleanup Action: \$2,732,602

Alternative 1: \$1,648,059Alternative 2: \$1,655,362

A summary of the scoring for each criterion, including the estimated costs for each alternative, is presented in Table 4.1. A full description of all aspects evaluated under each criterion for the alternatives is included in Table 4.2.

The cost-benefit score is calculated by dividing the total weighted benefit score by the estimated alternative cost (standardized by dividing by \$1.5 million<sup>1</sup>) for that alternative. Total benefits per unit cost scores are presented in Table 4.2. Based on the alternatives evaluation presented in the previous sections and in Tables 4.1 and 4.2, the total benefit per unit cost achieved are as follows:

2023 CAP Cleanup Action: 3.40

Alternative 1: 6.19

• Alternative 2: 7.70

<sup>&</sup>lt;sup>1</sup> The method for calculation of cost benefit is not specified in MTCA. A divisor of \$1.5 million for estimated alternative cost was selected to obtain cost-benefit scores between 0 and 10 for the alternatives.

# 4.5.2 Preferred Cleanup Action Alternative

Based on the results of the supplemental DCA, selection of a revised cleanup action is warranted for the Site. To determine a revised preferred alternative, the step-wise DCA procedures was followed per MTCA to select a baseline for comparison. First, a baseline was selected from the most permanent alternatives. Both the 2023 CAP cleanup action and Alternative 2 are considered permanent (WAC 173-340-200) because construction of further remedial action components is not anticipated to be needed after they are installed. Alternative 2 was selected as the baseline because it has the greatest cost-benefit score of the permanent alternatives (WAC 173-340-360(5)(c)(iii)(B).

Alternative 2 was then weighed against the next-most permanent alternative (Alternative 1) to determine whether the incremental costs of the baseline alternative are disproportionate to the incremental benefits (WAC 173-340-360(5)(c)(iv).

The costs of Alternative 1 and Alternative 2 are approximately the same. Alternative 2 scored most highly for protectiveness because it prioritizes improvement of groundwater quality to reach CULs downgradient at the point of discharge to the Sammamish River and additionally is expected to have the shortest restoration time frame. It also causes the least disruption to use of public space at the Site. Protection of surface water in the river and preservation of public use of the Site are key RAOs for the City. Because Alternative 2 achieves these key RAOs most effectively, it has a cost benefit of 7.70 versus a cost benefit of 6.19 for Alternative 1.

Given these considerations, Alternative 2 is the Preferred Revised Cleanup Action. Section 5.0 describes the Preferred Revised Cleanup Action in greater detail.

# 5.0 Preferred Revised Cleanup Action

The Preferred Revised Cleanup Action for the remediation of soil and groundwater at the Site, which is proposed by the City to Ecology for selection and implementation at the Site, is described in Section 5.1. Sections 5.4, 5.5, and 5.6 describe how the Preferred Revised Cleanup Action complies with MTCA, ARARs, and Site RAOs, respectively.

#### 5.1 DESCRIPTION OF PREFERRED REVISED CLEANUP ACTION

Alternative 2, which is permanent to the maximum extent practicable out of all the alternatives discussed in Section 4.0, is selected as the Preferred Revised Cleanup Action for the Site, and is shown on Figure 4.3. This remedy includes the following components:

- In situ groundwater treatment using soluble organic carbon, ZVI, and colloidal activated carbon treatment barriers
- Monitored natural attenuation (MNA) for groundwater recovery and groundwater monitoring to determine compliance with Site cleanup standards

Together, the individual technologies remove contaminant mass in saturated zone soil and groundwater through a combination of anaerobic biodegradation and abiotic degradation of source mass. The Preferred Revised Cleanup Action is a comprehensive final remedy for the Site that is compliant with all the applicable remedy selection requirements under MTCA.

#### 5.1.1 In Situ Groundwater Treatment

In situ groundwater treatment will be conducted throughout the groundwater plume to address HVOCs at concentrations that are greater than their respective CULs. Remediation will be achieved using a combination of soluble organic carbon electron donors and *Dehalococcoides* culture Sitewide, with ZVI to promote reducing conditions and achieve abiotic degradation, and a proprietary mixture of liquid colloidal activated carbon, such as PlumeStop, to provide sorption of contamination and more rapid and complete treatment in the downgradient portion of the HVOC plume. Treatment materials will be injected under low pressure into the subsurface using a direct-push drill rig to provide even distribution within the target groundwater treatment zones. The target treatment zone is expected to range from approximately 12 to 32 feet bgs within the source area to approximately 15 to 35 feet bgs in the downgradient portion of the HVOC plume. Upgradient injection points using soluble treatment materials will be installed at approximately 15-foot spacing. The downgradient treatment with additional colloidal activated carbon will be implemented as a double row of closely spaced injection points to ensure creation of a full barrier.

# 5.1.2 Groundwater Monitoring

MNA for groundwater is a component of the Preferred Revised Cleanup Action after the completion of active treatment to degrade source contamination. As part of MNA, post-remedy groundwater monitoring throughout the plume in accordance with a groundwater monitoring plan (GMP) will be required after cleanup action implementation. The GMP will describe long-

term post-construction groundwater monitoring, including specific monitoring locations and frequency, and adaptive management to ensure the long-term protectiveness of the Preferred Revised Cleanup Action. Groundwater compliance will be determined based on a comparison of groundwater data to Site CULs.

#### 5.1.3 Institutional Controls

ICs are not anticipated to be required at the Site. In situ treatment would address remaining soil that is a source of groundwater contamination, and HVOC concentrations do not exceed screening levels for worker protection in any Site soil.

Additionally, the City has implemented a ROW contamination protocol that is incorporated into the City parcel mapping system and triggered by applications for ROW work permits adjacent to contaminated sites. The ROW contamination protocol identifies requirements for design review and City consultation prior to construction, material handling, material disposal, record-keeping, and worker safety.

# 5.2 COMPLIANCE MONITORING REQUIREMENTS

Compliance monitoring to ensure the protectiveness of the Preferred Revised Cleanup Action will be implemented in accordance with WAC 173-340-410, Compliance Monitoring Requirements. Detailed monitoring elements for construction will be described in a Construction Compliance Monitoring Plan (CCMP), which will be prepared as part of remedial design. The CCMP will include a Health and Safety Plan (HASP), Sampling and Analysis Plan, and Quality Assurance Project Plan for monitoring and sample collection during cleanup action implementation. The CCMP will be included as an appendix to the Engineering Design Report, which will describe the approach and criteria for the engineering design of soil and groundwater cleanup actions at the Site. A post-remedy Long-Term Compliance Monitoring Plan will describe required long-term operations, maintenance, and monitoring after remedy implementation to ensure the long-term protectiveness of the remedy and will include a GMP and an updated HASP.

The purpose of the three types of compliance monitoring identified in WAC 173-340-410, with respect to how they will be implemented as part of the proposed alternative, is described as follows.

- Protection monitoring is used to confirm that human health and the environment are adequately protected during construction of the cleanup action and post-construction monitoring. Protection monitoring requirements will be described in Site-specific HASPs that address worker activities during remedy construction and postconstruction monitoring.
- Performance monitoring is used to confirm that the cleanup action has attained cleanup standards and other performance standards. Performance monitoring will be conducted to document that remedial goals are being achieved, including HVOC reduction in groundwater after treatment injections. The combined soluble organic carbon, Dehalococcoides culture, and ZVI throughout the plume are designed to

address groundwater contamination through abiotic degradation and biodegradation of PCE and its breakdown products. Additional of colloidal activated carbon will additionally provide adsorption in the downgradient portion of the plume to increase contact time with the treatment materials. Remediation of HVOC contamination in the saturated zone soil, where CULs are designed to be protective of groundwater quality, will also be assessed by groundwater performance monitoring because the soil CULs are based on groundwater protection.

 Confirmation monitoring is used to confirm the long-term effectiveness of the cleanup action after completion of the preferred cleanup action. Confirmation groundwater monitoring would be conducted after results from performance monitoring that verify that groundwater concentrations of HVOCs are less than CULs. Long-term monitoring of groundwater may be required to verify that the remedy remains effective. This is likely to be conducted through periodic reviews of the Site overseen by Ecology.

#### **5.3 CONTINGENCY ACTIONS**

Contingency actions may be considered if groundwater does not achieve CULs within the restoration time frame. Because all HVOC contamination is currently situated in the saturated zone and soil CULs are based on groundwater protection, groundwater quality will dictate the potential implementation of contingencies.

#### 5.4 COMPLIANCE WITH THE MODEL TOXIC CONTROL ACT

The Preferred Revised Cleanup Action meets the MTCA requirements for selection of a cleanup action as described in Section 4.5.

- Protect human health and the environment: Risk to human health during construction would be minimized by use of in situ treatment methodologies and long-term risk due to contamination to surface water would be mitigated by achieving Site CULs in groundwater.
- Comply with cleanup standards: Cleanup standards for the Site, which are designed to be protective of surface water, would be achieved Site-wide.
- Comply with applicable state and federal laws: The action will meet the ARARs discussed further in Section 5.5.
- Prevent or minimize present and future releases of hazardous substances in the environment: Future releases of hazardous substances, particularly to surface water, would be prevented by complete degradation of HVOCs.
- Provide resilience to climate change impacts: The action would not change the natural Site topography and would install no permanent structures that would be vulnerable to climate change.

- Provide for compliance monitoring: Compliance monitoring would be achieved through sampling of existing and proposed wells under a GMP.
- Not rely primarily on ICs or dilution and dispersion: No ICs are proposed and remediation relies on destruction of contaminants.
- Use permanent solutions to the maximum extent practicable: The Preferred Revised Cleanup Action was identified as a permanent alternative and also achieved the highest cost benefit of the alternatives considered.
- Provide for a reasonable restoration time frame: The estimated restoration time frame is 3 years.

Exposure pathways will be addressed through in situ groundwater treatment and MNA.

# 5.5 COMPLIANCE WITH APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS

Compliance with ARARs is a requirement for cleanup actions. ARARs are often categorized as location-specific, action-specific, or chemical-specific.

- Location-specific ARARs are requirements that are applicable to the specific area where the site is located and can restrict the performance of activities, including cleanup actions, solely because they occur in specific locations.
- Action-specific ARARs are requirements that are applicable to certain types of activities or technologies that are used during the implementation of cleanup actions.
   Waste disposal regulations are an example of an action-specific ARAR.
- Chemical-specific ARARs are applicable to the types of contaminants present at the site. The cleanup of contaminated media at the Site must meet the proposed CULs developed under MTCA; these CULs are considered chemical-specific ARARs.

ARARs were established in the CAP for the 2023 CAP cleanup action. The same ARARs generally apply to the Preferred Revised Cleanup Action; however, SVE was eliminated for the Preferred Revised Cleanup Action and ARARs presented in the CAP related to air quality and air permitting are no longer applicable.

Location-specific ARARs will be met through compliance with all applicable local, state, and federal regulations based on the physical location of the Site. Action-specific ARARs will be met through implementation of construction activities in compliance with all applicable construction-related requirements such as disposal for excavated soil and compliance with all applicable drilling-related requirements. Chemical-specific ARARs will be met through compliance with proposed CULs.

Implementation of the Preferred Revised Cleanup Action would typically trigger a suite of environmental permits; however, cleanup actions conducted under an AO with Ecology are exempt from the state and local ARAR procedural requirements, such as permitting and approval requirements (WAC 173-340-710(9)(b)). Cleanup actions must, however, demonstrate

compliance with the substantive requirements of those ARARs (WAC 173-340-710(9)(c)). This exemption applies to procedural permitting requirements under the Washington State Water Pollution Control Act, the Solid Waste Management Act, the Shoreline Management Act, and local laws requiring permitting such as City municipal codes and regulations. Cleanup actions are not exempt from procedural requirements of federal ARARs.

#### 5.6 COMPLIANCE WITH REMEDIAL ACTION OBJECTIVES

The Preferred Revised Cleanup Action achieves the RAOs through the following actions:

- Protection of human health and the environment from Site contamination that exceeds applicable CULs protective of surface water quality by attenuation of HVOCs throughout the saturated zone
- Prevention of migration of contaminants from the Site via groundwater transport by installation of in situ downgradient treatment barriers
- Proper management of contaminated soil or groundwater generated during Site cleanup by implementing construction protection monitoring
- Compliance with ARARs as described in Section 5.5
- Provision for compliance monitoring to evaluate the effectiveness of the Preferred Revised Cleanup Action and to determine that the cleanup standards are met by implementation of a GMP

#### 5.7 TYPES AND AMOUNTS OF HAZARDOUS SUBSTANCES TO REMAIN IN PLACE

No hazardous substances exceeding CULs are anticipated to remain in place after implementation of the Preferred Revised Cleanup Action.

The Preferred Revised Cleanup Action addresses all groundwater HVOC contamination and associated HVOC contamination in saturated soil. HVOC contamination in groundwater will be addressed with in situ treatment and is expected to achieve CULs. Groundwater will achieve CULs throughout the standard point of compliance, which is Site-wide, and soil concentrations will be demonstrated to be protective of groundwater quality through monitoring. Therefore, no groundwater contamination that exceeds CULs will remain in place after implementation of the Preferred Revised Cleanup Action.

#### 5.8 RESTORATION TIME FRAME

The restoration time frame for HVOCs to achieve groundwater CULs Site-wide is approximately 3 years after injections are complete. The restoration time frame reflects the time expected for complete degradation of HVOCs in the source area and treatment of all groundwater flowing through the downgradient in situ treatment barriers.

#### 5.9 SUMMARY OF THE ESTIMATED REMEDY COSTS

Estimated remedial costs for the Preferred Revised Cleanup Action are presented in Appendix D. The costs associated with remedy implementation consist of capital construction costs, groundwater confirmation monitoring and reporting following remedy completion, and agency oversight that would include periodic reviews of the constructed remedy. The estimated costs for remedy construction are as follows:

- Construction costs include construction materials and services; engineering design, oversight, and reporting; agency oversight; and permitting costs associated with remedy implementation are estimated to be approximately \$1,437,152.
- Long-term groundwater monitoring costs were estimated based on quarterly monitoring for 2 years after remedy implementation, then semiannual monitoring for a period of 1 year. The groundwater monitoring costs, including well installation and decommissioning, were estimated to be \$218,210.

The total project cost for the Preferred Revised Cleanup Action, which includes a 20% construction contingency cost and sales tax for construction materials and services, is estimated to be \$1,655,362.

# 6.0 References

- ARCADIS G&M, Inc. (Arcadis). 2002. *Technical Protocol for Using Soluble Carbohydrates to Enhance Reductive Dechlorination of Chlorinated Aliphatic Hydrocarbons.* Prepared for Air Force Center for Environmental Excellence and Environmental Security Technology Certification Program. 19 December.
- Floyd|Snider. 2024. Pre-Remedial Design Investigation Work Plan. Memorandum from Kristin Anderson, Lynn Grochala, and Danielle Gallaher, Floyd|Snider, to Sunny Becker, Washington State Department of Ecology. 13 June.
- HWA GeoSciences Inc. (HWA). 2013. *Interim Action Work Plan, Bothell Riverside Site, Bothell, Washington*. Prepared for City of Bothell. 7 January.
- Interstate Technology and Regulatory Cooperation (ITRC) Work Group In Situ Bioremediation Work Team and Industrial Members of the Remediation Technologies Development Forum (RTDF). 1999. *Natural Attenuation of Chlorinated Solvents in Groundwater: Principles and Practices.* September.
- Kane Environmental, Inc. (Kane). 2022. Supplemental Remedial Investigation & Feasibility Study, Riverside HVOC Site, Bothell, Washington. Prepared for City of Bothell. 22 February.
- U.S. Geological Survey. 2018. "Hardness of Water." Water Science School. 11 June. Available: https://www.usgs.gov/special-topics/water-science-school/science/hardness-water
- U.S. Environmental Protection Agency. 2023. "Bioremediation, anaerobic bioremediation (direct)." Contaminated Site Clean-Up Information. 19 April. Last accessed 4 December 2024. Available: https://clu-in.org/techfocus/default.focus/sec/bioremediation/cat/
- Washington State Department of Ecology (Ecology). 2023. Agreed Order No. DE 21531. 22 March.
- \_\_\_\_\_\_. 2024. Cleanup Levels and Risk Calculation (CLARC) Workbook. July. Available: https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC/Data-tables

# **Pre-Engineering Design Investigation Data Report**

Riverside HVOC Site

# **Tables**

Table 2.1
Well Construction and Water Level Data

|         |                                                   |                                                   |                                              |                                               |             |                                    |            | I                                               |               |            |       |     |  |  |  |           |       |     |
|---------|---------------------------------------------------|---------------------------------------------------|----------------------------------------------|-----------------------------------------------|-------------|------------------------------------|------------|-------------------------------------------------|---------------|------------|-------|-----|--|--|--|-----------|-------|-----|
| Well ID | X Coordinate<br>(feet NAD 83 WA<br>State Plane N) | Y Coordinate<br>(feet NAD 83 WA<br>State Plane N) | Top of Casing<br>Elevation<br>(feet NAVD 88) | Ground Surface<br>Elevaiton<br>(feet NAVD 88) | Casing Type | Screened<br>Interval<br>(feet bgs) | Date       | Depth to Water<br>(feet below top<br>of casing) | Measured By   |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 5/24/2013  | 12.95                                           | HWA           |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 6/24/2014  | 14.41                                           | HWA           |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 12/19/2014 | 15.61                                           | HWA           |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 6/23/2015  | 18.30                                           | HWA           |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 12/8/2015  | 15.30                                           | HWA           |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             | 15 to 25                           | 6/29/2016  | 16.95                                           | HWA           |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 12/21/2016 |                                                 | HWA           |            |       |     |  |  |  |           |       |     |
| BC-3    | 300020                                            | 1302930.5                                         | 279935.8                                     | 37.34                                         | 2-inch PVC  |                                    | 6/28/2017  | 16.43                                           | HWA           |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 9/27/2019  | 16.08                                           | Kane          |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 2/4/2020   | 15.05                                           | Kane          |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 5/6/2020   | 13.81                                           | Kane          |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 7/25/2024  | 14.73                                           | Floyd Snider  |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 7/29/2024  | 13.92                                           | Floyd Snider  |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 7/31/2024  | 13.95                                           | Floyd Snider  |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 8/22/2024  | 14.22                                           | Floyd Snider  |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 12/19/2014 | 12.20                                           | HWA           |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 6/23/2015  | 13.09                                           | HWA           |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 12/8/2015  | 11.95                                           | HWA           |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 6/29/2016  | 12.22                                           | HWA           |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 12/21/2016 | 11.48                                           | HWA           |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 6/28/2017  | 11.48                                           | HWA           |            |       |     |  |  |  |           |       |     |
| RMW-4   | 300001                                            | 1302692.0                                         | 279898.8                                     | 38.48                                         | 2-inch PVC  | 15 to 25                           | 9/26/2019  | 12.24                                           | Kane          |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 1/31/2020  | 10.72                                           | Kane          |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 5/4/2020   | 11.09                                           | Kane          |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 7/25/2024  | 11.16                                           | Floyd Snider  |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 7/29/2024  | 11.16                                           | Floyd Snider  |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 7/31/2024  | 11.20                                           | Floyd Snider  |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 8/22/2024  | 11.22                                           | Floyd Snider  |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 5/24/2013  | 11.51                                           | HWA           |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    |            |                                                 |               |            |       |     |  |  |  | 6/24/2014 | 14.51 | HWA |
|         |                                                   |                                                   |                                              |                                               |             |                                    |            |                                                 |               | 12/19/2014 | 13.61 | HWA |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 6/23/2015  | 14.26                                           | HWA           |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 12/8/2015  | 13.29                                           | HWA           |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 6/29/2016  | 13.41                                           | HWA           |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 12/22/2016 | 13.01                                           | HWA           |            |       |     |  |  |  |           |       |     |
| RMW-5   | 300003                                            | 1302753.1                                         | 279840.3                                     | 35.58                                         | 2-inch PVC  | 12 to 22                           | 6/29/2017  | 13.26                                           | HWA           |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 9/26/2019  | 13.53                                           | Kane          |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 1/31/2020  | 9.82                                            | Kane          |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 5/4/2020   | 12.34                                           | Kane          |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 7/25/2024  | 12.36                                           | Floyd Snider  |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 7/29/2024  | 12.40                                           | Floyd Snider  |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 7/31/2024  | 12.43                                           | Floyd Snider  |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 8/22/2024  | 12.55                                           | Floyd Snider  |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 5/24/2013  | 10.42                                           | HWA           |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 6/24/2014  | 14.79                                           | HWA           |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 12/19/2014 | 13.31                                           | HWA           |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 6/23/2015  | 13.65                                           | HWA           |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 12/8/2015  | 12.46                                           | HWA           |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 6/29/2016  | 13.14                                           | HWA           |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 12/21/2016 | 12.21                                           | HWA           |            |       |     |  |  |  |           |       |     |
| RMW-6   | 300007                                            | 1302827.904                                       | 279871.0979                                  | 34.520827                                     | 2-inch PVC  | 15 to 25                           | 6/29/2017  | 12.68                                           | HWA           |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 9/26/2019  | 12.67                                           | Kane          |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 1/31/2020  | 10.85                                           | Kane          |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 5/4/2020   | 11.11                                           | Kane          |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 7/25/2024  | 11.33                                           | Floyd Snider  |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 7/29/2024  | 11.35                                           | Floyd Snider  |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 7/31/2024  | 11.39                                           | Floyd Snider  |            |       |     |  |  |  |           |       |     |
|         |                                                   |                                                   |                                              |                                               |             |                                    | 8/22/2024  | 11.49                                           | Floyd Snider  |            |       |     |  |  |  |           |       |     |
| i .     | 1                                                 | 1                                                 | I                                            | 1                                             |             |                                    |            |                                                 | , , , , , , , |            |       |     |  |  |  |           |       |     |

Table 2.1
Well Construction and Water Level Data

| No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                 |                 |             |           |             |          | I          | 1               |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------|-----------------|-------------|-----------|-------------|----------|------------|-----------------|--------------|
| RMW-9R   R   | Well ID | (feet NAD 83 WA | (feet NAD 83 WA | Elevation   | Elevaiton | Casing Type | Interval | Date       | (feet below top | Measured By  |
| RMW-9   RMW-   |         |                 |                 |             |           |             |          | 5/24/2013  | 16.31           | HWA          |
| RMW-7   RMW-8   RMW-9   RMW-   |         |                 |                 |             |           |             |          | 4/4/2014   | 16.65           | HWA          |
| RMW-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                 |                 |             |           |             |          | 6/25/2014  | 16.55           | HWA          |
| RMW-9 RMW-   |         |                 |                 |             |           |             |          | 9/22/2014  | 17.54           | HWA          |
| RMW-7 RMW-8 RMW-8 RMW-8 RMW-8 RMW-8 RMW-8 RMW-8 RMW-8 RMW-8 RMW-9 RMW-8 RMW-9  |         |                 |                 |             |           |             |          | 12/19/2014 | 17.49           | HWA          |
| RMW-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                 |                 |             |           |             |          | 3/18/2015  | 16.66           | HWA          |
| RMW-7 300042 1302951.009 279868.3275 35.512833 2-inch PVC 15 to 27 (29)2016 17.31 HWA (37)2016 15.89 HWA (19)2016 15.89 HWA (19)2016 15.89 HWA (19)2017 16.63 HWA (19)2017 17.6 Kane (19)2018 HWA  |         |                 |                 |             |           |             |          | 6/23/2015  | 17.41           | HWA          |
| RMW-7 RMW-8 RMW-8 RMW-8 RMW-9  |         |                 |                 |             |           |             |          | 9/11/2015  | 18.5            | HWA          |
| RMW-8  RMW-9  RM |         |                 |                 |             |           |             |          | 12/8/2015  | 15.97           | HWA          |
| RMW-7   RMW-8   RMW-8   RMW-8   RMW-8   RMW-8   RMW-8   RMW-9   RMW-   |         |                 |                 |             |           |             |          | 3/31/2016  | 16.94           | HWA          |
| RMW-8   RMW-   |         |                 |                 |             |           |             |          | 6/29/2016  | 17.11           | HWA          |
| ## A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RMW-7   | 300042          | 1302951.009     | 279868.3275 | 35.512833 | 2-inch PVC  | 15 to 25 | 9/30/2016  | 18.28           | HWA          |
| RMW-9R   R   |         |                 |                 |             |           |             |          | 12/22/2016 | 15.89           | HWA          |
| RMW-8   RMW-8   RMW-9   RMW-   |         |                 |                 |             |           |             |          | 4/5/2017   | 16.43           | HWA          |
| September   Sept   |         |                 |                 |             |           |             |          | 6/28/2017  | 16.65           | HWA          |
| RMW-8   300013   1303006.8   279962.8225   40.61165   2-inch PVC   40.61165   1302946.715   280061.9349   43.912907   2-inch PVC   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165   40.61165     |         |                 |                 |             |           |             |          | 10/10/2017 | 18.26           | HWA          |
| RMW-8   RMW-9   RMW-9R   RMW   |         |                 |                 |             |           |             |          | 9/27/2019  | 17.6            | Kane         |
| RMW-8 RMW-8 RMW-8 RMW-8 RMW-8 RMW-9  |         |                 |                 |             |           |             |          | 2/3/2020   | 16.27           | Kane         |
| RMW-8   RMW-9R   RM   |         |                 |                 |             |           |             |          | 5/5/2020   | 16.49           | Kane         |
| RMW-8   RMW-9   RMW-   |         |                 |                 |             |           |             |          | 7/25/2024  | 17.19           | Floyd Snider |
| RMW-8   RMW-9R   RM   |         |                 |                 |             |           |             |          | 7/29/2024  | 17.26           | Floyd Snider |
| RMW-8 RMW-8 RMW-8 RMW-8 RMW-8 RMW-8 RMW-9R R |         |                 |                 |             |           |             |          | 7/31/2024  | 17.30           | Floyd Snider |
| RMW-8 RMW-8 RMW-8 RMW-8 RMW-8 RMW-8 RMW-9R R |         |                 |                 |             |           |             |          | 8/22/2024  | 17.44           | Floyd Snider |
| RMW-8 RMW-9R RMW |         |                 |                 |             |           |             |          | 5/24/2013  | 18.81           | HWA          |
| RMW-8 RMW-9R RMW |         |                 |                 |             |           |             |          | 6/24/2014  | 19.62           | HWA          |
| RMW-8 RMW-9R RMW |         |                 |                 |             |           |             |          | 12/19/2014 | 20.63           | HWA          |
| RMW-8 RMW-9R RMW |         |                 |                 |             |           |             |          | 6/23/2015  | 20.87           | HWA          |
| RMW-8 RMW-9R RMW |         |                 |                 |             |           |             |          | 12/8/2015  | 19.42           | HWA          |
| RMW-8         300013         1303006.8         279962.8225         40.61165         2-inch PVC         20 to 30         6/28/2017         19.73         HWA           9/27/2019         21.10         Kane         2/3/2020         19.56         Kane         5/6/2020         19.52         Kane         7/25/2024         20.14         Floyd Snider         7/29/2024         20.21         Floyd Snider         7/29/2024         20.21         Floyd Snider         7/31/2024         20.28         Floyd Snider         8/22/2024         20.51         Floyd Snider         8/22/2024         20.51         Floyd Snider         8/22/2024         20.51         Floyd Snider         8/22/2024         20.51         HWA         6/39/2015         4.00         HWA         12/8/2015         4.00         HWA         12/8/2015         15.92         HWA         6/29/2016         15.31         HWA         6/29/2017         13.55         HWA         6/29/2017         13.55         HWA         6/29/2017         13.55         HWA         6/29/2010         15.10         Kane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                 |                 |             |           |             |          | 6/29/2016  | 20.5            | HWA          |
| RMW-9R RM |         |                 |                 |             |           |             |          | 12/22/2016 | 20.58           | HWA          |
| RMW-9R   300040   1302946.715   280061.9349   43.912907   2-inch PVC   F0/2/2024   15.10   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   1   | RMW-8   | 300013          | 1303006.8       | 279962.8225 | 40.61165  | 2-inch PVC  | 20 to 30 | 6/28/2017  | 19.73           | HWA          |
| RMW-9R   R   |         |                 |                 |             |           |             |          | 9/27/2019  | 21.10           | Kane         |
| RMW-9R   R   |         |                 |                 |             |           |             |          | 2/3/2020   | 19.56           | Kane         |
| RMW-9R   1302946.715   1302946.715   280061.9349   43.912907   2-inch PVC   15.7/20204   15.10   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.   |         |                 |                 |             |           |             |          | 5/6/2020   | 19.52           | Kane         |
| RMW-9R   RMW-9R   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946.715   1302946      |         |                 |                 |             |           |             |          | 7/25/2024  | 20.14           | Floyd Snider |
| RMW-9R         300040         1302946.715         280061.9349         43.912907         2-inch PVC         20 to 30         8/22/2024         20.51         Floyd   Snider           4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                 |                 |             |           |             |          | 7/29/2024  | 20.21           | Floyd Snider |
| RMW-9R 300040 1302946.715 280061.9349 43.912907 2-inch PVC 20 to 30   12/19/2014   15.31   HWA   6/23/2015   4.00   HWA   12/8/2015   15.92   HWA   6/29/2016   15.31   HWA   12/22/2016   14.78   HWA   6/29/2017   13.55   HWA   6/29/2016   14.48   Kane   7/25/2024   15.10   Floyd Snider   7/25/2024   15.14   Floyd Snider   7/31/2024   15.19   Floyd Sni |         |                 |                 |             |           |             |          | 7/31/2024  | 20.28           | Floyd Snider |
| RMW-9R 300040 1302946.715 280061.9349 43.912907 2-inch PVC 20 to 30 6/23/2015 4.00 HWA  12/8/2015 15.92 HWA 6/29/2016 15.31 HWA 12/22/2016 14.78 HWA 6/29/2017 13.55 HWA 6/29/2017 13.55 HWA 9/27/2019 16.61 Kane 2/4/2020 15.10 Kane 5/7/2020 14.48 Kane 7/25/2024 15.09 Floyd Snider 7/29/2024 15.14 Floyd Snider 7/29/2024 15.19 Floyd Snider                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                 |                 |             |           |             |          | 8/22/2024  | 20.51           | Floyd Snider |
| RMW-9R 300040 1302946.715 280061.9349 43.912907 2-inch PVC 2-inch PVC 20 to 30 12/8/2015 15.92 HWA 6/29/2016 15.31 HWA 12/22/2016 14.78 HWA 6/29/2017 13.55 HWA 9/27/2019 16.61 Kane 2/4/2020 15.10 Kane 5/7/2020 14.48 Kane 7/25/2024 15.09 Floyd Snider 7/29/2024 15.14 Floyd Snider 7/31/2024 15.19 Floyd Snider                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                 |                 |             |           |             |          | 12/19/2014 | 15.31           | HWA          |
| RMW-9R 300040 1302946.715 280061.9349 43.912907 2-inch PVC 2-inch PVC 20 to 30 12/8/2015 15.92 HWA 6/29/2016 15.31 HWA 12/22/2016 14.78 HWA 6/29/2017 13.55 HWA 9/27/2019 16.61 Kane 2/4/2020 15.10 Kane 5/7/2020 14.48 Kane 7/25/2024 15.09 Floyd Snider 7/29/2024 15.14 Floyd Snider 7/31/2024 15.19 Floyd Snider                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                 |                 |             |           |             |          | 6/23/2015  | 4.00            | HWA          |
| RMW-9R 300040 1302946.715 280061.9349 43.912907 2-inch PVC 2-inch PVC 20 to 30 6/29/2016 15.31 HWA 12/22/2016 14.78 HWA 6/29/2017 13.55 HWA 6/29/2017 13.55 HWA 7/27/2019 16.61 Kane 2/4/2020 15.10 Kane 5/7/2020 14.48 Kane 7/25/2024 15.09 Floyd Snider 7/29/2024 15.14 Floyd Snider 7/31/2024 15.19 Floyd Snider                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                 |                 |             |           |             |          |            |                 |              |
| RMW-9R 300040 1302946.715 280061.9349 43.912907 2-inch PVC 20 to 30 12/22/2016 14.78 HWA 6/29/2017 13.55 HWA 9/27/2019 16.61 Kane 2/4/2020 15.10 Kane 5/7/2020 14.48 Kane 7/25/2024 15.09 Floyd Snider 7/29/2024 15.14 Floyd Snider 7/31/2024 15.19 Floyd Snider                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                 |                 |             |           |             |          |            |                 |              |
| RMW-9R 300040 1302946.715 280061.9349 43.912907 2-inch PVC 2-inch PVC 20 to 30 6/29/2017 13.55 HWA  43.912907 2-inch PVC 20 to 30 9/27/2019 16.61 Kane  2/4/2020 15.10 Kane  5/7/2020 14.48 Kane  7/25/2024 15.09 Floyd Snider  7/29/2024 15.14 Floyd Snider  7/31/2024 15.19 Floyd Snider                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                 |                 |             |           |             |          |            |                 |              |
| RMW-9R 300040 1302946.715 280061.9349 43.912907 2-inch PVC 20 to 30 9/27/2019 16.61 Kane 2/4/2020 15.10 Kane 5/7/2020 14.48 Kane 7/25/2024 15.09 Floyd Snider 7/29/2024 15.14 Floyd Snider 7/31/2024 15.19 Floyd Snider                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                 |                 |             |           |             |          |            |                 |              |
| 2/4/2020   15.10   Kane     5/7/2020   14.48   Kane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RMW-9R  | 300040          | 1302946.715     | 280061.9349 | 43.912907 | 2-inch PVC  | 20 to 30 |            |                 |              |
| 5/7/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                 |                 |             |           |             |          |            |                 |              |
| 7/25/2024 15.09 Floyd Snider<br>7/29/2024 15.14 Floyd Snider<br>7/31/2024 15.19 Floyd Snider                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                 |                 |             |           |             |          |            |                 |              |
| 7/29/2024 15.14 Floyd Snider<br>7/31/2024 15.19 Floyd Snider                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                 |                 |             |           |             |          |            |                 | Floyd Snider |
| 7/31/2024 15.19 Floyd Snider                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                 |                 |             |           |             |          |            |                 |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                 |                 |             |           |             |          |            |                 |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                 |                 |             |           |             |          |            |                 |              |

Table 2.1
Well Construction and Water Level Data

| Well ID       | X Coordinate<br>(feet NAD 83 WA<br>State Plane N) | Y Coordinate<br>(feet NAD 83 WA<br>State Plane N) | Top of Casing<br>Elevation<br>(feet NAVD 88) | Ground Surface<br>Elevaiton<br>(feet NAVD 88) | Casing Type  | Screened<br>Interval<br>(feet bgs) | Date       | Depth to Water<br>(feet below top<br>of casing) | Measured By  |
|---------------|---------------------------------------------------|---------------------------------------------------|----------------------------------------------|-----------------------------------------------|--------------|------------------------------------|------------|-------------------------------------------------|--------------|
|               |                                                   |                                                   |                                              |                                               |              |                                    | 5/24/2013  | 11.85                                           | HWA          |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 6/24/2014  | 15.00                                           | HWA          |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 12/19/2014 | 14.80                                           | HWA          |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 6/23/2015  | 20.40                                           | HWA          |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 12/8/2015  | 19.69                                           | HWA          |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 6/29/2016  | 13.60                                           | HWA          |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 12/21/2016 | 13.63                                           | HWA          |
| RMW-10D       | 300021                                            | 1302902.913                                       | 279934.4964                                  | 36.775746                                     | 2-inch PVC   | 32 to 42                           | 6/28/2017  | 14.05                                           | HWA          |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 9/27/2019  | 15.99                                           | Kane         |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 2/4/2020   | 15.56                                           | Kane         |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 5/5/2020   | 12.48                                           | Kane         |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 7/25/2024  | 12.92                                           | Floyd Snider |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 7/29/2024  | 12.97                                           | Floyd Snider |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 7/31/2024  | 13.00                                           | Floyd Snider |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 8/22/2024  |                                                 | Floyd Snider |
|               |                                                   |                                                   |                                              |                                               |              |                                    |            | 13.14                                           |              |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 7/25/2016  | 16.25                                           | HWA          |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 12/21/2016 | 13.1                                            | HWA          |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 6/28/2017  | 13.1                                            | HWA          |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 9/27/2019  | 14.52                                           | Kane         |
| RMW-12        | 200025                                            | 1202070 020                                       | 270041 0062                                  | 20.072600                                     | 2 in sh DVC  | 15 to 25                           | 2/4/2020   | 12.47                                           | Kane         |
| KIVIVV-12     | 300025                                            | 1302870.828                                       | 279941.8863                                  | 38.872699                                     | 2-inch PVC   | 15 to 25                           | 5/6/2020   | 12.24                                           | Kane         |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 7/25/2024  | 12.64                                           | Floyd Snider |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 7/29/2024  | 12.68                                           | Floyd Snider |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 7/23/2024  | 12.71                                           | Floyd Snider |
|               |                                                   |                                                   |                                              |                                               |              |                                    |            |                                                 |              |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 8/22/2024  | 12.81                                           | Floyd Snider |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 7/25/2016  | 14.95                                           | HWA          |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 12/22/2016 | 16.61                                           | HWA          |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 6/28/2017  | 15.23                                           | HWA          |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 9/27/2019  | 16.2                                            | Kane         |
| RMW-13        | 300009                                            | 1302921.615                                       | 279852.0768                                  | 34.144621                                     | 2-inch PVC   | 15 to 25                           | 2/3/2020   | 14.94                                           | Kane         |
| IVIVIV-13     | 300003                                            | 1302321.013                                       | 273032.0700                                  | 34.144021                                     | 2-1110111 VC | 13 (0 23                           | 5/5/2020   | 15.22                                           | Kane         |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 7/25/2024  | 15.95                                           | Floyd Snider |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 7/29/2024  | 16.05                                           | Floyd Snider |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 7/31/2024  | 16.09                                           | Floyd Snider |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 8/22/2024  | 16.22                                           | Floyd Snider |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 5/5/2020   | 12.36                                           | Kane         |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 7/25/2024  | 12.94                                           | Floyd Snider |
| RMW-14        | 300027                                            | 1302920.611                                       | 279889.9609                                  | 34.225634                                     | 4-inch PVC   | 15 to 25                           | 7/23/2024  | 12.94                                           | Floyd Snider |
| I CLAIAA - T- | 300027                                            | 1502520.011                                       | 2,3003.3003                                  | 37.223034                                     | 7 1110111 VC | 13 (0 23                           | 7/31/2024  | 13.04                                           | Floyd Snider |
|               |                                                   |                                                   |                                              |                                               |              |                                    |            |                                                 |              |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 8/22/2024  | 13.27                                           | Floyd Snider |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 7/25/2024  | 13.84                                           | Floyd Snider |
| EW-1          | 300016                                            | 1302938.645                                       | 279932.8205                                  | 36.252622                                     | 4-inch PVC   | 12.5 to 32.5                       | 7/29/2024  | 13.87                                           | Floyd Snider |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 7/31/2024  | 13.92                                           | Floyd Snider |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 8/22/2024  | 14.02                                           | Floyd Snider |
| EW-2          | 300038                                            | 1302913.3                                         | 279916.7                                     | 35.45                                         | 4-inch PVC   | 15 to 35                           | 7/29/2024  | 12.75                                           | Floyd Snider |
| EW-3          | 300030                                            | 1302883.6                                         | 279901.9                                     | 33.78                                         | 4-inch PVC   | 14 to 34                           | 7/29/2024  | 10.98                                           | Floyd Snider |
| EW-4          | 300034                                            | 1302852.3                                         | 279884.7                                     | 34.55                                         | 4-inch PVC   | 11 to 31                           |            |                                                 |              |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 7/25/2024  | 13.82                                           | Floyd Snider |
| F\4.5         | 200046                                            | 1202020 402                                       | 270072 0044                                  | 24.000407                                     | A in all DVO | 15 ±= 25                           | 7/29/2024  | 13.69                                           | Floyd Snider |
| EW-5          | 300046                                            | 1302929.192                                       | 279873.8944                                  | 34.099437                                     | 4-inch PVC   | 15 to 35                           | 7/31/2024  | 13.75                                           | Floyd Snider |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 8/22/2024  | 13.90                                           | Floyd Snider |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 7/29/2024  | 15.73                                           | Floyd Snider |
| EW-6          | 300049                                            | 1302954.181                                       | 279887.7261                                  | 35.601836                                     | 4-inch PVC   | 15 to 35                           |            |                                                 |              |
| _ VV-U        | 300043                                            | 1302334.101                                       | 2/300/./201                                  | 33.001030                                     | 4-111CH FVC  | 13 (0 33                           | 7/31/2024  | 15.82                                           | Floyd Snider |
|               |                                                   |                                                   |                                              |                                               |              |                                    | 8/22/2024  | 15.96                                           | Floyd Snider |

Note:

-- Not measured

Abbreviations:

bgs Below ground surface
HWA HWA GeoSciences, Inc.
Kane Kane Environmental, Inc.
NAD 83 North American Datum of 1983
NAVD 88 North American Vertical Datum of 1988
PVC Polyvinyl chloride

Table 2.2 Groundwater HVOC Results

|                            |                        |                                  | Groundwater HV | - CONCOUNTS          |                |                  |                  |
|----------------------------|------------------------|----------------------------------|----------------|----------------------|----------------|------------------|------------------|
|                            |                        |                                  |                |                      | cis-1,2-       | trans-1,2-       |                  |
|                            |                        | Analyte                          |                | Trichloroethene      | Dichloroethene | Dichloroethene   | Vinyl chloride   |
|                            |                        | CAS No.                          | 127-18-4       | 79-01-6              | 156-59-2       | 156-60-5         | 75-01-4          |
|                            |                        | CUL (1)                          |                | 0.38                 | 16             |                  | 0.020            |
|                            | <u> </u>               | Unit                             | μg/L           | μg/L                 | μg/L           | μg/L             | μg/L             |
|                            |                        | Sample Depth/<br>Screen Interval |                |                      |                |                  |                  |
| Sample Name                | Sample Date            | (feet bgs)                       |                |                      |                |                  |                  |
| BC-3                       | Sumple Bute            | (1000 253)                       |                |                      |                |                  |                  |
| BC-3D-092008               | 9/5/2008               |                                  | 110            | 120                  | 46             | 1.0 U            | 1.0 U            |
| BC-3D-092009               | 9/15/2009              | 1                                | 130            | 120                  | 49             | 1.0 U            | 1.0 U            |
| BC-3D-122009               | 12/16/2009             | 1                                | 170            | 130                  | 48             | 1.0 U            | 1.0 U            |
| BC-3-052013                | 5/24/2013              | ]                                | 25             | 11                   | 4.0            |                  | 0.20 U           |
| BC-3-062014                | 6/24/2014              |                                  | 11             | 4.0                  | 0.75           |                  | 0.20 U           |
| BC-3D-122014               | 12/19/2014             |                                  | 7.7            | 2.1                  | 0.44           | 0.20 U           | 0.20 U           |
| BC-3D-062015               | 6/23/2015              | 15–25                            | 3.8            | 0.90                 | 0.20 U         | 0.20 U           | 0.20 U           |
| BC-3D-122015               | 12/8/2015              |                                  | 5.3            | 1.3                  | 0.29           | 0.20 U           | 0.20 U           |
| BC-3D-062016               | 6/29/2016              |                                  | 3.7            | 0.93                 | 0.20 U         | 0.20 U           | 0.20 U           |
| BC-3D-122016               | 12/21/2016             | -                                | 5.9<br>6.8     | 1.5                  | 0.57<br>0.80   | 0.20 U           | 0.20 U<br>0.20 U |
| BC-3-062017<br>BC-3-092019 | 6/28/2017<br>9/27/2019 | -                                | 4.3            | 1.9<br>1.0           | 0.80           | 0.20 U           | 0.20 U           |
| BC-3-092019<br>BC-3-022020 | 2/4/2020               | 1                                | 5.2            | 1.3                  | 0.43           | 0.20 U           | 0.020 U          |
| BC-3-052020                | 5/6/2020               |                                  | 6.7            | 1.7                  | 0.52           | 0.20 U           | 0.020 U          |
| EW-1                       | -, -, -,               |                                  |                |                      | 3.32           |                  |                  |
| EW-1-042014                | 4/4/2014               |                                  | 17             | 3.0                  | 1.2            |                  | 0.20 U           |
| EW-1-062014                | 6/25/2014              | ]                                | 27             | 8.1                  | 6.5            |                  | 0.20 U           |
| EW-1-122014                | 12/19/2014             | ]                                | 21             | 2.6                  | 0.82           | 0.20 U           | 0.20 U           |
| EW-1-032015                | 3/18/2015              |                                  | 2.8            | 0.27                 | 0.20 U         | 0.20 U           | 0.20 U           |
| EW-1-062015                | 6/23/2015              |                                  | 22             | 2.0                  | 0.95           | 0.20 U           | 0.20 U           |
| EW-1-092015                | 9/11/2015              |                                  | 41             | 2.2                  | 0.79           | 0.20 U           | 0.20 U           |
| EW-1-032016                | 3/31/2016              | 12.5–32.5                        | 22             | 2.8                  | 2.5            | 0.20 U           | 0.20 U           |
| EW-1-062016                | 6/29/2016              |                                  | 24             | 4.2                  | 4.5            | 0.20 U           | 0.20 U           |
| EW-1-092016                | 9/30/2016              | -                                | 20             | <b>2.0</b><br>0.20 U | 2.3            | 0.20 U           | 0.20 U           |
| EW-1-012017<br>EW-1-042017 | 1/5/2017<br>4/5/2017   | -                                | 1.1<br>13      | 1.2                  | 0.20 U<br>0.85 | 0.20 U           | 0.20 U<br>0.20 U |
| EW-1-062017                | 6/29/2017              | 1                                | 8.9            | 0.77                 | 0.70           |                  | 0.20 U           |
| EW-1-102017                | 10/10/2017             |                                  | 15             | 0.81                 | 0.50           |                  | 0.20 U           |
| EW-1-082324                | 8/23/2024              | 1                                | 3.2            | 0.20 U               | 0.20 U         | 0.20 U           | 0.020 U          |
| EW-2                       |                        |                                  |                |                      |                |                  |                  |
| EW-2-042014                | 4/4/2014               |                                  | 13             | 2.8                  | 1.5            |                  |                  |
| EW-2-062014                | 6/25/2014              |                                  | 28             | 3.8                  | 1.5            |                  | 0.20 U           |
| EW-2-092014                | 9/22/2014              |                                  | 66             | 16                   | 12             |                  | 0.40 U           |
| EW-2-122014                | 12/19/2014             |                                  | 44             | 12                   | 12             | 0.40 U           | 0.40 U           |
| EW-2-032015                | 3/18/2015              |                                  | 22             | 6.5                  | 4.3            | 0.20 U           | 0.20 U           |
| EW-2-062015                | 6/23/2015              |                                  | 8.6            | 2.4                  | 1.8            | 0.20 U           | 0.20 U           |
| EW-2-092015                | 9/11/2015              | -                                | 6.5<br>16      | 0.62<br>2.6          | 0.40           | 0.20 U           | 0.20 U           |
| EW-2-122015<br>EW-2-032016 | 12/8/2015<br>3/31/2016 | -                                | 16             | 4.0                  | 3.7            | 0.20 U<br>0.20 U | 0.20 U<br>0.20 U |
| EW-2-062016                | 6/29/2016              | 15–35                            | 17             | 4.1                  | 3.7            | 0.20 U           | 0.20 U           |
| EW-2-092016                | 9/30/2016              |                                  | 21             | 6.2                  | 5.6            | 0.20 U           | 0.20 U           |
| EW-2-012017                | 1/5/2017               |                                  | 24             | 3.6                  | 1.7            | 0.20 U           | 0.20 U           |
| EW-2-042017                | 4/5/2017               |                                  | 11             | 3.2                  | 2.2            |                  | 0.20 U           |
| EW-2-062017                | 6/29/2017              | ]                                | 16             | 4.8                  | 3.6            |                  | 0.20 U           |
| EW-2-102017                | 10/10/2017             |                                  | 3.0            | 0.45                 | 0.23           |                  | 0.20 U           |
| EW-2-092019                | 9/27/2019              |                                  | 16             | 4.7                  | 3.2            | 0.20 U           | 0.20 U           |
| EW-2-022020                | 2/5/2020               |                                  | 26             | 7.9                  | 6.2            | 0.20 U           | 0.39             |
| EW-2-082324                | 8/23/2024              |                                  | 7.8            | 0.27                 | 0.20 U         | 0.20 U           | 0.020 U          |
| EW-3                       | 4/4/2011               | I                                | **             |                      | 7.0            |                  | 0.61             |
| EW-3-042014                | 4/4/2014               | 1                                | 49<br>41       | 14                   | 7.2<br>12      |                  | 0.61             |
| EW-3-062014<br>EW-3-092014 | 6/25/2014<br>9/22/2014 | 1                                | 190            | 14<br>59             | 33             |                  | 0.40 U<br>1.1    |
| EW-3-122014                | 12/19/2014             |                                  | 21             | 6.4                  | 6.0            | 0.20 U           | 0.20 U           |
| EW-3-032015                | 3/18/2015              |                                  | 140            | 46                   |                | 1.0 U            | 1.0 U            |
| EW-3-062015                | 6/23/2015              | 1                                | 87             | 24                   | 9.0            | 0.40 U           | 0.40 U           |
| EW-3-092015                | 9/11/2015              | 1                                | 81             | 28                   | 14             | 0.40 U           | 0.40 U           |
| EW-3-122015                | 12/8/2015              | ]                                | 33             | 11                   | 7.8            | 0.20 U           | 0.38             |
| EW-3-032016                | 3/31/2016              | 14–34                            | 72             | 21                   | 16             | 0.40 U           | 0.64             |
| EW-3-062016                | 6/29/2016              |                                  | 79             | 24                   | 14             | 0.40 U           | 0.43             |
| EW-3-092016                | 9/30/2016              |                                  | 50             | 18                   | 10             | 0.20 U           | 0.63             |
| EW-3-012017                | 1/5/2017               |                                  | 95             | 30                   | 20             | 0.40 U           | 0.46             |
| EW-3-042017                | 4/5/2017               |                                  | 150            | 57                   | 30             |                  | 1.3              |
| EW-3-062017                | 6/29/2017              |                                  | 270            | 79                   | 59             |                  | 1.4              |
| EW-3-102017                | 10/10/2017             |                                  | 69             | 25                   | 16             | 0.30.11          | 0.41             |
| EW-3-052020                | 5/7/2020               | -                                | <b>25</b>      | 23                   | 11             | 0.20 U           | 0.023            |
| EW-3-082224                | 8/22/2024              |                                  | 3.7            | 3.4                  | 12             | 0.21             | 0.42             |

Table 2.2 Groundwater HVOC Results

| Groundwater HVOC Results       |                         |                    |                   |                            |                                        |                                          |                           |  |  |  |
|--------------------------------|-------------------------|--------------------|-------------------|----------------------------|----------------------------------------|------------------------------------------|---------------------------|--|--|--|
|                                |                         | Analyte<br>CAS No. | Tetrachloroethene | Trichloroethene<br>79-01-6 | cis-1,2-<br>Dichloroethene<br>156-59-2 | trans-1,2-<br>Dichloroethene<br>156-60-5 | Vinyl chloride<br>75-01-4 |  |  |  |
|                                |                         | CUL (1)            | 4.9               | 0.38                       | 16                                     |                                          | 0.020                     |  |  |  |
|                                |                         | Unit               | μg/L              | μg/L                       | μg/L                                   | μg/L                                     | μg/L                      |  |  |  |
|                                |                         | Sample Depth/      |                   |                            |                                        |                                          |                           |  |  |  |
|                                |                         | Screen Interval    |                   |                            |                                        |                                          |                           |  |  |  |
| Sample Name                    | Sample Date             | (feet bgs)         |                   |                            |                                        |                                          |                           |  |  |  |
| EW-4                           | 1 - / /                 |                    |                   |                            |                                        | T                                        |                           |  |  |  |
| EW-4-062014                    | 6/25/2014               |                    | 1.7               | 1.8                        | 1.1                                    |                                          | 0.38                      |  |  |  |
| EW-4-092014                    | 9/22/2014               |                    | 45                | 10                         | 7.4                                    | 0.20.11                                  | 0.87                      |  |  |  |
| EW-4-122014                    | 12/19/2014              |                    | 1.2<br>15         | 1.6<br>4.8                 | 3.2                                    | 0.20 U                                   | 0.27                      |  |  |  |
| EW-4-032015<br>EW-4-062015     | 3/18/2015<br>6/23/2015  |                    | 0.85              | 2.8                        | 1.7                                    | 0.20 U<br>0.20 U                         | 0.20 U<br>0.37            |  |  |  |
| EW-4-092015                    | 9/11/2015               |                    | 1.8               | 2.1                        | 0.92                                   | 0.20 U                                   | 0.28                      |  |  |  |
| EW-4-122015                    | 12/8/2015               |                    | 0.20 U            | 1.6                        | 2.9                                    | 0.20 U                                   | 0.85                      |  |  |  |
| EW-4-032016                    | 3/31/2016               | 11–31              | 0.20 U            | 2.5                        | 2.0                                    | 0.20 U                                   | 0.31                      |  |  |  |
| EW-4-062016                    | 6/29/2016               |                    | 0.20 U            | 1.2                        | 3.5                                    | 0.20 U                                   | 0.61                      |  |  |  |
| EW-4-092016                    | 9/30/2016               |                    | 0.20 U            | 0.88                       | 4.0                                    | 0.20 U                                   | 0.75                      |  |  |  |
| EW-4-012017                    | 1/5/2017                |                    | 0.33              | 3.2                        | 1.8                                    | 0.20 U                                   | 0.29                      |  |  |  |
| EW-4-042017                    | 4/5/2017                |                    | 0.20              | 3.0                        | 1.7                                    |                                          | 0.25                      |  |  |  |
| EW-4-062017                    | 6/29/2017               |                    | 0.20              | 0.90                       | 2.6                                    |                                          | 0.24                      |  |  |  |
| EW-4-082324                    | 8/23/2024               |                    | 0.20 U            | 0.20 U                     | 1.3                                    | 0.20 U                                   | 0.34                      |  |  |  |
| EW-5                           |                         |                    |                   |                            |                                        |                                          |                           |  |  |  |
| EW-5D-012017                   | 1/5/2017                |                    | 5.0               | 4.0                        | 9.4                                    | 0.20 U                                   | 2.5                       |  |  |  |
| EW-5D-042017                   | 4/5/2017                |                    | 6.9               | 5.2                        | 15                                     |                                          | 3.8                       |  |  |  |
| EW-5D-062017                   | 6/29/2017               |                    | 8.6               | 3.8                        | 10                                     |                                          | 0.49                      |  |  |  |
| EW-5D-102017                   | 10/10/2017              | 15–35              | 0.36              | 0.94                       | 8.6                                    |                                          | 1.8                       |  |  |  |
| EW-5-072524                    | 7/25/2024               |                    | 0.26              | 0.20 U                     | 0.20 U                                 | 0.20 U                                   | 0.20 U                    |  |  |  |
| EW-5-073124                    | 7/31/2024               |                    | 0.25              | 0.20 U                     | 0.20 U                                 | 0.20 U                                   | 0.20 U                    |  |  |  |
| EW-5-082324                    | 8/23/2024               |                    | 0.20 U            | 0.20 U                     | 0.20 U                                 | 0.20 U                                   | 0.020 U                   |  |  |  |
| EW-6                           | 4/5/2047                |                    | 2.4               | 0.54                       | 0.20.11                                | 0.20.11                                  | 0.20.44                   |  |  |  |
| EW-6D-012017                   | 1/5/2017                |                    | 2.4               | 0.54                       | 0.20 U                                 | 0.20 U                                   | 0.20 U                    |  |  |  |
| EW-6D-042017                   | 4/5/2017                |                    | 2.1               | 0.94                       | 1.2                                    |                                          | 0.20 U                    |  |  |  |
| EW-6D-062017<br>EW-6D-102017   | 6/29/2017<br>10/10/2017 |                    | 0.56<br><b>20</b> | 0.63<br>7.2                | 2.0<br><b>18</b>                       |                                          | 0.31<br>0.46              |  |  |  |
| EW-6D-102017                   | 9/27/2019               |                    | 4.7               | 1.4                        | 4.2                                    | 0.20 U                                   | 0.20 U                    |  |  |  |
| EW-6D-032019                   | 2/5/2020                | 15–35              | 3.1               | 1.0                        | 4.0                                    | 0.20 U                                   | 0.16                      |  |  |  |
| EW-6D-052020                   | 5/7/2020                |                    | 12                | 5.3                        | 7.6                                    | 0.20 U                                   | 0.36                      |  |  |  |
| EW-6-072524                    | 7/25/2024               |                    | 0.27              | 0.20 U                     | 0.20 U                                 | 0.20 U                                   | 0.20 U                    |  |  |  |
| EW-6-073124                    | 7/31/2024               |                    | 1.5               | 0.20 U                     | 0.20 U                                 | 0.20 U                                   | 0.20 U                    |  |  |  |
| EW-6-082324                    | 8/23/2024               |                    | 8.8               | 0.23                       | 0.20 U                                 | 0.20 U                                   | 0.020 U                   |  |  |  |
| RMW-4                          | . ,                     |                    |                   |                            |                                        |                                          |                           |  |  |  |
| RMW-4D-122014                  | 12/19/2014              |                    | 0.79              | 0.33                       | 0.20 U                                 | 0.20 U                                   | 0.20 U                    |  |  |  |
| RMW-4D-062015                  | 6/23/2015               |                    | 0.52              | 0.72                       | 0.20 U                                 | 0.20 U                                   | 0.20 U                    |  |  |  |
| RMW-4D-122015                  | 12/8/2015               |                    | 2.2               | 0.56                       | 0.20 U                                 | 0.20 U                                   | 0.20 U                    |  |  |  |
| RMW-4D-062016                  | 6/29/2016               |                    | 3.6               | 0.46                       | 0.20 U                                 | 0.20 U                                   | 0.20 U                    |  |  |  |
| RMW-4D-122016                  | 12/21/2016              | 15–25              | 4.3               | 0.51                       | 0.20 U                                 | 0.20 U                                   | 0.20 U                    |  |  |  |
| RMW-4-062017                   | 6/28/2017               | 15 25              | 3.9               | 0.49                       | 0.20 U                                 |                                          | 0.20 U                    |  |  |  |
| RMW-4-092019                   | 9/26/2019               |                    | 2.5               | 0.45                       | 0.20 U                                 | 0.20 U                                   | 0.20 U                    |  |  |  |
| RMW-4-012020                   | 1/31/2020               |                    | 3.7               | 0.54                       | 0.20 U                                 | 0.20 U                                   | 0.020 U                   |  |  |  |
| RMW-4-052020                   | 5/4/2020                |                    | 3.2               | 0.82                       | 0.20 U                                 | 0.20 U                                   | 0.020 U                   |  |  |  |
| RMW-4-082324                   | 8/23/2024               |                    | 3.3               | 0.96                       | 0.33                                   | 0.20 U                                   | 0.020 U                   |  |  |  |
| RMW-5                          | F 10 - 10 - 1 -         |                    | 4 =               | 0.22.11                    | 0.00 ::                                | ı                                        | 0.22 /:                   |  |  |  |
| RMW-5-052013                   | 5/24/2013               |                    | 1.7               | 0.20 U                     | 0.20 U                                 |                                          | 0.20 U                    |  |  |  |
| RMW-5-062014                   | 6/24/2014               |                    | 1.4               | 0.40                       | 0.20 U                                 | 0.20.11                                  | 0.20 U                    |  |  |  |
| RMW-5D-122014                  | 12/19/2014              |                    | 1.3               | 0.32                       | 0.22                                   | 0.20 U                                   | 0.20 U                    |  |  |  |
| RMW-5D-062015                  | 6/23/2015               |                    | 0.66              | 0.36<br>0.20 U             | 0.20 U                                 | 0.20 U                                   | 0.20 U                    |  |  |  |
| RMW-5D-122015<br>RMW-5D-062016 | 12/8/2015<br>6/29/2016  |                    | 1.6<br>1.1        | 0.20 U<br>0.31             | 0.20 U<br>0.20 U                       | 0.20 U<br>0.20 U                         | 0.20 U<br>0.20 U          |  |  |  |
| RMW-5D-062016                  | 12/22/2016              | 12–22              | 1.0               | 0.31<br>0.20 U             | 0.20 0                                 | 0.20 U                                   | 0.20 U                    |  |  |  |
| RMW-5-062017                   | 6/29/2017               |                    | 2.0               | 0.20 U                     | 0.23<br>0.20 U                         | 0.20 0                                   | 0.20 U                    |  |  |  |
| RMW-5-092019                   | 9/26/2019               |                    | 2.0               | 0.39                       | 0.20 0                                 | 0.20 U                                   | 0.20 U                    |  |  |  |
| RMW-5-012020                   | 1/31/2020               |                    | 2.5               | 0.21                       | 0.20 U                                 | 0.20 U                                   | 0.024                     |  |  |  |
| RMW-5-052020                   | 5/4/2020                |                    | 2.3               | 0.20 U                     | 0.20 U                                 | 0.20 U                                   | 0.020 U                   |  |  |  |
| RMW-5-082224                   | 8/22/2024               |                    | 3.5               | 0.55                       | 0.43                                   | 0.20 U                                   | 0.036                     |  |  |  |
| RMW-6                          |                         |                    |                   |                            |                                        |                                          |                           |  |  |  |
| RMW-6D-092009                  | 9/14/2009               |                    | 0.20 U            | 0.27                       | 3.6                                    | 0.20 U                                   | 5.3                       |  |  |  |
| RMW-6-052013                   | 5/24/2013               |                    | 0.20 U            | 0.20 U                     | 2.7                                    |                                          | 3.4                       |  |  |  |
| RMW-6-062014                   | 6/24/2014               |                    | 0.34              | 0.60                       | 0.42                                   |                                          | 0.20 U                    |  |  |  |
| RMW-6D-122014                  | 12/19/2014              |                    | 0.47              | 0.20 U                     | 0.20 U                                 | 0.20 U                                   | 0.20 U                    |  |  |  |
| RMW-6D-062015                  | 6/23/2015               |                    | 0.20 U            | 1.4                        | 0.88                                   | 0.20 U                                   | 0.20 U                    |  |  |  |
| RMW-6D-122015                  | 12/8/2015               |                    | 0.20 U            | 2.7                        | 1.0                                    | 0.20 U                                   | 0.20 U                    |  |  |  |
| RMW-6D-062016                  | 6/29/2016               | 15–25              | 0.20 U            | 2.5                        | 1.3                                    | 0.20 U                                   | 0.20 U                    |  |  |  |
| RMW-6D-122016                  | 12/21/2016              |                    | 0.20 U            | 0.39                       | 0.50                                   | 0.20 U                                   | 0.20 U                    |  |  |  |
| RMW-6-062017                   | 6/29/2017               |                    | 0.20 U            | 0.41                       | 0.30                                   |                                          | 0.20 U                    |  |  |  |
| RMW-6-092019                   | 9/26/2019               |                    | 0.20 U            | 1.7                        | 3.8                                    | 0.20 U                                   | 0.57                      |  |  |  |
| RMW-6-012020                   | 1/31/2020               |                    | 0.20 U            | 0.52                       | 2.5                                    | 0.20 U                                   | 0.70                      |  |  |  |
| RMW-6-052020                   | 5/4/2020                |                    | 0.20 U            | 0.45                       | 1.5                                    | 0.20 U                                   | 0.21                      |  |  |  |
| RMW-6-082224                   | 8/22/2024               |                    | 0.20 U            | 0.20 U                     | 0.77                                   | 0.20 U                                   | 0.79                      |  |  |  |

Table 2.2 Groundwater HVOC Results

|                                                                                                                                                                                                                                           | Analyte                                                                                                                                                                                                                                                                                                                                                                   | Tetrachloroethene                                                                                                                                                 | Trichloroethene                                                                                                                                                     | cis-1,2-<br>Dichloroethene                                                                                                                                                     | trans-1,2-<br>Dichloroethene                                                                                                                | Vinyl chloride                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                           | CAS No.                                                                                                                                                                                                                                                                                                                                                                   | 127-18-4                                                                                                                                                          | 79-01-6                                                                                                                                                             | 156-59-2                                                                                                                                                                       | 156-60-5                                                                                                                                    | 75-01-4                                                                                                                                                                            |
|                                                                                                                                                                                                                                           | Unit                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                   | 0.38                                                                                                                                                                | 16                                                                                                                                                                             |                                                                                                                                             | 0.020                                                                                                                                                                              |
|                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           | μg/L                                                                                                                                                              | μg/L                                                                                                                                                                | μg/L                                                                                                                                                                           | μg/L                                                                                                                                        | μg/L                                                                                                                                                                               |
|                                                                                                                                                                                                                                           | Sample Depth/<br>Screen Interval                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                   |                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                             |                                                                                                                                                                                    |
| Sample Date                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                             |                                                                                                                                                                                    |
| Sample Date                                                                                                                                                                                                                               | (reet bgs)                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   |                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                             |                                                                                                                                                                                    |
| 9/15/2009                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           | 50                                                                                                                                                                | 120                                                                                                                                                                 | 100                                                                                                                                                                            | 2.0                                                                                                                                         | 22                                                                                                                                                                                 |
|                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |                                                                                                                                                                     |                                                                                                                                                                                | 2.0                                                                                                                                         | 9.3                                                                                                                                                                                |
|                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                             |                                                                                                                                                                                    |
|                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                             | 8.3                                                                                                                                                                                |
|                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                             | 9.9                                                                                                                                                                                |
|                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |                                                                                                                                                                     |                                                                                                                                                                                | 4.4                                                                                                                                         | 47                                                                                                                                                                                 |
|                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                             | 34                                                                                                                                                                                 |
|                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                             | 20                                                                                                                                                                                 |
|                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                             | 9.6                                                                                                                                                                                |
|                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                             | 14                                                                                                                                                                                 |
|                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |                                                                                                                                                                     |                                                                                                                                                                                | <b>+</b>                                                                                                                                    | 9.0                                                                                                                                                                                |
|                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                             | 35                                                                                                                                                                                 |
|                                                                                                                                                                                                                                           | 15–25                                                                                                                                                                                                                                                                                                                                                                     | 2.3                                                                                                                                                               | 14                                                                                                                                                                  |                                                                                                                                                                                | 0.68                                                                                                                                        | 12                                                                                                                                                                                 |
| 9/30/2016                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           | 2.4                                                                                                                                                               | 7.8                                                                                                                                                                 | 89                                                                                                                                                                             | 1.0 U                                                                                                                                       | 13                                                                                                                                                                                 |
| 12/22/2016                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                           | 1.1                                                                                                                                                               | 4.1                                                                                                                                                                 | 88                                                                                                                                                                             | 0.93                                                                                                                                        | 24                                                                                                                                                                                 |
| 4/5/2017                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                           | 1.2                                                                                                                                                               | 2.4                                                                                                                                                                 | 12                                                                                                                                                                             |                                                                                                                                             | 0.86                                                                                                                                                                               |
| 6/28/2017                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           | 1.3                                                                                                                                                               | 1.9                                                                                                                                                                 | 33                                                                                                                                                                             |                                                                                                                                             | 1.9                                                                                                                                                                                |
| 10/10/2017                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                           | 1.0                                                                                                                                                               | 2.3                                                                                                                                                                 | 47                                                                                                                                                                             |                                                                                                                                             | 25                                                                                                                                                                                 |
| 9/27/2019                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           | 0.51                                                                                                                                                              | 4.1                                                                                                                                                                 | 33                                                                                                                                                                             | 0.39                                                                                                                                        | 27                                                                                                                                                                                 |
|                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           | 0.20 U                                                                                                                                                            | 0.22                                                                                                                                                                | 16                                                                                                                                                                             | 0.28                                                                                                                                        | 26                                                                                                                                                                                 |
|                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                             | 28                                                                                                                                                                                 |
|                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                             | 6.4                                                                                                                                                                                |
|                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |                                                                                                                                                                     |                                                                                                                                                                                | <b>+</b>                                                                                                                                    | 9.4                                                                                                                                                                                |
|                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                             | 6.2                                                                                                                                                                                |
| 0/22/2024                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           | 0.40                                                                                                                                                              | 0.04                                                                                                                                                                |                                                                                                                                                                                | 0.20                                                                                                                                        | 0.2                                                                                                                                                                                |
| 0/15/2000                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           | 0.46                                                                                                                                                              | 2.6                                                                                                                                                                 | 1 2                                                                                                                                                                            | 0.26                                                                                                                                        | 0.20 U                                                                                                                                                                             |
|                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                             | •                                                                                                                                                                                  |
|                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                             | 0.20 U                                                                                                                                                                             |
|                                                                                                                                                                                                                                           | 20-30                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                   |                                                                                                                                                                     |                                                                                                                                                                                | 0.40                                                                                                                                        | 0.20 U                                                                                                                                                                             |
|                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                             | 0.20 U                                                                                                                                                                             |
|                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                             | 0.20 U                                                                                                                                                                             |
|                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                             | 0.20 U                                                                                                                                                                             |
|                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                             | 0.20 U                                                                                                                                                                             |
|                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                             | 0.20 U                                                                                                                                                                             |
| 6/29/2016                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           | 0.20 U                                                                                                                                                            | 0.20 U                                                                                                                                                              |                                                                                                                                                                                | 0.20 U                                                                                                                                      | 0.20 U                                                                                                                                                                             |
| 12/22/2016                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                           | 0.31                                                                                                                                                              | 0.66                                                                                                                                                                | 0.37                                                                                                                                                                           | 0.20 U                                                                                                                                      | 0.20 U                                                                                                                                                                             |
| 6/28/2017                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           | 0.20 U                                                                                                                                                            | 0.20 U                                                                                                                                                              | 0.20 U                                                                                                                                                                         |                                                                                                                                             | 0.20 U                                                                                                                                                                             |
| 9/27/2019                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           | 0.20 U                                                                                                                                                            | 0.20 U                                                                                                                                                              | 0.20 U                                                                                                                                                                         | 0.20 U                                                                                                                                      | 0.20 U                                                                                                                                                                             |
| 2/3/2020                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                           | 0.20 U                                                                                                                                                            | 0.40                                                                                                                                                                | 0.28                                                                                                                                                                           | 0.20 U                                                                                                                                      | 0.020 U                                                                                                                                                                            |
| 5/6/2020                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                           | 0.20 U                                                                                                                                                            | 0.20 U                                                                                                                                                              | 0.20 U                                                                                                                                                                         | 0.20 U                                                                                                                                      | 0.020 U                                                                                                                                                                            |
| 8/23/2024                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           | 0.20 U                                                                                                                                                            | 0.20 U                                                                                                                                                              | 0.81                                                                                                                                                                           | 0.20 U                                                                                                                                      | 0.020 U                                                                                                                                                                            |
|                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                             |                                                                                                                                                                                    |
| 9/15/2009                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           | 0.20 U                                                                                                                                                            | 0.20 U                                                                                                                                                              | 0.20 U                                                                                                                                                                         | 0.20 U                                                                                                                                      | 0.20 U                                                                                                                                                                             |
|                                                                                                                                                                                                                                           | 20–30                                                                                                                                                                                                                                                                                                                                                                     | 0.20 U                                                                                                                                                            | 0.20 U                                                                                                                                                              | 0.20 U                                                                                                                                                                         | 0.20 U                                                                                                                                      | 0.20 U                                                                                                                                                                             |
| 5/24/2013                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           | 0.20 U                                                                                                                                                            | 0.20 U                                                                                                                                                              | 0.20 U                                                                                                                                                                         |                                                                                                                                             | 0.20 U                                                                                                                                                                             |
| . , -=-                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                             |                                                                                                                                                                                    |
| 12/19/2014                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                           | 0.79                                                                                                                                                              | 0.20 11                                                                                                                                                             | 0.20 11                                                                                                                                                                        | 0.20 11                                                                                                                                     | 0.20 U                                                                                                                                                                             |
| 6/23/2015                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           | 0.20 U                                                                                                                                                            | 0.20 U                                                                                                                                                              | 0.20 U                                                                                                                                                                         | 0.20 U                                                                                                                                      | 0.20 U                                                                                                                                                                             |
| 12/8/2015                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   | 5.20                                                                                                                                                                | 0.20 0                                                                                                                                                                         | <b>+</b>                                                                                                                                    | J.20 U                                                                                                                                                                             |
|                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           | በ ንበ !!                                                                                                                                                           | 0.20.11                                                                                                                                                             | 0.20 11                                                                                                                                                                        | 0.20.11                                                                                                                                     | 0 20 11                                                                                                                                                                            |
| 6/20/2016                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           | 0.20 U                                                                                                                                                            | 0.20 U                                                                                                                                                              | 0.20 U                                                                                                                                                                         | 0.20 U                                                                                                                                      | 0.20 U                                                                                                                                                                             |
| 6/29/2016                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           | 0.20 U                                                                                                                                                            | 0.20 U                                                                                                                                                              | 0.20 U                                                                                                                                                                         | 0.20 U                                                                                                                                      | 0.20 U                                                                                                                                                                             |
| 12/22/2016                                                                                                                                                                                                                                | 20–30                                                                                                                                                                                                                                                                                                                                                                     | 0.20 U<br>0.20 U                                                                                                                                                  | 0.20 U<br>0.20 U                                                                                                                                                    | 0.20 U<br>0.20 U                                                                                                                                                               |                                                                                                                                             | 0.20 U<br>0.20 U                                                                                                                                                                   |
| 12/22/2016<br>6/29/2017                                                                                                                                                                                                                   | 20–30                                                                                                                                                                                                                                                                                                                                                                     | 0.20 U<br>0.20 U<br>0.20 U                                                                                                                                        | 0.20 U<br>0.20 U<br>0.20 U                                                                                                                                          | 0.20 U<br>0.20 U<br>0.20 U                                                                                                                                                     | 0.20 U<br>0.20 U                                                                                                                            | 0.20 U<br>0.20 U<br>0.20 U                                                                                                                                                         |
| 12/22/2016<br>6/29/2017<br>9/27/2019                                                                                                                                                                                                      | 20–30                                                                                                                                                                                                                                                                                                                                                                     | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                                                                              | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                                                                                | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                                                                                           | 0.20 U<br>0.20 U<br>0.20 U                                                                                                                  | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                                                                                               |
| 12/22/2016<br>6/29/2017<br>9/27/2019<br>2/4/2020                                                                                                                                                                                          | 20–30                                                                                                                                                                                                                                                                                                                                                                     | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                                                                    | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                                                                      | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                                                                                 | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                                                        | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.020 U                                                                                                                                    |
| 12/22/2016<br>6/29/2017<br>9/27/2019<br>2/4/2020<br>5/7/2020                                                                                                                                                                              | 20–30                                                                                                                                                                                                                                                                                                                                                                     | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                                                          | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                                                            | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                                                                       | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                                              | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.020 U<br>0.020 U                                                                                                                         |
| 12/22/2016<br>6/29/2017<br>9/27/2019<br>2/4/2020                                                                                                                                                                                          | 20–30                                                                                                                                                                                                                                                                                                                                                                     | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                                                                    | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                                                                      | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                                                                                 | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                                                        | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.020 U                                                                                                                                    |
| 12/22/2016<br>6/29/2017<br>9/27/2019<br>2/4/2020<br>5/7/2020<br>8/22/2024                                                                                                                                                                 | 20–30                                                                                                                                                                                                                                                                                                                                                                     | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                                                          | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                                                            | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                                                                       | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                                              | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.020 U<br>0.020 U                                                                                                                         |
| 12/22/2016<br>6/29/2017<br>9/27/2019<br>2/4/2020<br>5/7/2020<br>8/22/2024<br>9/15/2009                                                                                                                                                    | 20–30                                                                                                                                                                                                                                                                                                                                                                     | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                                                | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                                                  | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                                                             | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                                    | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.020 U<br>0.020 U<br>0.020 U                                                                                                              |
| 12/22/2016<br>6/29/2017<br>9/27/2019<br>2/4/2020<br>5/7/2020<br>8/22/2024                                                                                                                                                                 | 20–30                                                                                                                                                                                                                                                                                                                                                                     | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                                                | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                                                  | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                                                             | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                                    | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.020 U<br>0.020 U<br>0.020 U                                                                                                              |
| 12/22/2016<br>6/29/2017<br>9/27/2019<br>2/4/2020<br>5/7/2020<br>8/22/2024<br>9/15/2009                                                                                                                                                    | 20–30                                                                                                                                                                                                                                                                                                                                                                     | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                                                | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                                                  | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                                                             | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                                    | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.020 U<br>0.020 U<br>0.020 U                                                                                                              |
| 12/22/2016<br>6/29/2017<br>9/27/2019<br>2/4/2020<br>5/7/2020<br>8/22/2024<br>9/15/2009<br>12/16/2009                                                                                                                                      | 20–30                                                                                                                                                                                                                                                                                                                                                                     | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                                      | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                                        | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                                                   | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                          | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.020 U<br>0.020 U<br>0.020 U                                                                                                              |
| 12/22/2016<br>6/29/2017<br>9/27/2019<br>2/4/2020<br>5/7/2020<br>8/22/2024<br>9/15/2009<br>12/16/2009                                                                                                                                      | 20–30                                                                                                                                                                                                                                                                                                                                                                     | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.24<br>0.35<br>0.28                                                                        | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                              | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                               | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                          | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.020 U<br>0.020 U<br>0.020 U<br>0.20 U<br>0.20 U                                                                                          |
| 12/22/2016<br>6/29/2017<br>9/27/2019<br>2/4/2020<br>5/7/2020<br>8/22/2024<br>9/15/2009<br>12/16/2009<br>12/16/2009<br>5/24/2013                                                                                                           | 20–30                                                                                                                                                                                                                                                                                                                                                                     | 0.20 U                                                                                             | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                    | 0.20 U                                                                                            | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                          | 0.20 U 0.20 U 0.20 U 0.20 U 0.020 U 0.020 U 0.020 U 0.020 U 0.020 U 0.20 U 0.20 U 0.20 U                                                                                           |
| 12/22/2016<br>6/29/2017<br>9/27/2019<br>2/4/2020<br>5/7/2020<br>8/22/2024<br>9/15/2009<br>12/16/2009<br>12/16/2009<br>5/24/2013<br>6/24/2014<br>12/19/2014                                                                                | 20–30                                                                                                                                                                                                                                                                                                                                                                     | 0.20 U 0.24 0.35 0.28 0.20 U 0.20 U                                                                | 0.20 U 0.27 0.23 0.20 U 0.20 U                                                                | 0.20 U                                                                                     | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                | 0.20 U 0.20 U 0.20 U 0.20 U 0.020 U 0.020 U 0.020 U 0.020 U 0.020 U 0.20 U 0.20 U 0.20 U 0.20 U                                                                                    |
| 12/22/2016<br>6/29/2017<br>9/27/2019<br>2/4/2020<br>5/7/2020<br>8/22/2024<br>9/15/2009<br>12/16/2009<br>12/16/2009<br>5/24/2013<br>6/24/2014<br>12/19/2014<br>6/23/2015                                                                   | 20–30<br>32–42                                                                                                                                                                                                                                                                                                                                                            | 0.20 U 0.24 0.35 0.28 0.20 U 0.20 U 0.20 U                                                         | 0.20 U 0.27 0.23 0.20 U 0.20 U 0.20 U                                                         | 0.20 U                                                                       | 0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U<br>0.20 U                                                                | 0.20 U 0.20 U 0.20 U 0.20 U 0.020 U 0.020 U 0.020 U 0.020 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U                                                                              |
| 12/22/2016<br>6/29/2017<br>9/27/2019<br>2/4/2020<br>5/7/2020<br>8/22/2024<br>9/15/2009<br>12/16/2009<br>12/16/2009<br>5/24/2013<br>6/24/2014<br>12/19/2014<br>6/23/2015<br>12/8/2015                                                      |                                                                                                                                                                                                                                                                                                                                                                           | 0.20 U 0.24 0.35 0.28 0.20 U 0.20 U 0.20 U 0.20 U                                                  | 0.20 U 0.27 0.23 0.20 U 0.20 U 0.20 U 0.20 U                                                         | 0.20 U                                                         | 0.20 U                                                         | 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.020 U 0.020 U 0.020 U 0.20 U                                                          |
| 12/22/2016<br>6/29/2017<br>9/27/2019<br>2/4/2020<br>5/7/2020<br>8/22/2024<br>9/15/2009<br>12/16/2009<br>12/16/2009<br>5/24/2013<br>6/24/2014<br>12/19/2014<br>6/23/2015<br>12/8/2015<br>6/29/2016                                         |                                                                                                                                                                                                                                                                                                                                                                           | 0.20 U 0.24 0.35 0.28 0.20 U 0.20 U 0.20 U 0.20 U                                                  | 0.20 U 0.27 0.23 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U                                                  | 0.20 U                             | 0.20 U                                           | 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.020 U 0.020 U 0.020 U 0.20 U                              |
| 12/22/2016<br>6/29/2017<br>9/27/2019<br>2/4/2020<br>5/7/2020<br>8/22/2024<br>9/15/2009<br>12/16/2009<br>12/16/2009<br>5/24/2013<br>6/24/2014<br>12/19/2014<br>6/23/2015<br>12/8/2015<br>6/29/2016<br>12/21/2016                           |                                                                                                                                                                                                                                                                                                                                                                           | 0.20 U 0.24 0.35 0.28 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U                                           | 0.20 U 0.27 0.23 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U                                                  | 0.20 U               | 0.20 U                                                         | 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.020 U 0.020 U 0.020 U 0.20 U                |
| 12/22/2016<br>6/29/2017<br>9/27/2019<br>2/4/2020<br>5/7/2020<br>8/22/2024<br>9/15/2009<br>12/16/2009<br>12/16/2009<br>5/24/2013<br>6/24/2014<br>12/19/2014<br>6/23/2015<br>12/8/2015<br>6/29/2016<br>12/21/2016<br>6/28/2017              |                                                                                                                                                                                                                                                                                                                                                                           | 0.20 U 0.24 0.35 0.28 0.20 U               | 0.20 U 0.27 0.23 0.20 U        | 0.20 U        | 0.20 U                             | 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.020 U 0.020 U 0.020 U 0.020 U 0.20 U |
| 12/22/2016<br>6/29/2017<br>9/27/2019<br>2/4/2020<br>5/7/2020<br>8/22/2024<br>9/15/2009<br>12/16/2009<br>12/16/2009<br>5/24/2013<br>6/24/2014<br>12/19/2014<br>6/23/2015<br>12/8/2015<br>6/29/2016<br>12/21/2016<br>6/28/2017<br>9/27/2019 |                                                                                                                                                                                                                                                                                                                                                                           | 0.20 U 0.24 0.35 0.28 0.20 U | 0.20 U 0.27 0.23 0.20 U | 0.20 U | 0.20 U | 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.020 U 0.020 U 0.020 U 0.20 U  |
| 12/22/2016<br>6/29/2017<br>9/27/2019<br>2/4/2020<br>5/7/2020<br>8/22/2024<br>9/15/2009<br>12/16/2009<br>12/16/2009<br>5/24/2013<br>6/24/2014<br>12/19/2014<br>6/23/2015<br>12/8/2015<br>6/29/2016<br>12/21/2016<br>6/28/2017              |                                                                                                                                                                                                                                                                                                                                                                           | 0.20 U 0.24 0.35 0.28 0.20 U               | 0.20 U 0.27 0.23 0.20 U        | 0.20 U        | 0.20 U                             | 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.020 U 0.020 U 0.020 U 0.020 U 0.20 U        |
|                                                                                                                                                                                                                                           | 12/22/2016<br>4/5/2017<br>6/28/2017<br>10/10/2017<br>9/27/2019<br>2/3/2020<br>5/5/2020<br>7/25/2024<br>7/31/2024<br>8/22/2024<br>9/15/2009<br>9/15/2009<br>12/16/2009<br>5/24/2013<br>6/24/2014<br>12/19/2014<br>6/23/2015<br>12/8/2015<br>6/29/2016<br>12/22/2016<br>6/28/2017<br>9/27/2019<br>2/3/2020<br>5/6/2020<br>8/23/2024<br>9/15/2009<br>12/16/2009<br>5/24/2013 | Sample Date   (feet bgs)                                                                                                                                          | Sample Date   (feet bgs)   S0                                                                                                                                       | Sample Date   (feet bgs)   S0                                                                                                                                                  | Sample Date   (feet bgs)   SO                                                                                                               | Sample Date   (feet bgs)                                                                                                                                                           |

