P1 MPE System Restart and Seasonal Operation Workplan

Prepared for Grant County Public Works

August 2024

Parametrix

P1 MPE System Restart and Seasonal Operation Workplan

Prepared for

Grant County Public Works 124 Enterprise Street SE Ephrata, WA 98823

Prepared by

Parametrix 719 2nd Avenue, Suite 200 Seattle, WA 98104 T. 206.394.3700 F. 1.855.542.6353 www.parametrix.com

August 2024 | 553-1860-014

Citation

Parametrix. 2024. P1 MPE System Restart and Seasonal Operation Workplan. Prepared for Grant County Public Works by Parametrix, Seattle, Washington. August 2024.

Certification

The technical material and data contained in this document were prepared under the supervision and direction of the undersigned, whose seal, as a professional engineer licensed to practice as such, is affixed below.

Shira Debrood

Prepared by Shira DeGrood

Amber Bailey

Prepared by Amber Bailey

Checked by Brian Pippin, PE

Approved by Jenifer Young

This Page Intentionally Left Blank

Contents

1.	Intro	duction		1-1
	1.1	Project	Background	1-1
	1.2	Related	Documents	1-1
2.	Proje	ct Admin	istration and Control	2-1
	2.1	Site Acc	ess Control	2-2
	2.2	Training	and Certification	2-2
3.	MPE	Infrastru	cture	3-1
	3.1	Wells		3-3
	3.2	Field Pip	ping	3-3
	3.3	VTT and	LTT	3-3
	3.4	Control	System	3-4
	3.5	Electrica	al Power Supply	3-4
	3.6	Evapora	tion Pond	3-4
4.	P1 M	PE Seas	onal Operation	4-1
	4.1	Prepara	tion for System Restart	4-1
		4.1.1	Wells	4-1
		4.1.2	Field Piping	4-1
		4.1.3	VTT and LTT	4-2
		4.1.4	Control System	4-2
		4.1.5	Electrical Power Supply	4-2
		4.1.6	Evaporation Pond	4-2
	4.2	Operatio	on and Maintenance	4-3
	4.3	Monitor	ing, Sampling, and Reporting	4-3
5.	Refe	rences		5-1
FIG	URES			
Fig	ure 1.	Site Mar	D	1-2
Fig	ure 2.	MPE Sys	stem Diagram	3-2

Contents (Continued)

TABLES

Table 1. Project Contacts 2-1	
Table 2. P1 MPE Well Summary 3-3	

ATTACHMENTS

- A Health and Safety Plan
- B Sampling and Analysis Plan

Acronyms and Abbreviations

MPE	Multi-Phase Extraction
Ecology	Washington State Department of Ecology
HAZWOPER	hazardous waste operations and emergency response
O&M	Operation and maintenance

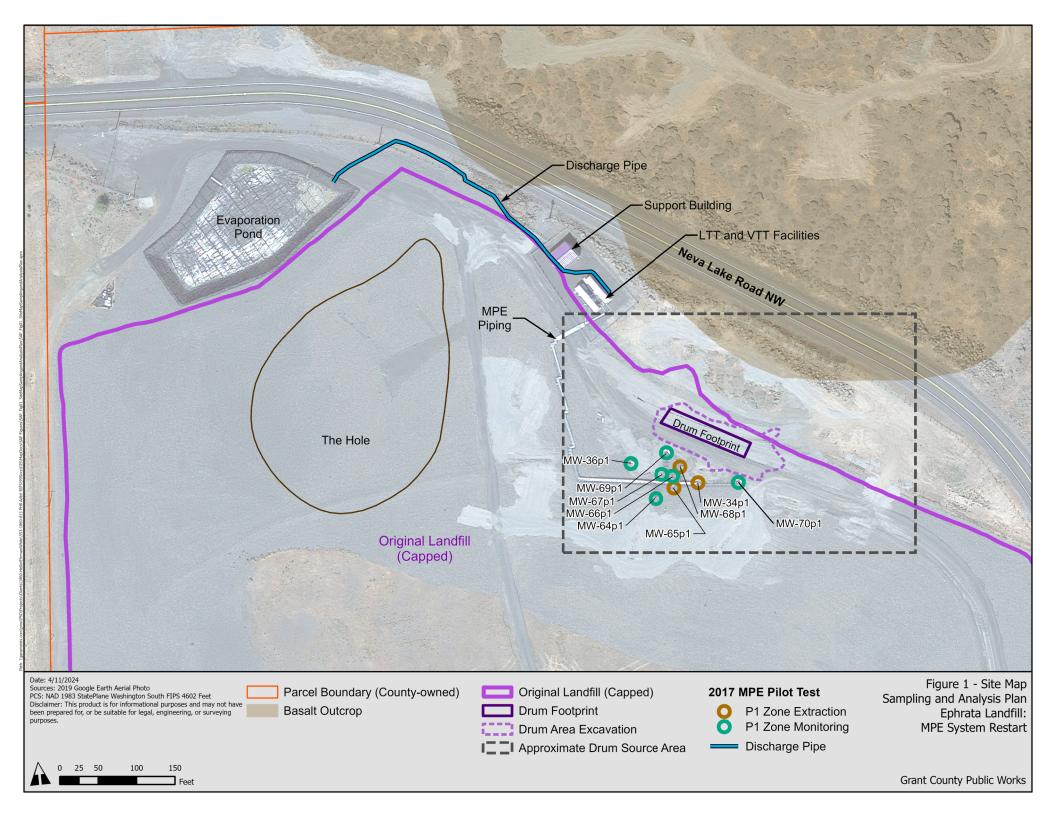
1. Introduction

This Ephrata Landfill Phase 1 Multi-Phase Extraction (MPE) System Restart and Seasonal Operation Work Plan (workplan) describes the preparation, operation, and maintenance procedures to restart and operate the Ephrata Landfill MPE system.

1.1 Project Background

This work is required under the terms of Agreed Order No. DE 3810 (Order) Amendment No. 3 (Amendment) between the Washington State Department of Ecology (Ecology) and Grant County. The Amendment requires the County to develop a workplan, restart, and operate the MPE system from April through October until construction of an expanded MPE system starts. MPE system restart is required within 45-days after Ecology's approval of the workplan, or the following April if the restart would otherwise be after September 1.

Figure 1 shows the MPE system layout at the north end of the Ephrata Landfill. The MPE system comprises extraction and observation wells, field piping, a vapor treatment train (VTT), a liquid treatment train (LTT), a support building, electrical and controls systems, and an evaporation pond. The VTT and LTT are housed in intermodal shipping containers. The MPE system was installed in 2016 and 2017 and a pilot test was conducted in 2017 in prior interim actions under the second amendment of the Order.


The MPE system was shut down after the 2017 pilot test. System shutdown comprised turning off process equipment, draining pipes and vessels, removing spent granular activated carbon (GAC) from the vapor filters, and removing, cleaning, and stowing the well pumps and water level transducers.

1.2 Related Documents

The following documents provide crucial information not directly included in this workplan:

- Health and Safety Plan (HASP)—Attachment A
- Sampling and Analysis Plan (SAP)—Attachment B
- MPE Pilot Test IRA Report (Parametrix 2018)—not attached, previously distributed to stakeholders, available on request

Appendix A of the 2018 IRA report contains MPE system details, including design and record drawings and the Operation and Maintenance (O&M) manual. Although the 2018 IRA report is not attached due to file size, it was distributed in 2018 and is available electronically from Parametrix on request. The O&M manual component document folder is also available electronically on request.

2. Project Administration and Control

The list below contains the names, roles, and contact information for people involved with the P1 MPE restart and seasonal operation. A summary of each entity's involvement in the project follows the list.

Name	Role	Phone #1	Phone #2	email
Parametrix				
Dwight Miller	Principal in Charge, Principal Consultant	206-410-6446	+1-425-9411823	dmiller@parametrix.com
Brian Pippin	Project Manager, Senior Project Engineer	425-681-3602	206-394-3634	bpippin@parametrix.com
Mike Brady	Field Personnel, Senior Hydrogeologist	206-604-8570	206-519-5781	MBrady@parametrix.com
Sally Nguyen	Field Personnel, Hydrogeologist I	206-395-7367		SNguyen@parametrix.com
Tiffany Neier	Project Support, Project Engineer	206-696-2895	206-394-3671	TNeier@parametrix.com
Drew Norton	Field Personnel, Engineer IV	614-557-5988	206-394-3710	DNorton@parametrix.com
Shira DeGrood	Project Support, Senior Scientist	971-351-7968		sdegrood@parametrix.com
Katie Burke	Field Personnel, Hydrogeologist I	503-416-6075		kburke@parametrix.com
Scott Swedberg	Field Personnel, Engineer II	206-410-6446	206-410-6446	sswedberg@parametrix.com
Local Contractor				
Pat King	President, KRCI LLC	509-884-5258	509-670-4403	pat@krci.net
Joey Wedam	Senior Project Manager, KRCI LLC	509-884-5258	509-699-6353	joey@krci.net
Analytical Laborate	ory			
Eric Young	Friedman and Bruya, Inc.	206-683-1731	206-285-8282	eyoung@friedmanandbruya.com
Mott MacDonald				
Alla Skaskevych	Senior Project Manager - Hydrogeologist	816-642-7365	206-539-3765	alla.skaskevych@mottmac.com
Janet Knox	Senior Vice President	206-375-5432	206-838-2886	janet.knox@mottmac.com
Caner Zeyrek	Project Scientist - Hydrogeologic Analyst	531-218-9268	206-487-1312	Caner.Zeyrek@mottmac.com
Grant County Publ	ic Works			
Samuel Castro	Public Works Director	509-754-6082		samcastro@grantcountywa.gov
Jackey Tuetken	Landfill Foreman	509-350-9651		jdtuetken@grantcountywa.gov

Table 1. Project Contacts

P1 MPE System Restart and Seasonal Operation Workplan Grant County Public Works

Name	Role	Phone #1	Phone #2	email
Jason Collings	Solid Waste Supervisor	509-750-3351	509-754-4319	jcollings@grantcountywa.gov
Ecology				
Kristin Beck	Site Manager, Hydrogeologist	509-514-6806		kristin.beck@ecy.wa.gov
Jeremy Schmidt	Toxics Cleanup Program	509-724-1164		jesc461@ecy.wa.gov

Parametrix is the project engineer and lead operator of the MPE system. Parametrix will coordinate system repairs and personnel training, restart the system, and monitor and sample the system as described in this workplan. Parametrix will retain a local contractor to perform minor repairs prior to startup and from time to time when requested.

KRCI LLC is a local contractor retained by Parametrix to perform piping repairs, other repairs that may be needed from time to time and assist with maintenance activities.

Friedman and Bruya, Inc. is the analytical laboratory selected for liquid and vapor sample analysis for the MPE restart and seasonal operation.

Mott MacDonald is the project hydrogeologist and groundwater monitoring lead. They also manage the project database.

Grant County Public Works owns and operates the landfill and manages project contracts, invoicing, payment, and reimbursement requests. The County also controls access to landfill property.

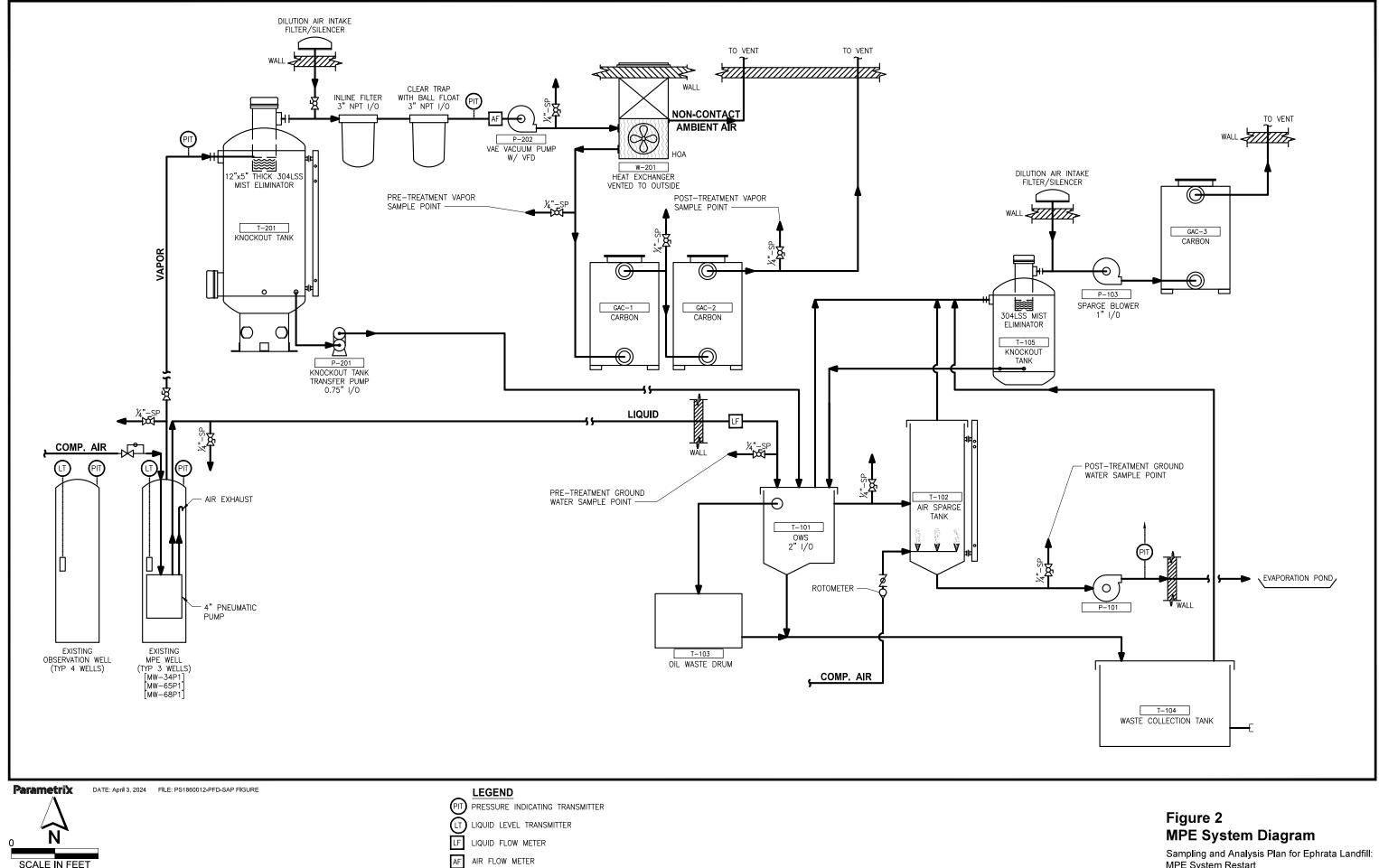
Ecology regulates the site cleanup and controls grant funding.

2.1 Site Access Control

The Ephrata Landfill is a fully fenced facility that is locked except during business hours Monday through Saturday. Public access to the tipping area (active landfill) is through a gated entrance from Neva Lake Road approximately 1,500 feet south of the MPE project area. Public travel on landfill roads is regulated by signage to the tipping area. Landfill personnel monitor unauthorized vehicles that stray from onsite public routes. The MPE project area is physically accessible by driving north (i.e., opposite the signage) from the public entrance.

The MPE project area is more directly accessible from Neva Lake Road through a second gated entrance at the northwest corner of the landfill near the treatment and support buildings and evaporation pond. This gate is normally locked and is for authorized use only (i.e., County personnel and authorized people). The support building and the containers housing the main treatment equipment lock. The landfill fence and gates are the only physical barriers to public access to other MPE infrastructure (e.g., wells, piping, evaporation pond).

2.2 Training and Certification


Field personnel will have current hazardous waste operations and emergency response training in accordance with 29 Code of Federal Regulations 1910.120(e) and consistent with their roles and duration on site in accordance with the HASP.

3. MPE Infrastructure

Figure 2 contains a schematic diagram of the MPE system taken directly from the MPE Pilot Test IRA Report (Parametrix 2018). The MPE system comprises the following components:

- Wells
 - Observation wells
 - Extraction wells
- Field piping
- LTT
 - > Oil-water separator
 - > Air sparge tank
 - Knockout tank
 - > Vapor polishing filter
- VTT
 - Condensate sump
 - Knockout tank
 - Vacuum assisted extraction pump
 - Heat exchanger
 - > Vapor polishing filters
 - > Compressor
- Control system
- Evaporation pond

MPE system details, including design and record drawings, are in Appendix A of the MPE Pilot Test IRA Report.

SCALE IN FEET

MPE System Restart

3.1 Wells

Table 1 summarizes MPE and observation well data applicable to the MPE system restart and seasonal operation.

Station ID	Well Type	Well Dia. (in)	Well Depth (ft)	Depth to Top of Screen (ft)	Depth to Bottom of Screen (ft)	Well Pump	Level Transducer Element No.	Pressure Indicating Transmitter Element No.	Comments
MW-34p1	Extraction	4	40.6	34.6	40.6	QED LDAP4	LT-34P1	PIT-34P1	Need to reinstall pumps
MW-65p1	Extraction	4	38.9	31.9	38.9	QED LDAP4	LT-65P1	PIT-65P1	and water level transducers
MW-68p1	Extraction	4	38.8	30.8	38.8	QED LDAP4	LT-68P1	PIT-68P1	
MW-36p1	Observation	2	42.2	37.2	42.2				No transducer
MW-64p1	Observation	4	44.2	39.2	44.2		LT-64P1	PIT-64P1	Need to
MW-66p1	Observation	4	38.5	34.5	38.5		LT-66P1	PIT-66P1	reinstall water level
MW-67p1	Observation	4	43.7	34.7	43.7		LT-67P1	PIT-67P1	transducers
MW-69p1	Observation	4	36.1	31.1	36.1		LT-69P1	PIT-69P1	
MW-70p1	Observation	4	36.3	30.3	36.3		LT-70P1	PIT-70P1	Transducer and cable to be replaced

Table 2. P1 MPE Well Summary

Note:

Well and screen depths are below the top of the PVC casing.

The pumps and water level transducers were removed, cleaned, and stowed after MPE system shutdown in 2017. The pumps and transducers will need to be reinstalled prior to system restart. Although the pumps are interchangeable, cable and pipe lengths are unique to each well.

3.2 Field Piping

The conveyance piping system includes separate vapor and liquid pipes. The liquid pipe has a syphon break vent at a high point of the conveyance system. The vapor pipe connects to a condensate sump (10-inch diameter stainless steel pipe segment) outside the VTT container. Appendix A of the 2028 IRA report contains the field piping record drawing.

3.3 VTT and LTT

The MPE system O&M manual includes record drawings of the VTT and LTT. Both treatment trains are housed in insulated intermodal containers. Both containers are equipped with two emergency stop switches (they turn off any running equipment), a methane alarm, and low oxygen alarm. The methane and oxygen alarm and shutdown thresholds are user programmable.

Piping, sample ports, and system valves are present in multiple locations in both treatment trains. These are shown in the system schematic diagrams in the O&M manual. The sampling ports are

shown schematically in Figure 2. Most of the piping and valves within the LTT are 1" to 3" size Schedule 80 PVC or 3" stainless steel. Sample ports are 1/4" ball valve with barb fitting and Teflon tubing.

3.4 Control System

The control system is based on a programmable logic controller (PLC) with a human machine interface (HMI) and multiple analog and discreet inputs and outputs. The control room is in the VTT container. In addition to the treatment system schematics, the O&M manual includes control system record diagrams.

3.5 Electrical Power Supply

The electrical service entrance for the MPE facility is on the north wall of the support building. A dedicated circuit with its own disconnect switch extends from there to the 480-volt panel at the VTT container. Appendix A of the 2018 IRA report includes the electrical design drawings for the support building. The 0&M manual includes VTT panel record drawings.

3.6 Evaporation Pond

The evaporation pond is a HDPE double lined treatment pond with leak detection. The design capacity (excluding 2 feet of freeboard) is 558,000 gallons, with a surface area of 26,000 square feet. Appendix A of the 2018 IRA report includes the pond record drawing.

4. P1 MPE Seasonal Operation

This section summarizes routine system operation and maintenance.

Operation and maintenance (O&M) will occur following procedures provided in the 2018 O&M manual (Parametrix 2018).

MPE system operation is planned from April through October until the start of system expansion construction. The system will be shut down and drained in the off season.

Well pumps and water level transducers will be removed, cleaned, and stowed following each extraction season and reinstalled for the next season.

4.1 **Preparation for System Restart**

This section includes steps prior to restarting the P1 MPE system following shutdown during the off season. Applicable steps below will be implemented after short-term shutdowns (i.e., for maintenance or minor repairs).

4.1.1 Wells

Prior to system startup, the wells listed in Table 2 will be monitored with an interface probe for water level and possible non-aqueous phase liquid (NAPL). Water quality samples and, if feasible, NAPL samples will be collected.

The SAP (Attachment B) contains well sampling details. Generally, the water level will be tagged, noting any light NAPL, groundwater samples, and, if feasible, light NAPL samples, then the well will be probed to bottom noting any dense NAPL. Dense NAPL samples will be collected if feasible. It is noted that no NAPL layer thick enough to sample has been observed in any well since 2009.

Reinstall the other water level transducers and well pumps after sampling.

The water level transducer cable is severed at MW-70p1. The transducer and cable comprise an intrinsically safe assemblage which is factory sealed. The transducer and cable will need to be replaced as a unit. The part will be ordered, and the transducer replaced on the next field event after it arrives. The water level in MW-70p1 will be checked with an interface probe during each field event until the transducer can be replaced. The system can be restarted without the MW-70p1 water level transducer.

4.1.2 Field Piping

Known pipe breaks at MW-70p1 and MW-69p1 were repaired on June 7, 2024. Visual inspection of the field piping system on May 8, 2024, revealed no obvious breaks other than at the two wells; however, the liquid, vapor, and pneumatic pipes are insulated. Because the liquid, vapor, and pneumatic pipes are insulated and leaks may not be readily apparent, a low-pressure air test will be performed prior to startup. Additionally, during startup, the pipe system will be observed for any indications of leakage.

The syphon break vent will be inspected to verify that air flow is not restricted through the vent.

The vapor pipe sump (outside the VTT container) will also be inspected for sludge or other debris and cleaned if needed.

4.1.3 VTT and LTT

The installed oxygen sensor in the VTT needs to be recalibrated, repaired, or replaced. The LTT oxygen sensor will be checked, along with methane sensors in both containers. Until the installed gas sensors are confirmed to work, a portable gas meter will be used to monitor the atmosphere prior to entry and while personnel are in either container.

Pre-startup inspection of VTT and LTT process piping, valves, and equipment will include the following:

- Visually inspect all piping, valves, and equipment, noting any visible corrosion or other damage.
- Ensure all valves open and close. Set all valves to their normal operating position prior to restarting the system.
- Fill all GAC canisters with fresh granules prior to restarting the system.
- Remove any debris from the oil water separator tank and add water.
- Add water to the air sparge tank (LTT; T-102) until 30 inches of water is present above the bottom-mounted diffusers.
- Add water to the knockout tank (VTT; T-201) to the level of the pump line connection. The pump (P-201) should be filled with water to avoid starting it dry.
- Ensure nothing is obstructing the forced air heater (LTT; Chromalox CXH).
- Check the air compressor (VTT; C-1) oil level and add oil if needed.
- Check the SVE blower (VTT; P-202) oil level and add oil if needed.
- Ensure nothing is obstructing the heat exchanger (VTT; W-201).

Equipment inspection and maintenance will follow the procedures in the O&M manual. The VTT was previously inspected in 2021 and found to be in good condition other than the oxygen sensor.

4.1.4 Control System

A new data logging module will be installed and connected to the PLC. The PLC program will be updated to accommodate the new module and set data collection intervals (hourly for transducers and total vapor and liquid flow). VTT and LTT equipment may be turned on briefly to confirm operation and connections to the control system. This work will be scheduled before the system restart.

4.1.5 Electrical Power Supply

The power has remained on since 2017 and there are no known issues. This will be verified when the control system work is performed.

4.1.6 Evaporation Pond

The evaporation pond will be visually inspected from the top of the bank prior to system restart. The leak detection system will be monitored before the system restarts and again once there is about a foot of water in the pond.

4.2 **Operation and Maintenance**

The MPE system should be ready to start and operate once the preparations described in Section 4.1 are completed. Operation and maintenance of equipment physical components (i.e., equipment, valves, gauges, and filters) should follow the O&M manual.

The seasonal operational sequence is summarized below:

- Start the system with groundwater pumping only, no vacuum. Inspect all wells, field piping, and VTT and LTT systems immediately once the system is running.
- Once liquid flow is established through the LTT, collect inlet and outlet liquid samples.
- Pump from MW-34p1, MW-65p1, and MW-68p1 without vacuum for 2 weeks in accordance with the SAP.
- After 2 weeks, activate the SVE blower and adjust the vacuum level to 3.5 inches of mercury. Inspect the wells, field piping and VTT and LTT systems immediately once the vacuum system is running. Collect inlet and outlet liquid and vapor samples at the treatment system. Obtain non-methane organic compound readings using a handheld photoionization detector at all GAC unit inlet and exhaust points.
- Before shutting down the system each season, collect inlet and outlet liquid and vapor samples at the treatment system. Obtain non-methane organic compound readings using a handheld photoionization detector at all GAC unit inlet and exhaust points.
- For seasonal shutdown, deenergize equipment, drain all pipes and vessels, remove the well pumps and water level transducers and clean according to the O&M manual. Inspect the air sparge tank diffusers and clean according to the O&M manual if needed. Leave the electrical power supply on and set thermostats to maintain container temperatures above 40°F.

4.3 Monitoring, Sampling, and Reporting

The SAP (Attachment 2) contains monitoring and sampling plans. Generally, liquid and vapor samples will be analyzed before and after treatment three times per season. Total liquid and vapor flow and transducer pressures are recorded by the PLC at user-definable intervals.

Reporting will follow Amendment requirements. Applicable monthly data will also be included in the interim action progress report (if needed) and interim action completion report.

5. References

- Parametrix. 2018. Ephrata Landfill MPE Pilot Study Interim Action Pretreatment Facility and Evaporation Pond Operation and Maintenance Manual. Prepared by Parametrix, Seattle, WA. February 2018.
- Parametrix and Pacific Groundwater Group. 2018. Multi-Phase Extraction Pilot Test Interim Remedial Action Ephrata Landfill. Prepared by Parametrix, Seattle, WA. February 2018.

Attachment A

Health and Safety Plan

Site-Specific Health and Safety Plan – Ephrata Landfill: MPE System Restart and Seasonal Operation

Prepared for Grant County Public Works Department

August 2024

Site-Specific Health and Safety Plan – Ephrata Landfill: MPE System Restart and Seasonal Operation

Prepared for

Grant County Public Works Department 124 Enterprise Street SE Ephrata, WA 98823

Prepared by

Parametrix 719 2nd Avenue, Suite 200 Seattle, WA 98104 T. 206.394.3700 F. 1.855.542.6353 www.parametrix.com

April 17, 2024 | 553-1860-014

Citation

Parametrix. 2024. Site-Specific Health and Safety Plan – Ephrata Landfill: MPE System Restart and Seasonal Operation. Prepared for Grant County Public Works Department by Parametrix, Seattle, Washington. April 17, 2024.

Site-Specific Health and Safety Plan – Ephrata Landfill: MPE System Restart and Seasonal Operation

The material and data contained in this document were prepared under the supervision and direction of the undersigned.

Molly Alar Senior Scientist

Brian Pippin Senior Consultant

Contents

1.	Near	est Hosp	ital/Emergency Medical Center1
	1.1	Nearest	: Hospital1
	1.2	Route to	b Hospital from Site1
		1.2.1	Driving Directions to Hospital from Site1
	1.3	Emerge	ncy Phone Numbers1
2.	Plan	Summar	y1
3.	Key I	Project Po	ersonnel2
4.	Site I	Descripti	on and Background3
	4.1	Type of	Site
	4.2	Building	۶/Structures
	4.3	Topogra	aphy3
	4.4		Geologic/Hydrologic Setting
	4.5	Site Sta	tus
	4.6	General	Site History
5.	Haza	rd Evalua	ation4
	5.1	Site Tas	ks and Operations4
	5.2	Chemica	al Hazard Evaluation4
		5.2.1	Landfill Gases and Chemical Hazards4
	5.3	-	
	5.3	-	Landfill Gases and Chemical Hazards4
	5.3	Physica	Landfill Gases and Chemical Hazards4 I Hazards5
	5.3	Physica 5.3.1	Landfill Gases and Chemical Hazards4 I Hazards5 Working Near Heavy Equipment5
	5.3	Physica 5.3.1 5.3.2	Landfill Gases and Chemical Hazards
	5.3	Physica 5.3.1 5.3.2 5.3.3	Landfill Gases and Chemical Hazards
6.		Physica 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5	Landfill Gases and Chemical Hazards
	Healt	Physica 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 th and Sa	Landfill Gases and Chemical Hazards
	Healt	Physica 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 th and Sa	Landfill Gases and Chemical Hazards

Contents (continued)

	7.3	Air Monitoring Equipment
	7.4	Communications Equipment
8.	Deco	ntamination Procedures13
	8.1	Partial Decontamination Procedure
	8.2	Full Decontamination Procedures
9.	Medi	cal Surveillance
10.	Air M	onitoring14
	10.1	Air Monitoring Action Levels
	10.2	Explosion Hazard Action Levels
	10.3	Instrument Calibrations
11.	Site C	Control Measures
12.	Emer	gency Response/Spill Containment/Confined Space16
13.	Pre-E	ntry Briefing
14.	Perio	dic Evaluation
15.	Safe	Work Practices16
16.	Ackno	owledgment17

APPENDICES

A Site Ma	р
-----------	---

- B Incident Report Form
- C Chemicals of Potential Concern
- D Job Hazard Analysis- Wildfire Smoke

Acronyms and Abbreviations

CFR	Code of Federal Regulations
C02	carbon dioxide
COPCs	chemicals of potential concern
H25	hydrogen sulfide
HASP	health and safety plan
HAZWOPER	Hazardous Waste Operations and Emergency Response
HSC	health and safety coordinator
JHAs	job hazard analyses
LEL	lower explosive limit
LTT	liquid treatment train
MPE	multiphase extraction
NAPL	Non-Aqueous Phase Liquids
NIOSH	National Institute for Occupational Safety and Health
PID	photoionization detection
PPE	personal protective equipment
RELs	recommended exposure limits
SSO	site safety officer
TLVs	threshold limit values
VTT	vapor treatment train

1. Nearest Hospital/Emergency Medical Center

1.1 Nearest Hospital

Columbia Basin Hospital

200 Nat Washington Way, Ephrata, WA 98823

Phone: 509-754-4631

Distance: 5 miles

Travel Time: 9 minutes

1.2 Route to Hospital from Site

See map in Appendix A.

1.2.1 Driving Directions to Hospital from Site

- 1. Follow C 1 and Road 12 NW to Dodson Road NW
- 2. Turn left onto Dodson Road NW
- 3. Continue on A Street SE to Columbia Basin Hospital

1.3 Emergency Phone Numbers

In the event of an emergency, call 911. For nonemergency matters and whom to inform after an emergency event, see table below.

Site Contact	Contact No. 911
Brian Pippin Project Manager	Cell: 425-681-3602
Jason Collings	Phone: 509-750-3351
Solid Waste Supervisor	Cell: 509-754-4319
Sam Castro	Phone: 509-754-6082
Grant County Public Works Director	Phone: 509-754-6082

Alternate contacts:

- Dwight Miller, Principal-in-Charge, phone: 206-394-3644, mobile: 425-941-1823
- Melisa Peyton, Health and Safety Coordinator, phone: 253-604-6678, cell: 253-229-7894

2. Plan Summary

This health and safety plan (HASP) was developed to describe the procedures and practices necessary for protecting the health and safety of Parametrix employees conducting activities at

Ephrata Landfill Cleanup Site (the Site). Other employers, including contractors and subcontractors, will be required to develop and implement their own HASPs to manage the health and safety of their personnel.

Parametrix personnel conducting activities at the Site are responsible for understanding and adhering to this HASP. Before fieldwork begins, a site safety lead (SSO) who is familiar with health and safety procedures and with the Site will be designated. The SSO will generally be the most experienced person on site. Safety issues should be communicated first to the SSO, then the project manager and Parametrix's health and safety coordinator (HSC) as needed to resolve the issue.

All contractors and subcontractors have the primary responsibility for the safety of their own personnel on the Site. All personnel on the Site have "stop work" authority if they observe conditions that they believe create an imminent danger.

If Parametrix employees work on the Site for more than 1 year, this HASP will be reviewed at least annually. The plan will be updated as necessary to ensure that it reflects the known hazards, conditions, and requirements associated with the Site.

Parametrix personnel who will be working on the Site are required to read and understand this HASP. Parametrix personnel working on-site for the first time and following any formal HASP update must sign the Personnel Acknowledgment Sheet (see Section 16), certifying that they have read and that they understand this HASP and agree to abide by it.

Name	Responsibility	Phone #1	Phone #2	Email
Dwight Miller	Principal in Charge	206-410-6446	+1-425-9411823	dmiller@parametrix.com
Brian Pippin	Project Manager	425-681-3602	206-394-3634	bpippin@parametrix.com
Mike Brady	Field Personnel	206-604-8570	206-519-5781	MBrady@parametrix.com
Scott Swedberg	Field Personnel	206-410-6446	206-410-6446	sswedberg@parametrix.com
Drew Norton	Field Personnel	614-557-5988	206-394-3710	DNorton@parametrix.com
Sally Nguyen	Field Personnel	206-395-7367		SNguyen@parametrix.com
Katie Burke	Field Personnel	503-416-6075		kburke@parametrix.com
Melisa Peyton	Health and Safety Coordinator	253-604-6678	+1-253-2297894	mpeyton@parametrix.com

3. Key Project Personnel

4. Site Description and Background

4.1 Type of Site

The Site, or project area, is located on a portion of the Ephrata Landfill. In 2008, approximately 2,300 buried hazardous waste drums were removed from the Site. Grant County has requested that Parametrix lead restart and seasonal operation of the multiphase extraction (MPE) system on the Site. This will be followed by construction oversight when the system is expanded, then seasonal operation and monitoring of the expanded MPE system. Work conducted by Parametrix will predominately occur in the northern portion of the Ephrata Landfill, around the MPE system.

4.2 Building/Structures

The Ephrata landfill is a fully fenced facility. Structures proximate to and within the Site include an office/storage building, a pretreatment facility, and evaporation pond.

4.3 Topography

Parametrix personnel will be working in and around the vapor treatment train (VTT) and liquid treatment train (LTT) containers and support building. The VTT, LTT, and building are in a generally flat area of crushed rock surfacing material. Parametrix personnel will also be working on the landfill, which is sloped and uneven terrain. Roads and paths are crushed rock surfacing material. The landfill surface is covered with well-graded loose cobble in about the 3- to 6-inch diameter range.

4.4 Geologic/Hydrologic Setting

The Ephrata landfill is situated within the Columbia Plateau region of the Pacific Northwest, which is characterized by its basaltic lava flows and sedimentary deposits. Groundwater is present in the region with aquifers contained within the porous layers of basalt and sedimentary deposits.

4.5 Site Status

The Grant County Regional Landfill, which is immediately south of the Ephrata Landfill, is active and open to the public. The project area is signed off limits from the Regional Landfill roads, although there are no physical barriers such as gates.

4.6 Site History

This is Parametrix's project Phase 9 (Amendment Nine) of a site cleanup of the old Ephrata Landfill under the Model Toxics Control Act. Completed interim actions include the removal of more than 2,317 buried hazardous waste drums (2008), capping the landfill (2009), and MPE pilot testing and removal of soil contaminated with arsenic (2016 to 2018). Parametrix is the engineering lead, and Mott MacDonald (formerly PGG) is the hydrogeology lead. This work is required under the terms of Agreed Order No. DE 3810 Amendment No. 3 between the Washington State Department of Ecology (Ecology) and Grant County.

5. Hazard Evaluation

5.1 Site Tasks and Operations

Parametrix has completed job hazard analyses (JHAs) for specific tasks that likely could be completed on the Site, depending on the scope of work. See Section 5.3. The following list generally summarizes planned tasks and operations:

- General work near heavy equipment.
- Work in and around excavations.
- Collecting groundwater samples.
- VTT and LTT inlet and discharge sampling.
- Monitoring and sampling Non-Aqueous Phase Liquids (NAPL).
- Work around electrically powered equipment and controls.

The control measures that field personnel must use to eliminate or minimize these hazards, such as air monitoring, personal protective equipment (PPE), and decontamination procedures, are detailed in the JHAs and in subsequent sections of this plan.

5.2 Chemical Hazard Evaluation

Chemicals of potential concern and detected concentrations on the Site are summarized in Section 5.2.1 and Appendix C.

5.2.1 Landfill Gases and Chemical Hazards

Landfill work can potentially lead to exposure to gases like methane, carbon dioxide, and vinyl chloride. On occasion hydrogen sulfide is encountered especially in an actively decomposing moist environment. These gases may be encountered during excavation and other disturbance of landfill refuse.

Methane is a naturally occurring gas often found in decomposing landfills. It is lighter than air, flammable, and generally considered nontoxic at lower concentrations. If concentrations are high enough, as with any gas, methane can be asphyxiating. The Lower Explosive Limit (LEL) for methane is 5% by volume in air (50,000 parts per million [ppm]).

Carbon dioxide (CO2) is generated through decomposition, and asphyxiating levels can be measured in active landfill piping systems. CO2 is nontoxic but asphyxiating at high concentrations (several thousand ppm). Generally, in indoor office environments, it is desirable to maintain CO2 levels below 1,000 ppm to maintain occupant comfort. Normal outdoor concentrations of CO2 are around 300 ppm.

Vinyl chloride is often formed from decomposition of synthetic materials and can be encountered at municipal solid waste landfills. It is carcinogenic, very light in air, and dissipates very quickly. Consequently, it can be difficult, if not impossible, to measure in ambient air, thus reducing its chance of inhalation. Vinyl chloride, like the other gases, can be found in active landfill cells via the piping system or during excavation on an active cell or face. Vinyl chloride is also one of several volatile organic compounds found in the P1 zone immediately south of the former buried drums. The

recommended exposure limits (RELs) for vinyl chloride are 1 ppm averaged over a 10-hour period during a 40-hour workweek.

Hydrogen sulfide (H2S) can be formed from anaerobic bacterial action and is sometimes measured in landfill piping. It is corrosive, thought to cause heart problems, and can be asphyxiating at high concentrations (several hundred ppm). The REL for H2S is 10 ppm averaged over a 10-hour period during a 40-hour workweek and a ceiling limit of 15 ppm, which should not be exceeded at any time. The Immediately Dangerous to Life and Health is 100 ppm. A problem with H2S is its ability to temporarily paralyze the olfactory nerves, making it impossible to sense at high concentrations.

Personnel exposure to landfill gas is possible during sampling activities or if pipes break or equipment fails in such a way as to release landfill gas. Volatilization of organic compounds could occur in wells, piping, tanks, and equipment during pumping and treatment activities.

Arsenic occurs naturally in some Eastern Washington rock and soil and has been detected in soil and groundwater samples associated with this site. The principal route of exposure of arsenic at the site is from accidental ingestion of groundwater. Threshold Limit Values (TLVs) for employee exposure to arsenic are listed in Appendix C.

Chemicals in groundwater: In addition to vinyl chloride, there is potential for exposure to other organic chemicals during field sampling. TLVs for employee exposure to potential organic chemicals are listed in Appendix C. Any of these chemicals can affect the body if inhaled or swallowed or if contact occurs with the eyes or skin. The principal route of exposure at the Site is from inhalation and skin contact.

Wildfire smoke: Although there are many hazardous chemicals in wildfire smoke, the main harmful pollutant for people who are not close to the fire is "particulate matter", the tiny particles suspended in the air. These tiny particles can reach the deepest parts of the lungs and can be absorbed into the body. The Environmental Protection Agency has determined that particulate matter may cause or worsen cardiovascular disease, respiratory disease, cancer, and can harm the nervous system. A Job Hazard Analysis for wildfire smoke can be found in Appendix D.

5.3 Physical Hazards

The specific physical hazards and associated controls for work on the Site are described in the JHAs for the specific tasks likely to be completed on the Site. The control measures that field personnel must use to eliminate or minimize these hazards are detailed in the JHAs below and in the relevant sections of this plan.

5.3.1 Working Near Heavy Equipment

Job/Task Description		
Employees will conduct work such as observation of construction activities and operation of the MPE system. This will require work near heavy equipment, construction operations, and MPE system equipment.		
Physical Hazards		
Hazard/Risk	Source of Hazard/Risk	Hazard/Risk Mitigation
Bodily harm or death	Heavy equipment operating on- site creating a potential for site workers to be struck, crushed, or impacted by moving parts	Stay a safe distance from equipment and maintain eye contact with equipment operators. Wear a safety vest for enhanced visibility.

Physical Hazards		
Hazard/Risk	Source of Hazard/Risk	Hazard/Risk Mitigation
Eye injury	Construction debris (e.g., soil) coming into contact with eyes	Wear eye protection with side shields.
Head injury	Heavy equipment and/or tools impacting the head	Wear a hard hat.
Penetration of feet	Sharp objects that could be stepped on; large objects falling on feet	Wear steel-toe boots with steel shank.
Hearing loss	Noise generated by heavy equipment/machinery	Wear hearing protection such as earplugs or earmuffs.
Injury to bystanders	Pedestrians in the locality of work	Use cones and caution tape to cordon off the immediate work area. Watch for and escort pedestrians away from the work area. Pause work if necessary.
Hand injury	Pinch points	Wear protective gloves whenever possible. Avoid placing hands near operating equipment.

Biological and Chemical Hazards			
Hazard/Risk	Source of Hazard/Risk	Hazard/Risk Mitigation	
None	None specific to this JHA. Chemical hazards related to the site are described in the Chemical Hazards Summary Table.	None	

Engineering Controls: No engineering controls are specified.

General Safe-Work Practices and Guidance:

- Personnel should stay upwind and out of the impact area of the heavy equipment if feasible.
- Cones, barrier tape, or other equivalent methods will be used to establish the impact area if feasible.
- Work conducted in the impact area must be coordinated with the equipment operator using pre-established methods of communication, such as direct eye contact, hand signals, and/or verbal communication.

Personal Protective Equipment: Hard hat, steel-toe work boots with steel shank, high-visibility safety vest or outer garment, safety glasses with side shields, nitrile gloves, and hearing protection—i.e., earplugs or earmuffs.

5.3.2 Working Around Excavations

Job/Task Description

Employees will conduct work such as excavation observation. This will require occasional work in close proximity to excavations.

Physical Hazards		
Hazard/Risk	Source of Hazard/Risk	Hazard/Risk Mitigation
Bodily harm or death	Possible to fall into open excavation from heights	Stay a safe distance from the excavation area. Signs, cones, barrier tape, or other equivalent methods will be used to mark open excavations.

Physical Hazards		
Hazard/Risk	Source of Hazard/Risk	Hazard/Risk Mitigation
Eye injury	Construction debris (e.g., soil) coming into contact with eyes	Wear eye protection with side shields.
Head injury	Possible to fall into open excavation from heights	Stay a safe distance from excavation area. Signs, cones, barrier tape, or other equivalent methods will be used to mark open excavations.

Biological and Chemical Hazards

Hazard/Risk	Source of Hazard/Risk	Hazard/Risk Mitigation
Chemical	None specific to this JHA, unless contact made with contaminated materials	If necessary, see Chemical Hazards Summary Table for applicable chemical hazards.
Biological	No unique source of biological hazards warranting specific controls	None.

Additional Control Measures and Guidance

Engineering Controls: No engineering controls are specified.

General Safe-Work Practices and Guidance: Personnel will stay out of excavations at all times. If heavy equipment is being operated, the JHA for working around heavy equipment will be referenced. Signs, cones, barrier tape, or other equivalent methods will be used to mark open excavations if feasible. Any work that must be conducted near excavations will be conducted using a buddy system.

Personal Protective Equipment: Hard hat, work boots, high-visibility vest, safety glasses with side shields, hearing protection—i.e., earplugs or earmuffs—and nitrile gloves if handling potentially impacted media.

5.3.3 Groundwater Sampling

	Job/Task Descriptio	n	
Employees will con	Employees will conduct work such as groundwater sampling.		
	Physical Hazards		
Hazard/Risk	Source of Hazard/Risk	Hazard/Risk Mitigation	
Heat/cold/ sunburn	Weather	Wear sunscreen on exposed skin. Stop work if an employee feels symptoms of dehydration, overheating, or heat stroke. Move to a shaded area and consume water. During cold conditions, wear adequate clothing to reduce the potential for hypothermia.	
Eye injury	Construction debris and splashes (e.g., soil, water) coming into contact with eyes	Wear eye protection with side shields.	
Physical stress	Heavy lifting of equipment and bailing water	Use proper lifting techniques and take breaks and rest as needed.	
Accidents with equipment/tools	Sample-collection equipment/tools	Use only appropriate equipment for its intended use. Secure equipment in vehicle with netting or straps. Do not leave loose.	

Biological and Chemical Hazards		
Hazard/Risk	Source of Hazard/Risk	Hazard/Risk Mitigation
Chemical	Personnel performing tasks may come into direct contact with contaminated groundwater.	If necessary, see Chemical Hazards Summary Table for applicable chemical hazards.
		The personal protective equipment described below should be used during groundwater sampling to minimize direct contact with groundwater.
Biological— animals	Biting or stinging insects, spiders, snakes, and livestock	When necessary, use bug repellent. Use snake chaps or shin guards when grass is above the ankle. Use a bar to clear spiders and/or snakes from objects and/or vegetation.

Engineering Controls: No engineering controls are specified.

Chemical or Biological Concerns Specific to this JHA: None.

General Safe-Work Practices and Guidance:

- Do not eat or drink in the immediate area where sampling is being conducted.
- Wash hands and face before eating or drinking.
- Dispose of used nitrile gloves in an appropriate container.
- Avoid working with breathing zone directly above the opening of the well casing. When possible, work upwind of the well casing.
- If work is conducted in or near traffic areas, wear high-visibility vests. Use cones, flagging, or other devices to mark out the work area.
- Always carry a cellular phone while working in remote areas.

Personal Protective Equipment: Hard hat, work boots, high-visibility vest, safety glasses with side shields, and disposable nitrile gloves. Avoid direct contact with groundwater.

5.3.4 VTT and LTT Sampling

Job/Task Description

Employees will conduct work such as vacuum-assisted extraction discharge sampling.

Physical Hazards		
Hazard/Risk	Source of Hazard/Risk	Hazard/Risk Mitigation
Eye injury	Construction debris coming into contact with eyes	Wear eye protection with side shields.
Physical stress	Heavy lifting of sampling equipment, compressed gas cylinders, sample coolers; kneeling on hard or gravel surfaces	Use proper bending/lifting techniques by bending and lifting with legs and not with back. Do not twist at the waist when turning. Use buddy system for heavy objects. Use kneepads or a kneeling pad. Take breaks and rest as needed.
Accidents with equipment/tools	Sample-collection equipment/tools	Verify that you have the appropriate equipment/tools for your tasks. Use equipment/tools as intended by the manufacturer. Stow tools in vehicle properly; use appropriate cases and bags. Secure equipment in vehicle with netting and straps. Do not leave loose. Doing so can cause property damage or serious injuries to others or self.

Biological and Chemical Hazards		
Hazard/Risk	Source of Hazard/Risk	Hazard/Risk Mitigation
Chemical	Chemical hazards related to the site are described in the Chemical Hazards Summary Table.	If necessary, see Chemical Hazards Summary Table for applicable chemical hazards. Wear the appropriate personal protective equipment, including nitrile gloves, during sampling to prevent direct contact with contaminants in soil. If appropriate, use of a half-face respirator may be necessary.
Biological—animals	Spiders and rodents	Use nitrile gloves and a mask when working in enclosed areas where rodent droppings are present. Do not touch mouth, eyes, nose, or open wounds when working near rodent droppings.

Engineering Controls: No engineering controls are specified.

General Safe-Work Practices and Guidance:

- Always wear nitrile gloves when handling samples and sampling equipment.
- Do not eat or drink in the immediate area where sampling is conducted.
- Wash hands and face before eating or drinking.
- Used nitrile gloves should be disposed of in a container labeled for disposable items.
- During transport and use, properly secure compressed gas cylinders.
- Attach regulator and hose to compressed gas cylinder in appropriate manner.
- Grasp or secure hose when in use. Do not allow to whip.
- Employees should use caution when working around rodent droppings. If possible, use a shop vac to remove rodent droppings before commencing work.
- Secure equipment in vehicle with netting or straps; do not leave loose.

Personal Protective Equipment: Hard hat (if overhead hazard is present), work boots (if working near heavy equipment), high-visibility vest, safety glasses, disposable nitrile gloves, and hearing protection (i.e., earplugs or earmuffs) as needed, and respiratory protection if necessary.

5.3.5 Non-Aqueous Phase Liquids Monitoring and Sampling

Job/Task Description

Employees will conduct work such as light NAPL thickness measurements.

Physical Hazards		
Hazard/Risk	Source of Hazard/Risk	Hazard/Risk Mitigation
Heat/cold/sunburn	Weather	Wear sunscreen on exposed skin. Stop work if an employee feels symptoms of dehydration, overheating, or heat stroke. Move to a shaded area and consume water. During cold conditions, wear adequate clothing to reduce the potential for hypothermia.
Impact-eyes	Debris and splashes; opening pressurized wells	Wear eye protection.
Physical stress	Heavy lifting of equipment, purge water/NAPL, and sample coolers; kneeling on hard or gravel surfaces	Use proper lifting techniques by bending and lifting with legs and not the back. Do not twist at the waist when turning. Use buddy system for heavy objects. Take breaks and rest as needed.

Physical Hazards		
Hazard/Risk	Source of Hazard/Risk	Hazard/Risk Mitigation
Accidents with equipment/tools	Sample-collection equipment/tools	Verify you have the appropriate equipment/tools for your tasks. Use equipment/tools as intended by the manufacturer. Stow tools in vehicle properly; use appropriate cases and bags. Secure equipment in vehicle with netting and straps. Do not leave loose. It can cause property damage or serious injuries to others or yourself.
Slips, trips, and falls	Ice, plastic sheeting, uneven ground	Use caution when walking on plastic sheeting and uneven ground and in general when snowy and/or icy conditions exist. Avoid stepping in open well monuments. Sidestep/step over hazards on the ground.

Biological and Chemical Hazards			
Hazard/Risk	Source of Hazard/Risk	Hazard/Risk Mitigation	
Biological—animals	Stinging insects, spiders, snakes, deer, rodents, and vegetation (e.g., blackberry bushes)	When necessary, use bug repellent. Insect nests should never be disturbed. If necessary, long pants and a long- sleeved shirt should be worn while on the site. Employees who are allergic to stings should not work in areas where there is a high risk of being stung. Check well vaults and security lids for insects; use caution when opening. Western diamondback rattlesnakes inhabit the region and have been seen on site.	
Chemical	Chemical hazards related to the site are described in the Chemical Hazards Summary Table.	If necessary, see Chemical Hazards Summary Table for applicable chemical hazards.	

Engineering Controls: Electric and/or pneumatic fans can be used to abate nuisance odors when working indoors or outdoors. Fans can also be used when air monitoring action levels have been exceeded.

General Safe-Work Practices and Guidance:

- Do not eat or drink in the immediate area where NAPL monitoring/sampling is being conducted.
- · Wash hands and face before eating or drinking.
- Dispose of used nitrile gloves in appropriate container/manner.
- Avoid working with the breathing zone directly above the opening of the well casing. When possible, work upwind of the well casing.
- Keep face away from monument when removing well cap.
- Use plastic garbage bags or plastic sheeting to cover the work area. It is preferable to roll/berm the edges to catch any drips/spills. If raining, work underneath a rain canopy.
- When removing a dedicated bladder pump from a well, secure air/discharge lines to hose reel with a clamp prior to removal. Turn hose reel slowly to avoid splatter/spray.
- Avoid splashing/splattering NAPL or otherwise coming into direct contact with NAPL. If direct contact occurs, remove NAPL with a paper towel and immediately wash the affected area thoroughly with soap and water.
- Use caution when pulling up bailers full of NAPL, because NAPL-coated string and bailers can become slippery. Avoid jarring NAPL-coated string and bailers, as splattering can occur. Put lids on sample jars ASAP to avoid spilling.
- When pouring NAPL (or NAPL/groundwater mixture) from a bailer into a bucket, watch for fluid leaking from the back end (bottom) of the bailer. Consider setting up paper towels/sorbent pads or a second bucket to catch any leaks. Make sure to conduct all NAPL-related activities over plastic sheeting.
- Do not operate vehicle when wearing Tyvek that may have NAPL on it.
- If work is conducted in or near traffic areas, wear high-visibility vests and use cones, flagging, or other devices to mark out the work area.
- Clean monitoring and sampling equipment appropriately, using distilled water and Simple Green (or another detergent).

Personal Protective Equipment: Hard hat (when working around heavy equipment, including drill rigs), work boots (steeltoed when working around heavy equipment, including drill rigs), high-visibility vest (optional if wearing Tyvek), safety glasses, disposable nitrile gloves (multiple layers recommended), hearing protection (i.e., earplugs or earmuffs) as needed. This Site falls under the purview of Parametrix's voluntary respirator program. All field personnel should have their respirator available near the work area and don the respirator at their own discretion. Confined space entry is neither expected nor allowed. Chemical-resistant Tyvek (yellow/coated) is strongly recommended.

6. Health and Safety Training

Parametrix personnel performing monitoring, sampling, and system operations on-site must have completed training consistent with the Hazardous Waste Operations and Emergency Response (HAZWOPER) requirements in 29 Code of Federal Regulations (CFR) 1910.120(e). The training will include:

- Identity of site safety and health personnel.
- Safety and health hazards identified on the Site.
- Proper use of required PPE.
- Safe work practices required on the Site, e.g., fall protection, confined space entry procedures, hot work permits, general safety rules.
- Safe use of engineering controls and equipment on the Site.
- Medical surveillance requirements, including the recognition of signs and symptoms that might indicate overexposure to hazards.
- The site emergency response plan/spill containment plan.

The HSC will oversee training for site personnel. Training records, including an outline, sign-offs, and competency records, will be maintained by the HSC.

7. Safety Equipment

7.1 Personal Protective Equipment

PPE must be worn by individuals on the Site to protect against physical hazards. PPE required on the Site is modified Level D, which consists of:

- Hard hat.
- High-visibility vest.
- Work boots.
- Safety glasses with side shields.
- Nitrile gloves or equivalent when handling known or potentially impacted media.
- Work gloves (if handling materials that might have sharp edges, protrusions, or splinters).

Additional PPE may be necessary for specific tasks with additional hazards. The SSO will be responsible for designating additional PPE for specific tasks. Depending on the activity, additional PPE may include:

- Hearing protection (during high-noise tasks).
- Chemical-resistant clothing, e.g., Tyvek coveralls.
- Chemical-resistant boots.
- Chemical-resistant goggles.
- Chemical-resistant gloves.
- Face shield.
- Respiratory protection.

Additional PPE may be required if workers discover unexpected contamination. Characteristics of unexpected contamination could include unusual odors, discolored media, a visible sheen, etc. The SSO and, if necessary, the HSC will be contacted as soon as possible after the discovery of unexpected contamination, and the SSO and/or the HSC will determine the need for additional controls and/or training.

PPE used at the Site must meet the requirements of recognized consensus standards (e.g., American National Standards Institute, National Institute for Occupational Safety and Health [NIOSH]), and respiratory protection shall comply with the requirements set forth in 29 CFR 1910.134.

Project personnel are not permitted to reduce the level of specified PPE without approval from the SSO or the HSC.

7.2 Safety Equipment

The SSO will be responsible for ensuring that the following safety equipment is available on-site and is properly inspected and maintained:

- Soap and water for decontamination.
- Caution tape, traffic cones, and/or barriers.
- First-aid kit.
- Fire extinguisher.
- Fluids for hydration, e.g., drinking water or sports drink.

7.3 Air Monitoring Equipment

The following air monitoring equipment will be immediately available to identify site conditions that may require additional controls. See Section 5.2.1 and Appendix C for specified action levels.

- 4-gas personal air monitor.
- Landtec SEM5000 portable methane detector.
- Landtec GEM5000 landfill gas meter.

7.4 Communications Equipment

Parametrix personnel should have a mobile phone or a radio available in case of emergency.

8. Decontamination Procedures

Parametrix employees will not ordinarily need to establish or work in exclusion or contaminant reduction zones. Communicate with the SSO or project manager at least 1 week in advance of establishing or working in such a zone so the necessary controls can be established and PPE and decontamination equipment provided. Monitoring, sample collection, and VTT and LTT system operations areas are not categorized as exclusion or contaminant reduction zones. Any PPE and supplies used during ordinary sampling and monitoring activities will be disposed of in labeled drums. Partial decontamination procedures should be followed as applicable after routine monitoring, sampling, and operations.

8.1 Partial Decontamination Procedure

Parametrix employees will implement the following partial decontamination procedures when exiting the exclusion zone but remaining on the Site.

- Wash and rinse boots and outer gloves in containers in the contamination-reduction zone.
- Inspect Tyvek suit for stains, rips, or tears. If the suit is contaminated, full decontamination will be performed as described in Section 8.2 if the suit is to be used again. If the suit is damaged, it should not be reused.
- Remove outer gloves. Inspect and discard in a container labeled for disposable items if ripped or damaged.
- Remove respirator, if worn, and clean with premoistened alcohol wipes. Discard used cartridges at the frequency dictated by the SSO.
- Wash hands and face with soap and water.

8.2 Full Decontamination Procedures

Parametrix employees will follow the full decontamination procedures listed below when exiting the exclusion zone and leaving the Site, e.g., at the end of the work shift.

- Wash and rinse boots and outer gloves in containers in the contamination-reduction zone.
- Remove outer gloves and Tyvek suit and deposit in a container labeled for disposable items.
- Remove respirator and discard used cartridges at the frequency dictated by the SSO.
- Wash and rinse respirator in a "respirators only" decontamination container.
- Remove work boots and put on street shoes. Place work boots in a plastic bag or container for later reuse.
- Remove inner gloves and deposit in a container labeled for disposable items.
- Wash hands and face with soap and water.
- Shower as soon after the work shift as practicable.

9. Medical Surveillance

Work on this project should generally not exceed thresholds for medical surveillance in 29 CFR 1910.120(f). Each Parametrix employee should monitor their total amount of work performed on all hazardous sites and evaluate potential exposure accordingly. Parametrix will ensure that its employees who meet the following criteria are enrolled in a medical surveillance program consistent with 29 CFR 1910.120(f):

- The employees are, or may be, exposed to hazardous substances or health hazards at or above established permissible exposure limits for 30 or more days per year.
- The employees are required to wear a respirator for 30 or more days per year.
- Parametrix employees who exhibit signs or symptoms consistent with overexposure to site contaminants will be offered medical surveillance consistent with Washington Administrative Code 296-843-21005.

Parametrix will ensure that its employees who are authorized to wear respirators are medically evaluated consistent with the respiratory protection standard (29 CFR 1910.134). The HSC or administrative designee (e.g., human resources manager) will maintain medical evaluation records.

The planned activities on this project fall within purview of Parametrix's voluntary respirator use program.

10. Air Monitoring

Based on site conditions, air monitoring is not anticipated; however, air monitoring equipment will be immediately available in case workers encounter conditions that indicate the presence of unexpected contamination, such as unusual odors, discolored media, or a visible sheen. If such conditions are discovered, workers will exit the area and contact the SSO and, as needed, the HSC. If necessary, Parametrix will use the air monitoring equipment to evaluate the conditions and determine whether additional controls and/or training are required. Action levels are provided in Appendix C.

Air monitoring, if conducted, must be performed by individuals familiar with the calibration, use, and care of the required instruments. Measurements shall be documented, and the records should include the following information:

- The name of the person conducting the measurements.
- The identity of workers, if any, who have exposure indicated by measurement result.
- Information about the instrument, e.g., type, make, model, serial number.
- The location of the measurement.
- The measurement date and start/stop time.
- Conditions represented by the measurement, including applicable activities, work practices, weather conditions, site conditions, and controls in place.
- Measurement results.
- Other relevant observations or notes.

10.1 Air Monitoring Action Levels

If air monitoring is conducted, the results will be compared to the action levels provided in Appendix C. The air monitoring action levels are established to comply with OSHA Permissible Exposure Levels, American Conference of Governmental Industrial Hygienists threshold limit values, and the National Institute for Occupational Health and Safety recommendations for the chemicals that may be encountered on the Site. The action levels are also adjusted for the relative response of common photoionization detection instruments to motor-fuel vapors.

10.2 Explosion Hazard Action Levels

Parametrix employees working on-site will take measurements when working near known or suspected sources of explosive gases or vapors. The instrument alarm should be set to sound at 10% of the LEL. When measurements exceed this level, Parametrix employees on-site will:

- 1. Extinguish ignition sources and shut down powered equipment in the work area.
- 2. Move personnel at least 100 feet away from the work area.
- 3. Contact the SSO and the HSC.
- 4. At the instruction of the HSC and after waiting 15 minutes for explosive gases to dissipate, the SSO may use the combustible gas meter to approach the worksite to measure combustible gases in the work area. The SSO shall not enter (or allow any personnel to enter) any area where the combustible gas meter readings exceed the explosivity action level, nor shall the SSO approach if there is a potential for fire or explosion.
- 5. The SSO may authorize personnel to reenter the work area after the source of the combustible gases has been identified and controlled.

10.3 Instrument Calibrations

Instruments shall be calibrated consistent with manufacturers' recommendations. Calibrations shall be coordinated by the SSO. Calibration and monitoring records shall be maintained by the SSO and/or the project manager.

11. Site Control Measures

Access to the Site will be controlled as part of the site preparation. Control measures may include fencing, gates, and signs limiting access to everyone except authorized personnel. A site map showing work zones and contaminant reduction zones is provided in Appendix A.

Parametrix requires the buddy system if personnel conduct operations that may involve exposure to site hazards. The buddy system may involve working with non-Parametrix personnel. Some low-hazard tasks, such as groundwater monitoring on familiar sites, may not require use of the buddy system. Contact the SSO and HSC if there are questions regarding the buddy system on the Site.

12. Emergency Response/Spill Containment/ Confined Space

Parametrix employees on-site will follow the emergency response, spill response, and confined space procedures described in the *Parametrix Health and Safety Manual*. Incidents will be documented on the incident report form included with Appendix B.

13. Pre-Entry Briefing

Parametrix employees on-site will conduct pre-entry briefings, e.g., tailgate meetings, before starting work on the Site and/or as the scope of work changes throughout the project to ensure that employees are familiar with the HASP and that the plan is being followed. Attendance and discussion topics will be documented on sign-in sheets, which will be maintained by the SSO.

14. Periodic Evaluation

The project manager or designee will evaluate the effectiveness of this HASP. As part of the evaluation, the project manager or designee will track ongoing health and safety feedback from field personnel working on the project. This feedback will be reviewed and incorporated into either immediate or annual updates of the HASP. HASPs will be reviewed and updated at least annually. Updating the plan as necessary ensures that it reflects the known hazards, conditions, and requirements associated with the Site. Parametrix will maintain periodic evaluation records and will track all HASP revisions.

15. Safe Work Practices

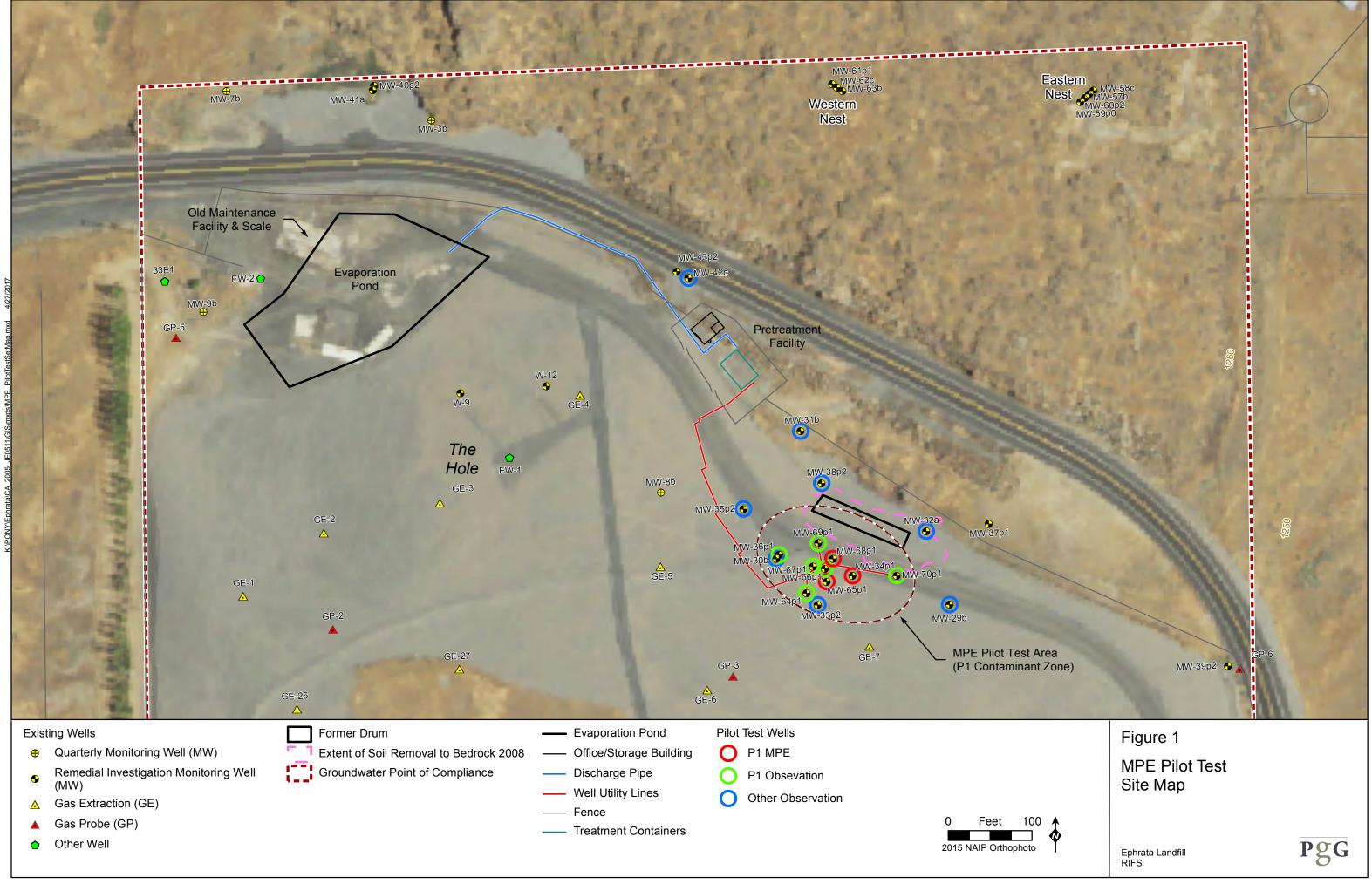
The following safe work practices are provided to supplement the other information included with this HASP.

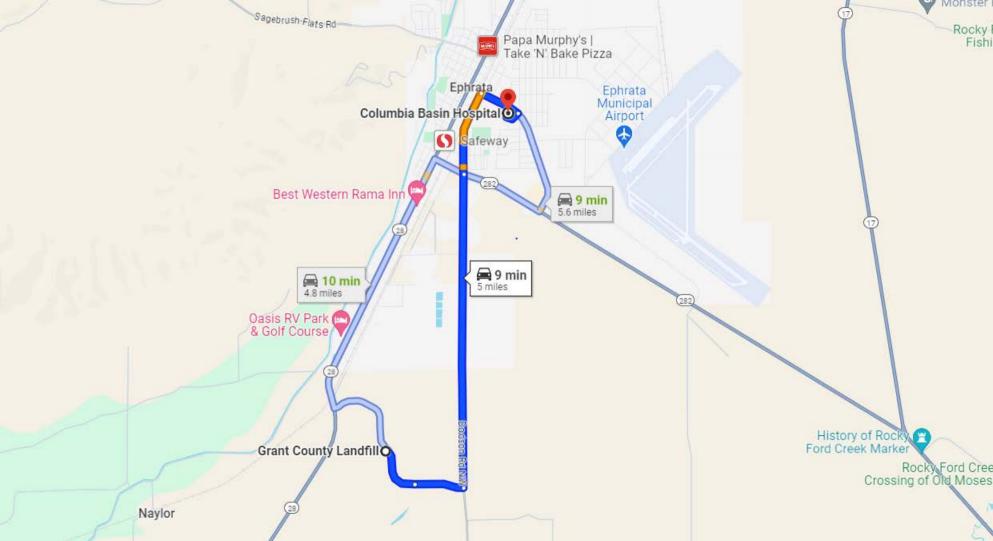
- 1. Eating, drinking, chewing gum or tobacco, smoking, or any practice that increases the probability of hand-to-mouth transfer and ingestion of materials is prohibited in areas with potentially contaminated materials.
- 2. Field personnel will, whenever practicable, remain upwind of drilling rigs, open excavations, and other site-disturbing activities.
- 3. Subsurface work shall not be performed at any location until the area has been confirmed by a utility-locator firm to be free of underground utilities or other obstructions.

16. Acknowledgment

Parametrix cannot guarantee the health or safety of any person entering the Site. Because of the potentially hazardous nature of visits to active sites, it is not possible to discover, evaluate, and provide protection against all possible hazards that may be encountered. Strict adherence to the health and safety guidelines set forth herein will reduce, but not eliminate, the potential for injury and illness at the Site. The health and safety guidelines in this plan were prepared specifically for the Site and should not be used on any other site without prior evaluation by trained health and safety personnel.

Parametrix personnel who will work at the Site are to read, understand, and agree to comply with the specific practices and guidelines described in this HASP regarding field safety and health hazards.


This HASP has been developed for the exclusive use of Parametrix personnel. Parametrix may make this plan available for review by contracted or subcontracted personnel for information only. This plan does not cover the activities performed by employees of any other employer on the Site. All contracted or subcontracted personnel are responsible for implementing their own health and safety program, including generating and using their own plan.


I have read, and I understand this HASP and all attachments and agree to comply with the requirements described herein:

Name	Title	Date
		-

Appendix A

Site Map

Appendix B

Incident Report Form

Parametrix

INCIDENT REPORT FORM

Project Name:				
Incident Date/Time:				
Incident Location:				
Contractor Involved:				
Employee Involved:				
Describe the Injury or Illness in Detail and Indicate the Part of Body Affected:				
Describe Accident and Task Being Performed When Accident Occurred:				
Was Medical Treatment Required?	□ Yes	□ No	🗆 Unknown	Number of Work Days missed:
Equipment Involved:	□ Yes List Equipr	□ No ment:	🗆 Unknown	
Property Damaged:				
Witness(es): Name, Company, and Contact Information				
Notification Date and Time:				
Photos:	□ Yes	□ No	(Attach photos if avail	able)
Completed by:				Date:

Appendix C

Chemicals of Potential Concern

Chemical	Physical/Chemical Characteristics	Regulatory Standards	Exposure Routes/Systems
Arsenic	Metal: Silver-gray or tin-white, brittle, odorless solid.	OSHA PEL = TWA 0.010 mg/m ³ NIOSH = Ca C 0.002 mg/m ³	 <i>Exposure Routes</i> Inhalation, skin absorption, skin and/or eye contact, ingestion <i>Symptoms</i> Ulceration of nasal septum, dermatitis, gastrointestinal disturbances, peripheral neuropathy, resp irritation, hyperpigmentation of skin, [potential occupational carcinogen]
1,2-Dichloroethane (EDC)	Colorless liquid with a pleasant, chloroform-like odor.	OSHA PEL = TWA 50 ppm, C 100 ppm	 Exposure Routes Inhalation, ingestion, skin absorption, skin and/or eye contact Symptoms Irritation eyes, corneal opacity; central nervous system depression; nausea, vomiting; dermatitis; liver, kidney, cardiovascular system damage; [potential occupational carcinogen]
1,1-Dichloroethane	Colorless, oily liquid with a chloroform-like odor.	OSHA PEL = TWA 100 ppm	 Exposure Routes Inhalation, ingestion, skin and/or eye contact Symptoms Irritation skin; central nervous system depression; liver, kidney, lung damage
1,1,1-Trichloroethane	Colorless liquid with a mild, chloroform-like odor.	OSHA PEL = TWA 350 ppm	 <i>Exposure Routes</i> Inhalation, ingestion, skin and/or eye contact <i>Symptoms</i> Irritation eyes, skin; headache; lassitude; central nervous system depression; poor equilibrium; dermatitis; cardiac arrhythmias; liver damage
Chloroethane	Colorless gas or liquid (below 54°F) with a pungent, ether-like odor.	OSHA PEL = TWA 1000 ppm	<i>Exposure Routes</i> Inhalation, skin absorption (liquid), ingestion (liquid), skin and/or eye contact - <i>Symptoms</i> Incoordination, inebriation; abdominal cramps; cardiac arrhythmias, cardiac arrest; liver, kidney damage

Chemical	Physical/Chemical Characteristics	Regulatory Standards	Exposure Routes/Systems
Tetrachloroethene (PCE)	Colorless liquid with a mild, chloroform-like odor.	OSHA PEL = TWA 100 ppm, C 200 ppm	 Exposure Routes Inhalation, skin absorption, ingestion, skin and/or eye contact Symptoms
			Irritation eyes, skin, nose, throat, respiratory system; nausea; flush face, neck; dizziness, incoordination; headache, drowsiness; skin erythema (skin redness); liver damage; [potential occupational carcinogen]
Trichloroethene (TCE)	Colorless liquid (unless dyed	OSHA PEL = TWA	- Exposure Routes
	blue) with a chloroform-like odor.	100 ppm, C 200 ppm	Inhalation, skin absorption, ingestion, skin and/or eye contact - <i>Symptoms</i>
			Irritation eyes, skin; headache, visual disturbance, lassitude (weakness, exhaustion), dizziness, tremor, drowsiness, nausea, vomiting; dermatitis; cardiac arrhythmias, paresthesia; liver injury; [potential occupational carcinogen]
1,1-Dichloroethene	Colorless liquid or gas (above	OSHA PEL None	- Exposure Routes
	89°F) with a mild, sweet, chloroform-like odor.		Inhalation, skin absorption, ingestion, skin and/or eye contact - <i>Symptoms</i>
			Irritation eyes, skin, throat; dizziness, headache, nausea, dyspnea (breathing difficulty); liver, kidney disturbance; pneumonitis; [potential occupational carcinogen]
cis-1,2-Dichloroethene	No data available	No data available	No data available
trans-1,2-Dichloroethene	No data available	No data available	No data available
Vinyl Chloride	Colorless gas or liquid (below	OSHA PEL = TWA	- Exposure Routes
	7°F) with a pleasant odor at high concentrations.	1 ppm,	Inhalation, skin, and/or eye contact (liquid)
		C 5 ppm	- Symptoms
			Lassitude (weakness, exhaustion); abdominal pain, gastrointestinal bleeding; enlarged liver; pallor or cyanosis of extremities; liquid: frostbite; [potential occupational carcinogen]

Chemical	Physical/Chemical Characteristics	Regulatory Standards	Exposure Routes/Systems
Chloromethane	Colorless gas with a faint, sweet odor which is not noticeable at dangerous concentrations.	OSHA PEL = TWA 100 ppm, C 200 ppm	 Exposure Routes Inhalation, skin and/or eye contact (liquid) Symptoms Dizziness, nausea, vomiting; visual disturbance, stagger, slurred speech, convulsions, coma; liver, kidney damage; liquid: frostbite; reproductive, teratogenic effects; [potential occupational carcinogen]
Dichloromethane (Methylene Chloride)	Colorless liquid with a chloroform- like odor. [Note: A gas above 104°F.]	OSHA PEL = TWA 25 ppm	 <i>Exposure Routes</i> Inhalation, skin absorption, ingestion, skin and/or eye contact <i>Symptoms</i> Irritation eyes, skin; lassitude (weakness, exhaustion), drowsiness, dizziness; numbness, tingle limbs; nausea; [potential occupational carcinogen]
Trichlorofluoromethane	Colorless to water-white, nearly odorless liquid or gas (above 75°F).	OSHA PEL = TWA 1000 ppm	 Exposure Routes Inhalation, ingestion, skin and/or eye contact Symptoms Incoordination, tremor; dermatitis; cardiac arrhythmias, cardiac arrest; asphyxia; liquid: frostbite
1,2-Dichloropropane	Colorless liquid with a chloroform- like odor. [pesticide]	OSHA PEL = TWA 75 ppm	 Exposure Routes Inhalation, skin absorption, ingestion, skin and/or eye contact Symptoms Irritation eyes, skin, respiratory system; drowsiness, dizziness; liver, kidney damage; in animals: central nervous system depression; [potential occupational carcinogen]
Benzene	Colorless to light-yellow liquid with an aromatic odor. [Note: A solid below 42°F.]	OSHA PEL = TWA 1 ppm	 Exposure Routes Inhalation, skin absorption, ingestion, skin and/or eye contact Symptoms Irritation eyes, skin, nose, respiratory system; dizziness; headache, nausea, staggered gait; anorexia, lassitude (weakness, exhaustion); dermatitis; bone marrow depression; [potential occupational carcinogen]

Chemical	Physical/Chemical Characteristics	Regulatory Standards	Exposure Routes/Systems
Toluene	Colorless liquid with a sweet, pungent, benzene-like odor.	OSHA PEL = TWA 200 ppm, C 300 ppm	 Exposure Routes Inhalation, skin absorption, ingestion, skin and/or eye contact Symptoms
			Irritation eyes, nose; lassitude (weakness, exhaustion), confusie euphoria, dizziness, headache; dilated pupils, lacrimation (discharge of tears); anxiety, muscle fatigue, insomnia; paresthesia; dermatitis; liver, kidney damage - <i>Exposure Routes</i> Inhalation, ingestion, skin and/or eye contact - <i>Symptoms</i>
Ethyl benzene	Colorless liquid with an aromatic odor.	OSHA PEL = TWA 100 ppm	Inhalation, ingestion, skin and/or eye contact
Xylene (m, p, o)	Colorless liquid with an aromatic odor.	OSHA PEL = TWA 100 ppm	 Exposure Routes Inhalation, skin absorption, ingestion, skin and/or eye contact Symptoms Irritation eyes, skin, nose, throat; dizziness, excitement, drowsiness, incoordination, staggering gait; corneal vacuolization anorexia, nausea, vomiting, abdominal pain; dermatitis
Styrene (vinyl benzene)	Colorless to yellow, oily liquid with a sweet, floral odor.	OSHA PEL = TWA 100 ppm, C 200 ppm	 <i>Exposure Routes</i> Inhalation, skin absorption, ingestion, skin and/or eye contact <i>Symptoms</i> Irritation eyes, nose, respiratory system; headache; lassitude; confusion; malaise; drowsy; unsteady gait; narcosis; dermatitis; possible liver injury; reproductive effects
1,2-Dichlorobenzene	Colorless to pale-yellow liquid with a pleasant, aromatic odor.	OSHA PEL = C 50 ppm	 <i>Exposure Routes</i> Inhalation, skin absorption, ingestion, skin and/or eye contact <i>Symptoms</i> Irritation eyes, nose; liver, kidney damage; skin blisters

Chemical	Physical/Chemical Characteristics	Regulatory Standards	Exposure Routes/Systems
1,4-Dichlorobenzene	Colorless or white crystalline solid with a mothball-like odor. [insecticide]	OSHA PEL = TWA 75 ppm	 Exposure Routes Inhalation, skin absorption, ingestion, skin and/or eye contact Symptoms Eye irritation, swelling periorbital (situated around the eye); profuse rhinitis; headache, anorexia, nausea, vomiting; weight loss, jaundice, cirrhosis; in animals: liver, kidney injury; [potential occupational carcinogen]
1,2,4-Trichlorobenzene	Colorless liquid or crystalline solid (below 63°F) with an aromatic odor.	OSHA PEL = TWA None NIOSH = C 5 ppm	 <i>Exposure Routes</i> Inhalation, skin absorption, ingestion, skin and/or eye contact <i>Symptoms</i>
			 Eye irritation; skin; mucous membrane; liver and kidney damage in animals; possible teratogenic effects.
1,3,5-Trimethylbenzene	Clear, colorless liquid with a distinctive, aromatic odor.	OSHA PEL = TWA None NIOSH = 25 ppm	 Exposure Routes Inhalation, ingestion, skin and/or eye contact Symptoms Irritation eyes, skin, nose, throat and respiratory system; bronchitis; hypochromic anemia; headache; drowsiness; lassitude
			dizziness; nausea; incoordination; vomiting; confusion; chemical pneumontitis (aspiration liquid).
1,2,4-Trimethybenzene	Clear, colorless liquid with a distinctive, aromatic odor.	OSHA PEL = TWA None NIOSH = 25 ppm	 Exposure Routes Inhalation, ingestion, skin and/or eye contact Symptoms
			Irritation eyes, skin, nose, throat and respiratory system; bronchitis; hypochromic anemia; headache; drowsiness; lassitude; dizziness; nausea; incoordination; vomiting; confusion; chemical pneumontitis (aspiration liquid).
n-Propylbenzene	No data available	No data available	No data available
n-Butylbenzene	No data available	No data available	No data available

Chemical	Physical/Chemical Characteristics	Regulatory Standards	Exposure Routes/Systems
Phenol	Colorless to light pink, crystalline solid with a sweet, acrid odor. [Note: phenol liquefied by mixing with about 8% water]	OSHA PEL = TWA 5 ppm (19 mg/m ₃) [skin]	 Exposure Routes Inhalation, skin absorption, ingestion, skin and/or eye contact Symptoms Itching, irritation, reddening skin; hepatitis; hemolytic anemia, abdominal cramps; tachycardia; kidney damage; skin photophobia sensitization.
2-Methylphenol (cresol-o)	White crystals with a sweet, tarry odor. [Note: A liquid above 88°F]	OSHA PEL = TWA 5 ppm	 Exposure Routes Inhalation, skin absorption, ingestion, skin and/or eye contact Symptoms Irritation eyes, skin, and mucous membrane; central nervous system effects; confusion; depression; respiratory failure; dyspnea (breathing difficulty); irregular rapid respiration; weak pulse; eye and skin burns; dermatitis; lung, liver, kidney, pancreas damage.
4-Methylphenol (cresol-p)	Crystalline solid with a sweet, tarry odor. [Note: A liquid above 95°F]	OSHA PEL = TWA 5 ppm	 Exposure Routes Inhalation, skin absorption, ingestion, skin and/or eye contact Symptoms Irritation eyes, skin, and mucous membrane; central nervous system effects; confusion; depression; respiratory failure; dyspnea (breathing difficulty); irregular rapid respiration; weak pulse; eye and skin burns; dermatitis; lung, liver, kidney, pancreas damage.
2,4-Dimethylphenol	No data available	No data available	No data available
Benzoic Acid	No data available	No data available	No data available
Benzyl Alcohol	No data available	No data available	No data available
Isophorone	Colorless to white liquid with a peppermint-like odor.	OSHA PEL = TWA 25 ppm	 <i>Exposure Routes</i> Inhalation, ingestion, skin and/or eye contact <i>Symptoms</i> Irritation eyes, nose, throat; headache; nausea; dizziness; lassitude (weakness, exhaustion); malaise; narcosis; dermatitis; kidney and liver damage in animals.

Chemical	Physical/Chemical Characteristics	Regulatory Standards	Exposure Routes/Systems
Acetone	Colorless liquid with a fragrant, mint-like odor	OSHA PEL = TWA 1000 ppm	 <i>Exposure Routes</i> Inhalation, ingestion, skin and/or eye contact <i>Symptoms</i> Irritation eyes, nose, throat; headache; dizziness; central nervous system depression; dermatitis.
2-Butanone (MEK)	Colorless liquid with a moderately sharp, fragrant, mint- or acetone- like odor.	OSHA PEL = TWA 200 ppm	 <i>Exposure Routes</i> Inhalation, ingestion, skin and/or eye contact <i>Symptoms</i> Irritation eyes, skin, nose; headache; dizziness; vomiting; dermatitis.
Hexone (MIBK)	Colorless liquid with a pleasant odor.	OSHA PEL = TWA 100 ppm	 <i>Exposure Routes</i> Inhalation, ingestion, skin and/or eye contact <i>Symptoms</i> Irritation eyes, skin, nose; headache; narcosis; coma; dermatitis; liver and kidney damage in animals.
2-Hexanone (MBK)	Colorless liquid with an acetone- like odor.	OSHA PEL = TWA 100 ppm	 <i>Exposure Routes</i> Inhalation, ingestion, skin absorption; skin and/or eye contact <i>Symptoms</i> Irritation eyes, nose; peripheral neuropathy; lassitude; paresthesia; dermatitis; headache; drowsiness.
Naphthalene	Colorless to brown solid with an odor of mothballs. [Note: shipped as a molten solid]	OSHA = TWA 10 ppm	 <i>Exposure Routes</i> Inhalation, ingestion, skin absorption; skin and/or eye contact <i>Symptoms</i> Irritation eyes; headache; confusion; excitement; malaise; nausea; vomiting; abdominal pain; irritated bladder; profuse sweat; jaundice; hematuria (blood in urine); renal shutdown; dermatitis; optical neuritis; corneal damage.

Chemical	Physical/Chemical Characteristics	Regulatory Standards	Exposure Routes/Systems
1-Methylnaphthalene	No Data Available	No Data Available	No Data Available
2-Methylnaphthalene	No Data Available	No Data Available	No Data Available
Bis(2-ethylhexyl) Phthalate	Colorless, oily liquid with a slight odor.	OSHA PEL = TWA 5 mg/m ³	 Exposure Routes Inhalation, ingestion, skin and/or eye contact Symptoms Irritation eyes, mucous membrane; in animals: liver damage; teratogenic effects; [potential occupational carcinogen]
Dimethylphthalate	Colorless, oily liquid with a slight, aromatic odor [Note: A solid below 42°F]	OSHA = TWA 5 mg/m ³	 Exposure Routes Inhalation, ingestion, skin and/or eye contact Symptoms Irritation to eyes, upper respiratory system; stomach pain.
Diethylphthalate	Colorless to water-shite, oily liquid with a very slight, aromatic odor [pesticide]	OSHA = TWA None NIOSH 5 mg/m ³	 <i>Exposure Routes</i> Inhalation, ingestion, skin and/or eye contact <i>Symptoms</i> Irritation to eyes, skin, nose, and throat; headache; dizziness; nausea; lacrimation (discharge of tears); possible polyneur; vestibular dysfunction; pain, numbness, lassitude, and spasms in arms and legs; reproductive effects in animals.
Di-n-Butylphthalate (DBP-)	Colorless to faint-yellow, oily liquid with a slight, aromatic odor.	OSHA = TWA 5 mg/m ³	 Exposure Routes Inhalation, ingestion, skin and/or eye contact Symptoms Irritation to eyes, upper respiratory system and stomach.
Butylbenzylphthalate	No Data Available	No Data Available	No Data Available
Di-n-Octyl phthalate	No Data Available	No Data Available	No Data Available
N-nitrosodiphenylamine	No Data Available	No Data Available	No Data Available

Appendix C: Chemicals Detected in Media Samples at the Site	÷
---	---

Chemical	Physical/Chemical Characteristics	Regulatory Standards	Exposure Routes/Systems
Aroclor 1242 (PCB)	Colorless to light-colored, viscous liquid with a mild, hydrocarbon odor.	OSHA = TWA 0.5 mg/m ₃ [skin]	 <i>Exposure Routes</i> Inhalation, ingestion, skin absorption; skin and/or eye contact <i>Symptoms</i> Irritation eyes; chloracne; liver damage; reproductive effects; [potential occupational carcinogen]
Aroclor 1260 (PCB)	No Data Available	No Data Available	No Data Available
C = Ceiling Limit. Ca = Carcinogen.	OSHA = Occupational Safety and Health Administration. NIOSH = National Institute for Occupational Safety and Health.		TWA = Time Weighted Average (8-hour during 40-hour week).

Appendix D

Job Hazard Analysis-Wildfire Smoke

1. Job Hazard Analysis: Outdoor Work During Wildfires

Project Number: 553-1960-014	Location/Site Where Task/Operation Performed: Ephrata Landfill
Date Prepared: 8/28/2024	Employee Preparing this JHA: Amber Bailey, Senior Scientist
Date Reviewed:8/30/2024	Employee Reviewing and Certifying this JHA: Brian Pippin

Job/Task Description

This job hazard analysis (JHA) describes hazards related to outdoor work during wildfire season and required safe-work practices where ambient air quality has been degraded.

Relevant Standard Operating Procedures

- □ Hazard Communication □ Fall Protection
- □ Noise and Hearing Conservation
- Working Near Traffic
- Selection and Use of Personal Protective Equipment
- Underground Utility Locate and Emergency Response During a Utility Strike

Wildfire Smoke Standard Operating Procedure

Review the Air Quality Index (AQI) locally. For Washington, the current AQI can be reviewed at the following sources: <u>https://www.airnow.gov/</u>

https://enviwa.ecology.wa.gov/home/map

https://www.igair.com/us/air-guality-map

For evaluation of air quality at the site we will be using the Soap Lake station, if available.

https://www.iqair.com/us/usa/washington/soap-lake/soap-lake-4th-ave-se

Physical Hazards			
Hazard/Risk	Source of Hazard/Risk	Hazard/Risk Mitigation	
Smoke / Particulates inhalation	Wildfires	Reduce, reschedule, or relocate work with less smoke if possible	
AQI above 72		Utilize enclosed buildings or vehicles where the air is filtered, if possible	
		Reduce work intensity or increase resting periods	
Smoke / Particulates inhalation AOI above 101	Wildfires	Follow the steps above, Voluntary N95/KN95 respirators may be worn	
Smoke / Particulates inhalation AQI above 300	Wildfires	Follow the steps above, Voluntary use of N95/KN95 respirators highly recommended but not required	
Smoke / Particulates inhalation AQI above 849	Wildfires	Stop work or wear a P100 half-face or full-face respirator. Note: Use of a P100 requires a medical evaluation and fit testing in accordance with the respiratory protection program.	

Wildfire Smoke Standard Operating Procedure

Review the Air Quality Index (AQI) locally. For Washington, the current AQI can be reviewed at the following sources: <u>https://www.airnow.gov/</u> <u>https://enviwa.ecology.wa.gov/home/map</u> <u>https://www.iqair.com/us/air-quality-map</u>

For evaluation of air quality at the site we will be using the Soap Lake station, if available.

https://www.iqair.com/us/usa/washington/soap-lake/soap-lake-4th-ave-se

Physical Hazards			
Hazard/Risk	Source of Hazard/Risk	Hazard/Risk Mitigation	
Smoke/Particulates visual effects, AQI above 150	Wildfires	Voluntary foam sealed eye protection goggles and eyewear may be worn when working outdoors, ANSI dust/splash protection rated	

Additional Control Measures and Guidance

Engineering Controls:

Limit the time outdoors. If work is to be scheduled during a known wildfire smoke event, consider rescheduling the work until the air quality resumes a lower AQI.

Note: Sensitivity of individual may vary greatly

Personal Protective Equipment (PPE): See HASP

- $\hfill\square$ Safety shoes/boots with safety toe and shank
- Hard hat
- □ High-visibility traffic safety vest
- ⊠ Safety glasses
- □ Work gloves
- □ Disposable nitrile gloves

- □ Hearing protection (i.e., earplugs or earmuffs)
- N95 / KN95 Respirators
- P100 Half face/full face respirators for individual
- □ that have completed respirator fit tests and have_
- medical clearance

The following summarizes the U.S. Air Quality Index

Green	Good	0 to 50	Air quality is satisfactory, and air pollution poses little or no risk.
Yellow	Moderate	51 to 100	Air quality is acceptable. However, there may be a risk for some people, particularly those who are unusually sensitive to air pollution.
Orange	Unhealthy for Sensitive Groups	101 to 150	Members of sensitive groups may experience health effects. The general public is less likely to be affected.
Red	Unhealthy	151 to 200	Some members of the general public may experience health effects; members of sensitive

			groups may experience more serious health effects.
Purple	Very Unhealthy	201 to 300	Health alert: The risk of health effects is increased for everyone.
Maroon	Hazardous	301 and higher	Health warning of emergency conditions: everyone is more likely to be affected.

Below is the overall Wildfire Smoke Response Plan.

2. Wildfire Smoke Response Plan

Ephrata Landfill 553-1860-014

2.1 Introduction

Wildfire smoke is a health hazard for our employees when present in a work area. This wildfire smoke plan includes our policies and procedures related to protecting our employees from exposure to wildfire smoke. This plan was created to meet the Washington State workplace wildfire smoke regulations (Chapter 296-820 WAC and WAC 296-307-09805 through 09860 for agriculture).

The specific jobs and tasks at our workplace covered under this wildfire smoke plan include:

- General work near heavy equipment.
- Work in and around excavations.
- Collecting groundwater samples.
- VTT and LTT inlet and discharge sampling.
- Monitoring and sampling Non-Aqueous Phase Liquids (NAPL).
- Work around electrically powered equipment and controls.

3. Health Effects and Adverse Symptoms of Wildfire Smoke

Although there are many hazardous chemicals in wildfire smoke, the main harmful pollutant for people who are not close to the fire is "particulate matter", the tiny particles suspended in the air.

These tiny particles can reach the deepest parts of the lungs and can be absorbed into the body. The Environmental Protection Agency has determined that particulate matter may cause or worsen cardiovascular disease, respiratory disease, cancer, and can harm the nervous system.

Exposure to particulate matter in wildfire smoke can cause a wide range of symptoms including (but not limited to):

Respiratory:

- Cough
- Difficulty breathing
- Wheezing
- Shortness of breath
- Asthma attack
- Runny nose
- Sore throat

Site-Specific Health and Safety Plan – Ephrata Landfill: MPE System Restart and Seasonal Operation Grant County Public Works Department

- Sinus pain or pressure
- Phlegm.

Cardiovascular:

- Chest pain or discomfort
- Fast or irregular heartbeat
- Feeling weak, light-headed, faint, or dizzy
- Pain or discomfort in the jaw, neck, or back.

Symptoms concerning for a stroke:

- Sudden numbness or weakness in the face, arm, or leg, especially on one side of the body
- Sudden confusion, trouble speaking, or difficulty understanding speech
- Sudden trouble seeing in one or both eyes
- Sudden trouble walking, dizziness, loss of balance, or lack of coordination
- Sudden severe headache with no known cause.
- Headache, scratchy or irritated eyes, fatigue or tiredness, or nausea or vomiting.

Symptoms requiring immediate medical attention can include, but is not limited to:

Symptoms that can lead to a heart attack, such as:

- Chest pain or discomfort
- Feeling weak, light-headed, faint, or dizzy
- Pain or discomfort in the jaw, neck, or back
- Pain or discomfort in one or both arms or shoulders
- Shortness of breath, especially if accompanied by chest discomfort

Symptoms that can lead to a stroke, such as:

- Sudden numbness or weakness in the face, arm, or leg, especially on one side of the body
- Sudden confusion, trouble speaking, or difficulty understanding speech
- Sudden trouble seeing in one or both eyes
- Sudden trouble walking, dizziness, loss of balance, or lack of coordination
- Sudden severe headache with no known cause
- Wheezing, difficulty breathing, or shortness of breath
- Asthma attacks
- Nausea or vomiting
- Any symptom that is concerning or per a health care providers advice.

Our employees may follow medical advice they have been given or seek medical attention for any symptoms they may experience that are potentially related to wildfire smoke exposure, regardless of

the severity. Parametrix will not retaliate against our employees for seeking medical attention or following medical advice they have been given.

Additionally, sensitive groups are more at risk of experiencing the adverse health effects of wildfire smoke. These sensitive groups can include:

- Outdoor workers.
- Smokers.
- Workers under 18 or over 65 years old.
- People with respiratory infections, like colds. Conditions can include pneumonia, acute bronchitis, bronchiolitis, colds, flus, or those recovering from COVID-19.
- People with certain medical conditions like lung diseases, heart or circulatory problems, diabetes, pregnancy, and other conditions. Conditions can include asthma, COPD, bronchitis, emphysema, irregular heartbeat, congestive heart failure, coronary artery disease, angina, those who have had a heart attack or stroke, and those with medical conditions that can be worsened by exposure to wildfire smoke as determined by a medical provider.
- Tribal and indigenous people.
- People with low income.

Wildfire smoke is a serious work-related hazard for exposed outdoor workers. It is important to notify the Project Manager and Site Safety Officer (SSO) when an employee is experiencing symptoms of wildfire smoke exposure so management can respond appropriately. Our employees must watch for symptoms of wildfire smoke exposure as a sign to reduce exposure. Wildfire smoke can harm healthy people. Smoke can harm someone even if they are exposed over a short period or a long period. The wildfire smoke rule is designed to limit the harm to employees from wildfire smoke.

By law, we will **not** retaliate against our employees for:

- Reporting symptoms,
- Seeking medical attention,
- Following medical advice they have been given,
- Or for filing a workers' compensation claim.

Note: Our employees have the right to file a workers' compensation claim to have their symptoms or any work-related injury evaluated. Labor and Industries (L&I) workers' compensation is in part funded by employee salaries and is separate from personal health insurance. In most cases, L&I will pay for an initial medical evaluation, even if the claim is denied. If the claim is allowed, the workers' compensation system will cover medical bills directly related to our employees' condition and partial wage replacement benefits if our employee cannot work.

3.1 Identification of Harmful Wildfire Smoke Exposures

The main pollutant in smoke is the small particles in the air called fine particulate matter, also called $PM_{2.5}$. $PM_{2.5}$ measurements are reported in two ways:

• As micrograms per cubic meter ($\mu g/m^3$), or

NowCast AQI for PM_{2.5}, which is an index produced by the EPA to communicate general air quality based on PM_{2.5}. AQI stands for "air quality index".

The wildfire smoke regulations require employers look at hourly $PM_{2.5}$ averages, which is reported as "Current $PM_{2.5}$ ". NowCast Air Quality Index (AQI) for $PM_{2.5}$ can also be used, which is a unitless index which uses $PM_{2.5}$ data averaged over the past 3 to 12 hours. The EPA updated how the Air Quality Index relates to $PM_{2.5}$ on May 6, 2024, and L&I rules will be updated to reflect those changes. The levels of smoke and particulate matter in the air which require action are not changing.

The SSO will determine employee exposure to current $PM_{2.5}$, to protect the health of our workers. We will use one of these sites to determine employee exposure to the current $PM_{2.5}$:

https://www.airnow.gov/ https://enviwa.ecology.wa.gov/home/map https://www.igair.com/us/air-quality-map

3.2 Summary of the Wildfire Smoke Rule Requirements

The following table summarizes the key requirements of the rule. See the wildfire smoke rules for more details. The EPA updated how the Air Quality Index relates to $PM_{2.5}$ on May 6, 2024, and L&I rules will be updated to reflect those changes. The levels of smoke and particulate matter in the air which require action are not changing.

Current PM _{2.5}	NowCast Air Quality Index for PM _{2.5}	Requirements at Current PM _{2.5} Level
0.0-20.4 μg/m³	0-71	 Prepare a written wildfire smoke response plan. Provide wildfire smoke training to employees. Watch the PM_{2.5} conditions and forecasts. Prepare a two-way communication system and notify employees of PM_{2.5} conditions.
		 Make provisions for prompt medical attention and permit that medical attention without retaliation.
20.5-35.4 μg/m³	72-100	 All of the above and: Notify employees of PM2.5 conditions and forecasts. Ensure only trained employees work outdoors. Consider implementing exposure controls. Consider providing voluntary use respirators.
35.5-250.4 μg/m³	101-350	All of the above and:Implement exposure controls.Make N95 respirators available for voluntary use.
250.5-500.3 µg/m³	351-848	 All of the above and: Ensure workers experiencing symptoms requiring immediate medical attention be moved to a location that ensures sufficient clean air. Directly distribute N95 respirators to employees for voluntary use.
500.4-554.9 μg/m³	849-956	All of the above and:

		 Implement a complete required use respiratory protection program, including fit-testing, medical evaluations, requiring employees to be clean-shaven, and requiring the use of particulate respirators.
555 $\mu g/m^3$ or more	957 or more	 All of the above and: Require respirators with an assigned protection factor (APF) of 25 or more. N95 Respirators are not sufficient at this level of smoke.

3.3 Wildfire Smoke Hazard Communication for Our Employees

We will communicate wildfire smoke hazards to our employees when the air quality is at or above 20.5 μ g/m³ of PM_{2.5} (AQI 72). Additionally, we encourage our employees to monitor the air quality where they are working and to notify their supervisor when the air quality is above 20.5 μ g/m³ (AQI 69 or AQI 72 after May 6. 2024).

We will inform our employees of the following:

- When at least two consecutive current PM_{2.5} readings are 20.5 μg/m³ (AQI 72) or more.
- When the current PM_{2.5} reaches 35.5 (AQI 101), 250.5 (AQI 351), 500.4 (AQI 849), and/or 555 µg/m³ (AQI 957) or more.
- What available protective measures are available to employees to reduce their wildfire smoke exposures at each level.

Current air quality levels will be texted, emailed, or verbally communicated to field personnel.

We will not punish employees who show signs of injury or illness that may potentially be due to wildfire smoke exposure for reporting those symptoms, seeking medical attention, or following medical advice they have been given.

All employees should notify the SSO of any health effects so that proper mitigation measures can be implemented or so that medical evaluations can be completed.

3.3.1 Employee and Supervisor Training

We train all covered workers and supervisors with wildfire smoke training. Supervisors will complete additional training.

The site-specific HASP provides the training protocols required for on-site field work. Additionally, employees can see the company Health and Safety manual for further information.

3.4 Responding to Wildfire Smoke Exposure Symptoms

We require that our employees inform the SS and the Health and Safety Coordinator if they experience symptoms of wildfire smoke exposure. This is so we can monitor these employees to determine whether medical attention is necessary.

Our employees may seek medical attention or follow medical advice they have been given for symptoms potentially related to wildfire smoke exposure. We will not retaliate against those employees for seeking medical attention or following medical advice they have been given.

When employees are experiencing health symptoms related to wildfire smoke, follow the site-specific HASP including:

- Stop work, contact your supervisor and the SSO
- Take breaks
- Call 911 related to emergencies
- Rotation of personnel

Where the current $PM_{2.5}$ is 250.5 µg/m³ (AQI 351) or more, we will ensure workers experiencing adverse symptoms requiring medical attention be moved to a location that ensures sufficient clean air. We will move these workers to:

• A vehicle with a sufficient air filtration mechanism.

Employees exhibiting wildfire smoke exposure symptoms will be monitored by the SSO landfill personnel. Employees should have regular check-ins with the other Parametrix personnel on-site, if present, to ensure the health and safety of employees.

This includes evaluation of recovery, when to seek medical attention, and shifting work schedules to ensure exposure is mitigated for the employee.

3.5 Controlling Employee Exposures to Wildfire Smoke

We care about the health of our employees and will implement these methods to protect our employees from wildfire smoke:

When the current PM_{2.5} is 35.5 $\mu g/m^3$ (AQI 101,) or more, we will implement these exposure controls:

- Use vehicles where the air is adequately filtered.
- Changing work schedules to a time with a lower ambient air concentration of PM_{2.5}.
- Avoiding, or reducing work that creates additional dust, fumes, or smoke.
- Reducing work intensity.
- Providing additional rest periods.
- Provide N95/KN95 respirators for voluntary use.

When the current $PM_{2.5}$ is 500.4 $\mu g/m^3$ (AQI 849,) or more, we will implement these exposure controls:

Stop work, or

 Use a P100 half-mask or full-face respirator, this requires a medical evaluation and fit testing in accordance with the respiratory protection program.

3.6 Respirator Use for Wildfire Smoke

When the current $PM_{2.5}$ is 35.5 µg/m³ (AQI 101) or more, we will make NIOSH approved N95 (or KN95) respirators available at no cost to all employees, and we will encourage employees to use the

respirators, but they are optional. Respirator use can be beneficial even when the current $PM_{2.5}$ is less than 35.5 µg/m³ (AQI 101).

When the current $PM_{2.5}$ is or more, Parametrix will stop work. Continued work at 500.4 µg/m³ (AQI 849) or above will require personnel to enroll in a complete respiratory protection program (including fit-tests and respirator medical evaluations) in accordance with the Washington State Respirator Standard, WAC 296-842 because National Institute for Occupational Safety and Health (NIOSH) approved air purifying respirators must be worn, either half-face piece or full-face air purifying respirator with P100 filters.

The respiratory protection program includes fit tests and respirator medical evaluations.

Section 7 of the Parametrix Health and Safety Plan and Respiratory Protection Program have further details on medical evaluations, training, and fit testing for P100 air purifying respirators.

Attachment B

Sampling and Analysis Plan

Sampling and Analysis Plan for Ephrata Landfill: MPE System Restart and Seasonal Operation

Prepared for Grant County Public Works

August 2024

Sampling and Analysis Plan for Ephrata Landfill: MPE System Restart and Seasonal Operation

Prepared for

Grant County Public Works 124 Ephrata Street SE Ephrata, WA 98823

Prepared by

Parametrix 719 2nd Avenue, Suite 200 Seattle, WA 98104 T. 206.394.3700 F. 1.855.542.6353 www.parametrix.com

August 2024 | 553-1860-014

Citation

Parametrix. 2024. Sampling and Analysis Plan for Ephrata Landfill: MPE System Restart and Seasonal Operation. Prepared for Grant County Public Works by Parametrix, Seattle, Washington. August2024.

Approvals

Prepared by Molly Alar

Checked by Shira DeGrood

Approved by Jenifer Young

Date

Date

Date

Contents

1.	Intro	duction		1
	1.1	Project	Description and Schedule	1
	1.2	Project	Organization	4
	1.3	Quality	Objectives and Criteria for Measurement Data	4
		1.3.1	Objective	4
	1.4	Training	Requirements/ Certification	4
	1.5	Docume	ents and Records	4
		1.5.1	SAP Distribution	4
		1.5.2	Field Documentation and Records	4
		1.5.3	Laboratory Documentation and Records	5
		1.5.4	Reporting	6
2.	Data		ion and Acquisition	
	2.1	Monitor	ing Methods	6
		2.1.1	Non-Aqueous Phase Liquid	6
		2.1.2	Groundwater Well Monitoring	7
		2.1.3	Total Vapor and Liquid Extraction	8
		2.1.4	Ambient Air Monitoring	8
	2.2	Samplir	ng Methods	9
		2.2.1	Groundwater Sampling	9
		2.2.2	Vapor Sampling	. 10
	2.3	Field He	ealth and Safety Procedures	. 11
	2.4	Field Va	riances	. 11
	2.5	Deconta	amination Procedures	. 11
		2.5.1	Personnel Decontamination	. 11
		2.5.2	Equipment Decontamination	. 12
		2.5.3	Container Decontamination	. 12
	2.6	Disposa	Il of Waste Materials	. 12
	2.7	Sample	Handling and Custody	. 12
		2.7.1	Sample Containers and Preservatives	. 12
		2.7.2	Sample Custody	. 12
		2.7.3	Sample Disposal	. 13

Contents (continued)

	2.8	Analytic	al Methods	. 13
		2.8.1	Laboratory Analysis Methods	. 13
	2.9	Quality (Control	. 13
		2.9.1	Measurement Performance and Acceptance Criteria	. 13
		2.9.2	Field Sampling QC	. 14
		2.9.3	Laboratory Analysis QC	. 15
		2.9.4	Field Monitoring Instruments/ Equipment	. 15
		2.9.5	Laboratory Analysis Instruments/ Equipment	. 15
	2.10	Data Ma	anagement	. 15
~	•			45
3.	Overs	signt		15
	3.1	Field an	d Laboratory Oversight	. 16
		3.1.1	Readiness Procedure	. 16
		3.1.2	Post-Event Review of Field Sampling and Measurement Activities	. 16

FIGURES

Figure 1. Site Map	2
Figure 2. MPE System Diagram	3

TABLES

Table 1. Field Monitoring Summary	17
Table 2. Laboratory Sampling Summary	17
Table 3. Groundwater Analytical Parameters	17
Table 4. Groundwater Laboratory Analysis	17
Table 5. Vapor Analytical Parameters	17

APPENDICES

- A Field Forms
- B Chain-of-Custody Form
- C Laboratory Quality Assurance Manual
- D Laboratory Sample Quality Control and Detection Limits

Acronyms and Abbreviations

-	
SAP	Sampling and Analysis Plan
MPE	multi-phase extraction
Site	old Ephrata Landfill
WAC	Washington Administrative Code
LTT	Liquid Treatment Train
GAC	granulated activated carbon
VTT	Vapor Treatment Train
LNAPL	light non-aqueous phase liquid
QC	quality control
COC	chain of custody
QC	quality control
ID	identification
CAS	Chemical Abstracts Service
LNAPL	light non-aqueous phase liquids
VAE	vacuum assisted extraction
SVE	soil vapor extraction
PLC	program logic controller
gpm	gallons per minute
VOCs	volatile organic compounds
VAE	vacuum assisted extraction
PPE	personal protective equipment
QA	quality assurance
MDL	Method detection limit
RL	reporting limits
DQIs	data quality indicators
LCS	laboratory control samples
MS	matrix spikes
RPD	relative percent difference

1. Introduction

Parametrix prepared this Sampling and Analysis Plan (SAP) to describe data collection, groundwater sampling, and vapor sampling procedures for restart and seasonal operation of the multi-phase extraction (MPE) system at the old Ephrata Landfill (Site). This work is required under the terms of Agreed Order No. DE 3810 Amendment No. 3 (Amendment) among between the Washington State Department of Ecology (Ecology), and Grant County. The Amendment requires the County and City (Potentially Liable Parties [PLPs]) to develop a workplan, restart, and operate the MPE system until construction of an expanded MPE system starts. This SAP was prepared in accordance with Washington Administrative Code (WAC) 173-340-820.

1.1 Project Description and Schedule

The P1 MPE system restart and seasonal operation will provide contaminant removal from the P1 zone while MPE system expansion is planned.

Liquids and vapor extracted from MPE wells will be conveyed to an onsite pretreatment facility. Liquids will be conveyed to the Liquid Treatment Train (LTT) consisting of oil water separation, air sparging, waste tanks, knockout tank, and granulated activated carbon (GAC) before being discharged to an evaporation pond. Extracted vapor will be conveyed to the Vapor Treatment Train (VTT) consisting of GAC treatment before being vented to air. Figure 1 shows a Site map of the MPE system area and Figure 2 shows a diagram of the MPE system LTT and VTT.

MPE system restart operations will involve field monitoring of depth to groundwater, total vapor and liquid extraction monitoring, and collection of extracted groundwater and vapor samples from the treatment system. For this SAP, extracted groundwater processed through the MPE system will be referred to as groundwater.

Field monitoring will be conducted three times each year. The first event will be conducted within 2 days of MPE system restart, the second event will be conducted approximately 2 weeks after MPE system restart, and the third event will be conducted during the month prior to seasonal shut down of the MPE system. A field monitoring summary is included in Table 1 and a sampling and analysis summary is included in Table 2. Figure 2 identifies sample locations within the LTT and VTT. The P1 MPE system is designed to operate without people present, although it cannot be restarted or operated remotely. Parametrix plans to train three people to restart and operate the system and who will respond to the Site within 1 week following notification of a system shutdown. Grant County Landfill personnel will check the system on regular workdays to confirm it is running and notify Parametrix of shutdowns. Grant County plans to hire an additional landfill technician, who could be trained to restart and operate the system starting as soon as 2024.

Figure 1. Site Map

Figure 2. MPE System Diagram

1.2 Project Organization

Parametrix is the project engineer and lead operator of the MPE system restart. Parametrix will coordinate system repairs and personnel training, restart the MPE system, and monitor and sample the system. Parametrix will collect vapor and groundwater samples for laboratory analysis for both MPE performance and compliance monitoring. Parametrix will be responsible for field and laboratory data management and reporting.

Parametrix plans to use Friedman & Bruya, Inc. (laboratory), located in Seattle, Washington, for liquid and gas sample analyses for the P1 MPE restart and seasonal operation.

Mott MacDonald, Ltd is the project hydrogeologist and groundwater monitoring lead. Groundwater monitoring at wells not directly involved in the P1 MPE restart and seasonal operation will be performed by Mott MacDonald under a separate workplan to be developed by Mott MacDonald.

1.3 Quality Objectives and Criteria for Measurement Data

The purpose of this SAP is to ensure that the data are of sufficient quality to support contaminant removal and emission calculations. Section 2.5 describes quality control (QC).

1.3.1 **Objective**

The objective of the MPE restart monitoring and sampling is to measure contaminate concentrations in extracted groundwater and vapor before and after treatment in the LTT and VTT.

1.4 Training Requirements/ Certification

Field personnel performing MPE system sampling, monitoring, and maintenance will be trained in accordance with the project health and safety plan (Parametrix 2024b).

1.5 Documents and Records

1.5.1 SAP Distribution

The Parametrix Project Manager will be responsible for preparing and distributing any SAP amendments.

1.5.2 Field Documentation and Records

Field sampling will be documented in several ways, including field and sampling forms, photographs, sample labels, and sample chain of custody (COC) forms.

1.5.2.1 Field Forms

Sampling and monitoring will be documented on the field forms included in Appendix A.

Any corrections made while recording information in the field will use single line strikethroughs and include initials and date.

Field instrument calibration will be noted.

Field forms and any photos will be retained in Parametrix's project records.

1.5.2.2 Sample Labels

Each sample will be labeled with laboratory provided labels. Each label includes the following information:

- Project name/number.
- Name of sample collector.
- Date and time of sample collection.
- Place of collection.
- Sample identification (ID) (i.e., groundwater influent, groundwater effluent, vapor pretreatment, vapor post-treatment).
- Presence of any preservation or filtration.

1.5.2.3 Chain-of-Custody Forms and Custody Seals

COC forms and self-adhesive custody seals for individual samples and coolers will be provided by the laboratory. A blank COC form is included in Appendix B. Copies of completed COC forms will be kept in Parametrix's project records. Additional details regarding sample handling and custody are provided in Section 2.

1.5.3 Laboratory Documentation and Records

Laboratory data packages will be provided by the laboratory in electronic (PDF and .xlsx or .csv) format. These packages will include a case narrative discussing any problems with the analyses, corrective actions taken, changes to the referenced methods, and an explanation of data qualifiers. In addition to sample results, reporting limits, and method detection limits, the data packages will also report all QC results associated with the study data, including results for all blanks, surrogate compounds, and check standards included in the sample batch, as well as results for analytical duplicates. Legible copies of all COC forms and sample receiving logs associated with the samples analyzed will also be included. This information will be used to evaluate data accuracy.

In addition to the data packages, the laboratory will provide electronic data files containing sample results. The electronic files will be in unprotected .xlsx or .csv format and will include the following fields at a minimum:

- Laboratory sample ID.
- Sample ID.
- Sample type.
- Date analyzed.
- Analytical method.
- Sample filter flag.
- Chemical Abstracts Service (CAS) number.
- Parameter name.

Sampling and Analysis Plan for Ephrata Landfill: MPE System Restart and Seasonal Operation Grant County Public Works

- Units.
- Result value.
- Result qualifier.
- Dilution factor.
- Reporting limit and detection limit.

Each data file will include all laboratory results and will be consistent with the data reported in the corresponding laboratory data package.

1.5.4 Reporting

This sampling and monitoring data described in this SAP will be reported as required in the Amendment. The Amendment calls for monthly progress reports, which are to include data obtained during the preceding month. Calculations of emissions and contaminant removal during each season of operations will be included in one of the monthly reports after the system is shut down and analytical results have been evaluated each season of operation.

2. Data Generation and Acquisition

This section describes procedures for collecting field measurements and for collecting samples for laboratory analysis. It also provides quality assurance and data management protocols. Sample locations are described in the *P1 MPE System Restart and Seasonal Operation Workplan*.

2.1 Monitoring Methods

This subsection describes field monitoring methods. Monitoring will occur at locations described in Table 1.

2.1.1 Non-Aqueous Phase Liquid

Depth to water and NAPL (non-aqueous phase liquids) will be manually measured in MPE and P1 observation wells to confirm transducer measurements (for those wells instrumented with pressure transducers) and to monitor for accumulation of NAPL in these wells. Depths to water, light NAPL (LNAPL), and dense NAPL (DNAPL) will be measured in these wells using an electric interface probe by first measuring potential LNAPL and depth to water at the water surface and then lowering the probe to the bottom of the well to measure potential DNAPL.

Manual measurements of water level and NAPL depths in these wells will require temporary removal of vacuum pressures during the vacuum assisted extraction (VAE) and soil vapor extraction (SVE) portion of the test. When MPE wells are under vacuum, water levels in these wells would be abnormally high relative to conditions in which the wellhead was at atmospheric pressure (i.e., if the water pumps were not being used to depress water levels). However, operation of the pumps will depress water levels in all MPE wells regardless of wellhead pressure, and water levels will take some time to adjust to changes in wellhead pressures when collecting measurements.

