

March 12, 2025

Clary Auburn RE, LLC Mr. Bryce Clary P.O. Box 127 Longview, WA 98632

Draft Remedial Investigation Report Subject: Project Number: BE-0107-E Auburn Volkswagen Dealership Property 3109 Auburn Way North Auburn, WA 98002

Dear Mr. Clary:

Bluestone Environmental NW (Bluestone) is pleased to present this Draft Remedial Investigation report. This report documents the discovery and characterization of subsurface contaminants on the subject property. Please contact us with any questions you may have regarding the findings of this report.

Sincerely, Bluestone Environmental NW

Dan Hotet

Dan Hatch President

Haley Carter, LG

Project Geologist

Haley M Carter

Draft Remedial Investigation Report Version: Draft V-2 Auburn Volkswagen Dealership Property Auburn, WA

March 12, 2025

TABLE OF CONTENTS

1	EXECUT	FIVE SUMMARY	1
2	INTROD	UCTION	2
2.	1 Site		3
3	PROPE	RTY DESCRIPTION AND BACKGROUND	4
3.1	1 Hist	TORICAL SUBJECT PROPERTY USES (3109 AUBURN WAY NORTH)	4
3.2	2 Hist	FORICAL NORTH ADJOINING PROPERTY USES (3317 AUBURN WAY NORTH)	5
3.3	3 Hist	FORICAL SOUTH ADJOINING PROPERTY USES (3025 AUBURN WAY)	5
3.4	4 Reg	ULATORY BACKGROUND	5
	3.4.1	Regulatory & Contaminant Definitions	5
4	PREVIO	US ENVIRONMENTAL ASSESSMENTS AND ACTIONS	6
4.1	1 198	9 to 1992, (Subaru of Auburn Property)	6
4.2	2 2002	2 TO 2014 (SUBARU OF AUBURN PROPERTY)	6
	4.2.1	2002 GeoEngineers	6
	4.2.2	2012 Stemen (3025 and 3109 Auburn Way Properties)	7
	4.2.3	Stemen Remedial Actions 2014, 2015, and 2016 (3025 and 3109 Auburn Way Properties).	7
4.3	3 201	5 TO 2019 (SUBARU OF AUBURN AND AUBURN VW PROPERTIES)	8
	4.3.1	2015 Early Notice Letter	8
	4.3.2	2017 to 2019 G-Logics Efforts	8
5	AUBURI	N VW PROPERTY REMEDIAL INVESTIGATIONS1	1
5.1	1 Ινιτι	AL SUBSURFACE INVESTIGATION, APRIL 20221	1
5.2	2 SUB	SURFACE EXPLORATION, MAY 20221	2
5.3	SUB	SURFACE INVESTIGATION, AUGUST 20221	3
5.4	4 Gro	DUNDWATER ASSESSMENTS, 20231	4
5.5	5 Ape	x Laboratory Forensic Assessment, 20231	4
5.6	6 Sub	SURFACE EXPLORATION, DECEMBER 20241	5
5.7	7 SAM	IPLE ANALYSIS METHODS	7
5.8	B QUA	LITY ASSURANCE/QUALITY CONTROL1	8
6	REMED	IAL INVESTIGATION FINDINGS 1	8
6.1	1 Ana	LYTICAL RESULTS	8
	6.1.1	Soil Analytical Findings 1	8
	6.1.1.1	GRO Analytical Results 1	8
	6.1.1.1	DRO/ORO Analytical Results1	9
	6.1.1.2	VOC Analytical Results1	9
	6.1.1.3	cPAH Analytical Results1	9
	6.1.1.4	Metals Analytical Results	20
	6.1.2	Groundwater Analytical Findings2	20

TABLE OF CONTENTS

	6.1.2.1 GRO Analytical Results	20
	6.1.2.2 DRO and ORO Analytical Results	20
	6.1.2.3 PAH Analytical Results	21
	6.1.2.4 VOC Analytical Results	21
	6.1.2.5 Metals Analytical Results	21
	6.1.2.6 Groundwater Parameters and Conditions	22
6.2	ARSENIC IN SOIL DISCUSSION	22
6.3	ARSENIC IN GROUNDWATER DISCUSSION	22
7 (CONCEPTUAL SITE MODEL	24
7.1	CURRENT AND FUTURE SITE USE CONSIDERATIONS	24
7.2	SITE SETTING AND GEOLOGIC OVERVIEW	24
7	7.2.1 Groundwater	25
7	7.2.2 Surface Water Assessment	25
7.3	CONTAMINANTS OF CONCERN	25
7.4	CLEANUP STANDARDS	25
7	7.4.1 Soil Cleanup Levels	25
7	7.4.2 Groundwater Cleanup Levels	26
7.5	FATE AND TRANSPORT	26
7	7.5.1 GRO	26
7	7.5.2 DRO/ORO	26
7	7.5.3 cPAHs	27
7	7.5.4 Arsenic	27
7.6	EXPOSURE PATHWAYS	28
7	7.6.1 Terrestrial Ecological Evaluation	28
7.7	RECEPTORS	28
8 (CONCLUSIONS AND OPINONS	30
8.1	PETROLEUM IN SOIL	30
8.2	2 METALS IN SOIL	30
8.3		30
8.4	Petroleum in Groundwater	
8.5	METALS IN GROUNDWATER	31
8.6	PAHs in Groundwater	31
9 (OPINION REQUEST	32
10	LIMITATIONS	33
11	REFERENCES	34

TABLE OF CONTENTS

List of Tables

- Table 1a, Laboratory Analytical Results: Petroleum, VOCs, and PAHs in Soil
- Table 1b, Laboratory Analytical Results: Metals in Soil
- Table 1c, Laboratory Analytical Results: Carcinogenic Polycyclic Aromatic Hydrocarbons in Soil
- Table 1d, cPAH Toxicity Equivalency Factors (TEF) and Total Toxic Equivalent (TEQ) Concentration for Soil
- Table 2a, Laboratory Analytical Results: Petroleum, VOCs, and PAHs in Groundwater
- Table 2b, Laboratory Analytical Results: Metals in Groundwater
- Table 3, Well Construction and Groundwater Depths
- Table 4, Groundwater Parameters

List of Graphs

Graph 1, Arsenic Concentrations vs Oxidation-Reduction Potential (ORP) in Groundwater

List of Figures

Figure 1, Site Location Maps

Figure 2a, Site Diagram and Exploration Locations

Figure 2b, Closeup of Interior Exploration Locations

Figure 3, Most Recent Arsenic Concentrations in Groundwater

Figure 4, Highest Arsenic Concentrations in Groundwater: Nearby Properties

Figure 5a, Groundwater Elevations & Interpreted Gradient, May 2022 & July 2022

Figure 5b, Groundwater Elevations & Interpreted Gradient, August 2022 & January 2023

Figure 5c, Groundwater Elevations & Interpreted Gradient, May 2023 and May 2024

Figure 5d, Groundwater Elevation Contours January 2025

Figure 6, Cross-Section A-A'

Appendices

Appendix A, Historical Aerial Photographs (Annotated) Appendix B, April 9 2024 Apex Letter Appendix C, Field Methods Appendix D, Boring and Well Logs Appendix E, Analytical Laboratory Reports Appendix F, Terrestrial Ecological Evaluation Form

1 EXECUTIVE SUMMARY

Bluestone Environmental NW (Bluestone) has conducted five investigation events at the Auburn Volkswagen Dealership in Auburn, Washington and compiled them into this Remedial Investigation report. This report has been prepared in anticipation of entering the Washington Department of Ecology's Voluntary Cleanup Program, with the goal of obtaining a No Further Action determination for the site.

The Auburn Volkswagen property was historically used as a farm and a single-family home until the early 1960s, when it was developed for commercial use, including modular trailer home sales and car sales. Since then, the property has primarily remained a car dealership. Environmental investigations and cleanup efforts were conducted on the Auburn VW property and the adjacent Subaru of Auburn property between 1989 and 2019. In 2019, the Pollution Liability Insurance Agency issued a No Further Action determination for these properties.

In April 2022, Bluestone completed a Phase I Environmental Site Assessment (2022 ESA) for the Auburn VW property. The ESA recommended subsurface investigations, leading to three environmental investigations in 2022, followed by groundwater monitoring through 2023 and 2024. In December 2024, Bluestone completed a fifth site characterization effort, which included advancing 34 soil borings, analyzing 32 soil samples, and the installation, development, and sampling of 20 groundwater monitoring wells.

The contaminants of concern included petroleum constituents and fuel additives, polycyclic aromatic hydrocarbons (PAHs), and metals. Findings from the investigation include:

- Soil: Gasoline-range organics were detected in soil in the northern portion of the Auburn VW property. Small (de minimis) amounts of diesel-range organics (DRO) and carcinogenic PAHs were detected beneath the western portion of the Auburn VW service shop. Arsenic in soil was not found to be a significant concern.
- **Groundwater:** Gasoline-range organics were detected in groundwater in the northern portion of the Auburn VW property. These impacts are attributed to contamination from the adjoining Coastal Gas cleanup site to the north and are therefore not considered the responsibility of the Auburn VW property.

Arsenic: Elevated arsenic concentrations in groundwater (9.41 µg/L to 66.4 µg/L) were identified as an area issue, rather than being caused by any onsite activities or releases. Specifically, an area of a five mile radius was reviewed for this assessment. Additionally, site data indicate consistent reduced groundwater conditions, elevated dissolved organic solids, and a near-flat groundwater gradient.

Based on the findings of Bluestone's site characterization efforts, no further investigation or remediation is warranted for the Site. Accordingly, the Auburn VW Site is eligible to request a No Further Action determination from the Washington Department of Ecology.

2 INTRODUCTION

Bluestone Environmental NW (Bluestone) is pleased to present this Remedial Investigation (RI) report for the Auburn Volkswagen Dealership property located at 3109 Auburn Way North, Auburn, Washington 98002. The location of the subject property (Property) is shown on Figure 1. The Property is currently developed as an automobile dealership, including sales and automotive-service operations.

This RI report has been prepared on behalf of the current Property owner, Clary Auburn RE, LLC (Clary), to document the completed characterization efforts at the subject property. Additionally, this report has been prepared in anticipation of entering the Washington Department of Ecology's (Ecology) Voluntary Cleanup Program (VCP), necessary to obtain technical assistance from Ecology in the ongoing pursuit of obtaining a No Further Action (NFA) determination from Ecology.

For this report, the term 'Property' refers to the Auburn VW property addressed as 3109 Auburn Way N and owned by Clary Auburn RE, LLC. The term 'Site' refers to the extent of contamination migration, be it on or off the Property. This report has been prepared for the Auburn VW Site.

This report and the completed efforts are understood to comply with the requirements of the Model Toxics Control Act (MTCA), RCW 70.105D, and its implementing regulations (Washington Administrative Code [WAC] 173-340). Accordingly, this RI report was prepared in general accordance with WAC 173-340-350(7) using Ecology's RI Checklist.

2.1 Site Information

The Auburn VW Site is listed on Ecology's Cleanup and Tank Search webpage as Facility Site number 57361549 with a status of "Awaiting Cleanup." Ecology's Cleanup Site Details lists Petroleum-Diesel and polycyclic aromatic hydrocarbons contamination present in soil and arsenic and petroleum-diesel contamination present in groundwater.

Site Name	Auburn VW	
Site Address	3109 Auburn Way North, Auburn, WA 98002	
Facility Site ID	57361549	
Cleanup Site ID	16877	
Property Parcel Tax ID No.	000400-0041 (King County)	
Zoning	C3 (Commercial / Light Industries)	
Quarter, Section, Township, Range	SW, 6, 21, 5	
Site Legal Description	JONES H H-D C #39 PCL B OF AUBURN LLA #LLA-02- 0025 REC #20030422002872 SD LLA BEING LOCATED IN POR OF N 1/2 OF SW 1/4 OF SEC 6-21-5 LY WLY OF AUBURN WY & ELY OF "C" ST NE, PLat Block:, Plat Lot: POR	
Site Latitude/Longitude	47.33572, -122.22460	

The following is a summary of general information for the Site.

3 PROPERTY DESCRIPTION AND BACKGROUND

Based on historical tax records obtained from the Washington State Archive Puget Sound Branch, the Property was historically part of a much larger 'parent' tax parcel, which included portions of the current north- and south-adjoining properties. Based on historical tax records and aerial photography, the parent tax-parcel property was first developed in the early 1900s with a farm and a single-family home and some outbuildings. Historical aerial photographs indicate that the home was removed in the early 1960s and replaced with sales offices used for modular trailer homes and car sales on the eastern portion of the Property.

To assist with presenting the background of the Property, historical aerial photographs from 1936 to 2017 have been annotated and are provided in Appendix A. Additionally, understanding the impact that both the north and south adjoining properties have had or are currently having on the Property is important for the information presented in this report. Accordingly, to assist in distinguishing between the three properties and/or sites, they are identified in this report as follows:

- Coastal Gas, the north adjoining property, addressed at 3317 Auburn Way North
- Auburn VW, the Property considered for this report, addressed at 3109 Auburn Way North
- Subaru of Auburn, the south adjoining property, addressed at 3025 Auburn Way North

3.1 Historical Subject Property Uses (3109 Auburn Way North)

As shown on the aerial photographs, the Property was historically addressed as 3205 Auburn Way North from the mid-1960s until the early 2000s. Specifically, reverse telephone directories list the following occupants at 3205 Auburn Way North until 2005.

- 1968 Directory: Green River Motors, Used Cars.
- 1972 and 1977 Directories: Doxon Motors.
- 1981 and 1986 Directories: Leisure Homes.
- 1995 and 2000 Directories: Detrays Pacific Housing.

From the mid-2000s forward the Property address was changed to 3109 Auburn Way North and has remained a listing of Auburn Volkswagen.

Note, Leisure Homes and Detrays were modular home companies that sold modular homes on the Property. Manufacturing of the modular homes does not appear to have

occurred on the Property. Although no clear documentation exists, it is believed that car repair and maintenance activities were conducted in connection with the car dealerships that operated on the Property from the 1960s to the 1980s.

3.2 Historical North Adjoining Property Uses (3317 Auburn Way North)

Based on a historical document review consisting of tax records, aerial photographs, and reverse telephone directories, the Coastal Gas property was first developed in the 1970s with the "Coastal Oil and U Pump" gas station. In the mid to late 1980s the use of the property converted to automobile sales and has remained of similar use to the present.

3.3 Historical South Adjoining Property Uses (3025 Auburn Way)

In the early 1970s, a large automobile dealership building with multiple service bays was constructed on the Subaru of Auburn property for the Mazda of Auburn dealership. Based on Bluestone's 2022 ESA, portions of the Subaru of Auburn 1970s-era building and/or its associated components were located near or on the southern portion of the Property. These components of the 1970s-era building are understood to include the following features.

- Service bays equipped with up to 14 hydraulic hoists.
- A 550-gallon waste-oil underground storage tank (UST), reportedly located north of the building/service bays.

In the early 2000s, the Auburn VW property and the Subaru of Auburn property were redeveloped to accommodate the existing car dealerships, specifically, the Subaru of Auburn and Auburn Volkswagen dealerships.

3.4 Regulatory Background

The characterization and remediation of hazardous substances in Washington State is regulated under MTCA. MTCA establishes administrative processes and standards to identify, investigate, and cleanup facilities where hazardous substances have come to be located (WAC 173-340-100). The MTCA regulations that relate to petroleum releases from USTs are administered by Ecology and Washington State Pollution Liability Insurance Agency (PLIA).

3.4.1 Regulatory & Contaminant Definitions

The term 'contaminant' refers to the presence of petroleum and/or other hazardous substances that do not occur naturally or which are found at concentrations greater than

what occur naturally. The term 'contamination' refers to the presence of petroleum and/or other hazardous substances that are at concentrations greater than established Cleanup Level.

For this report, 'cleanup levels' refer to the MTCA Method A Cleanup Levels (CULs).

4 PREVIOUS ENVIRONMENTAL ASSESSMENTS AND ACTIONS

Previous environmental assessments conducted on the Property (3109 Auburn Way North, Auburn VW) and the south-adjoining property (3025 Auburn Way North, Subaru of Auburn) are discussed below. Note, the south adjoining property is discussed here to address the previously completed investigation and cleanup efforts that were completed simultaneously on both properties. The properties received an NFA from PLIA in 2019 (PLIA, 2019).

4.1 1989 to 1992, (Subaru of Auburn Property)

In 1989 a 550-gallon waste-oil UST was removed from the Auburn Subaru property by Joe Hall Construction. In January 1991, Ecology requested payment of fees from B&B Motors/Auburn Subaru for the waste-oil tank removal. A City of Auburn building inspection receipt dated September 30, 1992 documents the removal of an "oil waste tank".

4.2 2002 to 2014 (Subaru of Auburn Property)

This Section discusses environmental efforts conducted between 2002 and 2014 for the Subaru of Auburn property.

4.2.1 2002 GeoEngineers

In March 2002, GeoEngineers consultants observed and collected soil samples from two remedial excavations (GeoEngineers, 2002. The remedial excavations were based on a Phase II Environmental Site Assessment completed by GeoEngineers in July 2001. The Phase II was performed to evaluate the potential for petroleum-contaminated soil and groundwater that may have originated from 14 hydraulic hoists that were removed from the Subaru of Auburn property. GeoEngineers completed nine shallow soil borings for the Phase II. GeoEngineers reported that diesel-range organic (DRO) and oil-range organic (ORO) hydrocarbons were not detected in ground water samples collected from the nine borings.

The GeoEngineers March 2002 excavation soil samples identified DRO and ORO in confirmation soil samples at concentrations below the CUL of 2,000 milligrams per kilogram (mg/kg). GeoEngineers concluded that DRO and ORO contaminated soil had been successfully removed from the site by the hoist removal contractor. Note, the GeoEngineers' soil analysis incorporated the use of the silica-gel cleanup (SGC) method. The GeoEngineers 2002 report did not clearly identify the location of their excavations, only indicating that the excavations occurred at the north end of the "Former Building," which is understood to have been on or near the current property line of the Subaru of Auburn and Auburn VW property boundaries.

4.2.2 2012 Stemen (3025 and 3109 Auburn Way Properties)

In 2012, Stemen Environmental Inc. (Stemen) completed a Phase II investigation (Stemen, 2012) for the Subaru of Auburn and Auburn VW properties. The Stemen Phase II investigation was conducted on behalf of the Auburn Subaru Dealership.

The Stemen investigation completed three soil borings on the Auburn VW property on December 12, 2012. One soil sample was collected and analyzed from each boring, along with one reconnaissance (grab) groundwater sample. Stemen reported that two of the three soil samples showed no detectable concentrations of gasoline, diesel fuel, or lube oil-range hydrocarbons. However, one soil sample from the Auburn VW property contained gasoline range organics (GRO) and ORO at concentrations exceeding the CULs. The groundwater sample collected from the Subaru of Auburn property reportedly did not contain detectable concentrations of GRO, DRO, or ORO.

The discovery of contaminated soil by Stemen on the 3109 Auburn Way property was reported to Ecology under ERTS #638341 on December 20, 2012.

4.2.3 Stemen Remedial Actions 2014, 2015, and 2016 (3025 and 3109 Auburn Way Properties)

Following the Stemen Phase II investigation, Stemen conducted an in-situ bioremediation project (injections) to treat petroleum-contaminated soils and groundwater in the area of the shared property line between the Subaru of Auburn and Auburn VW properties. The injection events took place on December 16, 2014, April 6, 2015, and June 3 and 6, 2016.

Approximately one year later, Stemen conducted a soil sampling event using directpush drilling methods on June 6, 2017. Soil samples collected and analyzed from the five borings completed by Stemen did not contain detectable concentrations of GRO. However, DRO and ORO were detected in two of the five borings using SGC, but at

concentrations below the CULs. In 2017, Stemen analyzed all soil and/or groundwater samples using SGC.

4.3 2015 to 2019 (Subaru of Auburn and Auburn VW Properties)

This Section discusses environmental efforts conducted between 2015 and 2019, on both the Subaru of Auburn and Auburn VW properties.

4.3.1 2015 Early Notice Letter

The Auburn VW property received an Early Notice Letter from Ecology, dated March 2, 2015. The Early Notice Letter formalized the reporting of contamination by Stemen in 2012 (Ecology, 2015).

4.3.2 2017 to 2019 G-Logics Efforts

In 2017, G-Logics conducted a Phase I ESA, soil and groundwater sampling, and a remedial excavation. The Phase I ESA was completed for the 3109 Auburn Way property, while soil and groundwater sampling and remedial excavation efforts took place on both the 3025 and 3109 Auburn Way properties (Figure 2a).

According to the G-Logics Additional Soil and Groundwater Sampling report, dated August 13, 2017 (GLI, 2017a), soil and groundwater sampling identified ORO in soil at concentrations exceeding CULs at three locations on the 3025 Auburn Way property. Grab groundwater samples also contained DRO and ORO above CULs at one location, as well as ORO exceeding CULs n groundwater at two additional locations on the 3025 Auburn Way property. SGC was applied to these three grab groundwater samples, but the detected DRO and ORO concentrations remained above CULs.

Remedial excavation efforts were conducted in November 2017 along the boundary line between the 3025 and 3109 Auburn Way properties. These efforts were documented in the G-Logics EMMR (GLI, 2017b). During the excavation, dimensional lumber, old car parts, and abandoned concrete pipes were discovered. According to the G-Logics EMMR, contaminated soil was observed within the excavation at depths of approximately 5 to 10 feet below ground surface (bgs), with groundwater encountered at approximately 8 feet bgs. The excavation is stated to have been completed "*until sidewall and bottom confirmation-soil samples exhibited petroleum concentrations below MTCA Method A Cleanup Levels.*"

In total, approximately 384 tons of petroleum contaminated soil were removed and disposed of off-site. The G-Logics EMMR concluded that confirmation soil samples indicated "*all petroleum contaminated soils*" had been removed from the area of the

excavation. Before backfilling, G-Logics placed approximately 200 pounds of ORC into the open excavation to assist in the degradation of residual petroleum impacts in groundwater.

Following the 2017 remedial excavation, G-Logics prepared a workplan, dated January 2, 2018 (GLI, 2018a) for additional site characterization, including groundwater monitoring. This workplan was submitted to PLIA for review and comment, and the Site¹ was entered into PLIA's technical assistance program. The January 2, 2018 workplan proposed drilling three additional borings for groundwater-monitoring well installation. Once installed, groundwater samples were to be collected from both existing and new monitoring wells.

The workplan was revised and updated with a date of February 13, 2018 and was again submitted to PLIA. On February 21, 2018, PLIA provided two approval letters (PLIA 2018a and 2018b) regarding G-Logics' proposed work:

- 1. The first approval letter provided comments and approval for the February 13, 2018 workplan.
- 2. The second approval letter stated, "Yes, PLIA concurs that the proposed Work Plan is sufficient to define the lateral and vertical extents of petroleum impacts at this site, set points of compliance, and develop a conceptual site model (CSM) to support a feasibility study (FS) / cleanup action plan (CAP) towards a No Further Action (NFA) determination at this site."

After the November 2017 remedial excavation and the completion of the three additional monitoring wells, G-Logics prepared a *Well Installation and Groundwater Sampling* report, dated April 12, 2018 (GLI, 2018b). The report concluded that based on the use of SGC on the groundwater samples, "*The additional sampling, conducted during this March 2018 investigation…, …has confirmed that the petroleum contamination* "(understood to be associated with the former used-oil UST)" has been successfully removed and did not migrate beyond the remedial-excavation boundaries." However, the issue of elevated arsenic concentrations in groundwater and native soil remained to be addressed.

To address the arsenic in groundwater, G-Logics argued that:

¹ The term 'Site' refers to the extent of contamination migration, be it on or off a property as defined by MTCA. The Site in this case belongs to both the 3025 and 3109 Auburn Way properties.

- The site had no history of commercial or industrial activities that could have contributed to arsenic contamination.
- The site was within the Asarco area-wide smelter plume.
- The site likely contained volcanic deposits from the Osceola mudflow, a natural source of arsenic.
- Historical agricultural practices in the region may have also contributed to areawide arsenic contamination.
- Arsenic concentrations increased at depths of 5-8 feet bgs, suggesting contamination was associated with native soils rather than imported structural-fill materials.

G-Logics submitted its April 12, 2018, report to PLIA for review and comment. PLIA responded to G-Logics April 12, 2018 report with a "Further Action" letter, dated May 31, 2018, indicating that additional remedial actions were required. A second Further Action letter, dated July 13, 2018, was issued, apparently in response to the same report. It is unclear what communication occurred between PLIA and G-Logics that prompted the second Further Action letter. The second Further Action letter, dated July 13, 2018, reiterated that "PLIA has determined that further remedial action is necessary to clean up contamination at the Site."

Following the November 2017 G-Logics remedial excavation, four consecutive quarters of groundwater sampling were completed. The results of each quarterly event were provided in separate monitoring reports. A final groundwater monitoring report prepared by G-Logics, titled Groundwater Sampling Report, December 2018, dated February 5, 2019 (GLI, 2019) documented their fourth quarter groundwater sampling event and concluded that:

"Based on the information gathered over the last four quarters of groundwater sampling, all detected DRO and ORO groundwater concentrations remained below cleanup levels when using silica-gel methods."

Regarding the arsenic issue, G-Logics concluded that:

"Dissolved arsenic also now appears to be below the cleanup level in all wells except GL-MW-2."

The conclusions of the February 5, 2019 Groundwater Sampling report went on to state that:

"Analytical data shows ORO slightly exceeds the Method A cleanup level in groundwater found in GL-MW-4 and GL-MW-6. Furthermore, the use of silica-gel

for samples collected from these wells indicate ORO is not present above the cleanup level."

G-Logics submitted the Groundwater Sampling report to PLIA, requesting a NFA determination. PLIA responded to G-Logics' February 5, 2019 report with an unrestricted NFA opinion letter, dated May 6, 2019.

5 AUBURN VW PROPERTY REMEDIAL INVESTIGATIONS

In April 2022, Bluestone completed a Phase I ESA for the Property. The Phase I ESA recommended conducting subsurface investigation in the service shop area, specifically, the western portion of the Auburn Volkswagen building. A total of three separate environmental investigations were completed by Bluestone in 2022 as discussed below.

Ultimately, Bluestone completed 34 soil borings, installed 20 groundwater monitoring wells, and analyzed approximately 80 soil samples and 60 groundwater samples. The potential contaminants of concern (PCOC) for these efforts included the following constituents.

- Gasoline range organics
- Diesel range organics
- Oil range organics
- Fuel additives and volatile organic compounds
- Semi-volatile and Polycyclic Aromatic Hydrocarbons (PAHs)
- Metals (RCRA 8)
- And included the assessment of total organic carbon, total dissolved solids, and total suspended solids in groundwater.

Soil analytical data is provided on Tables 1a through 1d. Groundwater analytical data is provided on Tables 2a and 2b. Exploration locations and data from the Bluestone efforts are presented on Figures 2a through 5d.

5.1 Initial Subsurface Investigation, April 2022

On April 24, 2022, Bluestone completed an initial subsurface investigation on the Property. Bluestone retained Holocene Drilling, Inc. (Holocene) to complete six soil borings (B-1 through B-6) to depths of 15 feet bgs and the collect grab groundwater samples from five of the six borings (B-1, B-2, B-4, B-5, and B-6).

The soil analytical results from the initial investigation indicated that with the exception of carcinogenic PAHs (cPAHs), the PCOCs listed above were not an issue for the Site soils when compared to the CULs. Regarding the cPAHs, shallow soil samples from boring B-2 detected cPAHs at concentrations exceeding the CUL after performing the Total Toxic Equivalent (TEQ) factor, as shown in Table 1d. Specifically, boring B-2 detected a concentration of 3.243 mg/kg cPAHs at a depth of five feet bgs.

Analytical results from grab-groundwater samples collected in five of the open borings identified the presence of DRO, arsenic, and chromium at concentrations above the CULs. Specifically, DRO and chromium were detected above the CULs in B-4 while arsenic was detected above the CUL in the five analyzed groundwater samples (Tables 2a and 2b). Because the contaminants detected in groundwater were not necessarily present in the analyzed soil samples, the source of contamination in groundwater was unclear.

5.2 Subsurface Exploration, May 2022

On May 23, 2022, Bluestone conducted a follow-up subsurface investigation on the Property. Holocene was again retained to advance five additional soil-probe borings to depths of 17 feet bgs, which were subsequently completed as monitoring wells (MW-1 through MW-5).

Soil analysis from this second investigation indicated that PAHs and MTCA 5 metals were detected at concentrations below their respective CULs. However, ORO was detected in soil sample MW-4-3 at a concentration of 2,900 mg/kg, exceeding the CUL of 2,000 mg/kg.

Groundwater samples were collected on May 26, 2022, from the five newly installed monitoring wells. DRO, specifically DRO extended (C_{10} - C_{36}), was detected in groundwater collected from the five monitoring wells, but at concentrations below the CUL.

Arsenic (total) was detected above the CUL in the groundwater samples collected from MW-1, MW-4, and MW-5. The reported concentrations of arsenic in the groundwater samples collected from monitoring wells MW-2 and MW-3 were below the CUL.

Chromium (total) was detected in groundwater from MW-3 at a concentration below CUL, while no detectable levels of chromium were observed in samples from the other monitoring wells. Lead, cadmium, and mercury were not detected above laboratory reporting limits in any of the samples analyzed from the developed monitoring wells.

5.3 Subsurface Investigation, August 2022

To refine the extent of shallow soil contamination and assess arsenic concentrations in groundwater using total and dissolved analysis methods, Bluestone conducted a third subsurface characterization effort. On July 20, 2022, eight additional direct-push borings (B-7 through B-14) were advanced to depths of 15-feet bgs.

Four of these borings (B-9 through B-12) were specifically completed to define the lateral boundaries of benzo(a)pyrene contamination initially detected in boring B-2. Soil samples collected at depths of 3, 5, and 6 feet bgs from these four borings did not show cPAH concentrations exceeding laboratory reporting limits, except for sample B-12-5, which detected cPAHs at concentrations below the CUL. However, the sum of cPAHs, expressed as Total Equivalent Concentrations (TEQ), exceeded the CUL in soil B-12-5 (Table 1d).

During the July 20, 2022 sampling effort, pieces of asphalt were observed in borings B-10 and B-12 between the depths of 3 and 5 feet bgs. Based on these observations, Bluestone concluded that the benzo(a)pyrene detected in borings B-2 and B-12 likely originated from asphalt material used during backfill and grading activities conducted in 2001 for the construction of the current building. Furthermore, the Phase I ESA did not identify any past business operations on the property that would have used or produced arsenic or cPAH waste or releases.

DRO and ORO were not detected above laboratory reporting limits in any of the analyzed samples.

On July 26, 2022, Bluestone collected groundwater samples for a second time from the five previously installed monitoring wells. DRO extended (C_{10} - C_{36}), was detected above the CUL in four of the five monitoring wells (MW-1 through MW-4). DRO was also detected in MW-5 at a concentration below the CUL.

Arsenic (both total and dissolved) exceeded the CUL in the five monitoring wells during the July 26, 2022 sampling event.

Based on findings from the three subsurface investigations, Bluestone recommended additional site characterization efforts. The proposed actions included further soil borings and the installation and sampling of additional groundwater monitoring wells. These efforts aimed to:

• Identify the source of the DRO contaminants in groundwater,

- Evaluate the effectiveness of the SGC method for groundwater sample preparation, and
- Collect additional data to address the detected DRO and arsenic concentrations in groundwater at the property.

5.4 Groundwater Assessments, 2023

Bluestone conducted additional groundwater sampling to evaluate the effectiveness of SGC in preparing groundwater samples for analysis and to refine filtering methods addressing arsenic concentrations in groundwater at this site. Groundwater sampling events were conducted in January, May, and August 2023, as well as May 2024, to monitor contaminant conditions over time.

Arsenic (total and dissolved) was detected in the five groundwater monitoring wells during one or more of the four sampling events. DRO without the use of SGC was detected in the five monitoring wells but at concentrations below the CUL. Additionally, following the SGC analysis method, DRO concentrations were not detected in any of the groundwater samples above the laboratory reporting limit.

To enhance the understanding of SGC and field-filtering methods for groundwater, Mr. Kurt Johnson of Apex Laboratories reviewed the January, May, and August 2023 sampling events. Mr. Johnson's assessment is discussed below.

5.5 Apex Laboratory Forensic Assessment, 2023

As mentioned above, the use of SGC and field-filtering methods for metals for assessing petroleum and arsenic concentrations in groundwater was evaluated with the assistance of Mr. Kurt Johnson from Apex Forensics Laboratory. Based on the analytical results of the collected groundwater samples, Mr. Johnson prepared a report, dated April 9, 2024, documenting his findings and interpretations from the May 4, 2023, groundwater sampling event. His conclusions regarding the use of SGC at the site are summarized below.

"Review of the NWTPH-Dx results generated before silica gel column cleanup (SGCC) shows that the level of diesel range hydrocarbons quantified in the samples MW-1, MW-2, MW-3, MW-4, MW-5, and MW-DUP was between 130 ug/L and 230 ug/L. After SGCC was employed, diesel range hydrocarbons were not identified in these samples at or above the analytical reporting limit. The reduction in the level of diesel range hydrocarbons after SGCC indicates that the material present in

these samples is polar/semipolar in origin and below MTCA A cleanup levels."

Mr. Johnson's findings for the field-filtration methods used in the analysis of metal in groundwater are as follows.

" A summary of the total and field filtered dissolved arsenic results for the samples MW-1, MW-2, MW-3, MW-4, MW-5, and MW-DUP is provided in Table 1. The samples MW-2 and MW-5 were also filtered in the laboratory using 0.45 um and 0.22 um filters. The dissolved arsenic results after lab filtration are also provided in Table 1.

Table 1. Total and Dissolved Arsenic in Water Samples (ug/L) Dissolved As Total As **Dissolved As Dissolved As** Field Filter 0.45 um Filter 0.22 um Filter MW-1 62 65 MW-2 86 90 3.7 <3.5 MW-3 2525 --MW-4 8.4 9.2 MW-5 49 51 3.3 <3.0 MW-DUP 2626

Review of Table 1 shows that the level of total arsenic and dissolved arsenic after field filtration in the samples MW-1, MW-2, MW-3, MW-4, MW-5, and MW-DUP was approximately the same. However, the level of dissolved arsenic was significantly reduced in the samples MW-2 and MW-5 after the 0.45 um and 0.22 um lab filters were used. This indicates that the filters used in the field did not effectively remove particles greater than or equal to 0.45 um in the samples and the arsenic quantifications in Table 1 after field filtering should not be relied upon.

Based on the above we recommend changing the type of field filters used at this Site. The current data indicates that if filters that provide an absolute, as opposed to average, removal of particles greater than 0.45 um in size are used, it will likely result in arsenic quantifications below the current MTCA A cleanup level of 8 ppb."

The April 9, 2024, Apex report, as well as laboratory reports and chromatographs reviewed by Mr. Johnson, are included in Appendix B.

5.6 Subsurface Exploration, December 2024

Between December 10 and 13, 2024, Bluestone conducted an additional follow-up investigation to further characterize the Site. Holocene was retained to advance 15

additional soil-probe borings to depths of 15 feet bgs. The borings were subsequently completed as monitoring wells, designated MW-6 through MW-20. Additionally, a surface soil sample was collected from the stormwater pond located on the west side of the Property. A total of 24 soil samples were analyzed from the 15 soil borings.

GRO was the only petroleum contaminant detected above the CUL, specifically, in boring MW-6. Boring MW-6 is located near the Property's north boundary line south of an existing cleanup site registered with Ecology as the Coastal Gas Site, specifically, Cleanup Site ID: 16683. The Coastal Gas Site is known as a GRO contaminated site.

As shown on Figure 2a and others, MW-6 is situated approximately 20-feet south of the Coastal Gas Site's (Coastal Gas) groundwater monitoring well MW-11. Based on the lack of GRO detections in soil samples from other borings on the Property and the proximity of MW-6 to the Coastal Gas Site, the detection of GRO in MW-6 is understood to have migrated from and to be associated with Coastal Gas and not the Auburn VW Site, specifically, the Property (Figure 6).

DRO and ORO were detected borings MW-6, MW-13, and in sample SWP (the surface soil sample from the stormwater pond). but at concentrations below the CUL. MW-13 is located on the east Property boundary adjacent to the Auburn Way North street. The stormwater pond is located along the entire western Property boundary, adjacent to the Auburn Municipal Airport.

Metals, including arsenic, barium, chromium, copper, and lead, were detected in many of the analyzed soil samples, but the detections were below their respective CULs. Cadmium, mercury, selenium, and silver were not detected above the laboratory reporting limit in any of the analyzed sample.

Between December 17 and 19, 2024, groundwater samples were collected from the 15 newly installed monitoring wells and the five existing wells. Note, during shipment of the samples to the laboratory, a cooler containing groundwater samples from MW-2, MW-15, and MW-16 was lost. Resampling for these three wells was conducted on January 10, 2025.

GRO was detected in the groundwater sample from MW-6 that exceeded the CUL, while DRO and naphthalene were detected at concentrations below their respective CULs in the MW-6 groundwater sample. Petroleum and/or fuel additives/VOCs were not detected above laboratory reporting limits in the remain 19 groundwater samples collected during the December 2024/January 2025 subsurface investigation efforts.

Arsenic was detected above the CUL in groundwater samples from 17 of the 20 monitoring wells and above the background² concentration of 14 of the 20 monitoring wells for both total and dissolved arsenic. No other metal analytes were detected above their respective CULs in groundwater.

Total organic carbon (TOC) was analyzed in six groundwater samples and total suspended solids (TSS) was analyzed in eight groundwater samples during the December 2024/January 2025 subsurface investigation efforts.

Excerpt from Table 2b, Laboratory Analytical Results: Metals in Groundwater					
Sample Name -/- Date	Total Organic Carbon (μg/L)	Total Suspended Solids (μg/L)			
MW-2 -/- 12/17/24	Not Analyzed	68,000			
MW-3 -/- 12/17/24	72,000	134,000			
MW-5 -/- 12/17/24	22,400	<5,000			
MW-6 -/- 12/18/24	4,200	26,000			
MW-13 -/- 12/19/24	1,200	<5,000			
MW-16 -/- 1/10/25	Not Analyzed	178,000			
MW-19 -/- 12/18/24	30,000	80,000			
MW-20 -/- 12/18	32,800	126,000			

5.7 Sample Analysis Methods

Soil and groundwater samples have been analyzed by two different laboratories at varies times throughout the site characterization efforts, specifically, Friedman & Bruya and Apex for the following analyses.

- Petroleum hydrocarbons (GRO, DRO, ORO): NWTPH-Gx and -Dx.
- Metal: EPA-6020.

² This is referring the Ecology publication on natural background concentrations of arsenic in Washington State, dated January 2022, Publication No. 14-09-044.

- VOCs: EPA-8260.
- PAHs: EPA-8270 SIM.
- Total Organic Carbon: SM 5310C
- Total Suspended Solids: SM 2540D

5.8 Quality Assurance/Quality Control

Procedures for Quality Assurance/Quality Control (QA/QC) were observed for the completed efforts, including generally accepted procedures for sample collection, storage, tracking, and documentation. Collected samples were labeled with a sample number, date, time, and samplers name, recorded on a chain-of-custody document, and were placed in a cooler to be kept chill and kept at least 4-degress Celsius before delivery to the laboratory for analysis. Details regarding field methodologies and sampling protocols are provided in Appendix C.

6 **REMEDIAL INVESTIGATION FINDINGS**

The findings of our investigation efforts for the remedial investigation are provided below.

6.1 Analytical Results

This Section provides a summary of the analytical findings for soil and groundwater. Laboratory Analytical reports are attached in Appendix F.

6.1.1 Soil Analytical Findings

Selected soil samples from the borings were submitted for laboratory analysis as shown on Tables 1a through Table 1d. A summary of the analytical results is discussed below by contaminant. Note, NWTHP-HCID analysis was completed on the soil samples prior to completing a NWTPH-Gx or NWTPH-Dx analysis when an HCID detection was reported. This Section summarizes the analytical results from the December 2024 exploration efforts.

6.1.1.1 GRO Analytical Results

GRO in soil was only found above the CUL in boring MW-6. Specifically, GRO was detected in boring MW-6 at a concentration of 347 mg/kg at a depth of 7-feet bgs. GRO was also detected in boring MW-6 at a depth of 12-feet bgs, but at a concentration below the CUL.

6.1.1.1 DRO/ORO Analytical Results

ORO was only detected above the CUL (2,900 mg/kg) in soil sample from boring MW-4 at a depth of 3-feet bgs. ORO was not detected above the laboratory reporting limit in the soil sample collected at a deeper depth of 5-feet bgs in boring MW-4. MW-4 is located inside the service shop.

DRO was detected in a soil sample from boring MW-6 at a depth of 7-feet bgs at a concentration below the CUL (109 mg/kg). A soil sample collected from MW-6 at a depth of 12-feet bgs did not contain a detection of DRO above the laboratory reporting limits. Soil samples at shallower depths than 7-feet bgs in MW-6 were not analyzed.

ORO was detected in a soil sample from boring MW-13 at a depth of 12-feet bgs at a concentration below the CUL (102 mg/kg). Soil samples at shallower and/or deeper depths in MW-13 were not analyzed.

ORO was detected in the soil sample collected from the stormwater pond, sample SWP at a depth 6-inches bgs, but at concentrations well below the CUL (56.5 mg/kg).

6.1.1.2 VOC Analytical Results

Vinyl chloride and xylenes were detected at concentrations below the CULs in soil samples collected from B-1 and MW-6, respectively. Boring B-1 is located near the oil/water separator on the north side of the service shop.

Naphthalene and/or 1- / 2-methylnaphthalene were detected in soil samples collected from B-1, B-2, B-9, B-10, MW-5, and MW-6 and were at concentrations below the CULs. VOCs were not detected above the laboratory reporting limits in any of the other analyzed soil samples.

6.1.1.3 cPAH Analytical Results

The only individual cPAH detected above the CULs was benzo(a)pyrene in a soil sample from B-2 (samples B-2-5 at a concentration of 2.6 mg/kg). However, after completing total toxic equivalent (TEQ) calculations, soil samples from borings B-2 and B-12 reported the sum of the TEQ above the CUL. The TEQ for sample B-2-5 was 3.243 mg/kg and the TEQ for sample B-12-3 was 0.1115 mg/kg. The deeper analyzed soil sample from B-2, at a depth of 10-feet bgs reported a TEQ sum of 0.0076, below the CUL. A deeper soil sample from B-12 was not analyzed.

6.1.1.4 Metals Analytical Results

Arsenic, barium, chromium, copper, and lead were detected in various soil samples at concentrations below the respective CULs. There were no detections of metals, specifically arsenic, above the CUL.

6.1.2 Groundwater Analytical Findings

This Section summarizes the results of the groundwater assessments completed by Bluestone since 2022. Since April 2022, groundwater has been sampled on the Site eight times. Specifically, grab-groundwater samples were collected from the open soil borings in April 2022, and groundwater samples from permanent groundwater monitoring wells were collected in May and July 2022, January, May, and August 2023, and May and December 2024. Groundwater samples were submitted for laboratory analysis as shown on Tables 2a and 2b. The analytical results are discussed below.

Well construction and groundwater depth information are presented in Table 3. Groundwater parameters at the time of sample collection are presented in Table 4. As with the soil samples, an HCID analysis was completed on the groundwater samples prior to the application of NWTPH-Gx or -Dx analytical methods.

6.1.2.1 GRO Analytical Results

GRO was detected in monitoring well MW-6 during the December 2024 sampling event at a concentration of 1,440 μ g/L, exceeding the CUL of 1,000 μ g/L³. As discussed in Section 6.1.1.1, MW-6 is located immediately south and down-gradient of the Coastal Gas site. GRO has not/was not detected in any other monitoring well in previous or the most recent sampling event(s).

6.1.2.2 DRO and ORO Analytical Results

DRO was detected above the CUL in the grab-groundwater sample (B-4-W) during the initial subsurface investigation event in April 2022. Following the installation of permanent groundwater wells during the May 2022 efforts, DRO extended (C_{10} - C_{36}) was detected above the CUL in monitoring wells MW-1, MW-2, MW-3, and MW-4 during the July 2022 sampling event.

During the May 2023 groundwater sampling event DRO was detected in the five monitoring wells MW-1 through MW-5 at concentrations below the CUL. SGC used on

³ Benzene has not detected in any groundwater sampling event. Accordingly, the higher CUL of 1,000 µg/L has been identified an appropriate CUL.

the May 2023 detections to experiment with the findings of the SGC application. There were no detections of DRO after the use SGC during the May 2023 sampling event.

After the July 2022 sampling event, there have not been detections of DRO/ORO or DRO-extended (C_{10} - C_{36}) greater than the CUL. With the exception of MW-6, DRO/ORO or DRO-extended were not detected above the laboratory reporting limits in the 19 groundwater monitoring wells during the December 2024/January 2025 sampling event for the Auburn VW Site. Again, any detections of contaminants in MW-6 are considered to be associated with and from the Coastal Gas site on the north adjoining property (Figure 6).

6.1.2.3 PAH Analytical Results

PAHs, including cPAHs, have not been detected above the CUL in any of the analyzed samples. Specifically, only phenanthrene (from grab-groundwater sample B-4-W) was detected above the laboratory reporting limit. Accordingly, PAH/cPAHs in groundwater are not considered to be a COC for the Site.

6.1.2.4 VOC Analytical Results

With the exception of a detection of naphthalene in MW-6, VOCs and/or fuel additives have not been detected in groundwater at the Site. Accordingly, VOCs and/or fuel additives in groundwater are not considered to be a COC for the Site.

6.1.2.5 Metals Analytical Results

Total chromium was detected above the CUL in the grab-groundwater sample collected from B-4 (B-4-W). However, both total and dissolved chromium were not detected above the CUL in any of the analyzed groundwater samples from the permanent monitoring wells. Barium and lead have also been detected in several sampling locations but at concentrations below the CUL.

Cadmium, mercury, selenium, and silver were not detected above the laboratory reporting limit in any of the analyzed groundwater samples.

However, total and dissolved arsenic concentrations have continuously been detected above the CUL and natural background⁴ level from many of the monitoring wells since 2022. The arsenic in groundwater issue at the Site is discussed further in Section 6.1.2.6 and 6.3 below.

⁴ This is referring the Ecology publication on natural background concentrations of arsenic in Washington State, dated January 2022, Publication No. 14-09-044

6.1.2.6 Groundwater Parameters and Conditions

To assist in assessing the cause of the elevated detections of total and dissolved arsenic, field parameters measured at the time of sample collection as well as analysis of total organic carbon (TOC), total suspended solids (TSS), and total dissolved solids (TDS) were recorded and performed.

As shown on Table 4, the recorded oxidation reduction potential (ORP) values are well into a negative condition. Likewise, the dissolved oxygen levels are shown to be low to extremely low conditions for groundwater. These negative ORP and low DO conditions are understood to show that groundwater at the Site is at a reduced condition. As shown on Table 2b, the TOC analysis demonstrate that the organic carbon concentrations in water are high to very high. Likewise, both TSS and TDS concentrations are both shown to be high to very high ranging from approximate averages of 45,500 μ g/L and 130,000 μ g/L, respectively. However, when turbidity is measured, the results show very low turbidity readings with NTU results ranging from 0.4 to 6.71 at the highest recorded measurement (Table 4). With these parameters and conditions, groundwater is understood to be high in organic content with a majority of dissolved particles being less than 2 microns⁵ in size.

6.2 Arsenic in Soil Discussion

The historical review of the Property did not identify any commercial or industrial uses or sources of arsenic from the prior or current automobile operations on the Property. Additionally, arsenic was not detected above the CUL or natural/background concentrations in any of the analyzed soil samples.

6.3 Arsenic in Groundwater Discussion

Field parameters recorded during groundwater sampling including oxidation-reduction potential (ORP) and DO suggest a reductive environment. ORP readings typically range from -400 mV to 800 mV, with lower values indicating reducing conditions and higher values suggesting oxidation. Arsenic levels tend to increase in low ORP conditions and decrease in high ORP conditions. During the most recent sampling event (December 2024), ORP readings at the Site ranged from 60.9 mV at MW-14 (where arsenic was below the CUL) to -140.9 mV at MW-20 (where total arsenic was detected at 53.8 μ g/L, well above the CUL). Please see Graph 1 for a comparison of ORP to arsenic concentrations at the Site.

⁵ 2 Microns being the size of the particle that distinguishes between TSS and TDS.

Additionally, DO levels are a key factor in the release of arsenic from soil. Lower DO environments contribute to a greater release of arsenic compared to high DO environments. Under low DO conditions, the combined effects of ion exchange and anaerobic reduction result in the most significant release of arsenic. In the U.S. Geological Survey article *Factors Affecting Temporal Variability of Arsenic in Groundwater Used for Drinking Water Supply in the United States*, measurements of DO at the time of sample collection showed that increases in arsenic concentrations corresponded to decreases in DO levels. Specifically, DO values among samples from the same well ranged from 7.6 to 1.6 mg/L. At the Site, DO can generally be considered low, with field readings from the most recent sampling event ranging from 3.88 mg/L in MW-3 to 0.05 mg/L in MW-11 and MW-12 (Table 4).

Additionally, as shown on Figure 4, Bluestone compared the EIM data from five other cleanup sites within a five-mile radius of the Site. The five sites have arsenic in groundwater at concentrations greater than the CUL and natural background concentration.

Based on the groundwater parameter and condition data discussed above, the elevated arsenic detections in groundwater at sites throughout the Auburn/Kent valley, the arsenic in groundwater is understood to be the result of naturally occurring organic and reduced groundwater conditions and not the result of contaminant release at the Site.

This conclusion is supported by Ecology's Natural Background Groundwater Arsenic Concentrations in Washington State study, dated January 2022 (Ecology, 2022). As presented in Section 6 of Ecology's 2022 arsenic in groundwater guidance document:

"In summary, the results of this natural background groundwater arsenic study are consistent with similar studies. In terms of higher naturally occurring arsenic levels, the key variables are typically: 1) groundwater geochemistry (reduced conditions), and 2) increased soil organic matter / content. If the groundwater is geochemically reduced (less than 50 mV oxidation- reduction potential), then it will oxidize the soil organic matter. This geochemical trigger results in the release of arsenic from iron oxides (reductive desorption and dissolution). Low- lying topography, with flat groundwater gradients, may also result in higher arsenic (i.e., not enough dilution; Smedley and Kinniburgh 2002)."

The subsurface and groundwater conditions and parameters Ecology discuss in Section 6 are identical to those found on the Auburn VW.

7 CONCEPTUAL SITE MODEL

Our interpretation of the Conceptual Site Model (CSM) is presented below. The CSM is based on the available data and RI findings and conclusions. The CSM identifies current and potential future exposure pathways for human and ecological receptors. The CSM therefore forms the basis for cleanup level development and selection.

The Property and properties to the east and west along Auburn Way North are zoned for heavy commercial. These zoning stipulations are expected to continue as such in the future.

7.1 Current and Future Site Use Considerations

Bluestone understands that Clary intends to continue operating the property as an automobile dealership, including sales and service operations.

7.2 Site Setting and Geologic Overview

The Property is located in the Green River Valley. Prior to the 20th Century, the Green River was considered a tributary to the White River, which flowed north to join the Black River in Renton and from the Duwamish River. In 1906 a large flood redirected the White River into the Stuck River and subsequent engineering projects permanently rerouted the flow.

In the area of the Property, floodplain deposits cover the drift plain forming a broad, fertile area. The valley floor is described as the White River Alluvium (Qaw)⁶: dark reddish-gray pebble-cobble gravel and sand derived largely from Mt. Rainier, with a thickness generally less than 30 feet in the White River Valley and probably more than 200 feet in course fan deposits in Auburn. Postglacial deposits include peat, the Osceola mudflow, mass-wasting debris, and alluvial flood-plain deposits from the White, Green and Cedar Rivers⁷.

Borings on the Property that were completed to 20 feet bgs encountered the following general stratigraphy: asphalt cover, loose brown sandy gravel, medium to fine sand, and moderately dense gray clayey silt with fine-grained sand.

⁷ Luzier, 1969, Geology and ground-water resources of southwestern King County, Washington, Washington Department of Water Resources Water Supply Bulletin 28.

⁶ De Mullineaux, 1965, Geologic Map of the Auburn Quadrangle, King and Pierce Counties, Washington, USGS Geological Quadrangle Map GQ-406.

7.2.1 Groundwater

Groundwater flow conditions at the Site were evaluated by measuring depth to water in the on-property monitoring wells (MW-1 through MW-20) and extrapolating to groundwater table elevations from survey benchmarks. The net direction of shallow groundwater flow at the Site is interpreted to be toward the west/southwest. However, in localized areas groundwater elevation and flow appear to be perturbed by the influence of the on-property building. The groundwater table elevation also fluctuates seasonally due to variations in rainfall and recharge. Specifically, the depth to groundwater at the Site varies approximately 2.5 feet throughout the year.

Groundwater elevation contours and interpreted flow directions for each monitoring event are shown on Figures 5a through 5d.

7.2.2 Surface Water Assessment

The nearest body of water is the Green River, approximately 0.42 miles to the east of the Site.

7.3 Contaminants of Concern

Based on the completed site characterization efforts, the identified contaminants of concern (COC) for the Auburn VW Site are as follows.

- Soil: ORO and cPAHs
- Groundwater: arsenic

7.4 Cleanup Standards

The following sections present the regulatory framework and an evaluation of remedial alternatives for mitigating the contaminated media and potential exposure pathways present at the Site.

As defined in WAC 173-340-700, cleanup standards consist of cleanup levels and the points of compliance at which the cleanup levels are to be attained. The cleanup standards for the Site have been established in accordance with WAC 173-340-700 through 173-340-760 to be protective of human health and the environment.

7.4.1 Soil Cleanup Levels

The selected cleanup levels for COC in soil are the MTCA Method A Soil CULs for Unrestricted Land Uses (Table 740-1 in WAC 173-340-900), as follows:

- ORO, 2,000.0 mg/kg
- Benzo(a)pyrene / cPAHs TEQ, 0.10 mg/kg

7.4.2 Groundwater Cleanup Levels

The selected cleanup levels for COCs in groundwater are the MTCA Method A Cleanup Levels for Ground Water (Table 720-1 in WAC 173-340-900), as follows:

• Arsenic, 5.0 µg/L

7.5 Fate and Transport

This Section discusses the physical and chemical processes that affect contaminant migration in soil and groundwater at the Site.

7.5.1 GRO

Concentrations of GRO in soil and groundwater are present in the area of monitoring well MW-6 near the Property's north boarder line that is shared with the Coastal Gas site. Historical on-Property practices and business operations that could have caused a release of gasoline on this area of the Property do not appear to have occurred. The recorded groundwater flow directions recorded during the December 2024 sampling efforts show that groundwater is flowing in a south/southwestern direction in this area of the Property. Accordingly, the detections of petroleum related contaminants in this area of the Property are assumed to have migrated onto the Property from the Coastal Gas site (Figure 6). Based on the lack of detection of benzene and other fuel additives in soil and groundwater, the detections of GRO at the location of MW-6 appear to be a degradated and likely weathered.

7.5.2 DRO/ORO

A detection of ORO above the CUL was detected in a soil sample from boring MW-4, which is located in the western area of the service shop on the Property. Based on the multiple borings/analyzed soil samples surrounding MW-4 (Figure 2b) the extent of this ORO contamination is limited to this area. Specifically, the detection of ORO was found at 3-feet bgs but was not detected at a depth 5-feet bgs in MW-4. The boring B-4 was completed within 2-feet of MW-4 and did not show⁸ or have a detection of ORO. Likewise, borings B-3, B-13, and B-14 did not show or have a detection of ORO.

⁸ There were no field conditions observed in B-4 indicative of petroleum contamination.

Multiple detections DRO, ORO, or the combined DRO-extended (c10-c36) were detected in groundwater samples collected in 2022 and 2023. Initially, the detected concentrations of DRO-extended were above the CUL in monitoring wells MW-1 through MW-4 in the July 2022 sampling event. However, continued groundwater sampling efforts, specifically, five monitoring events of the course of 18-months, have failed to reproduce the detections of DRO, ORO, or the combined DRO-extended at concentrations above the CUL. Additionally, the exception of MW-6, DRO or ORO were not detected above the laboratory reporting limits in any of the other 19 monitoring wells at the Site in the December 2024 sampling event.

7.5.3 cPAHs

Detections of cPAHs, specifically the TEQ results for cPAHs, have been detected in two borings, B-2 and B-12. These two borings are within 10-feet of each other (Figure 2b). Based on soil analysis, the vertical profile of the detected cPAHs are within soils near the surface and do not extend to a depth of 10-feet bgs, terminated vertically somewhere between the depths of 5- and 10-feet bgs. As noted in Section 5.3, asphalt debris was observed to be in the borings, likely in the fill material used as backfill during the construction of the building. cPAHs have not been detected in groundwater samples.

7.5.4 Arsenic

Based on the extensive soil data, arsenic in soil is not a consideration nor a source of contamination at the Site. As discussed in Section 6.3, the detections of arsenic in groundwater are considered to be from natural occurring conditions and not from a release at or near the Site. Based on this information, the detections of arsenic in groundwater at the Site are not a contamination issue and do not warrant further consideration for the Site.

7.6 Exposure Pathways

Several potential exposure scenarios must be considered relative to the contaminated soil and shallow groundwater at the Site. The remedial alternative selected must mitigate the following exposure pathways.

- Direct contact (human dermal contact and/or ingestion) with impacted soil (petroleum hydrocarbons) down to depths of 15 feet (standard point of compliance).
- The leaching of contaminants from soil to groundwater (petroleum hydrocarbons) and potential exposure scenarios related to shallow groundwater contamination beneath the Site.
- Inhalation of vapors released from soil and/or groundwater to ambient air or building interiors.
- Ingestion of groundwater (metals, PAHs, and petroleum hydrocarbons).

7.6.1 Terrestrial Ecological Evaluation

In accordance with WAC 173-340-7490, a terrestrial ecological evaluation (TEE) was performed for the Site to determine if it poses a threat to the terrestrial environment. The Site is fully capped and located within a developed urban area of Seattle. Based on the TEE performed, the Site qualifies for the following TEE exclusions:

• WAC 173-340-7491(1)(c), which states: "For sites contaminated with hazardous substances other than those specified in (c)(ii) of this subsection, there is less than 1.5 acres of contiguous undeveloped land on the site or within 500 feet of any area of the site"

Therefore, terrestrial ecological exposures do not require further consideration. The Site is covered by an automobile dealership building with asphalt pavement surrounding the building and is bounded by roadways, commercial properties, and a stormwater retention pond that is smaller than 1.5 acres. There are no parks or other areas of natural habitat adjacent to the Site. Ecology's Terrestrial Ecological Evaluation Form is attached is Appendix G.

7.7 Receptors

Potential receptors for direct contact to contaminated soils are construction workers if excavating in contaminated areas. As the groundwater at the Site is not a current source of drinking water and is not a practicable source of future drinking water, drinking

water receptors are not a concern. Surface water or sediments are not a concern because there are no nearby points of entry of groundwater into surface water.

Workers/mechanics performing automobile repairs and maintenance in the shop areas where the contamination in the subsurface has been identified are working with petroleum products throughout the workday. Accordingly, the service shop area is not appropriate to include for the vapor intrusion pathway. However, areas within the building used for offices, sales and parts activities are appropriate to consider for Indoor Air quality.

7.8 Points of Compliance

Points of compliance (POC) are the locations at which cleanup levels for the COCs must be attained to meet the requirements of MTCA.

Contaminant of Concern / Media	MTCA Method A CUL
ORO / Soil	2,000 mg/kg
cPAHs / Soil	0.1 mg/kg
Arsenic / Groundwater	5.00 µg/L

The points of compliance for the Site are as follows:

- In accordance with WAC 173-340-740(6), the point of compliance for soil is defined as soil at the Site where COCs have been detected at concentrations exceeding MTCA soil cleanup levels. Accordingly, the POC for soil at this Site is at locations that the COCs listed above do not exceed MTCA Method A cleanup levels.
- In accordance with WAC 173-340-720(8), the point of compliance for groundwater is defined as the uppermost level of the saturated zone extending vertically to the lowest depth at the Site that potentially could be impacted by COCs. Accordingly, the POC for groundwater at this Site shall be the extent of where the COCs listed above do not exceed MTCA Method A cleanup levels.

8 CONCLUSIONS AND OPINONS

The findings of the site characterization efforts are summarized below by media and contaminant.

8.1 Petroleum in Soil

The Site was assessed for GRO, fuel additivities, DRO, and ORO in soil. ORO was detected at concentrations above the CUL in soil at one location at a depth of three feet bgs (MW-4) that was located within the service shop area of the building. GRO was also detected at concentrations above the CUL on the northern portion of the Property and is understood to have migrated onto the Property from the Coastal Gas site that is located on the north adjoining property.

Based on the 6 soil borings and 16 analyzed soil samples surrounding MW-4, the extent of the discovered ORO contamination in soil in MW-4 is de-minimis in nature and does not warrant further consideration for the Auburn VW Site. Additionally, based on the understanding that the detected concentration of GRO in soil in MW-6 is contamination migrating from the neighboring Coastal Gas site and not from a source on the Property, GRO in soil is not an issue for the Auburn VW Site (Figure 6).

8.2 Metals in Soil

Arsenic, barium, chromium, copper, and/or lead were detected in the majority of the analyzed soil samples. However, the detected concentrations are below the respective CULs for these metals. Accordingly, metals in soil are not a concern for the Auburn VW Site.

8.3 PAHs in Soil

Detections of cPAHs in soil above CULs were discovered in two locations within the service shop area of the building. The two locations do not appear to be related to the detection of DRO found in MW-4. Rather, based on observations of asphalt particles in the borings it appears that the source of the discovered cPAHs is asphalt debris that was found in the borings B-2 and B-12. Based on this data, the extent of the cPAH contamination is considered to be de-minimis in nature and does not warrant further consideration for the Site.

8.4 Petroleum in Groundwater

The Site was assessed for GRO, fuel additivities, DRO, and ORO in groundwater. Multiple detections DRO, ORO, and/or DRO-extended were detected in groundwater

samples collected in 2022 and 2023. However, continued groundwater monitoring efforts have demonstrated that the DRO, ORO, or DRO-extended are not a contaminant issue in groundwater at the Auburn VW site.

As with soil, GRO contamination in groundwater found in MW-6 are understood to be from migrating contamination from the neighboring Coastal Gas site. Accordingly, GRO in groundwater is not an issue for the Auburn VW Site.

8.5 Metals in Groundwater

Arsenic, barium, chromium, copper, lead, and/or other select metals were analyzed for in the many groundwater samples. Only arsenic was found to have a consistent detection above the CUL in groundwater for the Auburn VW Site. However, as presented throughout this RI, a source for arsenic contamination to have been released or generated on the Property did not occur, groundwater is consistently at a reduced state, high in organic matter with elevated dissolved solids, and little to no gradient. Additionally, multiple sites within a five mile radius show similar arsenic in groundwater issues.

Accordingly, the elevated detected concentrations of arsenic in groundwater across the Auburn VW Site are being created by natural occurring phenomena and should not be considered as a cleanup action issue to be undertaken for the Auburn VW Site.

8.6 PAHs in Groundwater

Detections of PAHs, particularly cPAHs, in groundwater were either not detected at the laboratory reporting limits or were detected at insignificant concentrations. Accordingly, PAHs and/or cPAHs are not an issued and do not warrant further investigation for the Auburn VW Site.

9 OPINION REQUEST

Based on the findings of the five completed site characterization efforts for the Auburn VW Site we request Ecology's opinions on the following matters.

- The Site is eligible to entry the VCP.
- Petroleum in soil and groundwater is not an issue for the Auburn VW Site.
- Arsenic in soil is not an issue for the Auburn VW Site.
- PAHs/cPAHs in soil and groundwater are not an issue for the Auburn VW Site.
- Arsenic in groundwater is an area or regional issue that has not been created by anthropogenic activities on the Property. Accordingly, arsenic in groundwater does not require cleanup action to receive an NFA from Ecology.
- The Site is eligible for a NFA determination.

10 LIMITATIONS

The completed site assessment services were designed to provide an evaluation of subsurface contamination conditions on the Property. This assessment was not designed to find or identify all potential issues or eliminate all risks that could be associated with contaminants on the Properties. Even the most carefully performed environmental assessments are not likely to identify all contaminant conditions existing at a Site.

Our opinions and interpretations presented in this report may change as new information is made available. This may be obtained during additional explorations, remediation actions, or redevelopment of the Property. Additionally, regulations often change that may affect the findings of our work. Accordingly, our opinions, findings, and recommendations are only valid up to the date of this report.

This report has been prepared and is intended for sole use by the client, Clary Auburn RE, LLC. Others may not use or rely on this report. Within the limitations of scope, schedule, and budget, this report was completed in a manner consistent with that level of care and skill exercised by members of the profession currently practicing in the same locality under similar conditions as this project. No warranty is either expressed or implied.