Table 2.2 Groundwater HVOC Results

|                |              |                    |          |                 | cis-1,2-       | trans-1,2-     |                |
|----------------|--------------|--------------------|----------|-----------------|----------------|----------------|----------------|
|                |              | Analyte            |          | Trichloroethene | Dichloroethene | Dichloroethene | Vinyl chloride |
|                |              | CAS No.            | 127-18-4 | 79-01-6         | 156-59-2       | 156-60-5       | 75-01-4        |
|                |              | CUL <sup>(1)</sup> |          | 0.38            | 16             |                | 0.020          |
|                |              | Unit               | μg/L     | μg/L            | μg/L           | μg/L           | μg/L           |
|                |              | Sample Depth/      |          |                 |                |                |                |
|                |              | Screen Interval    |          |                 |                |                |                |
| Sample Name    | Sample Date  | (feet bgs)         |          |                 |                |                |                |
| RMW-12         |              |                    |          |                 |                | T              |                |
| RMW-12D-072016 | 7/25/2016    |                    | 120      | 19              | 14             | 1.0 U          | 1.0 U          |
| RMW-12D-122016 | 12/21/2016   |                    | 61       | 14              | 21             | 0.34           | 1.6            |
| RMW-12D-062017 | 6/28/2017    |                    | 130      | 27              | 29             |                | 1.0 U          |
| RMW-12D-092019 | 9/27/2019    |                    | 15       | 3.1             | 6.5            | 0.20 U         | 0.87           |
| RMW-12D-022020 | 2/4/2020     | 15–25              | 13       | 3.7             | 6.1            | 0.20 U         | 2.8            |
| RMW-12D-052020 | 5/6/2020     | 13-23              | 19       | 4.6             | 5.4            | 0.20 U         | 0.50           |
| RMW-12-072524  | 7/25/2024    |                    | 9.6      | 1.7             | 1.2            | 0.20 U         | 0.20 U         |
| RMW-12-073124  | 7/31/2024    |                    | 8.2      | 1.7             | 1.5            | 0.20 U         | 0.22           |
| RMW-12-082224  | 8/22/2024    |                    | 8.8      | 1.8             | 1.4            | 0.20 U         | 0.19           |
| RMW-112-082224 | 8/22/2024    |                    | 9.2      | 1.9             | 1.4            | 0.20 U         | 0.21           |
| RMW-13         |              |                    |          |                 |                |                | •              |
| RMW-13D-072016 | 7/25/2016    |                    | 0.20 U   | 0.20 U          | 1.8            | 0.20 U         | 0.24           |
| RMW-13D-122016 | 12/22/2016   |                    | 0.20 U   | 0.20 U          | 1.2            | 0.20 U         | 0.20 U         |
| RMW-13D-062017 | 6/28/2017    |                    | 0.20 U   | 0.20 U          | 0.50           |                | 0.20 U         |
| RMW-13D-092019 | 9/27/2019    | 15 <b>–</b> 25     | 0.20 U   | 0.20 U          | 0.97           | 0.20 U         | 0.20 U         |
| RMW-13D-022020 | 2/3/2020     | 15 25              | 0.20 U   | 0.20 U          | 0.31           | 0.20 U         | 0.095          |
| RMW-13D-052020 | 5/5/2020     |                    | 0.20 U   | 0.20 U          | 0.30           | 0.20 U         | 0.060          |
|                |              |                    |          |                 |                |                |                |
| RMW-13-082224  | 8/22/2024    |                    | 0.20 U   | 0.20 U          | 0.48           | 0.20 U         | 0.16           |
| RMW-14         | F /F /0.555  |                    | 4.       |                 | • •            | 0.00::         | 0.17           |
| RMW-14D-052020 | 5/5/2020     | 15–25              | 15       | 5.6             | 4.0            | 0.20 U         | 0.15           |
| RMW-14-082224  | 8/22/2024    |                    | 9.8      | 2.7             | 0.58           | 0.20 U         | 0.032          |
| CDM-B14        | <u> </u>     | T                  |          |                 |                | ı              | T              |
| CDM-B14-W      | 4/3/2009     | 9–9                | 5.9      | 0.54            | 0.33           | 0.20 U         | 0.20 U         |
| CDM-B15        |              |                    |          |                 |                |                |                |
| CDM-B15-W      | 4/3/2009     | 10–10              | 3.9      | 1.8             | 1.4            | 0.20 U         | 0.20 U         |
| CDM-B16        |              |                    |          |                 |                |                |                |
| CDM-B16-W      | 4/3/2009     | 13–13              | 0.21     | 0.20 U          | 0.20 U         | 0.20 U         | 0.20 U         |
| CDM-B17        |              |                    |          |                 |                |                |                |
| CDM-B17-W      | 4/2/2009     | 11–11              | 0.20 U   | 0.20 U          | 0.20 U         | 0.20 U         | 0.20 U         |
| GWB-03         |              |                    |          |                 |                |                |                |
| GWB-03-15-20   | 9/4/2024     | 15–20              | 0.20 U   | 0.20 U          | 0.68           | 0.20 U         | 0.20 U         |
| GWB-03-20-25   | 9/4/2024     | 20–25              | 0.20 U   | 0.20 U          | 0.20 U         | 0.20 U         | 0.20 U         |
| GWB-03-25-30   | 9/4/2024     | 25–30              | 0.20 U   | 0.20 U          | 0.20 U         | 0.20 U         | 0.20 U         |
| GWB-04         |              |                    |          |                 |                |                |                |
| GWB-04-15-20   | 9/4/2024     | 15–20              | 0.20 U   | 0.50            | 3.6            | 0.20 U         | 1.4            |
| GWB-04-20-25   | 9/4/2024     | 20–25              | 0.63     | 0.61            | 7.1            | 0.20 U         | 0.20 U         |
| GWB-04-25-30   | 9/5/2024     | 25–30              | 0.20 U   | 0.20 U          | 0.32           | 0.20 U         | 0.20 U         |
| GWB-05         | 3/3/2024     | 23 30              | 0.20 0   | 0.20 0          | 0.52           | 0.20 0         | 0.20 0         |
| GWB-05-20-25   | 9/5/2024     | 20–25              | 1.2      | 1.5             | 12             | 0.20 U         | 0.20 U         |
| GWB-05-25-30   | 9/5/2024     | 25–30              | 8.6      | 21              | 2.6            | 0.20 U         | 0.20 U         |
| GWB-06         | 3/3/2024     | 23-30              | 8.0      | 21              | 2.0            | 0.20 0         | 0.20 0         |
|                | 0/5/2024     | 20.25              | 11       | 10              | 21             | 0.47           | 0.42           |
| GWB-06-20-25   | 9/5/2024     | 20–25              | 11       | 18              | 21             | 0.47           | 0.43           |
| GWB-06-25-30   | 9/5/2024     | 25–30              | 18       | 18              | 11             | 0.29           | 0.20 U         |
| GWB-07         | 0/6/222      | 25.42              | 0.00.11  | 0.22.11         | 0.00 ::        | 0.22.11        | 0.32 ::        |
| GWB-07-35-40   | 9/6/2024     | 35–40              | 0.20 U   | 0.20 U          | 0.20 U         | 0.20 U         | 0.20 U         |
| GWB-07-40-45   | 9/6/2024     | 40–45              | 0.26     | 0.20 U          | 0.20 U         | 0.20 U         | 0.20 U         |
| GWB-08-15-25   | - In In-     |                    |          |                 |                | T              |                |
| GWB-08-15-25   | 9/5/2024     | 15–25              | 0.20 U   | 0.20 U          | 0.20 U         | 0.20 U         | 0.29           |
| RB-25          |              |                    |          |                 |                | T              | •              |
| RB-25-102018   | 10/24/2018   | 15–25              | 200      | 88              | 92             |                | 1.0            |
| RB-26          |              |                    |          |                 |                |                |                |
| RB-26-102018   | 10/24/2018   | 15–25              | 2.4      | 1.6             | 3.5            |                | 0.020 U        |
| RB-27          |              |                    |          |                 |                |                |                |
| RB-27-102018   | 10/24/2018   | 15–25              | 29       | 19              | 7.1            |                | 1.0            |
| RB-28          |              |                    |          |                 |                |                |                |
| RB-28-102018   | 10/24/2018   | 10–20              | 15       | 6.4             | 4.7            |                | 0.34           |
| RB-29          |              |                    |          |                 |                |                |                |
| RB-29-102018   | 10/24/2018   | 15–25              | 2.6      | 1.0             | 1.4            |                | 0.020 U        |
| RB-30          | , ,          |                    |          |                 |                |                |                |
| RB-30-102018   | 10/24/2018   | 15–25              | 0.56     | 1.3             | 8.1            |                | 0.28           |
| RB-31          | 10, 27, 2010 |                    | 0.50     | 2.5             | J.1            |                | <u> </u>       |
| RB-31-102018   | 10/25/2018   | 15–25              | 63       | 11              | 43             |                | 13             |
|                | 10/25/2018   | 13-72              | 05       | 11              | 45             |                | 15             |
| RB-32          | 10/25/2010   | 15 25              | 440      | 44              | 70             | I              | 0.020.11       |
| RB-32-102018   | 10/25/2018   | 15–25              | 110      | 44              | 76             |                | 0.020 U        |
| UCCB-5         | 2/22/22:=    | 40.55              | 0.00     | 0.00            | 0.00.11        | 0.00           | 0.00           |
| UCCB5-15-GW    | 3/22/2017    | 10–20              | 0.20 U   | 0.20 U          | 0.20 U         | 0.20 U         | 0.20 U         |
| UCCB5-32-GW    | 3/22/2017    | 29–34              | 4.2      | 0.20 U          | 0.20 U         | 0.20 U         | 0.20 U         |
| UCCB5-43-GW    | 3/22/2017    | 40–45              | 1.5      | 0.20 U          | 0.20 U         | 0.20 U         | 0.20 U         |

Table 2.2
Groundwater HVOC Results

|             |             |                 |                   |                 | cis-1,2-       | trans-1,2-     |                |
|-------------|-------------|-----------------|-------------------|-----------------|----------------|----------------|----------------|
|             |             | Analyte         | Tetrachloroethene | Trichloroethene | Dichloroethene | Dichloroethene | Vinyl chloride |
|             |             | CAS No.         | 127-18-4          | 79-01-6         | 156-59-2       | 156-60-5       | 75-01-4        |
|             |             | CUL (1)         | 4.9               | 0.38            | 16             |                | 0.020          |
|             |             | Unit            | μg/L              | μg/L            | μg/L           | μg/L           | μg/L           |
|             |             | Sample Depth/   |                   |                 |                |                |                |
|             |             | Screen Interval |                   |                 |                |                |                |
| Sample Name | Sample Date | (feet bgs)      |                   |                 |                |                |                |
| UCCB-6      | _           |                 |                   |                 |                |                |                |
| UCCB6-9-GW  | 3/23/2017   | 7–12            | 0.20 U            | 0.20 U          | 0.20 U         | 0.20 U         | 0.20 U         |
| UCCB6-22-GW | 3/23/2017   | 20–25           | 0.20 U            | 0.20 U          | 0.20 U         | 0.20 U         | 0.20 U         |
| UCCB6-36-GW | 3/23/2017   | 33–38           | 0.20 U            | 0.20 U          | 0.20 U         | 0.20 U         | 0.20 U         |
| UCCB-7      |             |                 |                   |                 |                |                |                |
| UCCB7-17-GW | 3/23/2017   | 14–19           | 0.20 U            | 0.20 U          | 0.20 U         | 0.20 U         | 0.20 U         |
| UCCB7-28-GW | 3/23/2017   | 25–30           | 0.20 U            | 0.20 U          | 0.20 U         | 0.20 U         | 0.20 U         |
| UCCB7-38-GW | 3/23/2017   | 35–40           | 0.20 U            | 0.20 U          | 0.20 U         | 0.20 U         | 0.20 U         |
| UCCB-9      |             |                 |                   |                 |                |                |                |
| UCCB9-18-GW | 3/22/2017   | 15–20           | 0.20 U            | 0.20 U          | 0.20 U         | 0.20 U         | 0.20 U         |
| UCCB9-31-GW | 3/22/2017   | 28–33           | 0.61              | 0.20 U          | 0.20 U         | 0.20 U         | 0.20 U         |
| UCCB9-41-GW | 3/23/2017   | 39–44           | 0.20 U            | 0.20 U          | 0.20 U         | 0.20 U         | 0.20 U         |

#### Notes:

All results are rounded to two significant figures.

Blank cells are intentional.

-- Not established.

Italic Analyte was not detected at a reporting limit greater than the CUL.

**RED/BOLD** Analyte was detected at a concentration greater than the CUL.

1 CULs are established in the Cleanup Action Plan (Exhibit B of Ecology 2023).

#### Abbreviations:

bgs Below ground surface

CAS Chemical Abstracts Service

CUL Cleanup level

HVOC Halogenated volatile organic compound

μg/L Micrograms per liter

# Qualifier:

U Analyte was not detected at the associate reporting limit.

F L O Y D | S N I D E R

Table 2.3
Groundwater Geochemical Parameter Results

|                        | Analyte     | Dissolved Oxygen | ORP    | рН   | Specific Conductance | Temperature | Turbidity | Alkalinity, Total       | Chloride   | Nitrate    | Nitrite    | Sulfate      | Sulfide    |
|------------------------|-------------|------------------|--------|------|----------------------|-------------|-----------|-------------------------|------------|------------|------------|--------------|------------|
|                        | CAS No.     |                  |        | рН   |                      |             |           |                         | 16887-00-6 | 14797-55-8 | 14797-65-0 | 14808-79-8   | 18496-25-8 |
|                        | Unit        | mg/L             | mV     | рН   | μS/cm                | °C          | NTU       | mg-CaCO <sub>3</sub> /L | mg/L       | mg-N/L     | mg-N/L     | mg/L         | mg/L       |
| Sample Location        | Sample Date |                  |        |      |                      |             |           |                         |            |            |            |              |            |
| Extraction Wells       |             |                  |        |      |                      |             |           |                         |            | _          |            |              |            |
| EW-1                   | 8/23/2024   | 0.36             | 168.3  | 6.43 | 240.0                | 14.9        | 1.10      |                         |            |            |            |              |            |
| EW-2                   | 8/23/2024   | 0.68             | 23.1   | 6.47 | 246.5                | 14.4        | 7.45      |                         |            |            |            |              |            |
| EW-3                   | 8/22/2024   | 0.22             | -6.8   | 6.36 | 437.8                | 14.7        | 2.90      | 220 J                   | 31 J       | 0.16       | 0.020 U    | 12           | 0.080      |
| EW-4                   | 8/23/2024   | 0.25             | -31.6  | 6.57 | 377.7                | 14.7        | 16.10     |                         |            |            |            |              |            |
|                        | 7/25/2024   | 0.24             | 81.5   | 6.92 | 262.3                | 16.1        | 1.99      |                         |            |            |            |              |            |
| EW-5                   | 7/31/2024   | 0.26             | 114.3  | 7.10 | 260.1                | 16.8        | 0.87      |                         |            |            |            |              |            |
|                        | 8/23/2024   | 0.41             | -47.5  | 6.89 | 252.5                | 16.1        | 0.81      |                         |            |            |            |              | <u> </u>   |
|                        | 7/25/2024   | 2.12             | 88.1   | 6.43 | 212.0                | 15.8        | 2.64      |                         |            |            |            |              |            |
| EW-6                   | 7/31/2024   | 2.15             | 88.6   | 6.52 | 207.2                | 16.3        | 2.37      |                         |            |            |            |              |            |
|                        | 8/23/2024   | 1.18             | 126.8  | 6.35 | 224.0                | 16.7        | 1.40      |                         |            |            |            |              |            |
| Monitoring Wells       |             |                  |        |      |                      |             |           |                         |            |            |            |              |            |
| RMW-4                  | 8/23/2024   | 0.37             | -78.1  | 6.27 | 394.2                | 14.8        | 0.97      |                         |            |            |            |              |            |
| RMW-5                  | 8/22/2024   | 0.22             | -80.8  | 6.50 | 540.0                | 15.6        | 1.24      | 210 J                   | 14 J       | 0.21       | 0.020 U    | 18           | 0.050 U    |
| RMW-6                  | 8/22/2024   | 0.56             | -98.7  | 6.68 | 510.0                | 14.8        | 3.43      | 280 J                   | 28 J       | 0.13       | 0.020 U    | 5.0 U        | 0.050 U    |
|                        | 7/25/2024   | 0.24             | -3.6   | 6.66 | 418.7                | 16.7        | 1.86      |                         |            |            |            |              |            |
| RMW-7                  | 7/31/2024   | 0.27             | 4.6    | 6.69 | 440.9                | 17.6        | 1.25      |                         |            |            |            |              |            |
|                        | 8/22/2024   | 0.22             | 13.7   | 6.38 | 400.8                | 17.7        | 0.97      | 190 J                   | 15 J       | 0.19       | 0.020 U    | 14           | 0.050 U    |
| RMW-8                  | 8/23/2024   | 0.40             | -83.1  | 6.22 | 659.0                | 15.1        | 2.12      |                         |            |            |            |              |            |
| RMW-9R                 | 8/22/2024   | 5.00             | 166.4  | 5.95 | 506.0                | 16.6        | 0.60      | 40 J                    | 140 J      | 2.6        | 0.020 U    | 23           | 0.050 U    |
| RMW-10D                | 8/23/2024   | 2.39             | 161.8  | 6.24 | 217.9                | 15.2        | 1.13      |                         |            | -          |            | -            |            |
|                        | 7/25/2024   | 0.48             | 113.0  | 6.16 | 380.0                | 15.1        | 1.77      |                         |            |            |            |              |            |
| RMW-12                 | 7/31/2024   | 0.36             | 140.4  | 6.11 | 385.0                | 16.2        | 7.64      |                         |            |            |            |              |            |
|                        | 8/22/2024   | 0.36             | 125.0  | 6.00 | 420.8                | 16.3        | 1.26      | 190 J                   | 34 J       | 0.052      | 0.020 U    | 16           | 0.050 U    |
| RMW-13                 | 8/22/2024   | 0.31             | -7.6   | 6.32 | 399.7                | 17.9        | 1.35      | 200 J                   | 14 J       | 0.21       | 0.020 U    | 34           | 0.050 U    |
| RMW-14                 | 8/22/2024   | 0.34             | -6.9   | 6.34 | 339.1                | 15.8        | 1.50      | 160 J                   | 12 J       | 0.97       | 0.020 U    | 20           | 0.050 U    |
| Reconnaissance Samples |             |                  |        |      |                      |             |           |                         |            |            |            |              |            |
| GWB-03-15-20           | 9/4/2024    | 3.95             | -41.7  | 6.70 | 294.3                | 19.7        | 80.30     |                         |            |            |            |              |            |
| GWB-03-20-25           | 9/4/2024    | 4.58             | -72.8  | 7.10 | 314.2                | 20.1        | 454.00    |                         |            |            |            |              |            |
| GWB-03-25-30           | 9/4/2024    | 0.46             | -207.4 | 7.99 | 301.9                | 19.1        | 368.00    |                         |            |            |            |              |            |
| GWB-04-15-20           | 9/4/2024    | 3.12             | -34.6  | 6.55 | 545.0                | 24.6        | 7.15      |                         |            |            |            |              |            |
| GWB-04-20-25           | 9/4/2024    | 5.04             | -49.9  | 7.25 | 322.8                | 23.8        | 47.30     |                         |            |            |            |              |            |
| GWB-04-25-30           | 9/5/2024    | 2.54             | -54.0  | 6.99 | 303.3                | 24.8        | 49.30     |                         |            |            |            |              |            |
| GWB-05-20-25           | 9/5/2024    | 3.53             | -27.4  | 6.69 | 280.6                | 21.9        | 40.00     |                         |            |            |            | 1            |            |
| GWB-05-25-30           | 9/5/2024    | 2.74             | -48.1  | 6.87 | 284.5                | 23.1        | 41.80     |                         |            |            |            | 1            |            |
| GWB-06-20-25           | 9/5/2024    | 3.74             | 4.1    | 6.70 | 303.4                | 24.2        | 47.40     |                         |            |            |            | 1            |            |
| GWB-06-25-30           | 9/5/2024    | 3.96             | -35.3  | 6.83 | 302.4                | 23.7        | 61.70     |                         |            |            |            | 1            |            |
| GWB-07-35-40           | 9/6/2024    | 2.64             | -99.4  | 8.24 | 256.1                | 24.7        | 181.00    |                         |            |            |            | 1            |            |
| GWB-08-15-25           | 9/5/2024    | 2.70             | -67.4  | 6.84 | 497.2                | 24.1        | 48.00     |                         |            |            |            | <del> </del> | t e        |
| 2,12 00 10 10          | 3/3/232 :   | 2.70             | 57.11  | 3.01 | 137.12               |             |           | 1                       |            | 1          | 1          | 1            | 1          |

Notes:

All chemistry results are rounded to two significant figures. Field parameters are reported as displayed by the instrument. Blank cells are intentional.

-- Not established.

Abbreviations:

°C Degrees Celsius

CAS Chemical Abstracts Service

μg/L Micrograms per liter

μS/cm Microsiemens per centimeter

mg-CaCO<sub>3</sub>/L Milligrams of calcium carbonate per liter

Qualifier:

- J Analyte was detected; concentration is an estimate.
- U Analyte was not detected at the associate reporting limit.
- UJ Analyte was not detected at the associate reporting limit, which is an estimate.

mg-N/L Milligrams of nitrogen per liter

mg/L Milligrams per liter mV Millivolts

NTU Nephelometric turbidity units

ORP Oxidation–reduction potential

Riverside HVOC Site

F L O Y D | S N I D E R

Table 2.3
Groundwater Geochemical Parameter Results

|                        | Analyte     | Total Organic Carbon | Ethane  | Ethene  | Methane | Calcium   | Iron      | Magnesium | Calcium   | Iron      | Magnesium |
|------------------------|-------------|----------------------|---------|---------|---------|-----------|-----------|-----------|-----------|-----------|-----------|
|                        | CAS No.     | TOC                  | 74-84-0 | 74-85-1 | 74-82-8 | 7440-70-2 | 7439-89-6 | 7439-95-4 | 7440-70-2 | 7439-89-6 | 7439-95-4 |
|                        | Unit        | mg/L                 | μg/L    | μg/L    | μg/L    | μg/L      | μg/L      | μg/L      | μg/L      | μg/L      | μg/L      |
| Sample Location        | Sample Date |                      |         |         |         |           |           |           |           |           |           |
| Extraction Wells       |             |                      |         |         |         |           |           |           |           |           |           |
| EW-1                   | 8/23/2024   |                      |         |         |         |           |           |           |           |           |           |
| EW-2                   | 8/23/2024   |                      |         |         |         |           |           |           |           |           |           |
| EW-3                   | 8/22/2024   | 5.8                  | 0.56 UJ | 0.58 UJ | 410     | 50,000    | 13,000    | 20,000    | 45,000    | 14,000    | 19,000    |
| EW-4                   | 8/23/2024   |                      |         |         |         |           |           |           |           |           |           |
|                        | 7/25/2024   |                      |         |         |         |           |           |           |           |           |           |
| EW-5                   | 7/31/2024   |                      |         |         |         |           |           |           |           |           |           |
|                        | 8/23/2024   |                      |         |         |         |           |           |           |           |           |           |
|                        | 7/25/2024   |                      |         |         |         |           |           |           |           |           |           |
| EW-6                   | 7/31/2024   |                      |         |         |         |           |           |           |           |           |           |
|                        | 8/23/2024   |                      |         |         |         |           |           |           |           |           |           |
| Monitoring Wells       |             |                      |         |         |         |           |           |           |           |           |           |
| RMW-4                  | 8/23/2024   |                      |         |         |         |           |           |           |           |           |           |
| RMW-5                  | 8/22/2024   | 11                   | 0.56 UJ | 0.58 UJ | 1,300   | 37,000    | 18,000    | 15,000    | 39,000    | 24,000    | 14,000    |
| RMW-6                  | 8/22/2024   | 11                   | 0.56 UJ | 0.58 UJ | 2,200   | 54,000    | 31,000    | 19,000    | 53,000    | 31,000    | 19,000    |
|                        | 7/25/2024   |                      |         |         |         |           |           |           |           |           |           |
| RMW-7                  | 7/31/2024   |                      |         |         |         |           |           |           |           |           |           |
|                        | 8/22/2024   | 3.9                  | 0.56 UJ | 0.58 UJ | 580     | 49,000    | 3,900     | 11,000    | 49,000    | 4,100     | 11,000    |
| RMW-8                  | 8/23/2024   |                      |         |         |         |           |           |           |           |           |           |
| RMW-9R                 | 8/22/2024   | 1.0 U                | 0.56 UJ | 0.58 UJ | 0.55 U  | 40,000    | 56 U      | 17,000    | 38,000    | 50 U      | 17,000    |
| RMW-10D                | 8/23/2024   |                      |         |         |         |           |           |           |           |           |           |
|                        | 7/25/2024   |                      |         |         |         |           |           |           |           |           |           |
| RMW-12                 | 7/31/2024   |                      |         |         |         |           |           |           |           |           |           |
|                        | 8/22/2024   | 4.4                  | 0.56 UJ | 0.58 UJ | 76      | 52,000    | 94        | 15,000    | 51,000    | 220       | 13,000    |
| RMW-13                 | 8/22/2024   | 4.9                  | 0.56 UJ | 0.58 UJ | 26      | 65,000    | 1,900     | 14,000    | 64,000    | 1,900     | 14,000    |
| RMW-14                 | 8/22/2024   | 2.4                  | 0.56 UJ | 0.58 UJ | 820     | 44,000    | 2,200     | 14,000    | 38,000    | 2,400     | 13,000    |
| Reconnaissance Samples |             |                      |         |         |         |           |           |           |           |           |           |
| GWB-03-15-20           | 9/4/2024    |                      |         |         |         |           |           |           |           |           |           |
| GWB-03-20-25           | 9/4/2024    |                      |         |         |         |           |           |           |           |           |           |
| GWB-03-25-30           | 9/4/2024    |                      |         |         |         |           |           |           |           |           |           |
| GWB-04-15-20           | 9/4/2024    |                      |         |         |         |           |           |           |           |           |           |
| GWB-04-20-25           | 9/4/2024    |                      |         |         |         |           |           |           |           |           |           |
| GWB-04-25-30           | 9/5/2024    |                      |         |         |         |           |           |           |           |           |           |
| GWB-05-20-25           | 9/5/2024    |                      |         |         |         |           |           |           |           |           |           |
| GWB-05-25-30           | 9/5/2024    |                      |         |         |         |           |           |           |           |           |           |
| GWB-06-20-25           | 9/5/2024    |                      |         |         |         |           |           |           |           |           |           |
| GWB-06-25-30           | 9/5/2024    |                      |         |         |         |           |           |           |           |           |           |
| GWB-07-35-40           | 9/6/2024    |                      |         |         |         |           |           |           |           |           |           |
| GWB-08-15-25           | 9/5/2024    |                      |         |         |         |           |           |           |           |           |           |

Notes:

All chemistry results are rounded to two significant figures. Field parameters are reported as displayed by the instrument.

Blank cells are intentional.

-- Not established.

Abbreviations:

°C Degrees Celsius

CAS Chemical Abstracts Service

μg/L Micrograms per liter

μS/cm Microsiemens per centimeter

mg-CaCO<sub>3</sub>/L Milligrams of calcium carbonate per liter

Qualifier:

J Analyte was detected; concentration is an estimate.

U Analyte was not detected at the associate reporting limit.

UJ Analyte was not detected at the associate reporting limit, which is an estimate.

Table 2.3

Table 2.4
Soil HVOC Results

| Soil HVOC Results                                                                                                                  |                                                                                                                        |                                                                                            |                                                                                             |                                                                                                           |                                                                                               |                                                                                                     |                                                                                               |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|--|
|                                                                                                                                    |                                                                                                                        |                                                                                            |                                                                                             |                                                                                                           | cis-1,2-                                                                                      | trans-1,2-                                                                                          |                                                                                               |  |  |  |
|                                                                                                                                    |                                                                                                                        | Analyte                                                                                    | Tetrachloroethene                                                                           | Trichloroethene                                                                                           | Dichloroethene                                                                                | Dichloroethene                                                                                      | Vinyl chloride                                                                                |  |  |  |
|                                                                                                                                    |                                                                                                                        | CAS No.                                                                                    | 127-18-4                                                                                    | 79-01-6                                                                                                   | 156-59-2                                                                                      | 156-60-5                                                                                            | 75-01-4                                                                                       |  |  |  |
|                                                                                                                                    |                                                                                                                        | CUL (1)                                                                                    | 0.05                                                                                        | 0.03                                                                                                      | 160                                                                                           |                                                                                                     | 0.67                                                                                          |  |  |  |
|                                                                                                                                    |                                                                                                                        | Unit<br>Sample Depth                                                                       | mg/kg                                                                                       | mg/kg                                                                                                     | mg/kg                                                                                         | mg/kg                                                                                               | mg/kg                                                                                         |  |  |  |
| Sample Name                                                                                                                        | Sample Date                                                                                                            | (feet bgs)                                                                                 |                                                                                             |                                                                                                           |                                                                                               |                                                                                                     |                                                                                               |  |  |  |
| EW-5D-18                                                                                                                           | 10/11/2016                                                                                                             | 18–18                                                                                      | 0.00092 U                                                                                   | 0.00092 U                                                                                                 | 0.0015                                                                                        | 0.00092 U                                                                                           | 0.00092 U                                                                                     |  |  |  |
| EW-5D-21                                                                                                                           | 10/11/2016                                                                                                             | 21–21                                                                                      | 0.00081 U                                                                                   | 0.00081 U                                                                                                 | 0.0023                                                                                        | 0.00081 U                                                                                           | 0.0020                                                                                        |  |  |  |
| EW-6D-19                                                                                                                           | 10/12/2016                                                                                                             | 19–19                                                                                      | 0.00070 U                                                                                   | 0.00070 U                                                                                                 | 0.00070 U                                                                                     | 0.00070 U                                                                                           | 0.00070 U                                                                                     |  |  |  |
| EW-6D-21                                                                                                                           | 10/12/2016                                                                                                             | 21–21                                                                                      | 0.0038                                                                                      | 0.0052                                                                                                    | 0.050                                                                                         | 0.0014 U                                                                                            | 0.0028                                                                                        |  |  |  |
| RMW-12D-5'                                                                                                                         | 9/22/2016                                                                                                              | 5–5                                                                                        | 0.00088 U                                                                                   | 0.00088 U                                                                                                 | 0.00088 U                                                                                     | 0.00088 U                                                                                           | 0.00088 U                                                                                     |  |  |  |
| RMW-12D-12.5'                                                                                                                      | 9/22/2016                                                                                                              | 12.5–12.5                                                                                  | 0.012                                                                                       | 0.0061                                                                                                    | 0.0029                                                                                        | 0.00091 U                                                                                           | 0.00091 U                                                                                     |  |  |  |
| RMW-12D-17.5'                                                                                                                      | 9/22/2016                                                                                                              | 17.5–17.5                                                                                  | 0.024                                                                                       | 0.0025                                                                                                    | 0.0011                                                                                        | 0.00099 U                                                                                           | 0.00099 U                                                                                     |  |  |  |
| RMW-12D-22.5'                                                                                                                      | 9/22/2016                                                                                                              | 22.5–22.5                                                                                  | 0.59                                                                                        | 0.0058                                                                                                    | 0.0010 U                                                                                      | 0.0010 U                                                                                            | 0.0010 U                                                                                      |  |  |  |
| RMW-13D-5'<br>RMW-13D-12.5'                                                                                                        | 9/22/2016                                                                                                              | 5–5<br>12.5–12.5                                                                           | 0.00092 U<br>0.0015 U                                                                       | 0.00092 U<br>0.0015 U                                                                                     | 0.00092 U<br>0.0015 U                                                                         | 0.00092 U<br>0.0015 U                                                                               | 0.00092 U<br>0.0015 U                                                                         |  |  |  |
| RMW-13D-17.5'                                                                                                                      | 9/22/2016<br>9/22/2016                                                                                                 | 17.5–17.5                                                                                  | 0.0013 U                                                                                    | 0.0013 U                                                                                                  | 0.0013 0                                                                                      | 0.0013 U                                                                                            | 0.0015 U                                                                                      |  |  |  |
| RMW-13D-22.5'                                                                                                                      | 9/22/2016                                                                                                              | 22.5–22.5                                                                                  | 0.0010 U                                                                                    | 0.0010 U                                                                                                  | 0.0014<br>0.0010 U                                                                            | 0.0010 U                                                                                            | 0.0010 U                                                                                      |  |  |  |
| RMW-14:6ft                                                                                                                         | 4/27/2020                                                                                                              | 6–6                                                                                        | 0.00077 U                                                                                   | 0.00077 U                                                                                                 | 0.00077 U                                                                                     | 0.00077 U                                                                                           | 0.00077 U                                                                                     |  |  |  |
| RMW-14:11.5ft                                                                                                                      | 4/27/2020                                                                                                              | 11.5–11.5                                                                                  | 0.0073                                                                                      | 0.00080 U                                                                                                 | 0.00080 U                                                                                     | 0.00080 U                                                                                           | 0.00080 U                                                                                     |  |  |  |
| RMW-14:15ft                                                                                                                        | 4/27/2020                                                                                                              | 15–15                                                                                      | 0.00093                                                                                     | 0.00075 U                                                                                                 | 0.00075 U                                                                                     | 0.00075 U                                                                                           | 0.00075 U                                                                                     |  |  |  |
| RMW-14:20ft                                                                                                                        | 4/27/2020                                                                                                              | 20–20                                                                                      | 0.0012                                                                                      | 0.00074 U                                                                                                 | 0.00074 U                                                                                     | 0.00074 U                                                                                           | 0.00074 U                                                                                     |  |  |  |
| RMW-14:21.5ft                                                                                                                      | 4/27/2020                                                                                                              | 21.5–21.5                                                                                  | 0.13                                                                                        | 0.27                                                                                                      | 0.029                                                                                         | 0.0012                                                                                              | 0.0017                                                                                        |  |  |  |
| RMW-14:26ft                                                                                                                        | 4/27/2020                                                                                                              | 26–26                                                                                      | 0.0014                                                                                      | 0.00087                                                                                                   | 0.00086 U                                                                                     | 0.00086 U                                                                                           | 0.00086 U                                                                                     |  |  |  |
| CDM-B15-10                                                                                                                         | 4/3/2009                                                                                                               | 10–10                                                                                      | 0.027                                                                                       | 0.0017 U                                                                                                  | 0.0017 U                                                                                      | 0.0017 U                                                                                            | 0.0017 U                                                                                      |  |  |  |
| CDM-B16-13                                                                                                                         | 4/3/2009                                                                                                               | 13–13                                                                                      | 0.0041                                                                                      | 0.0010 U                                                                                                  | 0.0010 U                                                                                      | 0.0010 U                                                                                            | 0.0010 U                                                                                      |  |  |  |
| R-3-8                                                                                                                              | 2/12/2008                                                                                                              | 8–8                                                                                        | 0.0057 U                                                                                    |                                                                                                           |                                                                                               |                                                                                                     |                                                                                               |  |  |  |
| R-4-8<br>RB-25-13                                                                                                                  | 2/12/2008                                                                                                              | 8–8<br>13–13                                                                               | 0.0090<br><b>0.46</b>                                                                       | 0.052                                                                                                     | 0.0016 U                                                                                      |                                                                                                     | 0.0016 U                                                                                      |  |  |  |
| RB-26-8.5                                                                                                                          | 10/24/2018                                                                                                             | 8.5–8.5                                                                                    | 0.00094 U                                                                                   | 0.0094 U                                                                                                  | 0.0016 U                                                                                      |                                                                                                     | 0.0016 U                                                                                      |  |  |  |
| RB-27-10                                                                                                                           | 10/24/2018                                                                                                             | 10–10                                                                                      | 0.0011 U                                                                                    | 0.00034 U                                                                                                 | 0.00034 U                                                                                     |                                                                                                     | 0.0011 U                                                                                      |  |  |  |
| RB-28-10                                                                                                                           | 10/24/2018                                                                                                             | 10-10                                                                                      | 0.0017                                                                                      | 0.00078 U                                                                                                 | 0.00011 U                                                                                     |                                                                                                     | 0.00078 U                                                                                     |  |  |  |
| RB-29-8                                                                                                                            | 10/24/2018                                                                                                             | 8–8                                                                                        | 0.00082 U                                                                                   | 0.00082 U                                                                                                 | 0.00082 U                                                                                     |                                                                                                     | 0.00082 U                                                                                     |  |  |  |
| RB-30-9                                                                                                                            | 10/24/2018                                                                                                             | 9–9                                                                                        | 0.00077 U                                                                                   | 0.00077 U                                                                                                 | 0.00077 U                                                                                     |                                                                                                     | 0.00077 U                                                                                     |  |  |  |
| RB-31-7.75                                                                                                                         | 10/24/2018                                                                                                             | 7.75–7.75                                                                                  | 0.0010 U                                                                                    | 0.0010 U                                                                                                  | 0.0010 U                                                                                      |                                                                                                     | 0.0010 U                                                                                      |  |  |  |
| RB-32-15                                                                                                                           | 10/24/2018                                                                                                             | 15–15                                                                                      | 0.00080 U                                                                                   | 0.00080 U                                                                                                 | 0.00080 U                                                                                     |                                                                                                     | 0.00080 U                                                                                     |  |  |  |
| KSB-1:12ft                                                                                                                         | 2/24/2020                                                                                                              | 12–12                                                                                      | 0.00099 U                                                                                   | 0.00099 U                                                                                                 | 0.00099 U                                                                                     | 0.00099 U                                                                                           | 0.0014 U                                                                                      |  |  |  |
| KSB-1:15ft                                                                                                                         | 2/24/2020                                                                                                              | 15–15                                                                                      | 0.0013 U                                                                                    | 0.0013 U                                                                                                  | 0.0014                                                                                        | 0.0013 U                                                                                            | 0.0018 U                                                                                      |  |  |  |
| KSB-1:23ft                                                                                                                         | 2/24/2020                                                                                                              | 23–23                                                                                      | 0.0052                                                                                      | 0.00094 U                                                                                                 | 0.00094 U                                                                                     | 0.00094 U                                                                                           | 0.0013 U                                                                                      |  |  |  |
| KSB-2:12ft<br>KSB-2:18.75ft                                                                                                        | 2/24/2020<br>2/24/2020                                                                                                 | 12–12<br>18.75–18.75                                                                       | 0.0017<br>0.0051                                                                            | 0.00096 U<br>0.0012                                                                                       | 0.00096 U<br>0.00093 U                                                                        | 0.00096 U<br>0.00093 U                                                                              | 0.0013 U<br>0.00093 U                                                                         |  |  |  |
| KSB-2:25ft                                                                                                                         | 2/24/2020                                                                                                              | 25–25                                                                                      | 0.055                                                                                       | 0.0012                                                                                                    | 0.00093 U                                                                                     | 0.00093 U                                                                                           | 0.00093 U                                                                                     |  |  |  |
| KSB-3:11.5ft                                                                                                                       | 2/24/2020                                                                                                              | 11.5–11.5                                                                                  | 0.0074                                                                                      | 0.00095 U                                                                                                 | 0.00095 U                                                                                     | 0.00095 U                                                                                           | 0.0012 U                                                                                      |  |  |  |
| KSB-3:19ft                                                                                                                         | 2/24/2020                                                                                                              | 19–19                                                                                      | 0.058                                                                                       | 0.029                                                                                                     | 0.033                                                                                         | 0.0010 U                                                                                            | 0.0048                                                                                        |  |  |  |
| KSB-3:25.5ft                                                                                                                       | 2/24/2020                                                                                                              | 25.5–25.5                                                                                  | 1.0                                                                                         | 0.0061                                                                                                    | 0.00090 U                                                                                     | 0.00090 U                                                                                           | 0.0013 U                                                                                      |  |  |  |
| KSB-4:12ft                                                                                                                         | 2/24/2020                                                                                                              | 12–12                                                                                      | 0.021                                                                                       | 0.00089 U                                                                                                 | 0.00089 U                                                                                     | 0.00089 U                                                                                           | 0.0013 U                                                                                      |  |  |  |
| KSB-4:23.5ft                                                                                                                       | 2/24/2020                                                                                                              | 23.5–23.5                                                                                  | 0.0028                                                                                      | 0.00085 U                                                                                                 | 0.00085 U                                                                                     | 0.00085 U                                                                                           | 0.0012 U                                                                                      |  |  |  |
| KSB-4:30ft                                                                                                                         | 2/24/2020                                                                                                              | 30–30                                                                                      | 0.13                                                                                        | 0.0018                                                                                                    | 0.00096 U                                                                                     | 0.00096 U                                                                                           | 0.0013 U                                                                                      |  |  |  |
| KSB-5:8ft                                                                                                                          | 2/24/2020                                                                                                              | 8–8                                                                                        | 0.0011                                                                                      | 0.00085 U                                                                                                 | 0.00085 U                                                                                     | 0.00085 U                                                                                           | 0.0012 U                                                                                      |  |  |  |
| KSB-5:11.5ft                                                                                                                       | 2/24/2020                                                                                                              | 11.5–11.5                                                                                  | 0.0025 U                                                                                    | 0.0025 U                                                                                                  | 0.0025 U                                                                                      | 0.0025 U                                                                                            | 0.0046                                                                                        |  |  |  |
| KSB-5:13ft                                                                                                                         | 2/24/2020                                                                                                              | 13-13                                                                                      | 0.00097 U                                                                                   | 0.00097 U                                                                                                 | 0.0012                                                                                        | 0.00097 U                                                                                           | 0.00097 U                                                                                     |  |  |  |
| KSB-6:15.5ft<br>KSB-6:24ft                                                                                                         | 2/24/2020<br>2/24/2020                                                                                                 | 15.5–15.5<br>24–24                                                                         | <b>1.5</b><br>0.0010 U                                                                      | <b>0.30</b><br>0.0010 U                                                                                   | 0.020<br>0.0010 U                                                                             | 0.0014 U<br>0.0010 U                                                                                | 0.0014 U<br>0.0010 U                                                                          |  |  |  |
| KSB-7:11ft                                                                                                                         | 2/24/2020                                                                                                              | 11–11                                                                                      | 0.0010 U                                                                                    | 0.0010 U                                                                                                  | 0.0010 U                                                                                      | 0.0010 U                                                                                            | 0.0010 U                                                                                      |  |  |  |
| KSB-7:17ft                                                                                                                         | 2/24/2020                                                                                                              | 17–17                                                                                      | 0.0043 0<br>0.17                                                                            | 0.0043 0                                                                                                  | 0.0043 U                                                                                      | 0.00045 U                                                                                           | 0.00045 U                                                                                     |  |  |  |
| KSB-7:22ft                                                                                                                         | 2/24/2020                                                                                                              | 22–22                                                                                      | 0.00081 U                                                                                   | 0.00081 U                                                                                                 | 0.00081 U                                                                                     | 0.00081 U                                                                                           | 0.00081 U                                                                                     |  |  |  |
| UCCB5-36.0                                                                                                                         | 3/22/2017                                                                                                              | 36–36                                                                                      | 0.0011 U                                                                                    | 0.0011 U                                                                                                  | 0.0011 U                                                                                      | 0.0011 U                                                                                            | 0.0011 U                                                                                      |  |  |  |
| UCCB6-25.5                                                                                                                         |                                                                                                                        |                                                                                            |                                                                                             |                                                                                                           | 0.0043.11                                                                                     | 0.0042.11                                                                                           | 0.0012 U                                                                                      |  |  |  |
| UCCB7-20.0                                                                                                                         | 3/23/2017                                                                                                              | 25.5–25.5                                                                                  | 0.0012 U                                                                                    | 0.0012 U                                                                                                  | 0.0012 U                                                                                      | 0.0012 U                                                                                            | 0.0012 0                                                                                      |  |  |  |
|                                                                                                                                    | 3/23/2017                                                                                                              | 25.5–25.5<br>20–20                                                                         | 0.0012 U<br>0.0012 U                                                                        | 0.0012 U<br>0.0012 U                                                                                      | 0.0012 U<br>0.0012 U                                                                          | 0.0012 U                                                                                            | 0.0012 U                                                                                      |  |  |  |
| UCCB9-35.5                                                                                                                         | 3/23/2017<br>3/22/2017                                                                                                 | 20–20<br>35.5–35.5                                                                         | 0.0012 U<br>0.0012 U                                                                        | 0.0012 U<br>0.0012 U                                                                                      | 0.0012 U<br>0.0012 U                                                                          | 0.0012 U<br>0.0012 U                                                                                | 0.0012 U<br>0.0012 U                                                                          |  |  |  |
| UCCB9-35.5<br>SB-03-16-19                                                                                                          | 3/23/2017<br>3/22/2017<br>9/3/2024                                                                                     | 20–20<br>35.5–35.5<br>16–19                                                                | 0.0012 U<br>0.0012 U<br>0.0022 U                                                            | 0.0012 U<br>0.0012 U<br>0.0022 U                                                                          | 0.0012 U<br>0.0012 U<br>0.0022 U                                                              | 0.0012 U<br>0.0012 U<br>0.0022 U                                                                    | 0.0012 U<br>0.0012 U<br>0.0022 U                                                              |  |  |  |
| UCCB9-35.5<br>SB-03-16-19<br>SB-03-19-22                                                                                           | 3/23/2017<br>3/22/2017<br>9/3/2024<br>9/3/2024                                                                         | 20–20<br>35.5–35.5<br>16–19<br>19–22                                                       | 0.0012 U<br>0.0012 U<br>0.0022 U<br>0.0063                                                  | 0.0012 U<br>0.0012 U<br>0.0022 U<br>0.0011 U                                                              | 0.0012 U<br>0.0012 U<br>0.0022 U<br>0.0011 U                                                  | 0.0012 U<br>0.0012 U<br>0.0022 U<br>0.0023                                                          | 0.0012 U<br>0.0012 U<br>0.0022 U<br>0.0011 U                                                  |  |  |  |
| UCCB9-35.5<br>SB-03-16-19<br>SB-03-19-22<br>SB-03-25-28                                                                            | 3/23/2017<br>3/22/2017<br>9/3/2024<br>9/3/2024<br>9/4/2024                                                             | 20–20<br>35.5–35.5<br>16–19<br>19–22<br>25–28                                              | 0.0012 U<br>0.0012 U<br>0.0022 U<br>0.0063<br>0.0012 U                                      | 0.0012 U<br>0.0012 U<br>0.0022 U<br>0.0011 U<br>0.0012 U                                                  | 0.0012 U<br>0.0012 U<br>0.0022 U<br>0.0011 U<br>0.0012 U                                      | 0.0012 U<br>0.0012 U<br>0.0022 U<br>0.0023<br>0.0012 U                                              | 0.0012 U<br>0.0012 U<br>0.0022 U<br>0.0011 U<br>0.0019 U                                      |  |  |  |
| UCCB9-35.5<br>SB-03-16-19<br>SB-03-19-22<br>SB-03-25-28<br>SB-04-16-19                                                             | 3/23/2017<br>3/22/2017<br>9/3/2024<br>9/3/2024<br>9/4/2024<br>9/4/2024                                                 | 20–20<br>35.5–35.5<br>16–19<br>19–22<br>25–28<br>16–19                                     | 0.0012 U<br>0.0012 U<br>0.0022 U<br>0.0063<br>0.0012 U<br>0.0012 U                          | 0.0012 U<br>0.0012 U<br>0.0022 U<br>0.0011 U<br>0.0012 U<br>0.0012 U                                      | 0.0012 U<br>0.0012 U<br>0.0022 U<br>0.0011 U<br>0.0012 U<br>0.0012 U                          | 0.0012 U<br>0.0012 U<br>0.0022 U<br>0.0023<br>0.0012 U<br>0.0012 U                                  | 0.0012 U<br>0.0012 U<br>0.0022 U<br>0.0011 U<br>0.0019 U<br>0.0012 U                          |  |  |  |
| UCCB9-35.5<br>SB-03-16-19<br>SB-03-19-22<br>SB-03-25-28<br>SB-04-16-19<br>SB-04-19-22                                              | 3/23/2017<br>3/22/2017<br>9/3/2024<br>9/3/2024<br>9/4/2024<br>9/4/2024<br>9/4/2024                                     | 20–20<br>35.5–35.5<br>16–19<br>19–22<br>25–28<br>16–19<br>19–22                            | 0.0012 U<br>0.0012 U<br>0.0022 U<br>0.0063<br>0.0012 U<br>0.0012 U<br>0.0015 U              | 0.0012 U<br>0.0012 U<br>0.0022 U<br>0.0011 U<br>0.0012 U<br>0.0012 U<br>0.0015 U                          | 0.0012 U<br>0.0012 U<br>0.0022 U<br>0.0011 U<br>0.0012 U<br>0.0012 U<br>0.0015 U              | 0.0012 U<br>0.0012 U<br>0.0022 U<br>0.0023<br>0.0012 U<br>0.0012 U<br>0.0027                        | 0.0012 U<br>0.0012 U<br>0.0022 U<br>0.0011 U<br>0.0019 U<br>0.0012 U<br>0.0015 U              |  |  |  |
| UCCB9-35.5<br>SB-03-16-19<br>SB-03-19-22<br>SB-03-25-28<br>SB-04-16-19<br>SB-04-19-22<br>SB-04-25-28                               | 3/23/2017<br>3/22/2017<br>9/3/2024<br>9/3/2024<br>9/4/2024<br>9/4/2024<br>9/4/2024<br>9/4/2024                         | 20–20<br>35.5–35.5<br>16–19<br>19–22<br>25–28<br>16–19<br>19–22<br>25–28                   | 0.0012 U<br>0.0012 U<br>0.0022 U<br>0.0063<br>0.0012 U<br>0.0012 U<br>0.0015 U<br>0.0011 UJ | 0.0012 U<br>0.0012 U<br>0.0022 U<br>0.0011 U<br>0.0012 U<br>0.0012 U<br>0.0015 U<br>0.0011 UJ             | 0.0012 U<br>0.0012 U<br>0.0022 U<br>0.0011 U<br>0.0012 U<br>0.0012 U<br>0.0015 U<br>0.0011 UJ | 0.0012 U<br>0.0012 U<br>0.0022 U<br>0.0023<br>0.0012 U<br>0.0012 U<br>0.0027<br>0.0011 UJ           | 0.0012 U<br>0.0012 U<br>0.0022 U<br>0.0011 U<br>0.0019 U<br>0.0012 U<br>0.0015 U<br>0.0017 UJ |  |  |  |
| UCCB9-35.5<br>SB-03-16-19<br>SB-03-19-22<br>SB-03-25-28<br>SB-04-16-19<br>SB-04-19-22<br>SB-04-25-28<br>SB-05-16-19                | 3/23/2017<br>3/22/2017<br>9/3/2024<br>9/3/2024<br>9/4/2024<br>9/4/2024<br>9/4/2024<br>9/4/2024<br>9/3/2024             | 20–20<br>35.5–35.5<br>16–19<br>19–22<br>25–28<br>16–19<br>19–22<br>25–28<br>16–19          | 0.0012 U 0.0012 U 0.0022 U 0.0063 0.0012 U 0.0012 U 0.0015 U 0.0011 UJ 0.0027               | 0.0012 U<br>0.0012 U<br>0.0022 U<br>0.0011 U<br>0.0012 U<br>0.0012 U<br>0.0015 U<br>0.0011 UJ<br>0.0010 U | 0.0012 U 0.0012 U 0.0022 U 0.0011 U 0.0012 U 0.0015 U 0.0011 UJ 0.0010 U                      | 0.0012 U<br>0.0012 U<br>0.0022 U<br>0.0023<br>0.0012 U<br>0.0012 U<br>0.0027<br>0.0011 UJ<br>0.0012 | 0.0012 U<br>0.0012 U<br>0.0022 U<br>0.0011 U<br>0.0019 U<br>0.0012 U<br>0.0015 U<br>0.0017 UJ |  |  |  |
| UCCB9-35.5<br>SB-03-16-19<br>SB-03-19-22<br>SB-03-25-28<br>SB-04-16-19<br>SB-04-19-22<br>SB-04-25-28                               | 3/23/2017<br>3/22/2017<br>9/3/2024<br>9/3/2024<br>9/4/2024<br>9/4/2024<br>9/4/2024<br>9/4/2024                         | 20–20<br>35.5–35.5<br>16–19<br>19–22<br>25–28<br>16–19<br>19–22<br>25–28                   | 0.0012 U<br>0.0012 U<br>0.0022 U<br>0.0063<br>0.0012 U<br>0.0012 U<br>0.0015 U<br>0.0011 UJ | 0.0012 U<br>0.0012 U<br>0.0022 U<br>0.0011 U<br>0.0012 U<br>0.0012 U<br>0.0015 U<br>0.0011 UJ             | 0.0012 U<br>0.0012 U<br>0.0022 U<br>0.0011 U<br>0.0012 U<br>0.0012 U<br>0.0015 U<br>0.0011 UJ | 0.0012 U<br>0.0012 U<br>0.0022 U<br>0.0023<br>0.0012 U<br>0.0012 U<br>0.0027<br>0.0011 UJ           | 0.0012 U<br>0.0012 U<br>0.0022 U<br>0.0011 U<br>0.0019 U<br>0.0012 U<br>0.0015 U<br>0.0017 UJ |  |  |  |
| UCCB9-35.5<br>SB-03-16-19<br>SB-03-19-22<br>SB-03-25-28<br>SB-04-16-19<br>SB-04-19-22<br>SB-04-25-28<br>SB-05-16-19<br>SB-05-19-22 | 3/23/2017<br>3/22/2017<br>9/3/2024<br>9/3/2024<br>9/4/2024<br>9/4/2024<br>9/4/2024<br>9/4/2024<br>9/3/2024<br>9/3/2024 | 20–20<br>35.5–35.5<br>16–19<br>19–22<br>25–28<br>16–19<br>19–22<br>25–28<br>16–19<br>19–22 | 0.0012 U 0.0012 U 0.0022 U 0.0063 0.0012 U 0.0015 U 0.0011 UJ 0.0027 0.0021                 | 0.0012 U<br>0.0012 U<br>0.0022 U<br>0.0011 U<br>0.0012 U<br>0.0012 U<br>0.0015 U<br>0.0011 UJ<br>0.0010 U | 0.0012 U 0.0012 U 0.0022 U 0.0011 U 0.0012 U 0.0012 U 0.0015 U 0.0011 UJ 0.0010 U             | 0.0012 U 0.0012 U 0.0022 U 0.0023 0.0012 U 0.0012 U 0.0017 0.0011 U 0.0012 0.0010 U                 | 0.0012 U 0.0012 U 0.0022 U 0.0011 U 0.0019 U 0.0012 U 0.0015 U 0.0017 UJ 0.0010 U 0.0010 U    |  |  |  |

Table 2.4
Soil HVOC Results

|               |             |              |                   |                 | cis-1,2-       | trans-1,2-     |                |
|---------------|-------------|--------------|-------------------|-----------------|----------------|----------------|----------------|
|               |             | Analyte      | Tetrachloroethene | Trichloroethene | Dichloroethene | Dichloroethene | Vinyl chloride |
|               |             | CAS No.      | 127-18-4          | 79-01-6         | 156-59-2       | 156-60-5       | 75-01-4        |
|               |             | CUL (1)      | 0.05              | 0.03            | 160            |                | 0.67           |
|               |             | Unit         | mg/kg             | mg/kg           | mg/kg          | mg/kg          | mg/kg          |
|               |             | Sample Depth |                   |                 |                |                |                |
| Sample Name   | Sample Date | (feet bgs)   |                   |                 |                |                |                |
| SB-06-14.5-16 | 9/3/2024    | 14.5–16      | 0.0031            | 0.00089 U       | 0.00089 U      | 0.0015         | 0.00089 U      |
| SB-06-16-18   | 9/3/2024    | 16–18        | 0.0032            | 0.0010 U        | 0.0010 U       | 0.0010 U       | 0.0010 U       |
| SB-06-18-20   | 9/3/2024    | 18–20        | 0.0060            | 0.0012 U        | 0.0012 U       | 0.0012 U       | 0.0012 U       |
| SB-06-20-22   | 9/3/2024    | 20–22        | 0.012             | 0.0011 U        | 0.0011 U       | 0.0011 U       | 0.0011 U       |
| SB-06-22-24   | 9/3/2024    | 22–24        | 0.041             | 0.0012 U        | 0.0012 U       | 0.0012 U       | 0.0012 U       |
| SB-06-24-26   | 9/3/2024    | 24–26        | 0.14              | 0.0011 U        | 0.0011 U       | 0.0026         | 0.0011 U       |
| SB-06-28-30   | 9/3/2024    | 28–30        | 0.0011 U          | 0.0011 U        | 0.0011 U       | 0.0011 U       | 0.0011 U       |
| SB-06-30-32   | 9/3/2024    | 30–32        | 0.00084 U         | 0.00084 U       | 0.00084 U      | 0.00084 U      | 0.00084 U      |
| SB-06-30-32-D | 9/3/2024    | 30–32        | 0.00072 U         | 0.00072 U       | 0.00072 U      | 0.00072 U      | 0.00072 U      |
| SB-06-32-34   | 9/3/2024    | 32–34        | 0.0010 U          | 0.0010 U        | 0.0010 U       | 0.0010 U       | 0.0010 U       |
| SB-06-34-36   | 9/3/2024    | 34–36        | 0.0010 U          | 0.0010 U        | 0.0010 U       | 0.0010 U       | 0.0010 U       |
| SB-06-36-38   | 9/3/2024    | 36–38        | 0.0011 U          | 0.0011 U        | 0.0011 U       | 0.0011 U       | 0.0011 U       |
| SB-06-38-40   | 9/3/2024    | 38–40        | 0.0014 U          | 0.0014 U        | 0.0014 U       | 0.0014 U       | 0.0014 U       |
| SB-07-16-19   | 9/6/2024    | 16–19        | 0.0016 U          | 0.0016 U        | 0.014          | 0.0056         | 0.0016 U       |
| SB-07-16-19-D | 9/6/2024    | 16–19        | 0.0011 U          | 0.0011 U        | 0.0053         | 0.0018         | 0.0011 U       |
| SB-07-25-28   | 9/6/2024    | 25–28        | 0.0010 U          | 0.0010 U        | 0.0010 U       | 0.0010 U       | 0.0017 U       |
| SB-08-19-22   | 9/3/2024    | 19–22        | 0.025             | 0.00098 U       | 0.00098 U      | 0.0016         | 0.00098 U      |
| SB-08-25-28   | 9/3/2024    | 25–28        | 0.0098 J          | 0.0012 UJ       | 0.0012 UJ      | 0.0012 UJ      | 0.0019 UJ      |
| SB-09-16-19   | 9/6/2024    | 16–19        | 0.0032 U          | 0.0032 U        | 0.0089         | 0.0032 U       | 0.0032 U       |
| SB-09-25-28   | 9/6/2024    | 25–28        | 0.0011 U          | 0.0011 U        | 0.0011 U       | 0.0011 U       | 0.0017 U       |
| SB-10-16-19   | 9/6/2024    | 16–19        | 0.0014 U          | 0.0018          | 0.11           | 0.039          | 0.0075         |
| SB-10-25-28   | 9/6/2024    | 25–28        | 0.0085            | 0.00094 U       | 0.00094 U      | 0.00094 U      | 0.0015 UJ      |
| SB-11-21-23   | 9/4/2024    | 21–23        | 0.0068            | 0.0011 U        | 0.0050         | 0.0017         | 0.0011 U       |

# Notes:

All results are rounded to two significant figures.

Blank cells are intentional.

-- Not established.

**RED/BOLD** Analyte was detected at a concentration greater than the CUL.

1 CULs are established in the Cleanup Action Plan (Exhibit B of Ecology 2023).

# Abbreviations:

bgs Below ground surface

CAS Chemical Abstracts Service

CUL Cleanup level

. HVOC Halogenated volatile organic compound

mg/kg Milligrams per kilogram

# Qualifiers:

- J Analyte was detected; concentration is an estimate.
- $\ensuremath{\mathsf{U}}$  Analyte was not detected at the associate reporting limit.
- UJ Analyte was not detected at the associate reporting limit, which is an estimate.

 $\begin{picture}(200,0) \put(0,0){\line(1,0){15}} \put(0$ 

Table 4.1
Disproportionate Cost Analysis Alternative Evaluation

| Criteria                | 2023 CAP Cleanup Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Alternative 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Alternative 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alternative Description | <ul> <li>The 2023 CAP Cleanup Action consists of the following:         <ul> <li>Soil source treatment by SVE with ex situ soil vapor treatment using activated carbon</li> <li>Groundwater treatment by recirculation of groundwater amended with a soluble organic carbon substrate electron donor (CarBstrate) to enhance biotic dechlorination of the HVOCs</li> </ul> </li> <li>The 2023 CAP Cleanup Action would support site-wide groundwater recovery through the treatment of the HVOC source area and recirculation of CarBstrate to treat HVOCs across the entire groundwater plume extent.</li> <li>Groundwater monitoring would be implemented to evaluate groundwater compliance with CULs site-wide. Soil confirmation monitoring would additionally be implemented following SVE to evaluate soil compliance with CULs. The anticipated restoration time frame is 5 years.</li> <li>ICs would not be required, because soil and groundwater would achieve CULs site-wide.</li> </ul> | <ul> <li>Alternative 1 consists of the following:         <ul> <li>Limited groundwater treatment by recirculation of groundwater amended with a soluble organic carbon substrate electron donor (CarBstrate) to enhance biotic dechlorination of HVOCs in the upgradient portion of the Site</li> <li>Injection of soluble organic carbon in situ treatment in four focused areas along the length of the HVOC groundwater plume to enhance biotic dechlorination of HVOCs</li> </ul> </li> <li>Alternative 1 would support soil and groundwater recovery through treatment of the source area and recirculation and injection of CarBstrate to treat HVOCs throughout the groundwater plume.</li> <li>Groundwater monitoring would be implemented to evaluate groundwater compliance with CULs sitewide. The anticipated restoration time frame is 5 years.</li> <li>ICs would not be required, because soil and groundwater would achieve CULs site-wide.</li> </ul> | <ul> <li>Injection of in situ groundwater treatment in four treatment zones:         <ul> <li>HVOC Source Area Plume: Soluble organic carbon to enhance biotic dechlorination with S-mZVI to achieve abiotic degradation and continued reducing conditions</li> <li>Downgradient HVOC Plume and Riverbank: Soluble organic carbon to enhance biotic dechlorination with S-mZVI to achieve abiotic degradation and continued reducing conditions and PlumeStop colloidal active carbon to increase contact time with treatment materials</li> <li>Western Plume: Soluble organic carbon with ZVI to promote reducing conditions</li> </ul> </li> <li>Alternative 2 would support site-wide groundwater recovery through treatment of the HVOC source zone and downgradient treatment by enhanced biodegradation with supplemental adsorption by PlumeStop colloidal activated carbon.</li> <li>Groundwater monitoring would be implemented to evaluate groundwater compliance with CULs site-wide. The anticipated restoration time frame is 3 years.</li> <li>ICs would not be required, because soil and groundwater would achieve CULs site-wide.</li> </ul> |

F L O Y D | S N I D E R

Table 4.1
Disproportionate Cost Analysis Alternative Evaluation

#### Criteria 2023 CAP Cleanup Action Alternative 1 Alternative 2 **Overall Protectiveness** • Risks associated with groundwater would be • Risks associated with contaminated groundwater • Risks associated with contaminated groundwater eliminated by plume-wide treatment. However, would be eliminated by plume-wide treatment. would be eliminated by plume-wide treatment. • Degree to which existing downgradient risks to the adjacent Sammamish However, the treatment relies on ambient The treatment would include optimization of risks to human health and River would be higher in the short term due to geochemical conditions being conducive to geochemical conditions and addition of materials the environment are downgradient groundwater extraction pumping. anaerobic degradation. to adsorb and then both biotically and abiotically reduced This alternative also relies on ambient degrade the extent of the current HVOC plume. • The time frame for achievement of groundwater geochemical conditions being conducive to Time required to reduce • The time frame for achievement of groundwater CULs site-wide is anticipated to be 5 years. anaerobic degradation. risks and attain cleanup CULs site-wide is anticipated to be 3 years. standards • On-site risks during construction, trenching, well • The time frame for achievement of CULs site-wide installation, direct push injection and system • No ground-disturbing construction would be • On-site and off-site risks is anticipated to be 5 years. operation would be managed by proper H&S necessary for this alternative because all resulting from alternative • On-site risks during construction, trenching, and protocols and site security. There are no other treatment will be applied via direct push drilling. implementation well installation would be managed by proper added on-site risks. On-site H&S protocols and site security would still H&S protocols and site security. Additionally, with need to be managed for the duration of the • Improvement in overall • The off-site risks associated with contaminated injections. There are no other added on-site risks. the operation of the SVE system, an air discharge environmental quality material transport and disposal are negligible and permit would be obtained for the discharge of The off-site risks associated with contaminated would be managed using licensed operators and material transport would be limited to incidental treated soil vapor. permitted disposal facilities. investigation-derived waste because no soil **Protectiveness Benefit** • The off-site risks associated with contaminated excavation is proposed. • The alternative relies partially on a mechanical Scoring by Alternative material transport and disposal are negligible and system which could experience breakdowns would be managed using licensed operators and • Alternative 2 achieves the highest improvement resulting in temporary gaps in groundwater permitted disposal facilities. in overall environmental quality because it is has treatment. the highest degree of protectiveness for • The alternative relies on a mechanical system discharges to surface water, utilizing an in situ • Alternative 1 achieves improvement in overall which could experience breakdowns resulting in treatment barrier to trap and fully degrade HVOCs environmental quality because it is expected to temporary gaps in groundwater treatment. and controlled-release sources of organic carbon fully achieve CULs in groundwater. This to address sorbed HVOC mass in soil. • The 2023 CAP Cleanup Action achieves desired alternative has a similar anticipated restoration protectiveness to human health and the time frame for groundwater compared to the environment by degradation of HVOCs utilizing 2023 CAP cleanup action, which includes SVE bio-recirculation. This alternative addresses operation. contamination exceeding CULs by promoting ■Current ■Alt 1 ■Alt 2 microbial activity in the breakdown of the HVOC mass.