The length of the non-equilibrium period will be relatively long because P1 aquifer transmissivity is low. Thus, at least two manual measurements will be collected as quickly as possible from MPE wells after removing the vacuum from the wellheads.

The following procedures will be used to measure depth to LNAPL and DNAPL in MPE wells:

- Remove vacuum from MPE wells by either unthreading the 3/4-inch wellhead port (with VAE line still open), or by first shutting off the VAE line, then unthreading the wellhead port after vacuum pressure is reduced.
- Lower interface probe into 3/4-inch access port and record date, time, depth to water, and depth to LNAPL on MPE Well Form (Appendix A). If there is no measurable LNAPL, record as "0" on form. Record observer's initials.
- Lower interface probe to the bottom of the well and record date, time, bottom of well, and depth to DNAPL on MPE Well Form. If there is no measurable DNAPL, record as "0" on form. Record observer's initials.
- Measuring point on these wells will be consistent between measurements and will be the top of the 3/4-inch access port.
- Repeat measurements and record depths on MPE Well Form.

P1 observation wells will be under less vacuum and have no pumps or VAE line. The following procedures will be used to collect measurements in P1 Observation Wells:

- Remove vacuum by unthreading the 3/4-inch wellhead sample port (Note that all P1 wells except MW-36p1 and MW-67p1 are fitted with QED well plates with 3/4-inch threaded sample ports. MW-36p1 is fitted with a temporary PVC well cap with threaded 3/4-inch sample port, and MW-67p1 is fitted with a temporary well cap plug that will have to be removed for data collection).
- Lower interface probe into 3/4-inch access port and record date, time, depth to water, and depth to LNAPL on the Observation Well Form (Appendix A). If there is no measurable LNAPL, record as "0" on form. Record observer's initials.
- Lower interface probe to the bottom of the well and record date, time, bottom of well, and depth to DNAPL on the Observation Well Form. If there is no measurable DNAPL, record as "0" on form. Record observer's initials.
- Measuring point on these wells will be consistent between measurements and will be the top of the 3/4-inch access port for those wells fitted with well plates having access ports. The measuring point for observation wells without well plates having access ports shall be the top of the PVC well casing.
- Repeat measurements and record depth on the Observation Well Form in Appendix A.

2.1.2 Groundwater Well Monitoring

Depth to water will be manually measured in the vented observations wells.

Depths to water will be collected in these wells using a water level probe as follows:

- Open monument cap and remove well cap.
- Collect depth to water using top of PVC well casing (north side) as measurement point.
- Record date, time, initials, and depth to water on Observation Well Form in Appendix A.

Sampling and Analysis Plan for Ephrata Landfill: MPE System Restart and Seasonal Operation Grant County Public Works

2.1.3 Total Vapor and Liquid Extraction

Total liquid and vapor extraction rates and volumes data will be occasionally recorded manually on the Extraction Form in Appendix A. A vapor flow meter, which records pressure differential (in H₂O), and a pressure gage, which records pipe vacuum (in Hg), are in the VTT container near the intake to the VAE. Readings from these meters are used in standard air flow formulas to calculate air flow rates. Readings are transmitted to the program logic controller (PLC) but will also be manually read and recorded on the Extraction Form as backup. A liquid flow meter, which reads total cumulative volume (gallons) and instantaneous flow (gpm), is in the VTT container before influent to the oil-water separator. Readings from the liquid meter are transmitted to the PLC but will also be manually read and recorded on the Extraction Form as backup.

2.1.4 Ambient Air Monitoring

The VTT and LTT systems are designed for operation in Class 1, Division 1 areas to safely handle flammable mixtures containing methane and other volatile substances. However, it may be feasible to avoid handling flammable mixtures through system adjustments. The following thresholds for oxygen and methane have been established:

- Oxygen = over 10% volume
- Methane = over 20% LEL by volume

Although not anticipated, if the above thresholds are both exceeded at the VAE blower discharge, gas concentrations will be measured at individual wellheads to evaluate which well(s) may be contributing to elevated methane and possibly entraining landfill gas and/or atmospheric air.

Elevated methane in extracted vapor could be from a landfill gas source and/or from volatilization of dissolved methane in the P1 zone groundwater. However, volatilization of dissolved gases in the P1 zone is not likely to produce significant vapor volumes relative to the entrainment of landfill gases.

Actions to mitigate combustible gas mixtures will be discussed with the Project Manager and could include one of the following options:

- 1. Throttle or isolate the well producing high methane or oxygen, presuming one is identified.
- 2. Throttle all MPE wells and reduce the VAE blower speed.
- 3. Vent the MPE wells by opening sample port and reduce the VAE blower speed to minimum, essentially reverting to non-vacuum-assisted groundwater extraction.
- 4. Evaluate piping modifications to route rich gas to the landfill flare.
- 5. Evaluate well, piping, and electrical modifications to extract from a different well.
- 6. Evaluate adjustments to nearby LFG collection wells to offset LFG migration into the P1 zone.

As mentioned, the systems are designed to handle combustible mixtures. MPE operations may continue when the above mitigation options result in a non-flammable condition.

2.2 Sampling Methods

2.2.1 Groundwater Sampling

Groundwater (liquid) samples will be collected for laboratory analysis for both MPE performance monitoring purposes and pre-and-post-treatment performance monitoring purposes following the schedule in Table 2.

Groundwater samples will be collected at the following locations:

- Pre-treatment samples will be collected at the liquid sample port at the oil-water separator inlet.
- Post-treatment samples will be collected at the air sparge effluent sample port.

Sample locations are shown on the MPE system diagram in Figure 2.

Groundwater samples will be sampled for analytes listed in Table 3. See Table 4 for required analyses and bottles for each sample. Groundwater samples will be collected from in-line liquid sample ports (i.e. quarter-turn ball valve with PTFE tube whip) at locations summarized above using the following procedures:

- All sampling personnel will wear clean, disposable, latex gloves.
- Place a 5-gallon bucket on the ground below the sample port to collect overflow liquid during sampling. The overflow water should be contained in sealed/labeled 55-gallon drums and eventually run through the LLT.
- Connect a multiparameter water quality meter with a flow-thru cell (YSI ProDSS or equivalent) to the sample port, then open the sample port (allowing water to fill the flow-thru cell) and a small stream of discharge of about 100 to 500 millimeters per minute (ml/min) will be maintained. The following field parameters will be monitored with the water quality meter:
 - o pH (standard unit).
 - Dissolved oxygen (%).
 - \circ Electrical conductivity (µS/cm or mS/cm).
 - Temperature (degrees C).
 - Oxidation reduction potential (mV).
 - Turbidity (NTU).
- Allow water to continue moving through the flow-thru cell until parameter readings are stable for at least 30 seconds. Record field parameter values on the Groundwater Sample Form included in Appendix A. If parameter values continue to trend after 2 minutes, record values and indicate on the Groundwater Sample Form that the parameter value is trending upward or downward. Also, note visual appearance on the sample form (opaqueness, color, odor, etc.).
- Once field parameters have been collected, disconnect the sample port from the flow-thru cell and collect samples for laboratory analysis. Fill sample bottles in a manner that minimizes contact of the samples with air following individual sample container requirements, handling, and preservation. Samples for volatile organic compounds (VOCs) should contain no bubbles (headspace) after filling.

- Samples for dissolved metals analysis will be filtered in the field using a 0.45-micron in-line filter and recorded on field forms, metals sample bottle, and COC form.
- Record all sample information on the Groundwater Sample Form in Appendix A (sample ID, date, time, field parameters, analytical parameters, shipment date to the lab, and observer/comments).
- Record the information on each sample bottle label in accordance with the following subsection.

2.2.2 Vapor Sampling

Vapor samples will be collected for laboratory analysis for both MPE performance monitoring purposes and pre-and-post-treatment performance monitoring purposes following the schedule in Table 2.

Vapor samples will be collected from combined MPE vapor at the following locations in the VTT:

- Pre-treatment samples will be collected at discharge end of the VAE blower (positive pressure) in the VTT container downgradient of the heat exchanger but upgradient of the first carbon adsorber.
- Post-treatment samples will be collected at the vapor sample port at the discharge end of the first carbon adsorber.

Vapor samples will be collected using laboratory-supplied SUMMA canisters and analyzed for VOCs. See Table 5 for a list of VOCs. Vapor samples will be collected from in-line 1/4-inch sample ports at locations summarized and shown on Figure 2 using the following procedures:

- All sampling personnel will wear clean, disposable, latex gloves.
- Measure and record field measurements of gas concentrations (methane, oxygen, photo ionization detection [PID] readings) at discharge end of VAE blower using the following procedures:
 - Attach clean disposable 1/4-inch flexible tubing (silicone or polyethylene) to PID meter's air intake port (use compression fittings if needed) and turn meter on.
 - Purge ambient air vapor through open end of tubing and meter until readings are fairly stable for at least 30 seconds.
 - Record ambient air concentrations on Extraction Form (also record date, time, units of concentration, and observer's initials).
 - Turn PID meter off and attach open end of tubing to 1/4-inch vapor sample port (use compression fitting if needed).
 - Open sample port and turn on meter.
 - Purge vapor through meter until readings are fairly stable for 30 seconds.
 - Record the vapor concentrations on Extraction Form included in Appendix A (record date, time, units of concentration, and observer's initials).
 - Except for ambient air readings, repeat above steps for measuring vapor concentrations of methane and oxygen with landfill gas meter.
- Verify and record initial vacuum of canister.

- Confirm VAE sample port and canister valves are both closed.
- Attach particulate filter to canister.
- Connect canister intake to VAE sample port with lab supplied compression fittings to achieve airtight connection.
- Open VAE sample port and open canister valve (1/2 turn). Record start time—a 6-liter canister typically takes about 16 seconds to fill.
- Once full, record the end time, final vacuum pressure, and close the canister valve. (Note that maintaining a residual vacuum is not required as the lab performs a leak test both prior to shipment and upon receipt of canisters.)
- Fill out the canister label in accordance with Section 1.5.2.2.
- Record all sample information on the Vapor Sample Form included in Appendix A (sample ID, date, time, field parameters, analytical parameters, canister readings, shipment date to the lab, and observer/comments).

2.3 Field Health and Safety Procedures

Parametrix will follow the Site-specific Health and Safety Plan (Workplan Attachment A).

2.4 Field Variances

If conditions in the field vary such that modifications to the sampling procedures and protocols described in this SAP become necessary, field personnel will notify the Project Manager of the situation to obtain a verbal approval prior to implementing any changes. The approval will be recorded in the field forms.

2.5 Decontamination Procedures

The Site-specific Health and Safety Officer, as identified in the Site-specific Health and Safety Plan, is responsible for maintaining and enforcing personnel and equipment decontamination procedures. Any decontamination modifications and/or changes shall be noted in the field forms.

2.5.1 **Personnel Decontamination**

Personnel decontamination will include the following:

- After completion of sampling activities in the field, personnel must deposit all equipment and/or sample bottles in segregated areas on plastic sheeting. Highly contaminated equipment is to be kept separate from minimally contaminated and difficult-to-clean equipment, such as air monitoring meters.
- If field personnel personal protective equipment (PPE) comes into contact with contaminated material, all surfaces of gear, including boot soles, must be scrubbed until visible contamination is removed. PPE are to be rinsed with tap water using a brush. PPE is removed and set on plastic sheeting.
- If worn, coveralls are to be removed and disposed of in a disposal container.
- Disposable gloves are to be disposed of in a disposal container.

Sampling and Analysis Plan for Ephrata Landfill: MPE System Restart and Seasonal Operation Grant County Public Works

2.5.2 Equipment Decontamination

Disposable tools and sampling equipment will be used when possible. Decontamination of tools will include brushing with decontamination solution, such as Alconox, and rinsing with tap water, followed by rinsing with deionized water. The tools shall be segregated and placed in clean bags or containers.

Decontamination of sampling equipment will include the following:

- Clean tubs or buckets will be set up to collect wash and rinse solutions.
- Sampling tools will be scrubbed with a decontamination solution, such as Alconox, until visibly clean.
- Tool will be rinsed with tap water.
- Tool will be rinsed with deionized water. A garden prayer or squirt bottle may be used.

2.5.3 Container Decontamination

Samples will be collected directly into sample containers provided by the laboratory. No container decontamination in the field is necessary. The containers will be provided and certified clean by the laboratory according to procedures described in the laboratory's quality assurance (QA) manual included in Appendix C.

2.6 Disposal of Waste Materials

Waste that will be generated from sampling operations include soiled PPE and disposable sampling equipment, and excess purge water from the groundwater sampling ports. Waste will be collected and stored in a 55-gallon drum or watertight container and disposed of in accordance with applicable federal and state waste regulations.

2.7 Sample Handling and Custody

2.7.1 Sample Containers and Preservatives

Table 4 lists groundwater sample volume, container size and type, and preservation requirements for each parameter/parameters group to be measured. Vapor samples will be collected in Summa Canisters. Prior to each event, the Project Manager or designee will contact the laboratory to order sample containers. The laboratory will provide sampling kits containing precleaned and prepreserved sample containers. After sample collection, samples will be placed in a cooler with ice at approximately 4 degrees C to retain cold temperature for at least 24 hours. No samples will be split in the field.

2.7.2 Sample Custody

Each sample will be listed on the COC form(s), an example of which is provided in Appendix B. The laboratory will provide COC form(s) with each sample kit. The field personnel will record all sample custody transfers on the COC form(s) and return it to the laboratory with the samples.

A sample is under a person's custody if it is:

- In that person's physical possession.
- Within that person's sight.
- Secured in a tamper-proof way by that person.
- Secured by that person in an area restricted to authorized personnel.

Field personnel are responsible for custody of the samples until they are delivered to the laboratory. The field portions of COC forms shall be completed in the field by the sampler. Each time one person relinquishes control of the samples to another person, both individuals must complete the appropriate portions of the COC form by signing the form and filling in the date and time of the custody transfer. For this reason, one field personnel individual should retain sample custody during the sampling event whenever feasible.

The laboratory's sample receipt coordinator will sign and date the COC form(s) promptly when the samples arrive. The laboratory is then responsible for the care and custody of samples. The laboratory will track sample custody through their facility using a separate sample tracking form, as discussed in the laboratory QA manual included in Appendix D. Copies of completed COC forms will be kept in the project files.

2.7.3 Sample Disposal

Following sample analysis, the laboratory will store the unused portions for 30 days after the final laboratory data package and invoice is delivered then dispose of all the samples following their standard procedures.

2.8 Analytical Methods

2.8.1 Laboratory Analysis Methods

Laboratory analysis methods for each parameter are listed in Tables 3 and 5. Sample analysis will be performed by the laboratory in accordance with Environmental Protection Agency (EPA) method specifications. The method detection limit (MDL) and reporting limit (RL) for each sample parameter method are listed in the laboratory summary table (Appendix D).

After analyzing samples from each sampling event, the laboratory will summarize the data and associated QC results in a data report and electronic data file and provide these to Parametrix within 1 month of sample receipt. Quarterly sample data report and electronic data file contents are described in Section 1.5.3.

2.9 Quality Control

2.9.1 Measurement Performance and Acceptance Criteria

This section identifies data quality indicators (DQIs) for each analytical parameter and decisions regarding how each DQI will be assessed. The DQIs include sensitivity, bias, representativeness, precision, accuracy, completeness, and comparability.

The general approach to assessing each DQI is provided below, including quantitative measurements where appropriate. Analytical methods are specified in Tables 3 and 5.

Sensitivity

Sensitivity is the MDL which a laboratory following an analytical method can detect and quantify an analyte with reasonable confidence. Laboratory MDLs and RLs are listed the summary table included in Appendix D.

Bias

Bias is the difference between the population mean and the true value of the parameter being measured. Bias in water samples will be calculated based on the analyses of field blanks, method blanks, matrix spikes, and laboratory control samples (LCS).

Field blank results that are greater than the RL will be flagged as blank contamination. Typically, associated project samples within 10 times the blank concentration will be qualified as an estimate.

Some of the parameters listed in Tables 3 and 5 require matrix spikes (MS) and MS duplicates. MS and MS duplicates will be performed for these parameters following the laboratory's standard procedure. Percent recoveries are required to be within the ranges shown in the LCS analysis included in Appendix D.

Representativeness

Representativeness is the degree to which sample data represent a characteristic environmental condition or specific site conditions. Samples will be collected at different stages of MPE system restart.

Precision

Precision is the closeness of results for a sample and duplicate sample, as defined by the relative percent difference (RPD). Required RPD ranges are shown in the LCS analysis included in Appendix D.

Accuracy

Accuracy is the measure of agreement between a measurement's result and the true or known value. LCS, MS, and MS duplicates percent recoveries are required to be within the acceptance criteria ranges in the LCS analysis included in Appendix D.

Completeness

Completeness is a percentage calculated as the ratio of measurements determined to be valid over the total number of measurements collected. The completeness goal is set in terms of the minimum number of samples meeting DQIs. To evaluate groundwater and vapor for this study, all samples must be valid. Other practices to ensure achievement of the completeness goal include using prepared sample containers and coolers from the laboratory, using trained staff, following the sampling procedures in this SAP, icing samples, packaging samples for transport to avoid breakage, and timely sample processing. Laboratory analysis can improve completeness by processing samples within their holding times. For data analysis, valid sample data may include all unflagged data and J-flagged data reviewed by the Project Manager.

2.9.2 Field Sampling QC

No field QC samples will be collected during sampling events.

2.9.3 Laboratory Analysis QC

Laboratory QA/QC procedures are described in the laboratory's QA manual included in Appendix C. Analysis for LCS and method blanks for each sample parameter method is included in Appendix D.

2.9.4 Field Monitoring Instruments/ Equipment

Installation and procedures for field sampling and monitoring equipment use are discussed in Sections 2.1 and 2.2. Field devices will be calibrated and maintained in accordance with the manufacturer's guidelines and specifications. Records of equipment calibration and maintenance will be recorded and maintained in field notes.

Documentation will include the following information, as applicable:

- Name of person maintaining or calibrating the instrument/equipment.
- Date and description of the maintenance or calibration procedure.
- Date and description of any instrument/equipment problem(s).
- Date and description of action to correct problem(s).
- List of follow-up activities after maintenance (i.e., system checks).

For leased equipment, calibration by the lessor is acceptable.

2.9.5 Laboratory Analysis Instruments/ Equipment

Inspection and maintenance of laboratory equipment is the responsibility of the laboratory and is described in the laboratory's QA manual included in Appendix C.

2.10 Data Management

Data collected by this study, as described in previous subsections, will be maintained as electronic data files. Preparation, maintenance, and storage of documents and records are described in Section 1.5.

The laboratory will provide data in electronic form via unprotected .xlsx or .csv format, with full data reports provided in Adobe PDF. The Project Manager or designee will review the results for consistency of results and qualifiers across file formats. Any discrepancies will be identified for resolution by the laboratory.

Data presented in the final report will be checked against the original sources. Any data summaries and calculations included in the final report will be checked to confirm the appropriate source data and calculation methods are used.

Data will be submitted to Ecology as required in the Amendment.

3. Oversight

This section describes oversight to confirm that field sampling and monitoring activities are conducted according to procedures outlined in this SAP.

3.1 Field and Laboratory Oversight

For this study, field oversight will include readiness reviews of the Field Sampling Team prior to initiating quarterly sampling efforts, field activity audits, and post-event review of field sampling and measurement activities.

3.1.1 Readiness Procedure

Field staff training will include review of this SAP and laboratory instructions with the field kits. Prior to each sampling and monitoring event, the field sample team will confirm the following:

- Equipment is operational and ready for field use.
- Field instruments are calibrated and in proper working order.
- Field logs are on hand.
- The sample kit includes all containers listed in the COC and this SAP for the event.
- All sample containers are intact and properly closed.

3.1.2 **Post-Event Review of Field Sampling and Measurement** Activities

Field data verification after each sampling and monitoring event will involve review of the field data for errors or omissions and examining the results for compliance with QC acceptance criteria outlined in this SAP. Review of field measurements will include the following:

- Evaluate field records for consistency.
- Confirm calibration procedures were followed and documented.
- Review QC information (any corrections on field forms and confirm QC of data transferred to electronic format).
- Summarize any deviations from methods specified in this SAP, determine any impact on data quality, and identify any necessary modifications to sampling activities prior to the next quarterly event.

Tables

 Table 1. Field Monitoring Summary

 Table 2. Laboratory Sampling Summary

 Table 3. Groundwater Analytical Parameters

 Table 4. Groundwater Laboratory Analysis

 Table 5. Vapor Analytical Parameters

MPE System Restart Project Phase	Field Parameters	Locations of Measurement
	Manual Depth to Groundwater	All Extraction and Observation Wells
	Manual Depth to LNAPL	All P1 Zone Extraction and Observation Wells
	LT Readings	LTs in wells
	PIT readings	PITs at wells
	Pump Cycle Count and Rate	Active MPE Wells
PUMPING WITH NO VACUUM	Liquid Flow Rate and Total Volume	Meter before OWS (LTT Container)
	Vapor Extraction Rate and Volume	Meter near blower (VTT Container)
	Pump Supply Air Pressure	Regulators on air supply lines to pumps
	VAE Blower Speed	(VTT Container)
	Compressed Air Supply Rate	(VTT Container)
	Methane and Oxygen, Total Organics (PID)	VAE Sample Port (Discharge End of Heat Exchanger)

Manual Depth to Groundwater
Manual Depth to LNAPL
Manual Vacuum Reading
LT Readings
PIT readings
Pump Cycle Count and Rate
VAE Flow Control Valves
Liquid Flow Rate and Total Volume
Vapor Extraction Rate and Volume
Pump Supply Air Pressure
VAE Blower Speed
VAE Blower Makeup Air
Compressed Air Supply Rate
Methane and Oxygen, Total Organics (PID)

All Extraction and Observation Wells
All P1 Zone Extraction and Observation Wells
MW-36p1
LTs in wells
PITs at wells
Active MPE Wells
Active MPE Wells
Meter before OWS (LTT Container)
Meter near blower (VTT Container)
Regulators on air supply lines to pumps
(VTT Container)
(VTT Container)
(VTT Container)
VAE Sample Port (Discharge End of Heat Exchanger)

SOIL VAPOR EXTRACTION TEST

Notes:

Additional readings may be collected during seasonal startup.

LNAPL- light non-aqueous phase liquids LT- level transducers LTT- Liquid Treatment Train MP- wellhead measuring point MPE- multi-phase extraction

PIT- pressuring indicating transducers PLC- programmable logic controller (i.e., computer) VAE- vacuum assisted extraction VTT- Vapor Treatment Train

		Data Collection Frequency	
Location of Data Collection	Automated (PLC)	Manual (Forms- record off of PLC)	Data Collection Form
Wellhead Measuring Point (MP)		Once per sampling event	Observation and MPE Well Forms
Wellhead Measuring Point (MP)		Once per sampling event	Observation and MPE Well Forms
PLC	Hourly	Once per sampling event	Observation and MPE Well Forms
PLC	Hourly	Once per sampling event	Observation and MPE Well Forms
MPE Well		Once per sampling event	MPE Well Forms
PLC	Hourly	Once per sampling event	Extraction Form
PLC	Hourly	Once per sampling event	Extraction Form
MPE Well	Hourly	Once per sampling event	MPE Well Forms
VTT Container		Once per sampling event	Operations Form
VTT Container		Once per sampling event	Operations Form
VTT Container		Once per sampling event	Extraction Form
Wellhead Measuring Point (MP)		Once per sampling event	Observation and MPE Well Forms
Wellhead Measuring Point (MP)		Once per sampling event	Observation and MPE Well Forms
Wellhead		Once per sampling event	Observation Well Forms
PLC	Hourly	Once per sampling event	Observation and MPE Well Forms
PLC	Hourly	Once per sampling event	Observation and MPE Well Forms
MPE Well		Once per sampling event	MPE Well Forms
MPE Well		Once per sampling event	MPE Well Forms
PLC	Hourly	Once per sampling event	Extraction Form
PLC	Hourly	Once per sampling event	Extraction Form
MPE Well	Hourly	Once per sampling event	MPE Well Forms
VTT Container		Once per sampling event	Operations Form
VTT Container		Once per sampling event	Operations Form
VTT Container		Once per sampling event	Operations Form
VTT Container		Once per sampling event	Extraction Form

Table 2. Laboratory Sampling Schedule and SummaryEphrata Landfill, Grant County, Washington

MPE System Restart Project Phase	Estimated Duration of Each Step	Sample Location	Sampling Purpose	Media	Parameters	Sample Frequency	Total Number of Groundwater Samples per Phase	Total Number of Vapor Samples per Phase	Documentation Form
Pumping with No Vacuum	2 weeks	OWS inlet liquid sample port	MPE and pretreatment performance	Groundwater	COCs, TPH	Once during seasonal restart	1		Groundwater Sample Form
			performance	Groundwater	COC3, 1111	Once during seasonal restart	T		
		Air sparge effluent sample port	Post-treatment performance	Groundwater	COCs, TPH	Once during seasonal restart	1		Groundwater Sample Form
		OWS inlet liquid sample port	MPE and pretreatment performance	Groundwater	COCs, TPH	Collect one sample 2 weeks after system restart and collect one sample during the month prior to system seasonal shut down	2		Groundwater Sample Form
Soil Vapor Extraction	Seasonal	Air sparge effluent sample port	Post-treatment performance	Groundwater	COCs, TPH	Collect one sample 2 weeks after system restart and collect one sample during the month prior to system seasonal shut down	2		Groundwater Sample Form
	operation until	VAE blower discharge sample port	MPE and pretreatment	Vapor	VOCs	Collect one sample 2 weeks after system restart and collect one sample during the month prior to system seasonal shut down		2	Vapor Sample Form
		First carbon absorber discharge sample port	Post-treatment performance	Vapor	VOCs	Collect one sample 2 weeks after system restart and collect one sample during the month prior to system seasonal shut down		2	Vapor Sample Form

COCs- contaminants of concern

MPE- multi-phase extraction

OWS- oil-water separator

TPH- total petroleum hydrocarbons

VOCs- volatile organic compounds

Table 3. Groundwater Analytical Parameters

Ephrata Landfill, Grant County, Washington

Organic Parameters- VOCs1,4-Dioxaneug/LEPA 8260D SIM1,1,1,2-Tetrachloroethaneug/LEPA 8260D1,1,2-Tichloroethaneug/LEPA 8260D1,1,2-Trichloroethaneug/LEPA 8260D1,1,2-Trichloroethaneug/LEPA 8260D1,1-Dichloroethaneug/LEPA 8260D1,1-Dichloroethaneug/LEPA 8260D1,1-Dichloroethaneug/LEPA 8260D1,2-Trichlorobenzeneug/LEPA 8260D1,2-Trichlorobenzeneug/LEPA 8260D1,2-Trichlorobenzeneug/LEPA 8260D1,2-Trichlorobenzeneug/LEPA 8260D1,2-Dichlorobenzeneug/LEPA 8260D1,2-Dichlorobenzeneug/LEPA 8260D1,2-Dichlorobenzeneug/LEPA 8260D1,2-Dichlorobenzeneug/LEPA 8260D1,2-Dichlorobenzeneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,3-Dichloroponaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D1,3-Dichlorobenzeneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichl	Parameters	Units	Analytical Method
1,1,1,2-Tetrachloroethaneug/LEPA 8260D1,1,2,7-Trichloroethaneug/LEPA 8260D1,1,2,7-Tetrachloroethaneug/LEPA 8260D1,1,2-Trichloroethaneug/LEPA 8260D1,1-Dichloroethaneug/LEPA 8260D1,1-Dichloroethaneug/LEPA 8260D1,1-Dichloropropeneug/LEPA 8260D1,2,3-Trichlorobenzeneug/LEPA 8260D1,2,3-Trichlorobenzeneug/LEPA 8260D1,2,3-Trichlorobenzeneug/LEPA 8260D1,2,4-Trichlorobenzeneug/LEPA 8260D1,2,4-Trichlorobenzeneug/LEPA 8260D1,2-Dichlorobenzeneug/LEPA 8260D1,2-Dichlorobenzeneug/LEPA 8260D1,2-Dichlorobenzeneug/LEPA 8260D1,2-Dichlorobenzeneug/LEPA 8260D1,2-Dichloropropaneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,4-Dichlorobenzeneug/LEPA 8260D1,4-Dichlorobenzeneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D2,2-Dichloropropane <td< th=""><th>Organic Parameters- VOCs</th><th></th><th></th></td<>	Organic Parameters- VOCs		
1,1,1-Trichloroethaneug/LEPA 8260D1,1,2-Trichloroethaneug/LEPA 8260D1,1-2:Trichloroethaneug/LEPA 8260D1,1-Dichloroethaneug/LEPA 8260D1,1-Dichloroethaneug/LEPA 8260D1,1-Dichloroethaneug/LEPA 8260D1,2-Trichlorobenzeneug/LEPA 8260D1,2,3-Trichlorobenzeneug/LEPA 8260D1,2,4-Trichloropropaneug/LEPA 8260D1,2,4-Trichloropropaneug/LEPA 8260D1,2-A-Trimethylbenzeneug/LEPA 8260D1,2-Dichoroethane (EDB)ug/LEPA 8260D1,2-Dichoroethane (EDC)ug/LEPA 8260D1,2-Dichloropopaneug/LEPA 8260D1,2-Dichloropopaneug/LEPA 8260D1,2-Dichloropopaneug/LEPA 8260D1,2-Dichloropopaneug/LEPA 8260D1,3-Dichloropopaneug/LEPA 8260D1,3-Dichloropopaneug/LEPA 8260D1,3-Dichloropopaneug/LEPA 8260D1,4-Dichloropropaneug/LEPA 8260D2,2-Dichloropopaneug/LEPA 8260D2,2-Dichloropopaneug/LEPA 8260D2,2-Dichloropopaneug/LEPA 8260D2,2-Dichloropopaneug/LEPA 8260D2,2-Dichloropopaneug/LEPA 8260D2,2-Dichloropopaneug/LEPA 8260D2,2-Dichloropopaneug/LEPA 8260D2,2-Dichloropopaneug/LEPA 8260D2,2-Dichloropopaneug/LEPA 8260D	1,4-Dioxane	ug/L	EPA 8260D SIM
1,1,2,2-Tetrachloroethaneug/LEPA 8260D1,1-Dichloroethaneug/LEPA 8260D1,1-Dichloroethaneug/LEPA 8260D1,1-Dichloroethaneug/LEPA 8260D1,1-Dichloropropeneug/LEPA 8260D1,2,3-Trichlorobenzeneug/LEPA 8260D1,2,4-Trichlorobenzeneug/LEPA 8260D1,2,4-Trichlorobenzeneug/LEPA 8260D1,2,4-Trichlorobenzeneug/LEPA 8260D1,2,4-Trichlorobenzeneug/LEPA 8260D1,2-Dirbromo-3-chloropropaneug/LEPA 8260D1,2-Dirbromo-dthane (EDB)ug/LEPA 8260D1,2-Dichoropethane (EDC)ug/LEPA 8260D1,2-Dichoropaneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropane	1,1,1,2-Tetrachloroethane	ug/L	EPA 8260D
1,1,2-Trichloroethaneug/LEPA 8260D1,1-Dichloroethaneug/LEPA 8260D1,1-Dichloroethaneug/LEPA 8260D1,1-Dichloropropeneug/LEPA 8260D1,2,3-Trichlorobenzeneug/LEPA 8260D1,2,3-Trichlorobenzeneug/LEPA 8260D1,2,4-Trinethylbenzeneug/LEPA 8260D1,2-Dibhomoethane (EDB)ug/LEPA 8260D1,2-Dibhoroethane (EDC)ug/LEPA 8260D1,2-Dichloroptopaneug/LEPA 8260D1,2-Dichloroptopaneug/LEPA 8260D1,2-Dichloroptopaneug/LEPA 8260D1,2-Dichloroptopaneug/LEPA 8260D1,2-Dichloroptopaneug/LEPA 8260D1,2-Dichloroptopaneug/LEPA 8260D1,3-Dichloroptopaneug/LEPA 8260D1,3-Dichloroptopaneug/LEPA 8260D1,3-Dichloroptopaneug/LEPA 8260D1,3-Dichloroptopaneug/LEPA 8260D1,3-Dichloroptopaneug/LEPA 8260D2,2-Dichloroptopaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/L	1,1,1-Trichloroethane	ug/L	EPA 8260D
1,1-Dichloroethaneug/LEPA 8260D1,1-Dichloroethaneug/LEPA 8260D1,1-Dichloropropeneug/LEPA 8260D1,2,3-Trichlorobenzeneug/LEPA 8260D1,2,3-Trichlorobenzeneug/LEPA 8260D1,2,4-Trinchlylbenzeneug/LEPA 8260D1,2-Dichlorobenzeneug/LEPA 8260D1,2-Dibromo-3-chloropropaneug/LEPA 8260D1,2-Dibromo-3-chloropropaneug/LEPA 8260D1,2-Dibromo-3-chloropropaneug/LEPA 8260D1,2-Dichlorobenzeneug/LEPA 8260D1,2-Dichlorobenzeneug/LEPA 8260D1,2-Dichloropropaneug/LEPA 8260D1,2-Dichloropropaneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichlorotolueneug/LEPA 8260D2,2-Dichlorotolueneug/LEPA 8260D2,1-Dichlorotolueneug/LEPA 8260D2,2-Dichlorotoluene <td< td=""><td>1,1,2,2-Tetrachloroethane</td><td>ug/L</td><td>EPA 8260D</td></td<>	1,1,2,2-Tetrachloroethane	ug/L	EPA 8260D
1,1-Dichloroetheneug/LEPA 8260D1,1-Dichloropropeneug/LEPA 8260D1,2,3-Trichloropropaneug/LEPA 8260D1,2,4-Trichloropropaneug/LEPA 8260D1,2,4-Trichloropropaneug/LEPA 8260D1,2,4-Trimethylbenzeneug/LEPA 8260D1,2-Dibromo-3-chloropropaneug/LEPA 8260D1,2-Dibromo-3-chloropropaneug/LEPA 8260D1,2-Dichloroethane (EDB)ug/LEPA 8260D1,2-Dichloroptaneug/LEPA 8260D1,2-Dichloroptaneug/LEPA 8260D1,2-Dichloroptaneug/LEPA 8260D1,3-Dichloroptaneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/L </td <td>1,1,2-Trichloroethane</td> <td>ug/L</td> <td>EPA 8260D</td>	1,1,2-Trichloroethane	ug/L	EPA 8260D
1,1-Dichloropropeneug/LEPA 8260D1,2,3-Trichlorobenzeneug/LEPA 8260D1,2,3-Trichlorobenzeneug/LEPA 8260D1,2,4-Trichlorobenzeneug/LEPA 8260D1,2,4-Trinethylbenzeneug/LEPA 8260D1,2-Dibromo-3-chloropropaneug/LEPA 8260D1,2-Dibromoethane (EDB)ug/LEPA 8260D1,2-Dichlorobenzeneug/LEPA 8260D1,2-Dichloropenaneug/LEPA 8260D1,2-Dichloropenaneug/LEPA 8260D1,2-Dichloropopaneug/LEPA 8260D1,3-Dichloropopaneug/LEPA 8260D1,3-Dichloropopaneug/LEPA 8260D1,3-Dichlorobenzeneug/LEPA 8260D1,3-Dichloropopaneug/LEPA 8260D1,3-Dichloropopaneug/LEPA 8260D2,2-Dichloropopaneug/LEPA 8260D2,2-Dichloropopaneug/LEPA 8260D2,2-Dichloropopaneug/LEPA 8260D2,2-Dichloropopaneug/LEPA 8260D2,2-Dichlorobueneug/LEPA 8260D2,-Hexanoneug/LEPA 8260D2,-Hexanoneug/LEPA 8260D2,-Hexanoneug/LEPA 8260D2,-Hexanoneug/LEPA 8260D2,-Dichloromethaneug/LEPA 8260D3,-Dichoropropaneug/LEPA 8260D2,-Hexanoneug/LEPA 8260D2,-Hexanoneug/LEPA 8260D2,-Hexanoneug/LEPA 8260D2,-Hexanoneug/LEPA 8	1,1-Dichloroethane	ug/L	EPA 8260D
1,2,3-Trichlorobenzeneug/LEPA 8260D1,2,3-Trichloropropaneug/LEPA 8260D1,2,4-Trichlorobenzeneug/LEPA 8260D1,2-thirmethylbenzeneug/LEPA 8260D1,2-Dibromo-3-chloropropaneug/LEPA 8260D1,2-Dibromoethane (EDB)ug/LEPA 8260D1,2-Dichlorobenzeneug/LEPA 8260D1,2-Dichlorobenzeneug/LEPA 8260D1,2-Dichlorobenzeneug/LEPA 8260D1,3-Dichlorobenzeneug/LEPA 8260D1,3-Dichlorobenzeneug/LEPA 8260D1,3-Dichlorobenzeneug/LEPA 8260D1,3-Dichlorobenzeneug/LEPA 8260D1,3-Dichlorobenzeneug/LEPA 8260D2,2-Dichlorobenzeneug/LEPA 8260D2,2-Dichlorobenzeneug/LEPA 8260D2,2-Dichlorobenzeneug/LEPA 8260D2,2-Dichlorobenzeneug/LEPA 8260D2,2-Dichlorobenzeneug/LEPA 8260D2,2-Dichlorobenzeneug/LEPA 8260D2,2-Dichlorobenzeneug/LEPA 8260D2-Chlorotolueneug/LEPA 8260D2-Hexanoneug/LEPA 8260D4-Methyl-2-pentanoneug/LEPA 8260D8enzeneug/LEPA 8260DBromoformug/LEPA 8260DBromoformug/LEPA 8260DBromoformug/LEPA 8260DChlorobenzeneug/LEPA 8260DChlorobenzeneug/LEPA 8260DBromoformug/LEP	1,1-Dichloroethene	ug/L	EPA 8260D
1,2,3-Trichloropropaneug/LEPA 8260D1,2,4-Trinethylbenzeneug/LEPA 8260D1,2-Dibromo-3-chloropropaneug/LEPA 8260D1,2-Dibromo-3-chloropropaneug/LEPA 8260D1,2-Dibromo-thane (EDB)ug/LEPA 8260D1,2-Dichloropenzeneug/LEPA 8260D1,2-Dichloropropaneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,4-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichlorotolueneug/LEPA 8260D2,-Hexanoneug/LEPA 8260D4-Methyl-2-pentanoneug/LEPA 8260D4-Methyl-2-pentanoneug/LEPA 8260DBromodichloromethaneug/LEPA 8260DBromodichloromethaneug/LEPA 8260DBromodichloromethaneug/LEPA 8260DChlorothaneug/LEPA 8260DChlorotorideug/LEPA 8260DChlorotorideug/LEPA 8260D </td <td>1,1-Dichloropropene</td> <td>ug/L</td> <td>EPA 8260D</td>	1,1-Dichloropropene	ug/L	EPA 8260D
1,2,4-Trichlorobenzeneug/LEPA 8260D1,2,4-Trimethylbenzeneug/LEPA 8260D1,2-Dibromo-3-chloropropaneug/LEPA 8260D1,2-Dibromoethane (EDB)ug/LEPA 8260D1,2-Dichlorobenzeneug/LEPA 8260D1,2-Dichloropthane (EDC)ug/LEPA 8260D1,2-Dichlorobenzeneug/LEPA 8260D1,3-Dichlorobenzeneug/LEPA 8260D1,3-Dichlorobenzeneug/LEPA 8260D1,3-Dichlorobenzeneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,4-Dichlorobenzeneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,-Dichloropropaneug/LEPA 8260D2,-Dichloropropaneug/LEPA 8260D2,-Dichloropropaneug/LEPA 8260D2,-Dichloropropaneug/LEPA 8260D2,-Dichloropropaneug/LEPA 8260D2,-Dichloropropaneug/LEPA 8260D4-Chlorotolueneug/LEPA 8260D4-Chlorotolueneug/LEPA 8260D5-Domodenzeneug/LEPA 8260DBromoformug/LEPA 8260D<	1,2,3-Trichlorobenzene	ug/L	EPA 8260D
1,2,4-Trimethylbenzeneug/LEPA 8260D1,2-Dibromo-3-chloropropaneug/LEPA 8260D1,2-Dibromoethane (EDB)ug/LEPA 8260D1,2-Dichlorobenzeneug/LEPA 8260D1,2-Dichloropethane (EDC)ug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2-Chlorotolueneug/LEPA 8260D2-Hexanoneug/LEPA 8260D2-Hexanoneug/LEPA 8260D2-Hexanoneug/LEPA 8260D2-Norotolueneug/LEPA 8260D2-Retanoneug/LEPA 8260D4-Chlorotolueneug/LEPA 8260D8-nomodichloromethaneug/LEPA 8260DBromobenzeneug/LEPA 8260DBromoformug/LEPA 8260DBromoformug/LEPA 8260DBromoformug/LEPA 8260DBromoformug/LEPA 8260DChlorobenzeneug/LEPA 8260DChlorobenzeneug/LEPA 8260DBromoformug/LEPA 8260DChlorobenzene	1,2,3-Trichloropropane	ug/L	EPA 8260D
1,2-Dibromo-3-chloropropaneug/LEPA 8260D1,2-Dibromoethane (EDB)ug/LEPA 8260D1,2-Dichlorobenzeneug/LEPA 8260D1,2-Dichloroptopaneug/LEPA 8260D1,3-Dichloroptopaneug/LEPA 8260D1,3-Dichloroptopaneug/LEPA 8260D1,3-Dichloroptopaneug/LEPA 8260D1,3-Dichloroptopaneug/LEPA 8260D1,3-Dichloroptopaneug/LEPA 8260D1,3-Dichloroptopaneug/LEPA 8260D1,4-Dichlorobenzeneug/LEPA 8260D2,2-Dichloroptopaneug/LEPA 8260D2,2-Dichloroptopaneug/LEPA 8260D2,2-Dichloroptopaneug/LEPA 8260D2,2-Dichloroptopaneug/LEPA 8260D2,2-Dichloroptopaneug/LEPA 8260D2,2-Dichloroptopaneug/LEPA 8260D2,4-Natanoneug/LEPA 8260D2-Hexanoneug/LEPA 8260D4-Chlorotolueneug/LEPA 8260D4-Chlorotolueneug/LEPA 8260D8enzeneug/LEPA 8260DBromobenzeneug/LEPA 8260DBromodichloromethaneug/LEPA 8260DBromodichloromethaneug/LEPA 8260DChlorobenzeneug/LEPA 8260DChlorobenzeneug/LEPA 8260DChlorobenzeneug/LEPA 8260DChlorobenzeneug/LEPA 8260DChlorobenzeneug/LEPA 8260DChlorobenzeneug/LEPA 8260D	1,2,4-Trichlorobenzene	ug/L	EPA 8260D
1,2-Dibromoethane (EDB)ug/LEPA 8260D1,2-Dichlorobenzeneug/LEPA 8260D1,2-Dichlorobenzeneug/LEPA 8260D1,2-Dichloropropaneug/LEPA 8260D1,3-Trimethylbenzeneug/LEPA 8260D1,3-Dichlorobenzeneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2-Chlorotolueneug/LEPA 8260D2-Hexanoneug/LEPA 8260D4-Chlorotolueneug/LEPA 8260D4-Chlorotolueneug/LEPA 8260DAcetoneug/LEPA 8260DBenzeneug/LEPA 8260DBromodichloromethaneug/LEPA 8260DBromodichloromethaneug/LEPA 8260DChlorobenzeneug/LEPA 8260DChlorobenzeneug/LEPA 8260DChlorobenzeneug/LEPA 8260DChlorobenzeneug/LEPA 8260DChlorobenzeneug/LEPA 8260DChlorobenzeneug/LEPA 8260D	1,2,4-Trimethylbenzene	ug/L	EPA 8260D
1,2-Dichlorobenzeneug/LEPA 8260D1,2-Dichloroethane (EDC)ug/LEPA 8260D1,2-Dichloropropaneug/LEPA 8260D1,3-5-Trimethylbenzeneug/LEPA 8260D1,3-Dichlorobenzeneug/LEPA 8260D1,3-Dichlorobenzeneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2-Butanone (MEK)ug/LEPA 8260D2-Hexanoneug/LEPA 8260D2-Hexanoneug/LEPA 8260D2-Hexanoneug/LEPA 8260D2-Hexanoneug/LEPA 8260D2-Hexanoneug/LEPA 8260D2-Rethylberzeneug/LEPA 8260D2-Rotorolueneug/LEPA 8260D2-Rotorolueneug/LEPA 8260D2-Rotorolueneug/LEPA 8260D2-Rotorolueneug/LEPA 8260D2-Rotorolueneug/LEPA 8260D3-Domomethaneug/LEPA 8260DBromodichloromethaneug/LEPA 8260DBromomethaneug/LEPA 8260DChlorobenzeneug/LEPA 8260DChlorobenzeneug/LEPA 8260DChlorobenzeneug/LEPA 8260DChlorobenzeneug/LEPA 8260DChlorobenzeneug/LEPA 8260DChlorobenzeneug/LEPA 8260DChlorobenzeneug/LEPA 8260D	1,2-Dibromo-3-chloropropane	ug/L	EPA 8260D
1,2-Dichloroethane (EDC)ug/LEPA 8260D1,2-Dichloropropaneug/LEPA 8260D1,3,5-Trimethylbenzeneug/LEPA 8260D1,3-Dichlorobenzeneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,4-Dichlorobenzeneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2-Butanone (MEK)ug/LEPA 8260D2-Hexanoneug/LEPA 8260D2-Hexanoneug/LEPA 8260D4-Chlorotolueneug/LEPA 8260D4-Methyl-2-pentanoneug/LEPA 8260DAcetoneug/LEPA 8260DBenzeneug/LEPA 8260DBromodichloromethaneug/LEPA 8260DBromonethaneug/LEPA 8260DCarbon tetrachlorideug/LEPA 8260DChlorobenzeneug/LEPA 8260DChlorobenzeneug/L <t< td=""><td>1,2-Dibromoethane (EDB)</td><td>ug/L</td><td>EPA 8260D</td></t<>	1,2-Dibromoethane (EDB)	ug/L	EPA 8260D
1,2-Dichloropropaneug/LEPA 8260D1,3,5-Trimethylbenzeneug/LEPA 8260D1,3-Dichlorobenzeneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,4-Dichlorobenzeneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2-Butanone (MEK)ug/LEPA 8260D2-Chlorotolueneug/LEPA 8260D2-Hexanoneug/LEPA 8260D4-Chlorotolueneug/LEPA 8260D4-Chlorotolueneug/LEPA 8260D4-Methyl-2-pentanoneug/LEPA 8260DAcetoneug/LEPA 8260DBenzeneug/LEPA 8260DBromobenzeneug/LEPA 8260DBromodichloromethaneug/LEPA 8260DBromomethaneug/LEPA 8260DCarbon tetrachlorideug/LEPA 8260DChlorobenzeneug/LEPA 8260D<	1,2-Dichlorobenzene	ug/L	EPA 8260D
1,3,5-Trimethylbenzeneug/LEPA 8260D1,3-Dichlorobenzeneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,4-Dichlorobenzeneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2,Butanone (MEK)ug/LEPA 8260D2-Chlorotolueneug/LEPA 8260D2-Hexanoneug/LEPA 8260D4-Chlorotolueneug/LEPA 8260D4-Methyl-2-pentanoneug/LEPA 8260D4-Methyl-2-pentanoneug/LEPA 8260D8enzeneug/LEPA 8260DBromobenzeneug/LEPA 8260DBromobenzeneug/LEPA 8260DBromotichloromethaneug/LEPA 8260DBromotichloromethaneug/LEPA 8260DBromotentaneug/LEPA 8260DBromotentaneug/LEPA 8260DBromotentaneug/LEPA 8260DBromotentaneug/LEPA 8260DBromotentaneug/LEPA 8260DBromotentaneug/LEPA 8260DBromotentaneug/LEPA 8260DChlorotofnanug/LEPA 8260DChlorotofnaneug/LEPA 8260DChlorotofnaneug/LEPA 8260DChlorotofnaneug/LEPA 8260DChlorotofnaneug/LEPA 8260DChlorotofnaneug/LEPA 8260DChlorotofnaneug/LEPA 8260DChlorotofnaneug/LEPA 8260DChlorotofnaneug/LEPA 8260D<	1,2-Dichloroethane (EDC)	ug/L	EPA 8260D
1,3-Dichlorobenzeneug/LEPA 8260D1,3-Dichloropropaneug/LEPA 8260D1,4-Dichlorobenzeneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2-Butanone (MEK)ug/LEPA 8260D2-Chlorotolueneug/LEPA 8260D2-Hexanoneug/LEPA 8260D4-Chlorotolueneug/LEPA 8260D4-Chlorotolueneug/LEPA 8260D4-Methyl-2-pentanoneug/LEPA 8260D4-Methyl-2-pentanoneug/LEPA 8260D8enzeneug/LEPA 8260DBormobenzeneug/LEPA 8260DBromobenzeneug/LEPA 8260DBromodichloromethaneug/LEPA 8260DBromomethaneug/LEPA 8260DBromodenzeneug/LEPA 8260DBromoformug/LEPA 8260DBromoformug/LEPA 8260DBromoformug/LEPA 8260DChlorobenzeneug/LEPA 8260DChlorothaneug/LEPA 8260DChlorothaneug/LEPA 8260DChlorothaneug/LEPA 8260DChloroformug/LEPA 8260DChlorothaneug/LEPA 8260DChlorothaneug/LEPA 8260DChlorothaneug/LEPA 8260DChlorothaneug/LEPA 8260DChlorothaneug/LEPA 8260DChlorothaneug/LEPA 8260DChlorothaneug/LEPA 8260DChlorothaneug/LEPA 826	1,2-Dichloropropane	ug/L	EPA 8260D
1,3-Dichloropropaneug/LEPA 8260D1,4-Dichlorobenzeneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2-Butanone (MEK)ug/LEPA 8260D2-Chlorotolueneug/LEPA 8260D2-Hexanoneug/LEPA 8260D4-Chlorotolueneug/LEPA 8260D4-Chlorotolueneug/LEPA 8260D4-Chlorotolueneug/LEPA 8260D4-Methyl-2-pentanoneug/LEPA 8260D8enzeneug/LEPA 8260DBromobenzeneug/LEPA 8260DBromodichloromethaneug/LEPA 8260DBromomethaneug/LEPA 8260DBromomethaneug/LEPA 8260DChlorobenzeneug/LEPA 8260DBromomethaneug/LEPA 8260DChlorobenzeneug/LEPA 8260DChlorobenzene <td>1,3,5-Trimethylbenzene</td> <td>ug/L</td> <td>EPA 8260D</td>	1,3,5-Trimethylbenzene	ug/L	EPA 8260D
1,4-Dichlorobenzeneug/LEPA 8260D2,2-Dichloropropaneug/LEPA 8260D2-Butanone (MEK)ug/LEPA 8260D2-Chlorotolueneug/LEPA 8260D2-Hexanoneug/LEPA 8260D4-Chlorotolueneug/LEPA 8260D4-Chlorotolueneug/LEPA 8260D4-Methyl-2-pentanoneug/LEPA 8260DAcetoneug/LEPA 8260DBenzeneug/LEPA 8260DBromobenzeneug/LEPA 8260DBromoformug/LEPA 8260DBromomethaneug/LEPA 8260DBromomethaneug/LEPA 8260DCarbon tetrachlorideug/LEPA 8260DChlorobenzeneug/LEPA 8260DChlorobenzeneug/L <t< td=""><td>1,3-Dichlorobenzene</td><td>ug/L</td><td>EPA 8260D</td></t<>	1,3-Dichlorobenzene	ug/L	EPA 8260D
2,2-Dichloropropaneug/LEPA 8260D2-Butanone (MEK)ug/LEPA 8260D2-Chlorotolueneug/LEPA 8260D2-Hexanoneug/LEPA 8260D4-Chlorotolueneug/LEPA 8260D4-Chlorotolueneug/LEPA 8260D4-Methyl-2-pentanoneug/LEPA 8260DAcetoneug/LEPA 8260DBenzeneug/LEPA 8260DBromobenzeneug/LEPA 8260DBromoformug/LEPA 8260DBromomethaneug/LEPA 8260DBromomethaneug/LEPA 8260DCarbon tetrachlorideug/LEPA 8260DChlorothaneug/LEPA 8260DChlorothane <td>1,3-Dichloropropane</td> <td>ug/L</td> <td>EPA 8260D</td>	1,3-Dichloropropane	ug/L	EPA 8260D
2-Butanone (MEK)ug/LEPA 8260D2-Chlorotolueneug/LEPA 8260D2-Hexanoneug/LEPA 8260D4-Chlorotolueneug/LEPA 8260D4-Methyl-2-pentanoneug/LEPA 8260DAcetoneug/LEPA 8260DBenzeneug/LEPA 8260DBromobenzeneug/LEPA 8260DBromodichloromethaneug/LEPA 8260DBromomethaneug/LEPA 8260DBromomethaneug/LEPA 8260DCarbon tetrachlorideug/LEPA 8260DChlorobenzeneug/LEPA 8260DChlorotethaneug/LEPA 8260DChlorobenzeneug/LEPA 8260DChlorobenzeneug/LEPA 8260DChlorobenzeneug/LEPA 8260DChlorobenzeneug/LEPA 8260DChlorobenzeneug/LEPA 8260DChloroformug/LEPA 8260DChloroformug/LEPA 8260DChloropenteneug/LEPA 8260DCis-1,2-Dichloropeneug/LEPA 8260DDibromochloromethaneug/LEPA 8260DChloromethaneug/LEPA 8260DChloromethaneug/LEPA 8260DChloropeneug/LEPA 8260DChloromethaneug/LEPA 8260DChloropeneug/LEPA 8260DChloromethaneug/LEPA 8260DChloromethaneug/LEPA 8260DChloromethaneug/LEPA 8260DChloromethaneug/L <td< td=""><td>1,4-Dichlorobenzene</td><td>ug/L</td><td>EPA 8260D</td></td<>	1,4-Dichlorobenzene	ug/L	EPA 8260D
2-Chlorotolueneug/LEPA 8260D2-Hexanoneug/LEPA 8260D4-Chlorotolueneug/LEPA 8260D4-Methyl-2-pentanoneug/LEPA 8260DAcetoneug/LEPA 8260DBenzeneug/LEPA 8260DBromobenzeneug/LEPA 8260DBromodichloromethaneug/LEPA 8260DBromomethaneug/LEPA 8260DBromomethaneug/LEPA 8260DBromomethaneug/LEPA 8260DBromomethaneug/LEPA 8260DChlorobenzeneug/LEPA 8260DChlorobenzeneug/LEPA 8260DChlorobenzeneug/LEPA 8260DChlorobenzeneug/LEPA 8260DChlorobenzeneug/LEPA 8260DChlorobenzeneug/LEPA 8260DChlorobenzeneug/LEPA 8260DChloroperneug/LEPA 8260DChloroperneug/LEPA 8260DChloroperneug/LEPA 8260DChloroperneug/LEPA 8260DChloroperneug/LEPA 8260DCis-1,3-Dichloropropeneug/LEPA 8260DDibromochloromethaneug/LEPA 8260DDibromochloromethaneug/LEPA 8260D	2,2-Dichloropropane	ug/L	EPA 8260D
2-Hexanone ug/L EPA 8260D 4-Chlorotoluene ug/L EPA 8260D 4-Methyl-2-pentanone ug/L EPA 8260D Acetone ug/L EPA 8260D Benzene ug/L EPA 8260D Bromobenzene ug/L EPA 8260D Bromodichloromethane ug/L EPA 8260D Bromomethane ug/L EPA 8260D Bromodichloromethane ug/L EPA 8260D Bromodichloromethane ug/L EPA 8260D Bromoform ug/L EPA 8260D Bromoform ug/L EPA 8260D Carbon tetrachloride ug/L EPA 8260D Chlorobenzene ug/L EPA 8260D Chloroform ug/L EPA 8260D Chloroform ug/L EPA 8260D Chloroform ug/L EPA 8260D Chloromethane ug/L EPA 8260D Chloromethane ug/L EPA 8260D Chloropropene ug/L EPA 8260D Chloromethane ug/L	2-Butanone (MEK)	ug/L	EPA 8260D
4-Chlorotolueneug/LEPA 8260D4-Methyl-2-pentanoneug/LEPA 8260DAcetoneug/LEPA 8260DBenzeneug/LEPA 8260DBromobenzeneug/LEPA 8260DBromodichloromethaneug/LEPA 8260DBromoformug/LEPA 8260DBromomethaneug/LEPA 8260DBromotothereneug/LEPA 8260DBromotothereneug/LEPA 8260DCarbon tetrachlorideug/LEPA 8260DChlorobenzeneug/LEPA 8260DChloroformug/LEPA 8260DChloroformug/LEPA 8260DChloromethaneug/LEPA 8260DChloromethaneug/LEPA 8260DChloromethaneug/LEPA 8260DChloromethaneug/LEPA 8260DChloromethaneug/LEPA 8260DCis-1,2-Dichloropeneug/LEPA 8260DDibromochloromethaneug/LEPA 8260DDibromochloromethaneug/LEPA 8260D	2-Chlorotoluene	ug/L	EPA 8260D
4-Methyl-2-pentanone ug/L EPA 8260D Acetone ug/L EPA 8260D Benzene ug/L EPA 8260D Bromobenzene ug/L EPA 8260D Bromodichloromethane ug/L EPA 8260D Bromoform ug/L EPA 8260D Bromomethane ug/L EPA 8260D Bromoform ug/L EPA 8260D Bromomethane ug/L EPA 8260D Carbon tetrachloride ug/L EPA 8260D Chlorobenzene ug/L EPA 8260D Chloroform ug/L EPA 8260D Chloroform ug/L EPA 8260D Chloroform ug/L EPA 8260D Chloromethane ug/L EPA 8260D Chloromethane ug/L EPA 8260D Cis-1,2-Dichloroethene ug/L EPA 8260D cis-1,3-Dichloropropene ug/L EPA 8260D Dibromochloromethane ug/L EPA 8260D	2-Hexanone	ug/L	EPA 8260D
Acetoneug/LEPA 8260DBenzeneug/LEPA 8260DBromobenzeneug/LEPA 8260DBromodichloromethaneug/LEPA 8260DBromoformug/LEPA 8260DBromomethaneug/LEPA 8260DBromomethaneug/LEPA 8260DCarbon tetrachlorideug/LEPA 8260DChlorobenzeneug/LEPA 8260DChloroethaneug/LEPA 8260DChloroformug/LEPA 8260DChloromethaneug/LEPA 8260DChloromethaneug/LEPA 8260DChloromethaneug/LEPA 8260DChloromethaneug/LEPA 8260DChloromethaneug/LEPA 8260DChloromethaneug/LEPA 8260DDibromochloromethaneug/LEPA 8260DDibromochloromethaneug/LEPA 8260D	4-Chlorotoluene	ug/L	EPA 8260D
Benzeneug/LEPA 8260DBromobenzeneug/LEPA 8260DBromodichloromethaneug/LEPA 8260DBromoformug/LEPA 8260DBromomethaneug/LEPA 8260DCarbon tetrachlorideug/LEPA 8260DChlorobenzeneug/LEPA 8260DChloroethaneug/LEPA 8260DChloroformug/LEPA 8260DChloroformug/LEPA 8260DChloromethaneug/LEPA 8260DChloromethaneug/LEPA 8260DChloromethaneug/LEPA 8260DCis-1,2-Dichloroetheneug/LEPA 8260Dcis-1,3-Dichloropropeneug/LEPA 8260DDibromochloromethaneug/LEPA 8260D	4-Methyl-2-pentanone	ug/L	EPA 8260D
Bromobenzeneug/LEPA 8260DBromodichloromethaneug/LEPA 8260DBromoformug/LEPA 8260DBromomethaneug/LEPA 8260DCarbon tetrachlorideug/LEPA 8260DChlorobenzeneug/LEPA 8260DChloroethaneug/LEPA 8260DChloroformug/LEPA 8260DChloroformug/LEPA 8260DChloromethaneug/LEPA 8260DChloromethaneug/LEPA 8260DChloromethaneug/LEPA 8260DCis-1,2-Dichloropropeneug/LEPA 8260DDibromochloromethaneug/LEPA 8260DCis-1,3-Dichloropropeneug/LEPA 8260D	Acetone	ug/L	EPA 8260D
Bromodichloromethaneug/LEPA 8260DBromoformug/LEPA 8260DBromomethaneug/LEPA 8260DCarbon tetrachlorideug/LEPA 8260DChlorobenzeneug/LEPA 8260DChloroethaneug/LEPA 8260DChloroformug/LEPA 8260DChloromethaneug/LEPA 8260DChloromethaneug/LEPA 8260DChloromethaneug/LEPA 8260DChloromethaneug/LEPA 8260DCis-1,2-Dichloroetheneug/LEPA 8260Dcis-1,3-Dichloropropeneug/LEPA 8260DDibromochloromethaneug/LEPA 8260D	Benzene	ug/L	EPA 8260D
Bromoformug/LEPA 8260DBromomethaneug/LEPA 8260DCarbon tetrachlorideug/LEPA 8260DChlorobenzeneug/LEPA 8260DChloroethaneug/LEPA 8260DChloroformug/LEPA 8260DChloromethaneug/LEPA 8260DChloromethaneug/LEPA 8260DCis-1,2-Dichloroetheneug/LEPA 8260Dcis-1,3-Dichloropropeneug/LEPA 8260DDibromochloromethaneug/LEPA 8260D	Bromobenzene	ug/L	EPA 8260D
Bromomethaneug/LEPA 8260DCarbon tetrachlorideug/LEPA 8260DChlorobenzeneug/LEPA 8260DChloroethaneug/LEPA 8260DChloroformug/LEPA 8260DChloromethaneug/LEPA 8260DChloromethaneug/LEPA 8260DCis-1,2-Dichloroetheneug/LEPA 8260Dcis-1,3-Dichloropropeneug/LEPA 8260DDibromochloromethaneug/LEPA 8260D	Bromodichloromethane	ug/L	EPA 8260D
Carbon tetrachlorideug/LEPA 8260DChlorobenzeneug/LEPA 8260DChloroethaneug/LEPA 8260DChloroformug/LEPA 8260DChloromethaneug/LEPA 8260DChloropetheneug/LEPA 8260Dcis-1,2-Dichloropetheneug/LEPA 8260Dcis-1,3-Dichloropropeneug/LEPA 8260DDibromochloromethaneug/LEPA 8260D	Bromoform	ug/L	EPA 8260D
Chlorobenzeneug/LEPA 8260DChloroethaneug/LEPA 8260DChloroformug/LEPA 8260DChloromethaneug/LEPA 8260Dcis-1,2-Dichloroetheneug/LEPA 8260Dcis-1,3-Dichloropropeneug/LEPA 8260DDibromochloromethaneug/LEPA 8260D	Bromomethane	ug/L	EPA 8260D
Chloroethaneug/LEPA 8260DChloroformug/LEPA 8260DChloromethaneug/LEPA 8260Dcis-1,2-Dichloroetheneug/LEPA 8260Dcis-1,3-Dichloropropeneug/LEPA 8260DDibromochloromethaneug/LEPA 8260D	Carbon tetrachloride	ug/L	EPA 8260D
Chloroformug/LEPA 8260DChloromethaneug/LEPA 8260Dcis-1,2-Dichloroetheneug/LEPA 8260Dcis-1,3-Dichloropropeneug/LEPA 8260DDibromochloromethaneug/LEPA 8260D	Chlorobenzene	ug/L	EPA 8260D
Chloromethaneug/LEPA 8260Dcis-1,2-Dichloroetheneug/LEPA 8260Dcis-1,3-Dichloropropeneug/LEPA 8260DDibromochloromethaneug/LEPA 8260D	Chloroethane	ug/L	EPA 8260D
cis-1,2-Dichloroetheneug/LEPA 8260Dcis-1,3-Dichloropropeneug/LEPA 8260DDibromochloromethaneug/LEPA 8260D	Chloroform	ug/L	EPA 8260D
cis-1,3-Dichloropropeneug/LEPA 8260DDibromochloromethaneug/LEPA 8260D	Chloromethane	ug/L	EPA 8260D
Dibromochloromethane ug/L EPA 8260D	cis-1,2-Dichloroethene	ug/L	EPA 8260D
	cis-1,3-Dichloropropene	ug/L	EPA 8260D
	Dibromochloromethane	ug/L	EPA 8260D
Dibromomethane ug/L EPA 8260D	Dibromomethane	ug/L	EPA 8260D

Parameters	Units	Analytical Method
Dichlorodifluoromethane	ug/L	EPA 8260D
Ethylbenzene	ug/L	EPA 8260D
, Hexachlorobutadiene	ug/L	EPA 8260D
Hexane	ug/L	EPA 8260D
Isopropylbenzene	ug/L	EPA 8260D
m,p-Xylene	ug/L	EPA 8260D
Methyl t-butyl ether (MTBE)	ug/L	EPA 8260D
Methylene chloride	ug/L	EPA 8260D
Naphthalene	ug/L	EPA 8260D
n-Propylbenzene	ug/L	EPA 8260D
o-Xylene	ug/L	EPA 8260D
p-Isopropyltoluene	ug/L	EPA 8260D
sec-Butylbenzene	ug/L	EPA 8260D
Styrene	ug/L	EPA 8260D
tert-Butylbenzene	ug/L	EPA 8260D
Tetrachloroethene	ug/L	EPA 8260D
Toluene	ug/L	EPA 8260D
trans-1,2-Dichloroethene	ug/L	EPA 8260D
trans-1,3-Dichloropropene	ug/L	EPA 8260D
Trichloroethene	ug/L	EPA 8260D
Trichlorofluoromethane	ug/L	EPA 8260D
Vinyl chloride	ug/L	EPA 8260D
Organic Parameters-SVOCs		
1,2,4-Trichlorobenzene	ug/L	EPA 8270E
1,2-Dichlorobenzene	ug/L	EPA 8270E
1,2-Diphenylhydrazine	ug/L	EPA 8270E
1,3-Dichlorobenzene	ug/L	EPA 8270E
1,4-Dichlorobenzene	ug/L	EPA 8270E
1-Methylnaphthalene	ug/L	EPA 8270E
2,2'-Oxybis(1-chloropropane)	ug/L	EPA 8270E
2,2'-Oxybis(1-chloropropane)	ug/L	EPA 8270E
2,4,5-Trichlorophenol	ug/L	EPA 8270E
2,4,6-Trichlorophenol	ug/L	EPA 8270E
2,4-Dichlorophenol	ug/L	EPA 8270E
2,4-Dimethylphenol	ug/L	EPA 8270E
2,4-Dinitrophenol	ug/L	EPA 8270E
2,4-Dinitrotoluene	ug/L	EPA 8270E
2,6-Dinitrotoluene	ug/L	EPA 8270E
2-Chloronaphthalene	ug/L	EPA 8270E
2-Chlorophenol	ug/L	EPA 8270E
2-Methylnaphthalene	ug/L	EPA 8270E
2-Methylphenol	ug/L	EPA 8270E
2-Nitroaniline	ug/L	EPA 8270E
2-Nitrophenol	ug/L	EPA 8270E
3,3'-Dichlorobenzidine	ug/L	EPA 8270E

3-Methylphenol ug/L EPA 8270E 3-Nitroaniline ug/L EPA 8270E 4.6-Dinitro-2-methylphenol ug/L EPA 8270E 4.Bromophenyl phenyl ether ug/L EPA 8270E 4-Chloroa-S-methylphenol ug/L EPA 8270E 4-Chlorophenyl phenyl ether ug/L EPA 8270E 4-Chlorophenyl phenyl ether ug/L EPA 8270E 4-Nitroaniline ug/L EPA 8270E 4-Nitrophenol ug/L EPA 8270E A-cenaphthene ug/L EPA 8270E Accenaphthylene ug/L EPA 8270E Accenaphthylene ug/L EPA 8270E Benz(a)phracene ug/L EPA 8270E Benz(a)phracene ug/L EPA 8270E Benzo(b)fluoranthene ug/L EPA 8270E Benzo(b)fluoranthene ug/L EPA 8270E Benzo(a)fluoranthene ug/L EPA 8270E Benzo(a)fluoranthene ug/L EPA 8270E Benzo(a)fluoranthene ug/L EPA 8270E Benzo(a)fluoranthene	Parameters	Units	Analytical Method
3-Nitroanilineug/LEPA 8270E4,6-Dinitro-2-methylphenolug/LEPA 8270E4-Chloro-3-methylphenolug/LEPA 8270E4-Chloro-3-methylphenolug/LEPA 8270E4-Chloroanilineug/LEPA 8270E4-Chlorophenyl phenyl etherug/LEPA 8270E4-Chlorophenyl phenyl etherug/LEPA 8270E4-Nitroanilineug/LEPA 8270E4-Nitroanilineug/LEPA 8270E4-Nitroanilineug/LEPA 8270EAcenaphtheneug/LEPA 8270EAcenaphthyleneug/LEPA 8270EAcenaphtyleneug/LEPA 8270EBenz(a)pyreneug/LEPA 8270EBenzo(b)pryeneug/LEPA 8270EBenzo(b)fluorantheneug/LEPA 8270EBis(2-chloroethyl) phthalateug/LEPA 8270EBis(2-chloroethyl) phthalateug/LEPA 8270EDibenzofirmanug/LEPA 8270EDibenzofirmanug/LEPA 8270E <tr< td=""><td></td><td></td><td></td></tr<>			
4,6-Dinitro-2-methylphenolug/LEPA 8270E4-Bromophenyl phenyl etherug/LEPA 8270E4-Chloroa-3-methylphenolug/LEPA 8270E4-Chloroa-1ineug/LEPA 8270E4-Chloroanilineug/LEPA 8270E4-Chloroanilineug/LEPA 8270E4-Chloroanilineug/LEPA 8270E4-Nitrophenolug/LEPA 8270EA-Nitrophenolug/LEPA 8270EAcenaphtheneug/LEPA 8270EAcenaphthyleneug/LEPA 8270EAcenaphthyleneug/LEPA 8270EBenz(a)phraceneug/LEPA 8270EBenz(a)phraceneug/LEPA 8270EBenz(a)hiperyleneug/LEPA 8270EBenz(a)hiperyleneug/LEPA 8270EBenz(a)hiperyleneug/LEPA 8270EBenz(a)hiperyleneug/LEPA 8270EBenz(a)chlourantheneug/LEPA 8270EBenz(a)chlourantheneug/LEPA 8270EBenz(a)chlourantheneug/LEPA 8270EBenz(a)chlourantheneug/LEPA 8270EBenz(a)chlourantheneug/LEPA 8270EBenz(a)chlourantheneug/LEPA 8270EBenz(a)chlourantheneug/LEPA 8270EBenz(a)chlourantheneug/LEPA 8270EBenz(a)chlourantheneug/LEPA 8270EBis(2-chloroethoxy)methaneug/LEPA 8270EDibenz(a),hanthraceneug/LEPA 8270EDibenz(a),hanthraceneug/LEPA 8270EDibenz(a),han		-	EPA 8270E
4-Chloro-3-methylphenolug/LEPA 8270E4-Chloroanilineug/LEPA 8270E4-Nitroanilineug/LEPA 8270E4-Nitroanilineug/LEPA 8270E4-Nitroanilineug/LEPA 8270EAcenaphtheneug/LEPA 8270EAcenaphthyleneug/LEPA 8270EAnthraceneug/LEPA 8270EBenzo(a)anthraceneug/LEPA 8270EBenzo(a)pyreneug/LEPA 8270EBenzo(b)fluorantheneug/LEPA 8270EBis(2-chloroethyl) phthalateug/LEPA 8270EBis(2-chloroethyl) etherug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDien-butyl phthalateug/LEPA 8270EDi-n-butyl phthalateug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270E	4,6-Dinitro-2-methylphenol	-	EPA 8270E
4-Chlorophenyl etherug/LEPA 8270E4-Chlorophenyl phenyl etherug/LEPA 8270E4-Nitrophenolug/LEPA 8270E4-Nitrophenolug/LEPA 8270EAcenaphtheneug/LEPA 8270EAcenaphthyleneug/LEPA 8270EAcenaphthyleneug/LEPA 8270EBenz(a)anthraceneug/LEPA 8270EBenzo(a)pyreneug/LEPA 8270EBenzo(b)fluorantheneug/LEPA 8270EBenzo(b)fluorantheneug/LEPA 8270EBenzo(c)fluorantheneug/LEPA 8270EBenzo(a)pyreneug/LEPA 8270EBenzo(a)fluorantheneug/LEPA 8270EBenzo(b)fluorantheneug/LEPA 8270EBenzo(b)fluorantheneug/LEPA 8270EBenzo(b)fluorantheneug/LEPA 8270EBenzo(b)fluorantheneug/LEPA 8270EBenzo(b)fluorantheneug/LEPA 8270EBenzo(b)fluorantheneug/LEPA 8270EBis(2-chloroethyl)mthalateug/LEPA 8270EBis(2-chloroethyl)mthalateug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzofuranug/LEPA 8270EDibenzofuranug/LEPA 8270EDibenzofuranug/LEPA 8270EDibenzofuranug/LEPA 8270EDibenzofuranug/LEPA 8270EDibenzofuranug/LEPA 8270EDibenzofuranug/L	4-Bromophenyl phenyl ether	ug/L	EPA 8270E
4-Chlorophenyl phenyl etherug/LEPA 8270E4-Nitrophenolug/LEPA 8270E4-Nitrophenolug/LEPA 8270EAcenaphtheneug/LEPA 8270EAcenaphtheneug/LEPA 8270EAcenaphthyleneug/LEPA 8270EBenz(a)anthraceneug/LEPA 8270EBenz(a)qyreneug/LEPA 8270EBenzo(b)fluorantheneug/LEPA 8270EBenzol acidug/LEPA 8270EBenzol acidug/LEPA 8270EBis(2-chloroethxyl) phthalateug/LEPA 8270EBis(2-chloroethxyl) phthalateug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibentyl phthalateug/LEPA 8270EDibentyl phthalateug/LEPA 8270EDibentyl phthalateug/LEPA 8270EDibentyl phthalateug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexa	4-Chloro-3-methylphenol	ug/L	EPA 8270E
4-Nitrophenolug/LEPA 8270E4-Nitrophenolug/LEPA 8270EAcenaphtheneug/LEPA 8270EAcenaphthyleneug/LEPA 8270EAnthraceneug/LEPA 8270EBenz(a)anthraceneug/LEPA 8270EBenzo(a)pyreneug/LEPA 8270EBenzo(g)hluorantheneug/LEPA 8270EBenzo(g)hluorantheneug/LEPA 8270EBenzo(g)hluorantheneug/LEPA 8270EBenzo(g)hluorantheneug/LEPA 8270EBenzo(k)fluorantheneug/LEPA 8270EBenzo(k)fluorantheneug/LEPA 8270EBenzol acidug/LEPA 8270EBenzol acidug/LEPA 8270EBenzyl alcoholug/LEPA 8270EBis(2-chloroethoxy)methaneug/LEPA 8270EBis(2-chloroethyny) etharug/LEPA 8270EBis(2-chloroethyny) etharug/LEPA 8270ECarbazoleug/LEPA 8270EChryseneug/LEPA 8270EDibenzo(n,h)anthraceneug/LEPA 8270EDibenzo(n,h)anthraceneug/LEPA 8270EDibenzofuranug/LEPA 8270EDi-n-butyl phthalateug/LEPA 8270EDi-n-butyl phthalateug/LEPA 8270EDi-n-butyl phthalateug/LEPA 8270EHexachlorobutadieneug/LEPA 8270EHexachlorobutadieneug/LEPA 8270EHexachlorobutadieneug/LEPA 8270EHexachlorobutadieneug/LEPA	4-Chloroaniline	ug/L	EPA 8270E
4-Nitrophenolug/LEPA 8270EAcenaphtheneug/LEPA 8270EAcenaphthyleneug/LEPA 8270EAnthraceneug/LEPA 8270EBenz(a)anthraceneug/LEPA 8270EBenzo(a)pyreneug/LEPA 8270EBenzo(b)fluorantheneug/LEPA 8270EBenzo(k)fluorantheneug/LEPA 8270EBenzo(k)fluorantheneug/LEPA 8270EBenzo(k)fluorantheneug/LEPA 8270EBenzo(k)fluorantheneug/LEPA 8270EBenzoic acidug/LEPA 8270EBenzol acidug/LEPA 8270EBenzyl alcoholug/LEPA 8270EBenzyl butyl phthalateug/LEPA 8270EBis(2-chlorethoxy)methaneug/LEPA 8270EBis(2-chlorethyl) etherug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzofuranug/LEPA 8270EDienhyl phthalateug/LEPA 8270EDienhoutyl phthalateug/LEPA 8270EHexachlorobenzene<	4-Chlorophenyl phenyl ether	ug/L	EPA 8270E
Acenaphtheneug/LEPA 8270EAcenaphthyleneug/LEPA 8270EAnthraceneug/LEPA 8270EBenz(a)anthraceneug/LEPA 8270EBenzo(a)pyreneug/LEPA 8270EBenzo(b)fluorantheneug/LEPA 8270EBenzo(g)t,i)peryleneug/LEPA 8270EBenzo(a)pyreneug/LEPA 8270EBenzo(a)tifluorantheneug/LEPA 8270EBenzo(a)tifluorantheneug/LEPA 8270EBenzo(a)tifluorantheneug/LEPA 8270EBenzo(a)tifluorantheneug/LEPA 8270EBenzyl alcoholug/LEPA 8270EBenzyl alcoholug/LEPA 8270EBis(2-chloroethoxy)methaneug/LEPA 8270EBis(2-chloroethyl) etherug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzofuranug/LEPA 8270EDien-butyl phthalateug/LEPA 8270EDien-butyl phthalateug/LEPA 8270EDien-butyl phthalateug/LEPA 8270EDien-butyl phthalateug/LEPA 8270EDien-butyl phthalateug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270ENetnoso-di-n-propylamineug/LEPA 8270ENitroso-	4-Nitroaniline	ug/L	EPA 8270E
Acenaphthyleneug/LEPA 8270EAnthraceneug/LEPA 8270EBenz(a)anthraceneug/LEPA 8270EBenzo(a)pyreneug/LEPA 8270EBenzo(b)fluorantheneug/LEPA 8270EBenzo(b)fluorantheneug/LEPA 8270EBenzo(b)fluorantheneug/LEPA 8270EBenzo(b)fluorantheneug/LEPA 8270EBenzo(c)(b)fluorantheneug/LEPA 8270EBenzolacidug/LEPA 8270EBenzolacidug/LEPA 8270EBenzyl alcoholug/LEPA 8270EBis(2-chloroethoxy)methaneug/LEPA 8270EBis(2-chloroethyl) etherug/LEPA 8270EBis(2-chloroethyl) phthalateug/LEPA 8270EChryseneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDienzol(a,h)anthraceneug/LEPA 8270EDienzol(a,h)anthraceneug/LEPA 8270EDientyl phthalateug/LEPA 8270EDien-butyl phthalateug/LEPA 8270EDi-n-butyl phthalateug/LEPA 8270EDi-n-butyl phthalateug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorobutadieneug/LEPA 8270EHexachlorobutadieneug/LEPA 8270EHexachlorobutadieneug/LEPA 8270EHexachlorobutadieneug/LEPA 8270EHexachlorobutadieneug/LEPA 8270ENethorobenzeneug/LEPA 8270ENorone <t< td=""><td>4-Nitrophenol</td><td>ug/L</td><td>EPA 8270E</td></t<>	4-Nitrophenol	ug/L	EPA 8270E
Anthraceneug/LEPA 8270EBenz(a)anthraceneug/LEPA 8270EBenzo(a)pyreneug/LEPA 8270EBenzo(a,h)peryleneug/LEPA 8270EBenzo(k,h)peryleneug/LEPA 8270EBenzo(k,h)peryleneug/LEPA 8270EBenzo(k,h)peryleneug/LEPA 8270EBenzo(c,h)peryleneug/LEPA 8270EBenzo(c,h)peryleneug/LEPA 8270EBenzo(c,h)peryleneug/LEPA 8270EBenzo(c,h)phthalateug/LEPA 8270EBis(2-chloroethoxy)methaneug/LEPA 8270EBis(2-chloroethoxy)methaneug/LEPA 8270EBis(2-chloroethoxy)methaneug/LEPA 8270EBis(2-chloroethoxy)methaneug/LEPA 8270EDibelzola,h)anthraceneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzofuranug/LEPA 8270EDiethyl phthalateug/LEPA 8270EDinethyl phthalateug/LEPA 8270EDinethyl phthalateug/LEPA 8270EDinethyl phthalateug/LEPA 8270EDinethyl phthalateug/LEPA 8270EDinethyl phthalateug/LEPA 8270EHexachloroburadieneug/LEPA 8270EHexachloroburadieneug/LEPA 8270EHexachloroburadieneug/LEPA 8270EHexachloroburadieneug/LEPA 8270EHexachloroburadieneug/LEPA 8270EHexachloroburadieneug/LEPA 8270E<	Acenaphthene	ug/L	EPA 8270E
Benz(a)anthraceneug/LEPA 8270EBenzo(a)pyreneug/LEPA 8270EBenzo(b)fluorantheneug/LEPA 8270EBenzo(g,h,i)peryleneug/LEPA 8270EBenzo(k)fluorantheneug/LEPA 8270EBenzoic acidug/LEPA 8270EBenzyl alcoholug/LEPA 8270EBenzyl butyl phthalateug/LEPA 8270EBis(2-chloroethyl) etherug/LEPA 8270EBis(2-chloroethyl) phthalateug/LEPA 8270EBis(2-chloroethyl) phthalateug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzofuranug/LEPA 8270EDibenzofuranug/LEPA 8270EDientyl phthalateug/LEPA 8270EDientyl phthalateug/LEPA 8270EDientyl phthalateug/LEPA 8270EDientyl phthalateug/LEPA 8270EDientyl phthalateug/LEPA 8270EDin-octyl phthalateug/LEPA 8270EDin-octyl phthalateug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorobethaneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophroneug/LEPA 8270ENayhthaleneug/LEPA 8270ENitroso-din-n-proplamineug/LEPA 8270ENitroso-din-n-proplamineug/LEPA 8270ENitroso-din-n-proplamineug/LEPA 8270ENitroso	Acenaphthylene	ug/L	EPA 8270E
Benzo(a)pyreneug/LEPA 8270EBenzo(b)fluorantheneug/LEPA 8270EBenzo(g,h,i)peryleneug/LEPA 8270EBenzo(k)fluorantheneug/LEPA 8270EBenzoi acidug/LEPA 8270EBenzoi acidug/LEPA 8270EBenzyl alcoholug/LEPA 8270EBenzyl butyl phthalateug/LEPA 8270EBis(2-chloroethoxy)methaneug/LEPA 8270EBis(2-chloroethyl) etherug/LEPA 8270EBis(2-chloroethyl) phthalateug/LEPA 8270ECarbazoleug/LEPA 8270EChryseneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzofuranug/LEPA 8270EDimethyl phthalateug/LEPA 8270EDimethyl phthalateug/LEPA 8270EDin-octyl phthalateug/LEPA 8270EDin-octyl phthalateug/LEPA 8270EDin-octyl phthalateug/LEPA 8270EFluoreneug/LEPA 8270EFluoreneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENatirosodimethylamineug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitrosodimethylamine <t< td=""><td>Anthracene</td><td>ug/L</td><td>EPA 8270E</td></t<>	Anthracene	ug/L	EPA 8270E
Benzo(b)fluorantheneug/LEPA 8270EBenzo(g,h,i)peryleneug/LEPA 8270EBenzo(k)fluorantheneug/LEPA 8270EBenzoic acidug/LEPA 8270EBenzol acidug/LEPA 8270EBenzyl alcoholug/LEPA 8270EBenzyl butyl phthalateug/LEPA 8270EBis(2-chloroethoxy)methaneug/LEPA 8270EBis(2-chloroethyl) etherug/LEPA 8270EBis(2-chloroethyl) phthalateug/LEPA 8270ECarbazoleug/LEPA 8270EChryseneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzofuranug/LEPA 8270EDientyl phthalateug/LEPA 8270EDientyl phthalateug/LEPA 8270EDientyl phthalateug/LEPA 8270EDien-octyl phthalateug/LEPA 8270EDi-n-octyl phthalateug/LEPA 8270EFluoreneug/LEPA 8270EFluoreneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophroneug/LEPA 8270ENitrosodimethylamineug/LEPA 8270ENitrosodimethylamineug/LEPA 8270ENitrosodimethylamineug/LEPA 8270ENitrosodimethylamineug/LEPA 8270ENitrosodimethylamineug/LEPA 8270ENitrosodimethylamineug/	Benz(a)anthracene	ug/L	EPA 8270E
Benzo(g,h,i)peryleneug/LEPA 8270EBenzo(k)fluorantheneug/LEPA 8270EBenzoic acidug/LEPA 8270EBenzyl alcoholug/LEPA 8270EBenzyl butyl phthalateug/LEPA 8270EBis(2-chloroethoxy)methaneug/LEPA 8270EBis(2-chloroethyl) etherug/LEPA 8270EBis(2-chloroethyl) phthalateug/LEPA 8270ECarbazoleug/LEPA 8270EChryseneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzofuranug/LEPA 8270EDimethyl phthalateug/LEPA 8270EDimethyl phthalateug/LEPA 8270EDin-butyl phthalateug/LEPA 8270EDin-n-octyl phthalateug/LEPA 8270EFluorantheneug/LEPA 8270EFluoreneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrosodimethylamineug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitrosodim	Benzo(a)pyrene	ug/L	EPA 8270E
Benzo(k)fluorantheneug/LEPA 8270EBenzoic acidug/LEPA 8270EBenzyl alcoholug/LEPA 8270EBenzyl butyl phthalateug/LEPA 8270EBis(2-chloroethoxy)methaneug/LEPA 8270EBis(2-chloroethyl) etherug/LEPA 8270EBis(2-chloroethyl) phthalateug/LEPA 8270ECarbazoleug/LEPA 8270EChryseneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzofuranug/LEPA 8270EDiethyl phthalateug/LEPA 8270EDiethyl phthalateug/LEPA 8270EDion-butyl phthalateug/LEPA 8270EDion-butyl phthalateug/LEPA 8270EDion-butyl phthalateug/LEPA 8270EDin-hutyl phthalateug/LEPA 8270EDin-butyl phthalateug/LEPA 8270EDi-n-butyl phthalateug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorobutadieneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENeitrosodimethylamineug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270E <td>Benzo(b)fluoranthene</td> <td>ug/L</td> <td>EPA 8270E</td>	Benzo(b)fluoranthene	ug/L	EPA 8270E
Benzoic acidug/LEPA 8270EBenzyl alcoholug/LEPA 8270EBenzyl butyl phthalateug/LEPA 8270EBis(2-chloroethoxy)methaneug/LEPA 8270EBis(2-chloroethoxy)methaneug/LEPA 8270EBis(2-chloroethoxy)methaneug/LEPA 8270EBis(2-chloroethoxy)methaneug/LEPA 8270EBis(2-ethylhexyl) phthalateug/LEPA 8270ECarbazoleug/LEPA 8270EChryseneug/LEPA 8270EDibenzofuranug/LEPA 8270EDiethyl phthalateug/LEPA 8270EDiethyl phthalateug/LEPA 8270EDin-butyl phthalateug/LEPA 8270EDi-n-octyl phthalateug/LEPA 8270EFluorantheneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrosodimethylamineug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270E <td>Benzo(g,h,i)perylene</td> <td>ug/L</td> <td>EPA 8270E</td>	Benzo(g,h,i)perylene	ug/L	EPA 8270E
Benzyl alcoholug/LEPA 8270EBenzyl butyl phthalateug/LEPA 8270EBis(2-chloroethoxy)methaneug/LEPA 8270EBis(2-chloroethyl) etherug/LEPA 8270EBis(2-chloroethyl) etherug/LEPA 8270EBis(2-ethylhexyl) phthalateug/LEPA 8270ECarbazoleug/LEPA 8270EChryseneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzofuranug/LEPA 8270EDiethyl phthalateug/LEPA 8270EDiethyl phthalateug/LEPA 8270EDien-butyl phthalateug/LEPA 8270EDi-n-butyl phthalateug/LEPA 8270EDi-n-butyl phthalateug/LEPA 8270EFluorantheneug/LEPA 8270EFluoreneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorobutadieneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENapthalaneug/LEPA 8270ENitrosodimethylamineug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E <td>Benzo(k)fluoranthene</td> <td>ug/L</td> <td>EPA 8270E</td>	Benzo(k)fluoranthene	ug/L	EPA 8270E
Benzyl butyl phthalateug/LEPA 8270EBis(2-chloroethoxy)methaneug/LEPA 8270EBis(2-chloroethyl) etherug/LEPA 8270EBis(2-ethylhexyl) phthalateug/LEPA 8270ECarbazoleug/LEPA 8270EChryseneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDiethyl phthalateug/LEPA 8270EDiethyl phthalateug/LEPA 8270EDiethyl phthalateug/LEPA 8270EDiethyl phthalateug/LEPA 8270EDin-butyl phthalateug/LEPA 8270EDi-n-ctyl phthalateug/LEPA 8270EFluorantheneug/LEPA 8270EFluorantheneug/LEPA 8270EFluorantheneug/LEPA 8270EFluoreneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorobutadieneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENapthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENohhaleneug/LEPA 8270ENapthaleneug/LEPA 8270ENitrosodimethylamineug/LEPA 8270EN-Nitrosodinethylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E	Benzoic acid	ug/L	EPA 8270E
Bis(2-chloroethoxy)methaneug/LEPA 8270EBis(2-chloroethyl) etherug/LEPA 8270EBis(2-ethylhexyl) phthalateug/LEPA 8270ECarbazoleug/LEPA 8270EChryseneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzofuranug/LEPA 8270EDientyl phthalateug/LEPA 8270EDientyl phthalateug/LEPA 8270EDin-butyl phthalateug/LEPA 8270EDi-n-butyl phthalateug/LEPA 8270EDi-n-octyl phthalateug/LEPA 8270EFluorantheneug/LEPA 8270EFluorantheneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorobutadieneug/LEPA 8270EHexachlorocthaneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENorthobenzeneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270ENaphthaleneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENorthosodimethylamineug/LEPA 8270EN-Nitrosodinethylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E	Benzyl alcohol	ug/L	EPA 8270E
Bis(2-chloroethyl) etherug/LEPA 8270EBis(2-ethylhexyl) phthalateug/LEPA 8270ECarbazoleug/LEPA 8270EChryseneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzofuranug/LEPA 8270EDiethyl phthalateug/LEPA 8270EDienthyl phthalateug/LEPA 8270EDi-n-butyl phthalateug/LEPA 8270EDi-n-butyl phthalateug/LEPA 8270EFluorantheneug/LEPA 8270EFluorantheneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorobutadieneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270EIsophoroneug/LEPA 8270ENortrosodimethylamineug/LEPA 8270EN-Nitrosodinethylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphe	Benzyl butyl phthalate	ug/L	EPA 8270E
Bis(2-ethylhexyl) phthalateug/LEPA 8270ECarbazoleug/LEPA 8270EChryseneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzofuranug/LEPA 8270EDiethyl phthalateug/LEPA 8270EDienthyl phthalateug/LEPA 8270EDin-octyl phthalateug/LEPA 8270EFluorantheneug/LEPA 8270EFluoreneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachloroctyl opentadieneug/LEPA 8270EHexachloroctyl opentadieneug/LEPA 8270EHexachlorobutadieneug/LEPA 8270EHexachloroctyl opentadieneug/LEPA 8270EHexachloroctyl opentadieneug/LEPA 8270EHexachloroctyl opentadieneug/LEPA 8270EHexachloroctyl opentadieneug/LEPA 8270EHexachloroctyl opentadieneug/LEPA 8270EHexachloroctyl opentadieneug/LEPA 8270ENotrosedineneug/LEPA 8270ENaphthaleneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENitrosodimethylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E	Bis(2-chloroethoxy)methane	ug/L	EPA 8270E
Carbazoleug/LEPA 8270EChryseneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzofuranug/LEPA 8270EDiethyl phthalateug/LEPA 8270EDimethyl phthalateug/LEPA 8270EDi-n-butyl phthalateug/LEPA 8270EDi-n-octyl phthalateug/LEPA 8270EFluorantheneug/LEPA 8270EFluoreneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270ENaphthaleneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENitrobenzene <t< td=""><td>Bis(2-chloroethyl) ether</td><td>ug/L</td><td>EPA 8270E</td></t<>	Bis(2-chloroethyl) ether	ug/L	EPA 8270E
Chryseneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzofuranug/LEPA 8270EDiethyl phthalateug/LEPA 8270EDimethyl phthalateug/LEPA 8270EDin-butyl phthalateug/LEPA 8270EDi-n-octyl phthalateug/LEPA 8270EFluorantheneug/LEPA 8270EFluoreneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorobutadieneug/LEPA 8270EHexachlorocthaneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENaphthaleneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENitrobenzeneug/LEP	Bis(2-ethylhexyl) phthalate	ug/L	EPA 8270E
Dibenzo(a,h)anthraceneug/LEPA 8270EDibenzofuranug/LEPA 8270EDiethyl phthalateug/LEPA 8270EDimethyl phthalateug/LEPA 8270EDin-butyl phthalateug/LEPA 8270EDi-n-octyl phthalateug/LEPA 8270EFluorantheneug/LEPA 8270EFluoreneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EHexachlorocthaneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENaphthaleneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENitrobenzene	Carbazole	ug/L	EPA 8270E
Dibenzofuranug/LEPA 8270EDiethyl phthalateug/LEPA 8270EDimethyl phthalateug/LEPA 8270EDi-n-butyl phthalateug/LEPA 8270EDi-n-octyl phthalateug/LEPA 8270EFluorantheneug/LEPA 8270EFluoreneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENitrobenzeneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENitrobenzeneug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E	Chrysene	ug/L	EPA 8270E
Diethyl phthalateug/LEPA 8270EDimethyl phthalateug/LEPA 8270EDi-n-butyl phthalateug/LEPA 8270EDi-n-octyl phthalateug/LEPA 8270EFluorantheneug/LEPA 8270EFluoreneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENitrosodimethylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E	Dibenzo(a,h)anthracene	ug/L	EPA 8270E
Dimethyl phthalateug/LEPA 8270EDi-n-butyl phthalateug/LEPA 8270EDi-n-octyl phthalateug/LEPA 8270EFluorantheneug/LEPA 8270EFluoreneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270ENaphthaleneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENitrosodimethylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E	Dibenzofuran	ug/L	EPA 8270E
Di-n-butyl phthalateug/LEPA 8270EDi-n-octyl phthalateug/LEPA 8270EFluorantheneug/LEPA 8270EFluoreneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorobutadieneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EHexachlorocthaneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENitrosodimethylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E	Diethyl phthalate	ug/L	EPA 8270E
Di-n-octyl phthalateug/LEPA 8270EFluorantheneug/LEPA 8270EFluoreneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorobutadieneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EHexachlorocytlopentadieneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENitrosodimethylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E	Dimethyl phthalate	ug/L	EPA 8270E
Fluorantheneug/LEPA 8270EFluoreneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorobutadieneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EHexachlorocthaneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENitrosodimethylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E	Di-n-butyl phthalate	ug/L	EPA 8270E
Fluoreneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorobutadieneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENitrosodimethylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E	Di-n-octyl phthalate	ug/L	EPA 8270E
Hexachlorobenzeneug/LEPA 8270EHexachlorobutadieneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EHexachloroethaneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitroso-di-n-propylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E	Fluoranthene	ug/L	EPA 8270E
Hexachlorobutadieneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EHexachloroethaneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitroso-di-n-propylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E	Fluorene	ug/L	EPA 8270E
Hexachlorocyclopentadieneug/LEPA 8270EHexachloroethaneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitroso-di-n-propylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E	Hexachlorobenzene	ug/L	EPA 8270E
Hexachloroethaneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitroso-di-n-propylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E	Hexachlorobutadiene	ug/L	EPA 8270E
Indeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitroso-di-n-propylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E	Hexachlorocyclopentadiene	ug/L	EPA 8270E
Isophoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitroso-di-n-propylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E	Hexachloroethane	ug/L	EPA 8270E
Naphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitroso-di-n-propylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E	Indeno(1,2,3-cd)pyrene	ug/L	EPA 8270E
Nitrobenzeneug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitroso-di-n-propylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E	•	-	
N-Nitrosodimethylamineug/LEPA 8270EN-Nitroso-di-n-propylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E	-	ug/L	
N-Nitroso-di-n-propylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E		ug/L	EPA 8270E
N-Nitrosodiphenylamine ug/L EPA 8270E	-	ug/L	EPA 8270E
		-	EPA 8270E
Pentachlorophenol ug/L EPA 8270E		-	
-	Pentachlorophenol	ug/L	EPA 8270E

Parameters	Units	Analytical Method				
Phenanthrene	ug/L	EPA 8270E				
Phenol	ug/L	EPA 8270E				
Pyrene	ug/L	EPA 8270E				
1,2,4-Trichlorobenzene	ug/L	EPA 8270E				
1,2-Dichlorobenzene	ug/L	EPA 8270E				
1,2-Diphenylhydrazine	ug/L	EPA 8270E				
1,3-Dichlorobenzene	ug/L	EPA 8270E				
1,4-Dichlorobenzene	ug/L	EPA 8270E				
1-Methylnaphthalene	ug/L	EPA 8270E				
2,2'-Oxybis(1-chloropropane)	ug/L	EPA 8270E				
2,2'-Oxybis(1-chloropropane)	ug/L	EPA 8270E				
2,4,5-Trichlorophenol	ug/L	EPA 8270E				
2,4,6-Trichlorophenol	ug/L	EPA 8270E				
2,4-Dichlorophenol	ug/L	EPA 8270E				
2,4-Dimethylphenol	ug/L	EPA 8270E				
2,4-Dinitrophenol	ug/L	EPA 8270E				
2,4-Dinitrotoluene	ug/L	EPA 8270E				
2,6-Dinitrotoluene	ug/L	EPA 8270E				
2-Chloronaphthalene	ug/L	EPA 8270E				
2-Chlorophenol	ug/L	EPA 8270E				
2-Methylnaphthalene	ug/L	EPA 8270E				
2-Methylphenol	ug/L	EPA 8270E				
2-Nitroaniline	ug/L	EPA 8270E				
2-Nitrophenol	ug/L	EPA 8270E				
3,3'-Dichlorobenzidine	ug/L	EPA 8270E				
3-Methylphenol + 4-Methylphenol	ug/L	EPA 8270E				
3-Nitroaniline	ug/L	EPA 8270E				
4,6-Dinitro-2-methylphenol	ug/L	EPA 8270E				
4-Bromophenyl phenyl ether	ug/L	EPA 8270E				
4-Chloro-3-methylphenol	ug/L	EPA 8270E				
4-Chloroaniline	ug/L	EPA 8270E				
4-Chlorophenyl phenyl ether	ug/L	EPA 8270E				
4-Nitroaniline	ug/L	EPA 8270E				
4-Nitrophenol	ug/L	EPA 8270E				

Parameters	Units	Analytical Method
Acenaphthene	ug/L	EPA 8270E
Acenaphthylene	ug/L	EPA 8270E
Anthracene	ug/L	EPA 8270E
Benz(a)anthracene	ug/L	EPA 8270E
Benzo(a)pyrene	ug/L	EPA 8270E
Benzo(b)fluoranthene	ug/L	EPA 8270E
Benzo(g,h,i)perylene	ug/L	EPA 8270E
Benzo(k)fluoranthene	ug/L	EPA 8270E
Benzoic acid	ug/L	EPA 8270E
Benzyl alcohol	ug/L	EPA 8270E
Benzyl butyl phthalate	ug/L	EPA 8270E
Bis(2-chloroethoxy)methane	ug/L	EPA 8270E
Bis(2-chloroethyl) ether	ug/L	EPA 8270E
Bis(2-ethylhexyl) phthalate	ug/L	EPA 8270E
Carbazole	ug/L	EPA 8270E
Chrysene	ug/L	EPA 8270E
Dibenzo(a,h)anthracene	ug/L	EPA 8270E
Dibenzofuran	ug/L	EPA 8270E
Diethyl phthalate	ug/L	EPA 8270E
Dimethyl phthalate	ug/L	EPA 8270E
Di-n-butyl phthalate	ug/L	EPA 8270E
Di-n-octyl phthalate	ug/L	EPA 8270E
Fluoranthene	ug/L	EPA 8270E
Fluorene	ug/L	EPA 8270E
Hexachlorobenzene	ug/L	EPA 8270E
Hexachlorobutadiene	ug/L	EPA 8270E
Hexachlorocyclopentadiene	ug/L	EPA 8270E
Hexachloroethane	ug/L	EPA 8270E
Indeno(1,2,3-cd)pyrene	ug/L	EPA 8270E
Isophorone	ug/L	EPA 8270E
Naphthalene	ug/L	EPA 8270E
Nitrobenzene	ug/L	EPA 8270E
N-Nitrosodimethylamine	ug/L	EPA 8270E
N-Nitroso-di-n-propylamine	ug/L	EPA 8270E
N-Nitrosodiphenylamine	ug/L	EPA 8270E
Pentachlorophenol	ug/L	EPA 8270E
Phenanthrene	ug/L	EPA 8270E
Phenol	ug/L	EPA 8270E
Pyrene	ug/L	EPA 8270E
	~8/ -	

Parameters	Units	Analytical Method
Total Petroleum Hydrocarbons	Units	Analytical Wethou
Gasoline-range hydrocarbons	ug/L	NWTPH-Gx
Diesel-range hydrocarbons	ug/L	NWTPH-Dx
Dil-range hydrocarbons	ug/L	NWTPH-Dx
norganic Parameters		
hloride	mg/L	SW-846
ulfate	mg/L	SW-846
itrate as Nitrogen	mg/L	EPA 353.2
otal Suspended Solids	mg/L	SM2540D
ntimony, Total & Dissolved	ug/L	EPA 200.8
rsenic, Total & Dissolved	ug/L	EPA 200.8
rium, Total & Dissolved	ug/L	EPA 200.8
ryllium, Total & Dissolved	ug/L	EPA 200.8
dmium,Total & Dissolved	ug/L	EPA 200.8
romium, Total & Dissolved	ug/L	EPA 200.8
balt, Total & Dissolved	ug/L	EPA 200.8
pper, Total & Dissolved	ug/L	EPA 200.8
n, Total & Dissolved	ug/L	EPA 200.8
ad, Total & Dissolved	ug/L	EPA 200.8
anganese, Total & Dissolved	ug/L	EPA 200.8
ercury, Total & Dissolved	ug/L	EPA 200.8
olybdenum, Total & Dissolved	ug/L	EPA 200.8
ckel, Total & Dissolved	ug/L	EPA 200.8
enium, Total & Dissolved	ug/L	EPA 200.8
ver, Total & Dissolved	ug/L	EPA 200.8
allium, Total & Dissolved	ug/L	EPA 200.8
nadium, Total & Dissolved	ug/L	EPA 200.8
nc, Total & Dissolved	ug/L	EPA 200.8

Notes:

BTEX- benzene, toluene, ethylbenzene, and xylenes MC- methylene chloride mg/l- milligrams per liter SVOCs- semi-volatile organic compounds TMB- trimethylbenzene TPH- total petroleum hydrocarbons ug/l- micrograms per liter VOCs- volatile organic compounds

Table 4. Groundwater Laboratory Analyses

Ephrata Landfill, Grant County, Washington

	No. of Bottles per										
Analysis	Analysis	Bottle	Preservative	Hold Time							
Total Metals	1	500 mL HDPE	HNO3	6 Months							
Dissolved Metals	1	500 mL HDPE	HNO3	6 Months							
VOC-8260	3	40 mL Vials	HCL	14 Days							
Semi-VOC-8270	2	500 mL Amber Glass	None	7 Days							
Nitrate/Sulfate/Chloride	1	500 mL HDPE	None	48 Hours							
Total Suspended Solids	1	1 L HDPE	None	7 Days							
Gasoline-range hydrocarbons (NWTPH-Gx)	2	40 mL Vials	HCL	14 Days							
Diesel-range and oil-range hydrocarbons (NWTPH-Dx)	2	500 mL Amber Glass	None	14 Days							

As- arsenic

COCs- contaminants of concern

Fe- iron

HCL- hydrochloric acid

HDPE- high-density polyethylene

HNO3- nitric acid

mL- milliliter

Mn- manganese

TPH- total petroleum hydrocarbons

VOCs- volatile organic compounds

Table 5. Vapor Analytical Parameters

Ephrata Landfill, Grant County, Washington

		Analytical Method
Parameters	Units	(Sample Collected in Summa Canister) ¹
1,1,1-Trichloroethane	ug/m3	TO-15
1,1,2,2-Tetrachloroethane	ug/m3	TO-15
1,1,2-Trichloroethane	ug/m3	TO-15
1,1-Dichloroethane	ug/m3	TO-15
1,1-Dichloroethene	ug/m3	TO-15
1,2,4-Trichlorobenzene	ug/m3	TO-15
1,2,4-Trimethylbenzene	ug/m3	TO-15
1,2-Dibromoethane (EDB)	ug/m3	TO-15
1,2-Dichlorobenzene	ug/m3	TO-15
1,2-Dichloroethane (EDC)	ug/m3	TO-15
1,2-Dichloropropane	ug/m3	TO-15
1,3,5-Trimethylbenzene	ug/m3	TO-15
1,3-Butadiene	ug/m3	TO-15
1,3-Dichlorobenzene	ug/m3	TO-15
1,4-Dichlorobenzene	ug/m3	TO-15
1,4-Dioxane	ug/m3	TO-15
2,2,4-Trimethylpentane	ug/m3	TO-15
2-Butanone (MEK)	ug/m3	TO-15
2-Chlorotoluene	ug/m3	TO-15
2-Hexanone	ug/m3	TO-15
2-Propanol	ug/m3	TO-15
3-Chloropropene	ug/m3	TO-15
4-Ethyltoluene	ug/m3	TO-15
4-Methyl-2-pentanone	ug/m3	TO-15
Acetone	ug/m3	TO-15
Acrolein	ug/m3	TO-15
Benzene	ug/m3	TO-15
Benzyl chloride	ug/m3	TO-15
Bromodichloromethane	ug/m3	TO-15
Bromoform	ug/m3	TO-15
Bromomethane	ug/m3	TO-15
Butane	ug/m3	TO-15
Carbon disulfide	ug/m3	TO-15
Carbon tetrachloride	ug/m3	TO-15
CFC-113	ug/m3	TO-15
Chlorobenzene	ug/m3	TO-15
Chloroethane	ug/m3	TO-15
Chloroform	ug/m3	TO-15
Chloromethane	ug/m3	TO-15
cis-1,2-Dichloroethene	ug/m3	TO-15
cis-1,3-Dichloropropene	ug/m3	TO-15
Cyclohexane	ug/m3	TO-15
Dibromochloromethane	ug/m3	TO-15

		Analytical Method
Parameters	Units	(Sample Collected in Summa Canister) ¹
Dichlorodifluoromethane	ug/m3	то-15
Ethanol	ug/m3	TO-15
Ethyl acetate	ug/m3	TO-15
, Ethylbenzene	ug/m3	TO-15
F-114	ug/m3	TO-15
Heptane	ug/m3	TO-15
Hexachlorobutadiene	ug/m3	TO-15
Hexane	ug/m3	TO-15
Isopropylbenzene	ug/m3	TO-15
m,p-Xylene	ug/m3	TO-15
Methyl Methacrylate	ug/m3	TO-15
Methyl t-butyl ether (MTBE)	ug/m3	TO-15
Methylene chloride	ug/m3	TO-15
Naphthalene	ug/m3	TO-15
Nonane	ug/m3	TO-15
o-Xylene	ug/m3	TO-15
Pentane	ug/m3	TO-15
Propene	ug/m3	TO-15
Propylbenzene	ug/m3	TO-15
Styrene	ug/m3	TO-15
t-Butyl alcohol (TBA)	ug/m3	TO-15
Tetrachloroethene	ug/m3	TO-15
Tetrahydrofuran	ug/m3	TO-15
Toluene ²	ug/m3	TO-15
trans-1,2-Dichloroethene	ug/m3	TO-15
trans-1,3-Dichloropropene	ug/m3	TO-15
Trichloroethene	ug/m3	TO-15
Trichlorofluoromethane	ug/m3	TO-15
Vinyl acetate	ug/m3	TO-15
Vinyl bromide	ug/m3	TO-15
Vinyl chloride	ug/m3	TO-15
Gasoline Range Organics	ug/m3	TO-15

Notes:

BTEX- benzene, toluene, ethylbenzene, and xylenes

DCP- dichloropropane

MC- methylene chloride

TMB- trimethylbenzene

ug/l-micrograms per liter

^{1, 2} EPA Method TO-15 is the primary analytical method. However, during the first sampling event, both EPA Methods TO-15 and TO-17 will be used to measure specifically for toluene to verify any breakthrough. Following that, If vapor concentrations exceed the upper bound qauntitatve limits of Method TO-15, then EPA Method TO-17 may be evaluated as a alternative analysis method for all VOCs.

Appendix A Field Forms

Observation Well Form

Ephrata Landfill MPE System- Observation Well Data Form

Well	Sheet	of

Describe measuring point

Date	Time	Depth to				Pres	sures	Observer, Comment
		Water	LNAPL	DNAPL	Bottom	PIT	LT	
	24 hrs		x.xx	ft btoc		x.xx inc	h water	

If found, call 206-329-0141

MPE Well Form

Ephrata Landfill MPE System - Well Data Form

Well

Describe measuring point

Vapor Concentrations at Wellhead (Ambient Air or VAE Vapor, indicate under Comments) Date Time Depth to Pressures Pump Observer, Comment Total Pump Cycle Rate Pump On Pump Off Pump Number of Cycle Cycle Delta Supply Total Record VAE Flow Valve Settings Here Water LNAPL DNAPL Bottom PIT LT Count Counts Time Air Press. CH4 02 Organics 24 hrs x.xx ft btoc x.xx inch water Date:Time Date:Time count count mm:ss PSI % PPM PPM

Sheet

of

If found, call 206-329-0141

Liquid and Vapor Extraction Form

Ephrata Landfill MPE System- Liquid and Vapor Extraction Form

		Liquid E	xtraction	Vapor Extraction		Ambient Air Concentrations Vapor Extraction (Through Tubing)			s in VAE Line lower)	Observer/Comment
Date	Time	Volume	Rate	Pressure Differential	Vacuum Pressure	Total Organics	CH4	02	Total Organics	
	24 hrs	x.xx gallons	x.xx gpm	x.xx in H2O	x.xx in Hg	PPM	%	PPM	PPM	

Sheet

of

If found, call 206-329-0141

Groundwater Sample Form

Ephrata Landfill MPE System- Groundwater Sample Form

							Field Parameters						Analytic	cal Para (Y/N)	ameters	5				
					Electrica	l Conductivity														
Sample ID (Well/Location)	Sample Date	Sample Time 24 hrs	pH (units)	DO (%)	EC Value	EC Units (uS/cm or mS/cm)	Temp (Degrees C)		Turbidity (NTU)	Visual (color, odor, etc)	Total Metals	Dissolved Metals	Dissolved Metals Field Filtered (Y/N)	VOC-8260	VOC-8270	NO3/SO4/CI	TDS	Lab	Shipment Date to Lab	Observer/Comment

Vapor Sample Form

Ephrata Landfill MPE System- Vapor Sample Form

			Field Parameters			Analytical Parameter (Y or N) Canister Recordings							
Sample ID (Well/Location)	Sample Date	Sample Time 24 hrs	CH4 %	O2 PPM	Total Organics PPM	VOC-T015 (Summa Canister)	Time Start	Time Stop	Canister Vacuum Start ("Hg)	Canister Vacuum Stop ("Hg)	Lab	Shipment Date to Lab	Observer/Comment

Appendix B

Chain-of-Custody Form

SAMPLE CHAIN OF CUSTODY

				SAMPL	ERS (signa	iture)									٦_	I	Page #	t of			
Report To				-														TURNAROUND TIME			
Company				PROJEC	PROJECT NAME						PO #					Standard Turnaround RUSH Rush charges authorized by:					
Address																					
City, State, ZIP				-	REMARKS						INVOICE TO					SAMPLE DISPOSAL Dispose after 30 days Archive Samples					
PhoneEmail				- Project S	Project Specific RLs - Yes / No						<u> </u>					Other					
				1								LYSI	ES RI	EQU	ESTE	D	1	-			
Sample ID		Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars		NWTPH-Gx	BTEX EPA 8021	$VOC_{S} EPA 8260$	PAHs EPA 8270	PCBs EPA 8082						Not	es		
		SI	GNATURE	-	PRINT NAME COM							PANY			DATE	TIME					
Friedman & Bruya, Inc.	Reline	quished by:														<u>+</u>		2			
$5500~4^{th}$ Avenue S	Receiv	ved by:																			
Seattle, WA 98108	attle, WA 98108 Relinquished by:																				
Ph. (206) 285-8282	(206) 285-8282 Received by:																				

Appendix C

Laboratory Quality Assurance Manual

QUALITY ASSURANCE MANUAL

Friedman & Bruya, Inc.

5500 4th Avenue South Seattle, Washington 98108-2419 (206) 285-8282

> Revision Number 18 December 9, 2022

Approved by

Executive Committee Representative:

na z prja

James E. Bruya

Ton

Eric Young

stephan

Stephanie Pham

Document Control Number: 218

Laboratory Director:

Quality Assurance Officer:

2.0 TABLE OF CONTENTS

Section	Description	<u>Page</u>
1.0	Title/Signature Page	
2.0	Table of Contents	
3.0	Quality System Policy Statement	
4.0	Ethics Policy Statement	
5.0	Laboratory Organization	
6.0	Standard Operating Procedures	
7.0	Training	
8.0	Material Procurement and Control	12
9.0	Measurement Traceability and Calibration	
10.0	Sample Handling Procedures	
11.0	Quality Control Objectives	
12.0	Analysis and Evaluation of Quality Control Samples	
13.0	Corrective Actions	
14.0	Data Processing, Validation, and Reporting	38
15.0	Document Control and Records Management	
16.0	Quality System Audits	
17.0	Client Communication	
18.0	Subcontracting Analytical Samples	
<u>Figures</u>		<u>Page</u>
Figure 5-1	Laboratory Organization	
Figure 10-1	Chain-of-Custody Form	
Figure 10-2	Sample Condition Receipt Checklist	
<u>Tables</u>		<u>Page</u>
Table 12-1	QC Frequency and Acceptance Limits Summary	33
Table 13-1	QC Corrective Actions Summary	
<u>Appendices</u>		<u>Page</u>
Appendix A	List of SOPs and Quality System Documents	A1
Appendix B	Major Analytical Equipment	
Appendix C	Equipment Maintenance Program	
Appendix D	Sample Containers, Preservation, and Holding Times	
Appendix E	Internal Audit/Managerial Review Forms	

Appendix F

Definitions_____F1

3.0 QUALITY SYSTEM POLICY STATEMENT

Quality Assurance/Quality Control (QA/QC) is of fundamental importance to any chemical testing program. It is the goal of Friedman & Bruya, Inc. (F&BI) to provide analytical data which is scientifically sound and of known and documented quality. To achieve this objective, a quality system has been established to ensure that adequate QA/QC procedures are followed and documented, from sample receipt through to the final report provided to the client. The quality system has been established to meet the requirements of the National Environmental Laboratory Accreditation Program (NELAP). The policies and procedures established are designed to meet the quality requirements of our clients, as well as those of accrediting authorities.

F&BI laboratory management is committed to following good professional practices, and to providing the highest quality of environmental testing services to our clients. An important part of this commitment is the requirement that all F&BI personnel involved with environmental testing activities, including management, are familiar with the established quality system, and implement the policies and procedures of the system in their work.

4.0 ETHICS POLICY STATEMENT

Friedman & Bruya, Inc. (F&BI) believes the practice of chemistry requires training, care, attention to detail and personal integrity that must withstand significant pressure from interested parties. We believe we stand firmly for the chemist's right to practice his/her profession with the highest level of support. For this reason, fraud or the falsification of analytical data by an employee is grounds for immediate dismissal. Management shall review data and perform internal audits to ensure ethical conduct on the part of its employees.

Waste of our clients' time and money, as well as natural resources, is strongly discouraged. Environmental analyses can be very costly and their results exponentially more so. Friedman & Bruya, Inc. was formed to provide our clients with analytical information that met their chemical and analytical needs, while at the same time minimizing cost wherever possible.

Friedman & Bruya, Inc. is proud of its employees. Upon employment, a manual is issued to each employee that describes the policies of Friedman and Bruya, Inc. with regards to employee conduct, fraud, waste and abuse. We believe abuse or harassment is degrading to our employees and our clients. Such behavior is not condoned by Friedman & Bruya, Inc. This covers interactions amongst our employees, as well as those between us and our clients. Where abuse or harassment can be documented, a written warning is issued. If the action or behavior continues, dismissal may result.