To the extent that the preparation of this RI Report required the application of best professional judgment and the application of scientific principles, certain results of this effort were based on subjective interpretation. Bluestone makes no warranties, express or implied, including and without limitation warranties as to merchantability or fitness for a particular purpose. The information provided in this report is not to be construed as legal advice.

11 REFERENCES

The following documents were referenced for this report.

- Aspect Consulting (Aspect), 2019, Remedial Investigation Report, Puget Sound Coatings Auburn Property, December 11, 2019.
- Ayotte JD, et al, (2014) Factors affecting temporal variability of arsenic in groundwater used for drinking water supply in the United States, Sci Total Environ, http://dx.doi.org/10.1016/j.scitotenv.2014.02.057
- GeoEngineers, 2002, Report Environmental Services, Former Auburn Subaru-Volkswagen Dealership, March 22, 2002.
- G-Logics, Inc., (GLI, 2017a), 2017, Additional Soil and Groundwater Sampling, August 13,2017.
- G-Logics, Inc., (GLI, 2017b), 2017, Environmental Media Management Report, Soil Removal and Sampling, December 4, 2017.
- G-Logics, Inc., (GLI, 2018b), 2018, Well Installation and Groundwater Sampling, April 12, 2018.
- G-Logics, Inc., (GLI, 2018a), 2018, Workplan to Conduct Well Installation and Groundwater Sampling, January 2, 2018.
- G-Logics, Inc., (GLI, 2019), 2019, Groundwater Sampling Report, December 2018, February 5, 2019.
- Pioneer Technologies Corporation (Pioneer), 2024, Interim Action Work Plan, April 2024.
- Stemen Environmental, Inc., (Stemen), 2012, Limited Phase II Environmental Site Assessment Report, December 20, 2012.
- Washington Administrative Code (updated 2023) Model Toxics Control Act Regulation and Statute: Cleanup Regulation Chapter (WAC Chapter 173-340, RCW Chapter 70.105D, Uniform Environmental Covenants Act Chapter 64.70). Publication No. 94-06 (revised 2013). Updated edition retrieved from https://apps.leg.wa.gov/wac/default.aspx?cite=173-340
- Washington Department of Ecology (Ecology), 2015, Early Notice Letter: Facility Site # 57361549, March 2, 2015.
- Washington Department of Ecology (Ecology), 2016, Guidance for Remediation of Petroleum Contaminated Sites. Publication No. 10-09-057, revised June 2016.

Washington State Department of Ecology (Ecology, 2022), Natural Background Groundwater Arsenic Concentrations in Washington State. Publication No. 14-09-044, January 2022.

- Washington State Department of Ecology (Ecology), 2023, Guidance for Silica Gel Cleanup in Washington State. Publication No. 22-09-059, November 2023.
- Washington State Department of Ecology (Ecology), online Environmental Information Management System, <u>https://apps.ecology.wa.gov/eim/search/default.aspx</u>, accessed February, 2025.
- Washington State Pollution Liability Insurance Agency, (PLIA 2018a), 2018, Further Action at the Following Site: Auburn Way Properties, May 31, 2018.
- Washington State Pollution Liability Insurance Agency, (PLIA 2018b), 2018, Further Action at the Following Site: Auburn Way Properties, July 13, 2018.
- Washington State Pollution Liability Insurance Agency (PLIA), 2019, No Further Action at the Following Site: Auburn Way Properties, May 6, 2019.
- Zeng, L., et al, (2013). The Effects and Mechanisms of pH and Dissolved Oxygen Conditions on the Release of Arsenic at the Sediment–Water Interface in Taihu Lake. Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361021, China

Attachments

Tables

Boring / Location Identifier	Sample Date	Sample Name	Sample Depth (ft)	PID Readings (PPM)	Gasoline Range Organics GRO	Diesel Range Organics DRO	Heavy/ Lube Oil Range Organics ORO	Benzene	Toluene	Ethyl- benzene	Xylenes	Vinyl chloride	2- Methylnaphthal ene	1- Methylnaphthal ene	Naphthalene	Other Polycyclic Aromatic Hydrocarbons PAHs
			Meth	od A Cleanun Levels	20/100*	2 000	2 000	0.03	7	Laborator	y Units Reporte	d in mg/kg +	+	+	5	various
			Weth		30/100	2,000	2,000	0.03			<u> </u>				J	various
B-1	4/24/22	B-1-5	5	0.0		<50	<250	< 0.03	<0.05	<0.05	<0.1	<0.05	< 0.01	< 0.01	0.032	(2)
	4/24/22	B-1-10	10	0.0	<5	<50	<250	< 0.03	< 0.05	<0.05	<0.1	0.073				
	4/24/22	B-1-13	13	0.0	<5	<50	<250	< 0.03	<0.05	<0.05	<0.1	<0.05	< 0.01	< 0.01	<0.01	(2)
	4/24/22	B-1-15	15	0.0												
B-2	4/24/22	B-2-5	5	0.0	<5	<50	<250	< 0.03	<0.05	<0.05	<0.1	<0.05	0.17	0.17	0.074	
	4/24/22	B-2-10	10	0.0		<50	<250						<0.01	<0.01	<0.01	(2)
	4/24/22	B-2-13	13	0.0		<50	<250	< 0.03	<0.05	<0.05	<0.1	<0.05				
	4/24/22	B-2-15	15	0.0												
B-3	4/24/22	B-3-5	5	0.0	<5	<50	<250	< 0.03	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	(2)
	4/24/22	B-3-10	10	0.0												
	4/24/22	B-3-12	12	0.2	<5	<50	<250	<0.03	<0.05	<0.05	<0.1	<0.05				
	4/24/22	B-3-15	15	0.0												
B-4	4/24/22	B-4-5	5	0.0		<50	<250						< 0.05	<0.05	<0.05	(2)
	4/24/22	B-4-10	10	0.0	<5	<50	<250	< 0.03	<0.05	< 0.05	<0.1	< 0.05				
	4/24/22	B-4-14	14	0.0	<5	<50	<250	< 0.03	< 0.05	< 0.05	<0.1	<0.05	< 0.01	<0.01	<0.01	(2)
	4/24/22	B-4-15	15	0.3												
B-5	4/24/22	B-5-5	5	0.0				-								
	4/24/22	B-5-10	10	0.0		<50	<250	<0.03	<0.05	<0.05	<0.1	<0.05	<0.01	<0.01	<0.01	(2)
	4/24/22	B-5-12	12	0.0												
	4/24/22	B-5-15	15	0.3		<50	<250	<0.03	<0.05	<0.05	<0.1	<0.05				
B-6	4/24/22	B-6-5	5	0.0									< 0.01	< 0.01	<0.01	(2)
	4/24/22	B-6-10	10	0.0		<50	<250	< 0.03	<0.05	<0.05	<0.1	<0.05				
	4/24/22	B-6-13	13	0.0	<5	<50	<250	< 0.03	<0.05	<0.05	<0.1	<0.05	< 0.01	<0.01	<0.01	(2)
	4/24/22	B-6-15	15	0.0												
B-7	7/20/22	B-7-3	3	0.0		<50	<250									
	7/20/22	B-7-5	5	0.0		<50	<250									
	7/20/22	B-7-8	8	0.0												

Boring / Location Identifier	Sample Date	Sample Name	Sample Depth (ft)	PID Readings (PPM)	Gasoline Range Organics GRO	Diesel Range Organics DRO	Heavy/ Lube Oil Range Organics ORO	Benzene	Toluene	Ethyl- benzene	Xylenes	Vinyl chloride	2- Methylnaphthal ene	1- Methylnaphthal ene	Naphthalene	Other Polycyclic Aromatic Hydrocarbons PAHs
										Laborator	y Units Reporte	d in mg/kg				
	_ / /		Meth	od A Cleanup Levels	30/100*	2,000	2,000	0.03	7	6	9	†	<u>†</u>	†	5	various
B-8	7/20/22	B-8-3	3	0.1		<50	<250									
	7/20/22	B-8-5	5	0.0		<50	<250									
	7/20/22	B-8-8	8	0.0												
B-9	7/20/22	B-9-3	3	0.1									< 0.01	< 0.01	<0.01	(2)
	7/20/22	B-9-5	5	0.0									0.014	<0.01	<0.01	(2)
	7/20/22	B-9-8	8	0.0												
B-10	7/20/22	B-10-3	3	0.0									< 0.01	< 0.01	< 0.01	(2)
	7/20/22	B-10-5	5	4.9												
	7/20/22	B-10-6	6	0.0									0.042	0.029	0.013	(2)
	7/20/22	B-10-8	8	0.0												
B-11	7/20/22	B-11-3	3	0.0									< 0.01	< 0.01	< 0.01	(2)
	7/20/22	B-11-5	5	0.0									< 0.01	< 0.01	< 0.01	(2)
	7/20/22	B-11-8	8	0.0												
B-12	7/20/22	B-12-3	3	0.0									< 0.01	< 0.01	< 0.01	(2)
	7/20/22	B-12-5	5	0.0									< 0.01	< 0.01	< 0.01	0.336
	7/20/22	B-12-8	8	0.0												
B-13	7/20/22	B-13-3	3	0.0		<50	<250									
	7/20/22	B-13-5	5	0.0		<50	<250									
	7/20/22	B-13-8	8	0.0												
B-14	7/20/22	B-14-3	3	0.0		<50	<250									
	7/20/22	B-14-5	5	0.0		<50	<250									
	7/20/22	B-14-8	8	0.0												
MW-1	5/23/22	MW-1-5	5	0.0	<5	<50	<250	<0.02	<0.02	<0.02	<0.06					
	5/23/22	MW-1-7	7	0.0	<5	<50	<250	< 0.02	< 0.02	< 0.02	<0.06		< 0.01	< 0.01	< 0.01	(2)
	5/23/22	MW-1-12	12	0.0	<5	<50	<250	< 0.02	< 0.02	<0.02	<0.06					
	5/23/22	MW-1-15	15	0.0												

Boring / Location Identifier	Sample Date	Sample Name	Sample Depth (ft)	PID Readings (PPM)	Gasoline Range Organics GRO	Diesel Range Organics DRO	Heavy/ Lube Oil Range Organics ORO	Benzene	Toluene	Ethyl- benzene	Xylenes	Vinyl chloride	2- Methylnaphthal ene	1- Methylnaphthal ene	Naphthalene	Other Polycyclic Aromatic Hydrocarbons PAHs
										Laborator	y Units Reporte	d in mg/kg				
	- / /		Metho	od A Cleanup Levels	30/100*	2,000	2,000	0.03	7	6	9	†	†	†	5	various
MW-2	5/23/22	MW-2-5	5	0.0	<5	<50	<250	<0.02	< 0.02	< 0.02	< 0.06					
	5/23/22	MW-2-8	8	0.0	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06		<0.01	<0.01	<0.01	(2)
	5/23/22	MW-2-12	12	0.0	<5	<50	<250	< 0.02	<0.02	< 0.02	< 0.06					
	5/23/22	MW-2-15	15	0.0												
MW-3	5/23/22	MW-3-3	3	0.0	<5	<50	<250	< 0.02	<0.02	<0.02	<0.06	<0.05	< 0.01	<0.01	< 0.01	(2)
	5/23/22	MW-3-5	5	0.0	<5	<50	<250	<0.02	<0.02	<0.02	<0.06					
	5/23/22	MW-3-10	10	0.0	<5	<50	<250	<0.02	<0.02	<0.02	<0.06					
	5/23/22	MW-3-15	15	0.0												
MW-4	5/23/22	MW-4-3	3	0.6	<5	<50	2,900	< 0.02	< 0.02	< 0.02	< 0.06	< 0.05	<0.2	<0.2	<0.2	(2)
	5/23/22	MW-4-5	5	0.0	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06					==
	5/23/22	MW-4-10	10	0.0	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06					
	5/23/22	MW-4-15	15	0.0												
MW-5	5/23/22	MW-5-3	3	0.5	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06	<0.05	0.038	0.028	0.014	(2)
_	5/23/22	MW-5-5	5	0.0	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06					
	5/23/22	MW-5-10	10	0.0	<5	<50	<250	< 0.02	< 0.02	< 0.02	< 0.06					
	5/23/22	MW-5-15	15	0.0												
MW-6	12/10/24	MW-6-5	5	0.0												
	12/10/24	MW-6-7	7	57.4	347	109	<46.9	<0.0156	<0.0778	<0.0389	<0.0778	<0.0389			0.730	
	12/10/24	MW-6-12	12	0.0	38.4	<25.5	<51.0	<0.0162	<0.0811	<0.0406	0.0892	<0.0406			1.55	
	12/10/24	MW-6-15	15	0.0												
MW-7	12/10/24	MW-7-5	5	0.0												
	12/10/24	MW-7-7	7	0.0												
	12/10/24	MW-7-10	10	0.0	<25.2	<63.1	<126									
MW-8	12/10/24	MW-8-5	5	0.0												
_	12/10/24	MW-8-10	10	0.0	<25.0	<62.4	<125									
	12/10/24	MW-8-15	15	0.0												

Boring / Location Identifier	Sample Date	Sample Name	Sample Depth (ft)	PID Readings (PPM)	Gasoline Range Organics GRO	Diesel Range Organics DRO	Heavy/ Lube Oil Range Organics ORO	Benzene	Toluene	Ethyl- benzene	Xylenes	Vinyl chloride	2- Methylnaphthal ene	1- Methylnaphthal ene	Naphthalene	Other Polycyclic Aromatic Hydrocarbons PAHs
			• • • •	(),						Laborator	v Units Reporte	d in ma/ka				
			Methe	od A Cleanup Levels	30/100*	2,000	2,000	0.03	7	6	9	<u>t</u>	†	t	5	various
MW-9	12/10/24	MW-9-5	5	0.0												
	12/10/24	MW-9-10	10	0.0	<26.0	<64.9	<130	<0.0144	<0.0722	<0.0361	<0.0722	< 0.0361			<0.144	
	12/10/24	MW-9-15	15	0.0												
MW-10	12/11/24	MW-10-5	5	0.0												
	12/11/24	MW-10-8	8	0.0	<27.3	<61.4	<123	<0.0136	<0.0680	<0.0340	<0.0680	< 0.0340			<0.136	
	12/11/24	MW-10-10	10	0.0												
	12/11/24	MW-10-15	15	0.0												
MW-11	12/11/24	MW-11-6	6	0.0												
	12/11/24	MW-11-10	10	0.0	<24.5	<61.4	<123									
	12/11/24	MW-11-15	15	0.0												
MW-12	12/11/24	MW-12-6	6	0.0												
	12/11/24	MW-12-10	10	0.0	<25.3	<63.4	<127									
	12/11/24	MW-12-15	15	0.0												
MW-13	12/11/24	MW-13-5	5	0.0												
	12/11/24	MW-13-12	12	0.0	<23.7	<59.2	102									
	12/11/24	MW-13-15	15	0.0												
MW-14	12/12/24	MW-14-6	6	0.0												
	12/12/24	MW-14-10	10	0.0												
	12/12/24	MW-14-15	15	0.0												
MW-15	12/12/24	MW-15-5	5	0.0												
	12/12/24	MW-15-11	11	0.0	<28.5	<71.3	<143									
	12/12/24	MW-15-15	15	0.0												

Boring / Location	Sample	Sample	Sample	PID Readings	Gasoline Range Organics	Diesel Range Organics	Heavy/ Lube Oil Range Organics	Benzene	Toluene	Ethyl- benzene	Xylenes	Vinyl chloride	2- Methylnaphthal ene	1- Methylnaphthal ene	Naphthalene	Other Polycyclic Aromatic Hydrocarbons
Identifier	Date	Name	Depth (ft)	(PPM)	GRO	DRO	ORO									PAHs
										Laborator	y Units Reporte	d in mg/kg				
	-	1	Meth	od A Cleanup Levels	30/100*	2,000	2,000	0.03	7	6	9	†	<u>†</u>	†	5	various
MW-16	12/12/24	MW-16-5	5	0.0												
	12/12/24	MW-16-10	10	0.0	<27.1	<67.6	<135	<0.0144	<0.0720	<0.0360	<0.0720	<0.0360			<0.144	
	12/12/24	MW-16-15	15	0.0												
MW-17	12/12/24	MW-17-5	5	0.0												
	12/12/24	MW-17-10	10	0.0	<26.5	<66.2	<132									
	12/12/24	MW-17-15	15	0.0												
MW-18	12/13/24	MW-18-5	5	0.0												
	12/13/24	MW-18-10	10	0.0	<23.1	<57.7	<115									
	12/13/24	MW-18-15	15	0.0												
MW-19	12/13/24	MW-19-5	5	0.0												
	12/13/24	MW-19-10	10	0.0	<25.6	<64.0	<128	<0.0215	<0.107	<0.0537	<0.107	<0.0537			<0.215	
	12/13/24	MW-19-15	15	0.0												
MW-20	12/13/24	MW-20-5	5	0.0												
	12/13/24	MW-20-10	10	0.0												
	12/13/24	MW-20-15	15	0.0												
Stormwater Pond	12/13/24	SWP	0.5			<23.7	56.5									

Notes: Analysis Methods: NWTPH-Gx & Dx, EPA 5035A/8260C. See Laboratory reports for specifics.

(1) Summary Table of most common analytes. See Laboratory Analytical Report for full list of analyzed compounds.

(2) Analytes not listed were not detected above laboratory reporting limits.

* GRO Cleanup Level: 30 when benzene is present at the Site, 100 when benzene is not present.

† Method (A or B) Cleanup Level has not been established for this constituent.

-- Not Analyzed / Unknown

<0.02 Not detected, concentration less than the laboratory method detection limit.

12 Contaminant detected at concentrations below MTCA Method A Cleanup Level.

33 Contaminant concentration exceeds MTCA Method A Cleanup Level.

mg/kg Milligram per kilogram

Boring / Location	Sample	Sample	Sample	PID Readings	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Selenium	Silver
Identifier	Date	Name	Depth (ft)	(PPM)									
								Laborator	y Units Reporte	d in mg/kg			
			Metho	od A Cleanup Levels	20	t	2.0	2,000	t	250	2.0	t	t
B-1	4/24/22	B-1-5	5	0.0									
	4/24/22	B-1-10	10	0.0									
	4/24/22	B-1-13	13	0.0	2.14		<1	11.8	-	2.89	<1		
	4/24/22	B-1-15	15	0.0	_			-					
B 2	4/04/00	B 2 6	F	0.0	4.00		- 4	40.0		4 72	- 4		
0-2	4/24/22	B-2-10	10	0.0	4.22			10.0	_	4.75		_	
	4/24/22	B-2-13	13	0.0									
	4/24/22	B-2-15	15	0.0					_				
	4/24/22	0210	10	0.0									
B-3	4/24/22	B-3-5	5	0.0	-			-	-			-	
	4/24/22	B-3-10	10	0.0									
	4/24/22	B-3-12 B 2 15	12	0.2									
	4/24/22	D-3-13	15	0.0	-				-				-
B-4	4/24/22	B-4-5	5	0.0									
	4/24/22	B-4-10	10	0.0	-			-	-			-	
	4/24/22	B-4-14	14	0.0	3.15		<1	9.17	-	1.82	<1		
	4/24/22	B-4-15	15	0.3									
B-5	4/24/22	B-5-5	5	0.0	-				-				
	4/24/22	B-5-10	10	0.0									
	4/24/22	B-5-12	12	0.0									
	4/24/22	B-5-15	15	0.3	1.27		<1	8.95		1.27	<1		
B-6	4/24/22	B-6-5	5	0.0									
	4/24/22	B-6-10	10	0.0	-			-	-			-	
	4/24/22	B-6-13	13	0.0	3.27		<1	9.23	-	1.99	<1	-	
	4/24/22	B-6-15	15	0.0									

Boring / Location	Sample	Sample	Sample	PID Readings	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Selenium	Silver
Identifier	Date	Name	Depth (ft)	(PPM)									
								Laborator	y Units Reported	in mg/kg			
			Metho	od A Cleanup Levels	20	t	2.0	2,000	t	250	2.0	t	t
0.7	7/20/22	0.7.2	1 2	0.0									
B-7	7/20/22	B-7-3	5	0.0									
	7/20/22	B-7-5	5	0.0	-			-	-			-	
	//20/22	B-/-8	8	0.0	-			-	-			-	
B-8	7/20/22	B-8-3	3	0.1									
	7/20/22	B-8-5	5	0.0	-			-	-			-	
	7/20/22	B-8-8	8	0.0	-								
B-9	7/20/22	B-9-3	3	0.1									
	7/20/22	B-9-5	5	0.0									
	7/20/22	B-9-8	8	0.0	-			-	-			-	
B-10	7/20/22	B-10-3	3	0.0									
5.0	7/20/22	B-10-5	5	4.9									
	7/20/22	B-10-6	6	0.0									
	7/20/22	B-10-8	8	0.0									
	TILOILL	5 10 0		0.0									
B-11	7/20/22	B-11-3	3	0.0									
	7/20/22	B-11-5	5	0.0	-			-	-			-	
	7/20/22	B-11-8	8	0.0									
B-12	7/20/22	B-12-3	3	0.0	-								
	7/20/22	B-12-5	5	0.0	-				-				
	7/20/22	B-12-8	8	0.0	-				-				
B-13	7/20/22	B-13-3	3	0.0									
	7/20/22	B-13-5	5	0.0	-								
	7/20/22	B-13-8	8	0.0									
D.44	7/00/00		-										
B-14	7/20/22	B-14-3	3	0.0	-				-				
	7/20/22	в-14-5	5	0.0	-				-				
	//20/22	B-14-8	8	U.U									

Boring /					Arconio	Barium	Cadmium	Chromium	Connor	Lood	Moroury	Solonium	Silver
Location	Sample Date	Sample Name	Sample Denth (ft)	PID Readings (PPM)	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	mercury	Selenium	Silver
dentiner	Butt	Hame	Depair (it)	()									
			Metho	d A Cleanup Levels	20	+	2.0	2.000	y Units Reporte	250 250	2.0	t	t
MW-1	5/23/22	MW-1-5	5	0.0				-	-				
	5/23/22	MW-1-7	7	0.0	13.4		<1	12.0	-	10.3	<1	-	
	5/23/22	MW-1-12	12	0.0					-				
	5/23/22	MW-1-15	15	0.0	-				-				
MW-2	5/23/22	MW-2-5	5	0.0	-			-					
	5/23/22	MW-2-8	8	0.0	11.0		<1	18.8		4.6	<1	-	
	5/23/22	MW-2-12	12	0.0	-							-	
	5/23/22	MW-2-15	15	0.0									
MW-3	5/23/22	MW-3-3	3	0.0	2.96		<1	9.05	-	6.38	<1		
	5/23/22	MW-3-5	5	0.0					-				
	5/23/22	MW-3-10	10	0.0	-				-			-	
	5/23/22	MW-3-15	15	0.0					-				
MW-4	5/23/22	MW-4-3	3	0.6	2.33		<1	7.46		2.88	<1		
	5/23/22	MW-4-5	5	0.0	-								
	5/23/22	MW-4-10	10	0.0									
	5/23/22	MW-4-15	15	0.0	-							-	
MW-5	5/23/22	MW-5-3	3	0.5	5.56		<1	10.4	-	5.86	<1		
	5/23/22	MW-5-5	5	0.0	-								
	5/23/22	MW-5-10	10	0.0					-				
	5/23/22	MW-5-15	15	0.0					-				
MW-6	12/10/24	MW-6-5	5	0.0	8.29			-	-				
	12/10/24	MW-6-7	7	57.4	3.53	48.5	<0.292	12.2	-	3.01	<0.117	<1.46	<0.292
	12/10/24	MW-6-12	12	0.0	4.29	52.3	< 0.302	13.3	-	3.16	<0.121	<1.51	< 0.302
	12/10/24	MW-6-15	15	0.0									

Boring /													
Location	Sample	Sample	Sample	PID Readings	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Selenium	Silver
Identifier	Date	Name	Depth (ft)	(PPM)									
								Laborator	y Units Reporte	d in mg/kg			
			meth	od A Cleanup Levels	20	T	2.0	2,000	T	250	2.0	T	T
MW-7	12/10/24	MW-7-5	5	0.0	10.8								
	12/10/24	MW-7-7	7	0.0	-								
	12/10/24	MW-7-10	10	0.0	-								
MW-8	12/10/24	MW-8-5	5	0.0	11.9								
	12/10/24	MW-8-10	10	0.0	5.17	52.4	< 0.270	13.0	24.1	3.29	< 0.108	<1.35	< 0.270
	12/10/24	MW-8-15	15	0.0	-								
MW-9	12/10/24	MW-9-5	5	0.0	5.71								
	12/10/24	MW-9-10	10	0.0	2.43	67.9	<0.262	14.3		3.38	<0.105	<1.31	<0.262
	12/10/24	MW-9-15	15	0.0	-								
MW-10	12/11/24	MW-10-5	5	0.0	11.5				-			-	
	12/11/24	MW-10-8	8	0.0	6.11	77.6	<0.289	16.2	-	5.12	< 0.116	<1.44	<0.289
	12/11/24	MW-10-10	10	0.0	-			-					
	12/11/24	MW-10-15	15	0.0	-								
MW-11	12/11/24	MW-11-6	6	0.0	4.28								
	12/11/24	MW-11-10	10	0.0	-			-	-				
	12/11/24	MW-11-15	15	0.0	-				-				
MW-12	12/11/24	MW-12-6	6	0.0	3.51								
	12/11/24	MW-12-10	10	0.0									
	12/11/24	MW-12-15	15	0.0	-				-				
MW-13	12/11/24	MW-13-5	5	0.0	16.1				-				
	12/11/24	MW-13-12	12	0.0	1.40	18.2	<0.242	7.4	9.16	1.74	< 0.0967	<1.21	<0.242
	12/11/24	MW-13-15	15	0.0	-				-				
MW-14	12/12/24	MW-14-6	6	0.0	9.52				-			-	-
	12/12/24	MW-14-10	10	0.0	-			-	-				
	12/12/24	MW-14-15	15	0.0					-				

Boring / Location	Sample	Sample	Sample	PID Readings	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Selenium	Silver
Identifier	Date	Name	Depth (ft)	(PPM)									
								Laborator	y Units Reporte	d in mg/kg			
			Metho	od A Cleanup Levels	20	t	2.0	2,000	t	250	2.0	t	t
MW-15	12/12/24	MW-15-5	5	0.0	4.76								
1111-15	12/12/24	MW-15-11	11	0.0	4.10								
	12/12/24	MW-15-15	15	0.0									
	12/12/24	1111 10 10	10	0.0									
MW-16	12/12/24	MW-16-5	5	0.0	4.33								
	12/12/24	MW-16-10	10	0.0	3.17	69.8	<0.306	18.1	32.7	4.25	<0.123	<1.53	< 0.306
	12/12/24	MW-16-15	15	0.0	-			-				-	
MW-17	12/12/24	MW-17-5	5	0.0	3.03				-				
	12/12/24	MW-17-10	10	0.0	-			-	-				
	12/12/24	MW-17-15	15	0.0	-			-	-				
MW-18	12/13/24	MW-18-5	5	0.0	4.70				-				
	12/13/24	MW-18-10	10	0.0	_								
	12/13/24	MW-18-15	15	0.0	-								
100/ 40	40/42/04	MM/ 10 F	5	0.0	E 44								
WIW-19	12/13/24	WW-19-5	5	0.0	3.44		-0.007	46.0	20.0	4 70	-0.445	-1.42	-0.097
	12/13/24	MW-19-10	10	0.0	7.05	91.5	\$0.207	10.2	30.8	4.70	<0.115	\$1.45	SU.207
	12/13/24	WWW-19-15	15	0.0	-			-				-	
MW-20	12/13/24	MW-20-5	5	0.0	4.81			-					
	12/13/24	MW-20-10	10	0.0	-			-					
	12/13/24	MW-20-15	15	0.0	-			-					
Stormwater Pond	12/13/24	SWP	0.5	-	3.63	63.0	<0.286	13.2		7.93	<0.114	<1.43	<0.286

Notes: Analysis Methods: EPA 6020B. See Laboratory reports for specifics.

† Method (A or B) Cleanup Level has not been established for this constituent.

-- Not Analyzed / Unknown

<0.02 Not detected, concentration less than the laboratory method detection limit.

12 Contaminant detected at concentrations below MTCA Method A Cleanup Level.

33 Contaminant concentration exceeds MTCA Method A Cleanup Level.

mg/kg Milligram per kilogram

Table 1c

Laboratory Analytical Results: Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs) in Soil⁽¹⁾ Auburn Volkswagen 3109 Auburn Way North, Auburn, WA Project No. BE-0107-E

Boring / Location Identifier	Sample Date	Sample Name	Benz(a)-anthracene	Chrysene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Indeno(1,2,3-cd)pyrene	Dibenz(a,h)anthracene	Dibenz(a,h)anthracene	Total Toxic Equivalent ^a Concentration Sum TEQ
							Laboratory Units Repor	rted in ma/ka			
	Method	A Cleanup Levels	†	†	0.1	†		<u> </u>	†	†	0.1 ^{c/}
Ν	Method B Cleanu	up Levels (Cancer)	†	t	0.19	t	t	t	t	t	0.023
			†	†	0.88	†	†	t	t	†	0.88
B-1	4/24/22	B-1-5	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.0076
	4/24/22	B-1-10									
	4/24/22	B-1-13	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	0.0076
	4/24/22	B-1-15									
B-2	4/24/22	B-2-5	2.1	2.0	2.60	2.3	0.72	0.94	0.17	0.17	3.243
	4/24/22	B-2-10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.0076
	4/24/22	B-2-13									
	4/24/22	B-2-15									
P.2	4/24/22	B 3 5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.0076
D-3	4/24/22	B 2 10	~0.00	<0.00	<0.00	-0.00	-0.00	-0.00	<0.00	-0.05	0.0070
	4/24/22	D-3-10									
	4/24/22	B-3-12									
	4/24/22	B-3-15									
B-4	4/24/22	B-4-5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.0076
	4/24/22	B-4-10									
	4/24/22	B-4-14	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.0076
	4/24/22	B-4-15									
B-5	4/24/22	B-5-5									
	4/24/22	B-5-10	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01	0.0076
	4/24/22	B-5-12									
	4/24/22	B-5-15									

Table 1c

Laboratory Analytical Results: Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs) in Soil⁽¹⁾ Auburn Volkswagen 3109 Auburn Way North, Auburn, WA Project No. BE-0107-E

Boring / Location Identifier	Sample Date	Sample Name	Benz(a)-anthracene	Chrysene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Indeno(1,2,3-cd)pyrene	Dibenz(a,h)anthracene	Dibenz(a,h)anthracene	Total Toxic Equivalent ^a Concentration Sum TEQ
								(/)			
	Method	A Cleanup Levels	+	+	0.1	+	Laboratory Units Repor	rted in mg/kg +	+	+	0 1 ^{c/}
N	Method B Clean	up Levels (Cancer)	+	t	0.19	+	t	+	+	+	0.023
		1	Ť	t	0.88	Ť	†	†	†	t	0.88
B-6	4/24/22	B-6-5	< 0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	0.0076
	4/24/22	B-6-10									
	4/24/22	B-6-13	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	0.0076
	4/24/22	B-6-15									
MW-1	5/23/22	MW-1-5									
	5/23/22	MW-1-7	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	0.0076
	5/23/22	MW-1-12									
	5/23/22	MW-1-15									
MW-2	5/23/22	MW-2-5									
	5/23/22	MW-2-8	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.0076
	5/23/22	MW-2-12									
	5/23/22	MW-2-15									
MW-3	5/23/22	MW-3-3	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.0076
	5/23/22	MW-3-5									
	5/23/22	MW 3 10									
	5/23/22	MW/ 3 15									
	5/23/22	10100-3-13									
MW-4	5/23/22	MW-4-3	<0.02	<0.02	<0.02	< 0.02	<0.02	<0.02	<0.02	<0.02	0.0076
	5/23/22	MW-4-5									
	5/23/22	MW-4-10									
	5/23/22	MW-4-15									

Table 1c

Laboratory Analytical Results: Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs) in Soil⁽¹⁾ Auburn Volkswagen 3109 Auburn Way North, Auburn, WA Project No. BE-0107-E

Boring / Location Identifier	Sample Date	Sample Name	Benz(a)-anthracene	Chrysene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Indeno(1,2,3-cd)pyrene	Dibenz(a,h)anthracene	Dibenz(a,h)anthracene	Total Toxic Equivalent ^a Concentration Sum TEQ
							Laboratory Units Report	rted in mg/kg			
	Method	A Cleanup Levels	t	<u>†</u>	0.1	†	†	†	t	†	0.1 ^{c/}
	Method B Clean	up Levels (Cancer)	t t		0.19	<u>†</u>	<u>†</u>	†	t	<u>†</u>	0.023
				I	0.00		T	T	T		0.00
MW-5	5/23/22	MW-5-3	< 0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	0.0076
_	5/23/22	MW-5-5									
	5/23/22	MW-5-10									
	5/23/22	MW-5-15									
B-9	7/20/22	B-9-3	<0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.0076
	7/20/22	B-9-5	< 0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.0076
	7/20/22	B-9-8									
B-10	7/20/22	B-10-3	< 0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.0076
	7/20/22	B-10-5									
	7/20/22	B-10-6									0.0076
	7/20/22	B-10-8									
B-11	7/20/22	B-11-3	< 0.02	<0.02	<0.02	< 0.02	<0.02	<0.02	<0.02	<0.02	0.0076
	7/20/22	B-11-5	< 0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01	<0.01	0.0076
	7/20/22	B-11-8									
B-12	7/20/22	B-12-3	0.068	0.069	0.090	0.075	0.027	0.033	<0.01	< 0.01	0.1115
	7/20/22	B-12-5									
	7/20/22	B-12-8									

Notes: Analysis Methods: See Laboratory reports for specifics analysis methods.

(1) Only boring locations with at least one sample analyzed for cPAHs are included on this table. See Table 1a for full list of analyzed samples.

a Total TEQ represents the sum of the individual cPAH TEQs to evaluate the Human Health Toxicity of a cPAH mixture. See Table 1d.

† Method (A or B) Cleanup Level has not been established for this constituent.

-- Not Analyzed / Unknown

<0.02 Not detected, concentration less than the laboratory method detection limit.

12 Contaminant detected at concentrations below MTCA Method A Cleanup Level.

33 Contaminant concentration exceeds MTCA Method A Cleanup Level.

mg/kg Milligram per kilogram

Table 1d cPAH¹ Toxicity Equivalency Factors (TEF) and Total Toxic Equivalent (TEQ) Concentration for Soil² Auburn Volkswagen 3109 Auburn Way North, Auburn, WA Project No. BE-0107-E

Boring Location	Sample	Sample	Benzo(a)-		Benz(a)-				Benzo(b)-		Benzo(k)-		Indeno(1,2,3- cd)		Dibenz(a,h)		Total Toxic Equivalent ^b Concentration
Identifier	Date	Name	pyrene	TEQ	anthracene	TEQ	Chrysene	TEQ	fluoranthene	TEQ	fluoranthene	TEQ	pyrene	TEQ	anthracene	TEQ	Sum TEQ
Toxic	ity Equivalency F	actor (TEF) ^a unitless	1		0.1		0.01		0.1	ny Unite Den	0.1		0.1		0.1		
	Moth	od A Cleanun Levels	0.10		+		+		Laborato	ry Units Rep	orted in mg/kg +		+		+		0.1°
	Method B Clea	anup Levels (Cancer)	0.023		+		+		+		+		+		+		0.023
	Method C Clea	anup Levels (Cancer)	0.88		†		+		†		†		†		†		0.88
B-1	4/24/22	B-1-5	0.01	0.005	0.01	0.0005	0.01	0.00005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.0076
	4/24/22	B-1-10															
	4/24/22	B-1-13	0.01	0.005	0.01	0.0005	0.01	0.00005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.0076
	4/24/22	B-1-15															
B-2	4/24/22	B-2-5	2.6	2.6	2.1	0.21	2	0.02	2.3	0.23	0.72	0.072	0.94	0.094	0.17	0.017	3.243
	4/24/22	B-2-10	0.01	0.005	0.01	0.0005	0.01	0.00005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.0076
	4/24/22	B-2-13															
	4/24/22	B-2-15															
B-3	4/24/22	B-3-5	0.01	0.005	0.01	0.0005	0.01	0.00005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.0076
	4/24/22	B-3-10															
	4/24/22	B-3-12															
	4/24/22	B-3-15															
B-4	4/24/22	B-4-5	0.01	0.005	0.01	0.0005	0.01	0.00005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.0076
	4/24/22	B-4-10															
	4/24/22	B-4-14	0.01	0.005	0.01	0.0005	0.01	0.00005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.0076
	4/24/22	B-4-15															
B-5	4/24/22	B-5-5															
	4/24/22	B-5-10	0.01	0.005	0.01	0.0005	0.01	0.00005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.0076
	4/24/22	B-5-12															
	4/24/22	B-5-15															

Table 1d cPAH¹ Toxicity Equivalency Factors (TEF) and Total Toxic Equivalent (TEQ) Concentration for Soil² Auburn Volkswagen 3109 Auburn Way North, Auburn, WA Project No. BE-0107-E

Boring Location	Sample	Sample	Benzo(a)-		Benz(a)-				Benzo(b)-		Benzo(k)-		Indeno(1,2,3- cd)		Dibenz(a,h)		Total Toxic Equivalent ^b Concentration
Identifier	Date	Name	pyrene	TEQ	anthracene	TEQ	Chrysene	TEQ	fluoranthene	TEQ	fluoranthene	TEQ	pyrene	TEQ	anthracene	TEQ	Sum TEQ
Toxic	ity Equivalency F	actor (TEF) ^a unitless	1		0.1		0.01		0.1	ny Unite Don	0.1		0.1		0.1		
	Meth	od A Cleanup Levels	0 10		+		+		+	ry onits kep	+		+		+		0 1 ^{c/}
	Method B Clea	nup Levels (Cancer)	0.023		t		+		+		+		†		t		0.023
	Method C Clea	nup Levels (Cancer)	0.88		t		Ť		t		†		†		†		0.88
B-6	4/24/22	B-6-5	0.01	0.005	0.01	0.0005	0.01	0.00005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.0076
	4/24/22	B-6-10															
	4/24/22	B-6-13	0.01	0.005	0.01	0.0005	0.01	0.00005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.0076
	4/24/22	B-6-15															
MW-1	5/23/22	MW-1-5															
	5/23/22	MW-1-7	0.01	0.005	0.01	0.0005	0.01	0.00005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.0076
	5/23/22	MW-1-12															
	5/23/22	MW-1-15															
MW-2	5/23/22	MW-2-5															
	5/23/22	MW-2-8	0.01	0.005	0.01	0.0005	0.01	0.00005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.0076
	5/23/22	MW-2-12															
	5/23/22	MW-2-15															
MW-3	5/23/22	MW-3-3	0.01	0.005	0.01	0.0005	0.01	0.00005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.0076
	5/23/22	MW-3-5															
	5/23/22	MW-3-10															
	5/23/22	MW-3-15															
MW-4	5/23/22	MW-4-3	0.01	0.005	0.01	0.0005	0.01	0.00005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.0076
	5/23/22	MW-4-5															
	5/23/22	MW-4-10															
	5/23/22	MW-4-15															

Table 1dcPAH¹ Toxicity Equivalency Factors (TEF) and Total Toxic Equivalent (TEQ) Concentration for Soil²Auburn Volkswagen3109 Auburn Way North, Auburn, WAProject No. BE-0107-E

Boring Location Identifier	Sample Date	Sample Name	Benzo(a)- pyrene	TEQ	Benz(a)- anthracene	TEQ	Chrysene	TEQ	Benzo(b)- fluoranthene	TEQ	Benzo(k)- fluoranthene	TEQ	Indeno(1,2,3- cd) pyrene	TEQ	Dibenz(a,h) anthracene	TEQ	Total Toxic Equivalent ^b Concentration Sum TEQ
Toxic	ity Equivalency F	actor (TEF) ^a unitless	1		0.1		0.01		0.1	melleite Den	0.1		0.1		0.1		
	Meth	od A Cleanun Levels	0.10		+		+		Laborato	ory Units Rep	orted in mg/kg		+		+		0 1 ^{c/}
	Method B Clea	anup Levels (Cancer)	0.023		†		+		+		+		+		+		0.023
	Method C Clea	anup Levels (Cancer)	0.88		t		t		Ť		t		Ť		Ť		0.88
MW-5	5/23/22	MW-5-3	0.01	0.005	0.01	0.0005	0.01	0.00005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.0076
	5/23/22	MW-5-5															
	5/23/22	MW-5-10															
	5/23/22	MW-5-15															
B-9	7/20/22	B-9-3	0.01	0.005	0.01	0.0005	0.01	0.00005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.0076
	7/20/22	B-9-5	0.01	0.005	0.01	0.0005	0.01	0.00005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.0076
	7/20/22	B-9-8															
B-10	7/20/22	B-10-3	0.01	0.005	0.01	0.0005	0.01	0.00005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.0076
	7/20/22	B-10-5															
	7/20/22	B-10-6	0.01	0.005	0.01	0.0005	0.01	0.00005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.0076
	7/20/22	B-10-8															
D //	= /22 /22		0.04	0.005	0.04	0.0005	0.04		0.04		0.04		0.04	0.0005	0.04		
B-11	7/20/22	B-11-3	0.01	0.005	0.01	0.0005	0.01	0.00005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.0076
	7/20/22	B-11-5	0.01	0.005	0.01	0.0005	0.01	0.00005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.01	0.0005	0.0076
	7/20/22	B-11-8															
B-12	7/20/22	B-12-3	0.090	0.090	0.068	0.0068	0.069	0.00069	0.075	0.0075	0.027	0.0027	0.033	0.0033	0.01	0.0005	0.1115
	7/20/22	B-12-5															
	7/20/22	B-12-8															

Notes: Analytical Method: EPA 8270SIM. See Laboratory reports for specifics.

1 Carcinogenic Polycyclic Aromatic Hydrocarbons

2 Only boring locations with at least one sample analyzed for cPAHs are included on this table. See Table 1a for full list of analyzed samples.

a TEF is an estimate of the toxicity of a chemical relative to that of a reference chemical. For mixtures of cPAHs, the reference chemical is benzo(a)pyrene.

b Total TEQ represents the sum of the individual cPAH TEQs to evaluate the Human Health Toxicity of a cPAH mixture.

cl Benzo(a)pyrene Cleanup Level used for Comparison, in accordance with Ecology Implementation Memo No. 10 (2015).

† Method (A or B) Cleanup Level has not been established for this constituent.

-- Not Analyzed / Unknown

0.02 Not detected, concentration less than the laboratory method detection limit.

12 Contaminant detected at concentrations below MTCA Method A Cleanup Level.

33 Contaminant concentration exceeds MTCA Method A Cleanup Level.

mg/kg Milligram per kilogram

Table 2a Laboratory Analytical Results: Petroleum, VOCs, and PAHs in Groundwater Auburn Volkswagen 3109 Auburn Way North, Auburn, WA Project No. BE-0107-E

Well /			/			Gasoline Range Organics	Diesel Range Organics	Heavy/Lube OilRange Organics	Diesel Range Extended (C10-C36)	Benzene	Toluene	Ethyl- benzene	Xylenes	Other Volatile Organic Compounds & Fuel Additives	Naphthalene	Other Semivolatile Compounds & Polycyclic Aromatic Hydrocarbons (PAHs)
Location	TOC Elevation	Depth to	Groundwater	Sample	Sample	GRO	DRO	ORO	DRO			VOCs				PAHs
Identiller	Elevation	Water	Elevation (1)	Dale		800/1 000*	500	500	500	Lat 5	oratory Units R	eported in µg/L 700	1 000	various**	160	various**
				motin		000/1,000	000	000			1,000	100	1,000	Various	100	Vanous
B-1				4/24/22	B-1-W	<100	88x	<200		<0.35	<1	<1	<2	(2)	<1	(2)
B-2				4/24/22	B-2-W	<100	180x	<200		< 0.35	<1	<1	<2	(2)	<1	(2)
B-4				4/24/22	B-4-W	<100	2,500x	370x		<0.35	<1	<1	<2	(2)	<1	(2)
B-5				4/24/22	B-5-W	<100	240x	<250		<0.35	<1	<1	<2	(2)	<1	(2)
B-6				4/24/22	B-6-W	<100	110x	<250		<0.35	<1	<1	<2	(2)	<1	(2)
MW-1	57.16	8.17	48.99	5/26/22	MW-1-W	<100			420x	<0.35	<1	<1	<2	(2)	<1	(2)
		9.42	47.74	7/26/22	MW-1-W				960x							
		8.17	48.99	1/10/23	MW-1	<100			270x	<1	<1	<1	<2			
		8.34	48.82	5/4/23	MW-1	<100	230/ <76.9 ^s	<154/<154 ^s		<0.200	<1.00	<0.500	<1.50			
		10.57	46.59	8/7/23	MW-1	<100	142	<155		<0.200	<1.00	<0.500	<1.50			
		8.95	48.21	5/17/24	MW-1	<100			270x/ <250 ^s	<1	<1	<1	<3			
	57.26	8.92	48.34	12/17/24	MW-1	<96.2	<240	<240								
MW-2	56.41	7.44	48.97	5/26/22	MW-2-W	<100			300x	< 0.35	<1	<1	<2	(2)	<1	(2)
		9.85	46.56	7/26/22	MW-2-W				940x							
		7.43	48.98	1/10/23	MW-2	<100			420x	<1	<1	<1	<3			
		7.61	48.80	5/4/23	MW-2	<100	229/ <76.9 ^s	<154/<154 ^s		<0.200	<1.00	<0.500	<1.50			
		9.84	46.57	8/7/23	MW-2	<100	167	<157		<0.200	<1.00	<0.500	<1.50			
		8.22	48.19	5/17/24	MW-2	<100			320x/ <250 ^s	<1	<1	<1	<3			
	56.51	8.06	48.45	1/10/25	MW-2	<147	<245	<245								
MW-3	57.08	8.10	48.98	5/26/22	MW-3-W	<100			470x	<0.35	<1	<1	<2	(2)	<1	(2)
		9.38	47.70	7/26/22	MW-3-W				670x							
		8.09	48.99	1/10/23	MW-3	<100			280x	<1	<1	<1	<3			
		8.26	48.82	5/4/23	MW-3	<100	205/ <76.9 ^s	<154/<154 ^s		<0.200	<1.00	<0.500	<1.50			
		10.54	46.54	8/7/23	MW-3	<100	185	<155		<0.200	<1.00	<0.500	<1.50			
		10.54	46.54	8/7/23	DUP-W	<100	199	<154		<0.200	<1.00	<0.500	<1.50			
		8.88	48.20	5/17/24	MW-3	<100			360x/ <250 ^s	<1	<1	<1	<3			
	57.20	8.86	48.34	12/17/24	MW-3	<94.3	<236	<236								

Table 2a Laboratory Analytical Results: Petroleum, VOCs, and PAHs in Groundwater Auburn Volkswagen 3109 Auburn Way North, Auburn, WA Project No. BE-0107-E

Well /						Gasoline Range Organics	Diesel Range Organics	Heavy/Lube OilRange Organics	Diesel Range Extended (C10-C36)	Benzene	Toluene	Ethyl- benzene	Xylenes	Other Volatile Organic Compounds & Fuel Additives	Naphthalene	Other Semivolatile Compounds & Polycyclic Aromatic Hydrocarbons (PAHs)
Location	тос	Depth to	Groundwater	Sample	Sample	GRO	DRO	ORO	DRO			VOCs				PAHs
Identifier	Elevation	Water	Elevation (1)	Date	Name					Lat	poratory Units R	eported in µg/L				
	/ -		10.00	Metho	od A Cleanup Levels	800/1,000*	500	500	500	5	1,000	700	1,000	various**	160	various**
MW-4	57.18	8.20	48.98	5/26/22	MW-4-W	<100			290x	<0.35	<1	<1	<2	(2)	<1	(2)
		8.20	48.98	5/26/22	MW-Dup	<100			330x	<0.35	<1	<1	<2	(2)		(2)
		9.48	47.70	7/26/22	MW-4-W				550x							
		9.48	47.70	7/26/22	MW-Dup				510x							
		8.18	49.00	1/10/23	MW-4	<100			<250	<1	<1	<1	<3			
		8.18	49.00	1/10/23	DUP-W	<100			<250	<1	<1	<1	<3			
		8.38	48.80	5/4/23	MW-4	<100	129/ <77.7 [°]	<154/<155 [°]		<0.200	<1.00	<0.500	<1.50			
		8.38	48.80	5/4/23	DUP-4	<100	208/ <76.9 ^s	<154/<154 ^s		<0.200	<1.00	<0.500	<1.50			
		10.62	46.56	8/7/23	MW-4	<100	92.2	<155		<0.200	<1.00	<0.500	<1.50			
		9.00	48.18	5/17/24	MW-4	<100			<260	<1	<1	<1	<3			
	57.29	8.94	48.35	12/17/24	MW-4	<94.3	<236	<236								
MW-5	57.14	8.12	49.02	5/26/22	MW-5-W	<100			310x	< 0.35	<1	<1	<2	(2)	<1	(2)
		9.36	47.78	7/26/22	MW-5-W				300x							
		8.14	49.00	1/10/23	MW-5	<100			<250	<1	<1	<1	<3			
		8.32	48.82	5/4/23	MW-5	<100	137/ <76.9 ^s	<154/<154 ^s		<0.200	<1.00	<0.500	<1.50			
		10.56	46.58	8/7/23	MW-5	<100	102	<152		<0.200	<1.00	<0.500	<1.50			
		8.93	48.21	5/17/24	MW-5	<100			<260	<1	<1	<1	<3			
	57.25	8.90	48.35	12/17/24	MW-5	<96.2	<240	<240								
MW-6	55.74	6.69	49.05	12/18/24	MW-6	1,440	202	<253		<0.200	<1.00	<0.500	<1.50	(2)	8.76	
MW-7	55.67	7.25	48.42	12/18/24	MW-7	<97.1	<243	<243								
MW-8	55.30	6.78	48.52	12/19/24	MW-8	<97.1	<243	<243								
MW/-Q	56.00	9.47	19 12	12/19/24	ΜΙΔΙ Ο	<01.3	~236	<236		<0.200	<1.00	<0.500	<1.50	(2)	~5.00	
IVI VV-3	50.90	0.47	40.43	12/10/24		~34.0	~200	~200		<0.000	~1.00	<0.500	~1.50	(2)	~5.00	
	55.63	7.00	48.57	12/19/24	MVV-10	<100	<250	<250		<0.200	<1.00	<0.500	<1.50	(∠)	<5.00	
MW-11	55.44	6.87	48.57	12/19/24	MVV-11	<99.0	<248	<248								
MW-12	54.85	6.29	48.56	12/19/24	MW-12	<97.1	<243	<243								

Well /						Gasoline Range Organics	Diesel Range Organics	Heavy/Lube OilRange Organics	Diesel Range Extended (C10-C36)	Benzene	Toluene	Ethyl- benzene	Xylenes	Other Volatile Organic Compounds & Fuel Additives	Naphthalene	Other Semivolatile Compounds & Polycyclic Aromatic Hydrocarbons (PAHs)
Location	TOC	Depth to	Groundwater	Sample	Sample	GRO	DRO	ORO	DRO			VOCs				PAHs
Identifier	Elevation	water	Elevation (1)	Date	Name					Lal	poratory Units F	eported in µg/L		•		• • • •
				Metho	od A Cleanup Levels	800/1,000*	500	500	500	5	1,000	700	1,000	various**	160	various**
MW-13	55.05	6.50	48.55	12/19/24	MW-13	<98.0	<245	<245								
MW-14	56.54	7.92	48.62	12/19/24	MW-14	<97.1	<243	<243		<0.200	<1.00	<0.500	<1.50	(2)	<5.00	
MW-15	56.74	8.26	48.48	1/10/25	MW-15	<144	<240	<240								
MW-16	55.95	7.45	48.50	1/10/25	MW-16	<144	<240	<240								
MW-17	55.93	7.37	48.56	12/19/24	MW-17	<100	<236	<236		<0.200	<1.00	<0.500	<1.50			
MW-18	56.53	8.11	48.42	12/18/24	MW-18	<96.2	<240	<240								
MW-19	55.48	7.33	48.15	12/18/24	MW-19	<100	<243	<243		<0.200	<1.00	<0.500	<1.50			
MW-20	56.15	7.74	48.41	12/18/24	MW-20	<99.0	<248	<248								

Notes: Analysis Methods: NWTPH-Gx & Dx, EPA 8260D/8270E/6020B. See Laboratory reports for specifics.

(1) Presented Elevations are based on elevation data based Pace Engineering survey dated January 2, 2025.

(2) Analytes not listed were not detected above laboratory reporting limits. See laboratory report for details.

* 800 when benzene is present at the Site, 1,000 when benzene is not present.

** Reported concentrations of analytes for listed method analysis were not detected at laboratory reporting limits except as noted in table. See laboratory report for details.

-- Not Analyzed / Unknown

<0.02 Not detected, concentration less than the laboratory method detection limit.

12 Contaminant detected at concentrations below MTCA Method A Cleanup Level.

33 Contaminant concentration exceeds MTCA Method A Cleanup Level.

Dup Duplicate Sample for QA/QC.

s Silca-gel acid extract was used to remove polar compounds from the sample

x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Shading indicates the most recent sampling event.

µg/L micrograms per liter

Well /	TOC	Denth to	Groundwater	Sample	Sample	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver	Total Organic Carbon	Total Dissolved Solids	Total Suspended Solids
Identifier	Elevation	Water	Elevation (1)	Date	Name				l aboratory l	Inits Reported in ug/I					103	133
				Metho	od A Cleanup Levels	5/8 ^a	†	5	50	15	2	†	†	Pg/-	- '64	
P 1				4/24/22	P 1 W/	70.2		<1	5.64	1 27	~1					
B-1				4/24/22	B-1-W	70.2		<	5.04	1.37	<					
B-2				4/24/22	B-2-W	13.9		<.	7.57	1.82	<]					
B-4				4/24/22	B-4-W	104		<1	11.1	9.27	<1					
B-5				4/24/22	B-5-W	18.1		<1	22.9	3.27	<1					
B-6				4/24/22	B-6-W	29.2		<1	7.02	1.27	<1					
MW-1	57.16	8.17	48.99	5/26/22	MW-1-W	11.8		<1	<5	<1	<1					
		9.42	47.74	7/26/22	MW-1-W	20.0 (T) / 17.8 (D)										
		8.17	48.99	1/10/23	MW-1	13.4 (T) / <1 (D)								68,200		
		8.34	48.82	5/4/23	MW-1	62.2 (T) / 65.2 (D)		<0.200	3.31 (T) / 3.05 (D)	<0.200	<0.0800			93,500	718,000	225,000
		10.57	46.59	8/7/23	MW-1	55.1 (T) / 2.91 (D)			3.16 (T) / <2.00 (D)							
	57.00	8.95	48.21	5/1//24	MVV-1	27 (T) / 29 (D)		<2(I)/<2(D)	<10 (I) / <10 (D)	<2(1)/<2(D)	<2(1)/<2(D)					
	57.26	8.92	48.34	12/17/24	MVV-1	20.8 (T) / 20.6 (D)										
MW-2	56.41	7.44	48.97	5/26/22	MW-2-W	4.9		<1	<5	<1	<1					
		9.85	46.56	7/26/22	MW-2-W	58.1 (T) / 55.6 (D)										
		7.43	48.98	1/10/23	MW-2	110 (T) / 97.4 (D)								44,100		
		7.61	48.80	5/4/23	MW-2	86.1 (T) / 90.2 (D))		<0.200	2.3 (T) / 2.19 (D)	<0.200	<0.0800			47,000	379,000	190,000
		9.84	46.57	8/7/23	MW-2	53.5 (T) / 3.20 (D)			2.32 (T) / <2.00 (D)							
		8.22	48.19	5/17/24	MW-2	89 (T) / 96 (D)		<2 (T) / <2 (D)	<10 (T) / <10 (D)	<2 (T) / <2 (D)	<2 (T) / <2 (D)					
	56.51	8.06	48.45	1/10/25	MW-2	66.4 (T) / 66.5 (D)										68,000
MW-3	57.08	8.10	48.98	5/26/22	MW-3-W	3.33		<1	2.19	<1	<1					
		9.38	47.70	7/26/22	MW-3-W	14.3 (T) / 16.2 (D)										1
		8.09	48.99	1/10/23	MW-3	20.4 (T) / 17.2 (D)								70,100		l
		8.26	48.82	5/4/23	MW-3	25.0 (T) / 3.56 (D)		<0.200	3.80 (T) / 3.56 (D)	<0.200	<0.0800			88,800	914,000	179,000
		10.54	46.54	8/7/23	MW-3	21.4 (T) / 2.95 (D)			3.18 (T) / 2.21 (D)							
		10.54	46.54	8/7/23	DUP-W	20.7 (T) / 2.68 (D)			2.68 (T) / 2.07 (D)							- 1
		8.88	48.20	5/17/24	MW-3	49 (T) / 55 (D)		<2 (T) / <2 (D)	<10 (T) / <10 (D)	<2 (T) / <2 (D)	<2 (T) / <2 (D)					l
	57.20	8.86	48.34	12/17/24	MW-3	20.6 (T) / 21.7 (D)								72,000		134,000
MW-4	57.18	8.20	48.98	5/26/22	MW-4-W	7.15		<1	<5	<1	<1					
		8.20	48.98	5/26/22	MW-Dup	6.96		<1	<5	<1	<1					
		9.48	47.70	7/26/22	MW-4-W	11.4 (T) / 11.1 (D)										l
		9.48	47.70	7/26/22	MW-Dup	11.5 (T) / 11.9 (D)										l
		8.18	49.00	1/10/23	MW-4	7.88 (T) / <mark>8.04 (D)</mark>								19,500		
		8.18	49.00	1/10/23	DUP-W	7.82 (T) / 7.70 (D)										
		8.38	48.80	5/4/23	MW-4	8.36 (T) / 9.24 (D)		<0.200	<2.00 (T) <2.00 (D)	<0.200	<0.0800			25,400	410,000	60,000
		8.38	48.80	5/4/23	DUP-4	26.1 (T) / 26.2 (D)		<0.200	3.88 (T) / 3.72 (D)	<0.200	<0.0800			88,000	856,000	177,000
		10.62	46.56	8/7/23	MW-4	10.4 (T) / 1.02 (D)			<2.00 (T) / <2.00 (D)							
		9.00	48.18	5/17/24	MW-4	11 (T) / 10 (D)		<2 (T) / <2 (D)	<10 (T) / <10 (D)	<2 (T) / <2 (D)	<2 (T) / <2 (D)					
	57.29	8.94	48.35	12/17/24	MW-4	10.3 (T) / 10.1 (D)										

Well /				. .		Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver	Total Organic Carbon	Total Dissolved Solids	Total Suspended Solids
Location	TOC	Depth to	Groundwater	Sample	Sample									TOC	TDS	TSS
Identifier	Elevation	Water	Elevation (1)	Date		5/0 ^a	+	5	Laboratory 50	y Units Reported in µg/L 15	2	+	+	µg/L	μg/L	µg/L
MW-5	57 14	8 12	49 02	5/26/22	MW-5-W	53.3		<1	<5	<1	<1					
	•••••	9.36	47.78	7/26/22	MW-5-W	35.4 (T) / 34.5 (D)										
		8.14	49.00	1/10/23	MW-5	26.3 (T) / 23.8 (D)								26,200		
		8.32	48.82	5/4/23	MW-5	49.4 (T) / 51.2 (D)		<0.200	3.70 (T) / 3.44 (D)	<0.200	< 0.0800			40,600	394,000	118,000
		10.56	46.58	8/7/23	MW-5	29.8 (T) / 4.57 (D)			3.12 (T) / <2.00 (D)							
		8.93	48.21	5/17/24	MW-5	56 (T) / 48 (D)		<2 (T) / <2 (D)	<10 (T) / <10 (D)	<2 (T) / <2 (D)	<2 (T) / <2 (D)					
	57.25	8.90	48.35	12/17/24	MW-5	28 (T) / 26.8 (D)								22,400		<5,000
MW-6	55.74	6.69	49.05	12/18/24	MW-6	24.2 (T) / 20.0 (D)	16.8 (T) / 10.6 (D)	<0.200 (T) / <0.200 (D)	<2.00 (T) / <2.00 (D)	0.584	<0.0800 (T) / <0.0800 (D)	<1.00 (T) / <1.00 (D)	<0.200 (T) / <0.200 (D)	4,200		26,000
MW-7	55.67	7.25	48.42	12/18/24	MW-7	5.70 (T) / 5.30 (D)		<0.200 (T) / <0.200 (D)	<2.00 (T) / <2.00 (D)	<0.200 (T)/<0.200 (D)	<0.0800 (T) / <0.0800 (D)					
MW-8	55.30	6.78	48.52	12/19/24	MW-8	18.4 (T) / 17.3 (D)										
MW-9	56.90	8.47	48.43	12/18/24	MW-9	17.0 (T) / 15.2 (D)	35.6 (T) / 33.9 (D)	<0.200 (T) / <0.200 (D)	<2.00 (T) / <2.00 (D)	<0.200 (T) / <0.200 (D)	<0.0800 (T) / <0.0800 (D)	<1.00 (T) / <1.00 (D)	<0.200 (T) / <0.200 (D)			
MW-10	55.63	7.06	48.57	12/19/24	MW-10	9.06 (T) / 8.94 (D)	20.7 (T) / 18.1 (D)	<0.200 (T) / <0.200 (D)	<2.00 (T) / <2.00 (D)	0.210 (T) / <0.200 (D)	<0.0800 (T) / <0.0800	<1.00 (T) / <1.00 (D)	<0.200 (T) / <0.200 (D)			
MW-11	55.44	6.87	48.57	12/19/24	MW-11	6.21 (T) / 5.39 (D)										
MW-12	54.85	6.29	48.56	12/19/24	MW-12	10.0 (T) / 9.74 (D)										
MW-13	55.05	6.50	48.55	12/19/24	MW-13	<1.00 (T) / <1.00 (D)	9.48 (T) / 8.85 (D)	<0.200 (T) / <0.200 (D)	<2.00 (T) / <2.00 (D)	<0.200 (T) / <0.200 (D)	<0.0800 (T) / <0.0800 (D)	<1.00 (T) / <1.00 (D)	<0.200 (T) / <0.200 (D)	1,200		<5,000
MW-14	56.54	7.92	48.62	12/19/24	MW-14	3.78 (T) / 3.39 (D)	11.8 (T) / 10.3 (D)	<0.200 (T) / <0.200 (D)	<2.00 (T) / <2.00 (D)	<0.200 (T) / <0.200 (D)	<0.0800 (T) / <0.0800 (D)	<1.00 (T) / <1.00 (D)	<0.200 (T) / <0.200 (D)			
MW-15	56.74	8.26	48.48	1/10/25	MW-15	9.41 (T) / 8.86 (D)										
MW-16	55.95	7.45	48.50	1/10/25	MW-16	12.0 (T) / 10.2 (D)		<0.200 (T) / <0.200 (D)	3.17 (T) / 2.79 (D)	<0.200 (T) / <0.200 (D)	<0.0800 (T) / <0.0800 (D)					178,000
MW-17	55.93	7.37	48.56	12/19/24	MW-17	26.2 (T) / 25.2 (D)		<0.200 (T) / <0.200 (D)	<2.00 (T) / <2.00 (D)	<0.200 (T) / <0.200 (D)	<0.0800 (T) / <0.0800 (D)					
MW-18	56.53	8.11	48.42	12/18/24	MW-18	5.00 (T) / 4.54 (D)										
MW-19	55.48	7.33	48.15	12/18/24	MW-19	3.08 (T) / 2.69 (D)	39.4 (T) / 36.6 (D)	<0.200 (T) / <0.200 (D)	2.62 (T) / 3.44 (D)	<0.200 (T) / <0.200 (D)	<0.0800 (T) / <0.0800 (D)	<1.00 (T) / <1.00 (D)	<0.200 (T) / <0.200 (D)	30,000		80,000
MW-20	56.15	7.74	48.41	12/18/24	MW-20	53.8 (T) / 52.0 (D)		<0.200 (T) / <0.200 (D)	3.70 (T) / 2.77 (D)	<0.200 (T) / <0.200 (D)	<0.0800 (T) / <0.0800 (D)			32,800		126,000

Notes: Analysis Methods: 6020, See Laboratory reports for specifics.

(1) Presented Elevations are based on elevation data based Pace Engineering survey dated January 2, 2025.

** Reported concentrations of analytes for listed method analysis were not detected at laboratory reporting limits except as noted in table. See laboratory report for details.

† Method (A or B) Cleanup Level has not been established for this constituent.

8 μg/L is the natural background concentration for the Puget Sound Basin established in Ecology's January 2022 background study. Publication No. 14-09-044
 Not Analyzed / Unknown

 $<\!\!0.02$ $\,$ Not detected, concentration less than the laboratory method detection limit.

12 Contaminant detected at concentrations below MTCA Method A Cleanup Level.

33 Contaminant concentration exceeds MTCA Method A Cleanup Level.

Dup Duplicate Sample for QA/QC.

Shading indicates the most recent sampling event.