 $\begin{picture}(200,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){1$ 

Table 4.1
Disproportionate Cost Analysis Alternative Evaluation

| Criteria                                                                                                                                                                                                                                                                                                                                                                                                         | 2023 CAP Cleanup Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Alternative 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Alternative 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Degree of reduction of contaminant toxicity, mobility, and volume     Adequacy of destruction of hazardous substances     Reduction or elimination of substance release, and source of release     Degree of irreversibility of waste treatment processes     Volume and characteristics of generated treatment residuals  Permanence Benefit Scoring by Alternative  10 9 8 7 6 5 4 3 2 1 0 Current Alt 1 Alt 2 | <ul> <li>The 2023 CAP Cleanup Action has a high degree of permanence because bio- recirculation of groundwater is designed to reduce contaminated groundwater concentrations of HVOCs via degradation to less than CULs over the restoration time frame. It is scored most highly of the alternatives for permanence because it would install the greatest number of permanent injection and extraction wells, which could be operated indefinitely if needed, without requiring further action at the Site.</li> <li>The primary sources of contamination would be reduced and extracted by the treatment technologies and in situ biodegradation.</li> <li>Bioremediation is irreversible but does involve the production of breakdown products, such as vinyl chloride, as part of the dechlorination process.</li> <li>Treatment residuals associated with implementation of this technology include spent activated carbon, which can be disposed a licensed facilities.  Treatment residuals would be generated ex situ and do not pose a risk of Site recontamination.</li> </ul> | <ul> <li>Alternative 1 is likely to be permanent at the end of the restoration time frame because biorecirculation and in situ treatment of groundwater are designed to reduce contaminated groundwater concentrations of HVOCs via degradation to less than CULs over the restoration time frame.         However, it is assumed that carbon injection may need to be repeated to reach CULs site-wide and address rebound of contamination; this alternative is, therefore, not fully permanent.</li> <li>The remaining plumes of contamination would be reduced under anerobic conditions created by the injected organic carbon treatment material. Remaining soil contamination continuing to diffuse to groundwater would be controlled by continued recirculation and by biomass produced by carbon injection that decays and provides donor electrons over time.</li> <li>Bioremediation is irreversible but does involve the production of breakdown products, such as vinyl chloride, as part of the dechlorination process.</li> <li>Treatment residuals associated with implementation of this technology include spent activated carbon, which can be disposed of at licensed facilities. Treatment residuals would be generated ex situ and do not pose a risk of Site recontamination.</li> </ul> | <ul> <li>Alternative 2 has a high degree of permanence because in situ treatment of groundwater is designed to reduce contaminated groundwater concentrations of HVOCs via degradation to less than CULs over the restoration time. The technologies used for in situ treatment in Alternative 2 have a long lifespan and further action is unlikely to be needed after installation.</li> <li>The primary sources of contamination would be removed from the site by in situ biotic and abiotic degradation. Remaining soil contamination would be controlled by controlled-release organic carbon sources and a downgradient barrier wall of colloidal active carbon to enhance contact time with treatment materials before groundwater discharges to surface waters.</li> <li>Bioremediation is irreversible but does involve the production of breakdown products, such as vinyl chloride, as part of the dechlorination process.</li> <li>There are no treatment residuals associated with implementation of this technology.</li> </ul> |

 $\begin{tabular}{ll} F \ L \ O \ Y \ D \ | \ S \ N \ I \ D \ E \ R \end{tabular}$  Riverside HVOC Site

Table 4.1
Disproportionate Cost Analysis Alternative Evaluation

|                                                                                                                       |                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria                                                                                                              | 2023 CAP Cleanup Action                                                                                                                                                                                                                                                                                      | Alternative 1                                                                                                                                                                                                                                                                                               | Alternative 2                                                                                                                                                                                                                                                                                         |
| Effectiveness over the Long-<br>Term     Degree of certainty of<br>alternative success                                | <ul> <li>The 2023 CAP Cleanup Action is designed to fully<br/>degrade HVOCs and provides a reasonable certainty<br/>of success to achieve groundwater CULs within a<br/>restoration time frame of 5 years site-wide.</li> </ul>                                                                              | <ul> <li>Alternative 1 is designed to fully degrade HVOCs and<br/>provides some certainty of success to achieve<br/>groundwater CULs within a restoration time frame<br/>of 5 years site-wide.</li> </ul>                                                                                                   | <ul> <li>Alternative 2 is designed to rapidly and fully degrade<br/>HVOCs and provides high certainty of success to<br/>achieve CULs within a restoration time frame of 3<br/>years site-wide.</li> </ul>                                                                                             |
| Reliability while<br>contaminants on-site<br>remain greater than CULs                                                 | Bio-recirculation treatment is also an effective and<br>reasonably common technology to implement and<br>would remove contamination in groundwater.                                                                                                                                                          | <ul> <li>Bio-recirculation and in situ treatment are also<br/>effective and reasonably common technologies to<br/>implement and would remove contamination in</li> </ul>                                                                                                                                    | <ul> <li>In situ treatment is an effective and reasonably<br/>common technology to implement and would<br/>remove contamination in groundwater.</li> </ul>                                                                                                                                            |
| <ul> <li>Magnitude of residual risk</li> <li>Effectiveness of controls implemented to manage residual risk</li> </ul> | <ul> <li>Degree of certainty for success to remediate<br/>groundwater site-wide is moderately high because<br/>of SVE and aggressive groundwater treatment;<br/>however, success is less certain downgradient<br/>compared to the other alternatives.</li> </ul>                                             | <ul> <li>Degree of certainty for success to remediate<br/>groundwater site-wide is moderately high because<br/>of targeted groundwater treatment and generally<br/>favorable Site conditions.</li> </ul>                                                                                                    | <ul> <li>Degree of certainty for success to remediate<br/>groundwater site-wide is the highest because this<br/>alternative includes the most aggressive in situ<br/>treatment and prioritizes immediate cleanup of the<br/>downgradient portions of the HVOC plume.</li> </ul>                       |
|                                                                                                                       | No residual risk would remain in soil.                                                                                                                                                                                                                                                                       | No residual risk would remain in soil.                                                                                                                                                                                                                                                                      | No residual risk would remain in soil.                                                                                                                                                                                                                                                                |
| Effectiveness over the<br>Long-Term Benefit<br>Scoring by Alternative                                                 | The risk from groundwater contamination remaining<br>during the restoration time frame would be<br>monitored by routine groundwater monitoring<br>events until compliance with CULs was achieved.                                                                                                            | <ul> <li>The risk from groundwater contamination remaining<br/>during the restoration time frame would be<br/>monitored by routine groundwater monitoring<br/>events until compliance with CULs was achieved.</li> </ul>                                                                                    | <ul> <li>The risk from groundwater contamination during<br/>the restoration time frame would be monitored by<br/>routine groundwater monitoring events until<br/>compliance with CULs was achieved.</li> </ul>                                                                                        |
| 10                                                                                                                    | <ul> <li>Residual risk to groundwater would remain due to<br/>the potential rebound of contamination due to<br/>diffusion of soil mass. This risk is managed over the<br/>long term by formation of biomass to continue to<br/>provide donor electrons after completion of active<br/>treatment.</li> </ul>  | <ul> <li>Residual risk to groundwater would remain due to<br/>the potential rebound of contamination due to<br/>diffusion of soil mass. This risk is managed over the<br/>long term by formation of biomass to continue to<br/>provide donor electrons after completion of active<br/>treatment.</li> </ul> | Residual risk to groundwater would remain due to the potential rebound of contamination due to diffusion of soil mass. This risk is managed over the long term by use of long-acting treatment materials including colloidal activated carbon which will continue to release into the subsurface over |
|                                                                                                                       | <ul> <li>Aerobic conditions caused by SVE may compete with the goal of anaerobic biodegradation in the biorecirculation system.</li> <li>Additional construction of a surface seal would be necessary to ensure the effectiveness of the SVE system, which may be complicated by site topography.</li> </ul> | <ul> <li>Localized aerobic conditions may be created by<br/>groundwater extraction and redox conditions may<br/>require additional management in the bio-<br/>recirculation system.</li> </ul>                                                                                                              | approximately 10 years.                                                                                                                                                                                                                                                                               |

 $\begin{tabular}{ll} F \ L \ O \ Y \ D \ | \ S \ N \ I \ D \ E \ R \end{tabular}$  Riverside HVOC Site

Table 4.1
Disproportionate Cost Analysis Alternative Evaluation

| Cuitorio                                                                                                                                                                         | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Alternative Evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Altomotive 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria                                                                                                                                                                         | 2023 CAP Cleanup Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Alternative 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Alternative 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Short-Term Risk Management  Risk to human health and the environment associated with alternative construction                                                                    | The 2023 CAP Cleanup Action has a moderate short-term risk to human health and the environment during implementation. There are residual risks to human health posed by drilling, trenching, and electrical installation. These risks would be managed by proper BMPs, worker H&S protocols, and site security.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>Alternative 1 has a low to moderate short-term risk<br/>to human health and the environment during<br/>implementation. There are residual risks to human<br/>health posed by drilling, trenching, and electrical<br/>installation. These risks would be managed by<br/>proper BMPs, worker H&amp;S protocols, and site<br/>security.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>Alternative 2 has low short-term risk to human<br/>health and the environment during implementation<br/>primarily due to the fact that no trenching or<br/>treatment system installation will be required. Risks<br/>associated with direct-push drilling would be<br/>managed by proper H&amp;S procedures and site<br/>security.</li> </ul>                                                                                                                                                                                                         |
| • The effectiveness of controls in place to manage short-term risks  Short-Term Risk Management Benefit Scoring by Alternative  10 9 8 7 6 5 4 3 2 1 0 • Current • Alt 1 • Alt 2 | <ul> <li>This alternative would require the largest amount of construction and trenching, increasing risks due to equipment, traffic, and exposure to contaminated groundwater. Pollution control measures would also need to be implemented during construction of this alternative to prevent water quality impacts to the Sammamish River.</li> <li>There is some risk for public exposure with this alternative due to construction and trenching for the installation of pressurized treatment systems, injection wells, and extraction wells that will take place in a public parking lot.</li> <li>There is a low risk to site workers during handling of CarBstrate for injection.</li> <li>Site activities would require appropriate PPE, BMPs, site controls to restrict site access, traffic control, and appropriate training requirements for management of risk. These controls are highly effective and anticipated to adequately manage short-term risk.</li> </ul> | <ul> <li>This alternative would include construction and trenching for the groundwater recirculation system piping. Fewer trenches and wells are required for this alternative than for the 2023 CAP cleanup action.</li> <li>There is some risk for public exposure with this alternative due to construction and trenching for treatment system installation that will take place in a public parking lot.</li> <li>There is a low risk to site workers during handling of CarBstrate for injection.</li> <li>Site activities would require appropriate PPE, BMPs, site controls to restrict site access, traffic control, and appropriate training requirements for management of risk. These controls are highly effective and anticipated to adequately manage short-term risk.</li> </ul> | <ul> <li>This alternative would not involve earthwork.</li> <li>There is de minimis risk for public exposure with this alternative due to drilling.</li> <li>There is a low risk to site workers during handling of organic carbon, ZVI, and PlumeStop for injection.</li> <li>Site activities would require appropriate PPE, BMPs, site controls to restrict site access, traffic control, and appropriate training requirements for management of risk. These controls are highly effective and anticipated to adequately manage short-term risk.</li> </ul> |

 $\begin{tabular}{ll} F \ L \ O \ Y \ D \ | \ S \ N \ I \ D \ E \ R \end{tabular}$  Riverside HVOC Site

Table 4.1
Disproportionate Cost Analysis Alternative Evaluation

| Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2023 CAP Cleanup Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Alternative 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Alternative 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Technical and Administrative Implementability  Ability of alternative to be implemented considering the following:  Technical possibility  Availability of off-site facilities, services, and materials  Administrative and regulatory requirements  Schedule, size, and complexity of construction  Monitoring requirements  Site access for construction, operations, and monitoring  Integration with existing site operations or other current and potential future remedial action  Technical and Administrative Implementability Benefit Scoring by Alternative | <ul> <li>The 2023 CAP Cleanup Action is the most difficult to implement because it involves multiple types of equipment and construction methodologies. SVE and bio-recirculation are somewhat specialized construction elements; however, many licensed contractors in the region are qualified to safely perform this work. This alternative can be implemented in a single construction season.</li> <li>Additional technical and administrative controls would be required in this alternative to prevent water quality impacts due to invasive construction activities to nearby Sammamish River.</li> <li>All necessary off-site facilities, materials, and services are available within the region.</li> <li>Site access during most of the work should include only the closure of a City-owned gravel parking lot that can be closed for the duration of construction work. Sidewalks may be closed for part of the work.</li> <li>Monitoring requirements include protection monitoring for workers during construction, performance monitoring during SVE, and groundwater monitoring during SVE, and groundwater monitoring during and after biorecirculation.</li> <li>This alternative would moderately impede current or future property use due to the construction of additional structures in public park space. It would not preclude potential future remedial action.</li> </ul> | <ul> <li>Alternative 1 is the second largest in scale and includes some technical construction elements. Biorecirculation and in situ injection are somewhat specialized construction elements; however, many licensed drillers in the region are qualified to safely perform this work. This alternative can be implemented easily in a single construction season; however, additional site access and permitting work would be needed if a second round of downgradient injection is completed.</li> <li>All necessary off-site facilities, materials, and services are available within the region.</li> <li>Site access during most of the work should include only the closure of a City-owned gravel parking lot that can be closed for the duration of construction work. Sidewalks may be closed for part of the work.</li> <li>Monitoring requirements include protection monitoring for workers during construction and groundwater monitoring after bio-recirculation and direct push injection.</li> <li>This alternative would moderately impede current or future property use due to the construction of additional structures in public park space; however, it includes fewer permanent structures than the 2023 CAP cleanup action. It would not preclude potential future remedial action.</li> </ul> | <ul> <li>Alternative 2 is the smallest in scale. In situ injection is a somewhat specialized construction element; however, many licensed drillers in the region are qualified to safely perform this work. This alternative can be implemented in a single construction season.</li> <li>All necessary off-site facilities, materials, and services are available within the region.</li> <li>Site access during most of the work should include only the closure of a City-owned gravel parking lot that can be closed for the duration of construction work. Sidewalks may be closed for part of the work.</li> <li>Monitoring requirements include performance monitoring during injection and groundwater monitoring after injection.</li> <li>This alternative would not impede current property use and would cause minimal impediment to future property use. This alternative would not preclude potential future remedial action.</li> </ul> |

Disproportionate Cost Analysis Alternative Evaluation

 $\begin{picture}(2000) \put(000) \put(00$ 

Table 4.1
Disproportionate Cost Analysis Alternative Evaluation

| Criteria                                                                                                                                                                                                                                                            | 2023 CAP Cleanup Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Alternative 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Alternative 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Consideration of Public Concerns and Tribal Rights and Interests  • Whether the community has concerns  • Degree to which the alternative addresses those concerns  Consideration of Public Concerns and Tribal Rights and Interests Benefit Scoring by Alternative | <ul> <li>The 2023 CAP Cleanup Action addresses public concerns regarding contaminated groundwater impacts with groundwater and soil vapor treatment.</li> <li>The installation of an SVE system may raise concerns with members of the public who walk through the area surrounding the site because the equipment associated with an SVE can cause noise pollution.</li> <li>Disturbance to parking and sidewalks is also expected to be of concern to the City and the public. The current cleanup action involves a high degree of temporary disturbance to the Site and surrounding sidewalks during remedy implementation and some permanent loss of parking space due to added structures.</li> <li>The treatment systems will be pressurized and will routinely have contaminated soil vapor or groundwater flowing through mechanical components. The public could perceive this as a potential risk if the systems were to fail or leak.</li> <li>Public concerns will be reviewed after the public comment period and will be addressed as part of the final remedial alternative selection and design.</li> </ul> | <ul> <li>Alternative 1 addresses public concerns regarding contaminated groundwater impacts with targeted groundwater treatment.</li> <li>Disturbance to parking and sidewalks is also expected to be of concern to the City and the public. Alternative 1 involves less disturbance than the 2023 CAP cleanup action, but more than Alternative 2 during remedy implementation.</li> <li>The treatment systems will be pressurized and will routinely have contaminated soil vapor or groundwater flowing through mechanical components. The public could perceive this as a potential risk if the systems were to fail or leak.</li> <li>Public concerns will be reviewed after the public comment period and will be addressed as part of the final remedial alternative selection and design.</li> </ul> | <ul> <li>Alternative 2 addresses public concerns regarding contaminated groundwater impacts with aggressive groundwater treatment. Tribal concerns are addressed by prioritizing rapid cleanup of groundwater discharging to surface water to protect all uses of the Sammamish River.</li> <li>Disturbance to parking and sidewalks is also expected to be of concern to the City and the public. Alternative 2 involves a minimal amount of temporary disturbance compared to the other alternatives during remedy implementation.</li> <li>Public concerns will be reviewed after the public comment period and will be addressed as part of the final remedial alternative selection and design.</li> </ul> |  |  |  |
| Cost                                                                                                                                                                                                                                                                | 2023 CAP Cleanup Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Alternative 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Alternative 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Cost of construction                                                                                                                                                                                                                                                | Total cost: \$2,732,602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total cost: \$1,669,059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total cost: \$1,673,963                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Long-term monitoring,<br>operations, and     maintanance sects                                                                                                                                                                                                      | <ul> <li>Includes construction, long-term monitoring,<br/>and agency oversight costs</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>Includes construction, long-term monitoring,<br/>and agency oversight costs</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>Includes construction, long-term monitoring,<br/>and agency oversight costs</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| maintenance costs                                                                                                                                                                                                                                                   | Includes tax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Includes tax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Includes tax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Agency oversight costs                                                                                                                                                                                                                                              | <ul> <li>Includes 20% contingency</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>Includes 20% contingency</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>Includes 20% contingency</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |

#### Abbreviations:

BMP Best management practice

CAP Cleanup Action Plan

City City of Bothell

CUL Cleanup level

H&S Health and safety

HVOC Halogenated volatile organic compound

IC Institutional control

PPE Personal protective equipment

S-mZVI Sulfidated micro zero-valent iron

Site Riverside Halogenated Volatile Organic Compound Site

SVE Soil vapor extraction

ZVI Zero-valent iron

F L O Y D | S N I D E R

Table 4.2
Disproportionate Cost Analysis Summary

| Alternative                                                                                                                                                                            | 2023 CAP Cleanup Action<br>SVE, Groundwater Recirculation with<br>CarBstrate                                                                                                                                                                                                                                                                  | Alternative 1 Groundwater Recirculation with CarBstrate, Direct- Push Injections of CarBstrate                                                                                                                                                                                                                                                                                                                     | Alternative 2 In Situ Bioremediation using CarBstrate, PlumeStop, and S-mZVI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alternative Description                                                                                                                                                                | <ul> <li>The 2023 CAP cleanup action includes:</li> <li>Soil source treatment by SVE with ex situ soil vapor treatment using activated carbon</li> <li>Groundwater treatment by recirculation of groundwater amended with a soluble organic carbon substrate electron donor (CarBstrate) to enhance biotic dechlorination of HVOCs</li> </ul> | Alternative 1 includes:     Limited groundwater treatment by recirculation of groundwater amended with a soluble organic carbon substrate electron donor (CarBstrate) to enhance biotic dechlorination of HVOCs in the upgradient portion of the Site     Injection of CarBstrate in situ treatment in four focused areas along the length of the HVOC groundwater plume to enhance biotic dechlorination of HVOCs | <ul> <li>Alternative 2 includes:         <ul> <li>Injection of in-situ groundwater treatment in three treatment zones:</li> <li>HVOC Source Area Plume: Soluble organic carbon to enhance biotic dechlorination with S-mZVI to achieve abiotic degradation and continued reducing conditions</li> <li>Downgradient HVOC Plume and Riverbank: Soluble organic carbon to enhance biotic dechlorination with S-mZVI to achieve abiotic degradation and continued reducing conditions and PlumeStop colloidal active carbon to increase contact time with treatment materials</li> <li>Western Plume: Soluble organic carbon with ZVI to promote reducing conditions</li> </ul> </li> </ul> |
| Low Benefit> High Benefit  O N P 9 % DE  Protectiveness  Permanence  Ffectiveness over the Long-Term Management of Short-Term Risks Implementability  Consideration of Public Concerns | 2023 CAP Cleanup Action Benefit Scoring Summary  10 9 8 7 6 5 4 3 2 1 0                                                                                                                                                                                                                                                                       | Alternative 1 Benefit Scoring Summary                                                                                                                                                                                                                                                                                                                                                                              | Alternative 2 Benefit Scoring Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Complies with MTCA Requirements                                                                                                                                                        | Yes                                                                                                                                                                                                                                                                                                                                           | Yes                                                                                                                                                                                                                                                                                                                                                                                                                | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Restoration Time Frame                                                                                                                                                                 | 5 Years                                                                                                                                                                                                                                                                                                                                       | 5 Years                                                                                                                                                                                                                                                                                                                                                                                                            | 3 Years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Protectiveness (30%)                                                                                                                                                                   | 6                                                                                                                                                                                                                                                                                                                                             | 7                                                                                                                                                                                                                                                                                                                                                                                                                  | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Permanence (20%)                                                                                                                                                                       | 8                                                                                                                                                                                                                                                                                                                                             | 6                                                                                                                                                                                                                                                                                                                                                                                                                  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Effectiveness over the Long Term (20%)                                                                                                                                                 | 6                                                                                                                                                                                                                                                                                                                                             | 7                                                                                                                                                                                                                                                                                                                                                                                                                  | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Management of Short-Term Risks (10%)                                                                                                                                                   | 6                                                                                                                                                                                                                                                                                                                                             | 7                                                                                                                                                                                                                                                                                                                                                                                                                  | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Technical and Administrative Implementability (10%)                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                             | 7                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Consideration of Public Concerns<br>and Tribal Rights and Interests<br>(10%)                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                             | 7                                                                                                                                                                                                                                                                                                                                                                                                                  | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Total Weighted Benefit Score (Relative Benefit Ranking)                                                                                                                                | 6.2                                                                                                                                                                                                                                                                                                                                           | 6.8                                                                                                                                                                                                                                                                                                                                                                                                                | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Estimated Total Alternative Cost (1)                                                                                                                                                   | \$2.7 million                                                                                                                                                                                                                                                                                                                                 | \$1.7 million                                                                                                                                                                                                                                                                                                                                                                                                      | \$1.7 million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Benefit per Unit Cost Ratio (2)                                                                                                                                                        | 3.40                                                                                                                                                                                                                                                                                                                                          | 6.19                                                                                                                                                                                                                                                                                                                                                                                                               | 7.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

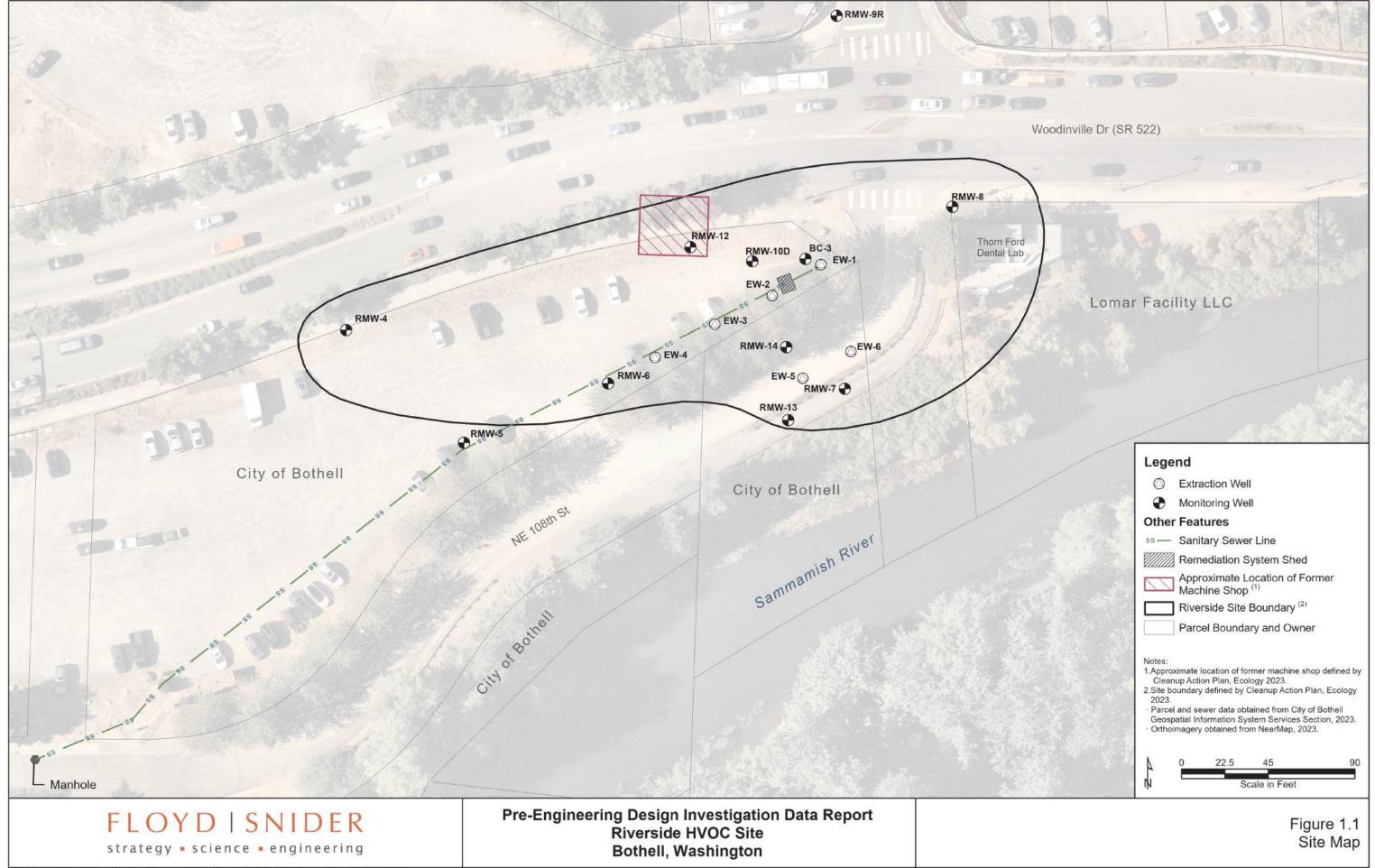
## Notes:

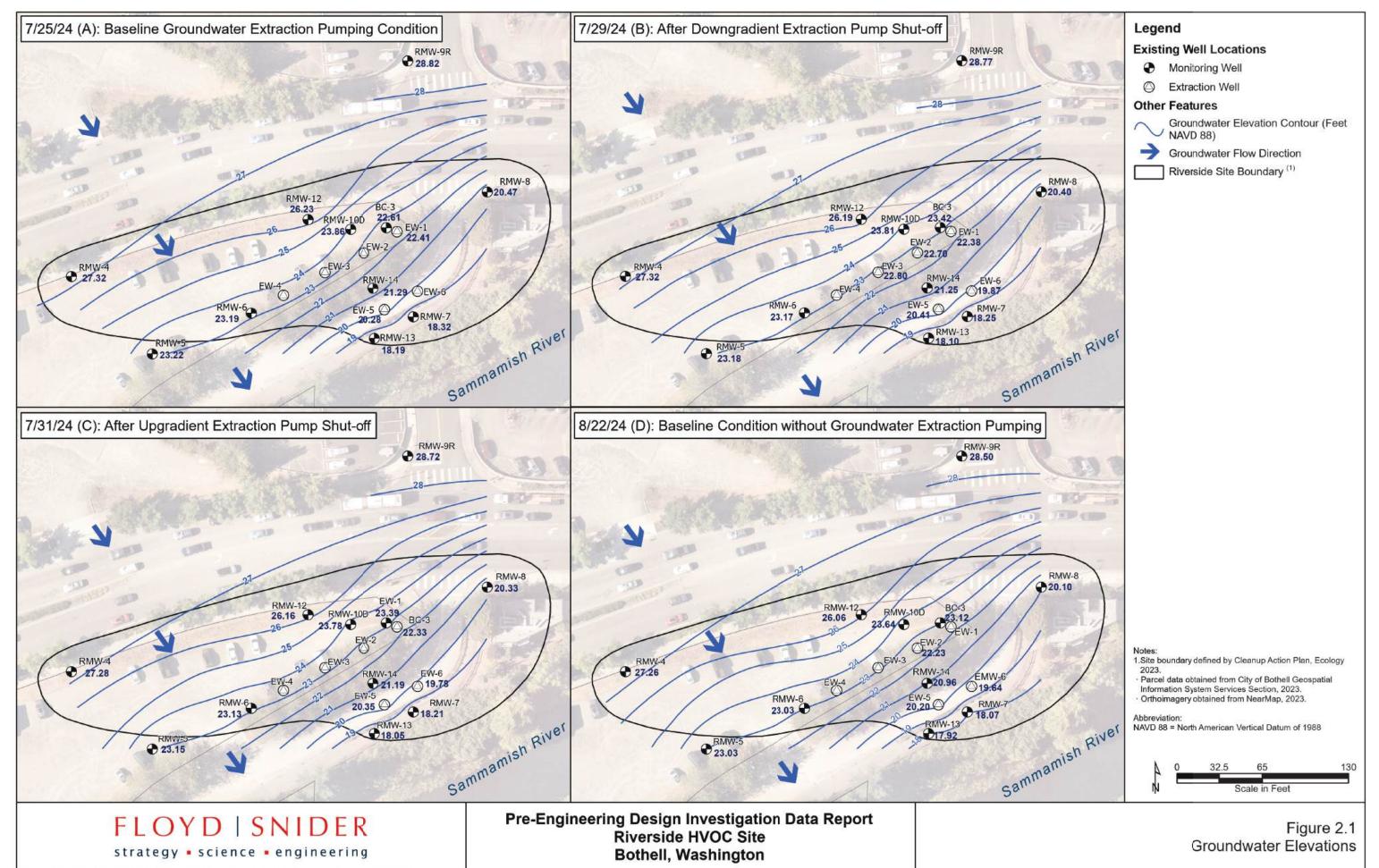
- 1 Specific cost estimate information is provided in Appendix D.
- 2 Benefit per Unit Cost Ratio calculated by dividing the Total Weighted Benefit Score by the Estimated Total Alternative Cost (standardized by dividing by \$1.5 million). Higher value indicates the most benefit per unit cost.

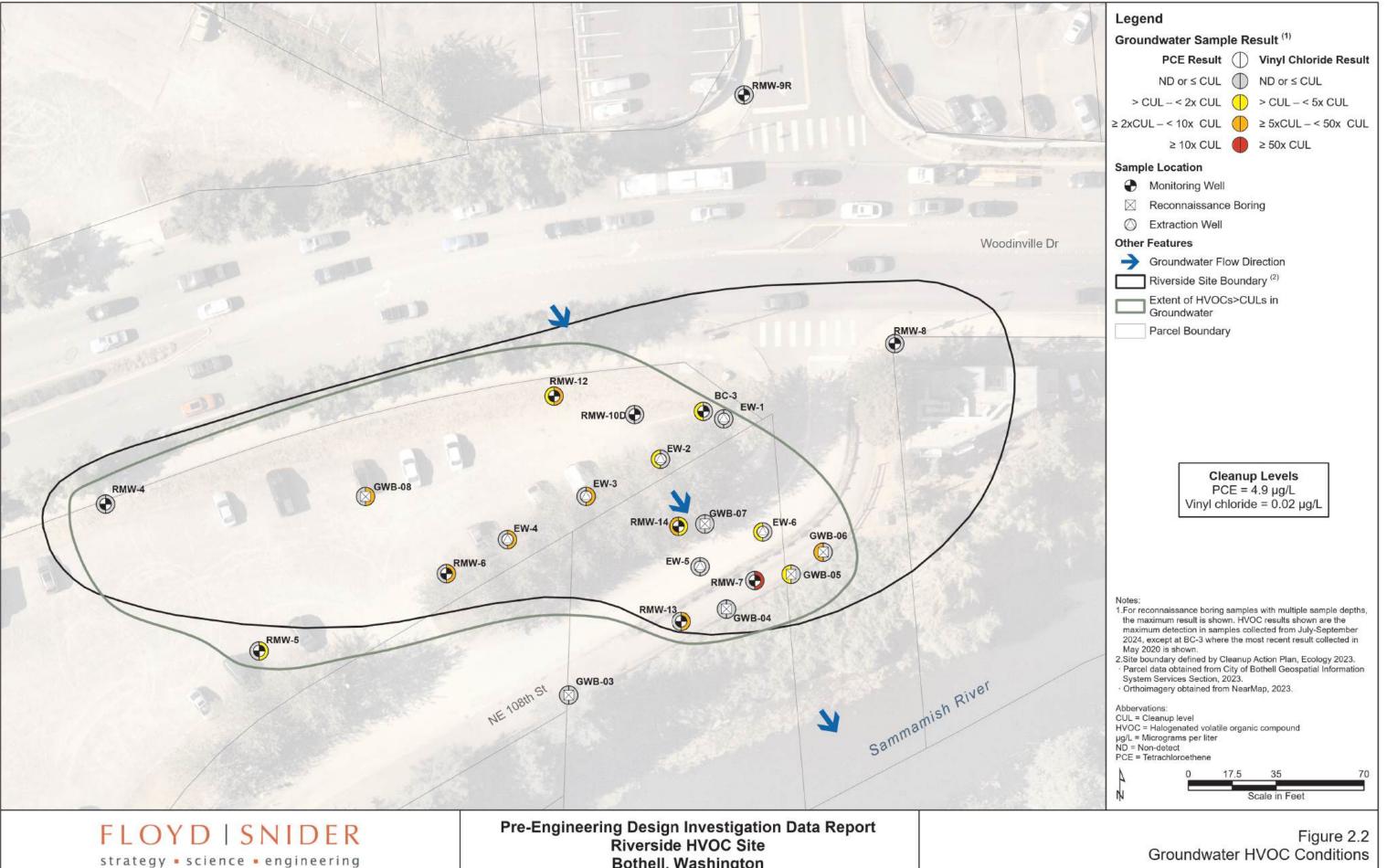
## Abbreviations:

CUL Cleanup level

HVOC Halogenated volatile organic compound

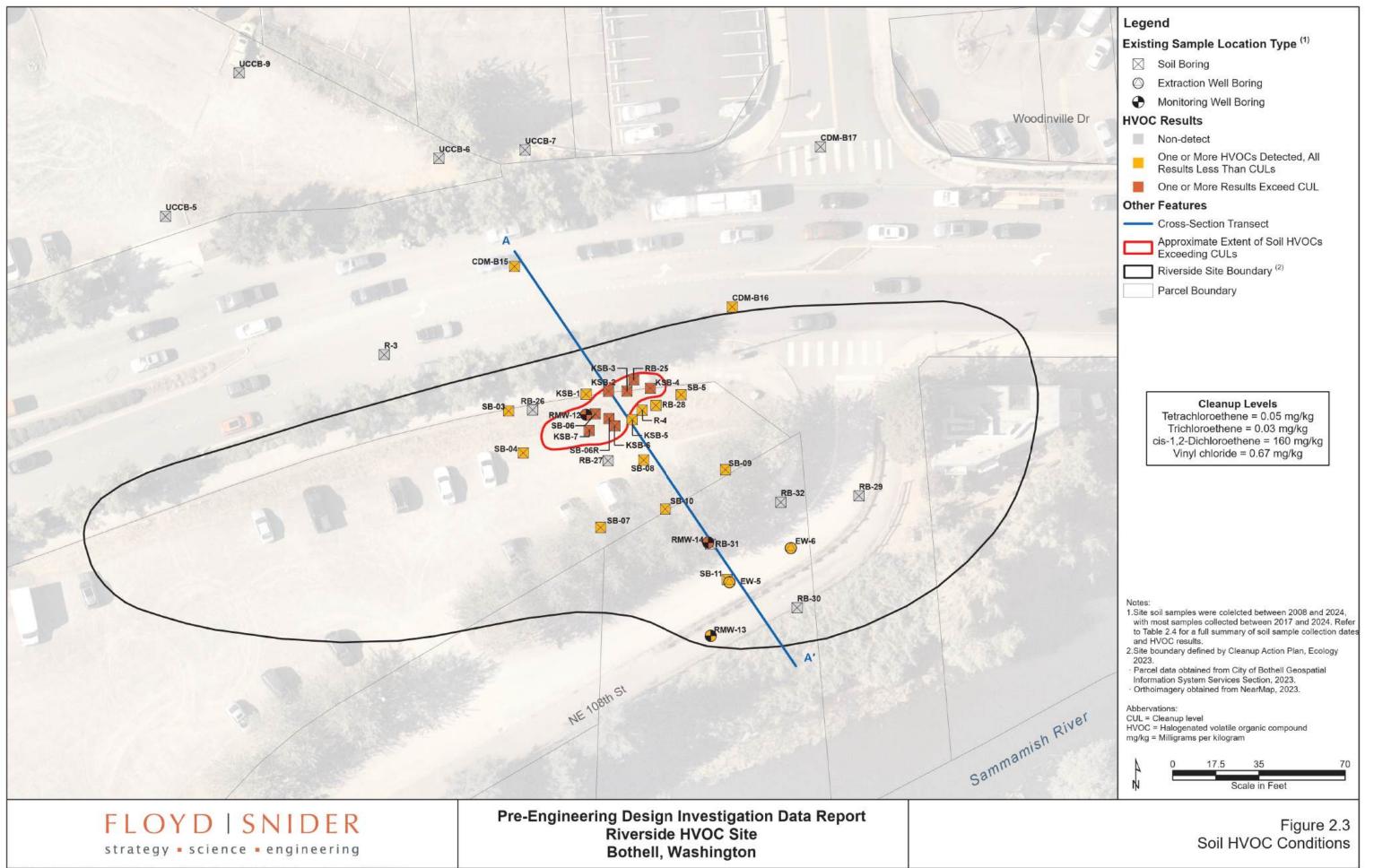

MTCA Model Toxics Control Act S-mZVI Sulfidated micro zero-valent iron SVE Soil vapor extraction

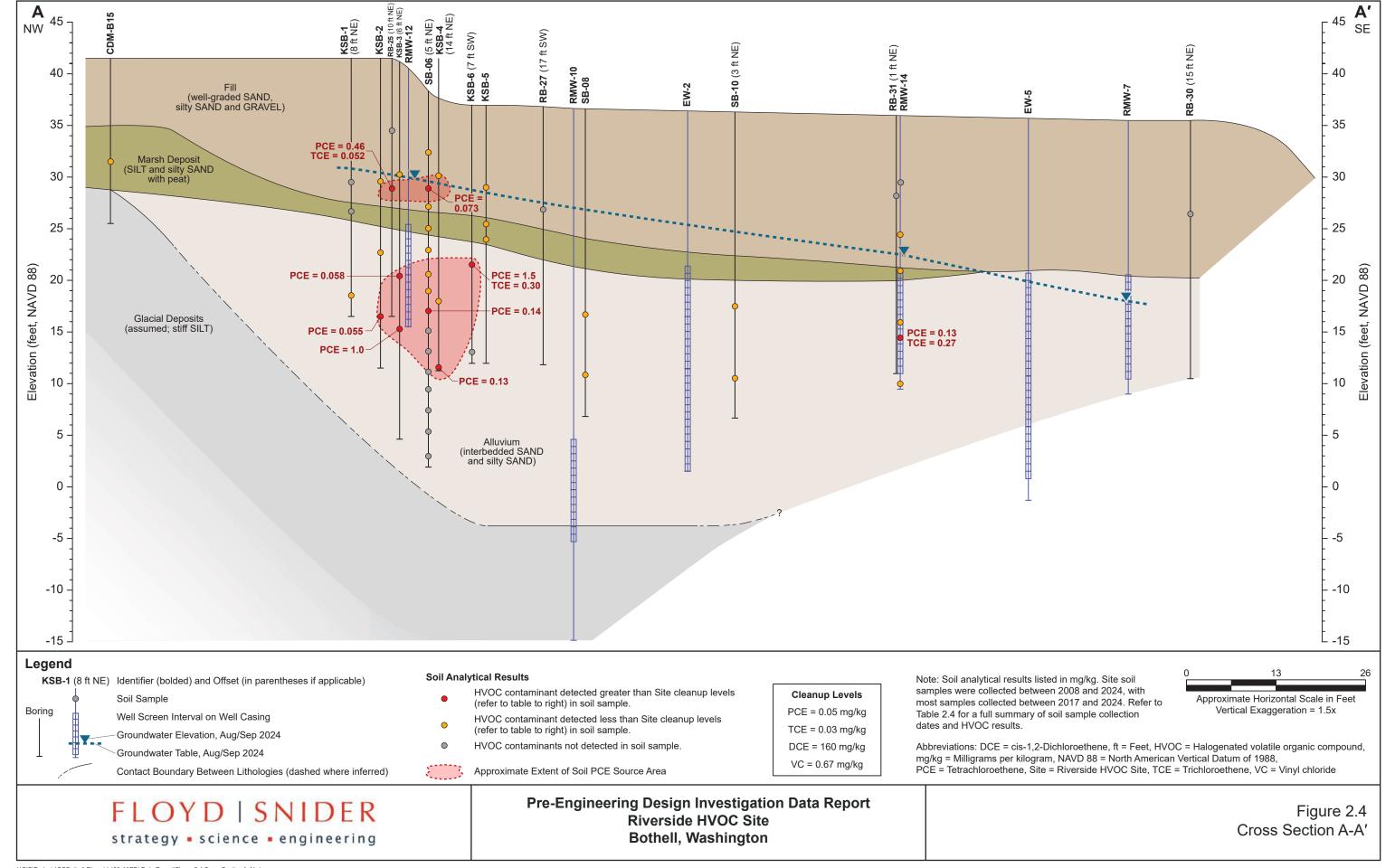

Site Riverside Halogenated Volatile Organic Compound Site

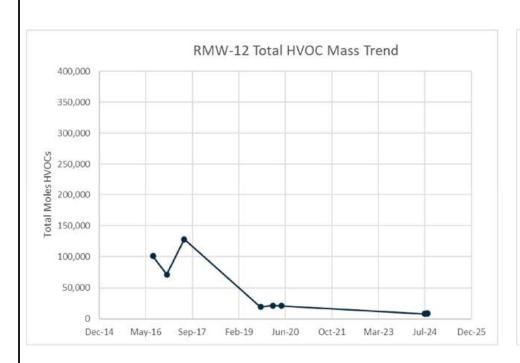

# **Pre-Engineering Design Investigation Data Report**

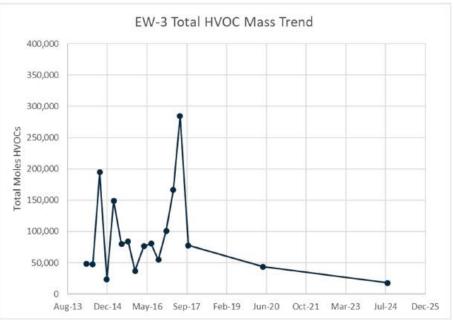
Riverside HVOC Site

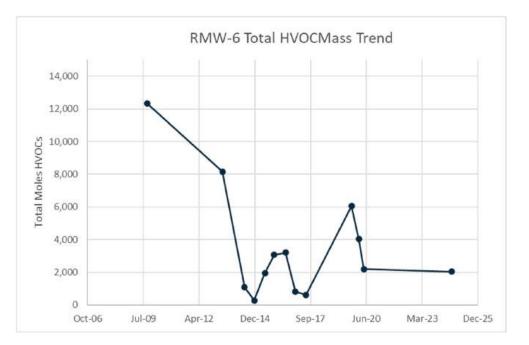
**Figures** 

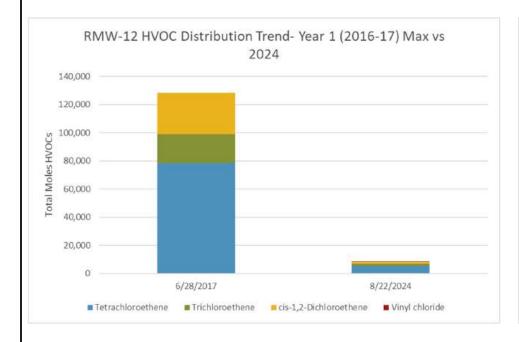


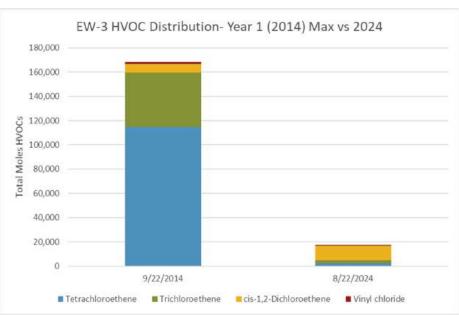



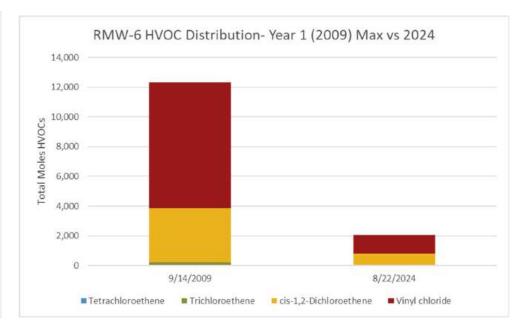





::\GIS\Projects\COBothell-Riverside\02-Map Documents\03-Pre-Engineering Design Data Summary Report\01 - HVOC\HVOC.aprx 12/16/2024

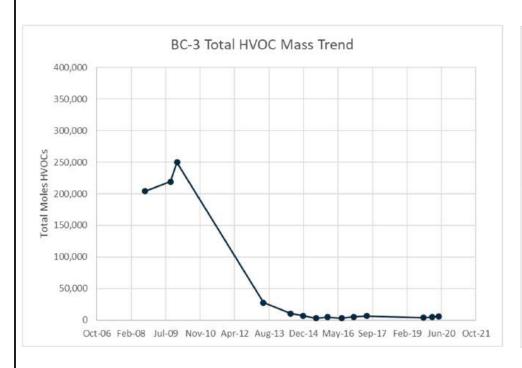

Bothell, Washington

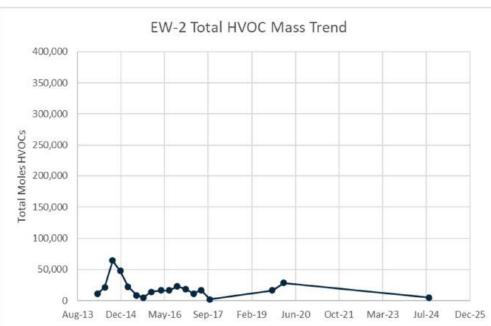


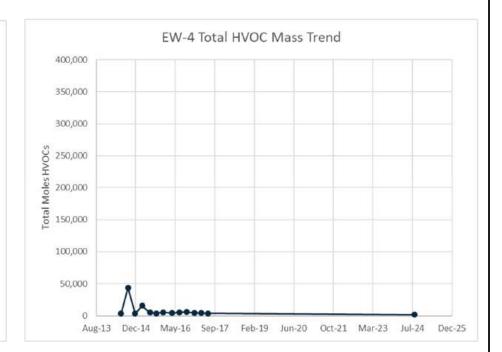



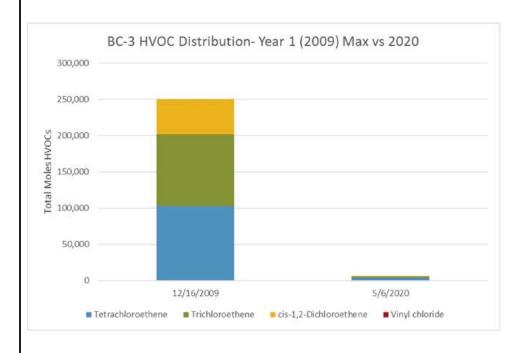



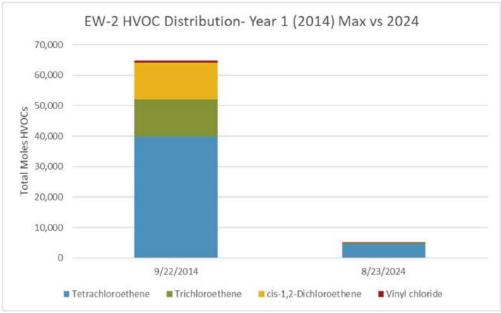


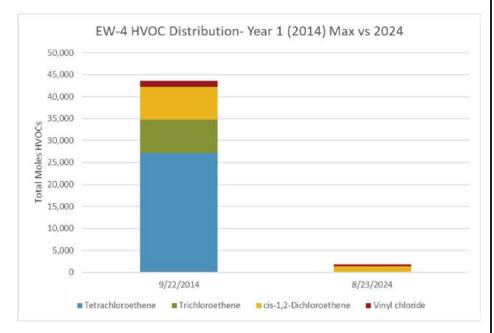



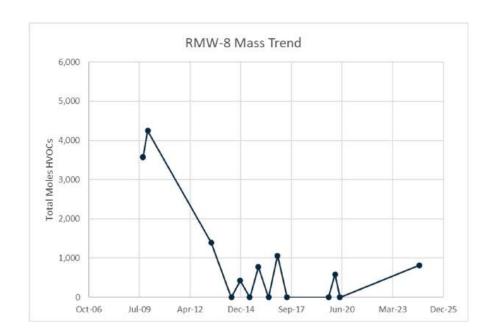



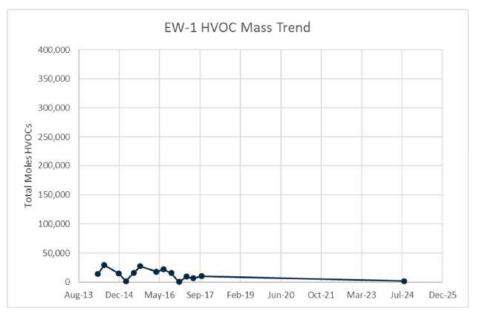



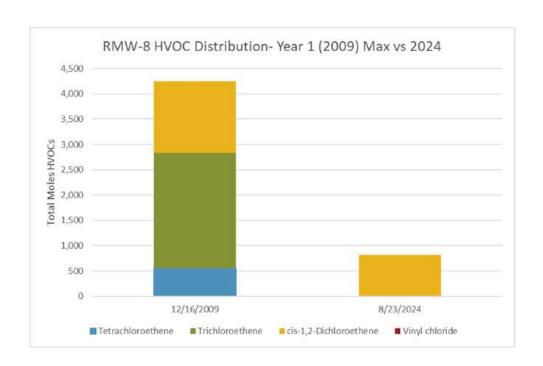


Pre-Engineering Design Investigation Data Report Riverside HVOC Site Bothell, Washington Figure 3.1 HVOC Molar Concentrations: Source Area and Upgradient Plume (Sheet 1 of 3)

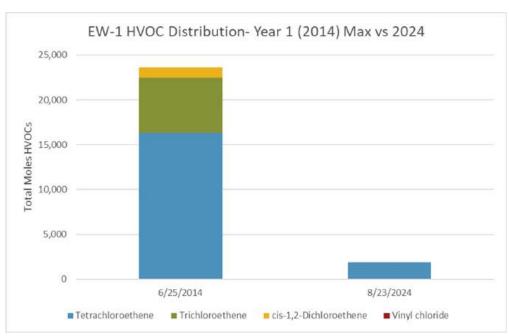


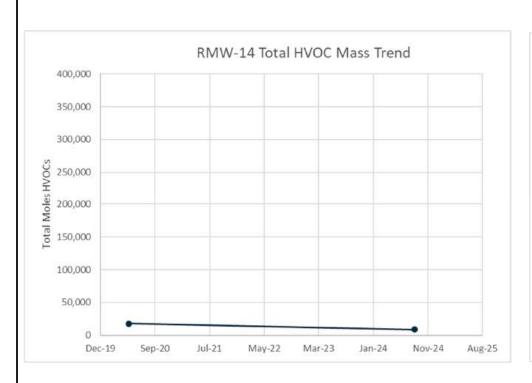


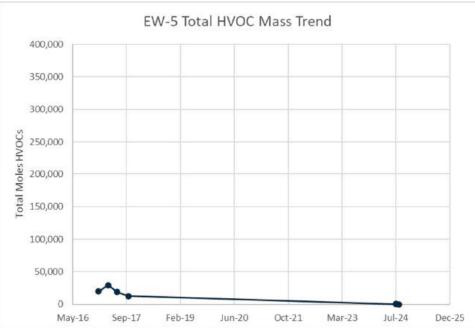



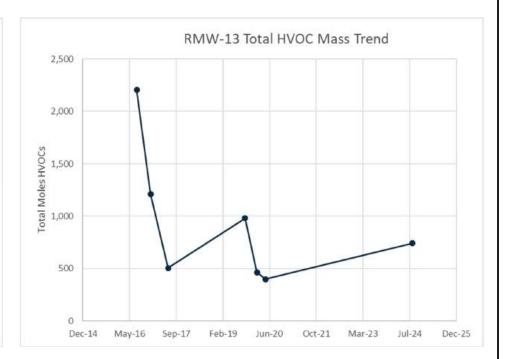



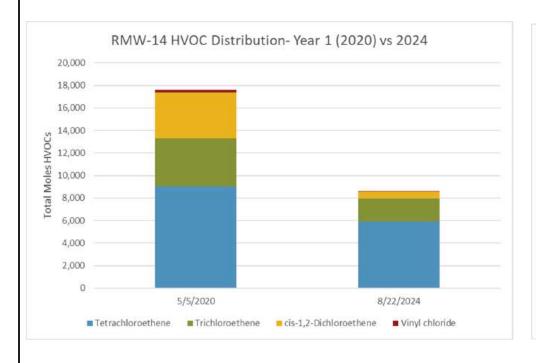



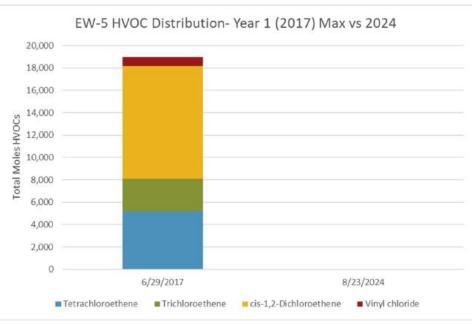



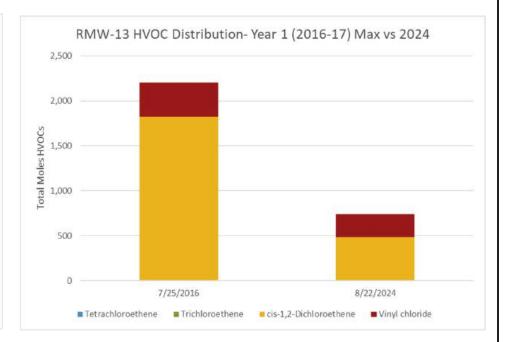


Pre-Engineering Design Investigation Data Report Riverside HVOC Site Bothell, Washington Figure 3.1 HVOC Molar Concentrations: Source Area and Upgradient Plume (Sheet 2 of 3)



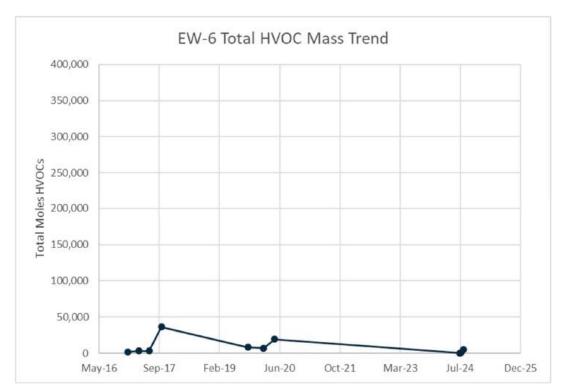



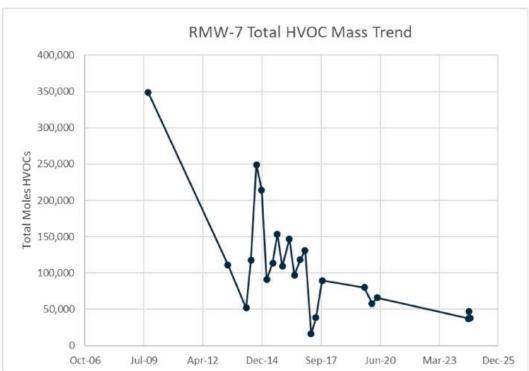



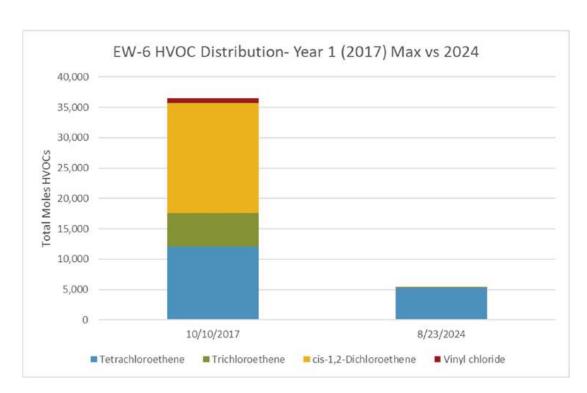



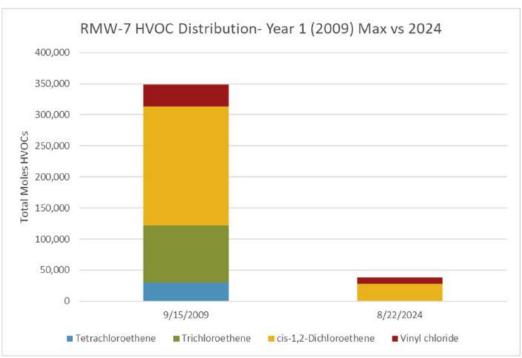



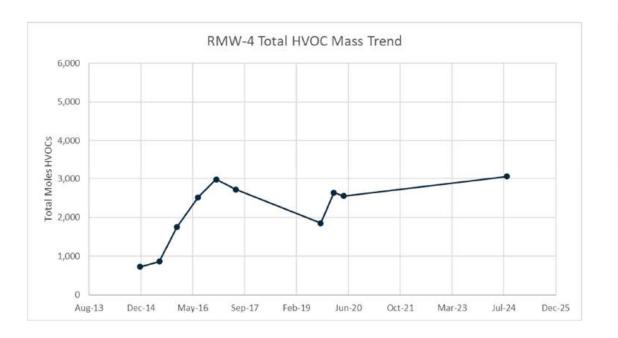


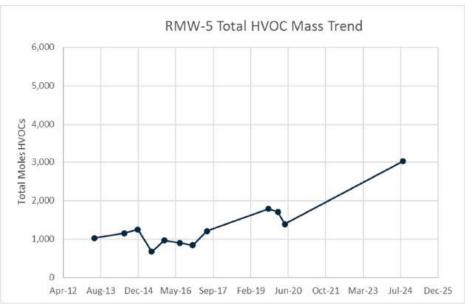



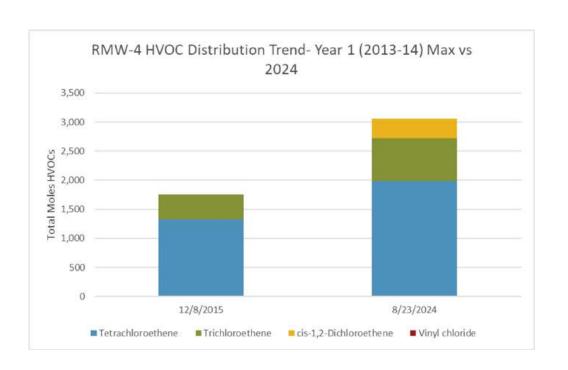



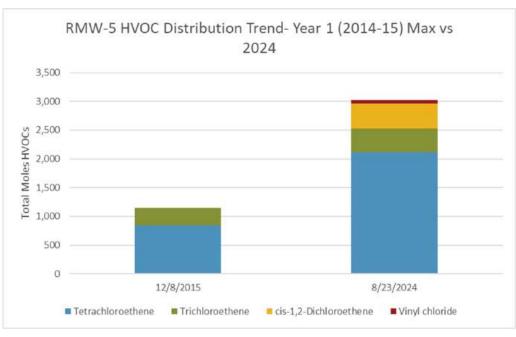



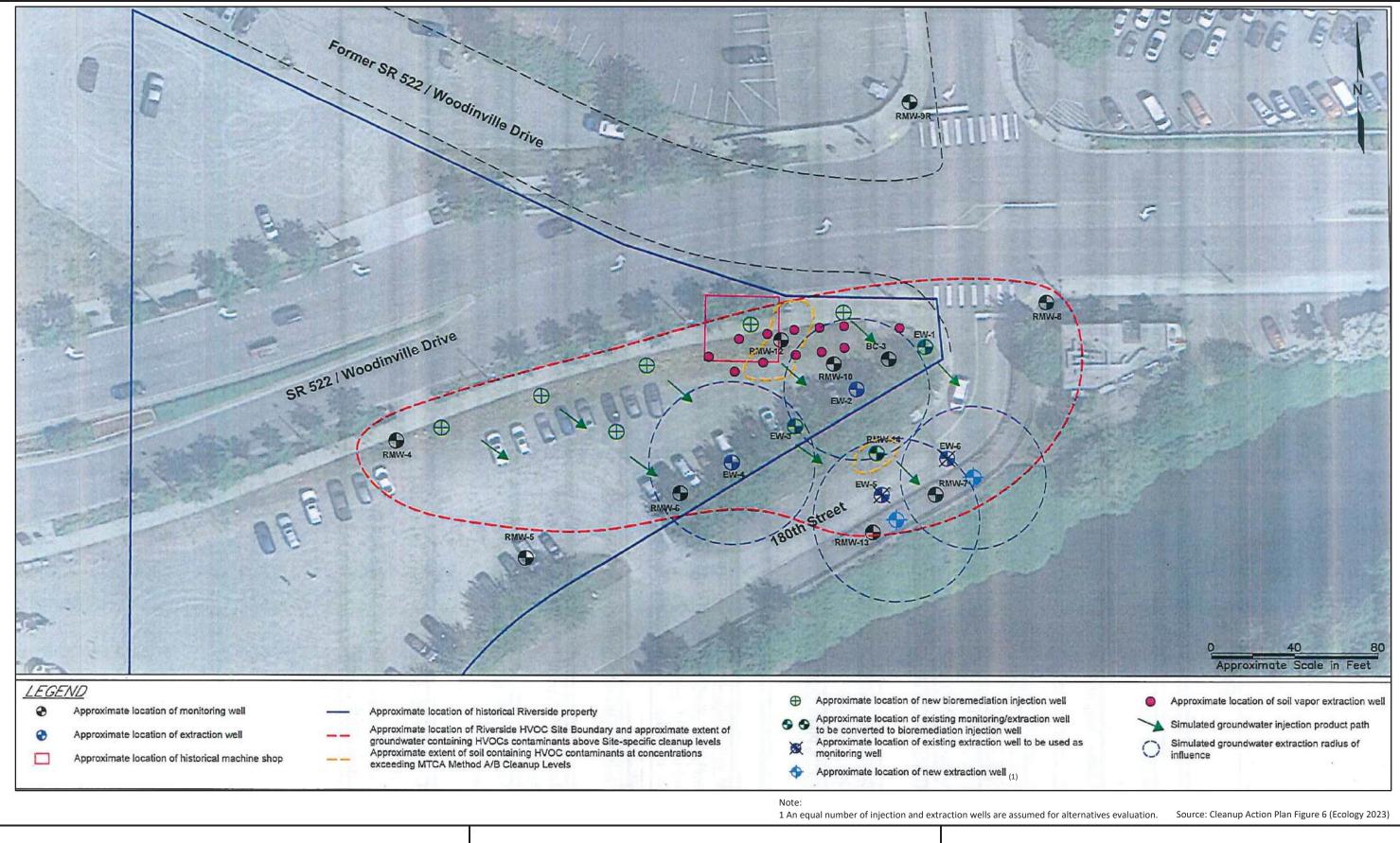





Pre-Engineering Design Investigation Data Report Riverside HVOC Site Bothell, Washington Figure 3.2 HVOC Molar Concentrations: Downgradient Plume (Sheet 1 of 2)



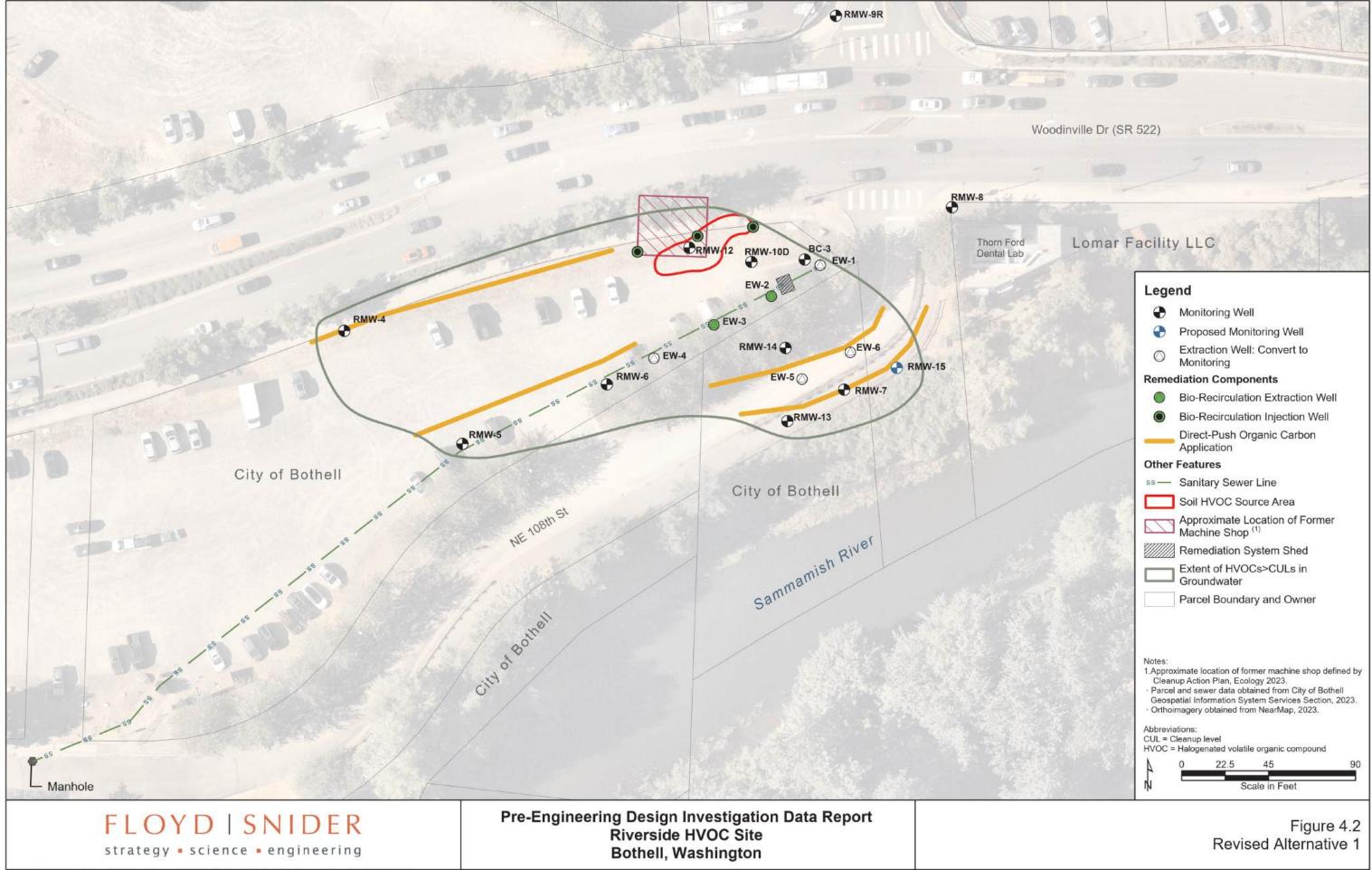



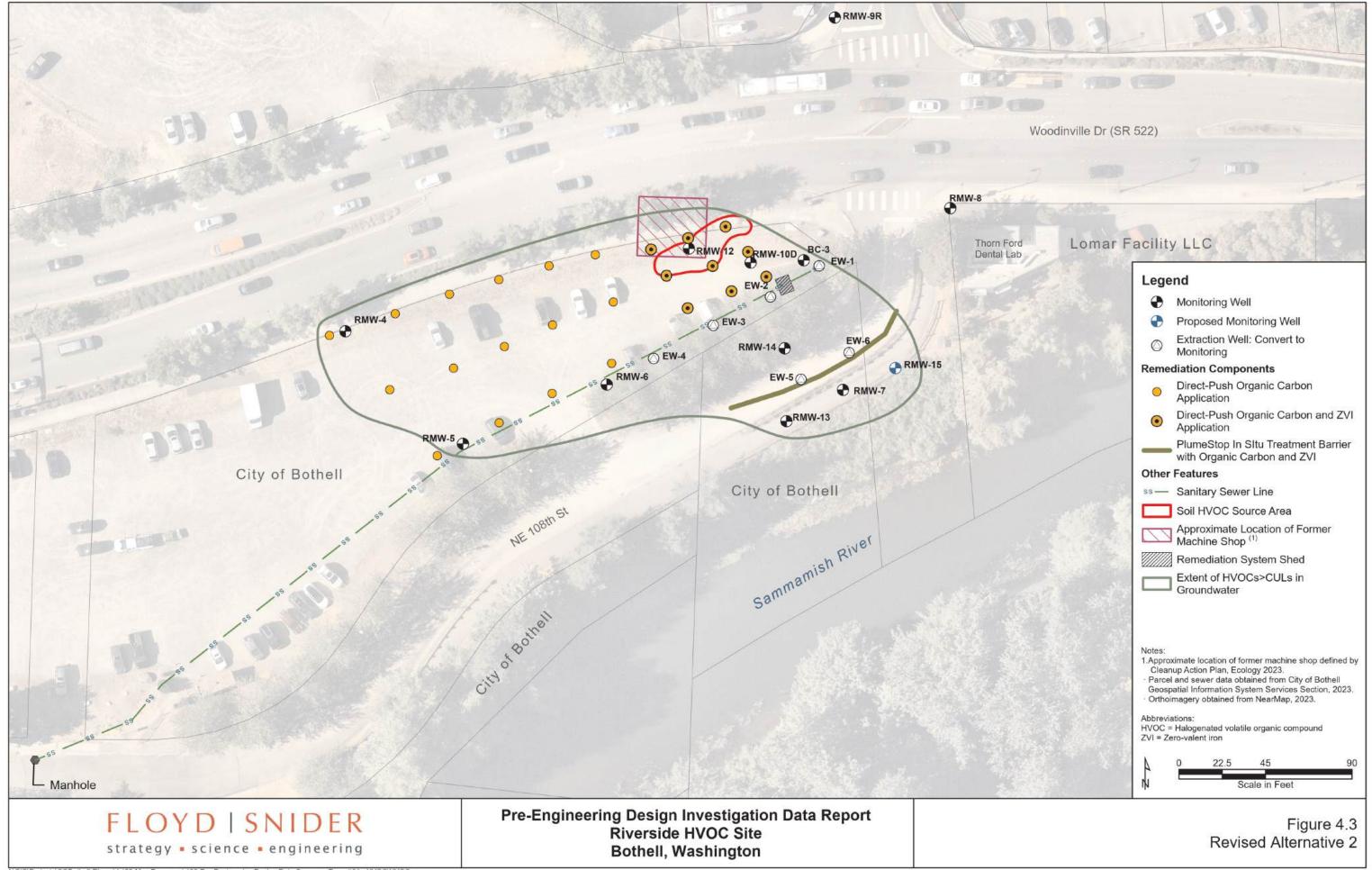







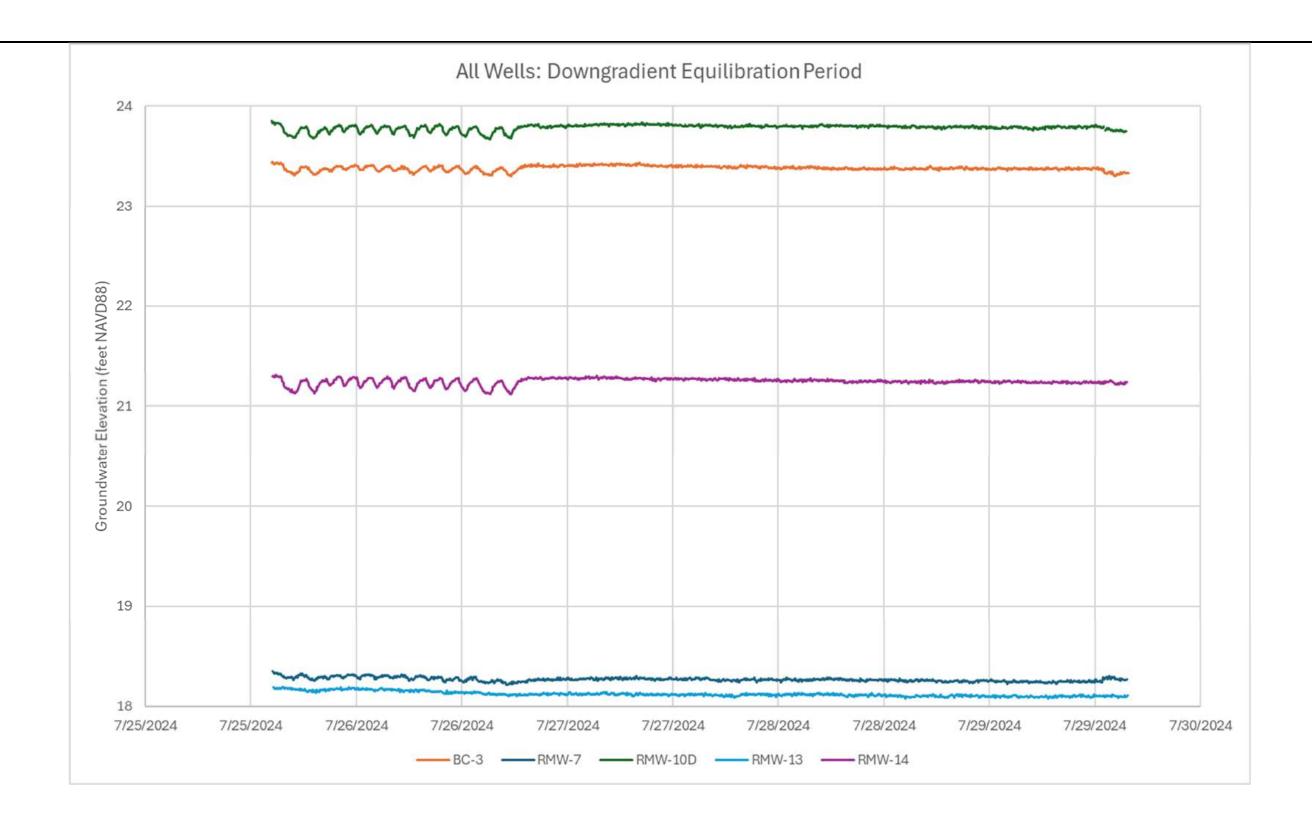


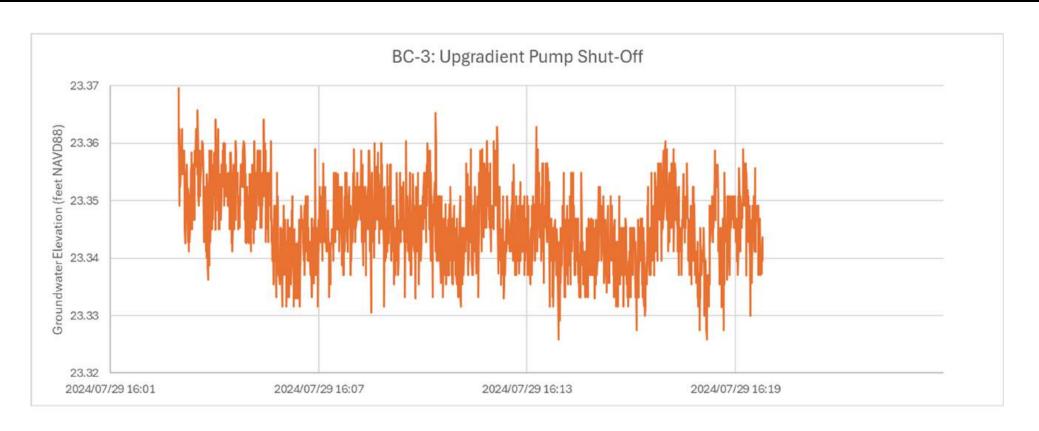

Pre-Engineering Design Investigation Data Report Riverside HVOC Site Bothell, Washington

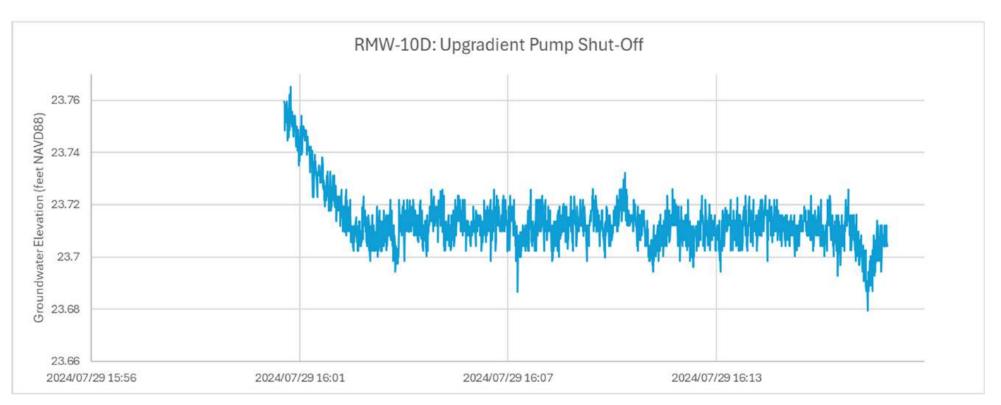
Figure 4.1 2023 CAP Cleanup Action




LIGIS\Projects\COBothell-Riverside\02-Map Documents\03-Pre-Engineering Design Data Summary Report\01 - HVOC\HVOC.aprx 12/16/2024



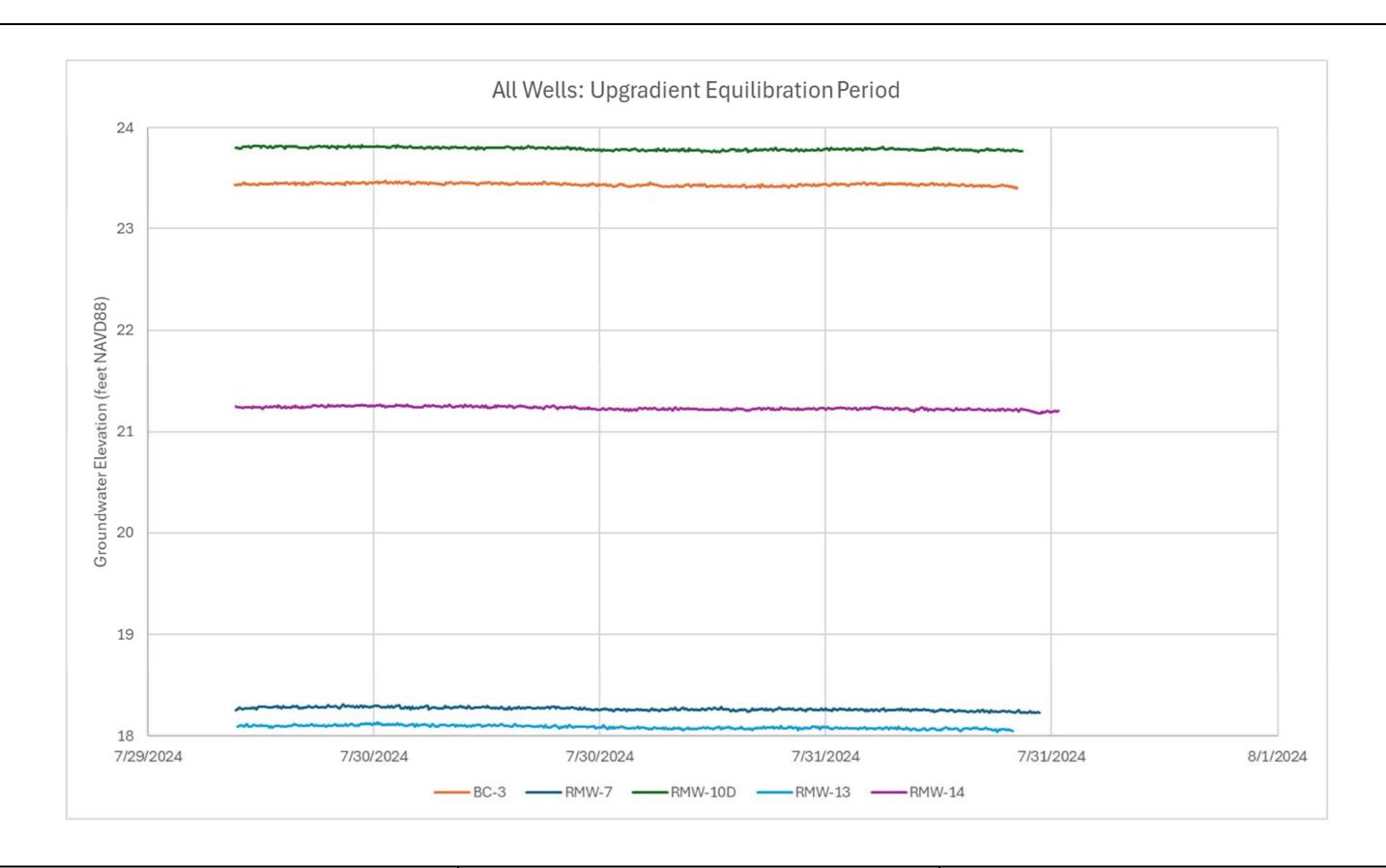

## **Pre-Engineering Design Investigation Data Report**


Riverside HVOC Site

## Appendix A Hydrogeologic Study Results












Pre-Engineering Design Investigation Data Report Riverside HVOC Site Bothell, Washington

Pre-Engineering Design Investigation Data Report Appendix A: Hydrogeologic Study Results





Pre-Engineering Design Investigation Data Report Riverside HVOC Site Bothell, Washington

Pre-Engineering Design Investigation Data Report Appendix A: Hydrogeologic Study Results

# **Pre-Engineering Design Investigation Data Report**

Riverside HVOC Site

## **Appendix B Laboratory Reports**



14648 NE 95<sup>th</sup> Street, Redmond, WA 98052 • (425) 883-3881

July 29, 2024

Kristin Anderson Floyd & Snider 601 Union Street, Suite 600 Seattle, WA 98101

Re: Analytical Data for Project Task 5; COB-Riverside

Laboratory Reference No. 2407-281

Dear Kristin:

Enclosed are the analytical results and associated quality control data for samples submitted on July 25, 2024.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

**Enclosures** 



#### **Case Narrative**

Samples were collected on July 25, 2024 and received by the laboratory on July 25, 2024. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below. However the soil results for the QA/QC samples are reported on a wet-weight basis.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