All employees of Friedman & Bruya, Inc. are charged with the task of reporting any occurrence of fraud or data falsification to the highest authority within our organization. Management will continually look for fraud and data falsification through standard review practices such as those conducted during the course of data review and internal audits. Management will not attempt to create policies that conflict with our fraud policy. If any employee feels or believes that a management policy conflicts with our fraud policy or that any such policy encourages fraudulent practices on the part of employees, they are encouraged to bring these issues to the attention of their supervisor or to the highest authority within our organization.

5.0 LABORATORY ORGANIZATION

5.1 Ownership and Facility Description

F&BI is a privately owned corporation. No other business affiliations or external business entities exist. The F&BI laboratory is comprised of one building, with approximately 12,000 square feet, which is located at 3012 16 Ave. W., Seattle WA. This laboratory was built with safety, efficiency and quality control in mind. Separate rooms are designated for inorganic, organic and volatiles extractions. Fume hoods are located in each of these rooms as well as in standard storage and preparation rooms. Separate areas are also designated for sample storage, instruments/analysis, office space and records storage. Floor plans of the building can be furnished upon request.

5.2 Personnel Organization

The qualifications and responsibilities for key personnel are listed below. An organizational chart is provided in Figure 5-1.

Laboratory/Technical Director

Qualifications:

The Laboratory/Technical Director should be an individual who has a history of laboratory and personnel management. She/He should have a knowledge of all analyses performed by the laboratory and of QA/QC standards of performance. This person should have a bachelors degree in chemical, environmental, biological sciences, physical sciences or engineering, with at least 24 college semester credit hours in chemistry and with at least 2 years of relevant experience. (A masters or doctoral degree may be substituted for 1 year experience.)

Responsibilities:

The Laboratory/Technical Director reports directly to the Executive Committee. He/She has overall responsibility for the technical operation of the laboratory. Specific responsibilities include the following:

Monitor standards of performance in quality control and quality assurance.

Monitor the validity of the analyses performed and data generated to assure reliable data.

Ensure sufficient numbers of qualified personnel are employed.

Provide educational direction to laboratory staff.

Assign workloads and arranges schedules of Project Leaders.

Evaluate overall effectiveness of the laboratory activity.

Propose new methods and modifications as needed. Institute new programs and procedures as directed by the Executive Committee.

Review all new work to ensure that appropriate facilities and resources are available. Fill in for the QA Officer in her/his absence.

Quality Assurance Officer

Qualifications:

The Quality Assurance Officer should be an individual who has a history of establishing inter-laboratory and intra-laboratory quality assurance programs. She/He should be capable of evaluating analytical data to distinguish between sample variability, instrument variability and method errors. This person is expected to have a degree in chemistry plus several years practice as an environmental chemist evaluating analytical data for technical validity.

Responsibilities:

The Quality Assurance Officer reports to the Executive Committee and

Laboratory/Technical Director. She/He has the responsibility of overseeing the interlaboratory, intra-laboratory studies, non-conformance report reviews, and demonstration of capability program. She/He also works in a team with other qualified staff to complete all of the quality assurance tasks conducted at F&B. These specific responsibilities include the following:

Training and documentation of F&B staff with regards to QA policy and procedures including coordinated quarterly meetings.

Evaluate data for compliance with standard operating procedures and acceptance criteria.

Conduct internal audits on the entire technical operation annually.

Propose changes in the Quality Assurance Program to improve the quality, efficiency, and/or defensibility of the data generated.

Manage laboratory participation in inter-laboratory comparisons and proficiency programs.

Maintain or modify laboratory accreditation.

Notification of laboratory management and project managers, in writing, of any changes to accreditation.

Assist in training of analysts in analytical quality control procedures. Maintaining the QA manual, DOCs, and SOPs.

Project Leader

Qualifications:

Project Leaders should be individuals who have a history of analyzing environmental samples. They should have knowledge of quality assurance and how it relates to the validity of analytical data. They should also have knowledge of the specific analytical testing requirements for the needs of our clients. They should be able to recognize problems which can arise when analyzing samples, and be able to discuss with the client proper analytical techniques for meeting the clients' goals. This person is expected to have a degree in chemistry or several years experience in the environmental chemistry field.

Responsibilities:

The Project Leaders report directly to the Quality Assurance Officer on all quality assurance matters. They report directly to the Technical/Laboratory Director on all other matters such as project status and projected work loads. Specific responsibilities include the following:

Support the quality assurance program within the project.

Determine effectiveness of the quality assurance program in the project. Recommend to the Quality Assurance Officer changes in the quality assurance program.

Document for the client any quality control problems which could not be resolved. Provide technical overview of laboratory activities.

Laboratory Analysts

Qualifications:

Laboratory Analysts should be individuals who have a history of analyzing environmental samples. They should have knowledge of quality assurance. They should recognize quality assurance results which are out of conformance and be able to determine and remedy possible causes. Laboratory Analysts are expected to have a degree in chemical, environmental, biological sciences, physical sciences or engineering and/or experience in the environmental chemistry field.

Responsibilities:

Specific responsibilities include the following:

Perform analytical procedures and data recording in accordance with accepted methods.

Consult with the Quality Assurance Officer to verify that the laboratory is meeting stated quality control goals.

Evaluate new analytical techniques, procedures, instrumentation and quality control methods, and provide recommendations to the Technical/Laboratory Director and Quality Assurance Officer.

Lead the training of new analysts in laboratory operations and analytical procedures. Evaluate instrument performance and implement instrument calibration and preventive maintenance program.

Perform data processing and validation.

Initiate non-conformance report forms for out-of-control situations, instrument malfunction, calibration failure, or other non-conformances as appropriate. Prepare and maintain laboratory quality control records.

General Personnel

Qualifications:

General personnel include all other staff, such as laboratory technicians, sample checkin technicians and office personnel. General personnel should be individuals that pay very close attention to detail and follow written and oral instructions precisely.

Responsibilities:

General personnel are responsible for following established procedures and reporting any quality control problems or questions.

Figure 5-1 Laboratory Organization

Executive Committee/Technical Director:

Responsibilities: Appointed by owner to oversee all operations and functions of the laboratory.

Laboratory Director:

Responsibilities: Reports directly to the Executive Committee.

Quality Assurance Officer:

Responsibilities: Reports directly to The Executive Committee and Laboratory/Technical Director.

Project Leaders:

Responsibilities: Report directly to the Quality Assurance Officer on QA/QC matters and to the Technical/Laboratory Director on all other matters.

Laboratory Analysts/Calculations Chemists:

Responsibilities: Report directly to the Quality Assurance Officer on QA/QC matters and to the Technical/Laboratory Director and/or Executive Committee on all other matters.

Laboratory Analyst/Extraction Manager:

Responsibilities: Reports directly to the Quality Assurance Officer on QA/QC matters and to the Technical/Laboratory Director and/or Executive Committee on all other matters.

Technicians:

Responsibilities: Report directly to the Extraction Manager.

Safety Officer/Committee:

Responsibilities: Reports directly to the Technical/Laboratory Director and/or Executive Committee.

General Personnel:

Responsibilities: Reports directly to the Executive Committee.

6.0 STANDARD OPERATING PROCEDURES

Standard operating procedures (SOPs) are maintained which accurately reflect current laboratory activities. These documents may include, for example, equipment manuals provided by the manufacturer, published analytical methods with any changes or specifications documented, or internally written documents. Hardcopies of all SOPs are organized in folders which are easily accessible to all personnel. (The exception is equipment manuals, which are kept with the corresponding equipment.) There are two general types of SOPs; method SOPs and administrative SOPs. A list of administrative SOPs, along with other quality system documents, is included in Appendix A.

Method SOPs

Method SOPs are generated for each accredited method performed by F&BI. They provide detailed, laboratory specific, procedures for analytical testing methods. Each method SOP references the published analytical procedure upon which it is based. When the referenced analytical procedure has stated QA/QC requirements, the SOP meets the stated requirements. Any additional, laboratory specific, QA/QC requirements are detailed in the method and/or administrative SOPs.

Administrative SOPs

Administrative SOPs provide detailed procedures for all activities of the quality system not included in specific analytical methods, such as sample receiving, personnel training, and creating client reports. Administrative SOPs may be separate documents, or may be included in this document.

6.1 Deviation from SOPs

When a client (or project) has specific requirements of the laboratory, a deviation from existing procedures may be necessary. Typical examples include addition of target analytes and project specific reporting limits. If a deviation is requested, the project manager is responsible for discussing the request with the manager in charge of the analysis and obtaining her/his approval to accept the project. The project manager is also responsible for documenting the request on the appropriate analysis extraction worksheets, and on the final report if necessary.

Deviations from SOPs are documented using the extraction worksheet, sequence tables, injection logs, and/or other documents such as the non-conformance report form as discussed in section 13.3. Frequent departure from policy is not encouraged. However, if frequent departure from a particular policy is noted, the technical/laboratory director will address the possible need for a change in the policy.

7.0 TRAINING

Our company is designed around the idea that our employees are our most valuable asset. We are committed to the professional development of our employees. Since we are a relatively small laboratory, many of our employees wear several hats, and cross training is critical.

7.1 Quality System, Data Integrity, and Safety Training

When hired, each employee receives a company policy manual, data integrity SOP, quality assurance manual, and any SOPs relevant to their responsibilities. She/he also receives a safety training form and an employee attestation form, including data integrity training, to fill out and sign. The office manager is responsible for providing each new employee with copies of the policy manual and quality assurance manual. Each new employee is also provided with safety and general training forms, and copies of the relevant SOPs. Each employee is responsible for completing the required training documents, and for complying with all QA/QC and data integrity requirements. Each employee is also responsible for maintaining the current quality system documents which are relevant to their position, in their individual document file.

7.2 Initial Demonstration of Capability

The first step in training for analytical procedures is to familiarize the trainee with the method. This is achieved through a combination of reading the method SOP and observing an experienced analyst performing the method. The trainee then performs the method under close supervision. Prior to independently performing an analysis, each analyst completes an initial demonstration of capability (DOC). The DOC is performed as follows:

Obtain a quality control sample from an outside source. If not available, the QC sample may be prepared by the laboratory using stock standards that are prepared independently from those used in instrument calibration.

Dilute/prepare enough of the QC sample to make 4 separate aliquots (samples) of the specified concentration. If the concentration is not otherwise specified, it should be approximately 10 times the MDL. Laboratory control samples or MDL study samples may be used to meet this requirement.

Extract and/or analyze each of the 4 samples either concurrently or over a period of days.

Use all of the results to calculate the mean recovery (accuracy) and the standard deviation (precision) for each parameter/analyte. Compare the mean and standard deviation to method acceptance criteria.

If all parameters/analytes meet the acceptance criteria, the DOC is complete and independent analysis of actual samples can begin. If one or more of the parameters/analytes fail at least one of the acceptance criteria, then locate and correct the source of the problem and repeat the entire test (above) for either all of the parameters/analytes or just the parameter(s)/analyte(s) that failed.

7.3 Continuing Demonstration of Capability

At least one of the following, once per year, is completed by each analyst to demonstrate continuing proficiency.

Acceptable performance of a blind sample

Another demonstration of capability

At least four consecutive laboratory control samples with acceptable levels of precision and accuracy (calculated as for DOC above).

Successful analysis of a blind performance sample on a similar test method using the same technology (e.g. GC/MS volatiles by methods 624 and 8260 are considered equivalent).

If none of the above can be performed, analysis of authentic samples with results statistically indistinguishable from those obtained by another trained analyst.

7.4 Continuing Quality System, Data Integrity, and Safety Training

Company wide training meetings are held at least once a quarter. At these meetings quality system, data integrity, and/or safety topics are discussed by the QA officer, technical/laboratory director, and/or safety officer/committee respectively. Employees are also encouraged to participate in relevant external training, such as seminars and instrument training courses.

7.5 Documentation of Training

Documentation of education, experience and training prior to employment at F&BI is kept on file with personnel records. The office manager is responsible for maintaining personnel records. All employees document on the Employee Attestation Form that they have read, understood and will follow the Policy Manual, QA Manual and each SOP distributed to him/her. The attendance at each quarterly training meeting is documented using the Quarterly Training Meeting form. These and other completed training documents, including DOC certificates, are filed. In addition a database summarizing DOC training is maintained. The QA officer is responsible for maintaining the DOC database. The office personnel are responsible for maintaining training files. Additional details of training documentation are found in the "Training" SOP.

8.0 MATERIAL PROCUREMENT AND CONTROL

The quality of reagents, solvents, gases, water, and laboratory vessels used in analyses should be known so that their effect upon analytical results can be defined and anticipated. Materials and equipment purchased by F&BI should meet the requirements stated below or as denoted in specific analytical procedures, and be controlled as stated.

The following general guidelines are used for purchasing and using materials and equipment. More specific requirements can be found in section 9 below, and in administrative and method SOPs.

Specify within the purchase requests the suitable grades of materials.

Verify upon receipt that materials meet requirements and that, as applicable, material certificates/records are provided and maintained in the laboratory record system. Date all chemicals, standards and reagents with date of receipt, date opened and expiration date.

Store reagents and solvents in accordance with manufacturer's recommendations. Verify that material storage is properly maintained, and remove materials from use when shelf life has expired.

Record the date put into service for equipment such as balances and analytical instruments.

Record preventive and corrective maintenance procedures performed on equipment. Verify that equipment, including analytical balances, thermometers, volumetric glassware etc., is properly calibrated prior to use.

Clearly mark any equipment which has been taken out of service.

8.1 Requirements for Reagents, Solvents, and Gases

Chemical reagents, solvents, and gases are available in a variety of grades of purity, ranging from technical grade to ultrapure grades. The purity required varies with the type of analysis and project requirements. For many analyses analytical reagent (AR) grade is satisfactory. Other analyses, such as trace organic analyses, frequently require special ultrapure reagents, solvents, and gases.

General Inorganic Analyses

In general, AR grade reagents and solvents are adequate for inorganic analyses. Primary standard reagents should be used for standardizing all volumetric solutions. All prepared reagents should be checked for accuracy.

Trace Metals Analyses

All standards used for emission spectroscopy should be spectro-quality. It is recommended that other reagents and solvents also be spectro-quality. In many cases, AR grade may be satisfactory. Standards are prepared by the analyst, or purchased provided that purchased materials meet the requirements of the analytical method. Gases used for emission spectroscopy should be high purity.

Organic Chemical Analyses

AR grade is generally the minimum acceptable grade for materials used for organic analyses. Reference grade standards should be used as necessary. Pesticide-quality solvents are generally required for low-concentration work. AR grade solvents are adequate for analyzing industrial waste samples. However, the contents of each solvent lot should be checked to determine suitability for the analyses.

For sample cleanup procedures, the adsorbents most commonly used are florisil, silica gel, and alumina. These are pre-activated according to the analytical method requirements and checked for interfering constituents.

Water

Deionized water is used for dilution and preparation of reagent solutions. Deionized water prepared in the laboratory should be ASTM Type I or better. For trace level inorganic work, Type I Reagent grade is required. Organic-free water is required for organic analyses. Organic-free water may be verified by GC or GC/MS. However, when determining trace organics by solvent extraction and gas chromatography, specialty water such as HPLC grade water with sufficiently low background may need to be used.

8.2 Requirements for Laboratory Containers

Containers used in the laboratory can affect the quality of results. Material composition and volumetric tolerances are discussed below.

Material Composition of Laboratory Vessels

The glass recommended for general use is chemically resistant borosilicate glass, such as that manufactured under the trade names of Pyrex or Kimax. The use of plastic vessels, containers and other apparatus made of Teflon, polyethylene, polystyrene, and polypropylene is desirable for certain specified applications.

Volumetric Tolerances of Laboratory Vessels

All volumetric measurements are made using measuring devices with tolerances appropriate to the level of accuracy needed.

Glassware Cleaning Requirements

All glassware used for sample extraction and analysis is cleaned sufficiently to meet the sensitivity of the method. This is tested on an ongoing basis with method blank samples. The same types of glassware and glassware cleaning techniques are used for method blank samples and client samples. In general, the following glassware cleaning procedures are followed.

Beakers - wash with laboratory grade soap, triple rinse with water

Separatory funnels - remove stopcock, wash stopcock, cap and funnel with laboratory grade soap, triple rinse with water, triple rinse with extraction solvent

KD flasks - wash with laboratory grade soap, triple rinse with water, triple rinse with extraction solvent

Snyder columns - triple rinse with extraction solvent

Concentrator tubes - wash with laboratory grade soap, triple rinse with water, triple rinse with extraction solvent

Syringes - triple rinse with extraction solvent

If lower than normal reporting limits are required or if highly contaminated samples have been extracted, glassware may need additional cleaning such as acid rinsing.

9.0 MEASUREMENT TRACEABILITY AND CALIBRATION

All measuring operations and testing equipment having an effect on the accuracy or validity of analytical results are calibrated and/or verified prior to being put into service and on a continuing basis. Wherever possible, reference standards (such as Class 1 weights and traceable thermometers) and analytical reagent calibration standards are traceable to national standards of measurement. For accredited analyses, where traceability to national standards is not applicable, correlation of results is confirmed using proficiency testing and/or independent analysis.

All equipment and reference materials necessary for correct performance of analysis are under the permanent control of F&BI. A list of major analytical equipment is given in Appendix B.

9.1 Support Equipment Calibration

Support equipment includes devices that may not be the actual test instrument, but are necessary to support laboratory operations. These include but are not limited to: balances, thermometers, ovens, refrigerators, freezers, water baths and volumetric dispensing devices such as autopipetes and syringes. In cases where quantitative results are dependent on their accuracy, these devices are calibrated as described below.

Calibration/Verification Prior to Use

When new support equipment is purchased, it is the responsibility of the extraction manager to verify its calibration and traceability prior to putting it into service. Each piece of equipment is numbered, or otherwise identified, and the date put in service is recorded. Any certificates provided by the manufacturer are marked with the equipment identification and kept on file. Specific procedures for calibration (including on-going calibration) of specific types of support equipment are detailed in the "Support Equipment Monitoring and Calibration" SOP. These procedures include: reference standard(s) used for calibration specific calibration technique employed acceptable performance tolerances calibration frequency documentation procedures

On-Going Calibration

Requirements for on-going calibration are provided in the specific equipment SOPs. The requirements are based on the type of equipment, stability characteristics of the equipment, and required accuracy. Some equipment is calibrated each working day, some monthly and some less frequently. All support equipment is calibrated annually, using nationally traceable reference standards if possible, over the entire range of use. It is the responsibility of the extraction manager to complete all on-going calibrations.

Corrective Actions

If equipment does not meet the calibration requirements, it is taken out of service unless and until necessary repairs have been made. All such equipment is marked as "out of service" and, if possible, placed in a different location until repaired. Records of all repairs, including service calls, are kept with the equipment records. When a piece of equipment is repaired another initial calibration is performed prior to being put back into service. If equipment cannot be repaired, it is discarded as appropriate. It is the responsibility of the laboratory manager to mark out of service equipment, arrange for repairs, re-calibrate and document all such activities.

In addition, if equipment goes outside the direct control of the laboratory, it is the responsibility of the extraction manager to verify satisfactory function and calibration status before the equipment is returned to service.

If an item of equipment is found to be defective, the effect of the defect on previous calibrations or analyses is examined, and corrective actions are taken if necessary. It is the responsibility of the person who finds a defect to inform the QA officer, Technical Director, or Executive Committee.

9.2 Instrument Calibration

Initial instrument calibration and continuing instrument calibration verification of all analytical instruments is performed to ensure that the data are of known quality. Specific method SOPs describe detailed calibration requirements for each method. It is the responsibility of each analyst to follow and document established calibration procedures. The following sections describe the calibration requirements for all accredited analyses performed by F&BI.

Initial Calibration

The following are essential elements of initial instrument calibration: Sufficient raw data records are retained to permit reconstruction of the calibration. Sample results are quantitated against the initial calibration, and may not be quantitated from any continuing instrument calibration verification. Initial calibrations are verified with a second source standard (a standard obtained from a second manufacturer or lot, if the lot can be demonstrated from the manufacturer as prepared independently from other lots), unless a different requirement is specified in the method.

Appropriate criteria for the acceptance of an initial calibration are established. If the initial calibration results are outside of the established acceptance criteria corrective action is taken (see below).

Any reported sample results which fall outside of the calibration range are reported as having less certainty.

At least one calibration standard is at or below the method reporting limit. The lowest calibration standard is above the method detection limit (MDL), with the following exception:

For instrument technology (such as ICP/MS) with validated techniques which use a zero point and a single point calibration standard, the following apply: Prior to analysis of samples the linear range is established.

Zero point and single point calibration standard are analyzed with each analytical batch. Additional standards may also be analyzed.

A standard corresponding to the limit of quantitation is analyzed with each analytical batch.

The linearity is verified at a frequency established by the method and/or the manufacturer.

Continuing Instrument Calibration Verification

When the initial instrument calibration is not performed on the day of analysis, the validity of the initial calibration is verified prior to sample analysis by a continuing instrument calibration verification (CCV). The following items are essential elements of continuing instrument calibration verification:

A CCV is repeated at the beginning and end of each analytical batch. The concentrations of the calibration verification are varied within the established calibration range. If an internal standard is used, only one CCV is analyzed per batch. Sufficient raw data records are retained to permit reconstruction of the CCV. These records explicitly connect the continuing verification data to the initial instrument calibration.

Criteria for the acceptance of a CCV are established.

If the CCV results are outside established acceptance criteria, corrective actions are performed (see below).

Corrective Actions

Specific corrective actions are included in method SOPs. Following are general corrective action guidelines:

If the initial calibration results are outside established acceptance criteria, corrective actions are performed. This may include preparation of new standard solutions or instrument maintenance. Data associated with an unacceptable initial instrument calibration should not be reported. However, if such data are reported (usually due to insufficient sample for reanalysis) then it is reported with appropriate qualifiers. If a CCV falls outside of established acceptance criteria, then corrective actions are performed. This may include preparation of new standard solutions or instrument maintenance. If routine corrective action procedures fail to produce a second consecutive (immediate) CCV within acceptance criteria, then either acceptable performance is demonstrated after corrective action with two consecutive CCVs, or a new initial calibration is performed. If possible, samples associated with a failing CCV are reanalyzed. If reanalysis is not performed, then results are qualified. In the following two situations, results may be reported, even if reanalysis is possible. a) If the CCV fails high, then associated sample results which are non-detect may be reported.

b) If the CCV fails low, then associated sample results which are above a level which provides sufficient data for client use (if known) may be reported.

9.3 Maintaining Traceability of Standards, Solvents, and Reagents

The following steps are taken to maintain traceability of standards:

All standards are logged into the Standards Logbook and given a Date Code which is written on each container and certificate (if included). Also recorded are description, supplier and manufacturer's Lot # (if provided). The sample check-in technician is responsible for logging in standards.

When opened, all original containers (as provided by the vendor) are labeled with the date opened and an expiration date (based on the date opened). The extraction analyst is responsible for labeling original containers when opened.

Documentation of standards prepared from purchased stocks or neat compounds is maintained in the Standards Prep Logbook. Information recorded includes the Date Code, the preparation date, the expiration date, the amount used, and the preparer's initials. The person preparing the standard is responsible for proper documentation. Containers of prepared standards are labeled with a unique Standards Prep Logbook ID linking them to the above preparation documentation. They are also labeled with the preparation and expiration dates. The expiration date of a prepared standard may not exceed the expiration date of any of the primary standards used in its preparation. The person preparing the standard is responsible for labeling correctly.

Whenever a standard is used for sample extraction or analysis (e.g. calibration standard, surrogate, etc.) the Standards Prep Logbook ID is written in the sample extraction and analysis records. The extraction analyst is responsible for recording the Logbook ID.

Standards are not used past their expiration dates.

The following steps are taken to maintain traceability of solvents and reagents.

All solvents and reagents are logged into the Solvents and Reagents Logbook and assigned a Solvent Code which is written on each container and certificate (if included). Also recorded are description, supplier and manufacturer's Lot # (if provided). The sample check-in technician is responsible for logging in solvents and reagents. When a solvent or reagent is used to prepare a standard, the Solvent Code is recorded in the Standards Prep Logbook. The person preparing the standard is responsible for proper documentation. Note: If a reagent solution is prepared, then that is documented in the Standards Prep Logbook as described above. When a solvent or reagent is used for extraction or analysis, the Solvent Code is recorded in the sample extraction and analysis records. The extraction analyst is responsible for recording the Solvent Code.

9.4 Equipment Maintenance

Preventive maintenance is an important part of the F&BI quality system. A maintenance program has been outlined to provide an organized program of actions to maintain proper instrument performance which will ensure reliability of the measurements and prevent instrument failure during use. This equipment maintenance program is included as Appendix C. Additional information about routine

and special maintenance activities can be found in instrument manuals and troubleshooting guides, and in method SOPs.

Implementation

The implementation of the preventive maintenance program is dependent upon the specific instruments and equipment used. The extraction manager is responsible for performing and/or coordinating all support equipment maintenance. The GC, GC/MS, and inorganics supervisors are responsible for performing and/or coordinating all analytical instrument maintenance.

Documentation

Preventive maintenance is documented in maintenance log books. Each instrument has its own maintenance logbook which is updated each time any type of work is performed on the instrument.

10.0 SAMPLE HANDLING PROCEDURES

10.1 Sampling and Sample Acceptance Policy

The quality of analytical results is highly dependent upon the quality of the procedures used to collect, preserve and store samples. Factors that are taken into account to ensure accurate, reliable results include: Type of container used Sample preservation Amount of sample taken

Sample storage (holding) time Proper sample labeling/identification

Proper chain-of-custody (COC) documentation

Container, volume, preservation and holding time information for selected analyses for water and soil samples is included in Appendix D. F&BI provides sample containers, including preservative, to our clients when requested.

Each sample container should be labeled, using a durable label and indelible ink, to identify the following: Client name Client project name Sampling date and time Sample name/number Sample preservation

A chain-of-custody (COC) form should be filled out for every client project. An example COC form is shown in Figure 10-1. The following information should be included on the COC: Client (company) name and contact information Client project name/number Sampler's name Sample ID (name/number) Date and time sampled Type of sample (e.g. soil, water, etc.) Requested analysis

Sample Acceptance Policy

It is the client's responsibility to follow proper sampling and documentation protocol. If any samples are received with incomplete documentation, unclear sample labeling, incorrect or damaged sample containers, expired holding time, insufficient sample volume, incorrect sample preservation or any other circumstances that could affect data quality, the sample custodian and/or project manager will notify the client. If the problem can be resolved (e.g. documentation provided) normal analysis will be initiated. If not, data will be reported with qualifiers if necessary. The sample acceptance policy is posted at the sample receiving area, and copies are available upon request.

10.2 Sample Receipt Protocols

Chain-of-Custody

Evidence of sample collection, shipment, laboratory receipt, and laboratory custody until disposal is documented to maintain quality control. Documentation is accomplished through the COC records, shipping records and sample check-in and disposal records.

Sample Condition

Upon receipt, the condition of the samples is recorded. A copy of the sample condition receipt checklist is included in Figure 10-2. If a sample does not meet the sample receipt acceptance criteria the client is consulted for further instructions before proceeding. A record of the client's request is retained.

Sample Tracking

A permanent chronological sample receipt logbook is used to document receipt of all samples. The laboratory project number assigned is recorded on the sample condition checklist and on the COC, providing an unequivocal link to the laboratory and field ID's, the sample collection and analysis information provided on the COC, and the sample condition record.

Each sample received is assigned a unique laboratory ID that maintains an unequivocal link with the unique field ID assigned to each container. The laboratory ID is placed on the sample container as a durable label and is recorded on the COC. The laboratory ID is the link that associates the sample with subsequent laboratory activities such as sample preparation or calibration.

Sample Check-In

Upon sample receipt, the sample custodian completes the following steps (more details are found in the "Sample Receiving" SOP):

Sign and date the COC and attach the waybill (if applicable) to the COC.

Examine all samples and accompanying paperwork, using the Sample Condition Upon Receipt Checklist as a guide.

Verify that sample holding times have not been exceeded and are not close to their limit.

Notify the Project Leader if there are any samples that should be analyzed immediately because of holding time or client request.

The sample custodian then logs the samples into the Sample Check-In Logbook, which contains the following information:

Date received in laboratory Name of client Client project name/number Type and condition of samples as received Analyses requested F&BI project number Initials of person logging in samples Container size(s) and cooler/sample temperature

The sample custodian then initiates sample analysis by: Completing the COC documentation Labeling each container with the unique laboratory ID Placing the samples in proper laboratory storage Notifying the project leader of sample arrival by placing copies of the COC and all other project documents in the project leader bin.

10.3 Sample Storage

Samples and sample extracts are stored according to the conditions specified by preservation protocols. The temperatures of sample storage refrigerators are monitored each working day and recorded in the refrigerator temperature logbook. Samples and sample extracts are stored away from all standards, reagents, food and other potentially contaminating sources, and are stored in such a manner to prevent cross contamination. In addition, samples and sample extracts are stored in a secured area in order to protect sample condition and integrity. Placing of samples in the proper storage environment is the responsibility of the sample custodian. Placing of extracts in the proper storage environment is the responsibility of the extraction analyst.

10.4 Sample Disposal

There are several possibilities for sample disposition: The sample may be consumed during analysis. Samples may be returned to the client for disposal. Samples are incorporated into the laboratory waste streams.

The samples may be stored for 30 days after arrival. Proper environmental control and holding times are observed if reanalysis is anticipated. If reanalysis is not anticipated, environmental conditions for storage may not be observed.

The project leader and/or sample custodian determine disposition of samples if not specified on the COC. In general, F&BI will not maintain samples and extracts longer than one month beyond completion of analysis, unless otherwise requested.

After the appropriate storage time, the samples and extracts are disposed of by following approved disposal procedures. All materials known contain hazardous substances are disposed of as a separate waste streams. F&BI has identified 4 primary waste streams; solid waste, organic liquid waste, PCB (HazMat) waste, and acid waste. Disposal procedures are in compliance with all EPA, DOT, and Washington State waste disposal regulations. The extraction manager is responsible for overseeing sample and waste disposal.

Figure 10-1 Chain of Custody Form

	Par # of TURNAROUND TIME	0 Standard (2 Weeks) 0 RUSH	Rush donge authorized by.	SAMPLE DISPOSAL Dispose after 30 days	O Reburn samples O Will call with instructions	TED	Notes						C DATE TIME			
		F0#				ANALYSES REQUESTED	SAH 2X0052025						COMPANY			
F CUSTODY	(ə.					4V	HTPH-Dissel TPH-Gasoline TPH-Gasoline TPH-Gasoline TPH-Gasoline TPH-Gasoline						PRINT NAME			
SAMPLE CHAIN OF CUSTODY	SAMPLERS (signature)	PROJECT NAMENIO.		REMARKS		-	Sample Type						P.			
62					6		Date Time			-			SIGNATURE			
					Fax #		Lab ID						S Rationiched be:	 касалад у.:	Kalinquirled by:	Racained by:
	Send Report To	Compary	Address	City, State, ZIP	Phone #		Sam ple ID						Priechand. Brung Dr. 2012 1844 Avenue Meet	Seattle, WA 98119-2029	Fh (206) 285-8282	Fax (206) 283-5044

Figure 10-2

PROJECT #		CLIENT			INITIAL DATE:	.S/	
If custody seals	are pres	sent on co	oler, are they intact?		🗆 NA		🗆 NO
Cooler/Sample	tempera	ture					°C
Were samples r	eceived	on ice/cole	d packs?				□ NO
How did sample	es arrive	?	□ Over the Cou □ Picked up by				
			□ FedEx/UPS/0	GSO			
Number of days	sample	s have bee	en sitting prior to rec	eipt at l	aborate	ory	_ days
Is there a Chair *or other representat			C)? and/or shipping memos			□ YES	□ NO
Are the samples	s clearly	identified	l? (explain "no" answer belo	w)		\Box YES	🗆 NO
Is the following	informa	tion prov	ided on the COC* ? (e	xplain "no'	answer l	oelow)	
Sample ID's	\Box Yes	□ No	# of Containers	□ Yes	🗆 No		
Date Sampled	\Box Yes	□ No	Relinquished	□ Yes	🗆 No	1	
Time Sampled	\Box Yes	🗆 No	Requested analysis	\Box Yes	🗆 No	I.	
Were all sample leaking etc.)? (ex			v ed intact (i.e. not bro ^{v)}	oken,		□ YES	□ NO
Were appropria	te samp	le contain	ers used? (explain "no" a	nswer belo	w)	□ YES	□ NO
If custody seals	are pres	sent on sa	mples, are they intac	t?	🗆 NA		□ NO
Are samples rec	quiring r	no headsp	ace, headspace free?		🗆 NA		□ NO
	Explai	n "no" ite	ms from above (use th	e back if	needed)	

SAMPLE CONDITION UPON RECEIPT CHECKLIST

11.0 QUALITY CONTROL OBJECTIVES

F&BI follows a comprehensive internal quality control (QC) program to insure precision, accuracy, and reliability of data. QC objectives are established to determine if data generated is acceptable. These objectives are either specified by the method, or are statistically derived from historical laboratory data. Individual method SOPs include details of method QC requirements, which may supersede those given here.

11.1 Demonstration of Capability

Prior to using any test method, and at any time there is a significant change in instrument type or test method, a demonstration of capability (see section 7.2) is performed. In general, this does not test the performance of the method in real world samples, but in the applicable clean matrix.

11.2 Precision

Precision is a measure of the reproducibility of a result. Except as otherwise specified by an accredited method, the QC objective for precision is 20% as measured by Relative Percent Difference (RPD), as determined by duplicate analyses. It is recognized that for analytes at concentrations of less than five to ten times the method detection limit (MDL), it may be difficult to meet this objective.

Precision is usually expressed as Relative Percent Difference (RPD) based on duplicate analyses of a sample. The RPD is calculated as:

$$RPD = \frac{|X1 - X2|}{[(X1 + X2)/2]} x 100$$

where X1 and X2 are, respectively, the first and second values obtained for the analysis. Precision may be evaluated from duplicate sample, matrix spike and/or laboratory control sample analyses.

11.3 Accuracy

Accuracy is a measure of the closeness of a result to the true or expected value. It is generally determined using matrix spike and/or laboratory control sample recoveries. Control charts (see section 11.4) are generated to calculate laboratory specific accuracy objectives. For accredited analysis without enough QC data, or where the method specifies accuracy objectives, method prescribed limits are used. If the method does not specify control limits, then reasonable default limits are used. It is recognized that, for matrix spike samples, unless the sample is homogeneous and the spike concentration is greater than or approximately equal to the native concentration and greater than five to ten times the reporting limit, this objective may be difficult to meet, and therefore such samples will not be used to generate new QA/QC objectives/criteria. Alternatively, accuracy may be assessed through the analysis of appropriate standard reference materials or certified standards or samples, as available.

Accuracy is usually expressed as percent recovery (%R). The %R is calculated as:

 $%R = ((Xs - Xa)/Ct) \ge 100$

where Xs is the observed concentration of the spiked sample, Xa is the observed concentration of the unspiked sample, and Ct is the concentration of the spike.

11.4 Uncertainty

Laboratory generated control limits (see below) for laboratory control samples represent an estimation of the uncertainty of measurement for a particular analysis.

Control Limits

Control limits are the acceptance criteria used for evaluating the accuracy and precision of results. F&BI has established control limits for precision of 0% to 30% for all accredited analyses, unless method specified limits are more stringent. Initial control limits for accuracy are taken from the method or regulatory requirements. If no method or regulatory criteria exist, control limits are assigned default values. These default values are assigned using the following guidelines.

For laboratory control samples default control limits are 70% to 130%, and default warning limits are 80% to 120%.

For matrix spike samples and surrogate compounds default control limits are 50% to 150%, and default warning limits are 65% to 135%.

Established control limits for a similar method/matrix may be used instead of default limits.

When sufficient data has been generated, the laboratory specific acceptance limits for accuracy are usually used. After a minimum of 20 samples have been analyzed for a particular matrix/method, the mean and standard deviation of the results are calculated. Warning limits are set at 2 standard deviations from the mean, and control (action) limits are set at 3 standard deviations from the mean. Control limits are generally reviewed at least monthly, or when sufficient data has been generated to warrant review, and updated annually.

Control Charts

Control charts are prepared for accredited analytical methods to document the trends in percent recoveries (accuracy) for laboratory control samples, matrix spike samples and surrogates. Results are monitored routinely by the analyst. If 10 consecutive results fall outside of warning or control limits (either all 10 above, or all 10 below), the cause is investigated and necessary corrective actions are taken.

11.5 Completeness

Completeness is determined as the percentage of the sample data for which the associated QC data are found to be acceptable. The QC goal for completeness, as determined by the percentage of valid data generated, is 100%. Precision and accuracy

determinations, if outside the QA objectives due to sample-related causes, may be regarded as qualifying, rather than invalidating, the associated data.

11.6 Representativeness

Representativeness is the degree to which the field sample represents the overall sample site or material. F&BI will make every reasonable effort to assure that the samples are adequately homogenized prior to taking aliquots for analysis, so that the reported results are representative of the sample received. However, F&BI does not represent that the samples submitted for analysis are representative of the conditions in the field. Of particular importance is that mixing may substantially lower the measured levels of volatile components. (For this reason, mixing is avoided as much as possible for samples being analyzed for those compounds.)

11.7 Comparability

Comparability is an expression of the confidence with which one data set can be compared to another. To ensure comparability, standard operating procedures as defined in the quality system are used for handling and analysis of all samples.

11.8 Method Detection Limits and Reporting Limits

Method Detection Limits

The method detection limit (MDL) is the minimum concentration that can be measured and reported with 99% confidence that the analyte concentration is greater than zero. For each applicable test method and matrix, MDLs are determined for the compounds of interest by spiking the analyte(s) at a level approximately 5 times the expected MDL into a clean matrix and processing as a sample. A minimum of seven replicates are processed and the mean result is multiplied by the applicable students' value to obtain the MDL. MDLs are determined for each new test method (prior to sample analysis), annually, and each time there is a change in the test method that affects how the test is performed, or when a change in instrumentation occurs that affects the reliability of the analysis.

<u>Reporting Limits</u>

Reporting limits (RL), or practical quantitation limits (PQL), are the routinely reported lower limits of quantitation. RLs are calculated from the MDL and are typically 2 to 10 times the MDL, or equal to or greater than the concentration of the lowest calibration standard. The RLs take into account the day-to-day fluctuations in instrument reliability and other factors. These RLs are the levels to which F&BI routinely reports results. If a result below the RL is reported, typically due to client request, it is qualified as an estimated value.

12.0 ANALYSIS AND EVALUATION OF QUALITY CONTROL SAMPLES

Quality control samples are routinely analyzed with each analytical batch (see below) of field samples to demonstrate that the laboratory is operating within the QC objectives. QC samples are evaluated on an on-going basis, and QC acceptance criteria are defined and used to determine the validity of the data. Specific types of QC samples are described below. Individual method SOPs include details of method QC requirements. A summary of frequency and acceptance limit requirements for QC elements described in this and previous sections is given in Table 12-1. If method requirements are different than those given here, the method requirements will be followed.

12.1 Preparation Batch

The preparation batch is the basic unit for quality control. To ensure that QC results for accredited analyses are representative, all of the samples in a batch, both field and QC samples, are extracted, analyzed and calculated in the same way. In the absence of specific program or method requirements, the requirements for a preparation batch are as follows:

A maximum of 20 (field) samples are in a batch.

All samples in a batch are the same matrix.

QC samples (see below) processed with a batch are; 1 method blank, 1 LCS, 1 MS (if suitable), and either 1 MSD or 1 matrix duplicate (if suitable, if not, then 1 LCSD). The same reagent lot(s) are used to process the batch.

The same analyst(s) process the entire batch.

The maximum time between the start of processing of the first and last sample in a batch is 24 hours.

QC samples are prepared and analyzed with the associated field samples. However, if field samples in the batch are reanalyzed for a reason not affecting the QC samples (e.g. dilution, surrogate recovery etc.), the QC samples do not require analysis each time a field sample from the preparation batch is analyzed.

Each batch is assigned a unique ID which links it to the associated field samples.

12.2 Method Blank Samples

<u>Purpose</u>

The method blank is used to assess the preparation batch for possible contamination during the preparation and processing steps. It is processed along with and under the same conditions as the associated samples.

Frequency

One method blank is analyzed with each preparation batch.

Composition

The method blank consists of a matrix that is similar to the associated samples and is free of the analytes of interest.

Evaluation Criteria and Corrective Action

The goal is to have no detectable contaminants. If contamination is detected in the method blank sample, the nature of the interference and the effect on the analysis of each sample in the batch is evaluated. The source of contamination is investigated and measures taken to minimize or eliminate the problem. Affected samples are reprocessed, or data are appropriately qualified if:

The concentration of a targeted analyte in the blank is at or above the reporting limit AND is greater than 1/10 of the amount measured in the sample.

The blank contamination otherwise affects the sample results as per the test method requirements or the individual project data quality objectives.

Results of method blank analyses are maintained with the corresponding analytical data set and reported with project results.

12.3 Laboratory Control Sample (LCS)

<u>Purpose</u>

The LCS is used to evaluate the performance of the total analytical system, including all preparation and analysis steps.

Frequency

One LCS is analyzed with each preparation batch. Exceptions are for analytes for which no spiking solutions are available such as total suspended solids, pH or turbidity.

Composition

The LCS is a controlled matrix, free of the analytes of interest, spiked with known and verified concentrations of analytes. Alternatively the LCS may consist of a media containing known and verified concentrations of analytes or as Certified Reference Material (CRM). All analyte concentrations are within the calibration range of the methods. The components spiked are specified in individual method SOPs.

Evaluation Criteria and Corrective Action

LCS results are calculated in percent recovery (see section 11.3). Results are compared to established acceptance criteria. A LCS that is determined to be within the criteria effectively establishes that the analytical system is in control and validates system performance for the samples in the associated batch. If a LCS result is found to be outside the criteria, this indicates that the analytical system is "out of control". Any affected samples associated with an out of control LCS are reprocessed and re-analyzed (if possible), or the results reported with appropriate data qualifying codes. LCS results are reported on the quality control data summary forms.

12.4 Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Samples

<u>Purpose</u>

Matrix specific QC samples indicate the effect of the sample matrix on the precision and accuracy of the results generated using the selected method. The information from these controls is sample/matrix specific and is not normally used to determine the validity of the entire batch.

Frequency

One MS sample is analyzed with each preparation batch, if a sufficient amount of sample is provided.

Composition

MS/MSD analysis is performed on aliquots of actual samples. The composition is not usually known. Samples are spiked with known and verified concentrations of analytes. All analyte spiking concentrations are within the calibration range of the methods. The components spiked are specified in individual method SOPs.

Evaluation and Corrective Action

The results from MS/MSD analyses are primarily designed to assess the precision and accuracy of analytical results in a given matrix and are expressed as percent recovery (%R) and relative percent difference (RPD) (see section 11). Results are compared to the established acceptance criteria. If results are outside the criteria, the cause is investigated and corrective actions are taken if necessary, or the MS/MSD data are reported with appropriate qualifiers. MS/MSD results are reported on the quality control data summary forms.

12.5 Matrix Duplicate Samples

<u>Purpose</u>

Matrix duplicates are replicate aliquots of the same sample taken through the entire analytical procedure. The results from this analysis indicate the precision of the results for the specific sample using the selected method.

Frequency

One duplicate sample is analyzed with each preparation batch. If sufficient sample is provided, this will be either a MSD or a matrix duplicate. If not, a laboratory control sample duplicate (LCSD) is analyzed.

Composition

Matrix duplicates are performed on replicate aliquots of actual samples. The composition is not usually known.

Evaluation and Corrective Action

The results from matrix duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as RPD. Results are compared to established acceptance criteria. If results are outside the criteria, the cause is investigated and corrective actions are taken if necessary, or the matrix duplicate data are reported with appropriate qualifiers. Duplicate analysis results are summarized on the quality control data summary forms.

12.6 Surrogate Standard Analyses

<u>Purpose</u>

Surrogates are used most often in organic chromatography test methods and are chosen to reflect the chemistries of the targeted components of the method. Added prior to sample preparation/extraction, they provide a measure of recovery for every sample matrix.

Frequency

Except where the matrix precludes its use or when not available, surrogate compounds are added to all samples, standards, and blanks for all appropriate test methods.

Composition

Surrogate compounds are chosen to represent the various chemistries of the target analytes in the method. Individual method SOPs specify the surrogate compound(s) used.

Evaluation Criteria and Corrective Action

Surrogate results are calculated in percent recovery (see section 11.3). Results are compared to established acceptance criteria. Surrogates outside the acceptance criteria are evaluated for the effect indicated for the individual sample results. Corrective actions are taken if necessary, or affected results are reported with appropriate qualifiers. Surrogate results are reported with associated sample results.

12.7 Proficiency Testing (PT) Samples

<u>Purpose</u>

PT samples are blind samples purchased from a certified provider. They are used to evaluate the performance of the total analytical system, including all preparation and analysis steps. They are processed under the same conditions and in the same manner as client samples.

Frequency

F&BI participates in certified proficiency testing programs at a frequency required by accrediting agencies. PT samples are analyzed twice a year for each analyte, method and matrix, when available, for which F&BI is accredited.

Composition

PT samples are either prepared in a clean matrix by the provider, or are prepared in a clean matrix at the laboratory according to the provider's instructions. The specific analyte spiking levels are unknown to the laboratory.

Evaluation Criteria and Corrective Action

PT results are evaluated by the provider and reported directly to the regulatory agency as well as to the laboratory. Any PT results which are reported as not acceptable are reviewed and corrective actions implemented as needed. Reports received from PT sample providers and corrective action documentation are kept on file.

F&BI does not send any PT sample, or portion of a PT sample, to another laboratory for any analysis. Also, F&BI does not knowingly receive any PT sample, or portion of a

PT sample, from another laboratory, or communicate with another laboratory concerning PT samples.

Table 12-1 QC Frequency and Acceptance Limits Summary

(For Accredited Analysis, Method requirements may supersede these.)

Quality Control Element	Frequency	Acceptance Limits
Method Detection Limit	Initially, quarterly, and with	40CFR Part 136, Appendix
(MDL)	substantial change to method or instrument.	B calculations.
Demonstration of Capability (DOC)	Annually for each analyst.	Average of replicates within method established control limits of true value, and not >20% RSD for each analyte.
Initial Calibration	Initially and if ICV or CCV fail.	Per method specific requirements.
Initial Calibration Verification (ICV/Second Source)	Following every initial calibration, prior to sample analysis.	Per method specific requirements.
Continuing Calibration Verification (CCV)	 When an initial calibration has not been performed: i) At the beginning and end of analysis of 20 samples (max). Concentrations vary. ii) At the beginning of 12 hour shift if internal calibration used. 	Per method specific requirements.
Method Blank (MB)	1 per preparation batch of 20 (or fewer) samples.	Concentration for each analyte below RL or method specific.
Laboratory Control Sample (LCS)	1 per preparation batch of 20 (or fewer) samples.	Per laboratory established control limits (or default limits.)
Matrix Spike (MS)	1 per preparation batch of 20 (or fewer) samples.	Per laboratory established control limits (or default limits.) Does not control batch.
Duplicate Analysis (Sample Duplicate (Dup), MSD or LCSD)	 per preparation batch of 20 (or fewer) samples. i) Dup or MSD if sufficient sample. ii) LCSD if not. 	Percent recovery per laboratory established control limits (or default limits.) RPD 0% to 30%. Dup and MSD do not control batch.
Surrogate	Each field and QC sample for accredited organic analyses.	Per laboratory established control limits (or default limits.)
Proficiency Testing (PT)	Twice per year per accredited	Per PT provider.

Samples method/analyte/m	natrix.
--------------------------	---------

13.0 CORRECTIVE ACTIONS

Corrective actions may be implemented as a result of failure of quality control results to meet established criteria, failure of reported results to meet client's needs, or deviation from established policies and procedures in the SOPs and this QA manual. These are documented with the non-conformance report form which includes an investigation of the root cause, identification of possible corrective actions, and a description of the corrective action taken.

The QA officer reviews each non-conformance report form. This documentation is kept on file with each affected client report, and a copy is kept by the QA officer. During the annual internal audit (see section 16), the QA officer or other qualified F&B staff reviews all non-conformance report forms to look for chronic systematic problems that need more in-depth investigation and alternative corrective action consideration.

In addition, corrective actions may be implemented as a result of internal or external audit findings, or management review (see section 16). These are documented with the internal audit corrective action form, external audit correspondence, and the management review corrective action form respectively.

If corrective action procedures do not resolve or identify the problem, personnel will notify management for direction to take. The findings and actions taken are documented and sent to the QA officer or Technical Director for follow-up during an internal audit.

13.1 QC Analysis Failure

If any quality control results fail to meet established criteria, corrective action procedures are immediately implemented if possible. Corrective actions are identified by the individual responsible for a particular analytical method or instrument. In addition, the analyst performing data calculation or review may initiate corrective actions if needed. Corrective actions may include a review of calculations, a check of instrument maintenance, a review of analytical techniques, and reanalysis of affected samples. Table 13-1 has a general summary of QC analyses and corrective actions. Individual method SOPs detail method specific corrective actions. Corrective actions are documented by the analyst in the analysis records.

If, following corrective actions, quality control results still fail, then affected results are reported with appropriate qualifying flags and the analyst may use a non-conformance report form to further document the causes of the qualified data. In some cases it may not be possible to follow standard QC procedures and/or corrective actions. For example, if insufficient sample is provided, duplicate sample analysis, matrix spike analysis and/or sample re-extraction may not be possible. In these cases, all possible QC procedures are followed, reported data are qualified if needed, and the analyst uses the extraction worksheet, sequence tables, injection logs, and/or non-conformance report form to document.

If the quality control failure may require that analysis is halted for a particular method and/or instrument, it is the responsibility of the analyst to notify his/her supervisor. The supervisor then determines the required action and notifies the laboratory/technical director if analysis should be halted. The analysis can then be resumed only after approval from the laboratory/technical director.

13.2 Client Complaints

Any client complaints are resolved promptly. The project manager has primary responsibility for handing client complaints. Complaints which are not able to be resolved by the project manager may be referred to the laboratory/technical director or executive committee. Complaints are documented by the project manager using the non-conformance report form, client communication form, project notes macro, or a printed record of an e-mail correspondence.

13.3 Deviation from SOPs or QA Manual

Deviations from established policies and procedures as written in laboratory SOPs and this QA manual are documented using the extraction worksheet, sequence tables, injection logs, and/or other documents such as the non-conformance report form. A deviation may occur due to a specific client request, or due to laboratory circumstances.

13.4 Audit Findings

Corrective actions needed as a result of audit findings (internal or external) are initiated by the quality assurance manager or the laboratory/technical director. Audit related corrective actions may include providing additional staff training, updating SOPs or establishing new procedures. Internal audit corrective action documentation is kept on file with internal audit findings. External audit corrective actions are documented through correspondence with the auditor(s).

13.5 Record-Keeping Errors

Entries in records are not obliterated by methods such as erasures, overwritten files or markings. Corrections to record-keeping errors are made by one line marked through the error. The individual making the correction initials and dates the correction, and writes a brief explanation as needed. These criteria are also followed for electronically maintained records as applicable.

13.6 Corrective Actions Which Affect Reported Results

If audits or further data review indicate a substantial error in any data which has already been issued in a final report, the client is notified within 30 days and an amended report is issued if necessary.

Table 13-1 QC Corrective Actions

(For Accredited Analysis, Method requirements may supersede these.)

Quality Control Element	Corrective Action(s)	Documentation
Method Detection Limit (MDL)	Determine source of problem, correct, reanalyze (re-extract if necessary).	Instrument raw data.
Demonstration of Capability (DOC)	Determine source of problem, correct, reanalyze (re-extract if necessary).	Instrument raw data. DOC Certificate
Initial Calibration	Determine source of problem and recalibrate. Reanalyze any affected samples.	Instrument raw data. Flag sample results if not corrected. Non-Conformance Form if not corrected.
Initial Calibration Verification (ICV/Second Source)	Re-inject ICV. If ICV fails a second time, a new initial calibration is required. Reanalyze any affected samples.	Instrument raw data. Flag sample results if not corrected. Non-Conformance Form if not corrected.
Continuing Calibration Verification (CCV)	Determine source of problem and re-inject CCV. If second CCV fails, either correct problem and pass two consecutive CCVs, or a new initial calibration is required. Reanalyze any affected samples unless: i) CCV is high and sample is ND. ii) CCV is low and sample result is above regulatory/action limit.	Instrument raw data. Flag sample results if not corrected. Non-Conformance Form if not corrected.
Method Blank (MB)	Reduce background contamination. Re- extract and reanalyze MB and all affected samples in batch. Sample result can be reported if MB is <1/10 of sample result, or if sample is ND.	Instrument raw data. Flag MB and sample results if not corrected. Non-Conformance Form if not corrected.
Laboratory Control Sample (LCS/LCSD)	Determine source of problem. Correct and: i) If instrument related, reanalyze LCS and all affected samples in batch. ii) If spike related, re-extract and reanalyze LCS. iii) If other, re-extract and reanalyze LCS and all affected samples in batch.	Instrument raw data. Flag LCS and sample results if not corrected. Non-Conformance Form if not corrected.

Note: Verify calculations prior to other corrective actions.

Table 13-1 QC Corrective Actions (continued)

(For Accredited Analysis, Method requirements may supersede these.)

Quality Control	Corrective Action(s)	Documentation
Element		
Matrix Spike (MS)	Determine source of problem.	Instrument raw data.
	i) If instrument related, reanalyze MS and	Flag MS result if not
	all affected samples in batch.	corrected.
	ii) If spike related, re-extract and	Non-Conformance
	reanalyze MS.	Form if not corrected.
	iii) If LCS passes, flag failing MS result as	
	matrix effect.	
Duplicate Analysis	Determine source of problem.	Instrument raw data.
(Sample Duplicate	i) If instrument related, reanalyze	Flag duplicate result
(Dup), or MSD)	duplicate and all affected samples in batch.	if not corrected.
	ii) If other, re-extract and reanalyze	Non-Conformance
	sample and duplicate (or MS and MSD).	Form if not corrected.
	iii) If LCS passes, flag failing result as	
	matrix effect.	
Surrogate	Determine source of problem.	Instrument raw data.
	i) If instrument related, reanalyze sample.	Flag surrogate result
	ii) If spike related, re-extract and	if not corrected.
	reanalyze sample.	Non-Conformance
	iii) If matrix related, flag failing result as	Form if not corrected.
	matrix effect.	
Proficiency	Determine and correct source of problem.	PT provider report.
Testing (PT)	Pass minimum of 2 of last 3 for each	Corrective action
Samples	accredited method/analyte/matrix.	letters to regulatory
		agency.

Note: Verify calculations prior to other corrective actions.

14.0 DATA PROCESSING, VALIDATION, AND REPORTING

All analytical data reported by F&BI to a client in a final report is calculated, reviewed and validated, following established quality system procedures. Individual method SOPs describe specific calculation procedures. The following describes our general data reduction, validation and reporting procedures.

14.1 Data Processing and Review

Analytical results are generated from raw data by the analyst, using procedures specific to the analytical methods, and described in the appropriate method SOP. Results for most analyses are generated by computer. However, analysts usually enter data, such as sample volume/weight, to complete the calculations. Summary pages containing these entries are printed for review. Data generated is electronically transferred into the proper electronic form(s) for reporting. These forms are also printed for review.

For analyses which do not have computer generated data, results are hand entered into the computer for reporting. These results are printed and a 100% review of calculations and data entry is completed. If a particular result, which would normally be computer generated, is manually calculated (usually due to a manual integration) then the entire calculation is documented clearly so that the review analyst can perform a complete review.

Manual Integrations

Integration settings are adjusted to minimize the need for manual integrations. However, a manual integration is necessary if the automatic integration of the peak or integration area (for TPH analyses) is clearly affected (e.g. does not extend from baseline to baseline, peak is split, integration is inconsistent between full strength and diluted peak).

If manual integration is performed, this is clearly documented. The raw data affected by the re-integration is printed and included in the instrument data package along with the original integration, and any manual calculations which are done as a result, are documented. The analyst records his/her initials and the date the manual integrations were made. In addition, all manual integrations are reviewed carefully to check for bias.

Quality Control Results

The analyst also calculates and evaluates all quality control results. Analytical data for quality control samples (e.g. method blank, LCS, MS) are calculated and reviewed in the same manner as for all other samples. Results are evaluated using established acceptance criteria, and corrective actions are taken prior to releasing, as final, any associated sample results. After all calculations and QC evaluations are complete, the analyst signs the worksheet(s) and gives it to the calculation review analyst.

Calculation Review

An analyst, independent from the person performing the analysis, is responsible for a 100% review of all raw data, calculations, transcriptions (if needed) and results. Each worksheet reviewed is initialed. Corrections are reviewed by the calculations analyst, and any disagreements are resolved by the QA officer or Technical Director. Upon completion of review, worksheets are given to the project manager to generate a final report.

14.2 Analytical Data Reports

Analytical data and quality control data are summarized in standard report formats, either designed by F&BI or supplied by the client. The project manager combines the electronic files of reviewed analytical results to generate a final report. Prior to release of the report to the client, the project manager reviews and approves the entire report for completeness, and to ensure that any client-specified objectives were successfully achieved. The project manager then authorizes and electronically releases the final report file to office personnel to generate a hardcopy report. Specific procedures for generating a final analytical report are provided in the "Creating Reports" SOP. The following information is included in each final analytical data report issued by F&BI. The F&BI name, address and phone number, and project manager's name and electronic signature.

The client's project number/name, the F&BI project number, and date of issue (all on each page).

The sample identification provided by the client and the sample identification number assigned by F&BI

Chemical parameters analyzed, reported values, and units of measurement Reporting limit of the analytical procedure

The dates the samples were received and analyzed

A summary of quality control sample results

Footnotes referenced to specific data if required to explain/qualify reported values

Explanatory text or the cover letter may also include:

Person(s) receiving and transmitting the data

Documentation of samples which did not meet acceptance criteria when received

Brief discussion of samples analyzed and the analytical program

Discussion of any apparent data anomalies

Reference to specific accreditation requirements

Reports for Additional Results

If additional analysis is requested after a final report for a specific laboratory project has been issued, then those additional results are issued in a separate report. A statement that these are additional results for the project is included in the cover letter.

Reports Including Subcontracted Analysis

If any analysis is subcontracted to another laboratory, a statement is included in the cover letter and/or case narrative indicating the subcontracting laboratory and the analysis they performed. The original copy of the subcontracting laboratory's report is

provided to the client and a copy is kept with the F&BI project file. No subcontracted work is ever reported as being F&BI data.

Report Review

After the hardcopy data report is prepared, the report is subject to a complete review by another reviewer. Entries such as dates, sample IDs, names and addresses are reviewed. The reviewer completes a report review checklist and attaches it to the report. If any errors are found, they are noted and the report is given back to the project leader to correct.

The final draft is reviewed by the executive committee or its designee to assure that all of the steps listed to this point have been followed. He/She then initials the draft which is filed. After approval, a final report bearing the appropriate signatures is issued to the client.

Amending Issued Final Reports

After issuance of a final report, the laboratory report remains unchanged. If a report which has already been issued as final to the client is amended, the amended report is issued separately. A cover letter is included, which states that amended results are being provided. If needed, further explanation of the amendment is included in the cover letter. All amended reports receive final approval before being released to the client.

15.0 DOCUMENT CONTROL AND RECORDS MANAGEMENT

15.1 Document Control

Internally generated documents which are used to define and implement the quality system are controlled. This includes the Quality Assurance Manual, all SOPs and laboratory logbooks. Documents are controlled in two ways. Each document clearly indicates the effective date of the document, the revision number, and the signature(s) of the approving authority (revision number and signature may not be applicable for logbooks). In addition, a record is kept of who received a signed copy of each document.

Preparation of Controlled Documents

Quality system documents are written by the personnel most familiar with the procedures described. The author of the document is responsible for including the correct revision number and date. The documents are reviewed and released by the QA officer, laboratory/technical director and/or executive committee representative as applicable. They are implemented on the revision date indicated on the document. More specific procedures for writing and organizing quality system documents are described in the "Quality System Document Organization" SOP.

Office personnel are responsible for controlling logbooks. Laboratory logbooks are sequentially assigned a number, which is clearly written on the logbook. The name/use and starting date of the logbook are also written on the logbook and are recorded in the Master Log of Laboratory Logbooks. Completed logbooks are filed with office records, or with the associated instrument, if applicable.

Revision of Controlled Documents

Currently existing quality system documents are reviewed annually during the internal laboratory audit (see section 16). Documents may be revised due to changes initiated by an internal or external audit; or due to changes such as new instrumentation, updated instrument parameters, updated concentrations used for chemical standards etc. A new quality system document is generated if a new quality system procedure is implemented.

To ensure that the beginning and ending effective dates for a document are clearly documented, revision numbers are always whole numbers (starting with revision 1) which are increased by one whole number for each document revision. Therefore the beginning date of a particular revision is the ending date for the immediately previous revision.

Documentation of Controlled Documents

Office personnel are responsible for keeping a record of who received each signed controlled document. The Controlled Document Record includes the document name, a sequentially assigned number which is written on the document before releasing, the person (or company) the document was released to, and the date released. Unsigned copies of documents are not considered controlled.

15.2 Records Management

The purpose of the Records Management system is to standardize the organization, storage and retrieval of all data and documents pertinent to quality and the analytical process. Also, in many cases, F&BI project files must be legally defensible, that is, admissible by the courts and believed as fact. To fulfill these documentation requirements, F&BI maintains a Records Management System which meets the following criteria:

Data and documents are indexed and easily retrievable.

Files are secure.

A formal document inventory can be produced if required by the contract/project. Laboratory operation/QC documents are cross referenced to applicable projects. The system is documented in the Quality Assurance Manual and Standard Operating Procedures.

Specific regulatory or contractual requirements can be accommodated.

Analysis Records

Data generated using instruments driven by computers is stored on computer disks coded by the instrument number and date the samples were analyzed. Hard copies of all of the electronic data are also kept. For each instrument, a list of all samples analyzed for each date is kept for easy sample searching. For instruments not controlled by a computer, data are recorded in individual instrument logbooks.

Worksheets are documents filled out by extraction analysts as a sample is processed. These sheets contain measurements such as the weight of the sub-sample, identification and volume of solvent used for any extraction, and documentation of any dilutions or concentrations made. These worksheets are kept with our file copy of any report that is sent to a client.

Laboratory Files

Laboratory records/documents are of two types:

1) Project/Client Files - Documents which are specific to a project/client. All records pertaining to a specific project contain a reference to the laboratory project number which is assigned during sample check-in.

2) Laboratory Files - Documents which pertain to the overall functioning of the laboratory

Project/Client files contain the following:

Chain-of-Custody documents for the project

Extraction worksheets for the project

Electronic file of data generated by Analyst for each sample delivery group and analysis

Electronic file of compiled data for the results of analyses for each sample delivery group generated by Project Manager

Non-conformance report forms for the project

Contract files pertinent to a client

Communication records between project management and the client

Final reports submitted to the client

Laboratory files contain the following: Sample Check-in Logbook Raw instrument data, including calibration data Instrument maintenance records Internal and external audit records Training records QA Manual and SOPs Any other QA/QC documents pertaining to the overall functioning of the laboratory General office/business records

15.3 Archived Records

All files are stored at F&BI, in a safe and secure area, for a minimum of 5 years. Access to archived information is documented with an access log. After 5 years, records are purged only with approval from the executive committee representative.

15.4 Change of Ownership

If there is a change of ownership, records will be retained, and details of record availability will be specified in the transaction.

16.0 QUALITY SYSTEM AUDITS

Quality audits are an essential part of F&BI's quality system program. Two types of audits are used: system audits which qualitatively evaluate the operational details of the quality system program, and performance audits which quantitatively evaluate the outputs of the various measurement systems.

16.1 System Audits

Internal Audits

The QA officer arranges for annual internal audits to verify that laboratory operations continue to comply with the requirements of the quality system. These audits are carried out by trained and qualified personnel who are, wherever possible, independent of the activity to be audited. An internal audit of all or part of the system may also be performed at any time due to any circumstance which raises concern regarding compliance with established policies or procedures, or with the data quality.

Target dates for completion of any corrective action investigations resulting from an internal audit are set within a reasonable time frame so that, if necessary, laboratory practice can be changed and/or clients can be contacted. Where the audit findings indicate a substantial error in calibrations or test results, immediate corrective action is taken and any client whose work was involved is notified within 30 days in writing.

Audit findings and any corrective actions that arise from them are documented using the Internal Audit forms, which are included in Appendix E.

External Audits

F&BI is audited on a regular basis by state and independent auditors, as required for accreditation and by client contracts. External audits are documented through correspondence with the auditors.

Managerial Review

The laboratory/technical director conducts an annual review of the quality system and testing and calibration activities to ensure their continuing suitability and effectiveness, and to introduce any necessary changes or improvements in the quality system and laboratory operations.

The review takes account of reports from managerial and supervisory personnel, the outcome of recent internal and external audits, the results of interlaboratory comparisons or proficiency tests, any changes in the volume and type of work undertaken, feedback from clients, corrective actions, and other relevant factors. In addition, pro-active suggestions for preventive actions are included. These include either technical or quality system improvements which will reduce the likelihood of potential non-conformances.

Review findings and any corrective actions that arise from them are documented using the Managerial Review forms, which are included in Appendix E.

16.2 Performance Audits

In addition to periodic system audits, the quality of results is ensured through ongoing checks which monitor the quality of the laboratory's analytical activities. Examples of such checks are:

Internal quality control procedures, as described in section 12 above

Participation in proficiency testing programs, as described in section 12 above

Use of second source standards and/or certified reference materials

Replicate analysis using the same or different test methods

Re-testing of retained samples

Correlation of results for different but related analysis of a sample

Review of historical data from the same sample

17.1 Client Confidentiality

Strict client confidentiality is maintained at all times. No records or results are discussed with, or provided to, anyone other than the client unless the client has given specific permission. Clients are notified by the project manager or office personnel whenever any other party requests information about their records.

In addition, when clients require transmission of test results by facsimile, email or other electronic or electromagnetic means, care is taken to ensure that client confidentiality is maintained. To avoid accidental transmission to a different party, commonly used email addresses are included in an email address book, and commonly used fax numbers are pre-programmed. Also, in case of accidental transmission to the wrong party, email messages and facsimile cover sheets contain a message which states that the information is privileged, confidential, and intended only for the addressee named. Office personnel are responsible for maintaining email addresses and pre-programmed fax numbers.

17.2 Review of Requests, Tenders, and Contracts

Before agreeing to a written or oral contract to provide a client with environmental testing services, a review is conducted to ensure that F&BI has the capability and resources necessary to meet the client's requirements. For routine and other simple tasks, the project leader can provide an oral agreement. For more complex tasks, the laboratory/technical director conducts a review. This may include items such as review of previous proficiency testing results, and running trial testing to determine detection limits or other essential quality control requirements. The laboratory's current accreditation status, and any subcontracted work are also reviewed. The client is informed if, at any time before and during the agreement, F&BI is unable to fulfill the requirements of the contract. Records of written contracts, and other communication regarding the contract, are documented in the Client Report Template, and/or kept in the project/client files.

17.3 Specific Project Communication

After samples have been received, the F&BI project manager communicates with the client, when necessary, regarding sample receipt conditions, specific analysis needs, laboratory capability, and integrity of reported results. Communication is documented in the Project Notes macro, and/or with the Client Communication Record form, which is kept in the project/client files. In addition, any fax or email communication is also kept in the project/client files.

18.0 SUBCONTRACTING ANALYTICAL SAMPLES

It is the policy of F&BI not to subcontract work which we are normally able to perform. For requested analyses which we do not normally perform, the project manager informs the client of the need to subcontract. Work may also be subcontracted if we are temporarily unable to perform one of our normal analyses due to instrument malfunction, or if the client requires certification which we do not have. In these cases the same procedures are followed.

In those cases where we subcontract work, the results reported by the outside laboratory appear under the letterhead of the laboratory reporting the data. Data generated by another laboratory is never reported under our company letterhead. The original report from the contracted laboratory is provided to the client, and a copy is kept with the F&BI project file.

END OF DOCUMENT

APPENDIX A

LIST OF ADMINISTRATIVE SOPS AND QUALITY SYSTEM DOCUMENTS

LIST OF ADMINISTRATIVE SOPS AND QUALITY SYSTEM DOCUMENTS

Title	Location
Creating Reports	sops\admin\Reports
Data Integrity	Sops\admin\Data
	Integrity
Project Manager Procedure (includes Client Communication	sops\admin\Project
Record form)	Manager
Qualifiers	Sops\admin\Qualifier
Quality System Document Organization	sops\admin\Document
	Organization
Sample, Extract, and Waste Disposal	sops\admin\Disposal
Sample Receiving	sops\admin\Sample
	Receiving
Support Equipment Monitoring and Calibration	sops\admin\Support
	Equipment
Training Records (includes training forms)	sops\admin\Training
ADDITIONAL QUALITY SYSTEM DOC	
ADDITIONAL QUALITY SYSTEM DOC	UMENTS
Archive Access Log	forms\office\archive
Archive Access Log	forms\office\archive sops\Controlled
Archive Access Log Controlled Document Record	forms\office\archive sops\Controlled Document Record
Archive Access Log Controlled Document Record DOC Training Summary Database	forms\office\archive sops\Controlled Document Record fbi\nelap\doc_sum
Archive Access Log Controlled Document Record DOC Training Summary Database F&BI Certifications/Accreditations	forms\office\archive sops\Controlled Document Record fbi\nelap\doc_sum office records
Archive Access Log Controlled Document Record DOC Training Summary Database F&BI Certifications/Accreditations Final Report Checklist	forms\office\archivesops\ControlledDocument Recordfbi\nelap\doc_sumoffice recordsforms\chklist
Archive Access Log Controlled Document Record DOC Training Summary Database F&BI Certifications/Accreditations Final Report Checklist Internal Audit/Managerial Review Forms	forms\office\archive sops\Controlled Document Record fbi\nelap\doc_sum office records forms\chklist QAM Appendix E
Archive Access Log Controlled Document Record DOC Training Summary Database F&BI Certifications/Accreditations Final Report Checklist Internal Audit/Managerial Review Forms	forms\office\archive sops\Controlled Document Record fbi\nelap\doc_sum office records forms\chklist QAM Appendix E fbi\nelap\Lab
Archive Access Log Controlled Document Record DOC Training Summary Database F&BI Certifications/Accreditations Final Report Checklist Internal Audit/Managerial Review Forms	forms\office\archivesops\ControlledDocument Recordfbi\nelap\doc_sumoffice recordsforms\chklistQAM Appendix Efbi\nelap\LabOrganization Chart –
Archive Access Log Controlled Document Record DOC Training Summary Database F&BI Certifications/Accreditations Final Report Checklist Internal Audit/Managerial Review Forms Laboratory Organization/Personnel Qualifications	forms\office\archive sops\Controlled Document Record fbi\nelap\doc_sum office records forms\chklist QAM Appendix E fbi\nelap\Lab Organization Chart – Personnel Qualifications
Archive Access Log Controlled Document Record DOC Training Summary Database F&BI Certifications/Accreditations Final Report Checklist Internal Audit/Managerial Review Forms Laboratory Organization/Personnel Qualifications	forms\office\archive sops\Controlled Document Record fbi\nelap\doc_sum office records forms\chklist QAM Appendix E fbi\nelap\Lab Organization Chart – Personnel Qualifications forms\logbooks\
Archive Access Log Controlled Document Record DOC Training Summary Database F&BI Certifications/Accreditations Final Report Checklist Internal Audit/Managerial Review Forms Laboratory Organization/Personnel Qualifications Master Log of Laboratory Logbooks	forms\office\archive sops\Controlled Document Record fbi\nelap\doc_sum office records forms\chklist QAM Appendix E fbi\nelap\Lab Organization Chart – Personnel Qualifications forms\logbooks\ Master Log
Archive Access Log Controlled Document Record DOC Training Summary Database F&BI Certifications/Accreditations Final Report Checklist Internal Audit/Managerial Review Forms Laboratory Organization/Personnel Qualifications Master Log of Laboratory Logbooks Non-Conformance Report Form	forms\office\archive sops\Controlled Document Record fbi\nelap\doc_sum office records forms\chklist QAM Appendix E fbi\nelap\Lab Organization Chart – Personnel Qualifications forms\logbooks\ Master Log forms\nonconformance
Archive Access Log Controlled Document Record DOC Training Summary Database F&BI Certifications/Accreditations Final Report Checklist Internal Audit/Managerial Review Forms Laboratory Organization/Personnel Qualifications Master Log of Laboratory Logbooks Non-Conformance Report Form	forms\office\archive sops\Controlled Document Record fbi\nelap\doc_sum office records forms\chklist QAM Appendix E fbi\nelap\Lab Organization Chart – Personnel Qualifications forms\logbooks\ Master Log forms\nonconformance sops\Policy and Health
Archive Access Log Controlled Document Record DOC Training Summary Database F&BI Certifications/Accreditations Final Report Checklist Internal Audit/Managerial Review Forms Laboratory Organization/Personnel Qualifications Master Log of Laboratory Logbooks Non-Conformance Report Form	forms\office\archive sops\Controlled Document Record fbi\nelap\doc_sum office records forms\chklist QAM Appendix E fbi\nelap\Lab Organization Chart – Personnel Qualifications forms\logbooks\ Master Log forms\nonconformance
Archive Access Log Controlled Document Record DOC Training Summary Database F&BI Certifications/Accreditations Final Report Checklist Internal Audit/Managerial Review Forms Laboratory Organization/Personnel Qualifications Master Log of Laboratory Logbooks Non-Conformance Report Form Policy and Health & Safety Manual Quality Assurance Manual	forms\office\archive sops\Controlled Document Record fbi\nelap\doc_sum office records forms\chklist QAM Appendix E fbi\nelap\Lab Organization Chart – Personnel Qualifications forms\logbooks\ Master Log forms\nonconformance sops\Policy and Health & Safety Manual sops\QAM
	forms\office\archive sops\Controlled Document Record fbi\nelap\doc_sum office records forms\chklist QAM Appendix E fbi\nelap\Lab Organization Chart – Personnel Qualifications forms\logbooks\ Master Log forms\Policy and Health & Safety Manual
Archive Access Log Controlled Document Record DOC Training Summary Database F&BI Certifications/Accreditations Final Report Checklist Internal Audit/Managerial Review Forms Laboratory Organization/Personnel Qualifications Master Log of Laboratory Logbooks Non-Conformance Report Form Policy and Health & Safety Manual Quality Assurance Manual	forms\office\archive sops\Controlled Document Record fbi\nelap\doc_sum office records forms\chklist QAM Appendix E fbi\nelap\Lab Organization Chart – Personnel Qualifications forms\logbooks\ Master Log forms\nonconformance sops\Policy and Health & Safety Manual sops\QAM

Г

APPENDIX B

MAJOR ANALYTICAL EQUIPMENT

F&BI QAM Rev. 18, December 9, 2022

MAJOR ANALYTICAL EQUIPMENT

Make/Model	Туре	Identifier	Software
Agilent 5890	GC/FID	GC 1	ChemStation
Agilent 5890	GC/FID/PID	GC 2	
with Varian Archon	Autosampler		
and OI 4560	Purge & Trap		ChemStation
Agilent 5890	GC/FID/PID	GC 3	
with Varian Archon	Autosampler		
and OI 4560	Purge & Trap		ChemStation
Agilent 5890	GC/FID	GC 4	ChemStation
Agilent 5890	GC/TCD	GC 5	ChemStation
Agilent 5890	GC/FID	GC 6	ChemStation
Agilent 6890	GC/ECD/ECD	GC 7	EnviroQuant
Agilent 5890 with	GC/FID Headspace	GC 8	ChemStation
Tekmar 7000	Autosampler		
Agilent 6890	GC/ECD/ECD	GC 9	EnviroQuant
Agilent 6890	GC	GC/MS 3	
with Agilent 5973	MSD		EnviroQuant
Agilent 6890N	GC	GC/MS 4	
with Agilent 5973N	MSD		
and OI 7361	Autosampler		
and OI 4660	Purge & Trap		EnviroQuant
Agilent 6890	GC	GC/MS 6	
with Agilent 5973	MSD		EnviroQuant
Agilent 7890A	GC	GC/MS 7	
with Agilent 5975C	MSD		EnviroQuant
Entech	Preconcentrator		Maveric
Model #7200 CTS			
and Entech			
Model	Autosampler/		Entech
#7016D	Vacuum		
and Entech			
Model	Cleaning System		Entech
#3100D			
and Entech			$\mathbf{E} \leftarrow 1$ 9100D
Model	Oven/Vacuum		Entech 3100D
#31-350ER	Flow Professor		Entech Flow
and Entech Model	FIOW Frotessor		Entech Flow Professor
#39-FP-01			1 TOTESSOF
and Entech	Digital Dilution		
DDS	System (DDS)		
Model	bystem (DDb)		
#PG7-50.00-PSIA			
π1 01-00.00-1 DIA	l	1	

MAJOR ANALYTICAL EQUIPMENT (Continued)

Make/Model	Туре	Identifier	Software
Agilent 6890N	GC	GC/MS 8	
with Agilent 7975C	MSD		EnviroQuant
Entech	Preconcentrator		Maveric
Model #7200 CTS			
and Entech			
Model	Autosampler/		Entech
#7016D	Vacuum		
and Entech			
Model	Cleaning System		Entech
#3100D			
and Entech			
Model	Oven/Vacuum		Entech 3100D
#31-350ER			
and Entech	Flow Professor		Entech 3100D
Model			
#39-FP-01			
and Entech	Digital Dilution		Entech Flow
DDS	System (DDS)		Professor
Model			
#PG7-50.00-PSIA			
Agilent 7890	GC	GC/MS 9	
with Agilent 5975C	MSD		EnviroQuant
Agilent 7890B	GC	GC/MS 10	EnviroQuant
with Agilent 5977A	MSD		
and Markes	Autosampler/		Maveric
Model # TD-	Concentrator		
100			
Agilent 7890B	GC	GC/MS 11	
with Agilent 5977B			
and OI 4100	Autosampler		
and OI 4760	Purge & Trap		EnviroQuant
Agilent 7890B	GC	GC/MS 12	EnviroQuant
with Agilent 5977B	MSD		Lintino quant
Agilent 7890B	GC	GC/MS 13	
with Agilent 5977B	MSD		
and OI 4100	Autosampler		
and OI 4760	Purge & Trap		EnviroQuant
Agilent 8890	GC	GC10, GC13,	EnviroQuant
		GC14 GC15,	Liiviioquaiti
Agilent 8890	GC	GC11	
with OI 4100	Autosampler		

and OI 4760	Purge & Trap		EnviroQuant
PerkinElmer NexION	ICP/MS	ICP/MS	PerkinElmer
300D			Syngistix
PerkinElmer S10	ICP/MS	ICP/MS	PerkinElmer
Autosampler	Autosampler		S10 Utility
PerkinElmer SC4DX	ICP/MS	ICP/MS	ESI SC
Autosampler	Autosampler		
Tekran 2600	CVAFS	CVAFS	Tekran
Hach TL2300	Turbidimeter	Turbidimeter	N/A
Mettle-Toledo Seven Compact	pH Meter	pH Meter	N/A
Rae Systems, Model# PGM-30 (2)	Hand Held PID	Hand Held PID	N/A
Buck Scientific, Model# HC-404 (1)	IR analyzer	IR analyzer	N/A
Beckman Model TJ-6 (2)	Centrifuge	Centrifuge	N/A
Vortex Genie 2, Model G-560 (3)	Vortex Mixer	Vortex Mixer	N/A
Buchi Syncore	Concentrator	Concentrator No.1	N/A
Buchi Syncore	Concentrator	Concentrator No.2	N/A
Buchi Syncore	Concentrator	Concentrator No.3	N/A
Thermo Scientific Precision Water Bath, Model #2849	Water Bath	Water Bath	N/A
Organomation Associates, Inc. Model #120 (1)	Water Bath	Water Bath	N/A
Sonics VibraCell	Sonicator	Sonicator No.1	N/A

MAJOR ANALYTICAL EQUIPMENT (Continued)

Make/Model	Туре	Identifier	Software
Branson Ultrasonics Corporation, Sonifier Model# 450	Sonicator	Sonicator No.2	N/A
Branson Ultrasonics Corporation, Sonifier Model# 450	Sonicator	Sonicator No.3	N/A
Sonics VibraCell	Sonicator	Sonicator No.4	N/A
Marathon Electric, Model 0523-N191Q- G588 (1)	Sonicator	Sonicator	N/A
Sonics and Material, Inc. Model# VC600 (1)	Sonicator	Sonicator	N/A
Brenson Ultrasonic Bath, Model #M3800	Cavitator	Cavitator No.1	N/A
Brenson Ultrasonic Bath, Model #M3800	Cavitator	Cavitator No.2	N/A
Torbal, Fulcrum Inc., Model #AGCN 100	Analytical Balance	Analytical Balance	N/A
AND Model #HA-120M (1) (white)	Analytical Balance	Analytical Balance	N/A
AND Model #EK-1200A (1)	Analytical Balance	Analytical Balance	N/A
Mettler Toledo, Model #ML1502E/03 (2)	Analytical Balance	Analytical Balance	N/A
Denver Instrument Model #XP-1500 (1)	Analytical Balance	Analytical Balance	N/A
AEAdams CoreBalance	Analytical Balance	Analytical Balance	N/A
US Electrical Motors, Model #E438 (1)	Tumbler	Tumbler	N/A
Emerson Electric Co. (2)	Vacuum Pump	Vacuum Pump	N/A
ThermoScientific Isotemp 100L Oven FA 120V	Oven	Oven	N/A
Stabil-Therm Gravity Oven Model# OV-484A (1)	Oven	Oven	N/A
Thermolyne Corporation, Model # F6000 (1)	Muffle Furnace	Muffle Furnace	N/A

MAJOR ANALYTICAL EQUIPMENT (Continued)

Make/Model	Туре	Identifier	Software
Barnstead/Thermolyne Model#1415M (1)	Muffle Furnace	Muffle Furnace	N/A
Thermolyne Corporation, Model # HPA2245M (2)	Hot Plate	Hot Plate	N/A
Corning Laboratory, Model#PC-300 (1)	Hot Plate	Hot Plate	N/A
Corning Laboratory Model #PC-420 (1)	Hot Plate/Stirrer	Hot Plate/Stirrer	N/A
CPI-MOD Block (70 mL) Digest Heater Block with Controller (2)	Digester/Heater Block	Digester/Heater Block	N/A
Julabo Labortachnik, Model#FC600 or equivalent (2)	Chilling Unit	Chilling Unit	N/A
PolyScience 6000 Series Chiller Model #0772046	Chilling Unit	Chilling Unit	N/A

APPENDIX C EQUIPMENT MAINTENANCE PROGRAM (GENERAL GUIDANCE)

EQUIPMENT MAINTENANCE PROGRAM (GENERAL GUIDANCE)

Instrument	Activity	Approximate Frequency
GC 1, GC 4, and GC 6	Clean FID	Weekly or as needed
(Semivolatile TPH)	Check Gases	Replace at 200 PSI
Agilent 5890 Series II	Change Liner	Every 200 injections or as needed
		due to response change
	Change Septum	Every 200 injections
	Replace Syringe	As needed if clogged or broken
	Clip Column	As needed to improve
	_	chromatography
	Replace Column	As needed
	Change Gold Seal	As needed
GC 2 and GC 3	Clean FID	Weekly or as needed
(Volatile TPH and BTEX	Check Gases	Replace at 200 PSI
by 8021B)	Clean PID	As needed
Agilent 5890 Series II	Replace PID Lamp	As needed to improve sensitivity
	Replace Column	As needed
OI 4560/4660 Concentrator	Check Purge Flow	Monthly
(GC 2, GC 3, GC/MS 4,	Replace Trap	As needed
GC/MS 9, and GC/MS 7)	Clean Sparge Cell	As needed
	Clean Sparge Filter	As needed if clogged
4552/4551 Autosampler	Tighten Syringe Nut	Once a week
(GC 2, GC 3, GC/MS 4,	Autocalibrate	As needed
GC/MS 9, and GC/MS 7)		
GC 7	Check Gases	Replace at 200 PSI
(PCBs, Organic Lead,	Change Liner	Every 200 injections or as needed
Canadian Pulp, EDB)		due to response change
Agilent 5890 Series II		
	Change Septum	Every 200 injections
	Replace Syringe	As needed if clogged or broken
	Clip Column	As needed to improve
	_	chromatography
	Replace Column	As needed
	Change Gold Seal	As needed
	Clean ECD	As needed to improve
		chromatography

EQUIPMENT MAINTENANCE PROGRAM (GENERAL GUIDANCE)

Instrument	Activity	Approximate Frequency
GC 5	Clean TCD	As needed
<i>(Helium Analyzer)</i> Agilent 5890 Series II	Check Gases	As needed
	Change Liner	As needed
	Change Septum	As needed
	Replace Syringe	As needed
	Clip Column	As needed
	Replace Column	As needed
GC/MS 3,	Check Gases	Replace at 200 PSI
GC/MS 6, GC/MS 8, and GC/MS 10 (Semivolatiles and Methamphetamine)	Change Liner	Every 200 injections or if tune fails due to degradation of DDT > 20
	Change Septum	Every 200 injections
	Replace Syringe	As needed if clogged or broken
	Clip Column	As needed to improve
		chromatography
	Replace Column	As needed
	Change Gold Seal	As needed
	Change Pump Oil	Every 6 months
	Clean Source	As needed
GC/MS 4, GC/MS 9, and	Check Gases	Replace at 200 PSI
GC/MS 7	Replace Column	As needed
(Volatiles)	Change Pump Oil	Every 6 months
	Clean Source	As needed
CVAFS (Mercury)	Clean Liquid Gas Separator	Before each run
	Clean Cuvette	As needed
	Replace Lamp	As needed
	Change Tubing	As needed
ICP/MS	Change Torch	As needed
(Metals)	Change Tubing	As needed
	Change Coolant	As needed
	Clean Cones	As needed

APPENDIX D

SAMPLE CONTAINERS, PRESERVATION, AND HOLDING TIMES

F&BI QAM Rev. 18, December 9, 2022

SAMPLE CONTAINERS, PRESERVATION, AND HOLDING TIMES

Parameter	Method	Matrix	Minimum Sample Volume	Container	Preservation	Maximum Holding Time	
Organic Analysis							
Diesel Range Organics (Extractable	8015M NWTPH-Dx	Water	500 mL	500 mL glass	*Cool, ≤6°C	*7 days to extract, 40 days after extr.	
	AK 102	Water	1 L	1 L glass			
TPH)	8015M NWTPH-Dx AK102/103	Soil	50 grams	4 oz glass	Cool, ≤6°C	14 days to extract, 40 days after extr.	
Gasoline Range Organics (Purgable TPH)	8015M NWTPH-Gx AK101	Water	40 mL	40 mL VOA	Cool, ≤6°C, HCl to pH<2, no headspace	14 days	
	8015M NWTPH-Gx	Soil	20 grams	3 x 5035 kit or MeOH pres. vial	Cool, ≤6°C/Freeze <- 7°C	14 days	
	AK101	Soil	app. 50 g	4 oz glass septum top	Methanol	28 days	
HCID	NWTPH- HCID	Water	500 mL	500 mL glass	Cool, ≤6°C	7 days to extract, 40 days after extr.	
		Soil	50 grams	4 oz glass	Cool, ≤6°C	14 days	
HEM (O&G), SGT-HEM	1664	Water	1 Liter	1 L glass	$\begin{array}{l} \text{Cool}, \leq \!\!6^{\circ}\text{C}, \\ \text{H}_2\text{SO}_4 \text{ to } \text{pH} \!\!< \!\!2 \end{array}$	28 days	
PCBs	8082A	Water	1 Liter	1 L glass	$Cool, \leq 6^{\circ}C$	none	
	8082A	Soil	50 grams	4 oz glass	Cool, ≤6°C	none	
PNAs (PAHs)	8270D or 8270D SIM	Water	500 mL	500 mL glass	Cool, ≤6°C	7 days to extract, 40 days after extr.	
	8270D or 8270D SIM	Soil	50 grams	4 oz glass	Cool, ≤6°C	14 days to extract, 40 days after extr.	
Purgable Aromatic Hydrocarbons	8021B or AK101	Water	40 mL	40 mL VOA	Cool, ≤6°C, HCl to pH<2, no headspace	14 days	
(BTEX, MTBE)	8021B	Soil	20 grams	3 x 5035 kit or MeOH pres. vial	Cool, ≤6°C/Freeze <- 7°C	14 days	
	AK101	Soil	app. 50 g	4 oz glass septum top	Methanol	28 days	
Semivolatile Organic	8270D	Water	1 Liter	1 L glass	Cool, ≤6°C	7 days to extract, 40 days after extr.	
Compounds (SVOCs, BNAs)	8270D	Soil	50 grams	4 oz glass	Cool, ≤6 °C	14 days to extract, 40 days after extr.	

SAMPLE CONTAINERS, PRESERVATION, AND HOLDING TIMES

Parameter	Method	Matrix	Minimum Sample Volume	Container	Preservation	Maximum Holding Time
		Org	anic Analysi	s (Continued)		
Volatile Organic Compounds	8260C	Water	40 mL	40 mL VOA	Cool, ≤6°C, HCl to pH<2, no headspace	14 days
(VOCs)	8260C	Soil	10 grams	40 mL VOA	Freeze within 48 hrs., ≤0°C	14 days

* For NWTPH-Dx and AK102 methods, if preserved with HCl or H_2SO_4 to pH<2, holding time is 14 days to extract.

SAMPLE CONTAINERS, PRESERVATION, AND HOLDING TIMES

Parameter	Method	Matrix	Minimum Sample Volume	Container	Preservation	Maximum Holding Time
			Inorganic	Analysis		
Alkalinity	SM2320B	Water	100 mL	500 mL poly	Cool, ≤6°C	14 days
BOD	405.1	Water	1 Liter	1 L glass	Cool, ≤6°C	48 hours
Chloride	300.0	Water	100 mL	500 mL poly	Cool, ≤6°C	28 days
COD	410.4	Water	100 mL	500 mL poly	H_2SO_4 to pH<2	28 days
Conductivity	120.1	Water	100 mL	500 mL poly	Cool, ≤6°C	28 days
Cyanide, total	335.2	Water	1 Liter	1 L glass	NaOH to pH 12	14 days
Fluoride	300.0	Water	100 mL	500 mL poly	Cool, ≤6°C	28 days
Hardness	SM2340B	Water	100 mL	500 mL poly	HNO ₃ to pH,<2	6 months
Nitrate	300.0	Water	100 mL	500 mL poly	Cool, ≤6°C	48 hours
Nitrite	300.0	Water	100 mL	500 mL poly	Cool, ≤6°C	48 hours
Nitrate-Nitrite	353.2	Water	100 mL	500 mL poly	Cool, $\leq 6^{\circ}$ C, H ₂ SO ₄ to pH<2	28 days
pH	9040/150.1	Water	20 mL	500 mL poly	None	As soon as possible
	9045	Soil	20 grams	4 oz glass	None	28 days
Phosphorus, total	365.2	Water	100 mL	500 mL poly	Cool, ≤6°C, H₂SO₄ to pH<2	28 days
Sulfate	300.0	Water	100 mL	500 mL poly	Cool, ≤6°C	28 days
Sulfide	376.2	Water	500 mL	500 mL poly	Cool, ≤6°C ZnAcetate plus NaOH to pH>9	7 days
Sulfite	377.1	Water	100 mL	500 mL poly	None	24 hours
Total Dissolved Solids (TDS)	SM2540C/ 160.1	Water	500 mL	500 mL poly	Cool, ≤6°C	7 days
Total Organic Carbon (TOC)	415.1/ 9060M	Water	100 mL	500 mL poly	H_2SO_4 to pH<2	28 days
Total Suspended Solids (TSS)	SM2540D	Water	250 mL	500 mL poly	Cool, ≤6°C	7 days
Turbidity	SM2130B	Water	20 mL	500 mL poly	Cool, ≤6°C	48 hours
	1		Metals A	-		
Metals (except Cr VI and Mercury)	200.8/6020 or 6010	Water	200 mL	500 mL poly or glass	HNO ₃ to pH<2 at least 24 hours prior to analysis	6 months
	200.8/6020 or 6010	Soil	20 grams	4 oz glass	Cool, ≤6°C	6 months
Chromium VI	SM3500Cr	Water	100 mL	500 mL poly	Cool, ≤6°C	24 hours
	7196A	Soil	50 grams	4 oz glass	Cool, ≤6°C	30 days
Mercury	1631/200.8/ 6020/7040	Water	125 mL	250 mL poly, fluoropolymer, or glass	HNO ₃ to pH<2	28 days (48 hours if not preserved)
	1631/200.8/ 6020/7041	Soil	50 grams	4 oz glass	Cool, ≤6°C	28 days

APPENDIX E

INTERNAL AUDIT/MANAGERIAL REVIEW FORMS

F&BI QAM Rev. 18, December 9, 2022

Summary

<u>Areas audited</u>

1. Quality System:		2. Support	Equipment \Box			
Quality Assurance Manual and S (attach "List of Current SOPs" with revi						
3. Non-Conformance reports (revi	Non-Conformance reports (review) 4. Project Management/Reports					
5. Sample receiving, storage, disp	posal	6. Document Contro	l/Training			
7. Extractions: Inc. Organic Inc. 3510 Inc. 3550 Inc. 3580 Inc. 3630 Inc.	organic 200.8 1631 3005 3050	Volatil 503 503 358	$\begin{array}{c} 30 \\ 5 \\ - \end{array}$			
 8. Analysis/Calculations: 8260 RSK-175 8270 1664 8082 Methamphetam 524.2 Hardness 8011 TPHG/BTEX 8081 Other Total number of corrective action 		TPHD□TSS□pH□Spec. Grav.□Turbidity□	200.8 6020 1631 TO-15 TO-17			
Comments:						
Does any non-conformance/corrective action require further notification? Yes D No D (If yes, explain)						
Attach all internal audit checksho internal QA/QC audit folder.	eets and corre	ective action forms and	file in the			
QA Officer's Signature		Date Audit Review Completed				

Area: Sample receiving, storage, disposal

Date:	Auditor:	Person(s) Audited:	
		<u>YES</u>	<u>NO</u>
Is the Master Sa	ample Log-In book in order?		
Are COCs filled	out correctly during sample check-in?		
Are all samples/	projects traceable, i.e. labeled?		
Are samples stor	red in the correct refrigerators?		
Are refrigerator	temperatures recorded daily?		
Are standards/se	olvents logged in?		
Are sample disp	osal records kept?		
Disposal Area:			
Does each drum	have an up to date contents list?		
Are drums prope	erly labeled?		
Are waste mater	rials contained properly in each drum?		
Are waste dispos	sal records kept?		
Are all prior ext	ernal and internal findings addressed?		
Fill out a cor	rective action form for any "no" answers	s and for anything else o	as needed.
Number of corre	ective actions given: CON	IMENTS	

Area: Extractions				
Organic \Box	Inorganic		Volatiles [
Method(s):				
			son(s)	
Date: Audi	tor:	Aud	ited:	
		<u>YES</u>	<u>NO</u>	<u>N/A</u>
Are waste containers properly	labeled and stored?			
Was any new equipment prope to use?	rly validated prior			
Are manufacturer's certificates calibration/accuracy available?	•			
Are analytical balances checke	d daily?			
Are autopipets calibrated at lea	ast monthly?			
Are bottle top dispensers calibr	rated at least monthly?			
Is the oven temperature record	ed daily?			
Is the water bath temperature	recorded daily?			
Is the hot block temperature re	corded daily?			
Is equipment which falls out of repaired or taken out of service				
Are all prior external and inter	rnal findings addressed?			
Fill out a corrective action fo	orm for any "no" answers	s and for an	ything else a	s needed.
Number of corrective actions gi	ven: COM	IMENTS		

Area: Analysis/Calculations Method:		
Date: Auditor:	Person(s) Audited:	
	<u>YES</u>	<u>NO</u>
Are standards traceable to a certified source?		
Are standards labeled with an expiration date?		
Are standards taken out of use after the expiration date?		
Do initial calibrations meet the method requirements?		
Are initial calibrations verified with a second source standa	ard?	
Are initial calibrations verified with continuing calibration verification standards?		
Do QC sample results (method blanks, LCS, MS) meet the method requirements?		
Are corrective actions taken for any result which falls outside of acceptance criteria?		
Is the SOP up to date?		
Are instrument maintenance logs up to date?		
Are MDLs up to date?		
Are reporting limits based on MDLs?		
Are data calculations based on the initial calibration?		
Is data flagged with qualifiers if necessary?		
Are all prior external and internal findings addressed?		
Fill out a corrective action form for any "no" answers and	l for anything else	as needed.
Number of corrective actions given: COMME	NTS	

Area: Project Management/Reports

Date: Auditor:	Person(s) Audited:	
	<u>YES</u>	NO
Are extraction worksheets filled out complete	ely and clearly?	
Are capability issues communicated to the clicker clearly documented?	ient and	
Are any changes to the COC initialed/dated v person requesting the change clearly indicated		
Are the subcontracted samples documented t	o client?	
Is the Non-Conformance form used to docum	ent client complaints?	
Are subcontract lab reports forwarded without client, and clearly identified in our final repo		<u> </u>
Are amended reports clearly identified?		
Are additional reports clearly identified?		
Are draft results/reports clearly identified?		
Are flags from analysts left as is?		
Is data flagged in an unambiguous manner?		
Is there a case narrative when the validity of is in question?	f the data	
Are all prior external and internal findings a	ddressed?	
Fill out a corrective action form for any "n	o" answers and for anything e	lse as needed.
Number of corrective actions given:	COMMENTS	

Area: Document Control/Training

Date:	Auditor:	Person(s) Audited:	
		<u>YES</u>	<u>NO</u>
Is the employeed si	gnature list up to date?		
Are all logbooks nu of Laboratory Logbo	mbered and listed in the Master Log poks?		
Is the Controlled De of controlled docum	ocument Record used to track distribution ents?	n 	
Is the Archive Acce	ss Log used?		
Is the List of Curre	nt SOPs up to date?		
Are the Current SO	P binders up to date?		
Do Employee Attest revision numbers?	tation forms list current SOPs and		
Have employees ini revision of all appli	tialed Attestation forms for the current cable SOPs?		
Are DOCs complete	e and clearly identified?		
Is the DOC training	g summary database up to date?		
Are Laboratory Org summaries up to da	ganization and Personnel Qualifications ate?		
Is current accredita	tion summary up to date?		
Are all prior extern	al and internal findings addressed?		
Fill out a corrective	action form for any "no" answers and for	anything else as	needed.

 Number of corrective actions given:
 COMMENTS

Area: Support Equipment

Date:	Auditor:	Perso Audit	· · /	
			<u>YES</u>	<u>NO</u>
Are primary refere	ence weights and thermomet	ters clearly labeled?		
Are standards NIS	ST traceable?			
Are daily standard	ds referenced in logbooks?			
0 (igerator, water bath, hot blo ompleted as required?	ck, oven, balance		
e ,	igerator, water bath, hot blo ound or in a 3 ring binder?	ck, oven, balance		
	apport equipment (thermometers, hot blocks, etc.) clearly l			
If any equipment i and clearly labeled	is out of specifications, is it t d as such?	aken out of service		
Are all prior exter	nal and internal findings ad	dressed?		
Fill out a correc	ctive action form for any "no	answers and for any	thing else o	as needed.
Number of correct	ive actions given:	COMMENTS		

INTERNAL QA/QC AUDIT CORRECTIVE ACTION

Area/Analysis				
Corrective action given to (name	e):			
Given by (name): (Keep a copy of this form for tracking)				
Date given:	Target res (set based on	ponse date: potential need to n	otify clients and o	on work load)
Description of non-compliance:_				
Description of root cause and ree				
Specific documentation required documentation attached.)	l: (Return this	s form to the aud	litor with the r	equired
Corrective action reviewed and a	approved:			
QC Officer (or designee):			Date:	
(Return this form to QC officer a	along with att	ached document	ation)	
FEDIAM Por 18 December 0 2022	Do		л	CN 919

QUALITY SYSTEM MANAGERIAL REVIEW

Date:	Auditor:			
Review of Calendar Year	20			
Write comments, as needed,	in a separate file and at	tach.		
1. Review of most recent int	ernal audit (Date(s))	
All areas audited			Yes	No 🗌
Corrective actions implement	ated and documented		Yes	No 🗆
2. Review of non-conforman	ce reports			
Corrective actions implement	ited and documented		Yes 🗆	No 🗌
3. Review of proficiency test	ting (PT) samples			
Analysis completed two time (for NELAP accredited analy		er matrix	Yes	No 🗌
Corrective actions implement	ated and documented		Yes	No 🗌
4. Review of current accredi	tation status.			
5. Review of recent audits/a	ssessments by external	bodies.		
External audit(s) by: State/	Company		Date	
Corrective actions implement	ated and documented.		Yes	No 🗌
6. If audits or data review r	esulted in changes to pro	eviously repor	ted data, we	re
affected clients notified w	vithin 30 days?	Yes 🗆	No 🗌	n/a 🗌
7. Changes in volume and/o	r type of work undertak	en which may	affect qualit	у.
8. Feedback from clients reg	garding quality. (Includ	e review of an	y client comp	olaints.)
9. Other relevant factor(s) v	which may affect quality			
10. Pro-active preventive ac	tions to avoid potential	non-conformai	nces.	

MANAGERIAL REVIEW CORRECTIVE ACTION

Area/Analysis	-
Corrective action given to (name	e):
Given by (name): (Keep a copy for tracking)	
Date given:	Target Response Date:
Description of non-compliance:	
Description of required correctiv	re action:
Specific documentation required documentation attached.)	: (Return this sheet to the auditor with the required
Corrective action reviewed and a	approved:
Name: (Technical/Laboratory Director of	Date:
File along with attached docume	entation in the management review folder.

APPENDIX F

DEFINITIONS

F&BI QAM Rev. 18, December 9, 2022

DEFINITIONS

Acceptance Criteria: specified limits placed on characteristics of an item, process, or service defined in requirement documents. (ASQC)

Accreditation: the process by which an agency or organization evaluates and recognizes a laboratory as meeting certain predetermined qualifications or standards, thereby accrediting the laboratory. In the context of the National Environmental Laboratory Accreditation Program (NELAP), this process is a voluntary one. (NELAC)

Accrediting Authority: the Territorial, State, or federal agency having responsibility and accountability for environmental laboratory accreditation and which grants accreditation. (NELAC)

Accuracy: the degree of agreement between an observed value and an accepted reference value. Accuracy includes a combination of random error (precision) and systematic error (bias) components which are due to sampling and analytical operations; a data quality indicator. (QAMS)

Analyst: the designated individual who performs the "hands-on" analytical methods and associated techniques and who is the one responsible for applying required laboratory practices and other pertinent quality controls to meet the required level of quality. (NELAC)

Audit: a systematic evaluation to determine the conformance to quantitative *and qualitative* specifications of some operational function or activity. (EPA-QAD)

Batch: environmental samples that are prepared and/or analyzed together with the same process and personnel, using the same lot(s) of reagents. A **preparation batch** is composed of one to 20 environmental samples of the same matrix, meeting the above mentioned criteria and with a maximum time between the start of processing of the first and last sample in the batch to be 24 hours. (NELAC Quality Systems Committee)

Blank: a sample that has not been exposed to the analyzed sample stream in order to monitor contamination during sampling, transport, storage or analysis. The blank is subjected to the usual analytical and measurement process to establish a zero baseline or background value and is sometimes used to adjust or correct routine analytical results. Blanks include:

<u>Equipment Blank</u>: a sample of analyte-free media which has been used to rinse common sampling equipment to check effectiveness of decontamination procedures. (NELAC)

<u>Field Blank</u>: blank prepared in the field by filling a clean container with pure deionized water and appropriate preservative, if any, for the specific sampling activity being undertaken. (EPA OSWER) <u>Instrument Blank</u>: a clean sample (e.g., distilled water) processed through the instrumental steps of the measurement process; used to determine instrument contamination. (EPA-QAD)

<u>Method Blank</u>: a sample of a matrix similar to the batch of associated samples (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences are present at concentrations that impact the analytical results for sample analyses. (NELAC) <u>Reagent Blank</u>: (method reagent blank): a sample consisting of reagent(s), without the target analyte or sample matrix, introduced into the analytical procedure at the appropriate point and carried through all subsequent steps to determine the contribution of the reagents and of the involved analytical steps. (QAMS)

Blind Sample: a sub-sample for analysis with a composition known to the submitter. The analyst/laboratory may know the identity of the sample but not its composition. It is used to test the analyst's or laboratory's proficiency in the execution of the measurement process. (NELAC)

Calibration: to determine, by measurement or comparison with a standard, the correct value of each scale reading on a meter, instrument, or other device. The levels of the applied calibration standard should bracket the range of planned or expected sample measurements. (NELAC)

Calibration Curve: the graphical relationship between the known values, such as concentrations, of a series of calibration standards and their instrument response. (NELAC)

Calibration Standard: a substance or reference material used to calibrate an instrument. (QAMS)

Certified Reference Material (CRM): a reference material one or more of whose property values are certified by a technically valid procedure, accompanied by or traceable to a certificate or other documentation which is issued by a certifying body. (ISO Guide 30 - 2.2)

Chain of Custody Form: record that documents the possession of the samples from the time of collection to receipt in the laboratory. This record generally includes: the number and types of containers; the mode of collection; collector; time of collection; preservation; and requested analyses. (NELAC)

Confirmation: verification of the identity of a component through the use of an approach with a different scientific principle from the original method. These may include, but are not limited to: Second column confirmation, Alternate wavelength, Derivatization, Mass spectral interpretation, Alternative detectors or, Additional cleanup procedures. (NELAC)

Conformance: an affirmative indication or judgment that a product or service has met the requirements of the relevant specifications, contract, or regulation; also the state of meeting the requirements. (ANSI/ASQC E4-1994)

Corrective Action: the action taken to eliminate the causes of an existing nonconformity, defect or other undesirable situation in order to prevent recurrence. (ISO 8402)

Data Audit: a qualitative and quantitative evaluation of the documentation and procedures associated with environmental measurements to verify that the resulting data are of acceptable quality (i.e., that they meet specified acceptance criteria). (NELAC)

Data Reduction: the process of transforming raw data by arithmetic or statistical calculations, standard curves, concentration factors, etc., and collation into a more useable form. (EPA-QAD)

Demonstration of Capability: a procedure to establish the ability of the analyst to generate acceptable accuracy. (NELAC)

Document Control: the act of ensuring that documents (and revisions thereto) are proposed, reviewed for accuracy, approved for release by authorized personnel, distributed properly and controlled to ensure use of the correct version at the location where the prescribed activity is performed. (ASQC)

Holding Times (Maximum Allowable Holding Times): the maximum times that samples may be held prior to analysis and still be considered valid or not compromised. (40 CFR Part 136)

Internal Standard: a known amount of standard added to a test portion of a sample as a reference for evaluating and controlling the precision and bias of the applied analytical method. (NELAC)

Laboratory: a body that calibrates and/or tests. (ISO 25)

Laboratory Control Sample (LCS): a sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes. It is generally used to establish intralaboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system. (NELAC)

Laboratory Control Sample Duplicate (LCSD): a second replicate LCS prepared in the laboratory and analyzed to obtain a measure of the precision of the recovery for each analyte. (QAMS)

Matrix: the substrate of a test sample.

Laboratory Duplicate: aliquots of a sample taken from the same container under laboratory conditions and processed and analyzed independently. (NELAC)

Matrix Spike (MS): a sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. Matrix spikes are used, for example, to determine the effect of the matrix on a method's recovery efficiency. (QAMS)

Matrix Spike Duplicate (MSD): a second replicate matrix spike prepared in the laboratory and analyzed to obtain a measure of the precision of the recovery for each analyte. (QAMS)

Method: see Test Method

Method Detection Limit: the minimum concentration of a substance (an analyte) that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix containing the analyte. (40 CFR Part 136, Appendix B)

National Institute of Standards and Technology (NIST): an agency of the US Department of Commerce's Technology Administration that is working with EPA, States, NELAC, and other public and commercial entities to establish a system under which private sector companies and interested States can be accredited by NIST to provide NIST-traceable proficiency testing (PT) to those laboratories testing drinking water and wastewater. (NIST)

National Environmental Laboratory Accreditation Conference (NELAC): a voluntary organization of State and Federal environmental officials and interest groups purposed primarily to establish mutually acceptable standards for accrediting environmental laboratories. A subset of NELAP. (NELAC)

National Environmental Laboratory Accreditation Program (NELAP): the overall National Environmental Laboratory Accreditation Program of which NELAC is a part. (NELAC)

National Voluntary Laboratory Accreditation Program (NVLAP): a program administered by NIST that is used by providers of proficiency testing to gain accreditation for all compounds/matrices for which NVLAP accreditation is available, and for which the provider intends to provide NELAP PT samples. (NELAC)

Performance Audit: the routine comparison of independently obtained qualitative and quantitative measurement system data with routinely obtained data in order to evaluate the proficiency of an analyst or laboratory. (NELAC)

Performance Based Measurement System (PBMS): a set of processes wherein the data quality needs, mandates or limitations of a program or project are specified and serve as criteria for selecting measurement processes which will meet those needs in a cost-effective manner. (NELAC)

Precision: the degree to which a set of observations or measurements of the same property, obtained under similar conditions, conform to themselves; a data quality indicator. Precision is usually expressed as standard deviation, variance or range, in either absolute or relative terms. (NELAC)

Preservation: refrigeration and/or reagents added at the time of sample collection (or later) to maintain the chemical and/or biological integrity of the sample. (NELAC)

Proficiency Testing: a means of evaluating a laboratory's performance under controlled conditions relative to a given set of criteria through analysis of unknown samples provided by an external source. (NELAC)

Proficiency Testing Study Provider: any person, private party, or government entity that meets stringent criteria to produce and distribute NELAC PT samples, evaluate study results against published performance criteria and report the results to the laboratories, primary accrediting authorities, PTOB/PTPA, and NELAP. (NELAC)

Proficiency Test Sample (PT): a sample, the composition of which is unknown to the analyst and is provided to test whether the analyst/laboratory can produce analytical results within specified acceptance criteria. (QAMS)

Protocol: a detailed written procedure for field and/or laboratory operation (e.g., sampling, analysis) which must be strictly followed. (EPA-QAD)

Quality Assurance: an integrated system of activities involving planning, quality control, quality assessment, reporting and quality improvement to ensure that a product or service meets defined standards of quality with a stated level of confidence. (QAMS)

Quality Assurance [Project] Plan (QAPP): a formal document describing the detailed quality control procedures by which the quality requirements defined for the data and decisions pertaining to a specific project are to be achieved. (EPA-QAD)

Quality Control: the overall system of technical activities whose purpose is to measure and control the quality of a product or service so that it meets the needs of users. (QAMS)

Quality Control Sample: an uncontaminated sample matrix spiked with known amounts of analytes from a source independent from the calibration standards. It is generally used to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system. (EPA-QAD)

Quality Manual: a document stating the management policies, objectives, principles, organizational structure and authority, responsibilities, accountability, and implementation of an agency, organization, or laboratory, to ensure the quality of its product and the utility of its product to its users. (NELAC)

Quality System: a structured and documented management system describing the policies, objectives, principles, organizational authority, responsibilities, accountability, and implementation plan of an organization for ensuring quality in its work processes, products (items), and services. The quality system provides the framework for planning, implementing, and assessing work performed by the organization and for carrying out required QA and QC. (ANSI/ASQC E-41994)

Quantitation Limits: levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported at a specified degree of confidence. (NELAC)

Range: the difference between the minimum and the maximum of a set of values. (EPA-QAD)

Raw Data: any original factual information from a measurement activity or study recorded in a laboratory notebook, worksheets, records, memoranda, notes, or exact copies thereof that are necessary for the reconstruction and evaluation of the report of the activity or study. Raw data may include photography, microfilm or microfiche copies, computer printouts, magnetic media, including dictated observations, and recorded data from automated instruments. If exact copies of raw data have been prepared (e.g., tapes which have been transcribed verbatim, data and verified accurate by signature), the exact copy or exact transcript may be submitted. (EPA-QAD)

Reference Material: a material or substance one or more properties of which are sufficiently well established to be used for the calibration of an apparatus, the assessment of a measurement method, or for assigning values to materials. (ISO Guide 30-2.1)

Reference Method: a method of known and documented accuracy and precision issued by an organization recognized as competent to do so. (NELAC)

Reference Standard: a standard, generally of the highest metrological quality available at a given location, from which measurements made at that location are derived. (VIM-6.08)

Replicate Analyses: the measurements of the variable of interest performed identically on two or more sub-samples of the same sample within a short time interval. (NELAC)

Reporting Limits: routinely reported lower limits of quantitation, typically 2 to 10 times the MDL.

Sample Tracking: procedures employed to record the possession of the samples from the time of sampling until analysis, reporting, and archiving. These procedures include the use of a Chain of Custody Form that documents the collection, transport, and receipt of compliance samples to the laboratory. In addition, access to the laboratory is limited and controlled to protect the integrity of the samples. (NELAC) **Selectivity:** the capability of a test method or instrument to respond to a target substance or constituent in the presence of non-target substances. (EPA-QAD)

Sensitivity: the capability of a method or instrument to discriminate between measurement responses representing different levels (e.g., concentrations) of a variable of interest. (NELAC)

Spike: a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery efficiency or for other quality control purposes. (NELAC)

Standard Operating Procedures (SOPs): a written document which details the method of an operation, analysis or action whose techniques and procedures are thoroughly prescribed and which is accepted as the method for performing certain routine or repetitive tasks. (QAMS)

Standardized Reference Material (SRM): a certified reference material produced by the U.S. National Institute of Standards and Technology or other equivalent organization and characterized for absolute content, independent of analytical method. (EPA-QAD)

Supervisor (however named): the individual(s) designated as being responsible for a particular area or category of scientific analysis. This responsibility includes direct day-to-day supervision of technical employees, supply and instrument adequacy and upkeep, quality assurance/quality control duties and ascertaining that technical employees have the required balance of education, training and experience to perform the required analyses. (NELAC)

Surrogate: a substance with properties that mimic the analyte of interest. It is unlikely to be found in environment samples and is added to them for quality control purposes. (QAMS)

Technical Director: individual(s) who has overall responsibility for the technical operation of the environmental testing laboratory. (NELAC)

Test: a technical operation that consists of the determination of one or more characteristics or performance of a given product, material, equipment, organism, physical phenomenon, process or service according to a specified procedure. The result of a test is normally recorded in a document sometimes called a test report or a test certificate. (ISO/IEC Guide 2-12.1, amended)

Test Method: an adoption of a scientific technique for a specific measurement problem, as documented in a laboratory SOP or published by a recognized authority. (NELAC)

Testing Laboratory: a laboratory that performs tests (ISO/IEC Guide 2-12.4)

The NELAC Institute (TNI): A non-profit organization whose mission is to foster the generation of environmental data of known and documented quality through an open, inclusive and transparent process that is responsive to the needs of the community. (TNI)

Traceability: the property of a result of a measurement whereby it can be related to appropriate standards, generally international or national standards, through an unbroken chain of comparisons. (VIM-6.12)

United States Environmental Protection Agency (EPA): the federal governmental agency with responsibility for protecting public health and safeguarding and improving the natural environment (i.e., the air, water, and land) upon which human life depends. (US-EPA)

Validation: the process of substantiating specified performance criteria. (EPA-QAD)

Verification: confirmation by examination and provision of evidence that specified requirements have been met. (NELAC)

Sources: 40CFR Part 136

American Society for Quality Control (ASQC), Definitions of Environmental Quality Assurance Terms

American National Standards Institute (ANSI), Style Manual for Preparation of Proposed American National Standards, Eighth Edition, March 1991

ANSI/ASQC E4, 1994

International Standards Organization (ISO) Guides 2, 30, 8402

International Vocabulary of Basic and General Terms in Metrology (VIM): 1984. Issued by BIPM, IEC, ISO and OIML

National Institute of Standards and Technology (NIST)

National Environmental Laboratory Accreditation Conference (NELAC), July 1998 Standards

The NELAC Institute (TNI), Web site, January 2009.