µg/L micrograms per liter

Table 3 Well Construction & Groundwater Depths Auburn Volkswagen 3109 Auburn Way North, Auburn, WA Project No. BE-0107-E

	Well	Well	Monument /	Top of		_				Calculated
Well	Installation	Construction	Surface	Casing	Length of	Bottom of	Well Diameter	Measurement	Depth to	Water
Identifier	Date	Material	Elevation*	Elevation *	Screen (ft.)	Well	(in.)	Date	Water	Elevation
MW-1	5/23/22	PVC	57.61	57.16	10	16.2	2	5/26/2022	8.17	48.99
								7/26/2022	9.42	47.74
								8/11/2022	9.88	47.28
								1/10/2023	8.17	48.99
								5/4/2023	8.34	48.82
								8/7/2023	10.57	46.59
			F7 7	F7 00				5/17/2024	8.95	48.21
			57.7	57.20				1/10/2024	0.92 8.01	40.34
								1/10/2023	0.01	49.25
MW-2	5/23/22	PVC	56.91	56.41	10	17	2	5/26/2022	7.44	48.97
								7/26/2022	9.85	46.56
								8/11/2022	9.14	47.27
								1/10/2023 5/4/2022	7.43	40.90
								8/7/2023	9.84	46.50
								5/17/2023	8.22	48.19
			57.0	56.51				12/17/2024	8.06	48.45
								1/10/2025	7.29	49.22
N/14/ 0	E/00/00	DV/O	57.40	57.00	10	47	0	E/00/0000	0.40	40.00
10100-3	5/23/22	PVC	57.40	57.06	10	17	2	5/26/2022 7/26/2022	0.10	40.90
								8/11/2022	9.83	47.25
								1/10/2023	8.09	48.99
								5/4/2023	8.26	48.82
								8/7/2023	10.54	46.54
								5/17/2024	8.88	48.20
			57.6	57.20				12/17/2024	8.86	48.34
								1/10/2025	7.96	49.24
MW-4	5/23/22	PVC	57.56	57.18	10	17	2	5/26/2022	8.20	48.98
								7/26/2022	9.48	47.70
								8/11/2022	9.89	47.29
								1/10/2023	8.18	49.00
								5/4/2023	8.38	48.80
								8/7/2023	10.62	46.56
			F7 7	57.20				5/17/2024	9.00	48.18
			57.7	57.29				1/10/2024	8.94 8.05	40.33
N04/ 5	F/00/00	D) (O	57.55	57.44	10	17		5/00/0000	0.00	10.21
IVIVV-5	5/23/22	PVC	57.55	57.14	10	17	2	5/26/2022	8.12	49.02
								8/11/20/22	9.30	47.70
								1/10/2022	9.00	47.29
								5/4/2023	8.32	48.82
								8/7/2023	10.56	46.58
								5/17/2024	8.93	48.21
			57.7	57.25				12/17/2024	8.9	48.35
								1/10/2025	8.01	49.24
MW-6	12/10/24	PVC	56.2	55.74	5	15	2	12/17/2024	6.69	49.05
-		-				-		1/10/2025	6.24	49.50
MW-7	12/10/24	PVC	56.0	55.67	5	15	2	12/17/2024	7,25	48.42
	, . 0, 2 1		00.0	00.07	Ĵ		-	1/10/2025	6.31	49.36
M\\/_8	12/10/24	PV/C	55.6	55 30	5	15	2	12/17/2024	6 78	48 52
1010 0-0	12/10/24		00.0	00.00	5	10	2	1/10/2025		
MW/ O	12/10/24		57.3	56.00	5	15	0	12/17/2024	8 47	18 13
10107-9	12/10/24	FVU	57.5	30.90	5	10	2	1/10/2025	7,67	49.23
MA(10	40/44/04	D) (2	50.0			45		40/47/000 (7.00	40.57
IVIVV-10	12/11/24	PVC	56.0	55.63	5	15	2	12/17/2024	7.06	48.57 70.29
								1/10/2023	0.35	43.20
MW-11	12/11/24	PVC	55.7	55.44	5	15	2	12/17/2024	6.87	48.57
								1/10/2025	6.16	49.28

Table 3 Well Construction & Groundwater Depths Auburn Volkswagen 3109 Auburn Way North, Auburn, WA Project No. BE-0107-E

Well Identifier	Well Installation Date	Well Construction Material	Monument / Surface Elevation*	Top of Casing Elevation *	Length of Screen (ft.)	Bottom of Well	Well Diameter (in.)	Measurement Date	Depth to Water	Calculated Water Elevation
MW-12	12/11/24	PVC	55.2	54.85	5	15	2	12/17/2024 1/10/2025	6.29 5.55	48.56 49.30
MW-13	12/11/24	PVC	55.4	55.05	5	15	2	12/17/2024 1/10/2025	6.5 5.77	48.55 49.28
MW-14	12/12/24	PVC	56.9	56.54	5	15	2	12/17/2024 1/10/2025	7.92 7.27	48.62 49.27
MW-15	12/12/24	PVC	57.1	56.74	5	15	2	12/17/2024 1/10/2025	8.26 7.49	48.48 49.25
MW-16	12/12/24	PVC	56.3	55.95	5	15	2	12/17/2024 1/10/2025	7.45 6.88	48.50 49.07
MW-17	12/12/24	PVC	56.3	55.93	5	15	2	12/17/2024 1/10/2025	7.37 6.68	48.56 49.25
MW-18	12/13/24	PVC	56.9	56.53	5	15	2	12/17/2024 1/10/2025	8.11 7.33	48.42 49.20
MW-19	12/13/24	PVC	55.9	55.48	5	15	2	12/17/2024 1/10/2025	7.33 6.27	48.15 49.21
MW-20	12/13/24	PVC	56.6	56.15	5	15	2	12/17/2024 1/10/2025	7.74 6.96	48.41 49.19

Notes:

*

Presented Elevations are based on elevation data based Pace Engineering survey dated January 2, 2025. Not measured or not applicable

--

Table 4 Groundwater Parameters (1) Auburn Volkswagen 3109 Auburn Way North Project No. BE-0107-E

Well Identifier	Measurement Date	Temperature (ºC)	Conductivity (µS/cm)	Conductivity (ms/cm ²)	Dissolved Oxvgen (%)	Dissolved Oxvgen (mg/L)	Ha	Oxidation Reduction Potential (mV)	Turbidity (NTU)
M/A/ 1	5/26/22	15.27	007	, <i>,</i>	22.2	2.21	7.46	106.1	· · /
10100-1	7/26/22	15.54	1.094		11.1	1.10	6.76	-129.2	
	1/10/23	16.15	1,194		6.8	0.66	6.65	-169.3	2.10
	5/4/23	15.35	3,014		0.8	0.07	6.62	-159.3	2.66
	8/7/23	15.94		1.433	4.9	0.50	6.63	-99.9	
	5/17/24	15.55		1.080	53.8	5.34	6.60	-117.3	
1414	5/00/00	10.00	1,015		1.5	0.14	0.01	-90.0	
10100-2	5/26/22	14.12 13.87	698 731		22.9	2 30	6.02	-80.3	
	1/10/23	14.64	907		6.6	0.67	6.76	-228.9	1.49
	5/4/23	14.30	1,695		4.1	0.41	6.76	-214.9	4.19
	8/7/23	14.53		0.901	15.5	1.57	6.60	-113.2	
	5/17/24	14.25		0.703	20.7	2.12	6.68	-159.2	
	12/18/24	15.80	786		1.3	0.13	6.65	-136.0	
MW-3	5/26/22	16.70	1,259		385	3.68	6.84	-96.2	
	1/26/22	15./U 17.27	1,235		5./ 4 3	0.56	5./1 6.64	-136.8	
	5/4/23	17.27	3 425		0.5	0.41	6.59	-136.1	1.94
	8/7/23	16.46		1.661	2.0	0.19	6.62	-76.0	
	5/17/24	17.08		1.373	3.7	0.36	6.46	-107.9	
	12/17/24	17.30	1,520		40.6	3.88	6.71	-122.5	
MW-4	5/26/22	16.65	665		32.1	3.12	6.74	-72.6	
	7/26/22	15.63	796		5.6	0.55	6.66	-97.6	
	1/10/23	16.99	607		4.7	0.45	6.54	-125.6	0.40
	5/4/23	17.10	1,556	0.750	0.9	0.09	6.50	-99.5	1.60
	5/17/24	16.87		0.735	3.8	0.37	6.30	-67.2	
	12/17/24	17.10	614		4.7	0.45	6.47	-77.3	
MW-5	5/26/22	16.80	896		50.1	4.84	6.73	-112.6	
	7/26/22	15.72	620		7.8	0.76	6.71	-123.7	
	1/10/23	17.03	649		5.0	0.48	6.65	-151.3	6.71
	5/4/23	17.30	2,004		0.9	0.08	6.56	-139.3	3.1
	5/17/24	16.00		0.727	3.0	0.30	6.41	-00.4 -132.1	
	12/17/24	17.10	603		2.1	0.20	6.57	-102.1	
MW-6	12/18/24				Pump	ed Dry			
MW-7	12/18/24	15.60	468		2.1	0.21	6.35	-42.1	
MW-8	12/19/24	15.50	401		1.0	0.10	6.06	-2.8	
MW-9	12/18/24	15.30	646		4.4	0.44	6.61	-112.3	
MW-10	12/19/24	15.00	368		0.6	0.06	6.70	-25.8	
MW-11	12/19/24	16.20	391		0.5	0.05	6.53	-16.1	
MW-12	12/19/24	15.60	181		0.5	0.05	6.18	13.7	
MW-13	12/19/24	15.10	183		0.8	0.08	5.87	18.9	
MW-14	12/19/24	12.60	211		2.9	0.31	5.97	60.9	
MW-15	12/18/24	16.00	661		0.7	0.07	6.52	-79.1	
MW-16	12/18/24	15.90	870		1.2	0.12	6.51	-89.9	
MW-17	12/19/24	13.40	634		2.0	0.21	6.70	-109.4	
MW-18	12/18/24	16.00	858		2.3	0.22	6.37	-91.7	
MW-19	12/19/24	14.60	771		1.0	0.10	6.47	-70.6	
MW-20	12/18/24	15.80	696		2.3	0.23	6.66	-140.9	

Notes:

 Notes:
 (1)
 Parameters at time of sample collections

 ms/cm²
 Millisiemens per centimeter squared mV

 mV
 Millivolts

 NTU
 Nephelometric Turbidity unit µS/cm

 Parameters at time of sample collection.

Graph 1 Arsenic Concentrations vs Oxidation-Reduction Potential (ORP) in Groundwater Auburn Volkswagen 3109 Auburn Way North, Auburn, WA Project No. BE-0107-E

Figures

Project No. BE-0107-E F1.vsdx

Drawing References: Getty Image, King County iMaps

Drawing References: King County iMaps, Bluestone Measurements

Figure and notations are in color. Black and white copies may not be suitable for use.

Drawing Date: 3/12/2025

Site Diagram and Exploration Locations

Auburn VW

6

100 ft.

3109 Auburn Way North

Auburn, WA 98002

Figure 2a

copies may not be suitable for use.

Drawing References: King County iMaps, Bluestone Measurements

Drawing Date: 3/12/2025

ENVIRONMENTAL, NW

Drawing References: King County iMaps, Bluestone Measurements

Drawing References: Google Earth Pro

Drawing Date: 3/12/2025

_

Building Outline

Groundwater Monitoring Well Location with Groundwater Elevation (Bluestone)

- Inferred Groundwater Elevation Contour

The contours represent an interpretation of available data, for the indicated date. Site groundwater contours may change with additional measurements and/or data points, weather changes, construction activities, and/or other influences.

Groundwater Elevations & Interpreted Gradient, May 2022 & July 2022 Auburn VW 3109 Auburn Way North, Auburn, WA

Drawing References: King County iMap, Bluestone Site Measurements

_

Building Outline

Groundwater Monitoring Well Location with Groundwater Elevation (Bluestone)

- Inferred Groundwater Elevation Contour

The contours represent an interpretation of available data, for the indicated date. Site groundwater contours may change with additional measurements and/or data points, weather changes, construction activities, and/or other influences.

Groundwater Elevations & Interpreted Gradient, August 2022 & January 2023 Auburn VW 3109 Auburn Way North, Auburn, WA

Drawing References: King County iMap, Bluestone Site Measurements

_

Building Outline

Interpreted General Groundwater Gradient

- Groundwater Monitoring Well Location with Groundwater Elevation (Bluestone)
- Inferred Groundwater Elevation Contour

The contours represent an interpretation of available data, for the indicated date. Site groundwater contours may change with additional measurements and/or data points, weather changes, construction activities, and/or other influences.

Groundwater Elevations & Interpreted Gradient, May 2023 and May 2024 Auburn VW 3109 Auburn Way North, Auburn, WA

Drawing References: King County iMap, Bluestone Site Measurements

Drawing References: King County iMaps, Bluestone Measurements

Figure 5d

100 ft.

Notes:

1) Groundwater and soil isocontours only interpreted on the Subject Property.

2) Ground elevations for Coastal Gas monitoring wells were not available. Ground elevation estimated based on TOC elevation.

3) Depth to water not available for Coastal Gas monitoring wells in January 2025.

4) See Tables 1a and 2a for complete list of GRO detections in soil and groundwater.

5) Coastal Gas data provided in the Interim Action Work Plan completed by PIONEER Technologies Co. (April 2024). The highest groundwater detection for GRO is shown on the cross section.

Scale: 1" = 30' 0 ft. 18 ft. 30 ft.

ENVIRONMENTAL, NW

60 ft.

Appendix A

Auburn Volkswagen

3109 and 3302 Auburn Way North Auburn, WA 98002

Inquiry Number: 6887522.11 March 07, 2022

The EDR Aerial Photo Decade Package

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

EDR Aerial Photo Decade Package

Site Name:

Client Name:

03/07/22

Auburn Volkswagen 3109 and 3302 Auburn Way No Auburn, WA 98002 EDR Inquiry # 6887522.11 Bluestone Environmental 20204 SE 284th St Kent, WA 98042 Contact: Dan Hatch

Environmental Data Resources, Inc. (EDR) Aerial Photo Decade Package is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDR's professional researchers provide digitally reproduced historical aerial photographs, and when available, provide one photo per decade.

Search	Results:			
<u>Year</u>	Scale	Details	Source	
2017	1"=500'	Flight Year: 2017	USDA/NAIP	
2013	1"=500'	Flight Year: 2013	USDA/NAIP	
2009	1"=500'	Flight Year: 2009	USDA/NAIP	
2006	1"=500'	Flight Year: 2006	USDA/NAIP	
1990	1"=500'	Acquisition Date: July 10, 1990	USGS/DOQQ	
1985	1"=500'	Flight Date: May 23, 1985	NRWA	
1980	1"=500'	Flight Date: July 27, 1980	USDA	
1978	1"=500'	Flight Date: June 02, 1978	NRWA	
1968	1"=500'	Flight Date: September 02, 1968	USGS	
1965	1"=500'	Flight Date: June 30, 1965	NRWA	
1957	1"=500'	Flight Date: May 28, 1957	USGS	
1943	1"=500'	Flight Date: March 05, 1943	DIA	

When delivered electronically by EDR, the aerial photo images included with this report are for ONE TIME USE ONLY. Further reproduction of these aerial photo images is prohibited without permission from EDR. For more information contact your EDR Account Executive.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes revision or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Ste Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provide in this Report as legal advice.

Copyright 2022 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

Appendix B

DRAFT

April 9, 2024

Dan Hatch Bluestone Environmental NW 20204 SE 284th Street Kent, WA 98042

Dear Mr. Hatch:

As requested, we have reviewed the report issued by Apex Laboratories, LLC on May 26, 2023 for your Auburn VW, Apex WO A3E1138 project. This report included results from the testing of water samples collected at various locations at the site. The purpose of this review was to provide further information regarding the nature of the contamination present at this Site.

WATER SAMPLE ANALYSIS SUMMARY

The analytical work completed at Apex included testing of the water samples MW-1, MW-2, MW-3, MW-4, MW-5, and MW-DUP for diesel and oil range hydrocarbons with and without silica gel column cleanup (SGCC) using a gas chromatograph fitted with a flame ionization detector (GC/FID) following WDOE Method NWTPH-Dx. In addition, the samples were analyzed for total and dissolved arsenic using an inductively coupled plasma mass spectrometer (ICP-MS) following EPA Method 6020B. The results of this testing are provided in Appendix A.

DISCUSSION OF WATER SAMPLE RESULTS

NWTPH-Dx Results Before and After SGCC

Review of the NWTPH-Dx results generated before SGCC shows that the level of diesel range hydrocarbons quantified in the samples MW-1, MW-2, MW-3, MW-4, MW-5, and MW-DUP was between 130 ug/L and 230 ug/L. After SGCC was employed, diesel range hydrocarbons were not identified in these samples at or above the analytical reporting limit. The reduction in the level of diesel range hydrocarbons after SGCC indicates that the material present in these samples is polar/semipolar in origin and below MTCA A cleanup levels.

Total and Dissolved Arsenic Results

A summary of the total and field filtered dissolved arsenic results for the samples MW-1, MW-2, MW-3, MW-4, MW-5, and MW-DUP is provided in Table 1. The samples MW-2 and

MW-5 were also filtered in the laboratory using 0.45 um and 0.22 um filters. The dissolved arsenic results after lab filtration are also provided in Table 1.

	Total As	Dissolved As	Dissolved As	Dissolved As
		Field Filter	0.45 um Filter	0.22 um Filter
MW-1	62	65	-	-
MW-2	86	90	3.7	<3.5
MW-3	25	25	-	-
MW-4	8.4	9.2	-	-
MW-5	49	51	3.3	<3.0
MW-DUP	26	26	-	-

 Table 1. Total and Dissolved Arsenic in Water Samples (ug/L)

Review of Table 1 shows that the level of total arsenic and dissolved arsenic after field filtration in the samples MW-1, MW-2, MW-3, MW-4, MW-5, and MW-DUP was approximately the same. However, the level of dissolved arsenic was significantly reduced in the samples MW-2 and MW-5 after the 0.45 um and 0.22 um lab filters were used. This indicates that the filters used in the field did not effectively remove particles greater than or equal to 0.45 um in the samples and the arsenic quantifications in Table 1 after field filtering should not be relied upon.

Based on the above we recommend changing the type of field filters used at this Site. The current data indicates that if filters that provide an absolute, as opposed to average, removal of particles greater than 0.45 um in size are used, it will likely result in arsenic quantifications below the current MTCA A cleanup level of 8 ppb.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Respectfully,

Kurt Johnson, Senior Chemist Director of Forensic Services Apex Laboratories, LLC

Enclosures

APPENDIX A

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Friday, May 26, 2023 Dan Hatch Bluestone Environmental NW 20204 SE 284th Street Kent, WA 98042

RE: A3E1138 - Auburn VW - [none]

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A3E1138, which was received by the laboratory on 5/5/2023 at 10:30:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <u>cobrien@apex-labs.com</u>, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information										
	(See Cooler Receipt Form for details)									
Cooler #1	1.2 degC	Cooler #2	1.7 degC							

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW	Project: <u>Auburn VW</u>	
20204 SE 284th Street	Project Number: [none]	<u>Report ID:</u>
Kent, WA 98042	Project Manager: Dan Hatch	A3E1138 - 05 26 23 1723

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION										
Client Sample ID Laboratory ID Matrix Date Sampled Date Received										
MW-1	A3E1138-01	Water	05/04/23 10:45	05/05/23 10:30						
MW-2	A3E1138-02	Water	05/04/23 10:05	05/05/23 10:30						
MW-3	A3E1138-03	Water	05/04/23 12:45	05/05/23 10:30						
MW-4	A3E1138-04	Water	05/04/23 12:00	05/05/23 10:30						
MW-5	A3E1138-05	Water	05/04/23 11:25	05/05/23 10:30						
MW-DUP	A3E1138-06	Water	05/04/23 12:50	05/05/23 10:30						
MW-2 (0.45 um)	A3E1138-07	Water	05/04/23 10:05	05/05/23 10:30						
MW-2 (0.22 um)	A3E1138-08	Water	05/04/23 10:05	05/05/23 10:30						
MW-5 (0.45 um)	A3E1138-09	Water	05/04/23 11:25	05/05/23 10:30						
MW-5 (0.22 um)	A3E1138-10	Water	05/04/23 11:25	05/05/23 10:30						

Apex Laboratories

Auburn VW

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW
20204 SE 284th Street

Kent, WA 98042

Project Number: [none] Project Manager: Dan Hatch

Project:

<u>Report ID:</u> A3E1138 - 05 26 23 1723

ANALYTICAL SAMPLE RESULTS

	Die	esel and/or O	il Hydrocar	bons by NWTPI	H-Dx			
	Sample	Detection	Reporting		Dill	Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-1 (A3E1138-01)				Matrix: Wate	er	Batch:	23E0480	
Diesel	230		76.9	ug/L	1	05/11/23 20:11	NWTPH-Dx LL	F-13
Oil	ND		154	ug/L	1	05/11/23 20:11	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Reco	very: 86 %	Limits: 50-150 %	1	05/11/23 20:11	NWTPH-Dx LL	
MW-2 (A3E1138-02)				Matrix: Wate	er	Batch:	23E0480	
Diesel	229		76.9	ug/L	1	05/11/23 20:35	NWTPH-Dx LL	F-13
Oil	ND		154	ug/L	1	05/11/23 20:35	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Reco	very: 82 %	Limits: 50-150 %	1	05/11/23 20:35	NWTPH-Dx LL	
MW-3 (A3E1138-03)		Matrix: Water Batch:		23E0480				
Diesel	205		76.9	ug/L	1	05/11/23 20:59	NWTPH-Dx LL	F-13
Oil	ND		154	ug/L	1	05/11/23 20:59	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Reco	very: 94 %	Limits: 50-150 %	1	05/11/23 20:59	NWTPH-Dx LL	
MW-4 (A3E1138-04)				Matrix: Wate	er	Batch:	23E0480	
Diesel	129		77.7	ug/L	1	05/11/23 21:22	NWTPH-Dx LL	F-13
Oil	ND		155	ug/L	1	05/11/23 21:22	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Reco	very: 94 %	Limits: 50-150 %	1	05/11/23 21:22	NWTPH-Dx LL	
MW-5 (A3E1138-05)				Matrix: Wate	er	Batch:	23E0480	
Diesel	137		76.9	ug/L	1	05/11/23 21:46	NWTPH-Dx LL	F-13
Oil	ND		154	ug/L	1	05/11/23 21:46	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Reco	very: 81 %	Limits: 50-150 %	1	05/11/23 21:46	NWTPH-Dx LL	
MW-DUP (A3E1138-06)				Matrix: Wate	er	Batch:	23E0480	
Diesel	208		76.9	ug/L	1	05/11/23 22:10	NWTPH-Dx LL	F-13
Oil	ND		154	ug/L	1	05/11/23 22:10	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Reco	very: 82 %	Limits: 50-150 %	1	05/11/23 22:10	NWTPH-Dx LL	

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project: <u>Auburn VW</u> Project Number: [none] Project Manager: Dan Hatch

<u>Report ID:</u> A3E1138 - 05 26 23 1723

ANALYTICAL SAMPLE RESULTS

	Diesel and/or Oil Hy	drocarbons	by NWTPH	-Dx with Silica	Gel Colu	mn Cleanup		
	Sample	Detection	Reporting	TT -	Dil di	Date		NT -
Anaiyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-1 (A3E1138-01)				Matrix: Wate	r	Batch	: 23E0826	
Diesel	ND		76.9	ug/L	1	05/18/23 23:41	NWTPH-Dx/SGC	_
Oil	ND		154	ug/L	1	05/18/23 23:41	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recov	very: 79 %	Limits: 50-150 %	1	05/18/23 23:41	NWTPH-Dx/SGC	
MW-2 (A3E1138-02)				Matrix: Wate	r	Batch	: 23E0826	
Diesel	ND		76.9	ug/L	1	05/19/23 00:05	NWTPH-Dx/SGC	
Oil	ND		154	ug/L	1	05/19/23 00:05	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recov	very: 77%	Limits: 50-150 %	1	05/19/23 00:05	NWTPH-Dx/SGC	
MW-3 (A3E1138-03)			Matrix:		r	Batch	: 23E0826	
Diesel	ND		76.9	ug/L	1	05/19/23 00:29	NWTPH-Dx/SGC	
Oil	ND		154	ug/L	1	05/19/23 00:29	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recov	very: 91 %	Limits: 50-150 %	1	05/19/23 00:29	NWTPH-Dx/SGC	
MW-4 (A3E1138-04)				Matrix: Wate	r	Batch	Batch: 23E0826	
Diesel	ND		77.7	ug/L	1	05/19/23 00:52	NWTPH-Dx/SGC	
Oil	ND		155	ug/L	1	05/19/23 00:52	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recov	very: 84 %	Limits: 50-150 %	1	05/19/23 00:52	NWTPH-Dx/SGC	
MW-5 (A3E1138-05)				Matrix: Wate	r	Batch	: 23E0826	
Diesel	ND		76.9	ug/L	1	05/19/23 01:16	NWTPH-Dx/SGC	
Oil	ND		154	ug/L	1	05/19/23 01:16	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recov	very: 86 %	Limits: 50-150 %	1	05/19/23 01:16	NWTPH-Dx/SGC	
MW-DUP (A3E1138-06)				Matrix: Wate	r	Batch	: 23E0826	
Diesel	ND		76.9	ug/L	1	05/19/23 01:39	NWTPH-Dx/SGC	
Oil	ND		154	ug/L	1	05/19/23 01:39	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recov	very: 84 %	Limits: 50-150 %	1	05/19/23 01:39	NWTPH-Dx/SGC	

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project: <u>Auburn VW</u> Project Number: [none]

Project Manager: Dan Hatch

<u>Report ID:</u> A3E1138 - 05 26 23 1723

ANALYTICAL SAMPLE RESULTS

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
MW-1 (A3E1138-01)				Matrix: Wate	r	Batch	: 23E0374			
Gasoline Range Organics	ND		100	ug/L	1	05/09/23 14:33	NWTPH-Gx (MS)			
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	ry: 95 %	Limits: 50-150 %	1	05/09/23 14:33	NWTPH-Gx (MS)			
1,4-Difluorobenzene (Sur)			102 %	50-150 %	1	05/09/23 14:33	NWTPH-Gx (MS)			
MW-2 (A3E1138-02)				Matrix: Wate) r	Batch	: 23E0374			
Gasoline Range Organics	ND		100	ug/L	1	05/09/23 14:56	NWTPH-Gx (MS)			
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	ry: 97%	Limits: 50-150 %	1	05/09/23 14:56	NWTPH-Gx (MS)			
1,4-Difluorobenzene (Sur)			101 %	50-150 %	1	05/09/23 14:56	NWTPH-Gx (MS)			
MW-3 (A3E1138-03)				Matrix: Water Batch: 23E0374		: 23E0374				
Gasoline Range Organics	ND		100	ug/L	1	05/09/23 16:25	NWTPH-Gx (MS)			
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	ry: 96 %	Limits: 50-150 %	1	05/09/23 16:25	NWTPH-Gx (MS)			
1,4-Difluorobenzene (Sur)			103 %	50-150 %	1	05/09/23 16:25	NWTPH-Gx (MS)			
MW-4 (A3E1138-04)				Matrix: Wate	r	Batch	: 23E0374			
Gasoline Range Organics	ND		100	ug/L	1	05/09/23 15:18	NWTPH-Gx (MS)			
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	ry: 93 %	Limits: 50-150 %	1	05/09/23 15:18	NWTPH-Gx (MS)			
1,4-Difluorobenzene (Sur)			100 %	50-150 %	1	05/09/23 15:18	NWTPH-Gx (MS)			
MW-5 (A3E1138-05)				Matrix: Wate	r	Batch	: 23E0374			
Gasoline Range Organics	ND		100	ug/L	1	05/09/23 15:40	NWTPH-Gx (MS)			
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	ry: 93 %	Limits: 50-150 %	1	05/09/23 15:40	NWTPH-Gx (MS)			
1,4-Difluorobenzene (Sur)			101 %	50-150 %	1	05/09/23 15:40	NWTPH-Gx (MS)			
MW-DUP (A3E1138-06)				Matrix: Wate	r	Batch	: 23E0374			
Gasoline Range Organics	ND		100	ug/L	1	05/09/23 16:03	NWTPH-Gx (MS)			
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	ry: 99 %	Limits: 50-150 %	1	05/09/23 16:03	NWTPH-Gx (MS)			
1,4-Difluorobenzene (Sur)			103 %	50-150 %	1	05/09/23 16:03	NWTPH-Gx (MS)			

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW

20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: [none]

Project Manager: Dan Hatch

<u>Report ID:</u> A3E1138 - 05 26 23 1723

ANALYTICAL SAMPLE RESULTS

BTEX Compounds by EPA 8260D									
	Sample	Detection	Reporting			Date			
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes	
MW-1 (A3E1138-01)				Matrix: Wate	er	Batch:	23E0374		
Benzene	ND		0.200	ug/L	1	05/09/23 14:33	EPA 8260D		
Toluene	ND		1.00	ug/L	1	05/09/23 14:33	EPA 8260D		
Ethylbenzene	ND		0.500	ug/L	1	05/09/23 14:33	EPA 8260D		
Xylenes, total	ND		1.50	ug/L	1	05/09/23 14:33	EPA 8260D		
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 91 %	Limits: 80-120 %	1	05/09/23 14:33	EPA 8260D		
Toluene-d8 (Surr)			99 %	80-120 %	1	05/09/23 14:33	EPA 8260D		
4-Bromofluorobenzene (Surr)			103 %	80-120 %	1	05/09/23 14:33	EPA 8260D		
MW-2 (A3E1138-02)				Matrix: Wate	ər	Batch:	23E0374		
Benzene	ND		0.200	ug/L	1	05/09/23 14:56	EPA 8260D		
Toluene	ND		1.00	ug/L	1	05/09/23 14:56	EPA 8260D		
Ethylbenzene	ND		0.500	ug/L	1	05/09/23 14:56	EPA 8260D		
Xylenes, total	ND		1.50	ug/L	1	05/09/23 14:56	EPA 8260D		
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 90 %	Limits: 80-120 %	1	05/09/23 14:56	EPA 8260D		
Toluene-d8 (Surr)			100 %	80-120 %	I	05/09/23 14:56	EPA 8260D		
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	05/09/23 14:56	EPA 8260D		
MW-3 (A3E1138-03)				Matrix: Wate	ər	Batch:	23E0374		
Benzene	ND		0.200	ug/L	1	05/09/23 16:25	EPA 8260D		
Toluene	ND		1.00	ug/L	1	05/09/23 16:25	EPA 8260D		
Ethylbenzene	ND		0.500	ug/L	1	05/09/23 16:25	EPA 8260D		
Xylenes, total	ND		1.50	ug/L	1	05/09/23 16:25	EPA 8260D		
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 90 %	Limits: 80-120 %	1	05/09/23 16:25	EPA 8260D		
Toluene-d8 (Surr)			101 %	80-120 %	1	05/09/23 16:25	EPA 8260D		
4-Bromofluorobenzene (Surr)			102 %	80-120 %	1	05/09/23 16:25	EPA 8260D		
MW-4 (A3E1138-04)				Matrix: Wate	ər	Batch:	23E0374		
Benzene	ND		0.200	ug/L	1	05/09/23 15:18	EPA 8260D		
Toluene	ND		1.00	ug/L	1	05/09/23 15:18	EPA 8260D		
Ethylbenzene	ND		0.500	ug/L	1	05/09/23 15:18	EPA 8260D		
Xylenes, total	ND		1.50	ug/L	1	05/09/23 15:18	EPA 8260D		
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 91 %	Limits: 80-120 %	1	05/09/23 15:18	EPA 8260D		
Toluene-d8 (Surr)			101 %	80-120 %	1	05/09/23 15:18	EPA 8260D		
4-Bromofluorobenzene (Surr)			108 %	80-120 %	1	05/09/23 15:18	EPA 8260D		
MW-5 (A3E1138-05)				Matrix: Wate	er	Batch:	23E0374		
Benzene	ND		0.200	ug/L	1	05/09/23 15:40	EPA 8260D		

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW

20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: [none]

Project Manager: Dan Hatch

<u>Report ID:</u> A3E1138 - 05 26 23 1723

ANALYTICAL SAMPLE RESULTS

BTEX Compounds by EPA 8260D										
	Sample	Detection	Reporting	¥7	D'I d	Date	M 4 1D 6	N7 -		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes		
MW-5 (A3E1138-05)				Matrix: Wate	r	Batch:	23E0374			
Toluene	ND		1.00	ug/L	1	05/09/23 15:40	EPA 8260D			
Ethylbenzene	ND		0.500	ug/L	1	05/09/23 15:40	EPA 8260D			
Xylenes, total	ND		1.50	ug/L	1	05/09/23 15:40	EPA 8260D			
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	very: 89 %	Limits: 80-120 %	1	05/09/23 15:40	EPA 8260D			
Toluene-d8 (Surr)			100 %	80-120 %	1	05/09/23 15:40	EPA 8260D			
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	05/09/23 15:40	EPA 8260D			
MW-DUP (A3E1138-06)				Matrix: Wate	r	Batch:	23E0374			
Benzene	ND		0.200	ug/L	1	05/09/23 16:03	EPA 8260D			
Toluene	ND		1.00	ug/L	1	05/09/23 16:03	EPA 8260D			
Ethylbenzene	ND		0.500	ug/L	1	05/09/23 16:03	EPA 8260D			
Xylenes, total	ND		1.50	ug/L	1	05/09/23 16:03	EPA 8260D			
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	very: 88 %	Limits: 80-120 %	1	05/09/23 16:03	EPA 8260D			
Toluene-d8 (Surr)			101 %	80-120 %	1	05/09/23 16:03	EPA 8260D			
4-Bromofluorobenzene (Surr)			102 %	80-120 %	1	05/09/23 16:03	EPA 8260D			

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042

Project:Auburn VWProject Number:[none]Project Manager:Dan Hatch

<u>Report ID:</u> A3E1138 - 05 26 23 1723

ANALYTICAL SAMPLE RESULTS

		Total Meta	als by EPA 60	20B (ICPMS	5)			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-1 (A3E1138-01)				Matrix: W	ater			
Batch: 23E0456								
Arsenic	62.2		1.00	ug/L	1	05/10/23 18:39	EPA 6020B	
Cadmium	ND		0.200	ug/L	1	05/10/23 18:39	EPA 6020B	
Chromium	3.31		2.00	ug/L	1	05/10/23 18:39	EPA 6020B	
Lead	ND		0.200	ug/L	1	05/10/23 18:39	EPA 6020B	
Mercury	ND		0.0800	ug/L	1	05/10/23 18:39	EPA 6020B	
MW-2 (A3E1138-02)				Matrix: W	ater			
Batch: 23E0456								
Arsenic	86.1		1.00	ug/L	1	05/10/23 18:45	EPA 6020B	
Cadmium	ND		0.200	ug/L	1	05/10/23 18:45	EPA 6020B	
Chromium	2.30		2.00	ug/L	1	05/10/23 18:45	EPA 6020B	
Lead	ND		0.200	ug/L	1	05/10/23 18:45	EPA 6020B	
Mercury	ND		0.0800	ug/L	1	05/10/23 18:45	EPA 6020B	
MW-3 (A3E1138-03)				Matrix: W	ater			
Batch: 23E0456								
Arsenic	25.0		1.00	ug/L	1	05/10/23 18:50	EPA 6020B	
Cadmium	ND		0.200	ug/L	1	05/10/23 18:50	EPA 6020B	
Chromium	3.80		2.00	ug/L	1	05/10/23 18:50	EPA 6020B	
Lead	ND		0.200	ug/L	1	05/10/23 18:50	EPA 6020B	
Mercury	ND		0.0800	ug/L	1	05/10/23 18:50	EPA 6020B	
MW-4 (A3E1138-04)				Matrix: W	ater			
Batch: 23E0456								
Arsenic	8.36		1.00	ug/L	1	05/10/23 18:56	EPA 6020B	
Cadmium	ND		0.200	ug/L	1	05/10/23 18:56	EPA 6020B	
Chromium	ND		2.00	ug/L	1	05/10/23 18:56	EPA 6020B	
Lead	ND		0.200	ug/L	1	05/10/23 18:56	EPA 6020B	
Mercury	ND		0.0800	ug/L	1	05/10/23 18:56	EPA 6020B	
MW-5 (A3E1138-05)				Matrix: W	ater			
Batch: 23E0456								
Arsenic	49.4		1.00	ug/L	1	05/10/23 19:02	EPA 6020B	
Cadmium	ND		0.200	ug/L	1	05/10/23 19:02	EPA 6020B	
Chromium	3.70		2.00	ug/L	1	05/10/23 19:02	EPA 6020B	
Lead	ND		0.200	ug/L	1	05/10/23 19:02	EPA 6020B	
Mercury	ND		0.0800	ug/L	1	05/10/23 19:02	EPA 6020B	
				-				

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

EPA 6020B

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042	Project:Auburn VWProject Number:[none]Project Manager:Dan Hatch					<u>Report ID:</u> A3E1138 - 05 26 23 1723			
		ANALYTI	CAL SAMPL	E RESULI	ſS				
Total Metals by EPA 6020B (ICPMS)									
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
	Matrix: Water								
Batch: 23E0456									
Arsenic	26.1		1.00	ug/L	1	05/10/23 19:07	EPA 6020B		
Cadmium	ND		0.200	ug/L	1	05/10/23 19:07	EPA 6020B		
Chromium	3.88		2.00	ug/L	1	05/10/23 19:07	EPA 6020B		
Lead	ND		0.200	ug/L	1	05/10/23 19:07	EPA 6020B		

0.0800

ug/L

ND

Apex Laboratories

Mercury

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

05/10/23 19:07

1

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street Kent, WA 98042

Project:Auburn VWProject Number:[none]Project Manager:Dan Hatch

<u>Report ID:</u> A3E1138 - 05 26 23 1723

ANALYTICAL SAMPLE RESULTS

Dissolved Metals by EPA 6020B (ICPMS)									
	Sample Detection Reporting Date								
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes	
MW-1 (A3E1138-01RE1)				Matrix: Wa	ater				
Batch: 23E0770									
Arsenic	65.2		1.00	ug/L	1	05/17/23 17:17	EPA 6020B (Diss)		
Cadmium	ND		0.200	ug/L	1	05/17/23 17:17	EPA 6020B (Diss)		
Chromium	3.05		2.00	ug/L	1	05/17/23 17:17	EPA 6020B (Diss)		
Lead	ND		0.200	ug/L	1	05/17/23 17:17	EPA 6020B (Diss)		
Mercury	ND		0.0800	ug/L	1	05/17/23 17:17	EPA 6020B (Diss)	Q-42	
MW-2 (A3E1138-02)	Matrix: Water								
Batch: 23E0770									
Arsenic	90.2		1.00	ug/L	1	05/17/23 17:32	EPA 6020B (Diss)		
Cadmium	ND		0.200	ug/L	1	05/17/23 17:32	EPA 6020B (Diss)		
Chromium	2.19		2.00	ug/L	1	05/17/23 17:32	EPA 6020B (Diss)		
Lead	ND		0.200	ug/L	1	05/17/23 17:32	EPA 6020B (Diss)		
Mercury	ND		0.0800	ug/L	1	05/17/23 17:32	EPA 6020B (Diss)		
MW-3 (A3E1138-03)				Matrix: Wa	ater				
Batch: 23E0770									
Arsenic	24.5		1.00	ug/L	1	05/17/23 17:36	EPA 6020B (Diss)		
Cadmium	ND		0.200	ug/L	1	05/17/23 17:36	EPA 6020B (Diss)		
Chromium	3.56		2.00	ug/L	1	05/17/23 17:36	EPA 6020B (Diss)		
Lead	ND		0.200	ug/L	1	05/17/23 17:36	EPA 6020B (Diss)		
Mercury	ND		0.0800	ug/L	1	05/17/23 17:36	EPA 6020B (Diss)		
MW-4 (A3E1138-04)	Matrix: Water								
Batch: 23E0770									
Arsenic	9.24		1.00	ug/L	1	05/17/23 17:41	EPA 6020B (Diss)		
Cadmium	ND		0.200	ug/L	1	05/17/23 17:41	EPA 6020B (Diss)		
Chromium	ND		2.00	ug/L	1	05/17/23 17:41	EPA 6020B (Diss)		
Lead	ND		0.200	ug/L	1	05/17/23 17:41	EPA 6020B (Diss)		
Mercury	ND		0.0800	ug/L	1	05/17/23 17:41	EPA 6020B (Diss)		
MW-5 (A3E1138-05)				Matrix: Wa	ater				
Batch: 23E0770									
Arsenic	51.2		1.00	ug/L	1	05/17/23 17:46	EPA 6020B (Diss)		
Cadmium	ND		0.200	ug/L	1	05/17/23 17:46	EPA 6020B (Diss)		
Chromium	3.44		2.00	ug/L	1	05/17/23 17:46	EPA 6020B (Diss)		
Lead	ND		0.200	ug/L	1	05/17/23 17:46	EPA 6020B (Diss)		
Mercury	ND		0.0800	ug/L	1	05/17/23 17:46	EPA 6020B (Diss)		

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042

Project: <u>Auburn VW</u> Project Number: [none] Project Manager: Dan Hatch

<u>Report ID:</u> A3E1138 - 05 26 23 1723

ANALYTICAL SAMPLE RESULTS

Dissolved Metals by EPA 6020B (ICPMS)									
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
	Matrix: Water								
Batch: 23E0770									
Arsenic	26.2		1.00	ug/L	1	05/17/23 18:01	EPA 6020B (Diss)		
Cadmium	ND		0.200	ug/L	1	05/17/23 18:01	EPA 6020B (Diss)		
Chromium	3.72		2.00	ug/L	1	05/17/23 18:01	EPA 6020B (Diss)		
Lead	ND		0.200	ug/L	1	05/17/23 18:01	EPA 6020B (Diss)		
Mercury	ND		0.0800	ug/L	1	05/17/23 18:01	EPA 6020B (Diss)		
MW-2 (0.45 um) (A3E1138-07)	Matrix: Water								
Batch: 23E1110									
Arsenic	3.72		3.00	ug/L	1	05/25/23 19:49	EPA 6020B (Diss)	FILT1	
MW-2 (0.22 um) (A3E1138-08)				Matrix: W	ater				
Batch: 23E1112									
Arsenic	ND		3.46	ug/L	1	05/25/23 20:23	EPA 6020B (Diss)	FILT1, R-03	
MW-5 (0.45 um) (A3E1138-09)	Matrix: Water								
Batch: 23E1110									
Arsenic	3.33		2.25	ug/L	1	05/25/23 19:58	EPA 6020B (Diss)	FILT1	
MW-5 (0.22 um) (A3E1138-10)				Matrix: W	ater				
Batch: 23E1112									
Arsenic	ND		3.00	ug/L	1	05/25/23 20:43	EPA 6020B (Diss)	FILT1, R-03	

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street Kent, WA 98042 Project:Auburn VWProject Number:[none]Project Manager:Dan Hatch

<u>Report ID:</u> A3E1138 - 05 26 23 1723

ANALYTICAL SAMPLE RESULTS

Total Org	anic Carbon (No	on-Purgeable) by Persulfa	te Oxidatio	ו by Standa	ard Method 531	10C	
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-1 (A3E1138-01)				Matrix: Wa	ater	Batch:	23E0387	
Total Organic Carbon	93500		20000	ug/L	20	05/10/23 02:59	SM 5310 C	
MW-2 (A3E1138-02)				Matrix: Wa	ater	Batch:	23E0387	
Total Organic Carbon	47000		10000	ug/L	10	05/10/23 03:29	SM 5310 C	
MW-3 (A3E1138-03)				Matrix: Wa	ater	Batch:	23E0387	
Total Organic Carbon	88800		20000	ug/L	20	05/10/23 03:59	SM 5310 C	
MW-4 (A3E1138-04RE1)				Matrix: Wa	ater	Batch:	23E0387	
Total Organic Carbon	25400		2000	ug/L	2	05/10/23 18:37	SM 5310 C	
MW-5 (A3E1138-05)				Matrix: Wa	ater	Batch:	23E0387	
Total Organic Carbon	40600		10000	ug/L	10	05/10/23 04:59	SM 5310 C	
MW-DUP (A3E1138-06)				Matrix: Wa	ater	Batch:	23E0387	
Total Organic Carbon	88000		20000	ug/L	20	05/10/23 05:29	SM 5310 C	

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project Number: [none] Project Manager: Dan Hatch

Project:

<u>Report ID:</u> A3E1138 - 05 26 23 1723

ANALYTICAL SAMPLE RESULTS

Auburn VW

Analyte Sample Result Detection Limit Reporting Limit Date Units Date MW-1 (A3E1138-01) Matrix: Water Matrix: Water Matrix: Water Matrix: Water Matrix: Sample SM 2540 C Matrix: SM 2540 D Matrix: Water Matrix: SM 2540 D Matrix: SM 2540 D Matrix: Water Matrix: Water Matrix: Water Matrix: Water Matrix: Water Matrix: Water Matrix: SM 2540 D Matrix: Water Matrix: SM 2540 D Matrix: SM 2540 D <t< th=""><th>Notes</th></t<>	Notes
Analyte Result Limit Limit Units Dilution Analyzed Method Ref. N MW-1 (A3E1138-01) Matrix: Water	Notes
MW-1 (A3E1138-01) Matrix: Water Batch: 23E0409 10000 ug/L 1 05/09/23 18:10 SM 2540 C Batch: 23E0488 718000 5000 ug/L 1 05/09/23 18:10 SM 2540 C Total Suspended Solids 225000 5000 ug/L 1 05/09/23 18:10 SM 2540 D MW-2 (A3E1138-02) Matrix: Water 5000 ug/L 1 05/09/23 18:10 SM 2540 D Mw-2 (A3E1138-02) Matrix: Water 5000 ug/L 1 05/09/23 18:10 SM 2540 C Batch: 23E0488 379000 5000 ug/L 1 05/11/23 16:34 SM 2540 D Mw-3 (A3E1138-03) Matrix: Water 5000 ug/L 1 05/11/23 16:34 SM 2540 D Batch: 23E0488 179000 5000 ug/L 1 05/11/23 18:34 SM 2540 C Mw-4 (A3E1138-04) Matrix: Water 5000 ug/L	
Batch: 23E0409 Total Dissolved Solids 718000 10000 ug/L 1 05/09/23 18:10 SM 2540 C Batch: 23E0488 225000 5000 ug/L 1 05/11/23 16:34 SM 2540 D MW-2 (A3E1138-02) Matrix: Water Batch: 23E0409 S000 ug/L 1 05/09/23 18:10 SM 2540 C Batch: 23E0488 379000 S000 ug/L 1 05/09/23 18:10 SM 2540 C Batch: 23E0488 19000 S000 ug/L 1 05/11/23 16:34 SM 2540 D MW-3 (A3E1138-03) Matrix: Water Batch: 23E0488 Total Suspended Solids 19000 S000 ug/L 1 05/11/23 16:34 SM 2540 D Batch: 23E0538 179000 S000 ug/L 1 05/11/23 16:34 SM 2540 D Batch: 23E0538 194000 1000	
Total Dissolved Solids 718000 10000 ug/L 1 05/09/23 18:10 SM 2540 C Eatch: 23E0488 225000 5000 ug/L 1 05/09/23 18:10 SM 2540 D MW-2 (A3E1138-02) Matrix: Water Matrix: Water Matrix: Water Matrix: Water Matrix: Water Batch: 23E0409 379000 5000 ug/L 1 05/09/23 18:10 SM 2540 C MW-2 (A3E1138-02) Matrix: 23E0488 379000 5000 ug/L 1 05/09/23 18:10 SM 2540 C Batch: 23E0488 190000 5000 ug/L 1 05/09/23 18:10 SM 2540 D MW-3 (A3E1138-03) Matrix: Water Matrix: Water Matrix: Water Matrix: Water Batch: 23E0488 179000 5000 ug/L 1 05/11/23 16:34 SM 2540 D MW-4 (A3E1138-04) 914000 10000 ug/L 1 05/11/23 18:49 SM 2540 C Mw-4 (A3E1138-04) Matrix: Water Matrix: Water Matrix: Water Matrix: Water Matrix: Water	
Total Suspended Solids 22500 5000 ug/L 1 05/11/23 16:34 SM 2540 D MW-2 (A3E1138-02) Matrix: Water Matrix: Water Matrix: Water SM 2540 C Batch: 23E0409 379000 5000 ug/L 1 05/09/23 18:10 SM 2540 C Batch: 23E0488 190000 5000 ug/L 1 05/11/23 16:34 SM 2540 D MW-3 (A3E1138-03) Matrix: Water Matrix: Water Matrix: Water Matrix: Water Batch: 23E0488 179000 5000 ug/L 1 05/11/23 16:34 SM 2540 D Total Suspended Solids 179000 5000 ug/L 1 05/11/23 16:34 SM 2540 D Mw-4 (A3E1138-04) 10000 ug/L 1 05/11/23 18:49 SM 2540 C Mw-4 (A3E1138-04) 10000 ug/L 1 05/11/23 18:49 SM 2540 D Batch: 23E0488 10000 ug/L 1 05/11/23 18:49 SM 2540 C </td <td></td>	
MW-2 (A3E1138-02) Matrix: Water Batch: 23E0409 5000 ug/L 1 05/09/23 18:10 SM 2540 C Total Dissolved Solids 379000 5000 ug/L 1 05/09/23 18:10 SM 2540 C Total Suspended Solids 190000 5000 ug/L 1 05/11/23 16:34 SM 2540 D MW-3 (A3E1138-03) Matrix: Water Batch: 23E0488 Total Suspended Solids 179000 5000 ug/L 1 05/11/23 16:34 SM 2540 D MW-4 (A3E1138-04) Matrix: Water Batch: 23E0488 Total Suspended Solids 914000 S000 ug/L 1 05/11/23 16:34 SM 2540 D MW-4 (A3E1138-04) Matrix: Water Batch: 23E0488 Total Suspended Solids 60000 Total Suspended Solids 60000 5000 ug/L 1 05/11/23 18:49 SM 2540 C MW-4 (A3E1138-04) Sologo Mu	
Batch: 23E0409 Total Dissolved Solids 379000 5000 ug/L 1 05/09/23 18:10 SM 2540 C Total Suspended Solids 190000 5000 ug/L 1 05/11/23 16:34 SM 2540 D MW-3 (A3E1138-03) Matrix: Water Batch: 23E0488 Total Suspended Solids 179000 5000 ug/L 1 05/11/23 16:34 SM 2540 D MW-3 (A3E1138-03) Matrix: Water Batch: 23E0488 Total Suspended Solids 179000 Total Suspended Solids 914000 5000 ug/L 1 05/11/23 16:34 SM 2540 D MW-4 (A3E1138-04) Matrix: Water Batch: 23E0488 Total Suspended Solids 914000 S000 ug/L 1 05/11/23 16:34 SM 2540 C Batch: 23E0488 Total Suspended Solids 60000 Total Suspended Solids 60000 5000 ug/L 1 05/11/23 16:34 SM 2540 D	
Total Dissolved Solids 379000 5000 ug/L 1 05/09/23 18:10 SM 2540 C Total Suspended Solids 190000 5000 ug/L 1 05/11/23 16:34 SM 2540 D MW-3 (A3E1138-03) Matrix: Water Batch: 23E0488 Total Suspended Solids 179000 S000 ug/L 1 05/11/23 16:34 SM 2540 D Batch: 23E0488 Total Suspended Solids 179000 S000 ug/L 1 05/11/23 16:34 SM 2540 D Batch: 23E0488 Total Dissolved Solids 914000 S000 ug/L 1 05/11/23 16:34 SM 2540 D MW-4 (A3E1138-04) Fotal Suspended Solids 914000 10000 ug/L 1 05/11/23 18:49 SM 2540 C Batch: 23E0488 Total Suspended Solids 60000 5000 ug/L 1 05/11/23 16:34 SM 2540 D Batch: 23E0488 60000	
Total Suspended Solids 190000 5000 ug/L 1 05/11/23 16:34 SM 2540 D MW-3 (A3E1138-03) Matrix: Water Matrix: Water Matrix: Water SM 2540 D Batch: 23E0488 179000 5000 ug/L 1 05/11/23 16:34 SM 2540 D Batch: 23E0538 179000 5000 ug/L 1 05/11/23 16:34 SM 2540 D MW-4 (A3E1138-04) 914000 10000 ug/L 1 05/11/23 18:49 SM 2540 C Batch: 23E0488 5000 5000 ug/L 1 05/11/23 16:34 SM 2540 D Batch: 23E0488 60000 5000 ug/L 1 05/11/23 16:34 SM 2540 D	
MW-3 (A3E1138-03) Matrix: Water Batch: 23E0488 I79000 5000 ug/L 1 05/11/23 16:34 SM 2540 D Total Suspended Solids 914000 10000 ug/L 1 05/11/23 18:49 SM 2540 C MW-4 (A3E1138-04) Matrix: Water Matrix: Water Batch: 23E0488 5000 5000 ug/L 1 05/11/23 18:49 SM 2540 C Matrix: 23E0488 5000 5000 ug/L 1 05/11/23 16:34 SM 2540 D	
Batch: 23E0488 179000 5000 ug/L 1 05/11/23 16:34 SM 2540 D Batch: 23E0538 914000 10000 ug/L 1 05/11/23 18:49 SM 2540 C MW-4 (A3E1138-04) Matrix: Water Batch: 23E0488 Match: 23E0488 Total Suspended Solids 60000 5000 ug/L 1 05/11/23 16:34 SM 2540 D	
Total Suspended Solids 179000 5000 ug/L 1 05/11/23 16:34 SM 2540 D Batch: 23E0538 914000 10000 ug/L 1 05/11/23 16:34 SM 2540 D MW-4 (A3E1138-04) MW-4 C Matrix: Water Matrix: Water Batch: 23E0488 60000 5000 ug/L 1 05/11/23 16:34 SM 2540 D	
Total Dissolved Solids 914000 10000 ug/L 1 05/11/23 18:49 SM 2540 C MW-4 (A3E1138-04) Matrix: Water Batch: 23E0488 Total Suspended Solids 60000 5000 ug/L 1 05/11/23 16:34 SM 2540 D	
MW-4 (A3E1138-04) Matrix: Water Batch: 23E0488	
Batch: 23E0488 60000 5000 ug/L 1 05/11/23 16:34 SM 2540 D	
Total Suspended Solids 60000 5000 ug/L 1 05/11/23 16:34 SM 2540 D	
Batch: 23E0538	
Total Dissolved Solids 410000 5000 ug/L 1 05/11/23 18:49 SM 2540 C	
MW-5 (A3E1138-05) Matrix: Water	
Batch: 23E0488	
Total Suspended Solids 118000 5000 ug/L 1 05/11/23 16:34 SM 2540 D Batch: 23E0538	
Total Dissolved Solids 394000 5000 ug/L 1 05/11/23 18:49 SM 2540 C	
MW-DUP (A3E1138-06) Matrix: Water	
Batch: 23E0488	
Total Suspended Solids 177000 5000 ug/L 1 05/11/23 16:34 SM 2540 D Batch: 23E0538	
Total Dissolved Solids 856000 10000 ug/L 1 05/11/23 18:49 SM 2540 C	

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: [none] Project Manager: Dan Hatch

<u>Report ID:</u> A3E1138 - 05 26 23 1723

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/o	or Oil Hyd	irocarbon	s by NWT	PH-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23E0480 - EPA 3510C (Fuels/Acid	Ext.)					Wate	er				
Blank (23E0480-BLK1)		Prepared	: 05/11/23 07:	:10 Analyz	red: 05/11/23	3 18:11						
NWTPH-Dx LL												
Diesel	ND		80.0	ug/L	1							
Oil	ND		160	ug/L	1							
Surr: o-Terphenyl (Surr)		Reco	overy: 97 %	Limits: 50	0-150 %	Dilu	ution: 1x					
LCS (23E0480-BS1)		Prepared	: 05/11/23 07:	:10 Analyz	red: 05/11/23	3 18:35						
NWTPH-Dx LL												
Diesel	389		80.0	ug/L	1	500		78 3	36 - 132%			
Surr: o-Terphenyl (Surr)		Reco	overy: 99%	Limits: 50	0-150 %	Dilu	ution: 1x					
LCS Dup (23E0480-BSD1)		Prepared	: 05/11/23 07:	:10 Analyz	red: 05/11/23	3 18:59						Q-19
NWTPH-Dx LL												
Diesel	361		80.0	ug/L	1	500		72 3	36 - 132%	8	30%	
Surr: o-Terphenyl (Surr)		Reco	overy: 96 %	Limits: 50	9-150 %	Dilu	ution: 1x					

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street Kent, WA 98042 Project:Auburn VWProject Number:[none]Project Manager:Dan Hatch

<u>Report ID:</u> A3E1138 - 05 26 23 1723

QUALITY CONTROL (QC) SAMPLE RESULTS

	Diesel	and/or Oil	Hydrocarb	ons by N	WTPH-Dx	with Silic	a Gel Co	lumn Cle	anup			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23E0826 - EPA 3510C (Fuels/Acid	l Ext.) w/Sili	ca Gel Colui	mn			Wat	er				
Blank (23E0826-BLK1)		Prepared	: 05/11/23 07:	10 Analyz	ed: 05/18/2	3 22:30						
NWTPH-Dx/SGC												
Diesel	ND		80.0	ug/L	1							
Oil	ND		160	ug/L	1							
Surr: o-Terphenyl (Surr)		Rec	overy: 92 %	Limits: 50)-150 %	Dilı	ution: 1x					
LCS (23E0826-BS1)		Prepared	: 05/11/23 07:	10 Analyz	ed: 05/18/2	3 22:54						
NWTPH-Dx/SGC												
Diesel	418		80.0	ug/L	1	500		84 3	36 - 132%			
Surr: o-Terphenyl (Surr)		Rec	overy: 88 %	Limits: 50	0-150 %	Dilı	ution: 1x					
LCS Dup (23E0826-BSD1)		Prepared	: 05/11/23 07:	10 Analyz	ed: 05/18/2	3 23:18						Q-19
NWTPH-Dx/SGC												
Diesel	418		80.0	ug/L	1	500		84	36 - 132%	0.07	30%	
Surr: o-Terphenyl (Surr)		Rec	overy: 91 %	Limits: 50	0-150 %	Dilı	ution: 1x					

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: [none] Project Manager: Dan Hatch

<u>Report ID:</u> A3E1138 - 05 26 23 1723

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolir	ne Range H	lydrocarbc	ons (Benz	zene throu	ugh Naph	thalene)	by NWTF	์YH-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23E0374 - EPA 5030C							Wat	er				
Blank (23E0374-BLK1)		Prepared:	05/09/23 12:	00 Analyz	zed: 05/09/23	3 13:00						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		100	ug/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Reco	wery: 95 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			102 %	5(0-150 %							
LCS (23E0374-BS2)		Prepared:	05/09/23 12:	00 Analyz	zed: 05/09/23	3 12:38						
NWTPH-Gx (MS)												
Gasoline Range Organics	521		100	ug/L	1	500		104	80 - 120%			
Surr: 4-Bromofluorobenzene (Sur)		Recov	ery: 102 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			103 %	50	0-150 %		"					

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: [none]

Project Manager: Dan Hatch

<u>Report ID:</u> A3E1138 - 05 26 23 1723

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX	Compou	Inds by E	PA 8260D	1					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23E0374 - EPA 5030C							Wate	er				
Blank (23E0374-BLK1)		Prepared:	05/09/23 12:0	00 Analyz	red: 05/09/23	3 13:00						
EPA 8260D												
Benzene	ND		0.200	ug/L	1							
Toluene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Recc	wery: 93 %	Limits: 80	7-120 %	Dilu	tion: 1x					
Toluene-d8 (Surr)			99 %	86	1-120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80)-120 %		"					
LCS (23E0374-BS1)		Prepared:	05/09/23 12:0	00 Analyz	ed: 05/09/23	3 12:16						
EPA 8260D				<u> </u>								
Benzene	17.3		0.200	ug/L	1	20.0		86	80 - 120%			
Toluene	18.3		1.00	ug/L	1	20.0		92	80 - 120%			
Ethylbenzene	20.5		0.500	ug/L	1	20.0		102	80 - 120%			
Xylenes, total	65.6		1.50	ug/L	1	60.0		109	80 - 120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	wery: 92 %	Limits: 80	7-120 %	Dilu	tion: 1x					
Toluene-d8 (Surr)			97 %	86)-120 %		"					
4-Bromofluorobenzene (Surr)			92 %	86)-120 %		"					

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: [none] Project Manager: Dan Hatch

<u>Report ID:</u> A3E1138 - 05 26 23 1723

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	etals by	EPA 6020	B (ICPMS	3)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23E0456 - EPA 3015A							Wate	er				
Blank (23E0456-BLK1)		Prepared:	05/10/23 11:2	6 Analyz	ed: 05/10/23	3 17:32						
EPA 6020B												
Arsenic	ND		1.00	ug/L	1							
Cadmium	ND		0.200	ug/L	1							
Chromium	ND		2.00	ug/L	1							
Lead	ND		0.200	ug/L	1							
Mercury	ND		0.0800	ug/L	1							
LCS (23E0456-BS1)		Prepared:	05/10/23 11:2	6 Analyz	ed: 05/10/23	3 17:38						
EPA 6020B												
Arsenic	55.7		1.00	ug/L	1	55.6		100 8	30 - 120%			
Cadmium	56.3		0.200	ug/L	1	55.6		101 8	80 - 120%			
Chromium	54.9		2.00	ug/L	1	55.6		99 s	30 - 120%			
Lead	58.7		0.200	ug/L	1	55.6		106 8	30 - 120%			
Mercury	1.01		0.0800	ug/L	1	1.11		91 8	30 - 120%			
				-								

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: [none] Project Manager: Dan Hatch

<u>Report ID:</u> A3E1138 - 05 26 23 1723

QUALITY CONTROL (QC) SAMPLE RESULTS

AnalyteDetection LimitReporting Spike UnitsSource Amount% REC% REC Limits% RECBatch 23E0770 - Matrix Matched Direct Inject< </th <th>RPD Limit</br></th> <th>Notes</th>	RPD 	Notes
Water Water Blank (23E0770 - Matrix Matched Direct Inject Water Blank (23E0770-BLK1) Prepared: 05/17/23 12:42 Analyzed: 05/17/23 17:07 EPA 6020B (Diss) Arsenic ND 1.00 ug/L 1		
Blank (23E0770-BLK1) Prepared: 05/17/23 12:42 Analyzed: 05/17/23 17:07 EPA 6020B (Diss) Arsenic ND 1.00 ug/L 1 <		
EPA 6020B (Diss) Arsenic ND 1.00 ug/L 1		
Arsenic ND 1.00 ug/L 1 <		
Cadmium ND 0.200 ug/L 1		
Chromium ND 2.00 ug/L 1		
Lead ND 0.200 ug/L 1		
Mercury ND 0.0800 ug/L 1		
LCS (23E0770-BS1) Prepared: 05/17/23 12:42 Analyzed: 05/17/23 17:12		
EPA 6020B (Diss)		
Arsenic 51.4 1.00 ug/L 1 55.6 92 80 - 120%		
Cadmium 56.5 0.200 ug/L 1 55.6 102 80 - 120%		
Chromium 54.1 2.00 ug/L 1 55.6 97 80 - 120%		
Lead 56.4 0.200 ug/L 1 55.6 101 80 - 120%		
Mercury 0.986 0.0800 ug/L 1 1.11 89 80 - 120%		
Duplicate (23E0770-DUP1) Prepared: 05/17/23 12:42 Analyzed: 05/17/23 17:22		
QC Source Sample: MW-1 (A3E1138-01RE1)		
EPA 6020B (Diss)		
Arsenic 66.1 1.00 ug/L 1 65.2 1	20%	
Cadmium ND 0.200 ug/L 1 ND	20%	
Chromium 3.15 2.00 ug/L 1 3.05 3	20%	
Lead ND 0.200 ug/L 1 ND	20%	
Mercury ND 0.0800 ug/L 1 ND	20%	
Matrix Spike (23E0770-MS1) Prepared: 05/17/23 12:42 Analyzed: 05/17/23 17:27		
QC Source Sample: MW-1 (A3E1138-01RE1)		
EPA 6020B (Diss)		
Arsenic 127 1.00 ug/L 1 55.6 65.2 112 75 - 125%		
Cadmium 57.1 0.200 ug/L 1 55.6 ND 103 75 - 125%		
Chromium 57.6 2.00 ug/L 1 55.6 3.05 98 75 - 125%		
Lead 53.7 0.200 ug/L 1 55.6 ND 97 75 - 125%		
Mercury 0.660 0.0800 ug/L 1 1.11 ND 59 75 - 125%		Q-01

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: [none] Project Manager: Dan Hatch