#### **VOLATILE ORGANICS EPA 8260D**

|                            |                  |                |           | Date     | Date     |       |
|----------------------------|------------------|----------------|-----------|----------|----------|-------|
| Analyte                    | Result           | PQL            | Method    | Prepared | Analyzed | Flags |
| Client ID:                 | EW-05-072524     |                |           |          |          |       |
| Laboratory ID:             | 07-281-01        |                |           |          |          |       |
| Vinyl Chloride             | ND               | 0.20           | EPA 8260D | 7-26-24  | 7-26-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.20           | EPA 8260D | 7-26-24  | 7-26-24  |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.20           | EPA 8260D | 7-26-24  | 7-26-24  |       |
| Trichloroethene            | ND               | 0.20           | EPA 8260D | 7-26-24  | 7-26-24  |       |
| Tetrachloroethene          | 0.26             | 0.20           | EPA 8260D | 7-26-24  | 7-26-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 97               | 68-133         |           |          |          |       |
| Toluene-d8                 | 99               | 79-123         |           |          |          |       |
| 4-Bromofluorobenzene       | 98               | 78-117         |           |          |          |       |
|                            |                  |                |           |          |          |       |
|                            |                  |                |           |          |          |       |
| Client ID:                 | EW-06-072524     |                |           |          |          |       |
| Laboratory ID:             | 07-281-02        |                |           |          |          |       |
| Vinyl Chloride             | ND               | 0.20           | EPA 8260D | 7-26-24  | 7-26-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.20           | EPA 8260D | 7-26-24  | 7-26-24  |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.20           | EPA 8260D | 7-26-24  | 7-26-24  |       |
| Trichloroethene            | ND               | 0.20           | EPA 8260D | 7-26-24  | 7-26-24  |       |
| Tetrachloroethene          | 0.27             | 0.20           | EPA 8260D | 7-26-24  | 7-26-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 98               | 68-133         |           |          |          |       |
| Toluene-d8                 | 100              | 79-123         |           |          |          |       |
| 4-Bromofluorobenzene       | 99               | 78-117         |           |          |          |       |
|                            |                  |                |           |          |          |       |
|                            |                  |                |           |          |          |       |
| Client ID:                 | RMW-07-072524    |                |           |          |          |       |
| Laboratory ID:             | 07-281-03        |                |           |          |          |       |
| Vinyl Chloride             | 6.4              | 0.20           | EPA 8260D | 7-26-24  | 7-26-24  |       |
| (trans) 1,2-Dichloroethene | 0.22             | 0.20           | EPA 8260D | 7-26-24  | 7-26-24  |       |
| (cis) 1,2-Dichloroethene   | 26               | 0.20           | EPA 8260D | 7-26-24  | 7-26-24  |       |
| Trichloroethene            | 0.46             | 0.20           | EPA 8260D | 7-26-24  | 7-26-24  |       |
| Tetrachloroethene          | 0.45             | 0.20           | EPA 8260D | 7-26-24  | 7-26-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 97               | 68-133         |           |          |          |       |
| Toluene-d8                 | 100              | 79-123         |           |          |          |       |
| 4-Bromofluorobenzene       | 100              | 78-117         |           |          |          |       |
|                            |                  |                |           |          |          |       |

#### **VOLATILE ORGANICS EPA 8260D**

|                            |                  |                |           | Date     | Date     |       |
|----------------------------|------------------|----------------|-----------|----------|----------|-------|
| Analyte                    | Result           | PQL            | Method    | Prepared | Analyzed | Flags |
| Client ID:                 | RMW-12-072524    |                |           |          |          |       |
| Laboratory ID:             | 07-281-04        |                |           |          |          |       |
| Vinyl Chloride             | ND               | 0.20           | EPA 8260D | 7-26-24  | 7-26-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.20           | EPA 8260D | 7-26-24  | 7-26-24  |       |
| (cis) 1,2-Dichloroethene   | 1.2              | 0.20           | EPA 8260D | 7-26-24  | 7-26-24  |       |
| Trichloroethene            | 1.7              | 0.20           | EPA 8260D | 7-26-24  | 7-26-24  |       |
| Tetrachloroethene          | 9.6              | 0.20           | EPA 8260D | 7-26-24  | 7-26-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 100              | 68-133         |           |          |          |       |
| Toluene-d8                 | 99               | 79-123         |           |          |          |       |
| 4-Bromofluorobenzene       | 99               | 78-117         |           |          |          |       |
|                            |                  |                |           |          |          |       |
|                            |                  |                |           |          |          |       |
| Client ID:                 | Trip Blanks      |                |           |          |          |       |
| Laboratory ID:             | 07-281-05        |                |           |          |          |       |
| Vinyl Chloride             | ND               | 0.20           | EPA 8260D | 7-26-24  | 7-26-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.20           | EPA 8260D | 7-26-24  | 7-26-24  |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.20           | EPA 8260D | 7-26-24  | 7-26-24  |       |
| Trichloroethene            | ND               | 0.20           | EPA 8260D | 7-26-24  | 7-26-24  |       |
| Tetrachloroethene          | ND               | 0.20           | EPA 8260D | 7-26-24  | 7-26-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 96               | 68-133         |           |          |          |       |
| Toluene-d8                 | 100              | 79-123         |           |          |          |       |
| 4-Bromofluorobenzene       | 99               | 78-117         |           |          |          |       |
|                            |                  |                |           |          |          |       |

### VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

|                            |                  |                |           | Date     | Date     |       |
|----------------------------|------------------|----------------|-----------|----------|----------|-------|
| Analyte                    | Result           | PQL            | Method    | Prepared | Analyzed | Flags |
| METHOD BLANK               |                  |                |           |          |          | _     |
| Laboratory ID:             | MB0726W1         |                |           |          |          |       |
| Vinyl Chloride             | ND               | 0.20           | EPA 8260D | 7-26-24  | 7-26-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.20           | EPA 8260D | 7-26-24  | 7-26-24  |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.20           | EPA 8260D | 7-26-24  | 7-26-24  |       |
| Trichloroethene            | ND               | 0.20           | EPA 8260D | 7-26-24  | 7-26-24  |       |
| Tetrachloroethene          | ND               | 0.20           | EPA 8260D | 7-26-24  | 7-26-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 100              | 68-133         |           |          |          |       |
| Toluene-d8                 | 103              | 79-123         |           |          |          |       |
| 4-Bromofluorobenzene       | 98               | 78-117         |           |          |          |       |

|                            |                |      |       |      | Per   | rcent      | Recovery |          | RPD   |   |
|----------------------------|----------------|------|-------|------|-------|------------|----------|----------|-------|---|
| Analyte                    | Result Spike L |      | Level | Rec  | overy | ery Limits |          | Limit    | Flags |   |
| SPIKE BLANKS               |                |      |       |      |       |            |          |          |       | _ |
| Laboratory ID:             | SB07           | 26W1 |       |      |       |            |          |          |       |   |
|                            | SB             | SBD  | SB    | SBD  | SB    | SBD        |          |          |       |   |
| Vinyl Chloride             | 9.58           | 9.44 | 10.0  | 10.0 | 96    | 94         | 67-130   | 1        | 15    |   |
| (trans) 1,2-Dichloroethene | 9.90           | 10.0 | 10.0  | 10.0 | 99    | 100        | 77-125   | 77-125 1 |       |   |
| (cis) 1,2-Dichloroethene   | 10.2           | 10.2 | 10.0  | 10.0 | 102   | 102        | 78-130   | 0        | 15    |   |
| Trichloroethene            | 9.93           | 9.92 | 10.0  | 10.0 | 99    | 99         | 80-126   | 0        | 15    |   |
| Tetrachloroethene          | 9.79           | 9.81 | 10.0  | 10.0 | 98    | 98         | 80-125   | 0        | 15    |   |
| Surrogate:                 |                |      |       |      |       |            |          |          |       |   |
| Dibromofluoromethane       |                |      |       |      | 98    | 98         | 68-133   |          |       |   |
| Toluene-d8                 | ne-d8          |      |       |      | 99    | 101        | 79-123   |          |       |   |
| 4-Bromofluorobenzene       |                |      |       |      | 102   | 101        | 78-117   |          |       |   |



#### **Data Qualifiers and Abbreviations**

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical .
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference





# **Chain of Custody**

| 1 | Tan | 7 |   |  |
|---|-----|---|---|--|
| 1 | ē   |   |   |  |
|   |     |   |   |  |
| I |     |   |   |  |
| 1 | 9   |   |   |  |
| l |     |   |   |  |
| ľ | 7   |   | _ |  |

| Reviewed/Date                                                         | Received                                        | Relinquished | Received                               | Relinquished                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Received Nichelia Line | Relinquished Hall Sally     | Signature                     |  |  | 5 The Blanks | 4 RMW-12-072524 | 3 RMW-07-072524 | 2 FW-06-072524 | 1 EW-05-072524   | Lab ID Sample Identification                                                                                                                                                                                                                                                                         | Layeller Harred                                                                  | Kristin Andrson | COB-Riverside HVOT Site | TOOKS         | Floyd Snider   | Company:           | Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 |
|-----------------------------------------------------------------------|-------------------------------------------------|--------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------|-------------------------------|--|--|--------------|-----------------|-----------------|----------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------|-------------------------|---------------|----------------|--------------------|---------------------------------------------------------------------------------|
| Reviewed/Date                                                         |                                                 |              |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D OSE                  | Floyd Snide                 | Company                       |  |  | ξ<br>Ε       | W 11:30 GW      | W:25 GW         | 10:28 GW       | 7125124 10:30 GW | Date Time<br>Sampled Sampled Matrix                                                                                                                                                                                                                                                                  | (other)                                                                          |                 | X Standard (7 Days)     | 2 Days 3 Days | Same Day 1 Day | (Check One)        | Turnaround Request<br>(in working days)                                         |
|                                                                       |                                                 |              |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7/25/24 15 20          | 1/85/24 15:20               | Date Time                     |  |  | X            | ×               | ×               | ×              | ×                | NWTF<br>NWTF<br>NWTF<br>Volatii<br>Halog                                                                                                                                                                                                                                                             | WTPH-HCID WTPH-Gx/BTEX (8021 8260 ) WTPH-Gx WTPH-Dx (SG Clean-up ) Diatiles 8260 |                 |                         |               |                | Laboratory Number: |                                                                                 |
| Chromatograms with final report   Electronic Data Deliverables (EDDs) | Data Package: Standard ☐ Level III ☐ Level IV ☐ |              | send results to: labolata@fluxknow.com | The section of the se | 12-2-1                 | ADMY PCE, TEE, CIS-1,2-DCE, | Comments/Special Instructions |  |  |              |                 |                 |                |                  | EDB EPA 8011 (Waters Only)  Semivolatiles 8270/SIM (with low-level PAHs)  PAHs 8270/SIM (low-level)  PCBs 8082  Organochlorine Pesticides 8081  Organophosphorus Pesticides 8270/SIM  Chlorinated Acid Herbicides 8151  Total RCRA Metals  Total MTCA Metals  TCLP Metals  HEM (oil and grease) 1664 |                                                                                  |                 |                         |               | 07-281         |                    |                                                                                 |



14648 NE 95<sup>th</sup> Street, Redmond, WA 98052 • (425) 883-3881

August 6, 2024

Kristin Anderson Floyd & Snider 601 Union Street, Suite 600 Seattle, WA 98101

Re: Analytical Data for Project Task 5; COB-Riverside HVOC Site

Laboratory Reference No. 2407-356

Dear Kristin:

Enclosed are the analytical results and associated quality control data for samples submitted on July 31, 2024.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

**Enclosures** 



Date of Report: August 6, 2024 Samples Submitted: July 31, 2024 Laboratory Reference: 2407-356

Project: Task 5; COB-Riverside HVOC Site

#### **Case Narrative**

Samples were collected on July 31, 2024 and received by the laboratory on July 31, 2024. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below. However the soil results for the QA/QC samples are reported on a wet-weight basis.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Date of Report: August 6, 2024 Samples Submitted: July 31, 2024 Laboratory Reference: 2407-356

Project: Task 5; COB-Riverside HVOC Site

#### **VOLATILE ORGANICS EPA 8260D**

|                                              |                                                |                                        |                        | Date                       | Date             |       |
|----------------------------------------------|------------------------------------------------|----------------------------------------|------------------------|----------------------------|------------------|-------|
| Analyte                                      | Result                                         | PQL                                    | Method                 | Prepared                   | Analyzed         | Flags |
| Client ID:                                   | EW-05-073124                                   |                                        |                        |                            |                  |       |
| Laboratory ID:                               | 07-356-01                                      |                                        |                        |                            |                  |       |
| Vinyl Chloride                               | ND                                             | 0.20                                   | EPA 8260D              | 8-1-24                     | 8-1-24           |       |
| (trans) 1,2-Dichloroethene                   | ND                                             | 0.20                                   | EPA 8260D              | 8-1-24                     | 8-1-24           |       |
| (cis) 1,2-Dichloroethene                     | ND                                             | 0.20                                   | EPA 8260D              | 8-1-24                     | 8-1-24           |       |
| Trichloroethene                              | ND                                             | 0.20                                   | EPA 8260D              | 8-1-24                     | 8-1-24           |       |
| Tetrachloroethene                            | 0.25                                           | 0.20                                   | EPA 8260D              | 8-1-24                     | 8-1-24           |       |
| Surrogate:                                   | Percent Recovery                               | Control Limits                         |                        |                            |                  |       |
| Dibromofluoromethane                         | 96                                             | 68-133                                 |                        |                            |                  |       |
| Toluene-d8                                   | 100                                            | 79-123                                 |                        |                            |                  |       |
| 4-Bromofluorobenzene                         | 102                                            | 78-117                                 |                        |                            |                  |       |
|                                              |                                                |                                        |                        |                            |                  |       |
|                                              |                                                |                                        |                        |                            |                  |       |
| Client ID:                                   | EW-06-073124                                   |                                        |                        |                            |                  |       |
| Laboratory ID:                               | 07-356-02                                      |                                        |                        |                            |                  |       |
| Vinyl Chloride                               | ND                                             | 0.20                                   | EPA 8260D              | 8-1-24                     | 8-1-24           |       |
| (trans) 1,2-Dichloroethene                   | ND                                             | 0.20                                   | EPA 8260D              | 8-1-24                     | 8-1-24           |       |
| (cis) 1,2-Dichloroethene                     | ND                                             | 0.20                                   | EPA 8260D              | 8-1-24                     | 8-1-24           |       |
| Trichloroethene                              | ND                                             | 0.20                                   | EPA 8260D              | 8-1-24                     | 8-1-24           |       |
| Tetrachloroethene                            | 1.5                                            | 0.20                                   | EPA 8260D              | 8-1-24                     | 8-1-24           |       |
| Surrogate:                                   | Percent Recovery                               | Control Limits                         |                        |                            |                  |       |
| Dibromofluoromethane                         | 96                                             | 68-133                                 |                        |                            |                  |       |
| Toluene-d8                                   | 100                                            | 79-123                                 |                        |                            |                  |       |
| 4-Bromofluorobenzene                         | 102                                            | 78-117                                 |                        |                            |                  |       |
|                                              |                                                |                                        |                        |                            |                  |       |
|                                              |                                                |                                        |                        |                            |                  |       |
| Client ID:                                   | RMW-07-073124                                  |                                        |                        |                            |                  |       |
| Laboratory ID:                               | 07-356-03                                      |                                        |                        |                            |                  |       |
| Vinyl Chloride                               | 9.4                                            | 0.20                                   | EPA 8260D              | 8-1-24                     | 8-1-24           |       |
| (trans) 1,2-Dichloroethene                   | 0.4                                            |                                        |                        | • · <b>-</b> ·             |                  |       |
| (-:-) 4 0 D:-I-I                             | 0.29                                           | 0.20                                   | EPA 8260D              | 8-1-24                     | 8-1-24           |       |
| (cis) 1,2-Dichloroethene                     |                                                | 0.20<br>0.20                           | EPA 8260D<br>EPA 8260D | _                          | 8-1-24<br>8-1-24 |       |
| Trichloroethene                              | 0.29                                           |                                        |                        | 8-1-24                     | -                |       |
| • •                                          | 0.29<br>31                                     | 0.20                                   | EPA 8260D              | 8-1-24<br>8-1-24           | 8-1-24           |       |
| Trichloroethene                              | 0.29<br>31<br>0.41                             | 0.20<br>0.20                           | EPA 8260D<br>EPA 8260D | 8-1-24<br>8-1-24<br>8-1-24 | 8-1-24<br>8-1-24 |       |
| Trichloroethene Tetrachloroethene            | 0.29<br>31<br>0.41<br>0.38                     | 0.20<br>0.20<br>0.20                   | EPA 8260D<br>EPA 8260D | 8-1-24<br>8-1-24<br>8-1-24 | 8-1-24<br>8-1-24 |       |
| Trichloroethene Tetrachloroethene Surrogate: | 0.29<br>31<br>0.41<br>0.38<br>Percent Recovery | 0.20<br>0.20<br>0.20<br>Control Limits | EPA 8260D<br>EPA 8260D | 8-1-24<br>8-1-24<br>8-1-24 | 8-1-24<br>8-1-24 |       |

Date of Report: August 6, 2024 Samples Submitted: July 31, 2024 Laboratory Reference: 2407-356

Project: Task 5; COB-Riverside HVOC Site

# **VOLATILE ORGANICS EPA 8260D**

|                            |                  |                |           | Date     | Date     |       |
|----------------------------|------------------|----------------|-----------|----------|----------|-------|
| Analyte                    | Result           | PQL            | Method    | Prepared | Analyzed | Flags |
| Client ID:                 | RMW-12-073124    |                |           |          |          |       |
| Laboratory ID:             | 07-356-04        |                |           |          |          |       |
| Vinyl Chloride             | 0.22             | 0.20           | EPA 8260D | 8-1-24   | 8-1-24   |       |
| (trans) 1,2-Dichloroethene | ND               | 0.20           | EPA 8260D | 8-1-24   | 8-1-24   |       |
| (cis) 1,2-Dichloroethene   | 1.5              | 0.20           | EPA 8260D | 8-1-24   | 8-1-24   |       |
| Trichloroethene            | 1.7              | 0.20           | EPA 8260D | 8-1-24   | 8-1-24   |       |
| Tetrachloroethene          | 8.2              | 0.20           | EPA 8260D | 8-1-24   | 8-1-24   |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 96               | 68-133         |           |          |          |       |
| Toluene-d8                 | 100              | 79-123         |           |          |          |       |
| 4-Bromofluorobenzene       | 102              | 78-117         |           |          |          |       |

Date of Report: August 6, 2024 Samples Submitted: July 31, 2024 Laboratory Reference: 2407-356

Project: Task 5; COB-Riverside HVOC Site

#### VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

|                            |                  |                |           | Date     | Date     |       |
|----------------------------|------------------|----------------|-----------|----------|----------|-------|
| Analyte                    | Result           | PQL            | Method    | Prepared | Analyzed | Flags |
| METHOD BLANK               |                  |                |           |          |          |       |
| Laboratory ID:             | MB0801W1         |                |           |          |          |       |
| Vinyl Chloride             | ND               | 0.20           | EPA 8260D | 8-1-24   | 8-1-24   |       |
| (trans) 1,2-Dichloroethene | ND               | 0.20           | EPA 8260D | 8-1-24   | 8-1-24   |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.20           | EPA 8260D | 8-1-24   | 8-1-24   |       |
| Trichloroethene            | ND               | 0.20           | EPA 8260D | 8-1-24   | 8-1-24   |       |
| Tetrachloroethene          | ND               | 0.20           | EPA 8260D | 8-1-24   | 8-1-24   |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 95               | 68-133         |           |          |          |       |
| Toluene-d8                 | 99               | 79-123         |           |          |          |       |
| 4-Bromofluorobenzene       | 100              | 78-117         |           |          |          |       |

|                            |       |       |       |       | Source | Pei | rcent | Recovery |     | RPD   |       |
|----------------------------|-------|-------|-------|-------|--------|-----|-------|----------|-----|-------|-------|
| Analyte                    | Res   | sult  | Spike | Level | Result | Rec | overy | Limits   | RPD | Limit | Flags |
| MATRIX SPIKES              |       |       |       |       |        |     |       |          |     |       |       |
| Laboratory ID:             | 07-35 | 58-01 |       |       |        |     |       |          |     |       |       |
|                            | MS    | MSD   | MS    | MSD   |        | MS  | MSD   |          |     |       |       |
| Vinyl Chloride             | 10.5  | 10.8  | 10.0  | 10.0  | ND     | 105 | 108   | 62-121   | 3   | 15    |       |
| (trans) 1,2-Dichloroethene | 10.3  | 10.4  | 10.0  | 10.0  | ND     | 103 | 104   | 79-120   | 1   | 16    |       |
| (cis) 1,2-Dichloroethene   | 10.5  | 10.7  | 10.0  | 10.0  | ND     | 105 | 107   | 81-128   | 2   | 16    |       |
| Trichloroethene            | 10.6  | 10.4  | 10.0  | 10.0  | ND     | 106 | 104   | 80-130   | 2   | 12    |       |
| Tetrachloroethene          | 10.1  | 10.1  | 10.0  | 10.0  | ND     | 101 | 101   | 84-126   | 0   | 19    |       |
| Surrogate:                 |       |       |       |       |        |     |       |          |     |       |       |
| Dibromofluoromethane       |       |       |       |       |        | 96  | 96    | 68-133   |     |       |       |
| Toluene-d8                 |       |       |       |       |        | 99  | 99    | 79-123   |     |       |       |
| 4-Bromofluorobenzene       |       |       |       |       |        | 103 | 104   | 78-117   |     |       |       |



#### **Data Qualifiers and Abbreviations**

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical .
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference





# Chain of Custody

|   | Tage |   |   |   |
|---|------|---|---|---|
| - | 10   | - |   |   |
| ŀ |      |   | - | _ |

| Chromatograms with final report ☐ Electronic Data Deliverables (EDDs) ☐                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   | Reviewed/Date                           | Reviewed/Date                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------|---------------------------------------------------------------------------------|
| Data Package: Standard ☐ Level III ☐ Level IV ☐                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                         | Received                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                         | Relinquished                                                                    |
| serve xessions to: 1868 800 attender com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                         | Received                                                                        |
| See Joseph Line Committee | -                                 |                                         |                                                                                 |
| trans-1,2- DOE + Vary Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7/31/24 1347                      | 980                                     | Received Nichelle Shiri                                                         |
| \$ Only PCE, TCE, 1,2-03-000,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7/31/24 13:47                     | Fleyd 1 Snider                          | Relinquished Harrill All                                                        |
| Comments/Special Instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Date Time                         | Company                                 | Signature                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                         |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                         |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                         |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                         |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                         |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                         |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×                                 | 12:05 1 3                               | 4 RMW-12-073124                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   | 12:00 3                                 | 3 RMW-07-073124                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | >                                 | 11:20 3                                 | 2 EW-06-073124                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×                                 | 7/3124 11:15 GW 3                       | 1 EW-05073174                                                                   |
| (with I PAHs PCBs Organ Organ Chlori Total I TCLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NWTF NWTF Volatil Halog           | Date Time<br>Sampled Sampled Matrix     | Lab ID Sample Identification                                                    |
| nochlori<br>nophosp<br>inated /<br>RCRA M<br>MTCA M<br>Metals<br>(oil and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PH-Gx PH-Dx les 826 enated EPA 80 | (other)                                 | Donathe Grallahar                                                               |
| el PAHs SIM (low line Pes Chorus Acid He Metals Wetals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SG Cle Volatile                   | Contain                                 | Kristin Anderson                                                                |
| s)<br>y-level)<br>ticides 8<br>Pesticid<br>rbicides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8021 8<br>ean-up es 8260          | Standard (7 Days)                       | COB-RIVERSIZE HVOC SHE                                                          |
| es 8270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ])                                | 2 Days 3 Days                           | Tasks                                                                           |
| D/SIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | )                                 | Same Day 1 Day                          | Floyd Smider                                                                    |
| - 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   | (Check One)                             |                                                                                 |
| 07-356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Laboratory Number:                | Turnaround Request<br>(in working days) | Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 |



14648 NE 95<sup>th</sup> Street, Redmond, WA 98052 • (425) 883-3881

September 4, 2024

Kristin Anderson Floyd & Snider 601 Union Street, Suite 600 Seattle, WA 98101

Re: Analytical Data for Project COB-Riverside; Task 5

Laboratory Reference No. 2408-289

#### Dear Kristin:

Enclosed are the analytical results and associated quality control data for samples submitted on August 22, 2024.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

**Enclosures** 



#### Case Narrative

Samples were collected on August 22, 2024 and received by the laboratory on August 22, 2024. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below. However the soil results for the QA/QC samples are reported on a wet-weight basis.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

#### Alkalinity SM 2320B Analysis

Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects of sample RMW-05-082224.

#### Dissolved Gases RSK 175 Analysis

Due to the high concentration of Methane in the native sample used for the MS/MSD, meaningful recovery data for this compound could not be obtained. Ethane and Ethene were also recovered outside of control limits. The samples were re-analyzed with similar results, indicating probable matrix interference. The SB/SBD extracted with these samples had all parameters within control limits.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

#### **VOLATILE ORGANICS EPA 8260D/SIM**

|                            |                  |                |               | Date     | Date     |       |
|----------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                    | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| Client ID:                 | RMW-09R-082224   |                |               |          |          |       |
| Laboratory ID:             | 08-289-01        |                |               |          |          |       |
| Vinyl Chloride (SIM)       | ND               | 0.020          | EPA 8260D/SIM | 8-26-24  | 8-26-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Trichloroethene            | ND               | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Tetrachloroethene          | ND               | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits | •             |          |          |       |
| Dibromofluoromethane       | 94               | 68-133         |               |          |          |       |
| Toluene-d8                 | 98               | 79-123         |               |          |          |       |
| 4-Bromofluorobenzene       | 100              | 78-117         |               |          |          |       |
|                            |                  |                |               |          |          |       |
|                            |                  |                |               |          |          |       |
| Client ID:                 | RMW-14-082224    |                |               |          |          |       |
| Laboratory ID:             | 08-289-02        |                |               |          |          |       |
| Vinyl Chloride (SIM)       | 0.032            | 0.020          | EPA 8260D/SIM | 8-26-24  | 8-26-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| (cis) 1,2-Dichloroethene   | 0.58             | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Trichloroethene            | 2.7              | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Tetrachloroethene          | 9.8              | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |               |          |          |       |
| Dibromofluoromethane       | 92               | 68-133         |               |          |          |       |
| Toluene-d8                 | 100              | 79-123         |               |          |          |       |
| 4-Bromofluorobenzene       | 100              | 78-117         |               |          |          |       |
|                            |                  |                |               |          |          |       |
|                            |                  |                |               |          |          |       |
| Client ID:                 | RMW-13-082224    |                |               |          |          |       |
| Laboratory ID:             | 08-289-03        |                |               |          |          |       |
| Vinyl Chloride (SIM)       | 0.16             | 0.020          | EPA 8260D/SIM | 8-26-24  | 8-26-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| (cis) 1,2-Dichloroethene   | 0.48             | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Trichloroethene            | ND               | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Tetrachloroethene          | ND               | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |               |          |          |       |
| Dibromofluoromethane       | 93               | 68-133         |               |          |          |       |
| Toluene-d8                 | 99               | 79-123         |               |          |          |       |
| 4-Bromofluorobenzene       | 98               | 78-117         |               |          |          |       |

#### **VOLATILE ORGANICS EPA 8260D/SIM**

|                            |                               |                |               | Date     | Date     |       |
|----------------------------|-------------------------------|----------------|---------------|----------|----------|-------|
| Analyte                    | Result                        | PQL            | Method        | Prepared | Analyzed | Flags |
| Client ID:                 | RMW-07-082224                 |                |               |          |          |       |
| Laboratory ID:             | 08-289-04                     |                |               |          |          |       |
| Vinyl Chloride             | 6.2                           | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| (trans) 1,2-Dichloroethene | 0.28                          | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| (cis) 1,2-Dichloroethene   | 27                            | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Trichloroethene            | 0.64                          | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Tetrachloroethene          | 0.48                          | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Surrogate:                 | Percent Recovery              | Control Limits |               |          |          |       |
| Dibromofluoromethane       | 94                            | 68-133         |               |          |          |       |
| Toluene-d8                 | 99                            | 79-123         |               |          |          |       |
| 4-Bromofluorobenzene       | 99                            | 78-117         |               |          |          |       |
|                            |                               |                |               |          |          |       |
| Client ID:                 | RMW-12-082224                 |                |               |          |          |       |
| Laboratory ID:             | 08-289-05                     |                |               |          |          |       |
| Vinyl Chloride (SIM)       | 0.19                          | 0.020          | EPA 8260D/SIM | 8-26-24  | 8-26-24  |       |
| (trans) 1,2-Dichloroethene | ND                            | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| (cis) 1,2-Dichloroethene   | 1.4                           | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Trichloroethene            | 1.8                           | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Tetrachloroethene          | 8.8                           | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Surrogate:                 | Percent Recovery              | Control Limits |               |          |          |       |
| Dibromofluoromethane       | 93                            | 68-133         |               |          |          |       |
| Toluene-d8                 | 99                            | 79-123         |               |          |          |       |
| 4-Bromofluorobenzene       | 99                            | 78-117         |               |          |          |       |
| Client ID:                 | FW 02 002004                  |                |               |          |          |       |
| Client ID:                 | <b>EW-03-082224</b> 08-289-06 |                |               |          |          |       |
| Laboratory ID:             |                               | 0.20           | EDA 9260D     | 9.26.24  | 9.26.24  |       |
| Vinyl Chloride             | 0.42                          | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| (trans) 1,2-Dichloroethene | 0.21                          | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| (cis) 1,2-Dichloroethene   | 12                            | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Trichloroethene            | 3.4                           | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Tetrachloroethene          | 3.7                           | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Surrogate:                 | Percent Recovery              | Control Limits |               |          |          |       |
| Dibromofluoromethane       | 93                            | 68-133         |               |          |          |       |
| Toluene-d8                 | 100                           | 79-123         |               |          |          |       |
| 4-Bromofluorobenzene       | 101                           | 78-117         |               |          |          |       |

#### **VOLATILE ORGANICS EPA 8260D/SIM**

|                                    |                  |                  |               | Date     | Date     |       |
|------------------------------------|------------------|------------------|---------------|----------|----------|-------|
| Analyte                            | Result           | PQL              | Method        | Prepared | Analyzed | Flags |
| Client ID:                         | RMW-05-082224    |                  |               |          |          |       |
| Laboratory ID:                     | 08-289-07        |                  |               |          |          |       |
| Vinyl Chloride (SIM)               | 0.036            | 0.020            | EPA 8260D/SIM | 8-26-24  | 8-26-24  |       |
| (trans) 1,2-Dichloroethene         | ND               | 0.20             | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| (cis) 1,2-Dichloroethene           | 0.43             | 0.20             | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Trichloroethene                    | 0.55             | 0.20             | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Tetrachloroethene                  | 3.5              | 0.20             | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Surrogate:                         | Percent Recovery | Control Limits   |               |          |          |       |
| Dibromofluoromethane               | 90               | 68-133           |               |          |          |       |
| Toluene-d8                         | 99               | 79-123           |               |          |          |       |
| 4-Bromofluorobenzene               | 99               | 78-117           |               |          |          |       |
|                                    |                  |                  |               |          |          |       |
| Client ID:                         | RMW-06-082224    |                  |               |          |          |       |
| Laboratory ID:                     | 08-289-08        |                  |               |          |          |       |
| Vinyl Chloride                     | 0.79             | 0.20             | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| (trans) 1,2-Dichloroethene         | ND               | 0.20             | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| (cis) 1,2-Dichloroethene           | 0.77             | 0.20             | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Trichloroethene                    | ND               | 0.20             | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Tetrachloroethene                  | ND               | 0.20             | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Surrogate:                         | Percent Recovery | Control Limits   |               |          |          |       |
| Dibromofluoromethane               | 93               | 68-133           |               |          |          |       |
| Toluene-d8                         | 99               | 79-123           |               |          |          |       |
| 4-Bromofluorobenzene               | 101              | 78-117           |               |          |          |       |
|                                    |                  |                  |               |          |          |       |
| Client ID:                         | RMW-112-082224   |                  |               |          |          |       |
| Laboratory ID:                     | 08-289-09        |                  |               |          |          |       |
| Vinyl Chloride                     | 0.21             | 0.20             | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| (trans) 1,2-Dichloroethene         | ND               | 0.20             | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| (cis) 1,2-Dichloroethene           | 1.4              | 0.20             | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Trichloroethene                    | 1.9              | 0.20             | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Tetrachloroethene                  | 9.2              | 0.20             | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Surrogate:                         | Percent Recovery | Control Limits   |               |          |          |       |
| Dibromofluoromethane               | 94               | 68-133           |               |          |          |       |
| Toluene-d8                         | 100              | 79-123           |               |          |          |       |
| 4-Bromofluorobenzene               | 99               | 78-117           |               |          |          |       |
| Dibromofluoromethane<br>Toluene-d8 | 94<br>100        | 68-133<br>79-123 |               |          |          |       |

#### VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL

|                            |                  |                |               | Date     | Date     |       |
|----------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                    | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| METHOD BLANK               |                  |                |               |          |          |       |
| Laboratory ID:             | MB0826W1         |                |               |          |          |       |
| Vinyl Chloride (SIM)       | ND               | 0.020          | EPA 8260D/SIM | 8-26-24  | 8-26-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Trichloroethene            | ND               | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Tetrachloroethene          | ND               | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |               |          |          |       |
| Dibromofluoromethane       | 90               | 68-133         |               |          |          |       |
| Toluene-d8                 | 99               | 79-123         |               |          |          |       |
| 4-Bromofluorobenzene       | 99               | 78-117         |               |          |          |       |

|                            |       |       |       |       | Source | Pe  | rcent | Recovery |     | RPD   |       |
|----------------------------|-------|-------|-------|-------|--------|-----|-------|----------|-----|-------|-------|
| Analyte                    | Res   | sult  | Spike | Level | Result | Rec | overy | Limits   | RPD | Limit | Flags |
| MATRIX SPIKES              |       |       |       |       |        |     |       |          |     |       |       |
| Laboratory ID:             | 08-28 | 39-07 |       |       |        |     |       |          |     |       |       |
|                            | MS    | MSD   | MS    | MSD   |        | MS  | MSD   |          |     |       |       |
| Vinyl Chloride             | 9.99  | 10.2  | 10.0  | 10.0  | ND     | 100 | 102   | 62-121   | 2   | 15    |       |
| (trans) 1,2-Dichloroethene | 9.72  | 9.87  | 10.0  | 10.0  | ND     | 97  | 99    | 79-120   | 2   | 16    |       |
| (cis) 1,2-Dichloroethene   | 10.6  | 10.3  | 10.0  | 10.0  | 0.428  | 102 | 99    | 81-128   | 3   | 16    |       |
| Trichloroethene            | 12.2  | 11.7  | 10.0  | 10.0  | 0.548  | 117 | 112   | 80-130   | 4   | 12    |       |
| Tetrachloroethene          | 14.9  | 14.3  | 10.0  | 10.0  | 3.47   | 114 | 108   | 84-126   | 4   | 19    |       |
| Surrogate:                 |       |       |       |       |        |     |       |          |     |       |       |
| Dibromofluoromethane       |       |       |       |       |        | 87  | 88    | 68-133   |     |       |       |
| Toluene-d8                 |       |       |       |       |        | 99  | 98    | 79-123   |     |       |       |
| 4-Bromofluorobenzene       |       |       |       |       |        | 101 | 100   | 78-117   |     |       |       |

#### TOTAL METALS EPA 6010D

|                |                |      |           | Date     | Date     |       |
|----------------|----------------|------|-----------|----------|----------|-------|
| Analyte        | Result         | PQL  | Method    | Prepared | Analyzed | Flags |
| Client ID:     | RMW-09R-082224 |      |           |          |          |       |
| Laboratory ID: | 08-289-01      |      |           |          |          |       |
| Calcium        | 38000          | 1000 | EPA 6010D | 8-28-24  | 9-3-24   |       |
| Iron           | ND             | 50   | EPA 6010D | 8-28-24  | 9-3-24   |       |
| Magnesium      | 17000          | 1000 | EPA 6010D | 8-28-24  | 9-3-24   |       |
|                |                |      |           |          |          |       |
| Client ID:     | RMW-14-082224  |      |           |          |          |       |
| Laboratory ID: | 08-289-02      |      |           |          |          |       |
| Calcium        | 38000          | 1000 | EPA 6010D | 8-28-24  | 9-3-24   |       |
| Iron           | 2400           | 50   | EPA 6010D | 8-28-24  | 9-3-24   |       |
| Magnesium      | 13000          | 1000 | EPA 6010D | 8-28-24  | 9-3-24   |       |
|                |                |      |           |          |          |       |
| Client ID:     | RMW-13-082224  |      |           |          |          |       |
| Laboratory ID: | 08-289-03      |      |           |          |          |       |
| Calcium        | 64000          | 5000 | EPA 6010D | 8-28-24  | 9-3-24   |       |
| Iron           | 1900           | 50   | EPA 6010D | 8-28-24  | 9-3-24   |       |
| Magnesium      | 14000          | 1000 | EPA 6010D | 8-28-24  | 9-3-24   |       |
|                |                |      |           |          |          |       |
| Client ID:     | RMW-07-082224  |      |           |          |          |       |
| Laboratory ID: | 08-289-04      |      |           |          |          |       |
| Calcium        | 49000          | 1000 | EPA 6010D | 8-28-24  | 9-3-24   |       |
| Iron           | 4100           | 50   | EPA 6010D | 8-28-24  | 9-3-24   |       |
| Magnesium      | 11000          | 1000 | EPA 6010D | 8-28-24  | 9-3-24   |       |
|                |                |      |           |          |          |       |
| Client ID:     | RMW-12-082224  |      |           |          |          |       |
| Laboratory ID: | 08-289-05      |      |           |          |          |       |
| Calcium        | 51000          | 1000 | EPA 6010D | 8-28-24  | 9-3-24   |       |
| Iron           | 220            | 50   | EPA 6010D | 8-28-24  | 9-3-24   |       |
| Magnesium      | 13000          | 1000 | EPA 6010D | 8-28-24  | 9-3-24   |       |
| Client ID.     | FW 00 000004   |      |           |          |          |       |
| Client ID:     | EW-03-082224   |      |           |          |          |       |
| Laboratory ID: | 08-289-06      | 4000 | EDA 0040D | 0.00.04  | 0.0.04   |       |
| Calcium        | 45000          | 1000 | EPA 6010D | 8-28-24  | 9-3-24   |       |
| Iron           | 14000          | 50   | EPA 6010D | 8-28-24  | 9-3-24   |       |
| Magnesium      | 19000          | 1000 | EPA 6010D | 8-28-24  | 9-3-24   |       |

#### TOTAL METALS EPA 6010D

| Omic. 49,2 (pps) |                |      |           | Date     | Date     |       |
|------------------|----------------|------|-----------|----------|----------|-------|
| Analyte          | Result         | PQL  | Method    | Prepared | Analyzed | Flags |
| Client ID:       | RMW-05-082224  |      |           |          |          |       |
| Laboratory ID:   | 08-289-07      |      |           |          |          |       |
| Calcium          | 39000          | 1000 | EPA 6010D | 8-28-24  | 8-28-24  |       |
| Iron             | 24000          | 50   | EPA 6010D | 8-28-24  | 8-28-24  |       |
| Magnesium        | 14000          | 1000 | EPA 6010D | 8-28-24  | 8-28-24  |       |
|                  |                |      |           |          |          |       |
| Client ID:       | RMW-06-082224  |      |           |          |          |       |
| Laboratory ID:   | 08-289-08      |      |           |          |          |       |
| Calcium          | 53000          | 1000 | EPA 6010D | 8-28-24  | 9-3-24   |       |
| Iron             | 31000          | 250  | EPA 6010D | 8-28-24  | 9-3-24   |       |
| Magnesium        | 19000          | 1000 | EPA 6010D | 8-28-24  | 9-3-24   |       |
|                  |                |      |           |          |          |       |
| Client ID:       | RMW-112-082224 |      |           |          |          |       |
| Laboratory ID:   | 08-289-09      |      |           |          |          |       |
| Calcium          | 52000          | 1000 | EPA 6010D | 8-28-24  | 9-3-24   |       |
| Iron             | 210            | 50   | EPA 6010D | 8-28-24  | 9-3-24   |       |
| Magnesium        | 14000          | 1000 | EPA 6010D | 8-28-24  | 9-3-24   |       |

#### TOTAL METALS EPA 6010D QUALITY CONTROL

|                |           |      |           | Date     | Date     |       |
|----------------|-----------|------|-----------|----------|----------|-------|
| Analyte        | Result    | PQL  | Method    | Prepared | Analyzed | Flags |
| METHOD BLANK   |           |      |           |          |          |       |
| Laboratory ID: | MB0828WH1 |      |           |          |          |       |
| Calcium        | ND        | 1000 | EPA 6010D | 8-28-24  | 8-28-24  |       |
| Iron           | ND        | 50   | EPA 6010D | 8-28-24  | 8-28-24  |       |
| Magnesium      | ND        | 1000 | FPA 6010D | 8-28-24  | 8-28-24  |       |

|                |       |       |       |       | Source | Pe  | rcent  | Recovery |     | RPD   |       |
|----------------|-------|-------|-------|-------|--------|-----|--------|----------|-----|-------|-------|
| Analyte        | Re    | sult  | Spike | Level | Result | Red | covery | Limits   | RPD | Limit | Flags |
| DUPLICATE      |       |       |       |       |        |     |        |          |     |       |       |
| Laboratory ID: | 08-2  | 89-07 |       |       |        |     |        |          |     |       |       |
|                | ORIG  | DUP   |       |       |        |     |        |          |     |       |       |
| Calcium        | 39000 | 38700 | NA    | NA    |        |     | NA     | NA       | 1   | 20    |       |
| Iron           | 23900 | 23200 | NA    | NA    |        |     | NA     | NA       | 3   | 20    |       |
| Magnesium      | 14000 | 13700 | NA    | NA    |        |     | NA     | NA       | 3   | 20    |       |
| MATRIX SPIKES  |       |       |       |       |        |     |        |          |     |       |       |
| Laboratory ID: | 08-2  | 89-07 |       |       |        |     |        |          |     |       |       |
|                | MS    | MSD   | MS    | MSD   |        | MS  | MSD    |          |     |       |       |
| Calcium        | 55800 | 60900 | 20000 | 20000 | 39000  | 84  | 109    | 75-125   | 9   | 20    |       |
| Iron           | 41200 | 44200 | 20000 | 20000 | 23900  | 86  | 101    | 75-125   | 7   | 20    |       |
| Magnesium      | 32300 | 33300 | 20000 | 20000 | 14000  | 91  | 96     | 75-125   | 3   | 20    |       |

#### DISSOLVED METALS EPA 6010D

|                        |                |            |            | Date     | Date             |       |
|------------------------|----------------|------------|------------|----------|------------------|-------|
| Analyte                | Result         | PQL        | Method     | Prepared | Analyzed         | Flags |
| Client ID:             | RMW-09R-082224 |            |            |          |                  |       |
| Laboratory ID:         | 08-289-01      |            |            |          |                  |       |
| Calcium                | 40000          | 1100       | EPA 6010D  |          | 9-3-24           |       |
| Iron                   | ND             | 56         | EPA 6010D  |          | 9-3-24           |       |
| Magnesium              | 17000          | 1100       | EPA 6010D  |          | 9-3-24           |       |
|                        |                |            |            |          |                  |       |
| Client ID:             | RMW-14-082224  |            |            |          |                  |       |
|                        |                |            |            |          |                  |       |
| Laboratory ID:         | 08-289-02      | 1100       | EDA 6040D  |          | 0.0.04           |       |
| Calcium                | 44000          | 1100<br>56 | EPA 6010D  |          | 9-3-24           |       |
| Iron                   | 2200           |            | EPA 6010D  |          | 9-3-24           |       |
| Magnesium              | 14000          | 1100       | EPA 6010D  |          | 9-3-24           |       |
|                        |                |            |            |          |                  |       |
| Client ID:             | RMW-13-082224  |            |            |          |                  |       |
| Laboratory ID:         | 08-289-03      |            |            |          |                  |       |
| Calcium                | 65000          | 5000       | EPA 6010D  |          | 9-3-24           |       |
| Iron                   | 1900           | 56         | EPA 6010D  |          | 9-3-24           |       |
| Magnesium              | 14000          | 1100       | EPA 6010D  |          | 9-3-24           |       |
|                        |                |            |            |          |                  |       |
| Client ID:             | RMW-07-082224  |            |            |          |                  |       |
|                        | 08-289-04      |            |            |          |                  |       |
| Laboratory ID: Calcium | 49000          | 1100       | EPA 6010D  |          | 9-3-24           |       |
| Iron                   | 3900           | 56         | EPA 6010D  |          | 9-3-24<br>9-3-24 |       |
| Magnesium              | 11000          | 1100       | EPA 6010D  |          | 9-3-24<br>9-3-24 |       |
| wagnesium              | 11000          | 1100       | EFA 00 10D |          | 9-3-24           |       |
|                        |                |            |            |          |                  |       |
| Client ID:             | RMW-12-082224  |            |            |          |                  |       |
| Laboratory ID:         | 08-289-05      |            |            |          |                  |       |
| Calcium                | 52000          | 1100       | EPA 6010D  |          | 9-3-24           |       |
| Iron                   | 94             | 56         | EPA 6010D  |          | 9-3-24           |       |
| Magnesium              | 15000          | 1100       | EPA 6010D  |          | 9-3-24           |       |
|                        |                |            |            |          |                  |       |
| Olient ID:             | FW 02 22224    |            |            |          |                  |       |
| Client ID:             | EW-03-082224   |            |            |          |                  |       |
| Laboratory ID:         | 08-289-06      | 4400       | ED4 00/05  |          | 0.0.0.1          |       |
| Calcium                | 50000          | 1100       | EPA 6010D  |          | 9-3-24           |       |
| Iron                   | 13000          | 56         | EPA 6010D  |          | 9-3-24           |       |
| Magnesium              | 20000          | 1100       | EPA 6010D  |          | 9-3-24           |       |

#### DISSOLVED METALS EPA 6010D

| -3/= (FF=/     |                |      |           | Date     | Date     |       |
|----------------|----------------|------|-----------|----------|----------|-------|
| Analyte        | Result         | PQL  | Method    | Prepared | Analyzed | Flags |
| Client ID:     | RMW-05-082224  |      |           |          |          |       |
| Laboratory ID: | 08-289-07      |      |           |          |          |       |
| Calcium        | 37000          | 1100 | EPA 6010D |          | 9-3-24   |       |
| Iron           | 18000          | 56   | EPA 6010D |          | 9-3-24   |       |
| Magnesium      | 15000          | 1100 | EPA 6010D |          | 9-3-24   |       |
|                |                |      |           |          |          |       |
| Client ID:     | RMW-06-082224  |      |           |          |          |       |
| Laboratory ID: | 08-289-08      |      |           |          |          |       |
| Calcium        | 54000          | 1100 | EPA 6010D |          | 9-3-24   |       |
| Iron           | 31000          | 250  | EPA 6010D |          | 9-3-24   |       |
| Magnesium      | 19000          | 1100 | EPA 6010D |          | 9-3-24   |       |
| Client ID:     | RMW-112-082224 |      |           |          |          |       |
| Laboratory ID: | 08-289-09      |      |           |          |          |       |
| Calcium        | 50000          | 5000 | EPA 6010D | 8-28-24  | 9-3-24   | _     |
| Iron           | 140            | 56   | EPA 6010D | 8-28-24  | 9-3-24   |       |
| Magnesium      | 15000          | 1100 | EPA 6010D | 8-28-24  | 9-3-24   |       |

# DISSOLVED METALS EPA 6010D QUALITY CONTROL

|                |          |      |           | Date     | Date     |       |
|----------------|----------|------|-----------|----------|----------|-------|
| Analyte        | Result   | PQL  | Method    | Prepared | Analyzed | Flags |
| METHOD BLANK   |          |      |           |          |          |       |
| Laboratory ID: | MB0903D1 |      |           |          |          |       |
| Calcium        | ND       | 1100 | EPA 6010D |          | 9-3-24   |       |
| Iron           | ND       | 56   | EPA 6010D |          | 9-3-24   |       |
| Magnesium      | ND       | 1100 | EPA 6010D |          | 9-3-24   |       |
| Laboratory ID: | MB0828F1 |      |           |          |          |       |
| Calcium        | ND       | 1100 | EPA 6010D | 8-28-24  | 9-3-24   | _     |
| Iron           | ND       | 56   | EPA 6010D | 8-28-24  | 9-4-24   |       |
| Magnesium      | ND       | 1100 | EPA 6010D | 8-28-24  | 9-3-24   |       |

|                |        |        |        |        | Source | Pe  | rcent | Recovery |     | RPD   |       |
|----------------|--------|--------|--------|--------|--------|-----|-------|----------|-----|-------|-------|
| Analyte        | Re     | sult   | Spike  | Level  | Result | Rec | overy | Limits   | RPD | Limit | Flags |
| DUPLICATE      |        |        |        |        |        |     |       |          |     |       |       |
| Laboratory ID: | 08-2   | 89-07  |        |        |        |     |       |          |     |       |       |
|                | ORIG   | DUP    |        |        |        |     |       |          |     |       |       |
| Calcium        | 36800  | 36900  | NA     | NA     |        |     | NA    | NA       | 0   | 20    |       |
| Iron           | 17600  | 17600  | NA     | NA     |        |     | NA    | NA       | 0   | 20    |       |
| Magnesium      | 14800  | 14800  | NA     | NA     |        |     | NA    | NA       | 0   | 20    |       |
| MATRIX SPIKES  |        |        |        |        |        |     |       |          |     |       |       |
| Laboratory ID: | 08-2   | 89-07  |        |        |        |     |       |          |     |       |       |
|                | MS     | MSD    | MS     | MSD    |        | MS  | MSD   |          |     |       |       |
| Calcium        | 58100  | 57500  | 22200  | 22200  | 36800  | 96  | 93    | 75-125   | 1   | 20    |       |
| Iron           | 117000 | 118000 | 100000 | 100000 | 17600  | 99  | 100   | 75-125   | 1   | 20    |       |
| Magnesium      | 36300  | 36200  | 22200  | 22200  | 14800  | 97  | 97    | 75-125   | 0   | 20    |       |

# TOTAL ALKALINITY SM 2320B

Matrix: Water
Units: mg CaCO3/L

|                |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Result         | PQL                                                                                                                                                                                                                                   | Method                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Flags                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| RMW-09R-082224 |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 08-289-01      |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 40             | 2.0                                                                                                                                                                                                                                   | SM 2320B                                                                                                                                                                                                                             | 8-26-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8-26-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RMW-14-082224  |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 08-289-02      |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 160            | 2.0                                                                                                                                                                                                                                   | SM 2320B                                                                                                                                                                                                                             | 8-26-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8-26-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RMW-13-082224  |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                | 2.0                                                                                                                                                                                                                                   | SM 2320B                                                                                                                                                                                                                             | 8-26-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8-26-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RMW-07-082224  |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 08-289-04      |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 190            | 2.0                                                                                                                                                                                                                                   | SM 2320B                                                                                                                                                                                                                             | 8-26-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8-26-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                | 0.0                                                                                                                                                                                                                                   | OM 0000D                                                                                                                                                                                                                             | 0.00.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 190            | 2.0                                                                                                                                                                                                                                   | SIVI 2320B                                                                                                                                                                                                                           | 8-20-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8-20-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| EW-03-082224   |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 08-289-06      |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 220            | 2.0                                                                                                                                                                                                                                   | SM 2320B                                                                                                                                                                                                                             | 8-26-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8-26-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RMW-05-082224  |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 210            | 2.0                                                                                                                                                                                                                                   | SM 2320B                                                                                                                                                                                                                             | 8-26-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8-26-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RMW-06-082224  |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                | 2.0                                                                                                                                                                                                                                   | SM 2320B                                                                                                                                                                                                                             | 8-26-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8-26-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                | <b>_</b>                                                                                                                                                                                                                              |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RMW-112-082224 |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 08-289-09      |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 200            | 2.0                                                                                                                                                                                                                                   | SM 2320B                                                                                                                                                                                                                             | 8-26-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8-26-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                | RMW-09R-082224 08-289-01 40  RMW-14-082224 08-289-02 160  RMW-13-082224 08-289-03 200  RMW-07-082224 08-289-04 190  RMW-12-082224 08-289-05 190  EW-03-082224 08-289-06 220  RMW-05-082224 08-289-07 210  RMW-06-082224 08-289-07 210 | RMW-14-082224 08-289-02 160 2.0  RMW-13-082224 08-289-03 200 2.0  RMW-07-082224 08-289-04 190 2.0  RMW-12-082224 08-289-05 190 2.0  EW-03-082224 08-289-06 220 2.0  RMW-05-082224 08-289-07 210 2.0  RMW-06-082224 08-289-07 210 2.0 | RMW-09R-082224         08-289-01       2.0       SM 2320B         RMW-14-082224         08-289-02       2.0       SM 2320B         RMW-13-082224         08-289-03       2.0       SM 2320B         RMW-07-082224         08-289-04       2.0       SM 2320B         RMW-12-082224         08-289-05       2.0       SM 2320B         EW-03-082224         08-289-06       2.0       SM 2320B         RMW-05-082224         08-289-07       2.0       SM 2320B         RMW-06-082224         08-289-08       2.0       SM 2320B         RMW-112-082224         08-289-09       2.0       SM 2320B | RMW-09R-082224<br>08-289-01         40       2.0       SM 2320B       8-26-24         RMW-14-082224<br>08-289-02       SM 2320B       8-26-24         RMW-13-082224<br>08-289-03       SM 2320B       8-26-24         RMW-07-082224<br>08-289-04       SM 2320B       8-26-24         RMW-12-082224<br>08-289-05       SM 2320B       8-26-24         EW-03-082224<br>08-289-06       SM 2320B       8-26-24         RMW-05-082224<br>08-289-07       SM 2320B       8-26-24         RMW-06-082224<br>08-289-08       SM 2320B       8-26-24         RMW-06-082224<br>08-289-08       SM 2320B       8-26-24         RMW-112-082224<br>08-289-09 | Result         PQL         Method         Prepared         Analyzed           RMW-09R-082224<br>08-289-01         08-289-01         8-26-24         8-26-24           RMW-14-082224<br>08-289-02         5M 2320B         8-26-24         8-26-24           RMW-13-082224<br>08-289-03         5M 2320B         8-26-24         8-26-24           RMW-07-082224<br>08-289-04         68-289-04         8-26-24         8-26-24           RMW-12-082224<br>08-289-05         5M 2320B         8-26-24         8-26-24           EW-03-082224<br>08-289-06         5M 2320B         8-26-24         8-26-24           RMW-05-082224<br>08-289-07         5M 2320B         8-26-24         8-26-24           RMW-06-082224<br>08-289-08         20         5M 2320B         8-26-24         8-26-24           RMW-06-082224<br>08-289-08         8-26-24         8-26-24         8-26-24           RMW-112-082224<br>08-289-09         8-26-24         8-26-24         8-26-24 |



# TOTAL ALKALINITY SM 2320B QUALITY CONTROL

Matrix: Water
Units: mg CaCO3/L

|                  |          |     |          | Date     | Date     |       |
|------------------|----------|-----|----------|----------|----------|-------|
| Analyte          | Result   | PQL | Method   | Prepared | Analyzed | Flags |
| METHOD BLANK     |          |     |          |          |          |       |
| Laboratory ID:   | MB0826W2 |     |          |          |          |       |
| Total Alkalinity | ND       | 2.0 | SM 2320B | 8-26-24  | 8-26-24  |       |

|                  |       |       |       |       | Source | Pe  | rcent  | Recovery |     | RPD   |       |
|------------------|-------|-------|-------|-------|--------|-----|--------|----------|-----|-------|-------|
| Analyte          | Res   | sult  | Spike | Level | Result | Red | covery | Limits   | RPD | Limit | Flags |
| DUPLICATE        |       |       |       |       |        |     |        |          |     |       |       |
| Laboratory ID:   | 08-28 | 89-07 |       |       |        |     |        |          |     |       |       |
|                  | ORIG  | DUP   |       |       |        |     |        |          |     |       |       |
| Total Alkalinity | 208   | 212   | ١     | ۱A    | NA     |     | NA     | NA       | 2   | 10    |       |
| MATRIX SPIKES    |       |       |       |       |        |     |        |          |     |       |       |
| Laboratory ID:   | 08-28 | 89-07 |       |       |        |     |        |          |     |       |       |
|                  | MS    | MSD   | MS    | MSD   |        | MS  | MSD    |          |     |       |       |
| Total Alkalinity | 270   | 268   | 100   | 100   | 208    | 62  | 60     | 80-120   | 1   | 20    | V     |
| SPIKE BLANK      |       |       |       |       |        |     |        |          |     |       |       |
| Laboratory ID:   | SB08  | 26W2  |       |       |        |     |        |          |     |       |       |
|                  | S     | B     | 5     | SB    |        |     | SB     |          | •   |       |       |
| Total Alkalinity | 92    | 2.0   | 1     | 00    | NA     |     | 92     | 82-101   | NA  | NA    |       |

#### DISSOLVED GASES RSK 175

| Result   PQL   Method   Prepared   Analyzed   Flags                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | J (11 /        |                  |                |         | Date      | Date     |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|----------------|---------|-----------|----------|-------|
| Laboratory ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Analyte        | Result           | PQL            | Method  | Prepared  | Analyzed | Flags |
| Methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Client ID:     | RMW-09R-082224   |                |         |           |          |       |
| Ethane ND 0.56 RSK 175 8-29-24 8-29-24 Ethene ND 0.58 RSK 175 8-29-24 8-29-24 Surrogate: Percent Recovery 50-150  Client ID: RMW-14-082224 Laboratory ID: 08-289-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Laboratory ID: | 08-289-01        |                |         |           |          |       |
| Ethene         ND         0.58         RSK 175         8-29-24         8-29-24           Surrogate: 1-Butene         Percent Recovery 50-150         Control Limits 50-150         8-29-24         8-29-24         8-29-24           Client ID: RMW-14-082224 Laboratory ID: 08-289-02         RSK 175         8-29-24         8-29-24         8-29-24           Ethane ND 0.56 RSK 175         8-29-24         8-29-24         8-29-24         8-29-24           Ethene ND 0.58 RSK 175         8-29-24         8-29-24         8-29-24           Surrogate: Percent Recovery 1-Butene 83         50-150         8-29-24         8-29-24         8-29-24           Client ID: RMW-13-082224 Laboratory ID: 08-289-03         RSK 175         8-29-24         8-29-24         8-29-24           Ethane ND 0.56 RSK 175         8-29-24         8-29-24         8-29-24         8-29-24           Ethane ND 0.56 RSK 175         8-29-24         8-29-24         8-29-24           Ethene ND 0.58 RSK 175         8-29-24         8-29-24           Butene 103         50-150         8-29-24         8-29-24           Client ID: RMW-07-082224 Laboratory ID: 08-289-04         8-28-24         8-29-24         8-29-24           Ethane ND 0.58 RSK 175         8-29-24         8-29-24         8-29-24                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Methane        | ND               | 0.55           | RSK 175 | 8-29-24   | 8-29-24  |       |
| Surrogate:   Percent Recovery   Control Limits   99   50-150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ethane         | ND               | 0.56           | RSK 175 | 8-29-24   | 8-29-24  |       |
| ### 1-Butene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ethene         | ND               | 0.58           | RSK 175 | 8-29-24   | 8-29-24  |       |
| Client ID:         RMW-14-082224           Laboratory ID:         08-289-02           Methane         820         5.5         RSK 175         8-29-24         8-29-24           Ethane         ND         0.56         RSK 175         8-29-24         8-29-24           Ethene         ND         0.58         RSK 175         8-29-24         8-29-24           Surrogate:         Percent Recovery         Control Limits         50-150           Client ID:         RMW-13-082224           Laboratory ID:         08-289-03           Methane         26         0.55         RSK 175         8-29-24         8-29-24           Ethane         ND         0.56         RSK 175         8-29-24         8-29-24           Ethane         ND         0.56         RSK 175         8-29-24         8-29-24           Ethene         ND         0.58         RSK 175         8-29-24         8-29-24           Laboratory ID:         08-289-04         8-29-24         8-29-24         8-29-24           Methane         580         5.5         RSK 175         8-29-24         8-29-24           Ethane         ND         0.58         RSK 175         8-29-24         8-29-24 <td></td> <td>Percent Recovery</td> <td>Control Limits</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | Percent Recovery | Control Limits |         |           |          |       |
| Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1-Butene       | 99               | 50-150         |         |           |          |       |
| Methane         820         5.5         RSK 175         8-29-24         8-29-24           Ethane         ND         0.56         RSK 175         8-29-24         8-29-24           Ethene         ND         0.58         RSK 175         8-29-24         8-29-24           Surrogate:         Percent Recovery         Control Limits         8-29-24         8-29-24         8-29-24           Laboratory ID:         08-289-03         Nethane         26         0.55         RSK 175         8-29-24         8-29-24           Ethane         ND         0.58         RSK 175         8-29-24         8-29-24           Ethene         ND         0.58         RSK 175         8-29-24         8-29-24           Surrogate:         Percent Recovery         Control Limits         103         50-150           Client ID:         RMW-07-082224         RSK 175         8-29-24         8-29-24           Laboratory ID:         08-289-04         ND         0.56         RSK 175         8-29-24         8-29-24           Surrogate:         Percent Recovery         Control Limits         8-29-24         8-29-24         8-29-24           Client ID:         RMW-12-082224         RSK 175         8-29-24         8-29-24 <td>Client ID:</td> <td>RMW-14-082224</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                      | Client ID:     | RMW-14-082224    |                |         |           |          |       |
| Methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Laboratory ID: | 08-289-02        |                |         |           |          |       |
| Ethene         ND         0.58         RSK 175         8-29-24         8-29-24           Surrogate: 1-Butene         Percent Recovery 83         Control Limits 50-150         Control Limits 50-150           Client ID: RMW-13-082224 Laboratory ID: 08-289-03         RSK 175         8-29-24         8-29-24           Methane 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | 820              | 5.5            | RSK 175 | 8-29-24   | 8-29-24  |       |
| Surrogate:         Percent Recovery         Control Limits           1-Butene         83         50-150           Client ID:         RMW-13-082224           Laboratory ID:         08-289-03           Methane         26         0.55         RSK 175         8-29-24         8-29-24           Ethane         ND         0.58         RSK 175         8-29-24         8-29-24           Ethene         ND         0.58         RSK 175         8-29-24         8-29-24           Surrogate:         Percent Recovery         Control Limits           1-Butene         103         50-150    Client ID:  RMW-07-082224  Laboratory ID:  08-289-04  Methane  ND  0.56 RSK 175 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24 8-29-24                                                                                                                             | Ethane         | ND               | 0.56           | RSK 175 | 8-29-24   | 8-29-24  |       |
| Client ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ethene         | ND               | 0.58           | RSK 175 | 8-29-24   | 8-29-24  |       |
| Client ID:         RMW-13-082224           Laboratory ID:         08-289-03           Methane         26         0.55         RSK 175         8-29-24         8-29-24           Ethane         ND         0.56         RSK 175         8-29-24         8-29-24           Ethene         ND         0.58         RSK 175         8-29-24         8-29-24           Surrogate:         Percent Recovery         Control Limits           1-Butene         103         50-150           Client ID:         RMW-07-082224           Laboratory ID:         08-289-04           Methane         580         5.5         RSK 175         8-29-24         8-29-24           Ethane         ND         0.58         RSK 175         8-29-24         8-29-24           Ethane         ND         0.58         RSK 175         8-29-24         8-29-24           Surrogate:         Percent Recovery         Control Limits           1-Butene         84         50-150           Client ID:         RMW-12-082224           Laboratory ID:         08-289-05           Methane         76         0.55         RSK 175         8-29-24         8-29-24           Ethane         ND<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Surrogate:     | Percent Recovery | Control Limits |         |           |          |       |
| Laboratory ID:         08-289-03           Methane         26         0.55         RSK 175         8-29-24         8-29-24           Ethane         ND         0.56         RSK 175         8-29-24         8-29-24           Ethene         ND         0.58         RSK 175         8-29-24         8-29-24           Surrogate:         Percent Recovery         Control Limits           1-Butene         103         50-150           Client ID:         RMW-07-082224         Laboratory ID:           Methane         580         5.5         RSK 175         8-29-24         8-29-24           Ethane         ND         0.56         RSK 175         8-29-24         8-29-24           Ethene         ND         0.58         RSK 175         8-29-24         8-29-24           Surrogate:         Percent Recovery         Control Limits           1-Butene         84         50-150           Client ID:         RMW-12-082224         Laboratory ID:           Methane         76         0.55         RSK 175         8-29-24         8-29-24           Ethane         ND         0.56         RSK 175         8-29-24         8-29-24           Ethane         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1-Butene       | 83               | 50-150         |         |           |          |       |
| Methane         26         0.55         RSK 175         8-29-24         8-29-24           Ethane         ND         0.56         RSK 175         8-29-24         8-29-24           Ethene         ND         0.58         RSK 175         8-29-24         8-29-24           Surrogate:         Percent Recovery         Control Limits         1-Butene         103         50-150           Client ID:         RMW-07-082224         Laboratory ID:         08-289-04         Section RSK 175         8-29-24         8-29-24           Ethane         ND         0.56         RSK 175         8-29-24         8-29-24           Ethene         ND         0.58         RSK 175         8-29-24         8-29-24           Surrogate:         Percent Recovery         Control Limits         1-Butene         84         50-150           Client ID:         RMW-12-082224         Laboratory ID:         08-289-05           Methane         76         0.55         RSK 175         8-29-24         8-29-24           Ethane         ND         0.56         RSK 175         8-29-24         8-29-24           Ethane         ND         0.58         RSK 175         8-29-24         8-29-24           Ethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Client ID:     | RMW-13-082224    |                |         |           |          |       |
| Methane         26         0.55         RSK 175         8-29-24         8-29-24           Ethane         ND         0.56         RSK 175         8-29-24         8-29-24           Ethene         ND         0.58         RSK 175         8-29-24         8-29-24           Surrogate:         Percent Recovery         Control Limits         1-Butene         103         50-150           Client ID:         RMW-07-082224         Laboratory ID:         08-289-04         Section RSK 175         8-29-24         8-29-24           Ethane         ND         0.56         RSK 175         8-29-24         8-29-24           Ethene         ND         0.58         RSK 175         8-29-24         8-29-24           Surrogate:         Percent Recovery         Control Limits         1-Butene         84         50-150           Client ID:         RMW-12-082224         Laboratory ID:         08-289-05           Methane         76         0.55         RSK 175         8-29-24         8-29-24           Ethane         ND         0.56         RSK 175         8-29-24         8-29-24           Ethane         ND         0.58         RSK 175         8-29-24         8-29-24           Ethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Laboratory ID: | 08-289-03        |                |         |           |          |       |
| Ethene         ND         0.58         RSK 175         8-29-24         8-29-24           Surrogate:         Percent Recovery         Control Limits           1-Butene         103         50-150           Client ID:         RMW-07-082224           Laboratory ID:         08-289-04           Methane         580         5.5         RSK 175         8-29-24         8-29-24           Ethane         ND         0.56         RSK 175         8-29-24         8-29-24           Ethene         ND         0.58         RSK 175         8-29-24         8-29-24           Surrogate:         Percent Recovery         Control Limits           1-Butene         84         50-150           Client ID:         RMW-12-082224           Laboratory ID:         08-289-05           Methane         76         0.55         RSK 175         8-29-24         8-29-24           Ethane         ND         0.56         RSK 175         8-29-24         8-29-24           Ethene         ND         0.58         RSK 175         8-29-24         8-29-24           Ethene         ND         0.58         RSK 175         8-29-24         8-29-24           Surrogate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | 26               | 0.55           | RSK 175 | 8-29-24   | 8-29-24  |       |
| Surrogate:         Percent Recovery         Control Limits           1-Butene         103         50-150           Client ID:         RMW-07-082224           Laboratory ID:         08-289-04           Methane         580         5.5         RSK 175         8-29-24         8-29-24           Ethane         ND         0.56         RSK 175         8-29-24         8-29-24           Ethene         ND         0.58         RSK 175         8-29-24         8-29-24           Surrogate:         Percent Recovery         Control Limits           1-Butene         84         50-150           Client ID:         RMW-12-082224           Laboratory ID:         08-289-05           Methane         76         0.55         RSK 175         8-29-24         8-29-24           Ethane         ND         0.56         RSK 175         8-29-24         8-29-24           Ethene         ND         0.58         RSK 175         8-29-24         8-29-24           Ethene         ND         0.58         RSK 175         8-29-24         8-29-24           Surrogate:         Percent Recovery         Control Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ethane         |                  |                |         |           |          |       |
| 1-Butene         103         50-150           Client ID:         RMW-07-082224           Laboratory ID:         08-289-04         8-29-24         8-29-24         8-29-24           Methane         580         5.5         RSK 175         8-29-24         8-29-24           Ethane         ND         0.56         RSK 175         8-29-24         8-29-24           Ethene         ND         0.58         RSK 175         8-29-24         8-29-24           Surrogate:         Percent Recovery         Control Limits           1-Butene         84         50-150           Client ID:         RMW-12-082224           Laboratory ID:         08-289-05           Methane         76         0.55         RSK 175         8-29-24         8-29-24           Ethane         ND         0.56         RSK 175         8-29-24         8-29-24           Ethene         ND         0.58         RSK 175         8-29-24         8-29-24           Surrogate:         Percent Recovery         Control Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ethene         | ND               | 0.58           | RSK 175 | 8-29-24   | 8-29-24  |       |
| Client ID:         RMW-07-082224           Laboratory ID:         08-289-04           Methane         580         5.5         RSK 175         8-29-24         8-29-24           Ethane         ND         0.56         RSK 175         8-29-24         8-29-24           Ethene         ND         0.58         RSK 175         8-29-24         8-29-24           Surrogate:         Percent Recovery         Control Limits           1-Butene         84         50-150           Client ID:         RMW-12-082224           Laboratory ID:         08-289-05           Methane         76         0.55         RSK 175         8-29-24         8-29-24           Ethane         ND         0.56         RSK 175         8-29-24         8-29-24           Ethene         ND         0.58         RSK 175         8-29-24         8-29-24           Surrogate:         Percent Recovery         Control Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Surrogate:     | Percent Recovery | Control Limits |         |           |          |       |
| Laboratory ID:         08-289-04           Methane         580         5.5         RSK 175         8-29-24         8-29-24           Ethane         ND         0.56         RSK 175         8-29-24         8-29-24           Ethene         ND         0.58         RSK 175         8-29-24         8-29-24           Surrogate:         Percent Recovery         Control Limits           1-Butene         84         50-150    Client ID:  RMW-12-082224  Laboratory ID:  08-289-05  Methane  76  0.55  RSK 175  8-29-24  8-29-24  8-29-24  8-29-24  Ethane  ND  0.56  RSK 175  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-2 | 1-Butene       | 103              | 50-150         |         |           |          |       |
| Laboratory ID:         08-289-04           Methane         580         5.5         RSK 175         8-29-24         8-29-24           Ethane         ND         0.56         RSK 175         8-29-24         8-29-24           Ethene         ND         0.58         RSK 175         8-29-24         8-29-24           Surrogate:         Percent Recovery         Control Limits           1-Butene         84         50-150    Client ID:  RMW-12-082224  Laboratory ID:  08-289-05  Methane  76  0.55  RSK 175  8-29-24  8-29-24  8-29-24  8-29-24  Ethane  ND  0.56  RSK 175  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-29-24  8-2 | Client ID:     | RMW-07-082224    |                |         |           |          |       |
| Methane         580         5.5         RSK 175         8-29-24         8-29-24           Ethane         ND         0.56         RSK 175         8-29-24         8-29-24           Ethene         ND         0.58         RSK 175         8-29-24         8-29-24           Surrogate:         Percent Recovery         Control Limits           1-Butene         84         50-150    Client ID:  RMW-12-082224  Laboratory ID:  08-289-05  Methane  76  0.55  RSK 175  8-29-24  8-29-24  8-29-24  Ethane  ND  0.56  RSK 175  8-29-24  8-29-24  8-29-24  8-29-24  Surrogate:  Percent Recovery         Control Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Laboratory ID: | 08-289-04        |                |         |           |          |       |
| Ethene         ND         0.58         RSK 175         8-29-24         8-29-24           Surrogate:         Percent Recovery 84         Control Limits 50-150           Client ID:         RMW-12-082224           Laboratory ID:         08-289-05           Methane         76         0.55         RSK 175         8-29-24         8-29-24           Ethane         ND         0.56         RSK 175         8-29-24         8-29-24           Ethene         ND         0.58         RSK 175         8-29-24         8-29-24           Surrogate:         Percent Recovery         Control Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                  | 5.5            | RSK 175 | 8-29-24   | 8-29-24  |       |
| Surrogate:         Percent Recovery         Control Limits           1-Butene         84         50-150           Client ID:         RMW-12-082224           Laboratory ID:         08-289-05           Methane         76         0.55         RSK 175         8-29-24         8-29-24           Ethane         ND         0.56         RSK 175         8-29-24         8-29-24           Ethene         ND         0.58         RSK 175         8-29-24         8-29-24           Surrogate:         Percent Recovery         Control Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ethane         | ND               | 0.56           | RSK 175 | 8-29-24   | 8-29-24  |       |
| Client ID:     RMW-12-082224       Laboratory ID:     08-289-05       Methane     76     0.55     RSK 175     8-29-24     8-29-24       Ethane     ND     0.56     RSK 175     8-29-24     8-29-24       Ethene     ND     0.58     RSK 175     8-29-24     8-29-24       Surrogate:     Percent Recovery     Control Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ethene         | ND               | 0.58           | RSK 175 | 8-29-24   | 8-29-24  |       |
| Client ID:         RMW-12-082224           Laboratory ID:         08-289-05           Methane         76         0.55         RSK 175         8-29-24         8-29-24           Ethane         ND         0.56         RSK 175         8-29-24         8-29-24           Ethene         ND         0.58         RSK 175         8-29-24         8-29-24           Surrogate:         Percent Recovery         Control Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Surrogate:     | Percent Recovery | Control Limits |         |           |          |       |
| Laboratory ID:         08-289-05           Methane         76         0.55         RSK 175         8-29-24         8-29-24           Ethane         ND         0.56         RSK 175         8-29-24         8-29-24           Ethene         ND         0.58         RSK 175         8-29-24         8-29-24           Surrogate:         Percent Recovery         Control Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-Butene       | 84               | 50-150         |         |           |          |       |
| Laboratory ID:         08-289-05           Methane         76         0.55         RSK 175         8-29-24         8-29-24           Ethane         ND         0.56         RSK 175         8-29-24         8-29-24           Ethene         ND         0.58         RSK 175         8-29-24         8-29-24           Surrogate:         Percent Recovery         Control Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Client ID:     | RMW-12-082224    |                |         |           |          |       |
| Methane         76         0.55         RSK 175         8-29-24         8-29-24           Ethane         ND         0.56         RSK 175         8-29-24         8-29-24           Ethene         ND         0.58         RSK 175         8-29-24         8-29-24           Surrogate:         Percent Recovery         Control Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                  |                |         |           |          |       |
| Ethane         ND         0.56         RSK 175         8-29-24         8-29-24           Ethene         ND         0.58         RSK 175         8-29-24         8-29-24           Surrogate:         Percent Recovery         Control Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                  | 0.55           | RSK 175 | 8-29-24   | 8-29-24  |       |
| Ethene         ND         0.58         RSK 175         8-29-24         8-29-24           Surrogate:         Percent Recovery         Control Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                  |                |         |           |          |       |
| Surrogate: Percent Recovery Control Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                  |                |         |           |          |       |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                  |                |         | <b></b> - | ·        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1-Butene       | 88               | 50-150         |         |           |          |       |



#### DISSOLVED GASES RSK 175

| ag/L (pps)     |                  |                |         | Date     | Date     |       |
|----------------|------------------|----------------|---------|----------|----------|-------|
| Analyte        | Result           | PQL            | Method  | Prepared | Analyzed | Flags |
| Client ID:     | EW-03-082224     |                |         |          |          |       |
| Laboratory ID: | 08-289-06        |                |         |          |          |       |
| Methane        | 410              | 3.3            | RSK 175 | 8-29-24  | 8-29-24  |       |
| Ethane         | ND               | 0.56           | RSK 175 | 8-29-24  | 8-29-24  |       |
| Ethene         | ND               | 0.58           | RSK 175 | 8-29-24  | 8-29-24  |       |
| Surrogate:     | Percent Recovery | Control Limits |         |          |          |       |
| 1-Butene       | 88               | 50-150         |         |          |          |       |
| Client ID:     | RMW-05-082224    |                |         |          |          |       |
| Laboratory ID: | 08-289-07        |                |         |          |          |       |
| Methane        | 1300             | 11             | RSK 175 | 8-29-24  | 8-29-24  |       |
| Ethane         | ND               | 0.56           | RSK 175 | 8-29-24  | 8-29-24  |       |
| Ethene         | ND               | 0.58           | RSK 175 | 8-29-24  | 8-29-24  |       |
| Surrogate:     | Percent Recovery | Control Limits |         |          |          |       |
| 1-Butene       | 100              | 50-150         |         |          |          |       |
| Client ID:     | RMW-06-082224    |                |         |          |          |       |
| Laboratory ID: | 08-289-08        |                |         |          |          |       |
| Methane        | 2200             | 28             | RSK 175 | 8-29-24  | 8-29-24  |       |
| Ethane         | ND               | 0.56           | RSK 175 | 8-29-24  | 8-29-24  |       |
| Ethene         | ND               | 0.58           | RSK 175 | 8-29-24  | 8-29-24  |       |
| Surrogate:     | Percent Recovery | Control Limits |         |          |          |       |
| 1-Butene       | 86               | 50-150         |         |          |          |       |
| Client ID:     | RMW-112-082224   |                |         |          |          |       |
| Laboratory ID: | 08-289-09        |                |         |          |          |       |
| Methane        | 92               | 0.55           | RSK 175 | 8-29-24  | 8-29-24  |       |
| Ethane         | ND               | 0.56           | RSK 175 | 8-29-24  | 8-29-24  |       |
| Ethene         | ND               | 0.58           | RSK 175 | 8-29-24  | 8-29-24  |       |
| Surrogate:     | Percent Recovery | Control Limits |         |          |          | _     |
| 1-Butene       | 86               | 50-150         |         |          |          |       |
|                |                  |                |         |          |          |       |