US EPA Quality Assurance Management Section (QAMS), Glossary of Terms of Quality Assurance Terms, 8/31/92 and 12/6/95

US EPA Quality Assurance Division (QAD)

Appendix D

Laboratory Sample Quality Control and Detection Limits

Analysis For Total Metals By EPA Method 6020/200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 04/13/23 04/13/23 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Friedman & Bruya Study SM-137, UST-112 I3-288 mb I3-288 mb.128 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Antimony	<1		
Arsenic	<1		
Barium	<1		
Beryllium	<1		
Cadmium	<1		
Chromium	<5		
Cobalt	<1		
Copper	<5		
Lead	<1		
Manganese	<1		
Mercury	<1		
Molybdenum	<1		
Nickel	<2		
Selenium	<1		
Silver	<1		
Thallium	<1		
Vanadium	<1		
Zinc	<5		

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 05/05/23 05/05/23 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	I3-349 mb2 I3-349 mb2.038 ICPMS2 SP
	Concentration		
Analyte:	ug/L (ppb)		
Antimony	<1		
Arsenic	<1		
Barium	<1		
Beryllium	<1		
Cadmium	<1		
Chromium	<1		
Cobalt	<1		
Copper	<5		
Iron	<50		
Lead	<1		
Manganese	<1		
Mercury	<1		
Molybdenum	<1		

<1

<1

<1

<1

<1

 $<\!\!5$

Nickel

Silver

Zinc

Selenium

Thallium

Vanadium

Analysis For Total Metals By EPA Method 6020/200.8

Client Sample ID:	Method Blank	Client:	ClientID
Date Received:	Not Applicable	Project:	ProjectID
Date Extracted:	02/21/24	Lab ID:	04-374 mb 1/30
Date Analyzed:	02/21/24	Data File:	022107.D
Matrix:	Soil	Instrument:	GC9
Units:	mg/kg (ppm) Dry Weight	Operator:	AL
Surrogates: Tetrachlorometaxy Decachlorobipheny		Lower : Limit: 20 28	Upper Limit: 157 158

Analysis For Organochlorine Pesticides By EPA Method 8081B

Decachlorobiphenyl	96	$\frac{20}{28}$	
	Concentration		
Compounds:	mg/kg (ppm) Dry Weight		

alpha-BHC	< 0.01
gamma-BHC (Lindane)	< 0.01
beta-BHC	< 0.01
delta-BHC	< 0.01
Heptachlor	< 0.01
Aldrin	< 0.01
Heptachlor Epoxide	< 0.01
trans-Chlordane	< 0.01
cis-Chlordane	< 0.01
4,4'-DDE	< 0.01
Endosulfan I	< 0.01
Dieldrin	< 0.01
Endrin	< 0.01
4,4'-DDD	< 0.01
Endosulfan II	< 0.01
4,4'-DDT	< 0.01
Endrin Aldehyde	< 0.01
Methoxychlor	< 0.01
Endosulfan Sulfate	< 0.01
Endrin Ketone	< 0.01
Toxaphene	<1

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blan Not Applicab 04/01/24 04/01/24 Water ug/L		Client: Project: Lab ID: Data File: Instrument: Operator:	ClientID ProjectID 04-755 mb 040116.D GC7 MG	
Surrogates: Tetrachlorometaxy Decachlorobipheny		% Recovery: 60 46	Lower Limit: 20 11		Upper Limit: 121 159
	(Concentration			
Compounds:		ug/L			
alpha-BHC gamma-BHC (Lind beta-BHC delta-BHC Heptachlor Aldrin Heptachlor Epoxide trans-Chlordane cis-Chlordane 4,4'-DDE Endosulfan I Dieldrin Endrin 4,4'-DDD Endosulfan II 4,4'-DDT Endrin Aldehyde Methoxychlor Endosulfan Sulfate Endrin Ketone	e	$\begin{array}{c} < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\$			
Toxaphene		<0.005 <0.05			
1 -		-			

Analysis For Organochlorine Pesticides By EPA Method 8081B

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	Method Blank	Client:	ClientID
Date Received:	Not Applicable	Project:	ProjectID
Date Extracted:	04/02/24	Lab ID:	04-758 mb 1/30
Date Analyzed:	04/02/24	Data File:	040222.D
Matrix:	Soil	Instrument:	GC7
Units:	mg/kg (ppm) Dry Wei	ight Operator:	AL
Sumocatoa	0/ P	very: Lower Limit:	Upper Limit:
Surrogates: Tetrachlorometaxy	lene % Recov		162
Decachlorobipheny			$152 \\ 152$
Decaemorosipheny	1 100		104
	Concentr	ration	
Compounds:	mg/kg (ppm) I	Dry Weight	
Aroclor 1221	<0.0	2	
Aroclor 1232	<0.0	2	
Aroclor 1016	<0.0	2	
Aroclor 1242	<0.0	2	
Aroclor 1248	<0.0	2	
Aroclor 1254	<0.0	2	
Aroclor 1260	<0.0	2	
Aroclor 1262	<0.0	2	
Aroclor 1268	<0.0	2	

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units: Surrogates:	Method Bl Not Applic 04/04/24 00 04/04/24 1 Soil mg/kg (ppr	able 3:00	Client: Project: Lab ID: Data File: Instrument: Operator: Lower Limit:	ClientID ProjectID 04-0767 mb 040412.D GCMS4 MD Upper Limit:	
1,2-Dichloroethane	-d4	102	86	114	
Toluene-d8		102	86	115	
4-Bromofluorobenz	ene	96	83	116	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Ethanol		<50	trans-1,	3-Dichloropropene	< 0.05
Dichlorodifluorome	thane	< 0.5		ichloroethane	< 0.05
Chloromethane		< 0.5	2-Hexan	ione	< 0.5
Vinyl chloride		< 0.05	1,3-Dich	loropropane	< 0.05
Bromomethane		< 0.5	Tetrach	loroethene	< 0.025
Chloroethane		< 0.5	Dibromo	ochloromethane	< 0.05
Trichlorofluoromet	hane	< 0.5		omoethane (EDB)	< 0.05
2-Propanol		< 0.5	Chlorob		< 0.05
Acetone		<5	Ethylber		< 0.05
1,1-Dichloroethene		< 0.05		Tetrachloroethane	< 0.05
Hexane		< 0.25	m,p-Xyle		< 0.1
Methylene chloride		< 0.5	o-Xylene	9	< 0.05
t-Butyl alcohol (TB		<2.5	Styrene		< 0.05
Methyl t-butyl ethe		< 0.05		lbenzene	< 0.05
trans-1,2-Dichloroe		< 0.05	Bromofo		< 0.05
Diisopropyl ether (l	DIPE)	< 0.05		lbenzene	< 0.05
1,1-Dichloroethane		< 0.05	Bromobe		< 0.05
Ethyl t-butyl ether		< 0.05		imethylbenzene	< 0.05
2,2-Dichloropropan		< 0.05		Tetrachloroethane	< 0.05
cis-1,2-Dichloroethe	ene	< 0.05		ichloropropane	< 0.05
Chloroform		< 0.05	2-Chloro		< 0.05
2-Butanone (MEK)		<1	4-Chloro		< 0.05
t-Amyl methyl ethe	. ,	< 0.05		ylbenzene	< 0.05
1,2-Dichloroethane	. ,	<0.05		imethylbenzene	<0.05
1,1,1-Trichloroetha		<0.05		vlbenzene	<0.05 <0.05
1,1-Dichloropropen		<0.05 <0.05		pyltoluene	<0.05 <0.05
Carbon tetrachlorid Benzene	le	< 0.03		lorobenzene lorobenzene	<0.05
Trichloroethene		< 0.03		lorobenzene	<0.05
1,2-Dichloropropan	0	<0.02		omo-3-chloropropane	<0.05
Bromodichlorometh		< 0.05		ichlorobenzene	<0.25
Dibromomethane		< 0.05		orobutadiene	<0.25
4-Methyl-2-pentance	ne	<0.05	Naphtha		<0.25
cis-1,3-Dichloroproj		<0.05	-	ichlorobenzene	<0.05
Toluene	00110	< 0.05	1,2,0-11	1011101 0001120110	-0.20
10140110		-0.00			

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 03/28/24 05 03/28/24 10 Water ug/L (ppb)	able :46	Client: Project: Lab ID: Data File: Instrument: Operator: Lower	ClientID ProjectID 04-0685 mb 032809.D GCMS13 IJL Upp	
Surrogates:		% Recovery:	Limit:	Limi	
1,2-Dichloroethane	-d4	93	71	132	
Toluene-d8	-u4	94	68	132	
4-Bromofluorobenz	ene	103	62	136	
1 Diomondoi obeniz	ene	100	02	100	,
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Ethanol		<1,000	trans-1	3-Dichloropropend	e <0.4
Dichlorodifluorome	thane	<1		ichloroethane	< 0.5
Chloromethane	unano	<10	2-Hexan		<10
Vinyl chloride		< 0.02		loropropane	<1
Bromomethane		<5		loroethene	<1
Chloroethane		<1		ochloromethane	< 0.5
Trichlorofluorometl	hane	<1		omoethane (EDB)	
2-Propanol		<10	Chlorobe		<1
Acetone		<50	Ethylber		<1
1,1-Dichloroethene		<1		Cetrachloroethane	<1
Hexane		<5	m,p-Xyle		<2
Methylene chloride		<5	o-Xylene	e e	<1
t-Butyl alcohol (TB	A)	<50	Styrene		<1
Methyl t-butyl ethe	er (MTBE)	<1	Isopropy	lbenzene	<1
trans-1,2-Dichloroe	thene	<1	Bromofo	orm	<5
Diisopropyl ether (l		<1		lbenzene	<1
1,1-Dichloroethane		<1	Bromobe		<1
Ethyl t-butyl ether		<1		imethylbenzene	<1
2,2-Dichloropropan		<1		Petrachloroethane	
cis-1,2-Dichloroethe	ene	<1		ichloropropane	<1
Chloroform		<1	2-Chloro		<1
2-Butanone (MEK)		<20	4-Chloro		<1
t-Amyl methyl ethe		<1		ylbenzene	<1
1,2-Dichloroethane		<0.2		imethylbenzene	<1
1,1,1-Trichloroetha		<1 <1	-	vlbenzene	<1 <1
1,1-Dichloropropen Carbon tetrachloric		<1 <0.5		pyltoluene	<1 <1
Benzene	le	<0.3 <0.35		lorobenzene lorobenzene	<1
Trichloroethene		<0.55 <0.5		lorobenzene	<1
1,2-Dichloropropan	Α	<0.5		omo-3-chloroprop	
Bromodichlorometh		<0.5		ichlorobenzene	<10
Dibromomethane	iuiio	<0.5 <1		orobutadiene	<0.5
4-Methyl-2-pentance	one	<10	Naphtha		<1
cis-1,3-Dichloroproj		<0.4	-	ichlorobenzene	<1
Toluene	F 0	<1	1, 2 ,0 11		1
-					

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 04/01/24 04/02/24 Soil mg/kg (ppm) D		Client: Project: Lab ID: Data File: Instrument: Operator:	ClientID ProjectID 04-0751 mb 1/5 040135.D GCMS12 ya	
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14		6 Recovery: 85 97 106 106 104 115	Lower Limit: 14 29 16 46 17 31	Upper Limit: 115 121 137 122 154 167	
Compounds:		ncentration g/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
N-Nitrosodimethyl. Phenol Bis(2-chloroethyl) & 2-Chlorophenol 1,3-Dichlorobenzen 1,4-Dichlorobenzen 1,2-Dichlorobenzen Benzyl alcohol 2,2'-Oxybis(1-chloro 2-Methylphenol Hexachloroethane N-Nitroso-di-n-prop 3-Methylphenol + 4 Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic acid Bis(2-chloroethoxy) 2,4-Dichlorophenol 1,2,4-Trichlorobenz Naphthalene Hexachlorobutadie 4-Chloro-3-methylp 2-Methylnaphthale 1-Methylnaphthale	amine ether e e e opr oyla t-Met l omet zene ne ohenol ene ene		3-Nitroa Acenaph 2,4-Dini Dibenzo 2,4-Dini 4-Nitrop Diethyl Fluorend 4-Chloro 1,2-Diph N-Nitroa 4-Nitroa 4,6-Dini 4-Bromo Hexachl Pentach Phenant Anthrac Carbazo Di-n-but Fluoran Benzidin Pyrene Benzyl b 3,3'-Dich	niline thene trophenol furan trotoluene henol phthalate e ophenyl phenyl nenylhydrazine sodiphenylamine niline tro-2-methylph orobenzene lorophenol hrene ene le tyl phthalate thene ne putyl phthalate anthracene	
Hexachlorocycloper 2,4,6-Trichloropher 2,4,5-Trichloropher 2-Chloronaphthaler 2-Nitroaniline Dimethyl phthalate Acenaphthylene	nol nol ne	<0.15 <0.5 <0.5 <0.05 <0.25 <0.5 <0.01	Di-n-oct Benzo(a) Benzo(b) Benzo(k) Indeno(1)	hylhexyl) phth yl phthalate)pyrene)fluoranthene)fluoranthene 1,2,3-cd)pyrene a,h)anthracene	<0.8 <0.5 <0.01 <0.01 <0.01 <0.01 <0.01

Analysis For Semivolatile Compounds By EPA Method 8270E

2,6-Dinitrotoluene

< 0.25

< 0.01

Date Received:NDate Extracted:0Date Analyzed:0Matrix:W	fethod Blank Iot Applicable 4/01/24 4/01/24 Vater g/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	ClientID ProjectID 04-750 mb 040114.D GCMS9 ya	
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophenol Terphenyl-d14	% Recovery: 35 25 82 83 78 108	Lower Limit: 10 10 15 25 10 41	Upper Limit: 60 49 144 128 142 138	
Compounds:	Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Compounds: N-Nitrosodimethylam Phenol Bis(2-chloroethyl) eth 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene Benzyl alcohol 2,2'-Oxybis(1-chloropr 2-Methylphenol Hexachloroethane N-Nitroso-di-n-propyl 3-Methylphenol + 4-M Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic acid Bis(2-chloroethoxy)me 2,4-Dichlorophenol 1,2,4-Trichlorobenzen Naphthalene Hexachlorobutadiene 4-Chloroaniline	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3-Nitroa Acenaph 2,4-Dini Dibenzo 2,4-Dini 4-Nitrop Diethyl Fluorend 4-Chloro 1,2-Diph N-Nitroa 4,6-Dini 4-Bromo Hexachl Pentach Phenant Anthrac Carbazo Di-n-but Fluoran Benzidin Pyrene Benzyl b	niline thene trophenol furan trotoluene henol phthalate e ophenyl phenyl tro-2-methylph orobenzene lorophenol chrene ene le tyl phthalate thene	$ug/L (ppb)$ $<20 \\<0.02 \\<6 \\<0.02 \\<1 \\<6 \\<2 \\<0.02 \\<0.2 \\<0.2 \\<0.2 \\<0.2 \\<0.2 \\<0.2 \\<0.2 \\<0.2 \\<0.2 \\<0.2 \\<1 \\<0.02 \\<0.02 \\<0.02 \\<2 \\<0.02 \\<2 \\<0.02 \\<2 \\<0.02 \\<2 \\<2 \\<2 \\<2 \\<2 \\<2 \\<2 \\<2 \\<2 \\<$
4-Chloro-3-methylphe 2-Methylnaphthalene 1-Methylnaphthalene Hexachlorocyclopenta 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene	<0.2 <0.2	Benz(a)a Chrysen Bis(2-et Di-n-oct Benzo(a) Benzo(b) Benzo(k) Indeno(1)	anthracene e nylhexyl) phth yl phthalate	<2 <0.02 <0.02 <3.2 <2 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02

Analysis For Semivolatile Compounds By EPA Method 8270E

2,6-Dinitrotoluene

<1

< 0.04

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Bla Not Applica 04/03/24 04/03/24 Air ug/m3		Client: Project Lab II Data F Instru Operat	::): 'ile: ment:	ClientID ProjectID 04-0689 mb 040311.D GCMS8 bat
Surrogates: 4-Bromofluorobenz	Recor	% very: 94	Lower Limit: 70	Upper Limit: 130	
	Concentra	ation			
Compounds:	u	g/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics	<75 <25 <25			

Analysis For Volatile Compounds By Method MA-APH

Date Extracted: 03/25/24 Date Analyzed: 03/26/24

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
Method Blank 04-618 MB	< 0.02	< 0.02	< 0.02	<0.06	<5	81

Date Extracted: 03/28/24 Date Analyzed: 03/29/24

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported as ug/L (ppb)

			Ethyl	Total	Gasoline	Surrogate
<u>Sample ID</u>	<u>Benzene</u>	<u>Toluene</u>	<u>Benzene</u>	<u>Xylenes</u>	<u>Range</u>	(<u>% Recovery</u>)
Laboratory ID						(Limit 50-150)
Method Blank	<1	<1	<1	<3	<100	104
$04-627 \ \mathrm{MB}$						

Date Extracted: 03/27/24 Date Analyzed: 03/27/24

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL **USING METHOD NWTPH-Dx Extended to Include Motor Oil Range Compounds**

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID **Diesel** Extended $(C_{10}-C_{36})$

Surrogate (% Recovery) (Limit 50-150)

Method Blank 04-734 MB

<50

104

Date Extracted: 03/28/24 Date Analyzed: 03/28/24

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND RESIDUAL RANGE USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

			Surrogate
<u>Sample ID</u>	<u>Diesel Range</u>	<u>Residual Range</u>	<u>(% Recovery)</u>
Laboratory ID	$(C_{10}-C_{25})$	$(C_{25}-C_{36})$	(Limit 50-150)
Method Blank	<50	<250	87
04-734 MB2			

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND RESIDUAL RANGE USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Residual Range (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
Method Blank 04-745 MB	<100	<250	121

Client Sample ID:Method BlarDate Received:Not ApplicatDate Collected:04/03/24Date Analyzed:04/03/24Matrix:AirUnits:ug/m3	ble	Client: Project: Lab ID: Data File Instrume Operator	ent:	ClientID ProjectID 04-0689 mb 040311.D GCMS8 bat		
	% Low	ver	Upper			
Surrogates: Recov	ery: Lim	it:	Limit:			
4-Bromofluorobenzene	94	70	130			
	Concentrati					
	Concentrati		C	1		1
Compounds: ug	/m3 pp	bv	Compo	ounds:	ug/m3	ppbv
Propene	<1.2 <(0.7	1 2-Die	chloropropane	< 0.23	< 0.05
1		0.2	1,4-Die		< 0.36	< 0.1
		1.8		rimethylpentane	<4.7	<1
				l methacrylate	<4.1	<1
).1	Hepta	-	<4.1	<1
	.044 <0.			dichloromethane	< 0.067	< 0.01
,		< <u>2</u>		proethene	< 0.11	< 0.02
		<1		-Dichloropropene	< 0.91	< 0.2
		<1		nyl-2-pentanone	<8.2	<2
).1		1,3-Dichloropropene	< 0.45	< 0.1
		<4	Toluer		<7.5	<2
	0.11 <0.			richloroethane	< 0.055	< 0.01
		<2	2-Hexa		<4.1	<1
).4		hloroethene	<6.8	<1
		<2		nochloromethane	< 0.085	< 0.01
		3.5		promoethane (EDB)	< 0.077	< 0.01
1).1		benzene	< 0.46	< 0.1
).1		enzene	< 0.43	< 0.1
		10		-Tetrachloroethane	< 0.14	< 0.02
	<12	<4	Nonan		<5.2	<1
	<3.1	<1	Isopro	pylbenzene	<9.8	<2
	<1.5 <0	0.2		rotoluene	<5.2	<1
Carbon disulfide	< 6.2	<2	Propyl	benzene	<4.9	<1
Methyl t-butyl ether (MTBE)	<7.2	<2	4-Ethy	ltoluene	<4.9	<1
Vinyl acetate	<7	<2	m,p-Xy	ylene	< 0.87	< 0.2
1,1-Dichloroethane	<0.4 <0	0.1	o-Xyle	ne	< 0.43	< 0.1
cis-1,2-Dichloroethene	<0.4 <0	0.1	Styren	e	< 0.85	< 0.2
Hexane	<3.5	<1	Bromo		<2.1	< 0.2
	.049 <0.	01	Benzy	l chloride	< 0.052	< 0.01
U U		<2		rimethylbenzene	<4.9	<1
		0.2		rimethylbenzene	<4.9	<1
		<2		chlorobenzene	<0.6	< 0.1
	0.04 <0.			chlorobenzene	< 0.23	< 0.038
		0.1		chlorobenzene	<0.6	< 0.1
	0.31 <0.			richlorobenzene	< 0.74	< 0.1
).1	Napht		< 0.26	< 0.05
Cyclohexane	<6.9	<2	Hexac	hlorobutadiene	< 0.21	< 0.02
Colculation Data 04091	1 D04 000	0 mh	۸.i		1	1
	1.D04-0689 ve15	9 md	Air		1	1
15		11	**STA	NDARD**		

Analysis For Volatile Compounds By Method TO-15

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

ena						
			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Antimony	mg/kg (ppm)	20	85	87	85-115	2
Arsenic	mg/kg (ppm)	10	96	97	85 - 115	1
Barium	mg/kg (ppm)	50	92	93	85 - 115	1
Beryllium	mg/kg (ppm)	5	104	104	85 - 115	0
Cadmium	mg/kg (ppm)	10	97	98	85 - 115	1
Chromium	mg/kg (ppm)	50	100	99	85 - 115	1
Cobalt	mg/kg (ppm)	20	102	103	85 - 115	1
Copper	mg/kg (ppm)	50	101	101	85 - 115	0
Lead	mg/kg (ppm)	50	101	101	85 - 115	0
Manganese	mg/kg (ppm)	20	98	98	85 - 115	0
Mercury	mg/kg (ppm)	5	110	111	85 - 115	1
Molybdenum	mg/kg (ppm)	20	95	94	85 - 115	1
Nickel	mg/kg (ppm)	25	96	97	85 - 115	1
Selenium	mg/kg (ppm)	5	91	89	85 - 115	2
Silver	mg/kg (ppm)	10	96	96	85 - 115	0
Thallium	mg/kg (ppm)	5	101	102	85 - 115	1
Vanadium	mg/kg (ppm)	30	113	112	85 - 115	1
Zinc	mg/kg (ppm)	50	100	101	85-115	1

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 402378-01 rr (Matrix Spike) end

ena							
	Denerting	Casile e	Comula	Percent	Percent	A	חחת
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Antimony	ug/L (ppb)	20	1.05	97	96	70 - 130	1
Arsenic	ug/L (ppb)	10	<1	93	92	70 - 130	1
Barium	ug/L (ppb)	50	9.10	96	96	70 - 130	0
Beryllium	ug/L (ppb)	5	<1	92	91	70 - 130	1
Cadmium	ug/L (ppb)	5	<1	96	94	70-130	2
Chromium	ug/L (ppb)	20	<1	94	93	70-130	1
Cobalt	ug/L (ppb)	20	<1	93	92	70-130	1
Copper	ug/L (ppb)	20	<5	93	91	70-130	2
Iron	ug/L (ppb)	100	156	88 b	$85 \mathrm{b}$	70-130	3 b
Lead	ug/L (ppb)	10	<1	89	88	70-130	1
Manganese	ug/L (ppb)	20	8.99	90 b	90 b	70-130	0 b
Mercury	ug/L (ppb)	5	<1	84	83	70-130	1
Molybdenum	ug/L (ppb)	10	<1	94	93	70-130	1
Nickel	ug/L (ppb)	20	<1	94	93	70-130	1
Selenium	ug/L (ppb)	5	<1	96	91	70-130	5
Silver	ug/L (ppb)	5	<1	88	87	70-130	1
Thallium	ug/L (ppb)	5	<1	90	88	70-130	2
Vanadium	ug/L (ppb)	20	<1	93	93	70-130	0
Zinc	ug/L (ppb)	50	32.9	91 b	90 b	70-130	1 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Antimony	ug/L (ppb)	20	94	85-115
Arsenic	ug/L (ppb)	10	92	85 - 115
Barium	ug/L (ppb)	50	96	85-115
Beryllium	ug/L (ppb)	5	95	85-115
Cadmium	ug/L (ppb)	5	93	85-115
Chromium	ug/L (ppb)	20	96	85 - 115
Cobalt	ug/L (ppb)	20	97	85 - 115
Copper	ug/L (ppb)	20	95	85 - 115
Iron	ug/L (ppb)	100	97	85 - 115
Lead	ug/L (ppb)	10	94	85-115
Manganese	ug/L (ppb)	20	95	85-115
Mercury	ug/L (ppb)	5	87	85 - 115
Molybdenum	ug/L (ppb)	10	93	85 - 115
Nickel	ug/L (ppb)	20	96	85 - 115
Selenium	ug/L (ppb)	5	97	85 - 115
Silver	ug/L (ppb)	5	91	85 - 115
Thallium	ug/L (ppb)	5	94	85 - 115
Vanadium	ug/L (ppb)	20	97	85 - 115
Zinc	ug/L (ppb)	50	96	85-115
Vanadium	ug/L (ppb) ug/L (ppb)	$5\\20$	94 97	85 - 115 85 - 115

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Laboratory Code: 403229-01 x10 $\,$ (Matrix Spike) end

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Mercury	mg/kg (ppm)	5	< 0.025	134	152	71 - 125	13
Laboratory Code:	Laboratory Contr	rol Sampl	e				
end							
			Percent				
		Spike	Recovery	Accep	tance		
Analyte	Reporting Units	Level	LCS	Crit	eria		
Mercury	mg/kg (ppm)	5	123	68-1	143		

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Laboratory Code: 403411-01 (Matrix Spike) end

enu		G .1	a 1	Percent	Percent	A	DDD
Analyte	Reporting Units	Spike Level	Sample Result	Recovery MS	Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Mercury	ug/L (ppb)	0.01	< 0.1	78	94	71 - 125	18

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Mercury	ug/L (ppb)	0.01	99	66-126

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 403297-01 x5 (Matrix Spike) end

ena							
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Antimony	mg/kg (ppm)	20	<5	92	104	75 - 125	12
Arsenic	mg/kg (ppm)	10	6.39	76 b	108 b	75 - 125	$35 \mathrm{b}$
Barium	mg/kg (ppm)	50	68.1	67 b	90 b	75 - 125	29 b
Beryllium	mg/kg (ppm)	5	<5	98	98	75 - 125	0
Cadmium	mg/kg (ppm)	10	<5	97	96	75 - 125	1
Chromium	mg/kg (ppm)	50	13.5	93 b	98 b	75 - 125	$5 \mathrm{b}$
Cobalt	mg/kg (ppm)	20	<5	96	98	75 - 125	2
Copper	mg/kg (ppm)	50	<25	87	94	75 - 125	8
Lead	mg/kg (ppm)	50	36.1	97 b	187 b	75 - 125	63 b
Manganese	mg/kg (ppm	20	387	<1.00	25	75 - 125	
Mercury	mg/kg (ppm	5	<5	98	100	75 - 125	2
Molybdenum	mg/kg (ppm)	20	<5	93	96	75 - 125	3
Nickel	mg/kg (ppm)	25	21.1	$77 \mathrm{b}$	99 b	75 - 125	$25 \mathrm{b}$
Selenium	mg/kg (ppm)	5	<5	86	91	75 - 125	6
Silver	mg/kg (ppm)	10	<5	90	92	75 - 125	2
Thallium	mg/kg (ppm)	5	<5	84	82	75 - 125	2
Vanadium	mg/kg (ppm)	30	31.4	69 b	$235 \mathrm{b}$	75 - 125	109 b
Zinc	mg/kg (ppm)	50	142	49 b	83 b	75 - 125	52 b

		Percent				
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria		
Antimony	mg/kg (ppm)	20	104	80-120		
Arsenic	mg/kg (ppm)	10	87	80-120		
Barium	mg/kg (ppm)	50	98	80-120		
Beryllium	mg/kg (ppm)	5	111	80-120		
Cadmium	mg/kg (ppm)	10	103	80-120		
Chromium	mg/kg (ppm)	50	116	80-120		
Cobalt	mg/kg (ppm)	20	109	80-120		
Copper	mg/kg (ppm)	50	102	80-120		
Lead	mg/kg (ppm)	50	100	80-120		
Manganese	mg/kg (ppm)	20	97	80-120		
Mercury	mg/kg (ppm)	5	90	80-120		
Molybdenum	mg/kg (ppm)	20	91	80-120		
Nickel	mg/kg (ppm)	25	105	80-120		
Selenium	mg/kg (ppm)	5	97	80-120		
Silver	mg/kg (ppm)	10	99	80-120		
Thallium	mg/kg (ppm)	5	99	80-120		
Vanadium	mg/kg (ppm)	30	110	80-120		
Zinc	mg/kg (ppm)	50	103	80-120		

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL/SOLID SAMPLES FOR TCLP METALS USING EPA METHODS 6020B AND 1311

Laboratory Code: 403454-01 (Matrix Spike) end

		а ·1	a ı	Percent	Percent	A	ססס
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Antimony	mg/L (ppm)	2.0	<1	110	110	75 - 125	0
Arsenic	mg/L (ppm)	1.0	<1	99	99	75 - 125	0
Barium	mg/L (ppm)	5.0	3.5	101 b	103 b	75 - 125	$2 \mathrm{b}$
Beryllium	mg/L (ppm)	0.5	<1	96	96	75 - 125	0
Cadmium	mg/L (ppm)	0.5	<1	99	100	75 - 125	1
Chromium	mg/L (ppm)	2.0	<1	86	88	75 - 125	2
Cobalt	mg/L (ppm)	2.0	<1	86	88	75 - 125	2
Copper	mg/L (ppm)	2.0	<5	87	88	75 - 125	1
Iron	mg/L (ppm)	10	<50	85	89	75 - 125	5
Lead	mg/L (ppm)	1.0	<1	97	98	75 - 125	1
Manganese	mg/L (ppm)	2.0	5.0	72 b	81 b	75 - 125	12 b
Molybdenum	mg/L (ppm)	1.0	<1	101	103	75 - 125	2
Nickel	mg/L (ppm)	2.0	<1	88	89	75 - 125	1
Selenium	mg/L (ppm)	0.5	<1	107	105	75 - 125	2
Silver	mg/L (ppm)	0.5	<1	86	87	75 - 125	1
Thallium	mg/L (ppm)	0.5	<1	88	88	75 - 125	0
Vanadium	mg/L (ppm)	2.0	<1	89	91	75 - 125	2
Zinc	mg/L (ppm)	5.0	<5	88	89	75 - 125	1

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Antimony	mg/L (ppm)	2.0	103	80-120
Arsenic	mg/L (ppm)	1.0	91	80-120
Barium	mg/L (ppm)	5.0	95	80-120
Beryllium	mg/L (ppm)	0.5	94	80-120
Cadmium	mg/L (ppm)	0.5	94	80-120
Chromium	mg/L (ppm)	2.0	83	80-120
Cobalt	mg/L (ppm)	2.0	83	80-120
Copper	mg/L (ppm)	2.0	84	80-120
Iron	mg/L (ppm)	10	85	80-120
Lead	mg/L (ppm)	1.0	98	80-120
Manganese	mg/L (ppm)	2.0	80	80-120
Molybdenum	mg/L (ppm)	1.0	94	80-120
Nickel	mg/L (ppm)	2.0	85	80-120
Selenium	mg/L (ppm)	0.5	98	80-120
Silver	mg/L (ppm)	0.5	86	80-120
Thallium	mg/L (ppm)	0.5	86	80-120
Vanadium	mg/L (ppm)	2.0	84	80-120
Zinc	mg/L (ppm)	5.0	86	80-120

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 404039-06 (Matrix Spike) end

ena				_	_		
	D II	a	a 1	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Antimony	ug/L (ppb)	20	<1	99	101	75 - 125	2
Arsenic	ug/L (ppb)	10	1.20	103	105	75 - 125	2
Barium	ug/L (ppb)	50	25.6	99 b	102 b	75 - 125	3 b
Beryllium	ug/L (ppb)	5	<1	98	100	75 - 125	2
Cadmium	ug/L (ppb)	5	<1	98	99	75 - 125	1
Chromium	ug/L (ppb)	20	<1	88	91	75 - 125	3
Cobalt	ug/L (ppb)	20	<1	87	89	75 - 125	2
Copper	ug/L (ppb)	20	<5	83	83	75 - 125	0
Iron	ug/L (ppb)	100	3,600	143 b	233 b	75 - 125	48 b
Lead	ug/L (ppb)	10	<1	85	86	75 - 125	1
Manganese	ug/L (ppb)	20	1,190	$283 \mathrm{~b}$	406 b	75 - 125	36 b
Mercury	ug/L (ppb)	5	<1	92	94	75 - 125	2
Molybdenum	ug/L (ppb)	10	<1	107	109	75 - 125	2
Nickel	ug/L (ppb)	20	1.75	84	86	75 - 125	2
Selenium	ug/L (ppb)	5	<1	103	102	75 - 125	1
Silver	ug/L (ppb)	5	<1	93	95	75 - 125	2
Thallium	ug/L (ppb)	5	<1	85	87	75 - 125	2
Vanadium	ug/L (ppb)	20	<1	92	93	75 - 125	1
Zinc	ug/L (ppb)	50	<5	86	87	75 - 125	1

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Antimony	ug/L (ppb)	20	103	80-120
Arsenic	ug/L (ppb)	10	90	80-120
Barium	ug/L (ppb)	50	104	80-120
Beryllium	ug/L (ppb)	5	89	80-120
Cadmium	ug/L (ppb)	5	102	80-120
Chromium	ug/L (ppb)	20	88	80-120
Cobalt	ug/L (ppb)	20	91	80-120
Copper	ug/L (ppb)	20	96	80-120
Iron	ug/L (ppb)	100	89	80-120
Lead	ug/L (ppb)	10	93	80-120
Manganese	ug/L (ppb)	20	88	80-120
Mercury	ug/L (ppb)	5	94	80-120
Molybdenum	ug/L (ppb)	10	87	80-120
Nickel	ug/L (ppb)	20	94	80-120
Selenium	ug/L (ppb)	5	94	80-120
Silver	ug/L (ppb)	5	90	80-120
Thallium	ug/L (ppb)	5	86	80-120
Vanadium	ug/L (ppb)	20	89	80-120
Zinc	ug/L (ppb)	50	97	80-120

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR ORGANOCHLORINE PESTICIDES BY EPA METHOD 8081B

Laboratory Code: 402374-01 1/30 (Matrix Spike) 1/30

end

enu	Depenting Units	Gnileo	Comula	Percent	Percent	Accontance	RPD
Analyte	Reporting Units	Spike Level	Sample Result	Recovery MS	Recovery MSD	Acceptance Criteria	(Limit 20)
alpha-BHC	mg/kg (ppm)	0.1	< 0.01	76	76	17 - 122	0
gamma-BHC (Lindane)	mg/kg (ppm)	0.1	< 0.01	77	77	18-128	0
beta-BHC	mg/kg (ppm)	0.1	< 0.01	74	79	17 - 130	7
delta-BHC	mg/kg (ppm)	0.1	< 0.01	76	82	20 - 124	8
Heptachlor	mg/kg (ppm)	0.1	< 0.01	84	84	15 - 133	0
Aldrin	mg/kg (ppm)	0.1	< 0.01	81	81	26 - 125	0
Heptachlor Epoxide	mg/kg (ppm)	0.1	< 0.01	75	80	19-132	6
trans-Chlordane	mg/kg (ppm)	0.1	< 0.01	81	84	15 - 157	4
cis-Chlordane	mg/kg (ppm)	0.1	< 0.01	79	82	17 - 133	4
4,4'-DDE	mg/kg (ppm)	0.1	< 0.01	81	83	17 - 139	2
Endosulfan I	mg/kg (ppm)	0.1	< 0.01	71	76	19-130	7
Dieldrin	mg/kg (ppm)	0.1	< 0.01	79	83	17 - 140	5
Endrin	mg/kg (ppm)	0.1	< 0.01	88	89	20-143	1
4,4'-DDD	mg/kg (ppm)	0.1	< 0.01	84	83	20-143	1
Endosulfan II	mg/kg (ppm)	0.1	< 0.01	80	80	21 - 133	0
4,4'-DDT	mg/kg (ppm)	0.1	< 0.01	85	83	10-385	2
Endrin Aldehyde	mg/kg (ppm)	0.1	< 0.01	65	74	12 - 123	13
Methoxychlor	mg/kg (ppm)	0.1	< 0.01	87	86	10-226	1
Endosulfan Sulfate	mg/kg (ppm)	0.1	< 0.01	80	79	17 - 134	1
Endrin Ketone	mg/kg (ppm)	0.1	< 0.01	80	79	10-153	1
Toxaphene	mg/kg (ppm)	4	< 0.1	39	42	12 - 123	7

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR ORGANOCHLORINE PESTICIDES BY EPA METHOD 8081B

Laboratory Code: Laboratory Control Sample 1/30

end

enu			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
alpha-BHC	mg/kg (ppm)	0.1	90	57-116
gamma-BHC (Lindane)	mg/kg (ppm)	0.1	91	59 - 118
beta-BHC	mg/kg (ppm)	0.1	92	63-113
delta-BHC	mg/kg (ppm)	0.1	98	58 - 124
Heptachlor	mg/kg (ppm)	0.1	100	60 - 117
Aldrin	mg/kg (ppm)	0.1	98	63-113
Heptachlor Epoxide	mg/kg (ppm)	0.1	96	70-130
trans-Chlordane	mg/kg (ppm)	0.1	98	70-130
cis-Chlordane	mg/kg (ppm)	0.1	99	70-130
4,4'-DDE	mg/kg (ppm)	0.1	101	69-121
Endosulfan I	mg/kg (ppm)	0.1	95	70-130
Dieldrin	mg/kg (ppm)	0.1	98	70-130
Endrin	mg/kg (ppm)	0.1	105	65 - 140
4,4'-DDD	mg/kg (ppm)	0.1	98	70-130
Endosulfan II	mg/kg (ppm)	0.1	95	70-130
4,4'-DDT	mg/kg (ppm)	0.1	99	57 - 135
Endrin Aldehyde	mg/kg (ppm)	0.1	88	25 - 133
Methoxychlor	mg/kg (ppm)	0.1	101	57 - 147
Endosulfan Sulfate	mg/kg (ppm)	0.1	92	70-130
Endrin Ketone	mg/kg (ppm)	0.1	93	70-130
Toxaphene	mg/kg (ppm)	4	88	53 - 143

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR ORGANOCHLORINE PESTICIDES BY EPA METHOD 8081B

	Reporting	Spike	Percent Recovery	Percent Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
alpha-BHC	ug/L (ppb)	0.25	65	61	41-101	6
gamma-BHC (Lindane)	ug/L (ppb)	0.25	66	63	43-105	5
beta-BHC	ug/L (ppb)	0.25	56	64	49-104	13
delta-BHC	ug/L (ppb)	0.25	69	68	45 - 108	1
Heptachlor	ug/L (ppb)	0.25	60	56	39-104	7
Aldrin	ug/L (ppb)	0.25	62	58	43-98	7
Heptachlor Epoxide	ug/L (ppb)	0.25	69	64	52 - 110	8
trans-Chlordane	ug/L (ppb)	0.25	73	64	39 - 119	13
cis-Chlordane	ug/L (ppb)	0.25	70	63	47 - 106	11
4,4'-DDE	ug/L (ppb)	0.25	71	65	48-114	9
Endosulfan I	ug/L (ppb)	0.25	70	65	10-140	7
Dieldrin	ug/L (ppb)	0.25	69	64	54 - 115	8
Endrin	ug/L (ppb)	0.25	74	69	39-136	7
4,4'-DDD	ug/L (ppb)	0.25	75	70	31-161	7
Endosulfan II	ug/L (ppb)	0.25	74	68	10-144	8
4,4'-DDT	ug/L (ppb)	0.25	74	68	50 - 121	8
Endrin Aldehyde	ug/L (ppb)	0.25	55	57	47-113	4
Methoxychlor	ug/L (ppb)	0.25	74	69	51 - 126	7
Endosulfan Sulfate	ug/L (ppb)	0.25	73	69	58 - 110	6
Endrin Ketone	ug/L (ppb)	0.25	70	66	57 - 120	6
Toxaphene	ug/L (ppb)	4	100	100	56 - 123	0

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 404010-01 1/30 (Matrix Spike) 1/30

end

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Control	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Limits	(Limit 20)
Aroclor 1016	mg/kg (ppm)	0.25	< 0.02	95	94	29 - 125	1
Aroclor 1260	mg/kg (ppm)	0.25	< 0.02	92	105	12 - 177	13
Laboratory Co	de: Laboratory Co	ontrol Sar	nple 1/30				

end

Analyte	Reporting Units	Spike Level	Percent Recovery LCS	Acceptance Criteria
Aroclor 1016	mg/kg (ppm)	0.25	107	55 - 137
Aroclor 1260	mg/kg (ppm)	0.25	104	51 - 150

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

enu	Reporting	Spike	Percent Recovery	Percent Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Aroclor 1016 Aroclor 1260	ug/L (ppb) ug/L (ppb)	$\begin{array}{c} 0.25 \\ 0.25 \end{array}$	59 59	$\begin{array}{c} 66 \\ 72 \end{array}$	20-94 23-123	11 20

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 404057-03 (Matrix Spike)

Laboratory Code: 404057-03	(Matrix Spike)						
			Sample	Percent	Percent		
	Reporting	Spike	Result			Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2	< 0.5	42	41	10-142	2
Chloromethane	mg/kg (ppm)	2	< 0.5	65	62	10-126	5
Vinyl chloride	mg/kg (ppm)	2	< 0.05	69	66	10-138	4
Bromomethane	mg/kg (ppm)	2	< 0.5	66	61	10-163	8
Chloroethane	mg/kg (ppm)	2	< 0.5	77	70	10-176	10
Trichlorofluoromethane	mg/kg (ppm)	2	< 0.5	81	79	10-176	2
Acetone	mg/kg (ppm)	10	<5	79	71	10-163	11
1,1-Dichloroethene	mg/kg (ppm)	2	< 0.05	90	85	10-160	6
Hexane	mg/kg (ppm)	2	< 0.25	87	82	10 - 137	6
Methylene chloride	mg/kg (ppm)	2	< 0.5	86	84	10-156	2
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2	< 0.05	87	83	21 - 145	5
trans-1,2-Dichloroethene	mg/kg (ppm)	$\overline{2}$	< 0.05	94	85	14-137	10
1,1-Dichloroethane	mg/kg (ppm)	$\frac{1}{2}$	< 0.05	93	87	19-140	7
2,2-Dichloropropane	mg/kg (ppm)	2	< 0.05	102	96	10-158	6
cis-1,2-Dichloroethene	mg/kg (ppm)	2	< 0.05	89	86	25-135	3
Chloroform	mg/kg (ppm)	2	< 0.05	88	84	$20\ 100\ 21-145$	5
2-Butanone (MEK)	mg/kg (ppm)	$\frac{2}{10}$	<0.05 <1	80	74	19-147	8
1,2-Dichloroethane (EDC)		$\frac{10}{2}$	< 0.05	80 89	84	19-147 12-160	6
	mg/kg (ppm)		< 0.05	89 89		12-160 10-156	
1,1,1-Trichloroethane	mg/kg (ppm)	2			84	10-156 17-140	6
1,1-Dichloropropene	mg/kg (ppm)	2	< 0.05	89	86		3
Carbon tetrachloride	mg/kg (ppm)	2	< 0.05	90	86	9-164	5
Benzene	mg/kg (ppm)	2	< 0.03	90	86	29-129	5
Trichloroethene	mg/kg (ppm)	2	< 0.02	87	80	21-139	8
1,2-Dichloropropane	mg/kg (ppm)	2	< 0.05	92	86	30-135	7
Bromodichloromethane	mg/kg (ppm)	2	< 0.05	90	83	23 - 155	8
Dibromomethane	mg/kg (ppm)	2	< 0.05	89	83	23 - 145	7
4-Methyl-2-pentanone	mg/kg (ppm)	10	<1	96	87	24 - 155	10
cis-1,3-Dichloropropene	mg/kg (ppm)	2	< 0.05	93	85	28 - 144	9
Toluene	mg/kg (ppm)	2	< 0.05	85	82	35 - 130	4
trans-1,3-Dichloropropene	mg/kg (ppm)	2	< 0.05	87	83	26 - 149	5
1,1,2-Trichloroethane	mg/kg (ppm)	2	< 0.05	86	81	10-205	6
2-Hexanone	mg/kg (ppm)	10	< 0.5	80	79	15 - 166	1
1,3-Dichloropropane	mg/kg (ppm)	2	< 0.05	84	80	31 - 137	5
Tetrachloroethene	mg/kg (ppm)	2	< 0.025	89	89	20 - 133	0
Dibromochloromethane	mg/kg (ppm)	2	< 0.05	86	79	28 - 150	8
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2	< 0.05	85	83	28 - 142	2
Chlorobenzene	mg/kg (ppm)	2	< 0.05	91	83	32 - 129	9
Ethylbenzene	mg/kg (ppm)	2	< 0.05	86	82	32 - 137	5
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2	< 0.05	85	84	31-143	1
m,p-Xylene	mg/kg (ppm)	4	< 0.1	88	85	34-136	3
o-Xylene	mg/kg (ppm)	2	< 0.05	88	84	33-134	5
Styrene	mg/kg (ppm)	$\overline{2}$	< 0.05	87	85	35-137	$\frac{1}{2}$
Isopropylbenzene	mg/kg (ppm)	2	< 0.05	88	86	31-142	$\frac{1}{2}$
Bromoform	mg/kg (ppm)	2	< 0.05	83	82	21-156	- 1
n-Propylbenzene	mg/kg (ppm)	2	< 0.05	87	82	23-146	6
Bromobenzene	mg/kg (ppm)	$\frac{2}{2}$	<0.05	87	82	34-130	6
1,3,5-Trimethylbenzene	mg/kg (ppm)	$\frac{2}{2}$	<0.05	85	82	18-149	4
1,1,2,2-Tetrachloroethane		$\frac{2}{2}$	< 0.05	85 90	82 83	18-149 28-140	4 8
1,2,3-Trichloropropane	mg/kg (ppm)	$\frac{2}{2}$	< 0.05	90 82	83 78	26-140 25-144	0 5
2-Chlorotoluene	mg/kg (ppm)	$\frac{2}{2}$	< 0.05 < 0.05	$\frac{82}{86}$	78 81	25-144 31-134	о 6
2-0110101010101010	mg/kg (ppm)	4	~0.00	00	01	01-104	U

4-Chlorotoluene	mg/kg (ppm)	2	< 0.05	84	79	31-136	6	
tert-Butylbenzene	mg/kg (ppm)	2	< 0.05	86	82	30 - 137	5	
1,2,4-Trimethylbenzene	mg/kg (ppm)	2	< 0.05	85	80	10-182	6	
sec-Butylbenzene	mg/kg (ppm)	2	< 0.05	87	82	23 - 145	6	
p-Isopropyltoluene	mg/kg (ppm)	2	< 0.05	89	84	21 - 149	6	
1,3-Dichlorobenzene	mg/kg (ppm)	2	< 0.05	87	85	30-131	2	
1,4-Dichlorobenzene	mg/kg (ppm)	2	< 0.05	85	82	29 - 129	4	
1,2-Dichlorobenzene	mg/kg (ppm)	2	< 0.05	87	82	31 - 132	6	
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2	< 0.5	76	69	11-161	10	
1,2,4-Trichlorobenzene	mg/kg (ppm)	2	< 0.25	87	81	22 - 142	7	
Hexachlorobutadiene	mg/kg (ppm)	2	< 0.25	83	76	10-142	9	
Naphthalene	mg/kg (ppm)	2	< 0.05	83	78	14 - 157	6	
1,2,3-Trichlorobenzene	mg/kg (ppm)	2	< 0.25	83	77	20-144	7	

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample								
		a .1	Percent	A .				
	Reporting	Spike	Recovery	Acceptance				
Analyte	Units	Level	LCS	Criteria				
Dichlorodifluoromethane	mg/kg (ppm)	2	69	10-146				
Chloromethane	mg/kg (ppm)	2	83	27-133				
Vinyl chloride	mg/kg (ppm)	2	88	22-139				
Bromomethane	mg/kg (ppm)	2	81	10-201				
Chloroethane	mg/kg (ppm)	2	94	10-163				
Trichlorofluoromethane	mg/kg (ppm)	2	96	10-196				
Acetone	mg/kg (ppm)	10	106	52-141				
1,1-Dichloroethene	mg/kg (ppm)	2	104	47-128				
Hexane	mg/kg (ppm)	2	104	43-142				
Methylene chloride	mg/kg (ppm)	2	92	10-184				
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2	101	60-123				
trans-1,2-Dichloroethene	mg/kg (ppm)	2	106	64-132				
1,1-Dichloroethane	mg/kg (ppm)	2	106	64-135				
2,2-Dichloropropane	mg/kg (ppm)	2	114	52 - 170				
cis-1,2-Dichloroethene	mg/kg (ppm)	2	103	64-135				
Chloroform	mg/kg (ppm)	2	100	61-139				
2-Butanone (MEK)	mg/kg (ppm)	10	105	30 - 197				
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2	102	56 - 135				
1,1,1-Trichloroethane	mg/kg (ppm)	2	102	62-131				
1,1-Dichloropropene	mg/kg (ppm)	2	100	64-136				
Carbon tetrachloride	mg/kg (ppm)	2	100	60-139				
Benzene	mg/kg (ppm)	2	104	65 - 136				
Trichloroethene	mg/kg (ppm)	2	100	63-139				
1,2-Dichloropropane	mg/kg (ppm)	2	105	61 - 145				
Bromodichloromethane	mg/kg (ppm)	2	102	57 - 126				
Dibromomethane	mg/kg (ppm)	2	102	62 - 123				
4-Methyl-2-pentanone	mg/kg (ppm)	10	107	45 - 145				
cis-1,3-Dichloropropene	mg/kg (ppm)	2	105	65-143				
Toluene	mg/kg (ppm)	2	102	66-126				
trans-1,3-Dichloropropene	mg/kg (ppm)	2	102	65-131				
1,1,2-Trichloroethane	mg/kg (ppm)	2	103	62-131				
2-Hexanone	mg/kg (ppm)	10	96	33 - 152				
1,3-Dichloropropane	mg/kg (ppm)	2	99	67 - 128				
Tetrachloroethene	mg/kg (ppm)	2	107	68 - 128				
Dibromochloromethane	mg/kg (ppm)	2	103	55 - 121				
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2	102	66 - 129				
Chlorobenzene	mg/kg (ppm)	2	104	67 - 128				
Ethylbenzene	mg/kg (ppm)	2	102	64 - 123				
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2	97	64-121				
m,p-Xylene	mg/kg (ppm)	4	104	68 - 128				
o-Xylene	mg/kg (ppm)	2	106	67 - 129				
Styrene	mg/kg (ppm)	2	105	67 - 129				
Isopropylbenzene	mg/kg (ppm)	2	104	68 - 128				
Bromoform	mg/kg (ppm)	2	100	56 - 132				
n-Propylbenzene	mg/kg (ppm)	2	98	68 - 129				
Bromobenzene	mg/kg (ppm)	2	99	69-128				
1,3,5-Trimethylbenzene	mg/kg (ppm)	2	97	69 - 129				
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2	100	56 - 143				

1,2,3-Trichloropropane	mg/kg (ppm)	2	98	61 - 137
2-Chlorotoluene	mg/kg (ppm)	2	98	69-128
4-Chlorotoluene	mg/kg (ppm)	2	96	67 - 127
tert-Butylbenzene	mg/kg (ppm)	2	100	69 - 129
1,2,4-Trimethylbenzene	mg/kg (ppm)	2	99	69-128
sec-Butylbenzene	mg/kg (ppm)	2	98	69 - 130
p-Isopropyltoluene	mg/kg (ppm)	2	104	69 - 130
1,3-Dichlorobenzene	mg/kg (ppm)	2	101	69 - 127
1,4-Dichlorobenzene	mg/kg (ppm)	2	99	68 - 126
1,2-Dichlorobenzene	mg/kg (ppm)	2	101	69 - 127
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2	92	58 - 138
1,2,4-Trichlorobenzene	mg/kg (ppm)	2	100	64 - 135
Hexachlorobutadiene	mg/kg (ppm)	2	99	50 - 153
Naphthalene	mg/kg (ppm)	2	97	62 - 128
1,2,3-Trichlorobenzene	mg/kg (ppm)	2	95	61 - 126

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 403449-09 (Matrix Spike)

Laboratory Code: 403449-09 (Matrix Spike)							
		~ .1	~ .	Percent			
	Reporting	-	-	-	Acceptance		
Analyte	Units		Result	MS	Criteria		
Dichlorodifluoromethane	ug/L (ppb)	10	<1	89	27 - 164		
Chloromethane	ug/L (ppb)	10	<10	96	34-141		
Vinyl chloride	ug/L (ppb)	10	< 0.02	94	16 - 176		
Bromomethane	ug/L (ppb)	10	<5	130	10-193		
Chloroethane	ug/L (ppb)	10	<1	108	50 - 150		
Trichlorofluoromethane	ug/L (ppb)	10	<1	99	50 - 150		
2-Propanol	ug/L (ppb)	0	<10	0	50 - 150		
Acetone	ug/L (ppb)	50	<50	77	15 - 179		
1,1-Dichloroethene	ug/L (ppb)	10	<1	95	50 - 150		
Hexane	ug/L (ppb)	10	<5	107	49-161		
Methylene chloride	ug/L (ppb)	10	<5	97	40-143		
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	<1	97	50 - 150		
trans-1,2-Dichloroethene	ug/L (ppb)	10	<1	98	50 - 150		
1,1-Dichloroethane	ug/L (ppb)	10	<1	96	50 - 150		
2,2-Dichloropropane	ug/L (ppb)	10	<1	139	62 - 152		
cis-1,2-Dichloroethene	ug/L (ppb)	10	<1	98	50 - 150		
Chloroform	ug/L (ppb)	10	<1	96	50 - 150		
2-Butanone (MEK)	ug/L (ppb)	50	<20	92	34-168		
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	< 0.2	98	50 - 150		
1,1,1-Trichloroethane	ug/L (ppb)	10	<1	99	50 - 150		
1,1-Dichloropropene	ug/L (ppb)	10	<1	96	50 - 150		
Carbon tetrachloride	ug/L (ppb)	10	< 0.5	106	50 - 150		
Benzene	ug/L (ppb)	10	< 0.35	97	50 - 150		
Trichloroethene	ug/L (ppb)	10	$<\!0.5$	96	43-133		
1,2-Dichloropropane	ug/L (ppb)	10	<1	96	50 - 150		
Bromodichloromethane	ug/L (ppb)	10	< 0.5	110	50 - 150		
Dibromomethane	ug/L (ppb)	10	<1	99	50 - 150		
4-Methyl-2-pentanone	ug/L (ppb)	50	<10	109	50 - 150		
cis-1,3-Dichloropropene	ug/L (ppb)	10	< 0.4	95	48 - 145		
Toluene	ug/L (ppb)	10	<1	99	50 - 150		
trans-1,3-Dichloropropene	ug/L (ppb)	10	< 0.4	90	37 - 152		
1,1,2-Trichloroethane	ug/L (ppb)	10	< 0.5	128	50 - 150		
2-Hexanone	ug/L (ppb)	50	<10	89	50 - 150		
1,3-Dichloropropane	ug/L (ppb)	10	<1	94	50 - 150		
Tetrachloroethene	ug/L (ppb)	10	<1	101	50 - 150		
Dibromochloromethane	ug/L (ppb)	10	< 0.5	90	33-164		
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	< 0.01	102	50 - 150		
Chlorobenzene	ug/L (ppb)	10	<1	94	50 - 150		
Ethylbenzene	ug/L (ppb)	10	<1	103	50 - 150		
1,1,1,2-Tetrachloroethane	ug/L (ppb)	10	<1	92	50 - 150		
m,p-Xylene	ug/L (ppb)	20	<2	102	50 - 150		
o-Xylene	ug/L (ppb)	10	<1	100	50 - 150		
Styrene	ug/L (ppb)	10	<1	97	50 - 150		
Isopropylbenzene	ug/L (ppb)	10	<1	97	50-150		
Bromoform	ug/L (ppb)	10	<5	91	23-161		
n-Propylbenzene	ug/L (ppb)	10	<1	100	50-150		
Bromobenzene	ug/L (ppb)	10	<1	94	50-150		
1,3,5-Trimethylbenzene	ug/L (ppb)	10	<1	97	50-150		
1,1,2,2-Tetrachloroethane	ug/L (ppb)	10	< 0.2	109	57-162		
1,2,3-Trichloropropane	ug/L (ppb)	10	<1	97	33-151		
, ,, =================================	9 (PP~)		-	- •			

2-Chlorotoluene	ug/L (ppb)	10	<1	95	50 - 150
4-Chlorotoluene	ug/L (ppb)	10	<1	96	50 - 150
tert-Butylbenzene	ug/L (ppb)	10	<1	97	50 - 150
1,2,4-Trimethylbenzene	ug/L (ppb)	10	<1	95	50 - 150
sec-Butylbenzene	ug/L (ppb)	10	<1	98	46 - 139
p-Isopropyltoluene	ug/L (ppb)	10	<1	99	46-140
1,3-Dichlorobenzene	ug/L (ppb)	10	<1	95	50 - 150
1,4-Dichlorobenzene	ug/L (ppb)	10	<1	95	50 - 150
1,2-Dichlorobenzene	ug/L (ppb)	10	<1	94	50 - 150
1,2-Dibromo-3-chloropropane	ug/L (ppb)	10	<10	86	50 - 150
1,2,4-Trichlorobenzene	ug/L (ppb)	10	<1	94	50 - 150
Hexachlorobutadiene	ug/L (ppb)	10	$<\!0.5$	95	42 - 150
Naphthalene	ug/L (ppb)	10	<1	101	50 - 150
1,2,3-Trichlorobenzene	ug/L (ppb)	10	<1	93	44 - 155

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample								
	_		Percent	Percent				
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD		
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)		
Dichlorodifluoromethane	ug/L (ppb)	10	85	86	49-149	1		
Chloromethane	ug/L (ppb)	10	92	91	34 - 143	1		
Vinyl chloride	ug/L (ppb)	10	93	92	43-149	1		
Bromomethane	ug/L (ppb)	10	131	131	28-182	0		
Chloroethane	ug/L (ppb)	10	106	106	59 - 157	0		
Trichlorofluoromethane	ug/L (ppb)	10	104	101	59-141	3		
2-Propanol	ug/L (ppb)	0	0	0	70-130			
Acetone	ug/L (ppb)	50	78	74	20-139	5		
1,1-Dichloroethene	ug/L (ppb)	10	92	92	67 - 138	0		
Hexane	ug/L (ppb)	10	99	99	50-161	0		
Methylene chloride	ug/L (ppb)	10	97	92	29-192	5		
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	94	93	70-130	1		
trans-1,2-Dichloroethene	ug/L (ppb)	10	94	94	70-130	0		
1,1-Dichloroethane	ug/L (ppb)	10	93	93	70-130	0		
2,2-Dichloropropane	ug/L (ppb)	10	136	115	71-148	17		
cis-1,2-Dichloroethene	ug/L (ppb)	10	95	94	70-130	1		
Chloroform	ug/L (ppb)	10	93	92	70-130	1		
2-Butanone (MEK)	ug/L (ppb)	50	89	87	50 - 157	2		
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	94	94	70-130	0		
1,1,1-Trichloroethane	ug/L (ppb)	10	96	95	70-130	1		
1,1-Dichloropropene	ug/L (ppb)	10	93	91	70-130	2		
Carbon tetrachloride	ug/L (ppb)	10	103	101	70-130	2		
Benzene	ug/L (ppb)	10	93	92	70-130	1		
Trichloroethene	ug/L (ppb)	10	93	92	70-130	1		
1,2-Dichloropropane	ug/L (ppb)	10	92	90	70-130	2		
Bromodichloromethane	ug/L (ppb)	10	95	95	70-130	0		
Dibromomethane	ug/L (ppb)	10	96	95	70-130	1		
4-Methyl-2-pentanone	ug/L (ppb)	50	99	95	70-130	4		
cis-1,3-Dichloropropene	ug/L (ppb)	10	92	91	70-130	1		
Toluene	ug/L (ppb)	10	102	104	70-130	2		
trans-1,3-Dichloropropene	ug/L (ppb)	10	95	97	70-130	2		
1,1,2-Trichloroethane	ug/L (ppb)	10	98	99	70-130	1		
2-Hexanone	ug/L (ppb)	50	86	82	66-132	5		
1,3-Dichloropropane	ug/L (ppb)	10	96	98	70-130	2		
Tetrachloroethene	ug/L (ppb)	10	104	105	70-130	1		
Dibromochloromethane	ug/L (ppb)	10	94	97	63-142	3		
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	102	103	70-130	1		
Chlorobenzene	ug/L (ppb)	10	96	99	70-130	3		
Ethylbenzene	ug/L (ppb)	10	103	105	70-130	$\frac{3}{2}$		
1,1,1,2-Tetrachloroethane	ug/L (ppb)	10	98	99	70-130	1		
m,p-Xylene	ug/L (ppb)	20	103	105	70-130	2		
o-Xylene	ug/L (ppb)	10	101	103	70-130	2		
Styrene	ug/L (ppb)	10	97	97	70-130	0		
Isopropylbenzene	ug/L (ppb) ug/L (ppb)	10	97 97	98	70-130	1		
Bromoform	ug/L (ppb) ug/L (ppb)	10	96	95	50-150	1		
n-Propylbenzene	ug/L (ppb) ug/L (ppb)	10	102	101	70-130	1		
Bromobenzene	ug/L (ppb) ug/L (ppb)	10	102 99	99	70-130	0		
1,3,5-Trimethylbenzene	ug/L (ppb) ug/L (ppb)	10	100	100	52-150	0		
1,9,9 11111001191001120112	agin (hhn)	10	100	100	02-100	0		

1,1,2,2-Tetrachloroethane	ug/L (ppb)	10	104	103	75 - 140	1
1,2,3-Trichloropropane	ug/L (ppb)	10	103	101	40-153	2
2-Chlorotoluene	ug/L (ppb)	10	102	100	70-130	2
4-Chlorotoluene	ug/L (ppb)	10	101	99	70-130	2
tert-Butylbenzene	ug/L (ppb)	10	100	98	70-130	2
1,2,4-Trimethylbenzene	ug/L (ppb)	10	99	96	70-130	3
sec-Butylbenzene	ug/L (ppb)	10	100	99	70-130	1
p-Isopropyltoluene	ug/L (ppb)	10	100	99	70-130	1
1,3-Dichlorobenzene	ug/L (ppb)	10	99	98	70-130	1
1,4-Dichlorobenzene	ug/L (ppb)	10	101	99	70-130	2
1,2-Dichlorobenzene	ug/L (ppb)	10	99	98	70-130	1
1,2-Dibromo-3-chloropropane	ug/L (ppb)	10	97	92	70-130	5
1,2,4-Trichlorobenzene	ug/L (ppb)	10	96	92	70-130	4
Hexachlorobutadiene	ug/L (ppb)	10	98	96	70-130	2
Naphthalene	ug/L (ppb)	10	96	92	61-133	4
1,2,3-Trichlorobenzene	ug/L (ppb)	10	94	91	69-143	3

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: 403380-04 1/5 (Matrix Spike) end

end							
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	e RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Phenol	mg/kg (ppm)	0.83	< 0.5	83	84	50-150	1
Bis(2-chloroethyl) ether	mg/kg (ppm)	0.83	< 0.05	85	85	50-150	0
2-Chlorophenol	mg/kg (ppm)	0.83	< 0.5	83	84	50 - 150	1
1,3-Dichlorobenzene	mg/kg (ppm)	0.83 0.83	<0.05	73	77	36-107	5 3
1,4-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	0.83	<0.05 <0.05	77	79	37-106	3
1,2-Dichlorobenzene Benzyl alcohol	mg/kg (ppm)	4.2	< 0.5	76 78	78 79	39-106	1
2,2'-Oxybis(1-chloropropane)	mg/kg (ppm)	0.83	< 0.05	84	79 84	50-150 50-150	0
2-Methylphenol	mg/kg (ppm)	0.83	< 0.5	88	87	50-150	1
Hexachloroethane	mg/kg (ppm)	0.83	< 0.05	81	82	19-129	1
N-Nitroso-di-n-propylamine	mg/kg (ppm)	0.83	< 0.05	90	91	50-150	1
3-Methylphenol + 4-Methylphenol	mg/kg (ppm)	0.83	<1	89	90	50 - 150	1
Nitrobenzene	mg/kg (ppm) mg/kg (ppm)	0.83 0.83	<0.05 <0.05	81	82	50 - 150	1 20
Isophorone	mg/kg (ppm)	0.83	<0.5	86	105	16-156	20
2-Nitrophenol 2,4-Dimethylphenol	mg/kg (ppm)	0.83	< 0.5	91 86	92 86	50-150 35-117	0
Benzoic acid	mg/kg (ppm)	2.5	<2.5	50	54	10-105	8
Bis(2-chloroethoxy)methane	mg/kg (ppm)	0.83	< 0.05	83	83	50-150	0
2,4-Dichlorophenol	mg/kg (ppm)	0.83	< 0.5	83	83	50-150	0
1,2,4 Trichlorobenzene	mg/kg (ppm)	0.83	< 0.05	84	85	50-150	1
Naphthalene	mg/kg (ppm)	0.83	<0.01	77	77	50-150	0
Hexachlorobutadiene	mg/kg (ppm) mg/kg (ppm)	0.83 6.8	<0.05 <5	68	71	39-106	$\frac{4}{4}$
4-Chloroaniline	mg/kg (ppm)	0.83	<0.5	66	69	40-101	4 2
4-Chloro-3-methylphenol 2-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	97 76	95 75	50-150	1
1-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	76	75 75	50-150 50-150	1
Hexachlorocyclopentadiene	mg/kg (ppm)	0.83	< 0.15	69	72	27-127	4
2.4.6-Trichlorophenol	mg/kg (ppm)	0.83	< 0.5	93	91	35-130	2
2,4,5-Trichlorophenol	mg/kg (ppm)	0.83	< 0.5	94	95	43-126	1
2-Chloronaphthalene	mg/kg (ppm)	0.83	< 0.05	81	80	50 - 150	1
2-Nitroaniline	mg/kg (ppm)	4.2 0.83	<0.25 <0.5	73	74	50 - 150	$\frac{1}{2}$
Dimethyl phthalate	mg/kg (ppm) mg/kg (ppm)	0.83	<0.01	88	86	50-150	0
Acenaphthylene 2,6-Dinitrotoluene	mg/kg (ppm)	0.83	<0.25	72 87	72 87	50-150	0
3-Nitroaniline	mg/kg (ppm)	4.2	<5	74	73	50-150 50-150	1
Acenaphthene	mg/kg (ppm)	0.83	< 0.01	70	69	50-150	1
2,4-Dinitrophenol	mg/kg (ppm)	1.7	<1.5	88	92	10-146	4
Dibenzofuran	mg/kg (ppm)	0.83	< 0.05	79	78	50-150	1
2,4-Dinitrotoluene	mg/kg (ppm)	0.83	<0.25	102	101	44-141	1
4-Nitrophenol	mg/kg (ppm) mg/kg (ppm)	1.7 0.83	<1.5 <0.5	105	112	33-142	6 1
Diethyl phthalate	mg/kg (ppm)	0.83	<0.01	85	84	50-150	1
Fluorene 4-Chlorophenyl phenyl ether	mg/kg (ppm)	0.83	< 0.05	79 89	78 88	50-150 50-150	1
1,2-Diphenylhydrazine	mg/kg (ppm)	0.83	< 0.05	89	87	50-150	2
N-Nitrosodiphenylamine	mg/kg (ppm)	0.83	< 0.05	85	84	50-150	1
4-Nitroaniline	mg/kg (ppm)	4.2	<5	82	81	50-150	1
4,6-Dinitro-2-methylphenol	mg/kg (ppm)	0.83	<1.5	112	111	33 - 155	1
4-Bromophenyl phenyl ether	mg/kg (ppm)	0.83	<0.05	91	89	50 - 150	$\frac{2}{2}$
Hexachlorobenzene	mg/kg (ppm) mg/kg (ppm)	0.83 0.83	<0.05 <0.25	91	89	50-150	1
Pentachlorophenol Phenanthrene	mg/kg (ppm)	0.83	<0.01	101 86	102 85	15-159	1
Anthracene	mg/kg (ppm)	0.83	< 0.01	85	85	10-170 37-139	0
Carbazole	mg/kg (ppm)	0.83	< 0.05	83	82	50-150	1
Di-n-butyl phthalate	mg/kg (ppm)	0.83	< 0.5	90	89	50-150	1
Fluoranthene	mg/kg (ppm)	0.83	< 0.01	88	88	10-203	0
Benzidine	mg/kg (ppm)	1.3	<1	44	48	10-72	9
Pyrene	mg/kg (ppm)	0.83	<0.01	89	87	10-208	2
Benzyl butyl phthalate	mg/kg (ppm) mg/kg (ppm)	0.83 1.3	<0.5 <0.5	93	92	50-150	1 3
3,3'-Dichlorobenzidine	mg/kg (ppm)	0.83	<0.01	76	74	10-119	1
Benz(a)anthracene Chrysene	mg/kg (ppm)	0.83	< 0.01	90 81	89 79	37-146 36-144	2
Bis(2-ethylhexyl) phthalate	mg/kg (ppm)	0.83	< 0.8	93	94	50-144 50-150	1
Di-n-octyl phthalate	mg/kg (ppm)	0.83	< 0.5	101	101	10-243	0
Benzo(a)pyrene	mg/kg (ppm)	0.83	< 0.01	87	87	40-150	0
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	< 0.01	90	88	45-157	2
Benzo(k)fluoranthene	mg/kg (ppm) mg/kg (ppm)	0.83 0.83	<0.01 <0.01	86	89	50-150	3 8
Indeno(1,2,3-cd)pyrene	mg/kg (ppm) mg/kg (ppm)	0.83	<0.01	110	102	24-145	8
Dibenz(a,h)anthracene Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	<0.01	109 102	105 98	31-137	4
Demo(g,n,i)peryiene				102	30	14-141	

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: Laboratory Control Sample 1/5 end

end				
Analyte	Reporting Units	Spike Level	Percent Recovery LCS	Acceptance Criteria
Phenol	mg/kg (ppm)	0.83	85	57-113
Bis(2-chloroethyl) ether	mg/kg (ppm)	0.83	88	55-108
2-Chlorophenol	mg/kg (ppm)	0.83	88	60-104
1,3-Dichlorobenzene	mg/kg (ppm)	0.83	79	54-103
1,4-Dichlorobenzene	mg/kg (ppm)	0.83	81	54-102
1,2-Dichlorobenzene	mg/kg (ppm)	0.83	79	55-103
Benzyl alcohol	mg/kg (ppm)	4.2	80	36-147
2,2'-Oxybis(1-chloropropane)	mg/kg (ppm)	0.83	89	56-109
2-Methylphenol	mg/kg (ppm)	0.83	92	62-107
Hexachloroethane	mg/kg (ppm)	0.83	86	54 - 105
N-Nitroso-di-n-propylamine	mg/kg (ppm)	0.83	92	64-112
3-Methylphenol + 4-Methylphenol	mg/kg (ppm)	0.83	93	63-110
Nitrobenzene	mg/kg (ppm)	0.83	83	55-111
Isophorone	mg/kg (ppm)	0.83	89	52 - 127
2-Nitrophenol	mg/kg (ppm) mg/kg (ppm)	0.83 0.83	94	53 - 122
2,4-Dimethylphenol	mg/kg (ppm)	2.5	88	31-105
Benzoic acid	mg/kg (ppm)	0.83	72	38-99
Bis(2-chloroethoxy)methane	mg/kg (ppm)	0.83	86	63-112
2,4-Dichlorophenol	mg/kg (ppm)	0.83	86	62-112
1,2,4-Trichlorobenzene	mg/kg (ppm)	0.83	89	59-105
Naphthalene	mg/kg (ppm)	0.83	82	59-105
Hexachlorobutadiene	mg/kg (ppm)	6.8	72	54-108
4-Chloroaniline	mg/kg (ppm)	0.83	65	36-111
4-Chloro-3-methylphenol	mg/kg (ppm)	0.83	100	63-116
2-Methylnaphthalene 1-Methylnaphthalene	mg/kg (ppm)	0.83	80 80	62-108
Hexachlorocyclopentadiene	mg/kg (ppm)	0.83	80 74	62-108 48-123
2,4,6-Trichlorophenol	mg/kg (ppm)	0.83	95	48-123 61-114
2,4,5-Trichlorophenol	mg/kg (ppm)	0.83	95 98	64-121
2-Chloronaphthalene	mg/kg (ppm)	0.83	84	62-112
2-Nitroaniline	mg/kg (ppm)	4.2	74	30-179
Dimethyl phthalate	mg/kg (ppm)	0.83	88	63-124
Acenaphthylene	mg/kg (ppm)	0.83	75	61-111
2,6-Dinitrotoluene	mg/kg (ppm)	0.83	88	63-131
3-Nitroaniline	mg/kg (ppm)	4.2	79	57-114
Acenaphthene	mg/kg (ppm)	0.83	72	61-110
2,4-Dinitrophenol	mg/kg (ppm)	1.7	99	51-143
Dibenzofuran	mg/kg (ppm)	0.83	81	65-118
2,4-Dinitrotoluene	mg/kg (ppm)	0.83	99	47-146
4-Nitrophenol	mg/kg (ppm)	1.7	99	63-127
Diethyl phthalate	mg/kg (ppm)	0.83	89	63-124
Fluorene	mg/kg (ppm)	0.83	80	62-114
4-Chlorophenyl phenyl ether	mg/kg (ppm)	0.83	93	61-116
N-Nitrosodiphenylamine	mg/kg (ppm)	0.83	86	64-116
4-Nitroaniline	mg/kg (ppm)	4.2	82	63-117
4,6-Dinitro-2-methylphenol	mg/kg (ppm)	0.83	113	59 - 152
4-Bromophenyl phenyl ether	mg/kg (ppm)	0.83	94	66-118
Hexachlorobenzene	mg/kg (ppm)	0.83	94	57-115
Pentachlorophenol	mg/kg (ppm) mg/kg (ppm)	0.83	113	56 - 130
Phenanthrene		0.83 0.83	89	64-112
Anthracene	mg/kg (ppm) mg/kg (ppm)		87	63-111
Carbazole	mg/kg (ppm)	$0.83 \\ 0.83$	85	68-120
Di-n-butyl phthalate	mg/kg (ppm)	0.83	94	52 - 130
Fluoranthene	mg/kg (ppm)	1.3	91	66-115
Benzidine	mg/kg (ppm)	0.83	0	0-100
Pyrene	mg/kg (ppm)	0.83	90	65-112
Benzyl butyl phthalate	mg/kg (ppm)	1.3	92 79	56-131
3,3'-Dichlorobenzidine	mg/kg (ppm)	0.83	72	10-100
Benz(a)anthracene	mg/kg (ppm)	0.83	91	64-116
Chrysene Big(2 otherhouse) whthe late	mg/kg (ppm)	0.83	81	66-119
Bis(2-ethylhexyl) phthalate	mg/kg (ppm)	0.83	90	30-165
Di-n-octyl phthalate	mg/kg (ppm)	0.83	99	44-140
Benzo(a)pyrene Benzo(b)fluoranthono	mg/kg (ppm)	0.83	88 92	62-116
Benzo(b)fluoranthene	mg/kg (ppm)	0.83		61-118
Benzo(k)fluoranthene Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	86 107	65-119 64 120
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	107	64-130 67-131
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	106	67-126
Denzo(g,n,i)peryiene	8 8 4 F		100	07-120

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: Laboratory Control Sample end

end						
	Reporting	Spike	Percent Recovery	Percent Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Phenol	ug/L (ppb)	5	27	29	10-43	7
Bis(2-chloroethyl) ether	ug/L (ppb)	5	75	80	40-114	6
2-Chlorophenol	ug/L (ppb)	5	69	74	21-97	7 2
1,3-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	5 5	52	53	39-102	2
1,4-Dichlorobenzene	ug/L (ppb)	5	53 56	54 59	41-103	5
1,2-Dichlorobenzene Benzyl alcohol	ug/L (ppb)	25	56 71	59 77	43-105 14-82	8
2,2'-Oxybis(1-chloropropane)	ug/L (ppb)	5	81	88	51-110	8
2-Methylphenol	ug/L (ppb)	5	64	71	19-77	10
Hexachloroethane	ug/L (ppb)	5	45	50	39-104	11
N-Nitroso-di-n-propylamine	ug/L (ppb)	5	84	93	58-117	10
3-Methylphenol + 4-Methylphenol	ug/L (ppb) ug/L (ppb)	5 5	56	66	12-89	16 5
Nitrobenzene	ug/L (ppb) ug/L (ppb)	5	78	82	52-111	3
Isophorone 2-Nitrophenol	ug/L (ppb)	5	90 69	93 77	62-117 41-117	11
2,4-Dimethylphenol	ug/L (ppb)	5	75	81	10-117	8
Benzoic acid	ug/L (ppb)	40	18	18	10-39	0
Bis(2-chloroethoxy)methane	ug/L (ppb)	5	80	88	56-111	10
2,4-Dichlorophenol	ug/L (ppb)	5	82	90	34-113	9
1,2,4-Trichlorobenzene	ug/L (ppb)	5	59	62	48-104	5
Naphthalene	ug/L (ppb) ug/L (ppb)	5 5	69	74	50-104	$\frac{7}{4}$
Hexachlorobutadiene	ug/L (ppb) ug/L (ppb)	25	46	48	40-107	4 6
4-Chloroaniline	ug/L (ppb)	5	93 85	99 94	34-125	10
4-Chloro-3-methylphenol 2-Methylnaphthalene	ug/L (ppb)	5	89 73	94 79	34-111 52-113	8
1-Methylnaphthalene	ug/L (ppb)	5	75	81	51-115	8
Hexachlorocyclopentadiene	ug/L (ppb)	5	47	48	34-126	2
2,4,6-Trichlorophenol	ug/L (ppb)	5	80	89	28-125	11
2,4,5-Trichlorophenol	ug/L (ppb)	5	88	96	39-120	9
2-Chloronaphthalene	ug/L (ppb)	$\frac{5}{25}$	73	79	57 - 130	8 7
2-Nitroaniline	ug/L (ppb) ug/L (ppb)	25 5	90	97	51-146	9
Dimethyl phthalate	ug/L (ppb)	5	97 82	106 88	64-118	7
Acenaphthylene 2.6-Dinitrotoluene	ug/L (ppb)	5	82 87	88 92	60-114 66-121	6
3-Nitroaniline	ug/L (ppb)	25	89	92	42-134	3
Acenaphthene	ug/L (ppb)	5	79	85	57-110	7
2,4-Dinitrophenol	ug/L (ppb)	10	82	88	20-151	7
Dibenzofuran	ug/L (ppb)	5	84	90	52-116	7
2,4-Dinitrotoluene	ug/L (ppb) ug/L (ppb)	5 10	97	103	55 - 127	6 3
4-Nitrophenol	ug/L (ppb) ug/L (ppb)	5	31 102	32	10-58	6
Diethyl phthalate Fluorene	ug/L (ppb)	5	88	108 94	63-118 61-115	7
4-Chlorophenyl phenyl ether	ug/L (ppb)	5	87	91	61-112	4
N-Nitrosodiphenylamine	ug/L (ppb)	5	95	97	60-123	2
4-Nitroaniline	ug/L (ppb)	25	94	99	42-150	5
4,6-Dinitro-2-methylphenol	ug/L (ppb)	5	90	99	13 - 152	10
4-Bromophenyl phenyl ether	ug/L (ppb)	5	86	90	63-123	5 4
Hexachlorobenzene	ug/L (ppb) ug/L (ppb)	5 5	92	96	60-113	4 1
Pentachlorophenol	ug/L (ppb)	5	100 92	99 96	14-137	4
Phenanthrene Anthracene	ug/L (ppb)	5	92 95	96 97	63-113 65-117	2
Carbazole	ug/L (ppb)	5	106	107	62-137	1
Di-n-butyl phthalate	ug/L (ppb)	5	103	108	36-137	5
Fluoranthene	ug/L (ppb)	5	104	105	68-121	1
Benzidine	ug/L (ppb)	7.5	25	25	10-103	$0 \\ 2$
Pyrene	ug/L (ppb) ug/L (ppb)	5 5	97	99	62-133	2
Benzyl butyl phthalate	ug/L (ppb) ug/L (ppb)	7.5	100	101	56-145	2
3,3'-Dichlorobenzidine	ug/L (ppb) ug/L (ppb)	5	91 102	93 103	31-139	1
Benz(a)anthracene Chrysene	ug/L (ppb)	5	102 101	103	66-131 66-129	3
Bis(2-ethylhexyl) phthalate	ug/L (ppb)	5	101	104	52-142	4
Di-n-octyl phthalate	ug/L (ppb)	5	112	114	36-151	2
Benzo(a)pyrene	ug/L (ppb)	5	106	108	66-129	2
Benzo(b)fluoranthene	ug/L (ppb)	5	103	105	55-144	2
Benzo(k)fluoranthene	ug/L (ppb) ug/L (ppb)	5 5	106	107	58-139	$\frac{1}{4}$
Indeno(1,2,3-cd)pyrene	ug/L (ppb) ug/L (ppb)	э 5	107	111	62-136	4 5
Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ug/L (ppb)	5	105 103	110 107	55-146 58-137	4
Denzo(g,n,i)peryrene	8 ur-/	-	100	107	00-107	

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 403326-04 (Duplicate) end

end

Analyte	Reporting Units	Sample Result (Wet Wt)	Duplicate Result (Wet Wt)	RPD (Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm
Laboratory Code:	Laboratory Contro	ol Sample		

Percent Reporting Spike Recovery Acceptance Analyte Units Level LCS Criteria Benzene mg/kg (ppm) 9870-130 1.0mg/kg (ppm) 70-130 Toluene 1.094Ethylbenzene mg/kg (ppm) 70-130 1.093 Xylenes mg/kg (ppm) 3.09370-130 Gasoline mg/kg (ppm) 40 95 70-130

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

enu	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm
Laboratory Code:	Laboratory Contr	ol Sample		
end				
		Pe	rcent	

Laboratory Code: 403441-01 (Duplicate) end

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	110	70-130
Toluene	ug/L (ppb)	50	104	70-130
Ethylbenzene	ug/L (ppb)	50	106	70-130
Xylenes	ug/L (ppb)	150	93	70-130
Gasoline	ug/L (ppb)	1,000	100	70-130

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 403410-01 (Matrix Spike) end

		Sample	Percent	Percent		
Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
mg/kg (ppm)	5,000	3,000	114	96	63-146	17
Laboratory Contr	ol Sampl	le				
		Percent				
Reporting	Spike	Recovery	Accept	tance		
Units	Level	LCS	Crite	eria		
mg/kg (ppm)	5,000	102	77-1	123		
	Units mg/kg (ppm) Laboratory Contr Reporting Units	Units Level mg/kg (ppm) 5,000 Laboratory Control Samp Reporting Spike Units Level	Reporting UnitsSpike LevelResult (Wet Wt)mg/kg (ppm)5,0003,000Laboratory Control SamplePercentReporting UnitsSpike LevelRecovery LCS	ReportingSpikeResultRecoveryUnitsLevel(Wet Wt)MSmg/kg (ppm)5,0003,000114Laboratory Control SamplePercentReportingSpikeReportingSpikeRecoveryAccepUnitsLevelLCS	Reporting UnitsSpike LevelResult Recovery (Wet Wt)Recovery MSRecovery MSDmg/kg (ppm)5,0003,00011496Laboratory Control SamplePercentReporting 	Reporting Spike Result Recovery Recovery Acceptance Units Level (Wet Wt) MS MSD Criteria mg/kg (ppm) 5,000 3,000 114 96 63-146 Laboratory Control Sample Percent Reporting Spike Recovery Acceptance Units Level LCS Criteria

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

ond			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	92	88	72-139	4

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 403425-01 1/5.7 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	3,200	3,000	6
APH EC9-12 aliphatics	ug/m3	200	190	5
APH EC9-10 aromatics	ug/m3	<140	<140	nm

Laboratory Code: Laboratory Control Sample

Laboratory code. Laboratory con	cioi Dampie		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	104	70-130
APH EC9-12 aliphatics	ug/m3	67	121	70-130
APH EC9-10 aromatics	ug/m3	67	98	70-130

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 403425-01 1/5.7 (Duplicate)

Analyte	Reporting Units	Sample Result	Duplicate Result	RPD (Limit 30)
Propene	ug/m3	4,800	4,800	0
Dichlorodifluoromethane	ug/m3	<5.6	<5.6	nm
Chloromethane	ug/m3	<21	<21	nm
F-114	ug/m3	<12	<12	nm
Vinyl chloride	ug/m3	<1.5	<1.5	nm
1,3-Butadiene	ug/m3	230	< 0.25	nm
Butane	ug/m3	1,100	1,100	0
Bromomethane	ug/m3	<22	<22	nm
Chloroethane	ug/m3	<15	<15	nm
Vinyl bromide	ug/m3	<2.5	<2.5	nm
Ethanol	ug/m3	< <u>4</u> 3	<43	nm
Acrolein	ug/m3	<0.65	<0.65	nm
Pentane	ug/m3	300	300	0
Trichlorofluoromethane	ug/m3	<13	<13	nm
Acetone	ug/m3	<13 55	51	8
2-Propanol	ug/m3	<49	<49	nm
1,1-Dichloroethene	0	<4 <i>3</i> <2.3	<4 <i>9</i> <2.3	
trans-1,2-Dichloroethene	ug/m3 ug/m3	<2.3 <2.3	<2.3	nm
Methylene chloride	0	<2.5 <200	<2.5 <200	nm
U U	ug/m3	<200 <69	<200 <69	nm
t-Butyl alcohol (TBA)	ug/m3			nm
3-Chloropropene CFC-113	ug/m3	<18 <8.7	<18	nm
Carbon disulfide	ug/m3	<8.7 <36	<8.7 <36	nm
	ug/m3	<56 <41	<56 <41	nm
Methyl t-butyl ether (MTBE)	ug/m3			nm
Vinyl acetate	ug/m3	<40	<40	nm
1,1-Dichloroethane	ug/m3	<2.3	<2.3	nm
cis-1,2-Dichloroethene	ug/m3	<2.3	<2.3	nm
Hexane	ug/m3	69	67	3
Chloroform	ug/m3	< 0.28	<0.28	nm
Ethyl acetate	ug/m3	<41	<41	nm
Tetrahydrofuran	ug/m3	<3.4	<3.4	nm
2-Butanone (MEK)	ug/m3	<34	<34	nm
1,2-Dichloroethane (EDC)	ug/m3	< 0.23	<0.23	nm
1,1,1-Trichloroethane	ug/m3	<3.1	<3.1	nm
Carbon tetrachloride	ug/m3	<1.8	<1.8	nm
Benzene	ug/m3	19	19	0
Cyclohexane	ug/m3	<39	<39	nm
1,2-Dichloropropane	ug/m3	<1.3	<1.3	nm
1,4-Dioxane	ug/m3	<2.1	<2.1	nm
2,2,4-Trimethylpentane	ug/m3	<27	<27	nm
Methyl methacrylate	ug/m3	<23	<23	nm
Heptane	ug/m3	<23	<23	nm
Bromodichloromethane	ug/m3	< 0.38	< 0.38	nm
Trichloroethene	ug/m3	< 0.61	< 0.61	nm
cis-1,3-Dichloropropene	ug/m3	<5.2	<5.2	nm
4-Methyl-2-pentanone	ug/m3	<47	<47	nm
trans-1,3-Dichloropropene	ug/m3	<2.6	<2.6	nm
Toluene	ug/m3	<43	<43	nm
1,1,2-Trichloroethane	ug/m3	< 0.31	< 0.31	nm
2-Hexanone	ug/m3	<23	<23	

Tetrachloroethene	ug/m3	<39	<39	nm
Dibromochloromethane	ug/m3	< 0.49	< 0.49	nm
1,2-Dibromoethane (EDB)	ug/m3	< 0.44	< 0.44	nm
Chlorobenzene	ug/m3	<2.6	<2.6	nm
Ethylbenzene	ug/m3	5.4	5.5	2
1,1,2,2-Tetrachloroethane	ug/m3	< 0.78	< 0.78	nm
Nonane	ug/m3	<30	<30	nm
Isopropylbenzene	ug/m3	<56	<56	nm
2-Chlorotoluene	ug/m3	<30	<30	nm
Propylbenzene	ug/m3	<28	<28	nm
4-Ethyltoluene	ug/m3	<28	<28	nm
m,p-Xylene	ug/m3	15	15	0
o-Xylene	ug/m3	4.7	4.8	2
Styrene	ug/m3	<4.9	<4.9	nm
Bromoform	ug/m3	<12	<12	nm
Benzyl chloride	ug/m3	< 0.3	< 0.3	nm
1,3,5-Trimethylbenzene	ug/m3	<28	<28	nm
1,2,4-Trimethylbenzene	ug/m3	<28	<28	nm
1,3-Dichlorobenzene	ug/m3	<3.4	<3.4	nm
1,4-Dichlorobenzene	ug/m3	<1.3	<1.3	nm
1,2-Dichlorobenzene	ug/m3	<3.4	<3.4	nm
1,2,4-Trichlorobenzene	ug/m3	<4.2	<4.2	nm
Naphthalene	ug/m3	<1.5	<1.5	nm
Hexachlorobutadiene	ug/m3	<1.2	<1.2	nm

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Propene	ug/m3	23	126	70-130
Dichlorodifluoromethane	ug/m3	67	113	70 - 130
Chloromethane	ug/m3	28	101	70-130
F-114	ug/m3	94	112	70-130
Vinyl chloride	ug/m3	35	117	70-130
1,3-Butadiene	ug/m3	30	102	70-130
Butane	ug/m3	32	107	70-130
Bromomethane	ug/m3	52	108	70-130
Chloroethane	ug/m3	36	111	70-130
Vinyl bromide	ug/m3	59	121	70-130
Ethanol	ug/m3	25	119	70-130
Acrolein	ug/m3	31	122	70 - 130
Pentane	ug/m3	40	108	70-130
Frichlorofluoromethane	ug/m3	76	108	70-130
Acetone	ug/m3	32	112	70-130
2-Propanol	ug/m3	33	101	70-130
1,1-Dichloroethene	ug/m3	54	113	70-130
rans-1,2-Dichloroethene	ug/m3	54	112	70-130
Methylene chloride	ug/m3	94	106	70-130
-Butyl alcohol (TBA)	ug/m3	41	88	70-130
B-Chloropropene	ug/m3	42	96	70-130
CFC-113	ug/m3	100	114	70-130
Carbon disulfide	ug/m3	42	98	70-130
Methyl t-butyl ether (MTBE)	ug/m3	49	98	70-130
Vinyl acetate	ug/m3	48	100	70-130
I,1-Dichloroethane	ug/m3	55	116	70-130
cis-1,2-Dichloroethene	ug/m3	54	107	70-130
Hexane	ug/m3	48	85	70-130
Chloroform	ug/m3	66	115	70-130
Ethyl acetate	ug/m3	49	86	70-130
Fetrahydrofuran	ug/m3	40	98	70-130
2-Butanone (MEK)	ug/m3	40	104	70-130
1,2-Dichloroethane (EDC)	ug/m3	55	117	70-130
I,1,1-Trichloroethane	ug/m3	74	120	70-130
Carbon tetrachloride	ug/m3	85	113	70-130
Benzene	ug/m3	$\frac{83}{43}$	$113 \\ 105$	70-130
Cyclohexane	ug/m3	$43 \\ 46$	96	70-130
I,2-Dichloropropane	ug/m3	$\frac{40}{62}$	90 119	70-130
1,4-Dioxane	-	$\frac{62}{49}$	99	70-130
	ug/m3	$\frac{49}{63}$	99 103	70-130
2,2,4-Trimethylpentane	ug/m3			
Methyl methacrylate	ug/m3	55 55	111	70-130 70-120
Heptane	ug/m3	55 00	105	70-130
Bromodichloromethane	ug/m3	90 79	120	70-130
Frichloroethene	ug/m3	73	118	70-130
cis-1,3-Dichloropropene	ug/m3	61	114	70-130
4-Methyl-2-pentanone	ug/m3	55	104	70-130
trans-1,3-Dichloropropene	ug/m3	61	121	70-130
Foluene	ug/m3	51	110	70-130
1,1,2-Trichloroethane	ug/m3	74	120	70-130
2-Hexanone	ug/m3	55	96	70 - 130

Tetrachloroethene	ug/m3	92	117	70-130	
Dibromochloromethane	ug/m3	120	116	70-130	
1,2-Dibromoethane (EDB)	ug/m3	100	121	70-130	
Chlorobenzene	ug/m3	62	107	70-130	
Ethylbenzene	ug/m3	59	103	70-130	
1,1,2,2-Tetrachloroethane	ug/m3	93	118	70-130	
Nonane	ug/m3	71	108	70-130	
Isopropylbenzene	ug/m3	66	109	70-130	
2-Chlorotoluene	ug/m3	70	105	70-130	
Propylbenzene	ug/m3	66	106	70-130	
4-Ethyltoluene	ug/m3	66	98	70-130	
m,p-Xylene	ug/m3	120	105	70-130	
o-Xylene	ug/m3	59	109	70-130	
Styrene	ug/m3	58	93	70-130	
Bromoform	ug/m3	140	105	70-130	
Benzyl chloride	ug/m3	70	161 vo	70-130	
1,3,5-Trimethylbenzene	ug/m3	66	102	70-130	
1,2,4-Trimethylbenzene	ug/m3	66	93	70-130	
1,3-Dichlorobenzene	ug/m3	81	110	70-130	
1,4-Dichlorobenzene	ug/m3	81	107	70-130	
1,2-Dichlorobenzene	ug/m3	81	108	70-130	
1,2,4-Trichlorobenzene	ug/m3	100	95	70-130	
Naphthalene	ug/m3	71	95	70-130	
Hexachlorobutadiene	ug/m3	140	107	70-130	

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-17

Laboratory Code: Laboratory Control Sample

Laboratory Code: Laboratory Co	1		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	ng/tube	50	70	70-130
Vinyl chloride	ng/tube	50	82	70-130
2-Propanol	ng/tube	250	111	70-130
1,1-Dichloroethene	ng/tube	50	99	70-130
Hexane	ng/tube	50	97	70-130
t-Butyl alcohol (TBA)	ng/tube	250	106	70-130
Methyl t-butyl ether (MTBE)	ng/tube	50	102	70-130
trans-1,2-Dichloroethene	ng/tube	50	99	70-130
1,1-Dichloroethane	ng/tube	50	99	70-130
2,2-Dichloropropane	ng/tube	50	101	70-130
cis-1,2-Dichloroethene	ng/tube	50	99	70-130
Chloroform	ng/tube	50	99	70-130
2-Butanone (MEK)	ng/tube	50	91	70-130
1,2-Dichloroethane (EDC)	ng/tube	50	99	70-130
1,1,1-Trichloroethane	ng/tube	50	100	70-130
1,1-Dichloropropene	ng/tube	50	99	70-130
Carbon tetrachloride	ng/tube	50	100	70-130
Benzene	ng/tube	50	94	70-130
Frichloroethene	ng/tube	50	102	70-130
1,2-Dichloropropane	ng/tube	50	100	70-130
Bromodichloromethane	ng/tube	50	99	70-130
Dibromomethane	ng/tube	50	99	70-130
4-Methyl-2-pentanone	ng/tube	50	101	70-130
cis-1,3-Dichloropropene	ng/tube	50	102	70-130
Foluene	ng/tube	50	100	70-130
trans-1,3-Dichloropropene	ng/tube	50	104	70-130
1,1,2-Trichloroethane	ng/tube	50	105	70-130
2-Hexanone	ng/tube	50	88	70-130
1,3-Dichloropropane	ng/tube	50	103	70-130
Fetrachloroethene	ng/tube	50	106	70-130
Dibromochloromethane	ng/tube	50	103	70-130
1,2-Dibromoethane (EDB)	ng/tube	50	104	70-130
Chlorobenzene	ng/tube	50	101	70-130
Ethylbenzene	ng/tube	50	102	70-130
1,1,1,2-Tetrachloroethane	ng/tube	50	101	70-130
m,p-Xylene	ng/tube	100	102	70-130
o-Xylene	ng/tube	50	102	70-130
Styrene	ng/tube	50	103	70-130
Isopropylbenzene	ng/tube	50	102	70-130
Bromoform	ng/tube	50	101	70-130
n-Propylbenzene	ng/tube	50	102	70-130
Bromobenzene	ng/tube	50	104	70-130
1,3,5-Trimethylbenzene	ng/tube	50	101	70-130
1,1,2,2-Tetrachloroethane	ng/tube	50	101	70-130
1,2,3-Trichloropropane	ng/tube	50	101	70-130
2-Chlorotoluene	ng/tube	50	105	70-130
4-Chlorotoluene	ng/tube	50	103	70-130
tert-Butylbenzene	ng/tube	50	103	70-130
1,2,4-Trimethylbenzene	ng/tube	50	92	70-130
sec-Butylbenzene	ng/tube	50	91	70-130

p-Isopropyltoluene	ng/tube	50	92	70-130
1,3-Dichlorobenzene	ng/tube	50	90	70-130
1,4-Dichlorobenzene	ng/tube	50	90	70-130
1,2-Dichlorobenzene	ng/tube	50	89	70-130
1,2-Dibromo-3-chloropropane	ng/tube	50	93	70-130
1,2,4-Trichlorobenzene	ng/tube	50	88	70-130
Hexachlorobutadiene	ng/tube	50	87	70-130
Naphthalene	ng/tube	50	91	70-130
1,2,3-Trichlorobenzene	ng/tube	50	89	70-130
2-Methylnaphthalene	ng/tube	50	107	70-130
1-Methylnaphthalene	ng/tube	50	107	70-130
Diesel Fuel Range	ng/tube	2,500	105	70-130
APH EC9-12 aliphatics	ng/tube	1,200	82	70-130
APH EC9-10 aromatics	ng/tube	1,000	111	70-130

					LOW		
ANALYTE	CATEGORY	MATRIX	MDL	RL	LEVEL RL	UNIT	METHOD
Helium	AIR	Air	0.15	0.6		ug/m3	ASTMD1946
1,4-Dioxane	VOC SIM	Water	0.12	0.4		ug/L	EPA8260D SIM
1,4-Dioxane Aroclor 1221	VOC SIM PCB	Soil Soil	0.023 0.00021	0.1 0.02	 0.004	mg/kg mg/kg	EPA8260D SIM EPA8082
Aroclor 1221 Aroclor 1232	PCB	Soil	0.00021	0.02	0.004	mg/kg	EPA8082
Aroclor 1016	PCB	Soil	0.00021	0.02	0.004	mg/kg	EPA8082
Aroclor 1242	PCB	Soil	0.00021	0.02	0.004	mg/kg	EPA8082
Aroclor 1248	PCB	Soil	0.00023	0.02	0.004	mg/kg	EPA8082
Aroclor 1254	PCB	Soil	0.00023	0.02	0.004	mg/kg	EPA8082
Aroclor 1260	PCB	Soil	0.00023	0.02	0.004	mg/kg	EPA8082
Aroclor 1262 Aroclor 1268	PCB PCB	Soil Soil	0.00023 0.00023	0.02 0.02	0.004 0.004	mg/kg	EPA8082 EPA8082
Aroclor 1200	PCB	Water	0.00023	0.02	0.004	mg/kg ug/L	EPA8082
Aroclor 1232	PCB	Water	0.0054	0.1	0.01	ug/L	EPA8082
Aroclor 1016	PCB	Water	0.0054	0.1	0.01	ug/L	EPA8082
Aroclor 1242	PCB	Water	0.0054	0.1	0.01	ug/L	EPA8082
Aroclor 1248	PCB	Water	0.0059	0.1	0.01	ug/L	EPA8082
Aroclor 1254	PCB	Water	0.0059	0.1	0.01	ug/L	EPA8082
Aroclor 1260	PCB	Water	0.0059	0.1	0.01	ug/L	EPA8082
Aroclor 1262	PCB	Water	0.0059	0.1	0.01	ug/L	EPA8082
Aroclor 1268 Aroclor 1221	PCB PCB	Water Product	0.0059 0.6	0.1 1	0.01	ug/L mg/kg	EPA8082 EPA8082
Aroclor 1221 Aroclor 1232	PCB	Product	0.6	1		mg/kg	EPA8082
Aroclor 1016	PCB	Product	0.6	1		mg/kg	EPA8082
Aroclor 1242	PCB	Product	0.6	1		mg/kg	EPA8082
Aroclor 1248	PCB	Product	0.7	1		mg/kg	EPA8082
Aroclor 1254	PCB	Product	0.7	1		mg/kg	EPA8082
Aroclor 1260	PCB	Product	0.7	1		mg/kg	EPA8082
Aroclor 1262	PCB	Product	0.7	1		mg/kg	EPA8082
Aroclor 1268	PCB	Product	0.7	1		mg/kg	EPA8082
Aroclor 1221	PCB	Wipe	0.62	1 1		ug/wipe	EPA8082
Aroclor 1232 Aroclor 1016	PCB PCB	Wipe Wipe	0.62 0.62	1		ug/wipe ug/wipe	EPA8082 EPA8082
Aroclor 1242	PCB	Wipe	0.62	1		ug/wipe	EPA8082
Aroclor 1248	PCB	Wipe	0.56	1		ug/wipe	EPA8082
Aroclor 1254	PCB	Wipe	0.56	1		ug/wipe	EPA8082
Aroclor 1260	PCB	Wipe	0.56	1		ug/wipe	EPA8082
Aroclor 1262	PCB	Wipe	0.56	1		ug/wipe	EPA8082
Aroclor 1268	PCB	Wipe	0.56	1		ug/wipe	EPA8082
4,4'-DDD	PEST	Soil	0.000015	0.01	0.0001	mg/kg	EPA8081
4,4'-DDE 4,4'-DDT	PEST PEST	Soil Soil	0.000012 0.000028	0.01	0.0001 0.0001	mg/kg	EPA8081 EPA8081
Aldrin	PEST	Soil	0.000028	0.01	0.0001	mg/kg mg/kg	EPA8081
alpha-BHC	PEST	Soil	0.000012		0.0001	mg/kg	EPA8081
beta-BHC	PEST	Soil	0.000021	0.01	0.0001	mg/kg	EPA8081
cis-Chlordane	PEST	Soil	0.000012	0.01	0.0001	mg/kg	EPA8081
delta-BHC	PEST	Soil	0.00002	0.01	0.0001	mg/kg	EPA8081
Dieldrin	PEST	Soil	0.000015	0.01	0.0001	mg/kg	EPA8081
Endosulfan I	PEST	Soil	0.00001	0.01	0.0001	mg/kg	EPA8081
Endosulfan II	PEST	Soil	0.000014		0.0001	mg/kg	EPA8081
Endosulfan Sulfate Endrin	PEST	Soil Soil	0.000012		0.0001 0.0001	mg/kg mg/kg	EPA8081 EPA8081
Endrin Aldehyde	PEST	Soil	0.000026		0.0001	mg/kg	EPA8081
Endrin Ketone	PEST	Soil	0.000055		0.0001	mg/kg	EPA8081
gamma-BHC (Lind	PEST	Soil	9.5E-06	0.01	0.0001	mg/kg	EPA8081
Heptachlor	PEST	Soil	0.000017	0.01	0.0001	mg/kg	EPA8081
Heptachlor Epoxid		Soil	0.00001	0.01	0.0001	mg/kg	EPA8081
Methoxychlor	PEST	Soil	0.00004	0.01	0.0001	mg/kg	EPA8081
Toxaphene trans-Chlordane	PEST PEST	Soil Soil	0.014 0.000013	1 0.01	0.1 0.0001	mg/kg mg/kg	EPA8081 EPA8081
4,4'-DDD	PEST	Water	0.00013	0.01	0.005	ug/L	EPA8081
4,4'-DDE	PEST	Water	0.00072	0.1	0.005	ug/L	EPA8081
4,4'-DDT	PEST	Water	0.001	0.1	0.005	ug/L	EPA8081
Aldrin	PEST	Water	0.00052	0.1	0.005	ug/L	EPA8081
alpha-BHC	PEST	Water	0.00064	0.1	0.005	ug/L	EPA8081
beta-BHC	PEST	Water	0.00061	0.1	0.005	ug/L	EPA8081
cis-Chlordane	PEST	Water	0.0007	0.1	0.005	ug/L	EPA8081
delta-BHC	PEST	Water	0.00053	0.1	0.005	ug/L	EPA8081
Dieldrin Endosulfan I	PEST PEST	Water Water	0.00064	0.1 0.1	0.005 0.005	ug/L	EPA8081
Endosulfan II	PEST	Water	0.00067 0.00094	0.1	0.005	ug/L ug/L	EPA8081 EPA8081
Endosulfan Sulfate		Water	0.00083	0.1	0.005	ug/L	EPA8081
Endrin	PEST	Water	0.00063	0.1	0.005	ug/L	EPA8081
Endrin Aldehyde	PEST	Water	0.0011	0.1	0.005	ug/L	EPA8081

ACRONYMS MDL-method detection limit RL - reporting limit ug - microgram mg - milligram kg - kilogram L - liter m3 - cubic meter

Endrin Ketone	PEST	Water	0.0027	0.1	0.005	ug/L	EPA8081
gamma-BHC (Line	c PEST	Water	0.00076	0.1	0.005	ug/L	EPA8081
Heptachlor	PEST	Water	0.0005	0.1	0.005	ug/L	EPA8081
Heptachlor Epoxic		Water	0.0008	0.1	0.005	ug/L	EPA8081
		Water		0.1			
Methoxychlor	PEST		0.0013		0.005	ug/L	EPA8081
Toxaphene	PEST	Water	0.044	1	0.1	ug/L	EPA8081
trans-Chlordane	PEST	Water	0.00048	0.1	0.005	ug/L	EPA8081
1,2-Dibromoethan	n 8011	Water	0.0098	0.01		ug/L	EPA8011
diesel	TPH	Soil	25	50		mg/kg	NWTPH-Dx
diesel extended	TPH	Soil	32	250		mg/kg	NWTPH-Dx
motor oil	TPH	Soil	37	250		mg/kg	NWTPH-Dx
diesel							
	TPH	Soil	5.4		10	mg/kg	NWTPH-Dx
motor oil	TPH	Soil	10		50	mg/kg	NWTPH-Dx
diesel	TPH	Water	27	100		ug/L	NWTPH-Dx
diesel extended	TPH	Water	110	250		ug/L	NWTPH-Dx
motor oil	TPH	Water	110	250		ug/L	NWTPH-Dx
gasoline	TPH	Soil	0.6	5		mg/kg	NWTPH-Gx
Stoddard	TPH	Soil	1.3	25		mg/kg	NWTPH-Gx
benzene	TPH	Soil	0.003	0.02		mg/kg	EPA8021
toluene	TPH	Soil	0.0046	0.02		mg/kg	EPA8021
ethylbenzene	TPH	Soil	0.0029	0.02		mg/kg	EPA8021
xylenes	TPH	Soil	0.0077	0.06		mg/kg	EPA8021
Stoddard	TPH	Water	7	500		ug/L	NWTPH-Gx
gasoline	TPH	Water	26	100		ug/L	NWTPH-Gx
benzene	TPH	Water	0.12	1		ug/L	EPA8021
						-	
toluene	TPH	Water	0.12	1		ug/L	EPA8021
ethylbenzene	TPH	Water	0.1	1		ug/L	EPA8021
xylenes	TPH	Water	0.29	3		ug/L	EPA8021
1,1,1-Trichloroeth	٤TO15	Air	0.043	0.55		ug/m3	EPATO15
1,1,2,2-Tetrachlor		Air	0.06	0.14		ug/m3	EPATO15
1,1,2-Trichloroeth		Air	0.047	0.055		ug/m3	EPATO15
						•	
1,1-Dichloroethan		Air	0.024	0.4		ug/m3	EPATO15
1,1-Dichloroethen	(CT015)	Air	0.044	0.4		ug/m3	EPATO15
1,2,4-Trichlorober	n TO15	Air	0.53	0.74		ug/m3	EPATO15
1,2,4-Trimethylbe	r TO15	Air	1.6	4.9		ug/m3	EPATO15
1,2-Dibromoethan	n TO15	Air	0.058	0.077		ug/m3	EPATO15
1,2-Dichlorobenze		Air	0.17	0.6		ug/m3	EPATO15
1,2-Dichloroethan		Air	0.024	0.04		ug/m3	EPATO15
						•	
1,2-Dichloropropa		Air	0.086	0.23		ug/m3	EPATO15
1,3,5-Trimethylbe		Air	0.35	4.9		ug/m3	EPATO15
1,3-Butadiene	TO15	Air	0.024	0.044		ug/m3	EPATO15
1,3-Dichlorobenze	e TO15	Air	0.22	0.6		ug/m3	EPATO15
1,4-Dichlorobenze	e TO15	Air	0.15	0.23		ug/m3	EPATO15
1,4-Dioxane	TO15	Air	0.061	0.36		ug/m3	EPATO15
2,2,4-Trimethylpe		Air	0.66	4.7		ug/m3	EPATO15
						•	
2-Butanone (MEK	,	Air	1.1	5.9		ug/m3	EPATO15
2-Chlorotoluene	TO15	Air	1.2	5.2		ug/m3	EPATO15
2-Hexanone	TO15	Air	2.3	4.1		ug/m3	EPATO15
2-Propanol	TO15	Air	0.71	8.6		ug/m3	EPATO15
3-Chloropropene	TO15	Air	0.66	3.1		ug/m3	EPATO15
4-Ethyltoluene	TO15	Air	1.8	4.9		ug/m3	EPATO15
4-Methyl-2-pentar		Air	2.2	8.2		ug/m3	EPATO15
Acetone	TO15	Air	1.3	4.8		ug/m3	EPATO15
Acrolein	TO15	Air	0.1	0.11		ug/m3	EPATO15
Benzene	TO15	Air	0.038	0.32		ug/m3	EPATO15
Benzyl chloride	TO15	Air	0.032	0.052		ug/m3	EPATO15
Bromodichlorome	tTO15	Air	0.064	0.067		ug/m3	EPATO15
Bromoform	TO15	Air	0.65	2.1		ug/m3	EPATO15
Bromomethane	TO15	Air	1.3	3.9		ug/m3	EPATO15
						0	
Butane	TO15	Air	0.48	4.8		ug/m3	EPATO15
Carbon disulfide	TO15	Air	0.96	6.2		ug/m3	EPATO15
Carbon tetrachlori	irTO15	Air	0.04	0.31		ug/m3	EPATO15
CFC-113	TO15	Air	0.28	1.5		ug/m3	EPATO15
Chlorobenzene	TO15	Air	0.11	0.46		ug/m3	EPATO15
Chloroethane	TO15	Air	0.038	2.6		ug/m3	EPATO15
Chloroform	TO15	Air	0.037	0.049		ug/m3	EPATO15
						-	
Chloromethane	TO15	Air	0.072	3.7		ug/m3	EPATO15
cis-1,2-Dichloroet		Air	0.02	0.4		ug/m3	EPATO15
cis-1,3-Dichloropr	x TO15	Air	0.15	0.91		ug/m3	EPATO15
Cyclohexane	TO15	Air	0.76	6.9		ug/m3	EPATO15
Dibromochlorome		Air	0.076	0.085		ug/m3	EPATO15
Dichlorodifluorom		Air	0.14	0.99		ug/m3	EPATO15
Ethanol	TO15	Air	1.3	7.5		ug/m3	EPATO15
						-	
Ethyl acetate	TO15	Air	1.3	7.2		ug/m3	EPATO15
Ethylbenzene	TO15	Air	0.046	0.43		ug/m3	EPATO15
F-114	TO15	Air	0.32	2.1		ug/m3	EPATO15
Heptane	TO15	Air	0.6	4.1		ug/m3	EPATO15

Hexachlorobutadie TO15	Air	0.092	0.21		ug/m3	EPATO15
Hexane TO15	Air	0.92	3.5		ug/m3	EPATO15
Isopropylbenzene TO15	Air	2	9.8		ug/m3	EPATO15
					-	
m,p-Xylene TO15	Air	0.14	0.87		ug/m3	EPATO15
Methyl Methacryla TO15	Air	1.3	4.1		ug/m3	EPATO15
Methyl t-butyl ethe TO15	Air	0.7	7.2		ug/m3	EPATO15
Methylene chloride TO15	Air	1.3	35		ug/m3	EPATO15
Naphthalene TO15	Air	0.018	0.11	0.052	ug/m3	EPATO15
Nonane TO15	Air	0.76	5.2		ug/m3	EPATO15
o-Xylene TO15	Air	0.058	0.43		ug/m3	EPATO15
Pentane TO15	Air	1.1	5.9		ug/m3	EPATO15
	Air		1.2			
Propene TO15		0.2			ug/m3	EPATO15
Propylbenzene TO15	Air	0.92	4.9		ug/m3	EPATO15
Styrene TO15	Air	0.28	0.85		ug/m3	EPATO15
t-Butyl alcohol (TB TO15	Air	0.33	12		ug/m3	EPATO15
Tetrachloroethene TO15	Air	0.18	6.8		ug/m3	EPATO15
Tetrahydrofuran TO15	Air	0.15	0.59		ug/m3	EPATO15
Toluene TO15	Air	0.095	7.5		ug/m3	EPATO15
trans-1,2-Dichloro TO15	Air	0.051	0.4		ug/m3	EPATO15
					•	
trans-1,3-Dichloro TO15	Air	0.1	0.45		ug/m3	EPATO15
Trichloroethene TO15	Air	0.051	0.11		ug/m3	EPATO15
Trichlorofluoromet TO15	Air	0.21	2.2		ug/m3	EPATO15
Vinyl acetate TO15	Air	0.91	7		ug/m3	EPATO15
Vinyl bromide TO15	Air	0.034	0.44		ug/m3	EPATO15
Vinyl chloride TO15	Air	0.012	0.26		ug/m3	EPATO15
Gasoline Range CTO15	Air	30	330		ug/m3	EPATO15
0					•	
1,2,4-Trichloroben SVOC	Soil	0.0039	0.05		mg/kg	EPA8270E
1,2-Dichlorobenze SVOC	Soil	0.0036	0.05		mg/kg	EPA8270E
1,2-Diphenylhydra SVOC	Soil	0.0044	0.05		mg/kg	EPA8270E
1,3-Dichlorobenze SVOC	Soil	0.0029	0.05		mg/kg	EPA8270E
1,4-Dichlorobenze SVOC	Soil	0.003	0.05		mg/kg	EPA8270E
1-Methylnaphthale SVOC	Soil	0.0003	0.01		mg/kg	EPA8270E
2,2'-Oxybis(1-chlorSVOC	Soil	0.0031	0.05		mg/kg	EPA8270E
2,4,5-Trichlorophe SVOC	Soil	0.013	0.5		mg/kg	EPA8270E
-						
2,4,6-Trichlorophe SVOC	Soil	0.015	0.5		mg/kg	EPA8270E
2,4-Dichloropheno SVOC	Soil	0.0061	0.5		mg/kg	EPA8270E
2,4-Dimethylphenc SVOC	Soil	0.014	0.5		mg/kg	EPA8270E
2,4-Dinitrophenol SVOC	Soil	0.016	1.5		mg/kg	EPA8270E
2,4-Dinitrotoluene SVOC	Soil	0.0081	0.25		mg/kg	EPA8270E
2,6-Dinitrotoluene SVOC	Soil	0.0069	0.25		mg/kg	EPA8270E
2-Chloronaphthale SVOC	Soil	0.0016	0.05		mg/kg	EPA8270E
2-Chlorophenol SVOC	Soil	0.012	0.5		mg/kg	EPA8270E
2-Methylnaphthale SVOC	Soil	0.00039	0.01		mg/kg	EPA8270E
2-Methylphenol SVOC	Soil	0.0082	0.5		mg/kg	EPA8270E
2-Nitroaniline SVOC	Soil	0.015	0.25		mg/kg	EPA8270E
2-Nitrophenol SVOC	Soil	0.027	0.5		mg/kg	EPA8270E
3,3'-Dichlorobenzi SVOC	Soil	0.033	0.5		mg/kg	EPA8270E
3-Methylphenol + SVOC	Soil	0.013	1		mg/kg	EPA8270E
3-Nitroaniline SVOC	Soil	0.017	5		mg/kg	EPA8270E
4,6-Dinitro-2-meth SVOC	Soil	0.017	1.5		mg/kg	EPA8270E
4-Bromophenyl ph SVOC	Soil	0.0023	0.05		mg/kg	EPA8270E
4-Chloro-3-methyl SVOC	Soil	0.018	0.5		mg/kg	EPA8270E
4-Chloroaniline SVOC	Soil	0.21	5		mg/kg	EPA8270E
4-Chlorophenyl ph SVOC	Soil	0.0028	0.05		mg/kg	EPA8270E
4-Nitroaniline SVOC	Soil	0.024	5		mg/kg	EPA8270E
4-Nitrophenol SVOC	Soil	0.011	1.5		mg/kg	EPA8270E
Acenaphthene SVOC	Soil	0.00018	0.01		mg/kg	EPA8270E
Acenaphthylene SVOC	Soil	0.00016	0.01		mg/kg	EPA8270E
Anthracene SVOC	Soil	0.00014	0.01		mg/kg	EPA8270E
Benz(a)anthracen(SVOC	Soil	0.00023				
			0.01		mg/kg	EPA8270E
Benzo(a)pyrene SVOC	Soil	0.00028	0.01		mg/kg	EPA8270E
Benzo(b)fluorantheSVOC	Soil	0.00025	0.01		mg/kg	EPA8270E
Benzo(g,h,i)peryle SVOC	Soil	0.0004	0.01		mg/kg	EPA8270E
Benzo(k)fluorantheSVOC	Soil	0.00032	0.01		mg/kg	EPA8270E
Benzoic acid SVOC	Soil	0.1	2.5		mg/kg	EPA8270E
Benzyl alcohol SVOC	Soil	0.012	0.5		mg/kg	EPA8270E
Benzyl butyl phtha SVOC	Soil	0.019	0.5		mg/kg	EPA8270E
Bis(2-chloroethoxy SVOC	Soil	0.0027	0.05		mg/kg	EPA8270E
Bis(2-chloroethyl) SVOC	Soil	0.0035	0.05		mg/kg	EPA8270E
Bis(2-ethylhexyl) p SVOC	Soil	0.035	0.8		mg/kg	EPA8270E
Carbazole SVOC	Soil	0.0019	0.05		mg/kg	EPA8270E
Chrysene SVOC	Soil	0.00018	0.01		mg/kg	EPA8270E
Dibenzo(a,h)anthr SVOC	Soil	0.00049	0.01		mg/kg	EPA8270E
Dibenzofuran SVOC	Soil	0.0034	0.05		mg/kg	EPA8270E
Diethyl phthalate SVOC	Soil	0.0051	0.5		mg/kg	EPA8270E
Dimethyl phthalate SVOC	Soil	0.0053	0.5		mg/kg	EPA8270E
Di-n-butyl phthalat SVOC	Soil	0.019	0.5		mg/kg	EPA8270E
	001	0.013	0.0		myrky	