<u>Report ID:</u> A3E1138 - 05 26 23 1723

QUALITY CONTROL (QC) SAMPLE RESULTS

			Dissolved	Metals	by EPA 60	20B (ICP	MS)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23E1110 - Matrix Matcheo	Direct	inject					wate	ər				
Blank (23E1110-BLK1)		Prepared:	: 05/25/23 16:3	8 Analyz	ed: 05/25/2	3 19:39						
EPA 6020B (Diss) Arsenic	ND		1.00	ug/L	1							FILT3
LCS (23E1110-BS1)		Prepared	: 05/25/23 16:3	8 Analyz	ed: 05/25/2	3 19:44						
EPA 6020B (Diss) Arsenic	52.5		1.00	ug/L	1	55.6		94 8	80 - 120%			
Duplicate (23E1110-DUP1)		Prepared	: 05/25/23 16:3	8 Analyz	ed: 05/25/2	3 19:54						
QC Source Sample: MW-2 (0.45 um EPA 6020B (Diss)	n) (A3E11.	<u>38-07)</u>										
Arsenic	3.74		3.00	ug/L	1		3.72			0.5	20%	FILT1
Matrix Spike (23E1110-MS1)		Prepared	: 05/25/23 16:3	8 Analyz	ed: 05/25/2.	3 20:03						
QC Source Sample: MW-5 (0.45 um EPA 6020B (Diss)	n) (A3E11.	<u>38-09)</u>										
Arsenic	123		2.25	ug/L	1	125	3.33	95 7	5 - 125%			FILT1

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: [none] Project Manager: Dan Hatch

<u>Report ID:</u> A3E1138 - 05 26 23 1723

QUALITY CONTROL (QC) SAMPLE RESULTS

			Dissolved	Metals	by EPA 60	20B (ICP	MS)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23E1112 - Matrix Matchee	d Direct I	Inject					Wate	ər				
Blank (23E1112-BLK1)		Prepared	: 05/25/23 16:4	2 Analyz	ed: 05/25/2	3 20:13						
EPA 6020B (Diss) Arsenic	ND		3.00	ug/L	1							FILT3a
LCS (23E1112-BS1)		Prepared	: 05/25/23 16:4	2 Analyz	ed: 05/25/2	3 20:18						
EPA 6020B (Diss) Arsenic	156		3.00	ug/L	1	167		94 8	30 - 120%			
Duplicate (23E1112-DUP1)		Prepared	: 05/25/23 16:4	2 Analyz	ed: 05/25/2	3 20:38						
QC Source Sample: MW-2 (0.22 un EPA 6020B (Diss)	n) (A3E11.	<u>38-08)</u>										
Arsenic	ND		3.46	ug/L	1		3.09			***	20%	FILT1, R-03
Matrix Spike (23E1112-MS1)		Prepared	: 05/25/23 16:4	2 Analyz	ed: 05/25/2	3 20:48						
QC Source Sample: MW-5 (0.22 un EPA 6020B (Diss)	n) (A3E11;	<u>38-10)</u>										
Arsenic	164		3.00	ug/L	1	167	1.71	97 7	75 - 125%			FILT1

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street Kent, WA 98042 Project:Auburn VWProject Number:[none]Project Manager:Dan Hatch

<u>Report ID:</u> A3E1138 - 05 26 23 1723

QUALITY CONTROL (QC) SAMPLE RESULTS

Тс	otal Organic	Carbon (N	lon-Purgea	ble) by l	Persulfate	Oxidatio	n by Star	ndard Me	thod 531	0C		
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23E0387 - Method Pr	ep: Aq						Wate	er				
Blank (23E0387-BLK1)		Prepared	: 05/09/23 11:0)1 Analyz	zed: 05/09/2	3 15:23						
<u>SM 5310 C</u>												
Total Organic Carbon	ND		1000	ug/L	1							
LCS (23E0387-BS1)		Prepared	: 05/09/23 11:0)1 Analyz	zed: 05/09/2	3 15:53						
SM 5310 C												
Total Organic Carbon	10200		1000	ug/L	1	10000		102	90 - 114%			

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: [none]

Project Manager: Dan Hatch

<u>Report ID:</u> A3E1138 - 05 26 23 1723

QUALITY CONTROL (QC) SAMPLE RESULTS

			Solid a	nd Mois	ture Dete	rmination	S					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23E0409 - Total Dissolv	ed Solids	- 2022					Wat	er				
Blank (23E0409-BLK1)		Prepared	05/09/23 18:1	0 Analyz	zed: 05/09/2.	3 18:10						
<u>SM 2540 C</u>											<u> </u>	
Total Dissolved Solids	ND		5000	ug/L	1							
Reference (23E0409-SRM1)		Prepared	05/09/23 18:1	0 Analyz	zed: 05/09/2	3 18:10						
<u>SM 2540 C</u>												
Total Dissolved Solids	2520			mg/L	1	2320		109	81 - 119%			

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: [none] Project Manager: Dan Hatch

<u>Report ID:</u> A3E1138 - 05 26 23 1723

QUALITY CONTROL (QC) SAMPLE RESULTS

Solid and Moisture Determinations												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23E0488 - Total Suspe	nded Solid	s - 2022					Wat	er				
Blank (23E0488-BLK1)		Prepared	: 05/11/23 16:3	34 Analyz	zed: 05/11/2	3 16:34						
<u>SM 2540 D</u>												
Total Suspended Solids	ND		5000	ug/L	1							
Reference (23E0488-SRM1)		Prepared	: 05/11/23 16:3	34 Analyz	zed: 05/11/2	3 16:34						
<u>SM 2540 D</u>												
Total Suspended Solids	890			mg/L	1	926		96.1	85 - 116%			

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: [none]

Project Manager: Dan Hatch

<u>Report ID:</u> A3E1138 - 05 26 23 1723

QUALITY CONTROL (QC) SAMPLE RESULTS

Solid and Moisture Determinations												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23E0538 - Total Dissolv	ed Solids	- 2022					Wat	ər				
Blank (23E0538-BLK1)		Prepared:	05/11/23 18:4	9 Analyz	zed: 05/11/23	3 18:49						
<u>SM 2540 C</u>		. <u></u> .										
Total Dissolved Solids	ND		5000	ug/L	1							
Reference (23E0538-SRM1)		Prepared:	05/11/23 18:4	9 Analyz	zed: 05/11/23	3 18:49						
<u>SM 2540 C</u>												
Total Dissolved Solids	2480			mg/L	1	2340		106	82 - 118%			

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: [none] Project Manager: Dan Hatch

<u>Report ID:</u> A3E1138 - 05 26 23 1723

SAMPLE PREPARATION INFORMATION

Diesel and/or Oil Hydrocarbons by NWTPH-Dx										
Prep: EPA 3510C (I	Fuels/Acid Ext.)				Sample	Default	RL Prep			
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor			
Batch: 23E0480										
A3E1138-01	Water	NWTPH-Dx LL	05/04/23 10:45	05/11/23 10:44	1040mL/2mL	1000mL/2mL	0.96			
A3E1138-02	Water	NWTPH-Dx LL	05/04/23 10:05	05/11/23 10:44	1040mL/2mL	1000mL/2mL	0.96			
A3E1138-03	Water	NWTPH-Dx LL	05/04/23 12:45	05/11/23 10:44	1040mL/2mL	1000mL/2mL	0.96			
A3E1138-04	Water	NWTPH-Dx LL	05/04/23 12:00	05/11/23 10:44	1030mL/2mL	1000mL/2mL	0.97			
A3E1138-05	Water	NWTPH-Dx LL	05/04/23 11:25	05/11/23 10:44	1040mL/2mL	1000mL/2mL	0.96			
A3E1138-06	Water	NWTPH-Dx LL	05/04/23 12:50	05/11/23 10:44	1040mL/2mL	1000mL/2mL	0.96			

	Diesel and/or Oil Hydrocarbons by NWTPH-Dx with Silica Gel Column Cleanup										
Prep: EPA 3510C (I	Fuels/Acid Ext.) w/Silica Gel Column			Sample	Default	RL Prep				
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor				
Batch: 23E0826											
A3E1138-01	Water	NWTPH-Dx/SGC	05/04/23 10:45	05/11/23 10:44	1040mL/2mL	1000mL/2mL	0.96				
A3E1138-02	Water	NWTPH-Dx/SGC	05/04/23 10:05	05/11/23 10:44	1040mL/2mL	1000mL/2mL	0.96				
A3E1138-03	Water	NWTPH-Dx/SGC	05/04/23 12:45	05/11/23 10:44	1040mL/2mL	1000mL/2mL	0.96				
A3E1138-04	Water	NWTPH-Dx/SGC	05/04/23 12:00	05/11/23 10:44	1030mL/2mL	1000mL/2mL	0.97				
A3E1138-05	Water	NWTPH-Dx/SGC	05/04/23 11:25	05/11/23 10:44	1040mL/2mL	1000mL/2mL	0.96				
A3E1138-06	Water	NWTPH-Dx/SGC	05/04/23 12:50	05/11/23 10:44	1040mL/2mL	1000mL/2mL	0.96				

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx											
Prep: EPA 5030C					Sample	Default	RL Prep				
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor				
Batch: 23E0374											
A3E1138-01	Water	NWTPH-Gx (MS)	05/04/23 10:45	05/09/23 12:00	5mL/5mL	5mL/5mL	1.00				
A3E1138-02	Water	NWTPH-Gx (MS)	05/04/23 10:05	05/09/23 12:00	5mL/5mL	5mL/5mL	1.00				
A3E1138-03	Water	NWTPH-Gx (MS)	05/04/23 12:45	05/09/23 12:00	5mL/5mL	5mL/5mL	1.00				
A3E1138-04	Water	NWTPH-Gx (MS)	05/04/23 12:00	05/09/23 12:00	5mL/5mL	5mL/5mL	1.00				
A3E1138-05	Water	NWTPH-Gx (MS)	05/04/23 11:25	05/09/23 12:00	5mL/5mL	5mL/5mL	1.00				
A3E1138-06	Water	NWTPH-Gx (MS)	05/04/23 12:50	05/09/23 12:00	5mL/5mL	5mL/5mL	1.00				

BTEX Compounds by EPA 8260D									
Prep: EPA 5030C					Sample	Default	RL Prep		
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor		
Batch: 23E0374									

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Cameron O'Brien, Project Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: [none]

Project Manager: Dan Hatch

<u>Report ID:</u> A3E1138 - 05 26 23 1723

SAMPLE PREPARATION INFORMATION

	BIEX Compounds by EPA 8260D											
Prep: EPA 5030C					Sample	Default	RL Prep					
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor					
A3E1138-01	Water	EPA 8260D	05/04/23 10:45	05/09/23 12:00	5mL/5mL	5mL/5mL	1.00					
A3E1138-02	Water	EPA 8260D	05/04/23 10:05	05/09/23 12:00	5mL/5mL	5mL/5mL	1.00					
A3E1138-03	Water	EPA 8260D	05/04/23 12:45	05/09/23 12:00	5mL/5mL	5mL/5mL	1.00					
A3E1138-04	Water	EPA 8260D	05/04/23 12:00	05/09/23 12:00	5mL/5mL	5mL/5mL	1.00					
A3E1138-05	Water	EPA 8260D	05/04/23 11:25	05/09/23 12:00	5mL/5mL	5mL/5mL	1.00					
A3E1138-06	Water	EPA 8260D	05/04/23 12:50	05/09/23 12:00	5mL/5mL	5mL/5mL	1.00					

	Total Metals by EPA 6020B (ICPMS)										
Prep: EPA 3015A					Sample	Default	RL Prep				
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor				
Batch: 23E0456											
A3E1138-01	Water	EPA 6020B	05/04/23 10:45	05/10/23 11:26	45mL/50mL	45mL/50mL	1.00				
A3E1138-02	Water	EPA 6020B	05/04/23 10:05	05/10/23 11:26	45mL/50mL	45mL/50mL	1.00				
A3E1138-03	Water	EPA 6020B	05/04/23 12:45	05/10/23 11:26	45mL/50mL	45mL/50mL	1.00				
A3E1138-04	Water	EPA 6020B	05/04/23 12:00	05/10/23 11:26	45mL/50mL	45mL/50mL	1.00				
A3E1138-05	Water	EPA 6020B	05/04/23 11:25	05/10/23 11:26	45mL/50mL	45mL/50mL	1.00				
A3E1138-06	Water	EPA 6020B	05/04/23 12:50	05/10/23 11:26	45mL/50mL	45mL/50mL	1.00				

Dissolved Metals by EPA 6020B (ICPMS)

Prep: Matrix Match	ed Direct Inject				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23E0770							
A3E1138-01RE1	Water	EPA 6020B (Diss)	05/04/23 10:45	05/17/23 12:42	45mL/50mL	45mL/50mL	1.00
A3E1138-02	Water	EPA 6020B (Diss)	05/04/23 10:05	05/17/23 12:42	45mL/50mL	45mL/50mL	1.00
A3E1138-03	Water	EPA 6020B (Diss)	05/04/23 12:45	05/17/23 12:42	45mL/50mL	45mL/50mL	1.00
A3E1138-04	Water	EPA 6020B (Diss)	05/04/23 12:00	05/17/23 12:42	45mL/50mL	45mL/50mL	1.00
A3E1138-05	Water	EPA 6020B (Diss)	05/04/23 11:25	05/17/23 12:42	45mL/50mL	45mL/50mL	1.00
A3E1138-06	Water	EPA 6020B (Diss)	05/04/23 12:50	05/17/23 12:42	45mL/50mL	45mL/50mL	1.00
Batch: 23E1110							
A3E1138-07	Water	EPA 6020B (Diss)	05/04/23 10:05	05/25/23 16:38	15mL/50mL	45mL/50mL	3.00
A3E1138-09	Water	EPA 6020B (Diss)	05/04/23 11:25	05/25/23 16:38	20mL/50mL	45mL/50mL	2.25
Batch: 23E1112							
A3E1138-08	Water	EPA 6020B (Diss)	05/04/23 10:05	05/25/23 16:42	13mL/50mL	45mL/50mL	3.46
A3E1138-10	Water	EPA 6020B (Diss)	05/04/23 11:25	05/25/23 16:42	15mL/50mL	45mL/50mL	3.00

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: [none]

Project Manager: Dan Hatch

<u>Report ID:</u> A3E1138 - 05 26 23 1723

SAMPLE PREPARATION INFORMATION

	Dissolved Metals by EPA 6020B (ICPMS)										
Total Organic Carbon (Non-Purgeable) by Persulfate Oxidation by Standard Method 5310C											
Prep: Method Prep	: Aq				Sample	Default	RL Prep				
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor				
Batch: 23E0387											
A3E1138-01	Water	SM 5310 C	05/04/23 10:45	05/09/23 11:01	40mL/40mL	40mL/40mL	1.00				
A3E1138-02	Water	SM 5310 C	05/04/23 10:05	05/09/23 11:01	40mL/40mL	40mL/40mL	1.00				
A3E1138-03	Water	SM 5310 C	05/04/23 12:45	05/09/23 11:01	40mL/40mL	40mL/40mL	1.00				
A3E1138-04RE1	Water	SM 5310 C	05/04/23 12:00	05/09/23 11:01	40mL/40mL	40mL/40mL	1.00				
A3E1138-05	Water	SM 5310 C	05/04/23 11:25	05/09/23 11:01	40mL/40mL	40mL/40mL	1.00				
A3E1138-06	Water	SM 5310 C	05/04/23 12:50	05/09/23 11:01	40mL/40mL	40mL/40mL	1.00				

		Sol	id and Moisture Dete	erminations			
Prep: Total Dissolv	ed Solids - 2022				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23E0409							
A3E1138-01	Water	SM 2540 C	05/04/23 10:45	05/09/23 18:10			NA
A3E1138-02	Water	SM 2540 C	05/04/23 10:05	05/09/23 18:10			NA
Batch: 23E0538							
A3E1138-03	Water	SM 2540 C	05/04/23 12:45	05/11/23 18:49			NA
A3E1138-04	Water	SM 2540 C	05/04/23 12:00	05/11/23 18:49			NA
A3E1138-05	Water	SM 2540 C	05/04/23 11:25	05/11/23 18:49			NA
A3E1138-06	Water	SM 2540 C	05/04/23 12:50	05/11/23 18:49			NA
Prep: Total Suspen	ded Solids - 202	2			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23E0488							
A3E1138-01	Water	SM 2540 D	05/04/23 10:45	05/11/23 16:34			NA
A3E1138-02	Water	SM 2540 D	05/04/23 10:05	05/11/23 16:34			NA
A3E1138-03	Water	SM 2540 D	05/04/23 12:45	05/11/23 16:34			NA
A3E1138-04	Water	SM 2540 D	05/04/23 12:00	05/11/23 16:34			NA
A3E1138-05	Water	SM 2540 D	05/04/23 11:25	05/11/23 16:34			NA
A3E1138-06	Water	SM 2540 D	05/04/23 12:50	05/11/23 16:34			NA

			Lab Filtration				
Prep: Lab Filtration					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: [none] Project Manager: Dan Hatch

<u>Report ID:</u> A3E1138 - 05 26 23 1723

SAMPLE PREPARATION INFORMATION

	Lab Filtration									
Prep: Lab Filtratio	on				Sample	Default	RL Prep			
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor			
Batch: 23E0987										
A3E1138-07	Water	NA	05/04/23 10:05	05/23/23 16:27	30mL/30mL		NA			
A3E1138-09	Water	NA	05/04/23 11:25	05/23/23 16:41	40mL/40mL		NA			
Batch: 23E0988										
A3E1138-08	Water	NA	05/04/23 10:05	05/23/23 16:15	27mL/27mL		NA			
A3E1138-10	Water	NA	05/04/23 11:25	05/23/23 16:41	32mL/32mL		NA			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Cameron O'Brien, Project Manager

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: [none]

Project Manager: Dan Hatch

<u>Report ID:</u> A3E1138 - 05 26 23 1723

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

- F-13 The chromatographic pattern does not resemble the fuel standard used for quantitation FILT1 Sample was lab filtered and acid preserved prior to analysis. See sample preparation section of report for date and time of filtration. FILT3 This is a laboratory filtration blank, associated with filtration batch 23E0987. See Prep page of report for associated samples. This is a laboratory filtration blank, associated with filtration batch 23E0988. See Prep page of report for associated samples. FILT3a H-06 This sample was received, or the analysis requested, outside the recommended holding time. Q-01 Spike recovery and/or RPD is outside acceptance limits. Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for **O-19** analysis. Q-42 Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control limits. (Refer to the QC Section of Analytical Report.)
- **R-03** Elevated Reporting Limits due to limited sample volume.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project: <u>Auburn VW</u>

Project Number: [none] Project Manager: Dan Hatch <u>Report ID:</u> A3E1138 - 05 26 23 1723

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET	Analyte DETECTED	at or above the detection	or reporting limit.
DLI	Analyte DLTLeTLD	at of above the detection	or reporting mint.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported.

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ). If no value is listed ('-----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as " dry", " wet", or " " (blank) designation.

- <u>" dry"</u> Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry") See Percent Solids section for details of dry weight analysis.
- "wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.
- "___ Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) are not included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

- "--- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.
- "*** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL). -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier. -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW

20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: [none]

Project Manager: Dan Hatch

<u>Report ID:</u> A3E1138 - 05 26 23 1723

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: [none]

Project Manager: Dan Hatch

<u>Report ID:</u> A3E1138 - 05 26 23 1723

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Labo	<u>oratories</u>				
Matrix	Analysis	TNI_ID	Analyte	TNI_ID	Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation. Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW	Project: <u>Auburn VW</u>	
20204 SE 284th Street	Project Number: [none]	Report ID:
Kent, WA 98042	Project Manager: Dan Hatch	A3E1138 - 05 26 23 1723
Client: Project/Pro Delivery In Date/time ro Delivered b Cooler Insy Chain of Cu Signed/dated Temperature Custody seal Received on Temp. blanks Ice type: (Ge Condition (Ir Cooler out of Green dots ar Out of temper Sample Insp All samples in Bottle labels/0	APEX LABS COOLER RECEIPT FORM Blue done Env. Plement WO#: A3 E1136 opject #: A uburn VW file: Seceived: $55/23$ @. 030 seceived: $55/23$ @. 030 By: $T5^{\circ}$ y: Apex_Client_ESS_FodEx_UPS Kadio_Morgan_SDS_Evergroen_Other No seceived: $55/23$ @. 1033° By: $T5^{\circ}$ stody included? Yes No	
Containers/vo	umes received appropriate for analysis? Yes <u>No</u> Comments:	
Do VOA vials Comments <u>Mv</u> Water samples Comments: <u>Additional info</u>	have visible headspace? Yes X-No NA	
Labeled by:	Witness: 75 Cooler Inspected by: 5 = 55 Form Y-003 R-00) -

Apex Laboratories

FIELD EXPLORATION METHODS

Bluestone conducted the sampling in general accordance with Ecology's guidelines and regulations.

Underground Utility Clearance

Before conducting subsurface exploration and excavation remediation, Bluestone contacted the Washington Utilities Locate Center, a service that notifies public utilities of proposed subsurface investigations. Site public utilities were located and marked prior to the start of subsurface work. All below-grade utility locations were identified by marking their inferred location on the ground surface. This information was used to aid in identifying sampling locations.

Quality Assurance Quality Control

Quality Assurance/Quality Control (QA/QC) for the presented scope of work included generally accepted procedures for sample collection, storage, tracking, and documentation. All sampling equipment was washed and water rinse before the collection of the samples. Samples were placed into laboratory supplied containers. All samples were labeled with a project identifier, sample number, date, time, sampler name, and analytical method. Samples were placed and stored inside a cooler/shipping container packed with ice or an ice substitute. Appropriate chain-of-custody documentation was completed. All samples were delivered to an Ecology-certified analytical laboratory under chain-of-custody (COC) within their required holding times after being collected.

Direct Push Soil Sampling

- Subsurface soil sampling was accomplished utilizing direct push technology. Soil samples were recovered from each boring using a 60-inch long macro-core sampler. Inside the sampler is a disposable, PVC single-use sample tube. A core catcher was attached to the sampler to keep loose soil from escaping the liner when the sampler was withdrawn from the ground. The liner was removed from the sampler and cut open to allow logging and sampling of the soil core. The core sampler, including the cutting tip and rods, was decontaminated, and a new liner placed in the core sampler between each use.
- After the liner was cut, the soil type was evaluated by the Bluestone field representative and recorded into a soil boring log. Soils were observed and categorized for grain-size, color, presence of artifacts, moisture, odor, staining, sheen, and any other indications of contamination. The soil core retained in the

sample liner was field-screened by visually inspecting the soil for staining and other evidence of contaminants. Soil samples were collected where indications of contamination were observed or from where contamination would likely be present (i.e. at the groundwater interface). All soil samples were collected in accordance with U.S. Environmental Protection Agency (EPA) Method 5035A.

- Collected samples were labeled with a sample number, date, time, and sampler's name and stored in an ice chest containing frozen "blue ice." Chain-of-custody procedures were followed to document sample handling. Samples were transported to an Ecology approved laboratory within 48 hours.
- Upon completion of each soil boring the resulting hole was either backfilled with bentonite (hydrated with a small amount of water) and the ground surface restored to match original or a monitoring well was installed.

Groundwater Monitoring Well Construction

If installed, groundwater monitoring wells were completed in the following manner:

- The well casing materials consisted of 2-inch-diameter, flush-threaded, schedule 40 PVC pipe.
- The screened interval of the well casing was perforated with either 0.010 or 0.020-inch factory-cut slots.
- The filter pack for the well consisted of clean, 10/20 Colorado Silica Sand.
- The annular seal of the well consisted of granulated Wyoming Bentonite.
- All PVC casing materials were cleaned at the factory before installation.
- The bottom of the well casing was sealed with a threaded or slip sediment cup. Blank (non-slotted) riser casing was used to extend the well from the top of the screened interval to ground surface. The length of the screened interval is identified on the boring logs.
- Well construction was accomplished by lowering the casing, into the completed boring, through the inside of the hollow-stem augers. The augers were withdrawn from the boring about three feet at a time, allowing for the resulting annular space around the well screen to be backfilled with sand (poured through the top of the hollow-stem augers). This process was repeated until the filter pack was installed to about two feet above the top of the screened interval. The augers were completely withdrawn from the boring, and the annular space around the blank riser was backfilled with granulated bentonite to the depth shown on the boring logs.
- The well casing was sealed at the ground surface with a watertight expansion cap or PVC slip cap.

- A tamper-resistant steel cover was set over the well, flush to the ground surface. The cover was grouted in place with concrete.
- A reference point was marked on the top of the PVC well casing for consistent groundwater depth measurements.
- The well identification was written on a waterproof tag and placed inside the well box.

Well Development, Surge Block / Over Pumping

Well development efforts were completed on the newly installed groundwater monitoring well after a minimum of 24-hours. This allowed sufficient time for the well materials to cure before development procedures were initiated. The main purpose of developing new monitoring wells is to remove the residual materials remaining in the wells after installation has been completed, and to establish the natural hydraulic flow conditions of the formations which may have been disturbed by well construction. Each new monitoring well was developed by continuous pumping until the pump discharge was free of visible turbidity. The main purpose of developing new monitoring wells is to re-establish the natural hydraulic flow conditions of the formations which may have been disturbed during well construction. Over pumping or removing water from the well at a rapid rate, was the devolvement technique used. Well development continued until the initially turbid water turned nearly clear.

Water Level Measurements in Wells

Water level measurements were referenced to the top of the well casing. The static water level was measured in each monitoring well using a water level indicator or an interface probe. The water level probe was lowered into the well until the instrument detected water. The cable on the indicator is laser-marked in 0.01-foot graduations with labels at 0.1-foot and 1.0-foot intervals.

Temporary Well Sampling, Direct-Push Method

Upon completion of the soil boring, well casing materials consisted of 1-inch PVC pipe with a five-foot section of screen at the bottom, was placed in the open borehole. A 1/4 inch-diameter, disposable, flexible polyethylene tubing was lowered into the well casing for the collection of the groundwater sample. A peristaltic pump was used to purge and sample each well. Purging was performed to remove suspended sediments and to stabilize well-screen materials.

Upon completion of the groundwater sampling, all well material was extracted. The resulting hole was backfilled with bentonite (hydrated with a small amount of water) and the ground surface restored to match original surface. The extracted Strata-probe rod was washed between boring locations and new tubing was used between sampling locations.

Monitoring Well Purging & Sampling

- Purging and Sampling was completed in general accordance with Ecology's Standard Operation Procedure EAP099, Version 1.0, Purging and Sampling Monitoring Wells for General Chemistry Parameters, dated April 2018 and EPA's Region 4 Groundwater Sampling Operating Procedure, dated April 26, 2017.
- Prior to purging, the cap(s) on the monitoring well(s) were removed, exposing the well(s) to the atmosphere, allowing the well to equilibrate for minimum of 5 to 10 minutes before collecting an initial depth to groundwater measurement and beginning purging activities.
- The water-level meter or interface probe was slowly lowered into the well to assess the depth to water and/or depth to product. If product was present, the thickness was measure via the interface probe and recorded on the purge log.

Purging Methods

- The wells were purged using a low-flow purge method, in which minimal drawdown was achieved by low-flow rates. The tubing was centrally located within the screen interval or approximately in the position correlating to the top one-half to one-third of the water column. Water quality parameters were observed and recorded using a YSI-556 multiparameter instrument. Water quality parameters were measured until they were observed to stabilize, specifically within 5%~ for pH and 10%~ for other parameters, e.g., DO and conductivity, for three consecutive readings, adequately low turbidity was achieved, and the drawdown change in water level was stabilized.
- During purging, sheen was assessed at each measurement interval by collecting a small quantity of purge water into a clean container.

Sampling Methods

Groundwater sampled using a peristaltic pump was completed using the following protocol:

- The thickness of the water column within the well was calculated by subtracting the depth to water from the total depth of the well.
- Water samples were obtained from the well casing following EPA low stress and purging procedures.
- The tubing was located within the top one-half to one-third of screen interval or approximately in a position correlating to the top one-half to one-third of the water column if water was found below the top of the well screen.
- The contract laboratory prepared the sample containers to conform to EPArecommended preservation techniques for the analytes of concern.
- Sample containers were open only as long as necessary to collect the samples.
- New tubing was slowly lowered into the water column.
- All purge water was collected for proper disposal (determined by analytical results).

Additionally, as a general practice, where applicable, sample containers for the more turbidity-sensitive analyses were filled first. Specifically, poly containers for metals analyses were filled first, followed by glass bottles for SVOCs, and finally40-ml VOAs for VOC analyses were filled last.

Purging and sampling equipment were cleaned/decontaminated between each sampling location/well using Alconox detergent in a water solution followed by rinsing in clean water.

Monitoring Well Purging and Sampling, Low Yield Wells Sample Method

For wells that experience significant drawdown and/or run dry even while using low pumping rates, the following protocol was utilized:

- For this sampling event, a peristaltic pump was used to sample all on-site monitoring wells.
- Due to low yield conditions, samples were collected without prior purging.
- Sample containers were open only as long as necessary to collect the samples.
- The contract laboratory prepared the sample containers to conform to EPArecommended preservation techniques for the analytes of concern.
- Collected samples were labeled with a sample number, date, and time, and stored in an ice chest containing frozen "blue ice". Chain-of-custody procedures were followed to document sample handling.
- Dedicated tubing was used at each sampling location.
- Before use, the sampling equipment was washed and rinsed.

Appendix D

	BLOWS/6 inches		SAMPLE NUMBER		SOIL DESCRIPTION	Recovery %	USCS	PID (ppmv in headspace)	WELL CONSTRUCTION	
0		· - ۲		Surface: As 0-3': FILL (odor.	sphalt (silt, sand, gravel), brown, dry, loose, no	60	FILL		Temporary Boring. Backfilled with	0
			R 1 5'	3-5': SILT\	/ SAND, fine grained, gray, dry, loose, no		ѕм	0.0	Bentonite	-
5		• \ \		5-13': SAN	IDY SILT interbedded with silty sand ay, moist to wet at 12', loose, no odor.	70	ML			5
			B-1-10'					0.0		
10			B-1-13'	13-15': SA	ND, fine to medium grained, dark brown,	2 100		0.0	-	1
			B-1-15'	wet, loose	, no odor.		SP	0.0	-	
15					EOB at 15					
20		• 								2
25										2
30										3(
	Drilling	g Metho	d: Direct Pus	sh	Date: 4/24/2022	Other I	nformatio	n:		1
	Drilling Company: Holocene Boring Diameter: Two inches Logged By: Dan Hatch			es	Weather: Sunny, mid 60s Page	Gral colle stee	o ground ected fro I screen	dwater sar m open b placed fr	nple (B-1-W) oring. Stainless om 8-12'.	
	B	LI	JES	FON NTAL,	Boring Log Auburn VW 3109 Auburn Way N Auburn, WA	orth			B-1	1

	BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SOIL DESCRIPTION		Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION	
				Surface-6":	Concrete]
0	6"-3': FIL odor.				(silt, sand, gravel), brown, dry, lo	ose, no	60	FILL		Temporary Boring. Backfilled with	- 0 - 0 - 0
		. . .	B-2-5'	3-5': SILT) odor.	✓ SAND, fine grained, gray, dry, lo	oose, no		SM	0.0	Bentonite	
5				5-13': SAN lenses, ligl	IDY SILT interbedded with silty sa nt gray, moist to wet at 12', loose,	nd no odor.	70	ML			5
		· × 7	B-2-10'						_ 0.0 _		1
			B-2-13'	13-15': SA	ND, fine to medium grained, dark	brown,	100		0.0		
5		· _ X	B-2-15'	wet, loose	, no odor.			SP	0.0		1
										•	
20											2
25											2
_										•	
30	 Dept	h in fe									- - 3
	Drilling Method: Direct Push Drilling Company: Holocene			sh	Date: 4/24/2022 Weather: Sunny, mid 60s		Other Information: Grab groundwater sample (B-2-W)				1
	Boring Logge	g Diamet d By:	^{ter:} Two inch Dan Hatch	ies	Page of		colle steel	collected from open boring. Stainless steel screen placed from 8-12'.			
	B		JES		Boring Log Auburn VW 3109 Auburn V	Vay No	rth			B-2	

	BLOWS/6 inches		SAMPLE NUMBER		SOI	L DESC	RIPTION			Recovery %	nscs	PID (ppmv in headspace)	С	WELL	TION
0		· - >-		Surface-6": 6"-3': FILL odor.	Concre (silt, sar	te	brown, dry	, loose, n	 0	40	FILL		— — — Т	emporary Bo Backfilled v	oring.
			B-3-5'	3-5': SILT	′ SAND,	fine graine	ed, gray, dr	y, loose, r	10		SM	0.0		Bentonit	e
5		· ** **		5-12': SAN	DY SILT	Γ interbedo moist to we	led with silty et at 12', loo	 / sand se, no od		 70	ML				
10		· X	B-3-10'									0.0			
10			B-3-12'	12-15': SA gray, wet,	ND, fine oose, no	to mediun o odor.	n grained, d	ark		90	SD.	0.2			
15		· _ \	B-3-15'					 EOB at	: 15'			0.0			
20		·		·											
25		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · ·											
30	Dept	h in fe	et												:
	Drilling Method: Direct Push Drilling Company: Holocene Boring Diameter: Two inches Logged By: Dan Hatch			Date: Weather Page	4/24/2022 : Sunny, r _1 of _	nid 60s 1			Other Information:						
	B		JES		IE	Borir Aubu 3109	ng Log Irn VW Auburi	ו Way	Noi	rth				В-:	3

	BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SOIL DESCRIPTION	Recovery %	uscs	PID (ppmv in headspace)	WELL CONSTRUCTION	
0		· - \		Surface-6": 6"-3': FILL odor.	Concrete (silt, sand, gravel), brown, dry, loose, no		FILL		Temporary Boring.	0
5		· \ \	B-4-5'	3-5': SILT) 	/ SAND, fine grained, light gray, dry, loos 		ѕм	0.0	Bentonite	5
10		• • •	B-4-10'				ML	_ 0.0	 	
			B-4-14' B-4-15'	14-15': SA	ND, fine to medium grained, dark brown,	100	SP	0.0 0.3	 	
15				wet, loose,	, no odor. EOB at 1	5'				
20										2
25	5									2
30	 Dept	Depth in feet								3
	Drillin Drillin Boring Logge	g Methoo g Compa g Diamet ed By: [d: Direct Pu my: Holocene er: Two inch Dan Hatch	sh e nes	Date: 4/24/2022 Weather: Sunny, mid 60s Page 1	Other In Grat colle stee	o ground cted fro screen	n: dwater sar om open b o placed fro	nple (B-4-W) oring. Stainless om 8-12'.	
	B		JES		Boring Log Auburn VW 3109 Auburn WA	lorth			B-4	

	BLOWS/6 inches		SAMPLE NUMBER		SOIL DESCRIPTION	Recovery %	USCS	PID (ppmv in headspace)	WELL CONSTRUCTION	
0		· – >		Surface-6": 6"-3': FILL odor.	Concrete(silt, sand, gravel), brown, dry, loose, no	 	FILL		Temporary Boring.	0
5	3-5': SIL B-5-5' no odor 5-13': S lenses,				Y SAND, fine grained, light gray, dry, loo	se, 		0.0	Bentonite	5
10		. × ×	B-5-10'				ML	_ <u>0.0</u> _	 	1(
		B-5-12' 14-15': SAND, fine to medium grained, dark gray, B-5-15' wet loose no odor					SP	0.0		
15		``````````````````````````````````````			EOB at	15'				
20										2(
25										- 2:
30	Depth in feet								 	- - - - 3(
	Drillin Drillin Boring Logge	illing Method: Direct Push rilling Company: Holocene oring Diameter: Two inches ogged By: Dan Hatch			Date: 4/24/2022 Weather: Sunny, mid 60s Page Of	Othe Gr CO Ste	Information ab groun lected fro el screer	n: dwater sai om open b n placed fr	mple (B-5-W) oring. Stainless om 8-12'.	
	B	LI VIR	JES ONMEI	FON NTAL,	NW Boring Log Auburn VW 3109 Auburn Way Auburn, WA	North			B-5	
	BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SOIL DESCRIPTION	Recovery %	uscs	PID (ppmv in headspace)	WELL CONSTRUCTION	
----	---	---	--	------------------------	--	-------------------------------	--	--	---	---
0		- - -		Surface-6": 	Concrete (silt, sand, gravel), brown, dry, loose, no					0
				odor. 3-5': SILT\	/ SAND, fine grained, light grav, drv, loos	40			Backfilled with Bentonite	
5			B-6-5'	no odor. 5-13': SAN	DY SILT interbedded with silty sand		SM			5
				lenses, ligl	nt gray, moist to wet at 12', loose, no odo	r. 80	ML			
0			B-6-10'							1
			B-6-13'	13-15': SA	ND, fine to medium grained, dark gray,	90		0.0	-	
5		🕹	B-6-15'				SP	0.0		1
									-	
0						 				2
:5						 				2
									- - -	
0	Dept	Ll h in fe		I		L	. L			3
	Drilling Drilling Boring Logge	g Metho g Compa g Diamet d By:	d: Direct Pus any: Holocene ter: Two inch Dan Hatch	sh Ies	Date: 4/24/2022 Weather: Sunny, mid 60s Page Of	Other Gra colle stee	nformation b ground ected fro el screen	n: dwater sar om open bo o placed fro	nple (B-6-W) oring. Stainless om 8-12'.	
	B		JES	TON	Boring Log Auburn VW 3109 Auburn Way	North			B-6	

	BLOWS/6 inches		SAMPLE NUMBER		SOI	L DESCR	IPTION		Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION	
0				Surface-6":	Concre	te 			 			 	
Ŭ				6"-3': FILL	(silt, sar	nd, gravel), b	orown, dry,	loose, no		FILL		Temporary Boring.	
			B-7-3'	3-4': SILTY	ŚAND,	fine grained	l, dark gray	, dry,	50		0.0	Backfilled with	
				loose, no c	odor.							Demonite	
5		-	B-7-5'	4-7': SILTY	SAND,	fine grained	with wood	debris and	 	<u>sm</u>		 	
Э				a gravel la	yer from	4.5 to 5', da	rk gray, mo	oist,	100				
			B-7-8'	7-8': SILT.	with wo	od debris. da	ark grav. m	oist.	100	ML	0.0		
		X		medium st	iff, no od	lor.		EOB at 8'					
10								· -				 	10
15								·				 	4 5
15													
20										 		 	20
20													
25												 	25
30	Dept	LL h in fe		I					L	L		 	30
	Drillin	g Method	d: Direct Pus	sh	Date:	7/20/2022			Other In	formatio	n:		-
	Drillin	g Compa	any: Holocene		Weather	sunny, mi	d 70s						
	Boring	g Diamet	er: Two inch	ies	Page	_1 of	1						
	Logge	d By:	Haley Carter										
	B	Ll	JES	TON	IE	Boring Aubur 3109 A	g Log 'n VW Auburn	Way No	orth	_		B-7	
	EN	VIR	ONME	NTAL, I	NW	Aubur	n, WA						

	WS/6 inches		PLE IBER						overy %	S	(ppmv in Ispace)			
	BLO	INTE	SAM NUN		SOI	L DESCF	RIPTION		Reco	nsc	PID (heac		WELL CONSTRUCTION	
				Surface-6":	Concre	te								
0		[[–]] [6"-3': FILL	(silt, sar	nd, gravel),	brown, dry	loose, no					Temporary Boring.	0
				odor.					50	FILL			Backfilled with	
			B-8-3'	3-4': SILT	Y SAND,	, fine graine	ed, dark gra	y, dry,	. 50		0.1		Bentonite	
		$ \downarrow \downarrow $	B 9 5'		odor.	fina araina			-		0.0			
5		╏╋╌╏		4-7: SILT	r <u>SAND</u>		t medium a	tiff no odor	+	<u></u>				5
-				1011 4.5 10	, uai N	r gray, mois	i, mealann a		100					
			B-8-8'	7-8': SILT,	dark gra	ay, moist, m	nedium stiff,	no odor.	•	ML	0.0			
								EOB at 8'						
									L	L				
10									-					10
									-					
									-					
									-					
15		ł – – ł							+					15
									-					
									-					
									_					
									L	L				
20									-					20
									-					
									-					
									-					
25		ł – – ł												25
									-					
									-					
		ll		<u> </u>					L	L	L			
30	Dept	h in fe	et											30
	Drillin	g Metho	d: Direct Pu	sh	Date:	7/20/2022			Other In	formatio	n:			
	Drillin	g Compa	any: Holocene	!	Weather	r: Sunny, m	nid 70s							
	Boring	g Diamet	er: Two inch	nes	Page _	1 of	1		ļ					
	Logge	ed By:	Haley Carter											_
			62			Rorin								
	B	Ll	J ES	TON	IE	Aubu	rn VW		rth				B-8	
	EN	VIR	ONME	NTAL,	NW	Aubu	rn, WA	i way NC	<i></i>					

	WS/6 inches		PLE IBER						overy %	S	(ppmv in Ispace)			
	BLO	IN TE	SAN NUN		SOI	L DESCF	RIPTION		Rec	nsc	PID	с		
		- *		Surface-6":	Concre	te								
0			B-9-3'	6"-3': FILL odor. 3-4': SILTY	(silt, sar ′ SAND,	nd, gravel), , fine graine	brown, dry d, dark gra	, loose, no y, dry,	50	FILL	0.1		Temporary Boring. Backfilled with Bentonite	
		\mathbf{y}	B-0-5'		odor.	fino graino	d and a gra	wollower			0.0			
5				from 4 to 4 odor.	.25', dar	rk gray, moi	st, medium	stiff, no	100	<u>_ 5M</u>	_ <u>0.0</u> _			5
			B-9-8'	7-8': SILT,	dark gra	ay, moist, m	iedium stiff,	no odor. EOB at 8'		ML	0.0			
10									· -					- 10
15														15
20		·		·					· -					- 20
25														25
30														
	Dept	a Metho	d: Direct Pu	sh	Date:	7/20/2022			Other In	formatio	n:			
	Drillin Boring Logge	g Compa g Diamet ed By:	any: Holocene er: Two inch Haley Carter	nes	Weather	:: Sunny, m _1 of	iid 70s 1			iomato				
	B	JJ	JES	TON	IE	Borin Aubu	g Log rn VW Auburr	Way N	orth				B-9	
	EN	VIR	ONME	NTAL,	NW	Aubu	rn, WA		1					

	b-10.vs	dx							_	-				
	BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SOIL	_ DESCRI	PTION		Recovery %	USCS	PID (ppmv in headspace)	(WELL CONSTRUCTION	
				Surface-6"	Concret	e								
0		· - `		6"-3' FILL	(silt san		rown dry l		+					0
				odor.	(0, 0.0	u, g.u.o./, p.	,,,		-	FILL			Temporary Boring.	
			B-10-3'	3-4' SILT	SAND	fine grained	with plastic	: debris	50		0.0		Backfilled with	
				dark grav	dry loos	e no odor	initi piseti		-		0.0		Bentonite	
		$\lambda \star$	B-10-5'	4-7' [.] SII T	with fine	grained sand	d and a gra	vel laver	-		49			
5		·	B-10-6'	from 4 5 to	4 75' an	d an asnhalt	laver from	5 to 5 2'		⊢	$-\frac{4.5}{0.0}$			5
				dark grav	moist m	edium stiff n	nayer nem	0100.2,	100		0.0			
			B-10-8'	7-8'- SII T	dark ara	v moist me	dium stiff r	no odor	-		0.0			
		۲.		7-0. SIL1,	uaik yia	y, moist, me	ulum sun, i	EOB at 8'	-		0.0			
									-					
10									+					- 10
									-					
									-					
									-					
									-					
15										⊢ − −				- 15
15									-					
									-					
									-					
									-					
~ ~									L	L				
20									-					20
									-					
									_					
25									Γ	_				25
									-					
									-					
									-					
									-					
30	Dept	h in fe								-		•		30
														_
	Drillin	g Metho	d: Direct Pu	sh	Date: 7	//20/2022			Other In	formatio	n:			
	Drillin	g Comp	any: Holocene)	Weather:	Sunny, mid	170s							
	Boring	g Diame	ter: Two inch	nes	Page	<u>1</u> of <u>1</u>								
	Logge	d By:	Haley Carter											
					Ī	Devin								
		ГТ	TTO	TON	TT	воring	LOG							
	Б		JES	IUI		Aubur	n v vv		, -				B-10	
		1777	ONIN			3109 A	uburn	Way No	orth					
	ΕN	VIk	ONME.	NIAL,	IN VV	Aubur	n, WA							

1	b-11.vs	dx												_
	BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SOI	LDESCR	IPTION		Recovery %	USCS	PID (ppmv in headspace)		WELL CONSTRUCTION	
				Surface 6"	Conorol	to								
0		·-``				- $ -$			+	<u> </u>				0
•				odor	(SIIL, SAI	iu, graver), b	nown, ary,		-	FILL			Temporary Boring.	
			B-11-3'			fine grained	dork grou	dnu	40		0.0		Backfilled with	
			D-11-0		SAND,	line grained	, uaik gray	, ury,		SM	0.0		Bentonite	
		$\lambda 1$	B_11_5'		with fine	grained con	d and waa	d dobrio		511				
5				4-7 . SIL I					+		0.0 _			5
•				graver laye		10 4.25 , dar	k gray, mo	ist, mealum	100	ML				
			P 11 9'		or.	• •			. 100					
		۲.	D-11-0	7-8': SIL1,	dark gra	ay, moist, me	edium stiff,	no odor.			0.0			
								EOB at 8'						
10		·							<u></u>					110
10														
15									Γ					15
									-					
									•					
20									+					20
20														
									$L_{}$	L				
25									Γ	Г – –				25
									1					
30		L h in fo							L	L		 		30
	Dehr		el											
	Drillin	g Metho	d: Direct Pu	sh	Date:	7/20/2022			Other In	formatio	n:			
	Drillin	g Comp	any: Holocene)	Weather	Sunny, mi	d 70s							
	Boring	g Diame	ter: Two incl	nes	Page	1 of	1							
	Logge	d By:	Haley Carter											
												_		
	_	_			_	Borind	g Log							
	R	ΓT	PC	IN		Aubur	n VŴ							
	D.			TOL		3109 4	uhurn	Way No	orth				B-11	
	FN	VIE	ONME	NTAL	NM	Δ	n M/A	Tuy NU						
	111	V II	CITIL.	м тиц, .		Aubul	11, VVA							

	b-12.vs	dx												
	BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SOI	L DESCF	RIPTION		Recovery %	uscs	PID (ppmv in headspace)		WELL CONSTRUCTION	N
				Surface-6"	Concre	to								
0		 −`₹		6"-3' FILL		d gravel)	brown dry							· – – o
-				odor	(511, 541	ia, graver),	brown, dry	, 10030, 110		FILL			Temporary Boring.	
	•••••		B-12-3'	3_1'. SILT		fine graine	d dark ara	v drv	40		0.0		Backfilled with	•••
			5 12 0		dor		a, uark gra	y, ury,		SM	0.0		Bentonite	
		$ \downarrow \downarrow$	B-12-5'		with fine	arained sa	nd with wo	od and			0.0			
5		+ + -				yel laver fro	m 4 to 4 2				<u> </u>			
-				dry modiu	m ctiff n		JIII 4 10 4.2.	, uaik giay,	100	ML				
			B-12-8'		dorle are									
			0120	7-8: SIL1,	dark gra	ay, moist, m	ieaium stim				0.0			
								EOB at 8						
10										├				· ₁₀
								•••••	•••					
15				.						┣				· ,,
15														
								••••••						
										$L_{}$	L			
20														20
25										F				
								••••••						
30	Dept	h in fe	 et									·		
					1									
	Drillin	g Metho	d: Direct Pu	sh	Date:	7/20/2022			Other Ir	nformatio	n:			
	Drillin	g Comp	any: Holocene)	Weather	· Sunny, m	nid 70s		4					
	Boring	g Diame	ter: Two inch	nes	Page	_1 of	1		4					
	Logge	d By:	Haley Carter											
			69			D	a							
	B	Ll	JES	TON	IE	Aubu	ng Log rn VW		orth				B-12	
	FN	VIL	ONME	NTAI	NIM	J103		i way in	orui					
	LIV	VII	CONFIL.	NIAL,		AUDU	111, V VA							

1	b-13.vs	dx												_
	BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SOIL	DESCRIP	TION		Recovery %	uscs	PID (ppmv in headspace)	С	WELL	
				Surface-6"	Concrete									
0		·-∖		6"-3' FILL										0
				odor.	(ont, ourie	, graver), bro	wii, diy, io	000, 110		FILL		T	Cemporary Boring.	
			B-13-3'	3-4': SILT	SAND. f	ine arained. d	ark grav. o	drv.	50		0.0		Backfilled with	
				loose, no d	odor.	J ,				SM			Bentonite	
		78	B-13-5'	4-8': SILT	with fine g	rained sand,	gravel laye	er from 4			0.0			
5				to 4.5', dai	k gray, dr	y, medium stil	<u> </u>	- 						5
									100					
			B-13-8'								0.0			
		`					E	EOB at 8'						
10														10
15														15
20														20
										L				
25														25
				<u> </u>					L	L				
30	Dept	h in fe	et											30
	Drillin	g Metho	d: Direct Pu	sh	Date: 7	/20/2022			Other In	formatio	1:			
	Drillin	g Comp	any: Holocene	9	Weather:	Sunny, mid 7	'0s							
	Boring	g Diame	er: Two incl	nes	Page	1 of1								
	Logge	d By:	Haley Carter											
					·							-		
	B	Ll	JEŚ	TON	IE	Boring I Auburn	Log VW						B-13	
	ΓN	VID	ONME	NTAL	NIXAZ	3109 AU		way NO	nun					
	EN	VIR	ONME.	NIAL,		Auburn,	, VVA							

	b-14.vs	dx												_
	BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SOI	L DESCR	RIPTION		Recovery %	USCS	PID (ppmv in headspace)	(WELL CONSTRUCTION	
				Surface-6"	Concre	te								
0		· - `		6"-3'· FILL	(silt sar				+					· - 0
				odor.	(,	, g,,	,	,		FILL			Realifiliad with	
			B-14-3'	3-4': SILTY	SAND,	fine graine	d, dark grav	v, dry,	40		0.0		Backfilled with	
				loose, no d	odor.				-	SM			Bentonite	
		78	B-14-5'	4-7': SILT	with fine	grained sa	nd and a gr	avel layer	-		0.0			
5				from 4 to 4	 .5', dark	 gray, dry, r	nedium stift	- <u>– – –</u> – – , no odor.		►				5
									100					
			B-14-8'	7-8': SILT,	dark gra	ay, moist, m	edium stiff,	no odor.	-		0.0			
		X		· · · · · · · · · · · · · · · · · · ·	5		·····	EOB at 8'	-					
									-					
10									+					^{· _} 10
									-					
									-					
									-					
									-					
15		· – –		-	·				+					· - 15
									-					
									-					
									-					
									-					
~~										-				
20									-					20
									-					
										L				
25														25
									-					
									-					
30	Dept	h in fe							-	-	_			30
	•								. – –					_
	Drillin	g Metho	d: Direct Pu	sh	Date:	7/20/2022			Other Ir	ofrmatio	n:			
	Drillin	g Comp	any: Holocene	9	Weather	· Sunny, m	id 70s							
	Boring	g Diame	ter: Two incl	hes	Page	_1 of	1		-					
	Logge	d By:	Haley Carter											_
					T	_								-
		гт	TTO		TT	Borin	g Log							
	Б				VF.	Aubu	rn VW						B-14	
						3109	Auburn	Way No	orth					
	ΕN	VIR	CONME	NIAL,	NW	Aubu	rn, WA							
														_

	BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SOIL DESCRIPTION	Recovery %	uscs	PID (ppmv in headspace)	WELL CONSTRUCTION	
									8" Boring	1
				Surface: As	sphalt				Well Box	
0				0-3': FILL	silt, sand, gravel), brown, dry, loose, no				Concrete Seal	0
				odor.		50	FILL		Well Cap	
								-	Bentonite Seal	
				3-5': SILT\	/ SAND, fine grained with gravel, gray,		SM			
5		$+\chi$		moist, med	lium dense, no odor.			0.0		
Ĭ				5-12': SAN	DY SILT interbedded with silty sand				2" PVC	
	•••••		M\\\/_1_7	odor	ay, moist to wet at 7, medium dense, no			0.0		
			10100-1-7				ML	0.0		
10		· * >							2" PVC	10
			MW-1-12					0.0	screen	
				13-17': SA	ND, fine to medium grained, dark gray,	90		1	Sand	•••
				wet, loose	no odor.					
			MW-1-15				58	0.0		
15							F		2" PVC	1:
		`			EOB at 1	7'				
_							L	L		
20										
25							-			- 21
23										
				•••••••••••••••••		••••				
30	Dept	L h in fe	∟			_ L	L		·	-30
	Deiler	- M-1	4. D' : T	- 1.		0.1				-
	Drillin	g Metho	a: Direct Pu	sn	Weather Supply mid 60a			n: 'aa Numb	or: PDK 204	
ł	Boring	n Diamet	ter: Two inch	, 	Page 1 of 1		veni	ag Numb	er. DPK-204	
ŀ	Logae	d By:	Dan Hatch	100	· · · · · · · · · · · · · · · · · · ·	-				
	- 390	,.								
	B	Ll	JES	TON	Boring Log Auburn VW 3109 Auburn Way N	orth			MW-1	

	BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SOIL DESCRIPT	TION	Recovery %	nscs	PID (ppmv in headspace)	CONS		
											8" Boring	
		· - ¥		Surface: As	phalt						Well Box	
U				0-3': FILL (odor.	silt, sand, gravel), browi	n, dry, loose, no	50	FILL		Well Cap Benton		
				3-5': SILTY	′ SAND, fine grained wit	h gravel and wood				Se	al	
			MW-2-5	debris at 5	, gray, moist, medium d	ense, no odor.		$L_{}$	0.0			
5				5-12.5': SII	TY SAND, interbedded	with silt lenses,				2" PVC —		5
			MW-2-8	gray, mois	to wet at 8', medium de	ense, no odor.	90	ЯΜ	0.0	Blank \		
10		\mathbf{x}						 sм		2" PVC Screen	-	1(
			MW-2-12	12.5-14.5': loose, no c	SAND with silt, fine gra	ined, gray, wet,	100		0.0	Sa	und	
			MW-2-15	14.5-17': S	AND, fine to medium gr	ained, dark gray,			0.0			
15				wet, loose,	no odor.		100	SP		2" PVC Sump		1:
		ł				EOB at 17'						
20		· — —										2(
25												 2!
30	 Dept	h in fe						L	L			3(
	Drillin	g Metho	d: Direct Pus	sh	Date: 5/23/2022		Other In	formatio	1:			-
	Drillin	g Comp	any: Holocene		Weather: Sunny, mid 60)s	DOE	Well T	ag Numb	er: BPK-205		
	Boring	g Diame	ter: Two inch	ies	Page <u>1</u> of <u>1</u>							
	Logge	d By:	Dan Hatch									_
	B	LI	JES	TON	Boring L Auburn V 3109 Au	.og VW burn Way No	rth			Г	MW-2	

1	mw-3.v	sdx					_			
	BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SOIL DESCRIPTION	Recovery %	USCS	PID (ppmv in headspace)	WELL CONSTRUCTIO	ол
									8" Boriu	na
				Surface-6"	Cement				Well Box	
0		- ጉ		6"-3' FILL	(silt sand gravel) brown dry loose no		<u> </u>		Concrete	
				odor			FILL		Well	
			MW-3-3			- 50		0.0	Cap Bentonite	
				3-5'' SII TY				0.0	Seal	
			MW-3-5	moist more	ium donso, no odor			0.0		
5		+				•				5
Ŭ				5-13.51 51	LIY SAND, interbedded with sandy slit				2" PVC -	; - - -
				lenses, gra	ay, moist to wet at 7', medium dense, no	•	SM/			
				odor.						
		1				.	L	0.0		<u> </u>
10									2" PVC Screen	: 1
						••	SM/			
				13.5-15': S	AND, fine to medium grained with trace	100	ML		Sand	
				silt, dark g	ray, wet, loose, no odor.		<u> </u>	4		
			MW-3-15				SP	0.0		
15				15-17': SA	ND, fine to medium grained, dark gray,	100	F		2" PVC	<u> </u>
				wet, loose,	, no odor.				Sump	
		X			EOB at 17'	••				/14/14
20						•				· 2
						••				
5 5							⊢ −−	L		· – – –
20										
		L	L			.L	L	L]	
30	Dept	h in fe	eet							3
	Drillin	a Metho	d: Diroct Pur		Date: 5/23/2022	Other Ir	formatio	n.		
	Drillin	g Comp	anv: Holocopo	511	Weather: Suppy mid 60a			aa Numb	or BPK 206	
	Poring	Diama			Page 1 of 1		weiri	ay Numb	el. DFR-200	
	Бони		Ner. I wo inch	ies	Page or	-				
	∟ogge	a By:	Dan Hatch			1				
	B	L	JES	ION	Boring Log Auburn VW 3109 Auburn Way No	orth			MW-3	3
	EN	VI	RONMEI	NTAL, I	NW Auburn, WA					

	BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SOIL DESCRIPTION	Recovery %	USCS	PID (ppmv in headspace)	WELL CONSTRUCTION	
									8" Boring	
0		·-``		Surface-6":	Cement				Concrete	
Ŭ				6"-3': FILL	(silt, sand, gravel), brown, dry, loose, very at 3'		FILL		Seal Vell	
			MW-4-3	olight odol		50		0.6	Cap Bentonite	
				3-5': SILT\	SAND, fine grained with gravel, gray,					
_		\mathbf{x}	MW-4-5	moist, med	lium dense, no odor.		L			
5				5-14.5': SII	TY SAND, interbedded with sandy silt				2" PVC	5
				lenses, gra	iy, moist to wet at 7', medium dense, no	100	SM/			
						100				
			MW-4-10					0.0		
10							_		2" PVC Screen	10
							SM/		Sand	
						75			Sand	
			MW-4-15	1/ 5_17'· S	AND fine to medium grained dark grav			0.0		
15		· } *		wet. loose.	no odor.	100			2" PVC	15
				,,			SP		Sump	
		×			EOB at 17'				rass tand was	
20							L			
20										- 20
25										25
30	⊥ Dept	L I h in fe		I		L	L		J	30
	Drillin	a Metho	d: Direct Rus		Date: 5/23/2022	Other In	formatio	n.		-
	Drillin	g Comp	any: Holocene	511	Weather: Sunny, mid 60s	DOE	Well T	ag Numb	er: BPK-207	
	Boring	g Diamet	ter: Two inch	ies	Page <u>1</u> of <u>1</u>			0		
	Logge	d By:	Dan Hatch							
	B	LI VIR	JES		Boring Log Auburn VW 3109 Auburn Way No Auburn. WA	rth			MW-4	1

	BLOWS/6 inches		SAMPLE NUMBER		SOIL DESCRIPTION	Recovery %	USCS	PID (ppmv in headspace)	WELL CONSTRUCTION	
									8" Boring	
_		- `		Surface-6":	Cement			L		
0				6"-3': FILL	(silt, sand, gravel), brown, dry, loose, very		<u>-</u>			
			M\N/_5_3	slight odor	at 3'.	50		0.5	Cap Bentonite	
			10100-5-5	2 5'· CII TV	(SAND fine grained with gravel grav			0.5	Seal	
			MW-5-5	moist mer	ium dense, no odor			0.0		
5		γ		5-12.5': SI	TY SAND, interbedded with sandy silt					5
				lenses, gra	y, moist to wet at 7', medium dense, no 🤝		SM/		2" PVC Blank	
				odor.		100	ML			
		1	MW-5-10			L	L	0.0		_
10		· · ·					SM/		2" PVC Screen	10
							ML		Sand	
				12.5-17': S	AND, fine to coarse grained, dark gray,	100				
				wet, loose,	no odor.		SP	0.0		
15		$\left \mathbf{\lambda} \mathbf{A} \right $				100				15
						100			Sump	
		X			EOB at 17'				2000 1 20003	
20						[[[20
25										- 25
25										
30	Dept	h in fe				L	L	L	·	30
	Drillin	a Metho	d: Direct Rug	-h	Date: 5/22/2022	Other In	formatio	n.		-
	Drillin	g Comp	any: Holocene	511	Weather: Sunny, mid 60s	DOE	Well T	ad Numb	er: BPK-208	
	Boring	g Diame	ter: Two inch	ies	Page 1 of 1			5		
	Logge	d By:	Dan Hatch							
										F
	B	LI VIR	JES I	TON	Boring Log Auburn VW 3109 Auburn Way No Auburn, WA	rth			MW-4	

	BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SOI	L D	ESC	RIP [.]	TION	I			Recovery %	nscs	PID (ppmv in	headspace)	C	ONS	WEL	L JCT	ION	
																			2	" Bo	ring	
0		· - >		Surface: As 0-3': FILL (odor.	phalt silt, san	id, gra	avel),	brow	n, dry	, loos	<u> </u>		 50	FILL			Well – Cap E	Seatoni				0
				moist, med	SAND	, fine nse, r	grain no ode	ed wi or.	th gra	vel, g	iray,			SM			2" PVC Blank			•		
5		.x.t.		5-15': SILT gray, moist petroleum	Y SANE to wet odor at	D inte at 6', 7 fee	medi t.	ded w um d	rith sa ense,	nd lei mode	nses,	_ ≧			0.0)			-			5
			MW-6-7										50	SM	57. 0.9	4	2" PVC Screen	$\overline{}$				
10		· *	MW-6-12												0.0)		— — Sa			<u> </u>	
			M\\\/-6-15										100	SM	0.0	,						
15		· – ¥								— _ Е(OB at 1	5'							_ 23.			
20		·																				
-0																						
25																						- 2
30	Dept	h in fe		_											L							 3(
	Drillin	g Metho	d: Direct Pus	sh	Date:	12/1	0/202	4				0)ther In	formatio	n:							
	Drillin Boring Logge	g Comp g Diame d By:	^{any:} Holocene ^{ter:} Two inch Haley Carter	les	Weather	r: Clo 1	oudy, of _	40s 1					DOE	Well T	ag Nu	imbe	r: BQE	3 961				
	B		JES	FON	IE	B A 3	Borii Jubu 109	ng l urn Au	Log VW bur	n W	lay N	lor	th					N	٨V	V-(6	

	BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SOIL DESCRIPTION	Recovery %		60en	PID (ppmv in headspace)	CON	WELL	TION	
											2" E	Boring	
		· - `*		Surface: As	phalt						Wel	Box	
0				0-3': FILL (silt, sand, gravel), brown, dry, loose, n)					al T		
				odor.	with a and brown maint to wat at C		ר ורו	LL		Cap Bento	nite Seal		
				medium sti	ff no odor								
			MW-8-5	meaninist					0.0	Blank	\checkmark		
5		·				$\overline{\nabla}$	-⊢∾	1L-			(5
				7-10': SILT	Y SAND with interbedded sand layers,								
				gray, wet, r	medium dense, no odor.	7	5			2" PVC			
							s	М		Screen			
10		+		10-15': SAI	ND fine grained with silt, brown, wet,				0.0			-	-
10				medium de	inse, no odor.								
								м		5	and •		
							, 3	IVI					
			MW-8-15						0.0				
15		- *			EOB a	 t 15'		-			627220		1:
20		· – –											- 20
20													
						•••••							
25													2
30		اا		I		L_	_L_		L				- 31
Ű	Dept	n in te	et										
	Drilling	g Metho	d: Direct Pus	sh	Date: 12/10/2024	Othe	er Inform	atior	1:	_			
	Drilling	g Comp	any: Holocene		Weather: Cloudy, 40s	D	OE We	ell Ta	ag Numb	er: BQB 96	3		
	Logge	d Bv	Haley Cartor	es	Page 0T								
				8						-			
	B	Ll	JES	FON	Boring Log Auburn VW 3109 Auburn Way	North	I				MW	-8	

	BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SOIL DESCRIPTION		Recovery %	nscs	PID (ppmv in headspace)		1
										2" Boring	
0		· - >		Surface: As 0-3': FILL (odor.	phalt silt, sand, gravel), brown, dry, lo	ose, no		FILL		Concrete Seal Well Cap Bentonite Seal	0
			MW-9-5	medium de 5-10': SILT	ense, no odor. Y SAND, fine grained sand, gra	y, wet, 🔻	10	SP	0.0	2" PVC Blank	
5		**		medium de	nse, no odor.						5
			M\W-9-10	10 15'- 54		traca silt	80	SM	0.0	2" PVC Screen	
10		. ¥ ¥		brown, wet	, medium dense, no odor.						1(
							80	SP	0.0	Sand Sand	
15		· - ¥				EOB at 15'					<u>د المعام الم</u>
20											
25											
30	Dept	h in fe									
	Drilling	g Metho	d: Direct Pus	sh	Date: 12/10/2024		Other In	formatio	ו:		
	Drilling	g Comp	any: Holocene		Weather: Cloudy, 40s		DOE	Well T	ag Numb	er: BQB 964	
	Logge	d By:	Haley Carter	ies	Гауе <u>I</u> 01 <u>I</u>						
	B		JES	FON	Boring Log Auburn VW 3109 Auburn	Way No	rth			MW-9	

	BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SOI)IL	. DE	ESC	RIP	סודי	N			Recovery %	SUSI		PID (ppmv in headspace)		C	ON	W	ELI	СТ	ION	
				Surface: As	sohalt																	2" We	Bor ell Bo	ring	
0		· - >		0-3': FILL (odor. 3-5': SILT (silt, san	nd, Ind,	, gra , bro	avel) own,	, brov mois	wn, d	lry, lo	<u>– –</u> ose, t 6',	no	50	FIL	L		We Ca	- Co ell - IP E	oncre Se Bentor	te al nite Seal				0
5		· ` × ×	<u>MW-10-5</u>	medium sti 5-9': SILTY wet at 8', n	iff, no or <u>SAND</u> nedium	odo D, fi n de	or. ine g ense	grair e, no	ned s odoi	sand, r.	<u>gray</u>	, moi	st to	 	M	L	0.0	2" F Bla	PVC ink 			•			
			MW-10-8	9-13': SAN	D fine t	to r	med	lium	grair	ned v	vith tr	ace	silt,	90	si	N	0.0	2" F Scr	PVC reen	$\overline{\ }$					
10			MW-10-10	brown, wet	, mediu	um	den	nse,	<u>no o</u>	dor.					si										10
			MW-10-15	13-15': GR sand, brow	AVELL` /n, wet,	_Y \$, m	SAN nediu	ND, f um d	ine to	o me e, no	dium odor.	grair	ned	100	G	~	0.0			S	iand				
15												EOB	3 at 15'												15
20							· <u> </u>							- <u>-</u>		_									20
25														 		_									25
30	Dept	h in fe		•											. – –	- '	 .	J							30
	Drillin Drillin Boring Logge	g Metho g Comp g Diame ed By:	d: Direct Pus any: Holocene ter: Two inch Haley Carter	sh es	Date: Weather Page	12 er: 1	2/11, Par 1	/202 rtly C	24 Cloud 1	ły, lov	w 50s	3		Other I DOI	nforma E We	ation II Ta	n: ag Numl	ber: E	BQE	3 965	5				
	B	LI	JES	FON NTAL,	IE NW		<i>B</i> (A) 31 A)	ori ub 109 ub	<i>ัng</i> urn) Aเ urn	Log VV ubu n, W	g V Irn /A	Wa	iy No	orth						Ν	۸۱	N	-1	0	

mw-10 yedy

	BLOWS/6 inches		SAMPLE NUMBER		SOIL DESCRIPTION	Recovery %	USCS	PID (ppmv in headspace)	WELL CONSTRUCTION	
									2" Boring	
0		-``		Surface: As	phalt		<u> </u>		Concrete	
Ŭ				0-5" Pushe		 0			Seal Well Cap Bentonite Seal	
				5-9': SILTY	SAND, fine grained sand, gray, moist				Blank	
5			MW-11-6	to wet at 6	, medium dense, no odor.			0.0		5
				9-12': SAN	D fine grained with trace silt, brown, wet,	75	SM		2" PVC Screen	
10		\downarrow	MW-11-10	medium de	ense, no odor.			0.0		1,
Ĩ				12-15': SA	ND, medium grained with gravel, brown,		SP			`
				wet, mediu	m dense, no odor.	100	GW		Sand	
15		-4	MW-11-15		EOR at 15			0.0		
						•••				
20						 				20
25						 				2!
						•••				
30							L	L]	30
	Drillin	n III It	nd: Direct Dur		Date: 12/11/2024	Other Ir	formatio	n.		_``
	Drilling	g Comp	any: Holocene	511	Weather: Partly Cloudy, low 50s	DOE	Well T	 ag Numb	er: BQB 966	
	Boring	g Diame	ter: Two inch	ies	Page of	1				
	Logge	d By:	Haley Carter							
	B		JES		Boring Log Auburn VW 3109 Auburn Way No Auburn, WA	orth			MW-11	

	BLOWS/6 inche	INTERVAL	SAMPLE NUMBER		SOIL DESCRIPTION	Recovery %	uscs	PID (ppmv in headspace)	WELL CONSTRUCTIO	N
									2" Boring	
ŀ		· – `ĸ		Surface: As	phalt					
1				0-3': FILL (silt, sand, gravel), brown, dry, loose, no				Seal	
				odor.					Cap Bentonite	
				3-7.5': SIL	ΓΥ SAND, fine grained sand, gray,	10		4		#
-				moist to we	et at 6', medium dense, no odor.				2" PVC Blank	
į		ب لا چر.				 z	SM	0.0		
				7.5-12': SA	ND fine grained with trace silt, brown, we	t,				
				medium de	ense, no odor.	75	<u> </u>	1	2" PVC 📉	
									Screen	
			MW-12-10				SP	0.0		
2							Γ	Γ	:	
				12-15': SA	ND, medium grained with gravel, brown,					
ľ				wet, mediu	m dense, no odor.	100]	Sand	
ľ							GW			
			MW-12-15					0.0		
	1				EOB at 1	5'	F -	F		
ľ										
ľ										
ľ	1						F	F		
ľ										
ľ						••••				
1										
-										
ŀ		· – –					<u>├</u>			
-										
• •										
	Dept	h in fe		•			L		/	
	Drilling	g Metho	d: Direct Pus	sh	Date: 12/11/2024	Other I	nformatio	n:		
	Drilling	g Comp	any: Holocene		Weather: Partly Cloudy, low 50s	DOE	Well T	ag Numb	er: BQB 967	
	Boring	Diame	ter: Two inch	ies	Page of					
	Logge	d By:	Haley Carter							
	B	Ll	JES	TON	Boring Log Auburn VW 3109 Auburn Way N	lorth			MW-12	

	BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SO	٩Ľ	. D)ES	SCF	RIP	TIO	N				Recovery %	3731	2200	PID (ppmv in	headspace)	ĺ	201	W NST	/EL RU	L	ION	
																								2" W	BOI ell Bo	ring	
0		آ – ۲		Surface: As	phalt silt_sar	. <u> </u>	- <u>-</u>	- rav			<u> </u>			<u> </u>								Conc					-
				loose, no o	dor.		., g.		,		, .	.,				75	FI	LL			Well Cap	Bent	tonite Seal				
5		. ₇ ,		5-10': NO F	RECOV	<u>/E</u>	RY	(· <u> </u>							-		0.0)	2" P\ Blani — —	/C — k — —					
																0					2" P\ Scre	/C — en					
ļ				10-15': SAI	ND, me	edi	ium	n gr	raine	ed w	rith g	rave	l <u>, br</u>	rown	,												
_			MW-13-12	wet, mediu	m dens	se,	, nc	0 00	dor.							100	s	P	0.0)			San	d			
			MW-13-15																0.0)							
		•											EO)B at	15'												
		·						. <u> </u>																			
5								-		·																	
5		h in fe						-								L	.L_										
\mathbf{F}	Drilling	g Metho	d: Direct Pus	sh	Date:	1	2/1	11/2	2024	Ļ						Other I	nform	atio	n:								-
F	Drilling	g Comp	any: Holocene		Weathe	er:	Pa	artl	y Clo	oudy 1	y, lov	v 50	S			DO	E We	II T	ag Nu	ımb	er: B0	QB 9	68				
\mathbf{F}	Boring	d By:	Haley Carter	ies	Page _		<u> </u>	'	01																		
	B		JES	ION	IE		Е А З	30 Au 81(orin bu 09	ig irn Au	Lo VV ibu	g V Irn	w	ay	No	orth							M	W	′-1	3	

	BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SOIL DESCRIPTION		Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTIO	ON
										2" Borii	ng
0		- `		Surface: As	sphalt						
-				loose, no o	dor.		60	FILL		Seal	
				5-10': SILT	Y SAND, fine grained sand, gray, mo	oist				2" PVC Blank	
5		***	 MW-14-6	to wet at 6	, medium dense, no odor.				0.0		
							75	SM		2" PVC Screen	
0		\downarrow_{γ}	MW-14-10	10-15': SAI	ND fine grained with trace silt and gra , medium dense, no odor.	avel, — — —					,
							100	SP		Sand	
5		- 4	MW-14-15			at 15'			0.0		
0											
5											
0	Dept	h in fe	et								
	Drillin	g Metho g Comp	any: Holocene	sh	Date: 12/12/2024 Weather: Partly Cloudy 40s		Other In	formation Well T	n: ag Numb	er: BQB 969	
	Boring	y Diame d By:	ter: Two inch Haley Carter	es	Page of				5		
	B	LI	JES		Boring Log Auburn VW 3109 Auburn Wa	y No	rth			MW-14	4

	BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SOIL DESCRIPTION	Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION	
ſ									2" Boring	
		·-`\		Surface: As			-	-	Concrete	
				loose, no o	dor.	75	FILL		Seal T Well Cap Bentonite Seal	
5				5-10': NO F	RECOVERY		_	0.0	2" PVC Blank	
						0			2" PVC Screen	
)			MW-15-11	10-13': SAI medium de	ND, fine grained with silt, gray, wet, nse, no odor.		-	0.0		
				10-15': SAI wet, mediu	ND, medium grained with gravel, brown m dense, no odor.	, 100	SM		Sand	
5		· - ×	MW-15-15		EOB at	15'	-	0.0		1
)										
5										
										•••••
) 	Dept	h in fe	 et				_L	L]	
t	Drilling	g Metho	d: Direct Pus	sh	Date: 12/11/2024	Other	Informatio	n:		
╞	Drilling Boring Logge	g Comp g Diame d By:	^{any:} Holocene ^{ter:} Two inch Haley Carter	es	Weather: Partly Cloudy, 40s Page of		E Well 1	ag Numb	er: BQB 970	
	B	LI	JES	TON	Boring Log Auburn VW 3109 Auburn Way	North			MW-15	

	BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SOIL DESCRIPTION	Recovery %	uscs	PID (ppmv in headspace)	WELL CONSTRUCTION	
									2" Boring	
_		-`\		Surface: As	phalt	. – – –			Well Box	
ď				0-3': FILL (silt, sand, gravel), brown, dry, loose, no				Seal Well	
				3-5' SAND) fine grained with silt gray moist	40			Cap Bentonite Seal	•••
				medium de	ense, no odor.				2" PVC —	
			MW-16-5	5-8': SILTY	SAND interbedded with sand lenses,			0.0	Blank	
5		7*		gray, moist	to wet at 6', medium dense, no odor.		SM			5
				8-15': SAN	D, fine to medium grained with	100	SD/		2" PVC Screen	
			MW-16-10	nterbedde	a slit lenses, brown, wet, mealum dense,		SM	0.0		
10		╶╇┝				•				10
						100	SP/		Sand	
15		-4	MW-16-15			. – – –		0.0		, ,
15					EOB at 15					
						••				•••
20						·	F			20
25						.	⊢ −−			
25										
			••••••							
30	Dept	h in fe	 eet							30
ľ	Drillin	g Metho	d: Direct Pus	sh	Date: 12/12/2024	Other In	formatio	n:		
	Drillin	g Comp	any: Holocene		Weather: Cloudy, 40s	DOE	Well T	ag Numb	er: BQB 971	
	Boring	g Diame	ter: Two inch	nes	Page of	1				
	Logge	d By:	Haley Carter							_
	B		JES		Boring Log Auburn VW 3109 Auburn Way No	orth			MW-16	

	BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SOIL DESCRIPTION		Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION	
										2" Boring	
0		· - >		Surface: As 0-3': FILL (odor.	silt, sand, gravel), brown, dry, loose, no			FILL		Concrete Seal Well Cap Bentonite	0
		· •		3-5': SANE medium de 5-12.5': SII), fine grained with silt, gray, moist, ense, no odor. _TY SAND, gray, moist to wet at 7.5',				0.0	Seal	
5				medium de	ense, no odor.		100	SM		2" PVC	5
10			MW-17-10							Screen	1
				12.5-15': S medium de	AND, fine to medium grained, brown, w ense, no odor.	et,	100	SP		Sand	
15		· - ¥	MW-17-15		EOB at	15'					- - - -
20		·									2
25											- 2:
30	Dept	h in fe	 et			L		L	L	l	30
	Drilling Method: Direct Push Drilling Company: Holocene Boring Diameter: Two inches			es	Date: 12/12/2024 Weather: Cloudy, 40s Page 1		Other Information: DOE Well Tag Number: BQB 972			er: BQB 972	
	BUILSTONE BUILSTONE ENVIRONMENTAL NW Boring Log Auburn VW 3109 Auburn Way North										

	BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SOIL DESCRIPTION	Recovery %	USCS	PID (ppmv in headspace)	WELL CONSTRUCTION	
				Ourfaces As	- Lett				2" Boring Well Box	
0		7-		0-4': FILL (silt, sand, gravel), brown, dry, loose, no		-	-	Concrete	-
				odor.		40	FILL		Well — Cap Bentonite Seal	
				4-12.5': SIL	_TY SAND, gray, moist to wet at 6',				2" PVC	
5		\mathbf{x}	MW-18-5	medium de	ense, no odor.			- 0.0		
						75	SM		2" PVC Screen	
0		· X Y	MW-18-10					0.0		1
				12 5-15'- S		100	SM		Sand	
ł				medium de	ense, no odor.	100	SP			
		\	MW-18-15				-	0.0		
					EOB at	15				
Ί										
5										-
0	Dept	h in fe	 et	I		L	_L	L	J	
ŀ	Drilling Method: Direct Push Date: 12/13/2024 Drilling Company: Holocene Weather: Cloudy, 40s			Date: 12/13/2024	Other	Informatic	n:			
$\left \right $					Weather: Cloudy, 40s		E Well T	ag Numb	er: BQB 973	
\mathbf{F}	Logge	d By:	Haley Carter	es	rage 01					
	B	LI	JES	ION	Boring Log Auburn VW 3109 Auburn Way	North			MW-18	

	BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SOIL DESCRIPTION	Recovery %	uscs	PID (ppmv in headspace)	WELL CONSTRUCTION	
									2" Boring Well Box	
0		1 -۲		0-4': FILL (sprait				Concrete	c
				odor.	,,,,,,	60	FILL		Well Cap Bentonite Seal	
				4-11': SILT	Y SAND, gray, moist to wet at 6', medium				2" PVC	
5		.×4		_dense, no	odor.					5
						60	SM		2" PVC Screen	
		\mathbf{x}	MW-19-10					0.0		
Ί				11-15': SA	ND, fine to medium grained, gray, wet,					
						100	SP		Sand	
			MW-19-15					0.0		
5		-*			EOB at 15	5				- 1
							L			
1										-
5										
o	Dept	L h in fe	∟ ≫et			_ L	L	L	J	3
ŀ	Drilling Method: Direct Push I Drilling Company: Holocene N			sh	Date: 12/13/2024 Other Information:					
					Weather: Cloudy, 40s	DOE	Well T	ag Numb	er: BQB 974	
\mathbf{F}	Boring	d By:	Two inch	es	Page of	-				
	B		JES		Boring Log Auburn VW 3109 Auburn Way N	orth			MW-19	

mw-20	.vsdx				_				
BLOWS/6 inches	INTERVAL	SAMPLE NUMBER		SOIL DESCRIPTION	Recovery %	USCS	PID (ppmv in headspace)	WELL CONSTRUCTIO	N
								2" Borin	a
			Surface: As	sohalt				Well Box	9
	<u></u>		0-3': FILL (silt. sand. gravel), brown, dry, loose, no				Concrete	
			odor.			FILL		Well	
			3-11': SILT	Y SAND with fine grained interbedded	40			Cap Bentonite Seal	
			sand grav	moist to wet at 6' medium dense no					
		MW-20-5	odor				0.0	Blank	
	╞┾⊀					⊢ −−	<u>⊢ – –</u> –		
				¥					
						SM/			
					80	SP		2" PVC Screen	
		M\\/_20_10					0.0		
<u> -</u>	╎┥╲								,
			11-15': SA	ND, fine to medium grained, gray, wet,			4		
			medium de	ense, no odor.	•••			Sand	
					100	SP			
_	_{	MW-20-15					0.0		
i				EOB at 15	; 				
יך	[[Γ	Γ		7
					•••				
;	+					├			
					•••				
<u> -</u>	I	L	I		_ L	L	L]	,
Dept	n in fe	eet							ľ
Drillin	Drilling Method: Direct Push		sh	Date: 12/13/2024	Other In	nformatio	n:		
Drilling Company: Holocene Boring Diameter: Two inches				Weather: Cloudy, 40s	DOE	Well T	ag Numb	er: BQB 975	
			ies	Page of	1				
1 Sound	Logged By: Haley Carter				1				
Logge	ed By:	-							
Logge	ed By:								
	a by:	JES	TON	Boring Log Auburn VW					,
Logge		JES	TON	Boring Log Auburn VW 3109 Auburn Way N	orth			MW-20)

Appendix E

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 12, 2022

Dan Hatch, Project Manager Bluestone Environmental NW 20204 SE 284th St Kent, WA 98042

Dear Mr Hatch:

Included are the additional results from the testing of material submitted on April 25, 2022 from the Auburn VW BE-0107-B, F&BI 204418 project. There are 15 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

ale

Michael Erdahl Project Manager

Enclosures BST0512R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 25, 2022 by Friedman & Bruya, Inc. from the Bluestone Environmental NW Auburn VW BE-0107-B, F&BI 204418 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Bluestone Environmental NW</u>
204418 -01	B-1-5
204418 -02	B-1-10
204418 -03	B-1-13
204418 -04	B-1-15
204418 -05	B-1-W
204418 -06	B-2-5
204418 - 07	B-2-10
204418 -08	B-2-13
204418 -09	B-2-15
204418 -10	B-2-W
204418 -11	B-3-5
204418 -12	B-3-10
204418 -13	B-3-12
204418 -14	B-3-15
204418 - 15	B-4-5
204418 -16	B-4-10
204418 - 17	B-4-14
204418 -18	B-4-15
204418 -19	B-4-W
204418 -20	B-5-5
204418 -21	B-5-10
204418 -22	B-5-12
204418 -23	B-5-15
204418 -24	B-5-W
204418 - 25	B-6-5
204418 -26	B-6-10
204418 -27	B-6-13
204418 -28	B-6-15
204418 - 29	B-6-W

The 8260D matrix spike and matrix spike duplicate failed the relative percent difference for bromomethane. The analyte was not detected therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/12/22 Date Received: 04/25/22 Project: Auburn VW BE-0107-B, F&BI 204418 Date Extracted: 05/06/22 Date Analyzed: 05/06/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 56-165)
B-1-5 204418-01	<50	<250	107
B-2-10 204418-07	<50	<250	111
B-4-5 204418-15	<50	<250	109
Method Blank 02-1073 MB	<50	<250	108

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	B-1-5		Client:	Bluestone Environme	ntal NW
Date Received:	04/25/22		Project:	Auburn VW BE-0107-	·B
Date Extracted:	05/06/22		Lab ID:	204418-01	
Date Analyzed:	05/06/22		Data File:	050615.D	
Matrix:	Soil		Instrument:	GCMS4	
Units:	mg/kg (ppm)) Dry Weight	Operator:	\mathbf{RF}	
			Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
1.2-Dichloroethane	-d4	104	90	109	
Toluene-d8		97	89	112	
4-Bromofluorobenze	ene	97	84	115	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
D. 11			e e De l		
Dichlorodifluorome	thane	<0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		<0.5	Tetrachl	loroethene	< 0.025
Vinyl chloride		<0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		<0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		<0.5	Chlorobe	< 0.05	
Trichlorofluoromet	hane	<0.5	Ethylber	nzene	< 0.05
Acetone		<5	1,1,1,2-'1	etrachloroethane	< 0.05
1,1-Dichloroethene		<0.05	m,p-Xyle	ene	<0.1
Hexane		<0.25	o-Xylene	b	< 0.05
Methylene chloride		<0.5	Styrene	11	< 0.05
Methyl t-butyl ethe	er (MTBE)	<0.05	Isopropy	lbenzene	< 0.05
trans-1,2-Dichloroe	thene	<0.05	Bromoto	orm	< 0.05
1,1-Dichloroethane		<0.05	n-Propy	lbenzene	< 0.05
2,2-Dichloropropan	e	<0.05	Bromobe	<0.05	
cis-1,2-Dichloroethe	ene	<0.05	1,3,5-Tri	< 0.05	
Chloroform		<0.05	1,1,2,2-1	< 0.05	
2-Butanone (MEK)		<1	1,2,3-Tri	ichloropropane	< 0.05
1,2-Dichloroethane	(EDC)	<0.05	2-Chloro	otoluene	<0.05
1,1,1-Trichloroetha	ne	<0.05	4-Chloro	<0.05	
1,1-Dichloropropen	e	<0.05	tert-But	<0.05	
Carbon tetrachloric	le	<0.05	1,2,4-1ri	imethylbenzene	<0.05
Benzene		< 0.03	sec-Buty	lbenzene	<0.05
Trichloroethene		<0.02	p-Isopro	pyltoluene	< 0.05
1,2-Dichloropropan	e	<0.05	1,3-Dich	lorobenzene	<0.05
Bromodichlorometh	nane	<0.05	1,4-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05	1,2-Dich	lorobenzene	< 0.05
4-Methyl-2-pentance	one	<1	1,2-Dibr	omo-3-chloropropane	< 0.5
cis-1,3-Dichloroproj	pene	< 0.05	1,2,4-Tri	Ichlorobenzene	< 0.25
Toluene		< 0.05	Hexachl	orobutadiene	< 0.25
trans-1,3-Dichlorop	oropene	< 0.05	Naphtha	alene	< 0.05
1,1,2-Trichloroetha	ne	< 0.05	1,2,3-Tri	ichlorobenzene	< 0.25
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	Method Bla	ank	Client: Bluestone Environn		ntal NW	
Date Received:	Not Applica	able	Project:	Auburn VW BE-0107	·B	
Date Extracted:	05/06/22		Lab ID:	02-988 mb		
Date Analyzed:	05/06/22		Data File:	050605.D		
Matrix:	Soil		Instrument:	GCMS4		
Units:	mg/kg (ppn	n) Dry Weight	Operator :	\mathbf{RF}		
			Lower	Unner		
Surrogates:		% Recovery:	Limit:	Limit:		
1.2-Dichloroethane	d4	99	90	109		
Toluene-d8		98	89	112		
4-Bromofluorobenze	ene	100	84	115		
		Concentration			Concentration	
Compounde		mg/lzg (nnm)	Compou	nde	mg/kg (nnm)	
Compounds.		mg/kg (ppm)	Compou	nus.	iiig/kg (ppiii)	
Dichlorodifluorome	thane	< 0.5	1,3-Dich	loropropane	< 0.05	
Chloromethane		< 0.5	Tetrach	loroethene	< 0.025	
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05	
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05	
Chloroethane		< 0.5	Chlorob	< 0.05		
Trichlorofluorometh	nane	< 0.5	Ethylber	< 0.05		
Acetone		<5	1,1,1,2-7	Tetrachloroethane	< 0.05	
1,1-Dichloroethene		< 0.05	m,p-Xyle	ene	< 0.1	
Hexane		< 0.25	o-Xylene	< 0.05		
Methylene chloride		< 0.5	Styrene	< 0.05		
Methyl t-butyl ethe	r (MTBE)	< 0.05	Isopropy	< 0.05		
trans-1,2-Dichloroe	thene	< 0.05	Bromofo	< 0.05		
1,1-Dichloroethane		< 0.05	n-Propy	< 0.05		
2,2-Dichloropropan	е	< 0.05	Bromobe	< 0.05		
cis-1,2-Dichloroethe	ene	< 0.05	1,3,5-Tr	< 0.05		
Chloroform		< 0.05	1,1,2,2-7	< 0.05		
2-Butanone (MEK)		<1	1,2,3-Tri	< 0.05		
1,2-Dichloroethane	(EDC)	< 0.05	2-Chloro	otoluene	< 0.05	
1,1,1-Trichloroetha	ne	< 0.05	4-Chloro	< 0.05		
1,1-Dichloropropen	9	< 0.05	tert-But	< 0.05		
Carbon tetrachlorid	le	< 0.05	1,2,4-Tri	imethylbenzene	< 0.05	
Benzene		< 0.03	sec-Buty	lbenzene	< 0.05	
Trichloroethene		< 0.02	p-Isopro	pyltoluene	< 0.05	
1,2-Dichloropropan	е	< 0.05	1,3-Dich	lorobenzene	< 0.05	
Bromodichlorometh	ane	< 0.05	1,4-Dich	lorobenzene	< 0.05	
Dibromomethane		< 0.05	1,2-Dich	lorobenzene	< 0.05	
4-Methyl-2-pentance	one	<1	1,2-Dibr	omo-3-chloropropane	< 0.5	
cis-1,3-Dichloroprop	oene	< 0.05	1,2,4-Tri	ichlorobenzene	< 0.25	
Toluene		< 0.05	Hexachl	orobutadiene	< 0.25	
trans-1,3-Dichlorop	ropene	< 0.05	Naphtha	alene	< 0.05	
1,1,2-Trichloroetha	ne	< 0.05	1,2,3-Tr	ichlorobenzene	< 0.25	
2-Hexanone		< 0.5				

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-1-5 04/25/22 05/06/22 05/09/22 Soil mg/kg (ppm	ı) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107-B 204418-01 1/5 050920.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	ol	% Recovery: 66 73 71 76 73 87	$\begin{array}{c} {\rm Lower} \\ {\rm Limit:} \\ 39 \\ 48 \\ 23 \\ 50 \\ 40 \\ 50 \end{array}$	Upper Limit: 103 109 138 150 127 150
Compounds:		Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthalen 1-Methylnaphthalen Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthen Benzo(k)fluoranthen Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac	ne ne ne ene ene	0.032 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01		
Benzo(g,h,i)perylen	e	< 0.01		
ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-2-10 04/25/22 05/06/22 05/09/22 Soil mg/kg (ppm	ı) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107-B 204418-07 1/5 050921.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	ol	% Recovery: 59 67 62 72 73 88	Lower Limit: 39 48 23 50 40 50	Upper Limit: 103 109 138 150 127 150
Compounds:		Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthalen 1-Methylnaphthalen Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthen Benzo(k)fluoranthen Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac	ne ne ne ene ene	<pre><0.01 <0.01 <</pre>		
Benzo(g,h,i)perylen	e	< 0.01		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-3-5 04/25/22 05/06/22 05/09/22 Soil mg/kg (ppm)) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107-B 204418-11 1/25 050923.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	ol	% Recovery: 59 d 67 d 62 d 76 d 75 d 82 d	Lower Limit: 39 48 23 50 40 50	Upper Limit: 103 109 138 150 127 150
Compounds:		Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthalen 1-Methylnaphthalen Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthen Benzo(k)fluoranthen Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac	ne ne ne ene ene	$< 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ <$		

ENVIRONMENTAL CHEMISTS

	Operator:	GUMS12 VM
% Recovery: 63 d 73 d 66 d 79 d 77 d 89 d	Lower Limit: 39 48 23 50 40 50	Upper Limit: 103 109 138 150 127 150
Concentration mg/kg (ppm)		
$\begin{array}{c} < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \end{array}$		
	$< 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ <$	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <

ENVIRONMENTAL CHEMISTS

pm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107-B 204418-25 1/5 050922.D GCMS12 VM
$\begin{array}{c} \% \ {\rm Recovery:} \\ 64 \\ 71 \\ 66 \\ 76 \\ 75 \\ 85 \end{array}$		Upper Limit: 103 109 138 150 127 150
Concentration mg/kg (ppm)		
$< 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \end{aligned}$		
	85 Concentration mg/kg (ppm) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	$\begin{array}{c} 10 & +0 \\ 85 & 50 \end{array}$ Concentration mg/kg (ppm) $\begin{array}{c} < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.0$

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicabl 05/06/22 05/09/22 Soil mg/kg (ppm) l	e Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107-B 02-1076 mb 1/5 050909.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	nol	% Recovery: 80 88 84 94 77 102	Lower Limit: 39 48 23 50 40 50	Upper Limit: 103 109 138 150 127 150
Compounds:	C	oncentration ng/kg (ppm)		
Naphthalene 2-Methylnaphthalen 1-Methylnaphthalen Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac	ne ne ne ene ene	< 0.01 < 0.		

ENVIRONMENTAL CHEMISTS

Date of Report: 05/12/22 Date Received: 04/25/22 Project: Auburn VW BE-0107-B, F&BI 204418

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 204286-08 (Matrix Spike) Percent Sample Percent Reporting Spike Result Recovery RPD Recovery Acceptance Units Level MSD Criteria Analyte (Wet Wt) MS(Limit 20) **Diesel Extended** mg/kg (ppm) 5,000810 104 100 63-146 4 Laboratory Code: Laboratory Control Sample Percent Reporting Spike Recovery Acceptance Analyte Units Level LCS Criteria 5,000**Diesel Extended** mg/kg (ppm) 110 79-144

ENVIRONMENTAL CHEMISTS

Date of Report: 05/12/22 Date Received: 04/25/22 Project: Auburn VW BE-0107-B, F&BI 204418

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 205057-03 (Matrix Spike)

0			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	1	< 0.5	17	19	10-142	11
Chloromethane	mg/kg (ppm)	1	<0.5	46	45	10-126	2
Vinyl chloride	mg/kg (ppm)	1	< 0.05	44	47	10-138	96
Chloroothono	mg/kg (ppm)	1	<0.5	64 50	83 61	10-163	26 V0
Trichlorofluoromethane	mg/kg (ppm)	1	<0.5	50	56	10-176	11
Acetone	mg/kg (ppm)	5	<5	68	68	10-163	0
1,1-Dichloroethene	mg/kg (ppm)	1	< 0.05	65	68	10-160	5
Hexane	mg/kg (ppm)	1	< 0.25	54	56	10-137	4
Methylene chloride	mg/kg (ppm)	1	< 0.5	80	76	10-156	5
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	1	< 0.05	87	86	21-145	1
trans-1,2-Dichloroethene	mg/kg (ppm)	1	< 0.05	77	75	14-137	3
1,1-Dichloroethane	mg/kg (ppm)	1	<0.05	79	80	19-140	1
2,2-Dichloropropane	mg/kg (ppm)	1	< 0.05	98	98	10-158	0
Cls-1,2-Dichloroethene Chloroform	mg/kg (ppm)	1	<0.05	84	00 87	20-150	6
2-Butanone (MEK)	mg/kg (ppm)	5	<0.05	79	83	19.147	5
1.2-Dichloroethane (EDC)	mg/kg (ppm)	1	<0.05	80	82	12-160	2
1.1.1-Trichloroethane	mg/kg (ppm)	1	< 0.05	80	82	10-156	2
1,1-Dichloropropene	mg/kg (ppm)	1	< 0.05	76	80	17-140	5
Carbon tetrachloride	mg/kg (ppm)	1	< 0.05	80	81	9-164	1
Benzene	mg/kg (ppm)	1	< 0.03	77	81	29-129	5
Trichloroethene	mg/kg (ppm)	1	< 0.02	80	80	21-139	0
1,2-Dichloropropane	mg/kg (ppm)	1	< 0.05	77	80	30-135	4
Bromodichloromethane	mg/kg (ppm)	1	<0.05	83	85	23-155	2
1 Methyl 2 pontonone	mg/kg (ppm)	1	<0.05	80	84	23-140	9
4-Methyl-2-pentanone	mg/kg (ppm)	5 1	<0.05	70	09 84	24-100	а С
Toluene	mg/kg (ppm)	1	<0.05	76	78	35-130	3
trans-1.3-Dichloropropene	mg/kg (ppm)	1	< 0.05	78	80	26-149	3
1,1,2-Trichloroethane	mg/kg (ppm)	1	< 0.05	85	83	10-205	2
2-Hexanone	mg/kg (ppm)	5	< 0.5	83	90	15-166	8
1,3-Dichloropropane	mg/kg (ppm)	1	< 0.05	77	81	31-137	5
Tetrachloroethene	mg/kg (ppm)	1	< 0.025	77	79	20-133	3
Dibromochloromethane	mg/kg (ppm)	1	< 0.05	75	77	28-150	3
1,2-Dibromoethane (EDB)	mg/kg (ppm)	1	<0.05	77	81	28-142	5
Chlorobenzene	mg/kg (ppm)	1	<0.05	79	81	32-129	2
1 1 1 2 Tetrachloroethane	mg/kg (ppm)	1	<0.05	82	83	31.143	4
m p-Xylene	mg/kg (ppm)	2	<0.00	79	82	34-136	4
o-Xvlene	mg/kg (ppm)	1	< 0.05	82	82	33-134	0
Styrene	mg/kg (ppm)	1	< 0.05	78	81	35-137	4
Isopropylbenzene	mg/kg (ppm)	1	< 0.05	85	87	31-142	2
Bromoform	mg/kg (ppm)	1	< 0.05	74	77	21-156	4
n-Propylbenzene	mg/kg (ppm)	1	< 0.05	83	83	23-146	0
Bromobenzene	mg/kg (ppm)	1	<0.05	74	78	34-130	5
1,3,5-Trimethylbenzene	mg/kg (ppm)	1	< 0.05	76	80	18-149	9
1,1,2,2-Tetrachloropenano	mg/kg (ppm)	1	<0.05	95 75	00 89	26-140	9
2-Chlorotoluene	mg/kg (ppm)	1	<0.05	77	80	31-134	4
4-Chlorotoluene	mg/kg (ppm)	1	< 0.05	75	79	31-136	5
tert-Butylbenzene	mg/kg (ppm)	1	< 0.05	81	83	30-137	2
1,2,4-Trimethylbenzene	mg/kg (ppm)	1	< 0.05	80	83	10-182	4
sec-Butylbenzene	mg/kg (ppm)	1	< 0.05	83	84	23-145	1
p-Isopropyltoluene	mg/kg (ppm)	1	< 0.05	82	84	21-149	2
1,3-Dichlorobenzene	mg/kg (ppm)	1	< 0.05	77	79	30-131	3
1,4-Dichlorobenzene	mg/kg (ppm)	1	< 0.05	77	80	29-129	4
1,2-Dichlorobenzene	mg/kg (ppm)	1	<0.05	777 80	80	31-132	4
1.2.4.Trichlorohenzene	mg/kg (ppm)	1	<0.95	83	85	29.149	1 9
Hexachlorobutadiene	mg/kg (ppm)	1	<0.25	90	88	10-142	2
Naphthalene	mg/kg (ppm)	1	<0.05	91	89	14-157	2
1,2,3-Trichlorobenzene	mg/kg (ppm)	1	< 0.25	83	85	20-144	2

ENVIRONMENTAL CHEMISTS

Date of Report: 05/12/22 Date Received: 04/25/22 Project: Auburn VW BE-0107-B, F&BI 204418

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

<i>v v</i>	1		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	1	40	10-146
Vinyl chlorido	mg/kg (ppm)	1	64 70	27-133
Bromomethane	mg/kg (ppm)	1	96	38-114
Chloroethane	mg/kg (ppm)	1	82	9-163
Trichlorofluoromethane	mg/kg (ppm)	1	83	10-196
Acetone	mg/kg (ppm)	5	76	52.141
1,1-Dichloroethene	mg/kg (ppm)	1	91	47-128
Hexane Methodaya ablasida	mg/kg (ppm)	1	88	43-142
Methylene chloride Mothyl t-butyl othor (MTBF)	mg/kg (ppm)	1	107	10-184 60-123
trans-1 2-Dichloroethene	mg/kg (ppm)	1	94	67-129
1.1-Dichloroethane	mg/kg (ppm)	1	95	68-115
2,2-Dichloropropane	mg/kg (ppm)	1	133	52-170
cis-1,2-Dichloroethene	mg/kg (ppm)	1	97	72-127
Chloroform	mg/kg (ppm)	1	97	66-120
2-Butanone (MEK)	mg/kg (ppm)	5	88	30-197
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	94	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	1	98	62-131
1,1-Dichloropropene	mg/kg (ppm)	1	93	69-128
Banzona	mg/kg (ppm)	1	99	60-139 71 118
Trichloroethene	mg/kg (ppm)	1	91	63.121
1.2-Dichloropropane	mg/kg (ppm)	1	88	72-127
Bromodichloromethane	mg/kg (ppm)	1	97	57-126
Dibromomethane	mg/kg (ppm)	1	95	62-123
4-Methyl-2-pentanone	mg/kg (ppm)	5	95	45-145
cis-1,3-Dichloropropene	mg/kg (ppm)	1	95	67-122
Toluene	mg/kg (ppm)	1	88	66-126
trans-1,3-Dichloropropene	mg/kg (ppm)	1	94	72-132
1,1,2-Trichloroethane	mg/kg (ppm)	1	89	64-115
2-nexanone	mg/kg (ppm)	0 1	90	55-152 79 190
Tetrachloroethene	mg/kg (ppm)	1	91	72-130
Dibromochloromethane	mg/kg (ppm)	1	91	55-121
1,2-Dibromoethane (EDB)	mg/kg (ppm)	1	92	74-132
Chlorobenzene	mg/kg (ppm)	1	91	76-111
Ethylbenzene	mg/kg (ppm)	1	92	64-123
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	1	98	64-121
m,p-Xylene	mg/kg (ppm)	2	92	78-122
o-Xylene	mg/kg (ppm)	1	94	77-124
Styrene	mg/kg (ppm)	1	91	74-126
Bromoform	mg/kg (ppm)	1	93 99	76-127 56-132
n-Propylbenzene	mg/kg (ppm)	1	90	74-124
Bromobenzene	mg/kg (ppm)	1	87	72-122
1,3,5-Trimethylbenzene	mg/kg (ppm)	1	89	76-126
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	1	91	56 - 143
1,2,3-Trichloropropane	mg/kg (ppm)	1	90	61-137
2-Chlorotoluene	mg/kg (ppm)	1	91	74-121
4-Chlorotoluene	mg/kg (ppm)	1	90	75-122
tert-Butylbenzene	mg/kg (ppm)	1	92	73-130
1,2,4-1 rimetnyibenzene	mg/kg (ppm)	1	90	76-125
sec-Butylbenzene p-Isopropyltoluopo	mg/kg (ppm)	1	91	71-130
1 3-Dichlorobenzene	mg/kg (ppm)	1	91	75-121
1.4-Dichlorobenzene	mg/kg (ppm)	1	91	74-117
1,2-Dichlorobenzene	mg/kg (ppm)	1	91	76-121
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	1	95	58-138
1,2,4-Trichlorobenzene	mg/kg (ppm)	1	94	64-135
Hexachlorobutadiene	mg/kg (ppm)	1	96	50-153
Naphthalene	mg/kg (ppm)	1	93	63-140
1,2,3-Trichlorobenzene	mg/kg (ppm)	1	94	63-138

ENVIRONMENTAL CHEMISTS

Date of Report: 05/12/22 Date Received: 04/25/22 Project: Auburn VW BE-0107-B, F&BI 204418

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: 205099-02 1/5 (Matrix Spike)

			Sample	Percent	Percent		
Analyte	Reporting Units	Spike Level	Result (Wet wt)	Recovery MS	Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Naphthalene	mg/kg (ppm)	0.83	< 0.01	82	78	50-150	5
2-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	85	83	50-150	2
1-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	84	82	50-150	2
Acenaphthylene	mg/kg (ppm)	0.83	< 0.01	85	84	50 - 150	1
Acenaphthene	mg/kg (ppm)	0.83	< 0.01	83	83	50 - 150	0
Fluorene	mg/kg (ppm)	0.83	0.016	84	88	50-150	5
Phenanthrene	mg/kg (ppm)	0.83	0.18	69 b	67 b	50-150	3 b
Anthracene	mg/kg (ppm)	0.83	0.024	85	85	50-150	0
Fluoranthene	mg/kg (ppm)	0.83	0.17	72 b	71 b	50 - 150	1 b
Pyrene	mg/kg (ppm)	0.83	0.15	76	71	50-150	7
Benz(a)anthracene	mg/kg (ppm)	0.83	0.063	81	83	50-150	2
Chrysene	mg/kg (ppm)	0.83	0.089	79	80	50-150	1
Benzo(a)pyrene	mg/kg (ppm)	0.83	0.077	84	84	50-150	0
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	0.084	90	86	50-150	5
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	0.030	94	93	50-150	1
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	0.034	65	72	50-150	10
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	< 0.01	74	79	50-150	7
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	0.030	63	69	50-150	9

Laboratory Code: Laboratory Control Sample 1/5

Haboratory couct Haboratory	control bail	ipic 1/0		
Analyte	Reporting Units	Spike Level	Percent Recovery LCS	Acceptance Criteria
Naphthalene	mg/kg (ppm)	0.83	86	61-102
2-Methylnaphthalene	mg/kg (ppm)	0.83	85	62-108
1-Methylnaphthalene	mg/kg (ppm)	0.83	85	62-108
Acenaphthylene	mg/kg (ppm)	0.83	92	61-111
Acenaphthene	mg/kg (ppm)	0.83	91	61-110
Fluorene	mg/kg (ppm)	0.83	87	62-114
Phenanthrene	mg/kg (ppm)	0.83	92	64-112
Anthracene	mg/kg (ppm)	0.83	90	63-111
Fluoranthene	mg/kg (ppm)	0.83	90	66-115
Pyrene	mg/kg (ppm)	0.83	94	65-112
Benz(a)anthracene	mg/kg (ppm)	0.83	90	64-116
Chrysene	mg/kg (ppm)	0.83	93	66-119
Benzo(a)pyrene	mg/kg (ppm)	0.83	90	62-116
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	91	61-118
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	91	65-119
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	94	64-130
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	101	67-131
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	102	67-126

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

 ${\rm j}$ - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Report To Dan	Hatch		SAMPL	E CHAIF	ature).					4/25	72.	<u>></u>	S-B4	Page TTT			3 JANE TO
Company Bluest	one Envir	ormenta	PROJE	CT NAME			<u> </u>			PO#	£		1 St	anda	rd turns	around	
Address			Aub	urn 1	JW			B	E-0	107)-E	3	Rusl	i cha	rges aut	horized	l by:
City, State, ZIP		,	REMAI	RKS					IN	VOICI	C TO	<u></u>		SA	MPLE I	DISPOS	jal
PhoneI	imail danke	bluestorov	Lu. Da Project	specific RI	<u>18? - Y</u>	es (2	90	B	فمسا	ton	e		Defi	ther_ iult:	Dispos	e after	30 days
	T	r	I	1	T		1		AN	ALYS	ESR	EQUE	STED	Т	1		
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX EPA 802:	NWTPH-HCID	PAHs EPA 8270	PCBs EPA 8082	MRCAS		****	•	Per I Sl Note)H 6 22 es r F
8-1-5	OI A.E	4/24/22	9:40	5	5	•			•		 					halanan (may () a gan	
B-1-10	02	ł	9:45			X	X		<u>د</u>	2						ĩ	
13-1-13	63		9:50			1×1	xT		\neg	X		X					
B-1-15	04		9,55	V	V			1		1						*	
B-1-W	OSTA.F		10:10	ω	6	\mathbf{X}	\mathbf{x}		3	$\langle \chi \rangle$		X			44	. 008 Pe	125
B-Z-5	OF A.F		10:30	5	5	X	X		λ	$\langle \chi \rangle$		X					
B-2-10	07		10:35			•				•							
13-2-13	- <i>CB</i>		10:40			X			X								
3-2-15	09		10:45	V	V												
B-2-W	10	V	10:55	ω	6	λ	\langle		X	X		X					
Friedman & Bruya, Inc.	SIG Relinquished by	NATURE		Da	PRIN	T NA He	ME L	;h		2ª	(She	хомр. 254-2	ANY 1-0		DA 4/2.5	TE 7/27-	ТІМЕ 13 ор
Seattle, WA 98119-2029	Relinquished by:	FUL.	_ <i>\</i> \	<u>M</u>	2			7	Fa	B_			1/2	12	1835		
Ph. (206) 285-8282	Received by:	******				**************************************						Sam	ples r	ecei	ved at	: 41	•C

Company Blues	one		PROJE	PROJECT NAME								- a	lard t	ard turnaround			
Address			Aubi	Auburn VW R						10	2-B	R	Rush charges authorized by:				
City, State, ZIP	EmailProject			RKS	*****				INV	OICE	ТО		S. Archi	AMPI ve sai	LE DISPO	SAL	
PhoneEn				specific RL	<u>s? - Y</u>	<u>es /)</u>	o M	Blu	æ٢	60;	<u>~2</u>		Other efault	t: Dis	pose afte	er 30 days	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			****	7	**************************************	I ,			AN	LYS	es requ	JESTE	D				
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	XU-H4TWN	NWTTPH-Cx	BTEX EPA 8021 NWTPH_HOID	VOCs BPA 8260	PAHs EPA 8270	POBs EPA 8082		a sa a s	*	Ne	otes	
B-3-5	1(A.E	4/24/22	11:10	5	5	X	$\overline{\chi}^{\dagger}$		\overline{x}	•							
B-3-10	R		11:15	l											******		
B-3-12	13		11:20			\mathbf{N}	X		$\hat{\chi}$					T			
B-3-15	M		11:25														
81998110 B-4-5	15		11:50			•			1	•							
B-4-10	16		11:55			X	X		X								
B-4-14	17		12:00			XX	-		X	\mathbf{A}	X					*****	
8-4-15	18		12:05	\mathbf{V}	V.							 					
B-4-W	19 A.F	-	12:10	ω	6	\mathbb{X}	2		X	χ	$\overline{\chi}$						
						1										,	
Friedman & Bruya, Inc.	SI diaquishediby:	CHATURE			PRIN	t na U	ME	- La		R	COM	PANY	·····	- Exe	DATE	TIME	
012 16th Avenue West Re	ceived by	A Cov		Frir	(Lin	من ہے اد رو ر	<u>v</u> vo		····	7	ZA	<u>ur le</u>		4	1bch	19745	
eattle, WA 98119-2029 Re	linguished by:	**************************************		<u> </u>	-FU		<u></u>			<u> </u>	<u>-up</u>			7	100100	71835	
h. (206) 285-8282 Re	ceived by:										· · ·	Same	tae r	apri	ved at	4 °C	

Report To Blue 57	DN.O	·····	_ SAMP	LERS (sign	iature)	F	$\overline{)}$	A	-				/	Page	*	<u>; </u>
Company			PROJI	PROJECT NAME						PO # TOKNAROUND TE						rivie: d
Address	*****		A	A hura 1111 BEOL						10	7-B		C RI Rusł	JSH_ 1 char	ges authorize	ed by:
City, State, ZIP			REMA	RKS		<u> </u>	······		IN	VOIC	ETO		<u> </u>	SAT	PLE DISPO	SAT.
PhoneE	Email							17	3	. 1				chive her	samples	
			- Project	specific RI	<u>.s? - Y</u>	<u>es /</u>	No		use	577	31AC		Defa	ult: J	Dispose afte	r 30 de
			T	1	1	╆──		H		NALY ol c	SES REQ	UES'	FED		······	
Sample ID	T-h TD	Date	Time	Samolo	#	I-Dx	I-GX	<u> 4</u> 802	HCIL	826	800	S.			N -	
i i	1240 111	Sampled	Sampled	Туре	Jars	VTPI	VÌPI	K BP.	Hau	RP/	AT A	ž			Not	tes
						ź	N	BTE	MAN	VOC	POB N					-11
18-3-3	ZDAE	4/2uhz	12:55	5	5							\uparrow	1	+	P-per	21
B-5-10	2(13:00		1	$\overline{\mathbf{v}}$				ホ	<u> </u>	+	-	+	13-4	24р_
B-5-12	22		13:05							$\neg 2$		<u> </u>		<u> </u>	1	*****
3-5-15	23		13:10		1/	$\overline{\mathbf{V}}$			t	,		 		+	-	
<u>B-S-W</u>	24AF		13:15	62	6	$\frac{\Lambda}{V}$			R			1	+	 		************
B-6-5	25 A.E		13'30	8	$\frac{1}{5}$	식	\simeq							ļ		
<u>B-6-10</u>	26		13:35	$-\frac{2}{1}$	$\exists \uparrow$	$\overline{\mathbf{d}}$										
B-6-13	27		3:40		+	Ă Vh					10101100 year 1000					
B-6-15			2125		╎╷╷	ДŶ	4				<u> </u>		 		······	
B-6-W	20 AT		255			$\overline{v}h$			<u> </u>				 		·····	
	<u></u>	VARTITITI -	<u></u>	6	61	$\overline{\mathcal{M}}$			<u> </u>	XI	<u> </u>				unprese	rved
Friedman & Bruya, Inc. Re	linquished by:	The		D	PRINI 7	<u>'NA</u>	ME				COM	PAN	Y		DATE	TIME
14. (200) 200-8282 Re	ceived by / U			Jan	m.	n/1	~	*******		$+\underline{k}$	5 hraj	hor	۷	-+	1/25/22	13:6
Re	inquished by:				fæ	<u>~~</u>		***		 	Est	5			epiloz-	183

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 15, 2022

Dan Hatch, Project Manager Bluestone Environmental NW 20204 SE 284th St Kent, WA 98042

Dear Mr Hatch:

Included are the additional results from the testing of material submitted on May 27, 2022 from the Auburn BE-0107-C, F&BI 205474 project. There are 4 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

ale

Michael Erdahl Project Manager

Enclosures BST0615R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 27, 2022 by Friedman & Bruya, Inc. from the Bluestone Environmental NW Auburn BE-0107-C, F&BI 205474 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Bluestone Environmental NW</u>
205474 -01	MW-1-W
205474 - 02	MW-2-W
205474 -03	MW-3-W
205474 -04	MW-4-W
205474 -05	MW-5-W
205474 -06	MW-Dup

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/15/22 Date Received: 05/27/22 Project: Auburn BE-0107-C, F&BI 205474 Date Extracted: 06/10/22 Date Analyzed: 06/10/22

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery)</u> (Limit 51-134)
MW-1-W 205474-01	<100	91
MW-2-W 205474-02	<100	75
MW-3-W 205474-03	<100	76
MW-4-W 205474-04	<100	76
MW-5-W 205474-05	<100	81
MW-Dup 205474-06	<100	82
Method Blank 02-1150 MB	<100	83

ENVIRONMENTAL CHEMISTS

Date of Report: 06/15/22 Date Received: 05/27/22 Project: Auburn BE-0107-C, F&BI 205474

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 206	151-01 (Duplic	eate)			
	Reporting	Sampl	le Du	plicate	RPD
Analyte	Units	Resul	t R	esult	(Limit 20)
Gasoline	ug/L (ppb)	<100) <	<100	nm
Laboratory Code: Lab	oratory Contro	ol Sample			
			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	_
Gasoline	ug/L (ppb)	1,000	111	69-134	_

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

		T q	1						Ī.		1	1	I	1	- F	d .	0	A	0		N
		riedman & Bruya, Inc. h. (206) 285-8282	- 				MW-DUP	MW-5-W	MW-4-6	MW-3-W	MW-2-W	$MW - 1 - \omega$	Sample ID	· · · · · · · · · · · · · · · · · · ·	1101161		Jity. State. ZIP	, Address	Dompany BUTSTON	report To DAN HAT	105474
Received by:	Relingdished by:	Received has	idist 1				7 00	37	MO	<u>3</u>	9	OIAT	Lab ID						Ř		
	D. MA	the full	NADURE				K					5/26/22	Date Sampled			har allow					
		BC (Shee	à50	1015	1100	210	1/30	Time Sampled		L Project	<u> </u>	REMAI	A	PROJE		
	12	HAU					4					3	Sample Type		specific RL		RKS	brn VI	CT NAME	ANUSAN	thank -
	Webb	CY CA	PRIN				<					Q	# of Jars		<u>s? - Ye</u>			\sim		WWW	
	R	2.7512	T NAI			 	X	\geq	\geq	\bowtie	\geq	\geq	NWTPH-Dx		s / N		-			7	
	- fr		ME										NWTPH-Gx BTEX EPA 8021		0	~~~~					
	th.												NWTPH-HCID			E C	<u> </u>	33			•
						10	\ge	\ge	\square	\ge	\geq	\mathbf{X}	VOCs EPA 8260	ANA		STO	NVO	6	Ч		12
		Ð				\ (X	\geq	\bowtie	\bowtie	\geq	\geq	PAHs EPA 8270	LYSE		ZNC	ICE	LO LO	0 #		1-1-
	E.	WES	Q			 ***							PCBs EPA 8082	SRE		Ι	OT	6	,		
Jami		CON,	OMF				\geq	\searrow		\geq	\ge	\times	MTCA 5 METALS	QUI					ľ		$\frac{1}{2}$
oles 1		С,	ANT										· · · · · · · · · · · · · · · · · · ·	STE		— г	 			-	3
eceiv						 								P	lefau	Othe	۸ سرا م	ush c			ci .
red															lt: D	s avr	SAM	harg	udard IH	URN	+
± [±] +°c	spilez.	5102/22	DATE									ł	N		ispose afte	ambres	PLE DISPO	es authoriz	turnaroun	IAROUND '	Ent/lens
	257	95 ⁰	TIME										tes		r 30 days	North State	SAL	ed by:	d	TIME	2 MM/2

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 15, 2022

Dan Hatch, Project Manager Bluestone Environmental NW 20204 SE 284th St Kent, WA 98042

Dear Mr Hatch:

Included are the additional results from the testing of material submitted on May 23, 2022 from the Auburn VW BE-0107_BC, F&BI 205405 project. There are 5 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures BST0615R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 23, 2022 by Friedman & Bruya, Inc. from the Bluestone Environmental NW Auburn VW BE-0107_BC, F&BI 205405 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Bluestone Environmental NW
205405 -01	MW-1-5
205405 - 02	MW-1-7
205405 -03	MW-1-12
205405 -04	MW-1-15
205405 - 05	MW-2-5
205405 -06	MW-2-8
205405 - 07	MW-2-12
205405 -08	MW-2-15
205405 -09	MW-3-3
205405 -10	MW-3-5
205405 -11	MW-3-10
205405 -12	MW-3-15
205405 - 13	MW-4-3
205405 -14	MW-4-5
205405 -15	MW-4-10
205405 -16	MW-4-15
205405 - 17	MW-5-3
205405 -18	MW-5-5
205405 -19	MW-5-10
205405 -20	MW-5-15

The NWTPH-Gx and BTEX samples were requested outside of the holding time. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/15/22 Date Received: 05/23/22 Project: Auburn VW BE-0107_BC, F&BI 205405 Date Extracted: 06/13/22 Date Analyzed: 06/13/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 50, 150)
MW-1-5 ht	< 0.02	< 0.02	< 0.02	<0.06	<5	(Linint 50-150) 81
MW-1-7 ht 205405-02	< 0.02	< 0.02	< 0.02	< 0.06	<5	83
MW-1-12 ht 205405-03	< 0.02	< 0.02	< 0.02	< 0.06	<5	67
MW-2-5 ht 205405-05	< 0.02	< 0.02	< 0.02	< 0.06	<5	82
MW-2-8 ht 205405-06	< 0.02	< 0.02	< 0.02	< 0.06	<5	84
MW-2-12 ht 205405-07	< 0.02	< 0.02	< 0.02	< 0.06	<5	86
MW-3-3 ht 205405-09	< 0.02	< 0.02	< 0.02	< 0.06	<5	83
MW-3-5 ht 205405-10	< 0.02	< 0.02	< 0.02	< 0.06	<5	80
MW-3-10 ht 205405-11	< 0.02	< 0.02	< 0.02	< 0.06	<5	81
MW-4-3 ht 205405-13	< 0.02	< 0.02	< 0.02	< 0.06	<5	61
MW-4-5 ht 205405-14	< 0.02	< 0.02	< 0.02	< 0.06	<5	81

ENVIRONMENTAL CHEMISTS

Date of Report: 06/15/22 Date Received: 05/23/22 Project: Auburn VW BE-0107_BC, F&BI 205405 Date Extracted: 06/13/22 Date Analyzed: 06/13/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
MW-4-10 ht 205405-15	< 0.02	< 0.02	< 0.02	< 0.06	<5	74
$\underset{205405\text{-}17}{\text{MW-5-3}}\text{ht}$	< 0.02	< 0.02	< 0.02	< 0.06	<5	79
$\underset{205405\cdot18}{\text{MW-5-5}}\text{ht}$	< 0.02	< 0.02	< 0.02	< 0.06	<5	77
MW-5-10 ht 205405-19	< 0.02	< 0.02	< 0.02	<0.06	<5	75
Method Blank 02-1153 MB	< 0.02	< 0.02	< 0.02	< 0.06	<5	84

ENVIRONMENTAL CHEMISTS

Date of Report: 06/15/22 Date Received: 05/23/22 Project: Auburn VW BE-0107_BC, F&BI 205405

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 205405-01 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	90	69-120
Toluene	mg/kg (ppm)	0.5	90	70-117
Ethylbenzene	mg/kg (ppm)	0.5	90	65 - 123
Xylenes	mg/kg (ppm)	1.5	93	66-120
Gasoline	mg/kg (ppm)	20	105	71-131

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

PROJECT NAME PROJECT NAME PO# Sample AUDUMN Sample Sample <ths< th=""><th>Received by:</th><th>Received by Received by Receiv</th><th>Friedman & Bruya, Inc. Relinquished by</th><th>(SIGN</th><th>MW-3-5 101</th><th>MW-3-3 01</th><th>MW-2-15 08</th><th>MW-2-12 07</th><th>MW -2-8 06</th><th>MW - 2-5 . 05</th><th>MW -1-15 . OH</th><th>MW-1-12 03</th><th>MW-1-7 02</th><th>MW-1-5 01 A-E 5</th><th>Sample ID Lab ID</th><th></th><th>PhoneEmail() Shop HUES</th><th>City, State, ZIP</th><th>Company <u>BLUESTONE</u> NO</th></ths<>	Received by:	Received by Receiv	Friedman & Bruya, Inc. Relinquished by	(SIGN	MW-3-5 101	MW-3-3 01	MW-2-15 08	MW-2-12 07	MW -2-8 06	MW - 2-5 . 05	MW -1-15 . OH	MW-1-12 03	MW-1-7 02	MW-1-5 01 A-E 5	Sample ID Lab ID		PhoneEmail() Shop HUES	City, State, ZIP	Company <u>BLUESTONE</u> NO
WM WW PO# Sectific RLs? Yes INVOICE TO INVOICE TO Sample # of # of # of BTSTPP # of INVOICE TO Invoice TO Sample # of # of # of BTSTPP AMALEY REQUESTED Invoice TO Invoice TO Sample # of # of # of MWTPH-Dx Invoice TO Invoice TO Sample # of # of # of MUTPH-Gx Invoice TO Invoice TO Sample # of # of # of MUTPH-Gx Invoice TO Invoice TO Sample # of # of # of MUTPH-Gx Invoice TO Invoice TO Sample # of # of # of # of Invoice TO Invoice TO Sample # of # of # of MUTPH-Gx Invoice To Invoice To VOCs EPA 82001 NWTPH-HCID X Yes Yes Invoice To Invoice To VOCs EPA 82001 X Yes Yes Yes Yes Yes VOCs EPA 8082 Yes Yes Yes Yes Yes VOCs EPA 8082 Yes Yes Yes <		J. W. E	Variation /	ATURE1	V 1950	1355	1105		1065	1050	920	ġ15	910	123/22 905	Date Time Sampled Sampled		Ne Marcum Project	REMA	PROJE
ANALYSES REQUESTED ANALYSES REQUESTED ANALYSES REQUESTED PAHs EPA 8270 PCBs EPA 8082 PCBs EPA 8082 Samples r		Liz Webber-Boy	HALEY CARTER	PRINT NAME					×						Type Sample Jars of NWTPH-Dx NWTPH-Gx BTEX EPA 8021 NWTPH-HCID		specific RLs? - Yes / No	RKS	WIN VWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
	Samples r	863	BURSTONG	COMPANY		XX X		· · · · ·	X				X		VOCs EPA 8260 PAHs EPA 8270 PCBs EPA 8082 MTCA 5	ANALYSES REQUESTED	いたンドレバック Defai	INVOICE TO	PO# ここでフー優C ロRU Rush

		Ph. (206) 285-8282	Friedman & Bruya, In		21-5-MW	MIN -5-10	2-5-MM	MW-5-3	MW-4-15	MW -4-10	MW-4-5	MW-4-2.	MW-3-15	MW-3-10	Sample ID		Phone	City, State, ZIP	Address	Company	Report To DAN HA	SONSUC
Received by	Relinquisher by:	Received by:	.c. Relinquished by		20 1	19	8	F	<i>b</i> / <i>l</i> / <i>b</i> / <i>b</i> / <i>b</i> / <i>l</i> / <i>b</i>	. 12	, Iq	13	2 ag 12	311 7	Lab ID		Email & Anh Wolks				TCH	
	C. D. Wei			NATURE	«						7%		-	10312	Date Sampled		Jachn , a				-	
			HT J		1555	1550	98	1540	555	1500	1455)h(\$0	1400	1355	Tìme Sampled		Project s	REMARI	Aubo	PROJEC	SAMPLE	SAMPLE
	1/2		MH ,		4									S	Sample Type		pecific RLs	S	WN WK	T NAME	Kelsis	
	- Vu		7 23	PRIN	<	The second s	1	an a						$\left \mathcal{S} \right $	# of Jars		? - Ye				Sure)	OF
	NUMAN		ART	IT NA		\geq	ļ	X		X		$\mid \times$	1.	X	NWTPH-Dx		<u>s / N</u>		4	\sim	G	NUS.
	10	à	ß	ME		· .									NWTPH-Gx		10 10				A	
	C.	5											<u> </u>		NWTPH-HCID		B		30))	$\left \bigcap \right $	×
 -	Ĩ							$\overline{\mathbf{X}}$				\mathbf{X}	/		VOCs EPA 8260	ANA	1S	NVO) Q	דרו		
			\$					\geq	<u> </u>	-		\mathbb{X}	ļ		PAHs EPA 8270	LYSE	NO	ICE	Ļ 1	Ő #		5
	-	Ũ	ë Së							<u> </u>	1			<u> </u>	PCBs EPA 8082	SRE		Ţ	Ċ	5		2
	1	Ā	1018	OMI		ļ	ļ	$\mid \times$			ļ	$ \times$	\$		MTCA 5 META	Ê						$\left \right _{\sim}$
			R	ANT										-		STE			1 22	DØ		ſ∾
, ¹ . 1																	Othe	Arch	ush c	RUS		3 0
 																	IF: Di	SAMT ive si	harge	H H	URN	# - S
	120	7-13	518	DA													spose	umple	is aut	turna	AROU	Z
	142	5	the	TE											No		<u>afte</u>	ISPO	horize	round	JUD .	* 0 /2
 x		22	31	EL		5									tes		r 30	SAL	əd by:	<u>سر</u>	TIME	3
		-		ME											,		days					`
 				••••••••						., ?			· · ·				ŧ			,	L	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

July 28, 2022

Dan Hatch, Project Manager Bluestone Environmental NW 20204 SE 284th St Kent, WA 98042

Dear Mr Hatch:

Included are the results from the testing of material submitted on July 21, 2022 from the Auburn VW BE-0107-D, F&BI 207331 project. There are 14 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Nelf

Michael Erdahl Project Manager

Enclosures c: Haley Carter BST0728R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 21, 2022 by Friedman & Bruya, Inc. from the Bluestone Environmental NW Auburn VW BE-0107-D, F&BI 207331 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Bluestone Environmental NW
207331 -01	B-7-3
207331 -02	B-7-5
207331 -03	B-7-8
207331 -04	B-8-3
207331 -05	B-8-5
207331 -06	B-8-8
207331 -07	B-9-3
207331 -08	B-9-5
207331 -09	B-9-8
207331 -10	B-10-3
207331 -11	B-10-5
207331 -12	B-10-6
207331 -13	B-10-8
207331 -14	B-11-3
207331 -15	B-11-5
207331 -16	B-11-8
207331 -17	B-12-3
207331 -18	B-12-5
207331 -19	B-12-8
207331 -20	B-13-3
207331 -21	B-13-5
207331 -22	B-13-8
207331 -23	B-14-3
207331 -24	B-14-5
207331 -25	B-14-8

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 07/28/22 Date Received: 07/21/22 Project: Auburn VW BE-0107-D, F&BI 207331 Date Extracted: 07/22/22 Date Analyzed: 07/22/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 56-165)
B-7-3 207331-01	<50	<250	107
B-7-5 207331-02	<50	<250	100
B-8-3 207331-04	<50	<250	103
B-8-5 207331-05	<50	<250	101
B-13-3 207331-20	<50	<250	104
B-13-5 207331-21	<50	<250	107
B-14-3 207331-23	<50	<250	101
B-14-5 207331-24	<50	<250	100
Method Blank 02-1825 MB	<50	<250	90

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-9-3 07/21/22 07/25/22 07/26/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107-D 207331-07 1/5 072616.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	ıol	$\% \ {\rm Recovery:} \\ 80 \\ 91 \\ 84 \\ 93 \\ 99 \\ 103 \\ \end{cases}$	Lower Limit: 39 48 23 50 40 50	Upper Limit: 103 109 138 150 127 150
Compounds:		Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthalei 1-Methylnaphthalei Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthei Benzo(k)fluoranthei Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac	ne ne ne ene ene	$< 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ <$		