# DISSOLVED GASES RSK 175 QUALITY CONTROL

|                |                  |                |         | Date     | Date     |       |
|----------------|------------------|----------------|---------|----------|----------|-------|
| Analyte        | Result           | PQL            | Method  | Prepared | Analyzed | Flags |
| METHOD BLANK   |                  |                |         |          |          |       |
| Laboratory ID: | MB0829W1         |                |         |          |          |       |
| Methane        | ND               | 0.55           | RSK 175 | 8-29-24  | 8-29-24  |       |
| Ethane         | ND               | 0.56           | RSK 175 | 8-29-24  | 8-29-24  |       |
| Ethene         | ND               | 0.58           | RSK 175 | 8-29-24  | 8-29-24  |       |
| Surrogate:     | Percent Recovery | Control Limits |         |          |          |       |
| 1-Butene       | 117              | 50-150         |         |          |          |       |

| Analyte        | Re   | sult  | Spike | Level | Source<br>Result | _  | rcent<br>covery | Recovery<br>Limits | RPD | RPD<br>Limit | Flags |
|----------------|------|-------|-------|-------|------------------|----|-----------------|--------------------|-----|--------------|-------|
| MATRIX SPIKES  |      |       |       |       |                  |    |                 |                    |     |              |       |
| Laboratory ID: | 08-2 | 89-07 |       |       |                  |    |                 |                    |     |              |       |
|                | MS   | MSD   | MS    | MSD   |                  | MS | MSD             |                    |     |              |       |
| Methane        | 1310 | 1670  | 44.2  | 44.2  | 1310             | 0  | 814             | 75-125             | 24  | 25           | Α     |
| Ethane         | 47.5 | 46.9  | 83.2  | 83.2  | ND               | 57 | 56              | 75-125             | 1   | 25           | V     |
| Ethene         | 55.7 | 51.0  | 77.7  | 77.7  | ND               | 72 | 66              | 75-125             | 9   | 25           | V     |
| Surrogate:     |      |       |       |       |                  |    |                 |                    |     |              |       |
| 1-Butene       |      |       |       |       |                  | 97 | 91              | 50-150             |     |              |       |

#### CHLORIDE SM 4500-CI E

| Units: mg/L    |                |     |                | Date     | Date                |       |
|----------------|----------------|-----|----------------|----------|---------------------|-------|
| Analyte        | Result         | PQL | Method         | Prepared | Analyzed            | Flags |
| Client ID:     | RMW-09R-082224 | ·   |                | •        | •                   |       |
| Laboratory ID: | 08-289-01      |     |                |          |                     |       |
| Chloride       | 140            | 4.0 | SM 4500-CI E   | 8-26-24  | 8-26-24             |       |
|                |                |     |                |          | * - * - *           |       |
| Client ID:     | RMW-14-082224  |     |                |          |                     |       |
| Laboratory ID: | 08-289-02      |     |                |          |                     |       |
| Chloride       | 12             | 2.0 | SM 4500-CI E   | 8-26-24  | 8-26-24             |       |
| Client ID:     | RMW-13-082224  |     |                |          |                     |       |
| Laboratory ID: | 08-289-03      |     |                |          |                     |       |
| Chloride       | 14             | 2.0 | SM 4500-CI E   | 8-26-24  | 8-26-24             |       |
|                |                |     |                |          |                     |       |
| Client ID:     | RMW-07-082224  |     |                |          |                     |       |
| Laboratory ID: | 08-289-04      |     |                |          |                     |       |
| Chloride       | 15             | 2.0 | SM 4500-CI E   | 8-26-24  | 8-26-24             |       |
|                |                |     |                |          |                     |       |
| Client ID:     | RMW-12-082224  |     |                |          |                     |       |
| Laboratory ID: | 08-289-05      |     |                |          |                     |       |
| Chloride       | 34             | 2.0 | SM 4500-CI E   | 8-26-24  | 8-26-24             |       |
| Client ID:     | EW-03-082224   |     |                |          |                     |       |
| Laboratory ID: | 08-289-06      |     |                |          |                     |       |
| Chloride       | 31             | 2.0 | SM 4500-CI E   | 8-26-24  | 8-26-24             |       |
| Chloride       | 31             | 2.0 | 31VI 4300-CI L | 0-20-24  | 0-20-24             |       |
| Client ID:     | RMW-05-082224  |     |                |          |                     |       |
| Laboratory ID: | 08-289-07      |     |                |          |                     |       |
| Chloride       | 14             | 2.0 | SM 4500-CI E   | 8-26-24  | 8-26-24             |       |
|                |                |     |                |          |                     |       |
| Client ID:     | RMW-06-082224  |     |                |          |                     |       |
| Laboratory ID: | 08-289-08      |     |                |          |                     |       |
| Chloride       | 28             | 2.0 | SM 4500-CI E   | 8-26-24  | 8-26-24             |       |
| Client ID:     | RMW-112-082224 |     |                |          |                     |       |
| Laboratory ID: | 08-289-09      |     |                |          |                     |       |
| Chloride       | 27             | 2.0 | SM 4500-CI E   | 8-26-24  | 8-26-24             |       |
| <u> </u>       | <b>~</b> :     | 2.0 | 5141 1500-01 L | 0 20 27  | 0 20-2 <del>-</del> |       |



#### CHLORIDE SM 4500-CI E QUALITY CONTROL

|                |          |     |              | Date     | Date     |       |
|----------------|----------|-----|--------------|----------|----------|-------|
| Analyte        | Result   | PQL | Method       | Prepared | Analyzed | Flags |
| METHOD BLANK   |          |     |              |          |          | _     |
| Laboratory ID: | MB0826W2 |     |              |          |          |       |
| Chloride       | ND       | 2.0 | SM 4500-CI E | 8-26-24  | 8-26-24  |       |

|                |       |       |       |       | Source | Per | cent  | Recovery |     | RPD   |       |
|----------------|-------|-------|-------|-------|--------|-----|-------|----------|-----|-------|-------|
| Analyte        | Res   | sult  | Spike | Level | Result | Rec | overy | Limits   | RPD | Limit | Flags |
| DUPLICATE      |       |       |       |       |        |     |       |          |     |       |       |
| Laboratory ID: | 08-28 | 89-07 |       |       |        |     |       |          |     |       |       |
|                | ORIG  | DUP   |       |       |        |     |       |          |     |       |       |
| Chloride       | 13.7  | 15.8  | N     | IA    | NA     | ١   | NΑ    | NA       | 14  | 21    |       |
| MATRIX SPIKES  |       |       |       |       |        |     |       |          |     |       |       |
| Laboratory ID: | 08-28 | 89-07 |       |       |        |     |       |          |     |       |       |
|                | MS    | MSD   | MS    | MSD   |        | MS  | MSD   |          |     |       |       |
| Chloride       | 71.1  | 62.2  | 50.0  | 50.0  | 13.7   | 115 | 97    | 81-115   | 13  | 20    |       |
| SPIKE BLANK    |       |       |       |       |        |     |       |          |     |       |       |
| Laboratory ID: | SB08  | 26W2  |       |       |        |     |       |          |     |       |       |
|                | S     | В     | S     | B     |        | 5   | SB    |          |     |       |       |
| Chloride       | 56    | 6.1   | 50    | 0.0   | NA     | 1   | 12    | 77-115   | NA  | NA    |       |

# TOTAL ORGANIC CARBON SM 5310B

| Analyte              | Result         | PQL  | Method     | Date<br>Prepared | Date<br>Analyzed  | Flags  |
|----------------------|----------------|------|------------|------------------|-------------------|--------|
| Client ID:           | RMW-09R-082224 | . ~= | ou         | 11000100         | 7 11 14 1 J 2 0 4 | . iugo |
| Laboratory ID:       | 08-289-01      |      |            |                  |                   |        |
| Total Organic Carbon | ND             | 1.0  | SM 5310B   | 8-27-24          | 8-27-24           |        |
|                      |                | -    |            |                  |                   |        |
| Client ID:           | RMW-14-082224  |      |            |                  |                   |        |
| Laboratory ID:       | 08-289-02      |      |            |                  |                   |        |
| Total Organic Carbon | 2.4            | 1.0  | SM 5310B   | 8-27-24          | 8-27-24           |        |
| Client ID:           | RMW-13-082224  |      |            |                  |                   |        |
| Laboratory ID:       | 08-289-03      |      |            |                  |                   |        |
| Total Organic Carbon | 4.9            | 1.0  | SM 5310B   | 8-27-24          | 8-27-24           |        |
|                      |                |      |            |                  |                   |        |
| Client ID:           | RMW-07-082224  |      |            |                  |                   |        |
| Laboratory ID:       | 08-289-04      |      |            |                  |                   |        |
| Total Organic Carbon | 3.9            | 1.0  | SM 5310B   | 8-27-24          | 8-27-24           |        |
| Client ID:           | RMW-12-082224  |      |            |                  |                   |        |
| Laboratory ID:       | 08-289-05      |      |            |                  |                   |        |
| Total Organic Carbon | 4.4            | 1.0  | SM 5310B   | 8-27-24          | 8-27-24           |        |
|                      |                |      |            |                  |                   |        |
| Client ID:           | EW-03-082224   |      |            |                  |                   |        |
| Laboratory ID:       | 08-289-06      |      | 011 =0.10= |                  |                   |        |
| Total Organic Carbon | 5.8            | 1.0  | SM 5310B   | 8-27-24          | 8-27-24           |        |
| Client ID:           | RMW-05-082224  |      |            |                  |                   |        |
| Laboratory ID:       | 08-289-07      |      |            |                  |                   |        |
| Total Organic Carbon | 11             | 1.0  | SM 5310B   | 8-27-24          | 8-27-24           |        |
| Client ID:           | RMW-06-082224  |      |            |                  |                   |        |
| Laboratory ID:       | 08-289-08      |      |            |                  |                   |        |
| Total Organic Carbon | 11             | 1.0  | SM 5310B   | 8-27-24          | 8-27-24           |        |
| . c.a. c.gamo carson | •••            |      | 5 00100    | 02/21            | <i>521 2</i> 1    |        |
| Client ID:           | RMW-112-082224 |      |            |                  |                   |        |
| Laboratory ID:       | 08-289-09      |      |            |                  |                   |        |
| Total Organic Carbon | 4.5            | 1.0  | SM 5310B   | 8-27-24          | 8-27-24           |        |



#### TOTAL ORGANIC CARBON SM 5310B QUALITY CONTROL

|                      |          |     |          | Date     | Date     |       |
|----------------------|----------|-----|----------|----------|----------|-------|
| Analyte              | Result   | PQL | Method   | Prepared | Analyzed | Flags |
| METHOD BLANK         |          |     |          |          |          |       |
| Laboratory ID:       | MB0827W2 |     |          |          |          |       |
| Total Organic Carbon | ND       | 1.0 | SM 5310B | 8-27-24  | 8-27-24  |       |

|                      |       |       |       |       | Source | Pe  | rcent  | Recovery |     | RPD   |       |
|----------------------|-------|-------|-------|-------|--------|-----|--------|----------|-----|-------|-------|
| Analyte              | Res   | sult  | Spike | Level | Result | Rec | covery | Limits   | RPD | Limit | Flags |
| DUPLICATE            |       |       |       |       |        |     |        |          |     |       |       |
| Laboratory ID:       | 08-28 | 89-07 |       |       |        |     |        |          |     |       |       |
|                      | ORIG  | DUP   |       |       |        |     |        |          |     |       |       |
| Total Organic Carbon | 10.9  | 10.9  | N     | IA    | NA     |     | NA     | NA       | 0   | 11    |       |
| MATRIX SPIKES        |       |       |       |       |        |     |        |          |     |       |       |
| Laboratory ID:       | 08-28 | 89-07 |       |       |        |     |        |          |     |       |       |
|                      | MS    | MSD   | MS    | MSD   |        | MS  | MSD    |          |     |       |       |
| Total Organic Carbon | 19.7  | 20.1  | 10.0  | 10.0  | 10.9   | 88  | 92     | 85-120   | 2   | 20    |       |
| SPIKE BLANK          |       |       |       |       |        |     |        |          |     |       |       |
| Laboratory ID:       | SB08  | 27W2  |       |       |        |     |        |          |     |       |       |
|                      | S     | В     | S     | В     |        |     | SB     |          |     |       |       |
| Total Organic Carbon | 10    | ).7   | 10    | 0.0   | NA     |     | 107    | 79-120   | NA  | NA    |       |

# NITRATE (as Nitrogen) EPA 353.2

| Units: mg/L-N          |                                   |       |           | Date     | Date     |          |
|------------------------|-----------------------------------|-------|-----------|----------|----------|----------|
| Analyte                | Result                            | PQL   | Method    | Prepared | Analyzed | Flags    |
| Client ID:             | RMW-09R-082224                    |       |           | •        | •        | <u> </u> |
| Laboratory ID:         | 08-289-01                         |       |           |          |          |          |
| Nitrate                | 2.6                               | 0.050 | EPA 353.2 | 8-23-24  | 8-23-24  |          |
|                        |                                   |       |           |          |          |          |
| Client ID:             | RMW-14-082224                     |       |           |          |          |          |
| Laboratory ID:         | 08-289-02                         |       |           |          |          |          |
| Nitrate                | 0.97                              | 0.050 | EPA 353.2 | 8-23-24  | 8-23-24  |          |
| Client ID:             | RMW-13-082224                     |       |           |          |          |          |
| Laboratory ID:         | 08-289-03                         |       |           |          |          |          |
| Nitrate                | 0.21                              | 0.050 | EPA 353.2 | 8-23-24  | 8-23-24  |          |
|                        |                                   |       |           |          |          |          |
| Client ID:             | RMW-07-082224                     |       |           |          |          |          |
| Laboratory ID:         | 08-289-04                         |       |           |          |          |          |
| Nitrate                | 0.19                              | 0.050 | EPA 353.2 | 8-23-24  | 8-23-24  |          |
| Client ID:             | DMM 40 000004                     |       |           |          |          |          |
| Client ID:             | <b>RMW-12-082224</b><br>08-289-05 |       |           |          |          |          |
| Laboratory ID: Nitrate | 0.052                             | 0.050 | EPA 353.2 | 8-23-24  | 8-23-24  |          |
| Milate                 | 0.052                             | 0.030 | EFA 333.2 | 0-23-24  | 0-23-24  |          |
| Client ID:             | EW-03-082224                      |       |           |          |          |          |
| Laboratory ID:         | 08-289-06                         |       |           |          |          |          |
| Nitrate                | 0.16                              | 0.050 | EPA 353.2 | 8-23-24  | 8-23-24  |          |
|                        |                                   |       |           |          |          |          |
| Client ID:             | RMW-05-082224                     |       |           |          |          |          |
| Laboratory ID:         | 08-289-07                         | 0.050 | EDA 050 0 | 0.00.04  | 0.00.04  |          |
| Nitrate                | 0.21                              | 0.050 | EPA 353.2 | 8-23-24  | 8-23-24  |          |
| Client ID:             | RMW-06-082224                     |       |           |          |          |          |
| Laboratory ID:         | 08-289-08                         |       |           |          |          |          |
| Nitrate                | 0.13                              | 0.050 | EPA 353.2 | 8-23-24  | 8-23-24  |          |
|                        |                                   |       |           |          |          |          |
| Client ID:             | RMW-112-082224                    |       |           |          |          |          |
| Laboratory ID:         | 08-289-09                         |       |           |          |          |          |
| Nitrate                | 0.093                             | 0.050 | EPA 353.2 | 8-23-24  | 8-23-24  |          |
|                        |                                   |       |           |          |          |          |



#### NITRATE (as Nitrogen) EPA 353.2 QUALITY CONTROL

|                |          |       |           | Date     | Date     |       |
|----------------|----------|-------|-----------|----------|----------|-------|
| Analyte        | Result   | PQL   | Method    | Prepared | Analyzed | Flags |
| METHOD BLANK   |          |       |           |          |          |       |
| Laboratory ID: | MB0823W1 |       |           |          |          |       |
| Nitrate        | ND       | 0.050 | EPA 353.2 | 8-23-24  | 8-23-24  |       |

|                | _     |       |       |       | Source |     | rcent  | Recovery |     | RPD   |       |
|----------------|-------|-------|-------|-------|--------|-----|--------|----------|-----|-------|-------|
| Analyte        | Res   | sult  | Spike | Level | Result | Red | covery | Limits   | RPD | Limit | Flags |
| DUPLICATE      |       |       |       |       |        |     |        |          |     |       |       |
| Laboratory ID: | 08-28 | 89-07 |       |       |        |     |        |          |     |       |       |
|                | ORIG  | DUP   |       |       |        |     |        |          |     |       |       |
| Nitrate        | 0.210 | 0.216 | ١     | IA    | NA     |     | NA     | NA       | 3   | 22    |       |
| MATRIX SPIKES  |       |       |       |       |        |     |        |          |     |       |       |
| Laboratory ID: | 08-28 | 89-07 |       |       |        |     |        |          |     |       |       |
|                | MS    | MSD   | MS    | MSD   |        | MS  | MSD    |          |     |       |       |
| Nitrate        | 2.08  | 2.14  | 2.00  | 2.00  | 0.210  | 94  | 97     | 86-119   | 3   | 20    |       |
| SPIKE BLANK    |       |       |       |       |        |     |        |          |     |       |       |
| Laboratory ID: | SB08  | 23W1  |       |       |        |     |        |          |     |       |       |
|                | S     | B     | S     | B     |        |     | SB     |          |     |       |       |
| Nitrate        | 1.    | 92    | 2.    | 00    | NA     |     | 96     | 85-117   | NA  | NA    |       |

#### NITRITE (as Nitrogen) EPA 353.2

| Units: mg/L-iv |                |       |            | Date                | Date     |       |
|----------------|----------------|-------|------------|---------------------|----------|-------|
| Analyte        | Result         | PQL   | Method     | Prepared            | Analyzed | Flags |
| Client ID:     | RMW-09R-082224 |       |            |                     |          |       |
| Laboratory ID: | 08-289-01      |       |            |                     |          |       |
| Nitrite        | ND             | 0.020 | EPA 353.2  | 8-23-24             | 8-23-24  |       |
|                |                |       |            |                     |          |       |
| Client ID:     | RMW-14-082224  |       |            |                     |          |       |
| Laboratory ID: | 08-289-02      |       |            |                     |          |       |
| Nitrite        | ND             | 0.020 | EPA 353.2  | 8-23-24             | 8-23-24  |       |
| Client ID:     | RMW-13-082224  |       |            |                     |          |       |
| Laboratory ID: | 08-289-03      |       |            |                     |          |       |
| Nitrite        | ND             | 0.020 | EPA 353.2  | 8-23-24             | 8-23-24  |       |
| Nune           | ND             | 0.020 | EFA 333.2  | 0-23-24             | 0-23-24  |       |
| Client ID:     | RMW-07-082224  |       |            |                     |          |       |
| Laboratory ID: | 08-289-04      |       |            |                     |          |       |
| Nitrite        | ND             | 0.020 | EPA 353.2  | 8-23-24             | 8-23-24  |       |
|                |                |       |            |                     |          |       |
| Client ID:     | RMW-12-082224  |       |            |                     |          |       |
| Laboratory ID: | 08-289-05      |       |            |                     |          |       |
| Nitrite        | ND             | 0.020 | EPA 353.2  | 8-23-24             | 8-23-24  |       |
| Client ID:     | EW-03-082224   |       |            |                     |          |       |
| Laboratory ID: | 08-289-06      |       |            |                     |          |       |
| Nitrite        | ND             | 0.020 | EPA 353.2  | 8-23-24             | 8-23-24  |       |
| Multe          | ND             | 0.020 | EPA 333.2  | 0-23-24             | 0-23-24  |       |
| Client ID:     | RMW-05-082224  |       |            |                     |          |       |
| Laboratory ID: | 08-289-07      |       |            |                     |          |       |
| Nitrite        | ND             | 0.020 | EPA 353.2  | 8-23-24             | 8-23-24  |       |
|                |                |       |            |                     |          |       |
| Client ID:     | RMW-06-082224  |       |            |                     |          |       |
| Laboratory ID: | 08-289-08      |       |            |                     |          |       |
| Nitrite        | ND             | 0.020 | EPA 353.2  | 8-23-24             | 8-23-24  |       |
| Client ID:     | RMW-112-082224 |       |            |                     |          |       |
| Laboratory ID: | 08-289-09      |       |            |                     |          |       |
| Nitrite        | ND             | 0.020 | EPA 353.2  | 8-23-24             | 8-23-24  |       |
| TAIGITO        | ND             | 0.020 | LI A 300.2 | U-2U-2 <del>1</del> | U-2U-24  |       |

#### NITRITE (as Nitrogen) EPA 353.2 QUALITY CONTROL

|                |          |       |           | Date     | Date     |       |
|----------------|----------|-------|-----------|----------|----------|-------|
| Analyte        | Result   | PQL   | Method    | Prepared | Analyzed | Flags |
| METHOD BLANK   |          |       |           |          |          | _     |
| Laboratory ID: | MB0823W1 |       |           |          |          |       |
| Nitrite        | ND       | 0.020 | EPA 353.2 | 8-23-24  | 8-23-24  |       |

|                |       |       |       |       | Source | Pe  | rcent  | Recovery |     | RPD   |       |
|----------------|-------|-------|-------|-------|--------|-----|--------|----------|-----|-------|-------|
| Analyte        | Re    | sult  | Spike | Level | Result | Red | covery | Limits   | RPD | Limit | Flags |
| DUPLICATE      |       |       |       |       |        |     |        |          |     |       |       |
| Laboratory ID: | 08-2  | 89-07 |       |       |        |     |        |          |     |       |       |
|                | ORIG  | DUP   |       |       |        |     |        |          |     |       |       |
| Nitrite        | ND    | ND    | N     | IA    | NA     |     | NA     | NA       | NA  | 11    |       |
| MATRIX SPIKES  |       |       |       |       |        |     |        |          |     |       |       |
| Laboratory ID: | 08-2  | 89-07 |       |       |        |     |        |          |     |       |       |
|                | MS    | MSD   | MS    | MSD   |        | MS  | MSD    |          |     |       |       |
| Nitrite        | 0.240 | 0.244 | 0.250 | 0.250 | ND     | 96  | 98     | 85-121   | 2   | 20    |       |
| SPIKE BLANK    |       |       |       |       |        |     |        |          |     |       |       |
| Laboratory ID: | SB08  | 23W1  |       |       |        |     |        |          |     |       |       |
|                | S     | B     | S     | В     |        |     | SB     |          | •   |       |       |
| Nitrite        | 0.2   | 239   | 0.2   | 250   | NA     |     | 96     | 91-116   | NA  | NA    |       |

#### SULFATE ASTM D516-11

| Units: mg/L    |                                         |     |                                         | Date     | Date     |       |
|----------------|-----------------------------------------|-----|-----------------------------------------|----------|----------|-------|
| Analyte        | Result                                  | PQL | Method                                  | Prepared | Analyzed | Flags |
| Client ID:     | RMW-09R-082224                          |     |                                         | •        | •        |       |
| Laboratory ID: | 08-289-01                               |     |                                         |          |          |       |
| Sulfate        | 23                                      | 5.0 | ASTM D516-11                            | 8-28-24  | 8-28-24  |       |
|                |                                         |     |                                         |          | ·        |       |
| Client ID:     | RMW-14-082224                           |     |                                         |          |          |       |
| Laboratory ID: | 08-289-02                               |     |                                         |          |          |       |
| Sulfate        | 20                                      | 5.0 | ASTM D516-11                            | 8-28-24  | 8-28-24  |       |
| Client ID:     | RMW-13-082224                           |     |                                         |          |          |       |
| Laboratory ID: | 08-289-03                               |     |                                         |          |          |       |
| Sulfate        | 34                                      | 10  | ASTM D516-11                            | 8-28-24  | 8-28-24  |       |
| Client ID:     | RMW-07-082224                           |     |                                         |          |          |       |
| Laboratory ID: | 08-289-04                               |     |                                         |          |          |       |
| Sulfate        | 14                                      | 5.0 | ASTM D516-11                            | 8-28-24  | 8-28-24  |       |
| Juliate        | 14                                      | 3.0 | A31W D310-11                            | 0-20-24  | 0-20-24  |       |
| Client ID:     | RMW-12-082224                           |     |                                         |          |          |       |
| Laboratory ID: | 08-289-05                               |     |                                         |          |          |       |
| Sulfate        | 16                                      | 5.0 | ASTM D516-11                            | 8-28-24  | 8-28-24  |       |
| Client ID:     | EW-03-082224                            |     |                                         |          |          |       |
| Laboratory ID: | 08-289-06                               |     |                                         |          |          |       |
| Sulfate        | 12                                      | 5.0 | ASTM D516-11                            | 8-28-24  | 8-28-24  |       |
|                |                                         |     |                                         |          |          |       |
| Client ID:     | RMW-05-082224                           |     |                                         |          |          |       |
| Laboratory ID: | 08-289-07                               |     |                                         |          |          |       |
| Sulfate        | 18                                      | 10  | ASTM D516-11                            | 8-28-24  | 8-28-24  |       |
| Client ID:     | RMW-06-082224                           |     |                                         |          |          |       |
| Laboratory ID: | 08-289-08                               |     |                                         |          |          |       |
| Sulfate        | ND                                      | 5.0 | ASTM D516-11                            | 8-28-24  | 8-28-24  |       |
| Client ID:     | RMW-112-082224                          |     |                                         |          |          |       |
| Laboratory ID: | 08-289-09                               |     |                                         |          |          |       |
| Sulfate        | 17                                      | 5.0 | ASTM D516-11                            | 8-28-24  | 8-28-24  |       |
| 2              | • • • • • • • • • • • • • • • • • • • • | 5.0 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 0 20 2 1 | 0 20 2 1 |       |



#### SULFATE ASTM D516-11 QUALITY CONTROL

|                |          |     |              | Date     | Date     |       |
|----------------|----------|-----|--------------|----------|----------|-------|
| Analyte        | Result   | PQL | Method       | Prepared | Analyzed | Flags |
| METHOD BLANK   |          |     |              |          |          |       |
| Laboratory ID: | MB0827W1 |     |              |          |          |       |
| Sulfate        | ND       | 5.0 | ASTM D516-11 | 8-28-24  | 8-28-24  |       |

|                |       |       |       |       | Source | Pe  | rcent  | Recovery |     | RPD   |       |
|----------------|-------|-------|-------|-------|--------|-----|--------|----------|-----|-------|-------|
| Analyte        | Res   | sult  | Spike | Level | Result | Red | covery | Limits   | RPD | Limit | Flags |
| DUPLICATE      |       |       |       |       |        |     |        |          |     |       |       |
| Laboratory ID: | 08-28 | 39-07 |       |       |        |     |        |          |     |       |       |
|                | ORIG  | DUP   |       |       |        |     |        |          |     |       |       |
| Sulfate        | 17.8  | 18.1  | N     | IA    | NA     |     | NA     | NA       | 2   | 11    |       |
| MATRIX SPIKES  |       |       |       |       |        |     |        |          |     |       |       |
| Laboratory ID: | 08-28 | 39-07 |       |       |        |     |        |          |     |       |       |
|                | MS    | MSD   | MS    | MSD   |        | MS  | MSD    |          |     |       |       |
| Sulfate        | 36.1  | 35.9  | 20.0  | 20.0  | 17.8   | 92  | 91     | 69-134   | 1   | 20    |       |
| SPIKE BLANK    |       |       |       |       |        |     |        |          |     |       |       |
| Laboratory ID: | SB08  | 27W1  |       |       |        |     |        |          |     |       |       |
| -              | S     | В     | S     | B     |        |     | SB     |          |     |       |       |
| Sulfate        | 9.    | 14    | 10    | 0.0   | NA     |     | 91     | 81-106   | NA  | NA    |       |



#### **Data Qualifiers and Abbreviations**

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical .
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference



# Am Test Inc. 13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com



Professional Analytical Services

September 03, 2024

#### **David Baumeister**

14648 NE 95th ST Redmond, WA 98052

Project: Onsite (Chem)

**Project Number:** COB-Riverside Task 5 **Project Manager:** David Baumeister

RE: Onsite (Chem)

Enclosed are the results of analyses for samples received by our laboratory on 8/23/2024. Please feel free to contact me with any questions or considerations regarding this report.

Sincerely,

**ElementStationManager For Aaron Young** 

Aavon y J

President

Am Test Inc.

13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com



Professional Analytical Services

**Date Received:** 08/23/24 **Date Reported:** 09/03/24

#### **OnSite Environmental Inc.**

14648 NE 95th ST
Redmond, WA 98052
Attention: David Baumeister
Project Name: Onsite (Chem)
Project #: COB-Riverside Task 5

# **Reported Samples**

| Lab ID      | Sample         | Matrix | Qualifiers | Date Sampled | Date Received |
|-------------|----------------|--------|------------|--------------|---------------|
| A24H0453-01 | RMW-09R-082224 | Water  |            | 08/22/2024   | 08/23/2024    |
| A24H0453-02 | RMW-14-082224  | Water  |            | 08/22/2024   | 08/23/2024    |
| A24H0453-03 | RMW-13-082224  | Water  |            | 08/22/2024   | 08/23/2024    |
| A24H0453-04 | RMW-07-082224  | Water  |            | 08/22/2024   | 08/23/2024    |
| A24H0453-05 | RMW-12-082224  | Water  |            | 08/22/2024   | 08/23/2024    |
| A24H0453-06 | EW-03-082224   | Water  |            | 08/22/2024   | 08/23/2024    |
| A24H0453-07 | RMW-05-082224  | Water  |            | 08/22/2024   | 08/23/2024    |
| A24H0453-08 | RMW-06-082224  | Water  |            | 08/22/2024   | 08/23/2024    |
| A24H0453-09 | RMW-112-082224 | Water  |            | 08/22/2024   | 08/23/2024    |
|             |                |        |            |              |               |

Am Test Inc.

13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com ANALYSIS REPORT

Professional Analytical Services

Services

Date Received: 08/23/24

Date Reported: 09/03/24

#### **OnSite Environmental Inc.**

14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister Project Name: Onsite (Chem) Project #: COB-Riverside Task 5

AMTEST Identification Number: A24H0453-01 Client Identification: RMW-09R-082224

Sampling Date: 08/22/24 10:00

#### Conventional Chemistry Parameters by APHA/EPA Methods

| PARAMETER | RESULT | UNITS | Q | D.L. | METHOD            | ANALYST | DATE       |
|-----------|--------|-------|---|------|-------------------|---------|------------|
| Sulfide   | ND     | mg/L  | U | 0.05 | SM 4500-S2-D_2011 | BV      | 08/27/2024 |

**AMTEST Identification Number: A24H0453-02** 

Client Identification: RMW-14-082224 Sampling Date: 08/22/24 11:20

#### **Conventional Chemistry Parameters by APHA/EPA Methods**

| PARAMETER | RESULT | UNITS | Q | D.L. | METHOD            | ANALYST | DATE       |
|-----------|--------|-------|---|------|-------------------|---------|------------|
| Sulfide   | ND     | mg/L  | U | 0.05 | SM 4500-S2-D_2011 | BV      | 08/27/2024 |

AMTEST Identification Number: A24H0453-03 Client Identification: RMW-13-082224

Sampling Date: 08/22/24 13:20

#### Conventional Chemistry Parameters by APHA/EPA Methods

| PARAMETER | RESULT | UNITS | Q | D.L. | METHOD            | ANALYST | DATE       |
|-----------|--------|-------|---|------|-------------------|---------|------------|
| Sulfide   | ND     | mg/L  | U | 0.05 | SM 4500-S2-D_2011 | BV      | 08/27/2024 |

AMTEST Identification Number: A24H0453-04 Client Identification: RMW-07-082224

Sampling Date: 08/22/24 13:35

#### **Conventional Chemistry Parameters by APHA/EPA Methods**

| PARAMETER | RESULT | UNITS | Q | D.L. | METHOD            | ANALYST | DATE       |
|-----------|--------|-------|---|------|-------------------|---------|------------|
| Sulfide   | ND     | mg/L  | U | 0.05 | SM 4500-S2-D_2011 | BV      | 08/27/2024 |

Am Test Inc.

13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com ANALYSIS REPORT

Professional Analytical Services

Date Received: 08/23/24 Date Reported: 09/03/24

#### **OnSite Environmental Inc.**

14648 NE 95th ST
Redmond, WA 98052
Attention: David Baumeister
Project Name: Onsite (Chem)
Project #: COB-Riverside Task 5

AMTEST Identification Number: A24H0453-05

Client Identification: RMW-12-082224 Sampling Date: 08/22/24 14:35

#### Conventional Chemistry Parameters by APHA/EPA Methods

| PARAMETER | RESULT | UNITS | Q | D.L. | METHOD            | ANALYST | DATE       |
|-----------|--------|-------|---|------|-------------------|---------|------------|
| Sulfide   | ND     | mg/L  | U | 0.05 | SM 4500-S2-D_2011 | BV      | 08/27/2024 |

**AMTEST Identification Number: A24H0453-06** 

Client Identification: EW-03-082224 Sampling Date: 08/22/24 14:50

# **Conventional Chemistry Parameters by APHA/EPA Methods**

| PARAMETER | RESULT | UNITS | Q | D.L. | METHOD            | ANALYST | DATE       |
|-----------|--------|-------|---|------|-------------------|---------|------------|
| Sulfide   | 0.08   | mg/L  |   | 0.05 | SM 4500-S2-D_2011 | BV      | 08/30/2024 |

AMTEST Identification Number: A24H0453-07

Client Identification: RMW-05-082224 Sampling Date: 08/22/24 16:05

#### **Conventional Chemistry Parameters by APHA/EPA Methods**

| PARAMETER | RESULT | UNITS | Q | D.L. | METHOD            | ANALYST | DATE       |
|-----------|--------|-------|---|------|-------------------|---------|------------|
| Sulfide   | ND     | mg/L  | U | 0.05 | SM 4500-S2-D_2011 | BV      | 08/30/2024 |

AMTEST Identification Number: A24H0453-08 Client Identification: RMW-06-082224

Sampling Date: 08/22/24 16:15

# Conventional Chemistry Parameters by APHA/EPA Methods

| PARAMETER | RESULT | UNITS | Q | D.L. | METHOD            | ANALYST | DATE       |
|-----------|--------|-------|---|------|-------------------|---------|------------|
| Sulfide   | ND     | mg/L  | U | 0.05 | SM 4500-S2-D_2011 | BV      | 08/30/2024 |

13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com



Professional Analytical Services

Date Received: 08/23/24

Date Reported: 09/03/24

### **OnSite Environmental Inc.**

14648 NE 95th ST
Redmond, WA 98052
Attention: David Baumeister
Project Name: Onsite (Chem)
Project #: COB-Riverside Task 5

AMTEST Identification Number: A24H0453-09 Client Identification: RMW-112-082224

Sampling Date: 08/22/24 14:45

### **Conventional Chemistry Parameters by APHA/EPA Methods**

| PARAMETER | RESULT | UNITS | Q | D.L. | METHOD            | ANALYST | DATE       |
|-----------|--------|-------|---|------|-------------------|---------|------------|
| Sulfide   | ND     | mg/L  | U | 0.05 | SM 4500-S2-D_2011 | BV      | 08/30/2024 |

13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com ANALYSIS REPORT

Professional Analytical Services

**Date Received:** 08/23/24 **Date Reported:** 09/03/24

### **OnSite Environmental Inc.**

14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister Project Name: Onsite (Chem) Project #: COB-Riverside Task 5

## **Quality Control**

### **Conventional Chemistry Parameters by APHA/EPA Methods**

| Analyte                                 | Result | Qual      | Reporting<br>Limit     | Units  | Spike<br>Level  | Source<br>Result         | %REC                | %REC<br>Limits       | RPD | RPD<br>Limit |
|-----------------------------------------|--------|-----------|------------------------|--------|-----------------|--------------------------|---------------------|----------------------|-----|--------------|
| Batch: BBH0314 - No Prep - Wet(         | Chem   |           |                        |        |                 |                          |                     |                      |     |              |
| •                                       |        |           |                        |        | Droparodi 09/3  | 2/24 Apolya              | od. 00/27/2         | 4                    |     |              |
| LCS (BBH0314-BS1) Sulfide               | 0.25   |           | 0.05                   | mg/L   | 0.2500          | 2/2 <del>4</del> Allaly2 | eu. 06/27/2<br>102% | 80-120%              |     |              |
| Junio                                   |        |           | 0.03                   | 9/ _   | 0.2300          |                          | 10270               | 00 12070             |     |              |
| LCS (BBH0314-BS2)                       |        |           |                        |        | Prepared: 08/2  | 2/24 Analyz              |                     |                      |     |              |
| Sulfide                                 | 0.27   |           | 0.05                   | mg/L   | 0.2500          |                          | 107%                | 80-120%              |     |              |
| Calibration Blank (BBH0314-CCB1)        |        |           |                        |        | Prepared: 08/2  | 2/24 Analyz              | ed: 08/27/2         | 4                    |     |              |
| Sulfide                                 | 0      | U         |                        | mg/L   |                 |                          |                     |                      |     |              |
| Calibration Blank (BBH0314-CCB2)        |        |           |                        |        | Prepared: 08/2  | 2/24 Analyz              | ed: 08/27/2         | 4                    |     |              |
| Sulfide                                 | 0      | U         |                        | mg/L   | Trepured: 00/2  | -, - 1                   | ca: 00/2//2         | •                    |     |              |
|                                         |        |           |                        | 5.     |                 |                          |                     |                      |     |              |
| Calibration Blank (BBH0314-CCB3)        | •      |           |                        |        | Prepared: 08/2  | 2/24 Analyz              | ed: 08/27/2         | 4                    |     |              |
| Sulfide                                 | 0      | U         |                        | mg/L   |                 |                          |                     |                      |     |              |
| Calibration Check (BBH0314-CCV1)        |        |           |                        |        | Prepared: 08/2  | 2/24 Analyz              | ed: 08/27/2         | 4                    |     |              |
| Sulfide                                 | 0.49   |           | 0.05                   | mg/L   | 0.5000          |                          | 98%                 | 85-115%              |     |              |
| Calibration Check (BBH0314-CCV2)        |        |           |                        |        | Prepared: 08/2  | 2/24 Analyz              | ed: 08/27/2         | 4                    |     |              |
| Sulfide                                 | 0.47   |           | 0.05                   | mg/L   | 0.5000          | ,                        | 95%                 | 85-115%              |     |              |
| Calliantia di Alemania (PRUSSA A COVO)  |        |           |                        |        | D 1 .00/2:      | 2/24 4                   | . 1 . 00/27/2       |                      |     |              |
| Calibration Check (BBH0314-CCV3)        | 0.51   |           | 0.05                   | /1     | Prepared: 08/2  | 2/24 Anaiyz              |                     |                      |     |              |
| Sulfide                                 | 0.51   |           | 0.05                   | mg/L   | 0.5000          |                          | 102%                | 85-115%              |     |              |
| Matrix Spike (BBH0314-MS1)              |        | Source: A | 24H0275-02             |        | Prepared: 08/2  | 2/24 Analyz              | ed: 08/27/2         | 4                    |     |              |
| Sulfide                                 | 0.33   |           | 0.05                   | mg/L   | 0.2500          | ND                       | 131%                | 55-145%              |     |              |
| Matrix Spike (BBH0314-MS2)              |        | Source: A | 24H0453-05             |        | Prepared: 08/2  | 2/24 Analyz              | ed: 08/27/2         | 4                    |     |              |
| Sulfide                                 | 0.26   |           | 0.05                   | mg/L   | 0.2500          | ND                       | 104%                | 55-145%              |     |              |
| Matuis Cuite Dun (PRUCCI 4 MCD1)        |        | Sau **    | 2440275 02             |        | Duonaug 1: 00/0 | 2/24 A                   | ~d. 00/27/2         | 4                    |     |              |
| Matrix Spike Dup (BBH0314-MSD1) Sulfide | 0.33   | Source: A | <b>24H0275-02</b> 0.05 | mg/L   | 0.2500          | 2/24 Analyz<br>ND        | ed: 08/2//2<br>132% | .4<br>55-145%        | 0.5 | 20           |
| Juniue                                  | 0.55   |           | 0.03                   | iilg/L | 0.2300          | NU                       | 13270               | JJ-1 <del>4</del> 3% | 0.5 | 20           |
| Matrix Spike Dup (BBH0314-MSD2)         |        | Source: A | 24H0453-05             |        | Prepared: 08/2  | 2/24 Analyz              | ed: 08/27/2         | 4                    |     |              |
| Sulfide                                 | 0.26   |           | 0.05                   | mg/L   | 0.2500          | ND                       | 102%                | 55-145%              | 2   | 20           |

Batch: BBH0411 - No Prep - WetChem

13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com

**ANALYSIS REPORT** 

Professional Analytical **Services** 

**Date Received:** 08/23/24 Date Reported: 09/03/24

### **OnSite Environmental Inc.**

14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister Project Name: Onsite (Chem) Project #: COB-Riverside Task 5

## **Quality Control**

(Continued)

### Conventional Chemistry Parameters by APHA/EPA Methods (Continued)

| Analyte                          | Result   | Qual       | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD | RPD<br>Limit |
|----------------------------------|----------|------------|--------------------|-------|----------------|------------------|-------------|----------------|-----|--------------|
| Batch: BBH0411 - No Prep - WetC  | hem (Con | tinued)    |                    |       |                |                  |             |                |     |              |
| LCS (BBH0411-BS1)                |          |            |                    | Pre   | epared: 08/29  | 9/24 Analyz      | ed: 08/30/2 | 4              |     |              |
| Sulfide                          | 0.26     |            | 0.05               | mg/L  | 0.2500         |                  | 102%        | 80-120%        |     |              |
| Calibration Blank (BBH0411-CCB1) |          |            |                    | Pre   | epared: 08/29  | 9/24 Analyz      | ed: 08/30/2 | 4              |     |              |
| Sulfide                          | 0        | U          |                    | mg/L  |                |                  |             |                |     |              |
| Calibration Check (BBH0411-CCV1) |          |            |                    | Pre   | epared: 08/29  | 9/24 Analyz      | ed: 08/30/2 | 4              |     |              |
| Sulfide                          | 0.50     |            | 0.05               | mg/L  | 0.5000         |                  | 100%        | 85-115%        |     |              |
| Matrix Spike (BBH0411-MS1)       |          | Source: A2 | 24H0453-07         | Pre   | epared: 08/29  | 9/24 Analyz      | ed: 08/30/2 | 4              |     |              |
| Sulfide                          | 0.21     |            | 0.05               | mg/L  | 0.2500         | ND               | 84%         | 55-145%        |     |              |
| Matrix Spike Dup (BBH0411-MSD1)  |          | Source: A2 | 24H0453-07         | Pre   | epared: 08/29  | 9/24 Analyz      | ed: 08/30/2 | 4              |     |              |
| Sulfide                          | 0.21     |            | 0.05               | mg/L  | 0.2500         | ND               | 82%         | 55-145%        | 2   | 20           |

13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com



Professional Analytical Services

**Date Received:** 08/23/24 **Date Reported:** 09/03/24

### **OnSite Environmental Inc.**

14648 NE 95th ST
Redmond, WA 98052
Attention: David Baumeister
Project Name: Onsite (Chem)
Project #: COB-Riverside Task 5

### **Notes and Definitions**

| Item   | Definition                                                                               |
|--------|------------------------------------------------------------------------------------------|
| U      | The compound was analyzed for but was not detected (Non-detect) at or above the MRL/MDL. |
| Dry    | Sample results reported on a dry weight basis.                                           |
| ND     | Analyte NOT DETECTED at or above the reporting limit.                                    |
| RPD    | Relative Percent Difference                                                              |
| %REC   | Percent Recovery                                                                         |
| Source | Sample that was matrix spiked or duplicated.                                             |

Page 1 of 1

424FD453

MA OnSite Environmental Inc.

14648 NE 95th Street, Redmond, WA 98052 · (425) 883-3881

Laboratory: AmTest Laboratories

Attention: Aaron Young

13600 NE 126th PI Kirkland, WA 98034

Phone Number: (425) 885-1664

Other:

**Turnaround Request** 

3 Day 1 Day 2 Day Standard

Laboratory Reference #: 08-289

Project Manager: David Baumeister

email: dbaumeister@onsite-env.com

Project Number: COB-Riverside; Task 5

Project Name:

| Lab ID | Sample Identification | Date<br>Sampled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time<br>Sampled | Matrix | # of<br>Cont. | Requested Analyses                     |
|--------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------|---------------|----------------------------------------|
| ō      | RMW-09R-082224        | 8/22/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10:00           | 8      |               | Sulfide                                |
| 5      | RMW-14-082224         | 8/22/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11:20           | 8      | -             | Sulfide                                |
| 50     | RMW-13-082224         | 8/22/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13:20           | 3      | -             | Sulfide                                |
| 04     | RMW-07-082224         | 8/22/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13:35           | ×      | <b>V</b>      | Sulfide                                |
| 05     | RMW-12-082224         | 8/22/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14:35           | *      | -             | Sulfide                                |
| ટ્     | EW-03-082224          | 8/22/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14:50           | *      | -             | Sulfide                                |
| to.    | RMW-05-082224         | 8/22/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16:05           | 8      | 2             | Sulfide - MS/MSD (Use as Client QA/QC) |
| \$0    | RMW-06-082224         | 8/22/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16:15           | ×      | -             | Sulfide                                |
| 00     | RMW-112-082224        | 8/22/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14:45           | W      | -             | Sulfide                                |
|        |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |        |               |                                        |
|        |                       | Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | pany            |        | Date          | Time Comments/Special Instructions     |
| Reling | Relinquished by:      | S. 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |        | 3/23/2        | 3/23/29 2:50 pm                        |
| Recei  |                       | Amterr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ملم             |        | 8(23) 24      | 7°44 11.0°C                            |
| Reling | Relinquished by:      | LASSTATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |        |               |                                        |
| Recei  | Received by:          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 1      |               | EDUS                                   |
| Reling | Relinguished by:      | The state of the s |                 |        |               |                                        |
| Recei  | Received by:          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |        |               |                                        |



## Chain of Custody

| Reviewed/Date                                   | Received          | Relinquished | Received       | Reinquished                              | Received            | Relinquished Emile All Vo | Signature                     | STAN 22280-211-MM S | 8 RMW-06-082274 | 7 RMW-05-082224                         | 6 FW-03-082224 | S RMW-12-082224 | 4 RMW-07-082224 | 3 RMW-13-082224 | 2 RMW-14-082224 | 1 RMW-09R-082224    | ab ID Sample Identification        | Parelle Gellaher                                                                      | Kristin Anderson               | COB-Riversible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1845                                     | Project Number:      |             | Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 |
|-------------------------------------------------|-------------------|--------------|----------------|------------------------------------------|---------------------|---------------------------|-------------------------------|---------------------|-----------------|-----------------------------------------|----------------|-----------------|-----------------|-----------------|-----------------|---------------------|------------------------------------|---------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------|-------------|---------------------------------------------------------------------------------|
| Reviewed/Date                                   |                   |              |                |                                          | 100m                | Floyd Sonder              | Company                       | M 14:45 GW 10       | 16:15 GW 13     | 16:05 GW 23                             | 14:50 GW 13    | 14:35 GW 11     | 13:35 GW 11     | 13-20 GW 11     | 11:20 GW 11     | 8/22/24/0:00 CTW  1 | Date Time Sampled Matrix           | (other)                                                                               | Contain                        | Standard (7 Days)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 Days 3 Days                            | Same Day 1 Day       | (Check One) | Turnaround Request<br>(in working days)                                         |
|                                                 |                   |              |                |                                          | SICO HORSE          | 82:41 43/22/8             | Date Time                     | <u> </u>            |                 | ×                                       | ×              | ×               | ×               | ×               | ×               | ×                   | NWTP<br>NWTP<br>NWTP<br>Volatil    | H-Gx<br>H-Dx (<br>es 8260<br>enated                                                   | SG Clea                        | 021 8<br>an-up 1<br>s 8260<br>ers Only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |                      |             | Laboratory Number:                                                              |
| Chromatograms with final report   Electronic Da | 9 111             | 土            |                | send lab results to: labolate Ofhydenich | DOF + Vny1 Chlerial | #Only PCE, TCE, 6-5-1,2-2 | Comments/Special Instructions | X                   | ×               | ××××××××××××××××××××××××××××××××××××××× | ×              | XXXX            | ×               | × 3 × × × ×     | × × × × ×       | ×                   | Organo Chlorir Total F             | ow-leve<br>8270/S<br>8270/S<br>8082-<br>215<br>echleri<br>ophosp<br>nated A<br>167A M | phorus F<br>Acid Her<br>Metals | level)  A 200 cides 80 cides 8 | 981 C<br>981 C<br>98 8270<br>8151<br>310 |                      | N.E         | 088                                                                             |
| Electronic Data Deliverables (EDDs)             | Level IVI To Have | -lab "FF"    | ed + 12 belled | 2 Cofleyduniour com                      |                     | DCE, 4213-1,2-            |                               | X<br>X<br>X         | ××××            | ×<br>×<br>×<br>×                        | ××××           | ×<br>×<br>×     | ×<br>×<br>×     | XXXX            | XXXX            | XXX                 | TOC<br>EPA<br>SULF<br>SULF<br>SULF | 35<br>He                                                                              | 3, 2<br>, AST<br>(SM           | M D9<br>1 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16-00-00                                 | = , N<br>-16<br>:15) | 1,14        | ite                                                                             |

スメークで-082227 ープベーダへし



August 27, 2024

Kristin Anderson Floyd & Snider 601 Union Street, Suite 600 Seattle, WA 98101

Re: Analytical Data for Project COB-Riverside; Task 5

Laboratory Reference No. 2408-296

### Dear Kristin:

Enclosed are the analytical results and associated quality control data for samples submitted on August 23, 2024.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

**Enclosures** 

### **Case Narrative**

Samples were collected on August 23, 2024 and received by the laboratory on August 23, 2024. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below. However the soil results for the QA/QC samples are reported on a wet-weight basis.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

### **VOLATILE ORGANICS EPA 8260D/SIM**

|                            |                  |                |               | Date     | Date     |       |
|----------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                    | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| Client ID:                 | EW-05-082324     |                |               |          |          |       |
| Laboratory ID:             | 08-296-01        |                |               |          |          |       |
| Vinyl Chloride (SIM)       | ND               | 0.020          | EPA 8260D/SIM | 8-26-24  | 8-26-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Trichloroethene            | ND               | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Tetrachloroethene          | ND               | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |               |          |          |       |
| Dibromofluoromethane       | 92               | 68-133         |               |          |          |       |
| Toluene-d8                 | 99               | 79-123         |               |          |          |       |
| 4-Bromofluorobenzene       | 99               | 78-117         |               |          |          |       |
|                            |                  |                |               |          |          |       |
| Client ID:                 | EW-06-082324     |                |               |          |          |       |
| Laboratory ID:             | 08-296-02        |                |               |          |          |       |
| Vinyl Chloride (SIM)       | ND               | 0.020          | EPA 8260D/SIM | 8-26-24  | 8-26-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Trichloroethene            | 0.23             | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Tetrachloroethene          | 8.8              | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |               |          |          |       |
| Dibromofluoromethane       | 93               | 68-133         |               |          |          |       |
| Toluene-d8                 | 98               | 79-123         |               |          |          |       |
| 4-Bromofluorobenzene       | 98               | 78-117         |               |          |          |       |
|                            |                  |                |               |          |          |       |
| Client ID:                 | EW-02-082324     |                |               |          |          |       |
| Laboratory ID:             | 08-296-03        |                |               |          |          |       |
| Vinyl Chloride (SIM)       | ND               | 0.020          | EPA 8260D/SIM | 8-26-24  | 8-26-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Trichloroethene            | 0.27             | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Tetrachloroethene          | 7.8              | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |               |          |          |       |
| Dibromofluoromethane       | 96               | 68-133         |               |          |          |       |
| Toluene-d8                 | 99               | 79-123         |               |          |          |       |
| 4-Bromofluorobenzene       | 99               | 78-117         |               |          |          |       |

### **VOLATILE ORGANICS EPA 8260D/SIM**

| Client ID:   RMW-10D-082324   Laboratory   D:   08-296-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ŭ                          |                  |                |               | Date     | Date     |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------|----------------|---------------|----------|----------|-------|
| Laboratory ID:   08-296-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Analyte                    | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| Vinyl Chloride (SIM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Client ID:                 | RMW-10D-082324   |                |               |          |          |       |
| (trans) 1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Laboratory ID:             | 08-296-04        |                |               |          |          |       |
| Cisi   1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Vinyl Chloride (SIM)       | ND               | 0.020          | EPA 8260D/SIM | 8-26-24  | 8-26-24  |       |
| Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (trans) 1,2-Dichloroethene | ND               | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Tetrachloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (cis) 1,2-Dichloroethene   | ND               | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Percent Recovery   Control Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Trichloroethene            | ND               | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Dibromofluoromethane   93   68-133   Toluene-d8   100   79-123   4-Bromofluorobenzene   97   78-117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tetrachloroethene          | ND               | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Toluene-d8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Surrogate:                 | Percent Recovery | Control Limits | <b>:</b>      |          |          |       |
| Client ID: RMW-08-082324   Client ID: 08-296-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dibromofluoromethane       | 93               | 68-133         |               |          |          |       |
| Client ID: RMW-08-082324   Laboratory ID: 08-296-05   Winyl Chloride (SIM)   ND   0.020   EPA 8260D/SIM   8-26-24   8-26-24   (trans) 1,2-Dichloroethene   ND   0.20   EPA 8260D   8-26-24   8-26-24   (cis) 1,2-Dichloroethene   92   68-133   (cis) 1,2-Dichloroethene   100   78-117   (cis) 1,2-Dichloroethene   ND   0.20   EPA 8260D/SIM   8-26-24   8-26-24   (cis) 1,2-Dichloroethene   ND   0.20   EPA 8260D   8-2   | Toluene-d8                 | 100              | 79-123         |               |          |          |       |
| Laboratory ID: 08-296-05  Vinyl Chloride (SIM) ND 0.020 EPA 8260D/SIM 8-26-24 8-26-24 (trans) 1,2-Dichloroethene ND 0.20 EPA 8260D 8-26-24 8-26-24 (cis) 1,2-Dichloroethene ND 0.20 EPA 8260D 8-26-24 (cis) 1,2-Dichloroethene ND 0.20 EPA 8260D 8-26-24 8-26-24 (cis) 1,2-Dichloroe | 4-Bromofluorobenzene       | 97               | 78-117         |               |          |          |       |
| Laboratory ID: 08-296-05  Vinyl Chloride (SIM) ND 0.020 EPA 8260D/SIM 8-26-24 8-26-24 (trans) 1,2-Dichloroethene ND 0.20 EPA 8260D 8-26-24 8-26-24 (cis) 1,2-Dichloroethene ND 0.20 EPA 8260D 8-26-24 (cis) 1,2-Dichloroethene ND 0.20 EPA 8260D 8-26-24 8-26-24 (cis) 1,2-Dichloroe | Client ID:                 | BWM-08-083334    |                |               |          |          |       |
| Vinyl Chloride (SIM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                  |                |               |          |          |       |
| (trans) 1,2-Dichloroethene         ND         0.20         EPA 8260D         8-26-24         8-26-24           (cis) 1,2-Dichloroethene         0.81         0.20         EPA 8260D         8-26-24         8-26-24           Trichloroethene         ND         0.20         EPA 8260D         8-26-24         8-26-24           Tetrachloroethene         ND         0.20         EPA 8260D         8-26-24         8-26-24           Surrogate:         Percent Recovery         Control Limits         Dibromofluoromethane         92         68-133           Toluene-d8         99         79-123         4-Bromofluorobenzene         100         78-117           Client ID:         EW-01-082324           Laboratory ID:         08-296-06         Vinyl Chloride (SIM)         ND         0.020         EPA 8260D/SIM         8-26-24         8-26-24           Vinyl Chloride (SIM)         ND         0.20         EPA 8260D         8-26-24         8-26-24           (trans) 1,2-Dichloroethene         ND         0.20         EPA 8260D         8-26-24         8-26-24           (cis) 1,2-Dichloroethene         ND         0.20         EPA 8260D         8-26-24         8-26-24           Trichloroethene         ND         0.20         EPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                  | 0.020          | EDA 8260D/SIM | 8-26-24  | 8-26-24  |       |
| Cish   1,2-Dichloroethene   0.81   0.20   EPA 8260D   8-26-24   8-26-24     Trichloroethene   ND   0.20   EPA 8260D   8-26-24   8-26-24     Tetrachloroethene   ND   0.20   EPA 8260D   8-26-24   8-26-24     Tetrachloroethene   ND   0.20   EPA 8260D   8-26-24     Surrogate:   Percent Recovery   Control Limits     Dibromofluoromethane   92   68-133     Toluene-d8   99   79-123     4-Bromofluorobenzene   100   78-117     Client ID:   EW-01-082324     Laboratory ID:   08-296-06     Vinyl Chloride (SIM)   ND   0.020   EPA 8260D/SIM   8-26-24   8-26-24     (trans) 1,2-Dichloroethene   ND   0.20   EPA 8260D   8-26-24   8-26-24     (cis) 1,2-Dichloroethene   ND   0.20   EPA 8260D   8-26-24   8-26-24     Trichloroethene   ND   0.20   EPA 8260D   8-26-24   8-26-24     Trichloroethene   ND   0.20   EPA 8260D   8-26-24   8-26-24     Tetrachloroethene   3.2   0.20   EPA 8260D   8-26-24   8-26-24     Tetrachloroethene   3.2   0.20   EPA 8260D   8-26-24   8-26-24     Surrogate:   Percent Recovery   Control Limits     Dibromofluoromethane   93   68-133     Toluene-d8   100   79-123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • , ,                      |                  |                |               |          |          |       |
| Trichloroethene         ND         0.20         EPA 8260D         8-26-24         8-26-24           Tetrachloroethene         ND         0.20         EPA 8260D         8-26-24         8-26-24           Surrogate:         Percent Recovery         Control Limits           Dibromofluoromethane         92         68-133           Toluene-d8         99         79-123           4-Bromofluorobenzene         100         78-117           Client ID:         EW-01-082324           Laboratory ID:         08-296-06           Vinyl Chloride (SIM)         ND         0.020         EPA 8260D/SIM         8-26-24         8-26-24           (trans) 1,2-Dichloroethene         ND         0.20         EPA 8260D         8-26-24         8-26-24           (cis) 1,2-Dichloroethene         ND         0.20         EPA 8260D         8-26-24         8-26-24           Trichloroethene         ND         0.20         EPA 8260D         8-26-24         8-26-24           Tetrachloroethene         3.2         0.20         EPA 8260D         8-26-24         8-26-24           Surrogate:         Percent Recovery         Control Limits           Dibromofluoromethane         93         68-133         70-123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                          |                  |                |               |          |          |       |
| Tetrachloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • • •                      |                  |                |               |          |          |       |
| Surrogate:         Percent Recovery         Control Limits           Dibromofluoromethane         92         68-133           Toluene-d8         99         79-123           4-Bromofluorobenzene         100         78-117           Client ID:         EW-01-082324           Laboratory ID:         08-296-06           Vinyl Chloride (SIM)         ND         0.020         EPA 8260D/SIM         8-26-24         8-26-24           (trans) 1,2-Dichloroethene         ND         0.20         EPA 8260D         8-26-24         8-26-24           (cis) 1,2-Dichloroethene         ND         0.20         EPA 8260D         8-26-24         8-26-24           Trichloroethene         ND         0.20         EPA 8260D         8-26-24         8-26-24           Tetrachloroethene         3.2         0.20         EPA 8260D         8-26-24         8-26-24           Surrogate:         Percent Recovery         Control Limits           Dibromofluoromethane         93         68-133         79-123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |                  |                |               |          |          |       |
| Dibromofluoromethane 92 68-133 Toluene-d8 99 79-123 4-Bromofluorobenzene 100 78-117  Client ID: EW-01-082324 Laboratory ID: 08-296-06 Vinyl Chloride (SIM) ND 0.020 EPA 8260D/SIM 8-26-24 8-26-24 (trans) 1,2-Dichloroethene ND 0.20 EPA 8260D 8-26-24 8-26-24 (cis) 1,2-Dichloroethene ND 0.20 EPA 8260D 8-26-24 8-26-24 Trichloroethene ND 0.20 EPA 8260D 8-26-24 8-26-24 Surrogate: Percent Recovery Control Limits Dibromofluoromethane 93 68-133 Toluene-d8 100 79-123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                  |                |               | 0-20-24  | 0-20-24  |       |
| Toluene-d8 99 79-123 4-Bromofluorobenzene 100 78-117  Client ID: EW-01-082324 Laboratory ID: 08-296-06  Vinyl Chloride (SIM) ND 0.020 EPA 8260D/SIM 8-26-24 8-26-24 (trans) 1,2-Dichloroethene ND 0.20 EPA 8260D 8-26-24 8-26-24 (cis) 1,2-Dichloroethene ND 0.20 EPA 8260D 8-26-24 8-26-24 Trichloroethene ND 0.20 EPA 8260D 8-26-24 8-26-24 Trichloroethene ND 0.20 EPA 8260D 8-26-24 8-26-24 Surrogate: Percent Recovery Control Limits  Dibromofluoromethane 93 68-133 Toluene-d8 100 79-123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>                   | •                |                |               |          |          |       |
| Client ID: EW-01-082324 Laboratory ID: 08-296-06 Vinyl Chloride (SIM) ND 0.020 EPA 8260D/SIM 8-26-24 8-26-24 (trans) 1,2-Dichloroethene ND 0.20 EPA 8260D 8-26-24 8-26-24 (cis) 1,2-Dichloroethene ND 0.20 EPA 8260D 8-26-24 8-26-24 Trichloroethene ND 0.20 EPA 8260D 8-26-24 8-26-24 Tetrachloroethene 3.2 0.20 EPA 8260D 8-26-24 8-26-24 Surrogate: Percent Recovery Control Limits Dibromofluoromethane 93 68-133 Toluene-d8 100 79-123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                  |                |               |          |          |       |
| Client ID: EW-01-082324 Laboratory ID: 08-296-06 Vinyl Chloride (SIM) ND 0.020 EPA 8260D/SIM 8-26-24 8-26-24 (trans) 1,2-Dichloroethene ND 0.20 EPA 8260D 8-26-24 8-26-24 (cis) 1,2-Dichloroethene ND 0.20 EPA 8260D 8-26-24 8-26-24 Trichloroethene ND 0.20 EPA 8260D 8-26-24 8-26-24 Tetrachloroethene ND 0.20 EPA 8260D 8-26-24 8-26-24 Tetrachloroethene 3.2 0.20 EPA 8260D 8-26-24 8-26-24 Surrogate: Percent Recovery Control Limits  Dibromofluoromethane 93 68-133 Toluene-d8 100 79-123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                  |                |               |          |          |       |
| Laboratory ID:         08-296-06           Vinyl Chloride (SIM)         ND         0.020         EPA 8260D/SIM         8-26-24         8-26-24           (trans) 1,2-Dichloroethene         ND         0.20         EPA 8260D         8-26-24         8-26-24           (cis) 1,2-Dichloroethene         ND         0.20         EPA 8260D         8-26-24         8-26-24           Trichloroethene         ND         0.20         EPA 8260D         8-26-24         8-26-24           Tetrachloroethene         3.2         0.20         EPA 8260D         8-26-24         8-26-24           Surrogate:         Percent Recovery         Control Limits           Dibromofluoromethane         93         68-133           Toluene-d8         100         79-123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4-Biomondologenzene        | 700              | 70-111         |               |          |          |       |
| Vinyl Chloride (SIM)         ND         0.020         EPA 8260D/SIM         8-26-24         8-26-24           (trans) 1,2-Dichloroethene         ND         0.20         EPA 8260D         8-26-24         8-26-24           (cis) 1,2-Dichloroethene         ND         0.20         EPA 8260D         8-26-24         8-26-24           Trichloroethene         ND         0.20         EPA 8260D         8-26-24         8-26-24           Tetrachloroethene         3.2         0.20         EPA 8260D         8-26-24         8-26-24           Surrogate:         Percent Recovery         Control Limits           Dibromofluoromethane         93         68-133           Toluene-d8         100         79-123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Client ID:                 | EW-01-082324     |                |               |          |          |       |
| (trans) 1,2-Dichloroethene         ND         0.20         EPA 8260D         8-26-24         8-26-24           (cis) 1,2-Dichloroethene         ND         0.20         EPA 8260D         8-26-24         8-26-24           Trichloroethene         ND         0.20         EPA 8260D         8-26-24         8-26-24           Tetrachloroethene         3.2         0.20         EPA 8260D         8-26-24         8-26-24           Surrogate:         Percent Recovery         Control Limits           Dibromofluoromethane         93         68-133           Toluene-d8         100         79-123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Laboratory ID:             | 08-296-06        |                |               |          |          |       |
| (cis) 1,2-Dichloroethene         ND         0.20         EPA 8260D         8-26-24         8-26-24           Trichloroethene         ND         0.20         EPA 8260D         8-26-24         8-26-24           Tetrachloroethene         3.2         0.20         EPA 8260D         8-26-24         8-26-24           Surrogate:         Percent Recovery         Control Limits           Dibromofluoromethane         93         68-133           Toluene-d8         100         79-123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Vinyl Chloride (SIM)       | ND               | 0.020          | EPA 8260D/SIM | 8-26-24  | 8-26-24  |       |
| Trichloroethene         ND         0.20         EPA 8260D         8-26-24         8-26-24           Tetrachloroethene         3.2         0.20         EPA 8260D         8-26-24         8-26-24           Surrogate:         Percent Recovery         Control Limits           Dibromofluoromethane         93         68-133           Toluene-d8         100         79-123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (trans) 1,2-Dichloroethene | ND               | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Tetrachloroethene         3.2         0.20         EPA 8260D         8-26-24         8-26-24           Surrogate:         Percent Recovery         Control Limits           Dibromofluoromethane         93         68-133           Toluene-d8         100         79-123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (cis) 1,2-Dichloroethene   | ND               | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Surrogate: Percent Recovery Control Limits  Dibromofluoromethane 93 68-133  Toluene-d8 100 79-123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Trichloroethene            | ND               | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Dibromofluoromethane 93 68-133 Toluene-d8 100 79-123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tetrachloroethene          | 3.2              | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Toluene-d8 100 79-123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Surrogate:                 | Percent Recovery | Control Limits |               |          |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dibromofluoromethane       | 93               | 68-133         |               |          |          |       |
| 4-Bromofluorobenzene 98 78-117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Toluene-d8                 | 100              | 79-123         |               |          |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4-Bromofluorobenzene       | 98               | 78-117         |               |          |          |       |

### **VOLATILE ORGANICS EPA 8260D/SIM**

| J                          |                   |                |               | Date               | Date               |       |
|----------------------------|-------------------|----------------|---------------|--------------------|--------------------|-------|
| Analyte                    | Result            | PQL            | Method        | Prepared           | Analyzed           | Flags |
| Client ID:                 | RMW-04-082324     |                |               |                    |                    |       |
| Laboratory ID:             | 08-296-07         |                |               |                    |                    |       |
| Vinyl Chloride (SIM)       | ND                | 0.020          | EPA 8260D/SIM | 8-26-24            | 8-26-24            |       |
| (trans) 1,2-Dichloroethene | ND                | 0.20           | EPA 8260D     | 8-26-24            | 8-26-24            |       |
| (cis) 1,2-Dichloroethene   | 0.33              | 0.20           | EPA 8260D     | 8-26-24            | 8-26-24            |       |
| Trichloroethene            | 0.96              | 0.20           | EPA 8260D     | 8-26-24            | 8-26-24            |       |
| Tetrachloroethene          | 3.3               | 0.20           | EPA 8260D     | 8-26-24            | 8-26-24            |       |
| Surrogate:                 | Percent Recovery  | Control Limits |               |                    |                    |       |
| Dibromofluoromethane       | 91                | 68-133         |               |                    |                    |       |
| Toluene-d8                 | 98                | 79-123         |               |                    |                    |       |
| 4-Bromofluorobenzene       | 98                | 78-117         |               |                    |                    |       |
|                            |                   |                |               |                    |                    |       |
| Client ID:                 | EW-04-082324      |                |               |                    |                    |       |
| Laboratory ID:             | 08-296-08         |                |               |                    |                    |       |
| Vinyl Chloride             | 0.34              | 0.20           | EPA 8260D     | 8-26-24            | 8-26-24            |       |
| (trans) 1,2-Dichloroethene | ND                | 0.20           | EPA 8260D     | 8-26-24            | 8-26-24            |       |
| (cis) 1,2-Dichloroethene   | 1.3               | 0.20           | EPA 8260D     | 8-26-24            | 8-26-24            |       |
| Trichloroethene            | ND                | 0.20           | EPA 8260D     | 8-26-24            | 8-26-24            |       |
| Tetrachloroethene          | ND                | 0.20           | EPA 8260D     | 8-26-24            | 8-26-24            |       |
| Surrogate:                 | Percent Recovery  | Control Limits |               |                    |                    |       |
| Dibromofluoromethane       | 92                | 68-133         |               |                    |                    |       |
| Toluene-d8                 | 100               | 79-123         |               |                    |                    |       |
| 4-Bromofluorobenzene       | 100               | 78-117         |               |                    |                    |       |
| Olice A ID.                | Trin Blank 00004  |                |               |                    |                    |       |
| Client ID:                 | Trip Blank-082324 |                |               |                    |                    |       |
| Laboratory ID:             | 08-296-09         | 0.020          | EDV 6360D/61M | 9 26 24            | 0.26.24            |       |
| Vinyl Chloride (SIM)       | ND<br>ND          | 0.020<br>0.20  | EPA 8260D/SIM | 8-26-24<br>8-26-24 | 8-26-24<br>8-26-24 |       |
| (trans) 1,2-Dichloroethene | ND<br>ND          | 0.20           | EPA 8260D     |                    |                    |       |
| (cis) 1,2-Dichloroethene   |                   |                | EPA 8260D     | 8-26-24            | 8-26-24            |       |
| Trichloroethene            | ND<br>ND          | 0.20           | EPA 8260D     | 8-26-24            | 8-26-24            |       |
| Tetrachloroethene          | ND                | 0.20           | EPA 8260D     | 8-26-24            | 8-26-24            |       |
| Surrogate:                 | Percent Recovery  | Control Limits |               |                    |                    |       |
| Dibromofluoromethane       | 90                | 68-133         |               |                    |                    |       |
| Toluene-d8                 | 99                | 79-123         |               |                    |                    |       |
| 4-Bromofluorobenzene       | 98                | 78-117         |               |                    |                    |       |

### VOLATILE ORGANICS EPA 8260D/SIM QUALITY CONTROL

|                            |                  |                |               | Date     | Date     |       |
|----------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                    | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| METHOD BLANK               |                  |                |               |          |          |       |
| Laboratory ID:             | MB0826W1         |                |               |          |          |       |
| Vinyl Chloride (SIM)       | ND               | 0.020          | EPA 8260D/SIM | 8-26-24  | 8-26-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Trichloroethene            | ND               | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Tetrachloroethene          | ND               | 0.20           | EPA 8260D     | 8-26-24  | 8-26-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |               |          |          |       |
| Dibromofluoromethane       | 90               | 68-133         |               |          |          |       |
| Toluene-d8                 | 99               | 79-123         |               |          |          |       |
| 4-Bromofluorobenzene       | 99               | 78-117         |               |          |          |       |

|                            |       |       |       |       | Source | Pei | rcent | Recovery |     | RPD   |       |
|----------------------------|-------|-------|-------|-------|--------|-----|-------|----------|-----|-------|-------|
| Analyte                    | Res   | sult  | Spike | Level | Result | Rec | overy | Limits   | RPD | Limit | Flags |
| MATRIX SPIKES              |       |       |       |       |        |     |       |          |     |       |       |
| Laboratory ID:             | 08-28 | 39-07 |       |       |        |     |       |          |     |       |       |
|                            | MS    | MSD   | MS    | MSD   |        | MS  | MSD   |          |     |       |       |
| Vinyl Chloride             | 9.99  | 10.2  | 10.0  | 10.0  | ND     | 100 | 102   | 62-121   | 2   | 15    |       |
| (trans) 1,2-Dichloroethene | 9.72  | 9.87  | 10.0  | 10.0  | ND     | 97  | 99    | 79-120   | 2   | 16    |       |
| (cis) 1,2-Dichloroethene   | 10.6  | 10.3  | 10.0  | 10.0  | 0.428  | 102 | 99    | 81-128   | 3   | 16    |       |
| Trichloroethene            | 12.2  | 11.7  | 10.0  | 10.0  | 0.548  | 117 | 112   | 80-130   | 4   | 12    |       |
| Tetrachloroethene          | 14.9  | 14.3  | 10.0  | 10.0  | 3.47   | 114 | 108   | 84-126   | 4   | 19    |       |
| Surrogate:                 |       |       |       |       |        |     |       |          |     |       |       |
| Dibromofluoromethane       |       |       |       |       |        | 87  | 88    | 68-133   |     |       |       |
| Toluene-d8                 |       |       |       |       |        | 99  | 98    | 79-123   |     |       |       |
| 4-Bromofluorobenzene       |       |       |       |       |        | 101 | 100   | 78-117   |     |       |       |



### **Data Qualifiers and Abbreviations**

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference





# **Chain of Custody**

| Environmental Inc.                                                              |                                         | o cocody                  | Page of |
|---------------------------------------------------------------------------------|-----------------------------------------|---------------------------|---------|
| Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 | Turnaround Request<br>(in working days) | Laboratory Number: 08-296 |         |
| Phone: (425) 883-3881 • www.onsite-env.com                                      | (Check Opp)                             |                           |         |
| pany: Floyd 15 mider                                                            | Same Day 1 Day                          | SIM                       |         |
| ct Number:                                                                      |                                         |                           |         |
| 18565                                                                           | 2 Days 3 Days                           | 81<br>81<br>8151          |         |
| C+ Namo:                                                                        |                                         | )                         |         |

| Re                                  | Re       | Re           | Re       | Re                                               | Rec                | Rel                     |                               | 9                 | Q            |               | 6            | W              | 2              | w            | 12           | _             | Lab ID                  | Oall I             |                 | Po Po             | , jo    | Com                     |                                            |
|-------------------------------------|----------|--------------|----------|--------------------------------------------------|--------------------|-------------------------|-------------------------------|-------------------|--------------|---------------|--------------|----------------|----------------|--------------|--------------|---------------|-------------------------|--------------------|-----------------|-------------------|---------|-------------------------|--------------------------------------------|
| Reviewed/Date                       | Received | Relinquished | Received | Relinquished                                     | Received that Full | Relinquished Hall & Man | Signature                     | Trip Blank-082324 | EW-04-082324 | RMW-04-082324 | EM-01-082324 | RMW-08-082324  | RMW-10D-082324 | EM-02-082324 | FW-06-082328 | FW-05-082324  | D Sample Identification | Danielle Czellator | Kristm Anderson | COB-RIVERSIDE     | Tosk S  | Company: Floyd 15 nider | Phone: (425) 883-3881 • www.onsite-env.com |
|                                     |          |              |          |                                                  |                    | 1                       | 0                             | 8/23/24           | <u></u>      |               |              |                |                |              |              | 05:20 408:218 | Date<br>Sampled         | [                  |                 | X Stan            | 2 Days  | Same Day                |                                            |
| Reviewed/Date                       |          |              |          |                                                  | 350                | Fleyd S,                | Company                       | _                 | 11:45 6      | 11:30 G       | 10:45 G      | 10:35 6        | 10:00 G        | 09:45 G      | 08:55 6      |               | Time<br>Sampled N       | (other)            |                 | Standard (7 Days) |         |                         | (Check One)                                |
|                                     |          |              |          |                                                  | 1,4.               | Smider                  |                               | W 2               | 6W 3         | GW 3          | 6W 3         | 6W 3           | GW 3           | GW 3         | GW 3         | GW 3          | Matrix Numb             | er of C            | ontain          | ers               | 3 Days  | 1 Day                   |                                            |
|                                     |          |              |          |                                                  |                    | ,                       |                               |                   |              |               | nimate.      | ACCRECATION OF |                | keme         | AUTO DE LA   |               |                         | H-HCII             |                 |                   |         |                         | T                                          |
|                                     |          |              |          |                                                  | 8                  | 8                       | Date                          |                   |              |               |              |                |                |              |              |               | NWTF                    | H-Gx/E             | BTEX (8         | 021 8             | 260[])  |                         |                                            |
|                                     |          |              |          |                                                  | 8/23/24            | 3/23/24                 |                               |                   |              |               |              |                |                |              |              |               | NWTF                    | 3012-4:200         |                 |                   |         |                         |                                            |
|                                     |          |              |          |                                                  | J.                 |                         |                               |                   |              |               |              |                |                |              | - T          |               |                         | H-Dx (             |                 | an-up []          | 6       |                         | -11.                                       |
|                                     |          |              |          | 1-97                                             | 1.00               | 12:50                   | Time                          |                   | $\times$     | _             |              | $\times$       | ×              | ×            | ×            | ×             | Halog                   | enated             | Volatile        |                   |         |                         |                                            |
| 0                                   | -        | $\perp$      |          | 0.0                                              | /1                 | 1                       |                               |                   |              |               |              |                |                |              |              |               |                         |                    | 8270/S          | ers Only)         |         |                         | 4:                                         |
| Chromatograms with final report     | Data P   |              |          | Serve C                                          | 4                  | 200                     | Comments/Special Instructions |                   |              |               |              |                |                |              |              |               | (with le                | ow-leve            | PAHs)           |                   |         |                         | -                                          |
| atogra                              | Package: |              |          | 613                                              | ×.                 | 1                       | ents/S                        |                   |              |               |              |                |                |              |              |               | PCBs                    | 8082               |                 |                   |         |                         | -                                          |
| w sur                               | 2000     |              |          | 2                                                | Vmyl Chlorad       | F CE                    | pecia                         |                   |              |               |              |                |                |              |              |               | Organ                   | ochlorir           | ne Pest         | cides 80          | 81      |                         |                                            |
| ith fin                             | Standard |              |          | 1108                                             | Chh                |                         | Inst                          |                   |              |               |              |                |                |              |              |               | Organ                   | phosp              | horus F         | esticide          | s 8270/ | SIM                     | U                                          |
| al rep                              | □        |              |          | なな                                               | DO                 | 175                     | uction                        |                   |              |               |              |                |                |              |              |               | Chlori                  | nated A            | cid Her         | bicides           | 3151    |                         |                                            |
| or                                  | Level    |              |          | 3: 1:                                            | 5                  | 63                      | SI                            |                   |              |               |              |                |                |              |              |               | Total F                 | CRA M              | letals          |                   |         |                         |                                            |
|                                     | =        |              |          | bdi                                              |                    |                         |                               |                   |              |               |              |                |                |              |              |               |                         | ITCA N             | letals          |                   |         |                         |                                            |
| tronic                              |          |              |          | 270                                              |                    | Ö                       |                               |                   |              |               |              |                |                |              |              |               | TCLP                    |                    |                 |                   |         |                         |                                            |
| Data                                | Level    |              |          | 2                                                |                    | 6                       |                               |                   |              |               |              |                |                |              |              |               | HEM (                   | oil and            | grease)         | 1664              |         |                         |                                            |
| Delive                              | <<br>_   |              | 17       | leyd                                             |                    | nert                    |                               |                   |              |               |              |                |                |              |              |               |                         |                    |                 |                   |         |                         |                                            |
| Electronic Data Deliverables (EDDs) |          |              |          | Send lab results to: labolate offleydsnider, com |                    | 2-DCE, trans,-1,2-DGE   |                               |                   |              |               |              |                | - 5            |              |              |               |                         |                    | Ψ.              | 14                |         |                         |                                            |
| (EDDs                               |          |              |          | let,                                             |                    | 2.2                     |                               |                   |              |               |              | . 1. 1         | 1 .            | Er.          |              |               |                         | -                  | £               |                   | ;       |                         | $\parallel$                                |
|                                     |          |              |          | nes                                              |                    | Ř                       |                               |                   |              |               |              | 4-, F          |                |              |              |               | % Mois                  | sture              |                 |                   |         |                         |                                            |