Di-n-octyl phthalat SVOC					
	Soil	0.019	0.5	 mg/kg	EPA8270E
Fluoranthene SVOC	Soil	0.00019	0.01	 mg/kg	EPA8270E
Fluorene SVOC	Soil	0.00014	0.01	 mg/kg	EPA8270E
Hexachlorobenzer SVOC	Soil	0.002	0.05	 mg/kg	EPA8270E
Hexachlorobutadic SVOC	Soil	0.0029	0.05	 mg/kg	EPA8270E
Hexachlorocyclop(SVOC	Soil	0.0061	0.15	 mg/kg	EPA8270E
Hexachloroethane SVOC	Soil	0.0041	0.05	 mg/kg	EPA8270E
Indeno(1,2,3-cd)p) SVOC	Soil	0.00026	0.01	mg/kg	EPA8270E
Isophorone SVOC	Soil	0.0019	0.05	 mg/kg	EPA8270E
Naphthalene SVOC	Soil	0.0004	0.01	 mg/kg	EPA8270E
Nitrobenzene SVOC	Soil	0.0047	0.05	 mg/kg	EPA8270E
N-Nitrosodimethyl: SVOC	Soil	0.0063	0.05	 mg/kg	EPA8270E
N-Nitroso-di-n-pro SVOC	Soil	0.003	0.05	 mg/kg	EPA8270E
N-Nitrosodiphenyl: SVOC	Soil	0.0033	0.05	 mg/kg	EPA8270E
Pentachloropheno SVOC	Soil	0.0088	0.25	 mg/kg	EPA8270E
Phenanthrene SVOC	Soil		0.01	 mg/kg	
		0.00018			EPA8270E
Phenol SVOC	Soil	0.013	0.5	 mg/kg	EPA8270E
Pyrene SVOC	Soil	0.00016	0.01	 mg/kg	EPA8270E
1,2,4-Trichloroben SVOC	Water	0.051	0.2	 ug/L	EPA8270E
1,2-Dichlorobenze SVOC	Water	0.055	0.2	 ug/L	EPA8270E
				-	
1,2-Diphenylhydra SVOC	Water	0.028	0.2	 ug/L	EPA8270E
1,3-Dichlorobenze SVOC	Water	0.067	0.2	 ug/L	EPA8270E
1,4-Dichlorobenze SVOC	Water	0.065	0.2	 ug/L	EPA8270E
1-Methylnaphthale SVOC	Water	0.005	0.2	 ug/L	EPA8270E
				•	
2,2'-Oxybis(1-chlorSVOC	Water	0.046	0.2	 ug/L	EPA8270E
2,2'-Oxybis(1-chlo SVOC	Water	0.046	2	 ug/L	EPA8270E
2,4,5-Trichlorophe SVOC	Water	0.17	2	 ug/L	EPA8270E
•	Water	0.13	2	 -	
2,4,6-Trichlorophe SVOC				ug/L	EPA8270E
2,4-Dichloropheno SVOC	Water	0.12	2	 ug/L	EPA8270E
2,4-Dimethylphenc SVOC	Water	0.78	6	 ug/L	EPA8270E
2,4-Dinitrophenol SVOC	Water	2.6	1	 ug/L	EPA8270E
2,4-Dinitrotoluene SVOC	Water	0.067	1		EPA8270E
				ug/L	
2,6-Dinitrotoluene SVOC	Water	0.072	0.2	 ug/L	EPA8270E
2-Chloronaphthale SVOC	Water	0.034	2	 ug/L	EPA8270E
2-Chlorophenol SVOC	Water	0.16	0.2	 ug/L	EPA8270E
2-Methylnaphthale SVOC	Water	0.0059	2	 ug/L	EPA8270E
2-Methylphenol SVOC	Water	0.19	1	 ug/L	EPA8270E
2-Nitroaniline SVOC	Water	0.35	2	 ug/L	EPA8270E
2-Nitrophenol SVOC	Water	0.25	2	 ug/L	EPA8270E
3,3'-Dichlorobenzi	Water	0.81	4	 ug/L	EPA8270E
				•	
3-Methylphenol + SVOC	Water	0.29	20	 ug/L	EPA8270E
3-Nitroaniline SVOC	Water	0.34	6	 ug/L	EPA8270E
4,6-Dinitro-2-meth SVOC	Water	0.16	0.2	 ug/L	EPA8270E
4-Bromophenyl ph SVOC	Water	0.035	2	 ug/L	EPA8270E
				•	
4-Chloro-3-methyl SVOC	Water	0.1	20	 ug/L	EPA8270E
4-Chloroaniline SVOC	Water	0.61	0.2	 ug/L	EPA8270E
4-Chlorophenyl ph SVOC	Water	0.03	20	 ug/L	EPA8270E
	Water	0.88	6	 ug/L	
		0.00			
4-Nitroaniline SVOC		0 5 2			EPA8270E
4-NitroanilineSVOC4-NitrophenolSVOC	Water	0.52	0.02	 ug/L	EPA8270E EPA8270E
4-Nitroaniline SVOC		0.52 0.0042			EPA8270E
4-NitroanilineSVOC4-NitrophenolSVOC	Water		0.02	 ug/L ug/L	EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC	Water Water Water	0.0042 0.0031	0.02 0.02 0.02	 ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E
4-NitroanilineSVOC4-NitrophenolSVOCAcenaphtheneSVOCAcenaphthyleneSVOCAnthraceneSVOC	Water Water Water Water	0.0042 0.0031 0.0049	0.02 0.02 0.02 0.02	 ug/L ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benz(a)anthracen SVOC	Water Water Water Water Water	0.0042 0.0031 0.0049 0.006	0.02 0.02 0.02 0.02 4	 ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benz(a)anthraceni SVOC Benzo(a)pyrene SVOC	Water Water Water Water Water Water	0.0042 0.0031 0.0049 0.006 0.0089	0.02 0.02 0.02 0.02 4 0.02	 ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benz(a)anthracent SVOC Benzo(a)pyrene SVOC Benzo(b)fluoranth SVOC	Water Water Water Water Water	0.0042 0.0031 0.0049 0.006	0.02 0.02 0.02 0.02 4	 ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benz(a)anthraceni SVOC Benzo(a)pyrene SVOC	Water Water Water Water Water Water	0.0042 0.0031 0.0049 0.006 0.0089	0.02 0.02 0.02 0.02 4 0.02	 ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benz(a)anthracent SVOC Benzo(a)pyrene SVOC Benzo(a)pyrene SVOC Benzo(a)pyrene SVOC Benzo(a)pyrene SVOC Benzo(a)pyrene SVOC	Water Water Water Water Water Water Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018	0.02 0.02 0.02 4 0.02 0.02 0.02 0.02	 ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benz(a)anthracent SVOC Benzo(a)pyrene SVOC Benzo(b)fluoranthis SVOC Benzo(b)fluoranthis SVOC Benzo(k)fluoranthis SVOC	Water Water Water Water Water Water Water Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045	0.02 0.02 0.02 4 0.02 0.02 0.02 0.04 0.02	 ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benz(a)anthracene SVOC Benzo(a)pyrene SVOC Benzo(b)fluoranthr SVOC Benzo(c)k)fluoranthr SVOC Benzo(c)kluoranthr SVOC Benzoic acid SVOC	Water Water Water Water Water Water Water Water Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2	0.02 0.02 0.02 4 0.02 0.02 0.02 0.04 0.02 10	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benz(a)anthracent SVOC Benzo(a)pyrene SVOC Benzo(b)fluoranthis SVOC Benzo(b)fluoranthis SVOC Benzo(k)fluoranthis SVOC	Water Water Water Water Water Water Water Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045	0.02 0.02 0.02 4 0.02 0.02 0.02 0.04 0.02	 ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benz(a)anthracene SVOC Benzo(a)pyrene SVOC Benzo(b)fluoranthr SVOC Benzo(k)fluoranthr SVOC Benzo(k)fluoranthr SVOC Benzo(acid SVOC	Water Water Water Water Water Water Water Water Water Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14	0.02 0.02 0.02 4 0.02 0.02 0.02 0.04 0.02 10 2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benz(a)anthracen SVOC Benzo(a)pyrene SVOC SVOC Benzo(a)pyrene SVOC Benzo(b)fluoranth SVOC Benzo(g,h,i)peryle SVOC Benzo(x)fluoranth SVOC Benzoic acid SVOC Benzoic bloch SVOC Benzyl alcohol SVOC	Water Water Water Water Water Water Water Water Water Water Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7	0.02 0.02 0.02 0.02 4 0.02 0.02 0.04 0.02 10 2 2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benz(a)anthracen SVOC Benzo(a)pyrene Benzo(a)pyrene SVOC Benzo(b)fluoranthr SVOC Benzo(b)fluoranthr SVOC Benzo(k)fluoranthr SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Benzyl butyl phtha SVOC Bis(2-chloroethoxy SVOC	Water Water Water Water Water Water Water Water Water Water Water Water Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.0054 0.0045 5.2 0.14 0.7 0.062	0.02 0.02 0.02 0.02 4 0.02 0.02 0.02 0.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benzo(a)anthracent SVOC Benzo(a)pyrene SVOC Benzo(b)fluoranth SVOC Benzo(g,h,i)peryle SVOC Benzo(c acid SVOC Benzo(c acid SVOC Benzo(z acid SVOC Benzol butyl phtha SVOC Benzolyl butyl phtha SVOC Benzyl butyl phtha SVOC	Water Water Water Water Water Water Water Water Water Water Water Water Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7 0.062 0.042	0.02 0.02 0.02 4 0.02 0.02 0.02 0.04 0.02 10 2 2 0.2 0.2 0.2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benza(a)anthracent SVOC Benza(a)anthracent SVOC Benza(a)pyrene SVOC Benza(b)fluoranth SVOC Benzo(g,h,i)peryle SVOC Benzoic acid SVOC Benzoic acid SVOC Benzoic acid SVOC Benzoic bitlioranth SVOC Bis(2-chloroethoxy SVOC Bis(2-chloroethyl) Bis(2-chloroethyl) SVOC Bis(2-ethylhexyl) p SVOC Bis(2-ethylhexyl) p SVOC	Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7 0.062 0.042 0.93	0.02 0.02 0.02 4 0.02 0.02 0.02 0.02 0.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benzo(a)anthracent SVOC Benzo(a)pyrene SVOC Benzo(b)fluoranth SVOC Benzo(g,h,i)peryle SVOC Benzo(c acid SVOC Benzo(c acid SVOC Benzo(z acid SVOC Benzol butyl phtha SVOC Benzolyl butyl phtha SVOC Benzyl butyl phtha SVOC	Water Water Water Water Water Water Water Water Water Water Water Water Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7 0.062 0.042	0.02 0.02 0.02 4 0.02 0.02 0.02 0.04 0.02 10 2 2 0.2 0.2 0.2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benzo(a)anthracene SVOC Benzo(a)pyrene SVOC Benzo(b)fluoranthr SVOC Benzo(k)fluoranthr SVOC Benzo(k)fluoranthr SVOC Benzol (acid SVOC Benzol (acid SVOC Benzol (acid SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Bis(2-chloroethxyl) SVOC Bis(2-chloroethyl) SVOC Bis(2-chloroethyl) SVOC	Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7 0.062 0.042 0.93 0.0034	0.02 0.02 0.02 4 0.02 0.02 0.02 0.02 10 2 2 0.2 0.2 0.2 0.2 0.2 0.2 0.02	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benz(a)anthracent SVOC Benzo(a)pyrene SVOC Benzo(b)fluoranthr SVOC Benzo(b)fluoranthr SVOC Benzo(c) fluoranthr SVOC Benzo(c) acid SVOC Benzo(c) acid SVOC Benzo(c) cacid SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Bis(2-chloroethoxy SVOC Bis(2-chloroethoxy SVOC Bis(2-ethylhexyl) p SVOC Carbazole SVOC Chrysene SVOC	Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7 0.062 0.042 0.93 0.0034 0.0045	0.02 0.02 0.02 4 0.02 0.02 0.02 0.02 0.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benz(a)anthracen SVOC Benzo(a)pyrene Benzo(a)pyrene SVOC Benzo(b)fluoranthr SVOC Benzo(g,h,i)peryle SVOC Benzo(k,fluoranthr SVOC Benzo(k,fluoranthr SVOC Benzo(k,fluoranthr SVOC Benzo(k,fluoranthr SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Bis(2-chloroethoxy SVOC Bis(2-chloroethoxy SVOC Bis(2-ethylhexyl) p SVOC Carbazole SVOC Chrysene SVOC Dibenzo(a,h)anthr. SVOC SVOC	Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.0045 5.2 0.14 0.7 0.062 0.042 0.93 0.0034 0.0045 0.0045 0.013	0.02 0.02 0.02 4 0.02 0.02 0.02 0.02 10 2 2 0.2 0.2 0.2 0.2 0.2 0.02 0.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benz(a)anthracent SVOC Benzo(a)pyrene SVOC Benzo(a)pyrene SVOC Benzo(b)fluoranth SVOC Benzo(b)fluoranth SVOC Benzo(c)fluoranth SVOC Benzo(k)fluoranth SVOC Benzo(k)fluoranth SVOC Benzo(k)fluoranth SVOC Benzo(k)fluoranth SVOC Benzo(k)fluoranth SVOC Benzo(k)fluoranth SVOC Benzyl alcohol SVOC Bis(2-chloroethox) SVOC Bis(2-chloroethyl) SVOC Carbazole SVOC Chrysene SVOC Dibenzo(a,h)anthr SVOC Dibenzofuran SVOC	Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7 0.062 0.042 0.93 0.0034 0.0045 0.013 0.0052	0.02 0.02 0.02 4 0.02 0.02 0.02 0.02 0.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benz(a)anthracen SVOC Benzo(a)pyrene Benzo(a)pyrene SVOC Benzo(b)fluoranthr SVOC Benzo(g,h,i)peryle SVOC Benzo(k,fluoranthr SVOC Benzo(k,fluoranthr SVOC Benzo(k,fluoranthr SVOC Benzo(k,fluoranthr SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Bis(2-chloroethoxy SVOC Bis(2-chloroethoxy SVOC Bis(2-ethylhexyl) p SVOC Carbazole SVOC Chrysene SVOC Dibenzo(a,h)anthr. SVOC SVOC	Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.0045 5.2 0.14 0.7 0.062 0.042 0.93 0.0034 0.0045 0.0045 0.013	0.02 0.02 0.02 4 0.02 0.02 0.02 0.02 10 2 2 0.2 0.2 0.2 0.2 0.2 0.02 0.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Acenaphthylene SVOC Anthracene SVOC Benzo(a)anthracene SVOC Benzo(a)pyrene SVOC Benzo(a)pyrene SVOC Benzo(g,h,i)peryle SVOC Benzo(k)fluoranthe SVOC Benzo(k)fluoranthe SVOC Benzol (k)fluoranthe SVOC Bis(2-chloroethyl) SVOC Bis(2-chloroethyl) SVOC Chrysene SVOC Dibenzo(a,h)anthr. SVOC Dibenzofuran SVOC	Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7 0.062 0.042 0.93 0.0034 0.0045 0.013 0.0052 0.11	0.02 0.02 0.02 4 0.02 0.02 0.02 0.02 0.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Acenaphthylene SVOC Anthracene SVOC Benzo(a)anthracene SVOC Benzo(a)anthracene SVOC Benzo(a)pyrene SVOC Benzo(b)fluoranthr SVOC Benzo(k)fluoranthe SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Bis(2-chloroethoxy, SVOC Bis(2-chloroethoxy) Bis(2-chloroethyl) SVOC Carbazole SVOC Chrysene SVOC Dibenzo(a,h)anthr. SVOC Dibenzo(a,h)anthr. SVOC Dibenzoly phthalate SVOC	Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7 0.062 0.042 0.93 0.0034 0.0045 0.013 0.0052 0.11 0.062	0.02 0.02 0.02 4 0.02 0.02 0.02 0.02 0.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benzo(a)pyrene SVOC Benzo(b)fluoranthr SVOC Benzo(b)fluoranthr SVOC Benzo(k)fluoranthr SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Bis(2-chloroethoxy SVOC Bis(2-chloroethyl) SVOC Bis(2-chloroethyl) SVOC Bis(2-chloroethyl) SVOC Disel, h)anthr. SVOC Dibenzo(a,h)anthr. SVOC Diethyl phthalate SVOC Din-butyl phthalate SVOC	Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7 0.062 0.042 0.93 0.0034 0.0045 0.013 0.0052 0.11 0.062 0.51	0.02 0.02 0.02 4 0.02 0.02 0.02 0.02 0.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benz(a)anthracent SVOC Benzo(a)pyrene SVOC Benzo(a)pyrene SVOC Benzo(b)fluoranth SVOC Benzo(k)fluoranth SVOC Benzyl alcohol SVOC Bis(2-chloroethyl) SVOC Bis(2-chloroethyl) SVOC Carbazole SVOC Dibenzofuran SVOC Dibenzofuran SVOC Dien-butyl phthalate SVOC Dien-octyl phthalat SVOC	Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7 0.062 0.042 0.93 0.0034 0.0045 0.013 0.0052 0.11 0.062 0.51 0.63	0.02 0.02 0.02 4 0.02 0.02 0.02 0.02 0.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benzo(a)pyrene SVOC Benzo(b)fluoranthr SVOC Benzo(b)fluoranthr SVOC Benzo(k)fluoranthr SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Bis(2-chloroethoxy SVOC Bis(2-chloroethyl) SVOC Bis(2-chloroethyl) SVOC Bis(2-chloroethyl) SVOC Disel, h)anthr. SVOC Dibenzo(a,h)anthr. SVOC Diethyl phthalate SVOC Din-butyl phthalate SVOC	Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7 0.062 0.042 0.93 0.0034 0.0045 0.013 0.0052 0.11 0.062 0.51	0.02 0.02 0.02 4 0.02 0.02 0.04 0.02 0.04 0.02 10 2 2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.02 0.02 0.02 2 2 2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benz(a)anthracent SVOC Benzo(a)pyrene SVOC Benzo(a)pyrene SVOC Benzo(b)fluoranth SVOC Benzo(k)fluoranth SVOC Benzyl alcohol SVOC Bis(2-chloroethyl) SVOC Bis(2-chloroethyl) SVOC Carbazole SVOC Dibenzofuran SVOC Dibenzofuran SVOC Dien-butyl phthalate SVOC Dien-octyl phthalat SVOC	Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7 0.062 0.042 0.93 0.0034 0.0045 0.013 0.0052 0.11 0.062 0.51 0.63	0.02 0.02 0.02 4 0.02 0.02 0.02 0.02 0.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Acenaphthylene SVOC Anthracene SVOC Benzo(a)anthracene SVOC Benzo(a)pyrene SVOC Benzo(a)pyrene SVOC Benzo(g,h,i)peryle SVOC Benzo(k)fluoranthe SVOC Benzo(k)fluoranthe SVOC Benzo(k)fluoranthe SVOC Benzo(k)fluoranthe SVOC Benzo(k)fluoranthe SVOC Benzo(k)fluoranthe SVOC Benzol(k)fluoranthe SVOC Benzol(k)fluoranthe SVOC Bis(2-chloroethyl) SVOC Bis(2-chloroethyl) SVOC Carbazole SVOC Dibenzo(a,h)anthr SVOC Dibenzofuran SVOC Dientyl phthalate SVOC Dien-butyl phthalate SVOC Di-n-octyl phthalat SVOC Fluoranthene SVOC	Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7 0.062 0.042 0.93 0.0034 0.0045 0.013 0.0052 0.11 0.062 0.51 0.63 0.0045 0.0045 0.0032	0.02 0.02 0.02 4 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.2 0.	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Acenaphthylene SVOC Anthracene SVOC Benzo(a)anthracene SVOC Benzo(a)apyrene SVOC Benzo(a)pyrene SVOC Benzo(g,h,i)peryle SVOC Benzo(k)fluoranth SVOC Benzo(k)fluoranth SVOC Benzo(k)fluoranth SVOC Benzo(k)fluoranth SVOC Benzo(k)fluoranth SVOC Benzol acid SVOC Benzol (k)fluoranth SVOC Benzol (k)fluoranth SVOC Benzol (k)fluoranth SVOC Benzol (k)fluoranth SVOC Bis(2-chloroethyl) SVOC Dis(2-chloroethyl) SVOC Carbazole SVOC Dibenzo(a,h)anthr. SVOC Dibenzo(a,h)anthr. SVOC Dibenzofuran SVOC Dibenzofuran SVOC Dibenzofuran SVOC Dimethyl phthalat SVOC Din-octyl phthalat <td>Water Water</td> <td>0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7 0.062 0.042 0.93 0.0034 0.0045 0.013 0.0052 0.11 0.062 0.51 0.63 0.0045 0.0032 0.0032 0.0032</td> <td>0.02 0.02 0.02 4 0.02 0.02 0.02 0.02 0.0</td> <td>ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L</td> <td>EPA8270E EPA8270E</td>	Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7 0.062 0.042 0.93 0.0034 0.0045 0.013 0.0052 0.11 0.062 0.51 0.63 0.0045 0.0032 0.0032 0.0032	0.02 0.02 0.02 4 0.02 0.02 0.02 0.02 0.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Acenaphthylene SVOC Anthracene SVOC Benzo(a)anthracene SVOC Benzo(a)pyrene SVOC Benzo(b)fluoranthr SVOC Benzo(b)fluoranthr SVOC Benzol (a, h)arthr SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Bis(2-chloroethoxy SVOC Bis(2-chloroethyl) Bis(2-chloroethyl) SVOC Carbazole SVOC Dibenzo(a,h)anthr. SVOC Dibenzo(a,h)anthr. SVOC Dibenzofuran SVOC Dibenzofuran SVOC Diethyl phthalate SVOC Di-n-otyl phthalate SVOC Di-n-otyl phthalate SVOC Fluoranthene Fluorene SVOC Hexachlorobenzer SVOC Hexachlorobenzer SVOC	Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7 0.062 0.042 0.93 0.0034 0.0045 0.013 0.0045 0.11 0.062 0.51 0.63 0.0045 0.0032 0.039 0.091	0.02 0.02 0.02 4 0.02 0.02 0.02 10 2 0.02 0.02 0.02 0.02	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Acenaphthylene SVOC Anthracene SVOC Benz(a)anthracent SVOC Benzo(a)pyrene SVOC Benzo(b)fluoranth SVOC Benzo(g,h,i)peryle SVOC Benzo(k)fluoranth SVOC Benzo(k)fluoranth SVOC Benzo(z acid SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Bis(2-chloroethoxy SVOC Bis(2-chloroethyl) Bis(2-chloroethyl) SVOC Carbazole SVOC Chrysene SVOC Dibenzofuran SVOC Dibenzofuran SVOC Dibenzofuran SVOC Dibenzofuran SVOC Dimethyl phthalate SVOC Din-n-otyl phthalate SVOC Fluoranthene SVOC Hexachlorobenzer SVOC Hexachlorobutadic SVOC <td>Water Water</td> <td>0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7 0.062 0.042 0.93 0.0034 0.0045 0.013 0.0052 0.11 0.062 0.51 0.63 0.0045 0.0032 0.0032 0.0032</td> <td>0.02 0.02 0.02 4 0.02 0.02 0.02 0.02 0.0</td> <td>ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L</td> <td>EPA8270E EPA8270E</td>	Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7 0.062 0.042 0.93 0.0034 0.0045 0.013 0.0052 0.11 0.062 0.51 0.63 0.0045 0.0032 0.0032 0.0032	0.02 0.02 0.02 4 0.02 0.02 0.02 0.02 0.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Acenaphthylene SVOC Anthracene SVOC Benzo(a)anthracene SVOC Benzo(a)pyrene SVOC Benzo(b)fluoranthr SVOC Benzo(b)fluoranthr SVOC Benzol (a, h)arthr SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Bis(2-chloroethoxy SVOC Bis(2-chloroethyl) Bis(2-chloroethyl) SVOC Carbazole SVOC Dibenzo(a,h)anthr. SVOC Dibenzo(a,h)anthr. SVOC Dibenzofuran SVOC Dibenzofuran SVOC Diethyl phthalate SVOC Di-n-otyl phthalate SVOC Di-n-otyl phthalate SVOC Fluoranthene Fluorene SVOC Hexachlorobenzer SVOC Hexachlorobenzer SVOC	Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7 0.062 0.042 0.93 0.0034 0.0045 0.013 0.0045 0.11 0.062 0.51 0.63 0.0045 0.0032 0.039 0.091	0.02 0.02 0.02 4 0.02 0.02 0.02 10 2 0.02 0.02 0.02 0.02	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E

Indeno(1,2,3-cd)p) SVOC	Water	0.014	0.02		ug/L	EPA8270E
Isophorone SVOC	Water	0.02	0.2		ug/L	EPA8270E
Naphthalene SVOC	Water		0.2		•	
		0.0078			ug/L	EPA8270E
Nitrobenzene SVOC	Water	0.075	0.2		ug/L	EPA8270E
N-Nitrosodimethyl: SVOC	Water	0.03	0.2		ug/L	EPA8270E
N-Nitroso-di-n-proj SVOC	Water	0.052	0.2		ug/L	EPA8270E
N-Nitrosodiphenyl: SVOC	Water	0.021	0.2		ug/L	EPA8270E
Pentachloropheno SVOC	Water	0.44	1		ug/L	EPA8270E
					•	
Phenanthrene SVOC	Water	0.005	0.02		ug/L	EPA8270E
Phenol SVOC	Water	0.061	2		ug/L	EPA8270E
Pyrene SVOC	Water	0.0041	0.02		ug/L	EPA8270E
1,2,4-Trichloroben SVOC	Soil	0.0039		0.01	mg/kg	EPA8270E
1,2-Dichlorobenze SVOC	Soil	0.0036		0.01	mg/kg	EPA8270E
	Soil			0.01		EPA8270E
1,2-Diphenylhydra SVOC		0.0044			mg/kg	
1,3-Dichlorobenze SVOC	Soil	0.0029		0.01	mg/kg	EPA8270E
1,4-Dichlorobenze SVOC	Soil	0.003		0.01	mg/kg	EPA8270E
1-Methylnaphthale SVOC	Soil	0.0003		0.002	mg/kg	EPA8270E
2,2'-Oxybis(1-chlorSVOC	Soil	0.0031		0.01	mg/kg	EPA8270E
	Soil	0.013		0.1		EPA8270E
2,4,5-Trichlorophe SVOC					mg/kg	
2,4,6-Trichlorophe SVOC	Soil	0.015		0.1	mg/kg	EPA8270E
2,4-Dichloropheno SVOC	Soil	0.0061		0.1	mg/kg	EPA8270E
2,4-Dimethylphenc SVOC	Soil	0.014		0.1	mg/kg	EPA8270E
2,4-Dinitrophenol SVOC	Soil	0.016		0.3	mg/kg	EPA8270E
2,4-Dinitrotoluene SVOC		0.0081				
	Soil			0.05	mg/kg	EPA8270E
2,6-Dinitrotoluene SVOC	Soil	0.0069		0.05	mg/kg	EPA8270E
2-Chloronaphthale SVOC	Soil	0.0016		0.01	mg/kg	EPA8270E
2-Chlorophenol SVOC	Soil	0.012		0.1	mg/kg	EPA8270E
2-Methylnaphthale SVOC	Soil	0.00039		0.002	mg/kg	EPA8270E
2-Methylphenol SVOC	Soil	0.0082		0.1	mg/kg	EPA8270E
2-Nitroaniline SVOC	Soil	0.015		0.05	mg/kg	EPA8270E
2-Nitrophenol SVOC	Soil	0.027		0.1	mg/kg	EPA8270E
3,3'-Dichlorobenzi SVOC	Soil	0.033		0.1	mg/kg	EPA8270E
3-Methylphenol + SVOC	Soil	0.013		0.2	mg/kg	EPA8270E
3-Nitroaniline SVOC	Soil	0.017		1	mg/kg	EPA8270E
4,6-Dinitro-2-meth SVOC	Soil	0.017		0.3	mg/kg	EPA8270E
4-Bromophenyl ph SVOC	Soil	0.0023		0.01	mg/kg	EPA8270E
4-Chloro-3-methyl SVOC	Soil	0.018		0.1	mg/kg	EPA8270E
4-Chloroaniline SVOC	Soil	0.21		1	mg/kg	EPA8270E
				0.01		
4-Chlorophenyl ph SVOC	Soil	0.0028			mg/kg	EPA8270E
4-Nitroaniline SVOC	Soil	0.024		1	mg/kg	EPA8270E
4-Nitrophenol SVOC	Soil	0.011		0.3	mg/kg	EPA8270E
Acenaphthene SVOC	Soil	0.00018		0.002	mg/kg	EPA8270E
Acenaphthylene SVOC	Soil	0.00016		0.002	mg/kg	EPA8270E
Anthracene SVOC	Soil					
		0.00014		0.002	mg/kg	EPA8270E
Benz(a)anthracen(SVOC	Soil	0.00023		0.002	mg/kg	EPA8270E
Benzo(a)pyrene SVOC	Soil	0.00028		0.002	mg/kg	EPA8270E
Benzo(b)fluoranth(SVOC	Soil	0.00025		0.002	mg/kg	EPA8270E
Benzo(g,h,i)peryle SVOC	Soil	0.0004		0.002	mg/kg	EPA8270E
Benzo(k)fluoranthe SVOC	Soil	0.00032		0.002	mg/kg	EPA8270E
Benzoic acid SVOC	Soil	0.1		0.5	mg/kg	EPA8270E
Benzyl alcohol SVOC	Soil	0.012		0.1	mg/kg	EPA8270E
Benzyl butyl phtha SVOC	Soil	0.019		0.1	mg/kg	EPA8270E
Bis(2-chloroethoxy SVOC	Soil	0.0027		0.01	mg/kg	EPA8270E
Bis(2-chloroethyl) SVOC	Soil	0.0035		0.01	mg/kg	EPA8270E
Bis(2-ethylhexyl) p SVOC	Soil	0.035		0.16	mg/kg	EPA8270E
Carbazole SVOC	Soil	0.0019		0.01	mg/kg	EPA8270E
Chrysene SVOC	Soil	0.00018		0.002	mg/kg	EPA8270E
Dibenzo(a,h)anthr SVOC	Soil	0.00049		0.002	mg/kg	EPA8270E
Dibenzofuran SVOC	Soil	0.0034		0.01	mg/kg	EPA8270E
Diethyl phthalate SVOC	Soil	0.0054		0.01	mg/kg	EPA8270E
Dimethyl phthalate SVOC	Soil	0.0053		0.1	mg/kg	EPA8270E
Di-n-butyl phthalat SVOC	Soil	0.019		0.1	mg/kg	EPA8270E
Di-n-octyl phthalat SVOC	Soil	0.019		0.1	mg/kg	EPA8270E
Fluoranthene SVOC	Soil	0.00019		0.002	mg/kg	EPA8270E
Fluorene SVOC	Soil	0.00014		0.002	mg/kg	EPA8270E
Hexachlorobenzer SVOC	Soil	0.002		0.01	mg/kg	EPA8270E
Hexachlorobutadie SVOC	Soil	0.0029		0.01	mg/kg	EPA8270E
Hexachlorocyclope SVOC	Soil	0.0061		0.03	mg/kg	EPA8270E
Hexachloroethane SVOC	Soil	0.0041		0.01	mg/kg	EPA8270E
Indeno(1,2,3-cd)p) SVOC	Soil	0.00026		0.002	mg/kg	EPA8270E
Isophorone SVOC	Soil	0.0019		0.01	mg/kg	EPA8270E
Naphthalene SVOC	Soil	0.0004		0.002	mg/kg	EPA8270E
Nitrobenzene SVOC	Soil	0.0047		0.01	mg/kg	EPA8270E
N-Nitrosodimethyl: SVOC	Soil	0.0063		0.01	mg/kg	EPA8270E
N-Nitroso-di-n-proj SVOC						
	Soil	0.003		0.01	ma/ka	FPA8270F
	Soil Soil	0.003		0.01	mg/kg	EPA8270E
N-Nitrosodiphenyl: SVOC	Soil	0.0033		0.01	mg/kg	EPA8270E

Phenanthrene	SVOC	Soil	0.00018		0.002	mg/kg	EPA8270E
Phenol	SVOC	Soil	0.013		0.1	mg/kg	EPA8270E
Pyrene	SVOC	Soil	0.00016		0.002	mg/kg	EPA8270E
1,2,4-Trichloroben		Water	0.028		0.2	ug/L	EPA8270E
1,2-Dichlorobenze	SVOC	Water	0.028		0.2	ug/L	EPA8270E
1,2-Diphenylhydra	SVOC	Water	0.014		0.2	ug/L	EPA8270E
1,3-Dichlorobenze		Water	0.034		0.2	ug/L	EPA8270E
,						-	
1,4-Dichlorobenze		Water	0.033		0.2	ug/L	EPA8270E
1-Methylnaphthale	SVOC	Water	0.0025		0.2	ug/L	EPA8270E
2,2'-Oxybis(1-chlor	SVOC	Water	0.023		0.2	ug/L	EPA8270E
2,2'-Oxybis(1-chlo		Water	0.023		2	ug/L	EPA8270E
						•	
2,4,5-Trichlorophe		Water	0.085		2	ug/L	EPA8270E
2,4,6-Trichlorophe	SVOC	Water	0.065		2	ug/L	EPA8270E
2,4-Dichloropheno	SVOC	Water	0.060		2	ug/L	EPA8270E
2,4-Dimethylphend	SVOC	Water	0.39		6	ug/L	EPA8270E
						-	
2,4-Dinitrophenol		Water	1.3		1	ug/L	EPA8270E
2,4-Dinitrotoluene	SVOC	Water	0.034		1	ug/L	EPA8270E
2,6-Dinitrotoluene	SVOC	Water	0.036		0.2	ug/L	EPA8270E
2-Chloronaphthale	SVOC	Water	0.017		2	ug/L	EPA8270E
2-Chlorophenol	SVOC	Water	0.080		0.2		EPA8270E
•						ug/L	
2-Methylnaphthale	SVOC	Water	0.003		2	ug/L	EPA8270E
2-Methylphenol	SVOC	Water	0.095		1	ug/L	EPA8270E
2-Nitroaniline	SVOC	Water	0.175		2	ug/L	EPA8270E
2-Nitrophenol					2		EPA8270E
	SVOC	Water	0.125			ug/L	
3,3'-Dichlorobenzi	SVOC	Water	0.405		4	ug/L	EPA8270E
3-Methylphenol +	SVOC	Water	0.145		20	ug/L	EPA8270E
3-Nitroaniline	SVOC	Water	0.170		6	ug/L	EPA8270E
		Water				-	
4,6-Dinitro-2-meth			0.080		0.2	ug/L	EPA8270E
4-Bromophenyl ph	SVOC	Water	0.0175		2	ug/L	EPA8270E
4-Chloro-3-methyl	SVOC	Water	0.050		20	ug/L	EPA8270E
4-Chloroaniline	SVOC	Water	0.305		0.2	ug/L	EPA8270E
						•	
4-Chlorophenyl ph		Water	0.015		20	ug/L	EPA8270E
4-Nitroaniline	SVOC	Water	0.440		6	ug/L	EPA8270E
4-Nitrophenol	SVOC	Water	0.260		0.02	ug/L	EPA8270E
Acenaphthene	SVOC	Water	0.0021		0.02	ug/L	EPA8270E
						•	
Acenaphthylene	SVOC	Water	0.0016		0.02	ug/L	EPA8270E
Anthracene	SVOC	Water	0.0025		0.02	ug/L	EPA8270E
Benz(a)anthracene	SVOC	Water	0.0030		4	ug/L	EPA8270E
Benzo(a)pyrene	SVOC	Water	0.0045		0.02	ug/L	EPA8270E
		Water	0.0027		0.02	-	EPA8270E
Benzo(b)fluoranthe						ug/L	
Benzo(g,h,i)peryle		Water	0.0090		0.04	ug/L	EPA8270E
Benzo(k)fluoranthe	SVOC	Water	0.0023		0.02	ug/L	EPA8270E
Benzoic acid	SVOC	Water	2.6		10	ug/L	EPA8270E
Benzyl alcohol	SVOC	Water	0.070		2	ug/L	EPA8270E
						-	
Benzyl butyl phtha		Water	0.350		2	ug/L	EPA8270E
Bis(2-chloroethoxy	SVOC	Water	0.031		0.2	ug/L	EPA8270E
Bis(2-chloroethyl)	SVOC	Water	0.021		0.2	ug/L	EPA8270E
Bis(2-ethylhexyl) p		Water	0.465		3.2	ug/L	EPA8270E
Carbazole	SVOC	Water	0.0017		0.02	ug/L	EPA8270E
Chrysene	SVOC	Water	0.0023		0.02	ug/L	EPA8270E
Dibenzo(a,h)anthra	SVOC	Water	0.0065		0.02	ug/L	EPA8270E
Dibenzofuran	SVOC	Water	0.0026		0.02	ug/L	EPA8270E
			0.055		0	- //	
Diethyl phthalate		Water	0.055		2	ug/L	EPA8270E
Dimethyl phthalate	SVOC	Water	0.031		2	ug/L	EPA8270E
Di-n-butyl phthalat	SVOC	Water	0.255		2	ug/L	EPA8270E
Di-n-octyl phthalat		Water	0.315		2	ug/L	EPA8270E
Fluoranthene	SVOC	Water	0.0023		0.02	ug/L	EPA8270E
Fluorene	SVOC	Water	0.0016		0.02	ug/L	EPA8270E
Hexachlorobenzer	SVOC	Water	0.0195		0.2	ug/L	EPA8270E
Hexachlorobutadie	SVOC	Water	0.0455		0.2	ug/L	EPA8270E
Hexachlorocyclope		Water	0.0550		0.6	ug/L	EPA8270E
						-	
Hexachloroethane		Water	0.0395		0.2	ug/L	EPA8270E
Indeno(1,2,3-cd)py	SVOC	Water	0.007		0.02	ug/L	EPA8270E
Isophorone	SVOC	Water	0.010		0.2	ug/L	EPA8270E
Naphthalene	SVOC	Water	0.0039		0.2	ug/L	EPA8270E
•		Water				0	
Nitrobenzene	SVOC		0.0375		0.2	ug/L	EPA8270E
N-Nitrosodimethyla		Water	0.015		0.2	ug/L	EPA8270E
N-Nitroso-di-n-pro	SVOC	Water	0.026		0.2	ug/L	EPA8270E
N-Nitrosodiphenyla		Water	0.0105		0.2	ug/L	EPA8270E
						•	
Pentachloropheno		Water	0.220		1	ug/L	EPA8270E
Phenanthrene	SVOC	Water	0.0025		0.02	ug/L	EPA8270E
Phenol	SVOC	Water	0.0305		2	ug/L	EPA8270E
Pyrene	SVOC	Water	0.0021		0.02	ug/L	EPA8270E
1,1,1,2-Tetrachlor		Soil	0.019	0.05		mg/kg	EPA8260D
1,1,1-Trichloroetha		Soil	0.0021	0.05		mg/kg	EPA8260D
1,1,2,2-Tetrachlore		Soil	0.016	0.05		mg/kg	EPA8260D
1,1,2-Trichloroetha	VOC	Soil	0.0056	0.05		mg/kg	EPA8260D
						-	

1,1-Dichloroethane	VOC	Soil	0.0011	0.05		mg/kg	EPA8260D
1,1-Dichloroethene		Soil	0.0011	0.05		mg/kg	EPA8260D
1,1-Dichloroproper		Soil	0.014	0.05			
						mg/kg	EPA8260D
1,2,3-Trichloroben		Soil	0.065	0.25		mg/kg	EPA8260D
1,2,3-Trichloroproj	VOC	Soil	0.0019	0.05		mg/kg	EPA8260D
1,2,4-Trichloroben	VOC	Soil	0.0057	0.25		mg/kg	EPA8260D
1,2,4-Trimethylber	VOC	Soil	0.0053	0.05		mg/kg	EPA8260D
1,2-Dibromo-3-chl		Soil	0.12	0.5		mg/kg	EPA8260D
1,2-Dibromoethan		Soil	0.00087	0.05		mg/kg	EPA8260D
1,2-Dichlorobenze	VOC	Soil	0.0072	0.05		mg/kg	EPA8260D
1,2-Dichloroethane	VOC	Soil	0.0017	0.05		mg/kg	EPA8260D
1,2-Dichloropropa	VOC	Soil	0.011	0.05		mg/kg	EPA8260D
1,3,5-Trimethylber		Soil	0.0067	0.05		mg/kg	EPA8260D
1,3-Dichlorobenze		Soil	0.0045	0.05		mg/kg	EPA8260D
,							
1,3-Dichloropropa		Soil	0.014	0.05		mg/kg	EPA8260D
1,4-Dichlorobenze	VOC	Soil	0.004	0.05		mg/kg	EPA8260D
2,2-Dichloropropa	VOC	Soil	0.014	0.05		mg/kg	EPA8260D
2-Butanone (MEK)		Soil	0.72	1		mg/kg	EPA8260D
. ,	VOC	Soil	0.014	0.05		mg/kg	EPA8260D
	VOC	Soil	0.43	0.5		mg/kg	EPA8260D
4-Chlorotoluene	VOC	Soil	0.01	0.05		mg/kg	EPA8260D
4-Methyl-2-pentan	VOC	Soil	0.38	1		mg/kg	EPA8260D
Acetone	VOC	Soil	0.87	5		mg/kg	EPA8260D
	VOC	Soil	0.00096	0.03		mg/kg	EPA8260D
	VOC	Soil	0.017	0.05		mg/kg	EPA8260D
Bromodichloromet	VOC	Soil	0.014	0.05		mg/kg	EPA8260D
Bromoform	VOC	Soil	0.015	0.05		mg/kg	EPA8260D
Bromomethane	VOC	Soil	0.089	0.5		mg/kg	EPA8260D
Carbon tetrachlori		Soil	0.012	0.05		mg/kg	EPA8260D
	VOC	Soil	0.0063	0.05		mg/kg	EPA8260D
Chloroethane	VOC	Soil	0.056	0.5		mg/kg	EPA8260D
Chloroform	VOC	Soil	0.008	0.05		mg/kg	EPA8260D
	VOC	Soil	0.18	0.5		mg/kg	EPA8260D
cis-1,2-Dichloroeth		Soil	0.0013	0.05		mg/kg	EPA8260D
cis-1,3-Dichloropro	VOC	Soil	0.011	0.05		mg/kg	EPA8260D
Dibromochloromet	VOC	Soil	0.017	0.05		mg/kg	EPA8260D
Dibromomethane	VOC	Soil	0.024	0.05		mg/kg	EPA8260D
Dichlorodifluorome		Soil	0.021	0.5		mg/kg	EPA8260D
	VOC	Soil	0.0012	0.05		mg/kg	EPA8260D
Hexachlorobutadie	VOC	Soil	0.011	0.25		mg/kg	EPA8260D
Hexane	VOC	Soil	0.013	0.25		mg/kg	EPA8260D
Isopropylbenzene	VOC	Soil	0.0091	0.05		mg/kg	EPA8260D
	VOC	Soil	0.001	0.1		mg/kg	EPA8260D
1 V							
Methyl t-butyl ethe		Soil	0.0011	0.05		mg/kg	EPA8260D
Methylene chloride	VOC	Soil	0.14	0.5		mg/kg	EPA8260D
Naphthalene	VOC	Soil	0.0063	0.05		mg/kg	EPA8260D
n-Propylbenzene	VOC	Soil	0.0045	0.05		mg/kg	EPA8260D
	VOC	Soil	0.00068	0.05		mg/kg	EPA8260D
,		Soil	0.0022				
p-lsopropyltoluene				0.05		mg/kg	EPA8260D
sec-Butylbenzene		Soil	0.0048	0.05		mg/kg	EPA8260D
Styrene	VOC	Soil	0.0067	0.05		mg/kg	EPA8260D
tert-Butylbenzene	VOC	Soil	0.0092	0.05		mg/kg	EPA8260D
Tetrachloroethene		Soil	0.002	0.025		mg/kg	EPA8260D
	VOC	Soil	0.0011	0.05		mg/kg	EPA8260D
trans-1,2-Dichloro		Soil	0.0023	0.05		mg/kg	EPA8260D
trans-1,3-Dichloro	VOC	Soil	0.015	0.05		mg/kg	EPA8260D
Trichloroethene	VOC	Soil	0.0014	0.02		mg/kg	EPA8260D
Trichlorofluoromet	VOC	Soil	0.043	0.5		mg/kg	EPA8260D
	VOC	Soil	0.0019	0.05		mg/kg	EPA8260D
1,1,1,2-Tetrachlor		Soil	0.0095		0.05	mg/kg	EPA8260D
1,1,1-Trichloroetha	VOC	Soil	0.00105		0.002	mg/kg	EPA8260D
1,1,2,2-Tetrachlor	VOC	Soil	0.008		0.05	mg/kg	EPA8260D
1,1,2-Trichloroetha	VOC	Soil	0.0028		0.05	mg/kg	EPA8260D
1,1-Dichloroethane		Soil	0.00055		0.002	mg/kg	EPA8260D
1,1-Dichloroethene		Soil	0.00055		0.002	mg/kg	EPA8260D
1,1-Dichloroprope		Soil	0.007		0.05	mg/kg	EPA8260D
1,2,3-Trichloroben	VOC	Soil	0.0325		0.25	mg/kg	EPA8260D
1,2,3-Trichloroprop	VOC	Soil	0.00095		0.05	mg/kg	EPA8260D
1,2,4-Trichloroben		Soil	0.00285		0.25	mg/kg	EPA8260D
1, 2, 4 - 1 11011101000011	VOC	001					
101 Tuine attack					0.05	mg/kg	EPA8260D
1,2,4-Trimethylber	VOC	Soil	0.00265				
1,2-Dibromo-3-chl	VOC VOC	Soil Soil	0.06		0.5	mg/kg	EPA8260D
· · ·	VOC VOC	Soil					
1,2-Dibromo-3-chl 1,2-Dibromoethan	VOC VOC VOC	Soil Soil Soil	0.06 0.000435		0.5 0.005	mg/kg mg/kg	EPA8260D EPA8260D
1,2-Dibromo-3-chl 1,2-Dibromoethan 1,2-Dichlorobenze	VOC VOC VOC VOC	Soil Soil Soil Soil	0.06 0.000435 0.0036	 	0.5 0.005 0.05	mg/kg mg/kg mg/kg	EPA8260D EPA8260D EPA8260D
1,2-Dibromo-3-chl 1,2-Dibromoethan 1,2-Dichlorobenze 1,2-Dichloroethan	VOC VOC VOC VOC VOC	Soil Soil Soil Soil Soil	0.06 0.000435 0.0036 0.00085	 	0.5 0.005 0.05 0.002	mg/kg mg/kg mg/kg mg/kg	EPA8260D EPA8260D EPA8260D EPA8260D
1,2-Dibromo-3-chl 1,2-Dibromoethan 1,2-Dichlorobenze 1,2-Dichloroethan 1,2-Dichloropropa	VOC VOC VOC VOC VOC VOC	Soil Soil Soil Soil Soil Soil	0.06 0.000435 0.0036 0.00085 0.0055	 	0.5 0.005 0.05 0.002 0.05	mg/kg mg/kg mg/kg mg/kg mg/kg	EPA8260D EPA8260D EPA8260D EPA8260D EPA8260D
1,2-Dibromo-3-chl 1,2-Dibromoethan 1,2-Dichlorobenze 1,2-Dichloroethan 1,2-Dichloropropal 1,3,5-Trimethylber	VOC VOC VOC VOC VOC VOC	Soil Soil Soil Soil Soil Soil Soil	0.06 0.000435 0.0036 0.00085 0.0055 0.00335	 	0.5 0.005 0.05 0.02 0.05 0.05	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	EPA8260D EPA8260D EPA8260D EPA8260D EPA8260D EPA8260D
1,2-Dibromo-3-chl 1,2-Dibromoethan 1,2-Dichlorobenze 1,2-Dichloroethan 1,2-Dichloropropa	VOC VOC VOC VOC VOC VOC	Soil Soil Soil Soil Soil Soil	0.06 0.000435 0.0036 0.00085 0.0055	 	0.5 0.005 0.05 0.002 0.05	mg/kg mg/kg mg/kg mg/kg mg/kg	EPA8260D EPA8260D EPA8260D EPA8260D EPA8260D

1,3-Dichloropropa	IVOC	Soil	0.007		0.05	mg/kg	EPA8260D
1,4-Dichlorobenze		Soil	0.002		0.05	mg/kg	EPA8260D
2,2-Dichloropropa		Soil	0.007		0.05	mg/kg	EPA8260D
2-Butanone (MEK		Soil	0.36		1	mg/kg	EPA8260D
2-Chlorotoluene	VOC	Soil	0.007		0.05	mg/kg	EPA8260D
2-Hexanone	VOC						
		Soil	0.215		0.5	mg/kg	EPA8260D
4-Chlorotoluene	VOC	Soil	0.005		0.05	mg/kg	EPA8260D
4-Methyl-2-pentar		Soil	0.19		1	mg/kg	EPA8260D
Acetone	VOC	Soil	0.435		5	mg/kg	EPA8260D
Benzene	VOC	Soil	0.00048		0.001	mg/kg	EPA8260D
Bromobenzene	VOC	Soil	0.0085		0.05	mg/kg	EPA8260D
Bromodichlorome	t VOC	Soil	0.007		0.05	mg/kg	EPA8260D
Bromoform	VOC	Soil	0.0075		0.05	mg/kg	EPA8260D
Bromomethane	VOC	Soil	0.0445		0.5	mg/kg	EPA8260D
Carbon tetrachlori		Soil	0.006		0.05	mg/kg	EPA8260D
Chlorobenzene	VOC	Soil	0.00315		0.05	mg/kg	EPA8260D
	VOC	Soil					
Chloroethane			0.028		0.1	mg/kg	EPA8260D
Chloroform	VOC	Soil	0.004		0.05	mg/kg	EPA8260D
Chloromethane	VOC	Soil	0.09		0.5	mg/kg	EPA8260D
cis-1,2-Dichloroet	r VOC	Soil	0.00065		0.002	mg/kg	EPA8260D
cis-1,3-Dichloropr	(VOC	Soil	0.0055		0.05	mg/kg	EPA8260D
Dibromochlorome	IVOC	Soil	0.0085		0.05	mg/kg	EPA8260D
Dibromomethane	VOC	Soil	0.012		0.05	mg/kg	EPA8260D
Dichlorodifluorom		Soil	0.0105		0.5	mg/kg	EPA8260D
Ethylbenzene	VOC	Soil	0.0006		0.001	mg/kg	EPA8260D
Hexachlorobutadi							
	VOC	Soil	0.0055		0.25	mg/kg	EPA8260D
Hexane		Soil	0.0065		0.25	mg/kg	EPA8260D
Isopropylbenzene		Soil	0.00455		0.05	mg/kg	EPA8260D
m,p-Xylene	VOC	Soil	0.0005		0.002	mg/kg	EPA8260D
Methyl t-butyl ethe	e VOC	Soil	0.00055		0.002	mg/kg	EPA8260D
Methylene chlorid	e VOC	Soil	0.07		0.2	mg/kg	EPA8260D
Naphthalene	VOC	Soil	0.00315		0.01	mg/kg	EPA8260D
n-Propylbenzene	VOC	Soil	0.00225		0.05	mg/kg	EPA8260D
o-Xylene	VOC	Soil	0.00034		0.001	mg/kg	EPA8260D
p-lsopropyltoluene		Soil	0.0011		0.05	mg/kg	EPA8260D
sec-Butylbenzene		Soil	0.0024		0.05	mg/kg	EPA8260D
Styrene	VOC	Soil	0.00335		0.05	mg/kg	EPA8260D
tert-Butylbenzene		Soil	0.0046		0.05	mg/kg	EPA8260D
Tetrachloroethene	e VOC	Soil	0.001		0.002	mg/kg	EPA8260D
Toluene	VOC	Soil	0.00055		0.001	mg/kg	EPA8260D
trans-1,2-Dichloro	VOC	Soil	0.00115		0.002	mg/kg	EPA8260D
trans-1,3-Dichloro	VOC	Soil	0.0075		0.05	mg/kg	EPA8260D
Trichloroethene	VOC	Soil	0.0007		0.002	mg/kg	EPA8260D
Trichlorofluorome	I VOC	Soil	0.0215		0.5	mg/kg	EPA8260D
Vinyl chloride	VOC	Soil	0.00095		0.002	mg/kg	EPA8260D
1,1,1,2-Tetrachlor		Water	0.16	1		ug/L	EPA8260D
						-	
1,1,1-Trichloroeth		Water	0.017	1		ug/L	EPA8260D
1,1,2,2-Tetrachlor		Water	0.17	0.2		ug/L	EPA8260D
1,1,2-Trichloroeth		Water	0.084	0.5		ug/L	EPA8260D
1,1-Dichloroethan	(VOC	Water	0.017	1		ug/L	EPA8260D
1,1-Dichloroethen	(VOC	Water	0.021	1		ug/L	EPA8260D
1,1-Dichloroprope	VOC	Water	0.12	1		ug/L	EPA8260D
1,2,3-Trichlorober	NOC	Water	0.24	1		ug/L	EPA8260D
1,2,3-Trichloropro		Water	0.01	1		ug/L	EPA8260D
1,2,4-Trichlorober		Water	0.23	1		ug/L	EPA8260D
1,2,4-Trimethylbe		Water	0.084	1		ug/L	EPA8260D
1,2-Dibromo-3-ch				10			EPA8260D
		Water	0.8			ug/L	
1,2-Dibromoethan		Water	0.0049	1		ug/L	EPA8260D
1,2-Dichlorobenze		Water	0.12	1		ug/L	EPA8260D
1,2-Dichloroethan	(VOC	Water	0.037	0.2		ug/L	EPA8260D
1,2-Dichloropropa	IVOC	Water	0.24	1		ug/L	EPA8260D
1,3,5-Trimethylbe	r VOC	Water	0.083	1		ug/L	EPA8260D
1,3-Dichlorobenze	e VOC	Water	0.11	1		ug/L	EPA8260D
1,3-Dichloropropa		Water	0.12	1		ug/L	EPA8260D
1,4-Dichlorobenze		Water	0.13	1		ug/L	EPA8260D
2,2-Dichloropropa		Water	0.33	1		ug/L	EPA8260D
2-Butanone (MEK				20			
	·	Water	1.9			ug/L	EPA8260D
2-Chlorotoluene	VOC	Water	0.26	1		ug/L	EPA8260D
2-Hexanone	VOC	Water	3.7	10		ug/L	EPA8260D
4-Chlorotoluene	VOC	Water	0.098	1		ug/L	EPA8260D
4-Methyl-2-pentar	NOC	Water	3.4	10		ug/L	EPA8260D
Acetone	VOC	Water	2.9	50		ug/L	EPA8260D
Benzene	VOC	Water	0.019	0.35		ug/L	EPA8260D
Bromobenzene	VOC	Water	0.19	1		ug/L	EPA8260D
Bromodichlorome		Water	0.2	0.5		ug/L	EPA8260D
Bromoform	VOC	Water	0.17	5		ug/L	EPA8260D
Bromomethane	VOC	Water	2.1	5		ug/L	EPA8260D
				~			

Carbon tetrachlori	VOC	Water	0.16	0.5		ug/L	EPA8260D
Chlorobenzene	VOC	Water	0.1	1		ug/L	EPA8260D
Chloroethane	VOC	Water	0.05	1		ug/L	EPA8260D
Chloroform	VOC	Water	0.18	1		ug/L	EPA8260D
Chloromethane	VOC	Water	1.1	10		ug/L	EPA8260D
cis-1,2-Dichloroet		Water	0.033	1		ug/L	EPA8260D
cis-1,3-Dichloropr		Water	0.15	0.4		ug/L	EPA8260D
Dibromochlorome		Water	0.21	0.5		ug/L	EPA8260D
Dibromomethane		Water	0.16	1		ug/L	EPA8260D
Dichlorodifluorom	€ VOC	Water	0.29	1		ug/L	EPA8260D
Ethylbenzene	VOC	Water	0.023	1		ug/L	EPA8260D
Hexachlorobutadi	e VOC	Water	0.29	0.5		ug/L	EPA8260D
Hexane	VOC	Water	0.17	5		ug/L	EPA8260D
Isopropylbenzene	VOC	Water	0.057	1		ug/L	EPA8260D
m,p-Xylene	VOC	Water	0.044	2		ug/L	EPA8260D
Methyl t-butyl ethe		Water	0.014	1		ug/L	EPA8260D
Methylene chlorid		Water		5			EPA8260D
			0.82			ug/L	
Naphthalene	VOC	Water	0.19	1		ug/L	EPA8260D
n-Propylbenzene		Water	0.1	1		ug/L	EPA8260D
o-Xylene	VOC	Water	0.023	1		ug/L	EPA8260D
p-Isopropyltoluene	e VOC	Water	0.068	1		ug/L	EPA8260D
sec-Butylbenzene	VOC	Water	0.075	1		ug/L	EPA8260D
Styrene	VOC	Water	0.39	1		ug/L	EPA8260D
tert-Butylbenzene	VOC	Water	0.066	1		ug/L	EPA8260D
Tetrachloroethene		Water	0.043	1		ug/L	EPA8260D
Toluene	VOC	Water	0.062	1		ug/L	EPA8260D
trans-1,2-Dichloro		Water	0.002	1		ug/L	EPA8260D
trans-1,3-Dichloro		Water	0.12	0.4		ug/L	EPA8260D
Trichloroethene	VOC	Water	0.03	0.5		ug/L	EPA8260D
Trichlorofluorome	t VOC	Water	0.19	1		ug/L	EPA8260D
Vinyl chloride	VOC	Water	0.015	0.02		ug/L	EPA8260D
Calcium	METALS	Water	0.0087	0.05		mg/L	EPA200.8
Magnesium	METALS	Water	0.0097	0.05		mg/L	EPA200.8
Hardness (as Ca0	METALS	Water	0.000062	0.35		mg/L	EPA200.8
Antimony	METALS	Soil	0.098	5	1	mg/kg	EPA6020/200.8
Arsenic	METALS	Soil	0.17	1	0.2	mg/kg	EPA6020/200.8
Barium	METALS	Soil	0.11	1	0.2	mg/kg	EPA6020/200.8
				1	0.2		
Beryllium	METALS	Soil	0.057			mg/kg	EPA6020/200.8
Cadmium	METALS	Soil	0.05	1	0.2	mg/kg	EPA6020/200.8
Chromium	METALS	Soil	0.52	5	1	mg/kg	EPA6020/200.8
Cobalt	METALS	Soil	0.028	1	0.2	mg/kg	EPA6020/200.8
Copper	METALS	Soil	0.1	5	1	mg/kg	EPA6020/200.8
Lead	METALS	Soil	0.032	1	0.2	mg/kg	EPA6020/200.8
Manganese	METALS	Soil	0.047	1	0.2	mg/kg	EPA6020/200.8
Mercury	METALS	Soil	0.033	1	0.2	mg/kg	EPA6020/200.8
Molybdenum	METALS	Soil	0.065	1	0.2	mg/kg	EPA6020/200.8
Nickel	METALS	Soil	0.093	1	0.2	mg/kg	EPA6020/200.8
Selenium	METALS	Soil	0.12	1	0.2	mg/kg	EPA6020/200.8
Silver	METALS	Soil	0.12	1	0.2	mg/kg	EPA6020/200.8
				1			
Thallium	METALS	Soil	0.031		0.2	mg/kg	EPA6020/200.8
Thorium	METALS	Soil	0.081	1	0.2	mg/kg	
Uranium	METALS	Soil	0.083				EPA6020/200.8
Vanadium				1	0.2	mg/kg	EPA6020/200.8 EPA6020/200.8
	METALS	Soil	0.49	5	1		
Zinc	METALS METALS	Soil Soil	0.49 0.58	5 5	1 1	mg/kg	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Zinc Antimony				5	1	mg/kg mg/kg	EPA6020/200.8 EPA6020/200.8
	METALS	Soil	0.58	5 5	1 1	mg/kg mg/kg mg/kg	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Antimony	METALS METALS	Soil Water Water	0.58 0.039 0.18	5 5 5 1	1 1 1 0.2	mg/kg mg/kg mg/kg ug/L ug/L	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium	METALS METALS METALS METALS	Soil Water Water Water	0.58 0.039 0.18 0.064	5 5 5 1	1 1 0.2 0.2	mg/kg mg/kg mg/kg ug/L ug/L ug/L	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Beryllium	METALS METALS METALS METALS METALS	Soil Water Water Water Water	0.58 0.039 0.18 0.064 0.094	5 5 1 1 1	1 1 0.2 0.2 0.2	mg/kg mg/kg ug/L ug/L ug/L ug/L	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Beryllium Cadmium	METALS METALS METALS METALS METALS METALS	Soil Water Water Water Water Water	0.58 0.039 0.18 0.064 0.094 0.036	5 5 1 1 1	1 1 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Beryllium Cadmium Chromium	METALS METALS METALS METALS METALS METALS METALS	Soil Water Water Water Water Water Water	0.58 0.039 0.18 0.064 0.094 0.036 0.079	5 5 1 1 1 1 1	1 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt	METALS METALS METALS METALS METALS METALS METALS METALS	Soil Water Water Water Water Water Water Water	0.58 0.039 0.18 0.064 0.094 0.036 0.079 0.037	5 5 5 1 1 1 1 1 1	1 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Cayllium Cadmium Chromium Cobalt Copper	METALS METALS METALS METALS METALS METALS METALS METALS	Soil Water Water Water Water Water Water Water Water	0.58 0.039 0.18 0.064 0.094 0.036 0.079 0.037 0.48	5 5 1 1 1 1 1 5	1 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 1	mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Iron	METALS METALS METALS METALS METALS METALS METALS METALS METALS	Soil Water Water Water Water Water Water Water Water Water	0.58 0.039 0.18 0.064 0.094 0.036 0.079 0.037 0.48 6.3	5 5 1 1 1 1 1 5 50	1 1 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 1 	mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Iron Lead	METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS	Soil Water Water Water Water Water Water Water Water Water Water Water	0.58 0.039 0.18 0.064 0.094 0.036 0.079 0.037 0.48 6.3 0.064	5 5 5 1 1 1 1 1 5 50 1	1 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Iron	METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS	Soil Water Water Water Water Water Water Water Water Water	0.58 0.039 0.18 0.064 0.094 0.036 0.079 0.037 0.48 6.3	5 5 5 1 1 1 1 1 5 50 1 1	1 1 0.2 0.2 0.2 0.2 0.2 0.2 1 0.2 0.2 0.2 0.2	mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Cadmium Chromium Cobalt Copper Iron Lead Manganese Mercury	METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS	Soil Water Water Water Water Water Water Water Water Water Water Water Water	0.58 0.039 0.18 0.064 0.094 0.036 0.079 0.037 0.48 6.3 0.064	5 5 5 1 1 1 1 1 5 50 1 1 1 1	1 1 1 0.2 0.2 0.2 0.2 0.2 0.2 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Iron Lead Manganese	METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS	Soil Water Water Water Water Water Water Water Water Water Water Water Water Water	0.58 0.039 0.18 0.064 0.094 0.036 0.079 0.037 0.48 6.3 0.064 0.063	5 5 5 1 1 1 1 1 5 50 1 1	1 1 0.2 0.2 0.2 0.2 0.2 0.2 1 0.2 0.2 0.2 0.2	mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Cadmium Chromium Cobalt Copper Iron Lead Manganese Mercury	METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS	Soil Water Water Water Water Water Water Water Water Water Water Water Water	0.58 0.039 0.18 0.064 0.094 0.036 0.079 0.037 0.48 6.3 0.064 0.063 0.063 0.037	5 5 5 1 1 1 1 1 5 50 1 1 1 1	1 1 1 0.2 0.2 0.2 0.2 0.2 0.2 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Cadmium Cadmium Chromium Cobalt Copper Iron Lead Manganese Mercury Molybdenum Nickel	METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS	Soil Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water	0.58 0.039 0.18 0.064 0.094 0.036 0.079 0.037 0.48 6.3 0.064 0.063 0.037 0.076 0.076 0.11	5 5 5 1 1 1 1 1 1 5 50 1 1 1 1 1	1 1 1 0.2 0.2 0.2 0.2 0.2 0.2 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Cadmium Chromium Cobalt Copper Iron Lead Manganese Mercury Molybdenum Nickel Selenium	METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS	Soil Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water	0.58 0.039 0.18 0.064 0.094 0.036 0.079 0.037 0.48 6.3 0.064 0.063 0.037 0.076 0.11 0.41	5 5 5 1 1 1 1 1 5 50 1 1 1 1 1 1 1 1 1 1	1 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Cadmium Chromium Cobalt Copper Iron Lead Manganese Mercury Molybdenum Nickel Selenium Silver	METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS	Soil Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water	0.58 0.039 0.18 0.094 0.094 0.036 0.079 0.037 0.48 6.3 0.064 0.063 0.063 0.037 0.076 0.11 0.41 0.41 0.035	5 5 5 1 1 1 1 1 5 50 1 1 1 1 1 1 1 1	1 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Cadmium Chromium Cobalt Copper Iron Lead Manganese Mercury Molybdenum Nickel Selenium Silver Thallium	METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS	Soil Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water	0.58 0.039 0.18 0.094 0.094 0.036 0.079 0.037 0.48 6.3 0.064 0.063 0.063 0.037 0.076 0.11 0.41 0.035 0.018	5 5 5 1 1 1 1 1 1 5 0 1 1 1 1 1 1 1 1 1	1 1 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Cadmium Chomium Cobalt Copper Iron Lead Manganese Mercury Molybdenum Nickel Selenium Silver Thallium Vanadium	METALS METALS	Soil Water	0.58 0.039 0.18 0.094 0.094 0.036 0.079 0.037 0.48 6.3 0.064 0.063 0.063 0.037 0.076 0.11 0.41 0.035 0.018 0.058	5 5 5 1 1 1 1 1 1 5 0 1 1 1 1 1 1 1 5 5 1 1 1 1	1 1 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Cadmium Chormium Cobalt Copper Iron Lead Manganese Mercury Molybdenum Nickel Selenium Silver Thallium Vanadium Zinc	METALS METALS	Soil Water	0.58 0.039 0.18 0.094 0.036 0.079 0.037 0.48 6.3 0.064 0.063 0.037 0.076 0.11 0.41 0.035 0.018 0.058 0.058 0.68	5 5 5 1 1 1 1 1 1 5 0 1 1 1 1 1 1 5 5 5 1 1 1 1	1 1 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Cadmium Cadmium Cobalt Copper Iron Lead Manganese Mercury Molybdenum Nickel Selenium Silver Thallium Vanadium Zinc Mercury (1631E)	METALS METALS	Soil Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Soil	0.58 0.039 0.18 0.064 0.094 0.036 0.079 0.037 0.48 6.3 0.064 0.063 0.064 0.063 0.076 0.11 0.41 0.035 0.018 0.058 0.68 0.0088	5 5 5 1 1 1 1 1 5 50 1 1 1 1 1 1 1 1 5 5 0 0.025	1 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Cadmium Chromium Cobalt Copper Iron Lead Manganese Mercury Molybdenum Nickel Selenium Silver Thallium Vanadium Zinc Mercury (1631E)	METALS METALS	Soil Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Soil Water	0.58 0.039 0.18 0.094 0.094 0.036 0.079 0.037 0.48 6.3 0.064 0.063 0.037 0.076 0.11 0.41 0.41 0.41 0.035 0.018 0.058 0.68 0.0088 0.0008	5 5 5 1 1 1 1 1 1 5 5 0 1 1 1 1 1 1 1 1	1 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Cadmium Chromium Cobalt Copper Iron Lead Manganese Mercury Molybdenum Nickel Selenium Silver Thallium Vanadium Zinc Mercury (1631E) Mercury (1631E)	METALS METALS	Soil Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Soil Water	0.58 0.039 0.18 0.094 0.094 0.036 0.079 0.037 0.48 6.3 0.064 0.063 0.063 0.037 0.076 0.11 0.41 0.035 0.018 0.058 0.058 0.0088 0.0008 1	5 5 5 1 1 1 1 1 1 1 1	1 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Cadmium Chromium Cobalt Copper Iron Lead Manganese Mercury Molybdenum Nickel Selenium Silver Thallium Vanadium Zinc Mercury (1631E)	METALS METALS	Soil Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Soil Water	0.58 0.039 0.18 0.094 0.094 0.036 0.079 0.037 0.48 6.3 0.064 0.063 0.037 0.076 0.11 0.41 0.41 0.41 0.035 0.018 0.058 0.68 0.0088 0.0008	5 5 5 1 1 1 1 1 1 5 5 0 1 1 1 1 1 1 1 1	1 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	EPA6020/200.8 EPA6020/200.8

EC9-12 aliphatics APH	Air	2.5	25	 ug/m3	MA-APH
EC9-10 aromatics APH	Air	2.5	25	 ug/m3	MA-APH

Attachment B

Sampling and Analysis Plan

Sampling and Analysis Plan for Ephrata Landfill: MPE System Restart and Seasonal Operation

Prepared for Grant County Public Works

August 2024

Sampling and Analysis Plan for Ephrata Landfill: MPE System Restart and Seasonal Operation

Prepared for

Grant County Public Works 124 Ephrata Street SE Ephrata, WA 98823

Prepared by

Parametrix 719 2nd Avenue, Suite 200 Seattle, WA 98104 T. 206.394.3700 F. 1.855.542.6353 www.parametrix.com

August 2024 | 553-1860-014

Citation

Parametrix. 2024. Sampling and Analysis Plan for Ephrata Landfill: MPE System Restart and Seasonal Operation. Prepared for Grant County Public Works by Parametrix, Seattle, Washington. August2024.

Approvals

Prepared by Molly Alar

Checked by Shira DeGrood

Approved by Jenifer Young

Date

Date

Date

Contents

1.	Intro	duction		1
	1.1	Project	Description and Schedule	1
	1.2	Project	Organization	4
	1.3	Quality	Objectives and Criteria for Measurement Data	4
		1.3.1	Objective	4
	1.4	Training	Requirements/ Certification	4
	1.5	5 Documents and Records		
		1.5.1	SAP Distribution	4
		1.5.2	Field Documentation and Records	4
		1.5.3	Laboratory Documentation and Records	5
		1.5.4	Reporting	6
2.	Data		ion and Acquisition	
	2.1	Monitor	ing Methods	6
		2.1.1	Non-Aqueous Phase Liquid	6
		2.1.2	Groundwater Well Monitoring	7
		2.1.3	Total Vapor and Liquid Extraction	8
		2.1.4	Ambient Air Monitoring	8
	2.2	Sampling Methods		
		2.2.1	Groundwater Sampling	9
		2.2.2	Vapor Sampling	. 10
	2.3 Field Health and Safety Procedures2.4 Field Variances		ealth and Safety Procedures	. 11
			. 11	
	2.5	5 Decontamination Procedures		. 11
		2.5.1	Personnel Decontamination	. 11
		2.5.2	Equipment Decontamination	. 12
		2.5.3	Container Decontamination	. 12
	2.6 Disposal of Waste Materials		. 12	
	2.7	7 Sample Handling and Custody		. 12
		2.7.1	Sample Containers and Preservatives	. 12
-		Sample Custody	. 12	
		2.7.3	Sample Disposal	. 13

Contents (continued)

	2.8	Analytical Methods		
		2.8.1	Laboratory Analysis Methods	. 13
	2.9	Quality (Control	. 13
		2.9.1	Measurement Performance and Acceptance Criteria	. 13
		2.9.2	Field Sampling QC	. 14
		2.9.3	Laboratory Analysis QC	. 15
		2.9.4	Field Monitoring Instruments/ Equipment	. 15
		2.9.5	Laboratory Analysis Instruments/ Equipment	. 15
	2.10	Data Ma	anagement	. 15
~	0	ال مام ا		45
3.	Overs	signt		15
	3.1	Field an	d Laboratory Oversight	. 16
		3.1.1	Readiness Procedure	. 16
		3.1.2	Post-Event Review of Field Sampling and Measurement Activities	. 16

FIGURES

Figure 1. Site Map	2
Figure 2. MPE System Diagram	3

TABLES

Table 1. Field Monitoring Summary	17
Table 2. Laboratory Sampling Summary	17
Table 3. Groundwater Analytical Parameters	17
Table 4. Groundwater Laboratory Analysis	17
Table 5. Vapor Analytical Parameters	17

APPENDICES

- A Field Forms
- B Chain-of-Custody Form
- C Laboratory Quality Assurance Manual
- D Laboratory Sample Quality Control and Detection Limits

Acronyms and Abbreviations

-	
SAP	Sampling and Analysis Plan
MPE	multi-phase extraction
Site	old Ephrata Landfill
WAC	Washington Administrative Code
LTT	Liquid Treatment Train
GAC	granulated activated carbon
VTT	Vapor Treatment Train
LNAPL	light non-aqueous phase liquid
QC	quality control
COC	chain of custody
QC	quality control
ID	identification
CAS	Chemical Abstracts Service
LNAPL	light non-aqueous phase liquids
VAE	vacuum assisted extraction
SVE	soil vapor extraction
PLC	program logic controller
gpm	gallons per minute
VOCs	volatile organic compounds
VAE	vacuum assisted extraction
PPE	personal protective equipment
QA	quality assurance
MDL	Method detection limit
RL	reporting limits
DQIs	data quality indicators
LCS	laboratory control samples
MS	matrix spikes
RPD	relative percent difference

1. Introduction

Parametrix prepared this Sampling and Analysis Plan (SAP) to describe data collection, groundwater sampling, and vapor sampling procedures for restart and seasonal operation of the multi-phase extraction (MPE) system at the old Ephrata Landfill (Site). This work is required under the terms of Agreed Order No. DE 3810 Amendment No. 3 (Amendment) among between the Washington State Department of Ecology (Ecology), and Grant County. The Amendment requires the County and City (Potentially Liable Parties [PLPs]) to develop a workplan, restart, and operate the MPE system until construction of an expanded MPE system starts. This SAP was prepared in accordance with Washington Administrative Code (WAC) 173-340-820.

1.1 Project Description and Schedule

The P1 MPE system restart and seasonal operation will provide contaminant removal from the P1 zone while MPE system expansion is planned.

Liquids and vapor extracted from MPE wells will be conveyed to an onsite pretreatment facility. Liquids will be conveyed to the Liquid Treatment Train (LTT) consisting of oil water separation, air sparging, waste tanks, knockout tank, and granulated activated carbon (GAC) before being discharged to an evaporation pond. Extracted vapor will be conveyed to the Vapor Treatment Train (VTT) consisting of GAC treatment before being vented to air. Figure 1 shows a Site map of the MPE system area and Figure 2 shows a diagram of the MPE system LTT and VTT.

MPE system restart operations will involve field monitoring of depth to groundwater, total vapor and liquid extraction monitoring, and collection of extracted groundwater and vapor samples from the treatment system. For this SAP, extracted groundwater processed through the MPE system will be referred to as groundwater.

Field monitoring will be conducted three times each year. The first event will be conducted within 2 days of MPE system restart, the second event will be conducted approximately 2 weeks after MPE system restart, and the third event will be conducted during the month prior to seasonal shut down of the MPE system. A field monitoring summary is included in Table 1 and a sampling and analysis summary is included in Table 2. Figure 2 identifies sample locations within the LTT and VTT. The P1 MPE system is designed to operate without people present, although it cannot be restarted or operated remotely. Parametrix plans to train three people to restart and operate the system and who will respond to the Site within 1 week following notification of a system shutdown. Grant County Landfill personnel will check the system on regular workdays to confirm it is running and notify Parametrix of shutdowns. Grant County plans to hire an additional landfill technician, who could be trained to restart and operate the system starting as soon as 2024.

Figure 1. Site Map

Figure 2. MPE System Diagram

1.2 Project Organization

Parametrix is the project engineer and lead operator of the MPE system restart. Parametrix will coordinate system repairs and personnel training, restart the MPE system, and monitor and sample the system. Parametrix will collect vapor and groundwater samples for laboratory analysis for both MPE performance and compliance monitoring. Parametrix will be responsible for field and laboratory data management and reporting.

Parametrix plans to use Friedman & Bruya, Inc. (laboratory), located in Seattle, Washington, for liquid and gas sample analyses for the P1 MPE restart and seasonal operation.

Mott MacDonald, Ltd is the project hydrogeologist and groundwater monitoring lead. Groundwater monitoring at wells not directly involved in the P1 MPE restart and seasonal operation will be performed by Mott MacDonald under a separate workplan to be developed by Mott MacDonald.

1.3 Quality Objectives and Criteria for Measurement Data

The purpose of this SAP is to ensure that the data are of sufficient quality to support contaminant removal and emission calculations. Section 2.5 describes quality control (QC).

1.3.1 **Objective**

The objective of the MPE restart monitoring and sampling is to measure contaminate concentrations in extracted groundwater and vapor before and after treatment in the LTT and VTT.

1.4 Training Requirements/ Certification

Field personnel performing MPE system sampling, monitoring, and maintenance will be trained in accordance with the project health and safety plan (Parametrix 2024b).

1.5 Documents and Records

1.5.1 SAP Distribution

The Parametrix Project Manager will be responsible for preparing and distributing any SAP amendments.

1.5.2 Field Documentation and Records

Field sampling will be documented in several ways, including field and sampling forms, photographs, sample labels, and sample chain of custody (COC) forms.

1.5.2.1 Field Forms

Sampling and monitoring will be documented on the field forms included in Appendix A.

Any corrections made while recording information in the field will use single line strikethroughs and include initials and date.

Field instrument calibration will be noted.

Field forms and any photos will be retained in Parametrix's project records.

1.5.2.2 Sample Labels

Each sample will be labeled with laboratory provided labels. Each label includes the following information:

- Project name/number.
- Name of sample collector.
- Date and time of sample collection.
- Place of collection.
- Sample identification (ID) (i.e., groundwater influent, groundwater effluent, vapor pretreatment, vapor post-treatment).
- Presence of any preservation or filtration.

1.5.2.3 Chain-of-Custody Forms and Custody Seals

COC forms and self-adhesive custody seals for individual samples and coolers will be provided by the laboratory. A blank COC form is included in Appendix B. Copies of completed COC forms will be kept in Parametrix's project records. Additional details regarding sample handling and custody are provided in Section 2.

1.5.3 Laboratory Documentation and Records

Laboratory data packages will be provided by the laboratory in electronic (PDF and .xlsx or .csv) format. These packages will include a case narrative discussing any problems with the analyses, corrective actions taken, changes to the referenced methods, and an explanation of data qualifiers. In addition to sample results, reporting limits, and method detection limits, the data packages will also report all QC results associated with the study data, including results for all blanks, surrogate compounds, and check standards included in the sample batch, as well as results for analytical duplicates. Legible copies of all COC forms and sample receiving logs associated with the samples analyzed will also be included. This information will be used to evaluate data accuracy.

In addition to the data packages, the laboratory will provide electronic data files containing sample results. The electronic files will be in unprotected .xlsx or .csv format and will include the following fields at a minimum:

- Laboratory sample ID.
- Sample ID.
- Sample type.
- Date analyzed.
- Analytical method.
- Sample filter flag.
- Chemical Abstracts Service (CAS) number.
- Parameter name.

Sampling and Analysis Plan for Ephrata Landfill: MPE System Restart and Seasonal Operation Grant County Public Works

- Units.
- Result value.
- Result qualifier.
- Dilution factor.
- Reporting limit and detection limit.

Each data file will include all laboratory results and will be consistent with the data reported in the corresponding laboratory data package.

1.5.4 Reporting

This sampling and monitoring data described in this SAP will be reported as required in the Amendment. The Amendment calls for monthly progress reports, which are to include data obtained during the preceding month. Calculations of emissions and contaminant removal during each season of operations will be included in one of the monthly reports after the system is shut down and analytical results have been evaluated each season of operation.

2. Data Generation and Acquisition

This section describes procedures for collecting field measurements and for collecting samples for laboratory analysis. It also provides quality assurance and data management protocols. Sample locations are described in the P1 MPE System Restart and Seasonal Operation Workplan.

2.1 Monitoring Methods

This subsection describes field monitoring methods. Monitoring will occur at locations described in Table 1.

2.1.1 Non-Aqueous Phase Liquid

Depth to water and NAPL (non-aqueous phase liquids) will be manually measured in MPE and P1 observation wells to confirm transducer measurements (for those wells instrumented with pressure transducers) and to monitor for accumulation of NAPL in these wells. Depths to water, light NAPL (LNAPL), and dense NAPL (DNAPL) will be measured in these wells using an electric interface probe by first measuring potential LNAPL and depth to water at the water surface and then lowering the probe to the bottom of the well to measure potential DNAPL.

Manual measurements of water level and NAPL depths in these wells will require temporary removal of vacuum pressures during the vacuum assisted extraction (VAE) and soil vapor extraction (SVE) portion of the test. When MPE wells are under vacuum, water levels in these wells would be abnormally high relative to conditions in which the wellhead was at atmospheric pressure (i.e., if the water pumps were not being used to depress water levels). However, operation of the pumps will depress water levels in all MPE wells regardless of wellhead pressure, and water levels will take some time to adjust to changes in wellhead pressures when collecting measurements.

The length of the non-equilibrium period will be relatively long because P1 aquifer transmissivity is low. Thus, at least two manual measurements will be collected as quickly as possible from MPE wells after removing the vacuum from the wellheads.

The following procedures will be used to measure depth to LNAPL and DNAPL in MPE wells:

- Remove vacuum from MPE wells by either unthreading the 3/4-inch wellhead port (with VAE line still open), or by first shutting off the VAE line, then unthreading the wellhead port after vacuum pressure is reduced.
- Lower interface probe into 3/4-inch access port and record date, time, depth to water, and depth to LNAPL on MPE Well Form (Appendix A). If there is no measurable LNAPL, record as "0" on form. Record observer's initials.
- Lower interface probe to the bottom of the well and record date, time, bottom of well, and depth to DNAPL on MPE Well Form. If there is no measurable DNAPL, record as "0" on form. Record observer's initials.
- Measuring point on these wells will be consistent between measurements and will be the top of the 3/4-inch access port.
- Repeat measurements and record depths on MPE Well Form.

P1 observation wells will be under less vacuum and have no pumps or VAE line. The following procedures will be used to collect measurements in P1 Observation Wells:

- Remove vacuum by unthreading the 3/4-inch wellhead sample port (Note that all P1 wells except MW-36p1 and MW-67p1 are fitted with QED well plates with 3/4-inch threaded sample ports. MW-36p1 is fitted with a temporary PVC well cap with threaded 3/4-inch sample port, and MW-67p1 is fitted with a temporary well cap plug that will have to be removed for data collection).
- Lower interface probe into 3/4-inch access port and record date, time, depth to water, and depth to LNAPL on the Observation Well Form (Appendix A). If there is no measurable LNAPL, record as "0" on form. Record observer's initials.
- Lower interface probe to the bottom of the well and record date, time, bottom of well, and depth to DNAPL on the Observation Well Form. If there is no measurable DNAPL, record as "0" on form. Record observer's initials.
- Measuring point on these wells will be consistent between measurements and will be the top of the 3/4-inch access port for those wells fitted with well plates having access ports. The measuring point for observation wells without well plates having access ports shall be the top of the PVC well casing.
- Repeat measurements and record depth on the Observation Well Form in Appendix A.

2.1.2 Groundwater Well Monitoring

Depth to water will be manually measured in the vented observations wells.

Depths to water will be collected in these wells using a water level probe as follows:

- Open monument cap and remove well cap.
- Collect depth to water using top of PVC well casing (north side) as measurement point.
- Record date, time, initials, and depth to water on Observation Well Form in Appendix A.

Sampling and Analysis Plan for Ephrata Landfill: MPE System Restart and Seasonal Operation Grant County Public Works

2.1.3 Total Vapor and Liquid Extraction

Total liquid and vapor extraction rates and volumes data will be occasionally recorded manually on the Extraction Form in Appendix A. A vapor flow meter, which records pressure differential (in H₂O), and a pressure gage, which records pipe vacuum (in Hg), are in the VTT container near the intake to the VAE. Readings from these meters are used in standard air flow formulas to calculate air flow rates. Readings are transmitted to the program logic controller (PLC) but will also be manually read and recorded on the Extraction Form as backup. A liquid flow meter, which reads total cumulative volume (gallons) and instantaneous flow (gpm), is in the VTT container before influent to the oil-water separator. Readings from the liquid meter are transmitted to the PLC but will also be manually read and recorded on the Extraction Form as backup.

2.1.4 Ambient Air Monitoring

The VTT and LTT systems are designed for operation in Class 1, Division 1 areas to safely handle flammable mixtures containing methane and other volatile substances. However, it may be feasible to avoid handling flammable mixtures through system adjustments. The following thresholds for oxygen and methane have been established:

- Oxygen = over 10% volume
- Methane = over 20% LEL by volume

Although not anticipated, if the above thresholds are both exceeded at the VAE blower discharge, gas concentrations will be measured at individual wellheads to evaluate which well(s) may be contributing to elevated methane and possibly entraining landfill gas and/or atmospheric air.

Elevated methane in extracted vapor could be from a landfill gas source and/or from volatilization of dissolved methane in the P1 zone groundwater. However, volatilization of dissolved gases in the P1 zone is not likely to produce significant vapor volumes relative to the entrainment of landfill gases.

Actions to mitigate combustible gas mixtures will be discussed with the Project Manager and could include one of the following options:

- 1. Throttle or isolate the well producing high methane or oxygen, presuming one is identified.
- 2. Throttle all MPE wells and reduce the VAE blower speed.
- 3. Vent the MPE wells by opening sample port and reduce the VAE blower speed to minimum, essentially reverting to non-vacuum-assisted groundwater extraction.
- 4. Evaluate piping modifications to route rich gas to the landfill flare.
- 5. Evaluate well, piping, and electrical modifications to extract from a different well.
- 6. Evaluate adjustments to nearby LFG collection wells to offset LFG migration into the P1 zone.

As mentioned, the systems are designed to handle combustible mixtures. MPE operations may continue when the above mitigation options result in a non-flammable condition.

2.2 Sampling Methods

2.2.1 Groundwater Sampling

Groundwater (liquid) samples will be collected for laboratory analysis for both MPE performance monitoring purposes and pre-and-post-treatment performance monitoring purposes following the schedule in Table 2.

Groundwater samples will be collected at the following locations:

- Pre-treatment samples will be collected at the liquid sample port at the oil-water separator inlet.
- Post-treatment samples will be collected at the air sparge effluent sample port.

Sample locations are shown on the MPE system diagram in Figure 2.

Groundwater samples will be sampled for analytes listed in Table 3. See Table 4 for required analyses and bottles for each sample. Groundwater samples will be collected from in-line liquid sample ports (i.e. quarter-turn ball valve with PTFE tube whip) at locations summarized above using the following procedures:

- All sampling personnel will wear clean, disposable, latex gloves.
- Place a 5-gallon bucket on the ground below the sample port to collect overflow liquid during sampling. The overflow water should be contained in sealed/labeled 55-gallon drums and eventually run through the LLT.
- Connect a multiparameter water quality meter with a flow-thru cell (YSI ProDSS or equivalent) to the sample port, then open the sample port (allowing water to fill the flow-thru cell) and a small stream of discharge of about 100 to 500 millimeters per minute (ml/min) will be maintained. The following field parameters will be monitored with the water quality meter:
 - o pH (standard unit).
 - Dissolved oxygen (%).
 - \circ Electrical conductivity (µS/cm or mS/cm).
 - Temperature (degrees C).
 - Oxidation reduction potential (mV).
 - Turbidity (NTU).
- Allow water to continue moving through the flow-thru cell until parameter readings are stable for at least 30 seconds. Record field parameter values on the Groundwater Sample Form included in Appendix A. If parameter values continue to trend after 2 minutes, record values and indicate on the Groundwater Sample Form that the parameter value is trending upward or downward. Also, note visual appearance on the sample form (opaqueness, color, odor, etc.).
- Once field parameters have been collected, disconnect the sample port from the flow-thru cell and collect samples for laboratory analysis. Fill sample bottles in a manner that minimizes contact of the samples with air following individual sample container requirements, handling, and preservation. Samples for volatile organic compounds (VOCs) should contain no bubbles (headspace) after filling.

- Samples for dissolved metals analysis will be filtered in the field using a 0.45-micron in-line filter and recorded on field forms, metals sample bottle, and COC form.
- Record all sample information on the Groundwater Sample Form in Appendix A (sample ID, date, time, field parameters, analytical parameters, shipment date to the lab, and observer/comments).
- Record the information on each sample bottle label in accordance with the following subsection.

2.2.2 Vapor Sampling

Vapor samples will be collected for laboratory analysis for both MPE performance monitoring purposes and pre-and-post-treatment performance monitoring purposes following the schedule in Table 2.

Vapor samples will be collected from combined MPE vapor at the following locations in the VTT:

- Pre-treatment samples will be collected at discharge end of the VAE blower (positive pressure) in the VTT container downgradient of the heat exchanger but upgradient of the first carbon adsorber.
- Post-treatment samples will be collected at the vapor sample port at the discharge end of the first carbon adsorber.

Vapor samples will be collected using laboratory-supplied SUMMA canisters and analyzed for VOCs. See Table 5 for a list of VOCs. Vapor samples will be collected from in-line 1/4-inch sample ports at locations summarized and shown on Figure 2 using the following procedures:

- All sampling personnel will wear clean, disposable, latex gloves.
- Measure and record field measurements of gas concentrations (methane, oxygen, photo ionization detection [PID] readings) at discharge end of VAE blower using the following procedures:
 - Attach clean disposable 1/4-inch flexible tubing (silicone or polyethylene) to PID meter's air intake port (use compression fittings if needed) and turn meter on.
 - Purge ambient air vapor through open end of tubing and meter until readings are fairly stable for at least 30 seconds.
 - Record ambient air concentrations on Extraction Form (also record date, time, units of concentration, and observer's initials).
 - Turn PID meter off and attach open end of tubing to 1/4-inch vapor sample port (use compression fitting if needed).
 - Open sample port and turn on meter.
 - Purge vapor through meter until readings are fairly stable for 30 seconds.
 - Record the vapor concentrations on Extraction Form included in Appendix A (record date, time, units of concentration, and observer's initials).
 - Except for ambient air readings, repeat above steps for measuring vapor concentrations of methane and oxygen with landfill gas meter.
- Verify and record initial vacuum of canister.

- Confirm VAE sample port and canister valves are both closed.
- Attach particulate filter to canister.
- Connect canister intake to VAE sample port with lab supplied compression fittings to achieve airtight connection.
- Open VAE sample port and open canister valve (1/2 turn). Record start time—a 6-liter canister typically takes about 16 seconds to fill.
- Once full, record the end time, final vacuum pressure, and close the canister valve. (Note that maintaining a residual vacuum is not required as the lab performs a leak test both prior to shipment and upon receipt of canisters.)
- Fill out the canister label in accordance with Section 1.5.2.2.
- Record all sample information on the Vapor Sample Form included in Appendix A (sample ID, date, time, field parameters, analytical parameters, canister readings, shipment date to the lab, and observer/comments).

2.3 Field Health and Safety Procedures

Parametrix will follow the Site-specific Health and Safety Plan (Workplan Attachment A).

2.4 Field Variances

If conditions in the field vary such that modifications to the sampling procedures and protocols described in this SAP become necessary, field personnel will notify the Project Manager of the situation to obtain a verbal approval prior to implementing any changes. The approval will be recorded in the field forms.

2.5 Decontamination Procedures

The Site-specific Health and Safety Officer, as identified in the Site-specific Health and Safety Plan, is responsible for maintaining and enforcing personnel and equipment decontamination procedures. Any decontamination modifications and/or changes shall be noted in the field forms.

2.5.1 **Personnel Decontamination**

Personnel decontamination will include the following:

- After completion of sampling activities in the field, personnel must deposit all equipment and/or sample bottles in segregated areas on plastic sheeting. Highly contaminated equipment is to be kept separate from minimally contaminated and difficult-to-clean equipment, such as air monitoring meters.
- If field personnel personal protective equipment (PPE) comes into contact with contaminated material, all surfaces of gear, including boot soles, must be scrubbed until visible contamination is removed. PPE are to be rinsed with tap water using a brush. PPE is removed and set on plastic sheeting.
- If worn, coveralls are to be removed and disposed of in a disposal container.
- Disposable gloves are to be disposed of in a disposal container.

Sampling and Analysis Plan for Ephrata Landfill: MPE System Restart and Seasonal Operation Grant County Public Works

2.5.2 Equipment Decontamination

Disposable tools and sampling equipment will be used when possible. Decontamination of tools will include brushing with decontamination solution, such as Alconox, and rinsing with tap water, followed by rinsing with deionized water. The tools shall be segregated and placed in clean bags or containers.

Decontamination of sampling equipment will include the following:

- Clean tubs or buckets will be set up to collect wash and rinse solutions.
- Sampling tools will be scrubbed with a decontamination solution, such as Alconox, until visibly clean.
- Tool will be rinsed with tap water.
- Tool will be rinsed with deionized water. A garden prayer or squirt bottle may be used.

2.5.3 Container Decontamination

Samples will be collected directly into sample containers provided by the laboratory. No container decontamination in the field is necessary. The containers will be provided and certified clean by the laboratory according to procedures described in the laboratory's quality assurance (QA) manual included in Appendix C.

2.6 Disposal of Waste Materials

Waste that will be generated from sampling operations include soiled PPE and disposable sampling equipment, and excess purge water from the groundwater sampling ports. Waste will be collected and stored in a 55-gallon drum or watertight container and disposed of in accordance with applicable federal and state waste regulations.

2.7 Sample Handling and Custody

2.7.1 Sample Containers and Preservatives

Table 4 lists groundwater sample volume, container size and type, and preservation requirements for each parameter/parameters group to be measured. Vapor samples will be collected in Summa Canisters. Prior to each event, the Project Manager or designee will contact the laboratory to order sample containers. The laboratory will provide sampling kits containing precleaned and prepreserved sample containers. After sample collection, samples will be placed in a cooler with ice at approximately 4 degrees C to retain cold temperature for at least 24 hours. No samples will be split in the field.

2.7.2 Sample Custody

Each sample will be listed on the COC form(s), an example of which is provided in Appendix B. The laboratory will provide COC form(s) with each sample kit. The field personnel will record all sample custody transfers on the COC form(s) and return it to the laboratory with the samples.

A sample is under a person's custody if it is:

- In that person's physical possession.
- Within that person's sight.
- Secured in a tamper-proof way by that person.
- Secured by that person in an area restricted to authorized personnel.

Field personnel are responsible for custody of the samples until they are delivered to the laboratory. The field portions of COC forms shall be completed in the field by the sampler. Each time one person relinquishes control of the samples to another person, both individuals must complete the appropriate portions of the COC form by signing the form and filling in the date and time of the custody transfer. For this reason, one field personnel individual should retain sample custody during the sampling event whenever feasible.

The laboratory's sample receipt coordinator will sign and date the COC form(s) promptly when the samples arrive. The laboratory is then responsible for the care and custody of samples. The laboratory will track sample custody through their facility using a separate sample tracking form, as discussed in the laboratory QA manual included in Appendix D. Copies of completed COC forms will be kept in the project files.

2.7.3 Sample Disposal

Following sample analysis, the laboratory will store the unused portions for 30 days after the final laboratory data package and invoice is delivered then dispose of all the samples following their standard procedures.

2.8 Analytical Methods

2.8.1 Laboratory Analysis Methods

Laboratory analysis methods for each parameter are listed in Tables 3 and 5. Sample analysis will be performed by the laboratory in accordance with Environmental Protection Agency (EPA) method specifications. The method detection limit (MDL) and reporting limit (RL) for each sample parameter method are listed in the laboratory summary table (Appendix D).

After analyzing samples from each sampling event, the laboratory will summarize the data and associated QC results in a data report and electronic data file and provide these to Parametrix within 1 month of sample receipt. Quarterly sample data report and electronic data file contents are described in Section 1.5.3.

2.9 Quality Control

2.9.1 Measurement Performance and Acceptance Criteria

This section identifies data quality indicators (DQIs) for each analytical parameter and decisions regarding how each DQI will be assessed. The DQIs include sensitivity, bias, representativeness, precision, accuracy, completeness, and comparability.

The general approach to assessing each DQI is provided below, including quantitative measurements where appropriate. Analytical methods are specified in Tables 3 and 5.

Sensitivity

Sensitivity is the MDL which a laboratory following an analytical method can detect and quantify an analyte with reasonable confidence. Laboratory MDLs and RLs are listed the summary table included in Appendix D.

Bias

Bias is the difference between the population mean and the true value of the parameter being measured. Bias in water samples will be calculated based on the analyses of field blanks, method blanks, matrix spikes, and laboratory control samples (LCS).

Field blank results that are greater than the RL will be flagged as blank contamination. Typically, associated project samples within 10 times the blank concentration will be qualified as an estimate.

Some of the parameters listed in Tables 3 and 5 require matrix spikes (MS) and MS duplicates. MS and MS duplicates will be performed for these parameters following the laboratory's standard procedure. Percent recoveries are required to be within the ranges shown in the LCS analysis included in Appendix D.

Representativeness

Representativeness is the degree to which sample data represent a characteristic environmental condition or specific site conditions. Samples will be collected at different stages of MPE system restart.

Precision

Precision is the closeness of results for a sample and duplicate sample, as defined by the relative percent difference (RPD). Required RPD ranges are shown in the LCS analysis included in Appendix D.

Accuracy

Accuracy is the measure of agreement between a measurement's result and the true or known value. LCS, MS, and MS duplicates percent recoveries are required to be within the acceptance criteria ranges in the LCS analysis included in Appendix D.

Completeness

Completeness is a percentage calculated as the ratio of measurements determined to be valid over the total number of measurements collected. The completeness goal is set in terms of the minimum number of samples meeting DQIs. To evaluate groundwater and vapor for this study, all samples must be valid. Other practices to ensure achievement of the completeness goal include using prepared sample containers and coolers from the laboratory, using trained staff, following the sampling procedures in this SAP, icing samples, packaging samples for transport to avoid breakage, and timely sample processing. Laboratory analysis can improve completeness by processing samples within their holding times. For data analysis, valid sample data may include all unflagged data and J-flagged data reviewed by the Project Manager.

2.9.2 Field Sampling QC

No field QC samples will be collected during sampling events.

2.9.3 Laboratory Analysis QC

Laboratory QA/QC procedures are described in the laboratory's QA manual included in Appendix C. Analysis for LCS and method blanks for each sample parameter method is included in Appendix D.

2.9.4 Field Monitoring Instruments/ Equipment

Installation and procedures for field sampling and monitoring equipment use are discussed in Sections 2.1 and 2.2. Field devices will be calibrated and maintained in accordance with the manufacturer's guidelines and specifications. Records of equipment calibration and maintenance will be recorded and maintained in field notes.

Documentation will include the following information, as applicable:

- Name of person maintaining or calibrating the instrument/equipment.
- Date and description of the maintenance or calibration procedure.
- Date and description of any instrument/equipment problem(s).
- Date and description of action to correct problem(s).
- List of follow-up activities after maintenance (i.e., system checks).

For leased equipment, calibration by the lessor is acceptable.

2.9.5 Laboratory Analysis Instruments/ Equipment

Inspection and maintenance of laboratory equipment is the responsibility of the laboratory and is described in the laboratory's QA manual included in Appendix C.

2.10 Data Management

Data collected by this study, as described in previous subsections, will be maintained as electronic data files. Preparation, maintenance, and storage of documents and records are described in Section 1.5.

The laboratory will provide data in electronic form via unprotected .xlsx or .csv format, with full data reports provided in Adobe PDF. The Project Manager or designee will review the results for consistency of results and qualifiers across file formats. Any discrepancies will be identified for resolution by the laboratory.

Data presented in the final report will be checked against the original sources. Any data summaries and calculations included in the final report will be checked to confirm the appropriate source data and calculation methods are used.

Data will be submitted to Ecology as required in the Amendment.

3. Oversight

This section describes oversight to confirm that field sampling and monitoring activities are conducted according to procedures outlined in this SAP.

3.1 Field and Laboratory Oversight

For this study, field oversight will include readiness reviews of the Field Sampling Team prior to initiating quarterly sampling efforts, field activity audits, and post-event review of field sampling and measurement activities.

3.1.1 Readiness Procedure

Field staff training will include review of this SAP and laboratory instructions with the field kits. Prior to each sampling and monitoring event, the field sample team will confirm the following:

- Equipment is operational and ready for field use.
- Field instruments are calibrated and in proper working order.
- Field logs are on hand.
- The sample kit includes all containers listed in the COC and this SAP for the event.
- All sample containers are intact and properly closed.

3.1.2 **Post-Event Review of Field Sampling and Measurement** Activities

Field data verification after each sampling and monitoring event will involve review of the field data for errors or omissions and examining the results for compliance with QC acceptance criteria outlined in this SAP. Review of field measurements will include the following:

- Evaluate field records for consistency.
- Confirm calibration procedures were followed and documented.
- Review QC information (any corrections on field forms and confirm QC of data transferred to electronic format).
- Summarize any deviations from methods specified in this SAP, determine any impact on data quality, and identify any necessary modifications to sampling activities prior to the next quarterly event.

Tables

 Table 1. Field Monitoring Summary

 Table 2. Laboratory Sampling Summary

 Table 3. Groundwater Analytical Parameters

 Table 4. Groundwater Laboratory Analysis

 Table 5. Vapor Analytical Parameters

MPE System Restart Project Phase	Field Parameters	Locations of Measurement
	Manual Depth to Groundwater	All Extraction and Observation Wells
	Manual Depth to LNAPL	All P1 Zone Extraction and Observation Wells
	LT Readings	LTs in wells
	PIT readings	PITs at wells
	Pump Cycle Count and Rate	Active MPE Wells
PUMPING WITH NO VACUUM	Liquid Flow Rate and Total Volume	Meter before OWS (LTT Container)
	Vapor Extraction Rate and Volume	Meter near blower (VTT Container)
	Pump Supply Air Pressure	Regulators on air supply lines to pumps
	VAE Blower Speed	(VTT Container)
	Compressed Air Supply Rate	(VTT Container)
	Methane and Oxygen, Total Organics (PID)	VAE Sample Port (Discharge End of Heat Exchanger)

Manual Depth to Groundwater
Manual Depth to LNAPL
Manual Vacuum Reading
LT Readings
PIT readings
Pump Cycle Count and Rate
VAE Flow Control Valves
Liquid Flow Rate and Total Volume
Vapor Extraction Rate and Volume
Pump Supply Air Pressure
VAE Blower Speed
VAE Blower Makeup Air
Compressed Air Supply Rate
Methane and Oxygen, Total Organics (PID)

All Extraction and Observation Wells
All P1 Zone Extraction and Observation Wells
MW-36p1
LTs in wells
PITs at wells
Active MPE Wells
Active MPE Wells
Meter before OWS (LTT Container)
Meter near blower (VTT Container)
Regulators on air supply lines to pumps
(VTT Container)
(VTT Container)
(VTT Container)
VAE Sample Port (Discharge End of Heat Exchanger)

SOIL VAPOR EXTRACTION TEST

Notes:

Additional readings may be collected during seasonal startup.