ENVIRONMENTAL CHEMISTS

B-9-5 07/21/22 07/25/22 07/26/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107-D 207331-08 1/5 072617.D GCMS12 VM
ol	% Recovery: 70 84 82 89 60 98	Lower Limit: 39 48 23 50 40 50	Upper Limit: 103 109 138 150 127 150
	Concentration mg/kg (ppm)		
ne ne ne ene ene	<pre>mg/kg (ppm) <0.01 0.014 <0.01 <</pre>		
ene e	< 0.01		
	B-9-5 07/21/22 07/25/22 07/26/22 Soil mg/kg (ppm ol	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccc} B-9.5 & Client: \\ 07/21/22 & Project: \\ 07/25/22 & Lab ID: \\ 07/26/22 & Data File: \\ Soil & Instrument: \\ mg/kg (ppm) Dry Weight & Operator: \\ & & & Lower \\ & & & Instrument: \\ 70 & 39 \\ 84 & 48 \\ 82 & 23 \\ 89 & 50 \\ col & 60 & 40 \\ 98 & 50 \\ col & 60 & 40 \\ 98 & 50 \\ concentration \\ mg/kg (ppm) \\ ne & 0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <0.01 \\ <$

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-10-3 07/21/22 07/25/22 07/26/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107-D 207331-10 1/5 072607.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	ol	% Recovery: 78 88 85 97 93 102	Lower Limit: 39 48 23 50 40 50	Upper Limit: 103 109 138 150 127 150
Compounds:		Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthalen 1-Methylnaphthalen Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthen Benzo(k)fluoranthen Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac	ne ne ne ene ene	$<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\<0.01 \\\\<0.01 \\<0.01 \\\\<0.01 \\<0.01 \\\\<0.01 \\\\<0.01 \\\\<0.01 \\\\<0.01 \\\\<0.01 \\\\<0.01 \\\\<0.01 \\\\<0.01 \\\\\\<0.01 \\\\\\\\0.01 \\\\\\\\0.01 \\\\\\\\0.01 \\\\0.01 \\\\\\0.01 $		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-10-6 07/21/22 07/25/22 07/26/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107-D 207331-12 1/5 072608.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	ol	% Recovery: 75 86 82 90 96 98	Lower Limit: 39 48 23 50 40 50	Upper Limit: 103 109 138 150 127 150
Compounds:		Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthalen 1-Methylnaphthalen Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthen Benzo(k)fluoranthen Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac	ne ne ne ene ene ene	$\begin{array}{c} 0.013\\ 0.042\\ 0.029\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0$		
Benzo(g,h,i)perylen	9	< 0.01		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-11-3 07/21/22 07/25/22 07/26/22 Soil mg/kg (ppm	ı) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107-D 207331-14 1/5 072609.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	ol	% Recovery: 80 90 86 95 99 104		Upper Limit: 103 109 138 150 127 150
Compounds:		Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac	ne ne ne ene ene	$< 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ <$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-11-5 07/21/22 07/25/22 07/26/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107-D 207331-15 1/5 072610.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	ol			Upper Limit: 103 109 138 150 127 150
Compounds:		Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthalen 1-Methylnaphthalen Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthen Benzo(b)fluoranthen Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac	ne ne ne ene ene	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <		
ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-12-3 07/21/22 07/25/22 07/26/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107-D 207331-17 1/5 072611.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	nol	% Recovery: 77 86 83 96 95 100		Upper Limit: 103 109 138 150 127 150
Compounds:		Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthalen 1-Methylnaphthalen Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthen Benzo(k)fluoranthen Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac	ne ne ne ene ene	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B-12-5 07/21/22 07/25/22 07/26/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Bluestone Environmental NW Auburn VW BE-0107-D 207331-18 1/5 072612.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	ol	% Recovery: 70 84 78 90 85 96	Lower Limit: 39 48 23 50 40 50	Upper Limit: 103 109 138 150 127 150
Compounds:		Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac	ne ne ne ene ene	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.065 0.011 0.12 0.14 0.068 0.069 0.090 0.075 0.027 0.033 < 0.01		
Benzo(g,h,i)perylen	e	0.028		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 07/25/22 07/25/22 Soil mg/kg (ppm) Dry Weigh	Client: Project: Lab ID: Data File: Instrument: t Operator:	Bluestone Environmental NW Auburn VW BE-0107-D 02-1830 mb 1/5 072505.D GCMS9 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	% Recover 84 93 80 96 102 119	y: Lower 24 37 38 45 11 50	Upper Limit: 111 116 117 117 158 124
Compounds:	Concentrati mg/kg (ppr	ion n)	
Naphthalene 2-Methylnaphthalei 1-Methylnaphthalei Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthei Benzo(k)fluoranthei Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac	$\begin{array}{cccc} < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ ene \\ < 0.01 \\$		

ENVIRONMENTAL CHEMISTS

Date of Report: 07/28/22 Date Received: 07/21/22 Project: Auburn VW BE-0107-D, F&BI 207331

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	207357-01 (Matri	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	106	112	63-146	6
Laboratory Code:	Laboratory Contr	rol Samp	le				
			Percent	t			
	Reporting	Spike	Recover	y Accep	tance		
Analyte	Units	Level	LCS	Crit	eria		
Diesel Extended	mg/kg (ppm)	5,000	122	79-1	144		

ENVIRONMENTAL CHEMISTS

Date of Report: 07/28/22 Date Received: 07/21/22 Project: Auburn VW BE-0107-D, F&BI 207331

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: 207385-02 1/5 (Matrix Spike)

Laboratory Code: 20738	5-02 1/5 (Mat	rix Spik	e)	D	D .		
Analyte	Reporting Units	Spike Level	Sample Result (Wet wt)	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Naphthalene	mg/kg (ppm)	0.83	< 0.01	78	79	34-118	1
2-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	82	83	29-130	1
1-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	82	83	37-119	1
Acenaphthylene	mg/kg (ppm)	0.83	0.034	83	83	45-128	0
Acenaphthene	mg/kg (ppm)	0.83	< 0.01	85	85	36-125	0
Fluorene	mg/kg (ppm)	0.83	0.032	85	84	48-121	1
Phenanthrene	mg/kg (ppm)	0.83	0.35	46 b	46 b	50-150	0 b
Anthracene	mg/kg (ppm)	0.83	0.063	82	80	50-150	2
Fluoranthene	mg/kg (ppm)	0.83	0.31	57 b	56 b	50-150	2 b
Pyrene	mg/kg (ppm)	0.83	0.40	45 b	45 b	50-150	0 b
Benz(a)anthracene	mg/kg (ppm)	0.83	0.16	72	73	50-150	1
Chrysene	mg/kg (ppm)	0.83	0.17	68 b	68 b	50 - 150	0 b
Benzo(a)pyrene	mg/kg (ppm)	0.83	0.16	76	75	50-150	1
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	0.13	79	80	50-150	1
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	0.045	87	88	50-150	1
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	0.079	91	83	41-134	9
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	0.015	97	90	44-130	7
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	0.075	86	78	33-131	10

Laboratory code. Laboratory	control sample	1/0	Porcont	
Analyte	Reporting Units	Spike Level	Recovery LCS	Acceptance Criteria
Naphthalene	mg/kg (ppm)	0.83	78	58-108
2-Methylnaphthalene	mg/kg (ppm)	0.83	81	67-108
1-Methylnaphthalene	mg/kg (ppm)	0.83	81	66-107
Acenaphthylene	mg/kg (ppm)	0.83	90	70-130
Acenaphthene	mg/kg (ppm)	0.83	89	66-112
Fluorene	mg/kg (ppm)	0.83	94	67-117
Phenanthrene	mg/kg (ppm)	0.83	88	70-130
Anthracene	mg/kg (ppm)	0.83	90	70-130
Fluoranthene	mg/kg (ppm)	0.83	91	70-130
Pyrene	mg/kg (ppm)	0.83	87	70-130
Benz(a)anthracene	mg/kg (ppm)	0.83	91	70-130
Chrysene	mg/kg (ppm)	0.83	90	70-130
Benzo(a)pyrene	mg/kg (ppm)	0.83	91	68-120
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	90	69-125
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	92	70-130
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	106	67-129
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	109	67-128
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	107	64-127

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Friedman & Bruya, Inc. Ph. (206) 285-8282	B-10-3	B-9-8	B-9-5	B-9-3	8-8-8	B-8-5	8-8-3	8-7-8	3-7-5	B-7-3	Sample ID		Phone	City, State, ZIP	Address	Company BLLESTO,	201331 Report To DAN HATCH
Relinquished by: Received by: Received by: Received by:	1 01	9	8	57	8	05	Q	20	02	01 A-E 1	Lab ID		Email Jan 10 20125			NZ	AD A3741 & +
ATGRE		9	9	9	93	9	9	97		7/20/27 9	Date Sampled S		merris con				750
	8	2	40	<u>S</u> ,	Ö	5	0	-01	30	5	ampled		Project spe	REMARKS	Aubor	PROJECT	SAMPLEI
MAREA (S	Sample # Type J		cific RLs?	V2	NW VW	NAME	S (signation
UNDER THE						\times	X		X	X	NWTPH-Dx	-	· Yes / Nc				FCUST
	-										BTEX EPA 8021 NWTPH-HCID	A	Buc		7		FODY
	X		X	4							VOCs EPA 8260 PAHs EPA 8270	NALYSES) Clar	WOICE TO	JOT-I	PO#	1-2
COMPAN NESTON FRYS Sam						·····					PCBs EPA 8082	REQUEST	T				77-1-72
											· · · · · · · · · · · · · · · · · · ·	ED	D Other Default: I	SAN	Rush char	RIISH	VSB3/
DATE 7/21/22 7/21/22											Z		Sampies Dispose aft	IPLE DISP	ges authori	d turnarou	NAROUNI
TIME 800 PC											otes		er 30 days	OSAL	zed by:	nd	A MIL

		Friedman & Bruya, Inc. Ph 1906) 925-2929	- - -	3-13-3	8-12-8	8-12-5	B-12-3	B-11-8	R-11-5	B-11-3	8-10-8	B-10-6	6-10-5	Sample ID			Dhone	City, State, ZIP	Address	Company BLUESTO	Report To DAN HA-	907231
Received by:	Received by:	Relinquished	USI SIQU	20	191	18	<i>t</i> /	16	15	14	13	12	11 2-6	Lab ID		Kzntf@utevounu	Email Analitic			02	ICH & HAVEY (A	
	alu	Jun Inter	NATURE	4								>	7/90/22_	Date Sampled							0758	
				Bo	00 €	1055	050	1035	1030	520	1010	10°7	1005	Time Sampled		J.Project s	 	REMAR	Aub	PROJE	SAMPL	SAMPLE
	Anu	¥		J.									5	Sample Type		pecific RLs		KS	JN MIL	T NAME	ERS (signa	CHAIN
	in the	×37	PRIN	Ę.									יט	# of Jars		<u>;? - Ye</u>			\sim	-	ture)	2
		R	[NAN	K										NWTPH-Dx		s / N					Z	rsn
	5	232	Æ	· ·										NWTPH-Gx BTEX EPA 8021	-	0					E	abi
		Į		:										NWTPH-HCID	-	ļ	Por co	, ,	R		\geq	X
							$\overline{}$:		<u> </u>				VOCs EPA 8260	ANAI		0	NVO	0	q	R	R
		4				겍	Y		\ge	\ge		즤		PAHs EPA 8270	YSE		<u>a</u>	ICE (07	0 #	1	6
		50 Y	8											PCBs EPA 8082	SRE	C	42	PO	Ġ		V	N
Sa	8	225	MPA												QUES							5
موارش		2	YN										<u></u>		TED	Def			Rus			\sim
s rece																ault:	ther_	SA	h cha	tanda IISH	Pag	
i ved	-	20		: :										······································		Disp	sam	MPLI	rges a	ard tu	a#	、
t s	212	2012	ATE											<u> </u>		ose au	sard	DIS	utho	maro		3
	6	$\frac{1}{\sqrt{2}}$												Notes		fter 3		POSA	ized l	nud		
	5	<i>S</i> '	IME	-												0 days		L	yy;			N

Friedman & Bruya, Inc. Ph. (206) 285-8282	B-14-8	Sample ID B-13-5 B-13-8 B-14-3	2073.3 l Report To <u>DAN HAT</u> Company <u>BUIZSTZ</u> Address City, State, ZIP Phone
Relinquished by AIGMATURE Received by: Received by:	22	Lab ID Date Sampled	CH & HALEY CHETTL
	1250	Time Sampled 1220	SAMPL SAMPI PROJE PROJE AU REMAP
PRINT NAME HALEY (ARTER_ TUN WBUCK		Sample Type Jars Jars NWTPH-Dx NWTPH-Gx BTEX EPA 8021	E CHAIN OF CUSTOL
COMPAN BLUESTONE FOB Sampl		NWTPH-HCID VOCs EPA 8260 PAHs EPA 8270 PCBs EPA 8082	PO# PO# BE-CIOT-D INVOICE TO Bud Clary ANALYSES REQUEST
Y DATE TIME 7/24/22 822 7/24/22 825		Notes	Page # of

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 8, 2022

Dan Hatch, Project Manager Bluestone Environmental NW 20204 SE 284th St Kent, WA 98042

Dear Mr Hatch:

Included are the results from the testing of material submitted on July 26, 2022 from the Auburn VW, F&BI 207447 project. There are 24 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures c: Haley Carter BST0808R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 26, 2022 by Friedman & Bruya, Inc. from the Bluestone Environmental NW Auburn VW, F&BI 207447 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Bluestone Environmental NW</u>
207447 -01	MW-1
207447 -02	MW-2
207447 -03	MW-3
207447 -04	MW-4
207447 -05	MW-5
207447 -06	MW-DUPA

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 08/08/22 Date Received: 07/26/22 Project: Auburn VW, F&BI 207447 Date Extracted: 07/27/22 Date Analyzed: 07/27/22

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Extended (C ₁₀ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
MW-1 207447-01	960 x	144
MW-2 207447-02	940 x	ip
MW-3 207447-03	670 x	145
MW-4 207447-04	550 x	ip
MW-5 207447-05	300 x	ip
MW-DUPA 207447-06	510 x	141
Method Blank 02-1847 MB	<250	111

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-1		Client:	Bluestone Environmental NW
Date Received:	07/26/22		Project:	Auburn VW, F&BI 207447
Date Extracted:	07/27/22		Lab ID:	207447-01 x5
Date Analyzed:	08/01/22		Data File:	207447-01 x5.189
Matrix:	Water		Instrument:	ICPMS2
Units:	ug/L (ppb)		Operator:	SP
Analyte:		Concentration ug/L (ppb)		
Arsenic		20.0		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-2	Client:	Bluestone Environmental NW
Date Received:	07/26/22	Project:	Auburn VW, F&BI 207447
Date Extracted:	08/03/22	Lab ID:	207447-02 x5
Date Analyzed:	08/03/22	Data File:	207447-02 x5.151
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
	Concentratio	on	
Analyte:	ug/L (ppb)		
Arsenic	58.1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-3		Client:	Bluestone Environmental NW
Date Received:	07/26/22		Project:	Auburn VW, F&BI 207447
Date Extracted:	08/03/22		Lab ID:	207447-03 x5
Date Analyzed:	08/03/22		Data File:	207447-03 x5.152
Matrix:	Water		Instrument:	ICPMS2
Units:	ug/L (ppb)		Operator:	SP
Analyte:		Concentration ug/L (ppb)		
Arsenic		14.3		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-4		Client:	Bluestone Environmental NW
Date Received:	07/26/22		Project:	Auburn VW, F&BI 207447
Date Extracted:	07/27/22		Lab ID:	207447-04 x10
Date Analyzed:	08/01/22		Data File:	207447-04 x10.056
Matrix:	Water		Instrument:	ICPMS2
Units:	ug/L (ppb)		Operator:	SP
Analyte:	(Concentration ug/L (ppb)		
Arsenic		11.4		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-5		Client:	Bluestone Environmental NW
Date Received:	07/26/22		Project:	Auburn VW, F&BI 207447
Date Extracted:	08/03/22		Lab ID:	207447-05 x5
Date Analyzed:	08/03/22		Data File:	207447-05 x5.153
Matrix:	Water		Instrument:	ICPMS2
Units:	ug/L (ppb)		Operator:	SP
A 1		Concentration		
Analyte:		ug/L (ppb)		
Arsenic		35.4		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted:	MW-DUPA 07/26/22 08/03/22	Client: Project: Lab ID:	Bluestone Environmental NW Auburn VW, F&BI 207447 207447-06 x5
Date Analyzed: Matrix:	08/03/22 Water	Data File: Instrument:	207447-06 x5.154 ICPMS2
Units:	ug/L (ppb) Concenti	Operator: ration	SP
Analyte:	ug/L (p	opb)	
Arsenic	11.5	5	

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	Method Blank	Client:	Bluestone Environmental NW
Date Received:	NA	Project:	Auburn VW, F&BI 207447
Date Extracted:	07/28/22	Lab ID:	I2-511 mb
Date Analyzed:	07/28/22	Data File:	I2-511 mb.046
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
	Concentration		
Analyte:	ug/L (ppb)		
Arsenic	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	Method Blank NA 08/03/22 08/03/22 Water	Client: Project: Lab ID: Data File: Instrument:	Bluestone Environmental NW Auburn VW, F&BI 207447 I2-526 mb I2-526 mb.116 ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	<1		

ENVIRONMENTAL CHEMISTS

Client ID:	MW-1		Client:	Bluestone Environmental NW
Date Received:	07/26/22		Project:	Auburn VW, F&BI 207447
Date Extracted:	08/01/22		Lab ID:	207447-01
Date Analyzed:	08/01/22		Data File:	207447-01.192
Matrix:	Water		Instrument:	ICPMS2
Units:	ug/L (ppb)		Operator:	SP
Analyte:		Concentration ug/L (ppb)		
		0 11 /		
Arsenic		17.8		

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	MW-2	Client:	Bluestone Environmental NW
Date Received:	07/26/22	Project:	Auburn VW, F&BI 207447
Date Extracted:	08/03/22	Lab ID:	207447-02 x5
Date Analyzed:	08/03/22	Data File:	207447-02 x5.145
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
	Conce	ntration	
Analyte:	ug/I	ر (ppb)	
Arsenic	F	5.6	

ENVIRONMENTAL CHEMISTS

	MIN O		C1 : 4	
Client ID:	MW-3		Client:	Bluestone Environmental NW
Date Received:	07/26/22		Project:	Auburn VW, F&BI 207447
Date Extracted:	08/03/22		Lab ID:	207447-03 x5
Date Analyzed:	08/03/22		Data File:	207447-03 x5.146
Matrix:	Water		Instrument:	ICPMS2
Units:	ug/L (ppb)		Operator:	SP
		Concentration		
Analyte:		ug/L (ppb)		
A ·		10.0		
Arsenic		16.2		

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID [.]	MW-4		Client:	Bluestone Environmental NW
Date Received:	07/26/22		Project:	Auburn VW, F&BI 207447
Date Extracted:	08/01/22		Lab ID:	207447-04 x10
Date Analyzed:	08/01/22		Data File:	207447-04 x10.182
Matrix:	Water		Instrument:	ICPMS2
Units:	ug/L (ppb)		Operator:	SP
		Concentration		
Analyte:		ug/L (ppb)		
Arsenic		11.1		
Analyte: Arsenic		ug/L (ppb)		

ENVIRONMENTAL CHEMISTS

Client ID:	MW-5		Client:	Bluestone Environmental NW
Date Received:	07/26/22		Project:	Auburn VW, F&BI 207447
Date Extracted:	08/03/22		Lab ID:	207447-05 x5
Date Analyzed:	08/03/22		Data File:	207447-05 x5.147
Matrix:	Water		Instrument:	ICPMS2
Units:	ug/L (ppb)		Operator:	SP
Analyte		Concentration		
rilary te.		ug/II (ppb)		
Arsenic		34.5		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed:	MW-DUPA 07/26/22 08/03/22 08/03/22		Client: Project: Lab ID: Data File:	Bluestone Environmental NW Auburn VW, F&BI 207447 207447-06 x5 207447-06 x5.148
Matrix:	Water		Instrument:	ICPMS2
Units:	ug/L (ppb)		Operator:	SP
Analyte:		Concentration ug/L (ppb)		
Arsenic		11.9		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received:	Method Blank NA	Client: Project:	Bluestone Environmental NW Auburn VW, F&BI 207447
Date Extracted:	08/03/22	Lab ID:	I2-527 mb
Date Analyzed:	08/03/22	Data File:	I2-527 mb.083
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received:	Method Blank NA	Client: Project:	Bluestone Environmental NW Auburn VW F&BI 207447
Date Extracted:	08/01/22	Lab ID:	I2-519 mb
Date Analyzed:	08/01/22	Data File:	I2-519 mb.141
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 08/08/22 Date Received: 07/26/22 Project: Auburn VW, F&BI 207447

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	108	108	63-142	0

ENVIRONMENTAL CHEMISTS

Date of Report: 08/08/22 Date Received: 07/26/22 Project: Auburn VW, F&BI 207447

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code	e: 207468-07 (Matrix Sp	oike)				
	Reporting	Spike	Sample	Percent Recovery	Percent Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	<1	98	102	75-125	4

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	92	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 08/08/22 Date Received: 07/26/22 Project: Auburn VW, F&BI 207447

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 207447-04 x10 (Matrix Spike)								
				Percent	Percent			
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD	
Analyte	Units	Level	Result	\mathbf{MS}	MSD	Criteria	(Limit 20)	
Arsenic	ug/L (ppb)	10	11.4	95	91	75-125	4	

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	95	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 08/08/22 Date Received: 07/26/22 Project: Auburn VW, F&BI 207447

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 207416-01 x10 (Matrix Spike)

Laboratory C	oue. 201410 01 x	10 (11401)	ix opike)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	10.6	85	84	75 - 125	1

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	97	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 08/08/22 Date Received: 07/26/22 Project: Auburn VW, F&BI 207447

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code	: 207489-03 (Matrix Sp	oike)				
	Poporting	Spile	Sample	Percent	Percent	Accontance	חסק
	neporting	opike	Sample	necovery	necovery	Acceptance	III D
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	22.9	126 b	126 b	75 - 125	0

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	91	80-120

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht - The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Friedman & Bruya, Inc. Reling Ph. (206) 285-8282 Receiv Receiv	MW-DUPA	MW-7	MW-3	MW-1	Sample ID		PhoneEmai	City, State, ZIP	Address	2077447 Report To DAN HATCH Company BLUESZONE
uished by:	 06 1 1 24	64 9	07 10 10	01 A-6 /126/22 8	Lab ID Date Sampled Sa		dankale uzzerezente con			\$ 14 MEY CAPITE
PRINT NAME HAKEY CARTER MIHULT TRUIC			XX	50 W 7X	mpled Sample # of Jars NWTPH-Dx NWTPH-Gx		Project specific RLs? - Yes / No	REMARKS	Auborn VW	SAMPLERS (Stendard CUSTO
COMPANY BUESTONE MG F4BI Sample					3TEX EPA 8021 NWTPH-HCID OCs EPA 8260 PAHs EPA 8270 CBs EPA 8082	ANALYSES REQUESTED		INVOICE TO	<u></u>	PO# PO# PO#
DATE TIME 7/26/22 1705 7/26/22 1705 sreceived at 2 oc					Notes		Archive samples Other <u>efault: Dispose after 30 days</u>	SAMPLE DISDOGAT	RUSH ush charges authorized by:	Page #

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

September 27, 2022

Dan Hatch, Project Manager Bluestone Environmental NW 20204 SE 284th St Kent, WA 98042

Dear Mr Hatch:

Included are the results from the testing of material submitted on September 16, 2022 from the Auburn VW BE-0107-E, F&BI 209252 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Nelf

Michael Erdahl Project Manager

Enclosures c: Haley Carter BST0927R.DOC
ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 16, 2022 by Friedman & Bruya, Inc. from the Bluestone Environmental NW Auburn VW BE-0107-E, F&BI 209252 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Bluestone Environmental NW</u>
209252 -01	MW-1
209252 -02	MW-3

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 09/27/22 Date Received: 09/16/22 Project: Auburn VW BE-0107-E, F&BI 209252 Date Extracted: 09/20/22 Date Analyzed: 09/21/22

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	$rac{ ext{Diesel Range}}{(ext{C}_{10}- ext{C}_{25})}$	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
MW-1 209252-01	<50	<250	99
MW-3 209252-02	<50	<250	91
Method Blank	<50	<250	87

ENVIRONMENTAL CHEMISTS

Date of Report: 09/27/22 Date Received: 09/16/22 Project: Auburn VW BE-0107-E, F&BI 209252 Date Extracted: 09/20/22 Date Analyzed: 09/20/22

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
MW-1 209252-01	350 x	310 x	103
MW-3 209252-02	300 x	290 x	101
Method Blank 02-2235 MB	<50	<250	93

ENVIRONMENTAL CHEMISTS

Date of Report: 09/27/22 Date Received: 09/16/22 Project: Auburn VW BE-0107-E, F&BI 209252

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample Silica Gel										
			Percent	Percent						
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD				
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)				
Diesel Extended	ug/L (ppb)	2,500	64	80	63-142	22 vo				

ENVIRONMENTAL CHEMISTS

Date of Report: 09/27/22 Date Received: 09/16/22 Project: Auburn VW BE-0107-E, F&BI 209252

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	64	$\overline{64}$	63-142	0

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Re	Re	Friedman & Bruya, Inc. Re Ph. (206) 285-8282						t. et		MW-3	MW-1	Sample ID		Phone Emai	uty, state, dir		Address	Company BIVESTONE	REPORTS LIAN HAVE	209252.
ceived by:	cerved by: linquished by:	linquished by.	ISI			R.				01	01	Lab ID		NAUVER 1	10101				2	
	Juil	AUN US	GNATURE /	>						9/15/22	9/15/22	Date Sampled		WN ZN OCZN						
		ALC A								0281	13:30	Time Sampled		Project sp	3	REMARI	Aut	PROJEC	SAMPLE	SAMPLE
	AN	RAD							2	3	3	Sample : Type		pecific RLs?		S	W MY	I NAME	RS (signati	CHAIN
	H PHZ	t CART	PRINT NA								Ž	Jars of NWTPH-DxS	ka	- Yes MI			2		Ser W	OF CUS
ī.	N	C.C.C.	ME									NWTPH-Gx BTEX EPA 8021		No V	ġ		Ń	2	VUIT	TODY
					-	 						NWTPH-HCID VOCs EPA 8260 PAHs EPA 8270	ANALY			INVOIC	10-3	PO	ST	
Sam	F&B	BIUZSTO	COM									PCBs EPA 8082	SES REQU	0	ろうて	E TO	07-8	#		0
ples rece		200	PANY									. (ESTED	Defau	Arct Oth		Rush o	Star		1/16/2
ived at D	2/11/60	9/16/22	DATE	-					DA M	Silice	with !	Z		It: Dispose aft.	nive samples 9r	SAMPLE DISPO	harges authoriz	ıdard turnaroun JH	URNAROUND	1 1
Ĉ	115:05	1230	TIME						(a/241L	-1 po-	withat	otes		er 30 days		DSAL	red by:	Ъц	of TIME	"B

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 24, 2023

Dan Hatch, Project Manager Bluestone Environmental NW 20204 SE 284th St Kent, WA 98042

Dear Mr Hatch:

Included are the results from the testing of material submitted on January 10, 2023 from the Auburn VW BE-0107-E, F&BI 301134 project. There are 22 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Nelf

Michael Erdahl Project Manager

Enclosures BST0124R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 10, 2023 by Friedman & Bruya, Inc. from the Bluestone Environmental NW Auburn VW BE-0107-E, F&BI 301134 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Bluestone Environmental NW
301134 -01	MW-1
301134 -02	MW-2
301134 -03	MW-3
301134 -04	MW-4
301134 -05	MW-5
301134 -06	DUP-W

The samples were sent to Fremont Analytical for total organic carbon analysis. The report is enclosed.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 01/24/23 Date Received: 01/10/23 Project: Auburn VW BE-0107-E, F&BI 301134 Date Extracted: 01/11/23 Date Analyzed: 01/12/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
MW-1 301134-01	<1	<1	<1	<3	<100	119
MW-2 301134-02	<1	<1	<1	<3	<100	125
MW-3 301134-03	<1	<1	<1	<3	<100	124
MW-4 301134-04	<1	<1	<1	<3	<100	133
MW-5 301134-05	<1	<1	<1	<3	<100	123
DUP-W 301134-06	<1	<1	<1	<3	<100	126
Method Blank 03-0018 MB	<1	<1	<1	<3	<100	96

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 01/24/23 Date Received: 01/10/23 Project: Auburn VW BE-0107-E, F&BI 301134 Date Extracted: 01/11/23 Date Analyzed: 01/11/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL USING METHOD NWTPH-Dx Extended to Include Motor Oil Range Compounds

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Extended (C ₁₀ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
MW-1 301134-01	270 x	125
MW-2 301134-02	420 x	131
MW-3 301134-03	280 x	110
MW-4 301134-04	<250	112
MW-5 301134-05	<250	138
DUP-W 301134-06	<250	136
Method Blank ^{03-133 MB}	<250	143

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

MW-1		Client:	Bluestone Environmental NW
01/10/23		Project:	Auburn VW BE-0107-E
01/11/23		Lab ID:	301134-01
01/11/23		Data File:	301134-01.163
Water		Instrument:	ICPMS2
ug/L (ppb)		Operator:	SP
	Concentration		
	ug/L (ppb)		
	MW-1 01/10/23 01/11/23 01/11/23 Water ug/L (ppb)	MW-1 01/10/23 01/11/23 01/11/23 Water ug/L (ppb) Concentration ug/L (ppb)	MW-1Client:01/10/23Project:01/11/23Lab ID:01/11/23Data File:WaterInstrument:ug/L (ppb)Operator:Concentrationug/L (ppb)

Arsenic

<1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	MW-2	Client:	Bluestone Environmental NW
Date Received:	01/10/23	Project:	Auburn VW BE-0107-E
Date Extracted:	01/11/23	Lab ID:	301134-02
Date Analyzed:	01/11/23	Data File:	301134-02.164
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
	Concentration		
Analyte:	ug/L (ppb)		
Arsenic	97.4		

 $\mathbf{5}$

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-3		Client	Bluestone Environmental NW
	01/10/00			
Date Received:	01/10/23		Project:	Auburn VW BE-0107-E
Date Extracted:	01/11/23		Lab ID:	301134-03 x5
Date Analyzed:	01/13/23		Data File:	301134-03 x5.086
Matrix:	Water		Instrument:	ICPMS2
Units:	ug/L (ppb)		Operator:	SP
		Concentration		
Analyte:		ug/L (ppb)		
Arsenic		17.2		

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	MW-4		Client:	Bluestone Environmental NW
Date Received:	01/10/23		Project:	Auburn VW BE-0107-E
Date Extracted:	01/11/23		Lab ID:	301134-04
Date Analyzed:	01/11/23		Data File:	301134-04.166
Matrix:	Water		Instrument:	ICPMS2
Units:	ug/L (ppb)		Operator:	SP
		Concentration		
Analyte:		ug/L (ppb)		
Arsenic		8.04		

8.04

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	MW-5		Client:	Bluestone Environmental NW
Date Received:	01/10/23		Project:	Auburn VW BE-0107-E
Date Extracted:	01/11/23		Lab ID:	301134-05
Date Analyzed:	01/11/23		Data File:	301134-05.167
Matrix:	Water		Instrument:	ICPMS2
Units:	ug/L (ppb)		Operator:	SP
Analyte:	(Concentration ug/L (ppb)		
Arsenic		23.8		
Arsenic		23.8		

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	DUP-W	Client:	Bluestone Environmental NW
Date Received:	01/10/23	Project:	Auburn VW BE-0107-E
Date Extracted:	01/11/23	Lab ID:	301134-06
Date Analyzed:	01/11/23	Data File:	301134-06.168
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyta	Concentration		
Allalyte.	ug/L (ppb)		
Arsenic	7.70		

9

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	Method Blank	Client:	Bluestone Environmental NW
Date Received:	NA	Project:	Auburn VW BE-0107-E
Date Extracted:	01/11/23	Lab ID:	I3-23 mb
Date Analyzed:	01/11/23	Data File:	I3-23 mb.153
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
	Concentration		
Analyte:	ug/L (ppb)		
Arsenic	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-1		Client:	Bluestone Environmental NW
Date Received:	01/10/23		Project:	Auburn VW BE-0107-E
Date Extracted:	01/11/23		Lab ID:	301134-01
Date Analyzed:	01/11/23		Data File:	301134-01.102
Matrix:	Water		Instrument:	ICPMS2
Units:	ug/L (ppb)		Operator:	SP
Analyte:		Concentration ug/L (ppb)		
Arsenic		13.4		

11

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-2		Client:	Bluestone Environmental NW
Date Received:	01/10/23		Project:	Auburn VW BE-0107-E
Date Extracted:	01/11/23		Lab ID:	301134-02
Date Analyzed:	01/11/23		Data File:	301134-02.104
Matrix:	Water		Instrument:	ICPMS2
Units:	ug/L (ppb)		Operator:	SP
		Concentration		
Analyte:		ug/L (ppb)		
Arsenic		110		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-3		Client:	Bluestone Environmental NW
Date Received:	01/10/23		Project:	Auburn VW BE-0107-E
Date Extracted:	01/11/23		Lab ID:	301134-03
Date Analyzed:	01/11/23		Data File:	301134-03.105
Matrix:	Water		Instrument:	ICPMS2
Units:	ug/L (ppb)		Operator:	SP
Analyte:		Concentration ug/L (ppb)		
Arsenic		20.4		

13

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	MW-4		Client:	Bluestone Environmental NW
Date Received:	01/10/23		Project:	Auburn VW BE-0107-E
Date Extracted:	01/11/23		Lab ID:	301134-04
Date Analyzed:	01/11/23		Data File:	301134-04.106
Matrix:	Water		Instrument:	ICPMS2
Units:	ug/L (ppb)		Operator:	SP
		Concentration		
Analyte:		ug/L (ppb)		
Arsenic		7.88		

14

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

MW-5		Client:	Bluestone Environmental NW
01/10/23		Project:	Auburn VW BE-0107-E
01/11/23		Lab ID:	301134-05
01/11/23		Data File:	301134-05.107
Water		Instrument:	ICPMS2
ug/L (ppb)		Operator:	SP
	Concentration		
	ug/L (ppb)		
	26.3		
	MW-5 01/10/23 01/11/23 01/11/23 Water ug/L (ppb)	MW-5 01/10/23 01/11/23 01/11/23 Water ug/L (ppb) Concentration ug/L (ppb) 26.3	MW-5 Client: 01/10/23 Project: 01/11/23 Lab ID: 01/11/23 Data File: Water Instrument: ug/L (ppb) Operator: 26.3

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	DUP-W		Client:	Bluestone Environmental NW
Date Received:	01/10/23		Project:	Auburn VW BE-0107-E
Date Extracted:	01/11/23		Lab ID:	301134-06
Date Analyzed:	01/11/23		Data File:	301134-06.108
Matrix:	Water		Instrument:	ICPMS2
Units:	ug/L (ppb)		Operator:	SP
		Concentration		
Analyte:		ug/L (ppb)		
Arsenic		7.82		

16

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed:	Method Blank NA 01/11/23 01/11/23	Client: Project: Lab ID: Data File:	Bluestone Environmental NW Auburn VW BE-0107-E I3-18 mb2 I3-18 mb2.053
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 01/24/23 Date Received: 01/10/23 Project: Auburn VW BE-0107-E, F&BI 301134

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code:	301027-01 (Duplie	cate)		
	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

		Percent								
	Reporting	Spike	Recovery	Acceptance						
Analyte	Units	Level	LCS	Criteria						
Benzene	ug/L (ppb)	50	118	70-130						
Toluene	ug/L (ppb)	50	112	70 - 130						
Ethylbenzene	ug/L (ppb)	50	110	70-130						
Xylenes	ug/L (ppb)	150	113	70-130						
Gasoline	ug/L (ppb)	1,000	100	70-130						

ENVIRONMENTAL CHEMISTS

Date of Report: 01/24/23 Date Received: 01/10/23 Project: Auburn VW BE-0107-E, F&BI 301134

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	96	100	70-130	4

ENVIRONMENTAL CHEMISTS

Date of Report: 01/24/23 Date Received: 01/10/23 Project: Auburn VW BE-0107-E, F&BI 301134

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF DISSOLVED WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 301134-01 x10 (Matrix Spike) Percent

-				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	17.6	78	81	75 - 125	4

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	92	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 01/24/23 Date Received: 01/10/23 Project: Auburn VW BE-0107-E, F&BI 301134

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 301116-01 (Matrix Spike)												
Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)					
Arsenic	ug/L (ppb)	10	<1	99	96	75-125	3					

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	87	80-120

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Г	H		- 2828-682 (002)	Ph (906) 005 0000				10000	VIW ->			Million C	Min 7	M(w) - 1	Sample ID			Phone	City, State, ZIP	Address	Company 15602570	Report To DAN HAT	101 (m) 241102
	leceived by:	Relinquished by:	Received by:	Relinquished by:	SIGNATITE			06 1 1 100	- 05 10	ou 113	121 50	hb 1 20	01 Colort, D. 1 10	a coluin 2 1 10	Lab ID Date T Sampled Sar			mainta Multure Linging and			2	CIT	134 SA
	~	ANH PHAN	HALLEY CARTER	PRINT NAME						XXX S					npled Type Jars NWTPH-Dx NWTPH-Gx TEX EPA 802		roject specific RLs? - Yes / No		REMARKS	Auburn WW P	PROJECT NAME	SAMPLERS (signature)	MPLE CHAIN OF GUSTODY
Samples received at		F&B	BURSTONE	COMPANY						X	XX	XX		P.P.	NWTPH-HCIE OCs EPA 826 AHs EPA 827 CBs EPA 8082 TOC KSENK TE	ANALYSES REQUESTED	Default	Archi	INVOICE TO	\mathcal{E} - \mathcal{O} 107- \mathcal{E} RUSI Rush ch	PO # XStand		$I \land f \circ ollola3$
D°C		01/10/23 15:55	1110/23 1300	DATE TIME								-			Notes		rt: <u>Dispose after 30 days</u>	ive samples	AMDI E DIGDOGAT	Hharges authorized hv-	URNAROUND TIME	age # /	NM3/22/22

File :P:\Proc_GC10\01-11-23\011144.D
Operator : TL
Acquired : 11 Jan 2023 05:56 pm using AcqMethod DX.M
Instrument : GC10
Sample Name: 301134-01
Misc Info :
Vial Number: 34

Response_ Signal: 011144.D\FID1B.ch 9500000 9000000 8500000 8000000 7500000 7000000 6500000 6000000 5500000 5000000 4500000 4000000 3500000 3000000 2500000 2000000 1500000 1000000 500000 4.50 7.00 2.00 5.00 0.50 1.00 1.50 2.50 3.00 3.50 4.00 5.50 6.00 6.50

Time

File :P:\Proc_GC10\01-11-23\011145.D
Operator : TL
Acquired : 11 Jan 2023 06:08 pm using AcqMethod DX.M
Instrument : GC10
Sample Name: 301134-02
Misc Info :
Vial Number: 35

Time

Response_ Signal: 011145.D\FID1B.ch 9500000 9000000 8500000 8000000 7500000 7000000 6500000 6000000 5500000 5000000 4500000 4000000 3500000 3000000 2500000 2000000 1500000 1000000 500000 łi 🗚 1.50 3.00 7.00 0.50 1.00 2.00 2.50 3.50 4.00 4.50 5.00 5.50 6.00 6.50

File :P:\Proc_GC10\01-11-23\011146.D
Operator : TL
Acquired : 11 Jan 2023 06:19 pm using AcqMethod DX.M
Instrument : GC10
Sample Name: 301134-03
Misc Info :
Vial Number: 36

3.50

4.00

3.00

5.00

4.50

5.50

6.00

6.50

7.00

Time

1.00

0.50

1.50

2.00

2.50

File :P:\Proc_GC10\01-11-23\011147.D
Operator : TL
Acquired : 11 Jan 2023 06:31 pm using AcqMethod DX.M
Instrument : GC10
Sample Name: 301134-04
Misc Info :
Vial Number: 37

Time

File :P:\Proc_GC10\01-11-23\011148.D
Operator : TL
Acquired : 11 Jan 2023 06:43 pm using AcqMethod DX.M
Instrument : GC10
Sample Name: 301134-05
Misc Info :
Vial Number: 38

File :P:\Proc_GC10\01-11-23\011149.D Operator : TL Acquired : 11 Jan 2023 06:55 pm using AcqMethod DX.M Instrument : GC10 Sample Name: 301134-06 Misc Info : Vial Number: 39

Response_ Signal: 011149.D\FID1B.ch 9500000 9000000 8500000 8000000 7500000 7000000 6500000 6000000 5500000 5000000 4500000 4000000 3500000 3000000 2500000 2000000 1500000 1000000 500000 -----2.00 4.00 4.50 5.00 5.50 6.00 6.50 7.00 1.00 2.50 3.00

3.50

Time

0.50

1.50

File :P:\Proc_GC10\01-11-23\011122.D
Operator : TL
Acquired : 11 Jan 2023 01:10 pm using AcqMethod DX.M
Instrument : GC10
Sample Name: 03-133 mb
Misc Info :
Vial Number: 105

3.00

3.50

4.00

5.00

5.50

6.00

4.50

7.00

6.50

Time

1.00

0.50

1.50

2.00

2.50

File :P:\Proc_GC10\01-11-23\011103.D
Operator : TL
Acquired : 11 Jan 2023 09:24 am using AcqMethod DX.M
Instrument : GC10
Sample Name: 500 DX 67-143B
Misc Info :
Vial Number: 3

Time

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 301134 Work Order Number: 2301200

January 18, 2023

Attention Michael Erdahl:

Fremont Analytical, Inc. received 6 sample(s) on 1/11/2023 for the analyses presented in the following report.

Total Organic Carbon by SM 5310C

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

CLIENT: Project: Work Order:	Friedman & Bruya 301134 2301200	Work Order S	Sample Summary
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2301200-001	MW-1	01/10/2023 10:20 AM	01/11/2023 3:12 PM
2301200-002	MW-2	01/10/2023 9:45 AM	01/11/2023 3:12 PM
2301200-003	MW-3	01/10/2023 12:10 PM	01/11/2023 3:12 PM
2301200-004	MW-4	01/10/2023 11:35 AM	01/11/2023 3:12 PM
2301200-005	MW-5	01/10/2023 11:00 AM	01/11/2023 3:12 PM
2301200-006	DUP-W	01/10/2023 11:15 AM	01/11/2023 3:12 PM

Case Narrative

WO#: **2301200** Date: **1/18/2023**

CLIENT:Friedman & BruyaProject:301134

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Analytical Report

 Work Order:
 2301200

 Date Reported:
 1/18/2023

CLIENT:Friedman & BruyaProject:301134						
Lab ID: 2301200-001 Client Sample ID: MW-1				Collectio Matrix: V	n Date: Vater	1/10/2023 10:20:00 AM
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Organic Carbon by SM 5310C				Batc	h ID: R8	1119 Analyst: AT
Total Organic Carbon	68.2	2.80	D	mg/L	4	1/13/2023 4:43:00 AM
Lab ID: 2301200-002 Client Sample ID: MW-2				Collectio Matrix: V	n Date: Vater	1/10/2023 9:45:00 AM
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Organic Carbon by SM 5310C				Batc	h ID: R8	1119 Analyst: AT
Total Organic Carbon	44.1	2.80	D	mg/L	4	1/13/2023 5:05:00 AM
Lab ID: 2301200-003 Client Sample ID: MW-3				Collectio Matrix: V	n Date: Vater	1/10/2023 12:10:00 PM
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Organic Carbon by SM 5310C				Batc	h ID: R8	1119 Analyst: AT
Total Organic Carbon	70.1	2.80	D	mg/L	4	1/13/2023 5:27:00 AM
Lab ID: 2301200-004 Client Sample ID: MW-4				Collectio Matrix: V	n Date: Vater	1/10/2023 11:35:00 AM
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Organic Carbon by SM 5310C				Batc	h ID: R8	1119 Analyst: AT
Total Organic Carbon	19.5	2.80	D	mg/L	4	1/13/2023 5:49:00 AM

Analytical Report

 Work Order:
 2301200

 Date Reported:
 1/18/2023

CLIENT:Friedman & BruyaProject:301134					
Lab ID: 2301200-005 Client Sample ID: MW-5			Collecti Matrix:	on Date: Water	1/10/2023 11:00:00 AM
Analyses	Result	RL Qua	l Units	DF	Date Analyzed
Total Organic Carbon by SM 5310	<u>)C</u>		Bat	ch ID: R8	1119 Analyst: AT
Total Organic Carbon	26.2	2.80	D mg/L	4	1/13/2023 6:11:00 AM
Lab ID: 2301200-006 Client Sample ID: DUP-W			Collecti Matrix:	on Date: Water	1/10/2023 11:15:00 AM
Analyses	Result	RL Qua	l Units	DF	Date Analyzed
Total Organic Carbon by SM 5310	<u>)C</u>		Bat	ch ID: R8	1119 Analyst: AT
Total Organic Carbon	19.3	2.80	D mg/L	4	1/13/2023 6:32:00 AM

Work Order: CLIENT: Project:	2301200 Friedman & 301134	Bruya					QC S Total Org	SUMMARY REPORT anic Carbon by SM 5310C
Sample ID: MB-8	1119	SampType: MBLK			Units: mg/L		Prep Date: 1/12/2023	RunNo: 81119
Client ID: MBLK	(W	Batch ID: R81119					Analysis Date: 1/12/2023	SeqNo: 1678968
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Organic Carl	bon	ND	0.700					
Sample ID: LCS-8	31119	SampType: LCS			Units: mg/L		Prep Date: 1/12/2023	RunNo: 81119
Client ID: LCSW	1	Batch ID: R81119					Analysis Date: 1/12/2023	SeqNo: 1678969
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Organic Carl	bon	5.11	0.700	5.000	0	102	90 110	
Sample ID: 23010	67-003ADUP	SampType: DUP			Units: mg/L		Prep Date: 1/12/2023	RunNo: 81119
Client ID: BATC	Н	Batch ID: R81119					Analysis Date: 1/12/2023	SeqNo: 1678974
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Organic Carl	bon	2.91	0.700				2.926	0.651 20
Sample ID: 23010	67-003AMS	SampType: MS			Units: mg/L		Prep Date: 1/12/2023	RunNo: 81119
Client ID: BATC	Н	Batch ID: R81119					Analysis Date: 1/12/2023	SeqNo: 1678975
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Organic Carl	bon	7.69	0.700	5.000	2.926	95.3	68.3 120	
Sample ID: 23010	67-003AMSD	SampType: MSD			Units: mg/L		Prep Date: 1/12/2023	RunNo: 81119
Client ID: BATC	Н	Batch ID: R81119					Analysis Date: 1/12/2023	SeqNo: 1678976
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Organic Carl	bon	7.93	0.700	5.000	2.926	100	68.3 120 7.689	3.06 30

Work Order: CLIENT: Project:	2301200 Friedman & 301134	Bruya								QC S Total Orga	SUMMAI anic Carbo	RY REF	ORT 5310C
Sample ID: 23011	15-004GDUP	SampType	DUP			Units: mg/L		Prep Da	te: 1/13/20	23	RunNo: 811	19	
Client ID: BATC	н	Batch ID:	R81119					Analysis Da	te: 1/13/20	23	SeqNo: 167	8983	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carb	oon		ND	0.700						0		20	
Sample ID: 23011	15-004GMS	SampType	MS			Units: mg/L		Prep Da	te: 1/13/20	23	RunNo: 811	19	
Client ID: BATC	н	Batch ID:	R81119					Analysis Da	te: 1/13/20	23	SeqNo: 167	8984	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Cark	oon		5.50	0.700	5.000	0.5280	99.3	68.3	120				

Sample Log-In Check List

Client Name: FB	Work Order Numb	per: 2301200	
Logged by: Kate Porter	Date Received:	1/11/2023 3	3:12:00 PM
Chain of Custody			
1. Is Chain of Custody complete?	Yes 🗹	No 🗌	Not Present
2. How was the sample delivered?	<u>Client</u>		
Log In			
3. Coolers are present?	Yes 🗹	No 🗌	
		🗖	
4. Shipping container/cooler in good condition?	Yes 🗹	No 🗌	
 Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact) 	Yes	No	Not Present
6. Was an attempt made to cool the samples?	Yes 🗹	No 🗌	
7. Were all items received at a temperature of $>2^{\circ}C$ to $6^{\circ}C$ *	Yes 🖌	No 🗌	
8. Sample(s) in proper container(s)?	Yes 🖌	No 🗌	
9. Sufficient sample volume for indicated test(s)?	Yes 🖌	No 🗌	
10. Are samples properly preserved?	Yes 🗹	No 🗌	
11. Was preservative added to bottles?	Yes	No 🔽	NA 🗌
12. Is there headspace in the VOA vials?	Yes	No 🗌	NA 🗹
13. Did all samples containers arrive in good condition(unbroken)?	Yes 🖌	No 🗌	
14. Does paperwork match bottle labels?	Yes 🖌	No 🗌	
15. Are matrices correctly identified on Chain of Custody?	Yes 🗹	No 🗌	
16. Is it clear what analyses were requested?	Yes 🗹	No 🗌	
17. Were all holding times able to be met?	Yes 🖌	No 🗌	
Special Handling (if applicable)			
18. Was client notified of all discrepancies with this order?	Yes	No 🗌	NA 🗹
Person Notified: Date:			
By Whom: Via:	eMail Pho	one 🗌 Fax 🗌	In Person
Regarding:			
Client Instructions:			
19. Additional remarks:			
Item Information			

Item #	Temp °C
Sample 1	2.5

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

	et:St &	elinh,	relytical	wat A	Frem		wet	8	NON	T		2	Relinquished by: Received by:		Ph. (206) 285-8282 Fax (206) 283-5044
	0900	11/23	ya 1	lman & Bru	Fried			ahl	tel Erd:	Micha	C	ren	Received by:	29	Seattle, WA 98119-20
	TIME	DATE	Y	COMPAN			VAME	RINTN	P		2	IGNATURE	Batimonishortha	ef Inc.	Friedman & Bruya, 1 3012 16th Avenue We
						-	+		_						
									-						
									-						
							-		_						
						+	_								
			+			-	~			-	4	SIII	4		Dup-W
						-	~		1	-		lioc			MW-S
						-	~		-	-		SEII			MM-4
						-	~		_	-		12/0			MW-S
						-	~		4-	-	_	Shb	-		MW-C
						_	_			-	water	1620	1/10/23		I-MW
	Notes					TUC	VPH	EPH	Dioxins/Furan	# of jars	Matrix	Time Sampled	Date Sampled	Lab ID	Sample ID
				UESTED	ES REQ	NALYS	A		s						
	uctions	umples vith instru	Return sa Will call w				esults	mail K	lease h		L.COM	edmanandbruys	merdahl@fri	-8282	Phone # (206) 285
	POSAL ys	fter 30 da	Dispose a					:					WA 98119	eattle,	City, state, LIP_S
						-			2	MARK	RH				City State 7Th o
Page	ized by:	es authori	RUSH Rush charge	0, •	01-06			24	011	S			ith Ave W	012 16	Address 3
9 0	ALS I LIVER	TAT	Standard		PO#	_		E/NO.	NAM	OJECT	PR	, Inc.	an and Bruya	riedm	CompanyH
 f 9	of (MAROITN	Page			3-	Frem	ER	TRACT	BCON	s		l Erdahl	Michae	Send Report To
		200	2301		STODY	F CUS	AIN O	CH/	MPLE	T SAI	NTRAC	SUBCC			

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Thursday, January 16, 2025 Dan Hatch Bluestone Environmental NW 20204 SE 284th Street Kent, WA 98042

RE: A4L1608 - Auburn VW - BE-0107-E

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A4L1608, which was received by the laboratory on 12/20/2024 at 11:16:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <u>cobrien@apex-labs.com</u>, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

			Cooler Receipt Information
Acceptable Receipt Te	emperatu	re is less that	n, or equal to, 6 degC (not frozen), or received on ice the same day as sampling.
		(5	See Cooler Receipt Form for details)
Cooler #1	<u>3.1</u>	degC degC	Cooler #2 0.8 degC
	0.1		

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW	Project: <u>Auburn VW</u>	
20204 SE 284th Street	Project Number: BE-0107-E	<u>Report ID:</u>
Kent, WA 98042	Project Manager: Dan Hatch	A4L1608 - 01 16 25 1235

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFORM	ATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-8	A4L1608-01	Water	12/19/24 13:50	12/20/24 11:16
MW-10	A4L1608-02	Water	12/19/24 11:15	12/20/24 11:16
MW-11	A4L1608-03	Water	12/19/24 11:55	12/20/24 11:16
MW-12	A4L1608-04	Water	12/19/24 12:30	12/20/24 11:16
MW-13	A4L1608-05	Water	12/19/24 13:05	12/20/24 11:16
MW-14	A4L1608-06	Water	12/19/24 10:35	12/20/24 11:16
MW-17	A4L1608-07	Water	12/19/24 09:45	12/20/24 11:16
MW-19	A4L1608-08	Water	12/18/24 16:15	12/20/24 11:16

Apex Laboratories

Cameron O'Brien, Project Manager

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW

20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E**

Project Manager: Dan Hatch

<u>Report ID:</u> A4L1608 - 01 16 25 1235

Apex Laboratories

ANALYTICAL CASE NARRATIVE

Work Order: A4L1608

Amended Report Revision #1 -This report supersedes all previous reports.

Gasoline Range Organics by NWTPH-HCID: Amended Data

This report contains modified data for Gasoline Range Organics by NWTPH-HCID for the following samples:

Client Sample IDApex Laboratories ID"MW-17"A4L1608-07"MW-19"A4L1608-19

Gasoline Range Organics was originally reported by the NWTPH-HCID screening method with a result of "DET", indicating a detection above the screening level of 0.100mg/L. The quantitative follow up method NWTPH-Gx was subsequently performed, with the result for Gasoline Range Organics being <u>Non Detect at 0.100 mg/L</u>. Due to this, the original NWTPH-HCID Gasoline Range Organics screening results have been removed from the report.

David Jack Technical Manager 01/09/2025

Subcontract

This report is complete only if it includes the attached subcontract laboratory report from ALS -Kelso Laboratories.

Cameron O'Brien Project Manager

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project:Auburn VWProject NumberBE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1608 - 01 16 25 1235

ANALYTICAL SAMPLE RESULTS

	Hydro	ocarbon Identifi	cation So	creen by NWTP	H-HCID			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-8 (A4L1608-01)				Matrix: Wate	r	Batch:	24L1016	
Gasoline Range Organics	ND		0.0971	mg/L	1	12/30/24 18:33	NWTPH-HCID	
Diesel Range Organics	ND		0.243	mg/L	1	12/30/24 18:33	NWTPH-HCID	
Oil Range Organics	ND		0.243	mg/L	1	12/30/24 18:33	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recovery	<i>94 %</i>	Limits: 50-150 %	1	12/30/24 18:33	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			40 %	10-120 %		12/30/24 18:33	NWTPH-HCID	
MW-10 (A4L1608-02)				Matrix: Wate	•r	Batch:	24L1016	
Gasoline Range Organics	ND		0.100	mg/L	1	12/30/24 18:56	NWTPH-HCID	
Diesel Range Organics	ND		0.250	mg/L	1	12/30/24 18:56	NWTPH-HCID	
Oil Range Organics	ND		0.250	mg/L	1	12/30/24 18:56	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recovery	<i>: 96 %</i>	Limits: 50-150 %	1	12/30/24 18:56	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			46 %	10-120 %	1	12/30/24 18:56	NWTPH-HCID	
MW-11 (A4L1608-03)				Matrix: Wate)r	Batch:	24L1016	
Gasoline Range Organics	ND		0.0990	mg/L	1	12/30/24 19:43	NWTPH-HCID	
Diesel Range Organics	ND		0.248	mg/L	1	12/30/24 19:43	NWTPH-HCID	
Oil Range Organics	ND		0.248	mg/L	1	12/30/24 19:43	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recovery	<i>): 93 %</i>	Limits: 50-150 %	1	12/30/24 19:43	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			39 %	10-120 %	1	12/30/24 19:43	NWTPH-HCID	
MW-12 (A4L1608-04)				Matrix: Wate)r	Batch:	24L1016	
Gasoline Range Organics	ND		0.0971	mg/L	1	12/30/24 20:06	NWTPH-HCID	
Diesel Range Organics	ND		0.243	mg/L	1	12/30/24 20:06	NWTPH-HCID	
Oil Range Organics	ND		0.243	mg/L	1	12/30/24 20:06	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recovery	<i>: 92 %</i>	Limits: 50-150 %	1	12/30/24 20:06	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			39 %	10-120 %	1	12/30/24 20:06	NWTPH-HCID	
MW-13 (A4L1608-05)				Matrix: Wate	•r	Batch:	24L1016	
Gasoline Range Organics	ND		0.0980	mg/L	1	12/30/24 20:29	NWTPH-HCID	
Diesel Range Organics	ND		0.245	mg/L	1	12/30/24 20:29	NWTPH-HCID	
Oil Range Organics	ND		0.245	mg/L	1	12/30/24 20:29	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recovery	<i>): 95 %</i>	Limits: 50-150 %	1	12/30/24 20:29	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			42 %	10-120 %	1	12/30/24 20:29	NWTPH-HCID	
MW-14 (A4L1608-06)				Matrix: Wate	•r	Batch:	24L1016	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project: <u>Auburn VW</u> Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

ANALYTICAL SAMPLE RESULTS

Hydrocarbon Identification Screen by NWTPH-HCID											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
MW-14 (A4L1608-06)				Matrix: Wate	r	Batch:					
Gasoline Range Organics	ND		0.0971	mg/L	1	12/30/24 20:53	NWTPH-HCID				
Diesel Range Organics	ND		0.243	mg/L	1	12/30/24 20:53	NWTPH-HCID				
Oil Range Organics	ND		0.243	mg/L	1	12/30/24 20:53	NWTPH-HCID				
Surrogate: o-Terphenyl (Surr)		Recove	ery: 94 %	Limits: 50-150 %	1	12/30/24 20:53	NWTPH-HCID				
4-Bromofluorobenzene (Surr)			54 %	10-120 %	1	12/30/24 20:53	NWTPH-HCID				
MW-17 (A4L1608-07)				Matrix: Wate	er	Batch:	24L1016	AMEND			
Diesel Range Organics	ND		0.236	mg/L	1	12/30/24 21:16	NWTPH-HCID				
Oil Range Organics	ND		0.236	mg/L	1	12/30/24 21:16	NWTPH-HCID				
Surrogate: o-Terphenyl (Surr)		Recove	ery: 94 %	Limits: 50-150 %	1	12/30/24 21:16	NWTPH-HCID				
4-Bromofluorobenzene (Surr)			51 %	10-120 %	1	12/30/24 21:16	NWTPH-HCID				
MW-19 (A4L1608-08)				Matrix: Wate	er	Batch:	24L1016	AMEND			
Diesel Range Organics	ND		0.243	mg/L	1	12/30/24 21:39	NWTPH-HCID				
Oil Range Organics	ND		0.243	mg/L	1	12/30/24 21:39	NWTPH-HCID				
Surrogate: o-Terphenyl (Surr)		Recove	ery: 92 %	Limits: 50-150 %	1	12/30/24 21:39	NWTPH-HCID				
4-Bromofluorobenzene (Surr)			40 %	10-120 %	1	12/30/24 21:39	NWTPH-HCID				

Apex Laboratories

Cameron O'Brien, Project Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project: <u>Auburn VW</u> Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

<u>Report ID:</u> A4L1608 - 01 16 25 1235

ANALYTICAL SAMPLE RESULTS

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
MW-17 (A4L1608-07)			Matrix: Water Batch: 25A0008							
Gasoline Range Organics	ND		100	ug/L	1	01/02/25 15:34	NWTPH-Gx (MS)			
Surrogate: 4-Bromofluorobenzene (Sur)		Recon	very: 90 %	Limits: 50-150 %	6 I	01/02/25 15:34	NWTPH-Gx (MS)			
1,4-Difluorobenzene (Sur)			114 %	50-150 %	6 1	01/02/25 15:34	NWTPH-Gx (MS)			
MW-19 (A4L1608-08)				Matrix: Wate	er	Batch	: 25A0008	H-01		
Gasoline Range Organics	ND		100	ug/L	1	01/02/25 15:56	NWTPH-Gx (MS)			
Surrogate: 4-Bromofluorobenzene (Sur)		Recon	very: 90 %	Limits: 50-150 %	6 I	01/02/25 15:56	NWTPH-Gx (MS)			
1,4-Difluorobenzene (Sur)			116 %	50-150 %	6 1	01/02/25 15:56	NWTPH-Gx (MS)			

Apex Laboratories

Cameron O'Brien, Project Manager

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW

20204 SE 284th Street Kent, WA 98042 Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1608 - 01 16 25 1235

ANALYTICAL SAMPLE RESULTS

BTEX Compounds by EPA 8260D											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
MW-17 (A4L1608-07)				Matrix: Wate	، r	Batch: 25A0008					
Benzene	ND		0.200	ug/L	1	01/02/25 15:34	EPA 8260D				
Toluene	ND		1.00	ug/L	1	01/02/25 15:34	EPA 8260D				
Ethylbenzene	ND		0.500	ug/L	1	01/02/25 15:34	EPA 8260D				
Xylenes, total	ND		1.50	ug/L	1	01/02/25 15:34	EPA 8260D				
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 111 %	Limits: 80-120 %	. 1	01/02/25 15:34	EPA 8260D				
Toluene-d8 (Surr)			109 %	80-120 %	1	01/02/25 15:34	EPA 8260D				
4-Bromofluorobenzene (Surr)			99 %	80-120 %	1	01/02/25 15:34	EPA 8260D				
MW-19 (A4L1608-08)				Matrix: Wate)r	Batch: 25A0008		H-01			
Benzene	ND		0.200	ug/L	1	01/02/25 15:56	EPA 8260D				
Toluene	ND		1.00	ug/L	1	01/02/25 15:56	EPA 8260D				
Ethylbenzene	ND		0.500	ug/L	1	01/02/25 15:56	EPA 8260D				
Xylenes, total	ND		1.50	ug/L	1	01/02/25 15:56	EPA 8260D				
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 111 %	Limits: 80-120 %	1	01/02/25 15:56	EPA 8260D				
Toluene-d8 (Surr)			110 %	80-120 %	· 1	01/02/25 15:56	EPA 8260D				
4-Bromofluorobenzene (Surr)			99 %	80-120 %	1	01/02/25 15:56	EPA 8260D				

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D											
	Sample	Detection	Reporting			Date					
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes			
MW-10 (A4L1608-02)				Matrix: Water		Batch:	24L0855				
Acetone	ND		26.0	ug/L	1	12/24/24 08:29	EPA 8260D	A-01			
Acrylonitrile	ND		2.00	ug/L	1	12/24/24 08:29	EPA 8260D				
Benzene	ND		0.200	ug/L	1	12/24/24 08:29	EPA 8260D				
Bromobenzene	ND		0.500	ug/L	1	12/24/24 08:29	EPA 8260D				
Bromochloromethane	ND		1.00	ug/L	1	12/24/24 08:29	EPA 8260D				
Bromodichloromethane	ND		1.00	ug/L	1	12/24/24 08:29	EPA 8260D				
Bromoform	ND		1.00	ug/L	1	12/24/24 08:29	EPA 8260D				
Bromomethane	ND		5.00	ug/L	1	12/24/24 08:29	EPA 8260D				
2-Butanone (MEK)	ND		10.0	ug/L	1	12/24/24 08:29	EPA 8260D				
n-Butylbenzene	ND		1.00	ug/L	1	12/24/24 08:29	EPA 8260D				
sec-Butylbenzene	ND		1.00	ug/L	1	12/24/24 08:29	EPA 8260D				
tert-Butylbenzene	ND		1.00	ug/L	1	12/24/24 08:29	EPA 8260D				
Carbon disulfide	ND		10.0	ug/L	1	12/24/24 08:29	EPA 8260D				
Carbon tetrachloride	ND		1.00	ug/L	1	12/24/24 08:29	EPA 8260D				
Chlorobenzene	ND		0.500	ug/L	1	12/24/24 08:29	EPA 8260D				
Chloroethane	ND		10.0	ug/L	1	12/24/24 08:29	EPA 8260D				
Chloroform	ND		1.00	ug/L	1	12/24/24 08:29	EPA 8260D				
Chloromethane	ND		5.00	ug/L	1	12/24/24 08:29	EPA 8260D				
2-Chlorotoluene	ND		1.00	ug/L	1	12/24/24 08:29	EPA 8260D				
4-Chlorotoluene	ND		1.00	ug/L	1	12/24/24 08:29	EPA 8260D				
Dibromochloromethane	ND		1.00	ug/L	1	12/24/24 08:29	EPA 8260D				
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	12/24/24 08:29	EPA 8260D				
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	12/24/24 08:29	EPA 8260D				
Dibromomethane	ND		1.00	ug/L	1	12/24/24 08:29	EPA 8260D				
1,2-Dichlorobenzene	ND		0.500	ug/L	1	12/24/24 08:29	EPA 8260D				
1,3-Dichlorobenzene	ND		0.500	ug/L	1	12/24/24 08:29	EPA 8260D				
1,4-Dichlorobenzene	ND		0.500	ug/L	1	12/24/24 08:29	EPA 8260D				
Dichlorodifluoromethane	ND		2.00	ug/L	1	12/24/24 08:29	EPA 8260D				
1,1-Dichloroethane	ND		0.400	ug/L	1	12/24/24 08:29	EPA 8260D				
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	12/24/24 08:29	EPA 8260D				
1,1-Dichloroethene	ND		0.400	ug/L	1	12/24/24 08:29	EPA 8260D				
trans-1,2-Dichloroethene	ND		0.400	ug/L	1	12/24/24 08:29	EPA 8260D				
1,2-Dichloropropane	ND		0.500	ug/L	1	12/24/24 08:29	EPA 8260D				
1,3-Dichloropropane	ND		1.00	ug/L	1	12/24/24 08:29	EPA 8260D				
2,2-Dichloropropane	ND		1.00	ug/L	1	12/24/24 08:29	EPA 8260D				
1,1-Dichloropropene	ND		1.00	ug/L	1	12/24/24 08:29	EPA 8260D				
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	12/24/24 08:29	EPA 8260D				
				0							