14648 NE 95<sup>th</sup> Street, Redmond, WA 98052 • (425) 883-3881

October 14, 2024

Kristin Anderson Floyd & Snider 601 Union Street, Suite 600 Seattle, WA 98101

Re: Analytical Data for Project COB-Riverside; Task 5

Laboratory Reference No. 2409-059

### Dear Kristin:

Enclosed are the analytical results and associated quality control data for samples submitted on September 6, 2024.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

**Enclosures** 



Date of Report: October 14, 2024 Samples Submitted: September 6, 2024

Laboratory Reference: 2409-059 Project: COB-Riverside; Task 5

### **Case Narrative**

Samples were collected on September 3, 4, 5, and 6, 2024 and received by the laboratory on September 6, 2024. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below. However the soil results for the QA/QC samples are reported on a wet-weight basis.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

### **VOLATILE ORGANICS EPA 8260D**

|                            |                  |                |           | Date     | Date     |       |
|----------------------------|------------------|----------------|-----------|----------|----------|-------|
| Analyte                    | Result           | PQL            | Method    | Prepared | Analyzed | Flags |
| Client ID:                 | SB-08-19-22      |                |           |          |          |       |
| Laboratory ID:             | 09-059-02        |                |           |          |          |       |
| Vinyl Chloride             | ND               | 0.00098        | EPA 8260D | 9-9-24   | 9-9-24   |       |
| 1,1-Dichloroethene         | ND               | 0.00098        | EPA 8260D | 9-9-24   | 9-9-24   |       |
| (trans) 1,2-Dichloroethene | ND               | 0.00098        | EPA 8260D | 9-9-24   | 9-9-24   |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.00098        | EPA 8260D | 9-9-24   | 9-9-24   |       |
| Trichloroethene            | 0.0016           | 0.00098        | EPA 8260D | 9-9-24   | 9-9-24   |       |
| Tetrachloroethene          | 0.025            | 0.00098        | EPA 8260D | 9-9-24   | 9-9-24   |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 115              | 69-124         |           |          |          |       |
| Toluene-d8                 | 103              | 80-118         |           |          |          |       |
| 4-Bromofluorobenzene       | 99               | 75-123         |           |          |          |       |
| Client ID:                 | SB-06-14.5-16    |                |           |          |          |       |
| Laboratory ID:             | 09-059-07        |                |           |          |          |       |
| Vinyl Chloride             | ND               | 0.00089        | EPA 8260D | 9-9-24   | 9-9-24   |       |
| 1,1-Dichloroethene         | ND               | 0.00089        | EPA 8260D | 9-9-24   | 9-9-24   |       |
| (trans) 1,2-Dichloroethene | ND               | 0.00089        | EPA 8260D | 9-9-24   | 9-9-24   |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.00089        | EPA 8260D | 9-9-24   | 9-9-24   |       |
| Trichloroethene            | 0.0015           | 0.00089        | EPA 8260D | 9-9-24   | 9-9-24   |       |
| Tetrachloroethene          | 0.0031           | 0.00089        | EPA 8260D | 9-9-24   | 9-9-24   |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 112              | 69-124         |           |          |          |       |
| Toluene-d8                 | 102              | 80-118         |           |          |          |       |
| 4-Bromofluorobenzene       | 99               | 75-123         |           |          |          |       |
| Client ID:                 | SB-06-16-18      |                |           |          |          |       |
| Laboratory ID:             | 09-059-08        |                |           |          |          |       |
| Vinyl Chloride             | ND               | 0.0010         | EPA 8260D | 9-9-24   | 9-9-24   |       |
| 1,1-Dichloroethene         | ND               | 0.0010         | EPA 8260D | 9-9-24   | 9-9-24   |       |
| (trans) 1,2-Dichloroethene | ND               | 0.0010         | EPA 8260D | 9-9-24   | 9-9-24   |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.0010         | EPA 8260D | 9-9-24   | 9-9-24   |       |
| Trichloroethene            | ND               | 0.0010         | EPA 8260D | 9-9-24   | 9-9-24   |       |
| Tetrachloroethene          | 0.0032           | 0.0010         | EPA 8260D | 9-9-24   | 9-9-24   |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 113              | 69-124         |           |          |          |       |
| Toluene-d8                 | 102              | 80-118         |           |          |          |       |
| 4-Bromofluorobenzene       | 97               | 75-123         |           |          |          |       |
|                            |                  |                |           |          |          |       |

### **VOLATILE ORGANICS EPA 8260D**

|                            |                  |                |           | Date             | Date     |       |
|----------------------------|------------------|----------------|-----------|------------------|----------|-------|
| Analyte                    | Result           | PQL            | Method    | Prepared         | Analyzed | Flags |
| Client ID:                 | SB-06-18-20      |                |           |                  |          |       |
| Laboratory ID:             | 09-059-09        |                |           |                  |          |       |
| Vinyl Chloride             | ND               | 0.0012         | EPA 8260D | 9-9-24           | 9-9-24   |       |
| 1,1-Dichloroethene         | ND               | 0.0012         | EPA 8260D | 9-9-24           | 9-9-24   |       |
| (trans) 1,2-Dichloroethene | ND               | 0.0012         | EPA 8260D | 9-9-24           | 9-9-24   |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.0012         | EPA 8260D | 9-9-24           | 9-9-24   |       |
| Trichloroethene            | ND               | 0.0012         | EPA 8260D | 9-9-24           | 9-9-24   |       |
| Tetrachloroethene          | 0.0060           | 0.0012         | EPA 8260D | 9-9-24           | 9-9-24   |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |                  |          |       |
| Dibromofluoromethane       | 112              | 69-124         |           |                  |          |       |
| Toluene-d8                 | 105              | 80-118         |           |                  |          |       |
| 4-Bromofluorobenzene       | 100              | 75-123         |           |                  |          |       |
| Client ID:                 | SB-06-20-22      |                |           |                  |          |       |
| Laboratory ID:             | 09-059-10        |                |           |                  |          |       |
| Vinyl Chloride             | ND               | 0.0011         | EPA 8260D | 9-9-24           | 9-9-24   |       |
| 1,1-Dichloroethene         | ND               | 0.0011         | EPA 8260D | 9-9-24           | 9-9-24   |       |
| (trans) 1,2-Dichloroethene | ND               | 0.0011         | EPA 8260D | 9-9-24           | 9-9-24   |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.0011         | EPA 8260D | 9-9-24           | 9-9-24   |       |
| Trichloroethene            | ND               | 0.0011         | EPA 8260D | 9-9-24           | 9-9-24   |       |
| Tetrachloroethene          | 0.012            | 0.0011         | EPA 8260D | 9-9-24           | 9-9-24   |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |                  |          |       |
| Dibromofluoromethane       | 110              | 69-124         |           |                  |          |       |
| Toluene-d8                 | 100              | 80-118         |           |                  |          |       |
| 4-Bromofluorobenzene       | 96               | 75-123         |           |                  |          |       |
| Client ID:                 | SB-06-22-24      |                |           |                  |          |       |
| Laboratory ID:             | 09-059-11        |                |           |                  |          |       |
|                            |                  | 0.0012         | EDA 0260D | 0.0.24           | 0.0.24   |       |
| Vinyl Chloride             | ND<br>ND         | 0.0012         | EPA 8260D | 9-9-24<br>9-9-24 | 9-9-24   |       |
| 1,1-Dichloroethene         | ND<br>ND         | 0.0012         | EPA 8260D |                  | 9-9-24   |       |
| (trans) 1,2-Dichloroethene | ND<br>ND         |                | EPA 8260D | 9-9-24           | 9-9-24   |       |
| (cis) 1,2-Dichloroethene   | ND<br>ND         | 0.0012         | EPA 8260D | 9-9-24           | 9-9-24   |       |
| Trichloroethene            | ND               | 0.0012         | EPA 8260D | 9-9-24           | 9-9-24   |       |
| Tetrachloroethene          | 0.041            | 0.0012         | EPA 8260D | 9-9-24           | 9-9-24   |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |                  |          |       |
| Dibromofluoromethane       | 109              | 69-124         |           |                  |          |       |
| Toluene-d8                 | 101              | 80-118         |           |                  |          |       |
| 4-Bromofluorobenzene       | 97               | 75-123         |           |                  |          |       |

### **VOLATILE ORGANICS EPA 8260D**

| Offics. Hig/kg             |                  |                |            | Date     | Date           |       |
|----------------------------|------------------|----------------|------------|----------|----------------|-------|
| Analyte                    | Result           | PQL            | Method     | Prepared | Analyzed       | Flags |
| Client ID:                 | SB-06-24-26      |                |            |          |                |       |
| Laboratory ID:             | 09-059-12        |                |            |          |                |       |
| Vinyl Chloride             | ND               | 0.0011         | EPA 8260D  | 9-9-24   | 9-9-24         |       |
| 1,1-Dichloroethene         | ND               | 0.0011         | EPA 8260D  | 9-9-24   | 9-9-24         |       |
| (trans) 1,2-Dichloroethene | ND               | 0.0011         | EPA 8260D  | 9-9-24   | 9-9-24         |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.0011         | EPA 8260D  | 9-9-24   | 9-9-24         |       |
| Trichloroethene            | 0.0026           | 0.0011         | EPA 8260D  | 9-9-24   | 9-9-24         |       |
| Tetrachloroethene          | 0.14             | 0.0011         | EPA 8260D  | 9-9-24   | 9-9-24         |       |
| Surrogate:                 | Percent Recovery | Control Limits |            |          |                |       |
| Dibromofluoromethane       | 109              | 69-124         |            |          |                |       |
| Toluene-d8                 | 102              | 80-118         |            |          |                |       |
| 4-Bromofluorobenzene       | 99               | 75-123         |            |          |                |       |
|                            |                  |                |            |          |                |       |
| Client ID:                 | SB-06-26-28      |                |            |          |                |       |
| Laboratory ID:             | 09-059-13        |                |            |          |                |       |
| Vinyl Chloride             | ND               | 0.0011         | EPA 8260D  | 9-9-24   | 9-9-24         |       |
| 1,1-Dichloroethene         | ND               | 0.0011         | EPA 8260D  | 9-9-24   | 9-9-24         |       |
| (trans) 1,2-Dichloroethene | ND               | 0.0011         | EPA 8260D  | 9-9-24   | 9-9-24         |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.0011         | EPA 8260D  | 9-9-24   | 9-9-24         |       |
| Trichloroethene            | ND               | 0.0011         | EPA 8260D  | 9-9-24   | 9-9-24         |       |
| Tetrachloroethene          | ND               | 0.0011         | EPA 8260D  | 9-9-24   | 9-9-24         |       |
| Surrogate:                 | Percent Recovery | Control Limits | LI A 0200D | 3-3-2-   | 3-3-2-         |       |
| Dibromofluoromethane       | 106              | 69-124         |            |          |                |       |
| Toluene-d8                 | 100              | 80-118         |            |          |                |       |
| 4-Bromofluorobenzene       | 97               | 75-123         |            |          |                |       |
| 4-Bromonuorobenzene        | 97               | 70-123         |            |          |                |       |
| Client ID:                 | SB-06-28-30      |                |            |          |                |       |
| Laboratory ID:             | 09-059-14        |                |            |          |                |       |
| Vinyl Chloride             | ND               | 0.0011         | EPA 8260D  | 9-9-24   | 9-9-24         |       |
| 1,1-Dichloroethene         | ND               | 0.0011         | EPA 8260D  | 9-9-24   | 9-9-24         |       |
| (trans) 1,2-Dichloroethene | ND               | 0.0011         | EPA 8260D  | 9-9-24   | 9-9-24         |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.0011         | EPA 8260D  | 9-9-24   | 9-9-24         |       |
| Trichloroethene            | ND               | 0.0011         | EPA 8260D  | 9-9-24   | 9-9-24         |       |
| Tetrachloroethene          | ND               | 0.0011         | EPA 8260D  | 9-9-24   | 9-9-24         |       |
| Surrogate:                 | Percent Recovery | Control Limits | <u> </u>   |          | <del>-</del> - |       |
| Dibromofluoromethane       | 107              | 69-124         |            |          |                |       |
| Toluene-d8                 | 103              | 80-118         |            |          |                |       |
| 4-Bromofluorobenzene       | 99               | 75-123         |            |          |                |       |
| . 2.0                      | 00               | .0 120         |            |          |                |       |

### **VOLATILE ORGANICS EPA 8260D**

|                               |                  |                |                        | Date                         | Date                         |       |
|-------------------------------|------------------|----------------|------------------------|------------------------------|------------------------------|-------|
| Analyte                       | Result           | PQL            | Method                 | Prepared                     | Analyzed                     | Flags |
| Client ID:                    | SB-06-30-32      |                |                        |                              |                              |       |
| Laboratory ID:                | 09-059-15        |                |                        |                              |                              |       |
| Vinyl Chloride                | ND               | 0.00084        | EPA 8260D              | 9-9-24                       | 9-9-24                       |       |
| 1,1-Dichloroethene            | ND               | 0.00084        | EPA 8260D              | 9-9-24                       | 9-9-24                       |       |
| (trans) 1,2-Dichloroethene    | ND               | 0.00084        | EPA 8260D              | 9-9-24                       | 9-9-24                       |       |
| (cis) 1,2-Dichloroethene      | ND               | 0.00084        | EPA 8260D              | 9-9-24                       | 9-9-24                       |       |
| Trichloroethene               | ND               | 0.00084        | EPA 8260D              | 9-9-24                       | 9-9-24                       |       |
| Tetrachloroethene             | ND               | 0.00084        | EPA 8260D              | 9-9-24                       | 9-9-24                       |       |
| Surrogate:                    | Percent Recovery | Control Limits |                        |                              |                              |       |
| Dibromofluoromethane          | 107              | 69-124         |                        |                              |                              |       |
| Toluene-d8                    | 105              | 80-118         |                        |                              |                              |       |
| 4-Bromofluorobenzene          | 100              | 75-123         |                        |                              |                              |       |
| Client ID:                    | SB-06-30-32D     |                |                        |                              |                              |       |
| Laboratory ID:                | 09-059-16        |                |                        |                              |                              |       |
| Vinyl Chloride                | ND               | 0.00072        | EPA 8260D              | 9-9-24                       | 9-9-24                       |       |
| 1,1-Dichloroethene            | ND               | 0.00072        | EPA 8260D              | 9-9-24                       | 9-9-24                       |       |
| (trans) 1,2-Dichloroethene    | ND               | 0.00072        | EPA 8260D              | 9-9-24                       | 9-9-24                       |       |
| (cis) 1,2-Dichloroethene      | ND               | 0.00072        | EPA 8260D              | 9-9-24                       | 9-9-24                       |       |
| Trichloroethene               | ND               | 0.00072        | EPA 8260D              | 9-9-24                       | 9-9-24                       |       |
| Tetrachloroethene             | ND               | 0.00072        | EPA 8260D              | 9-9-24                       | 9-9-24                       |       |
| Surrogate:                    | Percent Recovery | Control Limits |                        |                              |                              |       |
| Dibromofluoromethane          | 104              | 69-124         |                        |                              |                              |       |
| Toluene-d8                    | 101              | 80-118         |                        |                              |                              |       |
| 4-Bromofluorobenzene          | 94               | 75-123         |                        |                              |                              |       |
| Client ID:                    | SB-06-32-34      |                |                        |                              |                              |       |
|                               | 09-059-17        |                |                        |                              |                              |       |
| Laboratory ID: Vinyl Chloride | ND               | 0.0010         | EPA 8260D              | 9-9-24                       | 9-9-24                       |       |
| 1,1-Dichloroethene            | ND<br>ND         | 0.0010         | EPA 8260D              | 9-9-2 <del>4</del><br>9-9-24 | 9-9-2 <del>4</del><br>9-9-24 |       |
| (trans) 1,2-Dichloroethene    | ND<br>ND         | 0.0010         | EPA 8260D<br>EPA 8260D | 9-9-24<br>9-9-24             | 9-9-2 <del>4</del><br>9-9-24 |       |
| (cis) 1,2-Dichloroethene      | ND<br>ND         | 0.0010         | EPA 8260D<br>EPA 8260D | 9-9-24<br>9-9-24             | 9-9-2 <del>4</del><br>9-9-24 |       |
| Trichloroethene               | ND<br>ND         | 0.0010         | EPA 8260D<br>EPA 8260D | 9-9-24<br>9-9-24             | 9-9-2 <del>4</del><br>9-9-24 |       |
|                               | ND<br>ND         | 0.0010         |                        | 9-9-24<br>9-9-24             | 9-9-24<br>9-9-24             |       |
| Tetrachloroethene             |                  |                | EPA 8260D              | ਤ-ਤ- <del>24</del>           | <b>ઝ-ઝ-∠</b> 4               |       |
| Surrogate:                    | Percent Recovery | Control Limits |                        |                              |                              |       |
| Dibromofluoromethane          | 106              | 69-124         |                        |                              |                              |       |
| Toluene-d8                    | 103              | 80-118         |                        |                              |                              |       |
| 4-Bromofluorobenzene          | 98               | 75-123         |                        |                              |                              |       |

### **VOLATILE ORGANICS EPA 8260D**

|                            |                  |                |           | Date     | Date     |       |
|----------------------------|------------------|----------------|-----------|----------|----------|-------|
| Analyte                    | Result           | PQL            | Method    | Prepared | Analyzed | Flags |
| Client ID:                 | SB-06-34-36      |                |           |          |          |       |
| Laboratory ID:             | 09-059-18        |                |           |          |          |       |
| Vinyl Chloride             | ND               | 0.0010         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| 1,1-Dichloroethene         | ND               | 0.0010         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.0010         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.0010         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Trichloroethene            | ND               | 0.0010         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Tetrachloroethene          | ND               | 0.0010         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 107              | 69-124         |           |          |          |       |
| Toluene-d8                 | 104              | 80-118         |           |          |          |       |
| 4-Bromofluorobenzene       | 99               | 75-123         |           |          |          |       |
| Client ID:                 | SB-06-36-38      |                |           |          |          |       |
| Laboratory ID:             | 09-059-19        |                |           |          |          |       |
| Vinyl Chloride             | ND               | 0.0011         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| 1,1-Dichloroethene         | ND               | 0.0011         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.0011         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.0011         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Trichloroethene            | ND               | 0.0011         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Tetrachloroethene          | ND               | 0.0011         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 107              | 69-124         |           |          |          |       |
| Toluene-d8                 | 103              | 80-118         |           |          |          |       |
| 4-Bromofluorobenzene       | 97               | 75-123         |           |          |          |       |
| Client ID:                 | SB-06-38-40      |                |           |          |          |       |
| Laboratory ID:             | 09-059-20        |                |           |          |          |       |
| Vinyl Chloride             | ND               | 0.0014         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| 1,1-Dichloroethene         | ND               | 0.0014         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.0014         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.0014         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Trichloroethene            | ND               | 0.0014         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Tetrachloroethene          | ND               | 0.0014         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |           | -        | •        |       |
| Dibromofluoromethane       | 108              | 69-124         |           |          |          |       |
| Toluene-d8                 | 103              | 80-118         |           |          |          |       |
| 4-Bromofluorobenzene       | 98               | 75-123         |           |          |          |       |
|                            |                  |                |           |          |          |       |

### **VOLATILE ORGANICS EPA 8260D**

| Onito. Hig/kg              |                  |                |           | Date     | Date     |       |
|----------------------------|------------------|----------------|-----------|----------|----------|-------|
| Analyte                    | Result           | PQL            | Method    | Prepared | Analyzed | Flags |
| Client ID:                 | SB-05-16-19      |                |           | •        |          |       |
| Laboratory ID:             | 09-059-22        |                |           |          |          |       |
| Vinyl Chloride             | ND               | 0.0010         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| 1,1-Dichloroethene         | ND               | 0.0010         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.0010         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.0010         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Trichloroethene            | 0.0012           | 0.0010         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Tetrachloroethene          | 0.0027           | 0.0010         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 110              | 69-124         |           |          |          |       |
| Toluene-d8                 | 105              | 80-118         |           |          |          |       |
| 4-Bromofluorobenzene       | 99               | 75-123         |           |          |          |       |
|                            |                  |                |           |          |          |       |
|                            |                  |                |           |          |          |       |
| Client ID:                 | SB-05-19-22      |                |           |          |          |       |
| Laboratory ID:             | 09-059-23        |                |           |          |          |       |
| Vinyl Chloride             | ND               | 0.0010         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| 1,1-Dichloroethene         | ND               | 0.0010         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.0010         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.0010         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Trichloroethene            | ND               | 0.0010         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Tetrachloroethene          | 0.0021           | 0.0010         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 108              | 69-124         |           |          |          |       |
| Toluene-d8                 | 102              | 80-118         |           |          |          |       |
| 4-Bromofluorobenzene       | 97               | 75-123         |           |          |          |       |
|                            |                  |                |           |          |          |       |
|                            |                  |                |           |          |          |       |
| Client ID:                 | SB-05-25-28      |                |           |          |          |       |
| Laboratory ID:             | 09-059-25        |                |           |          |          |       |
| Vinyl Chloride             | ND               | 0.0011         | EPA 8260D | 9-11-24  | 9-11-24  |       |
| 1,1-Dichloroethene         | ND               | 0.0011         | EPA 8260D | 9-11-24  | 9-11-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.0011         | EPA 8260D | 9-11-24  | 9-11-24  |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.0011         | EPA 8260D | 9-11-24  | 9-11-24  |       |
| Trichloroethene            | ND               | 0.0011         | EPA 8260D | 9-11-24  | 9-11-24  |       |
| Tetrachloroethene          | 0.0068           | 0.0011         | EPA 8260D | 9-11-24  | 9-11-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 108              | 69-124         |           |          |          |       |
| Toluene-d8                 | 101              | 80-118         |           |          |          |       |
| 4-Bromofluorobenzene       | 98               | 75-123         |           |          |          |       |

### **VOLATILE ORGANICS EPA 8260D**

| Offits. Hig/kg             |                  |                |           | Date     | Date     |       |
|----------------------------|------------------|----------------|-----------|----------|----------|-------|
| Analyte                    | Result           | PQL            | Method    | Prepared | Analyzed | Flags |
| Client ID:                 | SB-03-16-19      |                |           | •        |          |       |
| Laboratory ID:             | 09-059-27        |                |           |          |          |       |
| Vinyl Chloride             | ND               | 0.0022         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| 1,1-Dichloroethene         | ND               | 0.0022         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.0022         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.0022         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Trichloroethene            | ND               | 0.0022         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Tetrachloroethene          | ND               | 0.0022         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 111              | 69-124         |           |          |          |       |
| Toluene-d8                 | 104              | 80-118         |           |          |          |       |
| 4-Bromofluorobenzene       | 97               | 75-123         |           |          |          |       |
|                            |                  |                |           |          |          |       |
|                            |                  |                |           |          |          |       |
| Client ID:                 | SB-03-19-22      |                |           |          |          |       |
| Laboratory ID:             | 09-059-28        |                |           |          |          |       |
| Vinyl Chloride             | ND               | 0.0011         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| 1,1-Dichloroethene         | ND               | 0.0011         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.0011         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.0011         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Trichloroethene            | 0.0023           | 0.0011         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Tetrachloroethene          | 0.0063           | 0.0011         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 109              | 69-124         |           |          |          |       |
| Toluene-d8                 | 101              | 80-118         |           |          |          |       |
| 4-Bromofluorobenzene       | 97               | 75-123         |           |          |          |       |
|                            |                  |                |           |          |          |       |
|                            |                  |                |           |          |          |       |
| Client ID:                 | SB-04-16-19      |                |           |          |          |       |
| Laboratory ID:             | 09-059-32        |                |           |          |          |       |
| Vinyl Chloride             | ND               | 0.0012         | EPA 8260D | 9-11-24  | 9-11-24  |       |
| 1,1-Dichloroethene         | ND               | 0.0012         | EPA 8260D | 9-11-24  | 9-11-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.0012         | EPA 8260D | 9-11-24  | 9-11-24  |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.0012         | EPA 8260D | 9-11-24  | 9-11-24  |       |
| Trichloroethene            | ND               | 0.0012         | EPA 8260D | 9-11-24  | 9-11-24  |       |
| Tetrachloroethene          | ND               | 0.0012         | EPA 8260D | 9-11-24  | 9-11-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 110              | 69-124         |           |          |          |       |
| Toluene-d8                 | 105              | 80-118         |           |          |          |       |
| 4-Bromofluorobenzene       | 99               | 75-123         |           |          |          |       |

### **VOLATILE ORGANICS EPA 8260D**

| Analyto                    | Result           | PQL            | Method      | Date<br>Propared | Date<br>Analyzod     | Elogo |
|----------------------------|------------------|----------------|-------------|------------------|----------------------|-------|
| Analyte<br>Client ID:      | SB-04-19-22      | PQL            | wethod      | Prepared         | Analyzed             | Flags |
|                            |                  |                |             |                  |                      |       |
| Laboratory ID:             | 09-059-33        | 0.0045         | EDA 0200D   | 0.40.04          | 0.40.04              |       |
| Vinyl Chloride             | ND               | 0.0015         | EPA 8260D   | 9-10-24          | 9-10-24              |       |
| 1,1-Dichloroethene         | ND               | 0.0015         | EPA 8260D   | 9-10-24          | 9-10-24              |       |
| (trans) 1,2-Dichloroethene | ND               | 0.0015         | EPA 8260D   | 9-10-24          | 9-10-24              |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.0015         | EPA 8260D   | 9-10-24          | 9-10-24              |       |
| Trichloroethene            | 0.0027           | 0.0015         | EPA 8260D   | 9-10-24          | 9-10-24              |       |
| Tetrachloroethene          | ND               | 0.0015         | EPA 8260D   | 9-10-24          | 9-10-24              |       |
| Surrogate:                 | Percent Recovery | Control Limits |             |                  |                      |       |
| Dibromofluoromethane       | 108              | 69-124         |             |                  |                      |       |
| Toluene-d8                 | 103              | 80-118         |             |                  |                      |       |
| 4-Bromofluorobenzene       | 99               | 75-123         |             |                  |                      |       |
|                            |                  |                |             |                  |                      |       |
| Client ID:                 | SB-11-21-23      |                |             |                  |                      |       |
| Laboratory ID:             | 09-059-36        |                |             |                  |                      |       |
| Vinyl Chloride             | ND               | 0.0011         | EPA 8260D   | 9-10-24          | 9-10-24              |       |
| 1,1-Dichloroethene         | ND               | 0.0011         | EPA 8260D   | 9-10-24          | 9-10-24              |       |
| (trans) 1,2-Dichloroethene | ND               | 0.0011         | EPA 8260D   | 9-10-24          | 9-10-24              |       |
| (cis) 1,2-Dichloroethene   | 0.0050           | 0.0011         | EPA 8260D   | 9-10-24          | 9-10-24              |       |
| Trichloroethene            | 0.0017           | 0.0011         | EPA 8260D   | 9-10-24          | 9-10-24              |       |
| Tetrachloroethene          | 0.0068           | 0.0011         | EPA 8260D   | 9-10-24          | 9-10-24              |       |
| Surrogate:                 | Percent Recovery | Control Limits |             |                  |                      |       |
| Dibromofluoromethane       | 107              | 69-124         |             |                  |                      |       |
| Toluene-d8                 | 101              | 80-118         |             |                  |                      |       |
| 4-Bromofluorobenzene       | 97               | 75-123         |             |                  |                      |       |
|                            |                  |                |             |                  |                      |       |
| Client ID:                 | SB-09-16-19      |                |             |                  |                      |       |
| Laboratory ID:             | 09-059-49        |                |             |                  |                      |       |
| Vinyl Chloride             | ND               | 0.0032         | EPA 8260D   | 9-10-24          | 9-10-24              |       |
| 1,1-Dichloroethene         | ND               | 0.0032         | EPA 8260D   | 9-10-24          | 9-10-24              |       |
| (trans) 1,2-Dichloroethene | ND               | 0.0032         | EPA 8260D   | 9-10-24          | 9-10-24              |       |
| (cis) 1,2-Dichloroethene   | 0.0089           | 0.0032         | EPA 8260D   | 9-10-24          | 9-10-24              |       |
| Trichloroethene            | ND               | 0.0032         | EPA 8260D   | 9-10-24          | 9-10-24              |       |
| Tetrachloroethene          | ND               | 0.0032         | EPA 8260D   | 9-10-24          | 9-10-24              |       |
| Surrogate:                 | Percent Recovery | Control Limits | _1 /\ 0200D | 0 10-2-7         | 0 10-2 <del>-1</del> |       |
| Dibromofluoromethane       | 111              | 69-124         |             |                  |                      |       |
| Toluene-d8                 | 106              | 80-118         |             |                  |                      |       |
|                            |                  |                |             |                  |                      |       |
| 4-Bromofluorobenzene       | 98               | 75-123         |             |                  |                      |       |

### **VOLATILE ORGANICS EPA 8260D**

|                            |                  |                |           | Date     | Date     |       |
|----------------------------|------------------|----------------|-----------|----------|----------|-------|
| Analyte                    | Result           | PQL            | Method    | Prepared | Analyzed | Flags |
| Client ID:                 | SB-10-16-19      |                |           |          |          |       |
| Laboratory ID:             | 09-059-53        |                |           |          |          |       |
| Vinyl Chloride             | 0.0075           | 0.0014         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| 1,1-Dichloroethene         | ND               | 0.0014         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (trans) 1,2-Dichloroethene | 0.0018           | 0.0014         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (cis) 1,2-Dichloroethene   | 0.11             | 0.0014         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Trichloroethene            | 0.039            | 0.0014         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Tetrachloroethene          | ND               | 0.0014         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 106              | 69-124         |           |          |          |       |
| Toluene-d8                 | 102              | 80-118         |           |          |          |       |
| 4-Bromofluorobenzene       | 97               | 75-123         |           |          |          |       |
| Client ID:                 | SB-07-16-19      |                |           |          |          |       |
| Laboratory ID:             | 09-059-57        |                |           |          |          |       |
| Vinyl Chloride             | ND               | 0.0016         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| 1,1-Dichloroethene         | ND               | 0.0016         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.0016         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (cis) 1,2-Dichloroethene   | 0.014            | 0.0016         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Trichloroethene            | 0.0056           | 0.0016         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Tetrachloroethene          | ND               | 0.0016         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 111              | 69-124         |           |          |          |       |
| Toluene-d8                 | 105              | 80-118         |           |          |          |       |
| 4-Bromofluorobenzene       | 96               | 75-123         |           |          |          |       |
| Client ID:                 | SB-07-16-19-D    |                |           |          |          |       |
| Laboratory ID:             | 09-059-58        |                |           |          |          |       |
| Vinyl Chloride             | ND               | 0.0011         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| 1,1-Dichloroethene         | ND               | 0.0011         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.0011         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (cis) 1,2-Dichloroethene   | 0.0053           | 0.0011         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Trichloroethene            | 0.0018           | 0.0011         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Tetrachloroethene          | ND               | 0.0011         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits | '         | -        | •        |       |
| Dibromofluoromethane       | 105              | 69-124         |           |          |          |       |
| Toluene-d8                 | 101              | 80-118         |           |          |          |       |
| 4-Bromofluorobenzene       | 98               | 75-123         |           |          |          |       |
|                            |                  |                |           |          |          |       |

### **VOLATILE ORGANICS EPA 8260D**

|                            |                  |                |           | Date     | Date     |       |
|----------------------------|------------------|----------------|-----------|----------|----------|-------|
| Analyte                    | Result           | PQL            | Method    | Prepared | Analyzed | Flags |
| Client ID:                 | SB-06R-8-10      |                |           |          |          |       |
| Laboratory ID:             | 09-059-63        |                |           |          |          |       |
| Vinyl Chloride             | ND               | 0.0012         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| 1,1-Dichloroethene         | ND               | 0.0012         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.0012         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.0012         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Trichloroethene            | ND               | 0.0012         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Tetrachloroethene          | 0.0025           | 0.0012         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 107              | 69-124         |           |          |          |       |
| Toluene-d8                 | 103              | 80-118         |           |          |          |       |
| 4-Bromofluorobenzene       | 99               | 75-123         |           |          |          |       |
|                            |                  |                |           |          |          |       |
|                            |                  |                |           |          |          |       |
| Client ID:                 | SB-06R-12-14     |                |           |          |          |       |
| Laboratory ID:             | 09-059-64        |                |           |          |          |       |
| Vinyl Chloride             | ND               | 0.0016         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| 1,1-Dichloroethene         | ND               | 0.0016         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.0016         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.0016         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Trichloroethene            | 0.0095           | 0.0016         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Tetrachloroethene          | 0.073            | 0.0016         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 109              | 69-124         |           |          |          |       |
| Toluene-d8                 | 104              | 80-118         |           |          |          |       |
| 4-Bromofluorobenzene       | 101              | 75-123         |           |          |          |       |

### VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

|                            |                  |                |           | Date     | Date     |       |
|----------------------------|------------------|----------------|-----------|----------|----------|-------|
| Analyte                    | Result           | PQL            | Method    | Prepared | Analyzed | Flags |
| METHOD BLANK               |                  |                |           |          |          |       |
| Laboratory ID:             | MB0909S1         |                |           |          |          |       |
| Vinyl Chloride             | ND               | 0.0010         | EPA 8260D | 9-9-24   | 9-9-24   |       |
| 1,1-Dichloroethene         | ND               | 0.0010         | EPA 8260D | 9-9-24   | 9-9-24   |       |
| (trans) 1,2-Dichloroethene | ND               | 0.0010         | EPA 8260D | 9-9-24   | 9-9-24   |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.0010         | EPA 8260D | 9-9-24   | 9-9-24   |       |
| Trichloroethene            | ND               | 0.0010         | EPA 8260D | 9-9-24   | 9-9-24   |       |
| Tetrachloroethene          | ND               | 0.0010         | EPA 8260D | 9-9-24   | 9-9-24   |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 104              | 69-124         |           |          |          |       |
| Toluene-d8                 | 103              | 80-118         |           |          |          |       |
| 4-Bromofluorobenzene       | 100              | 75-123         |           |          |          |       |
|                            |                  |                |           |          |          |       |
| Laboratory ID:             | MB0910S1         |                |           |          |          | _     |
| Vinyl Chloride             | ND               | 0.0010         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| 1,1-Dichloroethene         | ND               | 0.0010         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.0010         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.0010         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Trichloroethene            | ND               | 0.0010         | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Tetrachloroethene          | ND               | 0.0010         | EPA 8260D | 9-10-24  | 9-10-24  | _     |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 106              | 69-124         |           |          |          |       |
| Toluene-d8                 | 103              | 80-118         |           |          |          |       |
| 4-Bromofluorobenzene       | 96               | 75-123         |           |          |          |       |
|                            |                  |                |           |          |          |       |
| Laboratory ID:             | MB0911S1         |                |           |          |          |       |
| Vinyl Chloride             | ND               | 0.0010         | EPA 8260D | 9-11-24  | 9-11-24  |       |
| 1,1-Dichloroethene         | ND               | 0.0010         | EPA 8260D | 9-11-24  | 9-11-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.0010         | EPA 8260D | 9-11-24  | 9-11-24  |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.0010         | EPA 8260D | 9-11-24  | 9-11-24  |       |
| Trichloroethene            | ND               | 0.0010         | EPA 8260D | 9-11-24  | 9-11-24  |       |
| Tetrachloroethene          | ND               | 0.0010         | EPA 8260D | 9-11-24  | 9-11-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 107              | 69-124         |           |          |          |       |
| Toluene-d8                 | 103              | 80-118         |           |          |          |       |
| 4-Bromofluorobenzene       | 100              | 75-123         |           |          |          |       |

### VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

| 3 3                        |        |        |        |        | Per  | cent | Recovery |     | RPD   |       |
|----------------------------|--------|--------|--------|--------|------|------|----------|-----|-------|-------|
| Analyte                    | Res    | sult   | Spike  | Level  | Reco | very | Limits   | RPD | Limit | Flags |
| SPIKE BLANKS               |        |        |        |        |      |      |          |     |       |       |
| Laboratory ID:             | SB09   | 09S1   |        |        |      |      |          |     |       |       |
|                            | SB     | SBD    | SB     | SBD    | SB   | SBD  |          |     |       |       |
| Vinyl Chloride             | 0.0563 | 0.0561 | 0.0500 | 0.0500 | 113  | 112  | 52-141   | 0   | 20    |       |
| 1,1-Dichloroethene         | 0.0508 | 0.0526 | 0.0500 | 0.0500 | 102  | 105  | 74-133   | 3   | 16    |       |
| (trans) 1,2-Dichloroethene | 0.0498 | 0.0502 | 0.0500 | 0.0500 | 100  | 100  | 74-131   | 1   | 15    |       |
| (cis) 1,2-Dichloroethene   | 0.0510 | 0.0508 | 0.0500 | 0.0500 | 102  | 102  | 71-136   | 0   | 15    |       |
| Trichloroethene            | 0.0537 | 0.0557 | 0.0500 | 0.0500 | 107  | 111  | 80-130   | 4   | 15    |       |
| Tetrachloroethene          | 0.0487 | 0.0498 | 0.0500 | 0.0500 | 97   | 100  | 80-130   | 2   | 15    |       |
| Surrogate:                 |        |        |        |        |      |      |          |     |       |       |
| Dibromofluoromethane       |        |        |        |        | 103  | 106  | 69-124   |     |       |       |
| Toluene-d8                 |        |        |        |        | 100  | 103  | 80-118   |     |       |       |
| 4-Bromofluorobenzene       |        |        |        |        | 101  | 102  | 75-123   |     |       |       |
| Laboratory ID:             | SB09   | 10S1   |        |        |      |      |          |     |       |       |
|                            | SB     | SBD    | SB     | SBD    | SB   | SBD  |          |     |       |       |
| Vinyl Chloride             | 0.0521 | 0.0521 | 0.0500 | 0.0500 | 104  | 104  | 52-141   | 0   | 20    |       |
| 1,1-Dichloroethene         | 0.0524 | 0.0500 | 0.0500 | 0.0500 | 105  | 100  | 74-133   | 5   | 16    |       |
| (trans) 1,2-Dichloroethene | 0.0508 | 0.0494 | 0.0500 | 0.0500 | 102  | 99   | 74-131   | 3   | 15    |       |
| (cis) 1,2-Dichloroethene   | 0.0527 | 0.0509 | 0.0500 | 0.0500 | 105  | 102  | 71-136   | 3   | 15    |       |
| Trichloroethene            | 0.0549 | 0.0536 | 0.0500 | 0.0500 | 110  | 107  | 80-130   | 2   | 15    |       |
| Tetrachloroethene          | 0.0486 | 0.0466 | 0.0500 | 0.0500 | 97   | 93   | 80-130   | 4   | 15    |       |
| Surrogate:                 |        |        |        |        |      |      |          |     |       |       |
| Dibromofluoromethane       |        |        |        |        | 111  | 109  | 69-124   |     |       |       |
| Toluene-d8                 |        |        |        |        | 105  | 101  | 80-118   |     |       |       |
| 4-Bromofluorobenzene       |        |        |        |        | 103  | 101  | 75-123   |     |       |       |
| Laboratory ID:             | SB09   | 11S1   |        |        |      |      |          |     |       |       |
|                            | SB     | SBD    | SB     | SBD    | SB   | SBD  |          |     |       |       |
| Vinyl Chloride             | 0.0497 | 0.0496 | 0.0500 | 0.0500 | 99   | 99   | 52-141   | 0   | 20    | _     |
| 1,1-Dichloroethene         | 0.0476 | 0.0496 | 0.0500 | 0.0500 | 95   | 99   | 74-133   | 4   | 16    |       |
| (trans) 1,2-Dichloroethene | 0.0481 | 0.0489 | 0.0500 | 0.0500 | 96   | 98   | 74-131   | 2   | 15    |       |
| (cis) 1,2-Dichloroethene   | 0.0487 | 0.0510 | 0.0500 | 0.0500 | 97   | 102  | 71-136   | 5   | 15    |       |
| Trichloroethene            | 0.0523 | 0.0534 | 0.0500 | 0.0500 | 105  | 107  | 80-130   | 2   | 15    |       |
| Tetrachloroethene          | 0.0458 | 0.0473 | 0.0500 | 0.0500 | 92   | 95   | 80-130   | 3   | 15    |       |
| Surrogate:                 |        |        |        |        |      |      |          |     |       |       |
| Dibromofluoromethane       |        |        |        |        | 105  | 106  | 69-124   |     |       |       |
| Toluene-d8                 |        |        |        |        | 100  | 101  | 80-118   |     |       |       |
| 4-Bromofluorobenzene       |        |        |        |        | 101  | 102  | 75-123   |     |       |       |

### **VOLATILE ORGANICS EPA 8260D**

|                                                                                                                                  |                                    |                                                                    |                                     | Date                          | Date                          |       |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------|-------------------------------------|-------------------------------|-------------------------------|-------|
| Analyte                                                                                                                          | Result                             | PQL                                                                | Method                              | Prepared                      | Analyzed                      | Flags |
| Client ID:                                                                                                                       | GWB-03-15-20                       |                                                                    |                                     |                               |                               |       |
| Laboratory ID:                                                                                                                   | 09-059-37                          |                                                                    |                                     |                               |                               |       |
| Vinyl Chloride                                                                                                                   | ND                                 | 0.20                                                               | EPA 8260D                           | 9-10-24                       | 9-10-24                       |       |
| (trans) 1,2-Dichloroethene                                                                                                       | ND                                 | 0.20                                                               | EPA 8260D                           | 9-10-24                       | 9-10-24                       |       |
| (cis) 1,2-Dichloroethene                                                                                                         | 0.68                               | 0.20                                                               | EPA 8260D                           | 9-10-24                       | 9-10-24                       |       |
| Trichloroethene                                                                                                                  | ND                                 | 0.20                                                               | EPA 8260D                           | 9-10-24                       | 9-10-24                       |       |
| Tetrachloroethene                                                                                                                | ND                                 | 0.20                                                               | EPA 8260D                           | 9-10-24                       | 9-10-24                       |       |
| Surrogate:                                                                                                                       | Percent Recovery                   | Control Limits                                                     |                                     |                               |                               |       |
| Dibromofluoromethane                                                                                                             | 89                                 | 68-133                                                             |                                     |                               |                               |       |
| Toluene-d8                                                                                                                       | 98                                 | 79-123                                                             |                                     |                               |                               |       |
| 4-Bromofluorobenzene                                                                                                             | 103                                | 78-117                                                             |                                     |                               |                               |       |
|                                                                                                                                  |                                    |                                                                    |                                     |                               |                               |       |
|                                                                                                                                  |                                    |                                                                    |                                     |                               |                               |       |
| Client ID:                                                                                                                       | GWB-03-20-25                       |                                                                    |                                     |                               |                               |       |
| Laboratory ID:                                                                                                                   | 09-059-38                          |                                                                    |                                     |                               |                               | _     |
| Vinyl Chloride                                                                                                                   | ND                                 | 0.20                                                               | EPA 8260D                           | 9-10-24                       | 9-10-24                       |       |
| (trans) 1,2-Dichloroethene                                                                                                       | ND                                 | 0.20                                                               | EPA 8260D                           | 9-10-24                       | 9-10-24                       |       |
| (cis) 1,2-Dichloroethene                                                                                                         | ND                                 | 0.20                                                               | EPA 8260D                           | 9-10-24                       | 9-10-24                       |       |
| Trichloroethene                                                                                                                  | ND                                 | 0.20                                                               | EPA 8260D                           | 9-10-24                       | 9-10-24                       |       |
| Tetrachloroethene                                                                                                                | ND                                 | 0.20                                                               | EPA 8260D                           | 9-10-24                       | 9-10-24                       |       |
| Surrogate:                                                                                                                       | Percent Recovery                   | Control Limits                                                     |                                     |                               |                               |       |
| Dibromofluoromethane                                                                                                             | 90                                 | 68-133                                                             |                                     |                               |                               |       |
| Toluene-d8                                                                                                                       | 98                                 | 79-123                                                             |                                     |                               |                               |       |
| 4-Bromofluorobenzene                                                                                                             | 102                                | 78-117                                                             |                                     |                               |                               |       |
|                                                                                                                                  |                                    |                                                                    |                                     |                               |                               |       |
|                                                                                                                                  |                                    |                                                                    |                                     |                               |                               |       |
| Client ID:                                                                                                                       | GWB-03-25-30                       |                                                                    |                                     |                               |                               |       |
| Laboratory ID:                                                                                                                   | 09-059-39                          |                                                                    |                                     |                               |                               | _     |
| Vinyl Chloride                                                                                                                   | ND                                 | 0.20                                                               | EPA 8260D                           | 9-10-24                       | 9-10-24                       |       |
| (trans) 1,2-Dichloroethene                                                                                                       | ND                                 | 0.20                                                               | EPA 8260D                           | 9-10-24                       | 9-10-24                       |       |
| (cis) 1,2-Dichloroethene                                                                                                         | ND                                 | 0.20                                                               | EPA 8260D                           | 9-10-24                       | 9-10-24                       |       |
| Trichloroethene                                                                                                                  | ND                                 | 0.20                                                               | EPA 8260D                           | 9-10-24                       | 9-10-24                       |       |
| Tetrachloroethene                                                                                                                | ND                                 | 0.20                                                               | EPA 8260D                           | 9-10-24                       | 9-10-24                       |       |
| Surrogate:                                                                                                                       | Percent Recovery                   | Control Limits                                                     |                                     |                               |                               |       |
| Dibromofluoromethane                                                                                                             | 87                                 | 68-133                                                             |                                     |                               |                               |       |
| Toluene-d8                                                                                                                       | 99                                 | 79-123                                                             |                                     |                               |                               |       |
| 4-Bromofluorobenzene                                                                                                             | 100                                | 78-117                                                             |                                     |                               |                               |       |
| (trans) 1,2-Dichloroethene (cis) 1,2-Dichloroethene Trichloroethene Tetrachloroethene Surrogate: Dibromofluoromethane Toluene-d8 | ND ND ND ND Percent Recovery 87 99 | 0.20<br>0.20<br>0.20<br>0.20<br>Control Limits<br>68-133<br>79-123 | EPA 8260D<br>EPA 8260D<br>EPA 8260D | 9-10-24<br>9-10-24<br>9-10-24 | 9-10-24<br>9-10-24<br>9-10-24 |       |

### **VOLATILE ORGANICS EPA 8260D**

|                                                                                                                                                 |                                          |                                                                    |                                     | Date                          | Date                          |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------|-------------------------------------|-------------------------------|-------------------------------|-------|
| Analyte                                                                                                                                         | Result                                   | PQL                                                                | Method                              | Prepared                      | Analyzed                      | Flags |
| Client ID:                                                                                                                                      | GWB-04-15-20                             |                                                                    |                                     |                               |                               |       |
| Laboratory ID:                                                                                                                                  | 09-059-40                                |                                                                    |                                     |                               |                               |       |
| Vinyl Chloride                                                                                                                                  | 1.4                                      | 0.20                                                               | EPA 8260D                           | 9-10-24                       | 9-10-24                       |       |
| (trans) 1,2-Dichloroethene                                                                                                                      | ND                                       | 0.20                                                               | EPA 8260D                           | 9-10-24                       | 9-10-24                       |       |
| (cis) 1,2-Dichloroethene                                                                                                                        | 3.6                                      | 0.20                                                               | EPA 8260D                           | 9-10-24                       | 9-10-24                       |       |
| Trichloroethene                                                                                                                                 | 0.50                                     | 0.20                                                               | EPA 8260D                           | 9-10-24                       | 9-10-24                       |       |
| Tetrachloroethene                                                                                                                               | ND                                       | 0.20                                                               | EPA 8260D                           | 9-10-24                       | 9-10-24                       |       |
| Surrogate:                                                                                                                                      | Percent Recovery                         | Control Limits                                                     |                                     |                               |                               |       |
| Dibromofluoromethane                                                                                                                            | 87                                       | 68-133                                                             |                                     |                               |                               |       |
| Toluene-d8                                                                                                                                      | 99                                       | 79-123                                                             |                                     |                               |                               |       |
| 4-Bromofluorobenzene                                                                                                                            | 103                                      | 78-117                                                             |                                     |                               |                               |       |
|                                                                                                                                                 |                                          |                                                                    |                                     |                               |                               |       |
|                                                                                                                                                 |                                          |                                                                    |                                     |                               |                               |       |
| Client ID:                                                                                                                                      | GWB-04-20-25                             |                                                                    |                                     |                               |                               |       |
| Laboratory ID:                                                                                                                                  | 09-059-41                                |                                                                    |                                     |                               |                               | _     |
| Vinyl Chloride                                                                                                                                  | ND                                       | 0.20                                                               | EPA 8260D                           | 9-10-24                       | 9-10-24                       |       |
| (trans) 1,2-Dichloroethene                                                                                                                      | ND                                       | 0.20                                                               | EPA 8260D                           | 9-10-24                       | 9-10-24                       |       |
| (cis) 1,2-Dichloroethene                                                                                                                        | 7.1                                      | 0.20                                                               | EPA 8260D                           | 9-10-24                       | 9-10-24                       |       |
| Trichloroethene                                                                                                                                 | 0.61                                     | 0.20                                                               | EPA 8260D                           | 9-10-24                       | 9-10-24                       |       |
| Tetrachloroethene                                                                                                                               | 0.63                                     | 0.20                                                               | EPA 8260D                           | 9-10-24                       | 9-10-24                       |       |
| Surrogate:                                                                                                                                      | Percent Recovery                         | Control Limits                                                     |                                     |                               |                               |       |
| Dibromofluoromethane                                                                                                                            | 89                                       | 68-133                                                             |                                     |                               |                               |       |
| Toluene-d8                                                                                                                                      | 100                                      | 79-123                                                             |                                     |                               |                               |       |
| 4-Bromofluorobenzene                                                                                                                            | 103                                      | 78-117                                                             |                                     |                               |                               |       |
|                                                                                                                                                 |                                          |                                                                    |                                     |                               |                               |       |
|                                                                                                                                                 |                                          |                                                                    |                                     |                               |                               |       |
| Client ID:                                                                                                                                      | GWB-04-25-30                             |                                                                    |                                     |                               |                               |       |
| Laboratory ID:                                                                                                                                  | 09-059-42                                |                                                                    |                                     |                               |                               | _     |
| Vinyl Chloride                                                                                                                                  | ND                                       | 0.20                                                               | EPA 8260D                           | 9-10-24                       | 9-10-24                       |       |
| (trans) 1,2-Dichloroethene                                                                                                                      | ND                                       | 0.20                                                               | EPA 8260D                           | 9-10-24                       | 9-10-24                       |       |
| (cis) 1,2-Dichloroethene                                                                                                                        | 0.32                                     | 0.20                                                               | EPA 8260D                           | 9-10-24                       | 9-10-24                       |       |
| Trichloroethene                                                                                                                                 | ND                                       | 0.20                                                               | EPA 8260D                           | 9-10-24                       | 9-10-24                       |       |
| Tetrachloroethene                                                                                                                               | ND                                       | 0.20                                                               | EPA 8260D                           | 9-10-24                       | 9-10-24                       |       |
| Surrogate:                                                                                                                                      | Percent Recovery                         | Control Limits                                                     |                                     |                               |                               |       |
| Dibromofluoromethane                                                                                                                            | 90                                       | 68-133                                                             |                                     |                               |                               |       |
| Toluene-d8                                                                                                                                      | 100                                      | 79-123                                                             |                                     |                               |                               |       |
| 4-Bromofluorobenzene                                                                                                                            | 105                                      | 78-117                                                             |                                     |                               |                               |       |
| Vinyl Chloride (trans) 1,2-Dichloroethene (cis) 1,2-Dichloroethene Trichloroethene Tetrachloroethene Surrogate: Dibromofluoromethane Toluene-d8 | ND ND 0.32 ND ND Percent Recovery 90 100 | 0.20<br>0.20<br>0.20<br>0.20<br>Control Limits<br>68-133<br>79-123 | EPA 8260D<br>EPA 8260D<br>EPA 8260D | 9-10-24<br>9-10-24<br>9-10-24 | 9-10-24<br>9-10-24<br>9-10-24 |       |

### **VOLATILE ORGANICS EPA 8260D**

|                            |                  |                |           | Date     | Date     |       |
|----------------------------|------------------|----------------|-----------|----------|----------|-------|
| Analyte                    | Result           | PQL            | Method    | Prepared | Analyzed | Flags |
| Client ID:                 | GWB-05-20-25     |                |           |          |          |       |
| Laboratory ID:             | 09-059-43        |                |           |          |          |       |
| Vinyl Chloride             | ND               | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (cis) 1,2-Dichloroethene   | 12               | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Trichloroethene            | 1.5              | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Tetrachloroethene          | 1.2              | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 89               | 68-133         |           |          |          |       |
| Toluene-d8                 | 100              | 79-123         |           |          |          |       |
| 4-Bromofluorobenzene       | 101              | 78-117         |           |          |          |       |
|                            |                  |                |           |          |          |       |
|                            |                  |                |           |          |          |       |
| Client ID:                 | GWB-05-25-30     |                |           |          |          |       |
| Laboratory ID:             | 09-059-44        |                |           |          |          | _     |
| Vinyl Chloride             | ND               | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (cis) 1,2-Dichloroethene   | 2.6              | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Trichloroethene            | 21               | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Tetrachloroethene          | 8.6              | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 90               | 68-133         |           |          |          |       |
| Toluene-d8                 | 98               | 79-123         |           |          |          |       |
| 4-Bromofluorobenzene       | 104              | 78-117         |           |          |          |       |
|                            |                  |                |           |          |          |       |
|                            |                  |                |           |          |          |       |
| Client ID:                 | GWB-06-20-25     |                |           |          |          |       |
| Laboratory ID:             | 09-059-45        |                |           |          |          | _     |
| Vinyl Chloride             | 0.43             | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (trans) 1,2-Dichloroethene | 0.47             | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (cis) 1,2-Dichloroethene   | 21               | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Trichloroethene            | 18               | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Tetrachloroethene          | 11               | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 89               | 68-133         |           |          |          |       |
| Toluene-d8                 | 100              | 79-123         |           |          |          |       |
| 4-Bromofluorobenzene       | 101              | 78-117         |           |          |          |       |
| Toluene-d8                 | 100              | 79-123         |           |          |          |       |

### **VOLATILE ORGANICS EPA 8260D**

|                            |                  |                |           | Date     | Date     |       |
|----------------------------|------------------|----------------|-----------|----------|----------|-------|
| Analyte                    | Result           | PQL            | Method    | Prepared | Analyzed | Flags |
| Client ID:                 | GWB-06-25-30     |                |           |          |          |       |
| Laboratory ID:             | 09-059-46        |                |           |          |          |       |
| Vinyl Chloride             | ND               | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (trans) 1,2-Dichloroethene | 0.29             | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (cis) 1,2-Dichloroethene   | 11               | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Trichloroethene            | 18               | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Tetrachloroethene          | 18               | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 89               | 68-133         |           |          |          |       |
| Toluene-d8                 | 99               | 79-123         |           |          |          |       |
| 4-Bromofluorobenzene       | 102              | 78-117         |           |          |          |       |
|                            |                  |                |           |          |          |       |
| Client ID:                 | GWB-08-15-25     |                |           |          |          |       |
| Laboratory ID:             | 09-059-47        |                |           |          |          |       |
| Vinyl Chloride             | 0.29             | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Trichloroethene            | ND               | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Tetrachloroethene          | ND               | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 88               | 68-133         |           |          |          |       |
| Toluene-d8                 | 98               | 79-123         |           |          |          |       |
| 4-Bromofluorobenzene       | 101              | 78-117         |           |          |          |       |
|                            |                  |                |           |          |          |       |
| Client ID:                 | GWB-07-35-40     |                |           |          |          |       |
| Laboratory ID:             | 09-059-48        |                |           |          |          |       |
| Vinyl Chloride             | ND               | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Trichloroethene            | ND               | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Tetrachloroethene          | ND               | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 87               | 68-133         |           |          |          |       |
| Toluene-d8                 | 98               | 79-123         |           |          |          |       |
| 4-Bromofluorobenzene       | 100              | 78-117         |           |          |          |       |

### **VOLATILE ORGANICS EPA 8260D**

|                            |                    |                |           | Date     | Date     |       |
|----------------------------|--------------------|----------------|-----------|----------|----------|-------|
| Analyte                    | Result             | PQL            | Method    | Prepared | Analyzed | Flags |
| Client ID:                 | GWB-07-40-45       |                |           |          |          |       |
| Laboratory ID:             | 09-059-62          |                |           |          |          |       |
| Vinyl Chloride             | ND                 | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (trans) 1,2-Dichloroethene | ND                 | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (cis) 1,2-Dichloroethene   | ND                 | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Trichloroethene            | ND                 | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Tetrachloroethene          | 0.26               | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Surrogate:                 | Percent Recovery   | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 90                 | 68-133         |           |          |          |       |
| Toluene-d8                 | 99                 | 79-123         |           |          |          |       |
| 4-Bromofluorobenzene       | 105                | 78-117         |           |          |          |       |
|                            |                    |                |           |          |          |       |
|                            |                    |                |           |          |          |       |
| Client ID:                 | Trip Blanks-090624 |                |           |          |          |       |
| Laboratory ID:             | 09-059-69          |                |           |          |          |       |
| Vinyl Chloride             | ND                 | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (trans) 1,2-Dichloroethene | ND                 | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| (cis) 1,2-Dichloroethene   | ND                 | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Trichloroethene            | ND                 | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Tetrachloroethene          | ND                 | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |
| Surrogate:                 | Percent Recovery   | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 86                 | 68-133         |           |          |          |       |
| Toluene-d8                 | 99                 | 79-123         |           |          |          |       |
| 4-Bromofluorobenzene       | 101                | 78-117         |           |          |          |       |

### VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

|                            |                  |                |           | Date     | Date     |       |  |
|----------------------------|------------------|----------------|-----------|----------|----------|-------|--|
| Analyte                    | Result           | PQL            | Method    | Prepared | Analyzed | Flags |  |
| METHOD BLANK               |                  |                |           |          |          |       |  |
| Laboratory ID:             | MB0910W1         |                |           |          |          |       |  |
| Vinyl Chloride             | ND               | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |  |
| (trans) 1,2-Dichloroethene | ND               | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |  |
| (cis) 1,2-Dichloroethene   | ND               | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |  |
| Trichloroethene            | ND               | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |  |
| Tetrachloroethene          | ND               | 0.20           | EPA 8260D | 9-10-24  | 9-10-24  |       |  |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |  |
| Dibromofluoromethane       | 88               | 68-133         |           |          |          |       |  |
| Toluene-d8                 | 100              | 79-123         |           |          |          |       |  |
| 4-Bromofluorobenzene       | 103              | 78-117         |           |          |          |       |  |

|                            |       |       |       |       | Source | Pe  | rcent | Recovery |     | RPD   |       |
|----------------------------|-------|-------|-------|-------|--------|-----|-------|----------|-----|-------|-------|
| Analyte                    | Res   | sult  | Spike | Level | Result | Rec | overy | Limits   | RPD | Limit | Flags |
| MATRIX SPIKES              |       |       |       |       |        |     |       |          |     |       |       |
| Laboratory ID:             | 09-05 | 59-48 |       |       |        |     |       |          |     |       |       |
|                            | MS    | MSD   | MS    | MSD   |        | MS  | MSD   |          |     |       |       |
| Vinyl Chloride             | 9.21  | 9.16  | 10.0  | 10.0  | ND     | 92  | 92    | 62-121   | 1   | 15    |       |
| (trans) 1,2-Dichloroethene | 9.50  | 9.37  | 10.0  | 10.0  | ND     | 95  | 94    | 79-120   | 1   | 16    |       |
| (cis) 1,2-Dichloroethene   | 9.75  | 9.63  | 10.0  | 10.0  | ND     | 98  | 96    | 81-128   | 1   | 16    |       |
| Trichloroethene            | 11.4  | 11.5  | 10.0  | 10.0  | ND     | 114 | 115   | 80-130   | 1   | 12    |       |
| Tetrachloroethene          | 10.5  | 10.1  | 10.0  | 10.0  | ND     | 105 | 101   | 84-126   | 4   | 19    |       |
| Surrogate:                 |       |       |       |       |        |     |       |          |     |       |       |
| Dibromofluoromethane       |       |       |       |       |        | 85  | 87    | 68-133   |     |       |       |
| Toluene-d8                 |       |       |       |       |        | 98  | 99    | 79-123   |     |       |       |
| 4-Bromofluorobenzene       |       |       |       |       |        | 102 | 101   | 78-117   |     |       |       |

### **VOLATILE ORGANICS EPA 8260D**

| Offits. Hig/kg             |                  |                |           | Date     | Date     |       |
|----------------------------|------------------|----------------|-----------|----------|----------|-------|
| Analyte                    | Result           | PQL            | Method    | Prepared | Analyzed | Flags |
| Client ID:                 | SB-08-25-28      |                |           | •        |          |       |
| Laboratory ID:             | 09-059-04        |                |           |          |          |       |
| Vinyl Chloride             | ND               | 0.0019         | EPA 8260D | 9-18-24  | 9-18-24  |       |
| 1,1-Dichloroethene         | ND               | 0.0012         | EPA 8260D | 9-18-24  | 9-18-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.0012         | EPA 8260D | 9-18-24  | 9-18-24  |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.0012         | EPA 8260D | 9-18-24  | 9-18-24  |       |
| Trichloroethene            | ND               | 0.0012         | EPA 8260D | 9-18-24  | 9-18-24  |       |
| Tetrachloroethene          | 0.0098           | 0.0012         | EPA 8260D | 9-18-24  | 9-18-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 91               | 69-124         |           |          |          |       |
| Toluene-d8                 | 91               | 80-118         |           |          |          |       |
| 4-Bromofluorobenzene       | 100              | 75-123         |           |          |          |       |
|                            |                  |                |           |          |          |       |
|                            |                  |                |           |          |          |       |
| Client ID:                 | SB-03-25-28      |                |           |          |          |       |
| Laboratory ID:             | 09-059-30        |                |           |          |          |       |
| Vinyl Chloride             | ND               | 0.0019         | EPA 8260D | 9-18-24  | 9-18-24  |       |
| 1,1-Dichloroethene         | ND               | 0.0012         | EPA 8260D | 9-18-24  | 9-18-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.0012         | EPA 8260D | 9-18-24  | 9-18-24  |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.0012         | EPA 8260D | 9-18-24  | 9-18-24  |       |
| Trichloroethene            | ND               | 0.0012         | EPA 8260D | 9-18-24  | 9-18-24  |       |
| Tetrachloroethene          | ND               | 0.0012         | EPA 8260D | 9-18-24  | 9-18-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 91               | 69-124         |           |          |          |       |
| Toluene-d8                 | 91               | 80-118         |           |          |          |       |
| 4-Bromofluorobenzene       | 103              | 75-123         |           |          |          |       |
|                            |                  |                |           |          |          |       |
|                            |                  |                |           |          |          |       |
| Client ID:                 | SB-04-25-28      |                |           |          |          |       |
| Laboratory ID:             | 09-059-35        |                |           |          |          |       |
| Vinyl Chloride             | ND               | 0.0017         | EPA 8260D | 9-19-24  | 9-19-24  |       |
| 1,1-Dichloroethene         | ND               | 0.0011         | EPA 8260D | 9-19-24  | 9-19-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.0011         | EPA 8260D | 9-19-24  | 9-19-24  |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.0011         | EPA 8260D | 9-19-24  | 9-19-24  |       |
| Trichloroethene            | ND               | 0.0011         | EPA 8260D | 9-19-24  | 9-19-24  |       |
| Tetrachloroethene          | ND               | 0.0011         | EPA 8260D | 9-19-24  | 9-19-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 92               | 69-124         |           |          |          |       |
| Toluene-d8                 | 91               | 80-118         |           |          |          |       |
| 4-Bromofluorobenzene       | 103              | 75-123         |           |          |          |       |

### **VOLATILE ORGANICS EPA 8260D**

|                            |                  |                |           | Date     | Date     |       |
|----------------------------|------------------|----------------|-----------|----------|----------|-------|
| Analyte                    | Result           | PQL            | Method    | Prepared | Analyzed | Flags |
| Client ID:                 | SB-09-25-28      |                |           |          |          |       |
| Laboratory ID:             | 09-059-52        |                |           |          |          |       |
| Vinyl Chloride             | ND               | 0.0017         | EPA 8260D | 9-18-24  | 9-18-24  |       |
| 1,1-Dichloroethene         | ND               | 0.0011         | EPA 8260D | 9-18-24  | 9-18-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.0011         | EPA 8260D | 9-18-24  | 9-18-24  |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.0011         | EPA 8260D | 9-18-24  | 9-18-24  |       |
| Trichloroethene            | ND               | 0.0011         | EPA 8260D | 9-18-24  | 9-18-24  |       |
| Tetrachloroethene          | ND               | 0.0011         | EPA 8260D | 9-18-24  | 9-18-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 94               | 69-124         |           |          |          |       |
| Toluene-d8                 | 91               | 80-118         |           |          |          |       |
| 4-Bromofluorobenzene       | 105              | 75-123         |           |          |          |       |
| Client ID:                 | SB-10-25-28      |                |           |          |          |       |
| Laboratory ID:             | 09-059-56        |                |           |          |          |       |
| Vinyl Chloride             | ND               | 0.0015         | EPA 8260D | 9-19-24  | 9-19-24  |       |
| 1,1-Dichloroethene         | ND               | 0.00094        | EPA 8260D | 9-19-24  | 9-19-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.00094        | EPA 8260D | 9-19-24  | 9-19-24  |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.00094        | EPA 8260D | 9-19-24  | 9-19-24  |       |
| Trichloroethene            | ND               | 0.00094        | EPA 8260D | 9-19-24  | 9-19-24  |       |
| Tetrachloroethene          | 0.0085           | 0.00094        | EPA 8260D | 9-19-24  | 9-19-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 87               | 69-124         |           |          |          |       |
| Toluene-d8                 | 89               | 80-118         |           |          |          |       |
| 4-Bromofluorobenzene       | 101              | 75-123         |           |          |          |       |
| Client ID:                 | SB-07-25-28      |                |           |          |          |       |
| Laboratory ID:             | 09-059-61        |                |           |          |          |       |
| Vinyl Chloride             | ND               | 0.0017         | EPA 8260D | 9-18-24  | 9-18-24  |       |
| 1,1-Dichloroethene         | ND               | 0.0010         | EPA 8260D | 9-18-24  | 9-18-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.0010         | EPA 8260D | 9-18-24  | 9-18-24  |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.0010         | EPA 8260D | 9-18-24  | 9-18-24  |       |
| Trichloroethene            | ND               | 0.0010         | EPA 8260D | 9-18-24  | 9-18-24  |       |
| Tetrachloroethene          | ND               | 0.0010         | EPA 8260D | 9-18-24  | 9-18-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |           | 0.021    | 0.02.    |       |
| Dibromofluoromethane       | 93               | 69-124         |           |          |          |       |
| Toluene-d8                 | 91               | 80-118         |           |          |          |       |
| 4-Bromofluorobenzene       | 103              | 75-123         |           |          |          |       |
|                            | . 33             |                |           |          |          |       |

Date of Report: October 14, 2024 Samples Submitted: September 6, 2024 Laboratory Reference: 2409-059 Project: COB-Riverside; Task 5

### VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

Matrix: Soil Units: mg/kg

|                            |                  |                |           | Date     | Date     |       |
|----------------------------|------------------|----------------|-----------|----------|----------|-------|
| Analyte                    | Result           | PQL            | Method    | Prepared | Analyzed | Flags |
| METHOD BLANK               |                  |                |           |          |          |       |
| Laboratory ID:             | MB0918S1         |                |           |          |          |       |
| Vinyl Chloride             | ND               | 0.0016         | EPA 8260D | 9-18-24  | 9-18-24  |       |
| 1,1-Dichloroethene         | ND               | 0.0010         | EPA 8260D | 9-18-24  | 9-18-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.0010         | EPA 8260D | 9-18-24  | 9-18-24  |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.0010         | EPA 8260D | 9-18-24  | 9-18-24  |       |
| Trichloroethene            | ND               | 0.0010         | EPA 8260D | 9-18-24  | 9-18-24  |       |
| Tetrachloroethene          | ND               | 0.0010         | EPA 8260D | 9-18-24  | 9-18-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 92               | 69-124         |           |          |          |       |
| Toluene-d8                 | 90               | 80-118         |           |          |          |       |
| 4-Bromofluorobenzene       | 101              | 75-123         |           |          |          |       |
|                            |                  |                |           |          |          |       |
| Laboratory ID:             | MB0919S1         |                |           |          |          |       |
| Vinyl Chloride             | ND               | 0.0016         | EPA 8260D | 9-19-24  | 9-19-24  |       |
| 1,1-Dichloroethene         | ND               | 0.0010         | EPA 8260D | 9-19-24  | 9-19-24  |       |
| (trans) 1,2-Dichloroethene | ND               | 0.0010         | EPA 8260D | 9-19-24  | 9-19-24  |       |
| (cis) 1,2-Dichloroethene   | ND               | 0.0010         | EPA 8260D | 9-19-24  | 9-19-24  |       |
| Trichloroethene            | ND               | 0.0010         | EPA 8260D | 9-19-24  | 9-19-24  |       |
| Tetrachloroethene          | ND               | 0.0010         | EPA 8260D | 9-19-24  | 9-19-24  |       |
| Surrogate:                 | Percent Recovery | Control Limits |           |          |          |       |
| Dibromofluoromethane       | 91               | 69-124         |           |          |          |       |
| Toluene-d8                 | 90               | 80-118         |           |          |          |       |
| 4-Bromofluorobenzene       | 106              | 75-123         |           |          |          |       |

Date of Report: October 14, 2024 Samples Submitted: September 6, 2024 Laboratory Reference: 2409-059 Project: COB-Riverside; Task 5

### VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

Matrix: Soil Units: mg/kg

|                            |        |        |        |        | Per  | cent  | Recovery |     | RPD   |       |
|----------------------------|--------|--------|--------|--------|------|-------|----------|-----|-------|-------|
| Analyte                    | Res    | sult   | Spike  | Level  | Reco | overy | Limits   | RPD | Limit | Flags |
| SPIKE BLANKS               |        |        |        |        |      |       |          |     |       |       |
| Laboratory ID:             | SB09   | 18S1   |        |        |      |       |          |     |       |       |
|                            | SB     | SBD    | SB     | SBD    | SB   | SBD   |          |     |       |       |
| Vinyl Chloride             | 0.0318 | 0.0323 | 0.0500 | 0.0500 | 64   | 65    | 52-141   | 2   | 20    |       |
| 1,1-Dichloroethene         | 0.0486 | 0.0516 | 0.0500 | 0.0500 | 97   | 103   | 74-133   | 6   | 16    |       |
| (trans) 1,2-Dichloroethene | 0.0480 | 0.0494 | 0.0500 | 0.0500 | 96   | 99    | 74-131   | 3   | 15    |       |
| (cis) 1,2-Dichloroethene   | 0.0494 | 0.0519 | 0.0500 | 0.0500 | 99   | 104   | 71-136   | 5   | 15    |       |
| Trichloroethene            | 0.0472 | 0.0523 | 0.0500 | 0.0500 | 94   | 105   | 80-130   | 10  | 15    |       |
| Tetrachloroethene          | 0.0445 | 0.0499 | 0.0500 | 0.0500 | 89   | 100   | 80-130   | 11  | 15    |       |
| Surrogate:                 |        |        |        |        |      |       |          |     |       |       |
| Dibromofluoromethane       |        |        |        |        | 94   | 92    | 69-124   |     |       |       |
| Toluene-d8                 |        |        |        |        | 88   | 87    | 80-118   |     |       |       |
| 4-Bromofluorobenzene       |        |        |        |        | 104  | 105   | 75-123   |     |       |       |
| Laboratory ID:             | SB09   | 19S1   |        |        |      |       |          |     |       |       |
|                            | SB     | SBD    | SB     | SBD    | SB   | SBD   |          |     |       |       |
| Vinyl Chloride             | 0.0318 | 0.0273 | 0.0500 | 0.0500 | 64   | 55    | 52-141   | 15  | 20    |       |
| 1,1-Dichloroethene         | 0.0493 | 0.0513 | 0.0500 | 0.0500 | 99   | 103   | 74-133   | 4   | 16    |       |
| (trans) 1,2-Dichloroethene | 0.0478 | 0.0501 | 0.0500 | 0.0500 | 96   | 100   | 74-131   | 5   | 15    |       |
| (cis) 1,2-Dichloroethene   | 0.0497 | 0.0515 | 0.0500 | 0.0500 | 99   | 103   | 71-136   | 4   | 15    |       |
| Trichloroethene            | 0.0488 | 0.0513 | 0.0500 | 0.0500 | 98   | 103   | 80-130   | 5   | 15    |       |
| Tetrachloroethene          | 0.0466 | 0.0495 | 0.0500 | 0.0500 | 93   | 99    | 80-130   | 6   | 15    |       |
| Surrogate:                 |        |        |        |        |      |       |          |     |       |       |
| Dibromofluoromethane       |        |        |        |        | 90   | 91    | 69-124   |     |       |       |
| Toluene-d8                 |        |        |        |        | 89   | 87    | 80-118   |     |       |       |
| 4-Bromofluorobenzene       |        |        |        |        | 105  | 105   | 75-123   |     |       |       |
|                            |        |        |        |        |      |       |          |     |       |       |

Date of Report: October 14, 2024 Samples Submitted: September 6, 2024 Laboratory Reference: 2409-059

Project: COB-Riverside; Task 5

### **% MOISTURE**

| Client ID     | Lab ID    | % Moisture | Date<br>Analyzed |
|---------------|-----------|------------|------------------|
| SB-08-19-22   | 09-059-02 | 23         | 9-12-24          |
| SB-08-25-28   | 09-059-04 | 23         | 9-18-24          |
| SB-06-14.5-16 | 09-059-07 | 9          | 9-12-24          |
| SB-06-16-18   | 09-059-08 | 21         | 9-12-24          |
| SB-06-18-20   | 09-059-09 | 20         | 9-12-24          |
| SB-06-20-22   | 09-059-10 | 23         | 9-12-24          |
| SB-06-22-24   | 09-059-11 | 24         | 9-12-24          |
| SB-06-24-26   | 09-059-12 | 24         | 9-12-24          |
| SB-06-26-28   | 09-059-13 | 22         | 9-12-24          |
| SB-06-28-30   | 09-059-14 | 23         | 9-12-24          |
| SB-06-30-32   | 09-059-15 | 21         | 9-12-24          |
| SB-06-30-32D  | 09-059-16 | 22         | 9-12-24          |
| SB-06-32-34   | 09-059-17 | 22         | 9-12-24          |
| SB-06-34-36   | 09-059-18 | 22         | 9-12-24          |
| SB-06-36-38   | 09-059-19 | 23         | 9-12-24          |
| SB-06-38-40   | 09-059-20 | 24         | 9-12-24          |
| SB-05-16-19   | 09-059-22 | 20         | 9-12-24          |
| SB-05-19-22   | 09-059-23 | 21         | 9-12-24          |
| SB-05-25-28   | 09-059-25 | 25         | 9-13-24          |
| SB-03-16-19   | 09-059-27 | 40         | 9-12-24          |
| SB-03-19-22   | 09-059-28 | 22         | 9-12-24          |
| SB-03-25-28   | 09-059-30 | 22         | 9-18-24          |
| SB-04-16-19   | 09-059-32 | 20         | 9-12-24          |
| SB-04-19-22   | 09-059-33 | 19         | 9-12-24          |
| SB-04-25-28   | 09-059-35 | 23         | 9-18-24          |
| SB-11-21-23   | 09-059-36 | 23         | 9-12-24          |
| SB-09-16-19   | 09-059-49 | 53         | 9-12-24          |
|               |           |            |                  |

Date of Report: October 14, 2024 Samples Submitted: September 6, 2024 Laboratory Reference: 2409-059

Laboratory Reference: 2409-059 Project: COB-Riverside; Task 5

### % MOISTURE

| Client ID     | Lab ID    | % Moisture | Date<br>Analyzed |
|---------------|-----------|------------|------------------|
| SB-09-25-28   | 09-059-52 | 21         | 9-18-24          |
| SB-10-16-19   | 09-059-53 | 30         | 9-12-24          |
| SB-10-25-28   | 09-059-56 | 17         | 9-18-24          |
| SB-07-16-19   | 09-059-57 | 34         | 9-12-24          |
| SB-07-16-19-D | 09-059-58 | 28         | 9-12-24          |
| SB-07-25-28   | 09-059-61 | 22         | 9-18-24          |
| SB-06R-8-10   | 09-059-63 | 15         | 9-12-24          |
| SB-06R-12-14  | 09-059-64 | 24         | 9-12-24          |



### **Data Qualifiers and Abbreviations**

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical .
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit RPD - Relative Percent Difference



### **Am Test Inc.** 13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664



Professional Analytical Services

October 11, 2024

### **David Baumeister**

www.amtestlab.com

14648 NE 95th ST Redmond, WA 98052

Project: Onsite (Chem)

**Project Number:** COB-Riverside Task 5 **Project Manager:** David Baumeister

Aavon y J

RE: Onsite (Chem)

Enclosed are the results of analyses for samples received by our laboratory on 9/9/2024. Please feel free to contact me with any questions or considerations regarding this report.