LNAPL- light non-aqueous phase liquids LT- level transducers LTT- Liquid Treatment Train MP- wellhead measuring point MPE- multi-phase extraction

PIT- pressuring indicating transducers PLC- programmable logic controller (i.e., computer) VAE- vacuum assisted extraction VTT- Vapor Treatment Train

		Data Collection Frequency	
Location of Data Collection	Automated (PLC)	Manual (Forms- record off of PLC)	Data Collection Form
Wellhead Measuring Point (MP)		Once per sampling event	Observation and MPE Well Forms
Wellhead Measuring Point (MP)		Once per sampling event	Observation and MPE Well Forms
PLC	Hourly	Once per sampling event	Observation and MPE Well Forms
PLC	Hourly	Once per sampling event	Observation and MPE Well Forms
MPE Well		Once per sampling event	MPE Well Forms
PLC	Hourly	Once per sampling event	Extraction Form
PLC	Hourly	Once per sampling event	Extraction Form
MPE Well	Hourly	Once per sampling event	MPE Well Forms
VTT Container		Once per sampling event	Operations Form
VTT Container		Once per sampling event	Operations Form
VTT Container		Once per sampling event	Extraction Form
Wellhead Measuring Point (MP)		Once per sampling event	Observation and MPE Well Forms
Wellhead Measuring Point (MP)		Once per sampling event	Observation and MPE Well Forms
Wellhead		Once per sampling event	Observation Well Forms
PLC	Hourly	Once per sampling event	Observation and MPE Well Forms
PLC	Hourly	Once per sampling event	Observation and MPE Well Forms
MPE Well		Once per sampling event	MPE Well Forms
MPE Well		Once per sampling event	MPE Well Forms
PLC	Hourly	Once per sampling event	Extraction Form
PLC	Hourly	Once per sampling event	Extraction Form
MPE Well	Hourly	Once per sampling event	MPE Well Forms
VTT Container		Once per sampling event	Operations Form
VTT Container		Once per sampling event	Operations Form
VTT Container		Once per sampling event	Operations Form
VTT Container		Once per sampling event	Extraction Form

Table 2. Laboratory Sampling Schedule and SummaryEphrata Landfill, Grant County, Washington

MPE System Restart Project Phase	Estimated Duration of Each Step	Sample Location	Sampling Purpose	Media	Parameters	Sample Frequency	Total Number of Groundwater Samples per Phase	Total Number of Vapor Samples per Phase	Documentation Form
Pumping with No Vacuum	2 weeks		MPE and pretreatment				4		Groundwater
		OWS inlet liquid sample port	performance	Groundwater	COCs, TPH	Once during seasonal restart	1		Sample Form
									Groundwater
		Air sparge effluent sample port	Post-treatment performance	Groundwater	COCs, TPH	Once during seasonal restart	1		Sample Form
						Collect one sample 2 weeks after system restart			
			MPE and pretreatment			and collect one sample during the month prior to			Groundwater
		OWS inlet liquid sample port	performance	Groundwater	COCs, TPH	system seasonal shut down	2		Sample Form
						Collect one sample 2 weeks after system restart			
						and collect one sample during the month prior to			Groundwater
Soil Vapor Extraction	Seasonal	Air sparge effluent sample port	Post-treatment performance	Groundwater	COCs, TPH	system seasonal shut down	2		Sample Form
	operation until					Collect one sample 2 weeks after system restart			
			MPE and pretreatment			and collect one sample during the month prior to			Vapor Sample
		VAE blower discharge sample port	performance	Vapor	VOCs	system seasonal shut down		2	Form
						Collect one sample 2 weeks after system restart			
		First carbon absorber discharge				and collect one sample during the month prior to			Vapor Sample
		sample port	Post-treatment performance	Vapor	VOCs	system seasonal shut down		2	Form

COCs- contaminants of concern

MPE- multi-phase extraction

OWS- oil-water separator

TPH- total petroleum hydrocarbons

VOCs- volatile organic compounds

Table 3. Groundwater Analytical Parameters

Ephrata Landfill, Grant County, Washington

Parameters	Units	Analytical Method
Organic Parameters- VOCs		·
1,4-Dioxane	ug/L	EPA 8260D SIM
1,1,1,2-Tetrachloroethane	ug/L	EPA 8260D
1,1,1-Trichloroethane	ug/L	EPA 8260D
1,1,2,2-Tetrachloroethane	ug/L	EPA 8260D
1,1,2-Trichloroethane	ug/L	EPA 8260D
1,1-Dichloroethane	ug/L	EPA 8260D
1,1-Dichloroethene	ug/L	EPA 8260D
1,1-Dichloropropene	ug/L	EPA 8260D
1,2,3-Trichlorobenzene	ug/L	EPA 8260D
1,2,3-Trichloropropane	ug/L	EPA 8260D
1,2,4-Trichlorobenzene	ug/L	EPA 8260D
1,2,4-Trimethylbenzene	ug/L	EPA 8260D
1,2-Dibromo-3-chloropropane	ug/L	EPA 8260D
1,2-Dibromoethane (EDB)	ug/L	EPA 8260D
1,2-Dichlorobenzene	ug/L	EPA 8260D
1,2-Dichloroethane (EDC)	ug/L	EPA 8260D
1,2-Dichloropropane	ug/L	EPA 8260D
1,3,5-Trimethylbenzene	ug/L	EPA 8260D
1,3-Dichlorobenzene	ug/L	EPA 8260D
1,3-Dichloropropane	ug/L	EPA 8260D
1,4-Dichlorobenzene	ug/L	EPA 8260D
2,2-Dichloropropane	ug/L	EPA 8260D
2-Butanone (MEK)	ug/L	EPA 8260D
2-Chlorotoluene	ug/L	EPA 8260D
2-Hexanone	ug/L	EPA 8260D
4-Chlorotoluene	ug/L	EPA 8260D
4-Methyl-2-pentanone	ug/L	EPA 8260D
Acetone	ug/L	EPA 8260D
Benzene	ug/L	EPA 8260D
Bromobenzene	ug/L	EPA 8260D
Bromodichloromethane	ug/L	EPA 8260D
Bromoform	ug/L	EPA 8260D
Bromomethane	ug/L	EPA 8260D
Carbon tetrachloride	ug/L	EPA 8260D
Chlorobenzene	ug/L	EPA 8260D
Chloroethane	ug/L	EPA 8260D
Chloroform	ug/L	EPA 8260D
Chloromethane	ug/L	EPA 8260D
cis-1,2-Dichloroethene	ug/L	EPA 8260D
cis-1,3-Dichloropropene	ug/L	EPA 8260D
Dibromochloromethane	ug/L	EPA 8260D
Dibromomethane	ug/L	EPA 8260D

Parameters	Units	Analytical Method
Dichlorodifluoromethane	ug/L	EPA 8260D
Ethylbenzene	ug/L	EPA 8260D
, Hexachlorobutadiene	ug/L	EPA 8260D
Hexane	ug/L	EPA 8260D
Isopropylbenzene	ug/L	EPA 8260D
m,p-Xylene	ug/L	EPA 8260D
Methyl t-butyl ether (MTBE)	ug/L	EPA 8260D
Methylene chloride	ug/L	EPA 8260D
Naphthalene	ug/L	EPA 8260D
n-Propylbenzene	ug/L	EPA 8260D
o-Xylene	ug/L	EPA 8260D
p-Isopropyltoluene	ug/L	EPA 8260D
sec-Butylbenzene	ug/L	EPA 8260D
Styrene	ug/L	EPA 8260D
tert-Butylbenzene	ug/L	EPA 8260D
Tetrachloroethene	ug/L	EPA 8260D
Toluene	ug/L	EPA 8260D
trans-1,2-Dichloroethene	ug/L	EPA 8260D
trans-1,3-Dichloropropene	ug/L	EPA 8260D
Trichloroethene	ug/L	EPA 8260D
Trichlorofluoromethane	ug/L	EPA 8260D
Vinyl chloride	ug/L	EPA 8260D
Organic Parameters-SVOCs		
1,2,4-Trichlorobenzene	ug/L	EPA 8270E
1,2-Dichlorobenzene	ug/L	EPA 8270E
1,2-Diphenylhydrazine	ug/L	EPA 8270E
1,3-Dichlorobenzene	ug/L	EPA 8270E
1,4-Dichlorobenzene	ug/L	EPA 8270E
1-Methylnaphthalene	ug/L	EPA 8270E
2,2'-Oxybis(1-chloropropane)	ug/L	EPA 8270E
2,2'-Oxybis(1-chloropropane)	ug/L	EPA 8270E
2,4,5-Trichlorophenol	ug/L	EPA 8270E
2,4,6-Trichlorophenol	ug/L	EPA 8270E
2,4-Dichlorophenol	ug/L	EPA 8270E
2,4-Dimethylphenol	ug/L	EPA 8270E
2,4-Dinitrophenol	ug/L	EPA 8270E
2,4-Dinitrotoluene	ug/L	EPA 8270E
2,6-Dinitrotoluene	ug/L	EPA 8270E
2-Chloronaphthalene	ug/L	EPA 8270E
2-Chlorophenol	ug/L	EPA 8270E
2-Methylnaphthalene	ug/L	EPA 8270E
2-Methylphenol	ug/L	EPA 8270E
2-Nitroaniline	ug/L	EPA 8270E
2-Nitrophenol	ug/L	EPA 8270E
3,3'-Dichlorobenzidine	ug/L	EPA 8270E

3-Methylphenol ug/L EPA 8270E 3-Nitroaniline ug/L EPA 8270E 4.6-Dinitro-2-methylphenol ug/L EPA 8270E 4.Bromophenyl phenyl ether ug/L EPA 8270E 4-Chloroa-S-methylphenol ug/L EPA 8270E 4-Chlorophenyl phenyl ether ug/L EPA 8270E 4-Chlorophenyl phenyl ether ug/L EPA 8270E 4-Nitroaniline ug/L EPA 8270E 4-Nitrophenol ug/L EPA 8270E A-cenaphthene ug/L EPA 8270E Accenaphthylene ug/L EPA 8270E Accenaphthylene ug/L EPA 8270E Benz(a)phracene ug/L EPA 8270E Benz(a)phracene ug/L EPA 8270E Benzo(b)fluoranthene ug/L EPA 8270E Benzo(b)fluoranthene ug/L EPA 8270E Benzo(a)fluoranthene ug/L EPA 8270E Benzo(a)fluoranthene ug/L EPA 8270E Benzo(a)fluoranthene ug/L EPA 8270E Benzo(a)fluoranthene	Parameters	Units	Analytical Method
3-Nitroanilineug/LEPA 8270E4,6-Dinitro-2-methylphenolug/LEPA 8270E4-Chloro-3-methylphenolug/LEPA 8270E4-Chloro-3-methylphenolug/LEPA 8270E4-Chloroanilineug/LEPA 8270E4-Chlorophenyl phenyl etherug/LEPA 8270E4-Chlorophenyl phenyl etherug/LEPA 8270E4-Nitroanilineug/LEPA 8270E4-Nitroanilineug/LEPA 8270E4-Nitroanilineug/LEPA 8270EAcenaphtheneug/LEPA 8270EAcenaphthyleneug/LEPA 8270EAcenaphtyleneug/LEPA 8270EBenz(a)pyreneug/LEPA 8270EBenzo(b)pryeneug/LEPA 8270EBenzo(b)fluorantheneug/LEPA 8270EBis(2-chloroethyl) phthalateug/LEPA 8270EBis(2-chloroethyl) phthalateug/LEPA 8270EDibenzofirmanug/LEPA 8270EDibenzofirmanug/LEPA 8270E <tr< td=""><td></td><td></td><td></td></tr<>			
4,6-Dinitro-2-methylphenolug/LEPA 8270E4-Bromophenyl phenyl etherug/LEPA 8270E4-Chloroa-3-methylphenolug/LEPA 8270E4-Chloroa-1ineug/LEPA 8270E4-Chloroanilineug/LEPA 8270E4-Chloroanilineug/LEPA 8270E4-Chloroanilineug/LEPA 8270E4-Nitrophenolug/LEPA 8270EA-Nitrophenolug/LEPA 8270EAcenaphtheneug/LEPA 8270EAcenaphthyleneug/LEPA 8270EAcenaphthyleneug/LEPA 8270EBenz(a)phraceneug/LEPA 8270EBenz(a)phraceneug/LEPA 8270EBenz(a)hiperyleneug/LEPA 8270EBenz(a)hiperyleneug/LEPA 8270EBenz(a)hiperyleneug/LEPA 8270EBenz(a)hiperyleneug/LEPA 8270EBenz(a)chlourantheneug/LEPA 8270EBenz(a)chlourantheneug/LEPA 8270EBenz(a)chlourantheneug/LEPA 8270EBenz(a)chlourantheneug/LEPA 8270EBenz(a)chlourantheneug/LEPA 8270EBenz(a)chlourantheneug/LEPA 8270EBenz(a)chlourantheneug/LEPA 8270EBenz(a)chlourantheneug/LEPA 8270EBenz(a)chlourantheneug/LEPA 8270EBis(2-chloroethoxy)methaneug/LEPA 8270EDibenz(a),hanthraceneug/LEPA 8270EDibenz(a),hanthraceneug/LEPA 8270EDibenz(a),han		-	EPA 8270E
4-Chloro-3-methylphenolug/LEPA 8270E4-Chloroanilineug/LEPA 8270E4-Nitroanilineug/LEPA 8270E4-Nitroanilineug/LEPA 8270E4-Nitroanilineug/LEPA 8270EAcenaphtheneug/LEPA 8270EAcenaphthyleneug/LEPA 8270EAnthraceneug/LEPA 8270EBenzo(a)anthraceneug/LEPA 8270EBenzo(a)pyreneug/LEPA 8270EBenzo(b)fluorantheneug/LEPA 8270EBis(2-chloroethyl) phthalateug/LEPA 8270EBis(2-chloroethyl) etherug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDien-butyl phthalateug/LEPA 8270EDi-n-butyl phthalateug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270E	4,6-Dinitro-2-methylphenol	-	EPA 8270E
4-Chlorophenyl etherug/LEPA 8270E4-Chlorophenyl phenyl etherug/LEPA 8270E4-Nitrophenolug/LEPA 8270E4-Nitrophenolug/LEPA 8270EAcenaphtheneug/LEPA 8270EAcenaphthyleneug/LEPA 8270EAcenaphthyleneug/LEPA 8270EBenz(a)anthraceneug/LEPA 8270EBenzo(a)pyreneug/LEPA 8270EBenzo(b)fluorantheneug/LEPA 8270EBenzo(b)fluorantheneug/LEPA 8270EBenzo(c)fluorantheneug/LEPA 8270EBenzo(a)pyreneug/LEPA 8270EBenzo(a)fluorantheneug/LEPA 8270EBenzo(b)fluorantheneug/LEPA 8270EBenzo(b)fluorantheneug/LEPA 8270EBenzo(b)fluorantheneug/LEPA 8270EBenzo(b)fluorantheneug/LEPA 8270EBenzo(b)fluorantheneug/LEPA 8270EBenzo(b)fluorantheneug/LEPA 8270EBis(2-chloroethyl)mthalateug/LEPA 8270EBis(2-chloroethyl)mthalateug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzofuranug/LEPA 8270EDibenzofuranug/LEPA 8270EDibenzofuranug/LEPA 8270EDibenzofuranug/LEPA 8270EDibenzofuranug/LEPA 8270EDibenzofuranug/LEPA 8270EDibenzofuranug/L	4-Bromophenyl phenyl ether	ug/L	EPA 8270E
4-Chlorophenyl phenyl etherug/LEPA 8270E4-Nitrophenolug/LEPA 8270E4-Nitrophenolug/LEPA 8270EAcenaphtheneug/LEPA 8270EAcenaphtheneug/LEPA 8270EAcenaphthyleneug/LEPA 8270EBenz(a)anthraceneug/LEPA 8270EBenz(a)qyreneug/LEPA 8270EBenzo(b)fluorantheneug/LEPA 8270EBenzol acidug/LEPA 8270EBenzol acidug/LEPA 8270EBis(2-chloroethxyl) phthalateug/LEPA 8270EBis(2-chloroethxyl) phthalateug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibentyl phthalateug/LEPA 8270EDibentyl phthalateug/LEPA 8270EDibentyl phthalateug/LEPA 8270EDibentyl phthalateug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexa	4-Chloro-3-methylphenol	ug/L	EPA 8270E
4-Nitrophenolug/LEPA 8270E4-Nitrophenolug/LEPA 8270EAcenaphtheneug/LEPA 8270EAcenaphthyleneug/LEPA 8270EAnthraceneug/LEPA 8270EBenz(a)anthraceneug/LEPA 8270EBenzo(a)pyreneug/LEPA 8270EBenzo(g)hluorantheneug/LEPA 8270EBenzo(g)hluorantheneug/LEPA 8270EBenzo(g)hluorantheneug/LEPA 8270EBenzo(g)hluorantheneug/LEPA 8270EBenzo(k)fluorantheneug/LEPA 8270EBenzo(k)fluorantheneug/LEPA 8270EBenzol acidug/LEPA 8270EBenzol acidug/LEPA 8270EBenzyl alcoholug/LEPA 8270EBis(2-chloroethoxy)methaneug/LEPA 8270EBis(2-chloroethyny) etharug/LEPA 8270EBis(2-chloroethyny) etharug/LEPA 8270ECarbazoleug/LEPA 8270EChryseneug/LEPA 8270EDibenzo(n,h)anthraceneug/LEPA 8270EDibenzo(n,h)anthraceneug/LEPA 8270EDibenzofuranug/LEPA 8270EDi-n-butyl phthalateug/LEPA 8270EDi-n-butyl phthalateug/LEPA 8270EDi-n-butyl phthalateug/LEPA 8270EHexachlorobutadieneug/LEPA 8270EHexachlorobutadieneug/LEPA 8270EHexachlorobutadieneug/LEPA 8270EHexachlorobutadieneug/LEPA	4-Chloroaniline	ug/L	EPA 8270E
4-Nitrophenolug/LEPA 8270EAcenaphtheneug/LEPA 8270EAcenaphthyleneug/LEPA 8270EAnthraceneug/LEPA 8270EBenz(a)anthraceneug/LEPA 8270EBenzo(a)pyreneug/LEPA 8270EBenzo(b)fluorantheneug/LEPA 8270EBenzo(k)fluorantheneug/LEPA 8270EBenzo(k)fluorantheneug/LEPA 8270EBenzo(k)fluorantheneug/LEPA 8270EBenzo(k)fluorantheneug/LEPA 8270EBenzoic acidug/LEPA 8270EBenzol acidug/LEPA 8270EBenzyl alcoholug/LEPA 8270EBenzyl butyl phthalateug/LEPA 8270EBis(2-chlorethoxy)methaneug/LEPA 8270EBis(2-chlorethyl) etherug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzofuranug/LEPA 8270EDienhyl phthalateug/LEPA 8270EDienhoutyl phthalateug/LEPA 8270EHexachlorobenzene<	4-Chlorophenyl phenyl ether	ug/L	EPA 8270E
Acenaphtheneug/LEPA 8270EAcenaphthyleneug/LEPA 8270EAnthraceneug/LEPA 8270EBenz(a)anthraceneug/LEPA 8270EBenzo(a)pyreneug/LEPA 8270EBenzo(b)fluorantheneug/LEPA 8270EBenzo(g)t,i)peryleneug/LEPA 8270EBenzo(a)pyreneug/LEPA 8270EBenzo(a)tifluorantheneug/LEPA 8270EBenzo(a)tifluorantheneug/LEPA 8270EBenzo(a)tifluorantheneug/LEPA 8270EBenzo(a)tifluorantheneug/LEPA 8270EBenzyl alcoholug/LEPA 8270EBenzyl alcoholug/LEPA 8270EBis(2-chloroethoxy)methaneug/LEPA 8270EBis(2-chloroethyl) etherug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzofuranug/LEPA 8270EDien-butyl phthalateug/LEPA 8270EDien-butyl phthalateug/LEPA 8270EDien-butyl phthalateug/LEPA 8270EDien-butyl phthalateug/LEPA 8270EDien-butyl phthalateug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270ENetnoso-di-n-propylamineug/LEPA 8270ENitroso-	4-Nitroaniline	ug/L	EPA 8270E
Acenaphthyleneug/LEPA 8270EAnthraceneug/LEPA 8270EBenz(a)anthraceneug/LEPA 8270EBenzo(a)pyreneug/LEPA 8270EBenzo(b)fluorantheneug/LEPA 8270EBenzo(b)fluorantheneug/LEPA 8270EBenzo(b)fluorantheneug/LEPA 8270EBenzo(b)fluorantheneug/LEPA 8270EBenzo(c)(b)fluorantheneug/LEPA 8270EBenzolacidug/LEPA 8270EBenzolacidug/LEPA 8270EBenzyl alcoholug/LEPA 8270EBis(2-chloroethoxy)methaneug/LEPA 8270EBis(2-chloroethyl) etherug/LEPA 8270EBis(2-chloroethyl) phthalateug/LEPA 8270EChryseneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDienzol(a,h)anthraceneug/LEPA 8270EDienzol(a,h)anthraceneug/LEPA 8270EDientyl phthalateug/LEPA 8270EDien-butyl phthalateug/LEPA 8270EDi-n-butyl phthalateug/LEPA 8270EDi-n-butyl phthalateug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorobutadieneug/LEPA 8270EHexachlorobutadieneug/LEPA 8270EHexachlorobutadieneug/LEPA 8270EHexachlorobutadieneug/LEPA 8270EHexachlorobutadieneug/LEPA 8270ENethorobenzeneug/LEPA 8270ENotoenene <td>4-Nitrophenol</td> <td>ug/L</td> <td>EPA 8270E</td>	4-Nitrophenol	ug/L	EPA 8270E
Anthraceneug/LEPA 8270EBenz(a)anthraceneug/LEPA 8270EBenzo(a)pyreneug/LEPA 8270EBenzo(a,h)peryleneug/LEPA 8270EBenzo(k,h)peryleneug/LEPA 8270EBenzo(k,h)peryleneug/LEPA 8270EBenzo(k,h)peryleneug/LEPA 8270EBenzo(c,h)peryleneug/LEPA 8270EBenzo(c,h)peryleneug/LEPA 8270EBenzo(c,h)peryleneug/LEPA 8270EBenzo(c,h)phthalateug/LEPA 8270EBis(2-chloroethoxy)methaneug/LEPA 8270EBis(2-chloroethoxy)methaneug/LEPA 8270EBis(2-chloroethoxy)methaneug/LEPA 8270EBis(2-chloroethoxy)methaneug/LEPA 8270EDibelzola,h)anthraceneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzofuranug/LEPA 8270EDiethyl phthalateug/LEPA 8270EDinethyl phthalateug/LEPA 8270EDinethyl phthalateug/LEPA 8270EDinethyl phthalateug/LEPA 8270EDinethyl phthalateug/LEPA 8270EDinethyl phthalateug/LEPA 8270EHexachloroburadieneug/LEPA 8270EHexachloroburadieneug/LEPA 8270EHexachloroburadieneug/LEPA 8270EHexachloroburadieneug/LEPA 8270EHexachloroburadieneug/LEPA 8270EHexachloroburadieneug/LEPA 8270E<	Acenaphthene	ug/L	EPA 8270E
Benz(a)anthraceneug/LEPA 8270EBenzo(a)pyreneug/LEPA 8270EBenzo(b)fluorantheneug/LEPA 8270EBenzo(g,h,i)peryleneug/LEPA 8270EBenzo(k)fluorantheneug/LEPA 8270EBenzoic acidug/LEPA 8270EBenzyl alcoholug/LEPA 8270EBenzyl butyl phthalateug/LEPA 8270EBis(2-chloroethyl) etherug/LEPA 8270EBis(2-chloroethyl) phthalateug/LEPA 8270EBis(2-chloroethyl) phthalateug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzofuranug/LEPA 8270EDibenzofuranug/LEPA 8270EDientyl phthalateug/LEPA 8270EDientyl phthalateug/LEPA 8270EDientyl phthalateug/LEPA 8270EDientyl phthalateug/LEPA 8270EDientyl phthalateug/LEPA 8270EDin-octyl phthalateug/LEPA 8270EDin-octyl phthalateug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorobethaneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophroneug/LEPA 8270ENayhthaleneug/LEPA 8270ENitroso-din-n-proplamineug/LEPA 8270ENitroso-din-n-proplamineug/LEPA 8270ENitroso-din-n-proplamineug/LEPA 8270ENitroso	Acenaphthylene	ug/L	EPA 8270E
Benzo(a)pyreneug/LEPA 8270EBenzo(b)fluorantheneug/LEPA 8270EBenzo(g,h,i)peryleneug/LEPA 8270EBenzo(k)fluorantheneug/LEPA 8270EBenzoi acidug/LEPA 8270EBenzoi acidug/LEPA 8270EBenzyl alcoholug/LEPA 8270EBenzyl butyl phthalateug/LEPA 8270EBis(2-chloroethoxy)methaneug/LEPA 8270EBis(2-chloroethyl) etherug/LEPA 8270EBis(2-chloroethyl) phthalateug/LEPA 8270ECarbazoleug/LEPA 8270EChryseneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzofuranug/LEPA 8270EDimethyl phthalateug/LEPA 8270EDimethyl phthalateug/LEPA 8270EDin-octyl phthalateug/LEPA 8270EDin-octyl phthalateug/LEPA 8270EDin-octyl phthalateug/LEPA 8270EFluoreneug/LEPA 8270EFluoreneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENatirosodimethylamineug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitrosodimethylamine <t< td=""><td>Anthracene</td><td>ug/L</td><td>EPA 8270E</td></t<>	Anthracene	ug/L	EPA 8270E
Benzo(b)fluorantheneug/LEPA 8270EBenzo(g,h,i)peryleneug/LEPA 8270EBenzo(k)fluorantheneug/LEPA 8270EBenzoic acidug/LEPA 8270EBenzol acidug/LEPA 8270EBenzyl alcoholug/LEPA 8270EBenzyl butyl phthalateug/LEPA 8270EBis(2-chloroethoxy)methaneug/LEPA 8270EBis(2-chloroethyl) etherug/LEPA 8270EBis(2-chloroethyl) phthalateug/LEPA 8270ECarbazoleug/LEPA 8270EChryseneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzofuranug/LEPA 8270EDientyl phthalateug/LEPA 8270EDientyl phthalateug/LEPA 8270EDientyl phthalateug/LEPA 8270EDien-octyl phthalateug/LEPA 8270EDi-n-octyl phthalateug/LEPA 8270EFluoreneug/LEPA 8270EFluoreneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophroneug/LEPA 8270ENitrosodimethylamineug/LEPA 8270ENitrosodimethylamineug/LEPA 8270ENitrosodimethylamineug/LEPA 8270ENitrosodimethylamineug/LEPA 8270ENitrosodimethylamineug/LEPA 8270ENitrosodimethylamineug/	Benz(a)anthracene	ug/L	EPA 8270E
Benzo(g,h,i)peryleneug/LEPA 8270EBenzo(k)fluorantheneug/LEPA 8270EBenzoic acidug/LEPA 8270EBenzyl alcoholug/LEPA 8270EBenzyl butyl phthalateug/LEPA 8270EBis(2-chloroethoxy)methaneug/LEPA 8270EBis(2-chloroethyl) etherug/LEPA 8270EBis(2-chloroethyl) phthalateug/LEPA 8270ECarbazoleug/LEPA 8270EChryseneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzofuranug/LEPA 8270EDimethyl phthalateug/LEPA 8270EDimethyl phthalateug/LEPA 8270EDin-butyl phthalateug/LEPA 8270EDin-n-octyl phthalateug/LEPA 8270EFluorantheneug/LEPA 8270EFluoreneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrosodimethylamineug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitrosodim	Benzo(a)pyrene	ug/L	EPA 8270E
Benzo(k)fluorantheneug/LEPA 8270EBenzoic acidug/LEPA 8270EBenzyl alcoholug/LEPA 8270EBenzyl butyl phthalateug/LEPA 8270EBis(2-chloroethoxy)methaneug/LEPA 8270EBis(2-chloroethyl) etherug/LEPA 8270EBis(2-chloroethyl) phthalateug/LEPA 8270ECarbazoleug/LEPA 8270EChryseneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzofuranug/LEPA 8270EDiethyl phthalateug/LEPA 8270EDiethyl phthalateug/LEPA 8270EDion-butyl phthalateug/LEPA 8270EDion-butyl phthalateug/LEPA 8270EDion-butyl phthalateug/LEPA 8270EDin-hutyl phthalateug/LEPA 8270EDin-butyl phthalateug/LEPA 8270EDi-n-butyl phthalateug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorobutadieneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENeitrosodimethylamineug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270E <td>Benzo(b)fluoranthene</td> <td>ug/L</td> <td>EPA 8270E</td>	Benzo(b)fluoranthene	ug/L	EPA 8270E
Benzoic acidug/LEPA 8270EBenzyl alcoholug/LEPA 8270EBenzyl butyl phthalateug/LEPA 8270EBis(2-chloroethoxy)methaneug/LEPA 8270EBis(2-chloroethoxy)methaneug/LEPA 8270EBis(2-chloroethoxy)methaneug/LEPA 8270EBis(2-chloroethoxy)methaneug/LEPA 8270EBis(2-ethylhexyl) phthalateug/LEPA 8270ECarbazoleug/LEPA 8270EChryseneug/LEPA 8270EDibenzofuranug/LEPA 8270EDiethyl phthalateug/LEPA 8270EDiethyl phthalateug/LEPA 8270EDin-butyl phthalateug/LEPA 8270EDi-n-octyl phthalateug/LEPA 8270EFluorantheneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrosodimethylamineug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270E <td>Benzo(g,h,i)perylene</td> <td>ug/L</td> <td>EPA 8270E</td>	Benzo(g,h,i)perylene	ug/L	EPA 8270E
Benzyl alcoholug/LEPA 8270EBenzyl butyl phthalateug/LEPA 8270EBis(2-chloroethoxy)methaneug/LEPA 8270EBis(2-chloroethyl) etherug/LEPA 8270EBis(2-chloroethyl) etherug/LEPA 8270EBis(2-ethylhexyl) phthalateug/LEPA 8270ECarbazoleug/LEPA 8270EChryseneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzofuranug/LEPA 8270EDiethyl phthalateug/LEPA 8270EDiethyl phthalateug/LEPA 8270EDien-butyl phthalateug/LEPA 8270EDi-n-butyl phthalateug/LEPA 8270EDi-n-butyl phthalateug/LEPA 8270EFluorantheneug/LEPA 8270EFluoreneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorobutadieneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENapthalaneug/LEPA 8270ENitrosodimethylamineug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E <td>Benzo(k)fluoranthene</td> <td>ug/L</td> <td>EPA 8270E</td>	Benzo(k)fluoranthene	ug/L	EPA 8270E
Benzyl butyl phthalateug/LEPA 8270EBis(2-chloroethoxy)methaneug/LEPA 8270EBis(2-chloroethyl) etherug/LEPA 8270EBis(2-ethylhexyl) phthalateug/LEPA 8270ECarbazoleug/LEPA 8270EChryseneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDiethyl phthalateug/LEPA 8270EDiethyl phthalateug/LEPA 8270EDiethyl phthalateug/LEPA 8270EDiethyl phthalateug/LEPA 8270EDin-butyl phthalateug/LEPA 8270EDi-n-ctyl phthalateug/LEPA 8270EFluorantheneug/LEPA 8270EFluorantheneug/LEPA 8270EFluorantheneug/LEPA 8270EFluoreneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorobutadieneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENapthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENohhaleneug/LEPA 8270ENapthaleneug/LEPA 8270ENitrosodimethylamineug/LEPA 8270EN-Nitrosodinethylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E	Benzoic acid	ug/L	EPA 8270E
Bis(2-chloroethoxy)methaneug/LEPA 8270EBis(2-chloroethyl) etherug/LEPA 8270EBis(2-ethylhexyl) phthalateug/LEPA 8270ECarbazoleug/LEPA 8270EChryseneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzofuranug/LEPA 8270EDientyl phthalateug/LEPA 8270EDientyl phthalateug/LEPA 8270EDin-butyl phthalateug/LEPA 8270EDi-n-butyl phthalateug/LEPA 8270EDi-n-octyl phthalateug/LEPA 8270EFluorantheneug/LEPA 8270EFluorantheneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorobutadieneug/LEPA 8270EHexachlorocthaneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENorthobenzeneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270ENaphthaleneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENorthosodimethylamineug/LEPA 8270EN-Nitrosodinethylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E	Benzyl alcohol	ug/L	EPA 8270E
Bis(2-chloroethyl) etherug/LEPA 8270EBis(2-ethylhexyl) phthalateug/LEPA 8270ECarbazoleug/LEPA 8270EChryseneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzofuranug/LEPA 8270EDiethyl phthalateug/LEPA 8270EDienthyl phthalateug/LEPA 8270EDi-n-butyl phthalateug/LEPA 8270EDi-n-butyl phthalateug/LEPA 8270EFluorantheneug/LEPA 8270EFluorantheneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorobutadieneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270EIsophoroneug/LEPA 8270ENortrosodimethylamineug/LEPA 8270EN-Nitrosodinethylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphe	Benzyl butyl phthalate	ug/L	EPA 8270E
Bis(2-ethylhexyl) phthalateug/LEPA 8270ECarbazoleug/LEPA 8270EChryseneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzofuranug/LEPA 8270EDiethyl phthalateug/LEPA 8270EDienthyl phthalateug/LEPA 8270EDin-octyl phthalateug/LEPA 8270EFluorantheneug/LEPA 8270EFluoreneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachloroctyl opentadieneug/LEPA 8270EHexachloroctyl opentadieneug/LEPA 8270EHexachlorobutadieneug/LEPA 8270EHexachloroctyl opentadieneug/LEPA 8270EHexachloroctyl opentadieneug/LEPA 8270EHexachloroctyl opentadieneug/LEPA 8270EHexachloroctyl opentadieneug/LEPA 8270EHexachloroctyl opentadieneug/LEPA 8270EHexachloroctyl opentadieneug/LEPA 8270ENotrosedineneug/LEPA 8270ENaphthaleneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENitrosodimethylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E	Bis(2-chloroethoxy)methane	ug/L	EPA 8270E
Carbazoleug/LEPA 8270EChryseneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzofuranug/LEPA 8270EDiethyl phthalateug/LEPA 8270EDimethyl phthalateug/LEPA 8270EDi-n-butyl phthalateug/LEPA 8270EDi-n-octyl phthalateug/LEPA 8270EFluorantheneug/LEPA 8270EFluoreneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270ENaphthaleneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENitrobenzene <t< td=""><td>Bis(2-chloroethyl) ether</td><td>ug/L</td><td>EPA 8270E</td></t<>	Bis(2-chloroethyl) ether	ug/L	EPA 8270E
Chryseneug/LEPA 8270EDibenzo(a,h)anthraceneug/LEPA 8270EDibenzofuranug/LEPA 8270EDiethyl phthalateug/LEPA 8270EDimethyl phthalateug/LEPA 8270EDin-butyl phthalateug/LEPA 8270EDi-n-octyl phthalateug/LEPA 8270EFluorantheneug/LEPA 8270EFluoreneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorobutadieneug/LEPA 8270EHexachlorocthaneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENaphthaleneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENitrobenzeneug/LEP	Bis(2-ethylhexyl) phthalate	ug/L	EPA 8270E
Dibenzo(a,h)anthraceneug/LEPA 8270EDibenzofuranug/LEPA 8270EDiethyl phthalateug/LEPA 8270EDimethyl phthalateug/LEPA 8270EDin-butyl phthalateug/LEPA 8270EDi-n-octyl phthalateug/LEPA 8270EFluorantheneug/LEPA 8270EFluoreneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EHexachlorocthaneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENaphthaleneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENitrobenzene	Carbazole	ug/L	EPA 8270E
Dibenzofuranug/LEPA 8270EDiethyl phthalateug/LEPA 8270EDimethyl phthalateug/LEPA 8270EDi-n-butyl phthalateug/LEPA 8270EDi-n-octyl phthalateug/LEPA 8270EFluorantheneug/LEPA 8270EFluoreneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENitrobenzeneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENitrobenzeneug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E	Chrysene	ug/L	EPA 8270E
Diethyl phthalateug/LEPA 8270EDimethyl phthalateug/LEPA 8270EDi-n-butyl phthalateug/LEPA 8270EDi-n-octyl phthalateug/LEPA 8270EFluorantheneug/LEPA 8270EFluoreneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENitrosodimethylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E	Dibenzo(a,h)anthracene	ug/L	EPA 8270E
Dimethyl phthalateug/LEPA 8270EDi-n-butyl phthalateug/LEPA 8270EDi-n-octyl phthalateug/LEPA 8270EFluorantheneug/LEPA 8270EFluoreneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270ENaphthaleneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENitrosodimethylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E	Dibenzofuran	ug/L	EPA 8270E
Di-n-butyl phthalateug/LEPA 8270EDi-n-octyl phthalateug/LEPA 8270EFluorantheneug/LEPA 8270EFluoreneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorobutadieneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EHexachlorocthaneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENitrosodimethylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E	Diethyl phthalate	ug/L	EPA 8270E
Di-n-octyl phthalateug/LEPA 8270EFluorantheneug/LEPA 8270EFluoreneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorobutadieneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EHexachlorocytlopentadieneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENitrosodimethylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E	Dimethyl phthalate	ug/L	EPA 8270E
Fluorantheneug/LEPA 8270EFluoreneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorobutadieneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EHexachlorocthaneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENitrosodimethylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E	Di-n-butyl phthalate	ug/L	EPA 8270E
Fluoreneug/LEPA 8270EHexachlorobenzeneug/LEPA 8270EHexachlorobutadieneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270ENitrosodimethylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E	Di-n-octyl phthalate	ug/L	EPA 8270E
Hexachlorobenzeneug/LEPA 8270EHexachlorobutadieneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EHexachloroethaneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitroso-di-n-propylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E	Fluoranthene	ug/L	EPA 8270E
Hexachlorobutadieneug/LEPA 8270EHexachlorocyclopentadieneug/LEPA 8270EHexachloroethaneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitroso-di-n-propylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E	Fluorene	ug/L	EPA 8270E
Hexachlorocyclopentadieneug/LEPA 8270EHexachloroethaneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitroso-di-n-propylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E	Hexachlorobenzene	ug/L	EPA 8270E
Hexachloroethaneug/LEPA 8270EIndeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitroso-di-n-propylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E	Hexachlorobutadiene	ug/L	EPA 8270E
Indeno(1,2,3-cd)pyreneug/LEPA 8270EIsophoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitroso-di-n-propylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E	Hexachlorocyclopentadiene	ug/L	EPA 8270E
Isophoroneug/LEPA 8270ENaphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitroso-di-n-propylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E	Hexachloroethane	ug/L	EPA 8270E
Naphthaleneug/LEPA 8270ENitrobenzeneug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitroso-di-n-propylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E	Indeno(1,2,3-cd)pyrene	ug/L	EPA 8270E
Nitrobenzeneug/LEPA 8270EN-Nitrosodimethylamineug/LEPA 8270EN-Nitroso-di-n-propylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E	•	-	
N-Nitrosodimethylamineug/LEPA 8270EN-Nitroso-di-n-propylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E	-	ug/L	
N-Nitroso-di-n-propylamineug/LEPA 8270EN-Nitrosodiphenylamineug/LEPA 8270E		ug/L	EPA 8270E
N-Nitrosodiphenylamine ug/L EPA 8270E	-	ug/L	EPA 8270E
		-	EPA 8270E
Pentachlorophenol ug/L EPA 8270E		-	
-	Pentachlorophenol	ug/L	EPA 8270E

Parameters	Units	Analytical Method
Phenanthrene	ug/L	EPA 8270E
Phenol	ug/L	EPA 8270E
Pyrene	ug/L	EPA 8270E
1,2,4-Trichlorobenzene	ug/L	EPA 8270E
1,2-Dichlorobenzene	ug/L	EPA 8270E
1,2-Diphenylhydrazine	ug/L	EPA 8270E
1,3-Dichlorobenzene	ug/L	EPA 8270E
1,4-Dichlorobenzene	ug/L	EPA 8270E
1-Methylnaphthalene	ug/L	EPA 8270E
2,2'-Oxybis(1-chloropropane)	ug/L	EPA 8270E
2,2'-Oxybis(1-chloropropane)	ug/L	EPA 8270E
2,4,5-Trichlorophenol	ug/L	EPA 8270E
2,4,6-Trichlorophenol	ug/L	EPA 8270E
2,4-Dichlorophenol	ug/L	EPA 8270E
2,4-Dimethylphenol	ug/L	EPA 8270E
2,4-Dinitrophenol	ug/L	EPA 8270E
2,4-Dinitrotoluene	ug/L	EPA 8270E
2,6-Dinitrotoluene	ug/L	EPA 8270E
2-Chloronaphthalene	ug/L	EPA 8270E
2-Chlorophenol	ug/L	EPA 8270E
2-Methylnaphthalene	ug/L	EPA 8270E
2-Methylphenol	ug/L	EPA 8270E
2-Nitroaniline	ug/L	EPA 8270E
2-Nitrophenol	ug/L	EPA 8270E
3,3'-Dichlorobenzidine	ug/L	EPA 8270E
3-Methylphenol + 4-Methylphenol	ug/L	EPA 8270E
3-Nitroaniline	ug/L	EPA 8270E
4,6-Dinitro-2-methylphenol	ug/L	EPA 8270E
4-Bromophenyl phenyl ether	ug/L	EPA 8270E
4-Chloro-3-methylphenol	ug/L	EPA 8270E
4-Chloroaniline	ug/L	EPA 8270E
4-Chlorophenyl phenyl ether	ug/L	EPA 8270E
4-Nitroaniline	ug/L	EPA 8270E
4-Nitrophenol	ug/L	EPA 8270E

Parameters	Units	Analytical Method
Acenaphthene	ug/L	EPA 8270E
Acenaphthylene	ug/L	EPA 8270E
Anthracene	ug/L	EPA 8270E
Benz(a)anthracene	ug/L	EPA 8270E
Benzo(a)pyrene	ug/L	EPA 8270E
Benzo(b)fluoranthene	ug/L	EPA 8270E
Benzo(g,h,i)perylene	ug/L	EPA 8270E
Benzo(k)fluoranthene	ug/L	EPA 8270E
Benzoic acid	ug/L	EPA 8270E
Benzyl alcohol	ug/L	EPA 8270E
Benzyl butyl phthalate	ug/L	EPA 8270E
Bis(2-chloroethoxy)methane	ug/L	EPA 8270E
Bis(2-chloroethyl) ether	ug/L	EPA 8270E
Bis(2-ethylhexyl) phthalate	ug/L	EPA 8270E
Carbazole	ug/L	EPA 8270E
Chrysene	ug/L	EPA 8270E
Dibenzo(a,h)anthracene	ug/L	EPA 8270E
Dibenzofuran	ug/L	EPA 8270E
Diethyl phthalate	ug/L	EPA 8270E
Dimethyl phthalate	ug/L	EPA 8270E
Di-n-butyl phthalate	ug/L	EPA 8270E
Di-n-octyl phthalate	ug/L	EPA 8270E
Fluoranthene	ug/L	EPA 8270E
Fluorene	ug/L	EPA 8270E
Hexachlorobenzene	ug/L	EPA 8270E
Hexachlorobutadiene	ug/L	EPA 8270E
Hexachlorocyclopentadiene	ug/L	EPA 8270E
Hexachloroethane	ug/L	EPA 8270E
Indeno(1,2,3-cd)pyrene	ug/L	EPA 8270E
Isophorone	ug/L	EPA 8270E
Naphthalene	ug/L	EPA 8270E
Nitrobenzene	ug/L	EPA 8270E
N-Nitrosodimethylamine	ug/L	EPA 8270E
N-Nitroso-di-n-propylamine	ug/L	EPA 8270E
N-Nitrosodiphenylamine	ug/L	EPA 8270E
Pentachlorophenol	ug/L	EPA 8270E
Phenanthrene	ug/L	EPA 8270E
Phenol	ug/L	EPA 8270E
Pyrene	ug/L	EPA 8270E
	~8/ -	

Parameters	Units	Analytical Method
Total Petroleum Hydrocarbons	Units	Analytical Wethou
Gasoline-range hydrocarbons	ug/L	NWTPH-Gx
Diesel-range hydrocarbons	ug/L	NWTPH-Dx
Dil-range hydrocarbons	ug/L	NWTPH-Dx
norganic Parameters		
hloride	mg/L	SW-846
ulfate	mg/L	SW-846
itrate as Nitrogen	mg/L	EPA 353.2
otal Suspended Solids	mg/L	SM2540D
ntimony, Total & Dissolved	ug/L	EPA 200.8
rsenic, Total & Dissolved	ug/L	EPA 200.8
rium, Total & Dissolved	ug/L	EPA 200.8
ryllium, Total & Dissolved	ug/L	EPA 200.8
dmium,Total & Dissolved	ug/L	EPA 200.8
romium, Total & Dissolved	ug/L	EPA 200.8
balt, Total & Dissolved	ug/L	EPA 200.8
pper, Total & Dissolved	ug/L	EPA 200.8
n, Total & Dissolved	ug/L	EPA 200.8
ad, Total & Dissolved	ug/L	EPA 200.8
anganese, Total & Dissolved	ug/L	EPA 200.8
ercury, Total & Dissolved	ug/L	EPA 200.8
olybdenum, Total & Dissolved	ug/L	EPA 200.8
ckel, Total & Dissolved	ug/L	EPA 200.8
enium, Total & Dissolved	ug/L	EPA 200.8
ver, Total & Dissolved	ug/L	EPA 200.8
allium, Total & Dissolved	ug/L	EPA 200.8
nadium, Total & Dissolved	ug/L	EPA 200.8
nc, Total & Dissolved	ug/L	EPA 200.8

Notes:

BTEX- benzene, toluene, ethylbenzene, and xylenes MC- methylene chloride mg/l- milligrams per liter SVOCs- semi-volatile organic compounds TMB- trimethylbenzene TPH- total petroleum hydrocarbons ug/l- micrograms per liter VOCs- volatile organic compounds

Table 4. Groundwater Laboratory Analyses

Ephrata Landfill, Grant County, Washington

	No. of Bottles per					
Analysis	Analysis	Bottle	Preservative	Hold Time		
Total Metals	1	500 mL HDPE	HNO3	6 Months		
Dissolved Metals	1	500 mL HDPE	HNO3	6 Months		
VOC-8260	3	40 mL Vials	HCL	14 Days		
Semi-VOC-8270	2	500 mL Amber Glass	None	7 Days		
Nitrate/Sulfate/Chloride	1	500 mL HDPE	None	48 Hours		
Total Suspended Solids	1	1 L HDPE	None	7 Days		
Gasoline-range hydrocarbons (NWTPH-Gx)	2	40 mL Vials	HCL	14 Days		
Diesel-range and oil-range hydrocarbons (NWTPH-Dx)	2	500 mL Amber Glass	None	14 Days		

As- arsenic

COCs- contaminants of concern

Fe- iron

HCL- hydrochloric acid

HDPE- high-density polyethylene

HNO3- nitric acid

mL- milliliter

Mn- manganese

TPH- total petroleum hydrocarbons

VOCs- volatile organic compounds

Table 5. Vapor Analytical Parameters

Ephrata Landfill, Grant County, Washington

		Analytical Method
Parameters	Units	(Sample Collected in Summa Canister) ¹
1,1,1-Trichloroethane	ug/m3	TO-15
1,1,2,2-Tetrachloroethane	ug/m3	TO-15
1,1,2-Trichloroethane	ug/m3	TO-15
1,1-Dichloroethane	ug/m3	TO-15
1,1-Dichloroethene	ug/m3	TO-15
1,2,4-Trichlorobenzene	ug/m3	TO-15
1,2,4-Trimethylbenzene	ug/m3	TO-15
1,2-Dibromoethane (EDB)	ug/m3	TO-15
1,2-Dichlorobenzene	ug/m3	TO-15
1,2-Dichloroethane (EDC)	ug/m3	TO-15
1,2-Dichloropropane	ug/m3	TO-15
1,3,5-Trimethylbenzene	ug/m3	TO-15
1,3-Butadiene	ug/m3	TO-15
1,3-Dichlorobenzene	ug/m3	TO-15
1,4-Dichlorobenzene	ug/m3	TO-15
1,4-Dioxane	ug/m3	TO-15
2,2,4-Trimethylpentane	ug/m3	TO-15
2-Butanone (MEK)	ug/m3	TO-15
2-Chlorotoluene	ug/m3	TO-15
2-Hexanone	ug/m3	TO-15
2-Propanol	ug/m3	TO-15
3-Chloropropene	ug/m3	TO-15
4-Ethyltoluene	ug/m3	TO-15
4-Methyl-2-pentanone	ug/m3	TO-15
Acetone	ug/m3	TO-15
Acrolein	ug/m3	TO-15
Benzene	ug/m3	TO-15
Benzyl chloride	ug/m3	TO-15
Bromodichloromethane	ug/m3	TO-15
Bromoform	ug/m3	TO-15
Bromomethane	ug/m3	TO-15
Butane	ug/m3	TO-15
Carbon disulfide	ug/m3	TO-15
Carbon tetrachloride	ug/m3	TO-15
CFC-113	ug/m3	TO-15
Chlorobenzene	ug/m3	TO-15
Chloroethane	ug/m3	TO-15
Chloroform	ug/m3	TO-15
Chloromethane	ug/m3	TO-15
cis-1,2-Dichloroethene	ug/m3	TO-15
cis-1,3-Dichloropropene	ug/m3	TO-15
Cyclohexane	ug/m3	TO-15
Dibromochloromethane	ug/m3	TO-15

		Analytical Method
Parameters	Units	(Sample Collected in Summa Canister) ¹
Dichlorodifluoromethane	ug/m3	то-15
Ethanol	ug/m3	TO-15
Ethyl acetate	ug/m3	TO-15
, Ethylbenzene	ug/m3	TO-15
F-114	ug/m3	TO-15
Heptane	ug/m3	TO-15
Hexachlorobutadiene	ug/m3	TO-15
Hexane	ug/m3	TO-15
Isopropylbenzene	ug/m3	TO-15
m,p-Xylene	ug/m3	TO-15
Methyl Methacrylate	ug/m3	TO-15
Methyl t-butyl ether (MTBE)	ug/m3	TO-15
Methylene chloride	ug/m3	TO-15
Naphthalene	ug/m3	TO-15
Nonane	ug/m3	TO-15
o-Xylene	ug/m3	TO-15
Pentane	ug/m3	TO-15
Propene	ug/m3	TO-15
Propylbenzene	ug/m3	TO-15
Styrene	ug/m3	TO-15
t-Butyl alcohol (TBA)	ug/m3	TO-15
Tetrachloroethene	ug/m3	TO-15
Tetrahydrofuran	ug/m3	TO-15
Toluene ²	ug/m3	TO-15
trans-1,2-Dichloroethene	ug/m3	TO-15
trans-1,3-Dichloropropene	ug/m3	TO-15
Trichloroethene	ug/m3	TO-15
Trichlorofluoromethane	ug/m3	TO-15
Vinyl acetate	ug/m3	TO-15
Vinyl bromide	ug/m3	TO-15
Vinyl chloride	ug/m3	TO-15
Gasoline Range Organics	ug/m3	TO-15

Notes:

BTEX- benzene, toluene, ethylbenzene, and xylenes

DCP- dichloropropane

MC- methylene chloride

TMB- trimethylbenzene

ug/l-micrograms per liter

^{1, 2} EPA Method TO-15 is the primary analytical method. However, during the first sampling event, both EPA Methods TO-15 and TO-17 will be used to measure specifically for toluene to verify any breakthrough. Following that, If vapor concentrations exceed the upper bound qauntitatve limits of Method TO-15, then EPA Method TO-17 may be evaluated as a alternative analysis method for all VOCs.

Appendix A Field Forms

Observation Well Form

Ephrata Landfill MPE System- Observation Well Data Form

Well	Sheet	of

Describe measuring point

Date	Time		Dep	oth to		Pres	sures	Observer, Comment
		Water	LNAPL	DNAPL	Bottom	PIT	LT	
	24 hrs		x.xx	ft btoc		x.xx inc	h water	

If found, call 206-329-0141

MPE Well Form

Ephrata Landfill MPE System - Well Data Form

Well

Describe measuring point

Vapor Concentrations at Wellhead (Ambient Air or VAE Vapor, indicate under Comments) Date Time Depth to Pressures Pump Observer, Comment Total Pump Cycle Rate Pump On Pump Off Pump Number of Cycle Cycle Delta Supply Total Record VAE Flow Valve Settings Here Water LNAPL DNAPL Bottom PIT LT Count Counts Time Air Press. CH4 02 Organics 24 hrs x.xx ft btoc x.xx inch water Date:Time Date:Time count count mm:ss PSI % PPM PPM

Sheet

of

If found, call 206-329-0141

Liquid and Vapor Extraction Form

Ephrata Landfill MPE System- Liquid and Vapor Extraction Form

		Liquid E	Liquid Extraction Vapor Extraction					Concentration ngradient of B		Observer/Comment
Date	Time	Volume	Rate	Pressure Differential	Vacuum Pressure	Total Organics	CH4	02	Total Organics	
	24 hrs	x.xx gallons	x.xx gpm	x.xx in H2O	x.xx in Hg	PPM	%	PPM	PPM	

Sheet

of

If found, call 206-329-0141

Groundwater Sample Form

Ephrata Landfill MPE System- Groundwater Sample Form

							Field Parame	ters					Analytic	cal Para (Y/N)	ameters	5				
					Electrica	l Conductivity														
Sample ID (Well/Location)	Sample Date	Sample Time 24 hrs	pH (units)	DO (%)	EC Value	EC Units (uS/cm or mS/cm)	Temp (Degrees C)		Turbidity (NTU)	Visual (color, odor, etc)	Total Metals	Dissolved Metals	Dissolved Metals Field Filtered (Y/N)	VOC-8260	VOC-8270	NO3/SO4/CI	TDS	Lab	Shipment Date to Lab	Observer/Comment

Vapor Sample Form

Ephrata Landfill MPE System- Vapor Sample Form

			Fiel	d Para	meters	Analytical Parameter (Y or N)	Car	ister R	ecordi	ngs			
Sample ID (Well/Location)	Sample Date	Sample Time 24 hrs	CH4 %	O2 PPM	Total Organics PPM	VOC-T015 (Summa Canister)	Time Start	Time Stop	Canister Vacuum Start ("Hg)	Canister Vacuum Stop ("Hg)	Lab	Shipment Date to Lab	Observer/Comment

Appendix B

Chain-of-Custody Form

SAMPLE CHAIN OF CUSTODY

	SAMPLERS (signature)												Page # of							
Report To				-												TURNAROUND TIME				
Company				PROJEC	PROJECT NAME PO #										Standard Turnaround RUSH Rush charges authorized by:					
Address																				
City, State, ZIP				-	REMARKS							IVO]	ICE '	ТО		SAMPLE DISPOSAL Dispose after 30 days Archive Samples				
PhoneEr	mail			- Project S	Specific RL	us - Yea	s / 1	No								Oth	er			
				1								LYSI	ES RI	EQU	ESTE	D	1	-		
Sample ID		Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars		NWTPH-Gx	BTEX EPA 8021	$VOC_{S} EPA 8260$	PAHs EPA 8270	PCBs EPA 8082						Not	es	
	-		PRIN	NT N	IAM	E				(COM	PAN	Y		DATE	TIME				
Friedman & Bruya, Inc.	Reline	quished by:	GNATURE			1 1011								0111		<u>+</u>		2		
$5500~4^{th}$ Avenue S	Receiv	ved by:																		
Seattle, WA 98108																				
Ph. (206) 285-8282	Receiv	ved by:																		

Appendix C

Laboratory Quality Assurance Manual

QUALITY ASSURANCE MANUAL

Friedman & Bruya, Inc.

5500 4th Avenue South Seattle, Washington 98108-2419 (206) 285-8282

> Revision Number 18 December 9, 2022

Approved by

Executive Committee Representative:

na z prja

James E. Bruya

Ton

Eric Young

stephan

Stephanie Pham

Document Control Number: 218

Laboratory Director:

Quality Assurance Officer:

2.0 TABLE OF CONTENTS

<u>Section</u>	Description	<u>Page</u>
1.0	Title/Signature Page	
2.0	Table of Contents	
3.0	Quality System Policy Statement	
4.0	Ethics Policy Statement	
5.0	Laboratory Organization	
6.0	Standard Operating Procedures	
7.0	Training	
8.0	Material Procurement and Control	12
9.0	Measurement Traceability and Calibration	
10.0	Sample Handling Procedures	
11.0	Quality Control Objectives	
12.0	Analysis and Evaluation of Quality Control Samples	
13.0	Corrective Actions	
14.0	Data Processing, Validation, and Reporting	38
15.0	Document Control and Records Management	
16.0	Quality System Audits	
17.0	Client Communication	
18.0	Subcontracting Analytical Samples	
<u>Figures</u>		<u>Page</u>
Figure 5-1	Laboratory Organization	
Figure 10-1	Chain-of-Custody Form	
Figure 10-2	Sample Condition Receipt Checklist	
<u>Tables</u>		Page
Table 12-1	QC Frequency and Acceptance Limits Summary	33
Table 13-1	QC Corrective Actions Summary	
<u>Appendices</u>		Page
Appendix A	List of SOPs and Quality System Documents	A1
Appendix B	Major Analytical Equipment	
Appendix C	Equipment Maintenance Program	
Appendix D	Sample Containers, Preservation, and Holding Times	
Appendix E	Internal Audit/Managerial Review Forms	

Appendix F

Definitions_____F1

3.0 QUALITY SYSTEM POLICY STATEMENT

Quality Assurance/Quality Control (QA/QC) is of fundamental importance to any chemical testing program. It is the goal of Friedman & Bruya, Inc. (F&BI) to provide analytical data which is scientifically sound and of known and documented quality. To achieve this objective, a quality system has been established to ensure that adequate QA/QC procedures are followed and documented, from sample receipt through to the final report provided to the client. The quality system has been established to meet the requirements of the National Environmental Laboratory Accreditation Program (NELAP). The policies and procedures established are designed to meet the quality requirements of our clients, as well as those of accrediting authorities.

F&BI laboratory management is committed to following good professional practices, and to providing the highest quality of environmental testing services to our clients. An important part of this commitment is the requirement that all F&BI personnel involved with environmental testing activities, including management, are familiar with the established quality system, and implement the policies and procedures of the system in their work.

4.0 ETHICS POLICY STATEMENT

Friedman & Bruya, Inc. (F&BI) believes the practice of chemistry requires training, care, attention to detail and personal integrity that must withstand significant pressure from interested parties. We believe we stand firmly for the chemist's right to practice his/her profession with the highest level of support. For this reason, fraud or the falsification of analytical data by an employee is grounds for immediate dismissal. Management shall review data and perform internal audits to ensure ethical conduct on the part of its employees.

Waste of our clients' time and money, as well as natural resources, is strongly discouraged. Environmental analyses can be very costly and their results exponentially more so. Friedman & Bruya, Inc. was formed to provide our clients with analytical information that met their chemical and analytical needs, while at the same time minimizing cost wherever possible.

Friedman & Bruya, Inc. is proud of its employees. Upon employment, a manual is issued to each employee that describes the policies of Friedman and Bruya, Inc. with regards to employee conduct, fraud, waste and abuse. We believe abuse or harassment is degrading to our employees and our clients. Such behavior is not condoned by Friedman & Bruya, Inc. This covers interactions amongst our employees, as well as those between us and our clients. Where abuse or harassment can be documented, a written warning is issued. If the action or behavior continues, dismissal may result.

All employees of Friedman & Bruya, Inc. are charged with the task of reporting any occurrence of fraud or data falsification to the highest authority within our organization. Management will continually look for fraud and data falsification through standard review practices such as those conducted during the course of data review and internal audits. Management will not attempt to create policies that conflict with our fraud policy. If any employee feels or believes that a management policy conflicts with our fraud policy or that any such policy encourages fraudulent practices on the part of employees, they are encouraged to bring these issues to the attention of their supervisor or to the highest authority within our organization.

5.0 LABORATORY ORGANIZATION

5.1 Ownership and Facility Description

F&BI is a privately owned corporation. No other business affiliations or external business entities exist. The F&BI laboratory is comprised of one building, with approximately 12,000 square feet, which is located at 3012 16 Ave. W., Seattle WA. This laboratory was built with safety, efficiency and quality control in mind. Separate rooms are designated for inorganic, organic and volatiles extractions. Fume hoods are located in each of these rooms as well as in standard storage and preparation rooms. Separate areas are also designated for sample storage, instruments/analysis, office space and records storage. Floor plans of the building can be furnished upon request.

5.2 Personnel Organization

The qualifications and responsibilities for key personnel are listed below. An organizational chart is provided in Figure 5-1.

Laboratory/Technical Director

Qualifications:

The Laboratory/Technical Director should be an individual who has a history of laboratory and personnel management. She/He should have a knowledge of all analyses performed by the laboratory and of QA/QC standards of performance. This person should have a bachelors degree in chemical, environmental, biological sciences, physical sciences or engineering, with at least 24 college semester credit hours in chemistry and with at least 2 years of relevant experience. (A masters or doctoral degree may be substituted for 1 year experience.)

Responsibilities:

The Laboratory/Technical Director reports directly to the Executive Committee. He/She has overall responsibility for the technical operation of the laboratory. Specific responsibilities include the following:

Monitor standards of performance in quality control and quality assurance.

Monitor the validity of the analyses performed and data generated to assure reliable data.

Ensure sufficient numbers of qualified personnel are employed.

Provide educational direction to laboratory staff.

Assign workloads and arranges schedules of Project Leaders.

Evaluate overall effectiveness of the laboratory activity.

Propose new methods and modifications as needed. Institute new programs and procedures as directed by the Executive Committee.

Review all new work to ensure that appropriate facilities and resources are available. Fill in for the QA Officer in her/his absence.

Quality Assurance Officer

Qualifications:

The Quality Assurance Officer should be an individual who has a history of establishing inter-laboratory and intra-laboratory quality assurance programs. She/He should be capable of evaluating analytical data to distinguish between sample variability, instrument variability and method errors. This person is expected to have a degree in chemistry plus several years practice as an environmental chemist evaluating analytical data for technical validity.

Responsibilities:

The Quality Assurance Officer reports to the Executive Committee and

Laboratory/Technical Director. She/He has the responsibility of overseeing the interlaboratory, intra-laboratory studies, non-conformance report reviews, and demonstration of capability program. She/He also works in a team with other qualified staff to complete all of the quality assurance tasks conducted at F&B. These specific responsibilities include the following:

Training and documentation of F&B staff with regards to QA policy and procedures including coordinated quarterly meetings.

Evaluate data for compliance with standard operating procedures and acceptance criteria.

Conduct internal audits on the entire technical operation annually.

Propose changes in the Quality Assurance Program to improve the quality, efficiency, and/or defensibility of the data generated.

Manage laboratory participation in inter-laboratory comparisons and proficiency programs.

Maintain or modify laboratory accreditation.

Notification of laboratory management and project managers, in writing, of any changes to accreditation.

Assist in training of analysts in analytical quality control procedures. Maintaining the QA manual, DOCs, and SOPs.

Project Leader

Qualifications:

Project Leaders should be individuals who have a history of analyzing environmental samples. They should have knowledge of quality assurance and how it relates to the validity of analytical data. They should also have knowledge of the specific analytical testing requirements for the needs of our clients. They should be able to recognize problems which can arise when analyzing samples, and be able to discuss with the client proper analytical techniques for meeting the clients' goals. This person is expected to have a degree in chemistry or several years experience in the environmental chemistry field.

Responsibilities:

The Project Leaders report directly to the Quality Assurance Officer on all quality assurance matters. They report directly to the Technical/Laboratory Director on all other matters such as project status and projected work loads. Specific responsibilities include the following:

Support the quality assurance program within the project.

Determine effectiveness of the quality assurance program in the project. Recommend to the Quality Assurance Officer changes in the quality assurance program.

Document for the client any quality control problems which could not be resolved. Provide technical overview of laboratory activities.

Laboratory Analysts

Qualifications:

Laboratory Analysts should be individuals who have a history of analyzing environmental samples. They should have knowledge of quality assurance. They should recognize quality assurance results which are out of conformance and be able to determine and remedy possible causes. Laboratory Analysts are expected to have a degree in chemical, environmental, biological sciences, physical sciences or engineering and/or experience in the environmental chemistry field.

Responsibilities:

Specific responsibilities include the following:

Perform analytical procedures and data recording in accordance with accepted methods.

Consult with the Quality Assurance Officer to verify that the laboratory is meeting stated quality control goals.

Evaluate new analytical techniques, procedures, instrumentation and quality control methods, and provide recommendations to the Technical/Laboratory Director and Quality Assurance Officer.

Lead the training of new analysts in laboratory operations and analytical procedures. Evaluate instrument performance and implement instrument calibration and preventive maintenance program.

Perform data processing and validation.

Initiate non-conformance report forms for out-of-control situations, instrument malfunction, calibration failure, or other non-conformances as appropriate. Prepare and maintain laboratory quality control records.

General Personnel

Qualifications:

General personnel include all other staff, such as laboratory technicians, sample checkin technicians and office personnel. General personnel should be individuals that pay very close attention to detail and follow written and oral instructions precisely.

Responsibilities:

General personnel are responsible for following established procedures and reporting any quality control problems or questions.

Figure 5-1 Laboratory Organization

Executive Committee/Technical Director:

Responsibilities: Appointed by owner to oversee all operations and functions of the laboratory.

Laboratory Director:

Responsibilities: Reports directly to the Executive Committee.

Quality Assurance Officer:

Responsibilities: Reports directly to The Executive Committee and Laboratory/Technical Director.

Project Leaders:

Responsibilities: Report directly to the Quality Assurance Officer on QA/QC matters and to the Technical/Laboratory Director on all other matters.

Laboratory Analysts/Calculations Chemists:

Responsibilities: Report directly to the Quality Assurance Officer on QA/QC matters and to the Technical/Laboratory Director and/or Executive Committee on all other matters.

Laboratory Analyst/Extraction Manager:

Responsibilities: Reports directly to the Quality Assurance Officer on QA/QC matters and to the Technical/Laboratory Director and/or Executive Committee on all other matters.

Technicians:

Responsibilities: Report directly to the Extraction Manager.

Safety Officer/Committee:

Responsibilities: Reports directly to the Technical/Laboratory Director and/or Executive Committee.

General Personnel:

Responsibilities: Reports directly to the Executive Committee.

6.0 STANDARD OPERATING PROCEDURES

Standard operating procedures (SOPs) are maintained which accurately reflect current laboratory activities. These documents may include, for example, equipment manuals provided by the manufacturer, published analytical methods with any changes or specifications documented, or internally written documents. Hardcopies of all SOPs are organized in folders which are easily accessible to all personnel. (The exception is equipment manuals, which are kept with the corresponding equipment.) There are two general types of SOPs; method SOPs and administrative SOPs. A list of administrative SOPs, along with other quality system documents, is included in Appendix A.

Method SOPs

Method SOPs are generated for each accredited method performed by F&BI. They provide detailed, laboratory specific, procedures for analytical testing methods. Each method SOP references the published analytical procedure upon which it is based. When the referenced analytical procedure has stated QA/QC requirements, the SOP meets the stated requirements. Any additional, laboratory specific, QA/QC requirements are detailed in the method and/or administrative SOPs.

Administrative SOPs

Administrative SOPs provide detailed procedures for all activities of the quality system not included in specific analytical methods, such as sample receiving, personnel training, and creating client reports. Administrative SOPs may be separate documents, or may be included in this document.

6.1 Deviation from SOPs

When a client (or project) has specific requirements of the laboratory, a deviation from existing procedures may be necessary. Typical examples include addition of target analytes and project specific reporting limits. If a deviation is requested, the project manager is responsible for discussing the request with the manager in charge of the analysis and obtaining her/his approval to accept the project. The project manager is also responsible for documenting the request on the appropriate analysis extraction worksheets, and on the final report if necessary.

Deviations from SOPs are documented using the extraction worksheet, sequence tables, injection logs, and/or other documents such as the non-conformance report form as discussed in section 13.3. Frequent departure from policy is not encouraged. However, if frequent departure from a particular policy is noted, the technical/laboratory director will address the possible need for a change in the policy.

7.0 TRAINING

Our company is designed around the idea that our employees are our most valuable asset. We are committed to the professional development of our employees. Since we are a relatively small laboratory, many of our employees wear several hats, and cross training is critical.

7.1 Quality System, Data Integrity, and Safety Training

When hired, each employee receives a company policy manual, data integrity SOP, quality assurance manual, and any SOPs relevant to their responsibilities. She/he also receives a safety training form and an employee attestation form, including data integrity training, to fill out and sign. The office manager is responsible for providing each new employee with copies of the policy manual and quality assurance manual. Each new employee is also provided with safety and general training forms, and copies of the relevant SOPs. Each employee is responsible for completing the required training documents, and for complying with all QA/QC and data integrity requirements. Each employee is also responsible for maintaining the current quality system documents which are relevant to their position, in their individual document file.

7.2 Initial Demonstration of Capability

The first step in training for analytical procedures is to familiarize the trainee with the method. This is achieved through a combination of reading the method SOP and observing an experienced analyst performing the method. The trainee then performs the method under close supervision. Prior to independently performing an analysis, each analyst completes an initial demonstration of capability (DOC). The DOC is performed as follows:

Obtain a quality control sample from an outside source. If not available, the QC sample may be prepared by the laboratory using stock standards that are prepared independently from those used in instrument calibration.

Dilute/prepare enough of the QC sample to make 4 separate aliquots (samples) of the specified concentration. If the concentration is not otherwise specified, it should be approximately 10 times the MDL. Laboratory control samples or MDL study samples may be used to meet this requirement.

Extract and/or analyze each of the 4 samples either concurrently or over a period of days.

Use all of the results to calculate the mean recovery (accuracy) and the standard deviation (precision) for each parameter/analyte. Compare the mean and standard deviation to method acceptance criteria.

If all parameters/analytes meet the acceptance criteria, the DOC is complete and independent analysis of actual samples can begin. If one or more of the parameters/analytes fail at least one of the acceptance criteria, then locate and correct the source of the problem and repeat the entire test (above) for either all of the parameters/analytes or just the parameter(s)/analyte(s) that failed.

7.3 Continuing Demonstration of Capability

At least one of the following, once per year, is completed by each analyst to demonstrate continuing proficiency.

Acceptable performance of a blind sample

Another demonstration of capability

At least four consecutive laboratory control samples with acceptable levels of precision and accuracy (calculated as for DOC above).

Successful analysis of a blind performance sample on a similar test method using the same technology (e.g. GC/MS volatiles by methods 624 and 8260 are considered equivalent).

If none of the above can be performed, analysis of authentic samples with results statistically indistinguishable from those obtained by another trained analyst.

7.4 Continuing Quality System, Data Integrity, and Safety Training

Company wide training meetings are held at least once a quarter. At these meetings quality system, data integrity, and/or safety topics are discussed by the QA officer, technical/laboratory director, and/or safety officer/committee respectively. Employees are also encouraged to participate in relevant external training, such as seminars and instrument training courses.

7.5 Documentation of Training

Documentation of education, experience and training prior to employment at F&BI is kept on file with personnel records. The office manager is responsible for maintaining personnel records. All employees document on the Employee Attestation Form that they have read, understood and will follow the Policy Manual, QA Manual and each SOP distributed to him/her. The attendance at each quarterly training meeting is documented using the Quarterly Training Meeting form. These and other completed training documents, including DOC certificates, are filed. In addition a database summarizing DOC training is maintained. The QA officer is responsible for maintaining the DOC database. The office personnel are responsible for maintaining training files. Additional details of training documentation are found in the "Training" SOP.

8.0 MATERIAL PROCUREMENT AND CONTROL

The quality of reagents, solvents, gases, water, and laboratory vessels used in analyses should be known so that their effect upon analytical results can be defined and anticipated. Materials and equipment purchased by F&BI should meet the requirements stated below or as denoted in specific analytical procedures, and be controlled as stated.

The following general guidelines are used for purchasing and using materials and equipment. More specific requirements can be found in section 9 below, and in administrative and method SOPs.

Specify within the purchase requests the suitable grades of materials.

Verify upon receipt that materials meet requirements and that, as applicable, material certificates/records are provided and maintained in the laboratory record system. Date all chemicals, standards and reagents with date of receipt, date opened and expiration date.

Store reagents and solvents in accordance with manufacturer's recommendations. Verify that material storage is properly maintained, and remove materials from use when shelf life has expired.

Record the date put into service for equipment such as balances and analytical instruments.

Record preventive and corrective maintenance procedures performed on equipment. Verify that equipment, including analytical balances, thermometers, volumetric glassware etc., is properly calibrated prior to use.

Clearly mark any equipment which has been taken out of service.

8.1 Requirements for Reagents, Solvents, and Gases

Chemical reagents, solvents, and gases are available in a variety of grades of purity, ranging from technical grade to ultrapure grades. The purity required varies with the type of analysis and project requirements. For many analyses analytical reagent (AR) grade is satisfactory. Other analyses, such as trace organic analyses, frequently require special ultrapure reagents, solvents, and gases.

General Inorganic Analyses

In general, AR grade reagents and solvents are adequate for inorganic analyses. Primary standard reagents should be used for standardizing all volumetric solutions. All prepared reagents should be checked for accuracy.

Trace Metals Analyses

All standards used for emission spectroscopy should be spectro-quality. It is recommended that other reagents and solvents also be spectro-quality. In many cases, AR grade may be satisfactory. Standards are prepared by the analyst, or purchased provided that purchased materials meet the requirements of the analytical method. Gases used for emission spectroscopy should be high purity.

Organic Chemical Analyses

AR grade is generally the minimum acceptable grade for materials used for organic analyses. Reference grade standards should be used as necessary. Pesticide-quality solvents are generally required for low-concentration work. AR grade solvents are adequate for analyzing industrial waste samples. However, the contents of each solvent lot should be checked to determine suitability for the analyses.

For sample cleanup procedures, the adsorbents most commonly used are florisil, silica gel, and alumina. These are pre-activated according to the analytical method requirements and checked for interfering constituents.

Water

Deionized water is used for dilution and preparation of reagent solutions. Deionized water prepared in the laboratory should be ASTM Type I or better. For trace level inorganic work, Type I Reagent grade is required. Organic-free water is required for organic analyses. Organic-free water may be verified by GC or GC/MS. However, when determining trace organics by solvent extraction and gas chromatography, specialty water such as HPLC grade water with sufficiently low background may need to be used.

8.2 Requirements for Laboratory Containers

Containers used in the laboratory can affect the quality of results. Material composition and volumetric tolerances are discussed below.

Material Composition of Laboratory Vessels

The glass recommended for general use is chemically resistant borosilicate glass, such as that manufactured under the trade names of Pyrex or Kimax. The use of plastic vessels, containers and other apparatus made of Teflon, polyethylene, polystyrene, and polypropylene is desirable for certain specified applications.

Volumetric Tolerances of Laboratory Vessels

All volumetric measurements are made using measuring devices with tolerances appropriate to the level of accuracy needed.

Glassware Cleaning Requirements

All glassware used for sample extraction and analysis is cleaned sufficiently to meet the sensitivity of the method. This is tested on an ongoing basis with method blank samples. The same types of glassware and glassware cleaning techniques are used for method blank samples and client samples. In general, the following glassware cleaning procedures are followed.

Beakers - wash with laboratory grade soap, triple rinse with water

Separatory funnels - remove stopcock, wash stopcock, cap and funnel with laboratory grade soap, triple rinse with water, triple rinse with extraction solvent

KD flasks - wash with laboratory grade soap, triple rinse with water, triple rinse with extraction solvent

Snyder columns - triple rinse with extraction solvent

Concentrator tubes - wash with laboratory grade soap, triple rinse with water, triple rinse with extraction solvent

Syringes - triple rinse with extraction solvent

If lower than normal reporting limits are required or if highly contaminated samples have been extracted, glassware may need additional cleaning such as acid rinsing.

9.0 MEASUREMENT TRACEABILITY AND CALIBRATION

All measuring operations and testing equipment having an effect on the accuracy or validity of analytical results are calibrated and/or verified prior to being put into service and on a continuing basis. Wherever possible, reference standards (such as Class 1 weights and traceable thermometers) and analytical reagent calibration standards are traceable to national standards of measurement. For accredited analyses, where traceability to national standards is not applicable, correlation of results is confirmed using proficiency testing and/or independent analysis.

All equipment and reference materials necessary for correct performance of analysis are under the permanent control of F&BI. A list of major analytical equipment is given in Appendix B.

9.1 Support Equipment Calibration

Support equipment includes devices that may not be the actual test instrument, but are necessary to support laboratory operations. These include but are not limited to: balances, thermometers, ovens, refrigerators, freezers, water baths and volumetric dispensing devices such as autopipetes and syringes. In cases where quantitative results are dependent on their accuracy, these devices are calibrated as described below.

Calibration/Verification Prior to Use

When new support equipment is purchased, it is the responsibility of the extraction manager to verify its calibration and traceability prior to putting it into service. Each piece of equipment is numbered, or otherwise identified, and the date put in service is recorded. Any certificates provided by the manufacturer are marked with the equipment identification and kept on file. Specific procedures for calibration (including on-going calibration) of specific types of support equipment are detailed in the "Support Equipment Monitoring and Calibration" SOP. These procedures include: reference standard(s) used for calibration specific calibration technique employed acceptable performance tolerances calibration frequency documentation procedures

On-Going Calibration

Requirements for on-going calibration are provided in the specific equipment SOPs. The requirements are based on the type of equipment, stability characteristics of the equipment, and required accuracy. Some equipment is calibrated each working day, some monthly and some less frequently. All support equipment is calibrated annually, using nationally traceable reference standards if possible, over the entire range of use. It is the responsibility of the extraction manager to complete all on-going calibrations.

Corrective Actions

If equipment does not meet the calibration requirements, it is taken out of service unless and until necessary repairs have been made. All such equipment is marked as "out of service" and, if possible, placed in a different location until repaired. Records of all repairs, including service calls, are kept with the equipment records. When a piece of equipment is repaired another initial calibration is performed prior to being put back into service. If equipment cannot be repaired, it is discarded as appropriate. It is the responsibility of the laboratory manager to mark out of service equipment, arrange for repairs, re-calibrate and document all such activities.

In addition, if equipment goes outside the direct control of the laboratory, it is the responsibility of the extraction manager to verify satisfactory function and calibration status before the equipment is returned to service.

If an item of equipment is found to be defective, the effect of the defect on previous calibrations or analyses is examined, and corrective actions are taken if necessary. It is the responsibility of the person who finds a defect to inform the QA officer, Technical Director, or Executive Committee.

9.2 Instrument Calibration

Initial instrument calibration and continuing instrument calibration verification of all analytical instruments is performed to ensure that the data are of known quality. Specific method SOPs describe detailed calibration requirements for each method. It is the responsibility of each analyst to follow and document established calibration procedures. The following sections describe the calibration requirements for all accredited analyses performed by F&BI.

Initial Calibration

The following are essential elements of initial instrument calibration: Sufficient raw data records are retained to permit reconstruction of the calibration. Sample results are quantitated against the initial calibration, and may not be quantitated from any continuing instrument calibration verification. Initial calibrations are verified with a second source standard (a standard obtained from a second manufacturer or lot, if the lot can be demonstrated from the manufacturer as prepared independently from other lots), unless a different requirement is specified in the method.

Appropriate criteria for the acceptance of an initial calibration are established. If the initial calibration results are outside of the established acceptance criteria corrective action is taken (see below).

Any reported sample results which fall outside of the calibration range are reported as having less certainty.

At least one calibration standard is at or below the method reporting limit. The lowest calibration standard is above the method detection limit (MDL), with the following exception:

For instrument technology (such as ICP/MS) with validated techniques which use a zero point and a single point calibration standard, the following apply: Prior to analysis of samples the linear range is established.

Zero point and single point calibration standard are analyzed with each analytical batch. Additional standards may also be analyzed.

A standard corresponding to the limit of quantitation is analyzed with each analytical batch.

The linearity is verified at a frequency established by the method and/or the manufacturer.

Continuing Instrument Calibration Verification

When the initial instrument calibration is not performed on the day of analysis, the validity of the initial calibration is verified prior to sample analysis by a continuing instrument calibration verification (CCV). The following items are essential elements of continuing instrument calibration verification:

A CCV is repeated at the beginning and end of each analytical batch. The concentrations of the calibration verification are varied within the established calibration range. If an internal standard is used, only one CCV is analyzed per batch. Sufficient raw data records are retained to permit reconstruction of the CCV. These records explicitly connect the continuing verification data to the initial instrument calibration.

Criteria for the acceptance of a CCV are established.

If the CCV results are outside established acceptance criteria, corrective actions are performed (see below).

Corrective Actions

Specific corrective actions are included in method SOPs. Following are general corrective action guidelines:

If the initial calibration results are outside established acceptance criteria, corrective actions are performed. This may include preparation of new standard solutions or instrument maintenance. Data associated with an unacceptable initial instrument calibration should not be reported. However, if such data are reported (usually due to insufficient sample for reanalysis) then it is reported with appropriate qualifiers. If a CCV falls outside of established acceptance criteria, then corrective actions are performed. This may include preparation of new standard solutions or instrument maintenance. If routine corrective action procedures fail to produce a second consecutive (immediate) CCV within acceptance criteria, then either acceptable performance is demonstrated after corrective action with two consecutive CCVs, or a new initial calibration is performed. If possible, samples associated with a failing CCV are reanalyzed. If reanalysis is not performed, then results are qualified. In the following two situations, results may be reported, even if reanalysis is possible. a) If the CCV fails high, then associated sample results which are non-detect may be reported.

b) If the CCV fails low, then associated sample results which are above a level which provides sufficient data for client use (if known) may be reported.

9.3 Maintaining Traceability of Standards, Solvents, and Reagents

The following steps are taken to maintain traceability of standards:

All standards are logged into the Standards Logbook and given a Date Code which is written on each container and certificate (if included). Also recorded are description, supplier and manufacturer's Lot # (if provided). The sample check-in technician is responsible for logging in standards.

When opened, all original containers (as provided by the vendor) are labeled with the date opened and an expiration date (based on the date opened). The extraction analyst is responsible for labeling original containers when opened.

Documentation of standards prepared from purchased stocks or neat compounds is maintained in the Standards Prep Logbook. Information recorded includes the Date Code, the preparation date, the expiration date, the amount used, and the preparer's initials. The person preparing the standard is responsible for proper documentation. Containers of prepared standards are labeled with a unique Standards Prep Logbook ID linking them to the above preparation documentation. They are also labeled with the preparation and expiration dates. The expiration date of a prepared standard may not exceed the expiration date of any of the primary standards used in its preparation. The person preparing the standard is responsible for labeling correctly.

Whenever a standard is used for sample extraction or analysis (e.g. calibration standard, surrogate, etc.) the Standards Prep Logbook ID is written in the sample extraction and analysis records. The extraction analyst is responsible for recording the Logbook ID.

Standards are not used past their expiration dates.

The following steps are taken to maintain traceability of solvents and reagents.

All solvents and reagents are logged into the Solvents and Reagents Logbook and assigned a Solvent Code which is written on each container and certificate (if included). Also recorded are description, supplier and manufacturer's Lot # (if provided). The sample check-in technician is responsible for logging in solvents and reagents. When a solvent or reagent is used to prepare a standard, the Solvent Code is recorded in the Standards Prep Logbook. The person preparing the standard is responsible for proper documentation. Note: If a reagent solution is prepared, then that is documented in the Standards Prep Logbook as described above. When a solvent or reagent is used for extraction or analysis, the Solvent Code is recorded in the sample extraction and analysis records. The extraction analyst is responsible for recording the Solvent Code.

9.4 Equipment Maintenance

Preventive maintenance is an important part of the F&BI quality system. A maintenance program has been outlined to provide an organized program of actions to maintain proper instrument performance which will ensure reliability of the measurements and prevent instrument failure during use. This equipment maintenance program is included as Appendix C. Additional information about routine

and special maintenance activities can be found in instrument manuals and troubleshooting guides, and in method SOPs.

Implementation

The implementation of the preventive maintenance program is dependent upon the specific instruments and equipment used. The extraction manager is responsible for performing and/or coordinating all support equipment maintenance. The GC, GC/MS, and inorganics supervisors are responsible for performing and/or coordinating all analytical instrument maintenance.

Documentation

Preventive maintenance is documented in maintenance log books. Each instrument has its own maintenance logbook which is updated each time any type of work is performed on the instrument.

10.0 SAMPLE HANDLING PROCEDURES

10.1 Sampling and Sample Acceptance Policy

The quality of analytical results is highly dependent upon the quality of the procedures used to collect, preserve and store samples. Factors that are taken into account to ensure accurate, reliable results include: Type of container used Sample preservation Amount of sample taken

Sample storage (holding) time Proper sample labeling/identification

Proper chain-of-custody (COC) documentation

Container, volume, preservation and holding time information for selected analyses for water and soil samples is included in Appendix D. F&BI provides sample containers, including preservative, to our clients when requested.

Each sample container should be labeled, using a durable label and indelible ink, to identify the following: Client name Client project name Sampling date and time Sample name/number Sample preservation

A chain-of-custody (COC) form should be filled out for every client project. An example COC form is shown in Figure 10-1. The following information should be included on the COC: Client (company) name and contact information Client project name/number Sampler's name Sample ID (name/number) Date and time sampled Type of sample (e.g. soil, water, etc.) Requested analysis

Sample Acceptance Policy

It is the client's responsibility to follow proper sampling and documentation protocol. If any samples are received with incomplete documentation, unclear sample labeling, incorrect or damaged sample containers, expired holding time, insufficient sample volume, incorrect sample preservation or any other circumstances that could affect data quality, the sample custodian and/or project manager will notify the client. If the problem can be resolved (e.g. documentation provided) normal analysis will be initiated. If not, data will be reported with qualifiers if necessary. The sample acceptance policy is posted at the sample receiving area, and copies are available upon request.

10.2 Sample Receipt Protocols

Chain-of-Custody

Evidence of sample collection, shipment, laboratory receipt, and laboratory custody until disposal is documented to maintain quality control. Documentation is accomplished through the COC records, shipping records and sample check-in and disposal records.

Sample Condition

Upon receipt, the condition of the samples is recorded. A copy of the sample condition receipt checklist is included in Figure 10-2. If a sample does not meet the sample receipt acceptance criteria the client is consulted for further instructions before proceeding. A record of the client's request is retained.

Sample Tracking

A permanent chronological sample receipt logbook is used to document receipt of all samples. The laboratory project number assigned is recorded on the sample condition checklist and on the COC, providing an unequivocal link to the laboratory and field ID's, the sample collection and analysis information provided on the COC, and the sample condition record.

Each sample received is assigned a unique laboratory ID that maintains an unequivocal link with the unique field ID assigned to each container. The laboratory ID is placed on the sample container as a durable label and is recorded on the COC. The laboratory ID is the link that associates the sample with subsequent laboratory activities such as sample preparation or calibration.

Sample Check-In

Upon sample receipt, the sample custodian completes the following steps (more details are found in the "Sample Receiving" SOP):

Sign and date the COC and attach the waybill (if applicable) to the COC.

Examine all samples and accompanying paperwork, using the Sample Condition Upon Receipt Checklist as a guide.

Verify that sample holding times have not been exceeded and are not close to their limit.

Notify the Project Leader if there are any samples that should be analyzed immediately because of holding time or client request.

The sample custodian then logs the samples into the Sample Check-In Logbook, which contains the following information:

Date received in laboratory Name of client Client project name/number Type and condition of samples as received Analyses requested F&BI project number Initials of person logging in samples Container size(s) and cooler/sample temperature

The sample custodian then initiates sample analysis by: Completing the COC documentation Labeling each container with the unique laboratory ID Placing the samples in proper laboratory storage Notifying the project leader of sample arrival by placing copies of the COC and all other project documents in the project leader bin.

10.3 Sample Storage

Samples and sample extracts are stored according to the conditions specified by preservation protocols. The temperatures of sample storage refrigerators are monitored each working day and recorded in the refrigerator temperature logbook. Samples and sample extracts are stored away from all standards, reagents, food and other potentially contaminating sources, and are stored in such a manner to prevent cross contamination. In addition, samples and sample extracts are stored in a secured area in order to protect sample condition and integrity. Placing of samples in the proper storage environment is the responsibility of the sample custodian. Placing of extracts in the proper storage environment is the responsibility of the extraction analyst.

10.4 Sample Disposal

There are several possibilities for sample disposition: The sample may be consumed during analysis. Samples may be returned to the client for disposal. Samples are incorporated into the laboratory waste streams.

The samples may be stored for 30 days after arrival. Proper environmental control and holding times are observed if reanalysis is anticipated. If reanalysis is not anticipated, environmental conditions for storage may not be observed.

The project leader and/or sample custodian determine disposition of samples if not specified on the COC. In general, F&BI will not maintain samples and extracts longer than one month beyond completion of analysis, unless otherwise requested.

After the appropriate storage time, the samples and extracts are disposed of by following approved disposal procedures. All materials known contain hazardous substances are disposed of as a separate waste streams. F&BI has identified 4 primary waste streams; solid waste, organic liquid waste, PCB (HazMat) waste, and acid waste. Disposal procedures are in compliance with all EPA, DOT, and Washington State waste disposal regulations. The extraction manager is responsible for overseeing sample and waste disposal.

Figure 10-1 Chain of Custody Form

	PAB # 0f TURNAROUND TIME	0 Standard (2 Weeks) 0 RUSH	Rush donge authorized by.	SAMPLE DISPOSAL D Dispose after 30 days	O Reburn samples O Will call with instructions	TED	Notes						C DATE TIME			
		F0#				ANALYSES REQUESTED	SAH 2X0052025						COMPANY			
F CUSTODY	(ə.					AA.	HTPH-Dissel TPH-Gasoline TPH-Gasoline TPH-Gasoline TPH-Gasoline TPH-Gasoline						PRINT NAME			
SAMPLE CHAIN OF CUSTODY	SAMPLERS (signature)	PROJECT NAMENO.		REMARKS		-	Sample Type						P.			
62					6		Date Time			-			SIGNATURE			
					Fax #		Lab ID	 					S Rationiched be:	 Recensed by:	Kalinquirled by:	Racained by:
	Send Report To	Compary	Address	City, State, ZIP	Phone #		Sam ple ID						Priechand. Brung Dr. 2012 1844 Avenue Meet	Securic, WA 98119-2029	Fh (206) 285-8282	Fax (206) 283-5044

Figure 10-2

PROJECT #		CLIENT			INITIAL DATE:	S/	
If custody seals	are pres	sent on co	oler, are they intact?		🗆 NA		🗆 NO
Cooler/Sample	tempera	ture					°C
Were samples r	eceived	on ice/cole	d packs?			□ YES	□ NO
How did sample	es arrive	?	□ Over the Cou □ Picked up by				
			□ FedEx/UPS/	GSO			
Number of days	s sample	s have bee	en sitting prior to rec	eipt at l	aborato	ory	days
Is there a Chain *or other representa			C) ? and/or shipping memos			□ YES	□ NO
Are the sample	s clearly	identified	l? (explain "no" answer belo	w)		\Box YES	🗆 NO
Is the following	g informa	ation prov	ided on the COC*? (e	xplain "no	' answer b	oelow)	
Sample ID's	□ Yes	🗆 No	# of Containers	\Box Yes	🗆 No		
Date Sampled	□ Yes	🗆 No	Relinquished	\Box Yes	🗆 No		
Time Sampled	\Box Yes	🗆 No	Requested analysis	□ Yes	🗆 No		
Were all sample leaking etc.)? (e			v ed intact (i.e. not bro ^{v)}	oken,		□ YES	□ NO
Were appropria	ate samp	le contain	e rs used? (explain "no" a	nswer belo	ow)	□ YES	□ NO
If custody seals	s are pres	sent on sa	mples, are they intac	t?	□ NA		□ NO
Are samples re	quiring r	no headsp	ace, headspace free?		\Box NA		□ NO
	Explai	in "no" ite	ms from above (use th	ne back if	needed)	

SAMPLE CONDITION UPON RECEIPT CHECKLIST

11.0 QUALITY CONTROL OBJECTIVES

F&BI follows a comprehensive internal quality control (QC) program to insure precision, accuracy, and reliability of data. QC objectives are established to determine if data generated is acceptable. These objectives are either specified by the method, or are statistically derived from historical laboratory data. Individual method SOPs include details of method QC requirements, which may supersede those given here.

11.1 Demonstration of Capability

Prior to using any test method, and at any time there is a significant change in instrument type or test method, a demonstration of capability (see section 7.2) is performed. In general, this does not test the performance of the method in real world samples, but in the applicable clean matrix.

11.2 Precision

Precision is a measure of the reproducibility of a result. Except as otherwise specified by an accredited method, the QC objective for precision is 20% as measured by Relative Percent Difference (RPD), as determined by duplicate analyses. It is recognized that for analytes at concentrations of less than five to ten times the method detection limit (MDL), it may be difficult to meet this objective.

Precision is usually expressed as Relative Percent Difference (RPD) based on duplicate analyses of a sample. The RPD is calculated as:

$$RPD = \frac{|X1 - X2|}{[(X1 + X2)/2]} x 100$$

where X1 and X2 are, respectively, the first and second values obtained for the analysis. Precision may be evaluated from duplicate sample, matrix spike and/or laboratory control sample analyses.

11.3 Accuracy

Accuracy is a measure of the closeness of a result to the true or expected value. It is generally determined using matrix spike and/or laboratory control sample recoveries. Control charts (see section 11.4) are generated to calculate laboratory specific accuracy objectives. For accredited analysis without enough QC data, or where the method specifies accuracy objectives, method prescribed limits are used. If the method does not specify control limits, then reasonable default limits are used. It is recognized that, for matrix spike samples, unless the sample is homogeneous and the spike concentration is greater than or approximately equal to the native concentration and greater than five to ten times the reporting limit, this objective may be difficult to meet, and therefore such samples will not be used to generate new QA/QC objectives/criteria. Alternatively, accuracy may be assessed through the analysis of appropriate standard reference materials or certified standards or samples, as available.

Accuracy is usually expressed as percent recovery (%R). The %R is calculated as:

 $%R = ((Xs - Xa)/Ct) \ge 100$

where Xs is the observed concentration of the spiked sample, Xa is the observed concentration of the unspiked sample, and Ct is the concentration of the spike.

11.4 Uncertainty

Laboratory generated control limits (see below) for laboratory control samples represent an estimation of the uncertainty of measurement for a particular analysis.

Control Limits

Control limits are the acceptance criteria used for evaluating the accuracy and precision of results. F&BI has established control limits for precision of 0% to 30% for all accredited analyses, unless method specified limits are more stringent. Initial control limits for accuracy are taken from the method or regulatory requirements. If no method or regulatory criteria exist, control limits are assigned default values. These default values are assigned using the following guidelines.

For laboratory control samples default control limits are 70% to 130%, and default warning limits are 80% to 120%.

For matrix spike samples and surrogate compounds default control limits are 50% to 150%, and default warning limits are 65% to 135%.

Established control limits for a similar method/matrix may be used instead of default limits.

When sufficient data has been generated, the laboratory specific acceptance limits for accuracy are usually used. After a minimum of 20 samples have been analyzed for a particular matrix/method, the mean and standard deviation of the results are calculated. Warning limits are set at 2 standard deviations from the mean, and control (action) limits are set at 3 standard deviations from the mean. Control limits are generally reviewed at least monthly, or when sufficient data has been generated to warrant review, and updated annually.

Control Charts

Control charts are prepared for accredited analytical methods to document the trends in percent recoveries (accuracy) for laboratory control samples, matrix spike samples and surrogates. Results are monitored routinely by the analyst. If 10 consecutive results fall outside of warning or control limits (either all 10 above, or all 10 below), the cause is investigated and necessary corrective actions are taken.

11.5 Completeness

Completeness is determined as the percentage of the sample data for which the associated QC data are found to be acceptable. The QC goal for completeness, as determined by the percentage of valid data generated, is 100%. Precision and accuracy

determinations, if outside the QA objectives due to sample-related causes, may be regarded as qualifying, rather than invalidating, the associated data.

11.6 Representativeness

Representativeness is the degree to which the field sample represents the overall sample site or material. F&BI will make every reasonable effort to assure that the samples are adequately homogenized prior to taking aliquots for analysis, so that the reported results are representative of the sample received. However, F&BI does not represent that the samples submitted for analysis are representative of the conditions in the field. Of particular importance is that mixing may substantially lower the measured levels of volatile components. (For this reason, mixing is avoided as much as possible for samples being analyzed for those compounds.)

11.7 Comparability

Comparability is an expression of the confidence with which one data set can be compared to another. To ensure comparability, standard operating procedures as defined in the quality system are used for handling and analysis of all samples.

11.8 Method Detection Limits and Reporting Limits

Method Detection Limits

The method detection limit (MDL) is the minimum concentration that can be measured and reported with 99% confidence that the analyte concentration is greater than zero. For each applicable test method and matrix, MDLs are determined for the compounds of interest by spiking the analyte(s) at a level approximately 5 times the expected MDL into a clean matrix and processing as a sample. A minimum of seven replicates are processed and the mean result is multiplied by the applicable students' value to obtain the MDL. MDLs are determined for each new test method (prior to sample analysis), annually, and each time there is a change in the test method that affects how the test is performed, or when a change in instrumentation occurs that affects the reliability of the analysis.

<u>Reporting Limits</u>

Reporting limits (RL), or practical quantitation limits (PQL), are the routinely reported lower limits of quantitation. RLs are calculated from the MDL and are typically 2 to 10 times the MDL, or equal to or greater than the concentration of the lowest calibration standard. The RLs take into account the day-to-day fluctuations in instrument reliability and other factors. These RLs are the levels to which F&BI routinely reports results. If a result below the RL is reported, typically due to client request, it is qualified as an estimated value.

12.0 ANALYSIS AND EVALUATION OF QUALITY CONTROL SAMPLES

Quality control samples are routinely analyzed with each analytical batch (see below) of field samples to demonstrate that the laboratory is operating within the QC objectives. QC samples are evaluated on an on-going basis, and QC acceptance criteria are defined and used to determine the validity of the data. Specific types of QC samples are described below. Individual method SOPs include details of method QC requirements. A summary of frequency and acceptance limit requirements for QC elements described in this and previous sections is given in Table 12-1. If method requirements are different than those given here, the method requirements will be followed.

12.1 Preparation Batch

The preparation batch is the basic unit for quality control. To ensure that QC results for accredited analyses are representative, all of the samples in a batch, both field and QC samples, are extracted, analyzed and calculated in the same way. In the absence of specific program or method requirements, the requirements for a preparation batch are as follows:

A maximum of 20 (field) samples are in a batch.

All samples in a batch are the same matrix.

QC samples (see below) processed with a batch are; 1 method blank, 1 LCS, 1 MS (if suitable), and either 1 MSD or 1 matrix duplicate (if suitable, if not, then 1 LCSD). The same reagent lot(s) are used to process the batch.

The same analyst(s) process the entire batch.

The maximum time between the start of processing of the first and last sample in a batch is 24 hours.

QC samples are prepared and analyzed with the associated field samples. However, if field samples in the batch are reanalyzed for a reason not affecting the QC samples (e.g. dilution, surrogate recovery etc.), the QC samples do not require analysis each time a field sample from the preparation batch is analyzed.

Each batch is assigned a unique ID which links it to the associated field samples.

12.2 Method Blank Samples

<u>Purpose</u>

The method blank is used to assess the preparation batch for possible contamination during the preparation and processing steps. It is processed along with and under the same conditions as the associated samples.

Frequency

One method blank is analyzed with each preparation batch.

Composition

The method blank consists of a matrix that is similar to the associated samples and is free of the analytes of interest.

Evaluation Criteria and Corrective Action

The goal is to have no detectable contaminants. If contamination is detected in the method blank sample, the nature of the interference and the effect on the analysis of each sample in the batch is evaluated. The source of contamination is investigated and measures taken to minimize or eliminate the problem. Affected samples are reprocessed, or data are appropriately qualified if:

The concentration of a targeted analyte in the blank is at or above the reporting limit AND is greater than 1/10 of the amount measured in the sample.

The blank contamination otherwise affects the sample results as per the test method requirements or the individual project data quality objectives.

Results of method blank analyses are maintained with the corresponding analytical data set and reported with project results.

12.3 Laboratory Control Sample (LCS)

<u>Purpose</u>

The LCS is used to evaluate the performance of the total analytical system, including all preparation and analysis steps.

Frequency

One LCS is analyzed with each preparation batch. Exceptions are for analytes for which no spiking solutions are available such as total suspended solids, pH or turbidity.

Composition

The LCS is a controlled matrix, free of the analytes of interest, spiked with known and verified concentrations of analytes. Alternatively the LCS may consist of a media containing known and verified concentrations of analytes or as Certified Reference Material (CRM). All analyte concentrations are within the calibration range of the methods. The components spiked are specified in individual method SOPs.

Evaluation Criteria and Corrective Action

LCS results are calculated in percent recovery (see section 11.3). Results are compared to established acceptance criteria. A LCS that is determined to be within the criteria effectively establishes that the analytical system is in control and validates system performance for the samples in the associated batch. If a LCS result is found to be outside the criteria, this indicates that the analytical system is "out of control". Any affected samples associated with an out of control LCS are reprocessed and re-analyzed (if possible), or the results reported with appropriate data qualifying codes. LCS results are reported on the quality control data summary forms.

12.4 Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Samples

<u>Purpose</u>

Matrix specific QC samples indicate the effect of the sample matrix on the precision and accuracy of the results generated using the selected method. The information from these controls is sample/matrix specific and is not normally used to determine the validity of the entire batch.

Frequency

One MS sample is analyzed with each preparation batch, if a sufficient amount of sample is provided.

Composition

MS/MSD analysis is performed on aliquots of actual samples. The composition is not usually known. Samples are spiked with known and verified concentrations of analytes. All analyte spiking concentrations are within the calibration range of the methods. The components spiked are specified in individual method SOPs.

Evaluation and Corrective Action

The results from MS/MSD analyses are primarily designed to assess the precision and accuracy of analytical results in a given matrix and are expressed as percent recovery (%R) and relative percent difference (RPD) (see section 11). Results are compared to the established acceptance criteria. If results are outside the criteria, the cause is investigated and corrective actions are taken if necessary, or the MS/MSD data are reported with appropriate qualifiers. MS/MSD results are reported on the quality control data summary forms.

12.5 Matrix Duplicate Samples

<u>Purpose</u>

Matrix duplicates are replicate aliquots of the same sample taken through the entire analytical procedure. The results from this analysis indicate the precision of the results for the specific sample using the selected method.

Frequency

One duplicate sample is analyzed with each preparation batch. If sufficient sample is provided, this will be either a MSD or a matrix duplicate. If not, a laboratory control sample duplicate (LCSD) is analyzed.

Composition

Matrix duplicates are performed on replicate aliquots of actual samples. The composition is not usually known.

Evaluation and Corrective Action

The results from matrix duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as RPD. Results are compared to established acceptance criteria. If results are outside the criteria, the cause is investigated and corrective actions are taken if necessary, or the matrix duplicate data are reported with appropriate qualifiers. Duplicate analysis results are summarized on the quality control data summary forms.

12.6 Surrogate Standard Analyses

<u>Purpose</u>

Surrogates are used most often in organic chromatography test methods and are chosen to reflect the chemistries of the targeted components of the method. Added prior to sample preparation/extraction, they provide a measure of recovery for every sample matrix.

Frequency

Except where the matrix precludes its use or when not available, surrogate compounds are added to all samples, standards, and blanks for all appropriate test methods.

Composition

Surrogate compounds are chosen to represent the various chemistries of the target analytes in the method. Individual method SOPs specify the surrogate compound(s) used.

Evaluation Criteria and Corrective Action

Surrogate results are calculated in percent recovery (see section 11.3). Results are compared to established acceptance criteria. Surrogates outside the acceptance criteria are evaluated for the effect indicated for the individual sample results. Corrective actions are taken if necessary, or affected results are reported with appropriate qualifiers. Surrogate results are reported with associated sample results.

12.7 Proficiency Testing (PT) Samples

<u>Purpose</u>

PT samples are blind samples purchased from a certified provider. They are used to evaluate the performance of the total analytical system, including all preparation and analysis steps. They are processed under the same conditions and in the same manner as client samples.

Frequency

F&BI participates in certified proficiency testing programs at a frequency required by accrediting agencies. PT samples are analyzed twice a year for each analyte, method and matrix, when available, for which F&BI is accredited.

Composition

PT samples are either prepared in a clean matrix by the provider, or are prepared in a clean matrix at the laboratory according to the provider's instructions. The specific analyte spiking levels are unknown to the laboratory.

Evaluation Criteria and Corrective Action

PT results are evaluated by the provider and reported directly to the regulatory agency as well as to the laboratory. Any PT results which are reported as not acceptable are reviewed and corrective actions implemented as needed. Reports received from PT sample providers and corrective action documentation are kept on file.

F&BI does not send any PT sample, or portion of a PT sample, to another laboratory for any analysis. Also, F&BI does not knowingly receive any PT sample, or portion of a

PT sample, from another laboratory, or communicate with another laboratory concerning PT samples.

Table 12-1 QC Frequency and Acceptance Limits Summary

(For Accredited Analysis, Method requirements may supersede these.)

Quality Control Element	Frequency	Acceptance Limits
Method Detection Limit	Initially, quarterly, and with	40CFR Part 136, Appendix
(MDL)	substantial change to method or instrument.	B calculations.
Demonstration of Capability (DOC)	Annually for each analyst.	Average of replicates within method established control limits of true value, and not >20% RSD for each analyte.
Initial Calibration	Initially and if ICV or CCV fail.	Per method specific requirements.
Initial Calibration Verification (ICV/Second Source)	Following every initial calibration, prior to sample analysis.	Per method specific requirements.
Continuing Calibration Verification (CCV)	 When an initial calibration has not been performed: i) At the beginning and end of analysis of 20 samples (max). Concentrations vary. ii) At the beginning of 12 hour shift if internal calibration used. 	Per method specific requirements.
Method Blank (MB)	1 per preparation batch of 20 (or fewer) samples.	Concentration for each analyte below RL or method specific.
Laboratory Control Sample (LCS)	1 per preparation batch of 20 (or fewer) samples.	Per laboratory established control limits (or default limits.)
Matrix Spike (MS)	1 per preparation batch of 20 (or fewer) samples.	Per laboratory established control limits (or default limits.) Does not control batch.
Duplicate Analysis (Sample Duplicate (Dup), MSD or LCSD)	 per preparation batch of 20 (or fewer) samples. i) Dup or MSD if sufficient sample. ii) LCSD if not. 	Percent recovery per laboratory established control limits (or default limits.) RPD 0% to 30%. Dup and MSD do not control batch.
Surrogate	Each field and QC sample for accredited organic analyses.	Per laboratory established control limits (or default limits.)
Proficiency Testing (PT)	Twice per year per accredited	Per PT provider.

Samples method/analyte/ma	atrix.
---------------------------	--------

13.0 CORRECTIVE ACTIONS

Corrective actions may be implemented as a result of failure of quality control results to meet established criteria, failure of reported results to meet client's needs, or deviation from established policies and procedures in the SOPs and this QA manual. These are documented with the non-conformance report form which includes an investigation of the root cause, identification of possible corrective actions, and a description of the corrective action taken.

The QA officer reviews each non-conformance report form. This documentation is kept on file with each affected client report, and a copy is kept by the QA officer. During the annual internal audit (see section 16), the QA officer or other qualified F&B staff reviews all non-conformance report forms to look for chronic systematic problems that need more in-depth investigation and alternative corrective action consideration.

In addition, corrective actions may be implemented as a result of internal or external audit findings, or management review (see section 16). These are documented with the internal audit corrective action form, external audit correspondence, and the management review corrective action form respectively.

If corrective action procedures do not resolve or identify the problem, personnel will notify management for direction to take. The findings and actions taken are documented and sent to the QA officer or Technical Director for follow-up during an internal audit.

13.1 QC Analysis Failure

If any quality control results fail to meet established criteria, corrective action procedures are immediately implemented if possible. Corrective actions are identified by the individual responsible for a particular analytical method or instrument. In addition, the analyst performing data calculation or review may initiate corrective actions if needed. Corrective actions may include a review of calculations, a check of instrument maintenance, a review of analytical techniques, and reanalysis of affected samples. Table 13-1 has a general summary of QC analyses and corrective actions. Individual method SOPs detail method specific corrective actions. Corrective actions are documented by the analyst in the analysis records.

If, following corrective actions, quality control results still fail, then affected results are reported with appropriate qualifying flags and the analyst may use a non-conformance report form to further document the causes of the qualified data. In some cases it may not be possible to follow standard QC procedures and/or corrective actions. For example, if insufficient sample is provided, duplicate sample analysis, matrix spike analysis and/or sample re-extraction may not be possible. In these cases, all possible QC procedures are followed, reported data are qualified if needed, and the analyst uses the extraction worksheet, sequence tables, injection logs, and/or non-conformance report form to document.

If the quality control failure may require that analysis is halted for a particular method and/or instrument, it is the responsibility of the analyst to notify his/her supervisor. The supervisor then determines the required action and notifies the laboratory/technical director if analysis should be halted. The analysis can then be resumed only after approval from the laboratory/technical director.

13.2 Client Complaints

Any client complaints are resolved promptly. The project manager has primary responsibility for handing client complaints. Complaints which are not able to be resolved by the project manager may be referred to the laboratory/technical director or executive committee. Complaints are documented by the project manager using the non-conformance report form, client communication form, project notes macro, or a printed record of an e-mail correspondence.

13.3 Deviation from SOPs or QA Manual

Deviations from established policies and procedures as written in laboratory SOPs and this QA manual are documented using the extraction worksheet, sequence tables, injection logs, and/or other documents such as the non-conformance report form. A deviation may occur due to a specific client request, or due to laboratory circumstances.

13.4 Audit Findings

Corrective actions needed as a result of audit findings (internal or external) are initiated by the quality assurance manager or the laboratory/technical director. Audit related corrective actions may include providing additional staff training, updating SOPs or establishing new procedures. Internal audit corrective action documentation is kept on file with internal audit findings. External audit corrective actions are documented through correspondence with the auditor(s).

13.5 Record-Keeping Errors

Entries in records are not obliterated by methods such as erasures, overwritten files or markings. Corrections to record-keeping errors are made by one line marked through the error. The individual making the correction initials and dates the correction, and writes a brief explanation as needed. These criteria are also followed for electronically maintained records as applicable.

13.6 Corrective Actions Which Affect Reported Results

If audits or further data review indicate a substantial error in any data which has already been issued in a final report, the client is notified within 30 days and an amended report is issued if necessary.

Table 13-1 QC Corrective Actions

(For Accredited Analysis, Method requirements may supersede these.)

Quality Control Element	Corrective Action(s)	Documentation
Method Detection Limit (MDL)	Determine source of problem, correct, reanalyze (re-extract if necessary).	Instrument raw data.
Demonstration of Capability (DOC)	Determine source of problem, correct, reanalyze (re-extract if necessary).	Instrument raw data. DOC Certificate
Initial Calibration	Determine source of problem and recalibrate. Reanalyze any affected samples.	Instrument raw data. Flag sample results if not corrected. Non-Conformance Form if not corrected.
Initial Calibration Verification (ICV/Second Source)	Re-inject ICV. If ICV fails a second time, a new initial calibration is required. Reanalyze any affected samples.	Instrument raw data. Flag sample results if not corrected. Non-Conformance Form if not corrected.
Continuing Calibration Verification (CCV)	Determine source of problem and re-inject CCV. If second CCV fails, either correct problem and pass two consecutive CCVs, or a new initial calibration is required. Reanalyze any affected samples unless: i) CCV is high and sample is ND. ii) CCV is low and sample result is above regulatory/action limit.	Instrument raw data. Flag sample results if not corrected. Non-Conformance Form if not corrected.
Method Blank (MB)	Reduce background contamination. Re- extract and reanalyze MB and all affected samples in batch. Sample result can be reported if MB is <1/10 of sample result, or if sample is ND.	Instrument raw data. Flag MB and sample results if not corrected. Non-Conformance Form if not corrected.
Laboratory Control Sample (LCS/LCSD)	Determine source of problem. Correct and: i) If instrument related, reanalyze LCS and all affected samples in batch. ii) If spike related, re-extract and reanalyze LCS. iii) If other, re-extract and reanalyze LCS and all affected samples in batch.	Instrument raw data. Flag LCS and sample results if not corrected. Non-Conformance Form if not corrected.

Note: Verify calculations prior to other corrective actions.

Table 13-1 QC Corrective Actions (continued)

(For Accredited Analysis, Method requirements may supersede these.)

Quality Control	Corrective Action(s)	Documentation
Element		
Matrix Spike (MS)	Determine source of problem.	Instrument raw data.
	i) If instrument related, reanalyze MS and	Flag MS result if not
	all affected samples in batch.	corrected.
	ii) If spike related, re-extract and	Non-Conformance
	reanalyze MS.	Form if not corrected.
	iii) If LCS passes, flag failing MS result as	
	matrix effect.	
Duplicate Analysis	Determine source of problem.	Instrument raw data.
(Sample Duplicate	i) If instrument related, reanalyze	Flag duplicate result
(Dup), or MSD)	duplicate and all affected samples in batch.	if not corrected.
	ii) If other, re-extract and reanalyze	Non-Conformance
	sample and duplicate (or MS and MSD).	Form if not corrected.
	iii) If LCS passes, flag failing result as	
	matrix effect.	
Surrogate	Determine source of problem.	Instrument raw data.
	i) If instrument related, reanalyze sample.	Flag surrogate result
	ii) If spike related, re-extract and	if not corrected.
	reanalyze sample.	Non-Conformance
	iii) If matrix related, flag failing result as	Form if not corrected.
	matrix effect.	
Proficiency	Determine and correct source of problem.	PT provider report.
Testing (PT)	Pass minimum of 2 of last 3 for each	Corrective action
Samples	accredited method/analyte/matrix.	letters to regulatory
		agency.

Note: Verify calculations prior to other corrective actions.

14.0 DATA PROCESSING, VALIDATION, AND REPORTING

All analytical data reported by F&BI to a client in a final report is calculated, reviewed and validated, following established quality system procedures. Individual method SOPs describe specific calculation procedures. The following describes our general data reduction, validation and reporting procedures.

14.1 Data Processing and Review

Analytical results are generated from raw data by the analyst, using procedures specific to the analytical methods, and described in the appropriate method SOP. Results for most analyses are generated by computer. However, analysts usually enter data, such as sample volume/weight, to complete the calculations. Summary pages containing these entries are printed for review. Data generated is electronically transferred into the proper electronic form(s) for reporting. These forms are also printed for review.

For analyses which do not have computer generated data, results are hand entered into the computer for reporting. These results are printed and a 100% review of calculations and data entry is completed. If a particular result, which would normally be computer generated, is manually calculated (usually due to a manual integration) then the entire calculation is documented clearly so that the review analyst can perform a complete review.

Manual Integrations

Integration settings are adjusted to minimize the need for manual integrations. However, a manual integration is necessary if the automatic integration of the peak or integration area (for TPH analyses) is clearly affected (e.g. does not extend from baseline to baseline, peak is split, integration is inconsistent between full strength and diluted peak).

If manual integration is performed, this is clearly documented. The raw data affected by the re-integration is printed and included in the instrument data package along with the original integration, and any manual calculations which are done as a result, are documented. The analyst records his/her initials and the date the manual integrations were made. In addition, all manual integrations are reviewed carefully to check for bias.

Quality Control Results

The analyst also calculates and evaluates all quality control results. Analytical data for quality control samples (e.g. method blank, LCS, MS) are calculated and reviewed in the same manner as for all other samples. Results are evaluated using established acceptance criteria, and corrective actions are taken prior to releasing, as final, any associated sample results. After all calculations and QC evaluations are complete, the analyst signs the worksheet(s) and gives it to the calculation review analyst.

Calculation Review

An analyst, independent from the person performing the analysis, is responsible for a 100% review of all raw data, calculations, transcriptions (if needed) and results. Each worksheet reviewed is initialed. Corrections are reviewed by the calculations analyst, and any disagreements are resolved by the QA officer or Technical Director. Upon completion of review, worksheets are given to the project manager to generate a final report.

14.2 Analytical Data Reports

Analytical data and quality control data are summarized in standard report formats, either designed by F&BI or supplied by the client. The project manager combines the electronic files of reviewed analytical results to generate a final report. Prior to release of the report to the client, the project manager reviews and approves the entire report for completeness, and to ensure that any client-specified objectives were successfully achieved. The project manager then authorizes and electronically releases the final report file to office personnel to generate a hardcopy report. Specific procedures for generating a final analytical report are provided in the "Creating Reports" SOP. The following information is included in each final analytical data report issued by F&BI. The F&BI name, address and phone number, and project manager's name and electronic signature.

The client's project number/name, the F&BI project number, and date of issue (all on each page).

The sample identification provided by the client and the sample identification number assigned by F&BI

Chemical parameters analyzed, reported values, and units of measurement Reporting limit of the analytical procedure

The dates the samples were received and analyzed

A summary of quality control sample results

Footnotes referenced to specific data if required to explain/qualify reported values

Explanatory text or the cover letter may also include:

Person(s) receiving and transmitting the data

Documentation of samples which did not meet acceptance criteria when received

Brief discussion of samples analyzed and the analytical program

Discussion of any apparent data anomalies

Reference to specific accreditation requirements

Reports for Additional Results

If additional analysis is requested after a final report for a specific laboratory project has been issued, then those additional results are issued in a separate report. A statement that these are additional results for the project is included in the cover letter.

Reports Including Subcontracted Analysis

If any analysis is subcontracted to another laboratory, a statement is included in the cover letter and/or case narrative indicating the subcontracting laboratory and the analysis they performed. The original copy of the subcontracting laboratory's report is

provided to the client and a copy is kept with the F&BI project file. No subcontracted work is ever reported as being F&BI data.

Report Review

After the hardcopy data report is prepared, the report is subject to a complete review by another reviewer. Entries such as dates, sample IDs, names and addresses are reviewed. The reviewer completes a report review checklist and attaches it to the report. If any errors are found, they are noted and the report is given back to the project leader to correct.

The final draft is reviewed by the executive committee or its designee to assure that all of the steps listed to this point have been followed. He/She then initials the draft which is filed. After approval, a final report bearing the appropriate signatures is issued to the client.

Amending Issued Final Reports

After issuance of a final report, the laboratory report remains unchanged. If a report which has already been issued as final to the client is amended, the amended report is issued separately. A cover letter is included, which states that amended results are being provided. If needed, further explanation of the amendment is included in the cover letter. All amended reports receive final approval before being released to the client.

15.0 DOCUMENT CONTROL AND RECORDS MANAGEMENT

15.1 Document Control

Internally generated documents which are used to define and implement the quality system are controlled. This includes the Quality Assurance Manual, all SOPs and laboratory logbooks. Documents are controlled in two ways. Each document clearly indicates the effective date of the document, the revision number, and the signature(s) of the approving authority (revision number and signature may not be applicable for logbooks). In addition, a record is kept of who received a signed copy of each document.

Preparation of Controlled Documents

Quality system documents are written by the personnel most familiar with the procedures described. The author of the document is responsible for including the correct revision number and date. The documents are reviewed and released by the QA officer, laboratory/technical director and/or executive committee representative as applicable. They are implemented on the revision date indicated on the document. More specific procedures for writing and organizing quality system documents are described in the "Quality System Document Organization" SOP.

Office personnel are responsible for controlling logbooks. Laboratory logbooks are sequentially assigned a number, which is clearly written on the logbook. The name/use and starting date of the logbook are also written on the logbook and are recorded in the Master Log of Laboratory Logbooks. Completed logbooks are filed with office records, or with the associated instrument, if applicable.

Revision of Controlled Documents

Currently existing quality system documents are reviewed annually during the internal laboratory audit (see section 16). Documents may be revised due to changes initiated by an internal or external audit; or due to changes such as new instrumentation, updated instrument parameters, updated concentrations used for chemical standards etc. A new quality system document is generated if a new quality system procedure is implemented.

To ensure that the beginning and ending effective dates for a document are clearly documented, revision numbers are always whole numbers (starting with revision 1) which are increased by one whole number for each document revision. Therefore the beginning date of a particular revision is the ending date for the immediately previous revision.

Documentation of Controlled Documents

Office personnel are responsible for keeping a record of who received each signed controlled document. The Controlled Document Record includes the document name, a sequentially assigned number which is written on the document before releasing, the person (or company) the document was released to, and the date released. Unsigned copies of documents are not considered controlled.

15.2 Records Management

The purpose of the Records Management system is to standardize the organization, storage and retrieval of all data and documents pertinent to quality and the analytical process. Also, in many cases, F&BI project files must be legally defensible, that is, admissible by the courts and believed as fact. To fulfill these documentation requirements, F&BI maintains a Records Management System which meets the following criteria:

Data and documents are indexed and easily retrievable.

Files are secure.

A formal document inventory can be produced if required by the contract/project. Laboratory operation/QC documents are cross referenced to applicable projects. The system is documented in the Quality Assurance Manual and Standard Operating Procedures.

Specific regulatory or contractual requirements can be accommodated.

Analysis Records

Data generated using instruments driven by computers is stored on computer disks coded by the instrument number and date the samples were analyzed. Hard copies of all of the electronic data are also kept. For each instrument, a list of all samples analyzed for each date is kept for easy sample searching. For instruments not controlled by a computer, data are recorded in individual instrument logbooks.

Worksheets are documents filled out by extraction analysts as a sample is processed. These sheets contain measurements such as the weight of the sub-sample, identification and volume of solvent used for any extraction, and documentation of any dilutions or concentrations made. These worksheets are kept with our file copy of any report that is sent to a client.

Laboratory Files

Laboratory records/documents are of two types:

1) Project/Client Files - Documents which are specific to a project/client. All records pertaining to a specific project contain a reference to the laboratory project number which is assigned during sample check-in.

2) Laboratory Files - Documents which pertain to the overall functioning of the laboratory

Project/Client files contain the following:

Chain-of-Custody documents for the project

Extraction worksheets for the project

Electronic file of data generated by Analyst for each sample delivery group and analysis

Electronic file of compiled data for the results of analyses for each sample delivery group generated by Project Manager

Non-conformance report forms for the project

Contract files pertinent to a client

Communication records between project management and the client

Final reports submitted to the client

Laboratory files contain the following: Sample Check-in Logbook Raw instrument data, including calibration data Instrument maintenance records Internal and external audit records Training records QA Manual and SOPs Any other QA/QC documents pertaining to the overall functioning of the laboratory General office/business records

15.3 Archived Records

All files are stored at F&BI, in a safe and secure area, for a minimum of 5 years. Access to archived information is documented with an access log. After 5 years, records are purged only with approval from the executive committee representative.

15.4 Change of Ownership

If there is a change of ownership, records will be retained, and details of record availability will be specified in the transaction.

16.0 QUALITY SYSTEM AUDITS

Quality audits are an essential part of F&BI's quality system program. Two types of audits are used: system audits which qualitatively evaluate the operational details of the quality system program, and performance audits which quantitatively evaluate the outputs of the various measurement systems.

16.1 System Audits

Internal Audits

The QA officer arranges for annual internal audits to verify that laboratory operations continue to comply with the requirements of the quality system. These audits are carried out by trained and qualified personnel who are, wherever possible, independent of the activity to be audited. An internal audit of all or part of the system may also be performed at any time due to any circumstance which raises concern regarding compliance with established policies or procedures, or with the data quality.

Target dates for completion of any corrective action investigations resulting from an internal audit are set within a reasonable time frame so that, if necessary, laboratory practice can be changed and/or clients can be contacted. Where the audit findings indicate a substantial error in calibrations or test results, immediate corrective action is taken and any client whose work was involved is notified within 30 days in writing.

Audit findings and any corrective actions that arise from them are documented using the Internal Audit forms, which are included in Appendix E.

External Audits

F&BI is audited on a regular basis by state and independent auditors, as required for accreditation and by client contracts. External audits are documented through correspondence with the auditors.

Managerial Review

The laboratory/technical director conducts an annual review of the quality system and testing and calibration activities to ensure their continuing suitability and effectiveness, and to introduce any necessary changes or improvements in the quality system and laboratory operations.

The review takes account of reports from managerial and supervisory personnel, the outcome of recent internal and external audits, the results of interlaboratory comparisons or proficiency tests, any changes in the volume and type of work undertaken, feedback from clients, corrective actions, and other relevant factors. In addition, pro-active suggestions for preventive actions are included. These include either technical or quality system improvements which will reduce the likelihood of potential non-conformances.

Review findings and any corrective actions that arise from them are documented using the Managerial Review forms, which are included in Appendix E.

16.2 Performance Audits

In addition to periodic system audits, the quality of results is ensured through ongoing checks which monitor the quality of the laboratory's analytical activities. Examples of such checks are:

Internal quality control procedures, as described in section 12 above

Participation in proficiency testing programs, as described in section 12 above

Use of second source standards and/or certified reference materials

Replicate analysis using the same or different test methods

Re-testing of retained samples

Correlation of results for different but related analysis of a sample

Review of historical data from the same sample

17.1 Client Confidentiality

Strict client confidentiality is maintained at all times. No records or results are discussed with, or provided to, anyone other than the client unless the client has given specific permission. Clients are notified by the project manager or office personnel whenever any other party requests information about their records.

In addition, when clients require transmission of test results by facsimile, email or other electronic or electromagnetic means, care is taken to ensure that client confidentiality is maintained. To avoid accidental transmission to a different party, commonly used email addresses are included in an email address book, and commonly used fax numbers are pre-programmed. Also, in case of accidental transmission to the wrong party, email messages and facsimile cover sheets contain a message which states that the information is privileged, confidential, and intended only for the addressee named. Office personnel are responsible for maintaining email addresses and pre-programmed fax numbers.

17.2 Review of Requests, Tenders, and Contracts

Before agreeing to a written or oral contract to provide a client with environmental testing services, a review is conducted to ensure that F&BI has the capability and resources necessary to meet the client's requirements. For routine and other simple tasks, the project leader can provide an oral agreement. For more complex tasks, the laboratory/technical director conducts a review. This may include items such as review of previous proficiency testing results, and running trial testing to determine detection limits or other essential quality control requirements. The laboratory's current accreditation status, and any subcontracted work are also reviewed. The client is informed if, at any time before and during the agreement, F&BI is unable to fulfill the requirements of the contract. Records of written contracts, and other communication regarding the contract, are documented in the Client Report Template, and/or kept in the project/client files.

17.3 Specific Project Communication

After samples have been received, the F&BI project manager communicates with the client, when necessary, regarding sample receipt conditions, specific analysis needs, laboratory capability, and integrity of reported results. Communication is documented in the Project Notes macro, and/or with the Client Communication Record form, which is kept in the project/client files. In addition, any fax or email communication is also kept in the project/client files.

18.0 SUBCONTRACTING ANALYTICAL SAMPLES

It is the policy of F&BI not to subcontract work which we are normally able to perform. For requested analyses which we do not normally perform, the project manager informs the client of the need to subcontract. Work may also be subcontracted if we are temporarily unable to perform one of our normal analyses due to instrument malfunction, or if the client requires certification which we do not have. In these cases the same procedures are followed.

In those cases where we subcontract work, the results reported by the outside laboratory appear under the letterhead of the laboratory reporting the data. Data generated by another laboratory is never reported under our company letterhead. The original report from the contracted laboratory is provided to the client, and a copy is kept with the F&BI project file.