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1608 - 01 16 25 1235

ANALYTICAL SAMPLE RESULTS

Result ND ND ND ND ND	Limit 	Limit 1.00 0.500	Units Matrix: Wate ug/L	Dilution r	Analyzed Batch: 2	Method Ref. 24L0855	Notes
ND ND ND ND	 	1.00 0.500	Matrix: Wate	r	Batch: 2	24L0855	
ND ND ND ND		1.00 0.500	ug/L	1			
ND ND ND ND		0.500	-	1	12/24/24 08:29	EPA 8260D	
ND ND ND			ug/L	1	12/24/24 08:29	EPA 8260D	
ND ND		5.00	ug/L	1	12/24/24 08:29	EPA 8260D	
ND		10.0	ug/L	1	12/24/24 08:29	EPA 8260D	
ND		1.00	ug/L	1	12/24/24 08:29	EPA 8260D	
ND		1.00	ug/L	1	12/24/24 08:29	EPA 8260D	
ND		10.0	ug/L	1	12/24/24 08:29	EPA 8260D	
ND		10.0	ug/L	1	12/24/24 08:29	EPA 8260D	
ND		1.00	ug/L	1	12/24/24 08:29	EPA 8260D	
ND		5.00	ug/L	1	12/24/24 08:29	EPA 8260D	
ND		0.500	ug/L	1	12/24/24 08:29	EPA 8260D	
ND		1.00	ug/L	1	12/24/24 08:29	EPA 8260D	
ND		0.400	ug/L	1	12/24/24 08:29	EPA 8260D	
ND		0.500	ug/L	1	12/24/24 08:29	EPA 8260D	
ND		0.400	ug/L	1	12/24/24 08:29	EPA 8260D	
ND		1.00	ug/L	1	12/24/24 08:29	EPA 8260D	
ND		2.00	ug/L	1	12/24/24 08:29	EPA 8260D	
ND		2.00	ug/L	1	12/24/24 08:29	EPA 8260D	
ND		0.400	ug/L	1	12/24/24 08:29	EPA 8260D	
ND		0.500	ug/L	1	12/24/24 08:29	EPA 8260D	
ND		0.400	ug/L	1	12/24/24 08:29	EPA 8260D	
ND		2.00	ug/L	1	12/24/24 08:29	EPA 8260D	
ND		1.00	ug/L	1	12/24/24 08:29	EPA 8260D	
ND		1.00	ug/L	1	12/24/24 08:29	EPA 8260D	
ND		1.00	ug/L	1	12/24/24 08:29	EPA 8260D	
ND		1.00	ug/L	1	12/24/24 08:29	EPA 8260D	
ND		0.500	ug/L	1	12/24/24 08:29	EPA 8260D	
	Recove	ery: 107 %	Limits: 80-120 %	1	12/24/24 08:29	EPA 8260D	
		108 %	80-120 %	1	12/24/24 08:29	EPA 8260D	
		100 %	80-120 %	Ι	12/24/24 08:29	EPA 8260D	
-	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND <td>ND 10.0 ND 10.0 ND 10.0 ND 1.00 ND 5.00 ND 5.00 ND 0.500 ND 0.400 ND 0.400 ND 0.400 ND 0.400 ND 0.400 ND 0.400 ND 2.00 ND 2.00 ND 0.500 ND 0.400 ND 0.400 ND 1.00 ND 1.00 ND 1.00 ND 1.00 ND 1.00 ND 1.00 ND 1.00</td> <td>ND 10.0 ug/L ND 10.0 ug/L ND 10.0 ug/L ND 1.00 ug/L ND 5.00 ug/L ND 5.00 ug/L ND 0.500 ug/L ND 0.400 ug/L ND 0.500 ug/L ND 0.400 ug/L ND 0.400 ug/L ND 0.400 ug/L ND 2.00 ug/L ND 2.00 ug/L ND 0.400 ug/L ND 0.400 ug/L ND 0.400 ug/L ND 0.400 ug/L ND 1.00 ug/L ND </td> <td>ND 10.0 ug/L 1 ND 10.0 ug/L 1 ND 1.00 ug/L 1 ND 1.00 ug/L 1 ND 5.00 ug/L 1 ND 5.00 ug/L 1 ND 0.500 ug/L 1 ND 0.400 ug/L 1 ND 0.500 ug/L 1 ND 0.400 ug/L 1 ND 0.400 ug/L 1 ND 2.00 ug/L 1 ND 2.00 ug/L 1 ND 0.400 ug/L 1 ND 0.500 ug/L 1 ND 1.00 ug/L 1 ND 1.00<td>ND 10.0 ug/L 1 12/24/24 08:29 ND 10.0 ug/L 1 12/24/24 08:29 ND 1.00 ug/L 1 12/24/24 08:29 ND 5.00 ug/L 1 12/24/24 08:29 ND 5.00 ug/L 1 12/24/24 08:29 ND 0.500 ug/L 1 12/24/24 08:29 ND 0.500 ug/L 1 12/24/24 08:29 ND 0.400 ug/L 1 12/24/24 08:29 ND 2.00 ug/L 1 12/24/24 08:29 ND 0.400 ug/L 1 12/24/24 08:29 ND 0.400 ug/L 1 12/24/24 08:29</td><td>ND 10.0 ug/L 1 12/24/24 08:29 EPA 8260D ND 10.0 ug/L 1 12/24/24 08:29 EPA 8260D ND 1.00 ug/L 1 12/24/24 08:29 EPA 8260D ND 5.00 ug/L 1 12/24/24 08:29 EPA 8260D ND 0.500 ug/L 1 12/24/24 08:29 EPA 8260D ND 0.500 ug/L 1 12/24/24 08:29 EPA 8260D ND 0.400 ug/L 1 12/24/24 08:29 EPA 8260D ND 0.400 ug/L 1 12/24/24 08:29 EPA 8260D ND 0.500 ug/L 1 12/24/24 08:29 EPA 8260D ND 0.400 ug/L 1 12/24/24 08:29 EPA 8260D ND 2.00 ug/L 1 12/24/24 08:29 EPA 8260D ND 2.00 ug/L 1 12/24/24 08:29 EPA 8260D</td></td>	ND 10.0 ND 10.0 ND 10.0 ND 1.00 ND 5.00 ND 5.00 ND 0.500 ND 0.400 ND 0.400 ND 0.400 ND 0.400 ND 0.400 ND 0.400 ND 2.00 ND 2.00 ND 0.500 ND 0.400 ND 0.400 ND 1.00 ND 1.00 ND 1.00 ND 1.00 ND 1.00 ND 1.00 ND 1.00	ND 10.0 ug/L ND 10.0 ug/L ND 10.0 ug/L ND 1.00 ug/L ND 5.00 ug/L ND 5.00 ug/L ND 0.500 ug/L ND 0.400 ug/L ND 0.500 ug/L ND 0.400 ug/L ND 0.400 ug/L ND 0.400 ug/L ND 2.00 ug/L ND 2.00 ug/L ND 0.400 ug/L ND 0.400 ug/L ND 0.400 ug/L ND 0.400 ug/L ND 1.00 ug/L ND	ND 10.0 ug/L 1 ND 10.0 ug/L 1 ND 1.00 ug/L 1 ND 1.00 ug/L 1 ND 5.00 ug/L 1 ND 5.00 ug/L 1 ND 0.500 ug/L 1 ND 0.400 ug/L 1 ND 0.500 ug/L 1 ND 0.400 ug/L 1 ND 0.400 ug/L 1 ND 2.00 ug/L 1 ND 2.00 ug/L 1 ND 0.400 ug/L 1 ND 0.500 ug/L 1 ND 1.00 ug/L 1 ND 1.00 <td>ND 10.0 ug/L 1 12/24/24 08:29 ND 10.0 ug/L 1 12/24/24 08:29 ND 1.00 ug/L 1 12/24/24 08:29 ND 5.00 ug/L 1 12/24/24 08:29 ND 5.00 ug/L 1 12/24/24 08:29 ND 0.500 ug/L 1 12/24/24 08:29 ND 0.500 ug/L 1 12/24/24 08:29 ND 0.400 ug/L 1 12/24/24 08:29 ND 2.00 ug/L 1 12/24/24 08:29 ND 0.400 ug/L 1 12/24/24 08:29 ND 0.400 ug/L 1 12/24/24 08:29</td> <td>ND 10.0 ug/L 1 12/24/24 08:29 EPA 8260D ND 10.0 ug/L 1 12/24/24 08:29 EPA 8260D ND 1.00 ug/L 1 12/24/24 08:29 EPA 8260D ND 5.00 ug/L 1 12/24/24 08:29 EPA 8260D ND 0.500 ug/L 1 12/24/24 08:29 EPA 8260D ND 0.500 ug/L 1 12/24/24 08:29 EPA 8260D ND 0.400 ug/L 1 12/24/24 08:29 EPA 8260D ND 0.400 ug/L 1 12/24/24 08:29 EPA 8260D ND 0.500 ug/L 1 12/24/24 08:29 EPA 8260D ND 0.400 ug/L 1 12/24/24 08:29 EPA 8260D ND 2.00 ug/L 1 12/24/24 08:29 EPA 8260D ND 2.00 ug/L 1 12/24/24 08:29 EPA 8260D</td>	ND 10.0 ug/L 1 12/24/24 08:29 ND 10.0 ug/L 1 12/24/24 08:29 ND 1.00 ug/L 1 12/24/24 08:29 ND 5.00 ug/L 1 12/24/24 08:29 ND 5.00 ug/L 1 12/24/24 08:29 ND 0.500 ug/L 1 12/24/24 08:29 ND 0.500 ug/L 1 12/24/24 08:29 ND 0.400 ug/L 1 12/24/24 08:29 ND 2.00 ug/L 1 12/24/24 08:29 ND 0.400 ug/L 1 12/24/24 08:29 ND 0.400 ug/L 1 12/24/24 08:29	ND 10.0 ug/L 1 12/24/24 08:29 EPA 8260D ND 10.0 ug/L 1 12/24/24 08:29 EPA 8260D ND 1.00 ug/L 1 12/24/24 08:29 EPA 8260D ND 5.00 ug/L 1 12/24/24 08:29 EPA 8260D ND 0.500 ug/L 1 12/24/24 08:29 EPA 8260D ND 0.500 ug/L 1 12/24/24 08:29 EPA 8260D ND 0.400 ug/L 1 12/24/24 08:29 EPA 8260D ND 0.400 ug/L 1 12/24/24 08:29 EPA 8260D ND 0.500 ug/L 1 12/24/24 08:29 EPA 8260D ND 0.400 ug/L 1 12/24/24 08:29 EPA 8260D ND 2.00 ug/L 1 12/24/24 08:29 EPA 8260D ND 2.00 ug/L 1 12/24/24 08:29 EPA 8260D

MW-10 (A4L1608-02RE1)				Matrix: Water			Batch: 24	L0985
cis-1,2-Dichloroethene	ND		0.400	u	g/L	1	12/27/24 17:07	EPA 8260D
Vinyl chloride	ND		0.200	u	g/L	1	12/27/24 17:07	EPA 8260D
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	107 %	Limits:	80-120 %	1	12/27/24 17:07	EPA 8260D
Toluene-d8 (Surr)			107 %		80-120 %	1	12/27/24 17:07	EPA 8260D

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1608 - 01 16 25 1235

ANALYTICAL SAMPLE RESULTS

Sample AnalyceDetection LimitReporting LimitDate UnitsDate AnalyzedMethod Ref.NotesMU-10 (ALL100-02RE1)		V	olatile Orgar	nic Compou	nds by EPA 826	60D			
Analyte Result Limit Units Ditution Analyzed Method Ref. Notes MW-10 (A4L1608-02FE1) Matrix: Water Batch: 24L0985 Surrogat: 4-Bromofluorobettene (Surr) Recovery: 105 % Limit: 80-120 % 1 122272417:07 Effe 8260D MW-14 (A4L1608-06) Matrix: Water Batch: 24L0855 EFA 8260D Acetone ND 20.0 ug/L 1 122424 08:56 EFA 8260D Benzene ND 2.00 ug/L 1 122424 08:56 EFA 8260D Bromobenzene ND 0.200 ug/L 1 122424 08:56 EFA 8260D Bromodehloromethane ND 1.00 ug/L 1 122424 08:56 EFA 8260D Bromodehloromethane ND 1.00 ug/L 1 122424 08:56 EFA 8260D Bromodehloromethane ND 1.00 ug/L 1 122424 08:56		Sample	Detection	Reporting	** •	D 11	Date		N .
MW-10 (A4L1608-02RE1) Natrix: Water Rater: Water Batch: 24U985 surrogute: 4-Aromofluorobensene (Xurr) Recovery: 105 % Limits: 80-120 % 1 122724 17.07 EPA 8260D MW-14 (A4L1608-06) ND 20.0 ug/L 1 122424 08:56 EPA 8260D Acctone ND 2.00 ug/L 1 122424 08:56 EPA 8260D Benzene ND 0.200 ug/L 1 122424 08:56 EPA 8260D Bromoberszene ND 0.500 ug/L 1 122424 08:56 EPA 8260D Bromoberszene ND 1.00 ug/L 1 122424 08:56 EPA 8260D Bromoberszene ND 1.00 ug/L 1 122424 08:56 EPA 8260D Bromofentane ND 1.00 ug/L 1 122424 08:56 EPA 8260D Bromofentane ND 1.00 ug/L 1 122424 08:56 EPA 8260D Bromofentane ND 1.00 ug/L 1 122424 08:56 EPA 8260D Carbon distified ND 1.00 ug/L 1 122424 08:56 EPA 8260D <th>Analyte</th> <th>Result</th> <th>Limit</th> <th>Limit</th> <th>Units</th> <th>Dilution</th> <th>Analyzed</th> <th>Method Ref.</th> <th>Notes</th>	Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
Barangata: 4-Brannagdianorbanescane (Starr)Recovery: 10.5 %Lituits: 80-120 %11.212724.7.07.REA 82600Mett-14 (AAL1608-06)ND20.0ug/L11.212424.08.56EPA 82600AcetoneND2.00ug/L11.212424.08.56EPA 82600BenzeneND0.200ug/L11.212424.08.56EPA 82600BromochloromethaneND0.500ug/L11.212424.08.56EPA 82600BromochloromethaneND1.00ug/L11.212424.08.56EPA 82600BromochloromethaneND1.00ug/L11.212442.08.56EPA 82600BromochloromethaneND1.00ug/L11.212442.08.56EPA 82600BromochloromethaneND1.00ug/L11.212442.08.56EPA 82600BromochloromethaneND1.00ug/L11.212442.08.56EPA 82600BromochloromethaneND1.00ug/L11.212442.08.56EPA 82600Carbon disulfideND1.00ug/L11.212424.08.56EPA 82600Carbon disulfideND1.00ug/L11.212424.08.56EPA 82600Carbon disulfideND1.00ug/L11.22424.08.56EPA 82600ChlorobareneND1.00ug/L11.22424.08.56EPA 82600 <tr< th=""><th>MW-10 (A4L1608-02RE1)</th><th></th><th></th><th></th><th>Matrix: Wate</th><th>ər</th><th>Batch:</th><th>24L0985</th><th></th></tr<>	MW-10 (A4L1608-02RE1)				Matrix: Wate	ər	Batch:	24L0985	
Murti (AdL608-06)MDImage: Source of the state of	Surrogate: 4-Bromofluorobenzene (Surr)		Recov	very: 105 %	Limits: 80-120 %	5 1	12/27/24 17:07	EPA 8260D	
Actone ND 20.0 ug/L 1 12/24/24 08:56 EPA 8260D Acrylonitrile ND 0.200 ug/L 1 12/24/24 08:56 EPA 8260D Benzene ND 0.200 ug/L 1 12/24/24 08:56 EPA 8260D Bromochloromethane ND 0.500 ug/L 1 12/24/24 08:56 EPA 8260D Bromochloromethane ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D Bromochoromethane ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D Bromochoromethane ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D Bromochoromethane ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D 2-Butanoe (MEK) ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D carbon disulfide ND 1.00	MW-14 (A4L1608-06)				Matrix: Wate	ər	Batch:	24L0855	
AcrylonitrileND2.00ug/L11/2/4/2 40.856EPA 8260DBenzeneND0.200ug/L11/2/4/2 40.856EPA 8260DBromodehzeneND0.500ug/L11/2/4/2 40.856EPA 8260DBromodichloromethaneND1.00ug/L11/2/4/2 40.856EPA 8260DBromodichloromethaneND1.00ug/L11/2/4/2 40.856EPA 8260DBromodichloromethaneND1.00ug/L11/2/4/2 40.856EPA 8260DBromodichloromethaneND5.00ug/L11/2/4/2 40.856EPA 8260DBromodichloromethaneND1.00ug/L11/2/4/2 40.856EPA 8260DBromodichloromethaneND1.00ug/L11/2/4/2 40.856EPA 8260DBromodichloromethaneND1.00ug/L11/2/4/2 40.856EPA 8260DBromodichloromethaneND1.00ug/L11/2/4/2 40.856EPA 8260DCarbon disulfideND1.00ug/L11/2/4/2 40.856EPA 8260DChlorobenzeneND1.00ug/L11/2/4/2 40.856EPA 8260DChlorobenzeneND1.00ug/L11/2/4/2 40.856EPA 8260DChlorobenzeneND1.00ug/L11/2/4/2 40.856EPA 8260DChlorobenze	Acetone	ND		20.0	ug/L	1	12/24/24 08:56	EPA 8260D	
BenzeneND0.200ug/L11/2/2/4 08:56EPA 8200DBromobenzeneND0.500ug/L11/2/2/4 08:56EPA 8200DBromobendoromethaneND1.00ug/L11/2/2/4 08:56EPA 8200DBromoformethaneND1.00ug/L11/2/2/4 08:56EPA 8200DBromoformND1.00ug/L11/2/4/2 08:56EPA 8200DBromoformND5.00ug/L11/2/4/2 08:56EPA 8200D2-Butanone (MEK)ND1.00ug/L11/2/4/2 08:56EPA 8200DCarbon disulfideND1.00ug/L11/2/4/2 08:56EPA 8200DCarbon disulfideND1.00ug/L11/2/4/2 08:56EPA 8200DChlorochtaneND1.00ug/L11/2/4/2 08:56EPA 8200DChlorochtaneND1.00ug/L11/2/4/2 08:56EPA 8200DChlorochtaneND1.00ug/L	Acrylonitrile	ND		2.00	ug/L	1	12/24/24 08:56	EPA 8260D	
BromobenzeneND0.500ug/L112/24/24 08:56EPA 8260DBromochloromethaneND1.00ug/L112/24/24 08:56EPA 8260DBromochloromethaneND1.00ug/L112/24/24 08:56EPA 8260DBromochoromethaneND1.00ug/L112/24/24 08:56EPA 8260DBromochaneND5.00ug/L112/24/24 08:56EPA 8260DBromochane (MEK)ND1.00ug/L112/24/24 08:56EPA 8260DND1.00ug/L112/24/24 08:56EPA 8260DND1.00ug/L112/24/24 08:56EPA 8260DND1.00ug/L112/24/24 08:56EPA 8260DND1.00ug/L112/24/24 08:56EPA 8260DCarbon disulfideND1.00ug/L112/24/24 08:56EPA 8260DChlorobenzeneND1.00ug/L112/24/24 08:56EPA 8260DChlorobenzeneND1.00ug/L112/24/24 08:56EPA 8260DChlorobenzeneND1.00ug/L112/24/24 08:56EPA 8260DChlorobenzeneND1.00ug/L112/24/24 08:56EPA 8260DChlorobenzeneND1.00ug/L112/24/2	Benzene	ND		0.200	ug/L	1	12/24/24 08:56	EPA 8260D	
BromochloromethaneND1.00ug/L11/2/4/24 08:56EPA 8260DBromodichloromethaneND1.00ug/L11/2/4/24 08:56EPA 8260DBromodichloromethaneND1.00ug/L11/2/4/24 08:56EPA 8260DBromodichloromethaneND5.00ug/L11/2/4/24 08:56EPA 8260DBromodichloromethaneND1.00ug/L11/2/4/24 08:56EPA 8260D2-Butanone (MEK)ND1.00ug/L11/2/4/24 08:56EPA 8260Dsec-ButylbenzeneND1.00ug/L11/2/4/24 08:56EPA 8260Dcarbon disulfideND1.00ug/L11/2/4/24 08:56EPA 8260DCarbon disulfideND1.00ug/L11/2/4/24 08:56EPA 8260DChlorobenzeneND1.00ug/L11/2/4/24 08:56EPA 8260DChlorobenzeneND1.00ug/L11/2/4/24 08:56EPA 8260DChlorobenzeneND1.00ug/L11/2/4/24 08:56EPA 8260DChlorobenzeneND1.00ug/L11/2/4/24 08:56EPA 8260DChlorobenzeneND1.00ug/L11/2/4/24 08:56EPA 8260DChlorobenzeneND1.00ug/L11/2/4/24 08:56EPA 8260DChlorobenzene <t< td=""><td>Bromobenzene</td><td>ND</td><td></td><td>0.500</td><td>ug/L</td><td>1</td><td>12/24/24 08:56</td><td>EPA 8260D</td><td></td></t<>	Bromobenzene	ND		0.500	ug/L	1	12/24/24 08:56	EPA 8260D	
BromodichloromethaneND1.00ug/L11/2/2/4 0.856EPA 8260DBromoformND1.00ug/L11/2/2/4 0.856EPA 8260DBromomethaneND5.00ug/L11/2/2/4 0.856EPA 8260D2-Butanone (MEK)ND1.00ug/L11/2/2/4 0.856EPA 8260D2-Butanone (MEK)ND1.00ug/L11/2/2/4 0.856EPA 8260Da-ButylbenzeneND1.00ug/L11/2/2/24 0.856EPA 8260Dsec-ButylbenzeneND1.00ug/L11/2/2/24 0.856EPA 8260DCarbon disulfideND1.00ug/L11/2/2/24 0.856EPA 8260DCarbon disulfideND1.00ug/L11/2/2/24 0.856EPA 8260DChlorobenzeneND1.00ug/L11/2/2/24 0.856EPA 8260DChloroformND1.00ug/L11/2/2/24 0.856EPA 8260DChloroformND1.00ug/L11/2/2/24 0.856EPA 8260DChloroformND5.00ug/L11/2/2/24 0.856EPA 8260DChlorofolueneND1.00ug/L11/2/2/24 0.856EPA 8260DChlorofolueneND1.00ug/L11/2/2/24 0.856EPA 8260DChlorofolueneND1.00ug/	Bromochloromethane	ND		1.00	ug/L	1	12/24/24 08:56	EPA 8260D	
Bromoform ND 1.00 ug/L 1 1/2/2/4 08:56 EPA 8260D Bromomethane ND 5.00 ug/L 1 1/2/2/4 08:56 EPA 8260D 2-Butanone (MEK) ND 10.0 ug/L 1 1/2/2/4 08:56 EPA 8260D n-Butylbenzene ND 1.00 ug/L 1 1/2/2/2 08:56 EPA 8260D sec-Butylbenzene ND 1.00 ug/L 1 1/2/2/2 08:56 EPA 8260D carbon disulfide ND 1.00 ug/L 1 1/2/2/2 08:56 EPA 8260D Carbon disulfide ND 1.00 ug/L 1 1/2/2/2 08:56 EPA 8260D Chlorobenzene ND 1.00 ug/L 1 1/2/2/2 08:56 EPA 8260D Chloroform ND 0.500 ug/L 1 1/2/2/2 08:56 EPA 8260D Chloroform ND 1.00 ug/L	Bromodichloromethane	ND		1.00	ug/L	1	12/24/24 08:56	EPA 8260D	
Bromomethane ND 5.00 ug/L 1 12/24/24 08:56 EPA 8260D 2-Butanone (MEK) ND 10.0 ug/L 1 12/24/24 08:56 EPA 8260D n-Butylbenzene ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D sec-Butylbenzene ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D Carbon disulfide ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D Carbon disulfide ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D Carbon tetrachloride ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D Chlorobenzene ND 0.500 ug/L 1 12/24/24 08:56 EPA 8260D Chloroform ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D Chloroform ND 5.00 <t< td=""><td>Bromoform</td><td>ND</td><td></td><td>1.00</td><td>ug/L</td><td>1</td><td>12/24/24 08:56</td><td>EPA 8260D</td><td></td></t<>	Bromoform	ND		1.00	ug/L	1	12/24/24 08:56	EPA 8260D	
2-Butanone (MEK) ND 10.0 ug/L 1 12/24/24 08:56 EPA 8260D n-Butylbenzene ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D sec-Butylbenzene ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D tert-Butylbenzene ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D Carbon disulfide ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D Carbon tetrachloride ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D Chlorobenzene ND 0.500 ug/L 1 12/24/24 08:56 EPA 8260D Chlorothane ND 0.500 ug/L 1 12/24/24 08:56 EPA 8260D Chlorothane ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D Chlorotohuene ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D 2-Chlorotohuene	Bromomethane	ND		5.00	ug/L	1	12/24/24 08:56	EPA 8260D	
n-ButylbenzeneND1.00ug/L112/24/24 08:56EPA 8260Dsec-ButylbenzeneND1.00ug/L112/24/24 08:56EPA 8260Dtert-ButylbenzeneND1.00ug/L112/24/24 08:56EPA 8260DCarbon disulfideND1.00ug/L112/24/24 08:56EPA 8260DCarbon tetrachlorideND1.00ug/L112/24/24 08:56EPA 8260DChlorobenzeneND0.500ug/L112/24/24 08:56EPA 8260DChlorothaneND0.500ug/L112/24/24 08:56EPA 8260DChlorothaneND1.00ug/L112/24/24 08:56EPA 8260DChlorothaneND1.00ug/L112/24/24 08:56EPA 8260DChlorothaneND1.00ug/L112/24/24 08:56EPA 8260DChlorothaneND1.00ug/L112/24/24 08:56EPA 8260D2-ChlorothaneND1.00ug/L112/24/24 08:56EPA 8260D2-ChlorothaneND1.00ug/L112/24/24 08:56EPA 8260D2-ChlorothaneND1.00ug/L112/24/24 08:56EPA 8260D2-ChlorothaneND1.00ug/L112/24/24 08:56EPA 8260D1,2-Dibromo-3-chloropropaneND	2-Butanone (MEK)	ND		10.0	ug/L	1	12/24/24 08:56	EPA 8260D	
sec-Butylbenzene ND 1.00 ug/L 1 1/2/24/24 08:56 EPA 8260D tert-Butylbenzene ND 1.00 ug/L 1 1/2/24/24 08:56 EPA 8260D Carbon disulfide ND 10.0 ug/L 1 1/2/24/24 08:56 EPA 8260D Carbon tetrachloride ND 1.00 ug/L 1 1/2/24/24 08:56 EPA 8260D Chlorobenzene ND 0.500 ug/L 1 1/2/24/24 08:56 EPA 8260D Chlorothane ND 0.500 ug/L 1 1/2/24/24 08:56 EPA 8260D Chlorothane ND 1.00 ug/L 1 1/2/24/24 08:56 EPA 8260D Chlorothane ND 1.00 ug/L 1 1/2/24/24 08:56 EPA 8260D Chlorothane ND 5.00 ug/L 1 1/2/24/24 08:56 EPA 8260D 2-Chlorotoluene ND 1.00 ug/L 1 1/2/24/24 08:56 EPA 8260D Dibromochloromethane </td <td>n-Butylbenzene</td> <td>ND</td> <td></td> <td>1.00</td> <td>ug/L</td> <td>1</td> <td>12/24/24 08:56</td> <td>EPA 8260D</td> <td></td>	n-Butylbenzene	ND		1.00	ug/L	1	12/24/24 08:56	EPA 8260D	
tert-BurylbenzeneND1.00ug/L112/24/24 08:56EPA 8260DCarbon disulfideND10.0ug/L112/24/24 08:56EPA 8260DCarbon tetrachlorideND1.00ug/L112/24/24 08:56EPA 8260DChlorobenzeneND0.500ug/L112/24/24 08:56EPA 8260DChloroothaneND1.00ug/L112/24/24 08:56EPA 8260DChloroothaneND5.00ug/L112/24/24 08:56EPA 8260DChloroothaneND5.00ug/L112/24/24 08:56EPA 8260DChloroothaneND5.00ug/L112/24/24 08:56EPA 8260DChloroothaneND1.00ug/L112/24/24 08:56EPA 8260DChloroothaneND1.00ug/L112/24/24 08:56EPA 8260D2-ChloroothaneND1.00ug/L112/24/24 08:56EPA 8260D2-ChloroothaneND1.00ug/L112/24/24 08:56EPA 8260D1,2-Dibromo-3-chloropropaneND5.00ug/L112/24/24 08:56EPA 8260D1,2-Dibromoethane (EDB)ND5.00ug/L112/24/24 08:56EPA 8260DDibromoethaneND5.00ug/L112/24/24 08:56EPA 8260D1,2-DibromoethaneND </td <td>sec-Butylbenzene</td> <td>ND</td> <td></td> <td>1.00</td> <td>ug/L</td> <td>1</td> <td>12/24/24 08:56</td> <td>EPA 8260D</td> <td></td>	sec-Butylbenzene	ND		1.00	ug/L	1	12/24/24 08:56	EPA 8260D	
Carbon disulfideND10.0ug/L112/24/24 08:56EPA 8260DCarbon tetrachlorideND1.00ug/L112/24/24 08:56EPA 8260DChlorobenzeneND0.500ug/L112/24/24 08:56EPA 8260DChloroethaneND10.0ug/L112/24/24 08:56EPA 8260DChloroformND1.00ug/L112/24/24 08:56EPA 8260DChloromethaneND5.00ug/L112/24/24 08:56EPA 8260D2-ChlorotolueneND5.00ug/L112/24/24 08:56EPA 8260D4-ChlorotolueneND1.00ug/L112/24/24 08:56EPA 8260D1,2-Dibromo-3-chloropropaneND5.00ug/L112/24/24 08:56EPA 8260D1,2-Dibromoethane (EDB)ND5.00ug/L112/24/24 08:56EPA 8260DND0.500ug/L112/24/24 08:56EPA 8260D1,2-DibromoethaneND5.00ug/L112/24/24 08:56EPA 8260D1,2-DibromoethaneND0.500ug/L112/24/24 08:56EPA 8260D1,2-DibromoethaneND0.500ug/L112/24/24 08:56EPA 8260D1,2-DibromoethaneND1.00ug/L112/24/24 08:56EPA 8260D	tert-Butylbenzene	ND		1.00	ug/L	1	12/24/24 08:56	EPA 8260D	
Carbon tetrachlorideND1.00ug/L112/24/24 08:56EPA 8260DChlorobenzeneND0.500ug/L112/24/24 08:56EPA 8260DChloroethaneND10.0ug/L112/24/24 08:56EPA 8260DChloroformND1.00ug/L112/24/24 08:56EPA 8260DChloromethaneND5.00ug/L112/24/24 08:56EPA 8260D2-ChlorotolueneND1.00ug/L112/24/24 08:56EPA 8260D4-ChlorotolueneND1.00ug/L112/24/24 08:56EPA 8260DDibromochloromethaneND1.00ug/L112/24/24 08:56EPA 8260D1,2-Dibromo-3-chloropropaneND5.00ug/L112/24/24 08:56EPA 8260D1,2-Dibromoethane (EDB)ND0.500ug/L112/24/24 08:56EPA 8260DND1.00ug/L112/24/24 08:56EPA 8260D1,2-DibromoethaneND5.00ug/L112/24/24 08:56EPA 8260D1,2-DibromoethaneND0.500ug/L112/24/24 08:56EPA 8260D1,2-DibromoethaneND1.00ug/L112/24/24 08:56EPA 8260D1,2-DibromoethaneND1.00ug/L112/24/24 08:56EPA 8260D	Carbon disulfide	ND		10.0	ug/L	1	12/24/24 08:56	EPA 8260D	
ChlorobenzeneND0.500ug/L112/24/24 08:56EPA 8260DChloroethaneND10.0ug/L112/24/24 08:56EPA 8260DChloroformND1.00ug/L112/24/24 08:56EPA 8260DChloromethaneND5.00ug/L112/24/24 08:56EPA 8260D2-ChlorotolueneND1.00ug/L112/24/24 08:56EPA 8260D4-ChlorotolueneND1.00ug/L112/24/24 08:56EPA 8260DDibromochloromethaneND1.00ug/L112/24/24 08:56EPA 8260D1,2-Dibromo-3-chloropropaneND5.00ug/L112/24/24 08:56EPA 8260D1,2-Dibromoethane (EDB)ND0.500ug/L112/24/24 08:56EPA 8260DND1.00ug/L112/24/24 08:56EPA 8260D1,2-DibromoethaneND5.00ug/L112/24/24 08:56EPA 8260D1,2-DibromoethaneND0.500ug/L112/24/24 08:56EPA 8260DND1.00ug/L112/24/24 08:56EPA 8260D1,2-DibromoethaneND0.500ug/L112/24/24 08:56EPA 8260DND1.00ug/L112/24/24 08:56EPA 8260DEPA 8260D	Carbon tetrachloride	ND		1.00	ug/L	1	12/24/24 08:56	EPA 8260D	
Chloroethane ND 10.0 ug/L 1 12/24/24 08:56 EPA 8260D Chloroform ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D Chloromethane ND 5.00 ug/L 1 12/24/24 08:56 EPA 8260D 2-Chlorotoluene ND 5.00 ug/L 1 12/24/24 08:56 EPA 8260D 4-Chlorotoluene ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D 4-Chlorotoluene ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D Dibromochloromethane ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D 1,2-Dibromo-3-chloropropane ND 5.00 ug/L 1 12/24/24 08:56 EPA 8260D 1,2-Dibromoethane (EDB) ND 0.500 ug/L 1 12/24/24 08:56 EPA 8260D Ubromothane ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D	Chlorobenzene	ND		0.500	ug/L	1	12/24/24 08:56	EPA 8260D	
Chloroform ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D Chloromethane ND 5.00 ug/L 1 12/24/24 08:56 EPA 8260D 2-Chlorotoluene ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D 4-Chlorotoluene ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D 0ibromochloromethane ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D 1,2-Dibromo-3-chloropropane ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D 1,2-Dibromo-thane (EDB) ND 5.00 ug/L 1 12/24/24 08:56 EPA 8260D I,2-Dibromoethane ND 5.00 ug/L 1 12/24/24 08:56 EPA 8260D 1,2-Dibromoethane (EDB) ND 0.500 ug/L 1 12/24/24 08:56 EPA 8260D Ibromoethane ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D <td< td=""><td>Chloroethane</td><td>ND</td><td></td><td>10.0</td><td>ug/L</td><td>1</td><td>12/24/24 08:56</td><td>EPA 8260D</td><td></td></td<>	Chloroethane	ND		10.0	ug/L	1	12/24/24 08:56	EPA 8260D	
ChloromethaneND5.00ug/L112/24/24 08:56EPA 8260D2-ChlorotolueneND1.00ug/L112/24/24 08:56EPA 8260D4-ChlorotolueneND1.00ug/L112/24/24 08:56EPA 8260DDibromochloromethaneND1.00ug/L112/24/24 08:56EPA 8260D1,2-Dibromo-3-chloropropaneND5.00ug/L112/24/24 08:56EPA 8260D1,2-Dibromoethane (EDB)ND0.500ug/L112/24/24 08:56EPA 8260DDibromoethaneND1.00ug/L112/24/24 08:56EPA 8260D	Chloroform	ND		1.00	ug/L	1	12/24/24 08:56	EPA 8260D	
2-Chlorotoluene ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D 4-Chlorotoluene ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D Dibromochloromethane ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D 1,2-Dibromo-3-chloropropane ND 5.00 ug/L 1 12/24/24 08:56 EPA 8260D 1,2-Dibromoethane (EDB) ND 5.00 ug/L 1 12/24/24 08:56 EPA 8260D Dibromoethane ND 0.500 ug/L 1 12/24/24 08:56 EPA 8260D 0.bromomethane ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D	Chloromethane	ND		5.00	ug/L	1	12/24/24 08:56	EPA 8260D	
4-Chlorotoluene ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D Dibromochloromethane ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D 1,2-Dibromo-3-chloropropane ND 5.00 ug/L 1 12/24/24 08:56 EPA 8260D 1,2-Dibromoethane (EDB) ND 0.500 ug/L 1 12/24/24 08:56 EPA 8260D Dibromoethane ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D	2-Chlorotoluene	ND		1.00	ug/L	1	12/24/24 08:56	EPA 8260D	
Dibromochloromethane ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D 1,2-Dibromo-3-chloropropane ND 5.00 ug/L 1 12/24/24 08:56 EPA 8260D 1,2-Dibromoethane (EDB) ND 0.500 ug/L 1 12/24/24 08:56 EPA 8260D Dibromoethane ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D	4-Chlorotoluene	ND		1.00	ug/L	1	12/24/24 08:56	EPA 8260D	
1,2-Dibromo-3-chloropropane ND 5.00 ug/L 1 12/24/24 08:56 EPA 8260D 1,2-Dibromoethane (EDB) ND 0.500 ug/L 1 12/24/24 08:56 EPA 8260D Dibromoethane ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D	Dibromochloromethane	ND		1.00	ug/L	1	12/24/24 08:56	EPA 8260D	
1,2-Dibromoethane (EDB) ND 0.500 ug/L 1 12/24/24 08:56 EPA 8260D Dibromomethane ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D	1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	12/24/24 08:56	EPA 8260D	
Dibromomethane ND 1.00 ug/L 1 12/24/24 08:56 EPA 8260D	1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	12/24/24 08:56	EPA 8260D	
	Dibromomethane	ND		1.00	ug/L	1	12/24/24 08:56	EPA 8260D	
1,2-Dichlorobenzene ND 0.500 ug/L 1 12/24/24 08:56 EPA 8260D	1,2-Dichlorobenzene	ND		0.500	ug/L	1	12/24/24 08:56	EPA 8260D	
1,3-Dichlorobenzene ND 0.500 ug/L 1 12/24/24 08:56 EPA 8260D	1,3-Dichlorobenzene	ND		0.500	ug/L	1	12/24/24 08:56	EPA 8260D	
1,4-Dichlorobenzene ND 0.500 ug/L 1 12/24/24 08:56 EPA 8260D	1,4-Dichlorobenzene	ND		0.500	ug/L	1	12/24/24 08:56	EPA 8260D	
Dichlorodifluoromethane ND 2.00 ug/L 1 12/24/24 08:56 EPA 8260D	Dichlorodifluoromethane	ND		2.00	ug/L	1	12/24/24 08:56	EPA 8260D	
1,1-Dichloroethane ND 0.400 ug/L 1 12/24/24 08:56 EPA 8260D	1,1-Dichloroethane	ND		0.400	ug/L	1	12/24/24 08:56	EPA 8260D	
1,2-Dichloroethane (EDC) ND 0.400 ug/L 1 12/24/24 08:56 EPA 8260D	1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	12/24/24 08:56	EPA 8260D	
1,1-Dichloroethene ND 0.400 ug/L 1 12/24/24 08:56 EPA 8260D	1,1-Dichloroethene	ND		0.400	ug/L	1	12/24/24 08:56	EPA 8260D	
cis-1,2-Dichloroethene ND 0.400 ug/L 1 12/24/24 08:56 EPA 8260D	cis-1,2-Dichloroethene	ND		0.400	ug/L	1	12/24/24 08:56	EPA 8260D	
trans-1,2-Dichloroethene ND 0.400 ug/L 1 12/24/24 08:56 EPA 8260D	trans-1,2-Dichloroethene	ND		0.400	ug/L	1	12/24/24 08:56	EPA 8260D	
1,2-Dichloropropane ND 0.500 ug/L 1 12/24/24 08:56 EPA 8260D	1,2-Dichloropropane	ND		0.500	ug/L	1	12/24/24 08:56	EPA 8260D	

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project: Auburn VW Project Number: BE-0107-E Project Manager: Dan Hatch

Report ID: A4L1608 - 01 16 25 1235

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D											
	Sample	Detection	Reporting			Date					
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes			
MW-14 (A4L1608-06)				Matrix: Wate	ər	Batch:	24L0855				
1,3-Dichloropropane	ND		1.00	ug/L	1	12/24/24 08:56	EPA 8260D				
2,2-Dichloropropane	ND		1.00	ug/L	1	12/24/24 08:56	EPA 8260D				
1,1-Dichloropropene	ND		1.00	ug/L	1	12/24/24 08:56	EPA 8260D				
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	12/24/24 08:56	EPA 8260D				
trans-1,3-Dichloropropene	ND		1.00	ug/L	1	12/24/24 08:56	EPA 8260D				
Ethylbenzene	ND		0.500	ug/L	1	12/24/24 08:56	EPA 8260D				
Hexachlorobutadiene	ND		5.00	ug/L	1	12/24/24 08:56	EPA 8260D				
2-Hexanone	ND		10.0	ug/L	1	12/24/24 08:56	EPA 8260D				
Isopropylbenzene	ND		1.00	ug/L	1	12/24/24 08:56	EPA 8260D				
4-Isopropyltoluene	ND		1.00	ug/L	1	12/24/24 08:56	EPA 8260D				
Methylene chloride	ND		10.0	ug/L	1	12/24/24 08:56	EPA 8260D				
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	12/24/24 08:56	EPA 8260D				
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	12/24/24 08:56	EPA 8260D				
Naphthalene	ND		5.00	ug/L	1	12/24/24 08:56	EPA 8260D				
n-Propylbenzene	ND		0.500	ug/L	1	12/24/24 08:56	EPA 8260D				
Styrene	ND		1.00	ug/L	1	12/24/24 08:56	EPA 8260D				
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	12/24/24 08:56	EPA 8260D				
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	12/24/24 08:56	EPA 8260D				
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	12/24/24 08:56	EPA 8260D				
Toluene	ND		1.00	ug/L	1	12/24/24 08:56	EPA 8260D				
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	12/24/24 08:56	EPA 8260D				
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	12/24/24 08:56	EPA 8260D				
1,1,1-Trichloroethane	ND		0.400	ug/L	1	12/24/24 08:56	EPA 8260D				
1,1,2-Trichloroethane	ND		0.500	ug/L	1	12/24/24 08:56	EPA 8260D				
Trichloroethene (TCE)	ND		0.400	ug/L	1	12/24/24 08:56	EPA 8260D				
Trichlorofluoromethane	ND		2.00	ug/L	1	12/24/24 08:56	EPA 8260D				
1,2,3-Trichloropropane	ND		1.00	ug/L	1	12/24/24 08:56	EPA 8260D				
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1	12/24/24 08:56	EPA 8260D				
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	12/24/24 08:56	EPA 8260D				
m,p-Xylene	ND		1.00	ug/L	1	12/24/24 08:56	EPA 8260D				
o-Xylene	ND		0.500	ug/L	1	12/24/24 08:56	EPA 8260D				
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 108 %	Limits: 80-120 %	5 1	12/24/24 08:56	EPA 8260D				
Toluene-d8 (Surr)			106 %	80-120 %	5 1	12/24/24 08:56	EPA 8260D				
4-Bromofluorobenzene (Surr)			<i>99 %</i>	80-120 %	5 1	12/24/24 08:56	EPA 8260D				
MW-14 (A4L1608-06RE1)				Matrix: Wate	ər	Batch:	24L0985				
Vinyl chloride	ND		0.200	ug/L	1	12/27/24 17:29	EPA 8260D				

Vinyl chloride

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW

20204 SE 284th Street Kent, WA 98042 Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

Project:

<u>Report ID:</u> A4L1608 - 01 16 25 1235

ANALYTICAL SAMPLE RESULTS

Auburn VW

Volatile Organic Compounds by EPA 8260D										
Analyte	Sample Result	Detection Limit	Reporting Limit	U	nits	Dilution	Date Analyzed	Method Ref.	Notes	
MW-14 (A4L1608-06RE1)				Matrix: Water Batch: 24L0985						
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ry: 107 %	Limits:	80-120 %	1	12/27/24 17:29	EPA 8260D		
Toluene-d8 (Surr)			108 %		80-120 %	1	12/27/24 17:29	EPA 8260D		
4-Bromofluorobenzene (Surr)			106 %		80-120 %	1	12/27/24 17:29	EPA 8260D		

Apex Laboratories

Cameron O'Brien, Project Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

							ORELAP ID: OR10	0062
Bluestone Environmental NW		Proj	ect: <u>Aubu</u>	rn VW				
20204 SE 284th Street		Project	Number: BE-0	107-E			Report ID:	
Kent, WA 98042		Project	Manager: Dan l	Hatch			A4L1608 - 01 16 25 1	1235
		ANALYTI	CAL SAMPI	LE RESULT	ſS			
		Total Meta	als by EPA 60	20B (ICPMS	5)			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
 MW-8 (A4L1608-01)				Matrix: W	ater			
Batch: 25A0148								
Arsenic	18.4		1.00	ug/L	1	01/08/25 02:14	EPA 6020B	
MW-10 (A4L1608-02)				Matrix: W	ater			
Arsenic	9.06		1.00	ug/L	1	01/08/25 02:19	EPA 6020B	
Barium	20.7		2.00	ug/L	1	01/08/25 02:19	EPA 6020B	
Cadmium	ND		0.200	ug/L	1	01/08/25 02:19	EPA 6020B	
Chromium	ND		2.00	ug/L	1	01/08/25 02:19	EPA 6020B	
Lead	0.210		0.200	ug/L	1	01/08/25 02:19	EPA 6020B	
Mercury	ND		0.0800	ug/L	1	01/08/25 02:19	EPA 6020B	
Silver	ND		0.200	ug/L	1	01/08/25 02:19	EPA 6020B	
MW-10 (A4L1608-02RE1)				Matrix: W	ater			
Batch: 25A0148								
Selenium	ND		1.00	ug/L	1	01/08/25 10:38	EPA 6020B	
MW-11 (A4L1608-03)				Matrix: W	ater			
Batch: 25A0148								
Arsenic	6.21		1.00	ug/L	1	01/08/25 02:35	EPA 6020B	
MW-12 (A4L1608-04)				Matrix: W	ater			
Batch: 25A0148								
Arsenic	10.0		1.00	ug/L	1	01/08/25 02:51	EPA 6020B	
MW-13 (A4L1608-05)				Matrix: W	ater			
Batch: 25A0148								
Arsenic	ND		1.00	ug/L	1	01/08/25 02:56	EPA 6020B	
Barium	9.48		2.00	ug/L	1	01/08/25 02:56	EPA 6020B	
Cadmium	ND		0.200	ug/L	1	01/08/25 02:56	EPA 6020B	
Chromium	ND		2.00	ug/L	1	01/08/25 02:56	EPA 6020B	
Lead	ND		0.200	ug/L	1	01/08/25 02:56	EPA 6020B	
Mercury	ND		0.0800	ug/L	1	01/08/25 02:56	EPA 6020B	
Silver	ND		0.200	ug/L	1	01/08/25 02:56	EPA 6020B	
MW-13 (A4L1608-05RE1)				Matrix: W	ater			

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042

Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

Project:

<u>Report ID:</u> A4L1608 - 01 16 25 1235

ANALYTICAL SAMPLE RESULTS

Auburn VW

	Total Metals by EPA 6020B (ICPMS)											
	Sample	Detection	Reporting			Date						
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes				
MW-13 (A4L1608-05RE1)				Matrix: W	ater							
Batch: 25A0148												
Selenium	ND		1.00	ug/L	1	01/08/25 11:05	EPA 6020B					
MW-14 (A4L1608-06)				Matrix: W	ater							
Batch: 25A0148												
Arsenic	3.78		1.00	ug/L	1	01/08/25 03:01	EPA 6020B					
Barium	11.8		2.00	ug/L	1	01/08/25 03:01	EPA 6020B					
Cadmium	ND		0.200	ug/L	1	01/08/25 03:01	EPA 6020B					
Chromium	ND		2.00	ug/L	1	01/08/25 03:01	EPA 6020B					
Lead	ND		0.200	ug/L	1	01/08/25 03:01	EPA 6020B					
Mercury	ND		0.0800	ug/L	1	01/08/25 03:01	EPA 6020B					
Silver	ND		0.200	ug/L	1	01/08/25 03:01	EPA 6020B					
MW-14 (A4L1608-06RE1)				Matrix: W	ater							
Batch: 25A0148												
Selenium	ND		1.00	ug/L	1	01/08/25 11:10	EPA 6020B					
MW-17 (A4L1608-07)				Matrix: W	ater							
Batch: 25A0148												
Arsenic	26.2		1.00	ug/L	1	01/08/25 03:07	EPA 6020B					
Cadmium	ND		0.200	ug/L	1	01/08/25 03:07	EPA 6020B					
Chromium	ND		2.00	ug/L	1	01/08/25 03:07	EPA 6020B					
Lead	ND		0.200	ug/L	1	01/08/25 03:07	EPA 6020B					
Mercury	ND		0.0800	ug/L	1	01/08/25 03:07	EPA 6020B					
MW-19 (A4L1608-08)				Matrix: W	ater							
Batch: 25A0148												
Arsenic	3.08		1.00	ug/L	1	01/08/25 03:12	EPA 6020B					
Barium	39.4		2.00	ug/L	1	01/08/25 03:12	EPA 6020B					
Cadmium	ND		0.200	ug/L	1	01/08/25 03:12	EPA 6020B					
Chromium	2.62		2.00	ug/L	1	01/08/25 03:12	EPA 6020B					
Lead	ND		0.200	ug/L	1	01/08/25 03:12	EPA 6020B					
Mercury	ND		0.0800	ug/L	1	01/08/25 03:12	EPA 6020B					
Silver	ND		0.200	ug/L	1	01/08/25 03:12	EPA 6020B					
MW-19 (A4L1608-08RE1)				Matrix: W	ater							

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042	e Environmental NWProject:Auburn VW2 84th StreetProject Number:BE-0107-EA 98042Project Manager:Dan Hatch							235		
ANALYTICAL SAMPLE RESULTS										
	Total Metals by EPA 6020B (ICPMS)									
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		

MW-19 (A4L1608-08RE1)			Matrix: Water			
Batch: 25A0148						
Selenium	ND	 1.00	ug/L	1	01/08/25 11:15	EPA 6020B

Apex Laboratories

Cameron O'Brien, Project Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

							ORELAP ID: OR10	0062
<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042		Proje Project Project I	ect: <u>Aubur</u> Number: BE-01 Manager: Dan H	r <u>n VW</u> 07-E latch			<u>Report ID:</u> A4L1608 - 01 16 25 1	1235
		ANALYTI	CAL SAMPL	E RESULI	ſS			
		Dissolved Me	etals by EPA	6020B (ICP	MS)			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-8 (A4L1608-01)				Matrix: W	ater			
Batch: 24L1102								
Arsenic	17.3		1.00	ug/L	1	01/03/25 05:32	EPA 6020B (Diss)	
MW-8 (A4L1608-01RE1)				Matrix: W	ater			
Batch: 25A0365								
Arsenic	1.35		1.00	ug/L	1	01/13/25 13:16	EPA 6020B (Diss)	FILT1
MW-10 (A4L1608-02)				Matrix: W	ater			
Batch: 24L1102								
Arsenic	8.49		1.00	ug/L	1	01/03/25 05:37	EPA 6020B (Diss)	
Barium	18.1		1.00	ug/L	1	01/03/25 05:37	EPA 6020B (Diss)	
Cadmium	ND		0.200	ug/L	1	01/03/25 05:37	EPA 6020B (Diss)	
Chromium	ND		2.00	ug/L	1	01/03/25 05:37	EPA 6020B (Diss)	
Lead	ND		0.200	ug/L	1	01/03/25 05:37	EPA 6020B (Diss)	
Selenium	ND		1.00	ug/L	1	01/03/25 05:37	EPA 6020B (Diss)	
Silver	ND		0.200	ug/L	1	01/03/25 05:37	EPA 6020B (Diss)	
MW-10 (A4L1608-02RE1)				Matrix: W	ater			
Batch: 24L1102								
Mercury	ND		0.0800	ug/L	1	01/03/25 15:18	EPA 6020B (Diss)	
MW-11 (A4L1608-03)				Matrix: W	ater			
Batch: 24L1102								
Arsenic	5.39		1.00	ug/L	1	01/03/25 05:42	EPA 6020B (Diss)	
MW-12 (A4L1608-04)				Matrix: W	ater			
Batch: 24L1102								
Arsenic	9.74		1.00	ug/L	1	01/03/25 05:58	EPA 6020B (Diss)	
MW-13 (A4L1608-05)				Matrix: W	ater			
Batch: 24L1102								
Arsenic	ND		1.00	ug/L	1	01/03/25 06:04	EPA 6020B (Diss)	
Barium	8.85		1.00	ug/L	1	01/03/25 06:04	EPA 6020B (Diss)	
Cadmium	ND		0.200	ug/L	1	01/03/25 06:04	EPA 6020B (Diss)	
Chromium	ND		2.00	ug/L	1	01/03/25 06:04	EPA 6020B (Diss)	
Lead	ND		0.200	ug/L	1	01/03/25 06:04	EPA 6020B (Diss)	