Sincerely,

**Aaron Young** 

President

13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com ANALYSIS REPORT

Professional Analytical Services

**Date Received:** 09/09/24 **Date Reported:** 10/11/24

### **OnSite Environmental Inc.**

14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister Project Name: Onsite (Chem) Project #: COB-Riverside Task 5

### **Reported Samples**

| Sample      | Matrix                                    | Qualifiers                                                  | Date Sampled                                                | Date Received                                                                                                                              |
|-------------|-------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| SB-06-13-16 | Solid                                     |                                                             | 09/03/2024                                                  | 09/09/2024                                                                                                                                 |
| SB-06-16-20 | Solid                                     |                                                             | 09/03/2024                                                  | 09/09/2024                                                                                                                                 |
| SB-06-32-36 | Solid                                     |                                                             | 09/03/2024                                                  | 09/09/2024                                                                                                                                 |
| SB-06-36-40 | Solid                                     |                                                             | 09/03/2024                                                  | 09/09/2024                                                                                                                                 |
|             | SB-06-13-16<br>SB-06-16-20<br>SB-06-32-36 | SB-06-13-16 Solid<br>SB-06-16-20 Solid<br>SB-06-32-36 Solid | SB-06-13-16 Solid<br>SB-06-16-20 Solid<br>SB-06-32-36 Solid | SB-06-13-16       Solid       09/03/2024         SB-06-16-20       Solid       09/03/2024         SB-06-32-36       Solid       09/03/2024 |

13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com



Professional Analytical Services

**Date Received:** 09/09/24 **Date Reported:** 10/11/24

### **OnSite Environmental Inc.**

14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister Project Name: Onsite (Chem) Project #: COB-Riverside Task 5

**AMTEST Identification Number: A24I0121-01** 

Client Identification: SB-06-13-16 Sampling Date: 09/03/24 14:40

### **Conventional Chemistry Parameters by APHA/EPA Methods**

| PARAMETER | RESULT | UNITS | Q | D.L. | METHOD        | ANALYST | DATE       |
|-----------|--------|-------|---|------|---------------|---------|------------|
| % Solids  | 84.0   | %     |   |      | SM 2540G_2011 | HV      | 10/05/2024 |

| PARAMETER                  | RESULT | UNITS | Q | D.L.  | METHOD    | ANALYST | DATE       |
|----------------------------|--------|-------|---|-------|-----------|---------|------------|
| PHI -2.25 (4.75 mm) Gravel | 28.6   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI -2.00 (4.00 mm)        | 2.80   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI -1.00 (2.00 mm)        | 10.5   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI 0.00 (1.00 mm) Sand    | 10.3   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +1.00 (0.50 mm)        | 14.0   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +2.00 (0.25 mm)        | 9.60   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +3.00 (0.125 mm)       | 2.90   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +4.00 (0.063 mm)       | 3.40   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +5.00 (0.032 mm) Silt  | 4.40   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +6.00 (0.016 mm)       | 2.00   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +7.00 (0.008 mm)       | 1.80   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +8.00 (0.004 mm)       | 3.20   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +9.00 (0.002 mm) Clay  | 2.50   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +10.0 (0.001 mm)       | 1.50   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI >10.0 (< 0.001 mm)     | 2.40   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |

13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com



Professional Analytical Services

**Date Received:** 09/09/24 **Date Reported:** 10/11/24

### **OnSite Environmental Inc.**

14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister Project Name: Onsite (Chem) Project #: COB-Riverside Task 5

**AMTEST Identification Number: A24I0121-02** 

Client Identification: SB-06-16-20 Sampling Date: 09/03/24 12:40

### **Conventional Chemistry Parameters by APHA/EPA Methods**

| PARAMETER | RESULT | UNITS | Q | D.L. | METHOD        | ANALYST | DATE       |
|-----------|--------|-------|---|------|---------------|---------|------------|
| % Solids  | 80.7   | %     |   |      | SM 2540G_2011 | HV      | 10/05/2024 |

| PARAMETER                  | RESULT | UNITS | Q | D.L.  | METHOD    | ANALYST | DATE       |
|----------------------------|--------|-------|---|-------|-----------|---------|------------|
| PHI -2.25 (4.75 mm) Gravel | ND     | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI -2.00 (4.00 mm)        | ND     | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI -1.00 (2.00 mm)        | 0.100  | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI 0.00 (1.00 mm) Sand    | 0.100  | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +1.00 (0.50 mm)        | 0.600  | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +2.00 (0.25 mm)        | 7.20   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +3.00 (0.125 mm)       | 18.6   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +4.00 (0.063 mm)       | 33.6   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +5.00 (0.032 mm) Silt  | 21.4   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +6.00 (0.016 mm)       | 8.40   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +7.00 (0.008 mm)       | 3.40   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +8.00 (0.004 mm)       | 2.10   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +9.00 (0.002 mm) Clay  | 1.60   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +10.0 (0.001 mm)       | 0.900  | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI >10.0 (< 0.001 mm)     | 2.10   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |

13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com



Professional Analytical Services

**Date Received:** 09/09/24 **Date Reported:** 10/11/24

### **OnSite Environmental Inc.**

14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister Project Name: Onsite (Chem) Project #: COB-Riverside Task 5

**AMTEST Identification Number: A24I0121-03** 

Client Identification: SB-06-32-36 Sampling Date: 09/03/24 13:18

### **Conventional Chemistry Parameters by APHA/EPA Methods**

| PARAMETER | RESULT | UNITS | Q | D.L. | METHOD        | ANALYST | DATE       |
|-----------|--------|-------|---|------|---------------|---------|------------|
| % Solids  | 82.4   | %     |   |      | SM 2540G_2011 | HV      | 10/05/2024 |

| PARAMETER                  | RESULT | UNITS | Q | D.L.  | METHOD    | ANALYST | DATE       |
|----------------------------|--------|-------|---|-------|-----------|---------|------------|
| PHI -2.25 (4.75 mm) Gravel | ND     | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI -2.00 (4.00 mm)        | 0.100  | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI -1.00 (2.00 mm)        | ND     | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI 0.00 (1.00 mm) Sand    | ND     | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +1.00 (0.50 mm)        | 0.200  | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +2.00 (0.25 mm)        | 22.4   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +3.00 (0.125 mm)       | 24.9   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +4.00 (0.063 mm)       | 21.6   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +5.00 (0.032 mm) Silt  | 18.3   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +6.00 (0.016 mm)       | 4.40   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +7.00 (0.008 mm)       | 2.60   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +8.00 (0.004 mm)       | 1.60   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +9.00 (0.002 mm) Clay  | 1.10   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +10.0 (0.001 mm)       | 0.600  | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI >10.0 (< 0.001 mm)     | 2.20   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |

13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com



Professional Analytical Services

Date Received: 09/09/24

Date Reported: 10/11/24

### **OnSite Environmental Inc.**

14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister Project Name: Onsite (Chem) Project #: COB-Riverside Task 5

**AMTEST Identification Number: A24I0121-04** 

Client Identification: SB-06-36-40 Sampling Date: 09/03/24 13:28

### **Conventional Chemistry Parameters by APHA/EPA Methods**

| PARAMETER | RESULT | UNITS | Q | D.L. | METHOD        | ANALYST | DATE       |
|-----------|--------|-------|---|------|---------------|---------|------------|
| % Solids  | 77.5   | %     |   |      | SM 2540G_2011 | HV      | 10/05/2024 |

| PARAMETER                  | RESULT | UNITS | Q | D.L.  | METHOD    | ANALYST | DATE       |
|----------------------------|--------|-------|---|-------|-----------|---------|------------|
| PHI -2.25 (4.75 mm) Gravel | ND     | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI -2.00 (4.00 mm)        | 0.100  | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI -1.00 (2.00 mm)        | 0.100  | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI 0.00 (1.00 mm) Sand    | 0.100  | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +1.00 (0.50 mm)        | 0.100  | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +2.00 (0.25 mm)        | 2.60   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +3.00 (0.125 mm)       | 17.5   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +4.00 (0.063 mm)       | 27.2   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +5.00 (0.032 mm) Silt  | 33.1   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +6.00 (0.016 mm)       | 7.70   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +7.00 (0.008 mm)       | 3.70   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +8.00 (0.004 mm)       | 2.70   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +9.00 (0.002 mm) Clay  | 1.90   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI +10.0 (0.001 mm)       | 1.00   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |
| PHI >10.0 (< 0.001 mm)     | 2.20   | %     |   | 0.100 | ASTM D422 | HV      | 10/07/2024 |

13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com ANALYSIS REPORT

Professional Analytical Services

**Date Received:** 09/09/24 **Date Reported:** 10/11/24

### **OnSite Environmental Inc.**

14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister Project Name: Onsite (Chem) Project #: COB-Riverside Task 5

### **Quality Control**

### **Conventional Chemistry Parameters by APHA/EPA Methods**

| Analista                     | Result | Qual      | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit |
|------------------------------|--------|-----------|--------------------|-------|----------------|------------------|---------|----------------|-----|--------------|
| Analyte                      | Result | Quai      | Limit              | Units | Level          | Result           | %KEC    | Limits         | KPD | Limit        |
| Batch: BBJ0180 - No Prep - W | C Soil |           |                    |       |                |                  |         |                |     |              |
| Duplicate (BBJ0180-DUP1)     |        | Source: A | 24I0121-03         |       | Prepared 8     | & Analyzed: 1    | 0/05/24 |                |     |              |
| % Solids                     | 82.3   |           |                    | %     |                | 82.4             |         |                | 0.1 | 20           |
| Duplicate (BBJ0180-DUP2)     |        | Source: A | 2410121-03         |       | Prepared 8     | & Analyzed: 1    | 0/05/24 |                |     |              |
| % Solids                     | 82.6   |           |                    | %     |                | 82.4             |         |                | 0.2 | 20           |
| Duplicate (BBJ0180-DUP3)     |        | Source: A | 2410279-04         |       | Prepared 8     | & Analyzed: 1    | 0/05/24 |                |     |              |
| % Solids                     | 45.4   |           |                    | %     |                | 46.8             |         |                | 3   | 20           |
| Duplicate (BBJ0180-DUP4)     |        | Source: A | 2410279-04         |       | Prepared 8     | & Analyzed: 1    | 0/05/24 |                |     |              |
| % Solids                     | 47.1   |           |                    | %     |                | 46.8             |         |                | 0.6 | 20           |
|                              |        |           |                    |       |                |                  |         |                |     |              |

### **Quality Control**

| Analyte                     | Result | -              | orting<br>mit Units | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit |
|-----------------------------|--------|----------------|---------------------|----------------|------------------|---------|----------------|-----|--------------|
| Batch: BBJ0181 - Hydrometer | /Sieve |                |                     |                |                  |         |                |     |              |
| Duplicate (BBJ0181-DUP1)    |        | Source: A24I01 | 21-03               | Prepared 8     | k Analyzed: 1    | 0/07/24 |                |     |              |
| PHI +1.00 (0.50 mm)         | 0.200  | 0.1            | 00 %                |                | 0.200            |         |                | 0   | 200          |
| PHI +10.0 (0.001 mm)        | 0.900  | 0.1            | 00 %                |                | 0.600            |         |                | 40  | 200          |
| PHI +2.00 (0.25 mm)         | 16.1   | 0.1            | 00 %                |                | 22.4             |         |                | 33  | 200          |
| PHI +3.00 (0.125 mm)        | 20.5   | 0.1            | 00 %                |                | 24.9             |         |                | 19  | 200          |
| PHI +4.00 (0.063 mm)        | 32.3   | 0.1            | 00 %                |                | 21.6             |         |                | 40  | 200          |
| PHI +5.00 (0.032 mm) Silt   | 18.0   | 0.1            | 00 %                |                | 18.3             |         |                | 2   | 200          |
| PHI +6.00 (0.016 mm)        | 4.90   | 0.1            | 00 %                |                | 4.40             |         |                | 11  | 200          |
| PHI +7.00 (0.008 mm)        | 2.50   | 0.1            | 00 %                |                | 2.60             |         |                | 4   | 200          |
| PHI +8.00 (0.004 mm)        | 1.60   | 0.1            | 00 %                |                | 1.60             |         |                | 0   | 200          |
| PHI +9.00 (0.002 mm) Clay   | 1.50   | 0.1            | 00 %                |                | 1.10             |         |                | 31  | 200          |
| PHI >10.0 (< 0.001 mm)      | 1.50   | 0.1            | 00 %                |                | 2.20             |         |                | 38  | 200          |
| PHI 0.00 (1.00 mm) Sand     | ND     | 0.1            | 00 %                |                | ND               |         |                |     | 200          |
| PHI -1.00 (2.00 mm)         | ND     | 0.1            | 00 %                |                | ND               |         |                |     | 200          |
| PHI -2.00 (4.00 mm)         | ND     | 0.1            | 00 %                |                | 0.100            |         |                | 200 | 200          |
| PHI -2.25 (4.75 mm) Gravel  | ND     | 0.1            | 00 %                |                | ND               |         |                |     | 200          |

13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com ANALYSIS REPORT

Professional Analytical Services

**Date Received:** 09/09/24 **Date Reported:** 10/11/24

### OnSite Environmental Inc.

14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister Project Name: Onsite (Chem) Project #: COB-Riverside Task 5

### **Quality Control**

(Continued)

### Full Grain Size (Hydrometer/Sieve) (Continued)

|                                                                                                                                                                                                                                                                                                                               |                                                                                             | Reporting                                                                                       |                                 | Spike         | Source                                                                                      |              | %REC   |                                                       | RPD                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------|---------------|---------------------------------------------------------------------------------------------|--------------|--------|-------------------------------------------------------|--------------------------------------------------------------------|
| Analyte                                                                                                                                                                                                                                                                                                                       | Result                                                                                      | Qual Limit                                                                                      | Units                           | Level         | Result                                                                                      | %REC         | Limits | RPD                                                   | Limit                                                              |
| atch: BBJ0181 - Hydrometer/                                                                                                                                                                                                                                                                                                   | Sieve (Conti                                                                                | nued)                                                                                           |                                 |               |                                                                                             |              |        |                                                       |                                                                    |
| uplicate (BBJ0181-DUP2)                                                                                                                                                                                                                                                                                                       |                                                                                             | Source: A24I0121-03                                                                             |                                 | Prepared 8    | & Analyzed: 1                                                                               | 0/07/24      |        |                                                       |                                                                    |
| PHI +1.00 (0.50 mm)                                                                                                                                                                                                                                                                                                           | 0.200                                                                                       | 0.100                                                                                           | %                               |               | 0.200                                                                                       |              |        | 0                                                     | 200                                                                |
| PHI +10.0 (0.001 mm)                                                                                                                                                                                                                                                                                                          | 0.600                                                                                       | 0.100                                                                                           | %                               |               | 0.600                                                                                       |              |        | 0                                                     | 200                                                                |
| PHI +2.00 (0.25 mm)                                                                                                                                                                                                                                                                                                           | 14.6                                                                                        | 0.100                                                                                           | %                               |               | 22.4                                                                                        |              |        | 42                                                    | 200                                                                |
| PHI +3.00 (0.125 mm)                                                                                                                                                                                                                                                                                                          | 13.2                                                                                        | 0.100                                                                                           | %                               |               | 24.9                                                                                        |              |        | 61                                                    | 200                                                                |
| PHI +4.00 (0.063 mm)                                                                                                                                                                                                                                                                                                          | 26.6                                                                                        | 0.100                                                                                           | %                               |               | 21.6                                                                                        |              |        | 21                                                    | 200                                                                |
| PHI +5.00 (0.032 mm) Silt                                                                                                                                                                                                                                                                                                     | 32.5                                                                                        | 0.100                                                                                           | %                               |               | 18.3                                                                                        |              |        | 56                                                    | 200                                                                |
| PHI +6.00 (0.016 mm)                                                                                                                                                                                                                                                                                                          | 4.90                                                                                        | 0.100                                                                                           | %                               |               | 4.40                                                                                        |              |        | 11                                                    | 200                                                                |
| PHI +7.00 (0.008 mm)                                                                                                                                                                                                                                                                                                          | 2.50                                                                                        | 0.100                                                                                           | %                               |               | 2.60                                                                                        |              |        | 4                                                     | 200                                                                |
| PHI +8.00 (0.004 mm)                                                                                                                                                                                                                                                                                                          | 1.60                                                                                        | 0.100                                                                                           | %                               |               | 1.60                                                                                        |              |        | 0                                                     | 200                                                                |
| PHI +9.00 (0.002 mm) Clay                                                                                                                                                                                                                                                                                                     | 1.10                                                                                        | 0.100                                                                                           | %                               |               | 1.10                                                                                        |              |        | 0                                                     | 200                                                                |
| PHI >10.0 (< 0.001 mm)                                                                                                                                                                                                                                                                                                        | 2.20                                                                                        | 0.100                                                                                           | %                               |               | 2.20                                                                                        |              |        | 0                                                     | 200                                                                |
| PHI 0.00 (1.00 mm) Sand                                                                                                                                                                                                                                                                                                       | ND                                                                                          | 0.100                                                                                           | %                               |               | ND                                                                                          |              |        |                                                       | 200                                                                |
| PHI -1.00 (2.00 mm)                                                                                                                                                                                                                                                                                                           | ND                                                                                          | 0.100                                                                                           | %                               |               | ND                                                                                          |              |        |                                                       | 200                                                                |
| PHI -2.00 (4.00 mm)                                                                                                                                                                                                                                                                                                           | ND                                                                                          | 0.100                                                                                           | %                               |               | 0.100                                                                                       |              |        | 200                                                   | 200                                                                |
| PHI -2.25 (4.75 mm) Gravel                                                                                                                                                                                                                                                                                                    | ND                                                                                          | 0.100                                                                                           | %                               |               | ND                                                                                          |              |        |                                                       | 200                                                                |
| atch: BBJ0202 - Hydrometer/                                                                                                                                                                                                                                                                                                   | Sieve                                                                                       |                                                                                                 |                                 |               |                                                                                             |              |        |                                                       |                                                                    |
| •                                                                                                                                                                                                                                                                                                                             | Sieve                                                                                       | Source: A24I0279-04                                                                             | Pr                              | repared: 10/0 | 6/24 Analyze                                                                                | ed: 10/07/24 |        |                                                       |                                                                    |
| uplicate (BBJ0202-DUP1)                                                                                                                                                                                                                                                                                                       | <b>Sieve</b><br>0.100                                                                       | Source: A24I0279-04<br>0.100                                                                    | Pr<br>%                         | repared: 10/0 | 6/24 Analyze                                                                                | ed: 10/07/24 |        | 67                                                    | 200                                                                |
| puplicate (BBJ0202-DUP1) PHI +1.00 (0.50 mm)                                                                                                                                                                                                                                                                                  |                                                                                             |                                                                                                 |                                 | repared: 10/0 |                                                                                             | ed: 10/07/24 |        | 67<br>2                                               | 200<br>200                                                         |
| uplicate (BBJ0202-DUP1) PHI +1.00 (0.50 mm) PHI +10.0 (0.001 mm)                                                                                                                                                                                                                                                              | 0.100                                                                                       | 0.100                                                                                           | %                               | repared: 10/0 | 0.200                                                                                       | ed: 10/07/24 |        |                                                       |                                                                    |
| uplicate (BBJ0202-DUP1) PHI +1.00 (0.50 mm) PHI +10.0 (0.001 mm) PHI +2.00 (0.25 mm)                                                                                                                                                                                                                                          | 0.100<br>5.60                                                                               | 0.100<br>0.100                                                                                  | %<br>%                          | repared: 10/0 | 0.200<br>5.50                                                                               | ed: 10/07/24 |        | 2                                                     | 200                                                                |
| uplicate (BBJ0202-DUP1)  PHI +1.00 (0.50 mm)  PHI +10.0 (0.001 mm)  PHI +2.00 (0.25 mm)  PHI +3.00 (0.125 mm)                                                                                                                                                                                                                 | 0.100<br>5.60<br>ND                                                                         | 0.100<br>0.100<br>0.100                                                                         | %<br>%<br>%                     | epared: 10/0  | 0.200<br>5.50<br>0.100                                                                      | ed: 10/07/24 |        | 2<br>200                                              | 200<br>200                                                         |
| PHI +1.00 (0.50 mm) PHI +2.00 (0.25 mm) PHI +3.00 (0.125 mm) PHI +4.00 (0.063 mm)                                                                                                                                                                                                                                             | 0.100<br>5.60<br>ND<br>0.100                                                                | 0.100<br>0.100<br>0.100<br>0.100                                                                | %<br>%<br>%                     | epared: 10/0  | 0.200<br>5.50<br>0.100<br>ND                                                                | ed: 10/07/24 |        | 2<br>200<br>200                                       | 200<br>200<br>200                                                  |
| PHI +1.00 (0.50 mm) PHI +1.00 (0.001 mm) PHI +2.00 (0.25 mm) PHI +3.00 (0.125 mm) PHI +4.00 (0.063 mm) PHI +5.00 (0.032 mm) Silt                                                                                                                                                                                              | 0.100<br>5.60<br>ND<br>0.100<br>0.200                                                       | 0.100<br>0.100<br>0.100<br>0.100<br>0.100                                                       | %<br>%<br>%<br>%                | repared: 10/0 | 0.200<br>5.50<br>0.100<br>ND<br>0.400                                                       | ed: 10/07/24 |        | 2<br>200<br>200<br>67                                 | 200<br>200<br>200<br>200                                           |
| PHI +1.00 (0.001 mm) PHI +2.00 (0.001 mm) PHI +3.00 (0.125 mm) PHI +4.00 (0.063 mm) PHI +5.00 (0.032 mm) PHI +6.00 (0.016 mm)                                                                                                                                                                                                 | 0.100<br>5.60<br>ND<br>0.100<br>0.200<br>26.7                                               | 0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100                                              | %<br>%<br>%<br>%<br>%           | epared: 10/0  | 0.200<br>5.50<br>0.100<br>ND<br>0.400<br>26.0                                               | ed: 10/07/24 |        | 2<br>200<br>200<br>67<br>3                            | 200<br>200<br>200<br>200<br>200                                    |
| PHI +1.00 (0.001 mm) PHI +2.00 (0.25 mm) PHI +2.00 (0.25 mm) PHI +3.00 (0.125 mm) PHI +4.00 (0.063 mm) PHI +5.00 (0.032 mm) Silt PHI +6.00 (0.016 mm) PHI +7.00 (0.008 mm)                                                                                                                                                    | 0.100<br>5.60<br>ND<br>0.100<br>0.200<br>26.7<br>12.3                                       | 0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100                                              | %<br>%<br>%<br>%<br>%           | repared: 10/0 | 0.200<br>5.50<br>0.100<br>ND<br>0.400<br>26.0<br>10.5                                       | ed: 10/07/24 |        | 2<br>200<br>200<br>67<br>3<br>16                      | 200<br>200<br>200<br>200<br>200<br>200                             |
| PHI +1.00 (0.50 mm) PHI +1.00 (0.50 mm) PHI +2.00 (0.25 mm) PHI +3.00 (0.125 mm) PHI +4.00 (0.063 mm) PHI +5.00 (0.032 mm) Silt PHI +6.00 (0.016 mm) PHI +7.00 (0.008 mm) PHI +8.00 (0.004 mm)                                                                                                                                | 0.100<br>5.60<br>ND<br>0.100<br>0.200<br>26.7<br>12.3<br>15.9                               | 0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100                                     | %<br>%<br>%<br>%<br>%<br>%      | repared: 10/0 | 0.200<br>5.50<br>0.100<br>ND<br>0.400<br>26.0<br>10.5<br>17.2                               | ed: 10/07/24 |        | 2<br>200<br>200<br>67<br>3<br>16<br>8                 | 200<br>200<br>200<br>200<br>200<br>200<br>200                      |
| PHI +1.00 (0.50 mm) PHI +1.00 (0.50 mm) PHI +1.00 (0.001 mm) PHI +2.00 (0.25 mm) PHI +3.00 (0.125 mm) PHI +4.00 (0.063 mm) PHI +5.00 (0.032 mm) Silt PHI +6.00 (0.016 mm) PHI +7.00 (0.008 mm) PHI +8.00 (0.004 mm) PHI +9.00 (0.002 mm) Clay                                                                                 | 0.100<br>5.60<br>ND<br>0.100<br>0.200<br>26.7<br>12.3<br>15.9                               | 0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100                   | %<br>%<br>%<br>%<br>%<br>%      | repared: 10/0 | 0.200<br>5.50<br>0.100<br>ND<br>0.400<br>26.0<br>10.5<br>17.2                               | ed: 10/07/24 |        | 2<br>200<br>200<br>67<br>3<br>16<br>8<br>1            | 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200               |
| PHI +1.00 (0.50 mm) PHI +1.00 (0.50 mm) PHI +1.00 (0.001 mm) PHI +2.00 (0.25 mm) PHI +3.00 (0.125 mm) PHI +4.00 (0.063 mm) PHI +5.00 (0.032 mm) Silt PHI +6.00 (0.016 mm) PHI +7.00 (0.008 mm) PHI +8.00 (0.004 mm) PHI +9.00 (0.002 mm) Clay PHI >10.0 (< 0.001 mm)                                                          | 0.100<br>5.60<br>ND<br>0.100<br>0.200<br>26.7<br>12.3<br>15.9<br>17.4<br>10.9               | 0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100                   | %<br>%<br>%<br>%<br>%<br>%<br>% | repared: 10/0 | 0.200<br>5.50<br>0.100<br>ND<br>0.400<br>26.0<br>10.5<br>17.2<br>17.2                       | ed: 10/07/24 |        | 2<br>200<br>200<br>67<br>3<br>16<br>8<br>1            | 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200        |
| PHI +1.00 (0.50 mm) PHI +1.00 (0.50 mm) PHI +1.00 (0.001 mm) PHI +2.00 (0.25 mm) PHI +3.00 (0.125 mm) PHI +4.00 (0.063 mm) PHI +5.00 (0.032 mm) Silt PHI +6.00 (0.016 mm) PHI +7.00 (0.008 mm) PHI +7.00 (0.004 mm) PHI +9.00 (0.002 mm) Clay PHI >10.0 (< 0.001 mm) PHI >10.00 (1.00 mm) Sand                                | 0.100<br>5.60<br>ND<br>0.100<br>0.200<br>26.7<br>12.3<br>15.9<br>17.4<br>10.9               | 0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100 | % % % % % % % % %               | repared: 10/0 | 0.200<br>5.50<br>0.100<br>ND<br>0.400<br>26.0<br>10.5<br>17.2<br>17.2<br>10.5<br>12.5       | ed: 10/07/24 |        | 2<br>200<br>200<br>67<br>3<br>16<br>8<br>1            | 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200 |
| PHI +1.00 (0.001 mm) PHI +2.00 (0.001 mm) PHI +2.00 (0.25 mm) PHI +3.00 (0.125 mm) PHI +4.00 (0.063 mm) PHI +5.00 (0.032 mm) Silt PHI +6.00 (0.016 mm) PHI +7.00 (0.008 mm) PHI +7.00 (0.0008 mm) PHI +9.00 (0.002 mm) Clay PHI +9.00 (0.002 mm) PHI +0.00 (1.00 mm) PHI -1.00 (2.00 mm)                                      | 0.100<br>5.60<br>ND<br>0.100<br>0.200<br>26.7<br>12.3<br>15.9<br>17.4<br>10.9<br>10.6<br>ND | 0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100 | % % % % % % % % % % %           | repared: 10/0 | 0.200<br>5.50<br>0.100<br>ND<br>0.400<br>26.0<br>10.5<br>17.2<br>17.2<br>10.5<br>12.5<br>ND | ed: 10/07/24 |        | 2<br>200<br>200<br>67<br>3<br>16<br>8<br>1            | 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200 |
| PHI +1.00 (0.001 mm) PHI +2.00 (0.001 mm) PHI +2.00 (0.25 mm) PHI +3.00 (0.125 mm) PHI +4.00 (0.063 mm) PHI +5.00 (0.032 mm) PHI +5.00 (0.016 mm) PHI +6.00 (0.016 mm) PHI +7.00 (0.008 mm) PHI +7.00 (0.002 mm) PHI +9.00 (0.002 mm) Clay PHI >10.0 (<0.001 mm) PHI >10.00 (1.00 mm) PHI -2.00 (4.00 mm) PHI -2.00 (4.00 mm) | 0.100<br>5.60<br>ND<br>0.100<br>0.200<br>26.7<br>12.3<br>15.9<br>17.4<br>10.9<br>10.6<br>ND | 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100             | % % % % % % % % % % % %         | repared: 10/0 | 0.200<br>5.50<br>0.100<br>ND<br>0.400<br>26.0<br>10.5<br>17.2<br>17.2<br>10.5<br>12.5<br>ND | ed: 10/07/24 |        | 2<br>200<br>200<br>67<br>3<br>16<br>8<br>1<br>4       | 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200 |
| PHI +6.00 (0.016 mm) PHI +7.00 (0.008 mm) PHI +8.00 (0.004 mm)                                                                                                                                                                                                                                                                | 0.100<br>5.60<br>ND<br>0.100<br>0.200<br>26.7<br>12.3<br>15.9<br>17.4<br>10.9<br>10.6<br>ND | 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100       | % % % % % % % % % % % %         | repared: 10/0 | 0.200 5.50 0.100 ND 0.400 26.0 10.5 17.2 17.2 10.5 ND ND ND ND                              |              |        | 2<br>200<br>200<br>67<br>3<br>16<br>8<br>1<br>4<br>16 | 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200 |

13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com ANALYSIS REPORT

Professional Analytical Services

**Date Received:** 09/09/24 **Date Reported:** 10/11/24

**OnSite Environmental Inc.** 

14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister Project Name: Onsite (Chem) Project #: COB-Riverside Task 5

### **Quality Control**

(Continued)

### Full Grain Size (Hydrometer/Sieve) (Continued)

|                             |                | Reporting           |       | Spike        | Source       |              | %REC   |     | RPD   |
|-----------------------------|----------------|---------------------|-------|--------------|--------------|--------------|--------|-----|-------|
| Analyte                     | Result         | Qual Limit          | Units | Level        | Result       | %REC         | Limits | RPD | Limit |
| Batch: BBJ0202 - Hydrometer | /Sieve (Contin | nued)               |       |              |              |              |        |     |       |
| Duplicate (BBJ0202-DUP2)    |                | Source: A24I0279-04 | Pre   | epared: 10/0 | 6/24 Analyze | ed: 10/07/24 | +      |     |       |
| PHI +10.0 (0.001 mm)        | 5.50           | 0.100               | %     |              | 5.50         |              |        | 0   | 200   |
| PHI +2.00 (0.25 mm)         | 0.200          | 0.100               | %     |              | 0.100        |              |        | 67  | 200   |
| PHI +3.00 (0.125 mm)        | 0.200          | 0.100               | %     |              | ND           |              |        | 200 | 200   |
| PHI +4.00 (0.063 mm)        | 0.400          | 0.100               | %     |              | 0.400        |              |        | 0   | 200   |
| PHI +5.00 (0.032 mm) Silt   | 29.4           | 0.100               | %     |              | 26.0         |              |        | 12  | 200   |
| PHI +6.00 (0.016 mm)        | 10.8           | 0.100               | %     |              | 10.5         |              |        | 3   | 200   |
| PHI +7.00 (0.008 mm)        | 17.0           | 0.100               | %     |              | 17.2         |              |        | 1   | 200   |
| PHI +8.00 (0.004 mm)        | 15.6           | 0.100               | %     |              | 17.2         |              |        | 10  | 200   |
| PHI +9.00 (0.002 mm) Clay   | 10.3           | 0.100               | %     |              | 10.5         |              |        | 2   | 200   |
| PHI >10.0 (< 0.001 mm)      | 10.5           | 0.100               | %     |              | 12.5         |              |        | 17  | 200   |
| PHI 0.00 (1.00 mm) Sand     | ND             | 0.100               | %     |              | ND           |              |        |     | 200   |
| PHI -1.00 (2.00 mm)         | ND             | 0.100               | %     |              | ND           |              |        |     | 200   |
| PHI -2.00 (4.00 mm)         | ND             | 0.100               | %     |              | ND           |              |        |     | 200   |
| PHI -2.25 (4.75 mm) Gravel  | ND             | 0.100               | %     |              | ND           |              |        |     | 200   |

13600 NE 126th Place Suite C Kirkland, WA (425) 885-1664 www.amtestlab.com



Professional Analytical Services

**Date Received:** 09/09/24 **Date Reported:** 10/11/24

### **OnSite Environmental Inc.**

14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister Project Name: Onsite (Chem) Project #: COB-Riverside Task 5

### **Notes and Definitions**

| Item   | Definition                                            |
|--------|-------------------------------------------------------|
| Dry    | Sample results reported on a dry weight basis.        |
| ND     | Analyte NOT DETECTED at or above the reporting limit. |
| RPD    | Relative Percent Difference                           |
| %REC   | Percent Recovery                                      |
| Source | Sample that was matrix spiked or duplicated.          |



LTVIFORMERIAL INC.
14648 NE 95th Street, Redmond, WA 98052 · (425) 883-3881

Laboratory: AmTest Laboratories

Attention: Aaron Young 13600 NE 126th Pl Kirkland, WA 98034

Phone Number: (425) 885-1664

A24/20121

Turnaround Request

1 Day 2 Day 3 Day Standard

Other:

Laboratory Reference #: 09-059

Project Manager: David Baumeister

email: dbaumeister@onsite-env.com Project Number: COB-Riverside; Task 5

Project Name:

| Lab ID Sample Identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Date Sampled | Date Time Sampled | Matrix | # of<br>Cont. | Requested Analyses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|--------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| O   SB-06-13-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9/3/24       | 14:40             | S      | 1             | Grain Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| O2   SB-06-16-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9/3/24       | 12:40             | S      | 1             | Grain Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| O3 sB-06-32-36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9/3/24       | 13:18             | S      | -             | Grain Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| () √ SB-06-36-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9/3/24       | 13:28             | S      | -             | Grain Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                   |        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                   |        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| THE PROPERTY AND ADDRESS OF THE PROPERTY A |              |                   |        |               | THE REPORT OF THE PROPERTY OF |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                   |        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                   |        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                   |        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Сош          | Сотрапу           |        | Date          | Time Comments/Special Instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Relinguished by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OSE          | ·                 | ,      | 3/4/2×        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Received by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Amt St       |                   | 7      | 32cl \m/6/b   | 5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Relinquished by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •            | 400111111         |        |               | Report Spike Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Received by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                   |        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Relinguished by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                   |        |               | EDDs & EIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                   |        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Received by:



| Page_ |   |
|-------|---|
| _     | • |
| ~     | 1 |

| Received               | Helinquished                                | Received                                      | - Marsenhillau                               | Relinquiched Salinquiched                                                             | Relinquished Frankly Fally                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Signature 0/ OA OA OA                                                                                                                                                            | 10 53-66-20-22                                                                                                                                                                                                                                                           | 9 53-06-18-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8-98-06-16-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 53-06-14.5-16 | 6 53-06-13-145 | 5.01-3,5-10,5              | 4 58-08-25-28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 58-08-22-25                                | 2 53-08-19-22 | 1 513-08-15-16.5 | Lab ID Sample Identification                                               | Complet Collister                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Kristin Anderson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Project Name:  River State             | 185K S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Company Flotal Smaler | Phone: (425) 883-3881 • www.onsite-env.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Analytical Laboratory Testing Services  14648 NE 95th Street • Redmond, WA 98052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------|---------------------------------------------|-----------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------|------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                                             | 1 (D)                                         | ALPHO                                        | Acoust                                                                                | Fleyd Sonder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Company                                                                                                                                                                          | × 12:25 5                                                                                                                                                                                                                                                                | 522:21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12:20 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14:30 5         | 14:26 5        | 5 42:41                    | 11:46 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.271 S                                     | 11135 5       | 9/3/24 11/25 5   | Date Time<br>Sampled Sampled Matrix                                        | (other)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Standard (7 Days)                      | 2 Days 3 Days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Same Day 1 Day        | (Check One)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Turnaround Request<br>(in working days)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                        |                                             | 5797 MM16                                     | 76/24 1645                                   | 9/16/14 1625                                                                          | 16/24 1620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Date Time                                                                                                                                                                        |                                                                                                                                                                                                                                                                          | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ×               | ×              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              | ×             |                  | NWTP NWTP NWTP Volatile Haloge                                             | PH-HCIE PH-Gx/E PH-Gx PH-Gx PH-Dx (Sees 8260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CID  x/BTEX (8021 8260)  x  x (SG Clean-up )  260  d Volatiles 8260  3011 (Waters Only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Laboratory Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ackage: Standard Level | PANA 9/17/24                                | ō                                             | VSVI Chlorde                                 | *Only PCE, TCE, CIS-1, 2-DCE, trans                                                   | Send lab results to: labolata Cflydsmider.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Comments/Special Instructions                                                                                                                                                    |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                | **                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ×                                            | 7             | ×                | Semiv. (with lot PAHs & PCBs Organo Chlorin Total R Total M TCLP M HEM (c) | olatiles ow-leve 8270/SI 8082 ochlorir ophosp nated A 8CRA M MTCA M Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8270/Si<br>i PAHs)<br>M (low-<br>me Pestion<br>horus P<br>cid Hert<br>retals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M level)  cides 80 esticides bicides 8 | s 8270,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | /SIM                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        | Data Package: Standard Level III 🗆 Level IV | Data Package: Standard & Level III Deliver IV | hed Package: Standard & Level III   Level IV | ALPHA HO124 1645  Plant 645  Plant 645  Pata Package: Standard & Level III   Level IV | ALPHA | Physical Sinder 9/6/24 1623 Send lab results to:  ALPHA A/0/24 1/645 VMYI Chlo  ALPHA A/0/24 1/645 Sanded 3/10/24  Alpha A/0/24 1/645 Sanded 3/10/24  Data Package: Standard & L | Floyd 15 moles 1 me Comments/Special Instructions  Physical Send 15 moles 1/6/24 1623 Send 136 results to:  ALPHS A/6/24 1623 Send 136 results to:  ALPHS A/6/24 1623 Send 136 results to:  ALPHS A/6/24 1645  ALPHS A/6/24 1645  AMAN 1645  Data Package: Standard & L. | Signature  Company  Company  Date  Time  Comments/Special Instructions  Floyd 15 and or 9/6/24 1623 Send lab results to the se | 106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26  106-18-26 | 58-06-16-18     | 513-06-14.5-16 | 533-06-13-14.5   14:26 5 4 | \$83-06-13-14.5   14724 5 4   X   S8-06-13-14.5   14726 5 4   X   S8-06-13-14.5   14726 5 4   X   S8-06-13-14.5   14726 5 4   X   S8-06-16-18   12725 5 4   X   S8-06-18-18   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   12725   1 | 1146   5   1   1   1   1   1   1   1   1   1 | SB-08-25-25   | 11:35 5 4   X    | 53-08-19-72                                                                | Signature   Sign | Date   Package   Sample   Sa |                                        | Sample Identification   Sample   Market   Market   Sample   Market   Market   Sample   Market   Market   Market   Sample   Market   Mark | 2 Days                | Sample   S | Sample   S |



Page 2 of /

| Reviewed/Date                                                           | Received                                        | Relinquished | Received | The word of the second | MA CAN               | Received Yerman Tallino                    | 11. 90 11  | Signature                        | 20 58-06-38-40 | 19 58-06-36-38 | 18 513-06-34-36 | 17 58-06-32-34 | 16 53-06-30-32-0 | 1558-06-30-32 | 14 53-06-78-30 | 13 53-06-26-2 | 12 53-06-24-26 | 11 58-06-2224  | Lab ID Sample Identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Danielle Gallalan                                                                             | Kristin Anderson                                                   | COB-RIVEYS, L                           | Project Name 5 | Project Number | Analytical Laboratory lesting Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com |
|-------------------------------------------------------------------------|-------------------------------------------------|--------------|----------|------------------------|----------------------|--------------------------------------------|------------|----------------------------------|----------------|----------------|-----------------|----------------|------------------|---------------|----------------|---------------|----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------|----------------|----------------|----------------------------------------------------------------------------------------------------------------------------|
| Reviewed/Date                                                           |                                                 |              | \$60 I   | マナラ                    | ロスシキュ                | Floyal orna                                | 日からしている    | Company                          | 13:25 5        | 13:20 5        | 13:15 5         | [3:00 5        | 12:59 5          | 12:58 5       | 12:55 S        | S 24:21       | 1240 5         | 913124 12:30 5 | Date Time<br>Sampled Sampled Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (other)                                                                                       |                                                                    | Standard (7 Days)                       | 2 Days 3 Days  | Same Day 1 Day | (Check One)                                                                                                                |
|                                                                         |                                                 |              | I PROPER | 1/16/24 11             | 1/18/24              | 7/6/24                                     | 011 111    | Date Time                        | ٧<br>×         | 4 ×            | ×               | ×              |                  | ×             | z<br>×         | 4             | X              | ×              | NWTP<br>NWTP<br>NWTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PH-HCII<br>PH-Gx/E<br>PH-Gx                                                                   | STEX (8                                                            | 021 8                                   | 260[])         |                | Laboratory Nu                                                                                                              |
| Chromatograms with final report ☐ Electronic Data Deliverables (EDDs) ☐ | Data Package: Standard ☐ Level III ☐ Level IV ☐ |              | 1615     | 243                    | 1620 a Muly chickier | 1620 \$ Only 100,100,000,100, tomo-1,0-000 | BONACH COM | me Comments/Special Instructions |                |                |                 |                |                  |               |                |               |                |                | EDB E Semivivity like the like | PA 801 clatiles cow-leve 8270/Si 8082 cochlorir cophosp nated A CRA M MTCA M Metals colland g | Volatiles 1 (Wate 8270/S 8 PAHs) M (low- ne Pesti horus P cid Heri | ers Only) IM Level) Cides 80 Pesticides | 981<br>s 8270, | 'SIM           | Number: 09-059                                                                                                             |



| Page_ |
|-------|
| W     |
| 9     |
|       |
|       |

| Heviewed/Date                                                         | Received                                        | Relinquished | Received | Helinquished | neceived        | Relinquished Finally Sallah               | Signature                     | 30/53-03-25-28 | 15 58-63-22-25 | 28 58-03-19-22 | 27 53-03-16-19 | 26 53-03-13-16 | 25 58-05-26-28 | 24 53-05-22-25 | 23 53-05-4-22 | 22 58-05-16-19 | 2153-05-13-16    | Lab ID Sample Identification                                             | Tenrolle Gallohor                                                                    | Kristin Anderson                                                   | COR-RIVEY STORE                        | Took 5         | Floydishder Project Number | Company: Phone: (425) 883-3881 • www.onsite-env.com | 14648 NE 95th Street • Redmond, WA 98052 |
|-----------------------------------------------------------------------|-------------------------------------------------|--------------|----------|--------------|-----------------|-------------------------------------------|-------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|---------------|----------------|------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------|----------------|----------------------------|-----------------------------------------------------|------------------------------------------|
| Reviewed/Date                                                         | *                                               |              | 2000     | ALPHA        | ALPHA           | Hoydlander                                | Company                       | V 16:35 S 4    | 16:30 5 4      | 16:22 8 4      | 16:16 5 4      | 16:10 5 4      | 15:20 5 4      | 6715 5 4       | 15:10 5 4     | 15:05 5 4      | 9/3/24 14:55 5 4 | Date Time<br>Sampled Sampled Matrix                                      | (other)                                                                              | ontaine                                                            | Standard (7 Days)                      | 2 Days 3 Days  | Same Day 1 Day             | (Check One)                                         | (in working days)                        |
|                                                                       |                                                 |              | S197 MPM | 3/6/24/1645  | 9/16/24 1620    | 9/6/24 1620                               | Date Time                     | <b>(B)</b>     | ×              | ×              | ×              | ×              | 8              | ×              | ×             | ×              | ×                | NWTP NWTP NWTP Volatile                                                  | PH-HCIP<br>PH-Gx/E<br>PH-Gx<br>PH-Dx (does 8260<br>enated                            | SG Clear                                                           | 021 8                                  | )              |                            |                                                     | Laboratory Number:                       |
| Chromatograms with final report   Electronic Data Deliverables (EDDs) | Data Package: Standard ☐ Level III ☐ Level IV ☐ |              |          |              | + Vinyl Chlonde | GONLY PUE, TCE, US-1,2-DCE, Horrs 1,2-DCE | Comments/Special Instructions | ×.             | ×              |                |                | ×              | X 23 X         | ×              |               |                | ×                | Semive (with to PAHs & PCBs Organo Organo Chlorin Total R Total M TCLP I | olatiles ow-leve 8270/Si 8082 ochlorir ophosp nated A RCRA M MTCA M Metals oil and g | 8270/Sid PAHs) If PAHs) M (Iow- ne Pestion horus P cid Hert letals | IM<br>cides 80<br>esticides<br>bicides | 081<br>s 8270/ | 'SIM                       |                                                     | 09-050                                   |



Page 4 of

| naviawed/ Date                      |          | Received | Relinquished | Received                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Relinquished | TOWNSON DEVINED | Booking Helinquished Termil Atellia | I W W W                       | 40 GWB-04-15-20 | 1       | ,        | 37 GMB-03-15-20 | 36 SB-11-21-73 |       | 34 50-04-22-25 | 33 68-04-19-22 | 32 5804-16-19 | 31 58-04-13-16 | Lab ID Sample Identification | Danielle Crallahor | Kristin Anderson | COB-Rivers, L     | Project Name: | Project Number: 1 Snider | Company:    | Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (495) 883, 3881 |
|-------------------------------------|----------|----------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|-------------------------------------|-------------------------------|-----------------|---------|----------|-----------------|----------------|-------|----------------|----------------|---------------|----------------|------------------------------|--------------------|------------------|-------------------|---------------|--------------------------|-------------|--------------------------------------------------------------------------------------------------------|
|                                     |          |          |              | The state of the s |              |                 |                                     |                               | K-              |         |          |                 |                |       |                |                |               | 421418         | Date<br>Sampled              |                    |                  | ×                 |               |                          |             |                                                                                                        |
| Reviewed/Date                       |          |          | S. C.        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ALPHI        | M.R.            | Floyd 15moder                       | Company                       | 15:05 E         | 13:45 6 | 17:20 C  | 0 0/:11         | 1000           | 03:55 | 08:50          | 08:45          | 08:35         | 4 08:30        | ed Sampled                   | (other)            |                  | Standard (7 Days) | 2 Days        | Same Day                 | (Check One) | Turnaround Reques<br>(in working days)                                                                 |
|                                     |          |          | ľ            | []                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,            | 17              | 2 der                               |                               | GW 3            | aw 3    | GW 3     | GW 3            | 8 4            | S     | 5              | 5              | 5             | 5              | Matrix                       |                    | 120115011        |                   | 3 Days        | 1 Day                    |             | ) ist                                                                                                  |
|                                     |          |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                 | ,                                   |                               | 5               | 3       | 55       | 5               |                | +     | 7              | 上              | 7             | 7              |                              | 31.771.70          | ontaine          | rs                |               |                          |             | ## Date:                                                                                               |
|                                     | _        | +        |              | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . ^          | _               | 9                                   | 0                             |                 |         |          |                 |                |       |                |                |               |                |                              | H-HCIE             |                  |                   |               |                          |             | La                                                                                                     |
|                                     |          |          | 100          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1            | 1/2             | 161                                 | Date                          |                 |         |          |                 |                |       |                |                |               |                |                              |                    | TEX (80          | 021 8             | 260[])        |                          |             | boi                                                                                                    |
|                                     |          |          | 8            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6/2          | 2               | 2                                   |                               |                 |         |          |                 |                |       |                |                |               |                | NWTP                         |                    |                  |                   |               |                          |             | Laboratory                                                                                             |
|                                     |          | 1        | 12           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E T          | 1               |                                     |                               |                 |         |          |                 |                | _     |                |                |               |                | NWTPI                        | H-Dx (S            | G Clea           | n-up [])          |               |                          |             | Ž                                                                                                      |
|                                     |          |          | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7            | 2               | 0                                   | Time                          | $\times$        | X       | $\times$ | $\times$        | $\times$       | 8     | $\times$       | $\times$       | $\times$      | $\times$       | Volatile                     | s 8260             | *                |                   |               |                          |             | N N                                                                                                    |
|                                     |          |          | 0            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2            | 620             | 62                                  |                               |                 |         |          |                 |                |       |                |                |               |                | Haloge                       | nated \            | /olatiles        | 8260              |               |                          |             | Number:                                                                                                |
|                                     |          |          | 2            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1            | 0               | 3                                   |                               |                 |         |          |                 |                |       |                |                |               |                | EDB E                        | PA 8011            | (Water           | 's Only)          |               |                          |             | 9                                                                                                      |
| Chro                                | Data     |          |              | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                 | A                                   | Cor                           |                 |         |          |                 |                |       |                |                |               |                | Semivo<br>(with lo           |                    | B270/SII         | М                 |               |                          | 7           |                                                                                                        |
| mato                                | Pac      |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4            | _               | 02/4                                | nmen                          |                 |         |          |                 |                |       |                |                |               |                | -                            | -                  | M (low-l         | evel)             |               |                          |             | 9                                                                                                      |
| gran                                | Package: |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7            |                 |                                     | ts/Sp                         |                 |         |          |                 |                |       |                |                |               |                | PCBs 8                       | 3082               |                  |                   |               |                          |             | 0                                                                                                      |
| JS Wi                               |          |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z            |                 | C                                   | ecial                         |                 |         |          |                 |                |       |                |                |               |                | Organo                       | chlorin            | e Pestic         | ides 80           | 81            |                          |             | 0                                                                                                      |
| th fin                              | Standard |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2            | Ĭ               | m                                   | Instr                         |                 |         |          |                 |                |       |                |                |               |                | Organo                       | phosph             | orus Pe          | esticide          | s 8270,       | /SIM                     | 1           | CT                                                                                                     |
| al reg                              | a        |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E            | )               | -                                   | Comments/Special Instructions |                 |         |          |                 |                |       |                |                |               |                | Chlorin                      | ated Ac            | id Herb          | icides 8          | 151           |                          | 1           |                                                                                                        |
| Chromatograms with final report     | Level    |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 303-1,2-DCD  | 'n              | PICE, TCE,                          | Su                            |                 |         |          |                 |                |       |                |                |               |                | Total R                      | CRA Me             | etals            |                   |               |                          | 1           |                                                                                                        |
|                                     | Ve/ Ⅲ    |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                 |                                     |                               |                 |         |          |                 |                |       |                |                |               |                | Total M                      | TCA Me             | etals            |                   |               |                          | 1           |                                                                                                        |
| ctron                               |          |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4            | 5               | 17                                  |                               |                 |         | $\neg$   |                 | T              | T     |                |                |               |                | TCLP N                       | 1etals             |                  |                   |               |                          | 1           |                                                                                                        |
| ic Dat                              | Level    | 1        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14           | <u> </u>        | 5,7                                 |                               |                 |         |          |                 |                |       |                |                |               |                | HEM (o                       | l and g            | rease) 1         | 664               |               |                          | 1           |                                                                                                        |
| Electronic Data Deliverables (EDDs) |          |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a risk come  | 1               | 075-1,2,-045                        |                               |                 |         |          | 4               | -              | X     | ×              |                |               | X              | Hole                         | d                  |                  |                   |               |                          |             |                                                                                                        |
| viac (FI                            |          |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8            | 0               | וח                                  |                               |                 |         |          |                 |                |       | 1              | 1              | $\dashv$      |                |                              |                    |                  |                   |               |                          |             |                                                                                                        |
| JOS)                                |          |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (            |                 |                                     |                               |                 |         |          |                 |                |       |                |                |               |                |                              |                    |                  |                   |               |                          |             |                                                                                                        |
|                                     |          | 1        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                 | - 4                                 | CHARGE.                       |                 |         |          |                 | 1.3            | (D)   |                | -              | ×             |                | 6 Moint                      | 2.0225             |                  |                   |               |                          | 71          | - 1                                                                                                    |



Page 5 of 7

| restrained begins                                                     | Reviewed/Data                                | Received | Reinquished | Received | Casta Oni | Relinquished     | Received          | Relinquished Frankle Fully | Signature                     | \$0 53-09-19-22 | 49 53-09-16-19 | 18 GWB-07-35-40   | 4) GWB-08-15-25 | 16 (4MB-06-25-30 | 15 GWB-06-20-25 | 44 GWB-05-25-30 | 43 GWB-05-20-25   | 1                  | 41 CIMB-04-20-25  | Lab ID Sample Identification                                                                               | Dantile Callalar                                                                | Krishn Anduson                                                       | OB-RIVEYSTOL                          | Took S        | Floyd Sonder Project Number: | Company:    | Niayuear Laboratory lesting Services 14648 NE 95th Street - Redmond, WA 98052 |
|-----------------------------------------------------------------------|----------------------------------------------|----------|-------------|----------|-----------|------------------|-------------------|----------------------------|-------------------------------|-----------------|----------------|-------------------|-----------------|------------------|-----------------|-----------------|-------------------|--------------------|-------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------|---------------|------------------------------|-------------|-------------------------------------------------------------------------------|
| Reviewed/Date                                                         |                                              |          |             | 1 OSB    | PHOTE     | 1747             | D. DILA           | Floydlanider               | Company                       | T 11:20 5 H     | 11:10 5 4      | 9/6/24 11:50 GW 9 | x 16:45 GW 3    | 15:30 GW 3       | 14:35 GW 3      | 13:10 GW 3      | 915124 12:35 GW 3 | 9/11/24 16:15 GW 3 | 914/24 15:40 GW 3 | Date Time Sampled Matrix                                                                                   | (other)                                                                         | ntaine                                                               | Standard (7 Days)                     | 2 Days 3 Days | Same Day 1 Day               | (Check One) | Turnaround Request (in working days)                                          |
|                                                                       |                                              |          | 1,131       | 2/14/164 | 2431 8496 | (16/24,0%)       | 2                 | 0227 429/2                 | Date Time                     | X               | ×              | ×                 | X               | ×                | ×               | ×.              | X                 | ×.                 | ×                 | NWTPH<br>NWTPH<br>NWTPH<br>Volatile<br>Haloger                                                             | H-Gx/B<br>H-Gx<br>H-Dx (S<br>s 8260)<br>mated V                                 | G Clear                                                              | n-up □)                               | 260[])        |                              |             | Laboratory Number:                                                            |
| Chromatograms with final report   Electronic Data Deliverables (EDDs) | Data Package: Standard   Level      Level  V |          | -d          |          |           | + Vinyl Chloride | 1 0112 - 05, 105, | 1                          | Comments/Special Instructions | ×               |                | ×                 |                 |                  |                 |                 |                   |                    |                   | Semivo<br>(with loo<br>PAHs 8:<br>PCBs 8<br>Organo<br>Organo<br>Chlorina<br>Total RC<br>Total MT<br>TCLP M | latiles 8 w-level 270/SIN 082 chlorine choophosphe ated Aci CRA Me etals and gr | 270/SIM<br>PAHs)<br>If (low-le<br>Pesticionus Pe<br>id Herbi<br>tals | vides 800<br>sticides 800<br>icides 8 | 8270/         | SIM                          | 2           | " 09-0x0                                                                      |

|                                         |                                        |                    | THE PERSON |  |
|-----------------------------------------|----------------------------------------|--------------------|------------|--|
| 14648 NE 95th Street · Redmond, WA 9805 | Analytical Laboratory Testing Services | Environmental Inc. | Unvice     |  |

| Page |   |
|------|---|
| 0    | \ |
| of.  |   |
| -    |   |

| Reviewed/Date                       | Received      | Relinquished | Received | Relinquished | Received       | Relinquished Fronth Fully Co   | Signature                     | 60 53-07-22-25 | 59 5B-07-19-2B | S8 53-07-16-19-D | 57 58-07-16-19 | \$6.52-10-25-28 | \$\$ 58-10-22-25 | Sy 58-10-19-22 | 53,68-10-16-19 | 52,58-09-25-28 | 51 58-09-22-25 | Lab ID Sample Identification | Thriste alliker | Kristin Anderson   | COB-RIVESTER      | 1825    | Floyd 15nrder | Company: Phone: (42b) 883-3881 • www.onsite-env.com | Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 |
|-------------------------------------|---------------|--------------|----------|--------------|----------------|--------------------------------|-------------------------------|----------------|----------------|------------------|----------------|-----------------|------------------|----------------|----------------|----------------|----------------|------------------------------|-----------------|--------------------|-------------------|---------|---------------|-----------------------------------------------------|---------------------------------------------------------------------------------|
| 4853                                |               |              | 1        |              |                | T                              | Co                            |                |                |                  |                |                 |                  |                |                |                | 45/9/18        | Date<br>Sampled              | [               | ]                  | X Stand           | 2 Days  | Same Day      |                                                     | Turr<br>(in                                                                     |
| Reviewed/Date                       |               | (            | 9        | AL AH        | SLATI          | Toyd Ismolen                   | Company                       | 14:20          | 14:15          | 14:30            | OLHI           | 12:25           | 12:15            | 12:10          | 12:05          | 10:55          | 11:25          | Time<br>Sampled              | (other)         |                    | Standard (7 Days) | s       | Day [         | (Check One)                                         | Turnaround Request<br>(in working days)                                         |
| e                                   |               | (            | 12       | ۵            | A              | moder                          |                               | 5              | 5              | 5                | 5              | 5               | 5                | 2              | 5              | S              | S              | Matrix                       |                 |                    |                   | 3 Days  | 1 Day         |                                                     | uest<br>ys)                                                                     |
|                                     |               |              |          |              |                | \                              |                               | エ              | 4              | 7                | 4              | 7               | 7                | 4              | 4              | エ              | 7              | All lands                    |                 | ontaine            | ers               |         |               |                                                     |                                                                                 |
|                                     |               |              | ^        |              |                |                                |                               |                |                |                  |                |                 |                  |                |                |                |                |                              | H-HCII          |                    |                   |         |               |                                                     | La                                                                              |
|                                     |               | 6            | 1/6      | 10           | 2              | 9/6/                           | Date                          |                |                |                  |                |                 |                  |                |                |                |                |                              | 11100 - 1800    | BTEX (8)           | 021 8             | 260 🗌 ) |               |                                                     | bor                                                                             |
|                                     |               | 0.36         | 7        | 6/2          | 5              | 3                              | 3                             |                |                |                  |                |                 |                  |                |                |                |                | NWTP                         | 28 (2003)       | 20.01              |                   |         |               |                                                     | Laboratory                                                                      |
|                                     |               |              | 2        | \$           | 1              |                                |                               |                |                | . ,              |                |                 |                  | 2.6            |                |                |                |                              |                 |                    | in-up 🔲           | 65      |               | 4                                                   |                                                                                 |
|                                     |               | 6            | 7        | 164          | 1620           | 162                            | Time                          | ×              | $\overline{}$  | X                | $\triangle$    | KD.             | $^{\times}$      | X              | $\preceq$      | XX             | ×              |                              |                 | Volatiles          | s 8260            |         |               | -1                                                  | Number:                                                                         |
|                                     |               | C            | 2        | 7            | 0              | S                              |                               |                |                |                  |                |                 |                  |                |                |                | _              | EDB E                        | PA 801          | 1 (Wate            | rs Only)          |         |               | -                                                   | ber                                                                             |
| 유                                   | Da            |              | \        |              |                | A                              | 00                            |                |                |                  |                |                 |                  |                |                |                |                |                              |                 | 8270/S             | IM                |         |               | -                                                   |                                                                                 |
| romar                               | ta Pa         |              |          |              |                | Ó                              | mme                           |                |                |                  |                |                 |                  |                |                |                |                |                              |                 | I PAHs)<br>M (low- | level)            |         |               |                                                     | 9                                                                               |
| Chromatograms with final report     | Data Package: |              |          |              | 3              | Only PCE,                      | Comments/Special Instructions |                |                |                  |                |                 |                  |                |                |                |                | PCBs                         | 8082            |                    |                   |         |               |                                                     |                                                                                 |
| ns wit                              | 100000        |              |          |              | ~              | PCE                            | ecial                         |                |                |                  |                |                 |                  |                |                |                |                | Organo                       | ochlorin        | e Pesti            | cides 80          | 181     |               | 4                                                   | 571                                                                             |
| h fina                              | Standard      |              |          |              | Ch             | 77                             | Instru                        |                |                |                  |                |                 |                  |                |                |                |                | Organo                       | phosp           | horus P            | esticide          | s 8270  | /SIM          | ¢                                                   | 0                                                                               |
| repo                                |               |              |          |              | Cr             | in                             | ctions                        |                |                |                  |                |                 |                  |                |                |                |                |                              |                 |                    | oicides (         | 8151    |               |                                                     |                                                                                 |
|                                     | Level         |              |          |              | trmyl Chlorida | 673                            |                               |                |                |                  |                |                 |                  |                |                |                | -              | Total R                      |                 |                    |                   |         |               |                                                     |                                                                                 |
| Electi                              | =             |              |          |              | 1              | 21-                            | State of the last             |                | _              | -                |                |                 |                  | _              | -              | _              |                | Total M                      |                 | letais             |                   |         |               | 4                                                   |                                                                                 |
| onic D                              |               |              |          |              |                | Da                             |                               |                |                |                  |                | _               |                  |                | -              |                | -              | HEM (c                       |                 | grease)            | 1664              |         |               | _                                                   | 7                                                                               |
| Electronic Data Deliverables (EDDs) | Level IV      |              |          |              |                | TCE, CB-1,2-DOE, Hroms-1,2-DUE | NAME OF                       | X              | X              |                  |                | X               | X                | X              |                | X              | ×              | Holo                         |                 |                    |                   |         |               |                                                     |                                                                                 |
| rables (E                           |               |              |          |              |                | 1-Su                           | THE STATE OF                  |                | -              |                  | -              |                 |                  |                |                | 1              |                |                              |                 |                    |                   |         |               |                                                     |                                                                                 |
| DDs)                                |               |              |          |              |                | 2-52                           |                               |                |                |                  |                | 3               |                  |                |                | (A)            |                | % Mois                       |                 |                    |                   |         |               |                                                     |                                                                                 |



Page 7 of 7

| Heviewed/Date                   | The state of the s | Received | Relinquished | Received | Relinquished | Received       | Relinquished Mally Holy Common | Signature 1. Of Man           | 64 Trip Blanks-090624 | P CALL      | 01506        | 68 513-06-36-40 | -     |       | 65 53-06-13-16 | 6453-06R-12-14 | 63 5B-06R-1000 8-10 504 | GWB-67-40-45  | 61 53-07-25-28 | 1255                                    | Danielle College | Kristin Andrison | COB-Riverside     | TRSK 5  | Project Number: | Company:    | Analytical Laboratory Testing Services 14648 NE-95th Street - Redmond, WA 98052 |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|----------|--------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------|-------------|--------------|-----------------|-------|-------|----------------|----------------|-------------------------|---------------|----------------|-----------------------------------------|------------------|------------------|-------------------|---------|-----------------|-------------|---------------------------------------------------------------------------------|
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | V            |          |              |                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                             | 421916                | 44016       | 0 10         | <b> </b>        |       |       | 413/24         | K-             |                         | _             | 45/9/16        | Date<br>Sampled                         |                  |                  | X star            | 2 Days  | Sam             |             | Tu (                                                                            |
| Reviewed/Date                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 6            | 1        | MAJE.        | gupt)a         | Fleydlanid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Company                       |                       | 5.00        | )            | 13:28           | 13:12 | 17:40 | 14:40          | 15:30          | 15:23                   | 14:55         | 14:25          | Time<br>Sampled                         | (other)          |                  | Ständard (7 Days) | iys     | Same Day [      | (Check One) | (in working days)                                                               |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 26           | 3        | 0            |                | der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               | 3                     | 4           | )            | 5               | 5 2   | 0     | 5 2            | 2              | 5                       | GW 3          | 2              | Matrix                                  |                  |                  |                   | 3 Days  | ] 1 Day         | 500         | s)                                                                              |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |              |          |              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 5                     |             | -            | 1 -             | 10    | 1/2   | (3             | _              | AND THE S               | ~             | OF SER         | U.S. Carrier                            | H-HCID           | ontaine          | rs                |         |                 |             |                                                                                 |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +        | 20           |          | Α.           | 0              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D                             |                       | 1           | +            | -               | -     |       |                |                |                         |               |                |                                         |                  |                  | 21 8              | DEO EIN |                 |             | La                                                                              |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1            | +        | 1            | 2              | 9/6/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date                          |                       | -           | +            | -               | -     |       |                |                |                         |               |                | NWTP                                    |                  | TEX (OC          | 12.1 O            | 200[]]  |                 | 4           | Laboratory                                                                      |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1            | 1        | 3            | 3              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                       | +           | +            | -               |       |       |                |                |                         |               |                | *************************************** |                  | G Clea           | n-up 🗍)           |         |                 | 4           | ato                                                                             |
|                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -        | 7            | 1        | 2            | 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | п                             | V                     | +           | +            | _               |       |       |                |                |                         |               | 8              |                                         |                  |                  | , up/             |         |                 | 4           |                                                                                 |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 164          |          | アンプ          | 523            | 1620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Time                          |                       |             |              |                 |       |       |                | _              | _                       | $\overline{}$ | <b>W</b>       | Haloge<br>EDB EI                        | nated \          | olatiles/        |                   |         |                 |             | Number:                                                                         |
| Q                               | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\vdash$ | 5            | 1        |              | ,              | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                             |                       | +           | +            | -               | -     |       |                |                |                         |               |                |                                         |                  | 3270/SI          |                   |         |                 | 4           |                                                                                 |
| roma                            | Data Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |              |          |              | 4              | conly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | omm                           |                       | 1           | t            | $\dashv$        |       |       |                |                |                         | -             |                | (with lo                                | -                |                  | evel)             |         |                 | -           | 0                                                                               |
| togra                           | Package:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |              |          |              | \$.            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ents/S                        |                       | 1           | +            | $\dashv$        |       |       |                |                |                         |               |                | PCBs 8                                  | 3082             |                  |                   |         |                 | -           | 9                                                                               |
| ms w                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |              |          |              | 7              | FEF.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pecia                         |                       | $\dagger$   | $^{\dagger}$ | _               |       |       |                |                | $\dashv$                | $\dashv$      |                | Organo                                  | chlorine         | e Pestic         | ides 80           | 81      |                 | -           | 0                                                                               |
|                                 | Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |              |          |              | ch             | 576                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | i Inst                        |                       | $\parallel$ | t            |                 |       |       |                |                |                         |               |                | Organo                                  | phosph           | orus Pe          | sticides          | 8270/   | SIM             |             | S                                                                               |
| Chromatograms with final report | Ind.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |              |          |              | trinyl chlande | 17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Comments/Special Instructions |                       | 1           | T            | $\exists$       |       |       | $\neg$         |                |                         |               |                | Chlorin                                 | ated Ac          | id Herb          | icides 8          | 151     |                 | 1           | 0                                                                               |
|                                 | Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |              |          |              | Z              | C13-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ns                            |                       | 1           | T            | $\exists$       |       |       |                |                |                         |               |                | Total Ro                                | CRA Me           | etals +          |                   |         |                 | 1           |                                                                                 |
| n<br>b                          | vel III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |              |          |              | 1.             | TCE, C13-1,2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |                       |             | T            |                 |       |       |                |                |                         |               |                | Total M                                 |                  |                  |                   |         |                 | 1           |                                                                                 |
| ctroni                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |              |          |              |                | DCE,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |                       |             |              |                 |       |       |                |                |                         |               |                | TCLP N                                  | letals           |                  |                   |         |                 |             |                                                                                 |
| Flactronic Data Delli           | Level IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |              |          |              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |             |              |                 |       |       |                |                |                         |               |                | HEM (o                                  | il and g         | rease) 1         | 664               |         |                 |             |                                                                                 |
| Dolliva                         | < □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |              |          |              |                | KX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                       | L           |              |                 |       |       |                |                |                         |               | x              | Hole                                    | d                |                  |                   |         |                 |             |                                                                                 |
| robles (                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |              |          |              |                | trans-1,2-DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                       | -           |              | Χ.              | X.    | X     | $\times$       |                | -                       |               | 1              | Lak                                     | G                | 17/7             | , 5               | Ze      |                 |             |                                                                                 |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |              |          |              |                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | -                     | U           | -            | +               | +     | +     | +              | +              | +                       | -             | 1              |                                         |                  |                  |                   |         |                 |             |                                                                                 |
| ]                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |              |          |              |                | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                       | 300         | -            | +               | -     | +     |                |                | _                       |               | 0              | % Moist                                 | ura              |                  |                   |         |                 |             |                                                                                 |

Floyd/Snider
Project nan COBothell-Riverside
Project Mar Kristin Anderson
Installation 8/26/2024
Sampling D 9/16/2024
Reporting E 10/4/2024

Table1. Summary of flux values for each well

| Well_ID | Sample_ID Dep | th belo | Darcy Velo | VC flux   | cis-1,2DCE | TCE flux  | PCE flux     |
|---------|---------------|---------|------------|-----------|------------|-----------|--------------|
|         | (ft)          |         | (cm/day)   | (mg/m^2/d | (mg/m^2/d  | (mg/m^2/d | (mg/m^2/day) |
| RMW-12  | RMW-12-15     | 16      | 3.83       | 0         | 0.1        | 0.03      | 0.08         |
|         | RMW-12-17     | 18      | 3.96       | 0         | 0.1        | 0.02      | 0.04         |
|         | RMW-12-19     | 20      | 5.39       | 0.1       | 0.1        | 0.03      | 0.03         |
|         | RMW-12-2:     | 22      | 4.22       | 0         | 0.1        | 0.02      | 0.02         |
|         | RMW-12-23     | 24      | 2.99       | 0         | 0          | 0.01      | 0.02         |
| RMW-07  | RMW-07-15     | 16      | 0.7        | 0.2       | 0          | 0.02      | 0.04         |
|         | RMW-07-17     | 18      | 1.3        | 2.5       | 1.3        | 0.01      | 0.01         |
|         | RMW-07-19     | 20      | 4          | 1.8       | 3.6        | 0         | 0.01         |
|         | RMW-07-21     | 22      | 4          | 0.6       | 2.2        | 0.01      | 0.01         |
|         | RMW-07-23     | 24      | 3.6        | 0.9       | 1.5        | 0.01      | 0.01         |

Table2. Summary of flux average contaminant concentration

| Well_ID | Sample_ID Dept | h belo <sup>,</sup> Da | rcy Veloc | /C    | cis-1,2DCE | TCE    | PCE    |
|---------|----------------|------------------------|-----------|-------|------------|--------|--------|
|         | (ft)           | (cr                    | n/day) (  | ug/L) | (ug/L)     | (ug/L) | (ug/L) |
| RMW-12  | RMW-12-15      | 16                     | 3.8       | 0     | 3.4        | 0.9    | 2.1    |
|         | RMW-12-17      | 18                     | 4         | 0     | 1.8        | 0.5    | 1.1    |
|         | RMW-12-19      | 20                     | 5.4       | 2.1   | 2.2        | 0.5    | 0.6    |
|         | RMW-12-21      | 22                     | 4.2       | 0     | 1.5        | 0.5    | 0.5    |
|         | RMW-12-23      | 24                     | 3         | 0     | 0.9        | 0.3    | 0.5    |
| RMW-07  | RMW-07-15      | 16                     | 0.7       | 29    | 3          | 2.9    | 6.2    |
|         | RMW-07-17      | 18                     | 1.3       | 186   | 96         | 1.1    | 1      |
|         | RMW-07-19      | 20                     | 4         | 45    | 90         | 0.1    | 0.1    |
|         | RMW-07-21      | 22                     | 4         | 16    | 56         | 0.2    | 0.2    |
|         | RMW-07-23      | 24                     | 3.6       | 27    | 42         | 0.2    | 0.3    |