END OF DOCUMENT

APPENDIX A

LIST OF ADMINISTRATIVE SOPS AND QUALITY SYSTEM DOCUMENTS

LIST OF ADMINISTRATIVE SOPS AND QUALITY SYSTEM DOCUMENTS

Title	Location
Creating Reports	sops\admin\Reports
Data Integrity	Sops\admin\Data
	Integrity
Project Manager Procedure (includes Client Communication	sops\admin\Project
Record form)	Manager
Qualifiers	Sops\admin\Qualifier
Quality System Document Organization	sops\admin\Document
	Organization
Sample, Extract, and Waste Disposal	sops\admin\Disposal
Sample Receiving	sops\admin\Sample
	Receiving
Support Equipment Monitoring and Calibration	sops\admin\Support
	Equipment
Training Records (includes training forms)	sops\admin\Training
ADDITIONAL QUALITY SYSTEM DOC	
ADDITIONAL QUALITY SYSTEM DOC	UMENTS
Archive Access Log	forms\office\archive
Archive Access Log	forms\office\archive sops\Controlled
Archive Access Log Controlled Document Record	forms\office\archive sops\Controlled Document Record
Archive Access Log Controlled Document Record DOC Training Summary Database	forms\office\archive sops\Controlled Document Record fbi\nelap\doc_sum
Archive Access Log Controlled Document Record DOC Training Summary Database F&BI Certifications/Accreditations	forms\office\archive sops\Controlled Document Record fbi\nelap\doc_sum office records
Archive Access Log Controlled Document Record DOC Training Summary Database F&BI Certifications/Accreditations Final Report Checklist	forms\office\archivesops\ControlledDocument Recordfbi\nelap\doc_sumoffice recordsforms\chklist
Archive Access Log Controlled Document Record DOC Training Summary Database F&BI Certifications/Accreditations Final Report Checklist Internal Audit/Managerial Review Forms	forms\office\archive sops\Controlled Document Record fbi\nelap\doc_sum office records forms\chklist QAM Appendix E
Archive Access Log Controlled Document Record DOC Training Summary Database F&BI Certifications/Accreditations Final Report Checklist Internal Audit/Managerial Review Forms	forms\office\archive sops\Controlled Document Record fbi\nelap\doc_sum office records forms\chklist QAM Appendix E fbi\nelap\Lab
Archive Access Log Controlled Document Record DOC Training Summary Database F&BI Certifications/Accreditations Final Report Checklist Internal Audit/Managerial Review Forms	forms\office\archivesops\ControlledDocument Recordfbi\nelap\doc_sumoffice recordsforms\chklistQAM Appendix Efbi\nelap\LabOrganization Chart –
Archive Access Log Controlled Document Record DOC Training Summary Database F&BI Certifications/Accreditations Final Report Checklist Internal Audit/Managerial Review Forms Laboratory Organization/Personnel Qualifications	forms\office\archive sops\Controlled Document Record fbi\nelap\doc_sum office records forms\chklist QAM Appendix E fbi\nelap\Lab Organization Chart – Personnel Qualifications
Archive Access Log Controlled Document Record DOC Training Summary Database F&BI Certifications/Accreditations Final Report Checklist Internal Audit/Managerial Review Forms Laboratory Organization/Personnel Qualifications	forms\office\archive sops\Controlled Document Record fbi\nelap\doc_sum office records forms\chklist QAM Appendix E fbi\nelap\Lab Organization Chart – Personnel Qualifications forms\logbooks\
Archive Access Log Controlled Document Record DOC Training Summary Database F&BI Certifications/Accreditations Final Report Checklist Internal Audit/Managerial Review Forms Laboratory Organization/Personnel Qualifications Master Log of Laboratory Logbooks	forms\office\archive sops\Controlled Document Record fbi\nelap\doc_sum office records forms\chklist QAM Appendix E fbi\nelap\Lab Organization Chart – Personnel Qualifications forms\logbooks\ Master Log
Archive Access Log Controlled Document Record DOC Training Summary Database F&BI Certifications/Accreditations Final Report Checklist Internal Audit/Managerial Review Forms Laboratory Organization/Personnel Qualifications Master Log of Laboratory Logbooks Non-Conformance Report Form	forms\office\archive sops\Controlled Document Record fbi\nelap\doc_sum office records forms\chklist QAM Appendix E fbi\nelap\Lab Organization Chart – Personnel Qualifications forms\logbooks\ Master Log forms\nonconformance
Archive Access Log Controlled Document Record DOC Training Summary Database F&BI Certifications/Accreditations Final Report Checklist Internal Audit/Managerial Review Forms Laboratory Organization/Personnel Qualifications Master Log of Laboratory Logbooks Non-Conformance Report Form	forms\office\archive sops\Controlled Document Record fbi\nelap\doc_sum office records forms\chklist QAM Appendix E fbi\nelap\Lab Organization Chart – Personnel Qualifications forms\logbooks\ Master Log forms\nonconformance sops\Policy and Health
Archive Access Log Controlled Document Record DOC Training Summary Database F&BI Certifications/Accreditations Final Report Checklist Internal Audit/Managerial Review Forms Laboratory Organization/Personnel Qualifications Master Log of Laboratory Logbooks Non-Conformance Report Form	forms\office\archive sops\Controlled Document Record fbi\nelap\doc_sum office records forms\chklist QAM Appendix E fbi\nelap\Lab Organization Chart – Personnel Qualifications forms\logbooks\ Master Log forms\nonconformance
Archive Access Log Controlled Document Record DOC Training Summary Database F&BI Certifications/Accreditations Final Report Checklist Internal Audit/Managerial Review Forms Laboratory Organization/Personnel Qualifications Master Log of Laboratory Logbooks Non-Conformance Report Form Policy and Health & Safety Manual Quality Assurance Manual	forms\office\archive sops\Controlled Document Record fbi\nelap\doc_sum office records forms\chklist QAM Appendix E fbi\nelap\Lab Organization Chart – Personnel Qualifications forms\logbooks\ Master Log forms\nonconformance sops\Policy and Health & Safety Manual sops\QAM
	forms\office\archive sops\Controlled Document Record fbi\nelap\doc_sum office records forms\chklist QAM Appendix E fbi\nelap\Lab Organization Chart – Personnel Qualifications forms\logbooks\ Master Log forms\Policy and Health & Safety Manual
Archive Access Log Controlled Document Record DOC Training Summary Database F&BI Certifications/Accreditations Final Report Checklist Internal Audit/Managerial Review Forms Laboratory Organization/Personnel Qualifications Master Log of Laboratory Logbooks Non-Conformance Report Form Policy and Health & Safety Manual Quality Assurance Manual	forms\office\archive sops\Controlled Document Record fbi\nelap\doc_sum office records forms\chklist QAM Appendix E fbi\nelap\Lab Organization Chart – Personnel Qualifications forms\logbooks\ Master Log forms\nonconformance sops\Policy and Health & Safety Manual sops\QAM

Г

APPENDIX B

MAJOR ANALYTICAL EQUIPMENT

F&BI QAM Rev. 18, December 9, 2022

MAJOR ANALYTICAL EQUIPMENT

Make/Model	Туре	Identifier	Software
Agilent 5890	GC/FID	GC 1	ChemStation
Agilent 5890	GC/FID/PID	D/PID GC 2	
with Varian Archon	Autosampler	Autosampler	
and OI 4560	Purge & Trap		ChemStation
Agilent 5890	GC/FID/PID	GC 3	
with Varian Archon	Autosampler		
and OI 4560	Purge & Trap		ChemStation
Agilent 5890	GC/FID	GC 4	ChemStation
Agilent 5890	GC/TCD	GC 5	ChemStation
Agilent 5890	GC/FID	GC 6	ChemStation
Agilent 6890	GC/ECD/ECD	GC 7	EnviroQuant
Agilent 5890 with	GC/FID Headspace	GC 8	ChemStation
Tekmar 7000	Autosampler		
Agilent 6890	GC/ECD/ECD	GC 9	EnviroQuant
Agilent 6890	GC	GC/MS 3	
with Agilent 5973	MSD		EnviroQuant
Agilent 6890N	GC	GC/MS 4	
with Agilent 5973N	MSD		
and OI 7361	Autosampler		
and OI 4660	Purge & Trap		EnviroQuant
Agilent 6890	GC	GC/MS 6	
with Agilent 5973	MSD		EnviroQuant
Agilent 7890A	GC	GC/MS 7	
with Agilent 5975C	MSD		EnviroQuant
Entech	Preconcentrator		Maveric
Model #7200 CTS			
and Entech			
Model	Autosampler/		Entech
#7016D	Vacuum		
and Entech			
Model	Cleaning System		Entech
#3100D			
and Entech			
Model	Oven/Vacuum		Entech 3100D
#31-350ER	Flow Professor		Entech Flow
and Entech Model	FIOW Frotessor		Entech Flow Professor
#39-FP-01			1 TOTESSOF
and Entech	Digital Dilution		
DDS	System (DDS)		
Model	bystem (DDb)		
#PG7-50.00-PSIA			
π1 01-00.00-1 DIA	l	1	

MAJOR ANALYTICAL EQUIPMENT (Continued)

Make/Model	Туре	Identifier	Software
Agilent 6890N	GC	GC/MS 8	
with Agilent 7975C	MSD		EnviroQuant
Entech	Preconcentrator		Maveric
Model #7200 CTS			
and Entech			
Model	Autosampler/		Entech
#7016D	Vacuum		
and Entech			
Model	Cleaning System		Entech
#3100D			
and Entech			
Model	Oven/Vacuum		Entech 3100D
#31-350ER			
and Entech	Flow Professor		Entech 3100D
Model			
#39-FP-01			
and Entech	Digital Dilution		Entech Flow
DDS	System (DDS)		Professor
Model			
#PG7-50.00-PSIA			
Agilent 7890	GC	GC/MS 9	
with Agilent 5975C	MSD		EnviroQuant
Agilent 7890B	GC	GC/MS 10	EnviroQuant
with Agilent 5977A	MSD		
and Markes	Autosampler/		Maveric
Model # TD-	Concentrator		
100			
Agilent 7890B	GC	GC/MS 11	
with Agilent 5977B			
and OI 4100	Autosampler		
and OI 4760	Purge & Trap		EnviroQuant
Agilent 7890B	GC	GC/MS 12	EnviroQuant
with Agilent 5977B	MSD		Lintino quant
Agilent 7890B	GC	GC/MS 13	
with Agilent 5977B	MSD		
and OI 4100	Autosampler		
and OI 4760	Purge & Trap		EnviroQuant
Agilent 8890	GC	GC10, GC13,	EnviroQuant
		GC14 GC15,	Liiviioquaiti
Agilent 8890	GC	GC11	
with OI 4100	Autosampler		

and OI 4760	Purge & Trap		EnviroQuant
PerkinElmer NexION	ICP/MS	ICP/MS	PerkinElmer
300D			Syngistix
PerkinElmer S10	ICP/MS	ICP/MS	PerkinElmer
Autosampler	Autosampler		S10 Utility
PerkinElmer SC4DX	ICP/MS	ICP/MS	ESI SC
Autosampler	Autosampler		
Tekran 2600	CVAFS	CVAFS	Tekran
Hach TL2300	Turbidimeter	Turbidimeter	N/A
Mettle-Toledo Seven Compact	pH Meter	pH Meter	N/A
Rae Systems, Model# PGM-30 (2)	Hand Held PID	Hand Held PID	N/A
Buck Scientific, Model# HC-404 (1)	IR analyzer	IR analyzer	N/A
Beckman Model TJ-6 (2)	Centrifuge	Centrifuge	N/A
Vortex Genie 2, Model G-560 (3)	Vortex Mixer	Vortex Mixer	N/A
Buchi Syncore	Concentrator	Concentrator No.1	N/A
Buchi Syncore	Concentrator	Concentrator No.2	N/A
Buchi Syncore	Concentrator	Concentrator No.3	N/A
Thermo Scientific Precision Water Bath, Model #2849	Water Bath	Water Bath	N/A
Organomation Associates, Inc. Model #120 (1)	Water Bath	Water Bath	N/A
Sonics VibraCell	Sonicator	Sonicator No.1	N/A

MAJOR ANALYTICAL EQUIPMENT (Continued)

Make/Model	Туре	Identifier	Software
Branson Ultrasonics Corporation, Sonifier Model# 450	Sonicator	onicator Sonicator No.2	
Branson Ultrasonics Corporation, Sonifier Model# 450	Sonicator	Sonicator No.3	N/A
Sonics VibraCell	Sonicator	Sonicator No.4	N/A
Marathon Electric, Model 0523-N191Q- G588 (1)	Sonicator	Sonicator	N/A
Sonics and Material, Inc. Model# VC600 (1)	Sonicator	Sonicator	N/A
Brenson Ultrasonic Bath, Model #M3800	Cavitator	Cavitator No.1	N/A
Brenson Ultrasonic Bath, Model #M3800	Cavitator	Cavitator No.2	N/A
Torbal, Fulcrum Inc., Model #AGCN 100	Analytical Balance	Analytical Balance	N/A
AND Model #HA-120M (1) (white)	Analytical Balance	Analytical Balance	N/A
AND Model #EK-1200A (1)	Analytical Balance	Analytical Balance	N/A
Mettler Toledo, Model #ML1502E/03 (2)	Analytical Balance	Analytical Balance	N/A
Denver Instrument Model #XP-1500 (1)	Analytical Balance	Analytical Balance	N/A
AEAdams CoreBalance	Analytical Balance	Analytical Balance	N/A
US Electrical Motors, Model #E438 (1)	Tumbler	Tumbler	N/A
Emerson Electric Co. (2)	Vacuum Pump	Vacuum Pump	N/A
ThermoScientific Isotemp 100L Oven FA 120V	Oven	Oven	N/A
Stabil-Therm Gravity Oven Model# OV-484A (1)	Oven	Oven	N/A
Thermolyne Corporation, Model # F6000 (1)	Muffle Furnace	Muffle Furnace	N/A

MAJOR ANALYTICAL EQUIPMENT (Continued)

Make/Model	Туре	Identifier	Software
Barnstead/Thermolyne Model#1415M (1)	Muffle Furnace	Muffle Furnace	N/A
Thermolyne Corporation, Model # HPA2245M (2)	Hot Plate	Hot Plate	N/A
Corning Laboratory, Model#PC-300 (1)	Hot Plate	Hot Plate	N/A
Corning Laboratory Model #PC-420 (1)	Hot Plate/Stirrer	Hot Plate/Stirrer	N/A
CPI-MOD Block (70 mL) Digest Heater Block with Controller (2)	Digester/Heater Block	Digester/Heater Block	N/A
Julabo Labortachnik, Model#FC600 or equivalent (2)	Chilling Unit	Chilling Unit	N/A
PolyScience 6000 Series Chiller Model #0772046	Chilling Unit	Chilling Unit	N/A

APPENDIX C EQUIPMENT MAINTENANCE PROGRAM (GENERAL GUIDANCE)

EQUIPMENT MAINTENANCE PROGRAM (GENERAL GUIDANCE)

Instrument	Activity	Approximate Frequency
GC 1, GC 4, and GC 6	Clean FID	Weekly or as needed
(Semivolatile TPH)	Check Gases	Replace at 200 PSI
Agilent 5890 Series II	Change Liner	Every 200 injections or as needed
		due to response change
	Change Septum	Every 200 injections
	Replace Syringe	As needed if clogged or broken
	Clip Column	As needed to improve
	_	chromatography
	Replace Column	As needed
	Change Gold Seal	As needed
GC 2 and GC 3	Clean FID	Weekly or as needed
(Volatile TPH and BTEX	Check Gases	Replace at 200 PSI
by 8021B)	Clean PID	As needed
Agilent 5890 Series II	Replace PID Lamp	As needed to improve sensitivity
	Replace Column	As needed
OI 4560/4660 Concentrator	Check Purge Flow	Monthly
(GC 2, GC 3, GC/MS 4,	Replace Trap	As needed
GC/MS 9, and GC/MS 7)	Clean Sparge Cell	As needed
	Clean Sparge Filter	As needed if clogged
4552/4551 Autosampler	Tighten Syringe Nut	Once a week
(GC 2, GC 3, GC/MS 4,	Autocalibrate	As needed
GC/MS 9, and GC/MS 7)		
GC 7	Check Gases	Replace at 200 PSI
(PCBs, Organic Lead,	Change Liner	Every 200 injections or as needed
Canadian Pulp, EDB)		due to response change
Agilent 5890 Series II		
	Change Septum	Every 200 injections
	Replace Syringe	As needed if clogged or broken
	Clip Column	As needed to improve
	_	chromatography
	Replace Column	As needed
	Change Gold Seal	As needed
	Clean ECD	As needed to improve
		chromatography

EQUIPMENT MAINTENANCE PROGRAM (GENERAL GUIDANCE)

Instrument	Activity	Approximate Frequency
GC 5	Clean TCD	As needed
<i>(Helium Analyzer)</i> Agilent 5890 Series II	Check Gases	As needed
	Change Liner	As needed
	Change Septum	As needed
	Replace Syringe	As needed
	Clip Column	As needed
	Replace Column	As needed
GC/MS 3,	Check Gases	Replace at 200 PSI
GC/MS 6, GC/MS 8, and GC/MS 10 (Semivolatiles and Methamphetamine)	Change Liner	Every 200 injections or if tune fails due to degradation of DDT > 20
	Change Septum	Every 200 injections
	Replace Syringe	As needed if clogged or broken
	Clip Column	As needed to improve
		chromatography
	Replace Column	As needed
	Change Gold Seal	As needed
	Change Pump Oil	Every 6 months
	Clean Source	As needed
GC/MS 4, GC/MS 9, and	Check Gases	Replace at 200 PSI
GC/MS 7	Replace Column	As needed
(Volatiles)	Change Pump Oil	Every 6 months
	Clean Source	As needed
CVAFS (Mercury)	Clean Liquid Gas Separator	Before each run
	Clean Cuvette	As needed
	Replace Lamp	As needed
	Change Tubing	As needed
ICP/MS	Change Torch	As needed
(Metals)	Change Tubing	As needed
	Change Coolant	As needed
	Clean Cones	As needed

APPENDIX D

SAMPLE CONTAINERS, PRESERVATION, AND HOLDING TIMES

F&BI QAM Rev. 18, December 9, 2022

SAMPLE CONTAINERS, PRESERVATION, AND HOLDING TIMES

Parameter	Method	Matrix	Minimum Sample Volume	Container	Preservation	Maximum Holding Time
			Organic A	analysis		
Diesel Range Organics (Extractable	8015M NWTPH-Dx	Water	500 mL	500 mL glass	*Cool, ≤6°C	*7 days to extract, 40 days after extr.
	AK 102	Water	1 L	1 L glass		
TPH)	8015M NWTPH-Dx AK102/103	Soil	50 grams	4 oz glass	Cool, ≤6°C	14 days to extract, 40 days after extr.
Gasoline Range Organics (Purgable TPH)	8015M NWTPH-Gx AK101	Water	40 mL	40 mL VOA	Cool, ≤6°C, HCl to pH<2, no headspace	14 days
	8015M NWTPH-Gx	Soil	20 grams	3 x 5035 kit or MeOH pres. vial	Cool, ≤6°C/Freeze <- 7°C	14 days
	AK101	Soil	app. 50 g	4 oz glass septum top	Methanol	28 days
HCID	NWTPH- HCID	Water	500 mL	500 mL glass	Cool, ≤6°C	7 days to extract, 40 days after extr.
		Soil	50 grams	4 oz glass	Cool, ≤6°C	14 days
HEM (O&G), SGT-HEM	1664	Water	1 Liter	1 L glass	$\begin{array}{l} \text{Cool}, \leq \!\!6^{\circ}\text{C}, \\ \text{H}_2\text{SO}_4 \text{ to } \text{pH} \!\!< \!\!2 \end{array}$	28 days
PCBs	8082A	Water	1 Liter	1 L glass	$Cool, \leq 6^{\circ}C$	none
	8082A	Soil	50 grams	4 oz glass	Cool, ≤6°C	none
PNAs (PAHs)	8270D or 8270D SIM	Water	500 mL	500 mL glass	Cool, ≤6°C	7 days to extract, 40 days after extr.
	8270D or 8270D SIM	Soil	50 grams	4 oz glass	Cool, ≤6°C	14 days to extract, 40 days after extr.
Purgable Aromatic Hydrocarbons	8021B or AK101	Water	40 mL	40 mL VOA	Cool, ≤6°C, HCl to pH<2, no headspace	14 days
(BTEX, MTBE)	8021B	Soil	20 grams	3 x 5035 kit or MeOH pres. vial	Cool, ≤6°C/Freeze <- 7°C	14 days
	AK101	Soil	app. 50 g	4 oz glass septum top	Methanol	28 days
Semivolatile Organic	8270D	Water	1 Liter	1 L glass	Cool, ≤6°C	7 days to extract, 40 days after extr.
Compounds (SVOCs, BNAs)	8270D	Soil	50 grams	4 oz glass	Cool, ≤6 °C	14 days to extract, 40 days after extr.

SAMPLE CONTAINERS, PRESERVATION, AND HOLDING TIMES

Parameter	Method	Matrix	Minimum Sample Volume	Container	Preservation	Maximum Holding Time
Organic Analysis (Continued)						
Volatile Organic Compounds	8260C	Water	40 mL	40 mL VOA	Cool, ≤6°C, HCl to pH<2, no headspace	14 days
(VOCs)	8260C	Soil	10 grams	40 mL VOA	Freeze within 48 hrs., ≤0°C	14 days

* For NWTPH-Dx and AK102 methods, if preserved with HCl or H_2SO_4 to pH<2, holding time is 14 days to extract.

SAMPLE CONTAINERS, PRESERVATION, AND HOLDING TIMES

Parameter	Method	Matrix	Minimum Sample Volume	Container	Preservation	Maximum Holding Time
			Inorganic	Analysis		
Alkalinity	SM2320B	Water	100 mL	500 mL poly	Cool, ≤6°C	14 days
BOD	405.1	Water	1 Liter	1 L glass	Cool, ≤6°C	48 hours
Chloride	300.0	Water	100 mL	500 mL poly	Cool, ≤6°C	28 days
COD	410.4	Water	100 mL	500 mL poly	H_2SO_4 to pH<2	28 days
Conductivity	120.1	Water	100 mL	500 mL poly	Cool, ≤6°C	28 days
Cyanide, total	335.2	Water	1 Liter	1 L glass	NaOH to pH 12	14 days
Fluoride	300.0	Water	100 mL	500 mL poly	Cool, ≤6°C	28 days
Hardness	SM2340B	Water	100 mL	500 mL poly	HNO ₃ to pH,<2	6 months
Nitrate	300.0	Water	100 mL	500 mL poly	Cool, ≤6°C	48 hours
Nitrite	300.0	Water	100 mL	500 mL poly	Cool, ≤6°C	48 hours
Nitrate-Nitrite	353.2	Water	100 mL	500 mL poly	Cool, $\leq 6^{\circ}$ C, H ₂ SO ₄ to pH<2	28 days
pH	9040/150.1	Water	20 mL	500 mL poly	None	As soon as possible
	9045	Soil	20 grams	4 oz glass	None	28 days
Phosphorus, total	365.2	Water	100 mL	500 mL poly	Cool, ≤6°C, H₂SO₄ to pH<2	28 days
Sulfate	300.0	Water	100 mL	500 mL poly	Cool, ≤6°C	28 days
Sulfide	376.2	Water	500 mL	500 mL poly	Cool, ≤6°C ZnAcetate plus NaOH to pH>9	7 days
Sulfite	377.1	Water	100 mL	500 mL poly	None	24 hours
Total Dissolved Solids (TDS)	SM2540C/ 160.1	Water	500 mL	500 mL poly	Cool, ≤6°C	7 days
Total Organic Carbon (TOC)	415.1/ 9060M	Water	100 mL	500 mL poly	H_2SO_4 to pH<2	28 days
Total Suspended Solids (TSS)	SM2540D	Water	250 mL	500 mL poly	Cool, ≤6°C	7 days
Turbidity	SM2130B	Water	20 mL	500 mL poly	Cool, ≤6°C	48 hours
	1		Metals A	-		
Metals (except Cr VI and Mercury)	200.8/6020 or 6010	Water	200 mL	500 mL poly or glass	HNO ₃ to pH<2 at least 24 hours prior to analysis	6 months
	200.8/6020 or 6010	Soil	20 grams	4 oz glass	Cool, ≤6°C	6 months
Chromium VI	SM3500Cr	Water	100 mL	500 mL poly	Cool, ≤6°C	24 hours
	7196A	Soil	50 grams	4 oz glass	Cool, ≤6°C	30 days
Mercury	1631/200.8/ 6020/7040	Water	125 mL	250 mL poly, fluoropolymer, or glass	HNO ₃ to pH<2	28 days (48 hours if not preserved)
	1631/200.8/ 6020/7041	Soil	50 grams	4 oz glass	Cool, ≤6°C	28 days

APPENDIX E

INTERNAL AUDIT/MANAGERIAL REVIEW FORMS

F&BI QAM Rev. 18, December 9, 2022

Summary

<u>Areas audited</u>

1. Quality System:		2. Support	Equipment 🛛		
Quality Assurance Manual and S (attach "List of Current SOPs" with revi					
3. Non-Conformance reports (revi	iew) 🛛	4. Project Managem	nent/Reports \Box		
5. Sample receiving, storage, disp	oosal	6. Document Contro	ol/Training		
7. Extractions: Inc. Organic Inc. 3510 Inc. 3550 Inc. 3580 Inc. 3630 Inc.	organic 200.8 [1631 [3005 [3050 [Volatil 503 503 358	30 🗆 35 🗆		
 8. Analysis/Calculations: 8260 RSK-175 8270 1664 8082 Methamphetam 524.2 Hardness 8011 TPHG/BTEX 8081 Other Total number of corrective action 		TPHD□TSS□pH□Spec. Grav.□Turbidity□	200.8 6020 1631 TO-15 TO-17		
Comments:					
Does any non-conformance/corrective action require further notification? Yes No No (If yes, explain)					
Attach all internal audit checksheets and corrective action forms and file in the internal QA/QC audit folder.					
QA Officer's Signature		Date Audit Review Completed_			

Area: Sample receiving, storage, disposal

Date:	Auditor:	Person(s) Audited:	
		<u>YES</u>	<u>NO</u>
Is the Master Sa	ample Log-In book in order?		
Are COCs filled	out correctly during sample check-in?		
Are all samples/	projects traceable, i.e. labeled?		
Are samples stor	red in the correct refrigerators?		
Are refrigerator	temperatures recorded daily?		
Are standards/se	olvents logged in?		
Are sample disp	osal records kept?		
Disposal Area:			
Does each drum	have an up to date contents list?		
Are drums prope	erly labeled?		
Are waste mater	rials contained properly in each drum?		
Are waste dispos	sal records kept?		
Are all prior ext	ernal and internal findings addressed?		
Fill out a cor	rective action form for any "no" answers	s and for anything else o	as needed.
Number of corre	ective actions given: CON	IMENTS	

Area: Extractions				
Organic \Box Inc	organic \Box		Volatiles [
Method(s):				
			on(s)	
Date: Auditor:		Audi	ted:	
		<u>YES</u>	<u>NO</u>	<u>N/A</u>
Are waste containers properly labeled and	stored?			
Was any new equipment properly validate to use?	d prior			
Are manufacturer's certificates which veri calibration/accuracy available?	fy			
Are analytical balances checked daily?				
Are autopipets calibrated at least monthly	?			
Are bottle top dispensers calibrated at leas	st monthly?			
Is the oven temperature recorded daily?				
Is the water bath temperature recorded da	uly?			
Is the hot block temperature recorded dail	y?			
Is equipment which falls out of calibration repaired or taken out of service?				
Are all prior external and internal finding	s addressed?			
Fill out a corrective action form for any	"no" answers	and for an	ything else a	s needed.
Number of corrective actions given:	_ COM	IMENTS		

Area: Analysis/Calculations Method:		
Date: Auditor:	Person(s) Audited:	
	<u>YES</u>	<u>NO</u>
Are standards traceable to a certified source?		
Are standards labeled with an expiration date?		
Are standards taken out of use after the expiration date?		
Do initial calibrations meet the method requirements?		
Are initial calibrations verified with a second source standa	ard?	
Are initial calibrations verified with continuing calibration verification standards?		
Do QC sample results (method blanks, LCS, MS) meet the method requirements?		
Are corrective actions taken for any result which falls outside of acceptance criteria?		
Is the SOP up to date?		
Are instrument maintenance logs up to date?		
Are MDLs up to date?		
Are reporting limits based on MDLs?		
Are data calculations based on the initial calibration?		
Is data flagged with qualifiers if necessary?		
Are all prior external and internal findings addressed?		
Fill out a corrective action form for any "no" answers and	l for anything else	as needed.
Number of corrective actions given: COMME	NTS	

Area: Project Management/Reports

Date: Auditor:	Person(s) Audited:	
	YES	<u>8 NO</u>
Are extraction worksheets filled out complete	ely and clearly?	
Are capability issues communicated to the cl clearly documented?	ient and	
Are any changes to the COC initialed/dated person requesting the change clearly indicated		
Are the subcontracted samples documented t	o client?	
Is the Non-Conformance form used to docum	ent client complaints?	
Are subcontract lab reports forwarded without client, and clearly identified in our final report		
Are amended reports clearly identified?		
Are additional reports clearly identified?		
Are draft results/reports clearly identified?		
Are flags from analysts left as is?		
Is data flagged in an unambiguous manner?		
Is there a case narrative when the validity of is in question?	the data	
Are all prior external and internal findings a	ddressed?	
Fill out a corrective action form for any "n	o" answers and for anything	else as needed.
Number of corrective actions given:	COMMENTS	

Area: Document Control/Training

Date:	Auditor:	Person(s) Audited:	
		<u>YES</u>	<u>NO</u>
Is the employeed si	gnature list up to date?		
Are all logbooks nu of Laboratory Logbo	mbered and listed in the Master Log poks?		
Is the Controlled De of controlled docum	ocument Record used to track distribution ents?	n 	
Is the Archive Acce	ss Log used?		
Is the List of Curre	nt SOPs up to date?		
Are the Current SO	P binders up to date?		
Do Employee Attest revision numbers?	tation forms list current SOPs and		
Have employees ini revision of all appli	tialed Attestation forms for the current cable SOPs?		
Are DOCs complete	e and clearly identified?		
Is the DOC training	g summary database up to date?		
Are Laboratory Org summaries up to da	ganization and Personnel Qualifications ate?		
Is current accredita	tion summary up to date?		
Are all prior extern	al and internal findings addressed?		
Fill out a corrective	action form for any "no" answers and for	anything else as	needed.

 Number of corrective actions given:
 COMMENTS

Area: Support Equipment

Date:	Auditor:	Perso Audit	· · /	
			<u>YES</u>	<u>NO</u>
Are primary refere	ence weights and thermome	ters clearly labeled?		
Are standards NIS	ST traceable?			
Are daily standard	ls referenced in logbooks?			
0 (igerator, water bath, hot blo ompleted as required?	ck, oven, balance		
e ,	igerator, water bath, hot blo ound or in a 3 ring binder?	ck, oven, balance		
	apport equipment (thermometric) ers, hot blocks, etc.) clearly l	· · · ·		
If any equipment i and clearly labeled	is out of specifications, is it t d as such?	aken out of service		
Are all prior exter	nal and internal findings ad	dressed?		
Fill out a correc	ctive action form for any "no	answers and for any	thing else o	as needed.
Number of correct	ive actions given:	COMMENTS		

INTERNAL QA/QC AUDIT CORRECTIVE ACTION

Area/Analysis				
Corrective action given to (name	e):			
Given by (name): (Keep a copy of this form for tracking)				
Date given:	Target res (set based on	ponse date: 1 potential need to n	notify clients and	on work load)
Description of non-compliance:_				
Description of root cause and ree				
Specific documentation required documentation attached.)	l: (Return thi	s form to the auc	ditor with the r	required
Corrective action reviewed and a	approved:			
QC Officer (or designee):			Date:	
(Return this form to QC officer a	along with att	ached document	ation)	
FEDIAM Por 18 December 0 2022	Eo		т	ACM 919

QUALITY SYSTEM MANAGERIAL REVIEW

Date:	Auditor:			_
Review of Calendar Year	20			
Write comments, as needed,	in a separate file and at	ctach.		
1. Review of most recent int	ernal audit (Date(s))	
All areas audited			Yes	No 🗌
Corrective actions implement	ited and documented		Yes	No 🗆
2. Review of non-conforman	ce reports			
Corrective actions implement	ited and documented		Yes 🗆	No 🗌
3. Review of proficiency test	ting (PT) samples			
Analysis completed two time (for NELAP accredited analy		er matrix	Yes	No 🗌
Corrective actions implement	ated and documented		Yes	No 🗌
4. Review of current accredi	tation status.			
5. Review of recent audits/a	ssessments by external	bodies.		
External audit(s) by: State/	Company		Date	
Corrective actions implement	ated and documented.		Yes \Box	No 🗌
6. If audits or data review r	esulted in changes to pro	eviously repor	ted data, we	re
affected clients notified w	vithin 30 days?	Yes 🗆	No 🗌	n/a 🗌
7. Changes in volume and/o	r type of work undertak	en which may	affect qualit	у.
8. Feedback from clients reg	garding quality. (Includ	e review of an	y client comp	olaints.)
9. Other relevant factor(s) v	which may affect quality			
10. Pro-active preventive ac	tions to avoid potential	non-conformai	nces.	

MANAGERIAL REVIEW CORRECTIVE ACTION

Area/Analysis	-
Corrective action given to (name	e):
Given by (name): (Keep a copy for tracking)	
Date given:	Target Response Date:
Description of non-compliance:	
Description of required correctiv	re action:
Specific documentation required documentation attached.)	: (Return this sheet to the auditor with the required
Corrective action reviewed and a	approved:
Name:	Date:
File along with attached docume	entation in the management review folder.

APPENDIX F

DEFINITIONS

F&BI QAM Rev. 18, December 9, 2022

DEFINITIONS

Acceptance Criteria: specified limits placed on characteristics of an item, process, or service defined in requirement documents. (ASQC)

Accreditation: the process by which an agency or organization evaluates and recognizes a laboratory as meeting certain predetermined qualifications or standards, thereby accrediting the laboratory. In the context of the National Environmental Laboratory Accreditation Program (NELAP), this process is a voluntary one. (NELAC)

Accrediting Authority: the Territorial, State, or federal agency having responsibility and accountability for environmental laboratory accreditation and which grants accreditation. (NELAC)

Accuracy: the degree of agreement between an observed value and an accepted reference value. Accuracy includes a combination of random error (precision) and systematic error (bias) components which are due to sampling and analytical operations; a data quality indicator. (QAMS)

Analyst: the designated individual who performs the "hands-on" analytical methods and associated techniques and who is the one responsible for applying required laboratory practices and other pertinent quality controls to meet the required level of quality. (NELAC)

Audit: a systematic evaluation to determine the conformance to quantitative *and qualitative* specifications of some operational function or activity. (EPA-QAD)

Batch: environmental samples that are prepared and/or analyzed together with the same process and personnel, using the same lot(s) of reagents. A **preparation batch** is composed of one to 20 environmental samples of the same matrix, meeting the above mentioned criteria and with a maximum time between the start of processing of the first and last sample in the batch to be 24 hours. (NELAC Quality Systems Committee)

Blank: a sample that has not been exposed to the analyzed sample stream in order to monitor contamination during sampling, transport, storage or analysis. The blank is subjected to the usual analytical and measurement process to establish a zero baseline or background value and is sometimes used to adjust or correct routine analytical results. Blanks include:

<u>Equipment Blank</u>: a sample of analyte-free media which has been used to rinse common sampling equipment to check effectiveness of decontamination procedures. (NELAC)

<u>Field Blank</u>: blank prepared in the field by filling a clean container with pure deionized water and appropriate preservative, if any, for the specific sampling activity being undertaken. (EPA OSWER) <u>Instrument Blank</u>: a clean sample (e.g., distilled water) processed through the instrumental steps of the measurement process; used to determine instrument contamination. (EPA-QAD)

<u>Method Blank</u>: a sample of a matrix similar to the batch of associated samples (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences are present at concentrations that impact the analytical results for sample analyses. (NELAC) <u>Reagent Blank</u>: (method reagent blank): a sample consisting of reagent(s), without the target analyte or sample matrix, introduced into the analytical procedure at the appropriate point and carried through all subsequent steps to determine the contribution of the reagents and of the involved analytical steps. (QAMS)

Blind Sample: a sub-sample for analysis with a composition known to the submitter. The analyst/laboratory may know the identity of the sample but not its composition. It is used to test the analyst's or laboratory's proficiency in the execution of the measurement process. (NELAC)

Calibration: to determine, by measurement or comparison with a standard, the correct value of each scale reading on a meter, instrument, or other device. The levels of the applied calibration standard should bracket the range of planned or expected sample measurements. (NELAC)

Calibration Curve: the graphical relationship between the known values, such as concentrations, of a series of calibration standards and their instrument response. (NELAC)

Calibration Standard: a substance or reference material used to calibrate an instrument. (QAMS)

Certified Reference Material (CRM): a reference material one or more of whose property values are certified by a technically valid procedure, accompanied by or traceable to a certificate or other documentation which is issued by a certifying body. (ISO Guide 30 - 2.2)

Chain of Custody Form: record that documents the possession of the samples from the time of collection to receipt in the laboratory. This record generally includes: the number and types of containers; the mode of collection; collector; time of collection; preservation; and requested analyses. (NELAC)

Confirmation: verification of the identity of a component through the use of an approach with a different scientific principle from the original method. These may include, but are not limited to: Second column confirmation, Alternate wavelength, Derivatization, Mass spectral interpretation, Alternative detectors or, Additional cleanup procedures. (NELAC)

Conformance: an affirmative indication or judgment that a product or service has met the requirements of the relevant specifications, contract, or regulation; also the state of meeting the requirements. (ANSI/ASQC E4-1994)

Corrective Action: the action taken to eliminate the causes of an existing nonconformity, defect or other undesirable situation in order to prevent recurrence. (ISO 8402)

Data Audit: a qualitative and quantitative evaluation of the documentation and procedures associated with environmental measurements to verify that the resulting data are of acceptable quality (i.e., that they meet specified acceptance criteria). (NELAC)

Data Reduction: the process of transforming raw data by arithmetic or statistical calculations, standard curves, concentration factors, etc., and collation into a more useable form. (EPA-QAD)

Demonstration of Capability: a procedure to establish the ability of the analyst to generate acceptable accuracy. (NELAC)

Document Control: the act of ensuring that documents (and revisions thereto) are proposed, reviewed for accuracy, approved for release by authorized personnel, distributed properly and controlled to ensure use of the correct version at the location where the prescribed activity is performed. (ASQC)

Holding Times (Maximum Allowable Holding Times): the maximum times that samples may be held prior to analysis and still be considered valid or not compromised. (40 CFR Part 136)

Internal Standard: a known amount of standard added to a test portion of a sample as a reference for evaluating and controlling the precision and bias of the applied analytical method. (NELAC)

Laboratory: a body that calibrates and/or tests. (ISO 25)

Laboratory Control Sample (LCS): a sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes. It is generally used to establish intralaboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system. (NELAC)

Laboratory Control Sample Duplicate (LCSD): a second replicate LCS prepared in the laboratory and analyzed to obtain a measure of the precision of the recovery for each analyte. (QAMS)

Matrix: the substrate of a test sample.

Laboratory Duplicate: aliquots of a sample taken from the same container under laboratory conditions and processed and analyzed independently. (NELAC)

Matrix Spike (MS): a sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. Matrix spikes are used, for example, to determine the effect of the matrix on a method's recovery efficiency. (QAMS)

Matrix Spike Duplicate (MSD): a second replicate matrix spike prepared in the laboratory and analyzed to obtain a measure of the precision of the recovery for each analyte. (QAMS)

Method: see Test Method

Method Detection Limit: the minimum concentration of a substance (an analyte) that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix containing the analyte. (40 CFR Part 136, Appendix B)

National Institute of Standards and Technology (NIST): an agency of the US Department of Commerce's Technology Administration that is working with EPA, States, NELAC, and other public and commercial entities to establish a system under which private sector companies and interested States can be accredited by NIST to provide NIST-traceable proficiency testing (PT) to those laboratories testing drinking water and wastewater. (NIST)

National Environmental Laboratory Accreditation Conference (NELAC): a voluntary organization of State and Federal environmental officials and interest groups purposed primarily to establish mutually acceptable standards for accrediting environmental laboratories. A subset of NELAP. (NELAC)

National Environmental Laboratory Accreditation Program (NELAP): the overall National Environmental Laboratory Accreditation Program of which NELAC is a part. (NELAC)

National Voluntary Laboratory Accreditation Program (NVLAP): a program administered by NIST that is used by providers of proficiency testing to gain accreditation for all compounds/matrices for which NVLAP accreditation is available, and for which the provider intends to provide NELAP PT samples. (NELAC)

Performance Audit: the routine comparison of independently obtained qualitative and quantitative measurement system data with routinely obtained data in order to evaluate the proficiency of an analyst or laboratory. (NELAC)

Performance Based Measurement System (PBMS): a set of processes wherein the data quality needs, mandates or limitations of a program or project are specified and serve as criteria for selecting measurement processes which will meet those needs in a cost-effective manner. (NELAC)

Precision: the degree to which a set of observations or measurements of the same property, obtained under similar conditions, conform to themselves; a data quality indicator. Precision is usually expressed as standard deviation, variance or range, in either absolute or relative terms. (NELAC)

Preservation: refrigeration and/or reagents added at the time of sample collection (or later) to maintain the chemical and/or biological integrity of the sample. (NELAC)

Proficiency Testing: a means of evaluating a laboratory's performance under controlled conditions relative to a given set of criteria through analysis of unknown samples provided by an external source. (NELAC)

Proficiency Testing Study Provider: any person, private party, or government entity that meets stringent criteria to produce and distribute NELAC PT samples, evaluate study results against published performance criteria and report the results to the laboratories, primary accrediting authorities, PTOB/PTPA, and NELAP. (NELAC)

Proficiency Test Sample (PT): a sample, the composition of which is unknown to the analyst and is provided to test whether the analyst/laboratory can produce analytical results within specified acceptance criteria. (QAMS)

Protocol: a detailed written procedure for field and/or laboratory operation (e.g., sampling, analysis) which must be strictly followed. (EPA-QAD)

Quality Assurance: an integrated system of activities involving planning, quality control, quality assessment, reporting and quality improvement to ensure that a product or service meets defined standards of quality with a stated level of confidence. (QAMS)

Quality Assurance [Project] Plan (QAPP): a formal document describing the detailed quality control procedures by which the quality requirements defined for the data and decisions pertaining to a specific project are to be achieved. (EPA-QAD)

Quality Control: the overall system of technical activities whose purpose is to measure and control the quality of a product or service so that it meets the needs of users. (QAMS)

Quality Control Sample: an uncontaminated sample matrix spiked with known amounts of analytes from a source independent from the calibration standards. It is generally used to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system. (EPA-QAD)

Quality Manual: a document stating the management policies, objectives, principles, organizational structure and authority, responsibilities, accountability, and implementation of an agency, organization, or laboratory, to ensure the quality of its product and the utility of its product to its users. (NELAC)

Quality System: a structured and documented management system describing the policies, objectives, principles, organizational authority, responsibilities, accountability, and implementation plan of an organization for ensuring quality in its work processes, products (items), and services. The quality system provides the framework for planning, implementing, and assessing work performed by the organization and for carrying out required QA and QC. (ANSI/ASQC E-41994)

Quantitation Limits: levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported at a specified degree of confidence. (NELAC)

Range: the difference between the minimum and the maximum of a set of values. (EPA-QAD)

Raw Data: any original factual information from a measurement activity or study recorded in a laboratory notebook, worksheets, records, memoranda, notes, or exact copies thereof that are necessary for the reconstruction and evaluation of the report of the activity or study. Raw data may include photography, microfilm or microfiche copies, computer printouts, magnetic media, including dictated observations, and recorded data from automated instruments. If exact copies of raw data have been prepared (e.g., tapes which have been transcribed verbatim, data and verified accurate by signature), the exact copy or exact transcript may be submitted. (EPA-QAD)

Reference Material: a material or substance one or more properties of which are sufficiently well established to be used for the calibration of an apparatus, the assessment of a measurement method, or for assigning values to materials. (ISO Guide 30-2.1)

Reference Method: a method of known and documented accuracy and precision issued by an organization recognized as competent to do so. (NELAC)

Reference Standard: a standard, generally of the highest metrological quality available at a given location, from which measurements made at that location are derived. (VIM-6.08)

Replicate Analyses: the measurements of the variable of interest performed identically on two or more sub-samples of the same sample within a short time interval. (NELAC)

Reporting Limits: routinely reported lower limits of quantitation, typically 2 to 10 times the MDL.

Sample Tracking: procedures employed to record the possession of the samples from the time of sampling until analysis, reporting, and archiving. These procedures include the use of a Chain of Custody Form that documents the collection, transport, and receipt of compliance samples to the laboratory. In addition, access to the laboratory is limited and controlled to protect the integrity of the samples. (NELAC) **Selectivity:** the capability of a test method or instrument to respond to a target substance or constituent in the presence of non-target substances. (EPA-QAD)

Sensitivity: the capability of a method or instrument to discriminate between measurement responses representing different levels (e.g., concentrations) of a variable of interest. (NELAC)

Spike: a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery efficiency or for other quality control purposes. (NELAC)

Standard Operating Procedures (SOPs): a written document which details the method of an operation, analysis or action whose techniques and procedures are thoroughly prescribed and which is accepted as the method for performing certain routine or repetitive tasks. (QAMS)

Standardized Reference Material (SRM): a certified reference material produced by the U.S. National Institute of Standards and Technology or other equivalent organization and characterized for absolute content, independent of analytical method. (EPA-QAD)

Supervisor (however named): the individual(s) designated as being responsible for a particular area or category of scientific analysis. This responsibility includes direct day-to-day supervision of technical employees, supply and instrument adequacy and upkeep, quality assurance/quality control duties and ascertaining that technical employees have the required balance of education, training and experience to perform the required analyses. (NELAC)

Surrogate: a substance with properties that mimic the analyte of interest. It is unlikely to be found in environment samples and is added to them for quality control purposes. (QAMS)

Technical Director: individual(s) who has overall responsibility for the technical operation of the environmental testing laboratory. (NELAC)

Test: a technical operation that consists of the determination of one or more characteristics or performance of a given product, material, equipment, organism, physical phenomenon, process or service according to a specified procedure. The result of a test is normally recorded in a document sometimes called a test report or a test certificate. (ISO/IEC Guide 2-12.1, amended)

Test Method: an adoption of a scientific technique for a specific measurement problem, as documented in a laboratory SOP or published by a recognized authority. (NELAC)

Testing Laboratory: a laboratory that performs tests (ISO/IEC Guide 2-12.4)

The NELAC Institute (TNI): A non-profit organization whose mission is to foster the generation of environmental data of known and documented quality through an open, inclusive and transparent process that is responsive to the needs of the community. (TNI)

Traceability: the property of a result of a measurement whereby it can be related to appropriate standards, generally international or national standards, through an unbroken chain of comparisons. (VIM-6.12)

United States Environmental Protection Agency (EPA): the federal governmental agency with responsibility for protecting public health and safeguarding and improving the natural environment (i.e., the air, water, and land) upon which human life depends. (US-EPA)

Validation: the process of substantiating specified performance criteria. (EPA-QAD)

Verification: confirmation by examination and provision of evidence that specified requirements have been met. (NELAC)

Sources: 40CFR Part 136

American Society for Quality Control (ASQC), Definitions of Environmental Quality Assurance Terms

American National Standards Institute (ANSI), Style Manual for Preparation of Proposed American National Standards, Eighth Edition, March 1991

ANSI/ASQC E4, 1994

International Standards Organization (ISO) Guides 2, 30, 8402

International Vocabulary of Basic and General Terms in Metrology (VIM): 1984. Issued by BIPM, IEC, ISO and OIML

National Institute of Standards and Technology (NIST)

National Environmental Laboratory Accreditation Conference (NELAC), July 1998 Standards

The NELAC Institute (TNI), Web site, January 2009.

US EPA Quality Assurance Management Section (QAMS), Glossary of Terms of Quality Assurance Terms, 8/31/92 and 12/6/95

US EPA Quality Assurance Division (QAD)

Appendix D

Laboratory Sample Quality Control and Detection Limits

Analysis For Total Metals By EPA Method 6020/200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 04/13/23 04/13/23 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Friedman & Bruya Study SM-137, UST-112 I3-288 mb I3-288 mb.128 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Antimony	<1		
Arsenic	<1		
Barium	<1		
Beryllium	<1		
Cadmium	<1		
Chromium	<5		
Cobalt	<1		
Copper	<5		
Lead	<1		
Manganese	<1		
Mercury	<1		
Molybdenum	<1		
Nickel	<2		
Selenium	<1		
Silver	<1		
Thallium	<1		
Vanadium	<1		
Zinc	<5		

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 05/05/23 05/05/23 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	I3-349 mb2 I3-349 mb2.038 ICPMS2 SP
	Concentration		
Analyte:	ug/L (ppb)		
Antimony	<1		
Arsenic	<1		
Barium	<1		
Beryllium	<1		
Cadmium	<1		
Chromium	<1		
Cobalt	<1		
Copper	<5		
Iron	<50		
Lead	<1		
Manganese	<1		
Mercury	<1		
Molybdenum	<1		

<1

<1

<1

<1

<1

 $<\!\!5$

Nickel

Silver

Zinc

Selenium

Thallium

Vanadium

Analysis For Total Metals By EPA Method 6020/200.8

Client Sample ID:	Method Blank	Client:	ClientID
Date Received:	Not Applicable	Project:	ProjectID
Date Extracted:	02/21/24	Lab ID:	04-374 mb 1/30
Date Analyzed:	02/21/24	Data File:	022107.D
Matrix:	Soil	Instrument:	GC9
Units:	mg/kg (ppm) Dry Weight	Operator:	AL
Surrogates: Tetrachlorometaxy Decachlorobipheny		Lower : Limit: 20 28	Upper Limit: 157 158

Analysis For Organochlorine Pesticides By EPA Method 8081B

Decachlorobiphenyl	96	$\frac{20}{28}$	
	Concentration		
Compounds:	mg/kg (ppm) Dry Weight		

alpha-BHC	< 0.01
gamma-BHC (Lindane)	< 0.01
beta-BHC	< 0.01
delta-BHC	< 0.01
Heptachlor	< 0.01
Aldrin	< 0.01
Heptachlor Epoxide	< 0.01
trans-Chlordane	< 0.01
cis-Chlordane	< 0.01
4,4'-DDE	< 0.01
Endosulfan I	< 0.01
Dieldrin	< 0.01
Endrin	< 0.01
4,4'-DDD	< 0.01
Endosulfan II	< 0.01
4,4'-DDT	< 0.01
Endrin Aldehyde	< 0.01
Methoxychlor	< 0.01
Endosulfan Sulfate	< 0.01
Endrin Ketone	< 0.01
Toxaphene	<1

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blan Not Applicab 04/01/24 04/01/24 Water ug/L		Client: Project: Lab ID: Data File: Instrument: Operator:	ClientID ProjectID 04-755 mb 040116.D GC7 MG	
Surrogates: Tetrachlorometaxy Decachlorobipheny		% Recovery: 60 46	Lower Limit: 20 11		Upper Limit: 121 159
	(Concentration			
Compounds:		ug/L			
alpha-BHC gamma-BHC (Lind beta-BHC delta-BHC Heptachlor Aldrin Heptachlor Epoxide trans-Chlordane cis-Chlordane 4,4'-DDE Endosulfan I Dieldrin Endrin 4,4'-DDD Endosulfan II 4,4'-DDT Endrin Aldehyde Methoxychlor Endosulfan Sulfate Endrin Ketone	e	$\begin{array}{c} < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\$			
Toxaphene		<0.005 <0.05			
1 -		-			

Analysis For Organochlorine Pesticides By EPA Method 8081B

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	Method Blank	Client:	ClientID
Date Received:	Not Applicable	Project:	ProjectID
Date Extracted:	04/02/24	Lab ID:	04-758 mb 1/30
Date Analyzed:	04/02/24	Data File:	040222.D
Matrix:	Soil	Instrument:	GC7
Units:	mg/kg (ppm) Dry Wei	ight Operator:	AL
Sumocatoa	0/ P	very: Lower Limit:	Upper Limit:
Surrogates: Tetrachlorometaxy	lene % Recov		162
Decachlorobipheny			$152 \\ 152$
Decaemorosipheny	1 100		104
	Concentr	ration	
Compounds:	mg/kg (ppm) I	Dry Weight	
Aroclor 1221	<0.0	2	
Aroclor 1232	<0.0	2	
Aroclor 1016	<0.0	2	
Aroclor 1242	<0.0	2	
Aroclor 1248	<0.0	2	
Aroclor 1254	<0.0	2	
Aroclor 1260	<0.0	2	
Aroclor 1262	<0.0	2	
Aroclor 1268	<0.0	2	

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units: Surrogates:	Method Bl Not Applic 04/04/24 00 04/04/24 1 Soil mg/kg (ppr	able 3:00	Client: Project: Lab ID: Data File: Instrument: Operator: Lower Limit:	ClientID ProjectID 04-0767 mb 040412.D GCMS4 MD Upper Limit:	
1,2-Dichloroethane	-d4	102	86	114	
Toluene-d8		102	86	115	
4-Bromofluorobenz	ene	96	83	116	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Ethanol		<50	trans-1,	3-Dichloropropene	< 0.05
Dichlorodifluorome	thane	< 0.5		ichloroethane	< 0.05
Chloromethane		< 0.5	2-Hexan	ione	< 0.5
Vinyl chloride		< 0.05	1,3-Dich	loropropane	< 0.05
Bromomethane		< 0.5	Tetrach	loroethene	< 0.025
Chloroethane		< 0.5	Dibromo	ochloromethane	< 0.05
Trichlorofluoromet	hane	< 0.5		omoethane (EDB)	< 0.05
2-Propanol		< 0.5	Chlorob		< 0.05
Acetone		<5	Ethylber		< 0.05
1,1-Dichloroethene		< 0.05		Tetrachloroethane	< 0.05
Hexane		< 0.25	m,p-Xyle		< 0.1
Methylene chloride		< 0.5	o-Xylene	9	< 0.05
t-Butyl alcohol (TB		<2.5	Styrene		< 0.05
Methyl t-butyl ethe		< 0.05		lbenzene	< 0.05
trans-1,2-Dichloroe		< 0.05	Bromofo		< 0.05
Diisopropyl ether (l	DIPE)	< 0.05		lbenzene	< 0.05
1,1-Dichloroethane		< 0.05	Bromobe		< 0.05
Ethyl t-butyl ether		< 0.05		imethylbenzene	< 0.05
2,2-Dichloropropan		< 0.05		Tetrachloroethane	< 0.05
cis-1,2-Dichloroethe	ene	< 0.05		ichloropropane	< 0.05
Chloroform		< 0.05	2-Chloro		< 0.05
2-Butanone (MEK)		<1	4-Chloro		< 0.05
t-Amyl methyl ethe	. ,	< 0.05		ylbenzene	< 0.05
1,2-Dichloroethane	. ,	<0.05		imethylbenzene	<0.05
1,1,1-Trichloroetha		<0.05		vlbenzene	<0.05 <0.05
1,1-Dichloropropen		<0.05 <0.05		pyltoluene	<0.05 <0.05
Carbon tetrachlorid Benzene	le	< 0.03		lorobenzene lorobenzene	<0.05
Trichloroethene		< 0.03		lorobenzene	<0.05
1,2-Dichloropropan	0	<0.02		omo-3-chloropropane	<0.05
Bromodichlorometh		< 0.05		ichlorobenzene	<0.25
Dibromomethane		< 0.05		orobutadiene	<0.25
4-Methyl-2-pentance	ne	<0.05	Naphtha		<0.25
cis-1,3-Dichloroproj		<0.05	-	ichlorobenzene	<0.05
Toluene	00110	< 0.05	1,2,0-11	1011101 0001120110	-0.40
10140110		-0.00			

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 03/28/24 05 03/28/24 10 Water ug/L (ppb)	able :46	Client: Project: Lab ID: Data File: Instrument: Operator: Lower	ClientID ProjectID 04-0685 mb 032809.D GCMS13 IJL Upp	
Surrogates:		% Recovery:	Limit:	Limi	
1,2-Dichloroethane	-d4	93	71	132	
Toluene-d8	-u4	94	68	132	
4-Bromofluorobenz	ene	103	62	136	
1 Diomondoi obeniz	ene	100	02	100	,
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Ethanol		<1,000	trans-1	3-Dichloropropend	e <0.4
Dichlorodifluorome	thane	<1		ichloroethane	< 0.5
Chloromethane	unano	<10	2-Hexan		<10
Vinyl chloride		< 0.02		loropropane	<1
Bromomethane		<5		loroethene	<1
Chloroethane		<1		ochloromethane	< 0.5
Trichlorofluorometl	hane	<1		omoethane (EDB)	
2-Propanol		<10	Chlorobe		<1
Acetone		<50	Ethylber		<1
1,1-Dichloroethene		<1		Cetrachloroethane	<1
Hexane		<5	m,p-Xyle		<2
Methylene chloride		<5	o-Xylene	e e	<1
t-Butyl alcohol (TB	A)	<50	Styrene		<1
Methyl t-butyl ethe	er (MTBE)	<1	Isopropy	lbenzene	<1
trans-1,2-Dichloroe	thene	<1	Bromofo	orm	<5
Diisopropyl ether (l		<1		lbenzene	<1
1,1-Dichloroethane		<1	Bromobe		<1
Ethyl t-butyl ether		<1		imethylbenzene	<1
2,2-Dichloropropan		<1		Petrachloroethane	
cis-1,2-Dichloroethe	ene	<1		ichloropropane	<1
Chloroform		<1	2-Chloro		<1
2-Butanone (MEK)		<20	4-Chloro		<1
t-Amyl methyl ethe		<1		ylbenzene	<1
1,2-Dichloroethane		<0.2		imethylbenzene	<1
1,1,1-Trichloroetha		<1 <1	-	vlbenzene	<1 <1
1,1-Dichloropropen Carbon tetrachloric		<1 <0.5		pyltoluene	<1 <1
Benzene	le	<0.3 <0.35		lorobenzene lorobenzene	<1
Trichloroethene		<0.55 <0.5		lorobenzene	<1
1,2-Dichloropropan	Α	<0.5		omo-3-chloroprop	
Bromodichlorometh		<0.5		ichlorobenzene	<10
Dibromomethane	iuiio	<0.5 <1		orobutadiene	<0.5
4-Methyl-2-pentance	one	<10	Naphtha		<1
cis-1,3-Dichloroproj		<0.4	-	ichlorobenzene	<1
Toluene	F 0	<1	1, 2 ,0 11		1
-					

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 04/01/24 04/02/24 Soil mg/kg (ppm) D		Client: Project: Lab ID: Data File: Instrument: Operator:	ClientID ProjectID 04-0751 mb 1/5 040135.D GCMS12 ya	
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14		6 Recovery: 85 97 106 106 104 115	Lower Limit: 14 29 16 46 17 31	Upper Limit: 115 121 137 122 154 167	
Compounds:		ncentration g/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
N-Nitrosodimethyl. Phenol Bis(2-chloroethyl) & 2-Chlorophenol 1,3-Dichlorobenzen 1,4-Dichlorobenzen 1,2-Dichlorobenzen Benzyl alcohol 2,2'-Oxybis(1-chloro 2-Methylphenol Hexachloroethane N-Nitroso-di-n-prop 3-Methylphenol + 4 Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic acid Bis(2-chloroethoxy) 2,4-Dichlorophenol 1,2,4-Trichlorobenz Naphthalene Hexachlorobutadie 4-Chloro-3-methylp 2-Methylnaphthale 1-Methylnaphthale	amine ether e e e opr oyla t-Met l omet zene ne ohenol ene ene		3-Nitroa Acenaph 2,4-Dini Dibenzo 2,4-Dini 4-Nitrop Diethyl Fluorend 4-Chloro 1,2-Diph N-Nitroa 4-Nitroa 4,6-Dini 4-Bromo Hexachl Pentach Phenant Anthrac Carbazo Di-n-but Fluoran Benzidin Pyrene Benzyl b 3,3'-Dich	niline thene trophenol furan trotoluene henol phthalate e ophenyl phenyl nenylhydrazine sodiphenylamine niline tro-2-methylph orobenzene lorophenol hrene ene le tyl phthalate thene ne putyl phthalate anthracene	
Hexachlorocycloper 2,4,6-Trichloropher 2,4,5-Trichloropher 2-Chloronaphthaler 2-Nitroaniline Dimethyl phthalate Acenaphthylene	nol nol ne	<0.15 <0.5 <0.5 <0.05 <0.25 <0.5 <0.01	Di-n-oct Benzo(a) Benzo(b) Benzo(k) Indeno(1)	hylhexyl) phth yl phthalate)pyrene)fluoranthene)fluoranthene 1,2,3-cd)pyrene a,h)anthracene	<0.8 <0.5 <0.01 <0.01 <0.01 <0.01 <0.01

Analysis For Semivolatile Compounds By EPA Method 8270E

2,6-Dinitrotoluene

< 0.25

< 0.01

Date Received:NDate Extracted:0Date Analyzed:0Matrix:W	fethod Blank Iot Applicable 4/01/24 4/01/24 Vater g/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	ClientID ProjectID 04-750 mb 040114.D GCMS9 ya	
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophenol Terphenyl-d14	% Recovery: 35 25 82 83 78 108	Lower Limit: 10 10 15 25 10 41	Upper Limit: 60 49 144 128 142 138	
Compounds:	Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Compounds: N-Nitrosodimethylam Phenol Bis(2-chloroethyl) eth 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene Benzyl alcohol 2,2'-Oxybis(1-chloropr 2-Methylphenol Hexachloroethane N-Nitroso-di-n-propyl 3-Methylphenol + 4-M Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic acid Bis(2-chloroethoxy)me 2,4-Dichlorophenol 1,2,4-Trichlorobenzen Naphthalene Hexachlorobutadiene 4-Chloroaniline	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3-Nitroa Acenaph 2,4-Dini Dibenzo 2,4-Dini 4-Nitrop Diethyl Fluorend 4-Chloro 1,2-Diph N-Nitroa 4,6-Dini 4-Bromo Hexachl Pentach Phenant Anthrac Carbazo Di-n-but Fluoran Benzidin Pyrene Benzyl b	niline thene trophenol furan trotoluene henol phthalate e ophenyl phenyl tro-2-methylph orobenzene lorophenol chrene ene le tyl phthalate thene	$ug/L (ppb)$ $<20 \\<0.02 \\<6 \\<0.02 \\<1 \\<6 \\<2 \\<0.02 \\<0.2 \\<0.2 \\<0.2 \\<0.2 \\<0.2 \\<0.2 \\<0.2 \\<0.2 \\<0.2 \\<0.2 \\<1 \\<0.02 \\<0.02 \\<0.02 \\<2 \\<0.02 \\<2 \\<0.02 \\<2 \\<0.02 \\<2 \\<2 \\<2 \\<2 \\<2 \\<2 \\<2 \\<2 \\<2 \\<$
4-Chloro-3-methylphe 2-Methylnaphthalene 1-Methylnaphthalene Hexachlorocyclopenta 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene	<0.2 <0.2	Benz(a)a Chrysen Bis(2-et Di-n-oct Benzo(a) Benzo(b) Benzo(k) Indeno(1)	anthracene e nylhexyl) phth yl phthalate	<2 <0.02 <0.02 <3.2 <2 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02

Analysis For Semivolatile Compounds By EPA Method 8270E

2,6-Dinitrotoluene

<1

< 0.04

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 04/03/24 04/03/24 Air ug/m3		Client Projec Lab II Data I Instru Opera	ClientID ProjectID 04-0689 mb 040311.D GCMS8 bat	
Surrogates: 4-Bromofluorobenz		% very: 94	Lower Limit: 70	Upper Limit: 130	
	Concentra	ation			
Compounds:	u	g/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics	<75 <25 <25			

Analysis For Volatile Compounds By Method MA-APH

Date Extracted: 03/25/24 Date Analyzed: 03/26/24

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
Method Blank 04-618 MB	< 0.02	< 0.02	< 0.02	<0.06	<5	81

Date Extracted: 03/28/24 Date Analyzed: 03/29/24

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported as ug/L (ppb)

			Ethyl	Total	Gasoline	Surrogate
<u>Sample ID</u>	<u>Benzene</u>	<u>Toluene</u>	<u>Benzene</u>	<u>Xylenes</u>	<u>Range</u>	(<u>% Recovery</u>)
Laboratory ID						(Limit 50-150)
Method Blank	<1	<1	<1	<3	<100	104
$04-627 \ \mathrm{MB}$						

Date Extracted: 03/27/24 Date Analyzed: 03/27/24

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL **USING METHOD NWTPH-Dx Extended to Include Motor Oil Range Compounds**

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID **Diesel** Extended $(C_{10}-C_{36})$

Surrogate (% Recovery) (Limit 50-150)

Method Blank 04-734 MB

<50

104

Date Extracted: 03/28/24 Date Analyzed: 03/28/24

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND RESIDUAL RANGE USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

			Surrogate
<u>Sample ID</u>	<u>Diesel Range</u>	<u>Residual Range</u>	<u>(% Recovery)</u>
Laboratory ID	$(C_{10}-C_{25})$	$(C_{25}-C_{36})$	(Limit 50-150)
Method Blank	<50	<250	87
04-734 MB2			

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND RESIDUAL RANGE USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Residual Range (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
Method Blank 04-745 MB	<100	<250	121

Client Sample ID:Method BlarDate Received:Not ApplicatDate Collected:04/03/24Date Analyzed:04/03/24Matrix:AirUnits:ug/m3	ble	Client: Project: Lab ID: Data File Instrume Operator	ent:	ClientID ProjectID 04-0689 mb 040311.D GCMS8 bat		
	% Low	ver	Upper			
Surrogates: Recov	ery: Lim	it:	Limit:			
4-Bromofluorobenzene	94	70	130			
	Concentrati					
	Concentrati		C	1		1
Compounds: ug	/m3 pp	bv	Compo	ounds:	ug/m3	ppbv
Propene	<1.2 <(0.7	1 2-Die	chloropropane	< 0.23	< 0.05
1		0.2	1,4-Die		< 0.36	< 0.1
		1.8		rimethylpentane	<4.7	<1
				l methacrylate	<4.1	<1
).1	Hepta	-	<4.1	<1
	.044 <0.			dichloromethane	< 0.067	< 0.01
		< <u>2</u>		proethene	< 0.11	< 0.02
		<1		-Dichloropropene	< 0.91	< 0.2
		<1		nyl-2-pentanone	<8.2	<2
).1		1,3-Dichloropropene	< 0.45	< 0.1
		<4	Toluer		<7.5	<2
	0.11 <0.			richloroethane	< 0.055	< 0.01
		<2	2-Hexa		<4.1	<1
).4		hloroethene	<6.8	<1
		<2		nochloromethane	< 0.085	< 0.01
		3.5		promoethane (EDB)	< 0.077	< 0.01
1).1		benzene	< 0.46	< 0.1
).1		enzene	< 0.43	< 0.1
		10		-Tetrachloroethane	< 0.14	< 0.02
	<12	<4	Nonan		<5.2	<1
	<3.1	<1	Isopro	pylbenzene	<9.8	<2
	<1.5 <0	0.2		rotoluene	<5.2	<1
Carbon disulfide	< 6.2	<2	Propyl	benzene	<4.9	<1
Methyl t-butyl ether (MTBE)	<7.2	<2	4-Ethy	ltoluene	<4.9	<1
Vinyl acetate	<7	<2	m,p-Xy	ylene	< 0.87	< 0.2
1,1-Dichloroethane	<0.4 <0	0.1	o-Xyle	ne	< 0.43	< 0.1
cis-1,2-Dichloroethene	<0.4 <0	0.1	Styren	e	< 0.85	< 0.2
Hexane	<3.5	<1	Bromo		<2.1	< 0.2
	.049 <0.	01	Benzy	l chloride	< 0.052	< 0.01
U U		<2		rimethylbenzene	<4.9	<1
		0.2		rimethylbenzene	<4.9	<1
		<2		chlorobenzene	<0.6	< 0.1
	0.04 <0.			chlorobenzene	< 0.23	< 0.038
		0.1		chlorobenzene	<0.6	< 0.1
	0.31 <0.			richlorobenzene	< 0.74	< 0.1
).1	Napht		< 0.26	< 0.05
Cyclohexane	<6.9	<2	Hexac	hlorobutadiene	< 0.21	< 0.02
Colculation Data 04091	1 D04 000	0 mh	Λ ;		1	1
	1.D04-0689 ve15	ə md	Air		1	1
15		11	**STA	NDARD**		

Analysis For Volatile Compounds By Method TO-15

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: Laboratory Control Sample end

ena						
			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Antimony	mg/kg (ppm)	20	85	87	85-115	2
Arsenic	mg/kg (ppm)	10	96	97	85 - 115	1
Barium	mg/kg (ppm)	50	92	93	85 - 115	1
Beryllium	mg/kg (ppm)	5	104	104	85 - 115	0
Cadmium	mg/kg (ppm)	10	97	98	85 - 115	1
Chromium	mg/kg (ppm)	50	100	99	85 - 115	1
Cobalt	mg/kg (ppm)	20	102	103	85 - 115	1
Copper	mg/kg (ppm)	50	101	101	85 - 115	0
Lead	mg/kg (ppm)	50	101	101	85 - 115	0
Manganese	mg/kg (ppm)	20	98	98	85 - 115	0
Mercury	mg/kg (ppm)	5	110	111	85 - 115	1
Molybdenum	mg/kg (ppm)	20	95	94	85 - 115	1
Nickel	mg/kg (ppm)	25	96	97	85 - 115	1
Selenium	mg/kg (ppm)	5	91	89	85 - 115	2
Silver	mg/kg (ppm)	10	96	96	85 - 115	0
Thallium	mg/kg (ppm)	5	101	102	85 - 115	1
Vanadium	mg/kg (ppm)	30	113	112	85 - 115	1
Zinc	mg/kg (ppm)	50	100	101	85-115	1

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 402378-01 rr (Matrix Spike) end

ena							
	Denerting	Casile e	Comula	Percent	Percent	A	חחת
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Antimony	ug/L (ppb)	20	1.05	97	96	70 - 130	1
Arsenic	ug/L (ppb)	10	<1	93	92	70 - 130	1
Barium	ug/L (ppb)	50	9.10	96	96	70 - 130	0
Beryllium	ug/L (ppb)	5	<1	92	91	70 - 130	1
Cadmium	ug/L (ppb)	5	<1	96	94	70-130	2
Chromium	ug/L (ppb)	20	<1	94	93	70-130	1
Cobalt	ug/L (ppb)	20	<1	93	92	70-130	1
Copper	ug/L (ppb)	20	<5	93	91	70-130	2
Iron	ug/L (ppb)	100	156	88 b	$85 \mathrm{b}$	70-130	3 b
Lead	ug/L (ppb)	10	<1	89	88	70-130	1
Manganese	ug/L (ppb)	20	8.99	90 b	90 b	70-130	0 b
Mercury	ug/L (ppb)	5	<1	84	83	70-130	1
Molybdenum	ug/L (ppb)	10	<1	94	93	70-130	1
Nickel	ug/L (ppb)	20	<1	94	93	70-130	1
Selenium	ug/L (ppb)	5	<1	96	91	70-130	5
Silver	ug/L (ppb)	5	<1	88	87	70-130	1
Thallium	ug/L (ppb)	5	<1	90	88	70-130	2
Vanadium	ug/L (ppb)	20	<1	93	93	70-130	0
Zinc	ug/L (ppb)	50	32.9	91 b	90 b	70-130	1 b

Laboratory Code: Laboratory Control Sample end

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Antimony	ug/L (ppb)	20	94	85-115
Arsenic	ug/L (ppb)	10	92	85 - 115
Barium	ug/L (ppb)	50	96	85-115
Beryllium	ug/L (ppb)	5	95	85-115
Cadmium	ug/L (ppb)	5	93	85-115
Chromium	ug/L (ppb)	20	96	85 - 115
Cobalt	ug/L (ppb)	20	97	85-115
Copper	ug/L (ppb)	20	95	85 - 115
Iron	ug/L (ppb)	100	97	85 - 115
Lead	ug/L (ppb)	10	94	85-115
Manganese	ug/L (ppb)	20	95	85-115
Mercury	ug/L (ppb)	5	87	85 - 115
Molybdenum	ug/L (ppb)	10	93	85 - 115
Nickel	ug/L (ppb)	20	96	85 - 115
Selenium	ug/L (ppb)	5	97	85 - 115
Silver	ug/L (ppb)	5	91	85 - 115
Thallium	ug/L (ppb)	5	94	85 - 115
Vanadium	ug/L (ppb)	20	97	85 - 115
Zinc	ug/L (ppb)	50	96	85-115
Vanadium	ug/L (ppb)	20	97	85-115

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Laboratory Code: 403229-01 x10 $\,$ (Matrix Spike) end

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Mercury	mg/kg (ppm)	5	< 0.025	134	152	71 - 125	13
Laboratory Code: Laboratory Control Sample							
end							
			Percent				
		Spike	Recovery	Accep	tance		
Analyte	Reporting Units	Level	LCS	Crit	eria		
Mercury	mg/kg (ppm)	5	123	68-1	143		

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Laboratory Code: 403411-01 (Matrix Spike) end

enu	D (G .1	a 1	Percent	Percent	A	DDD
Analyte	Reporting Units	Spike Level	Sample Result	Recovery MS	Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Mercury	ug/L (ppb)	0.01	< 0.1	78	94	71 - 125	18

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Mercury	ug/L (ppb)	0.01	99	66-126

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 403297-01 x5 (Matrix Spike) end

ena							
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Antimony	mg/kg (ppm)	20	<5	92	104	75 - 125	12
Arsenic	mg/kg (ppm)	10	6.39	76 b	108 b	75 - 125	$35 \mathrm{b}$
Barium	mg/kg (ppm)	50	68.1	67 b	90 b	75 - 125	29 b
Beryllium	mg/kg (ppm)	5	<5	98	98	75 - 125	0
Cadmium	mg/kg (ppm)	10	<5	97	96	75 - 125	1
Chromium	mg/kg (ppm)	50	13.5	93 b	98 b	75 - 125	$5 \mathrm{b}$
Cobalt	mg/kg (ppm)	20	<5	96	98	75 - 125	2
Copper	mg/kg (ppm)	50	<25	87	94	75 - 125	8
Lead	mg/kg (ppm)	50	36.1	97 b	187 b	75 - 125	63 b
Manganese	mg/kg (ppm	20	387	<1.00	25	75 - 125	
Mercury	mg/kg (ppm	5	<5	98	100	75 - 125	2
Molybdenum	mg/kg (ppm)	20	<5	93	96	75 - 125	3
Nickel	mg/kg (ppm)	25	21.1	$77 \mathrm{b}$	99 b	75 - 125	$25 \mathrm{b}$
Selenium	mg/kg (ppm)	5	<5	86	91	75 - 125	6
Silver	mg/kg (ppm)	10	<5	90	92	75 - 125	2
Thallium	mg/kg (ppm)	5	<5	84	82	75 - 125	2
Vanadium	mg/kg (ppm)	30	31.4	69 b	$235 \mathrm{b}$	75 - 125	109 b
Zinc	mg/kg (ppm)	50	142	49 b	83 b	75 - 125	52 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Antimony	mg/kg (ppm)	20	104	80-120
Arsenic	mg/kg (ppm)	10	87	80-120
Barium	mg/kg (ppm)	50	98	80-120
Beryllium	mg/kg (ppm)	5	111	80-120
Cadmium	mg/kg (ppm)	10	103	80-120
Chromium	mg/kg (ppm)	50	116	80-120
Cobalt	mg/kg (ppm)	20	109	80-120
Copper	mg/kg (ppm)	50	102	80-120
Lead	mg/kg (ppm)	50	100	80-120
Manganese	mg/kg (ppm)	20	97	80-120
Mercury	mg/kg (ppm)	5	90	80-120
Molybdenum	mg/kg (ppm)	20	91	80-120
Nickel	mg/kg (ppm)	25	105	80-120
Selenium	mg/kg (ppm)	5	97	80-120
Silver	mg/kg (ppm)	10	99	80-120
Thallium	mg/kg (ppm)	5	99	80-120
Vanadium	mg/kg (ppm)	30	110	80-120
Zinc	mg/kg (ppm)	50	103	80-120

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL/SOLID SAMPLES FOR TCLP METALS USING EPA METHODS 6020B AND 1311

Laboratory Code: 403454-01 (Matrix Spike) end

		а ·1	a ı	Percent	Percent	A	ססס
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Antimony	mg/L (ppm)	2.0	<1	110	110	75 - 125	0
Arsenic	mg/L (ppm)	1.0	<1	99	99	75 - 125	0
Barium	mg/L (ppm)	5.0	3.5	101 b	103 b	75 - 125	$2 \mathrm{b}$
Beryllium	mg/L (ppm)	0.5	<1	96	96	75 - 125	0
Cadmium	mg/L (ppm)	0.5	<1	99	100	75 - 125	1
Chromium	mg/L (ppm)	2.0	<1	86	88	75 - 125	2
Cobalt	mg/L (ppm)	2.0	<1	86	88	75 - 125	2
Copper	mg/L (ppm)	2.0	<5	87	88	75 - 125	1
Iron	mg/L (ppm)	10	<50	85	89	75 - 125	5
Lead	mg/L (ppm)	1.0	<1	97	98	75 - 125	1
Manganese	mg/L (ppm)	2.0	5.0	72 b	81 b	75 - 125	12 b
Molybdenum	mg/L (ppm)	1.0	<1	101	103	75 - 125	2
Nickel	mg/L (ppm)	2.0	<1	88	89	75 - 125	1
Selenium	mg/L (ppm)	0.5	<1	107	105	75 - 125	2
Silver	mg/L (ppm)	0.5	<1	86	87	75 - 125	1
Thallium	mg/L (ppm)	0.5	<1	88	88	75 - 125	0
Vanadium	mg/L (ppm)	2.0	<1	89	91	75 - 125	2
Zinc	mg/L (ppm)	5.0	<5	88	89	75 - 125	1

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Antimony	mg/L (ppm)	2.0	103	80-120
Arsenic	mg/L (ppm)	1.0	91	80-120
Barium	mg/L (ppm)	5.0	95	80-120
Beryllium	mg/L (ppm)	0.5	94	80-120
Cadmium	mg/L (ppm)	0.5	94	80-120
Chromium	mg/L (ppm)	2.0	83	80-120
Cobalt	mg/L (ppm)	2.0	83	80-120
Copper	mg/L (ppm)	2.0	84	80-120
Iron	mg/L (ppm)	10	85	80-120
Lead	mg/L (ppm)	1.0	98	80-120
Manganese	mg/L (ppm)	2.0	80	80-120
Molybdenum	mg/L (ppm)	1.0	94	80-120
Nickel	mg/L (ppm)	2.0	85	80-120
Selenium	mg/L (ppm)	0.5	98	80-120
Silver	mg/L (ppm)	0.5	86	80-120
Thallium	mg/L (ppm)	0.5	86	80-120
Vanadium	mg/L (ppm)	2.0	84	80-120
Zinc	mg/L (ppm)	5.0	86	80-120

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 404039-06 (Matrix Spike) end

ena				_	_		
	D II	a	a 1	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Antimony	ug/L (ppb)	20	<1	99	101	75 - 125	2
Arsenic	ug/L (ppb)	10	1.20	103	105	75 - 125	2
Barium	ug/L (ppb)	50	25.6	99 b	102 b	75 - 125	3 b
Beryllium	ug/L (ppb)	5	<1	98	100	75 - 125	2
Cadmium	ug/L (ppb)	5	<1	98	99	75 - 125	1
Chromium	ug/L (ppb)	20	<1	88	91	75 - 125	3
Cobalt	ug/L (ppb)	20	<1	87	89	75 - 125	2
Copper	ug/L (ppb)	20	<5	83	83	75 - 125	0
Iron	ug/L (ppb)	100	3,600	143 b	233 b	75 - 125	48 b
Lead	ug/L (ppb)	10	<1	85	86	75 - 125	1
Manganese	ug/L (ppb)	20	1,190	$283 \mathrm{~b}$	406 b	75 - 125	36 b
Mercury	ug/L (ppb)	5	<1	92	94	75 - 125	2
Molybdenum	ug/L (ppb)	10	<1	107	109	75 - 125	2
Nickel	ug/L (ppb)	20	1.75	84	86	75 - 125	2
Selenium	ug/L (ppb)	5	<1	103	102	75 - 125	1
Silver	ug/L (ppb)	5	<1	93	95	75 - 125	2
Thallium	ug/L (ppb)	5	<1	85	87	75 - 125	2
Vanadium	ug/L (ppb)	20	<1	92	93	75 - 125	1
Zinc	ug/L (ppb)	50	<5	86	87	75 - 125	1

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Antimony	ug/L (ppb)	20	103	80-120
Arsenic	ug/L (ppb)	10	90	80-120
Barium	ug/L (ppb)	50	104	80-120
Beryllium	ug/L (ppb)	5	89	80-120
Cadmium	ug/L (ppb)	5	102	80-120
Chromium	ug/L (ppb)	20	88	80-120
Cobalt	ug/L (ppb)	20	91	80-120
Copper	ug/L (ppb)	20	96	80-120
Iron	ug/L (ppb)	100	89	80-120
Lead	ug/L (ppb)	10	93	80-120
Manganese	ug/L (ppb)	20	88	80-120
Mercury	ug/L (ppb)	5	94	80-120
Molybdenum	ug/L (ppb)	10	87	80-120
Nickel	ug/L (ppb)	20	94	80-120
Selenium	ug/L (ppb)	5	94	80-120
Silver	ug/L (ppb)	5	90	80-120
Thallium	ug/L (ppb)	5	86	80-120
Vanadium	ug/L (ppb)	20	89	80-120
Zinc	ug/L (ppb)	50	97	80-120

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR ORGANOCHLORINE PESTICIDES BY EPA METHOD 8081B

Laboratory Code: 402374-01 1/30 (Matrix Spike) 1/30

end

enu	Depenting Units	Gnileo	Somulo	Percent	Percent	Accontance	RPD
Analyte	Reporting Units	Spike Level	Sample Result	Recovery MS	Recovery MSD	Acceptance Criteria	(Limit 20)
alpha-BHC	mg/kg (ppm)	0.1	< 0.01	76	76	17 - 122	0
gamma-BHC (Lindane)	mg/kg (ppm)	0.1	< 0.01	77	77	18-128	0
beta-BHC	mg/kg (ppm)	0.1	< 0.01	74	79	17 - 130	7
delta-BHC	mg/kg (ppm)	0.1	< 0.01	76	82	20 - 124	8
Heptachlor	mg/kg (ppm)	0.1	< 0.01	84	84	15 - 133	0
Aldrin	mg/kg (ppm)	0.1	< 0.01	81	81	26 - 125	0
Heptachlor Epoxide	mg/kg (ppm)	0.1	< 0.01	75	80	19-132	6
trans-Chlordane	mg/kg (ppm)	0.1	< 0.01	81	84	15 - 157	4
cis-Chlordane	mg/kg (ppm)	0.1	< 0.01	79	82	17 - 133	4
4,4'-DDE	mg/kg (ppm)	0.1	< 0.01	81	83	17 - 139	2
Endosulfan I	mg/kg (ppm)	0.1	< 0.01	71	76	19-130	7
Dieldrin	mg/kg (ppm)	0.1	< 0.01	79	83	17 - 140	5
Endrin	mg/kg (ppm)	0.1	< 0.01	88	89	20-143	1
4,4'-DDD	mg/kg (ppm)	0.1	< 0.01	84	83	20-143	1
Endosulfan II	mg/kg (ppm)	0.1	< 0.01	80	80	21 - 133	0
4,4'-DDT	mg/kg (ppm)	0.1	< 0.01	85	83	10-385	2
Endrin Aldehyde	mg/kg (ppm)	0.1	< 0.01	65	74	12 - 123	13
Methoxychlor	mg/kg (ppm)	0.1	< 0.01	87	86	10-226	1
Endosulfan Sulfate	mg/kg (ppm)	0.1	< 0.01	80	79	17 - 134	1
Endrin Ketone	mg/kg (ppm)	0.1	< 0.01	80	79	10-153	1
Toxaphene	mg/kg (ppm)	4	< 0.1	39	42	12 - 123	7

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR ORGANOCHLORINE PESTICIDES BY EPA METHOD 8081B

Laboratory Code: Laboratory Control Sample 1/30

end

enu			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
alpha-BHC	mg/kg (ppm)	0.1	90	57-116
gamma-BHC (Lindane)	mg/kg (ppm)	0.1	91	59 - 118
beta-BHC	mg/kg (ppm)	0.1	92	63-113
delta-BHC	mg/kg (ppm)	0.1	98	58 - 124
Heptachlor	mg/kg (ppm)	0.1	100	60 - 117
Aldrin	mg/kg (ppm)	0.1	98	63-113
Heptachlor Epoxide	mg/kg (ppm)	0.1	96	70-130
trans-Chlordane	mg/kg (ppm)	0.1	98	70-130
cis-Chlordane	mg/kg (ppm)	0.1	99	70-130
4,4'-DDE	mg/kg (ppm)	0.1	101	69-121
Endosulfan I	mg/kg (ppm)	0.1	95	70-130
Dieldrin	mg/kg (ppm)	0.1	98	70-130
Endrin	mg/kg (ppm)	0.1	105	65 - 140
4,4'-DDD	mg/kg (ppm)	0.1	98	70-130
Endosulfan II	mg/kg (ppm)	0.1	95	70-130
4,4'-DDT	mg/kg (ppm)	0.1	99	57 - 135
Endrin Aldehyde	mg/kg (ppm)	0.1	88	25 - 133
Methoxychlor	mg/kg (ppm)	0.1	101	57 - 147
Endosulfan Sulfate	mg/kg (ppm)	0.1	92	70-130
Endrin Ketone	mg/kg (ppm)	0.1	93	70-130
Toxaphene	mg/kg (ppm)	4	88	53 - 143

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR ORGANOCHLORINE PESTICIDES BY EPA METHOD 8081B

	Reporting	Spike	Percent Recovery	Percent Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
alpha-BHC	ug/L (ppb)	0.25	65	61	41-101	6
gamma-BHC (Lindane)	ug/L (ppb)	0.25	66	63	43-105	5
beta-BHC	ug/L (ppb)	0.25	56	64	49-104	13
delta-BHC	ug/L (ppb)	0.25	69	68	45 - 108	1
Heptachlor	ug/L (ppb)	0.25	60	56	39-104	7
Aldrin	ug/L (ppb)	0.25	62	58	43-98	7
Heptachlor Epoxide	ug/L (ppb)	0.25	69	64	52 - 110	8
trans-Chlordane	ug/L (ppb)	0.25	73	64	39-119	13
cis-Chlordane	ug/L (ppb)	0.25	70	63	47 - 106	11
4,4'-DDE	ug/L (ppb)	0.25	71	65	48-114	9
Endosulfan I	ug/L (ppb)	0.25	70	65	10-140	7
Dieldrin	ug/L (ppb)	0.25	69	64	54 - 115	8
Endrin	ug/L (ppb)	0.25	74	69	39-136	7
4,4'-DDD	ug/L (ppb)	0.25	75	70	31-161	7
Endosulfan II	ug/L (ppb)	0.25	74	68	10-144	8
4,4'-DDT	ug/L (ppb)	0.25	74	68	50 - 121	8
Endrin Aldehyde	ug/L (ppb)	0.25	55	57	47-113	4
Methoxychlor	ug/L (ppb)	0.25	74	69	51 - 126	7
Endosulfan Sulfate	ug/L (ppb)	0.25	73	69	58 - 110	6
Endrin Ketone	ug/L (ppb)	0.25	70	66	57 - 120	6
Toxaphene	ug/L (ppb)	4	100	100	56 - 123	0

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 404010-01 1/30 (Matrix Spike) 1/30

end

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Control	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Limits	(Limit 20)
Aroclor 1016	mg/kg (ppm)	0.25	< 0.02	95	94	29 - 125	1
Aroclor 1260	mg/kg (ppm)	0.25	< 0.02	92	105	12 - 177	13
Laboratory Co	de: Laboratory Co	ontrol Sar	nple 1/30				

end

Analyte	Reporting Units	Spike Level	Percent Recovery LCS	Acceptance Criteria
Aroclor 1016	mg/kg (ppm)	0.25	107	55 - 137
Aroclor 1260	mg/kg (ppm)	0.25	104	51 - 150

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

enu	Reporting	Spike	Percent Recovery	Percent Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Aroclor 1016 Aroclor 1260	ug/L (ppb) ug/L (ppb)	$\begin{array}{c} 0.25 \\ 0.25 \end{array}$	59 59	$\begin{array}{c} 66 \\ 72 \end{array}$	20-94 23-123	11 20

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 404057-03 (Matrix Spike)

Laboratory Code: 404057-03	(Matrix Spike)						
			Sample	Percent	Percent		
	Reporting	Spike	Result			Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2	< 0.5	42	41	10-142	2
Chloromethane	mg/kg (ppm)	2	< 0.5	65	62	10-126	5
Vinyl chloride	mg/kg (ppm)	2	< 0.05	69	66	10-138	4
Bromomethane	mg/kg (ppm)	2	< 0.5	66	61	10-163	8
Chloroethane	mg/kg (ppm)	2	< 0.5	77	70	10-176	10
Trichlorofluoromethane	mg/kg (ppm)	2	< 0.5	81	79	10-176	2
Acetone	mg/kg (ppm)	10	<5	79	71	10-163	11
1,1-Dichloroethene	mg/kg (ppm)	2	< 0.05	90	85	10-160	6
Hexane	mg/kg (ppm)	2	< 0.25	87	82	10 - 137	6
Methylene chloride	mg/kg (ppm)	2	< 0.5	86	84	10-156	2
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2	< 0.05	87	83	21 - 145	5
trans-1,2-Dichloroethene	mg/kg (ppm)	$\overline{2}$	< 0.05	94	85	14-137	10
1,1-Dichloroethane	mg/kg (ppm)	$\frac{1}{2}$	< 0.05	93	87	19-140	7
2,2-Dichloropropane	mg/kg (ppm)	2	< 0.05	102	96	10-158	6
cis-1,2-Dichloroethene	mg/kg (ppm)	2	< 0.05	89	86	25-135	3
Chloroform	mg/kg (ppm)	2	< 0.05	88	84	$20\ 100\ 21-145$	5
2-Butanone (MEK)	mg/kg (ppm)	$\frac{2}{10}$	<0.05 <1	80	74	19-147	8
1,2-Dichloroethane (EDC)		$\frac{10}{2}$	< 0.05	80 89	84	19-147 12-160	6
	mg/kg (ppm)		< 0.05	89 89		12-160 10-156	
1,1,1-Trichloroethane	mg/kg (ppm)	2			84	10-156 17-140	6
1,1-Dichloropropene	mg/kg (ppm)	2	< 0.05	89	86		3
Carbon tetrachloride	mg/kg (ppm)	2	< 0.05	90	86	9-164	5
Benzene	mg/kg (ppm)	2	< 0.03	90	86	29-129	5
Trichloroethene	mg/kg (ppm)	2	< 0.02	87	80	21-139	8
1,2-Dichloropropane	mg/kg (ppm)	2	< 0.05	92	86	30-135	7
Bromodichloromethane	mg/kg (ppm)	2	< 0.05	90	83	23 - 155	8
Dibromomethane	mg/kg (ppm)	2	< 0.05	89	83	23 - 145	7
4-Methyl-2-pentanone	mg/kg (ppm)	10	<1	96	87	24 - 155	10
cis-1,3-Dichloropropene	mg/kg (ppm)	2	< 0.05	93	85	28 - 144	9
Toluene	mg/kg (ppm)	2	< 0.05	85	82	35 - 130	4
trans-1,3-Dichloropropene	mg/kg (ppm)	2	< 0.05	87	83	26 - 149	5
1,1,2-Trichloroethane	mg/kg (ppm)	2	< 0.05	86	81	10-205	6
2-Hexanone	mg/kg (ppm)	10	< 0.5	80	79	15 - 166	1
1,3-Dichloropropane	mg/kg (ppm)	2	< 0.05	84	80	31 - 137	5
Tetrachloroethene	mg/kg (ppm)	2	< 0.025	89	89	20 - 133	0
Dibromochloromethane	mg/kg (ppm)	2	< 0.05	86	79	28 - 150	8
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2	< 0.05	85	83	28 - 142	2
Chlorobenzene	mg/kg (ppm)	2	< 0.05	91	83	32 - 129	9
Ethylbenzene	mg/kg (ppm)	2	< 0.05	86	82	32 - 137	5
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2	< 0.05	85	84	31-143	1
m,p-Xylene	mg/kg (ppm)	4	< 0.1	88	85	34-136	3
o-Xylene	mg/kg (ppm)	2	< 0.05	88	84	33-134	5
Styrene	mg/kg (ppm)	$\overline{2}$	< 0.05	87	85	35-137	$\frac{1}{2}$
Isopropylbenzene	mg/kg (ppm)	2	< 0.05	88	86	31-142	$\frac{1}{2}$
Bromoform	mg/kg (ppm)	2	< 0.05	83	82	21-156	- 1
n-Propylbenzene	mg/kg (ppm)	2	< 0.05	87	82	23-146	6
Bromobenzene	mg/kg (ppm)	$\frac{2}{2}$	<0.05	87	82	34-130	6
1,3,5-Trimethylbenzene	mg/kg (ppm)	$\frac{2}{2}$	<0.05	85	82	18-149	4
1,1,2,2-Tetrachloroethane		$\frac{2}{2}$	< 0.05	85 90	82 83	18-149 28-140	4 8
1,2,3-Trichloropropane	mg/kg (ppm)	$\frac{2}{2}$	< 0.05	90 82	83 78	26-140 25-144	0 5
2-Chlorotoluene	mg/kg (ppm)	$\frac{2}{2}$	< 0.05 < 0.05	$\frac{82}{86}$	78 81	25-144 31-134	о 6
2-0110101010101010	mg/kg (ppm)	4	~0.00	00	01	01-104	U

4-Chlorotoluene	mg/kg (ppm)	2	< 0.05	84	79	31-136	6	
tert-Butylbenzene	mg/kg (ppm)	2	< 0.05	86	82	30 - 137	5	
1,2,4-Trimethylbenzene	mg/kg (ppm)	2	< 0.05	85	80	10-182	6	
sec-Butylbenzene	mg/kg (ppm)	2	< 0.05	87	82	23 - 145	6	
p-Isopropyltoluene	mg/kg (ppm)	2	< 0.05	89	84	21 - 149	6	
1,3-Dichlorobenzene	mg/kg (ppm)	2	< 0.05	87	85	30-131	2	
1,4-Dichlorobenzene	mg/kg (ppm)	2	< 0.05	85	82	29 - 129	4	
1,2-Dichlorobenzene	mg/kg (ppm)	2	< 0.05	87	82	31 - 132	6	
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2	< 0.5	76	69	11-161	10	
1,2,4-Trichlorobenzene	mg/kg (ppm)	2	< 0.25	87	81	22 - 142	7	
Hexachlorobutadiene	mg/kg (ppm)	2	< 0.25	83	76	10-142	9	
Naphthalene	mg/kg (ppm)	2	< 0.05	83	78	14 - 157	6	
1,2,3-Trichlorobenzene	mg/kg (ppm)	2	< 0.25	83	77	20-144	7	

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample							
		a .1	Percent	A .			
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria			
Dichlorodifluoromethane	mg/kg (ppm)	2	69	10-146			
Chloromethane	mg/kg (ppm)	2	83	27-133			
Vinyl chloride	mg/kg (ppm)	2	88	22-139			
Bromomethane	mg/kg (ppm)	2	81	10-201			
Chloroethane	mg/kg (ppm)	2	94	10-163			
Trichlorofluoromethane	mg/kg (ppm)	2	96	10-196			
Acetone	mg/kg (ppm)	10	106	52-141			
1,1-Dichloroethene	mg/kg (ppm)	2	104	47-128			
Hexane	mg/kg (ppm)	2	104	43-142			
Methylene chloride	mg/kg (ppm)	2	92	10-184			
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2	101	60-123			
trans-1,2-Dichloroethene	mg/kg (ppm)	2	106	64-132			
1,1-Dichloroethane	mg/kg (ppm)	2	106	64-135			
2,2-Dichloropropane	mg/kg (ppm)	2	114	52 - 170			
cis-1,2-Dichloroethene	mg/kg (ppm)	2	103	64-135			
Chloroform	mg/kg (ppm)	2	100	61-139			
2-Butanone (MEK)	mg/kg (ppm)	10	105	30 - 197			
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2	102	56 - 135			
1,1,1-Trichloroethane	mg/kg (ppm)	2	102	62-131			
1,1-Dichloropropene	mg/kg (ppm)	2	100	64-136			
Carbon tetrachloride	mg/kg (ppm)	2	100	60-139			
Benzene	mg/kg (ppm)	2	104	65 - 136			
Trichloroethene	mg/kg (ppm)	2	100	63-139			
1,2-Dichloropropane	mg/kg (ppm)	2	105	61 - 145			
Bromodichloromethane	mg/kg (ppm)	2	102	57 - 126			
Dibromomethane	mg/kg (ppm)	2	102	62 - 123			
4-Methyl-2-pentanone	mg/kg (ppm)	10	107	45 - 145			
cis-1,3-Dichloropropene	mg/kg (ppm)	2	105	65-143			
Toluene	mg/kg (ppm)	2	102	66-126			
trans-1,3-Dichloropropene	mg/kg (ppm)	2	102	65-131			
1,1,2-Trichloroethane	mg/kg (ppm)	2	103	62-131			
2-Hexanone	mg/kg (ppm)	10	96	33 - 152			
1,3-Dichloropropane	mg/kg (ppm)	2	99	67 - 128			
Tetrachloroethene	mg/kg (ppm)	2	107	68 - 128			
Dibromochloromethane	mg/kg (ppm)	2	103	55 - 121			
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2	102	66 - 129			
Chlorobenzene	mg/kg (ppm)	2	104	67 - 128			
Ethylbenzene	mg/kg (ppm)	2	102	64 - 123			
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2	97	64-121			
m,p-Xylene	mg/kg (ppm)	4	104	68 - 128			
o-Xylene	mg/kg (ppm)	2	106	67 - 129			
Styrene	mg/kg (ppm)	2	105	67 - 129			
Isopropylbenzene	mg/kg (ppm)	2	104	68 - 128			
Bromoform	mg/kg (ppm)	2	100	56 - 132			
n-Propylbenzene	mg/kg (ppm)	2	98	68 - 129			
Bromobenzene	mg/kg (ppm)	2	99	69-128			
1,3,5-Trimethylbenzene	mg/kg (ppm)	2	97	69 - 129			
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2	100	56 - 143			

1,2,3-Trichloropropane	mg/kg (ppm)	2	98	61 - 137
2-Chlorotoluene	mg/kg (ppm)	2	98	69-128
4-Chlorotoluene	mg/kg (ppm)	2	96	67 - 127
tert-Butylbenzene	mg/kg (ppm)	2	100	69 - 129
1,2,4-Trimethylbenzene	mg/kg (ppm)	2	99	69-128
sec-Butylbenzene	mg/kg (ppm)	2	98	69 - 130
p-Isopropyltoluene	mg/kg (ppm)	2	104	69 - 130
1,3-Dichlorobenzene	mg/kg (ppm)	2	101	69 - 127
1,4-Dichlorobenzene	mg/kg (ppm)	2	99	68 - 126
1,2-Dichlorobenzene	mg/kg (ppm)	2	101	69 - 127
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2	92	58 - 138
1,2,4-Trichlorobenzene	mg/kg (ppm)	2	100	64 - 135
Hexachlorobutadiene	mg/kg (ppm)	2	99	50 - 153
Naphthalene	mg/kg (ppm)	2	97	62 - 128
1,2,3-Trichlorobenzene	mg/kg (ppm)	2	95	61 - 126

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 403449-09 (Matrix Spike)

Laboratory Code: 403449-09 (M	atrix Spike)				
		~ .1	~ .	Percent	
	Reporting	-	-	-	Acceptance
Analyte	Units		Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	10	<1	89	27 - 164
Chloromethane	ug/L (ppb)	10	<10	96	34-141
Vinyl chloride	ug/L (ppb)	10	< 0.02	94	16 - 176
Bromomethane	ug/L (ppb)	10	<5	130	10-193
Chloroethane	ug/L (ppb)	10	<1	108	50 - 150
Trichlorofluoromethane	ug/L (ppb)	10	<1	99	50 - 150
2-Propanol	ug/L (ppb)	0	<10	0	50 - 150
Acetone	ug/L (ppb)	50	<50	77	15 - 179
1,1-Dichloroethene	ug/L (ppb)	10	<1	95	50 - 150
Hexane	ug/L (ppb)	10	<5	107	49-161
Methylene chloride	ug/L (ppb)	10	<5	97	40-143
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	<1	97	50 - 150
trans-1,2-Dichloroethene	ug/L (ppb)	10	<1	98	50 - 150
1,1-Dichloroethane	ug/L (ppb)	10	<1	96	50 - 150
2,2-Dichloropropane	ug/L (ppb)	10	<1	139	62 - 152
cis-1,2-Dichloroethene	ug/L (ppb)	10	<1	98	50 - 150
Chloroform	ug/L (ppb)	10	<1	96	50 - 150
2-Butanone (MEK)	ug/L (ppb)	50	<20	92	34-168
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	< 0.2	98	50 - 150
1,1,1-Trichloroethane	ug/L (ppb)	10	<1	99	50 - 150
1,1-Dichloropropene	ug/L (ppb)	10	<1	96	50 - 150
Carbon tetrachloride	ug/L (ppb)	10	< 0.5	106	50 - 150
Benzene	ug/L (ppb)	10	< 0.35	97	50 - 150
Trichloroethene	ug/L (ppb)	10	$<\!0.5$	96	43-133
1,2-Dichloropropane	ug/L (ppb)	10	<1	96	50 - 150
Bromodichloromethane	ug/L (ppb)	10	< 0.5	110	50 - 150
Dibromomethane	ug/L (ppb)	10	<1	99	50 - 150
4-Methyl-2-pentanone	ug/L (ppb)	50	<10	109	50 - 150
cis-1,3-Dichloropropene	ug/L (ppb)	10	< 0.4	95	48 - 145
Toluene	ug/L (ppb)	10	<1	99	50 - 150
trans-1,3-Dichloropropene	ug/L (ppb)	10	< 0.4	90	37 - 152
1,1,2-Trichloroethane	ug/L (ppb)	10	< 0.5	128	50 - 150
2-Hexanone	ug/L (ppb)	50	<10	89	50 - 150
1,3-Dichloropropane	ug/L (ppb)	10	<1	94	50 - 150
Tetrachloroethene	ug/L (ppb)	10	<1	101	50 - 150
Dibromochloromethane	ug/L (ppb)	10	< 0.5	90	33-164
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	< 0.01	102	50 - 150
Chlorobenzene	ug/L (ppb)	10	<1	94	50 - 150
Ethylbenzene	ug/L (ppb)	10	<1	103	50 - 150
1,1,1,2-Tetrachloroethane	ug/L (ppb)	10	<1	92	50 - 150
m,p-Xylene	ug/L (ppb)	20	<2	102	50 - 150
o-Xylene	ug/L (ppb)	10	<1	100	50 - 150
Styrene	ug/L (ppb)	10	<1	97	50 - 150
Isopropylbenzene	ug/L (ppb)	10	<1	97	50-150
Bromoform	ug/L (ppb)	10	<5	91	23-161
n-Propylbenzene	ug/L (ppb)	10	<1	100	50-150
Bromobenzene	ug/L (ppb)	10	<1	94	50-150
1,3,5-Trimethylbenzene	ug/L (ppb)	10	<1	97	50-150
1,1,2,2-Tetrachloroethane	ug/L (ppb)	10	< 0.2	109	57-162
1,2,3-Trichloropropane	ug/L (ppb)	10	<1	97	33-151
, ,, =================================	9 (PP~)		-	- •	

2-Chlorotoluene	ug/L (ppb)	10	<1	95	50 - 150
4-Chlorotoluene	ug/L (ppb)	10	<1	96	50 - 150
tert-Butylbenzene	ug/L (ppb)	10	<1	97	50 - 150
1,2,4-Trimethylbenzene	ug/L (ppb)	10	<1	95	50 - 150
sec-Butylbenzene	ug/L (ppb)	10	<1	98	46 - 139
p-Isopropyltoluene	ug/L (ppb)	10	<1	99	46-140
1,3-Dichlorobenzene	ug/L (ppb)	10	<1	95	50 - 150
1,4-Dichlorobenzene	ug/L (ppb)	10	<1	95	50 - 150
1,2-Dichlorobenzene	ug/L (ppb)	10	<1	94	50 - 150
1,2-Dibromo-3-chloropropane	ug/L (ppb)	10	<10	86	50 - 150
1,2,4-Trichlorobenzene	ug/L (ppb)	10	<1	94	50 - 150
Hexachlorobutadiene	ug/L (ppb)	10	$<\!0.5$	95	42 - 150
Naphthalene	ug/L (ppb)	10	<1	101	50 - 150
1,2,3-Trichlorobenzene	ug/L (ppb)	10	<1	93	44 - 155

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample								
	_		Percent	Percent				
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD		
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)		
Dichlorodifluoromethane	ug/L (ppb)	10	85	86	49-149	1		
Chloromethane	ug/L (ppb)	10	92	91	34 - 143	1		
Vinyl chloride	ug/L (ppb)	10	93	92	43-149	1		
Bromomethane	ug/L (ppb)	10	131	131	28-182	0		
Chloroethane	ug/L (ppb)	10	106	106	59 - 157	0		
Trichlorofluoromethane	ug/L (ppb)	10	104	101	59-141	3		
2-Propanol	ug/L (ppb)	0	0	0	70-130			
Acetone	ug/L (ppb)	50	78	74	20-139	5		
1,1-Dichloroethene	ug/L (ppb)	10	92	92	67 - 138	0		
Hexane	ug/L (ppb)	10	99	99	50-161	0		
Methylene chloride	ug/L (ppb)	10	97	92	29-192	5		
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	94	93	70-130	1		
trans-1,2-Dichloroethene	ug/L (ppb)	10	94	94	70-130	0		
1,1-Dichloroethane	ug/L (ppb)	10	93	93	70-130	0		
2,2-Dichloropropane	ug/L (ppb)	10	136	115	71-148	17		
cis-1,2-Dichloroethene	ug/L (ppb)	10	95	94	70-130	1		
Chloroform	ug/L (ppb)	10	93	92	70-130	1		
2-Butanone (MEK)	ug/L (ppb)	50	89	87	50 - 157	2		
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	94	94	70-130	0		
1,1,1-Trichloroethane	ug/L (ppb)	10	96	95	70-130	1		
1,1-Dichloropropene	ug/L (ppb)	10	93	91	70-130	2		
Carbon tetrachloride	ug/L (ppb)	10	103	101	70-130	2		
Benzene	ug/L (ppb)	10	93	92	70-130	1		
Trichloroethene	ug/L (ppb)	10	93	92	70-130	1		
1,2-Dichloropropane	ug/L (ppb)	10	92	90	70-130	2		
Bromodichloromethane	ug/L (ppb)	10	95	95	70-130	0		
Dibromomethane	ug/L (ppb)	10	96	95	70-130	1		
4-Methyl-2-pentanone	ug/L (ppb)	50	99	95	70-130	4		
cis-1,3-Dichloropropene	ug/L (ppb)	10	92	91	70-130	1		
Toluene	ug/L (ppb)	10	102	104	70-130	2		
trans-1,3-Dichloropropene	ug/L (ppb)	10	95	97	70-130	2		
1,1,2-Trichloroethane	ug/L (ppb)	10	98	99	70-130	1		
2-Hexanone	ug/L (ppb)	50	86	82	66-132	5		
1,3-Dichloropropane	ug/L (ppb)	10	96	98	70-130	2		
Tetrachloroethene	ug/L (ppb)	10	104	105	70-130	1		
Dibromochloromethane	ug/L (ppb)	10	94	97	63-142	3		
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	102	103	70-130	1		
Chlorobenzene	ug/L (ppb)	10	96	99	70-130	3		
Ethylbenzene	ug/L (ppb)	10	103	105	70-130	$\frac{3}{2}$		
1,1,1,2-Tetrachloroethane	ug/L (ppb)	10	98	99	70-130	1		
m,p-Xylene	ug/L (ppb)	20	103	105	70-130	2		
o-Xylene	ug/L (ppb)	10	101	103	70-130	2		
Styrene	ug/L (ppb)	10	97	97	70-130	0		
Isopropylbenzene	ug/L (ppb) ug/L (ppb)	10	97 97	98	70-130	1		
Bromoform	ug/L (ppb) ug/L (ppb)	10	96	95	50-150	1		
n-Propylbenzene	ug/L (ppb) ug/L (ppb)	10	102	101	70-130	1		
Bromobenzene	ug/L (ppb) ug/L (ppb)	10	102 99	99	70-130	0		
1,3,5-Trimethylbenzene	ug/L (ppb) ug/L (ppb)	10	100	100	52-150	0		
1,9,9 11111001191001120112	agin (hhn)	10	100	100	02-100	0		

1,1,2,2-Tetrachloroethane	ug/L (ppb)	10	104	103	75 - 140	1
1,2,3-Trichloropropane	ug/L (ppb)	10	103	101	40-153	2
2-Chlorotoluene	ug/L (ppb)	10	102	100	70-130	2
4-Chlorotoluene	ug/L (ppb)	10	101	99	70-130	2
tert-Butylbenzene	ug/L (ppb)	10	100	98	70-130	2
1,2,4-Trimethylbenzene	ug/L (ppb)	10	99	96	70-130	3
sec-Butylbenzene	ug/L (ppb)	10	100	99	70-130	1
p-Isopropyltoluene	ug/L (ppb)	10	100	99	70-130	1
1,3-Dichlorobenzene	ug/L (ppb)	10	99	98	70-130	1
1,4-Dichlorobenzene	ug/L (ppb)	10	101	99	70-130	2
1,2-Dichlorobenzene	ug/L (ppb)	10	99	98	70-130	1
1,2-Dibromo-3-chloropropane	ug/L (ppb)	10	97	92	70-130	5
1,2,4-Trichlorobenzene	ug/L (ppb)	10	96	92	70-130	4
Hexachlorobutadiene	ug/L (ppb)	10	98	96	70-130	2
Naphthalene	ug/L (ppb)	10	96	92	61-133	4
1,2,3-Trichlorobenzene	ug/L (ppb)	10	94	91	69-143	3

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: 403380-04 1/5 (Matrix Spike) end

end							
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	e RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Phenol	mg/kg (ppm)	0.83	< 0.5	83	84	50-150	1
Bis(2-chloroethyl) ether	mg/kg (ppm)	0.83	< 0.05	85	85	50-150	0
2-Chlorophenol	mg/kg (ppm)	0.83	< 0.5	83	84	50 - 150	1
1,3-Dichlorobenzene	mg/kg (ppm)	0.83 0.83	<0.05	73	77	36-107	5 3
1,4-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	0.83	<0.05 <0.05	77	79	37-106	3
1,2-Dichlorobenzene Benzyl alcohol	mg/kg (ppm)	4.2	< 0.5	76 78	78 79	39-106	1
2,2'-Oxybis(1-chloropropane)	mg/kg (ppm)	0.83	< 0.05	84	79 84	50-150 50-150	0
2-Methylphenol	mg/kg (ppm)	0.83	< 0.5	88	87	50-150	1
Hexachloroethane	mg/kg (ppm)	0.83	< 0.05	81	82	19-129	1
N-Nitroso-di-n-propylamine	mg/kg (ppm)	0.83	< 0.05	90	91	50-150	1
3-Methylphenol + 4-Methylphenol	mg/kg (ppm)	0.83	<1	89	90	50 - 150	1
Nitrobenzene	mg/kg (ppm) mg/kg (ppm)	0.83 0.83	<0.05 <0.05	81	82	50 - 150	1 20
Isophorone	mg/kg (ppm)	0.83	<0.5	86	105	16-156	20
2-Nitrophenol 2,4-Dimethylphenol	mg/kg (ppm)	0.83	< 0.5	91 86	92 86	50-150 35-117	0
Benzoic acid	mg/kg (ppm)	2.5	<2.5	50	54	10-105	8
Bis(2-chloroethoxy)methane	mg/kg (ppm)	0.83	< 0.05	83	83	50-150	0
2,4-Dichlorophenol	mg/kg (ppm)	0.83	< 0.5	83	83	50-150	0
1,2,4 Trichlorobenzene	mg/kg (ppm)	0.83	< 0.05	84	85	50-150	1
Naphthalene	mg/kg (ppm)	0.83	<0.01	77	77	50-150	0
Hexachlorobutadiene	mg/kg (ppm) mg/kg (ppm)	0.83 6.8	<0.05 <5	68	71	39-106	$\frac{4}{4}$
4-Chloroaniline	mg/kg (ppm)	0.83	<0.5	66	69	40-101	4 2
4-Chloro-3-methylphenol 2-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	97 76	95 75	50-150	1
1-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	76	75 75	50-150 50-150	1
Hexachlorocyclopentadiene	mg/kg (ppm)	0.83	< 0.15	69	72	27-127	4
2.4.6-Trichlorophenol	mg/kg (ppm)	0.83	< 0.5	93	91	35-130	2
2,4,5-Trichlorophenol	mg/kg (ppm)	0.83	< 0.5	94	95	43-126	1
2-Chloronaphthalene	mg/kg (ppm)	0.83	< 0.05	81	80	50 - 150	1
2-Nitroaniline	mg/kg (ppm)	4.2 0.83	<0.25 <0.5	73	74	50 - 150	$\frac{1}{2}$
Dimethyl phthalate	mg/kg (ppm) mg/kg (ppm)	0.83	<0.01	88	86	50-150	0
Acenaphthylene 2,6-Dinitrotoluene	mg/kg (ppm)	0.83	<0.25	72 87	72 87	50-150	0
3-Nitroaniline	mg/kg (ppm)	4.2	<5	74	73	50-150 50-150	1
Acenaphthene	mg/kg (ppm)	0.83	< 0.01	70	69	50-150	1
2,4-Dinitrophenol	mg/kg (ppm)	1.7	<1.5	88	92	10-146	4
Dibenzofuran	mg/kg (ppm)	0.83	< 0.05	79	78	50-150	1
2,4-Dinitrotoluene	mg/kg (ppm)	0.83	<0.25	102	101	44-141	1
4-Nitrophenol	mg/kg (ppm) mg/kg (ppm)	1.7 0.83	<1.5 <0.5	105	112	33-142	6 1
Diethyl phthalate	mg/kg (ppm)	0.83	<0.01	85	84	50-150	1
Fluorene 4-Chlorophenyl phenyl ether	mg/kg (ppm)	0.83	< 0.05	79 89	78 88	50-150 50-150	1
1,2-Diphenylhydrazine	mg/kg (ppm)	0.83	< 0.05	89	87	50-150	2
N-Nitrosodiphenylamine	mg/kg (ppm)	0.83	< 0.05	85	84	50-150	1
4-Nitroaniline	mg/kg (ppm)	4.2	<5	82	81	50-150	1
4,6-Dinitro-2-methylphenol	mg/kg (ppm)	0.83	<1.5	112	111	33 - 155	1
4-Bromophenyl phenyl ether	mg/kg (ppm)	0.83	<0.05	91	89	50 - 150	$\frac{2}{2}$
Hexachlorobenzene	mg/kg (ppm) mg/kg (ppm)	0.83 0.83	<0.05 <0.25	91	89	50-150	1
Pentachlorophenol Phenanthrene	mg/kg (ppm)	0.83	<0.01	101 86	102 85	15-159	1
Anthracene	mg/kg (ppm)	0.83	< 0.01	85	85	10-170 37-139	0
Carbazole	mg/kg (ppm)	0.83	< 0.05	83	82	50-150	1
Di-n-butyl phthalate	mg/kg (ppm)	0.83	< 0.5	90	89	50-150	1
Fluoranthene	mg/kg (ppm)	0.83	< 0.01	88	88	10-203	0
Benzidine	mg/kg (ppm)	1.3	<1	44	48	10-72	9
Pyrene	mg/kg (ppm)	0.83	<0.01	89	87	10-208	2
Benzyl butyl phthalate	mg/kg (ppm) mg/kg (ppm)	0.83 1.3	<0.5 <0.5	93	92	50-150	1 3
3,3'-Dichlorobenzidine	mg/kg (ppm)	0.83	<0.01	76	74	10-119	1
Benz(a)anthracene Chrysene	mg/kg (ppm)	0.83	< 0.01	90 81	89 79	37-146 36-144	2
Bis(2-ethylhexyl) phthalate	mg/kg (ppm)	0.83	< 0.8	93	94	50-144	1
Di-n-octyl phthalate	mg/kg (ppm)	0.83	< 0.5	101	101	10-243	0
Benzo(a)pyrene	mg/kg (ppm)	0.83	< 0.01	87	87	40-150	0
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	< 0.01	90	88	45-157	2
Benzo(k)fluoranthene	mg/kg (ppm) mg/kg (ppm)	0.83 0.83	<0.01 <0.01	86	89	50-150	3 8
Indeno(1,2,3-cd)pyrene	mg/kg (ppm) mg/kg (ppm)	0.83	<0.01	110	102	24-145	8
Dibenz(a,h)anthracene Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	<0.01	109 102	105 98	31-137	4
Demo(g,n,i)peryiene				102	30	14-141	

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

end				
Analyte	Reporting Units	Spike Level	Percent Recovery LCS	Acceptance Criteria
Phenol	mg/kg (ppm)	0.83	85	57-113
Bis(2-chloroethyl) ether	mg/kg (ppm)	0.83	88	55-108
2-Chlorophenol	mg/kg (ppm)	0.83	88	60-104
1,3-Dichlorobenzene	mg/kg (ppm)	0.83	79	54-103
1,4-Dichlorobenzene	mg/kg (ppm)	0.83	81	54-102
1,2-Dichlorobenzene	mg/kg (ppm)	0.83	79	55-103
Benzyl alcohol	mg/kg (ppm)	4.2	80	36-147
2,2'-Oxybis(1-chloropropane)	mg/kg (ppm)	0.83	89	56-109
2-Methylphenol	mg/kg (ppm)	0.83	92	62-107
Hexachloroethane	mg/kg (ppm)	0.83	86	54 - 105
N-Nitroso-di-n-propylamine	mg/kg (ppm)	0.83	92	64-112
3-Methylphenol + 4-Methylphenol	mg/kg (ppm)	0.83	93	63-110
Nitrobenzene	mg/kg (ppm)	0.83	83	55-111
Isophorone	mg/kg (ppm)	0.83	89	52 - 127
2-Nitrophenol	mg/kg (ppm) mg/kg (ppm)	0.83 0.83	94	53 - 122
2,4-Dimethylphenol	mg/kg (ppm)	2.5	88	31-105
Benzoic acid	mg/kg (ppm)	0.83	72	38-99
Bis(2-chloroethoxy)methane	mg/kg (ppm)	0.83	86	63-112
2,4-Dichlorophenol	mg/kg (ppm)	0.83	86	62-112
1,2,4-Trichlorobenzene	mg/kg (ppm)	0.83	89	59-105
Naphthalene	mg/kg (ppm)	0.83	82	59-105
Hexachlorobutadiene	mg/kg (ppm)	6.8	72	54-108
4-Chloroaniline	mg/kg (ppm)	0.83	65	36-111
4-Chloro-3-methylphenol	mg/kg (ppm)	0.83	100	63-116
2-Methylnaphthalene 1-Methylnaphthalene	mg/kg (ppm)	0.83	80 80	62-108
Hexachlorocyclopentadiene	mg/kg (ppm)	0.83	80 74	62-108 48-123
2,4,6-Trichlorophenol	mg/kg (ppm)	0.83	95	48-123 61-114
2,4,5-Trichlorophenol	mg/kg (ppm)	0.83	95 98	64-121
2-Chloronaphthalene	mg/kg (ppm)	0.83	84	62-112
2-Nitroaniline	mg/kg (ppm)	4.2	74	30-179
Dimethyl phthalate	mg/kg (ppm)	0.83	88	63-124
Acenaphthylene	mg/kg (ppm)	0.83	75	61-111
2,6-Dinitrotoluene	mg/kg (ppm)	0.83	88	63-131
3-Nitroaniline	mg/kg (ppm)	4.2	79	57-114
Acenaphthene	mg/kg (ppm)	0.83	72	61-110
2,4-Dinitrophenol	mg/kg (ppm)	1.7	99	51-143
Dibenzofuran	mg/kg (ppm)	0.83	81	65-118
2,4-Dinitrotoluene	mg/kg (ppm)	0.83	99	47-146
4-Nitrophenol	mg/kg (ppm)	1.7	99	63-127
Diethyl phthalate	mg/kg (ppm)	0.83	89	63-124
Fluorene	mg/kg (ppm)	0.83	80	62-114
4-Chlorophenyl phenyl ether	mg/kg (ppm)	0.83	93	61-116
N-Nitrosodiphenylamine	mg/kg (ppm)	0.83	86	64-116
4-Nitroaniline	mg/kg (ppm)	4.2	82	63-117
4,6-Dinitro-2-methylphenol	mg/kg (ppm)	0.83	113	59 - 152
4-Bromophenyl phenyl ether	mg/kg (ppm)	0.83	94	66-118
Hexachlorobenzene	mg/kg (ppm)	0.83	94	57-115
Pentachlorophenol	mg/kg (ppm) mg/kg (ppm)	0.83	113	56 - 130
Phenanthrene		0.83 0.83	89	64-112
Anthracene	mg/kg (ppm) mg/kg (ppm)		87	63-111
Carbazole	mg/kg (ppm)	$0.83 \\ 0.83$	85	68-120
Di-n-butyl phthalate	mg/kg (ppm)	0.83	94	52 - 130
Fluoranthene	mg/kg (ppm)	1.3	91	66-115
Benzidine	mg/kg (ppm)	0.83	0	0-100
Pyrene	mg/kg (ppm)	0.83	90	65-112
Benzyl butyl phthalate	mg/kg (ppm)	1.3	92 79	56-131
3,3'-Dichlorobenzidine	mg/kg (ppm)	0.83	72	10-100
Benz(a)anthracene	mg/kg (ppm)	0.83	91	64-116
Chrysene Big(2 otherhouse) whthe late	mg/kg (ppm)	0.83	81	66-119
Bis(2-ethylhexyl) phthalate	mg/kg (ppm)	0.83	90	30-165
Di-n-octyl phthalate	mg/kg (ppm)	0.83	99	44-140
Benzo(a)pyrene Benzo(b)fluoranthono	mg/kg (ppm)	0.83	88 92	62-116
Benzo(b)fluoranthene	mg/kg (ppm)	0.83		61-118
Benzo(k)fluoranthene Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	86 107	65-119 64 120
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	107	64-130 67-131
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	106	67-126
Denzo(g,n,i)peryiene	8 8 4 F		100	07-120

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

end						
	Reporting	Spike	Percent Recovery	Percent Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Phenol	ug/L (ppb)	5	27	29	10-43	7
Bis(2-chloroethyl) ether	ug/L (ppb)	5	75	80	40-114	6
2-Chlorophenol	ug/L (ppb)	5	69	74	21-97	7 2
1,3-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	5 5	52	53	39-102	2
1,4-Dichlorobenzene	ug/L (ppb)	5	53 56	54 59	41-103	5
1,2-Dichlorobenzene Benzyl alcohol	ug/L (ppb)	25	56 71	59 77	43-105 14-82	8
2,2'-Oxybis(1-chloropropane)	ug/L (ppb)	5	81	88	51-110	8
2-Methylphenol	ug/L (ppb)	5	64	71	19-77	10
Hexachloroethane	ug/L (ppb)	5	45	50	39-104	11
N-Nitroso-di-n-propylamine	ug/L (ppb)	5	84	93	58-117	10
3-Methylphenol + 4-Methylphenol	ug/L (ppb) ug/L (ppb)	5 5	56	66	12-89	16 5
Nitrobenzene	ug/L (ppb) ug/L (ppb)	5	78	82	52-111	3
Isophorone 2-Nitrophenol	ug/L (ppb)	5	90 69	93 77	62-117 41-117	11
2,4-Dimethylphenol	ug/L (ppb)	5	75	81	10-117	8
Benzoic acid	ug/L (ppb)	40	18	18	10-39	0
Bis(2-chloroethoxy)methane	ug/L (ppb)	5	80	88	56-111	10
2,4-Dichlorophenol	ug/L (ppb)	5	82	90	34-113	9
1,2,4-Trichlorobenzene	ug/L (ppb)	5	59	62	48-104	5
Naphthalene	ug/L (ppb) ug/L (ppb)	5 5	69	74	50-104	$\frac{7}{4}$
Hexachlorobutadiene	ug/L (ppb) ug/L (ppb)	25	46	48	40-107	4 6
4-Chloroaniline	ug/L (ppb)	5	93 85	99 94	34-125	10
4-Chloro-3-methylphenol 2-Methylnaphthalene	ug/L (ppb)	5	89 73	94 79	34-111 52-113	8
1-Methylnaphthalene	ug/L (ppb)	5	75	81	51-115	8
Hexachlorocyclopentadiene	ug/L (ppb)	5	47	48	34-126	2
2,4,6-Trichlorophenol	ug/L (ppb)	5	80	89	28-125	11
2,4,5-Trichlorophenol	ug/L (ppb)	5	88	96	39-120	9
2-Chloronaphthalene	ug/L (ppb)	$\frac{5}{25}$	73	79	57 - 130	8 7
2-Nitroaniline	ug/L (ppb) ug/L (ppb)	25 5	90	97	51-146	9
Dimethyl phthalate	ug/L (ppb)	5	97 82	106 88	64-118	7
Acenaphthylene 2.6-Dinitrotoluene	ug/L (ppb)	5	82 87	88 92	60-114 66-121	6
3-Nitroaniline	ug/L (ppb)	25	89	92	42-134	3
Acenaphthene	ug/L (ppb)	5	79	85	57-110	7
2,4-Dinitrophenol	ug/L (ppb)	10	82	88	20-151	7
Dibenzofuran	ug/L (ppb)	5	84	90	52-116	7
2,4-Dinitrotoluene	ug/L (ppb) ug/L (ppb)	5 10	97	103	55 - 127	6 3
4-Nitrophenol	ug/L (ppb) ug/L (ppb)	5	31 102	32	10-58	6
Diethyl phthalate Fluorene	ug/L (ppb)	5	88	108 94	63-118 61-115	7
4-Chlorophenyl phenyl ether	ug/L (ppb)	5	87	91	61-112	4
N-Nitrosodiphenylamine	ug/L (ppb)	5	95	97	60-123	2
4-Nitroaniline	ug/L (ppb)	25	94	99	42-150	5
4,6-Dinitro-2-methylphenol	ug/L (ppb)	5	90	99	13 - 152	10
4-Bromophenyl phenyl ether	ug/L (ppb)	5	86	90	63-123	5 4
Hexachlorobenzene	ug/L (ppb) ug/L (ppb)	5 5	92	96	60-113	4 1
Pentachlorophenol	ug/L (ppb)	5	100 92	99 96	14-137	4
Phenanthrene Anthracene	ug/L (ppb)	5	92 95	96 97	63-113 65-117	2
Carbazole	ug/L (ppb)	5	106	107	62-137	1
Di-n-butyl phthalate	ug/L (ppb)	5	103	108	36-137	5
Fluoranthene	ug/L (ppb)	5	104	105	68-121	1
Benzidine	ug/L (ppb)	7.5	25	25	10-103	$0 \\ 2$
Pyrene	ug/L (ppb) ug/L (ppb)	5 5	97	99	62-133	2
Benzyl butyl phthalate	ug/L (ppb) ug/L (ppb)	7.5	100	101	56-145	2
3,3'-Dichlorobenzidine	ug/L (ppb) ug/L (ppb)	5	91 102	93 103	31-139	1
Benz(a)anthracene Chrysene	ug/L (ppb)	5	102 101	103	66-131 66-129	3
Bis(2-ethylhexyl) phthalate	ug/L (ppb)	5	101	104	52-142	4
Di-n-octyl phthalate	ug/L (ppb)	5	112	114	36-151	2
Benzo(a)pyrene	ug/L (ppb)	5	106	108	66-129	2
Benzo(b)fluoranthene	ug/L (ppb)	5	103	105	55-144	2
Benzo(k)fluoranthene	ug/L (ppb) ug/L (ppb)	5 5	106	107	58-139	$\frac{1}{4}$
Indeno(1,2,3-cd)pyrene	ug/L (ppb) ug/L (ppb)	э 5	107	111	62-136	4 5
Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ug/L (ppb)	5	105 103	110 107	55-146 58-137	4
Denzo(g,n,i)peryrene	8 ur-/	-	100	107	00-107	

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 403326-04 (Duplicate) end

end

Analyte	Reporting Units	Sample Result (Wet Wt)	Duplicate Result (Wet Wt)	RPD (Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm
Laboratory Code:	Laboratory Contro	ol Sample		

Percent Reporting Spike Recovery Acceptance Analyte Units Level LCS Criteria Benzene mg/kg (ppm) 9870-130 1.0mg/kg (ppm) 70-130 Toluene 1.094Ethylbenzene mg/kg (ppm) 70-130 1.093 Xylenes mg/kg (ppm) 3.09370-130 Gasoline mg/kg (ppm) 40 95 70-130

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

enu	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm
Laboratory Code:	Laboratory Contr	ol Sample		
end				
		Pe	rcent	

Laboratory Code: 403441-01 (Duplicate) end

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	110	70-130
Toluene	ug/L (ppb)	50	104	70-130
Ethylbenzene	ug/L (ppb)	50	106	70-130
Xylenes	ug/L (ppb)	150	93	70-130
Gasoline	ug/L (ppb)	1,000	100	70-130

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 403410-01 (Matrix Spike) end

		Sample	Percent	Percent		
Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
mg/kg (ppm)	5,000	3,000	114	96	63-146	17
Laboratory Contr	ol Sampl	le				
		Percent				
Reporting	Spike	Recovery	Accept	tance		
Units	Level	LCS	Crite	eria		
mg/kg (ppm)	5,000	102	77-1	123		
	Units mg/kg (ppm) Laboratory Contr Reporting Units	Units Level mg/kg (ppm) 5,000 Laboratory Control Samp Reporting Spike Units Level	Reporting UnitsSpike LevelResult (Wet Wt)mg/kg (ppm)5,0003,000Laboratory Control SamplePercentReporting UnitsSpike LevelRecovery LCS	ReportingSpikeResultRecoveryUnitsLevel(Wet Wt)MSmg/kg (ppm)5,0003,000114Laboratory Control SamplePercentReportingSpikeReportingSpikeRecoveryAccepUnitsLevelLCS	Reporting UnitsSpike LevelResult Recovery (Wet Wt)Recovery MSRecovery MSDmg/kg (ppm)5,0003,00011496Laboratory Control SamplePercentReporting 	Reporting Spike Result Recovery Recovery Acceptance Units Level (Wet Wt) MS MSD Criteria mg/kg (ppm) 5,000 3,000 114 96 63-146 Laboratory Control Sample Percent Reporting Spike Recovery Acceptance Units Level LCS Criteria

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

ond			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	92	88	72-139	4

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 403425-01 1/5.7 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	3,200	3,000	6
APH EC9-12 aliphatics	ug/m3	200	190	5
APH EC9-10 aromatics	ug/m3	<140	<140	nm

Laboratory code. Laboratory con	cioi Dampie		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	104	70-130
APH EC9-12 aliphatics	ug/m3	67	121	70-130
APH EC9-10 aromatics	ug/m3	67	98	70-130

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 403425-01 1/5.7 (Duplicate)

Analyte	Reporting Units	Sample Result	Duplicate Result	RPD (Limit 30)
Propene	ug/m3	4,800	4,800	0
Dichlorodifluoromethane	ug/m3	<5.6	<5.6	nm
Chloromethane	ug/m3	<21	<21	nm
F-114	ug/m3	<12	<12	nm
Vinyl chloride	ug/m3	<1.5	<1.5	nm
1,3-Butadiene	ug/m3	230	< 0.25	nm
Butane	ug/m3	1,100	1,100	0
Bromomethane	ug/m3	<22	<22	nm
Chloroethane	ug/m3	<15	<15	nm
Vinyl bromide	ug/m3	<2.5	<2.5	nm
Ethanol	ug/m3	< <u>4</u> 3	<43	nm
Acrolein	ug/m3	<0.65	<0.65	nm
Pentane	ug/m3	300	300	0
Trichlorofluoromethane	ug/m3	<13	<13	nm
Acetone	ug/m3	<13 55	51	8
2-Propanol	ug/m3	<49	<49	nm
1,1-Dichloroethene	ug/m3	<4 <i>3</i> <2.3	<4 <i>9</i> <2.3	
trans-1,2-Dichloroethene	ug/m3	<2.3 <2.3	<2.3	nm
Methylene chloride	0	<2.5 <200	<2.5 <200	nm
U U	ug/m3	<200 <69	<200 <69	nm
t-Butyl alcohol (TBA)	ug/m3			nm
3-Chloropropene CFC-113	ug/m3	<18 <8.7	<18	nm
Carbon disulfide	ug/m3	<8.7 <36	<8.7 <36	nm
	ug/m3	<56 <41	<56 <41	nm
Methyl t-butyl ether (MTBE)	ug/m3			nm
Vinyl acetate	ug/m3	<40	<40	nm
1,1-Dichloroethane	ug/m3	<2.3	<2.3	nm
cis-1,2-Dichloroethene	ug/m3	<2.3	<2.3	nm
Hexane	ug/m3	69	67	3
Chloroform	ug/m3	< 0.28	<0.28	nm
Ethyl acetate	ug/m3	<41	<41	nm
Tetrahydrofuran	ug/m3	<3.4	<3.4	nm
2-Butanone (MEK)	ug/m3	<34	<34	nm
1,2-Dichloroethane (EDC)	ug/m3	< 0.23	<0.23	nm
1,1,1-Trichloroethane	ug/m3	<3.1	<3.1	nm
Carbon tetrachloride	ug/m3	<1.8	<1.8	nm
Benzene	ug/m3	19	19	0
Cyclohexane	ug/m3	<39	<39	nm
1,2-Dichloropropane	ug/m3	<1.3	<1.3	nm
1,4-Dioxane	ug/m3	<2.1	<2.1	nm
2,2,4-Trimethylpentane	ug/m3	<27	<27	nm
Methyl methacrylate	ug/m3	<23	<23	nm
Heptane	ug/m3	<23	<23	nm
Bromodichloromethane	ug/m3	< 0.38	< 0.38	nm
Trichloroethene	ug/m3	< 0.61	< 0.61	nm
cis-1,3-Dichloropropene	ug/m3	<5.2	<5.2	nm
4-Methyl-2-pentanone	ug/m3	<47	<47	nm
trans-1,3-Dichloropropene	ug/m3	<2.6	<2.6	nm
Toluene	ug/m3	<43	<43	nm
1,1,2-Trichloroethane	ug/m3	< 0.31	< 0.31	nm
2-Hexanone	ug/m3	<23	<23	

Tetrachloroethene	ug/m3	<39	<39	nm
Dibromochloromethane	ug/m3	< 0.49	< 0.49	nm
1,2-Dibromoethane (EDB)	ug/m3	< 0.44	< 0.44	nm
Chlorobenzene	ug/m3	<2.6	<2.6	nm
Ethylbenzene	ug/m3	5.4	5.5	2
1,1,2,2-Tetrachloroethane	ug/m3	< 0.78	< 0.78	nm
Nonane	ug/m3	<30	<30	nm
Isopropylbenzene	ug/m3	<56	<56	nm
2-Chlorotoluene	ug/m3	<30	<30	nm
Propylbenzene	ug/m3	<28	<28	nm
4-Ethyltoluene	ug/m3	<28	<28	nm
m,p-Xylene	ug/m3	15	15	0
o-Xylene	ug/m3	4.7	4.8	2
Styrene	ug/m3	<4.9	<4.9	nm
Bromoform	ug/m3	<12	<12	nm
Benzyl chloride	ug/m3	< 0.3	< 0.3	nm
1,3,5-Trimethylbenzene	ug/m3	<28	<28	nm
1,2,4-Trimethylbenzene	ug/m3	<28	<28	nm
1,3-Dichlorobenzene	ug/m3	<3.4	<3.4	nm
1,4-Dichlorobenzene	ug/m3	<1.3	<1.3	nm
1,2-Dichlorobenzene	ug/m3	<3.4	<3.4	nm
1,2,4-Trichlorobenzene	ug/m3	<4.2	<4.2	nm
Naphthalene	ug/m3	<1.5	<1.5	nm
Hexachlorobutadiene	ug/m3	<1.2	<1.2	nm

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Propene	ug/m3	23	126	70-130
Dichlorodifluoromethane	ug/m3	67	113	70 - 130
Chloromethane	ug/m3	28	101	70-130
F-114	ug/m3	94	112	70-130
Vinyl chloride	ug/m3	35	117	70-130
1,3-Butadiene	ug/m3	30	102	70-130
Butane	ug/m3	32	107	70-130
Bromomethane	ug/m3	52	108	70-130
Chloroethane	ug/m3	36	111	70-130
Vinyl bromide	ug/m3	59	121	70-130
Ethanol	ug/m3	25	119	70-130
Acrolein	ug/m3	31	122	70 - 130
Pentane	ug/m3	40	108	70-130
Frichlorofluoromethane	ug/m3	76	108	70-130
Acetone	ug/m3	32	112	70-130
2-Propanol	ug/m3	33	101	70-130
1,1-Dichloroethene	ug/m3	54	113	70-130
rans-1,2-Dichloroethene	ug/m3	54	112	70-130
Methylene chloride	ug/m3	94	106	70-130
-Butyl alcohol (TBA)	ug/m3	41	88	70-130
B-Chloropropene	ug/m3	42	96	70-130
CFC-113	ug/m3	100	114	70-130
Carbon disulfide	ug/m3	42	98	70-130
Methyl t-butyl ether (MTBE)	ug/m3	49	98	70-130
Vinyl acetate	ug/m3	48	100	70-130
I,1-Dichloroethane	ug/m3	55	116	70-130
cis-1,2-Dichloroethene	ug/m3	54	107	70-130
Hexane	ug/m3	48	85	70-130
Chloroform	ug/m3	66	115	70-130
Ethyl acetate	ug/m3	49	86	70-130
Fetrahydrofuran	ug/m3	40	98	70-130
2-Butanone (MEK)	ug/m3	40	104	70-130
1,2-Dichloroethane (EDC)	ug/m3	55	117	70-130
I,1,1-Trichloroethane	ug/m3	74	120	70-130
Carbon tetrachloride	ug/m3	85	113	70-130
Benzene	ug/m3	43	$113 \\ 105$	70-130
Cyclohexane	ug/m3	$43 \\ 46$	96	70-130
I,2-Dichloropropane	ug/m3	$\frac{40}{62}$	90 119	70-130
1,4-Dioxane	-	$\frac{62}{49}$	99	70-130
	ug/m3	$\frac{49}{63}$	99 103	70-130
2,2,4-Trimethylpentane	ug/m3			
Methyl methacrylate	ug/m3	55 55	111	70-130 70-120
Heptane	ug/m3	55 00	105	70-130
Bromodichloromethane	ug/m3	90 79	120	70-130
Frichloroethene	ug/m3	73	118	70-130
cis-1,3-Dichloropropene	ug/m3	61	114	70-130
4-Methyl-2-pentanone	ug/m3	55	104	70-130
trans-1,3-Dichloropropene	ug/m3	61	121	70-130
Foluene	ug/m3	51	110	70-130
1,1,2-Trichloroethane	ug/m3	74	120	70-130
2-Hexanone	ug/m3	55	96	70 - 130

Tetrachloroethene	ug/m3	92	117	70-130	
Dibromochloromethane	ug/m3	120	116	70-130	
1,2-Dibromoethane (EDB)	ug/m3	100	121	70-130	
Chlorobenzene	ug/m3	62	107	70-130	
Ethylbenzene	ug/m3	59	103	70-130	
1,1,2,2-Tetrachloroethane	ug/m3	93	118	70-130	
Nonane	ug/m3	71	108	70-130	
Isopropylbenzene	ug/m3	66	109	70-130	
2-Chlorotoluene	ug/m3	70	105	70-130	
Propylbenzene	ug/m3	66	106	70-130	
4-Ethyltoluene	ug/m3	66	98	70-130	
m,p-Xylene	ug/m3	120	105	70-130	
o-Xylene	ug/m3	59	109	70-130	
Styrene	ug/m3	58	93	70-130	
Bromoform	ug/m3	140	105	70-130	
Benzyl chloride	ug/m3	70	161 vo	70-130	
1,3,5-Trimethylbenzene	ug/m3	66	102	70-130	
1,2,4-Trimethylbenzene	ug/m3	66	93	70-130	
1,3-Dichlorobenzene	ug/m3	81	110	70-130	
1,4-Dichlorobenzene	ug/m3	81	107	70-130	
1,2-Dichlorobenzene	ug/m3	81	108	70-130	
1,2,4-Trichlorobenzene	ug/m3	100	95	70-130	
Naphthalene	ug/m3	71	95	70-130	
Hexachlorobutadiene	ug/m3	140	107	70-130	

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-17

Laboratory Code: Laboratory Co	1		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	ng/tube	50	70	70-130
Vinyl chloride	ng/tube	50	82	70-130
2-Propanol	ng/tube	250	111	70-130
1,1-Dichloroethene	ng/tube	50	99	70-130
Hexane	ng/tube	50	97	70-130
t-Butyl alcohol (TBA)	ng/tube	250	106	70-130
Methyl t-butyl ether (MTBE)	ng/tube	50	102	70-130
trans-1,2-Dichloroethene	ng/tube	50	99	70-130
1,1-Dichloroethane	ng/tube	50	99	70-130
2,2-Dichloropropane	ng/tube	50	101	70-130
cis-1,2-Dichloroethene	ng/tube	50	99	70-130
Chloroform	ng/tube	50	99	70-130
2-Butanone (MEK)	ng/tube	50	91	70-130
1,2-Dichloroethane (EDC)	ng/tube	50	99	70-130
1,1,1-Trichloroethane	ng/tube	50	100	70-130
1,1-Dichloropropene	ng/tube	50	99	70-130
Carbon tetrachloride	ng/tube	50	100	70-130
Benzene	ng/tube	50	94	70-130
Frichloroethene	ng/tube	50	102	70-130
1,2-Dichloropropane	ng/tube	50	100	70-130
Bromodichloromethane	ng/tube	50	99	70-130
Dibromomethane	ng/tube	50	99	70-130
4-Methyl-2-pentanone	ng/tube	50	101	70-130
cis-1,3-Dichloropropene	ng/tube	50	102	70-130
Foluene	ng/tube	50	100	70-130
trans-1,3-Dichloropropene	ng/tube	50	104	70-130
1,1,2-Trichloroethane	ng/tube	50	105	70-130
2-Hexanone	ng/tube	50	88	70-130
1,3-Dichloropropane	ng/tube	50	103	70-130
Fetrachloroethene	ng/tube	50	106	70-130
Dibromochloromethane	ng/tube	50	103	70-130
1,2-Dibromoethane (EDB)	ng/tube	50	104	70-130
Chlorobenzene	ng/tube	50	101	70-130
Ethylbenzene	ng/tube	50	102	70-130
1,1,1,2-Tetrachloroethane	ng/tube	50	101	70-130
m,p-Xylene	ng/tube	100	102	70-130
o-Xylene	ng/tube	50	102	70-130
Styrene	ng/tube	50	103	70-130
Isopropylbenzene	ng/tube	50	102	70-130
Bromoform	ng/tube	50	101	70-130
n-Propylbenzene	ng/tube	50	102	70-130
Bromobenzene	ng/tube	50	104	70-130
1,3,5-Trimethylbenzene	ng/tube	50	101	70-130
1,1,2,2-Tetrachloroethane	ng/tube	50	101	70-130
1,2,3-Trichloropropane	ng/tube	50	101	70-130
2-Chlorotoluene	ng/tube	50	105	70-130
4-Chlorotoluene	ng/tube	50	103	70-130
tert-Butylbenzene	ng/tube	50	103	70-130
1,2,4-Trimethylbenzene	ng/tube	50	92	70-130
sec-Butylbenzene	ng/tube	50	91	70-130

p-Isopropyltoluene	ng/tube	50	92	70-130
1,3-Dichlorobenzene	ng/tube	50	90	70-130
1,4-Dichlorobenzene	ng/tube	50	90	70-130
1,2-Dichlorobenzene	ng/tube	50	89	70-130
1,2-Dibromo-3-chloropropane	ng/tube	50	93	70-130
1,2,4-Trichlorobenzene	ng/tube	50	88	70-130
Hexachlorobutadiene	ng/tube	50	87	70-130
Naphthalene	ng/tube	50	91	70-130
1,2,3-Trichlorobenzene	ng/tube	50	89	70-130
2-Methylnaphthalene	ng/tube	50	107	70-130
1-Methylnaphthalene	ng/tube	50	107	70-130
Diesel Fuel Range	ng/tube	2,500	105	70-130
APH EC9-12 aliphatics	ng/tube	1,200	82	70-130
APH EC9-10 aromatics	ng/tube	1,000	111	70-130

					LOW		
ANALYTE	CATEGORY	MATRIX	MDL	RL	LEVEL RL	UNIT	METHOD
Helium	AIR	Air	0.15	0.6		ug/m3	ASTMD1946
1,4-Dioxane	VOC SIM	Water	0.12	0.4		ug/L	EPA8260D SIM
1,4-Dioxane Aroclor 1221	VOC SIM PCB	Soil Soil	0.023 0.00021	0.1 0.02	 0.004	mg/kg mg/kg	EPA8260D SIM EPA8082
Aroclor 1221 Aroclor 1232	PCB	Soil	0.00021	0.02	0.004	mg/kg	EPA8082
Aroclor 1016	PCB	Soil	0.00021	0.02	0.004	mg/kg	EPA8082
Aroclor 1242	PCB	Soil	0.00021	0.02	0.004	mg/kg	EPA8082
Aroclor 1248	PCB	Soil	0.00023	0.02	0.004	mg/kg	EPA8082
Aroclor 1254	PCB	Soil	0.00023	0.02	0.004	mg/kg	EPA8082
Aroclor 1260	PCB	Soil	0.00023	0.02	0.004	mg/kg	EPA8082
Aroclor 1262 Aroclor 1268	PCB PCB	Soil Soil	0.00023 0.00023	0.02 0.02	0.004 0.004	mg/kg	EPA8082 EPA8082
Aroclor 1200	PCB	Water	0.00023	0.02	0.004	mg/kg ug/L	EPA8082
Aroclor 1232	PCB	Water	0.0054	0.1	0.01	ug/L	EPA8082
Aroclor 1016	PCB	Water	0.0054	0.1	0.01	ug/L	EPA8082
Aroclor 1242	PCB	Water	0.0054	0.1	0.01	ug/L	EPA8082
Aroclor 1248	PCB	Water	0.0059	0.1	0.01	ug/L	EPA8082
Aroclor 1254	PCB	Water	0.0059	0.1	0.01	ug/L	EPA8082
Aroclor 1260	PCB	Water	0.0059	0.1	0.01	ug/L	EPA8082
Aroclor 1262	PCB	Water	0.0059	0.1	0.01	ug/L	EPA8082
Aroclor 1268 Aroclor 1221	PCB PCB	Water Product	0.0059 0.6	0.1 1	0.01	ug/L mg/kg	EPA8082 EPA8082
Aroclor 1221 Aroclor 1232	PCB	Product	0.6	1		mg/kg	EPA8082
Aroclor 1016	PCB	Product	0.6	1		mg/kg	EPA8082
Aroclor 1242	PCB	Product	0.6	1		mg/kg	EPA8082
Aroclor 1248	PCB	Product	0.7	1		mg/kg	EPA8082
Aroclor 1254	PCB	Product	0.7	1		mg/kg	EPA8082
Aroclor 1260	PCB	Product	0.7	1		mg/kg	EPA8082
Aroclor 1262	PCB	Product	0.7	1		mg/kg	EPA8082
Aroclor 1268	PCB	Product	0.7	1		mg/kg	EPA8082
Aroclor 1221	PCB	Wipe	0.62	1 1		ug/wipe	EPA8082
Aroclor 1232 Aroclor 1016	PCB PCB	Wipe Wipe	0.62 0.62	1		ug/wipe ug/wipe	EPA8082 EPA8082
Aroclor 1242	PCB	Wipe	0.62	1		ug/wipe	EPA8082
Aroclor 1248	PCB	Wipe	0.56	1		ug/wipe	EPA8082
Aroclor 1254	PCB	Wipe	0.56	1		ug/wipe	EPA8082
Aroclor 1260	PCB	Wipe	0.56	1		ug/wipe	EPA8082
Aroclor 1262	PCB	Wipe	0.56	1		ug/wipe	EPA8082
Aroclor 1268	PCB	Wipe	0.56	1		ug/wipe	EPA8082
4,4'-DDD	PEST	Soil	0.000015	0.01	0.0001	mg/kg	EPA8081
4,4'-DDE 4,4'-DDT	PEST PEST	Soil Soil	0.000012 0.000028	0.01	0.0001 0.0001	mg/kg	EPA8081 EPA8081
Aldrin	PEST	Soil	0.000028	0.01	0.0001	mg/kg mg/kg	EPA8081
alpha-BHC	PEST	Soil	0.000012		0.0001	mg/kg	EPA8081
beta-BHC	PEST	Soil	0.000021	0.01	0.0001	mg/kg	EPA8081
cis-Chlordane	PEST	Soil	0.000012	0.01	0.0001	mg/kg	EPA8081
delta-BHC	PEST	Soil	0.00002	0.01	0.0001	mg/kg	EPA8081
Dieldrin	PEST	Soil	0.000015	0.01	0.0001	mg/kg	EPA8081
Endosulfan I	PEST	Soil	0.00001	0.01	0.0001	mg/kg	EPA8081
Endosulfan II	PEST	Soil	0.000014		0.0001	mg/kg	EPA8081
Endosulfan Sulfate Endrin	PEST	Soil Soil	0.000012 0.000018		0.0001 0.0001	mg/kg mg/kg	EPA8081 EPA8081
Endrin Aldehyde	PEST	Soil	0.000026		0.0001	mg/kg	EPA8081
Endrin Ketone	PEST	Soil	0.000055		0.0001	mg/kg	EPA8081
gamma-BHC (Lind	PEST	Soil	9.5E-06	0.01	0.0001	mg/kg	EPA8081
Heptachlor	PEST	Soil	0.000017	0.01	0.0001	mg/kg	EPA8081
Heptachlor Epoxid		Soil	0.00001	0.01	0.0001	mg/kg	EPA8081
Methoxychlor	PEST	Soil	0.00004	0.01	0.0001	mg/kg	EPA8081
Toxaphene trans-Chlordane	PEST PEST	Soil Soil	0.014 0.000013	1 0.01	0.1 0.0001	mg/kg mg/kg	EPA8081 EPA8081
4,4'-DDD	PEST	Water	0.00013	0.01	0.005	ug/L	EPA8081
4,4'-DDE	PEST	Water	0.00072	0.1	0.005	ug/L	EPA8081
4,4'-DDT	PEST	Water	0.001	0.1	0.005	ug/L	EPA8081
Aldrin	PEST	Water	0.00052	0.1	0.005	ug/L	EPA8081
alpha-BHC	PEST	Water	0.00064	0.1	0.005	ug/L	EPA8081
beta-BHC	PEST	Water	0.00061	0.1	0.005	ug/L	EPA8081
cis-Chlordane	PEST	Water	0.0007	0.1	0.005	ug/L	EPA8081
delta-BHC	PEST	Water	0.00053	0.1	0.005	ug/L	EPA8081
Dieldrin Endosulfan I	PEST PEST	Water Water	0.00064	0.1 0.1	0.005 0.005	ug/L	EPA8081
Endosulfan II	PEST	Water	0.00067 0.00094	0.1	0.005	ug/L ug/L	EPA8081 EPA8081
Endosulfan Sulfate		Water	0.00083	0.1	0.005	ug/L	EPA8081
Endrin	PEST	Water	0.00063	0.1	0.005	ug/L	EPA8081
Endrin Aldehyde	PEST	Water	0.0011	0.1	0.005	ug/L	EPA8081

ACRONYMS MDL-method detection limit RL - reporting limit ug - microgram mg - milligram kg - kilogram L - liter m3 - cubic meter

Endrin Ketone	PEST	Water	0.0027	0.1	0.005	ug/L	EPA8081
gamma-BHC (Line	c PEST	Water	0.00076	0.1	0.005	ug/L	EPA8081
Heptachlor	PEST	Water	0.0005	0.1	0.005	ug/L	EPA8081
Heptachlor Epoxic		Water	0.0008	0.1	0.005	ug/L	EPA8081
	PEST	Water		0.1			
Methoxychlor			0.0013		0.005	ug/L	EPA8081
Toxaphene	PEST	Water	0.044	1	0.1	ug/L	EPA8081
trans-Chlordane	PEST	Water	0.00048	0.1	0.005	ug/L	EPA8081
1,2-Dibromoethan	n 8011	Water	0.0098	0.01		ug/L	EPA8011
diesel	TPH	Soil	25	50		mg/kg	NWTPH-Dx
diesel extended	TPH	Soil	32	250		mg/kg	NWTPH-Dx
motor oil	TPH	Soil	37	250		mg/kg	NWTPH-Dx
diesel							
	TPH	Soil	5.4		10	mg/kg	NWTPH-Dx
motor oil	TPH	Soil	10		50	mg/kg	NWTPH-Dx
diesel	TPH	Water	27	100		ug/L	NWTPH-Dx
diesel extended	TPH	Water	110	250		ug/L	NWTPH-Dx
motor oil	TPH	Water	110	250		ug/L	NWTPH-Dx
gasoline	TPH	Soil	0.6	5		mg/kg	NWTPH-Gx
Stoddard	TPH	Soil	1.3	25		mg/kg	NWTPH-Gx
benzene	TPH	Soil	0.003	0.02		mg/kg	EPA8021
toluene	TPH	Soil	0.0046	0.02		mg/kg	EPA8021
ethylbenzene	TPH	Soil	0.0029	0.02		mg/kg	EPA8021
xylenes	TPH	Soil	0.0077	0.06		mg/kg	EPA8021
Stoddard	TPH	Water	7	500		ug/L	NWTPH-Gx
gasoline	TPH	Water	26	100		ug/L	NWTPH-Gx
benzene	TPH	Water	0.12	1		ug/L	EPA8021
						-	
toluene	TPH	Water	0.12	1		ug/L	EPA8021
ethylbenzene	TPH	Water	0.1	1		ug/L	EPA8021
xylenes	TPH	Water	0.29	3		ug/L	EPA8021
1,1,1-Trichloroeth	٤TO15	Air	0.043	0.55		ug/m3	EPATO15
1,1,2,2-Tetrachlor		Air	0.06	0.14		ug/m3	EPATO15
1,1,2-Trichloroeth		Air	0.047	0.055		ug/m3	EPATO15
						•	
1,1-Dichloroethan		Air	0.024	0.4		ug/m3	EPATO15
1,1-Dichloroethen	(CT015)	Air	0.044	0.4		ug/m3	EPATO15
1,2,4-Trichlorober	n TO15	Air	0.53	0.74		ug/m3	EPATO15
1,2,4-Trimethylbe	r TO15	Air	1.6	4.9		ug/m3	EPATO15
1,2-Dibromoethan	n TO15	Air	0.058	0.077		ug/m3	EPATO15
1,2-Dichlorobenze		Air	0.17	0.6		ug/m3	EPATO15
1,2-Dichloroethan		Air	0.024	0.04		ug/m3	EPATO15
						•	
1,2-Dichloropropa		Air	0.086	0.23		ug/m3	EPATO15
1,3,5-Trimethylbe		Air	0.35	4.9		ug/m3	EPATO15
1,3-Butadiene	TO15	Air	0.024	0.044		ug/m3	EPATO15
1,3-Dichlorobenze	e TO15	Air	0.22	0.6		ug/m3	EPATO15
1,4-Dichlorobenze	e TO15	Air	0.15	0.23		ug/m3	EPATO15
1,4-Dioxane	TO15	Air	0.061	0.36		ug/m3	EPATO15
2,2,4-Trimethylpe		Air	0.66	4.7		ug/m3	EPATO15
						•	
2-Butanone (MEK	,	Air	1.1	5.9		ug/m3	EPATO15
2-Chlorotoluene	TO15	Air	1.2	5.2		ug/m3	EPATO15
2-Hexanone	TO15	Air	2.3	4.1		ug/m3	EPATO15
2-Propanol	TO15	Air	0.71	8.6		ug/m3	EPATO15
3-Chloropropene	TO15	Air	0.66	3.1		ug/m3	EPATO15
4-Ethyltoluene	TO15	Air	1.8	4.9		ug/m3	EPATO15
4-Methyl-2-pentar		Air	2.2	8.2		ug/m3	EPATO15
Acetone	TO15	Air	1.3	4.8		ug/m3	EPATO15
Acrolein	TO15	Air	0.1	0.11		ug/m3	EPATO15
Benzene	TO15	Air	0.038	0.32		ug/m3	EPATO15
Benzyl chloride	TO15	Air	0.032	0.052		ug/m3	EPATO15
Bromodichlorome	tTO15	Air	0.064	0.067		ug/m3	EPATO15
Bromoform	TO15	Air	0.65	2.1		ug/m3	EPATO15
Bromomethane	TO15	Air	1.3	3.9		ug/m3	EPATO15
						0	
Butane	TO15	Air	0.48	4.8		ug/m3	EPATO15
Carbon disulfide	TO15	Air	0.96	6.2		ug/m3	EPATO15
Carbon tetrachlori	irTO15	Air	0.04	0.31		ug/m3	EPATO15
CFC-113	TO15	Air	0.28	1.5		ug/m3	EPATO15
Chlorobenzene	TO15	Air	0.11	0.46		ug/m3	EPATO15
Chloroethane	TO15	Air	0.038	2.6		ug/m3	EPATO15
Chloroform	TO15	Air	0.037	0.049		ug/m3	EPATO15
						-	
Chloromethane	TO15	Air	0.072	3.7		ug/m3	EPATO15
cis-1,2-Dichloroet		Air	0.02	0.4		ug/m3	EPATO15
cis-1,3-Dichloropr	x TO15	Air	0.15	0.91		ug/m3	EPATO15
Cyclohexane	TO15	Air	0.76	6.9		ug/m3	EPATO15
Dibromochlorome		Air	0.076	0.085		ug/m3	EPATO15
Dichlorodifluorom		Air	0.14	0.99		ug/m3	EPATO15
Ethanol	TO15	Air	1.3	7.5		ug/m3	EPATO15
						-	
Ethyl acetate	TO15	Air	1.3	7.2		ug/m3	EPATO15
Ethylbenzene	TO15	Air	0.046	0.43		ug/m3	EPATO15
F-114	TO15	Air	0.32	2.1		ug/m3	EPATO15
Heptane	TO15	Air	0.6	4.1		ug/m3	EPATO15

Hexachlorobutadie TO15	Air	0.092	0.21		ug/m3	EPATO15
Hexane TO15	Air	0.92	3.5		ug/m3	EPATO15
Isopropylbenzene TO15	Air	2	9.8		ug/m3	EPATO15
					-	
m,p-Xylene TO15	Air	0.14	0.87		ug/m3	EPATO15
Methyl Methacryla TO15	Air	1.3	4.1		ug/m3	EPATO15
Methyl t-butyl ethe TO15	Air	0.7	7.2		ug/m3	EPATO15
Methylene chloride TO15	Air	1.3	35		ug/m3	EPATO15
Naphthalene TO15	Air	0.018	0.11	0.052	ug/m3	EPATO15
Nonane TO15	Air	0.76	5.2		ug/m3	EPATO15
o-Xylene TO15	Air	0.058	0.43		ug/m3	EPATO15
Pentane TO15	Air	1.1	5.9		ug/m3	EPATO15
	Air		1.2			
Propene TO15		0.2			ug/m3	EPATO15
Propylbenzene TO15	Air	0.92	4.9		ug/m3	EPATO15
Styrene TO15	Air	0.28	0.85		ug/m3	EPATO15
t-Butyl alcohol (TB TO15	Air	0.33	12		ug/m3	EPATO15
Tetrachloroethene TO15	Air	0.18	6.8		ug/m3	EPATO15
Tetrahydrofuran TO15	Air	0.15	0.59		ug/m3	EPATO15
Toluene TO15	Air	0.095	7.5		ug/m3	EPATO15
trans-1,2-Dichloro TO15	Air	0.051	0.4		ug/m3	EPATO15
					•	
trans-1,3-Dichloro TO15	Air	0.1	0.45		ug/m3	EPATO15
Trichloroethene TO15	Air	0.051	0.11		ug/m3	EPATO15
Trichlorofluoromet TO15	Air	0.21	2.2		ug/m3	EPATO15
Vinyl acetate TO15	Air	0.91	7		ug/m3	EPATO15
Vinyl bromide TO15	Air	0.034	0.44		ug/m3	EPATO15
Vinyl chloride TO15	Air	0.012	0.26		ug/m3	EPATO15
Gasoline Range CTO15	Air	30	330		ug/m3	EPATO15
0					•	
1,2,4-Trichloroben SVOC	Soil	0.0039	0.05		mg/kg	EPA8270E
1,2-Dichlorobenze SVOC	Soil	0.0036	0.05		mg/kg	EPA8270E
1,2-Diphenylhydra SVOC	Soil	0.0044	0.05		mg/kg	EPA8270E
1,3-Dichlorobenze SVOC	Soil	0.0029	0.05		mg/kg	EPA8270E
1,4-Dichlorobenze SVOC	Soil	0.003	0.05		mg/kg	EPA8270E
1-Methylnaphthale SVOC	Soil	0.0003	0.01		mg/kg	EPA8270E
2,2'-Oxybis(1-chlorSVOC	Soil	0.0031	0.05		mg/kg	EPA8270E
2,4,5-Trichlorophe SVOC	Soil	0.013	0.5		mg/kg	EPA8270E
-						
2,4,6-Trichlorophe SVOC	Soil	0.015	0.5		mg/kg	EPA8270E
2,4-Dichloropheno SVOC	Soil	0.0061	0.5		mg/kg	EPA8270E
2,4-Dimethylphenc SVOC	Soil	0.014	0.5		mg/kg	EPA8270E
2,4-Dinitrophenol SVOC	Soil	0.016	1.5		mg/kg	EPA8270E
2,4-Dinitrotoluene SVOC	Soil	0.0081	0.25		mg/kg	EPA8270E
2,6-Dinitrotoluene SVOC	Soil	0.0069	0.25		mg/kg	EPA8270E
2-Chloronaphthale SVOC	Soil	0.0016	0.05		mg/kg	EPA8270E
2-Chlorophenol SVOC	Soil	0.012	0.5		mg/kg	EPA8270E
2-Methylnaphthale SVOC	Soil	0.00039	0.01		mg/kg	EPA8270E
2-Methylphenol SVOC	Soil	0.0082	0.5		mg/kg	EPA8270E
2-Nitroaniline SVOC	Soil	0.015	0.25		mg/kg	EPA8270E
2-Nitrophenol SVOC	Soil	0.027	0.5		mg/kg	EPA8270E
3,3'-Dichlorobenzi SVOC	Soil	0.033	0.5		mg/kg	EPA8270E
3-Methylphenol + SVOC	Soil	0.013	1		mg/kg	EPA8270E
3-Nitroaniline SVOC	Soil	0.017	5		mg/kg	EPA8270E
4,6-Dinitro-2-meth SVOC	Soil	0.017	1.5		mg/kg	EPA8270E
4-Bromophenyl ph SVOC	Soil	0.0023	0.05		mg/kg	EPA8270E
4-Chloro-3-methyl SVOC	Soil	0.018	0.5		mg/kg	EPA8270E
4-Chloroaniline SVOC	Soil	0.21	5		mg/kg	EPA8270E
4-Chlorophenyl ph SVOC	Soil	0.0028	0.05		mg/kg	EPA8270E
4-Nitroaniline SVOC	Soil	0.024	5		mg/kg	EPA8270E
4-Nitrophenol SVOC	Soil	0.011	1.5		mg/kg	EPA8270E
Acenaphthene SVOC	Soil	0.00018	0.01		mg/kg	EPA8270E
Acenaphthylene SVOC	Soil	0.00016	0.01		mg/kg	EPA8270E
Anthracene SVOC	Soil	0.00014	0.01		mg/kg	EPA8270E
Benz(a)anthracen(SVOC	Soil	0.00023				
			0.01		mg/kg	EPA8270E
Benzo(a)pyrene SVOC	Soil	0.00028	0.01		mg/kg	EPA8270E
Benzo(b)fluorantheSVOC	Soil	0.00025	0.01		mg/kg	EPA8270E
Benzo(g,h,i)peryle SVOC	Soil	0.0004	0.01		mg/kg	EPA8270E
Benzo(k)fluorantheSVOC	Soil	0.00032	0.01		mg/kg	EPA8270E
Benzoic acid SVOC	Soil	0.1	2.5		mg/kg	EPA8270E
Benzyl alcohol SVOC	Soil	0.012	0.5		mg/kg	EPA8270E
Benzyl butyl phtha SVOC	Soil	0.019	0.5		mg/kg	EPA8270E
Bis(2-chloroethoxy SVOC	Soil	0.0027	0.05		mg/kg	EPA8270E
Bis(2-chloroethyl) SVOC	Soil	0.0035	0.05		mg/kg	EPA8270E
Bis(2-ethylhexyl) p SVOC	Soil	0.035	0.8		mg/kg	EPA8270E
Carbazole SVOC	Soil	0.0019	0.05		mg/kg	EPA8270E
Chrysene SVOC	Soil	0.00018	0.01		mg/kg	EPA8270E
Dibenzo(a,h)anthr SVOC	Soil	0.00049	0.01		mg/kg	EPA8270E
Dibenzofuran SVOC	Soil	0.0034	0.05		mg/kg	EPA8270E
Diethyl phthalate SVOC	Soil	0.0051	0.5		mg/kg	EPA8270E
Dimethyl phthalate SVOC	Soil	0.0053	0.5		mg/kg	EPA8270E
Di-n-butyl phthalat SVOC	Soil	0.019	0.5		mg/kg	EPA8270E
	001	0.013	0.0		myrky	

Di-n-octyl phthalat SVOC					
	Soil	0.019	0.5	 mg/kg	EPA8270E
Fluoranthene SVOC	Soil	0.00019	0.01	 mg/kg	EPA8270E
Fluorene SVOC	Soil	0.00014	0.01	 mg/kg	EPA8270E
Hexachlorobenzer SVOC	Soil	0.002	0.05	 mg/kg	EPA8270E
Hexachlorobutadic SVOC	Soil	0.0029	0.05	 mg/kg	EPA8270E
Hexachlorocyclop: SVOC	Soil	0.0061	0.15	 mg/kg	EPA8270E
Hexachloroethane SVOC	Soil	0.0041	0.05	 mg/kg	EPA8270E
Indeno(1,2,3-cd)p) SVOC	Soil	0.00026	0.01	mg/kg	EPA8270E
Isophorone SVOC	Soil	0.0019	0.05	 mg/kg	EPA8270E
Naphthalene SVOC	Soil	0.0004	0.01	 mg/kg	EPA8270E
Nitrobenzene SVOC	Soil	0.0047	0.05	 mg/kg	EPA8270E
N-Nitrosodimethyl: SVOC	Soil	0.0063	0.05	 mg/kg	EPA8270E
N-Nitroso-di-n-pro SVOC	Soil	0.003	0.05	 mg/kg	EPA8270E
N-Nitrosodiphenyl: SVOC	Soil	0.0033	0.05	 mg/kg	EPA8270E
Pentachloropheno SVOC	Soil	0.0088	0.25	 mg/kg	EPA8270E
Phenanthrene SVOC	Soil		0.01	 mg/kg	
		0.00018			EPA8270E
Phenol SVOC	Soil	0.013	0.5	 mg/kg	EPA8270E
Pyrene SVOC	Soil	0.00016	0.01	 mg/kg	EPA8270E
1,2,4-Trichloroben SVOC	Water	0.051	0.2	 ug/L	EPA8270E
1,2-Dichlorobenze SVOC	Water	0.055	0.2	 ug/L	EPA8270E
				-	
1,2-Diphenylhydra SVOC	Water	0.028	0.2	 ug/L	EPA8270E
1,3-Dichlorobenze SVOC	Water	0.067	0.2	 ug/L	EPA8270E
1,4-Dichlorobenze SVOC	Water	0.065	0.2	 ug/L	EPA8270E
1-Methylnaphthale SVOC	Water	0.005	0.2	 ug/L	EPA8270E
				•	
2,2'-Oxybis(1-chlorSVOC	Water	0.046	0.2	 ug/L	EPA8270E
2,2'-Oxybis(1-chlo SVOC	Water	0.046	2	 ug/L	EPA8270E
2,4,5-Trichlorophe SVOC	Water	0.17	2	 ug/L	EPA8270E
•	Water	0.13	2	 -	
2,4,6-Trichlorophe SVOC				ug/L	EPA8270E
2,4-Dichloropheno SVOC	Water	0.12	2	 ug/L	EPA8270E
2,4-Dimethylphenc SVOC	Water	0.78	6	 ug/L	EPA8270E
2,4-Dinitrophenol SVOC	Water	2.6	1	 ug/L	EPA8270E
2,4-Dinitrotoluene SVOC	Water	0.067	1		EPA8270E
				ug/L	
2,6-Dinitrotoluene SVOC	Water	0.072	0.2	 ug/L	EPA8270E
2-Chloronaphthale SVOC	Water	0.034	2	 ug/L	EPA8270E
2-Chlorophenol SVOC	Water	0.16	0.2	 ug/L	EPA8270E
2-Methylnaphthale SVOC	Water	0.0059	2	 ug/L	EPA8270E
2-Methylphenol SVOC	Water	0.19	1	 ug/L	EPA8270E
2-Nitroaniline SVOC	Water	0.35	2	 ug/L	EPA8270E
2-Nitrophenol SVOC	Water	0.25	2	 ug/L	EPA8270E
3,3'-Dichlorobenzi	Water	0.81	4	 ug/L	EPA8270E
				•	
3-Methylphenol + SVOC	Water	0.29	20	 ug/L	EPA8270E
3-Nitroaniline SVOC	Water	0.34	6	 ug/L	EPA8270E
4,6-Dinitro-2-meth SVOC	Water	0.16	0.2	 ug/L	EPA8270E
4-Bromophenyl ph SVOC	Water	0.035	2	 ug/L	EPA8270E
				•	
4-Chloro-3-methyl SVOC	Water	0.1	20	 ug/L	EPA8270E
4-Chloroaniline SVOC	Water	0.61	0.2	 ug/L	EPA8270E
4-Chlorophenyl ph SVOC	Water	0.03	20	 ug/L	EPA8270E
	Water	0.88	6	 ug/L	
		0.00			
4-Nitroaniline SVOC		0 5 2			EPA8270E
4-NitroanilineSVOC4-NitrophenolSVOC	Water	0.52	0.02	 ug/L	EPA8270E EPA8270E
4-Nitroaniline SVOC		0.52 0.0042			EPA8270E
4-NitroanilineSVOC4-NitrophenolSVOC	Water		0.02	 ug/L ug/L	EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC	Water Water Water	0.0042 0.0031	0.02 0.02 0.02	 ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E
4-NitroanilineSVOC4-NitrophenolSVOCAcenaphtheneSVOCAcenaphthyleneSVOCAnthraceneSVOC	Water Water Water Water	0.0042 0.0031 0.0049	0.02 0.02 0.02 0.02	 ug/L ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benz(a)anthracen SVOC	Water Water Water Water Water	0.0042 0.0031 0.0049 0.006	0.02 0.02 0.02 0.02 4	 ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benz(a)anthraceni SVOC Benzo(a)pyrene SVOC	Water Water Water Water Water Water	0.0042 0.0031 0.0049 0.006 0.0089	0.02 0.02 0.02 0.02 4 0.02	 ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benz(a)anthracent SVOC Benzo(a)pyrene SVOC Benzo(b)fluoranth SVOC	Water Water Water Water Water	0.0042 0.0031 0.0049 0.006	0.02 0.02 0.02 0.02 4	 ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benz(a)anthraceni SVOC Benzo(a)pyrene SVOC	Water Water Water Water Water Water	0.0042 0.0031 0.0049 0.006 0.0089	0.02 0.02 0.02 0.02 4 0.02	 ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benz(a)anthracent SVOC Benzo(a)pyrene SVOC Benzo(a)pyrene SVOC Benzo(a)pyrene SVOC Benzo(a)pyrene SVOC Benzo(a)pyrene SVOC	Water Water Water Water Water Water Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018	0.02 0.02 0.02 4 0.02 0.02 0.02 0.02	 ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benz(a)anthracent SVOC Benzo(a)pyrene SVOC Benzo(b)fluoranthis SVOC Benzo(b)fluoranthis SVOC Benzo(k)fluoranthis SVOC	Water Water Water Water Water Water Water Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045	0.02 0.02 0.02 4 0.02 0.02 0.02 0.04 0.02	 ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benz(a)anthracene SVOC Benzo(a)pyrene SVOC Benzo(b)fluoranthr SVOC Benzo(c)k)fluoranthr SVOC Benzo(c)kluoranthr SVOC Benzoic acid SVOC	Water Water Water Water Water Water Water Water Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2	0.02 0.02 0.02 4 0.02 0.02 0.02 0.04 0.02 10	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benz(a)anthracent SVOC Benzo(a)pyrene SVOC Benzo(b)fluoranthis SVOC Benzo(b)fluoranthis SVOC Benzo(k)fluoranthis SVOC	Water Water Water Water Water Water Water Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045	0.02 0.02 0.02 4 0.02 0.02 0.02 0.04 0.02	 ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benz(a)anthracene SVOC Benzo(a)pyrene SVOC Benzo(b)fluoranthr SVOC Benzo(k)fluoranthr SVOC Benzo(k)fluoranthr SVOC Benzo(acid SVOC	Water Water Water Water Water Water Water Water Water Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14	0.02 0.02 0.02 4 0.02 0.02 0.02 0.04 0.02 10 2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benz(a)anthracen SVOC Benzo(a)pyrene SVOC SVOC Benzo(a)pyrene SVOC Benzo(b)fluoranth SVOC Benzo(g,h,i)peryle SVOC Benzo(c) fluoranth SVOC Benzo(c) fluoranth SVOC Benzo(c) SVOC Benzoic acid Benzyl alcohol SVOC Benzyl alcohol SVOC	Water Water Water Water Water Water Water Water Water Water Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7	0.02 0.02 0.02 0.02 4 0.02 0.02 0.04 0.02 10 2 2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benz(a)anthracent SVOC Benzo(a)pyrene SVOC Benzo(b)fluorantht SVOC Benzo(b)fluorantht SVOC Benzo(k)fluorantht SVOC Benzyl alcohol SVOC Bis(2-chloroethoxy SVOC SVOC	Water Water Water Water Water Water Water Water Water Water Water Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.0054 0.0045 5.2 0.14 0.7 0.062	0.02 0.02 0.02 0.02 4 0.02 0.02 0.02 0.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benzo(a)anthracent SVOC Benzo(a)pyrene SVOC Benzo(b)fluoranth SVOC Benzo(g,h,i)peryle SVOC Benzo(c acid SVOC Benzo(c acid SVOC Benzo(z acid SVOC Benzol butyl phtha SVOC Benzolyl butyl phtha SVOC Benzyl butyl phtha SVOC	Water Water Water Water Water Water Water Water Water Water Water Water Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7 0.062 0.042	0.02 0.02 0.02 4 0.02 0.02 0.02 0.04 0.02 10 2 2 0.2 0.2 0.2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benza(a)anthracent SVOC Benza(a)anthracent SVOC Benza(a)pyrene SVOC Benza(b)fluorantht SVOC Benzo(g,h,i)peryle SVOC Benzoic acid SVOC Benzoic acid SVOC Benzoic acid SVOC Benzoic butyl phtha SVOC Benzyl butyl phtha SVOC Bis(2-chloroethyl) SVOC Bis(2-chloroethyl) SVOC	Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7 0.062 0.042 0.93	0.02 0.02 0.02 4 0.02 0.02 0.02 0.02 0.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benzo(a)anthracent SVOC Benzo(a)pyrene SVOC Benzo(b)fluoranth SVOC Benzo(g,h,i)peryle SVOC Benzo(c acid SVOC Benzo(c acid SVOC Benzo(z acid SVOC Benzol butyl phtha SVOC Benzolyl butyl phtha SVOC Benzyl butyl phtha SVOC	Water Water Water Water Water Water Water Water Water Water Water Water Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7 0.062 0.042	0.02 0.02 0.02 4 0.02 0.02 0.02 0.04 0.02 10 2 2 0.2 0.2 0.2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benzo(a)anthracene SVOC Benzo(a)pyrene SVOC Benzo(b)fluoranthr SVOC Benzo(k)fluoranthr SVOC Benzo(k)fluoranthr SVOC Benzol (acid SVOC Benzol (acid SVOC Benzol (acid SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Bis(2-chloroethxyl) SVOC Bis(2-chloroethyl) SVOC Bis(2-chloroethyl) SVOC	Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7 0.062 0.042 0.93 0.0034	0.02 0.02 0.02 4 0.02 0.02 0.02 0.02 10 2 2 0.2 0.2 0.2 0.2 0.2 0.2 0.02	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benz(a)anthracent SVOC Benzo(a)pyrene SVOC Benzo(b)fluoranthr SVOC Benzo(b)fluoranthr SVOC Benzo(c) fluoranthr SVOC Benzo(c) acid SVOC Benzo(c) acid SVOC Benzo(c) cacid SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Bis(2-chloroethoxy SVOC Bis(2-chloroethoxy SVOC Bis(2-ethylhexyl) p SVOC Carbazole SVOC Chrysene SVOC	Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7 0.062 0.042 0.93 0.0034 0.0045	0.02 0.02 0.02 4 0.02 0.02 0.02 0.02 0.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benz(a)anthracen SVOC Benzo(a)pyrene Benzo(a)pyrene SVOC Benzo(b)fluoranthr SVOC Benzo(g,h,i)peryle SVOC Benzo(k,fluoranthr SVOC Benzo(k,fluoranthr SVOC Benzo(k,fluoranthr SVOC Benzo(k,fluoranthr SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Bis(2-chloroethoxy SVOC Bis(2-chloroethoxy SVOC Bis(2-ethylhexyl) p SVOC Carbazole SVOC Chrysene SVOC Dibenzo(a,h)anthr. SVOC SVOC	Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.0045 5.2 0.14 0.7 0.062 0.042 0.93 0.0034 0.0045 0.0045 0.013	0.02 0.02 0.02 4 0.02 0.02 0.02 0.02 10 2 2 0.2 0.2 0.2 0.2 0.2 0.02 0.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benz(a)anthracent SVOC Benzo(a)pyrene SVOC Benzo(a)pyrene SVOC Benzo(b)fluoranth SVOC Benzo(b)fluoranth SVOC Benzo(c)fluoranth SVOC Benzo(k)fluoranth SVOC Benzo(k)fluoranth SVOC Benzo(k)fluoranth SVOC Benzo(k)fluoranth SVOC Benzo(k)fluoranth SVOC Benzo(k)fluoranth SVOC Benzyl alcohol SVOC Bis(2-chloroethox) SVOC Bis(2-chloroethyl) SVOC Carbazole SVOC Chrysene SVOC Dibenzo(a,h)anthr SVOC Dibenzofuran SVOC	Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7 0.062 0.042 0.93 0.0034 0.0045 0.013 0.0052	0.02 0.02 0.02 4 0.02 0.02 0.02 0.02 0.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benz(a)anthracen SVOC Benzo(a)pyrene Benzo(a)pyrene SVOC Benzo(b)fluoranthr SVOC Benzo(g,h,i)peryle SVOC Benzo(k,fluoranthr SVOC Benzo(k,fluoranthr SVOC Benzo(k,fluoranthr SVOC Benzo(k,fluoranthr SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Bis(2-chloroethoxy SVOC Bis(2-chloroethoxy SVOC Bis(2-ethylhexyl) p SVOC Carbazole SVOC Chrysene SVOC Dibenzo(a,h)anthr. SVOC SVOC	Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.0045 5.2 0.14 0.7 0.062 0.042 0.93 0.0034 0.0045 0.0045 0.013	0.02 0.02 0.02 4 0.02 0.02 0.02 0.02 10 2 2 0.2 0.2 0.2 0.2 0.2 0.02 0.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Acenaphthylene SVOC Anthracene SVOC Benzo(a)anthracene SVOC Benzo(a)pyrene SVOC Benzo(a)pyrene SVOC Benzo(g,h,i)peryle SVOC Benzo(k)fluoranthe SVOC Benzo(k)fluoranthe SVOC Benzol (k)fluoranthe SVOC Bis(2-chloroethyl) SVOC Bis(2-chloroethyl) SVOC Chrysene SVOC Dibenzo(a,h)anthr. SVOC Dibenzofuran SVOC	Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7 0.062 0.042 0.93 0.0034 0.0045 0.013 0.0052 0.11	0.02 0.02 0.02 4 0.02 0.02 0.02 0.02 0.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Acenaphthylene SVOC Anthracene SVOC Benzo(a)anthracene SVOC Benzo(a)anthracene SVOC Benzo(a)pyrene SVOC Benzo(b)fluoranthr SVOC Benzo(k)fluoranthe SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Bis(2-chloroethoxy, SVOC Bis(2-chloroethoxy) Bis(2-chloroethyl) SVOC Carbazole SVOC Chrysene SVOC Dibenzo(a,h)anthr. SVOC Dibenzo(a,h)anthr. SVOC Dibenzoly phthalate SVOC	Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7 0.062 0.042 0.93 0.0034 0.0045 0.013 0.0052 0.11 0.062	0.02 0.02 0.02 4 0.02 0.02 0.02 0.02 0.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benzo(a)pyrene SVOC Benzo(b)fluoranthr SVOC Benzo(b)fluoranthr SVOC Benzo(c)fluoranthr SVOC Benzo(c)fluoranthr SVOC Benzol acid SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Bis(2-chloroethoxy SVOC Bis(2-chloroethyl) SVOC Bis(2-chloroethyl) SVOC Bis(2-chloroethyl) SVOC Disetzole SVOC Carbazole SVOC Dibenzo(a,h)anthr. SVOC Diethyl phthalate SVOC Dimethyl phthalate SVOC	Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7 0.062 0.042 0.93 0.0034 0.0045 0.013 0.0052 0.11 0.062 0.51	0.02 0.02 0.02 4 0.02 0.02 0.02 0.02 0.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benz(a)anthracent SVOC Benzo(a)pyrene SVOC Benzo(a)pyrene SVOC Benzo(b)fluoranth SVOC Benzo(k)fluoranth SVOC Benzyl alcohol SVOC Bis(2-chloroethyl) SVOC Bis(2-chloroethyl) SVOC Carbazole SVOC Dibenzofuran SVOC Dibenzofuran SVOC Dien-butyl phthalate SVOC Dien-octyl phthalat SVOC	Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7 0.062 0.042 0.93 0.0034 0.0045 0.013 0.0052 0.11 0.062 0.51 0.63	0.02 0.02 0.02 4 0.02 0.02 0.02 0.02 0.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benzo(a)pyrene SVOC Benzo(b)fluoranthr SVOC Benzo(b)fluoranthr SVOC Benzo(c)fluoranthr SVOC Benzo(c)fluoranthr SVOC Benzol acid SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Bis(2-chloroethoxy SVOC Bis(2-chloroethyl) SVOC Bis(2-chloroethyl) SVOC Bis(2-chloroethyl) SVOC Disetzole SVOC Carbazole SVOC Dibenzo(a,h)anthr. SVOC Diethyl phthalate SVOC Dimethyl phthalate SVOC	Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7 0.062 0.042 0.93 0.0034 0.0045 0.013 0.0052 0.11 0.062 0.51	0.02 0.02 0.02 4 0.02 0.02 0.04 0.02 0.04 0.02 10 2 2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.02 0.02 0.02 2 2 2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Anthracene SVOC Benz(a)anthracent SVOC Benzo(a)pyrene SVOC Benzo(a)pyrene SVOC Benzo(b)fluoranth SVOC Benzo(k)fluoranth SVOC Benzyl alcohol SVOC Bis(2-chloroethyl) SVOC Bis(2-chloroethyl) SVOC Carbazole SVOC Dibenzofuran SVOC Dibenzofuran SVOC Dien-butyl phthalate SVOC Dien-octyl phthalat SVOC	Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7 0.062 0.042 0.93 0.0034 0.0045 0.013 0.0052 0.11 0.062 0.51 0.63	0.02 0.02 0.02 4 0.02 0.02 0.02 0.02 0.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Acenaphthylene SVOC Anthracene SVOC Benzo(a)anthracene SVOC Benzo(a)pyrene SVOC Benzo(a)pyrene SVOC Benzo(g,h,i)peryle SVOC Benzo(k)fluoranthe SVOC Benzo(k)fluoranthe SVOC Benzo(k)fluoranthe SVOC Benzo(k)fluoranthe SVOC Benzo(k)fluoranthe SVOC Benzo(k)fluoranthe SVOC Benzol(k)fluoranthe SVOC Benzol(k)fluoranthe SVOC Bis(2-chloroethyl) SVOC Bis(2-chloroethyl) SVOC Carbazole SVOC Dibenzo(a,h)anthr SVOC Dibenzofuran SVOC Dientyl phthalate SVOC Dien-butyl phthalate SVOC Di-n-octyl phthalat SVOC Fluoranthene SVOC	Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7 0.062 0.042 0.93 0.0034 0.0045 0.013 0.0052 0.11 0.062 0.51 0.63 0.0045 0.0045 0.0032	0.02 0.02 0.02 4 0.02 0.02 0.02 0.02 0.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Acenaphthylene SVOC Anthracene SVOC Benzo(a)anthracene SVOC Benzo(a)apyrene SVOC Benzo(a)pyrene SVOC Benzo(g,h,i)peryle SVOC Benzo(k)fluoranth SVOC Benzo(k)fluoranth SVOC Benzo(k)fluoranth SVOC Benzo(k)fluoranth SVOC Benzo(k)fluoranth SVOC Benzol acid SVOC Benzol (k)fluoranth SVOC Benzol (k)fluoranth SVOC Benzol (k)fluoranth SVOC Benzol (k)fluoranth SVOC Bis(2-chloroethyl) SVOC Dis(2-chloroethyl) SVOC Chrysene SVOC Dibenzo(a,h)anthr. SVOC Dibenzofuran Dibenzofuran SVOC Dibenzofuran SVOC Dimethyl phthalate SVOC Din-octyl phthalat SVOC Fluoranthene <t< td=""><td>Water Water</td><td>0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7 0.062 0.042 0.93 0.0034 0.0045 0.013 0.0052 0.11 0.062 0.51 0.63 0.0045 0.0032 0.0032 0.0032</td><td>0.02 0.02 0.02 4 0.02 0.02 0.02 0.02 0.0</td><td>ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L</td><td>EPA8270E EPA8270E</td></t<>	Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7 0.062 0.042 0.93 0.0034 0.0045 0.013 0.0052 0.11 0.062 0.51 0.63 0.0045 0.0032 0.0032 0.0032	0.02 0.02 0.02 4 0.02 0.02 0.02 0.02 0.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Acenaphthylene SVOC Anthracene SVOC Benzo(a)anthracene SVOC Benzo(a)pyrene SVOC Benzo(b)fluoranthr SVOC Benzo(b)fluoranthr SVOC Benzol (a, h)arthr SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Bis(2-chloroethoxy SVOC Bis(2-chloroethoxy SVOC Bis(2-chloroethyl) SVOC Carbazole SVOC Dibenzo(a,h)anthr. SVOC Dibenzo(a,h)anthr. SVOC Dibenzofuran SVOC Dibenzofuran SVOC Diethyl phthalate SVOC Di-n-otyl phthalate SVOC Di-n-otyl phthalate SVOC Fluoranthene Fluorene SVOC Fluorene SVOC	Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7 0.062 0.042 0.93 0.0034 0.0045 0.013 0.0045 0.11 0.062 0.51 0.63 0.0045 0.0032 0.039 0.091	0.02 0.02 0.02 4 0.02 0.02 0.02 10 2 2 0.2 0.2 0.2 0.02 0.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Acenaphthylene SVOC Anthracene SVOC Benz(a)anthracent SVOC Benzo(a)pyrene SVOC Benzo(b)fluoranth SVOC Benzo(g,h,i)peryle SVOC Benzo(k)fluoranth SVOC Benzo(k)fluoranth SVOC Benzo(k)fluoranth SVOC Benzo(k)fluoranth SVOC Benzo(k)fluoranth SVOC Benzol (a, h)arthth SVOC Bis(2-chloroethyl) SVOC Bis(2-chloroethyl) SVOC Carbazole SVOC Dibenzofuan SVOC Dimethyl phthalat SVOC Di-n-octyl phthalat SVOC Di-n-octyl phthalat SVOC Fluoranthene Fluoranthene SVOC	Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7 0.062 0.042 0.93 0.0034 0.0045 0.013 0.0052 0.11 0.062 0.51 0.63 0.0045 0.0032 0.0032 0.0032	0.02 0.02 0.02 4 0.02 0.02 0.02 0.02 0.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E
4-Nitroaniline SVOC 4-Nitrophenol SVOC Acenaphthene SVOC Acenaphthylene SVOC Acenaphthylene SVOC Anthracene SVOC Benzo(a)anthracene SVOC Benzo(a)pyrene SVOC Benzo(b)fluoranthr SVOC Benzo(b)fluoranthr SVOC Benzol (a, h)arthr SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Benzyl alcohol SVOC Bis(2-chloroethoxy SVOC Bis(2-chloroethoxy SVOC Bis(2-chloroethyl) SVOC Carbazole SVOC Dibenzo(a,h)anthr. SVOC Dibenzo(a,h)anthr. SVOC Dibenzofuran SVOC Dibenzofuran SVOC Diethyl phthalate SVOC Di-n-otyl phthalate SVOC Di-n-otyl phthalate SVOC Fluoranthene Fluorene SVOC Fluorene SVOC	Water Water	0.0042 0.0031 0.0049 0.006 0.0089 0.0054 0.018 0.0045 5.2 0.14 0.7 0.062 0.042 0.93 0.0034 0.0045 0.013 0.0045 0.11 0.062 0.51 0.63 0.0045 0.0032 0.039 0.091	0.02 0.02 0.02 4 0.02 0.02 0.02 10 2 2 0.2 0.2 0.2 0.02 0.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA8270E EPA8270E

Indeno(1,2,3-cd)p) SVOC	Water	0.014	0.02		ug/L	EPA8270E
Isophorone SVOC	Water	0.02	0.2		ug/L	EPA8270E
Naphthalene SVOC	Water		0.2		•	
		0.0078			ug/L	EPA8270E
Nitrobenzene SVOC	Water	0.075	0.2		ug/L	EPA8270E
N-Nitrosodimethyl: SVOC	Water	0.03	0.2		ug/L	EPA8270E
N-Nitroso-di-n-proj SVOC	Water	0.052	0.2		ug/L	EPA8270E
N-Nitrosodiphenyl: SVOC	Water	0.021	0.2		ug/L	EPA8270E
Pentachloropheno SVOC	Water	0.44	1		ug/L	EPA8270E
					•	
Phenanthrene SVOC	Water	0.005	0.02		ug/L	EPA8270E
Phenol SVOC	Water	0.061	2		ug/L	EPA8270E
Pyrene SVOC	Water	0.0041	0.02		ug/L	EPA8270E
1,2,4-Trichloroben SVOC	Soil	0.0039		0.01	mg/kg	EPA8270E
1,2-Dichlorobenze SVOC	Soil	0.0036		0.01	mg/kg	EPA8270E
	Soil			0.01		EPA8270E
1,2-Diphenylhydra SVOC		0.0044			mg/kg	
1,3-Dichlorobenze SVOC	Soil	0.0029		0.01	mg/kg	EPA8270E
1,4-Dichlorobenze SVOC	Soil	0.003		0.01	mg/kg	EPA8270E
1-Methylnaphthale SVOC	Soil	0.0003		0.002	mg/kg	EPA8270E
2,2'-Oxybis(1-chlorSVOC	Soil	0.0031		0.01	mg/kg	EPA8270E
	Soil	0.013		0.1		EPA8270E
2,4,5-Trichlorophe SVOC					mg/kg	
2,4,6-Trichlorophe SVOC	Soil	0.015		0.1	mg/kg	EPA8270E
2,4-Dichloropheno SVOC	Soil	0.0061		0.1	mg/kg	EPA8270E
2,4-Dimethylphenc SVOC	Soil	0.014		0.1	mg/kg	EPA8270E
2,4-Dinitrophenol SVOC	Soil	0.016		0.3	mg/kg	EPA8270E
2,4-Dinitrotoluene SVOC		0.0081				
	Soil			0.05	mg/kg	EPA8270E
2,6-Dinitrotoluene SVOC	Soil	0.0069		0.05	mg/kg	EPA8270E
2-Chloronaphthale SVOC	Soil	0.0016		0.01	mg/kg	EPA8270E
2-Chlorophenol SVOC	Soil	0.012		0.1	mg/kg	EPA8270E
2-Methylnaphthale SVOC	Soil	0.00039		0.002	mg/kg	EPA8270E
2-Methylphenol SVOC	Soil	0.0082		0.1	mg/kg	EPA8270E
2-Nitroaniline SVOC	Soil	0.015		0.05	mg/kg	EPA8270E
2-Nitrophenol SVOC	Soil	0.027		0.1	mg/kg	EPA8270E
3,3'-Dichlorobenzi SVOC	Soil	0.033		0.1	mg/kg	EPA8270E
3-Methylphenol + SVOC	Soil	0.013		0.2	mg/kg	EPA8270E
3-Nitroaniline SVOC	Soil	0.017		1	mg/kg	EPA8270E
4,6-Dinitro-2-meth SVOC	Soil	0.017		0.3	mg/kg	EPA8270E
4-Bromophenyl ph SVOC	Soil	0.0023		0.01	mg/kg	EPA8270E
4-Chloro-3-methyl SVOC	Soil	0.018		0.1	mg/kg	EPA8270E
4-Chloroaniline SVOC	Soil	0.21		1	mg/kg	EPA8270E
				0.01		
4-Chlorophenyl ph SVOC	Soil	0.0028			mg/kg	EPA8270E
4-Nitroaniline SVOC	Soil	0.024		1	mg/kg	EPA8270E
4-Nitrophenol SVOC	Soil	0.011		0.3	mg/kg	EPA8270E
Acenaphthene SVOC	Soil	0.00018		0.002	mg/kg	EPA8270E
Acenaphthylene SVOC	Soil	0.00016		0.002	mg/kg	EPA8270E
Anthracene SVOC	Soil					
		0.00014		0.002	mg/kg	EPA8270E
Benz(a)anthracen(SVOC	Soil	0.00023		0.002	mg/kg	EPA8270E
Benzo(a)pyrene SVOC	Soil	0.00028		0.002	mg/kg	EPA8270E
Benzo(b)fluoranth(SVOC	Soil	0.00025		0.002	mg/kg	EPA8270E
Benzo(g,h,i)peryle SVOC	Soil	0.0004		0.002	mg/kg	EPA8270E
Benzo(k)fluoranthe SVOC	Soil	0.00032		0.002	mg/kg	EPA8270E
Benzoic acid SVOC	Soil	0.1		0.5	mg/kg	EPA8270E
Benzyl alcohol SVOC	Soil	0.012		0.1	mg/kg	EPA8270E
Benzyl butyl phtha SVOC	Soil	0.019		0.1	mg/kg	EPA8270E
Bis(2-chloroethoxy SVOC	Soil	0.0027		0.01	mg/kg	EPA8270E
Bis(2-chloroethyl) SVOC	Soil	0.0035		0.01	mg/kg	EPA8270E
Bis(2-ethylhexyl) p SVOC	Soil	0.035		0.16	mg/kg	EPA8270E
Carbazole SVOC	Soil	0.0019		0.01	mg/kg	EPA8270E
Chrysene SVOC	Soil	0.00018		0.002	mg/kg	EPA8270E
Dibenzo(a,h)anthr SVOC	Soil	0.00049		0.002	mg/kg	EPA8270E
Dibenzofuran SVOC	Soil	0.0034		0.01	mg/kg	EPA8270E
Diethyl phthalate SVOC	Soil	0.0054		0.01	mg/kg	EPA8270E
Dimethyl phthalate SVOC	Soil	0.0053		0.1	mg/kg	EPA8270E
Di-n-butyl phthalat SVOC	Soil	0.019		0.1	mg/kg	EPA8270E
Di-n-octyl phthalat SVOC	Soil	0.019		0.1	mg/kg	EPA8270E
Fluoranthene SVOC	Soil	0.00019		0.002	mg/kg	EPA8270E
Fluorene SVOC	Soil	0.00014		0.002	mg/kg	EPA8270E
Hexachlorobenzer SVOC	Soil	0.002		0.01	mg/kg	EPA8270E
Hexachlorobutadie SVOC	Soil	0.0029		0.01	mg/kg	EPA8270E
Hexachlorocyclope SVOC	Soil	0.0061		0.03	mg/kg	EPA8270E
Hexachloroethane SVOC	Soil	0.0041		0.01	mg/kg	EPA8270E
Indeno(1,2,3-cd)p) SVOC	Soil	0.00026		0.002	mg/kg	EPA8270E
Isophorone SVOC	Soil	0.0019		0.01	mg/kg	EPA8270E
Naphthalene SVOC	Soil	0.0004		0.002	mg/kg	EPA8270E
Nitrobenzene SVOC	Soil	0.0047		0.01	mg/kg	EPA8270E
N-Nitrosodimethyl: SVOC	Soil	0.0063		0.01	mg/kg	EPA8270E
N-Nitroso-di-n-proj SVOC						
	Soil	0.003		0.01	ma/ka	FPA8270F
	Soil Soil	0.003		0.01	mg/kg	EPA8270E
N-Nitrosodiphenyl: SVOC	Soil	0.0033		0.01	mg/kg	EPA8270E

Phenanthrene	SVOC	Soil	0.00018		0.002	mg/kg	EPA8270E
Phenol	SVOC	Soil	0.013		0.1	mg/kg	EPA8270E
Pyrene	SVOC	Soil	0.00016		0.002	mg/kg	EPA8270E
1,2,4-Trichloroben		Water	0.028		0.2	ug/L	EPA8270E
1,2-Dichlorobenze	SVOC	Water	0.028		0.2	ug/L	EPA8270E
1,2-Diphenylhydra	SVOC	Water	0.014		0.2	ug/L	EPA8270E
1,3-Dichlorobenze		Water	0.034		0.2	ug/L	EPA8270E
,						-	
1,4-Dichlorobenze		Water	0.033		0.2	ug/L	EPA8270E
1-Methylnaphthale	SVOC	Water	0.0025		0.2	ug/L	EPA8270E
2,2'-Oxybis(1-chlor	SVOC	Water	0.023		0.2	ug/L	EPA8270E
2,2'-Oxybis(1-chlo		Water	0.023		2	ug/L	EPA8270E
						•	
2,4,5-Trichlorophe		Water	0.085		2	ug/L	EPA8270E
2,4,6-Trichlorophe	SVOC	Water	0.065		2	ug/L	EPA8270E
2,4-Dichloropheno	SVOC	Water	0.060		2	ug/L	EPA8270E
2,4-Dimethylphend	SVOC	Water	0.39		6	ug/L	EPA8270E
						-	
2,4-Dinitrophenol		Water	1.3		1	ug/L	EPA8270E
2,4-Dinitrotoluene	SVOC	Water	0.034		1	ug/L	EPA8270E
2,6-Dinitrotoluene	SVOC	Water	0.036		0.2	ug/L	EPA8270E
2-Chloronaphthale	SVOC	Water	0.017		2	ug/L	EPA8270E
2-Chlorophenol	SVOC	Water	0.080		0.2		EPA8270E
•						ug/L	
2-Methylnaphthale	SVOC	Water	0.003		2	ug/L	EPA8270E
2-Methylphenol	SVOC	Water	0.095		1	ug/L	EPA8270E
2-Nitroaniline	SVOC	Water	0.175		2	ug/L	EPA8270E
2-Nitrophenol					2		EPA8270E
	SVOC	Water	0.125			ug/L	
3,3'-Dichlorobenzi	SVOC	Water	0.405		4	ug/L	EPA8270E
3-Methylphenol +	SVOC	Water	0.145		20	ug/L	EPA8270E
3-Nitroaniline	SVOC	Water	0.170		6	ug/L	EPA8270E
		Water				-	
4,6-Dinitro-2-meth			0.080		0.2	ug/L	EPA8270E
4-Bromophenyl ph	SVOC	Water	0.0175		2	ug/L	EPA8270E
4-Chloro-3-methyl	SVOC	Water	0.050		20	ug/L	EPA8270E
4-Chloroaniline	SVOC	Water	0.305		0.2	ug/L	EPA8270E
						•	
4-Chlorophenyl ph		Water	0.015		20	ug/L	EPA8270E
4-Nitroaniline	SVOC	Water	0.440		6	ug/L	EPA8270E
4-Nitrophenol	SVOC	Water	0.260		0.02	ug/L	EPA8270E
Acenaphthene	SVOC	Water	0.0021		0.02	ug/L	EPA8270E
						•	
Acenaphthylene	SVOC	Water	0.0016		0.02	ug/L	EPA8270E
Anthracene	SVOC	Water	0.0025		0.02	ug/L	EPA8270E
Benz(a)anthracene	SVOC	Water	0.0030		4	ug/L	EPA8270E
Benzo(a)pyrene	SVOC	Water	0.0045		0.02	ug/L	EPA8270E
		Water	0.0027		0.02	-	EPA8270E
Benzo(b)fluoranthe						ug/L	
Benzo(g,h,i)peryle		Water	0.0090		0.04	ug/L	EPA8270E
Benzo(k)fluoranthe	SVOC	Water	0.0023		0.02	ug/L	EPA8270E
Benzoic acid	SVOC	Water	2.6		10	ug/L	EPA8270E
Benzyl alcohol	SVOC	Water	0.070		2	ug/L	EPA8270E
						-	
Benzyl butyl phtha		Water	0.350		2	ug/L	EPA8270E
Bis(2-chloroethoxy	SVOC	Water	0.031		0.2	ug/L	EPA8270E
Bis(2-chloroethyl)	SVOC	Water	0.021		0.2	ug/L	EPA8270E
Bis(2-ethylhexyl) p		Water	0.465		3.2	ug/L	EPA8270E
Carbazole	SVOC	Water	0.0017		0.02	ug/L	EPA8270E
Chrysene	SVOC	Water	0.0023		0.02	ug/L	EPA8270E
Dibenzo(a,h)anthra	SVOC	Water	0.0065		0.02	ug/L	EPA8270E
Dibenzofuran	SVOC	Water	0.0026		0.02	ug/L	EPA8270E
			0.055		0	- //	
Diethyl phthalate		Water	0.055		2	ug/L	EPA8270E
Dimethyl phthalate	SVOC	Water	0.031		2	ug/L	EPA8270E
Di-n-butyl phthalat	SVOC	Water	0.255		2	ug/L	EPA8270E
Di-n-octyl phthalat		Water	0.315		2	ug/L	EPA8270E
Fluoranthene	SVOC	Water	0.0023		0.02	ug/L	EPA8270E
Fluorene	SVOC	Water	0.0016		0.02	ug/L	EPA8270E
Hexachlorobenzer	SVOC	Water	0.0195		0.2	ug/L	EPA8270E
Hexachlorobutadie	SVOC	Water	0.0455		0.2	ug/L	EPA8270E
Hexachlorocyclope		Water	0.0550		0.6	ug/L	EPA8270E
						-	
Hexachloroethane		Water	0.0395		0.2	ug/L	EPA8270E
Indeno(1,2,3-cd)py	SVOC	Water	0.007		0.02	ug/L	EPA8270E
Isophorone	SVOC	Water	0.010		0.2	ug/L	EPA8270E
Naphthalene	SVOC	Water	0.0039		0.2	ug/L	EPA8270E
•		Water				0	
Nitrobenzene	SVOC		0.0375		0.2	ug/L	EPA8270E
N-Nitrosodimethyla		Water	0.015		0.2	ug/L	EPA8270E
N-Nitroso-di-n-pro	SVOC	Water	0.026		0.2	ug/L	EPA8270E
N-Nitrosodiphenyla		Water	0.0105		0.2	ug/L	EPA8270E
						•	
Pentachloropheno		Water	0.220		1	ug/L	EPA8270E
Phenanthrene	SVOC	Water	0.0025		0.02	ug/L	EPA8270E
Phenol	SVOC	Water	0.0305		2	ug/L	EPA8270E
Pyrene	SVOC	Water	0.0021		0.02	ug/L	EPA8270E
1,1,1,2-Tetrachlor		Soil	0.019	0.05		mg/kg	EPA8260D
1,1,1-Trichloroetha		Soil	0.0021	0.05		mg/kg	EPA8260D
1,1,2,2-Tetrachlore		Soil	0.016	0.05		mg/kg	EPA8260D
1,1,2-Trichloroetha	VOC	Soil	0.0056	0.05		mg/kg	EPA8260D
						-	

1,1-Dichloroethane	VOC	Soil	0.0011	0.05		mg/kg	EPA8260D
1,1-Dichloroethene		Soil	0.0011	0.05		mg/kg	EPA8260D
1,1-Dichloroproper		Soil	0.014	0.05			
						mg/kg	EPA8260D
1,2,3-Trichloroben		Soil	0.065	0.25		mg/kg	EPA8260D
1,2,3-Trichloroproj	VOC	Soil	0.0019	0.05		mg/kg	EPA8260D
1,2,4-Trichloroben	VOC	Soil	0.0057	0.25		mg/kg	EPA8260D
1,2,4-Trimethylber	VOC	Soil	0.0053	0.05		mg/kg	EPA8260D
1,2-Dibromo-3-chl		Soil	0.12	0.5		mg/kg	EPA8260D
1,2-Dibromoethan		Soil	0.00087	0.05		mg/kg	EPA8260D
1,2-Dichlorobenze	VOC	Soil	0.0072	0.05		mg/kg	EPA8260D
1,2-Dichloroethane	VOC	Soil	0.0017	0.05		mg/kg	EPA8260D
1,2-Dichloropropa	VOC	Soil	0.011	0.05		mg/kg	EPA8260D
1,3,5-Trimethylber		Soil	0.0067	0.05		mg/kg	EPA8260D
1,3-Dichlorobenze		Soil	0.0045	0.05		mg/kg	EPA8260D
,							
1,3-Dichloropropa		Soil	0.014	0.05		mg/kg	EPA8260D
1,4-Dichlorobenze	VOC	Soil	0.004	0.05		mg/kg	EPA8260D
2,2-Dichloropropa	VOC	Soil	0.014	0.05		mg/kg	EPA8260D
2-Butanone (MEK)		Soil	0.72	1		mg/kg	EPA8260D
. ,	VOC	Soil	0.014	0.05		mg/kg	EPA8260D
	VOC	Soil	0.43	0.5		mg/kg	EPA8260D
4-Chlorotoluene	VOC	Soil	0.01	0.05		mg/kg	EPA8260D
4-Methyl-2-pentan	VOC	Soil	0.38	1		mg/kg	EPA8260D
Acetone	VOC	Soil	0.87	5		mg/kg	EPA8260D
	VOC	Soil	0.00096	0.03		mg/kg	EPA8260D
	VOC	Soil	0.017	0.05		mg/kg	EPA8260D
Bromodichloromet	VOC	Soil	0.014	0.05		mg/kg	EPA8260D
Bromoform	VOC	Soil	0.015	0.05		mg/kg	EPA8260D
Bromomethane	VOC	Soil	0.089	0.5		mg/kg	EPA8260D
Carbon tetrachlori		Soil	0.012	0.05		mg/kg	EPA8260D
	VOC	Soil	0.0063	0.05		mg/kg	EPA8260D
Chloroethane	VOC	Soil	0.056	0.5		mg/kg	EPA8260D
Chloroform	VOC	Soil	0.008	0.05		mg/kg	EPA8260D
	VOC	Soil	0.18	0.5		mg/kg	EPA8260D
cis-1,2-Dichloroeth		Soil	0.0013	0.05		mg/kg	EPA8260D
cis-1,3-Dichloropro	VOC	Soil	0.011	0.05		mg/kg	EPA8260D
Dibromochloromet	VOC	Soil	0.017	0.05		mg/kg	EPA8260D
Dibromomethane	VOC	Soil	0.024	0.05		mg/kg	EPA8260D
Dichlorodifluorome		Soil	0.021	0.5		mg/kg	EPA8260D
	VOC	Soil	0.0012	0.05		mg/kg	EPA8260D
Hexachlorobutadie	VOC	Soil	0.011	0.25		mg/kg	EPA8260D
Hexane	VOC	Soil	0.013	0.25		mg/kg	EPA8260D
Isopropylbenzene	VOC	Soil	0.0091	0.05		mg/kg	EPA8260D
	VOC	Soil	0.001	0.1		mg/kg	EPA8260D
1 V							
Methyl t-butyl ethe		Soil	0.0011	0.05		mg/kg	EPA8260D
Methylene chloride	VOC	Soil	0.14	0.5		mg/kg	EPA8260D
Naphthalene	VOC	Soil	0.0063	0.05		mg/kg	EPA8260D
n-Propylbenzene	VOC	Soil	0.0045	0.05		mg/kg	EPA8260D
	VOC	Soil	0.00068	0.05		mg/kg	EPA8260D
,		Soil	0.0022				
p-lsopropyltoluene				0.05		mg/kg	EPA8260D
sec-Butylbenzene		Soil	0.0048	0.05		mg/kg	EPA8260D
Styrene	VOC	Soil	0.0067	0.05		mg/kg	EPA8260D
tert-Butylbenzene	VOC	Soil	0.0092	0.05		mg/kg	EPA8260D
Tetrachloroethene		Soil	0.002	0.025		mg/kg	EPA8260D
	VOC	Soil	0.0011	0.05		mg/kg	EPA8260D
trans-1,2-Dichloro		Soil	0.0023	0.05		mg/kg	EPA8260D
trans-1,3-Dichloro	VOC	Soil	0.015	0.05		mg/kg	EPA8260D
Trichloroethene	VOC	Soil	0.0014	0.02		mg/kg	EPA8260D
Trichlorofluoromet	VOC	Soil	0.043	0.5		mg/kg	EPA8260D
	VOC	Soil	0.0019	0.05		mg/kg	EPA8260D
1,1,1,2-Tetrachlor		Soil	0.0095		0.05	mg/kg	EPA8260D
1,1,1-Trichloroetha	VOC	Soil	0.00105		0.002	mg/kg	EPA8260D
1,1,2,2-Tetrachlor	VOC	Soil	0.008		0.05	mg/kg	EPA8260D
1,1,2-Trichloroetha	VOC	Soil	0.0028		0.05	mg/kg	EPA8260D
1,1-Dichloroethane		Soil	0.00055		0.002	mg/kg	EPA8260D
1,1-Dichloroethene		Soil	0.00055		0.002	mg/kg	EPA8260D
1,1-Dichloroprope		Soil	0.007		0.05	mg/kg	EPA8260D
1,2,3-Trichloroben	VOC	Soil	0.0325		0.25	mg/kg	EPA8260D
1,2,3-Trichloroprop	VOC	Soil	0.00095		0.05	mg/kg	EPA8260D
1,2,4-Trichloroben		Soil	0.00285		0.25	mg/kg	EPA8260D
1, 2, 4 - 1 11011101000011	VOC	001					
101 Tuine attack					0.05	mg/kg	EPA8260D
1,2,4-Trimethylber	VOC	Soil	0.00265				
1,2-Dibromo-3-chl	VOC VOC	Soil Soil	0.06		0.5	mg/kg	EPA8260D
· · ·	VOC VOC	Soil					
1,2-Dibromo-3-chl 1,2-Dibromoethan	VOC VOC VOC	Soil Soil Soil	0.06 0.000435		0.5 0.005	mg/kg mg/kg	EPA8260D EPA8260D
1,2-Dibromo-3-chl 1,2-Dibromoethan 1,2-Dichlorobenze	VOC VOC VOC VOC	Soil Soil Soil Soil	0.06 0.000435 0.0036	 	0.5 0.005 0.05	mg/kg mg/kg mg/kg	EPA8260D EPA8260D EPA8260D
1,2-Dibromo-3-chl 1,2-Dibromoethan 1,2-Dichlorobenze 1,2-Dichloroethan	VOC VOC VOC VOC VOC	Soil Soil Soil Soil Soil	0.06 0.000435 0.0036 0.00085	 	0.5 0.005 0.05 0.002	mg/kg mg/kg mg/kg mg/kg	EPA8260D EPA8260D EPA8260D EPA8260D
1,2-Dibromo-3-chl 1,2-Dibromoethan 1,2-Dichlorobenze 1,2-Dichloroethan 1,2-Dichloropropa	VOC VOC VOC VOC VOC VOC	Soil Soil Soil Soil Soil Soil	0.06 0.000435 0.0036 0.00085 0.0055	 	0.5 0.005 0.05 0.002 0.05	mg/kg mg/kg mg/kg mg/kg mg/kg	EPA8260D EPA8260D EPA8260D EPA8260D EPA8260D
1,2-Dibromo-3-chl 1,2-Dibromoethan 1,2-Dichlorobenze 1,2-Dichloroethan 1,2-Dichloropropal 1,3,5-Trimethylber	VOC VOC VOC VOC VOC VOC	Soil Soil Soil Soil Soil Soil Soil	0.06 0.000435 0.0036 0.00085 0.0055 0.00335	 	0.5 0.005 0.05 0.02 0.05 0.05	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	EPA8260D EPA8260D EPA8260D EPA8260D EPA8260D EPA8260D
1,2-Dibromo-3-chl 1,2-Dibromoethan 1,2-Dichlorobenze 1,2-Dichloroethan 1,2-Dichloropropa	VOC VOC VOC VOC VOC VOC	Soil Soil Soil Soil Soil Soil	0.06 0.000435 0.0036 0.00085 0.0055	 	0.5 0.005 0.05 0.002 0.05	mg/kg mg/kg mg/kg mg/kg mg/kg	EPA8260D EPA8260D EPA8260D EPA8260D EPA8260D

1,3-Dichloropropa	IVOC	Soil	0.007		0.05	mg/kg	EPA8260D
1,4-Dichlorobenze		Soil	0.002		0.05	mg/kg	EPA8260D
2,2-Dichloropropa		Soil	0.007		0.05	mg/kg	EPA8260D
2-Butanone (MEK		Soil	0.36		1	mg/kg	EPA8260D
2-Chlorotoluene	VOC	Soil	0.007		0.05	mg/kg	EPA8260D
2-Hexanone	VOC						
		Soil	0.215		0.5	mg/kg	EPA8260D
4-Chlorotoluene	VOC	Soil	0.005		0.05	mg/kg	EPA8260D
4-Methyl-2-pentar		Soil	0.19		1	mg/kg	EPA8260D
Acetone	VOC	Soil	0.435		5	mg/kg	EPA8260D
Benzene	VOC	Soil	0.00048		0.001	mg/kg	EPA8260D
Bromobenzene	VOC	Soil	0.0085		0.05	mg/kg	EPA8260D
Bromodichlorome	t VOC	Soil	0.007		0.05	mg/kg	EPA8260D
Bromoform	VOC	Soil	0.0075		0.05	mg/kg	EPA8260D
Bromomethane	VOC	Soil	0.0445		0.5	mg/kg	EPA8260D
Carbon tetrachlori		Soil	0.006		0.05	mg/kg	EPA8260D
Chlorobenzene	VOC	Soil	0.00315		0.05	mg/kg	EPA8260D
	VOC	Soil					
Chloroethane			0.028		0.1	mg/kg	EPA8260D
Chloroform	VOC	Soil	0.004		0.05	mg/kg	EPA8260D
Chloromethane	VOC	Soil	0.09		0.5	mg/kg	EPA8260D
cis-1,2-Dichloroet	r VOC	Soil	0.00065		0.002	mg/kg	EPA8260D
cis-1,3-Dichloropr	(VOC	Soil	0.0055		0.05	mg/kg	EPA8260D
Dibromochlorome	IVOC	Soil	0.0085		0.05	mg/kg	EPA8260D
Dibromomethane	VOC	Soil	0.012		0.05	mg/kg	EPA8260D
Dichlorodifluorom		Soil	0.0105		0.5	mg/kg	EPA8260D
Ethylbenzene	VOC	Soil	0.0006		0.001	mg/kg	EPA8260D
Hexachlorobutadi							
	VOC	Soil	0.0055		0.25	mg/kg	EPA8260D
Hexane		Soil	0.0065		0.25	mg/kg	EPA8260D
Isopropylbenzene		Soil	0.00455		0.05	mg/kg	EPA8260D
m,p-Xylene	VOC	Soil	0.0005		0.002	mg/kg	EPA8260D
Methyl t-butyl ethe	e VOC	Soil	0.00055		0.002	mg/kg	EPA8260D
Methylene chlorid	e VOC	Soil	0.07		0.2	mg/kg	EPA8260D
Naphthalene	VOC	Soil	0.00315		0.01	mg/kg	EPA8260D
n-Propylbenzene	VOC	Soil	0.00225		0.05	mg/kg	EPA8260D
o-Xylene	VOC	Soil	0.00034		0.001	mg/kg	EPA8260D
p-lsopropyltoluene		Soil	0.0011		0.05	mg/kg	EPA8260D
sec-Butylbenzene		Soil	0.0024		0.05	mg/kg	EPA8260D
Styrene	VOC	Soil	0.00335		0.05	mg/kg	EPA8260D
tert-Butylbenzene		Soil	0.0046		0.05	mg/kg	EPA8260D
Tetrachloroethene	e VOC	Soil	0.001		0.002	mg/kg	EPA8260D
Toluene	VOC	Soil	0.00055		0.001	mg/kg	EPA8260D
trans-1,2-Dichloro	VOC	Soil	0.00115		0.002	mg/kg	EPA8260D
trans-1,3-Dichloro	VOC	Soil	0.0075		0.05	mg/kg	EPA8260D
Trichloroethene	VOC	Soil	0.0007		0.002	mg/kg	EPA8260D
Trichlorofluorome	I VOC	Soil	0.0215		0.5	mg/kg	EPA8260D
Vinyl chloride	VOC	Soil	0.00095		0.002	mg/kg	EPA8260D
1,1,1,2-Tetrachlor		Water	0.16	1		ug/L	EPA8260D
						-	
1,1,1-Trichloroeth		Water	0.017	1		ug/L	EPA8260D
1,1,2,2-Tetrachlor		Water	0.17	0.2		ug/L	EPA8260D
1,1,2-Trichloroeth		Water	0.084	0.5		ug/L	EPA8260D
1,1-Dichloroethan	(VOC	Water	0.017	1		ug/L	EPA8260D
1,1-Dichloroethen	(VOC	Water	0.021	1		ug/L	EPA8260D
1,1-Dichloroprope	VOC	Water	0.12	1		ug/L	EPA8260D
1,2,3-Trichlorober	NOC	Water	0.24	1		ug/L	EPA8260D
1,2,3-Trichloropro		Water	0.01	1		ug/L	EPA8260D
1,2,4-Trichlorober		Water	0.23	1		ug/L	EPA8260D
1,2,4-Trimethylbe		Water	0.084	1		ug/L	EPA8260D
1,2-Dibromo-3-ch				10			EPA8260D
		Water	0.8			ug/L	
1,2-Dibromoethan		Water	0.0049	1		ug/L	EPA8260D
1,2-Dichlorobenze		Water	0.12	1		ug/L	EPA8260D
1,2-Dichloroethan	(VOC	Water	0.037	0.2		ug/L	EPA8260D
1,2-Dichloropropa	IVOC	Water	0.24	1		ug/L	EPA8260D
1,3,5-Trimethylbe	r VOC	Water	0.083	1		ug/L	EPA8260D
1,3-Dichlorobenze	e VOC	Water	0.11	1		ug/L	EPA8260D
1,3-Dichloropropa		Water	0.12	1		ug/L	EPA8260D
1,4-Dichlorobenze		Water	0.13	1		ug/L	EPA8260D
2,2-Dichloropropa		Water	0.33	1		ug/L	EPA8260D
2-Butanone (MEK				20			
	·	Water	1.9			ug/L	EPA8260D
2-Chlorotoluene	VOC	Water	0.26	1		ug/L	EPA8260D
2-Hexanone	VOC	Water	3.7	10		ug/L	EPA8260D
4-Chlorotoluene	VOC	Water	0.098	1		ug/L	EPA8260D
4-Methyl-2-pentar	NOC	Water	3.4	10		ug/L	EPA8260D
Acetone	VOC	Water	2.9	50		ug/L	EPA8260D
Benzene	VOC	Water	0.019	0.35		ug/L	EPA8260D
Bromobenzene	VOC	Water	0.19	1		ug/L	EPA8260D
Bromodichlorome		Water	0.2	0.5		ug/L	EPA8260D
Bromoform	VOC	Water	0.17	5		ug/L	EPA8260D
Bromomethane	VOC	Water	2.1	5		ug/L	EPA8260D
				~			

Carbon tetrachlori	VOC	Water	0.16	0.5		ug/L	EPA8260D
Chlorobenzene	VOC	Water	0.1	1		ug/L	EPA8260D
Chloroethane	VOC	Water	0.05	1		ug/L	EPA8260D
Chloroform	VOC	Water	0.18	1		ug/L	EPA8260D
Chloromethane	VOC	Water	1.1	10		ug/L	EPA8260D
cis-1,2-Dichloroet		Water	0.033	1		ug/L	EPA8260D
cis-1,3-Dichloropr		Water	0.15	0.4		ug/L	EPA8260D
Dibromochlorome		Water	0.21	0.5		ug/L	EPA8260D
Dibromomethane		Water	0.16	1		ug/L	EPA8260D
Dichlorodifluorom	€ VOC	Water	0.29	1		ug/L	EPA8260D
Ethylbenzene	VOC	Water	0.023	1		ug/L	EPA8260D
Hexachlorobutadi	e VOC	Water	0.29	0.5		ug/L	EPA8260D
Hexane	VOC	Water	0.17	5		ug/L	EPA8260D
Isopropylbenzene	VOC	Water	0.057	1		ug/L	EPA8260D
m,p-Xylene	VOC	Water	0.044	2		ug/L	EPA8260D
Methyl t-butyl ethe		Water	0.014	1		ug/L	EPA8260D
Methylene chlorid		Water		5			EPA8260D
			0.82			ug/L	
Naphthalene	VOC	Water	0.19	1		ug/L	EPA8260D
n-Propylbenzene		Water	0.1	1		ug/L	EPA8260D
o-Xylene	VOC	Water	0.023	1		ug/L	EPA8260D
p-Isopropyltoluene	e VOC	Water	0.068	1		ug/L	EPA8260D
sec-Butylbenzene	VOC	Water	0.075	1		ug/L	EPA8260D
Styrene	VOC	Water	0.39	1		ug/L	EPA8260D
tert-Butylbenzene	VOC	Water	0.066	1		ug/L	EPA8260D
Tetrachloroethene		Water	0.043	1		ug/L	EPA8260D
Toluene	VOC	Water	0.062	1		ug/L	EPA8260D
trans-1,2-Dichloro		Water	0.002	1		ug/L	EPA8260D
trans-1,3-Dichloro		Water	0.12	0.4		ug/L	EPA8260D
Trichloroethene	VOC	Water	0.03	0.5		ug/L	EPA8260D
Trichlorofluorome	t VOC	Water	0.19	1		ug/L	EPA8260D
Vinyl chloride	VOC	Water	0.015	0.02		ug/L	EPA8260D
Calcium	METALS	Water	0.0087	0.05		mg/L	EPA200.8
Magnesium	METALS	Water	0.0097	0.05		mg/L	EPA200.8
Hardness (as Ca0	METALS	Water	0.000062	0.35		mg/L	EPA200.8
Antimony	METALS	Soil	0.098	5	1	mg/kg	EPA6020/200.8
Arsenic	METALS	Soil	0.17	1	0.2	mg/kg	EPA6020/200.8
Barium	METALS	Soil	0.11	1	0.2	mg/kg	EPA6020/200.8
				1	0.2		
Beryllium	METALS	Soil	0.057			mg/kg	EPA6020/200.8
Cadmium	METALS	Soil	0.05	1	0.2	mg/kg	EPA6020/200.8
Chromium	METALS	Soil	0.52	5	1	mg/kg	EPA6020/200.8
Cobalt	METALS	Soil	0.028	1	0.2	mg/kg	EPA6020/200.8
Copper	METALS	Soil	0.1	5	1	mg/kg	EPA6020/200.8
Lead	METALS	Soil	0.032	1	0.2	mg/kg	EPA6020/200.8
Manganese	METALS	Soil	0.047	1	0.2	mg/kg	EPA6020/200.8
Mercury	METALS	Soil	0.033	1	0.2	mg/kg	EPA6020/200.8
Molybdenum	METALS	Soil	0.065	1	0.2	mg/kg	EPA6020/200.8
Nickel	METALS	Soil	0.093	1	0.2	mg/kg	EPA6020/200.8
Selenium	METALS	Soil	0.12	1	0.2	mg/kg	EPA6020/200.8
Silver	METALS	Soil	0.12	1	0.2	mg/kg	EPA6020/200.8
				1			
Thallium	METALS	Soil	0.031		0.2	mg/kg	EPA6020/200.8
Thorium	METALS	Soil	0.081	1	0.2	mg/kg	
Uranium	METALS	Soil	0.083				EPA6020/200.8
Vanadium				1	0.2	mg/kg	EPA6020/200.8 EPA6020/200.8
	METALS	Soil	0.49	5	1		
Zinc	METALS METALS	Soil Soil	0.49 0.58	5 5	1 1	mg/kg	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Zinc Antimony				5	1	mg/kg mg/kg	EPA6020/200.8 EPA6020/200.8
	METALS	Soil	0.58	5 5	1 1	mg/kg mg/kg mg/kg	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Antimony	METALS METALS	Soil Water Water	0.58 0.039 0.18	5 5 5 1	1 1 1 0.2	mg/kg mg/kg mg/kg ug/L ug/L	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium	METALS METALS METALS METALS	Soil Water Water Water	0.58 0.039 0.18 0.064	5 5 5 1	1 1 0.2 0.2	mg/kg mg/kg mg/kg ug/L ug/L ug/L	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Beryllium	METALS METALS METALS METALS METALS	Soil Water Water Water Water	0.58 0.039 0.18 0.064 0.094	5 5 1 1 1	1 1 0.2 0.2 0.2	mg/kg mg/kg ug/L ug/L ug/L ug/L	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Beryllium Cadmium	METALS METALS METALS METALS METALS METALS	Soil Water Water Water Water Water	0.58 0.039 0.18 0.064 0.094 0.036	5 5 1 1 1	1 1 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Beryllium Cadmium Chromium	METALS METALS METALS METALS METALS METALS METALS	Soil Water Water Water Water Water Water	0.58 0.039 0.18 0.064 0.094 0.036 0.079	5 5 1 1 1 1 1	1 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt	METALS METALS METALS METALS METALS METALS METALS METALS	Soil Water Water Water Water Water Water Water	0.58 0.039 0.18 0.064 0.094 0.036 0.079 0.037	5 5 5 1 1 1 1 1 1	1 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper	METALS METALS METALS METALS METALS METALS METALS METALS	Soil Water Water Water Water Water Water Water Water	0.58 0.039 0.18 0.064 0.094 0.036 0.079 0.037 0.48	5 5 1 1 1 1 1 5	1 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 1	mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Iron	METALS METALS METALS METALS METALS METALS METALS METALS METALS	Soil Water Water Water Water Water Water Water Water Water	0.58 0.039 0.18 0.064 0.094 0.036 0.079 0.037 0.48 6.3	5 5 1 1 1 1 1 5 50	1 1 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 1 	mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Iron Lead	METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS	Soil Water Water Water Water Water Water Water Water Water Water Water	0.58 0.039 0.18 0.064 0.094 0.036 0.079 0.037 0.48 6.3 0.064	5 5 5 1 1 1 1 1 5 50 1	1 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Iron	METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS	Soil Water Water Water Water Water Water Water Water Water	0.58 0.039 0.18 0.064 0.094 0.036 0.079 0.037 0.48 6.3	5 5 5 1 1 1 1 1 5 50 1 1	1 1 0.2 0.2 0.2 0.2 0.2 0.2 1 0.2 0.2 0.2 0.2	mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Cadmium Chromium Cobalt Copper Iron Lead Manganese Mercury	METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS	Soil Water Water Water Water Water Water Water Water Water Water Water Water	0.58 0.039 0.18 0.064 0.094 0.036 0.079 0.037 0.48 6.3 0.064	5 5 5 1 1 1 1 1 5 50 1 1 1 1	1 1 1 0.2 0.2 0.2 0.2 0.2 0.2 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Iron Lead Manganese	METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS	Soil Water Water Water Water Water Water Water Water Water Water Water Water Water	0.58 0.039 0.18 0.064 0.094 0.036 0.079 0.037 0.48 6.3 0.064 0.063	5 5 5 1 1 1 1 1 5 50 1 1	1 1 0.2 0.2 0.2 0.2 0.2 0.2 1 0.2 0.2 0.2 0.2	mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Cadmium Chromium Cobalt Copper Iron Lead Manganese Mercury	METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS	Soil Water Water Water Water Water Water Water Water Water Water Water Water	0.58 0.039 0.18 0.064 0.094 0.036 0.079 0.037 0.48 6.3 0.064 0.063 0.063 0.037	5 5 5 1 1 1 1 1 5 50 1 1 1 1	1 1 1 0.2 0.2 0.2 0.2 0.2 0.2 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Cadmium Cadmium Chromium Cobalt Copper Iron Lead Manganese Mercury Molybdenum Nickel	METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS	Soil Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water	0.58 0.039 0.18 0.064 0.094 0.036 0.079 0.037 0.48 6.3 0.064 0.063 0.037 0.076 0.076 0.11	5 5 5 1 1 1 1 1 1 5 50 1 1 1 1 1	1 1 1 0.2 0.2 0.2 0.2 0.2 0.2 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Cadmium Chromium Cobalt Copper Iron Lead Manganese Mercury Molybdenum Nickel Selenium	METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS	Soil Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water	0.58 0.039 0.18 0.064 0.094 0.036 0.079 0.037 0.48 6.3 0.064 0.063 0.037 0.076 0.11 0.41	5 5 5 1 1 1 1 1 5 50 1 1 1 1 1 1 1 1 1 1	1 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Cadmium Chromium Cobalt Copper Iron Lead Manganese Mercury Molybdenum Nickel Selenium Silver	METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS	Soil Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water	0.58 0.039 0.18 0.094 0.094 0.036 0.079 0.037 0.48 6.3 0.064 0.063 0.063 0.037 0.076 0.11 0.41 0.41 0.035	5 5 5 1 1 1 1 1 5 50 1 1 1 1 1 1 1 1	1 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Cadmium Chromium Cobalt Copper Iron Lead Manganese Mercury Molybdenum Nickel Selenium Silver Thallium	METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS	Soil Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water	0.58 0.039 0.18 0.094 0.094 0.036 0.079 0.037 0.48 6.3 0.064 0.063 0.063 0.037 0.076 0.11 0.41 0.035 0.018	5 5 5 1 1 1 1 1 1 5 0 1 1 1 1 1 1 1 1 1	1 1 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Cadmium Chomium Cobalt Copper Iron Lead Manganese Mercury Molybdenum Nickel Selenium Silver Thallium Vanadium	METALS METALS	Soil Water	0.58 0.039 0.18 0.094 0.094 0.036 0.079 0.037 0.48 6.3 0.064 0.063 0.063 0.037 0.076 0.11 0.41 0.035 0.018 0.058	5 5 5 1 1 1 1 1 1 5 0 1 1 1 1 1 1 1 5 5 1 1 1 1	1 1 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Cadmium Chormium Cobalt Copper Iron Lead Manganese Mercury Molybdenum Nickel Selenium Silver Thallium Vanadium Zinc	METALS METALS	Soil Water	0.58 0.039 0.18 0.094 0.036 0.079 0.037 0.48 6.3 0.064 0.063 0.037 0.076 0.11 0.41 0.035 0.018 0.058 0.058 0.68	5 5 5 1 1 1 1 1 1 5 0 1 1 1 1 1 1 5 5 5 1 1 1 1	1 1 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Cadmium Cadmium Cobalt Copper Iron Lead Manganese Mercury Molybdenum Nickel Selenium Silver Thallium Vanadium Zinc Mercury (1631E)	METALS METALS	Soil Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Soil	0.58 0.039 0.18 0.064 0.094 0.036 0.079 0.037 0.48 6.3 0.064 0.063 0.064 0.063 0.076 0.11 0.41 0.035 0.018 0.058 0.68 0.0088	5 5 5 1 1 1 1 1 5 50 1 1 1 1 1 1 1 1 5 5 0 0.025	1 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Cadmium Chromium Cobalt Copper Iron Lead Manganese Mercury Molybdenum Nickel Selenium Silver Thallium Vanadium Zinc Mercury (1631E)	METALS METALS	Soil Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Soil Water	0.58 0.039 0.18 0.094 0.094 0.036 0.079 0.037 0.48 6.3 0.064 0.063 0.037 0.076 0.11 0.41 0.41 0.41 0.035 0.018 0.058 0.68 0.0088 0.0008	5 5 5 1 1 1 1 1 1 5 5 0 1 1 1 1 1 1 1 1	1 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Cadmium Chromium Cobalt Copper Iron Lead Manganese Mercury Molybdenum Nickel Selenium Silver Thallium Vanadium Zinc Mercury (1631E) Mercury (1631E)	METALS METALS	Soil Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Soil Water	0.58 0.039 0.18 0.094 0.094 0.036 0.079 0.037 0.48 6.3 0.064 0.063 0.063 0.037 0.076 0.11 0.41 0.035 0.018 0.058 0.058 0.0088 0.0008 1	5 5 5 1 1 1 1 1 1 1 1	1 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	EPA6020/200.8 EPA6020/200.8
Antimony Arsenic Barium Cadmium Chromium Cobalt Copper Iron Lead Manganese Mercury Molybdenum Nickel Selenium Silver Thallium Vanadium Zinc Mercury (1631E)	METALS METALS	Soil Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Water Soil Water	0.58 0.039 0.18 0.094 0.094 0.036 0.079 0.037 0.48 6.3 0.064 0.063 0.037 0.076 0.11 0.41 0.41 0.41 0.035 0.018 0.058 0.68 0.0088 0.0008	5 5 5 1 1 1 1 1 1 5 5 0 1 1 1 1 1 1 1 1	1 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	mg/kg mg/kg ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	EPA6020/200.8 EPA6020/200.8

EC9-12 aliphatics APH	Air	2.5	25	 ug/m3	MA-APH
EC9-10 aromatics APH	Air	2.5	25	 ug/m3	MA-APH