### **Pre-Engineering Design Investigation Data Report**

Riverside HVOC Site

Appendix C Field Boring Logs

| 5.1 6.1/B.1 6.1/B.5 5.8                                     | PROJECT:                                                | SITE ADDRESS         |                      | BORING           | SB-03           |
|-------------------------------------------------------------|---------------------------------------------------------|----------------------|----------------------|------------------|-----------------|
| FLOYD   SNIDER                                              | COB-Riverside                                           | Bothell, WA          |                      |                  | 30-03           |
| strategy • science • engineering                            | LOGGED BY: Ryne Adams                                   | BORING LOCAT         | TION:<br>Machine Sho | n                |                 |
| DRILLED BY:                                                 | Rylle Adams                                             | NORTHING:            |                      | EASTING:         |                 |
| Holocene                                                    |                                                         | 1101111111101        |                      |                  |                 |
| DRILLING EQUIPMENT:                                         |                                                         | GROUND SURF          | ACE C                | COORDINA         | TE SYSTEM:      |
| Geoprobe LAR                                                |                                                         | ELEVATION:           |                      |                  |                 |
| DRILLING METHOD:                                            |                                                         | TOTAL DEPTH (        | (ft bgs):            |                  | NATER (ft bgs): |
| Direct push  SAMPLING METHOD/SAMPLER LENGTH:                |                                                         | 30<br>BORING DIAME   | TED.                 | 10<br>DRILL DATE | <del>-</del> .  |
| 5' x 2" disposable poly liner                               |                                                         | 2"                   | IER.                 | 9/3/2024         |                 |
| Depth (feet) USCS Symbol (color, texture, moisture, MAJOR C | ption and Observations<br>ONSTITUENT, odor, staining, s | sheen, debris, etc.) | Drive/<br>Recovery   | PID<br>(ppm)     | Sample ID       |
| 0 Brown, well graded <b>SAND</b> wit                        | h silt.                                                 |                      |                      |                  |                 |
|                                                             |                                                         |                      |                      |                  |                 |
|                                                             |                                                         |                      |                      |                  |                 |
|                                                             |                                                         |                      |                      | 0.4              |                 |
| 2                                                           |                                                         |                      |                      |                  |                 |
|                                                             |                                                         |                      |                      |                  |                 |
|                                                             |                                                         |                      |                      |                  |                 |
|                                                             |                                                         |                      |                      | 0.3              |                 |
| 4                                                           |                                                         |                      |                      |                  |                 |
|                                                             |                                                         |                      |                      |                  |                 |
|                                                             |                                                         |                      |                      |                  |                 |
|                                                             |                                                         |                      |                      |                  |                 |
|                                                             |                                                         |                      |                      |                  |                 |
| 6 Gravel present.                                           |                                                         | -                    | -                    | 0.2              |                 |
|                                                             |                                                         |                      |                      |                  |                 |
|                                                             |                                                         |                      |                      |                  |                 |
| SW-SM                                                       |                                                         |                      |                      |                  |                 |
| 8                                                           |                                                         |                      |                      |                  |                 |
|                                                             |                                                         |                      |                      | 0.9              |                 |
|                                                             |                                                         |                      |                      | 0.9              |                 |
|                                                             |                                                         |                      |                      |                  |                 |
|                                                             |                                                         |                      |                      |                  |                 |
| 10 🔻                                                        |                                                         |                      |                      |                  |                 |
|                                                             |                                                         |                      |                      |                  |                 |
|                                                             |                                                         |                      |                      | 0.9              |                 |
|                                                             |                                                         |                      |                      |                  |                 |
| 12                                                          |                                                         |                      |                      |                  |                 |
|                                                             |                                                         |                      |                      |                  |                 |
|                                                             |                                                         |                      |                      | 0.4              |                 |
|                                                             |                                                         |                      |                      | 0.4              |                 |
|                                                             |                                                         |                      |                      |                  |                 |
| 14                                                          |                                                         |                      |                      |                  |                 |
| GW-GM Brown, well graded <b>GRAVEL</b>                      | with silt and trace fines                               | , saturated.         |                      |                  |                 |
| ABBREVIATIONS:                                              |                                                         | NOTES:               |                      | -                |                 |
| ft bgs = feet below ground surface USCS = Unified           | Soil Classification System groundwater table            |                      |                      |                  | Page 1 of 2     |
| Print parts por million                                     | g. sanawater table                                      |                      |                      |                  | raye 1 01 2     |

|                                                                               | PROJECT:                                                 | SITE ADDRESS              |                                     | BORIN        | IG ID: SB-03    |
|-------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------|-------------------------------------|--------------|-----------------|
| FLOYD   SNIDER                                                                | COB-Riverside                                            | Bothell, WA               | 98011                               |              | 3D-03           |
| strategy • science • engineering                                              | LOGGED BY:<br>Ryne Adams                                 | BORING LOCAT              | r <mark>ion:</mark><br>Machine Shop |              |                 |
| DRILLED BY: Holocene                                                          |                                                          | NORTHING:                 |                                     | ASTING:      |                 |
| DRILLING EQUIPMENT: Geoprobe LAR                                              |                                                          | GROUND SURF<br>ELEVATION: | ACE CO                              | OORDINA      | ATE SYSTEM:     |
| DRILLING METHOD:                                                              |                                                          | TOTAL DEPTH               |                                     |              | WATER (ft bgs): |
| Direct push                                                                   |                                                          | 30                        |                                     | 10           |                 |
| SAMPLING METHOD/SAMPLER LENGTH: 5' x 2" disposable poly liner                 |                                                          | BORING DIAME<br>2"        |                                     | 9/3/202      |                 |
| Depth USCS Soil Description (feet) Symbol (color, texture, moisture, MAJOR Co | otion and Observations<br>ONSTITUENT, odor, staining, sh | een, debris, etc.)        | Drive/<br>Recovery                  | PID<br>(ppm) | Sample ID       |
| Black, medium plasticity <b>SILT</b> , ft., saturated, no odor.  ML  —        | with organic woody ma                                    | terial from 15 to 16      |                                     | 0.5          | SB-03-16-19     |
| Brown, poorly garded <b>SAND</b> w  SP-SM Iron oxide present.                 | vith silt and gravel, satur                              | ated.                     |                                     | 0.5          |                 |
| Brown, well graded SAND with                                                  | n silt, saturated, iron oxid                             | de present, no odor.      |                                     | 0.2          | SB-03-19-22     |
| Transitions to gray.                                                          |                                                          |                           |                                     | 0.3          | SB-03-22-25     |
| 24 ————————————————————————————————————                                       |                                                          |                           |                                     | 0.5          |                 |
| 26 —                                                                          |                                                          |                           |                                     | 0.2          | SB-03-25-28     |
| 28 —                                                                          |                                                          |                           |                                     | 0.2          |                 |
| Dottors of Dorland 20 ft l                                                    |                                                          |                           |                                     | 0.2          |                 |
| 30 Boring = 30 ft bgs ABBREVIATIONS:                                          |                                                          | NOTES:                    |                                     |              |                 |
| ft bgs = feet below ground surface USCS = Unified S                           |                                                          |                           |                                     |              | Page 2 of 2     |

| ELOVOLCNIDED                                                                        | PROJECT:<br>COB-Riverside                                | SITE ADDRES<br>Bothell, WA |                    | BORI            | NG ID: SB-04      |
|-------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------|--------------------|-----------------|-------------------|
| FLOYDISNIDER                                                                        | LOGGED BY:                                               | BORING LOCA                |                    |                 |                   |
| strategy • science • engineering                                                    | Ryne Adams                                               | I                          | ner Machine Sho    | эр              |                   |
| DRILLED BY:                                                                         |                                                          | NORTHING:                  |                    | ASTING          | :                 |
| Holocene                                                                            |                                                          |                            |                    |                 |                   |
| DRILLING EQUIPMENT: Geoprobe LAR                                                    |                                                          | GROUND SUR<br>ELEVATION:   | FACE C             | OORDIN          | IATE SYSTEM:      |
| DRILLING METHOD:                                                                    |                                                          | TOTAL DEPTH                | l (ft bgs):        | EPTH T          | O WATER (ft bgs): |
| Direct push                                                                         |                                                          | 30                         |                    | 8               |                   |
| SAMPLING METHOD/SAMPLER LENGTH: 5' x 2" disposable poly liner                       |                                                          | BORING DIAM<br>2"          |                    | 9/4/202         |                   |
| Depth USCS (feet) Symbol (color, texture, moisture, MAJOR Color)                    | otion and Observations<br>ONSTITUENT, odor, staining, sh | neen, debris, etc.)        | Drive/<br>Recovery | PID<br>(ppm)    | Sample ID         |
| Brown, well graded SAND with                                                        |                                                          |                            |                    | 0.2 0.3 0.4 0.5 |                   |
| Organic woody debris (about 4  Gray, poorly graded medium \$                        | , -                                                      | no odor.                   |                    | 0.2             |                   |
| Brown silty SAND no odor, w                                                         | et.                                                      |                            |                    | 0.4             |                   |
| Trace gravel present.  SM: Organic woody debris present                             |                                                          |                            |                    | 0.4             |                   |
| 14 —                                                                                |                                                          |                            |                    | 0.5             | SB-04-13-16       |
| ABBREVIATIONS:                                                                      |                                                          | NOTES:                     |                    |                 |                   |
| ft bgs = feet below ground surface USCS = Unified ppm = parts per million = denotes | Soil Classification System groundwater table             |                            |                    |                 | Page 1 of 2       |

|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PROJECT:                                                         | SITE AD             | DRESS:                         | BO           | RING ID:           |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------|--------------------------------|--------------|--------------------|
| FLOYE                                     | SNIDER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | COB-Riverside                                                    | Bothel              | I, WA 98011                    |              | SB-04              |
| strategy • sc                             | ience • engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LOGGED BY: Ryne Adams                                            | I                   | <b>LOCATION:</b> Former Machin | e Shop       |                    |
| DRILLED BY:                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  | NORTHI              | NG:                            | EASTIN       | G:                 |
| Holocene  DRILLING EQUIPME Geoprobe LAR   | INT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                  | GROUNE<br>ELEVATI   | O SURFACE<br>ION:              | COORD        | INATE SYSTEM:      |
| DRILLING METHOD Direct push               | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  | <b>TOTAL D</b> 30   | DEPTH (ft bgs):                | DEPTH<br>8   | TO WATER (ft bgs): |
| •                                         | D/SAMPLER LENGTH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  | BORING              | DIAMETER:                      | DRILL I      |                    |
| 5' x 2" disposabl                         | e poly liner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                  | 2"                  |                                | 9/4/2        | 024                |
| Depth USCS (feet) Symbol                  | Soil Descri<br>(color, texture, moisture, <b>MAJOR Co</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ption and Observations<br><b>ONSTITUENT</b> , odor, staining, sl | neen, debris, etc.) | Drive/<br>Recovery             | PID<br>(ppm) | Sample ID          |
| 16 —                                      | rark brown well graded sub a<br>parse sand, wet, no odor.<br>ocket of silty sand present.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | angular <b>GRAVEL</b> , with                                     | silt and medium     | to                             | 0.3          |                    |
| GW-GM                                     | concer or sing surful preserin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                     |                                | 0.3          | SB-04-16-19        |
| 20                                        | on oxide present.<br>Park brown well graded <b>SAND</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>D</b> with silt, medium to de                                 | ense, wet, no odo   | r.                             | 0.3          | SB-04-19-22        |
| 22                                        | roce cabbles present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                  |                     |                                | 0.4          | 35 04 17 22        |
|                                           | race cobbles present. ransitions to light brown with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | high dilatancy                                                   |                     |                                | 0.3          |                    |
| 24 ————————————————————————————————————   | ransitions to light brown with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | riigh dilataney.                                                 |                     |                                | 0.3          |                    |
| 26                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                     |                                | 0.3          | SB-04-22-25        |
| 28 —                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                     |                                | 0.2          |                    |
| 30B                                       | ottom of Boring = 30 ft bgs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                  |                     |                                | 0.3          | SB-04-25-28        |
| ABBREVIATIONS:                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  | NOTES:              |                                |              | 1                  |
| ft bgs = feet below<br>ppm = parts per mi | ground surface USCS = Unified   USCS = U | Soil Classification System<br>groundwater table                  |                     |                                |              | Page 2 of 2        |

|                                                                                     | PROJECT:<br>COB-Riverside                             | SITE ADDRESS<br>Bothell, WA |                          | BORI           | NG ID: SB-05      |  |
|-------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------|--------------------------|----------------|-------------------|--|
| FLOYD   SNIDER strategy • science • engineering                                     | LOGGED BY:                                            |                             | BORING LOCATION:         |                |                   |  |
|                                                                                     | Ryne Adams                                            |                             | E of Former Machine Shop |                |                   |  |
| DRILLED BY: Holocene                                                                |                                                       | NORTHING:                   |                          | EASTING        | :                 |  |
| DRILLING EQUIPMENT: Geoprobe LAR                                                    |                                                       | GROUND SURF<br>ELEVATION:   | ACE                      | COORDIN        | IATE SYSTEM:      |  |
| DRILLING METHOD:                                                                    |                                                       | TOTAL DEPTH                 | (ft bgs):                |                | O WATER (ft bgs): |  |
| Direct push  SAMPLING METHOD/SAMPLER LENGTH:                                        |                                                       | 30<br>BORING DIAME          | TFD· I                   | 13<br>DRILL DA | TF.               |  |
| 5' x 2" disposable poly liner                                                       |                                                       | 2"                          | IEK.                     | 9/3/202        |                   |  |
| Depth USCS Soil Descri<br>(feet) Symbol (color, texture, moisture, MAJOR Co         | ption and Observations ONSTITUENT, odor, staining, st | neen, debris, etc.)         | Drive/<br>Recovery       | PID<br>(ppm)   | Sample ID         |  |
| Brown, well graded medium to wet, no odor,                                          | o coarse <b>SAND</b> with silt,                       | organics at surface,        |                          |                | ·                 |  |
| 2 —                                                                                 |                                                       |                             |                          | 0.5            |                   |  |
| 4 —                                                                                 |                                                       |                             |                          | 0.4            |                   |  |
| 6 —                                                                                 |                                                       |                             |                          |                |                   |  |
| Trace gravel at 6.25 ft.  SW-SM  8                                                  |                                                       |                             |                          | 0.4            |                   |  |
| Cobbles present.                                                                    |                                                       |                             | -                        | 0.3            |                   |  |
| 12                                                                                  |                                                       |                             |                          | 0.3            |                   |  |
| Iron oxide present.                                                                 |                                                       |                             |                          | 0.5            |                   |  |
|                                                                                     |                                                       |                             |                          |                | SB-05-13-16       |  |
| ABBREVIATIONS:                                                                      |                                                       | NOTES:                      |                          |                |                   |  |
| ft bgs = feet below ground surface USCS = Unified ppm = parts per million = denotes | Soil Classification System s groundwater table        |                             |                          |                | Page 1 of 3       |  |

| E1 0 1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       | PROJECT:                                              | SITE ADDRESS              |                                     | BORI                   | NG ID: SB-05      |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------------|-------------------------------------|------------------------|-------------------|--|
| the state of the s | DISNIDER                                              | COB-Riverside                                         | ·                         | Bothell, WA 98011  BORING LOCATION: |                        |                   |  |
| strategy • s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | science • engineering                                 | Ryne Adams                                            |                           | Machine Shop                        |                        |                   |  |
| DRILLED BY:<br>Holocene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       |                                                       | NORTHING:                 | E                                   | ASTING                 | :                 |  |
| DRILLING EQUIPM<br>Geoprobe LAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       | GROUND SURF<br>ELEVATION: |                                     |                        | OORDINATE SYSTEM: |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | TOTAL DEPTH                                           |                           | EPTH TO WATER (ft bgs):             |                        |                   |  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OD/SAMPLER LENGTH:                                    |                                                       | BORING DIAME              | TER: D                              | RILL DATE:<br>9/3/2024 |                   |  |
| Depth USCS (feet) Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · · ·                                                 | ption and Observations ONSTITUENT, odor, staining, sl | heen, debris, etc.)       | Drive/<br>Recovery                  | PID<br>(ppm)           | Sample ID         |  |
| 16 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Brown/orange well graded <b>SA</b> no odor, dilatancy | ND with silt, trace grave                             | el 0.1 to 0.3", wet,      |                                     | 0.4                    |                   |  |
| SW-SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Light brown, poorly graded <b>SA</b>                  | AND with silt, wet, dilata                            | ncy.                      |                                     | 0.4                    | SB-05-16-19       |  |
| 20 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |                                                       |                           |                                     | 0.4                    | SB-05-19-22       |  |
| SP-SM<br>22 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pockets of coarse <b>SAND</b> pres                    | ent.                                                  |                           | -                                   | 0.6                    |                   |  |
| 24 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |                                                       |                           |                                     | 0.3                    | SB-05-22-25       |  |
| 26 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Brown silty SAND, wet, iron-o                         | oxidized layers present,                              | dilatancy                 |                                     | 0.5                    | SB-05-25-28       |  |
| 28 — SM:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                                       |                           |                                     | 0.5                    |                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bottom of Boring = 30 ft bgs                          |                                                       | NOTEC                     |                                     |                        |                   |  |
| ABBREVIATIONS:<br>ft bgs = feet belo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | w ground surface USCS = Unified                       | Soil Classification System                            | NOTES:                    |                                     |                        |                   |  |
| ppm = parts per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | million = denotes                                     | groundwater table                                     |                           |                                     |                        | Page 2 of 2       |  |

| ELOVDI CNIDED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PROJECT:<br>COB-Riverside                     | SITE ADDRES              |                                            | BORII        | SB-06          |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------|--------------------------------------------|--------------|----------------|--|--|
| FLOYD   SNIDER strategy • science • engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LOGGED BY:                                    |                          | BORING LOCATION:                           |              |                |  |  |
| Ryne Adams Former Machine Shop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               |                          |                                            |              |                |  |  |
| DRILLED BY: Holocene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               | NORTHING:                | E/                                         | ASTING       | :              |  |  |
| DRILLING EQUIPMENT: Geoprobe LAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               | GROUND SUR<br>ELEVATION: | FACE CO                                    | OORDIN       | ATE SYSTEM:    |  |  |
| DRILLING METHOD:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               | TOTAL DEPTH              | TOTAL DEPTH (ft bgs): DEPTH TO WATER (ft b |              |                |  |  |
| Direct push                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               | 40                       |                                            | 10           |                |  |  |
| SAMPLING METHOD/SAMPLER LENGTH: 5' x 2" disposable poly liner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                               | BORING DIAM<br>2"        |                                            | 9/3/202      |                |  |  |
| (feet) Symbol (color, texture, moisture, MAJOR Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               |                          | Drive/<br>Recovery                         | PID<br>(ppm) | Sample ID      |  |  |
| Brown well graded SAND with gravel sub-angular 0.5" to 1",  Becomes moist.  Becomes moist.  SW-SM  6  10  Gray, poorly graded sub-angu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dry, no odor.grass and                        | I at surface.            |                                            | 0.3          | SB-06-8.5-10.5 |  |  |
| Brown-black, SILTY SAND, transcription of the second secon |                                               |                          |                                            | 0.4          | SB-06-13-14.5  |  |  |
| ABBREVIATIONS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               | NOTES:                   |                                            |              |                |  |  |
| ft bgs = feet below ground surface USCS = Unified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Soil Classification System sgroundwater table |                          |                                            |              | Page 1 of 3    |  |  |

| FLOYD   SNIDER                                                                      | PROJECT:<br>COB-Riverside                                   | SITE ADDRESS<br>Bothell, WA         |                                      | BORII           | NG ID: SB-06      |  |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------|--------------------------------------|-----------------|-------------------|--|
| strategy • science • engineering                                                    | LOGGED BY:                                                  | BORING LOCAT                        | BORING LOCATION: Former Machine Shop |                 |                   |  |
| DRILLED BY:                                                                         | Ryne Adams                                                  | NORTHING:                           |                                      | EASTING         | <u>.</u>          |  |
| Holocene                                                                            |                                                             | 11011111111                         |                                      |                 | •                 |  |
| DRILLING EQUIPMENT: Geoprobe LAR                                                    |                                                             | GROUND SURF                         | ACE                                  | COORDIN         | IATE SYSTEM:      |  |
| DRILLING METHOD:                                                                    |                                                             | TOTAL DEPTH (                       | (ft bgs):                            | <b>DEPTH TO</b> | O WATER (ft bgs): |  |
| Direct push  SAMPLING METHOD/SAMPLER LENGTH:                                        |                                                             | 40 10  BORING DIAMETER: DRILL DATE: |                                      | .TE:            |                   |  |
| 5' x 2" disposable poly liner                                                       |                                                             | 2"                                  |                                      | 9/3/202         |                   |  |
| Depth USCS (feet) Symbol (color, texture, moisture, MAJOR C                         | ption and Observations<br>ONSTITUENT, odor, staining, sheer | n, debris, etc.)                    | Drive/<br>Recovery                   | PID<br>(ppm)    | Sample ID         |  |
| Brown, poorly graded fine <b>SA</b> 16 ———————————————————————————————————          | <b>ND</b> with silt, iron-oxide stre                        | eaks, wet, no odor.                 |                                      | 0.5             | SB-06-16-18       |  |
| Brown/orange well graded fine wet, no odor.                                         |                                                             | ·                                   |                                      | 0.5             | SB-06-18-20       |  |
| Brown silty <b>SAND</b> , fine <b>SAND</b> dilatancy, no odor                       | , iron oxide present, loose,                                | wet, nign                           |                                      | 0.3             | SB-06-20-22       |  |
| 24 —                                                                                |                                                             |                                     |                                      | 0.3             | SB-06-22-24       |  |
| Becomes gray with lower dilat  - SM:                                                | ancy, medium still.                                         |                                     |                                      | 0.3             | SB-06-24-26       |  |
| Brown and light brown, silty Sodor.                                                 | SAND, medium stiff, wet, hi                                 | igh dilatancy, no                   |                                      | 0.3             | SB-06-26-28       |  |
| 30                                                                                  |                                                             |                                     |                                      | 0.3             | SB-06-28-30       |  |
| ABBREVIATIONS:                                                                      |                                                             | OTES:                               |                                      |                 |                   |  |
| ft bgs = feet below ground surface USCS = Unified ppm = parts per million = denotes | Soil Classification System groundwater table                |                                     |                                      |                 | Page 2 of 3       |  |

| FLOYD   SNIDER                                                               | PROJECT:<br>COB-Riverside                                | SITE ADDRESS<br>Bothell, WA          |                    | BORI            | SB-06             |
|------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------|--------------------|-----------------|-------------------|
| strategy • science • engineering                                             | LOGGED BY:                                               | BORING LOCATION: Former Machine Shop |                    |                 |                   |
| DRILLED BY:                                                                  | Ryne Adams                                               | NORTHING:                            | nine Snop          | EASTING:        | :                 |
| Holocene                                                                     |                                                          |                                      |                    |                 |                   |
| DRILLING EQUIPMENT: Geoprobe LAR                                             |                                                          | GROUND SURF<br>ELEVATION:            | ACE                | COORDIN         | ATE SYSTEM:       |
| DRILLING METHOD:                                                             |                                                          | TOTAL DEPTH                          | (ft bgs):          | <b>DEPTH TO</b> | ) WATER (ft bgs): |
| Direct push  SAMPLING METHOD/SAMPLER LENGTH:                                 |                                                          | 40 BORING DIAME                      | TED.               | DRILL DA        | TE.               |
| 5' x 2" disposable poly liner                                                |                                                          | 2"                                   | TER.               | 9/3/202         |                   |
| Depth USCS Soil Description (feet) Symbol (color, texture, moisture, MAJOR C | ption and Observations<br>ONSTITUENT, odor, staining, sh | neen, debris, etc.)                  | Drive/<br>Recovery | PID<br>(ppm)    | Sample ID         |
| Brown, poorly graded fine to roxide present, wet, high dilata                |                                                          | medium dense iron                    |                    | 0.2             | SB-06-30-32       |
| Grain size begins to coarsen.                                                |                                                          |                                      |                    | 0.3             | SB-06-32-34       |
| SP-SM<br>Iron oxide pocket present.                                          |                                                          |                                      |                    | - 0.5           | SB-06-34-36       |
| Iron oxide pocket present.                                                   |                                                          |                                      |                    | 0.4             | SB-06-36-38       |
| Bottom of Boring = 40 ft bas                                                 |                                                          |                                      | -                  | 0.2             | SB-06-38-40       |
| Bottom of Boring = 40 ft bgs                                                 |                                                          | NOTES:                               |                    |                 |                   |
| ABBREVIATIONS:<br>ft bgs = feet below ground surface USCS = Unified          | Soil Classification System                               | NUTES:                               |                    |                 |                   |
| ppm = parts per million = denote:                                            | s groundwater table                                      |                                      |                    |                 | Page 3 of 3       |

| EL OVEL CNIEDE                                                              | PROJECT:<br>COB-Riverside                    | SITE ADDRESS<br>Bothell, WA |                                | BORIN                     | SB-07           |  |  |
|-----------------------------------------------------------------------------|----------------------------------------------|-----------------------------|--------------------------------|---------------------------|-----------------|--|--|
| FLOYDISNIDER                                                                | LOGGED BY:                                   |                             | BORING LOCATION:               |                           |                 |  |  |
| strategy • science • engineering                                            | Ryne Adams                                   |                             | Upgradient Extraction Well Row |                           |                 |  |  |
| DRILLED BY: Holocene                                                        |                                              | NORTHING:                   | E                              | ASTING:                   |                 |  |  |
| DRILLING EQUIPMENT:                                                         |                                              | GROUND SURF                 | ACE C                          |                           | ATE SYSTEM:     |  |  |
| Geoprobe LAR                                                                |                                              | ELEVATION:                  | ACE                            | OORDIN                    | ATE STSTEM.     |  |  |
| DRILLING METHOD:                                                            |                                              | TOTAL DEPTH                 |                                |                           | WATER (ft bgs): |  |  |
| Direct push  SAMPLING METHOD/SAMPLER LENGTH:                                |                                              | 30                          |                                | 12                        | TF.             |  |  |
| 5' x 2" disposable poly liner                                               |                                              | BORING DIAME<br>2"          |                                | <b>RILL DA</b><br>9/6/202 |                 |  |  |
| Depth USCS Soil Descri<br>(feet) Symbol (color, texture, moisture, MAJOR Co | ption and Observations                       | heen debris etc)            | Drive/<br>Recovery             | PID<br>(ppm)              | Sample ID       |  |  |
| 0 Brown, silty <b>SAND</b> , loose, dry                                     |                                              | moon, debris, etc.)         | rtosovory                      | (PPIII)                   | cample 12       |  |  |
|                                                                             |                                              |                             |                                |                           |                 |  |  |
| -                                                                           |                                              |                             |                                | 0.2                       |                 |  |  |
|                                                                             |                                              |                             |                                |                           |                 |  |  |
| 2                                                                           |                                              |                             |                                |                           |                 |  |  |
|                                                                             |                                              |                             |                                |                           |                 |  |  |
|                                                                             |                                              |                             |                                |                           |                 |  |  |
|                                                                             |                                              |                             |                                | 0.3                       |                 |  |  |
| 4                                                                           |                                              |                             |                                |                           |                 |  |  |
| SW CM                                                                       |                                              |                             |                                |                           |                 |  |  |
| -SW-SM                                                                      |                                              |                             |                                |                           |                 |  |  |
| 6                                                                           |                                              |                             |                                |                           |                 |  |  |
| 0                                                                           |                                              |                             |                                |                           |                 |  |  |
|                                                                             |                                              |                             |                                |                           |                 |  |  |
|                                                                             |                                              |                             |                                |                           |                 |  |  |
| 8                                                                           |                                              |                             |                                |                           |                 |  |  |
|                                                                             |                                              |                             |                                |                           |                 |  |  |
|                                                                             |                                              |                             |                                |                           |                 |  |  |
|                                                                             |                                              |                             |                                |                           |                 |  |  |
| 10 Prown well graded fine to coa                                            | arco SAND with trace of                      | T+                          |                                |                           |                 |  |  |
| Brown, well graded fine to coa                                              | n se <b>sand</b> with trace si               | it.                         |                                |                           |                 |  |  |
| -:SW:                                                                       |                                              |                             |                                | 0.3                       |                 |  |  |
|                                                                             |                                              |                             |                                |                           |                 |  |  |
| 12 Brown silty SAND, medium d                                               | ense trace gravel ~0.5                       | " wet no odor               | -                              |                           |                 |  |  |
| January State, measure                                                      | onse, nace graver ore                        | , well no odon              |                                |                           |                 |  |  |
|                                                                             |                                              |                             |                                | 0.6                       |                 |  |  |
| SM                                                                          |                                              |                             |                                |                           |                 |  |  |
| 14 —                                                                        |                                              |                             |                                |                           |                 |  |  |
|                                                                             |                                              |                             |                                | 0.3                       |                 |  |  |
| : : : : : <br>  ABBREVIATIONS:                                              |                                              | NOTES:                      |                                |                           |                 |  |  |
| ft bgs = feet below ground surface USCS = Unified                           | Soil Classification System groundwater table |                             |                                |                           | Page 1 of 2     |  |  |

| ЕТ              | O 1/           | DICNIDED                                                   | PROJECT:<br>COB-Riverside                                | I                  | <b>E ADDRESS</b> : othell, WA 9     | 0∩11               | BORI             | NG ID: SB-07      |
|-----------------|----------------|------------------------------------------------------------|----------------------------------------------------------|--------------------|-------------------------------------|--------------------|------------------|-------------------|
| The second of   |                | DISNIDER                                                   |                                                          |                    |                                     |                    |                  | <b>05</b> 07      |
| strat           | egy •          | science • engineering                                      | LOGGED BY:<br>Ryne Adams                                 |                    | <b>RING LOCATIO</b><br>ogradient Ex |                    | ell Row          |                   |
| DRILLEI         |                |                                                            |                                                          |                    | RTHING:                             |                    | EASTING          | :                 |
| Holoc           |                |                                                            |                                                          |                    |                                     |                    |                  |                   |
|                 | obe LAI        |                                                            |                                                          |                    | OUND SURFA<br>EVATION:              | CE                 | COORDIN          | IATE SYSTEM:      |
|                 | IG METHO       | DD:                                                        |                                                          | I                  | TAL DEPTH (ft                       | bgs):              | <b>DEPTH T</b> 0 | O WATER (ft bgs): |
| Direct          | <u> </u>       | IOD/SAMPLER LENGTH:                                        |                                                          | 30                 | )<br>RING DIAMET                    | ED.                | DRILL DA         | TE.               |
|                 |                | able poly liner                                            |                                                          | 2"                 |                                     | EK.                | 9/6/202          |                   |
| Depth<br>(feet) | USCS<br>Symbol | Soil Descri<br>(color, texture, moisture, <b>MAJOR C</b>   | ption and Observations<br>ONSTITUENT, odor, staining, sl | heen, debris, etc. | .)                                  | Drive/<br>Recovery | PID<br>(ppm)     | Sample ID         |
|                 |                | Dark brown well graded fine to ~0.2 to 0.3", wet, no odor. | coarse <b>SAND</b> with silt                             | and trace of       | gravel                              |                    |                  |                   |
|                 |                | ~0.2 to 0.3 , wet, no odor.                                |                                                          |                    |                                     |                    |                  |                   |
| 16 —            |                |                                                            |                                                          |                    |                                     |                    | 0.3              |                   |
|                 |                |                                                            |                                                          |                    |                                     |                    |                  |                   |
| _               |                |                                                            |                                                          |                    |                                     |                    |                  |                   |
|                 | SW-SM          |                                                            |                                                          |                    |                                     |                    | 0.3              | SB-07-16-19       |
| 18 —            |                |                                                            |                                                          |                    |                                     |                    |                  |                   |
|                 |                |                                                            |                                                          |                    |                                     |                    |                  |                   |
| _               |                |                                                            |                                                          |                    |                                     |                    | 0.2              |                   |
|                 |                |                                                            |                                                          |                    |                                     |                    |                  |                   |
| 20 —            | /////          | Gray, poorly graded fine <b>SAN</b>                        | <b>D</b> with silt, medium dens                          | se, wet, dilat     | ancy.                               |                    |                  |                   |
|                 |                |                                                            |                                                          |                    |                                     |                    | 0.3              | SB-07-19-22       |
| -               |                |                                                            |                                                          |                    |                                     |                    |                  |                   |
|                 |                |                                                            |                                                          |                    |                                     |                    |                  |                   |
| 22 —            |                |                                                            |                                                          |                    |                                     |                    |                  |                   |
|                 |                |                                                            |                                                          |                    |                                     |                    | 0.2              |                   |
| _               |                |                                                            |                                                          |                    |                                     |                    |                  |                   |
|                 |                |                                                            |                                                          |                    |                                     |                    |                  | SB-07-22-25       |
| 24 —            |                | Becomes brown.                                             |                                                          |                    | -                                   |                    | 0.2              |                   |
|                 |                |                                                            |                                                          |                    |                                     |                    |                  |                   |
| _               | SP-SM          |                                                            |                                                          |                    |                                     |                    |                  |                   |
|                 |                |                                                            |                                                          |                    |                                     |                    |                  |                   |
| 26 —            |                |                                                            |                                                          |                    |                                     |                    | 0.2              |                   |
|                 |                |                                                            |                                                          |                    |                                     |                    |                  | SB-07-25-28       |
| -               |                |                                                            |                                                          |                    |                                     |                    |                  |                   |
|                 |                |                                                            |                                                          |                    |                                     |                    | 0.2              |                   |
| 28 —            |                |                                                            |                                                          |                    |                                     |                    |                  |                   |
|                 |                |                                                            |                                                          |                    |                                     |                    |                  |                   |
| _               |                |                                                            |                                                          |                    |                                     |                    | 0.1              |                   |
|                 |                | D-H                                                        |                                                          |                    |                                     |                    |                  |                   |
| 30              | VIATIONS       | Bottom of Boring = 30 ft bgs                               |                                                          | NOTES:             | 1                                   |                    |                  |                   |
| ft bgs          |                | ow ground surface USCS = Unified                           | Soil Classification System groundwater table             |                    |                                     |                    |                  | Dogs 2 -62        |
| ppiii =         | parts pel      | = ueriotes                                                 | groundwater table                                        |                    |                                     |                    |                  | Page 2 of 2       |

| FLOVDICNIDED                                                                                                                                                                                                                                | PROJECT:<br>COB-Riverside                             | SITE ADDRESS<br>Bothell, WA |                    | BORIN                    | SB-08           |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------|--------------------|--------------------------|-----------------|--|--|--|--|
| FLOYDISNIDER                                                                                                                                                                                                                                | LOGGED BY:                                            | BORING LOCA                 |                    |                          |                 |  |  |  |  |
| strategy • science • engineering   LOGGED BY:   BORING LOCATION:   S of Former Machine Shop                                                                                                                                                 |                                                       |                             |                    |                          |                 |  |  |  |  |
| DRILLED BY:                                                                                                                                                                                                                                 | NORTHING:                                             |                             | EASTING:           |                          |                 |  |  |  |  |
| Holocene                                                                                                                                                                                                                                    |                                                       |                             |                    |                          |                 |  |  |  |  |
| DRILLING EQUIPMENT: Geoprobe LAR                                                                                                                                                                                                            | GROUND SURF<br>ELEVATION:                             | FACE                        | COORDINA           | ATE SYSTEM:              |                 |  |  |  |  |
| DRILLING METHOD:                                                                                                                                                                                                                            |                                                       | TOTAL DEPTH                 | (ft bgs):          | ОЕРТН ТО                 | WATER (ft bgs): |  |  |  |  |
| Direct push                                                                                                                                                                                                                                 |                                                       | 30                          |                    | 10.5                     |                 |  |  |  |  |
| SAMPLING METHOD/SAMPLER LENGTH: 5' x 2" disposable poly liner                                                                                                                                                                               |                                                       | BORING DIAME<br>2"          | ETER:              | 9/3/202                  |                 |  |  |  |  |
| Depth USCS Soil Description (feet) Symbol (color, texture, moisture, MAJOR Color)                                                                                                                                                           | otion and Observations ONSTITUENT, odor, staining, sh | neen, debris, etc.)         | Drive/<br>Recovery | PID<br>(ppm)             | Sample ID       |  |  |  |  |
| Light brown, fine silty SAND, loose, dry, no odor.  SMI  Brown, poorly graded SAND v  SP-SM  SP-SM  Brown, poorly graded SAND v  SP  Dark brown, fine silty SAND v medium stiff.  Cement fiber board present.  Becomes black, peat present. | vith silt, no odor, moist.                            | dor.,                       |                    | 0.1<br>0.3<br>0.1<br>0.1 |                 |  |  |  |  |
| Becomes stiff.                                                                                                                                                                                                                              |                                                       |                             |                    |                          |                 |  |  |  |  |
|                                                                                                                                                                                                                                             | T                                                     | NOTES:                      |                    |                          |                 |  |  |  |  |
| ABBREVIATIONS: ft bgs = feet below ground surface USCS = Unified ppm = parts per million = denotes                                                                                                                                          |                                                       | INOTES.                     |                    |                          | Page 1 of 2     |  |  |  |  |

| EL OVEL CHIEFE                                                | PROJECT:                                          | SITE ADDRESS                              |                  | BORI    | NG ID: SB-08      |  |  |  |  |  |  |  |
|---------------------------------------------------------------|---------------------------------------------------|-------------------------------------------|------------------|---------|-------------------|--|--|--|--|--|--|--|
| FLOYDISNIDER                                                  | COB-Riverside                                     |                                           | Boulen, WY 70011 |         |                   |  |  |  |  |  |  |  |
| strategy • science • engineering                              |                                                   | BORING LOCATION: S of Former Machine Shop |                  |         |                   |  |  |  |  |  |  |  |
| DRILLED BY:                                                   | NORTHING:                                         | <u>'</u>                                  |                  |         |                   |  |  |  |  |  |  |  |
| Holocene                                                      |                                                   |                                           |                  |         |                   |  |  |  |  |  |  |  |
| DRILLING EQUIPMENT: Geoprobe LAR                              |                                                   | GROUND SURI<br>ELEVATION:                 | FACE C           | OORDIN  | ATE SYSTEM:       |  |  |  |  |  |  |  |
| DRILLING METHOD:                                              |                                                   | TOTAL DEPTH                               | (ft bgs):        |         | O WATER (ft bgs): |  |  |  |  |  |  |  |
| Direct push                                                   |                                                   | 30                                        |                  | 10.5    |                   |  |  |  |  |  |  |  |
| SAMPLING METHOD/SAMPLER LENGTH: 5' x 2" disposable poly liner |                                                   | BORING DIAMI<br>2"                        |                  | 9/3/202 |                   |  |  |  |  |  |  |  |
|                                                               | USCS Soil Description and Observations Drive/ PID |                                           |                  |         |                   |  |  |  |  |  |  |  |
| Brown, medium to coarse well                                  | graded <b>SAND</b> with silt a                    |                                           |                  | 0.1     |                   |  |  |  |  |  |  |  |
| 0.2-0.5", wet, no odor, iron oxi                              | de present.                                       |                                           |                  |         | SB-08-15-16.5     |  |  |  |  |  |  |  |
| 16 —                                                          |                                                   |                                           |                  | 0.2     | 30-00-13-10.3     |  |  |  |  |  |  |  |
|                                                               |                                                   |                                           |                  |         |                   |  |  |  |  |  |  |  |
| -SW-SM                                                        |                                                   |                                           |                  |         |                   |  |  |  |  |  |  |  |
|                                                               |                                                   |                                           |                  | 0.3     |                   |  |  |  |  |  |  |  |
| 18 —                                                          |                                                   |                                           |                  |         |                   |  |  |  |  |  |  |  |
|                                                               |                                                   |                                           |                  |         |                   |  |  |  |  |  |  |  |
|                                                               |                                                   |                                           |                  |         |                   |  |  |  |  |  |  |  |
| Light brown, poorly graded fine                               | e <b>SAND</b> with trace silt, we                 | et, no odor.                              |                  |         |                   |  |  |  |  |  |  |  |
| SP\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                        |                                                   |                                           |                  |         |                   |  |  |  |  |  |  |  |
| 20 Brown, poorly graded fine <b>SAI</b>                       |                                                   | , iron oxide streaks.                     |                  | 0.3     |                   |  |  |  |  |  |  |  |
| Interspersed silt pockets prese                               | ent.                                              |                                           |                  |         | SB-08-19-22       |  |  |  |  |  |  |  |
| l - <i>4////</i>                                              |                                                   |                                           |                  |         |                   |  |  |  |  |  |  |  |
|                                                               |                                                   |                                           |                  |         |                   |  |  |  |  |  |  |  |
| 22 —////                                                      |                                                   |                                           |                  | 0.3     |                   |  |  |  |  |  |  |  |
|                                                               |                                                   |                                           |                  |         |                   |  |  |  |  |  |  |  |
|                                                               |                                                   |                                           |                  |         |                   |  |  |  |  |  |  |  |
|                                                               |                                                   |                                           |                  |         | SB-08-22-25       |  |  |  |  |  |  |  |
|                                                               |                                                   |                                           |                  |         | 36-00-22-23       |  |  |  |  |  |  |  |
| 24 —                                                          |                                                   |                                           |                  |         |                   |  |  |  |  |  |  |  |
|                                                               |                                                   |                                           |                  | 0.2     |                   |  |  |  |  |  |  |  |
| SP-SM Grain size coarsens and incre                           | ased silt present, high dil                       | atancy.                                   |                  |         |                   |  |  |  |  |  |  |  |
|                                                               |                                                   |                                           |                  |         |                   |  |  |  |  |  |  |  |
| 26 —                                                          |                                                   |                                           |                  |         |                   |  |  |  |  |  |  |  |
| l <i>(////</i> /                                              |                                                   |                                           |                  |         | SB-08-25-28       |  |  |  |  |  |  |  |
|                                                               |                                                   |                                           |                  | 0.2     |                   |  |  |  |  |  |  |  |
|                                                               |                                                   |                                           |                  |         |                   |  |  |  |  |  |  |  |
| 28                                                            |                                                   |                                           |                  |         |                   |  |  |  |  |  |  |  |
|                                                               |                                                   |                                           |                  |         |                   |  |  |  |  |  |  |  |
| l <i>(////</i> /                                              |                                                   |                                           |                  |         |                   |  |  |  |  |  |  |  |
|                                                               |                                                   |                                           |                  |         |                   |  |  |  |  |  |  |  |
| 30 Bottom of Boring = 30 ft bgs                               |                                                   |                                           |                  |         |                   |  |  |  |  |  |  |  |
| ABBREVIATIONS:                                                | I                                                 | NOTES:                                    |                  |         |                   |  |  |  |  |  |  |  |
| ft bgs = feet below ground surface USCS = Unified             | Soil Classification System groundwater table      |                                           |                  |         | Page 2 of 2       |  |  |  |  |  |  |  |
|                                                               |                                                   |                                           |                  |         |                   |  |  |  |  |  |  |  |

|                                                                                                                                                                                                   | PROJECT:                   | SITE ADDRESS |                                                 | BORING    | SB-09           |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------|-------------------------------------------------|-----------|-----------------|--|--|--|--|--|--|
| FLOYD   SNIDER                                                                                                                                                                                    | COB-Riverside              | Bothell, WA  |                                                 |           | 30-07           |  |  |  |  |  |  |
| strategy • science • engineering                                                                                                                                                                  | LOGGED BY:                 |              | BORING LOCATION: Upgradient Extraction Well Row |           |                 |  |  |  |  |  |  |
| DRILLED BY:                                                                                                                                                                                       | Ryne Adams                 | NORTHING:    |                                                 | EASTING:  |                 |  |  |  |  |  |  |
| Holocene                                                                                                                                                                                          |                            | NORTHING.    |                                                 | EASTING:  |                 |  |  |  |  |  |  |
| DRILLING EQUIPMENT:                                                                                                                                                                               |                            | GROUND SURF  | ACE (                                           | COORDINA  | TE SYSTEM:      |  |  |  |  |  |  |
| Geoprobe LAR                                                                                                                                                                                      |                            | ELEVATION:   |                                                 |           |                 |  |  |  |  |  |  |
| DRILLING METHOD:                                                                                                                                                                                  |                            | TOTAL DEPTH  | (ft bgs):                                       | рертн то  | WATER (ft bgs): |  |  |  |  |  |  |
| Direct push                                                                                                                                                                                       |                            | 30           |                                                 | 16        |                 |  |  |  |  |  |  |
| SAMPLING METHOD/SAMPLER LENGTH:                                                                                                                                                                   |                            | BORING DIAME | TER:                                            | DRILL DAT |                 |  |  |  |  |  |  |
| 5' x 2" disposable poly liner 2" 9/6/2024                                                                                                                                                         |                            |              |                                                 |           |                 |  |  |  |  |  |  |
| Depth   USCS   Soil Description and Observations   Drive/   PID   Greet   Symbol   (color, texture, moisture, MAJOR CONSTITUENT, odor, staining, sheen, debris, etc.)   Recovery   (ppm)   Sample |                            |              |                                                 |           |                 |  |  |  |  |  |  |
| 0 Brown, well graded <b>SAND</b> wit                                                                                                                                                              | h silt, loose, dry, no odd | or.          |                                                 |           |                 |  |  |  |  |  |  |
|                                                                                                                                                                                                   |                            |              |                                                 |           |                 |  |  |  |  |  |  |
| _ <del></del>                                                                                                                                                                                     |                            |              |                                                 |           |                 |  |  |  |  |  |  |
|                                                                                                                                                                                                   |                            |              |                                                 | 0.1       |                 |  |  |  |  |  |  |
| 2                                                                                                                                                                                                 |                            |              |                                                 |           |                 |  |  |  |  |  |  |
|                                                                                                                                                                                                   |                            |              |                                                 |           |                 |  |  |  |  |  |  |
|                                                                                                                                                                                                   |                            |              |                                                 |           |                 |  |  |  |  |  |  |
|                                                                                                                                                                                                   |                            |              |                                                 |           |                 |  |  |  |  |  |  |
|                                                                                                                                                                                                   |                            |              |                                                 | 0.1       |                 |  |  |  |  |  |  |
| 4                                                                                                                                                                                                 |                            |              |                                                 |           |                 |  |  |  |  |  |  |
|                                                                                                                                                                                                   |                            |              |                                                 |           |                 |  |  |  |  |  |  |
|                                                                                                                                                                                                   |                            |              |                                                 |           |                 |  |  |  |  |  |  |
|                                                                                                                                                                                                   |                            |              |                                                 |           |                 |  |  |  |  |  |  |
|                                                                                                                                                                                                   |                            |              |                                                 | 0.2       |                 |  |  |  |  |  |  |
| 6                                                                                                                                                                                                 |                            |              |                                                 | 0.2       |                 |  |  |  |  |  |  |
|                                                                                                                                                                                                   |                            |              |                                                 |           |                 |  |  |  |  |  |  |
|                                                                                                                                                                                                   |                            |              |                                                 |           |                 |  |  |  |  |  |  |
| SW-SM                                                                                                                                                                                             |                            |              |                                                 |           |                 |  |  |  |  |  |  |
| 8 —                                                                                                                                                                                               |                            |              |                                                 |           |                 |  |  |  |  |  |  |
|                                                                                                                                                                                                   |                            |              |                                                 |           |                 |  |  |  |  |  |  |
|                                                                                                                                                                                                   |                            |              |                                                 | 0.1       |                 |  |  |  |  |  |  |
| Cobble present.                                                                                                                                                                                   |                            |              |                                                 |           |                 |  |  |  |  |  |  |
|                                                                                                                                                                                                   |                            |              |                                                 |           |                 |  |  |  |  |  |  |
| 10                                                                                                                                                                                                |                            |              |                                                 |           |                 |  |  |  |  |  |  |
|                                                                                                                                                                                                   |                            |              |                                                 |           |                 |  |  |  |  |  |  |
|                                                                                                                                                                                                   |                            |              |                                                 |           |                 |  |  |  |  |  |  |
|                                                                                                                                                                                                   |                            |              |                                                 |           |                 |  |  |  |  |  |  |
| 12 —                                                                                                                                                                                              |                            |              |                                                 |           |                 |  |  |  |  |  |  |
|                                                                                                                                                                                                   |                            |              |                                                 | 0.1       |                 |  |  |  |  |  |  |
|                                                                                                                                                                                                   |                            |              |                                                 | J. 1      |                 |  |  |  |  |  |  |
|                                                                                                                                                                                                   |                            |              |                                                 |           |                 |  |  |  |  |  |  |
|                                                                                                                                                                                                   |                            |              |                                                 |           |                 |  |  |  |  |  |  |
| 14 Becomes moist and very loose                                                                                                                                                                   | e.                         | -            |                                                 |           |                 |  |  |  |  |  |  |
|                                                                                                                                                                                                   |                            |              |                                                 |           |                 |  |  |  |  |  |  |
|                                                                                                                                                                                                   |                            | NOTES.       |                                                 |           |                 |  |  |  |  |  |  |
| ABBREVIATIONS:<br>ft bgs = feet below ground surface USCS = Unified                                                                                                                               | Soil Classification System | NOTES:       |                                                 |           |                 |  |  |  |  |  |  |
| ppm = parts per million = denotes                                                                                                                                                                 | groundwater table          |              |                                                 |           | Page 1 of 2     |  |  |  |  |  |  |

| ELOVE LONDER                                                                                                                            | PROJECT:<br>COB-Riverside                    | SITE ADDRESS<br>Bothell, WA    |                  | BORI               | NG ID: SB-09      |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------|------------------|--------------------|-------------------|--|--|--|--|--|--|
| FLOYDISNIDER                                                                                                                            | LOGGED BY:                                   |                                | BORING LOCATION: |                    |                   |  |  |  |  |  |  |
| strategy • science • engineering                                                                                                        |                                              | Upgradient Extraction Well Row |                  |                    |                   |  |  |  |  |  |  |
| DRILLED BY:<br>Holocene                                                                                                                 | NORTHING:                                    | NORTHING: EASTING:             |                  |                    |                   |  |  |  |  |  |  |
| DRILLING EQUIPMENT: Geoprobe LAR                                                                                                        |                                              | GROUND SURF<br>ELEVATION:      | ACE CO           | OORDIN             | IATE SYSTEM:      |  |  |  |  |  |  |
| DRILLING METHOD: Direct push                                                                                                            |                                              | TOTAL DEPTH                    | . • .            | <b>EPTH T</b> (    | O WATER (ft bgs): |  |  |  |  |  |  |
| SAMPLING METHOD/SAMPLER LENGTH: 5' x 2" disposable poly liner                                                                           |                                              | BORING DIAME                   |                  | RILL DA<br>9/6/202 |                   |  |  |  |  |  |  |
| Depth (feet) Symbol (color, texture, moisture, MAJOR CONSTITUENT, odor, staining, sheen, debris, etc.)  Drive/ Recovery (ppm) Sample ID |                                              |                                |                  |                    |                   |  |  |  |  |  |  |
| Dark brown, fine silty SAND v                                                                                                           | vith peat, medium dens                       | e.                             |                  | 0.4                |                   |  |  |  |  |  |  |
| 18 — SM:                                                                                                                                |                                              |                                |                  | 0.4                | SB-09-16-19       |  |  |  |  |  |  |
| 1" lense of gray poorly graded  20 Brown, well graded fine to coa                                                                       |                                              | or.                            |                  | 0.4                | SB-09-19-22       |  |  |  |  |  |  |
| Brown, fine <b>SILTY SAND], loc</b>                                                                                                     | ose, wet, no odor.                           |                                |                  | 0.2                | 00 07 17 22       |  |  |  |  |  |  |
| 24 — SM:                                                                                                                                |                                              |                                |                  | 0.3                | SB-09-22-25       |  |  |  |  |  |  |
| Brown, poorly graded fine <b>SAND</b> with silt, medium dense wet, high dilatancy no odor.,  0.3  SB-09-2                               |                                              |                                |                  |                    |                   |  |  |  |  |  |  |
| SP-SM<br>28 — 0.3                                                                                                                       |                                              |                                |                  |                    |                   |  |  |  |  |  |  |
| 30 Bottom of Boring = 30 ft bgs                                                                                                         |                                              |                                |                  | 0.3                |                   |  |  |  |  |  |  |
| ABBREVIATIONS:                                                                                                                          |                                              | NOTES:                         |                  |                    |                   |  |  |  |  |  |  |
| ft bgs = feet below ground surface USCS = Unified sppm = parts per million = denotes                                                    | Soil Classification System groundwater table |                                |                  |                    | Page 2 of 2       |  |  |  |  |  |  |

|                                                                             | PROJECT:                                                 | SITE ADDRESS              |                                                    | BORING ID: SB-10                |  |  |  |  |
|-----------------------------------------------------------------------------|----------------------------------------------------------|---------------------------|----------------------------------------------------|---------------------------------|--|--|--|--|
| FLOYD   SNIDER                                                              | COB-Riverside                                            | Bothell, WA               |                                                    | 30-10                           |  |  |  |  |
| strategy • science • engineering                                            | LOGGED BY: Ryne Adams                                    | BORING LOCA               |                                                    | Sow                             |  |  |  |  |
| DRILLED BY:                                                                 | Tyrio / Mairio                                           | NORTHING:                 | Upgradient Extraction Well Row  NORTHING: EASTING: |                                 |  |  |  |  |
| Holocene                                                                    |                                                          |                           |                                                    |                                 |  |  |  |  |
| DRILLING EQUIPMENT: Geoprobe LAR                                            |                                                          | GROUND SURF<br>ELEVATION: | FACE CO                                            | OORDINATE SYSTEM:               |  |  |  |  |
| DRILLING METHOD:                                                            |                                                          | TOTAL DEPTH               |                                                    | EPTH TO WATER (ft bgs):<br>14.5 |  |  |  |  |
| Direct push                                                                 |                                                          | 30                        |                                                    |                                 |  |  |  |  |
| SAMPLING METHOD/SAMPLER LENGTH: 5' x 2" disposable poly liner               |                                                          | BORING DIAME<br>2"        |                                                    | RILL DATE:<br>0/6/2024          |  |  |  |  |
| Depth USCS Soil Descri<br>(feet) Symbol (color, texture, moisture, MAJOR Co | ption and Observations<br>ONSTITUENT, odor, staining, sh | neen, debris, etc.)       | Drive/<br>Recovery (                               | PID (ppm) Sample ID             |  |  |  |  |
| Brown, well graded medium to odor, , trace iron oxide   SW-SM  SW-SM  To    |                                                          |                           |                                                    | ppin) Sample ID                 |  |  |  |  |
| ABBREVIATIONS:                                                              |                                                          | NOTES:                    |                                                    |                                 |  |  |  |  |
| ft bgs = feet below ground surface USCS = Unified                           | Soil Classification System                               |                           |                                                    |                                 |  |  |  |  |

ppm = parts per million

= denotes groundwater table

| FLOVD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CNUDED                                                                                                                         | PROJECT:<br>COB-Riverside                      | SITE ADDRE<br>Bothell, V |                  | BORII           | SB-10       |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------|------------------|-----------------|-------------|--|--|--|--|--|
| The state of the s | SNIDER                                                                                                                         | LOGGED BY:                                     | BORING LO                |                  |                 |             |  |  |  |  |  |
| strategy • scien                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ce • engineering                                                                                                               | Ryne Adams                                     |                          | nt Extraction We | ell Row         |             |  |  |  |  |  |
| DRILLED BY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                |                                                | NORTHING:                |                  | EASTING         | :           |  |  |  |  |  |
| Holocene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                |                                                | IDE 10E                  | 000000111        | ATE CVCTEM      |             |  |  |  |  |  |
| DRILLING EQUIPMENT:<br>Geoprobe LAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                |                                                | GROUND SU<br>ELEVATION   |                  | COORDIN         | ATE SYSTEM: |  |  |  |  |  |
| DRILLING METHOD:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                | TOTAL DEP                                      | TH (ft bgs):             |                  | WATER (ft bgs): |             |  |  |  |  |  |
| Direct push 30 14.5  SAMPLING METHOD/SAMPLER LENGTH: BORING DIAMETER: DRILL DATE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                |                                                |                          |                  |                 |             |  |  |  |  |  |
| 5' x 2" disposable po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                |                                                | 2"                       | WIETER.          | 9/6/202         |             |  |  |  |  |  |
| Depth USCS (feet) Symbol (co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Soil Description and Observations Drive/ PID                                                                                   |                                                |                          |                  |                 |             |  |  |  |  |  |
| 16 — SM:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | orown, <b>silty SAND</b> with                                                                                                  |                                                |                          |                  |                 |             |  |  |  |  |  |
| Brown loose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Brown-gray, poorly graded fine <b>SAND</b> with silt, fine sand, wet, no odor, loose, iron oxide pockets at 19 ft  SB-10-16-19 |                                                |                          |                  |                 |             |  |  |  |  |  |
| 20 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | xide pockets present<br>mes light brown with high                                                                              | n dilatancy.                                   |                          |                  |                 | SB-10-19-22 |  |  |  |  |  |
| 22 —<br>SP-SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                |                                                |                          |                  |                 | SB-10-22-25 |  |  |  |  |  |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                |                                                |                          |                  |                 |             |  |  |  |  |  |
| 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                |                                                |                          |                  |                 | SB-10-25-28 |  |  |  |  |  |
| 30 Botto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m of Boring = 30 ft bgs                                                                                                        |                                                | NOTES:                   |                  |                 |             |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nd surface USCS = Unified = denotes                                                                                            | Soil Classification System s groundwater table |                          |                  |                 | Page 2 of 2 |  |  |  |  |  |

| E1 0 1/B 1 0 1/1 B E B                                                                                                                                                        | PROJECT:                                                    | SITE ADDRESS                                       |        | BORII                     | NG ID: <b>SB-11</b> |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|--------|---------------------------|---------------------|--|--|--|--|--|--|
| FLOYDISNIDER                                                                                                                                                                  | COB-Riverside                                               | Bothell, WA                                        |        |                           | 30-11               |  |  |  |  |  |  |
| strategy • science • engineering                                                                                                                                              |                                                             | BORING LOCATION:  Downgradient Extraction Well Row |        |                           |                     |  |  |  |  |  |  |
| DRILLED BY:<br>Holocene                                                                                                                                                       | NORTHING:                                                   | E                                                  | ASTING | :                         |                     |  |  |  |  |  |  |
| DRILLING EQUIPMENT: Geoprobe LAR                                                                                                                                              | GROUND SUR<br>ELEVATION:                                    | FACE C                                             | OORDIN | ATE SYSTEM:               |                     |  |  |  |  |  |  |
| DRILLING METHOD:                                                                                                                                                              |                                                             | TOTAL DEPTH                                        |        |                           | O WATER (ft bgs):   |  |  |  |  |  |  |
| Direct push                                                                                                                                                                   |                                                             | 25                                                 |        | 8.5                       |                     |  |  |  |  |  |  |
| SAMPLING METHOD/SAMPLER LENGTH: 5' x 2" disposable poly liner                                                                                                                 |                                                             | BORING DIAM<br>2"                                  |        | <b>RILL DA</b><br>9/4/202 |                     |  |  |  |  |  |  |
| Depth (feet) USCS Soil Description and Observations Symbol (color, texture, moisture, MAJOR CONSTITUENT, odor, staining, sheen, debris, etc.) Drive/ Recovery (ppm) Sample ID |                                                             |                                                    |        |                           |                     |  |  |  |  |  |  |
| Brown, well graded medium to 0.2-0.5", loose , moist, , no od                                                                                                                 | o coarse <b>SAND</b> with silt<br>for. Asphalt present at s | and fine gravel<br>urface.                         |        | 0.2                       |                     |  |  |  |  |  |  |
| Black, well graded fine to medium <b>SAND</b> with silt and gravel 0.2-0.3", loose tomedium dense, wet, no odor.                                                              |                                                             |                                                    |        |                           |                     |  |  |  |  |  |  |
| 10                                                                                                                                                                            |                                                             |                                                    |        | 0.3                       |                     |  |  |  |  |  |  |
| Gray, well graded <b>SAND</b> with  SW-SM  14                                                                                                                                 | silt, loose, wet, no odor                                   |                                                    |        | 0.3                       |                     |  |  |  |  |  |  |
| ABBREVIATIONS:                                                                                                                                                                | 0-11-0115 11 0                                              | NOTES:                                             |        |                           |                     |  |  |  |  |  |  |
| ft bgs = feet below ground surface USCS = Unified ppm = parts per million = denotes                                                                                           | Soil Classification System groundwater table                |                                                    |        |                           | Page 1 of 2         |  |  |  |  |  |  |

| FLOVDICNIDED                                                                        | PROJECT:<br>COB-Riverside                                                                                             | SITE ADDRESS:              | Q <b>∩</b> 11      | BORING ID    | SB-11        |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------|--------------|--------------|--|--|--|--|--|--|
| FLOYDISNIDER                                                                        | LOGGED BY:                                                                                                            | 200.100.1                  |                    |              |              |  |  |  |  |  |  |
| strategy • science • engineering                                                    | BORING LOCATION:  Downgradient Extraction Well Row                                                                    |                            |                    |              |              |  |  |  |  |  |  |
| DRILLED BY:                                                                         | NORTHING:                                                                                                             | -                          |                    |              |              |  |  |  |  |  |  |
| Holocene                                                                            |                                                                                                                       |                            |                    |              |              |  |  |  |  |  |  |
| DRILLING EQUIPMENT: Geoprobe LAR                                                    |                                                                                                                       | GROUND SURFA<br>ELEVATION: | CE C               | COORDINATES  | SYSTEM:      |  |  |  |  |  |  |
| DRILLING METHOD:                                                                    |                                                                                                                       | TOTAL DEPTH (ft            | bgs):              | DEPTH TO WAT | ER (ft bgs): |  |  |  |  |  |  |
| Direct push                                                                         |                                                                                                                       | 25                         |                    | 8.5          |              |  |  |  |  |  |  |
| 5' x 2" disposable poly liner                                                       |                                                                                                                       | BORING DIAMET              | ER: L              | 9/4/2024     |              |  |  |  |  |  |  |
| Depth USCS Soil Descri<br>(feet) Symbol (color, texture, moisture, MAJOR C          | ption and Observations<br>ONSTITUENT, odor, staining, sheen, debr                                                     | is, etc.)                  | Drive/<br>Recovery | PID<br>(ppm) | Sample ID    |  |  |  |  |  |  |
| Gray, well graded, fine to med                                                      | lium <b>SAND</b> with silt, saturated.                                                                                |                            | Ь                  | 0.2          |              |  |  |  |  |  |  |
| 18 Brown, fine <b>silty SAND</b> , dens                                             | se, wet, no odor                                                                                                      |                            |                    | 0.3          |              |  |  |  |  |  |  |
| Gray, poorly graded <b>SAND</b> , tr                                                |                                                                                                                       |                            |                    |              |              |  |  |  |  |  |  |
| Brown, poorly graded fine <b>GR</b> CGP  CGP  CO  CO  CO  CO  CO  CO  CO  CO  CO  C | AVEL, no odor.                                                                                                        |                            | Н                  | 0.3          |              |  |  |  |  |  |  |
| Brown, poorly graded fine <b>SA</b> l dilatency, , no odor.  SP-SM                  | dilatency, , no odor.  Brown, poorly graded fine <b>SAND</b> with silt, medium dense, wet, high dilatency, , no odor. |                            |                    |              |              |  |  |  |  |  |  |
| Bottom of Boring = 25 ft bgs                                                        |                                                                                                                       |                            |                    | 0.2          |              |  |  |  |  |  |  |
| 26 —                                                                                |                                                                                                                       |                            |                    |              |              |  |  |  |  |  |  |
| 28 —                                                                                |                                                                                                                       |                            |                    |              |              |  |  |  |  |  |  |
| ABBREVIATIONS:                                                                      | NOTES:                                                                                                                |                            |                    |              |              |  |  |  |  |  |  |
| ft bgs = feet below ground surface USCS = Unified                                   | Soil Classification System s groundwater table                                                                        |                            |                    |              | Page 2 of 2  |  |  |  |  |  |  |

## **Pre-Engineering Design Investigation Data Report**

Riverside HVOC Site

## Appendix D Detailed Cost Estimates

 $\label{eq:flower_side} FLOYD \mid SNIDER$  Riverside HVOC Site

Table D.1
Summary of Cleanup Action Alternative Costs

| Alternative             | Restoration Time Frame (years) (1) | <b>Construction Cost</b> | Long-Term Monitoring | Cost (2)    |
|-------------------------|------------------------------------|--------------------------|----------------------|-------------|
| 2023 CAP Cleanup Action | 5                                  | \$2,103,940              | \$630,362            | \$2,734,302 |
| Alternative 1           | 5                                  | \$1,129,072              | \$630,362            | \$1,648,059 |
| Alternative 2           | 3                                  | \$1,437,152              | \$218,210            | \$1,655,362 |

## Notes:

- 1 Includes remedy implementation in time frame.
- 2 Includes total of construction costs, professional services (including long-term monitoring), sales tax, and a 20% contingency.

December 2024 DRAFT Page 1 of 1 Table D.1

FLOYDISNIDER

Table D.2
Detailed Costs for 2023 CAP Cleanup Action

| lu.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 0.     | 1               |                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|-------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Qty      | Unit            | Unit Cost               | Cost                                  | Notes and Assumptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CONSTRUCTION CAPITAL COSTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                 |                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Soil Vapor Extraction System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1        | 1.0             | ć c.000                 | ć c.000                               | Charles to a second state of the second state |
| Permitting  Mobilization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5        | LS<br>%         | \$ 6,000                |                                       | State air permit; state, county, and local construction and grading permits if applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _        | -               | ć 1.200                 | Ŧ,==:                                 | 5% of total construction costs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Utility clearance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1        | LS              | \$ 1,200                |                                       | Includes travel, conductible and non-conductible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Paving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 84       | Tons            | \$ 250                  |                                       | Based on needing to pave a 115' x 40' area for SVE effectiveness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Well installation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 180      | FT              | \$ 145                  |                                       | 12 SVE wells to depth of 15 feet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SVE piping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12       | LF              | \$ 7,610                |                                       | Assumes each location has their own separate piping, as shown in Figure 6 of the CAP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Electrical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | LS              | \$ 18,618               |                                       | Assumes that current electrical is sufficient, but would need to be rewired by a certified electrician.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SVE system rental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36       | Months          | \$ 19,712               |                                       | Assumes that the system will be rented for 3 years (per CAP).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SVE system startup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2        | DAY             | \$ 4,930                |                                       | Assumes 2 days by technician.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Site cleanup and demob                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2        | DAY             | \$ 4,000                |                                       | Assumes 2 days by technician.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | SUBTOT          | AL CAPITAL COSTS        | \$ 936,027                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Bio-Reciuculation System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |                         | I                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Permitting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8        | LS              | \$ 100                  |                                       | UIC permit, 8 injection wells proposed in CAP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mobilization/setup of system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1        | LA              | \$ 53,482               |                                       | ETEC quote.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Utility clearance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1        | LS              | \$ 1,200                |                                       | From ULS Quote.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Well installation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 490      | FT              | \$ 145                  | •                                     | Assumes layout presented in Figure 6 of the CAP and 35 ft wells.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Well decommissioning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 70       | FT              | \$ 145                  | ·                                     | Assumes EW-5 and EW-6 are overdrilled due to stuck pumps.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| System piping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16       | EA              | \$ 7,610                |                                       | Assumes each location has their own separate piping, as shown in Figure 6 of the CAP: 6 injection, 2 new extraction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Electrical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | LS              | \$ 28,618               |                                       | Assumes new electrical panel required, price equal to SVE electrical.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Recirculation system rental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24       | Months          | \$ 5,000                |                                       | From ETEC quote, assumes 2 years of operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Site cleanup and demob                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1        | LS              | \$ 4,000                |                                       | From ETEC quote.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | SUBTOT          | AL CAPITAL COSTS        | \$ 411,060                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Indirect Costs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ı        | -               | I                       | Ι.                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Engineering design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1        | LS              | \$ 161,050              |                                       | From Cost Projection Worksheet - Tasks 6 and 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Construction management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5        | %               | DC                      | 1,                                    | Assumes 10% of construction costs, minus waste T&D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Soil drum disposal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20       | EA              | \$ 350.00               |                                       | Assumes 1 drum per well installed and 2.5 each for over drilling EW-5 and EW-6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Water drum disposal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15       | EA              | \$ 350.00               |                                       | Includes purge water to develop all injetion, extraction and new monitoring wells.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Field oversight - system installation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 180      | Hours           | \$ 175                  |                                       | Assumes between 1 and 2 employees over 12 days (10 hour days).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Completion report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1        | LS              | \$23,750.00             |                                       | Per MTCA requirements. Includes as-built drawings, O&M manual.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Calantan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 0/              | Subtotal                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sales tax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | %               | 10.2                    |                                       | Applied to construction; does not apply to indirect costs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Cartinary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 0/              | Capital Costs           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Contingency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | %               | 20                      |                                       | Contingency based on inflation on equipment and construction work.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| A CORA Corredo de la Co |          | Capital Costs   | with Contingency        | \$ 2,103,940                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Annual O&M, Groundwater Monitoring, and Clo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        | For-in-t        | ć 3.000                 | ć 42.000                              | Assumes a worker was the rive for years 1.2 and continuous localitating years 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Project management  Groundwater monitoring well installation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14       |                 | \$ 3,000                |                                       | Assumes quarterly monitoring for years 1-2 and semiannual monitoring years 3-5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Groundwater monitoring well installation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70       | FT              | \$ 145                  |                                       | Assumes new well at GWB-6 and one well east GWB-6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Groundwater monitoring and sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14       | Event           | \$ 9,741                |                                       | Assumes two 10-hour days for two employees; up to 11 wells will be sampled. Based on Cost Projection Worksheet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Groundwater analytical costs System air samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14<br>12 | Event<br>Event  | \$ 6,160<br>\$ 610      |                                       | Includes COCs and select MNA parameters. Includes COCs analysis in influent and effluent air samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Waste disposal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3        | Event           | \$ 1,700.00             |                                       | Disposal of purged water drums and spent media. Assume yearly during system operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Annual reporting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4        | YEAR            | \$ 1,700.00             |                                       | Based on costs provided in Remedial Action Grant funding estimate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Completion reporting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1        | LS              |                         |                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Confirmation soil sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | LS              | \$ 11,875<br>\$8,225.00 |                                       | Draft and final based on Ecology comments.  Includes one day of direct push soil sampling, analysis of 15 samples, 2 employees.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| System O&M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36       | Months          | \$ 2,880                |                                       | Assumes Weekly O&M for labor, repair, and maintenance for 12 months. 1 employee for 4 hours for each O&M trip once a week.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Electricity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36       | Months          | \$ 2,880                |                                       | Estimated; could be more or less depends on system usage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| GAC media                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7        | Events          | \$ 7,740                | · · · · · · · · · · · · · · · · · · · | Based on BSC system changeout and additional event for the SVE carbon.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CarBstrate media                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24       | Months          | \$ 3,155                |                                       | Assumes 400 lbs of CarBstrate/month per ETEC quote.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Well abandonment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1        | LS              | \$ 7,000                |                                       | Assumes cost of \$300 per well for injection and SVE wells plus \$1,000 mobilization fee.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Annual equipment replacement costs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2        | Events          | \$ 10,000               |                                       | Assumes replacement and reinstallation of compressors, blower, pumps, misc. components, and additional support.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Annual air permit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3        | Year            | \$ 200                  |                                       | Local Air Discharge Fees, if applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                 | Subtotal                | · ·                                   | Total costs for O&M, groundwater monitoring, and closure costs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total F  | Present Value C | ost for Alternative     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | _               |                         | , - ,                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

1 of 1

Appendix D: Detailed Cost Estimates
Table D.2

F L O Y D | S N I D E R

Table D.3
Detailed Costs for Alternative 1

| tem Description                                                   | Quantity | Unit             | Unit Co       | st                              | Cost                                  | Notes                                                                                                                                |
|-------------------------------------------------------------------|----------|------------------|---------------|---------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| CONSTRUCTION CAPITAL COSTS                                        |          | •                | •             |                                 |                                       |                                                                                                                                      |
| Bio-Reciuculation System                                          |          |                  |               |                                 |                                       |                                                                                                                                      |
|                                                                   |          |                  |               | 400                             | <b>.</b>                              | UIC permit, assumed 31 direct push injections at 15-ft spacings and 7 permanent injection wells during initial round, 15 direct push |
| Permitting                                                        | 53       | LS               | \$            | 100                             | \$ 5,300                              | borings during second round.                                                                                                         |
| Mobilization/ System Startup                                      | 1        | LS               | \$ 5          | 3,482                           | \$ 53,482                             | Costs from ETEC quote.                                                                                                               |
| Utility Clearance                                                 | 1        | LS               |               | 1,200                           |                                       | From ULS Quote.                                                                                                                      |
| Well Installation                                                 | 245      | FT               | +             |                                 |                                       | Assumes two new extraction wells, up to three injection wells and two monitoring wells. Assumes all wells are 35 feet deep.          |
| Well Decommissioning                                              | 60       | FT               |               |                                 |                                       | Assumes EW-5 and EW-6 are over-drilled due to stuck pumps.                                                                           |
| System piping                                                     | 11       | LF               |               | 7,610                           | ·                                     | Costs from ETEC quote.                                                                                                               |
| Electrical                                                        | 1        | LS               | +             | 8,618                           |                                       | Assumes new electrical panel required, price equal to SVE electrical.                                                                |
| Recirculation system rental                                       | 24       | Months           | +             | 5,000                           |                                       | Costs from ETEC quote.                                                                                                               |
| Site Cleanup and Demob                                            | 1        | LS               |               | 4,000                           |                                       | Costs from ETEC quote.                                                                                                               |
| one ordered and borned                                            |          | _                | TAL CAPITAL   |                                 |                                       |                                                                                                                                      |
| Supplemental Injections                                           |          |                  |               |                                 | <del>y 0.0,000</del>                  |                                                                                                                                      |
| Hydrant permit                                                    | 2        | LS               | \$ 2          | 0,000                           | \$ 40.000                             | Assumes that hydrant costs are not included in ETEC quote; 2 injection events                                                        |
| Direct Push Injection Drilling- Sitewide                          | 1        | LS               |               | -                               | \$ 61,680                             |                                                                                                                                      |
| Direct Push Injection Drilling- additional downgradient           | 1        | LS               | +             |                                 | \$ 30,000                             | Assumes 1 injection event in western plume and 2 downgradient injection events.                                                      |
| CarBstrate media- Sitewide                                        | 16,000   | lbs              | \$            |                                 | \$ 101,280                            |                                                                                                                                      |
| CarBstrate media- additional downgradient                         | 8,000    | lbs              | Ś             | 6                               |                                       | Assumes 1 injection event in western plume and 2 downgradient injection events.                                                      |
| Bacterial culture- Sitewide                                       | 36       | liters           | Ś             | 667                             |                                       |                                                                                                                                      |
| Bacterial culture- additional downgradient                        | 18       | liters           | ć             | 667                             |                                       | Assumes 1 injection event in western plume and 2 downgradient injection events.                                                      |
| Injection Equipment                                               | 2        | LS               | Ś             | 7,550                           |                                       | Holocene injection equipment costs quote; assumes 2 injection events                                                                 |
| injection Equipment                                               | 2        |                  | TAL CAPITAL   |                                 |                                       | Indicente injection equipment costs quote, assumes 2 injection events                                                                |
| ndirect Costs                                                     |          | 30510            | TAL CALITAL   | 20313                           | 3 334,703                             |                                                                                                                                      |
|                                                                   | 1 1      | LS               | \$ 16         | 1,050                           | ¢ 161.0E0                             | From Cost Projection Worksheet - Tasks 6 and 7.                                                                                      |
| Engineering Design Construction management                        | 5        | LS %             | DC 16         |                                 | •                                     | Assumes 10% of construction costs, minus waste T&D.                                                                                  |
| Soil drum disposal                                                | 12       | - '-             | DC .          |                                 | -,                                    | ,                                                                                                                                    |
| Water drum disposal                                               | 9        | EA               | \$            | 350<br>350                      |                                       | Assumes 1 drum per well installed and 2.5 each for over drilling EW-5 and EW-6.                                                      |
| ·                                                                 | _        | EA               | \$            |                                 |                                       | Includes purge water to develop all injetion, extraction and new monitoring wells.                                                   |
| Field oversight Completion report                                 | 150      | Hours            | \$            | 175                             |                                       | Assumes between 1 and 2 employees over 10 days (10 hour days).                                                                       |
| Completion report                                                 | 1 1      | LS               |               | 23,750                          |                                       | Per MTCA requirements. Includes as-built drawings, O&M manual.                                                                       |
|                                                                   |          | 0/               |               | btotal                          | •                                     |                                                                                                                                      |
| ales tax                                                          |          | %                | 10.2          | 64-                             |                                       | Applied to construction; does not apply to indirect costs.                                                                           |
| Continuo                                                          |          | 0/               |               | Costs                           | · · · · · · · · · · · · · · · · · · · |                                                                                                                                      |
| Contingency                                                       |          | %                | 20            |                                 | · · · · · · · · · · · · · · · · · · · |                                                                                                                                      |
| 10000                                                             |          | Capital Cos      | ts with Conti | gency                           | \$ 1,129,072                          |                                                                                                                                      |
| annual O&M, Groundwater Monitoring, and Closure Costs             |          | I                | I A           | 2 000                           | <b>A</b> 42.000                       |                                                                                                                                      |
| Project Management  Croundwater monitoring and compling           | 14       | Event            |               | 3,000                           | · · · · · · · · · · · · · · · · · · · | Assumes quarterly monitoring for years 1-2 and semiannual monitoring years 3-5.                                                      |
| Groundwater monitoring and sampling  Groundwater analytical costs | 14       |                  |               | 9,741                           |                                       | Assumes two 10-hour days for two employees; up to 11 wells will be sampled. Based on Cost Projection Worksheet.                      |
| Groundwater analytical costs                                      | 14       | Event            |               | 6,160                           |                                       | Includes COCs and select MNA parameters.                                                                                             |
| Waste Disposal                                                    | 2        | Event            |               |                                 |                                       | Disposal of purged water drums and spent GAC media from extraction system. Assume yearly during system operation.                    |
| Annual reporting                                                  | 4        | LS               |               | 1,875                           |                                       | Based on costs provided in Remedial Action Grant funding estimate.                                                                   |
| Completion Reporting                                              | 1        | LS               |               | 1,875                           |                                       | Draft and final based on Ecology comments.                                                                                           |
| System O&M                                                        | 24       | Months           | i e           |                                 |                                       | Assumes Weekly O&M for labor, repair, and maintenance for 12 months. 1 employee for 4 hours for each O&M trip once a week.           |
| Electricity                                                       | 24       | Months           | \$            |                                 |                                       | Estimated; Could be more or less depends on system usage.                                                                            |
| Well abandonment                                                  | 1        | LS               |               | ,                               | •                                     | Assumes cost of \$300 per well for injection and extraction wells plus \$1,000 mobilization fee.                                     |
|                                                                   | 24       | Months           |               |                                 |                                       | Based on ETEC quote.                                                                                                                 |
| CarBstrate media                                                  |          |                  |               |                                 |                                       |                                                                                                                                      |
| GAC media                                                         | 4        | Events           |               |                                 |                                       | Assumes twice yearly changeout.                                                                                                      |
|                                                                   | 4        | Events<br>Events | \$ 1          | 7,740<br>0,000<br><b>btotal</b> | \$ 7,000                              | Assumes twice yearly changeout.  Assumes replacement and reinstallation of pumps, piping, misc. components, and additional support.  |

FLOYDISNIDER

Table D.4
Detailed Costs for Alternative 2

| Item Description                                      | Quantity    | Unit         | Unit Co      | t      | Cost                                  | Notes                                                                                                           |
|-------------------------------------------------------|-------------|--------------|--------------|--------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| CONSTRUCTION CAPITAL COSTS                            |             |              |              |        |                                       |                                                                                                                 |
| Source Area PlumeStop Injections                      |             |              |              |        |                                       |                                                                                                                 |
| Hydrant permit                                        | 1           | LS           | \$ 20,00     | 0.00   | \$ 20,00                              | O Assumes that hydrant costs are not included in Regenesis quote.                                               |
| Permit for injection of PlumeStop: UIC Permit         | 64          | horings      | ć 10         | 0.00   | \$ 6,40                               | 15A NCAC 02C.0200 Well Construction Standards: Criteria and Standards Applicable to Injection Wells; State      |
| Permit for injection of Flamestop. Oic Permit         | 04          | borings      | \$ 10        | 7.00   | Ş 0,40                                | charges \$100 per boring.                                                                                       |
| Direct Injection Push Drilling                        | 1           | LS           | \$ 104,58    | 5.00   | \$ 104,58                             | 5 Costs from Regenesis quote.                                                                                   |
| Well Decommissioning                                  | 60          | FT           | \$ 14        | 5.00   | \$ 8,70                               | O Assumes EW-5 and EW-6 are overdrilled due to stuck pumps.                                                     |
| All Regenesis Products and Professional Services      | 1           | LS           | \$ 516,44    | 5.00   | \$ 740,64                             | 0 Costs from Regenesis quote.                                                                                   |
| Soil/water drum disposal                              | 1           | LS           | \$ 3,00      | 0.00   | \$ 3,00                               | O Assumes that no soil will be generated and very little water.                                                 |
| SUB                                                   | TOTAL CON   | STRUCTION    | I CAPITAL C  | OSTS   | \$ 884,00                             | 0                                                                                                               |
| Indirect Costs                                        |             |              |              |        |                                       |                                                                                                                 |
| Engineering Design                                    | 1           | LS           |              | 050    |                                       | 0 From Cost Projection Worksheet - Tasks 6 and 7.                                                               |
| Construction management                               | 5           | %            | DC           |        | · · · · · · · · · · · · · · · · · · · | 0 Assumes 5% of construction costs, minus waste T&D.                                                            |
| Soil drum disposal                                    | 6           | EA           | \$ 35        | 0.00   |                                       | O Assumes 1 drum per well installed and 2.5 each for overdrilling EW-5 and EW-6.                                |
| Water drum disposal                                   | 3           | EA           | \$ 35        | 0.00   |                                       | 0 Includes purge water to develop new monitoring wells.                                                         |
| Field oversight                                       | 200         | Hours        | \$           | 175    | \$ 35,0                               | O Assumes between 1 and 2 employees over 15 days (10 hour days).                                                |
| Completion report                                     | 1           | LS           | \$23,7       | 0.00   | \$ 23,7                               | Per MTCA requirements. Includes as-built drawings, O&M manual.                                                  |
|                                                       |             |              | Sub          | otal   | \$ 1,152,1                            | 0                                                                                                               |
| Sales tax                                             |             | %            | 10.2         |        | \$ 90,10                              | 8 Applied to construction; does not apply to indirect costs.                                                    |
|                                                       |             |              | Capital      | osts   | \$ 1,242,3                            | 8                                                                                                               |
| Contingency                                           |             | %            | 20           |        | \$ 194,83                             | 4 Contingency based on inflation on equipment and construction work.                                            |
|                                                       | Сар         | ital Costs v | vith Conting | ency : | \$ 1,437,15                           | 2                                                                                                               |
| Annual O&M, Groundwater Monitoring, and Closure Costs |             |              |              |        |                                       |                                                                                                                 |
| Project Management                                    | 10          | Event        | \$ 1         | 000    | \$ 10,00                              | O Assumes quarterly monitoring for years 1-2 and semiannual monitoring year 3.                                  |
| Groundwater monitoring and sampling                   | 10          | Event        | \$ 9         | 741    | \$ 97,4                               | Assumes two 10-hour days for two employees; up to 11 wells will be sampled. Based on Cost Projection Worksheet. |
| Groundwater analytical costs                          | 10          | Event        | \$ 6         | 160    | \$ 61,60                              | 0 Includes COCs and select MNA parameters.                                                                      |
| Waste Disposal                                        | 1           | Event        | \$ 1,70      | 0.00   | \$ 1,70                               | 0 Disposal of purged water drums.                                                                               |
| Annual reporting                                      | 3           | LS           | \$ 11,87     | 5.00   | \$ 35,62                              | 5 Based oncosts provided in Remedial Action Grant funding estimate.                                             |
| Completion Reporting                                  | 1           | LS           | \$ 11,87     | 5.00   |                                       | 5 Draft and final based on Ecology comments.                                                                    |
|                                                       |             |              | Sub          | otal   | \$ 218,2:                             | 0                                                                                                               |
| 1                                                     | otal Presen | t Value Cos  | t for Altern | tive   | \$ 1,655,30                           | 2                                                                                                               |
|                                                       |             |              |              |        | . , -,-                               |                                                                                                                 |

Table D.4

**Riverside HVOC Site**