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bustone Faxioamental NW 20204 SE 244th StreetProject Number: Project Number:Be-uID-7.E Be-uID-7.EAmmonic Reporting Anticloss of 16.25 12.25Kent, WA 9802Defection Project Number:Be-uID-7.E Defection Number:Exclusion Anticloss of 16.25 12.25CALLSAMPLE RESULTSDefection ResultDefection LimitReporting UnitsDate DateMathicsManiyeDefection ResultDefection LimitReporting UnitsDate DateMathicsManiyeDefection ND0.00 0.200ug/L10.100.25 06.04PA 60208 (Diss)Mori-3 (Add1608-058E1)Matrix:WaterPathicsP								503-718-2323 ORELAP ID: OR10	0062
20204 Nr. 2MB Street Project Namager: Data AtL1608 - 01 16 25 1225 Kart, WA 98042 Project Manager: Data AtL1608 - 01 16 25 1225 Sample Dissolver/Malager: Data Analyte Data Analyte Result Limit Result Usits Data Analyte Result Limit Usits Data Analyzed Method Ref. MW-13 (AdL1608-05) Matrix: Water ND 0.200 ugT. 1 010325 06.04 EPA 60208 (Diss) Sterium ND 0.200 ugT. 1 010325 06.04 EPA 60208 (Diss) MW-13 (AdL1608-05RE1) Matrix: Water Matrix: Matrix M	Bluestone Environmental NW		Proj	ect: <u>Aubu</u>	rn VW				
Kett, WA '90042 Propert Manager: Dan Hatch All 1608 - 0 1 16 25 125 ANALYTICAL SAMPLE RESULTS Dissolved Metals by EPA 60208 (ICPMS) Analyte Date Analyte Result Limit Units Ditution Analyzed Method Ref. MW-13 (AdL1608-05) Matrix: Water State End Old 22 5 06.04 EPA 60208 (Diss) Silver ND 1.00 ug/L 1 010325 06.04 EPA 60208 (Diss) MW-13 (AdL1608-05RE1) Matrix: Water Matrix: Water EBAdh: 24,1102 Mecury ND 0.0800 ug/L 1 010325 06.09 EPA 60208 (Diss) MW-14 (AdL1608-06) Matrix: Water Barbin 1.00 ug/L 1 010325 06.09 EPA 60208 (Diss) Bartin 1.00 ug/L 1 010325 06.09 EPA 60208 (Diss) Genamin 0.3 1.00 ug/L 1 010325 06.09 EPA 60208 (Diss) Cadminum ND	20204 SE 284th Street		Project	Number: BE-01	107-E I 4 I			Report ID:	
ANALYTICAL SAMPLE RESULTS Dissolved Metals by EPA 6020B (ICPMS) Analyte Date Result Date Limit Date Dilution Analyzed Method Ref. MV-13 (A4L1608-05) Mathy Mathy Mathy 1 0.00325 06.04 EPA 60208 (Diss) Silver ND 0.200 ug/L 1 0.00325 06.04 EPA 60208 (Diss) MV-13 (A4L1608-05RE1) Mathy Mathy ND 0.0800 ug/L 1 0.00325 06.04 EPA 60208 (Diss) MV-14 (A4L1608-05RE1) Mathy Mathy ND 0.0800 ug/L 1 0.10325 06.09 EPA 60208 (Diss) Mreving ND 0.0800 ug/L 1 0.10325 06.09 EPA 60208 (Diss) Baring 1.3 1.00 ug/L 1 0.10325 06.09 EPA 60208 (Diss) Genring ND 0.200 ug/L 1 0.10325 06.09 EPA 60208 (Diss) Gadminn ND <	Kent, WA 98042		Project	Manager: Dan I	latch			A4L1608 - 01 16 25 1	235
Dissolved Metals by EPA 6020B (ICPMS) Analyte Sample Result Detection Limit Reporting Limit Dilution Date Dilution Mathed Analyzed Method Ref. MW-13 (ALL1608-05) Mathed ND 1.00 ug/L 1 01/0325 06.04 EPA 60208 (Diss) Silver ND 0.200 ug/L 1 01/0325 06.04 EPA 60208 (Diss) MV-13 (ALL1608-05RE1)			ANALYTI	CAL SAMPI	E RESULT	ГS			
Sample Analyte Detection Result Reporting Limit Units Date Dilution Analyze Method Ref. Mw-31 (A4L1608-05) 1.00 ug/L 0.103/25 06:04 EPA 60208 (Diss) Silver ND 0.200 ug/L 1 0103/25 06:04 EPA 60208 (Diss) MW-31 (A4L1608-05RE1) 0.200 ug/L 1 0103/25 15:23 EPA 60208 (Diss) MW-41 (A4L1608-06) 0.0800 ug/L 1 0103/25 06:09 EPA 60208 (Diss) MW-41 (A4L1608-06) 0.0800 ug/L 1 0103/25 06:09 EPA 60208 (Diss) Mortiz: 24L102 1.00 ug/L 1 0103/25 06:09 EPA 60208 (Diss) Cadmium ND 0.200 ug/L 1 0103/25 06:09 EPA 60208 (Diss) Cadmium ND 0.200 ug/L 1 0103/25 06:09 EPA 60208 (Diss) Silver ND 0.000 ug/L 1 0103/25 06:09			Dissolved M	etals by EPA	6020B (ICP	MS)			
Analyte Result Limit Limit Units Dilution Analyzed Method Ref. MW-13 (AdL1608-05)		Sample	Detection	Reporting			Date		
MW-13 (A4L1608-05) Matrix: Water Sclenium ND 1.00 ug/L 1 01/03/25 06:04 EPA 60208 (Diss) Silver ND 0.200 ug/L 1 01/03/25 06:04 EPA 60208 (Diss) MW-13 (A4L1608-05RE1) Matrix: Water Matrix: Water Matrix: Water Batch: 24L1102 ND 0.0800 ug/L 1 01/03/25 06:09 EPA 60208 (Diss) MW-14 (A4L1608-06) Matrix: Water Matrix: Water Batch: 24L1102 01/03/25 06:09 EPA 60208 (Diss) EPA 60208 (Diss) Cadmium 10.3 1.00 ug/L 1 01/03/25 06:09 EPA 60208 (Diss) Cadmium ND 0.200 ug/L 1 01/03/25 06:09 EPA 60208 (Diss) Cadmium ND 0.200 ug/L 1 01/03/25 06:09 EPA 60208 (Diss) Selenium ND 0.200 ug/L 1 01/03/25 06:09 EPA 60208 (Diss) Silver ND	Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
Selenium ND 1.00 ug/L 1 0.103/25 06:04 EPA 60208 (Diss) Silver ND 0.200 ug/L 1 0.103/25 06:04 EPA 60208 (Diss) MW-13 (A4L1608-05RE1) Matrix: Water Kater Kater Kater Kater Batch: 24L1102 ND 0.0800 ug/L 1 0.103/25 06:09 EPA 60208 (Diss) MW-14 (A4L1608-06) Matrix: Water Kater Kater Kater Kater Batch: 24L1102 Assenic 3.39 1.00 ug/L 1 0.103/25 06:09 EPA 60208 (Diss) Batch: 24L1102 Kater U 0.103/25 06:09 EPA 60208 (Diss) EPA 60208 (Diss) Chronium ND 0.200 ug/L 1 0.103/25 06:09 EPA 60208 (Diss) Silver ND 0.200 ug/L 1 0.103/25 06:09 EPA 60208 (Diss) Mercury ND 0.200 ug/L 1 0.103/25 06	MW-13 (A4L1608-05)				Matrix: W	ater			
Silver ND 0.200 ug/L 1 0.1/03/25 06:04 EPA 6020B (Diss) MW-13 (A4L1608-05RE1) Matrix: Water Batch: 24L1102 ND 0.0800 ug/L 1 0.1/03/25 15:23 EPA 6020B (Diss) MW-14 (A4L1608-05) Matrix: Water 0.0800 ug/L 1 0.1/03/25 06:09 EPA 6020B (Diss) MW-14 (A4L1608-05) Matrix: Water ND 0.0800 ug/L 1 0.1/03/25 06:09 EPA 6020B (Diss) Garwin 0.3 1.00 ug/L 1 0.1/03/25 06:09 EPA 6020B (Diss) Garwin ND 0.200 ug/L 1 0.1/03/25 06:09 EPA 6020B (Diss) Cadmium ND 0.200 ug/L 1 0.1/03/25 06:09 EPA 6020B (Diss) Selenium ND 0.200 ug/L 1 0.1/03/25 06:09 EPA 6020B (Diss) Stlver ND 0.000 ug/L 1 </td <td>Selenium</td> <td>ND</td> <td></td> <td>1.00</td> <td>ug/L</td> <td>1</td> <td>01/03/25 06:04</td> <td>EPA 6020B (Diss)</td> <td></td>	Selenium	ND		1.00	ug/L	1	01/03/25 06:04	EPA 6020B (Diss)	
Matrix: Watrix: <	Silver	ND		0.200	ug/L	1	01/03/25 06:04	EPA 6020B (Diss)	
Batch: 24L1102 Mercury ND 0.0800 ug/L 1 01/03/25 15:23 EPA 6020B (Diss) MW-14 (A4L1608-06) Matrix: Water Batch: 24L1102 Arsenic 3.39 1.00 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Barium 10.3 1.00 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Cadmium ND 0.200 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Cadmium ND 0.200 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Lead ND 0.200 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Selenium ND 0.200 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Silver ND 0.200 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Mw-14 (A4L1608-06RE1) Matrix: Water Matrix: Water	MW-13 (A4L1608-05RE1)				Matrix: W	ater			
Mercury ND 0.0800 ug/L 1 0.103/25 15:23 EPA 6020B (Diss) MW-14 (A4L1608-06) Matrix: Water Batch: 24L1102 Arsenic 3.39 1.00 ug/L 1 0.103/25 06:09 EPA 6020B (Diss) Barium 10.3 1.00 ug/L 1 0.103/25 06:09 EPA 6020B (Diss) Cadmium ND 0.200 ug/L 1 0.103/25 06:09 EPA 6020B (Diss) Lead ND 0.200 ug/L 1 0.103/25 06:09 EPA 6020B (Diss) Selenium ND 0.200 ug/L 1 0.103/25 06:09 EPA 6020B (Diss) Selenium ND 0.200 ug/L 1 0.103/25 06:09 EPA 6020B (Diss) Selenium ND 0.200 ug/L 1 0.103/25 06:09 EPA 6020B (Diss) Mercury ND 0.200 ug/L 1 0.103/25 06:14 EP	Batch: 24L1102								
MW-14 (A4L1608-06) Matrix: Water Batch: 24L1102 Arsenic 3.39 1.00 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Barium 10.3 1.00 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Cadmium ND 0.200 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Chromium ND 0.200 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Lead ND 0.200 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Selenium ND 0.200 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Silver ND 0.200 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Mw-14 (A4L1608-07 Matrix: Water	Mercury	ND		0.0800	ug/L	1	01/03/25 15:23	EPA 6020B (Diss)	
Batch: 24L1102 Arsenic 3.39 1.00 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Barium 10.3 1.00 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Cadmium ND 0.200 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Chromium ND 2.00 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Lead ND 0.200 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Selenium ND 0.200 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Silver ND 0.200 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) MW-14 (A4L1608-06RE1) Matrix: Water Matrix: Water Batch: 24L1102 Matrix: Water Us/Silver ND 0.0800 ug/L 1 01/03/25 06:14 EPA 6020B (Diss) Cadmium ND </td <td>MW-14 (A4L1608-06)</td> <td></td> <td></td> <td></td> <td>Matrix: W</td> <td>ater</td> <td></td> <td></td> <td></td>	MW-14 (A4L1608-06)				Matrix: W	ater			
Arsenic 3.39 1.00 ug/L 1 01/03/25 06:09 EPA 60208 (Diss) Barium 10.3 1.00 ug/L 1 01/03/25 06:09 EPA 60208 (Diss) Cadmium ND 0.200 ug/L 1 01/03/25 06:09 EPA 60208 (Diss) Cadmium ND 0.200 ug/L 1 01/03/25 06:09 EPA 60208 (Diss) Chromium ND 0.200 ug/L 1 01/03/25 06:09 EPA 60208 (Diss) Selenium ND 0.200 ug/L 1 01/03/25 06:09 EPA 60208 (Diss) Selenium ND 0.200 ug/L 1 01/03/25 06:09 EPA 60208 (Diss) Silver ND 0.200 ug/L 1 01/03/25 06:09 EPA 60208 (Diss) Mw-14 (A4L1608-06RE1) Matrix: Water U U U 01/03/25 06:14 EPA 60208 (Diss) Mw-17 (A4L1608-07) Mb 0.00 ug/L 1 01/03/25 06:14 EPA 60208 (Diss) CadmiumN	Batch: 24L1102								
Barium 10.3 1.00 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Cadmium ND 0.200 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Chromium ND 0.200 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Lead ND 0.200 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Sclenium ND 0.200 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Sclenium ND 0.200 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Silver ND 0.200 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Mw-14 (A4L1608-06RE1) Matrix: Water 0.0800 ug/L 1 01/03/25 06:14 EPA 6020B (Diss) Mw-17 (A4L1608-07) Matrix: Water 0.200 ug/L 1 01/03/25 06:14 EPA 6020B (Diss) Chromium <t< td=""><td>Arsenic</td><td>3.39</td><td></td><td>1.00</td><td>ug/L</td><td>1</td><td>01/03/25 06:09</td><td>EPA 6020B (Diss)</td><td></td></t<>	Arsenic	3.39		1.00	ug/L	1	01/03/25 06:09	EPA 6020B (Diss)	
Cadmium ND 0.200 ug/L 1 0//03/25 06:09 EPA 6020B (Diss) Chromium ND 2.00 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Lead ND 0.200 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Selenium ND 0.200 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Silver ND 0.200 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) MW-14 (A4L1608-06RE1) 0.200 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Mw-14 (A4L1608-06RE1) 0.200 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Mw-17 (A4L1608-07) Matrix: Water 0.0800 ug/L 1 01/03/25 06:14 EPA 6020B (Diss) Cadmium ND 0.200 ug/L 1 01/03/25 06:14 EPA 6020B (Diss) Cadmium ND 0.200 ug/L 1 01/03/25 06:14 EPA 6020B (Diss)	Barium	10.3		1.00	ug/L	1	01/03/25 06:09	EPA 6020B (Diss)	
Chromium ND 2.00 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Lead ND 0.200 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Selenium ND 0.200 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Silver ND 0.200 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) MW-14 (A4L1608-06RE1) 0.200 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Mw-14 (A4L1608-06RE1) Matrix: Water 0.0800 ug/L 1 01/03/25 06:19 EPA 6020B (Diss) Mw-17 (A4L1608-07) 0.0800 ug/L 1 01/03/25 06:14 EPA 6020B (Diss) Cadmium ND 0.200 ug/L 1 01/03/25 06:14 EPA 6020B (Diss) Cadmium ND 0.200 ug/L 1 01/03/25 06:14 EPA 60	Cadmium	ND		0.200	ug/L	1	01/03/25 06:09	EPA 6020B (Diss)	
Lead ND 0.200 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Selenium ND 0.200 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Silver ND 0.200 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) MW-14 (A4L1608-06RE1) Matrix: Water Image: Comparison of the compar	Chromium	ND		2.00	ug/L	1	01/03/25 06:09	EPA 6020B (Diss)	
Selenium ND 1.00 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) Silver ND 0.200 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) MW-14 (A4L1608-06RE1) Matrix: Water Matrix: Water Image: Comparison of the	Lead	ND		0.200	ug/L	1	01/03/25 06:09	EPA 6020B (Diss)	
Silver ND 0.200 ug/L 1 01/03/25 06:09 EPA 6020B (Diss) MW-14 (A4L1608-06RE1) Matrix: Water Image: Constraint of the cons	Selenium	ND		1.00	ug/L	1	01/03/25 06:09	EPA 6020B (Diss)	
MW-14 (A4L1608-06RE1) Matrix: Water Batch: 24L1102	Silver	ND		0.200	ug/L	1	01/03/25 06:09	EPA 6020B (Diss)	
Batch: 24L1102 ND 0.0800 ug/L 1 01/03/25 15:29 EPA 6020B (Diss) MW-17 (A4L1608-07) Matrix: Water	MW-14 (A4L1608-06RE1)				Matrix: W	ater			
Mercury ND 0.0800 ug/L 1 01/03/25 15:29 EPA 6020B (Diss) MW-17 (A4L1608-07) Matrix: Water Matrix: Water Matrix: Water EPA 6020B (Diss) Arsenic 25.2 1.00 ug/L 1 01/03/25 06:14 EPA 6020B (Diss) Cadmium ND 0.200 ug/L 1 01/03/25 06:14 EPA 6020B (Diss) Chromium ND 0.200 ug/L 1 01/03/25 06:14 EPA 6020B (Diss) Lead ND 2.00 ug/L 1 01/03/25 06:14 EPA 6020B (Diss) MW-17 (A4L1608-07RE1) MD 0.200 ug/L 1 01/03/25 06:14 EPA 6020B (Diss) Mercury ND 0.200 ug/L 1 01/03/25 15:34 EPA 6020B (Diss) Batch: 24L1102 MD 0.0800 ug/L 1 01/03/25 15:34 EPA 6020B (Diss) Batch: 25A0365 I.51 1.00 ug/	Batch: 24L1102								
MW-17 (A4L1608-07) Matrix: Water Batch: 24L1102 1.00 ug/L 1 01/03/25 06:14 EPA 6020B (Diss) Arsenic 25.2 1.00 ug/L 1 01/03/25 06:14 EPA 6020B (Diss) Cadmium ND 0.200 ug/L 1 01/03/25 06:14 EPA 6020B (Diss) Chromium ND 2.00 ug/L 1 01/03/25 06:14 EPA 6020B (Diss) Lead ND 0.200 ug/L 1 01/03/25 06:14 EPA 6020B (Diss) MW-17 (A4L1608-07RE1) Matrix: Water Matrix: Water EPA 6020B (Diss) Mercury ND 0.0800 ug/L 1 01/03/25 15:34 EPA 6020B (Diss) Batch: 25A0365 Arsenic 1.51 1.00 ug/L 1 01/13/25 13:21 EPA 6020B (Diss)	Mercury	ND		0.0800	ug/L	1	01/03/25 15:29	EPA 6020B (Diss)	
Batch: 24L1102 Arsenic 25.2 1.00 ug/L 1 01/03/25 06:14 EPA 6020B (Diss) Cadmium ND 0.200 ug/L 1 01/03/25 06:14 EPA 6020B (Diss) Chromium ND 2.00 ug/L 1 01/03/25 06:14 EPA 6020B (Diss) Lead ND 2.00 ug/L 1 01/03/25 06:14 EPA 6020B (Diss) MW-17 (A4L1608-07RE1) ND 0.200 ug/L 1 01/03/25 06:14 EPA 6020B (Diss) Batch: 24L1102 ND 0.200 ug/L 1 01/03/25 15:34 EPA 6020B (Diss) Mercury ND 0.0800 ug/L 1 01/03/25 15:34 EPA 6020B (Diss) Batch: 25A0365 1.51 1.00 ug/L 1 01/13/25 13:21 EPA 6020B (Diss)	MW-17 (A4L1608-07)				Matrix: W	ater			
Arsenic 25.2 1.00 ug/L 1 01/03/25 06:14 EPA 6020B (Diss) Cadmium ND 0.200 ug/L 1 01/03/25 06:14 EPA 6020B (Diss) Chromium ND 2.00 ug/L 1 01/03/25 06:14 EPA 6020B (Diss) Lead ND 0.200 ug/L 1 01/03/25 06:14 EPA 6020B (Diss) MW-17 (A4L1608-07RE1) Matrix: Water Batch: 24L1102 ND 0.0800 ug/L 1 01/03/25 15:34 EPA 6020B (Diss) Mercury ND 0.0800 ug/L 1 01/03/25 15:34 EPA 6020B (Diss) Arsenic 1.51 1.00 ug/L 1 01/13/25 13:21 EPA 6020B (Diss)	Batch: 24L1102								
Cadmium ND 0.200 ug/L 1 01/03/25 06:14 EPA 6020B (Diss) Chromium ND 2.00 ug/L 1 01/03/25 06:14 EPA 6020B (Diss) Lead ND 0.200 ug/L 1 01/03/25 06:14 EPA 6020B (Diss) MW-17 (A4L1608-07RE1) Matrix: Water Batch: 24L1102 ND 0.0800 ug/L 1 01/03/25 15:34 EPA 6020B (Diss) Mercury ND 0.0800 ug/L 1 01/03/25 15:34 EPA 6020B (Diss) Arsenic 1.51 1.00 ug/L 1 01/13/25 13:21 EPA 6020B (Diss)	Arsenic	25.2		1.00	ug/L	1	01/03/25 06:14	EPA 6020B (Diss)	
ND 2.00 ug/L 1 01/03/25 06:14 EPA 6020B (Diss) Lead ND 0.200 ug/L 1 01/03/25 06:14 EPA 6020B (Diss) MW-17 (A4L1608-07RE1) Matrix: Water Matrix: Water EPA 6020B (Diss) Batch: 24L1102 ND 0.0800 ug/L 1 01/03/25 15:34 EPA 6020B (Diss) Batch: 25A0365 ND 0.0800 ug/L 1 01/03/25 15:34 EPA 6020B (Diss) Arsenic 1.51 1.00 ug/L 1 01/13/25 13:21 EPA 6020B (Diss) 1	Cadmium	ND		0.200	ug/L	1	01/03/25 06:14	EPA 6020B (Diss)	
Lead ND 0.200 ug/L 1 01/03/25 06:14 EPA 6020B (Diss) MW-17 (A4L1608-07RE1) Matrix: Water Matrix: Water Image: Comparison of the comparison	Chromium	ND		2.00	ug/L	1	01/03/25 06:14	EPA 6020B (Diss)	
MW-17 (A4L1608-07RE1) Matrix: Water Batch: 24L1102 ND 0.0800 ug/L 1 01/03/25 15:34 EPA 6020B (Diss) Batch: 25A0365 1.00 ug/L 1 01/13/25 13:21 EPA 6020B (Diss)	Lead	ND		0.200	ug/L	1	01/03/25 06:14	EPA 6020B (Diss)	
Batch: 24L1102 ND 0.0800 ug/L 1 01/03/25 15:34 EPA 6020B (Diss) Batch: 25A0365 I.51 1.00 ug/L 1 01/13/25 13:21 EPA 6020B (Diss)	MW-17 (A4L1608-07RE1)				Matrix: W	ater			
Mercury ND 0.0800 ug/L 1 01/03/25 15:34 EPA 6020B (Diss) Batch: 25A0365	Batch: 24L1102								
Batch: 25A0365 Arsenic 1.51 1.00 ug/L 1 01/13/25 13:21 EPA 6020B (Diss)	Mercury	ND		0.0800	ug/L	1	01/03/25 15:34	EPA 6020B (Diss)	
Arsenic 1.51 1.00 ug/L 1 01/13/25 13:21 EPA 6020B (Diss)	Batch: 25A0365								
	Arsenic	1.51		1.00	ug/L	1	01/13/25 13:21	EPA 6020B (Diss)	FILT1
MW-19 (A4L1608-08) Matrix: Water	MW-19 (A4L1608-08)				Matrix: W	ater			

Batch: 24L1102

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW
20204 SE 284th Street

Kent, WA 98042

Project:Auburn VWProject NumberBE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1608 - 01 16 25 1235

ANALYTICAL SAMPLE RESULTS

		Dissolved Me	etals by EPA	6020B (ICPI	VIS)							
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
MW-19 (A4L1608-08)	Matrix: Water											
Arsenic	2.69		1.00	ug/L	1	01/03/25 06:19	EPA 6020B (Diss)					
Barium	36.6		1.00	ug/L	1	01/03/25 06:19	EPA 6020B (Diss)					
Cadmium	ND		0.200	ug/L	1	01/03/25 06:19	EPA 6020B (Diss)					
Chromium	ND		2.00	ug/L	1	01/03/25 06:19	EPA 6020B (Diss)					
Lead	ND		0.200	ug/L	1	01/03/25 06:19	EPA 6020B (Diss)					
Selenium	ND		1.00	ug/L	1	01/03/25 06:19	EPA 6020B (Diss)					
Silver	ND		0.200	ug/L	1	01/03/25 06:19	EPA 6020B (Diss)					
MW-19 (A4L1608-08RE1)				Matrix: Wa	ater							
Batch: 24L1102												
Mercury	ND		0.0800	ug/L	1	01/03/25 15:39	EPA 6020B (Diss)					

Apex Laboratories

Cameron O'Brien, Project Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042		Proj Project Project	ect: <u>Aubu</u> t Number: BE-0 Manager: Dan		<u>Report ID:</u> A4L1608 - 01 16 25 1235					
		ANALYTI	CAL SAMPI	LE RESULI	ſS					
		Solid and	Moisture De	termination	S					
	Sample	Detection	Reporting			Date				
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes		
MW-13 (A4L1608-05)				Matrix: W	ater					
Batch: 24L0836										
Total Suspended Solids	ND		5000	ug/L	1	12/23/24 14:56	SM 2540 D	TSS		
MW-19 (A4L1608-08)				Matrix: W	ater					
Batch: 24L0813										
Total Suspended Solids	80000		5000	ug/L	1	12/20/24 17:28	SM 2540 D			

Apex Laboratories

Cameron O'Brien, Project Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

<u>Report ID:</u> A4L1608 - 01 16 25 1235

QUALITY CONTROL (QC) SAMPLE RESULTS

		Hydr	ocarbon lo	lentificat	ion Scree	en by NW	TPH-HCIL	כ				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L1016 - EPA 3510C (F	uels/Acid	Ext.)					Wat	er				
Blank (24L1016-BLK1)		Prepared:	12/30/24 05:	11 Analyz	ed: 12/30/2	4 17:23						
NWTPH-HCID												
Gasoline Range Organics	ND		0.100	mg/L	1							
Diesel Range Organics	ND		0.250	mg/L	1							
Oil Range Organics	ND		0.250	mg/L	1							
Surr: o-Terphenyl (Surr)		Reco	very: 91 %	Limits: 50)-150 %	Dilu	tion: 1x					
4-Bromofluorobenzene (Surr)			30 %	10	-120 %		"					

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project:Auburn VWProject NumberBE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1608 - 01 16 25 1235

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolir	ne Range H	lydrocarbo	ons (Benz	zene throu	igh Naphi	thalene) l	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 25A0008 - EPA 5030C							Wate	ər				
Blank (25A0008-BLK1)		Prepared:	01/02/25 08:	08 Analyz	red: 01/02/25	5 14:49						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		100	ug/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Reco	wery: 87 %	Limits: 50	9-150 %	Dilu	tion: 1x					
1,4-Difluorobenzene (Sur)			113 %	5(0-150 %							
LCS (25A0008-BS2)		Prepared:	01/02/25 08:	08 Analyz	red: 01/02/25	5 14:26						
NWTPH-Gx (MS)												
Gasoline Range Organics	470		100	ug/L	1	500		94 8	30 - 120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	wery: 90 %	Limits: 50	9-150 %	Dilu	tion: 1x					
1,4-Difluorobenzene (Sur)			110 %	50	<i>Э-150 %</i>		"					

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project:Auburn VWProject NumberBE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1608 - 01 16 25 1235

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX	Compou	inds by E	PA 8260D)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 25A0008 - EPA 5030C							Wat	er				
Blank (25A0008-BLK1)		Prepared	01/02/25 08:	08 Analyz	ed: 01/02/2	5 14:49						
EPA 8260D												
Benzene	ND		0.200	ug/L	1							
Toluene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 110 %	Limits: 80)-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			107 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80	-120 %		"					
LCS (25A0008-BS1)		Prepared:	01/02/25 08:	08 Analyz	ed: 01/02/2	5 14:04						
EPA 8260D		*										
Benzene	19.6		0.200	ug/L	1	20.0		98	80 - 120%			
Toluene	19.1		1.00	ug/L	1	20.0		95	80 - 120%			
Ethylbenzene	20.2		0.500	ug/L	1	20.0		101	80 - 120%			
Xylenes, total	56.6		1.50	ug/L	1	60.0		94	80 - 120%			
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 105 %	Limits: 80)-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			102 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			89 %	80	-120 %		"					
Matrix Spike (25A0008-MS1)		Prepared	01/02/25 08:	08 Analyz	ed: 01/02/2	5 17:03						
<u>QC Source Sample: MW-17 (A4L</u> <u>EPA 8260D</u>	<u>1608-07)</u>											
Benzene	21.6		0.200	ug/L	1	20.0	ND	108	79 - 120%			
Toluene	20.4		1.00	ug/L	1	20.0	ND	102	80 - 121%			
Ethylbenzene	21.9		0.500	ug/L	1	20.0	ND	110	79 - 121%			
Xylenes, total	60.8		1.50	ug/L	1	60.0	ND	101	79 - 121%			
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 106 %	Limits: 80	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			82 %	80	-120 %		"					

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Orga	anic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0855 - EPA 5030C							Wate	ər				
Blank (24L0855-BLK1)		Prepared	: 12/23/24 11:43	3 Analyz	ed: 12/24/24	4 02:04						
EPA 8260D												
Acetone	ND		20.0	ug/L	1							
Acrylonitrile	ND		2.00	ug/L	1							
Benzene	ND		0.200	ug/L	1							
Bromobenzene	ND		0.500	ug/L	1							
Bromochloromethane	ND		1.00	ug/L	1							
Bromodichloromethane	ND		1.00	ug/L	1							
Bromoform	ND		1.00	ug/L	1							
Bromomethane	ND		5.00	ug/L	1							
2-Butanone (MEK)	ND		10.0	ug/L	1							
n-Butylbenzene	ND		1.00	ug/L	1							
sec-Butylbenzene	ND		1.00	ug/L	1							
tert-Butylbenzene	ND		1.00	ug/L	1							
Carbon disulfide	ND		10.0	ug/L	1							
Carbon tetrachloride	ND		1.00	ug/L	1							
Chlorobenzene	ND		0.500	ug/L	1							
Chloroethane	ND		10.0	ug/L	1							
Chloroform	ND		1.00	ug/L	1							
Chloromethane	ND		5.00	ug/L	1							
2-Chlorotoluene	ND		1.00	ug/L	1							
4-Chlorotoluene	ND		1.00	ug/L	1							
Dibromochloromethane	ND		1.00	ug/L	1							
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1							
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1							
Dibromomethane	ND		1.00	ug/L	1							
1,2-Dichlorobenzene	ND		0.500	ug/L	1							
1,3-Dichlorobenzene	ND		0.500	ug/L	1							
1,4-Dichlorobenzene	ND		0.500	ug/L	1							
Dichlorodifluoromethane	ND		2.00	ug/L	1							
1,1-Dichloroethane	ND		0.400	ug/L	1							
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1							
1,1-Dichloroethene	ND		0.400	ug/L	1							
cis-1,2-Dichloroethene	ND		0.400	ug/L	1							
trans-1,2-Dichloroethene	ND		0.400	ug/L	1							

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

QUALITY CONTROL (QC) SAMPLE RESULTS

		Detection	Reporting			Spike	Source		% REC		RPD	
Analyte	Result	Limit	Limit	Units	Dilution	Amount	Result	% REC	Limits	RPD	Limit	Notes
Batch 24L0855 - EPA 5030C							Wate	ər				
Blank (24L0855-BLK1)		Prepared	12/23/24 11:4	13 Analyz	ed: 12/24/24	1 02:04						
1,2-Dichloropropane	ND		0.500	ug/L	1							
1,3-Dichloropropane	ND		1.00	ug/L	1							
2,2-Dichloropropane	ND		1.00	ug/L	1							
1,1-Dichloropropene	ND		1.00	ug/L	1							
cis-1,3-Dichloropropene	ND		1.00	ug/L	1							
rans-1,3-Dichloropropene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Hexachlorobutadiene	ND		5.00	ug/L	1							
2-Hexanone	ND		10.0	ug/L	1							
sopropylbenzene	ND		1.00	ug/L	1							
4-Isopropyltoluene	ND		1.00	ug/L	1							
Methylene chloride	ND		10.0	ug/L	1							
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1							
Naphthalene	ND		5.00	ug/L	1							
1-Propylbenzene	ND		0.500	ug/L	1							
Styrene	ND		1.00	ug/L	1							
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1							
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1							
Tetrachloroethene (PCE)	ND		0.400	ug/L	1							
Toluene	ND		1.00	ug/L	1							
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1							
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1							
1,1,1-Trichloroethane	ND		0.400	ug/L	1							
1,1,2-Trichloroethane	ND		0.500	ц <u>е</u> /Г.	-							
Trichloroethene (TCE)	ND		0.400	цу/Г.	1							
Frichlorofluoromethane	ND		2.00	110/L	1							
.2.3-Trichloronronane	ND		1.00	ц <u>ь</u> /Г.	1							
2.4-Trimethvlhenzene	ND		1.00	110/I	1							
.3.5-Trimethvlhenzene	ND		1.00	110/I	1							
/invl chloride	ND		0.200	ug/L 110/I	1							
n n-Xvlene			1.00	ug/L	1							
n,p-Aytene Aydene			0.500	ug/L	1							
-дуюнс	IND		0.500	ug/L	1							

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW
20204 SE 284th Street

Kent, WA 98042

Project: <u>Auburn VW</u> Project Number: **BE-0107-E**

Project Manager: Dan Hatch

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Cor	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0855 - EPA 5030C							Wate	er				
Blank (24L0855-BLK1)		Prepared	: 12/23/24 11:4	43 Analyze	ed: 12/24/24	4 02:04						
Surr: Toluene-d8 (Surr)		Recon	very: 104 %	Limits: 80-	-120 %	Dil	ution: 1x					
4-Bromofluorobenzene (Surr)			100 %	80-	-120 %		"					
LCS (24L0855-BS1)		Prepared	: 12/23/24 11:4	43 Analyze	ed: 12/24/24	4 00:41						
EPA 8260D												
Acetone	27.9		20.0	ug/L	1	40.0		70 8	80 - 120%			Q-55
Acrylonitrile	17.0		2.00	ug/L	1	20.0		85	80 - 120%			
Benzene	20.6		0.200	ug/L	1	20.0		103	80 - 120%			
Bromobenzene	19.7		0.500	ug/L	1	20.0		99	80 - 120%			
Bromochloromethane	22.3		1.00	ug/L	1	20.0		112	80 - 120%			
Bromodichloromethane	22.5		1.00	ug/L	1	20.0		113	80 - 120%			
Bromoform	23.7		1.00	ug/L	1	20.0		118	80 - 120%			
Bromomethane	34.9		5.00	ug/L	1	20.0		174 8	80 - 120%			Q-56
2-Butanone (MEK)	32.1		10.0	ug/L	1	40.0		80	80 - 120%			
n-Butylbenzene	20.1		1.00	ug/L	1	20.0		100	80 - 120%			
sec-Butylbenzene	20.6		1.00	ug/L	1	20.0		103	80 - 120%			
tert-Butylbenzene	21.6		1.00	ug/L	1	20.0		108	80 - 120%			
Carbon disulfide	24.7		10.0	ug/L	1	20.0		124 8	80 - 120%			Q-56
Carbon tetrachloride	23.6		1.00	ug/L	1	20.0		118	80 - 120%			
Chlorobenzene	20.6		0.500	ug/L	1	20.0		103	80 - 120%			
Chloroethane	52.2		10.0	ug/L	1	20.0		261 8	80 - 120%			Q-56
Chloroform	21.4		1.00	ug/L	1	20.0		107	80 - 120%			
Chloromethane	20.0		5.00	ug/L	1	20.0		100	80 - 120%			
2-Chlorotoluene	20.9		1.00	ug/L	1	20.0		104	80 - 120%			
4-Chlorotoluene	22.5		1.00	ug/L	1	20.0		112	80 - 120%			
Dibromochloromethane	24.2		1.00	ug/L	1	20.0		121 8	80 - 120%			Q-56
1,2-Dibromo-3-chloropropane	18.6		5.00	ug/L	1	20.0		93	80 - 120%			
1,2-Dibromoethane (EDB)	20.7		0.500	ug/L	1	20.0		104	80 - 120%			
Dibromomethane	22.2		1.00	ug/L	1	20.0		111	80 - 120%			
1,2-Dichlorobenzene	20.8		0.500	ug/L	1	20.0		104	80 - 120%			
1,3-Dichlorobenzene	21.6		0.500	ug/L	1	20.0		108	80 - 120%			
1,4-Dichlorobenzene	20.6		0.500	ug/L	1	20.0		103	80 - 120%			
Dichlorodifluoromethane	20.7		2.00	ug/L	1	20.0		104	80 - 120%			
1,1-Dichloroethane	22.1		0.400	ug/L	1	20.0		110	80 - 120%			

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0855 - EPA 5030C							Wate	er				
LCS (24L0855-BS1)		Prepared	: 12/23/24 11:4	43 Analyz	ed: 12/24/24	4 00:41						
1,2-Dichloroethane (EDC)	21.0		0.400	ug/L	1	20.0		105	80 - 120%			
1,1-Dichloroethene	24.6		0.400	ug/L	1	20.0		123	80 - 120%			Q-56
cis-1,2-Dichloroethene	20.3		0.400	ug/L	1	20.0		102	80 - 120%			
trans-1,2-Dichloroethene	20.3		0.400	ug/L	1	20.0		102	80 - 120%			
1,2-Dichloropropane	21.2		0.500	ug/L	1	20.0		106	80 - 120%			
1,3-Dichloropropane	21.0		1.00	ug/L	1	20.0		105	80 - 120%			
2,2-Dichloropropane	21.3		1.00	ug/L	1	20.0		106	80 - 120%			
1,1-Dichloropropene	20.6		1.00	ug/L	1	20.0		103	80 - 120%			
cis-1,3-Dichloropropene	22.5		1.00	ug/L	1	20.0		113	80 - 120%			
trans-1,3-Dichloropropene	21.1		1.00	ug/L	1	20.0		105	80 - 120%			
Ethylbenzene	21.9		0.500	ug/L	1	20.0		110	80 - 120%			
Hexachlorobutadiene	20.6		5.00	ug/L	1	20.0		103	80 - 120%			
2-Hexanone	34.4		10.0	ug/L	1	40.0		86	80 - 120%			
Isopropylbenzene	18.6		1.00	ug/L	1	20.0		93	80 - 120%			
4-Isopropyltoluene	19.4		1.00	ug/L	1	20.0		97	80 - 120%			
Methylene chloride	20.2		10.0	ug/L	1	20.0		101	80 - 120%			
4-Methyl-2-pentanone (MiBK)	37.8		10.0	ug/L	1	40.0		94	80 - 120%			
Methyl tert-butyl ether (MTBE)	20.0		1.00	ug/L	1	20.0		100	80 - 120%			
Naphthalene	16.9		5.00	ug/L	1	20.0		84	80 - 120%			
n-Propylbenzene	22.6		0.500	ug/L	1	20.0		113	80 - 120%			
Styrene	19.3		1.00	ug/L	1	20.0		96	80 - 120%			
1,1,1,2-Tetrachloroethane	22.7		0.400	ug/L	1	20.0		114	80 - 120%			
1,1,2,2-Tetrachloroethane	20.5		0.500	ug/L	1	20.0		102	80 - 120%			
Tetrachloroethene (PCE)	20.2		0.400	ug/L	1	20.0		101	80 - 120%			
Toluene	20.1		1.00	ug/L	1	20.0		100	80 - 120%			
1,2,3-Trichlorobenzene	21.4		2.00	ug/L	1	20.0		107	80 - 120%			
1,2,4-Trichlorobenzene	19.2		2.00	ug/L	1	20.0		96	80 - 120%			
1,1,1-Trichloroethane	22.4		0.400	ug/L	1	20.0		112	80 - 120%			
1,1,2-Trichloroethane	19.9		0.500	ug/L	1	20.0		100	80 - 120%			
Trichloroethene (TCE)	20.6		0.400	ug/L	1	20.0		103	80 - 120%			
Trichlorofluoromethane	25.7		2.00	ug/L	1	20.0		128	80 - 120%			Q-56
1,2,3-Trichloropropane	19.6		1.00	ug/L	1	20.0		98	80 - 120%			
1,2,4-Trimethylbenzene	20.4		1.00	ug/L	1	20.0		102	80 - 120%			
1,3,5-Trimethylbenzene	22.4		1.00	ug/L	1	20.0		112	80 - 120%			

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number <u>BE-0107-E</u> Project Manager: <u>Dan Hatch</u>

<u>Report ID:</u> A4L1608 - 01 16 25 1235

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Ore	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0855 - EPA 5030C							Wate	ər			,	
LCS (24L0855-BS1)		Prepared:	12/23/24 11:4	43 Analyz	red: 12/24/24	4 00:41						
Vinyl chloride	22.8		0.200	ug/L	1	20.0		114	80 - 120%			
m,p-Xylene	40.9		1.00	ug/L	1	40.0		102	80 - 120%			
o-Xylene	18.3		0.500	ug/L	1	20.0		91	80 - 120%			
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 100 %	Limits: 80	7-120 %	Dilu	tion: 1x					
Toluene-d8 (Surr)			102 %	86	7-120 %		"					
4-Bromofluorobenzene (Surr)			92 %	86	7-120 %		"					

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Cameron O'Brien, Project Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

<u>Report ID:</u> A4L1608 - 01 16 25 1235

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	s by EPA 8	260D		1			1
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0985 - EPA 5030C							Wate	er				
Blank (24L0985-BLK1)		Prepared:	12/27/24 10:	00 Analyz	red: 12/27/2	4 15:14						
EPA 8260D												
cis-1,2-Dichloroethene	ND		0.400	ug/L	1							
Vinyl chloride	ND		0.200	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)	<u> </u>	Recove	ery: 105 %	Limits: 80	7-120 %	Dilu	tion: 1x	<u> </u>	<u> </u>		<u> </u>	<u> </u>
Toluene-d8 (Surr)			107 %	80	1-120 %		"					
4-Bromofluorobenzene (Surr)			111 %	86)-120 %		"					
LCS (24L0985-BS1)		Prepared:	12/27/24 10:	00 Analyz	red: 12/27/2	4 14:19						
EPA 8260D												
cis-1,2-Dichloroethene	21.2		0.400	ug/L	1	20.0		106 8	30 - 120%			
Vinyl chloride	23.8		0.200	ug/L	1	20.0		119 8	30 - 120%			
Surr: 1,4-Difluorobenzene (Surr)		Recove	ery: 102 %	Limits: 80)-120 %	Dilu	tion: 1x					
Toluene-d8 (Surr)			102 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			89 %	80	1-120 %		"					

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	etals by	EPA 6020	B (ICPMS	5)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 25A0148 - EPA 3015A							Wate	er				
Blank (25A0148-BLK1)		Prepared	: 01/07/25 08:2	23 Analyz	zed: 01/08/2:	5 02:03						
EPA 6020B		*										
Arsenic	ND		1.00	ug/L	1							
Barium	ND		2.00	ug/L	1							
Cadmium	ND		0.200	ug/L	1							
Chromium	ND		2.00	ug/L	1							
Lead	ND		0.200	ug/L	1							
Mercury	ND		0.0800	ug/L	1							
Silver	ND		0.200	ug/L	1							
Blank (25A0148-BLK2)		Prepared	: 01/07/25 08:2	23 Analyz	zed: 01/08/2:	5 10:33						
EPA 6020B		-										
Selenium	ND		1.00	ug/L	1							Q-16
LCS (25A0148-BS1)		Prepared	: 01/07/25 08:2	23 Analyz	ed: 01/08/2:	5 02:09						
EPA 6020B												
Arsenic	55.3		1.00	ug/L	1	55.6		100	80 - 120%			
Barium	55.1		2.00	ug/L	1	55.6		99	80 - 120%			
Cadmium	54.5		0.200	ug/L	1	55.6		98	80 - 120%			
Chromium	54.5		2.00	ug/L	1	55.6		98	80 - 120%			
Lead	54.6		0.200	ug/L	1	55.6		98	80 - 120%			
Mercury	1.10		0.0800	ug/L	1	1.11		99	80 - 120%			
Selenium	27.2		2.00	ug/L	1	27.8		98	80 - 120%			
Silver	27.6		0.200	ug/L	1	27.8		99	80 - 120%			
Duplicate (25A0148-DUP1)		Prepared	: 01/07/25 08:2	23 Analyz	ed: 01/08/2:	5 02:40						
QC Source Sample: MW-11 (A4)	L1608-03)											
EPA 6020B												
Arsenic	6.27		1.00	ug/L	1		6.21			0.9	20%	
Barium	29.5		2.00	ug/L	1		29.2			1	20%	
Cadmium	ND		0.200	ug/L	1		ND				20%	
Chromium	ND		2.00	ug/L	1		1.51			***	20%	
Lead	0.325		0.200	ug/L	1		0.362			11	20%	
Mercury	ND		0.0800	ug/L	1		ND				20%	
Silver	ND		0.200	ug/L	1		ND				20%	

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW
20204 SE 284th Street
Kent, WA 98042

Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1608 - 01 16 25 1235

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total Me	etals by	EPA 6020	B (ICPMS	;)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 25A0148 - EPA 3015A							Wate	ər				
Duplicate (25A0148-DUP2)		Prepared:	01/07/25 08:23	3 Analyz	ed: 01/08/25	5 10:59						
QC Source Sample: MW-11 (A4L)	1608-03RE1	Ū										
<u>EPA 6020B</u> Selenium	ND		1.00	ug/L	1		ND				20%	Q-16
Matrix Spike (25A0148-MS1)		Prepared:	01/07/25 08:23	3 Analyz	ed: 01/08/25	5 02:46						
QC Source Sample: MW-11 (A4L) EPA 6020B	1608-03)											
Arsenic	60.4		1.00	ug/L	1	55.6	6.21	98	75 - 125%			
Barium	85.0		2.00	ug/L	1	55.6	29.2	101	75 - 125%			
Cadmium	55.3		0.200	ug/L	1	55.6	ND	99	75 - 125%			
Chromium	53.7		2.00	ug/L	1	55.6	1.51	94	75 - 125%			
Lead	52.8		0.200	ug/L	1	55.6	0.362	94	75 - 125%			
Mercury	1.07		0.0800	ug/L	1	1.11	ND	96	75 - 125%			
Selenium	27.8		2.00	ug/L	1	27.8	ND	100	75 - 125%			
Silver	27.0		0.200	ug/L	1	27.8	ND	97	75 - 125%			

Apex Laboratories

Cameron O'Brien, Project Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project:Auburn VWProject NumberBE-0107-EProject Manager:Dan Hatch

QUALITY CONTROL (QC) SAMPLE RESULTS

			Dissolved	Metals	by EPA 60	020B (ICP	MS)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L1102 - Matrix Ma	atched Direct	nject					Wate	er				
Blank (24L1102-BLK1)		Prepared	: 12/31/24 14::	56 Analyz	zed: 01/03/2:	5 03:57						
EPA 6020B (Diss)												
Arsenic	ND		1.00	ug/L	1							
Barium	ND		1.00	ug/L	1							
Cadmium	ND		0.200	ug/L	1							
Chromium	ND		2.00	ug/L	1							
Lead	ND		0.200	ug/L	1							
Selenium	ND		1.00	ug/L	1							
Silver	ND		0.200	ug/L	1							
Blank (24L1102-BLK2)		Prepared	: 12/31/24 14::	56 Analyz	zed: 01/03/2:	5 14:20						
EPA 6020B (Diss)												
Mercury	ND		0.0800	ug/L	1							Q-16
LCS (24L1102-BS1)		Prepared	: 12/31/24 14::	56 Analyz	zed: 01/03/2	5 04:02						
EPA 6020B (Diss)												
Arsenic	53.9		1.00	ug/L	1	55.6		97	80 - 120%			
Barium	56.6		1.00	ug/L	1	55.6		102	80 - 120%			
Cadmium	54.6		0.200	ug/L	1	55.6		98	80 - 120%			
Chromium	54.5		2.00	ug/L	1	55.6		98	80 - 120%			
Lead	55.5		0.200	ug/L	1	55.6		100	80 - 120%			
Selenium	28.1		1.00	ug/L	1	27.8		101	80 - 120%			
Silver	27.6		0.200	ug/L	1	27.8		99	80 - 120%			
LCS (24L1102-BS2)		Prepared	: 12/31/24 14::	56 Analyz	zed: 01/03/2:	5 14:25						
EPA 6020B (Diss)		-										
Mercury	1.10		0.0800	ug/L	1	1.11		99	80 - 120%			Q-16

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1608 - 01 16 25 1235

QUALITY CONTROL (QC) SAMPLE RESULTS

			Dissolved	I Metals	by EPA 6(020B (ICP)	MS)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 25A0365 - Matrix Match	ed Direct	nject					Wate	ər				
Blank (25A0365-BLK1)		Prepared:	01/13/25 08:2	26 Analyz	ed: 01/13/25	5 12:29						
EPA 6020B (Diss)												
Arsenic	ND		1.00	ug/L	1							FILT3
LCS (25A0365-BS1)		Prepared:	01/13/25 08:2	26 Analyz	red: 01/13/25	5 12:34						
EPA 6020B (Diss)												
Arsenic	54.1		1.00	ug/L	1	55.6		97	80 - 120%			

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Cameron O'Brien, Project Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

<u>Report ID:</u> A4L1608 - 01 16 25 1235

QUALITY CONTROL (QC) SAMPLE RESULTS

			Solid a	nd Mois	ture Dete	rmination	s					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0813 - Total Suspen	Ided Solids	3 - 2022					Wate	er				
Blank (24L0813-BLK1)		Prepared:	: 12/20/24 17:2	8 Analyz	red: 12/20/24	4 17:28						
<u>SM 2540 D</u>												
Total Suspended Solids	ND		5000	ug/L	1							
Reference (24L0813-SRM1)		Prepared:	12/20/24 17:2	8 Analyz	red: 12/20/24	4 17:28						
<u>SM 2540 D</u>												
Total Suspended Solids	867			mg/L	1	854		102	85 - 115%			

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

<u>Report ID:</u> A4L1608 - 01 16 25 1235

QUALITY CONTROL (QC) SAMPLE RESULTS

			Solid a	nd Mois	ture Dete	rmination	S					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0836 - Total Suspen	ded Solids	s - 2022					Wat	er				
Blank (24L0836-BLK1)		Prepared:	12/23/24 14:5	6 Analyz	zed: 12/23/24	4 14:56						
SM 2540 D												
Total Suspended Solids	ND		5000	ug/L	1							
Reference (24L0836-SRM1)		Prepared:	12/23/24 14:5	6 Analyz	red: 12/23/24	4 14:56						
<u>SM 2540 D</u>												
Total Suspended Solids	873			mg/L	1	854		102	85 - 115%			

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

<u>Report ID:</u> A4L1608 - 01 16 25 1235

SAMPLE PREPARATION INFORMATION

Hydrocarbon Identification Screen by NWTPH-HCID								
Prep: EPA 3510C (Fuels/Acid Ext.)					Sample	Default	RL Prep	
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor	
Batch: 24L1016								
A4L1608-01	Water	NWTPH-HCID	12/19/24 13:50	12/30/24 05:11	1030mL/5mL	1000mL/5mL	0.97	
A4L1608-02	Water	NWTPH-HCID	12/19/24 11:15	12/30/24 05:11	1000mL/5mL	1000mL/5mL	1.00	
A4L1608-03	Water	NWTPH-HCID	12/19/24 11:55	12/30/24 05:11	1010mL/5mL	1000mL/5mL	0.99	
A4L1608-04	Water	NWTPH-HCID	12/19/24 12:30	12/30/24 05:11	1030mL/5mL	1000mL/5mL	0.97	
A4L1608-05	Water	NWTPH-HCID	12/19/24 13:05	12/30/24 05:11	1020mL/5mL	1000mL/5mL	0.98	
A4L1608-06	Water	NWTPH-HCID	12/19/24 10:35	12/30/24 05:11	1030mL/5mL	1000mL/5mL	0.97	
A4L1608-07	Water	NWTPH-HCID	12/19/24 09:45	12/30/24 05:11	1060mL/5mL	1000mL/5mL	0.94	
A4L1608-08	Water	NWTPH-HCID	12/18/24 16:15	12/30/24 05:11	1030mL/5mL	1000mL/5mL	0.97	

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx							
<u> Prep: EPA 5030C</u>					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 25A0008							
A4L1608-07	Water	NWTPH-Gx (MS)	12/19/24 09:45	01/02/25 14:51	5mL/5mL	5mL/5mL	1.00
A4L1608-08	Water	NWTPH-Gx (MS)	12/18/24 16:15	01/02/25 14:51	5mL/5mL	5mL/5mL	1.00

BTEX Compounds by EPA 8260D							
Prep: EPA 5030C					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 25A0008							
A4L1608-07	Water	EPA 8260D	12/19/24 09:45	01/02/25 14:51	5mL/5mL	5mL/5mL	1.00
A4L1608-08	Water	EPA 8260D	12/18/24 16:15	01/02/25 14:51	5mL/5mL	5mL/5mL	1.00

Volatile Organic Compounds by EPA 8260D								
Prep: EPA 5030C					Sample	Default	RL Prep	
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor	
Batch: 24L0855								
A4L1608-02	Water	EPA 8260D	12/19/24 11:15	12/23/24 11:43	5mL/5mL	5mL/5mL	1.00	
A4L1608-06	Water	EPA 8260D	12/19/24 10:35	12/23/24 11:43	5mL/5mL	5mL/5mL	1.00	
Batch: 24L0985								
A4L1608-02RE1	Water	EPA 8260D	12/19/24 11:15	12/27/24 15:01	5mL/5mL	5mL/5mL	1.00	
A4L1608-06RE1	Water	EPA 8260D	12/19/24 10:35	12/27/24 15:01	5mL/5mL	5mL/5mL	1.00	

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1608 - 01 16 25 1235

SAMPLE PREPARATION INFORMATION

Total Metals by EPA 6020B (ICPMS)								
Prep: EPA 3015A					Sample	Default	RL Prep	
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor	
Batch: 25A0148								
A4L1608-01	Water	EPA 6020B	12/19/24 13:50	01/07/25 08:23	45mL/50mL	45mL/50mL	1.00	
A4L1608-02	Water	EPA 6020B	12/19/24 11:15	01/07/25 08:23	45mL/50mL	45mL/50mL	1.00	
A4L1608-02RE1	Water	EPA 6020B	12/19/24 11:15	01/07/25 08:23	45mL/50mL	45mL/50mL	1.00	
A4L1608-03	Water	EPA 6020B	12/19/24 11:55	01/07/25 08:23	45mL/50mL	45mL/50mL	1.00	
A4L1608-04	Water	EPA 6020B	12/19/24 12:30	01/07/25 08:23	45mL/50mL	45mL/50mL	1.00	
A4L1608-05	Water	EPA 6020B	12/19/24 13:05	01/07/25 08:23	45mL/50mL	45mL/50mL	1.00	
A4L1608-05RE1	Water	EPA 6020B	12/19/24 13:05	01/07/25 08:23	45mL/50mL	45mL/50mL	1.00	
A4L1608-06	Water	EPA 6020B	12/19/24 10:35	01/07/25 08:23	45mL/50mL	45mL/50mL	1.00	
A4L1608-06RE1	Water	EPA 6020B	12/19/24 10:35	01/07/25 08:23	45mL/50mL	45mL/50mL	1.00	
A4L1608-07	Water	EPA 6020B	12/19/24 09:45	01/07/25 08:23	45mL/50mL	45mL/50mL	1.00	
A4L1608-08	Water	EPA 6020B	12/18/24 16:15	01/07/25 08:23	45mL/50mL	45mL/50mL	1.00	
A4L1608-08RE1	Water	EPA 6020B	12/18/24 16:15	01/07/25 08:23	45mL/50mL	45mL/50mL	1.00	

Dissolved Metals by EPA 6020B (ICPMS)

Prep: Matrix Matche	ed Direct Inject				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24L1102							
A4L1608-01	Water	EPA 6020B (Diss)	12/19/24 13:50	12/31/24 14:56	45mL/50mL	45mL/50mL	1.00
A4L1608-02	Water	EPA 6020B (Diss)	12/19/24 11:15	12/31/24 14:56	45mL/50mL	45mL/50mL	1.00
A4L1608-02RE1	Water	EPA 6020B (Diss)	12/19/24 11:15	12/31/24 14:56	45mL/50mL	45mL/50mL	1.00
A4L1608-03	Water	EPA 6020B (Diss)	12/19/24 11:55	12/31/24 14:56	45mL/50mL	45mL/50mL	1.00
A4L1608-04	Water	EPA 6020B (Diss)	12/19/24 12:30	12/31/24 14:56	45mL/50mL	45mL/50mL	1.00
A4L1608-05	Water	EPA 6020B (Diss)	12/19/24 13:05	12/31/24 14:56	45mL/50mL	45mL/50mL	1.00
A4L1608-05RE1	Water	EPA 6020B (Diss)	12/19/24 13:05	12/31/24 14:56	45mL/50mL	45mL/50mL	1.00
A4L1608-06	Water	EPA 6020B (Diss)	12/19/24 10:35	12/31/24 14:56	45mL/50mL	45mL/50mL	1.00
A4L1608-06RE1	Water	EPA 6020B (Diss)	12/19/24 10:35	12/31/24 14:56	45mL/50mL	45mL/50mL	1.00
A4L1608-07	Water	EPA 6020B (Diss)	12/19/24 09:45	12/31/24 14:56	45mL/50mL	45mL/50mL	1.00
A4L1608-07RE1	Water	EPA 6020B (Diss)	12/19/24 09:45	12/31/24 14:56	45mL/50mL	45mL/50mL	1.00
A4L1608-08	Water	EPA 6020B (Diss)	12/18/24 16:15	12/31/24 14:56	45mL/50mL	45mL/50mL	1.00
A4L1608-08RE1	Water	EPA 6020B (Diss)	12/18/24 16:15	12/31/24 14:56	45mL/50mL	45mL/50mL	1.00
Batch: 25A0365							
A4L1608-01RE1	Water	EPA 6020B (Diss)	12/19/24 13:50	01/13/25 08:26	45mL/50mL	45mL/50mL	1.00
A4L1608-07RE1	Water	EPA 6020B (Diss)	12/19/24 09:45	01/13/25 08:26	45mL/50mL	45mL/50mL	1.00

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW	Project: <u>Auburn VW</u>
20204 SE 284th Street	Project Number: BE-0107-E
Kent, WA 98042	Project Manager: Dan Hatch

<u>Report ID:</u> A4L1608 - 01 16 25 1235

SAMPLE PREPARATION INFORMATION

Solid and Moisture Determinations									
Prep: Total Suspende	d Solids - 2022				Sample	Default	RL Prep		
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor		
Batch: 24L0813									
A4L1608-08	Water	SM 2540 D	12/18/24 16:15	12/20/24 17:28	100mL	100mL	1.00		
Batch: 24L0836									
A4L1608-05	Water	SM 2540 D	12/19/24 13:05	12/23/24 14:56	100mL	100mL 100mL			
			Lab Filtration	l					
Prep: Lab Filtration					Sample	Default	RL Prep		
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor		
Batch: 25A0311									
A4L1608-01	Water	NA	12/19/24 13:50	01/10/25 11:00	150mL/150mL		NA		
A4L1608-07	Water	NA	12/19/24 09:45	01/10/25 11:00	150mL/150mL		NA		

Apex Laboratories

Cameron O'Brien, Project Manager

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E**

Project Manager: Dan Hatch

<u>Report ID:</u> A4L1608 - 01 16 25 1235

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

- A-01 Reporting limit raised due to possible contamination by a solvent commonly used in the laboratory.
- AMEND The Result, Reporting Level, Recovery and/or RPD has changed. Note: Batch QC marked as AMENDED may or may not have been issued prior to the change. Case Narrative included if client data is affected.
- FILT1 Sample was lab filtered and acid preserved prior to analysis. See sample preparation section of report for date and time of filtration.
- FILT3 This is a laboratory filtration blank, associated with filtration batch 25A0311. See Prep page of report for associated samples.
- **H-01** Analyzed outside the recommended holding time.
- Q-16 Reanalysis of an original Batch QC sample.
- Q-55 Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260, however there is adequate sensitivity to ensure detection at the reporting level.
- Q-56 Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260. Samples that are ND (Non-Detect) are not impacted.
- TSS Dried residue was less than 2.5mg as specified in the method. Results meet regulatory requirements.

Apex Laboratories

Cameron O'Brien, Project Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Project: <u>Auburn VW</u> Project Number: **BE-0107-E**

Project Manager: Dan Hatch

<u>Report ID:</u> A4L1608 - 01 16 25 1235

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

Kent, WA 98042

- DET Analyte DETECTED at or above the detection or reporting limit.
- ND Analyte NOT DETECTED at or above the detection or reporting limit.
- NR Result Not Reported.

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ). If no value is listed ('-----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as " dry", " wet", or " " (blank) designation.

- <u>" dry"</u> Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry") See Percent Solids section for details of dry weight analysis.
- "wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___ Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) are not included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

- "--- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.
- " *** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to one half of the Reporting Limit (RL). Blank results for gravimetric analyses are evaluated to the Reporting Level, not to half of the Reporting Level. -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier. -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street Project: <u>Auburn VW</u> Project Number: **BE-0107-E**

Project Manager: Dan Hatch

<u>Report ID:</u> A4L1608 - 01 16 25 1235

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Kent, WA 98042

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Cameron O'Brien, Project Manager

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW	Project: <u>Auburn VW</u>	
20204 SE 284th Street	Project Number: BE-0107-E	<u>Report ID:</u>
Kent, WA 98042	Project Manager: Dan Hatch	A4L1608 - 01 16 25 1235

Decanted Samples:

Soils/Sediments:

Unless TCLP analysis is required or there is notification otherwise for a specific project, all Soil and Sediments containing excess water are decanted prior to analysis in order to provide the most representative sample for analysis.

Water Samples:

Water samples containing solids and sediment may need to be decanted in order to eliminate these particulates from the water extractions. In the case of organics extractions, a solvent rinse of the container will not be performed.

Volatiles Soils (5035s)

Samples that are field preserved by 5035 for volatiles are dry weight corrected using the same dry weight corretion as for normal analyses. In the case of decanted samples, the dry weight may be performed on a decanted sample, while the aliquot for 5035 may not have been treated the same way. If this is a concern, please submit separate containers for dry weight analysis for volatiles can be provided.

All samples decanted in the laboratory are noted in this report with the DCNT qualifier indicating the sample was decanted.

Apex Laboratories

Cameron O'Brien, Project Manager

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E**

Project Manager: Dan Hatch

<u>Report ID:</u> A4L1608 - 01 16 25 1235

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Labo	oratories_				
Matrix	Analysis	TNI_ID	Analyte	TNI_ID	Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation. Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

stone Environmental NW	Project: <u>Auburn VW</u>	
4 SE 284th Street	Project Number: BE-0107-E	Report ID:
, WA 98042	Project Manager: Dan Hatch	A4L1608 - 01 16 25 1235
Client: Europerature Project/Project Delivery Info: Date/time receive Delivered by: A From USDA Received by: A From USDA Received on Custoor Contains USDA Temperature (°C Custody seals? Received on ice Temp. blanks? (Ice type: (Gel/R Condition (In/O Cooler out of temperature) Sample Inspect All samples inter Bottle labets/CC	APEX LABS COOLER RECEIPT FORM Stim	
Do VOA vials h Comments Water samples: Comments:	ave visible headspace? Yes No X NA pH checked: Yes XNo NA pH appropriate? Yes XNo NA pH ID: <u>ATX</u>	<u>11</u> 72-
SZ CIBOUS OF Labeled by:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	03 R-02 -

Apex Laboratories

Service Request No:K2413611

Cameron O'Brien Apex Laboratories 6700 SW Sandburg St. Tigard, OR 97223

Laboratory Results for: A4L1608

Dear Cameron,

Enclosed are the results of the sample(s) submitted to our laboratory December 26, 2024 For your reference, these analyses have been assigned our service request number **K2413611**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3260. You may also contact me via email at Luke.Rahn@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

yducey a Wall

for Luke Rahn Project Manager

ADDRESS 1317 S. 13th Avenue, Kelso, WA 98626 PHONE +1 360 577 7222 | FAX +1 360 636 1068 ALS Group USA, Corp. dba ALS Environmental

Narrative Documents

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Client:Apex LaboratoriesProject:A4L1608Sample Matrix:Water

Service Request: K2413611 Date Received: 12/26/2024

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Two water samples were received for analysis at ALS Environmental on 12/26/2024. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

General Chemistry:

No significant anomalies were noted with this analysis.

James all og Approved by

01/06/2025

Date

SAMPLE DETECTION SUMMARY

This form includes only detections above the reporting levels. For a full listing of sample results, continue to the Sample Results section of this Report.

CLIENT ID: MW-13		Lab ID: K2413611-001				
Analyte	Results	Flag	MDL	MRL	Units	Method
Carbon, Total Organic	1.20		0.08	0.50	mg/L	SM 5310 C
CLIENT ID: MW-19		Lab	DID: K2413	8611-002		
Analyte	Results	Flag	MDL	MRL	Units	Method
Carbon, Total Organic	30.0		0.4	2.5	mg/L	SM 5310 C

Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Client:Apex LaboratoriesProject:A4L1608

SAMPLE CROSS-REFERENCE

<u>SAMPLE #</u>	CLIENT SAMPLE ID	DATE	TIME
K2413611-001	MW-13	12/19/2024	1305
K2413611-002	MW-19	12/18/2024	1615

SUBCONTRACT ORDER

Apex Laboratories

KZU BLEII ARM

OB12/20/24 A4L1608

SENDING LABORATORY:

Apex Laboratories 6700 S.W. Sandburg Street Tigard, OR 97223 Phone: (503) 718-2323 Fax: (503) 336-0745 Project Manager: Cameron O'Brien

RECEIVING LABORATORY:

ALS Group USA - Kelso 1317 S 13th Avenue Kelso, WA 98626 Phone :(360) 577-7222 Fax: (360) 636-1068

Sample Name: MW-13			Sampled: 12/19/24 13:05	(A4L1608-05)
Analysis	Due	Expires	Comments	
Total Organic Carbon - H2O (5310C) Containers Supplied: (F)250 mL Poly - Sulfuric (H2SO4)	01/06/25 17:00	01/16/25 13:05		
Sample Name: MW-19			Sampled: 12/18/24 16:15	(A4L1608-08)
Analysis	Due	Expires	Comments	
Total Organic Carbon - H2O (5310C) Containers Supplied: (F)250 mL Poly - Sulfuric (H2SO4)	01/06/25 17:00	01/15/25 16:15		
	Standard	d TAT		

10/19	ZA I	2126124	235	FJ	12/	26/24	1235
Released by	12/26/24	Date ' 1425		Received By M. MUL	lugar	Date	ry 1425
Released By		Date		Received By	J.	Date/	Page 1 of 1

Page 52 of 68

		. –				PM_	'L
Climat ADA	-ooler Kecelpt	and Pres	ervation	Form	101-11	*	
$\frac{1}{1} \frac{1}{1} \frac{1}$	17/1/00	/ iz	Service	e Request K24	rolen	A	
Received: 10/ 102 (Dened: 1)	quin	By:	r fr i	Jnloaded: \int_{i}^{i}	Aller	ву:	M
1. Samples were received via? USPS	Fed Ex	UPS	DHL.	PDY	Couries	ן ד <i>ב</i> ב	,
2. Samples were received in: (circle)	len Bax	Envelor		Other	Juner Han	la Delivered	
3. Were custody seals on coolers? N		If ves how m	rs	Uner		NA	
" If present, were custody seals intact?	Y N I	f precent was	any and who				
· · · · · · · · · · · · · · · · · · ·		in present, we	e uley signe	a and dated?		Y N	
Temp Blank Sample Temp , JR.Gun C	Cooler #/COC ID / NA	Out	of temp te with 'X'	PM Notified If out of temp	Tracking I	Number NA	Filed
		_					
	······································						
	\frown						
4. was a remperature Blank present in cooler? N.	A Y N I	If yes, notate	he temperat	ure in the approp	priate column above		A
If no, take the temperature of a representative s	ample bottle containe	ed within the	cooler; notat	e in the column	"Sample Temp":	_	
5. Were samples received within the method specif	ied temperature rang	;es?			NA 🤇	Y N	
If no, were they received on ice and same day as	s collected? If not, no	otate the coole	r # above ar	nd notify the PM	I. (NA)	Y N	
If applicable, tissue samples were received: Fre	ozen Partially The	awed Than	ved		\bigcirc		
6. Packing material: Inserts Baggles) Bubb	le Wran Gel Packs	Weilc	Dru Ice S	Jamas			
7. Were custody papers properly filled out (ink, si	gned. etc.)?	<u> </u>	<i>Diy 200</i> 0		N7.4		
8. Were samples received in good condition (unbr	oken)				NA NA		
9. Were all sample labels complete (ie, analysis, p	reservation, etc.)?				NA		
10. Did all sample labels and tags agree with custor	dy papers?				NA	X N	
11. Were appropriate bottles/containers and volume	es received for the te	sts indicated?			NA	K N	
12. Were the pH-preserved bottles (see SMO GEN	SOP) received at the	appropriate p	H? Indicate	in the table bel	ow NA (Y N	
13. Were VOA vials received without headspace?	Indicate in the table	below.			NA	Y N	
14. Was C12/Res negative?					NA	Y N	
15. Were samples received within the method speci	ified time limit? If no	ot, notate the o	rror below a	and notify the Pl	M (NA)	V N	
16. Were 100ml sterile microbiology bottles filled	exactly to the 100ml	mark?	łA γ	N	Underfiller	1 Overfille	d
)	1			
Sample ID on Bottle	Sample	ID on COC			Identified by	/:	
	· · · · · · · · · · · · · · · · · · ·						
0	Bottle Count	Head-		Volu	me Reagent Lr	t I	
Sample ID	Bottle Type	space Broke	DH R	leagent add	ed Number	Initiais	Time
			┟──┤───				
			_	·			
		1	1			1	

Notes, Discrepancies, Resolutions: _

G:\SMO\2024 Forms

Page 8 of 23

Reviewed: NP 1/3/2024

Miscellaneous Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- $i \,$ $\,$ The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value over the calibration range.
- J The result is an estimated value between the MDL and the MRL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- ${f F}$ The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Web Site	Number
http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
http://www.azdhs.gov/lab/license/env.htm	AZ0339
http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
http://health.hawaii.gov/	-
http://www.pjlabs.com/	L16-57
http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
http://www.maine.gov/dhhs/	WA01276
http://www.health.state.mn.us/accreditation	053-999-457
http://ndep.nv.gov/bsdw/labservice.htm	WA01276
http://www.nj.gov/dep/enforcement/oqa.html	WA005
https://www.wadsworth.org/regulatory/elap	12060
https://deq.nc.gov/about/divisions/water-resources/water-resources- data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- certification	605
http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA100010
http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water	-
www.alsglobal.com	NA
	Web Site http://dec.alaska.gov/eh/lab/cs/csapproval.htm http://www.azdhs.gov/lab/license/env.htm http://www.azdhs.gov/lab/license/env.htm http://www.adeq.state.ar.us/techsvs/labcert.htm http://www.deq.state.ar.us/techsvs/labcert.htm http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm http://www.denix.osd.mil/edqw/Accreditation/Accreditation http://www.denix.osd.mil/edqw/Accreditation http://www.pilabs.com/ http://www.hegl.ouisiana.gov/page/la-lab-accreditation http://www.deq.louisiana.gov/page/la-lab-accreditation http://www.health.state.mn.us/accreditation http://www.health.state.mn.us/accreditation http://www.log.ov/bsdw/labservice.htm http://www.agov/dep/enforcement/oqa.html http://www.adsworth.org/regulatory/elap http://www.adsworth.org/regulatory/elap http://www.adsworth.org/regulatory/elap http://www.ads_state.ok.us/CSDnew/labcert.htm http://public.health.oregon.gov/LaboratoryS

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH tr	Total Petroleum Hydrocarbons Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

ALS Group USA, Corp. dba ALS Environmental

Analyst Summary report

Client:	Apex Laboratories	Service Request:	K2413611
Project:	A4L1608/		

Sample Name:	MW-13	Date Collected:	12/19/24
Lab Code:	K2413611-001	Date Received:	12/26/24
Sample Matrix:	Water		

Analysis Method SM 5310 C		Extracted/Digested By	Analyzed By MSPECHT
Sample Name: Lab Code:	MW-19 K2413611-002	Date	• Collected: 12/18/24 • Received: 12/26/24
Sample Matrix:	Water		
Analysis Method		Extracted/Digested By	Analyzed By

SM 5310 C

Extracted/Digested By

lyzed By MSPECHT

Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER
Analytical ReportClient:Apex LaboratoriesService Request:K2413611Project:A4L1608Date Collected:12/19/24 13:05Sample Matrix:WaterDate Received:12/26/24 14:25Sample Name:MW-13Basis:NALab Code:K2413611-001K2413611-001

General Chemistry Parameters

	Analysis							
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Carbon, Total Organic	SM 5310 C	1.20	mg/L	0.50	0.08	1	01/03/25 14:01	

Analytical ReportClient:Apex LaboratoriesService Request:K2413611Project:A4L1608Date Collected:12/18/24 16:15Sample Matrix:WaterDate Received:12/26/24 14:25Sample Name:MW-19Basis:NALab Code:K2413611-002K2413611-002

General Chemistry Parameters

	Analysis							
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Carbon, Total Organic	SM 5310 C	30.0	mg/L	2.5	0.4	5	01/03/25 14:01	

QC Summary Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

	Analytical Report						
Client:	Apex Laboratories	Service Request:	K2413611				
Project:	A4L1608	Date Collected:	NA				
Sample Matrix:	Water	Date Received:	NA				
Sample Name:	Method Blank	Basis:	NA				
Lab Code:	K2413611-MB						

General Chemistry Parameters

	Analysis							
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Carbon, Total Organic	SM 5310 C	ND U	mg/L	0.50	0.08	1	01/03/25 14:01	

QA/QC Report

Client:	Apex Laborator	ries		Service	e Request:	K2413611
Project:	A4L1608			Date C	ollected:	12/19/24
Sample Matrix:	Water			Date R	eceived:	12/26/24
				Date A	nalyzed:	01/3/25
				Date E	xtracted:	NA
			Matrix Spike Summ	ary		
			Carbon, Total Orga	nic		
Sample Name:	MW-13				Units:	mg/L
Lab Code:	K2413611-001				Basis:	NA
Analysis Method:	SM 5310 C					
Prep Method:	None					
		Ν	Iatrix Spike			
		K24	13611-001MS			
Analyte Name		Sample Result	Result	Spike Amount	% Rec	e % Rec Limits
Carbon, Total Organic		1.20	25.4	25.0	97	83-117

Results flagged with an asterisk (\ast) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

QA/QC Report

Client:	Apex Laboratories					Service Request:	K241361	1		
Project	A4L1608					Date Collected:	12/19/24			
Sample Matrix:	Water					Date Received:	12/26/24			
						Date Analyzed:	01/03/25			
Replicate Sample Summary										
General Chemistry Parameters										
Sample Name:	MW-13					Units:	mg/L			
Lab Code:	K2413611-001					Basis:	NA			
	Analysis			Sample	Duplicate Sample K2413611- 001DUP					
Analyte Name	Method	MRL	MDL	Result	Result	Average	RPD	RPD Limit		
Carbon, Total Organic	SM 5310 C	0.50	0.08	1.20	1.10	1.15	9	10		

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:	Apex Laborate	ories		Service R	equest:	K241361	1
Project:	A4L1608			Date Anal	lyzed:	01/03/25	
Sample Matrix:	Water			Date Extr	acted:	NA	
		L	ab Control Sample Summary				
			Carbon, Total Organic				
Analysis Method:	SM 5310 C			Units:		mg/L	
Prep Method:	None			Basis:		NA	
				Analysis I	Lot:	866041	
Sample Name		Lab Code	Result	Spike Amount	% Rec		% Rec Limits
Lab Control Sample		K2413611-LCS	23.8	25.0	95		83-117

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Thursday, January 16, 2025 Dan Hatch Bluestone Environmental NW 20204 SE 284th Street Kent, WA 98042

RE: A4L1552 - Auburn VW - BE-0107-E

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A4L1552, which was received by the laboratory on 12/19/2024 at 10:46:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <u>cobrien@apex-labs.com</u>, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

	Cooler Receipt Information								
Acceptable Receipt T	Acceptable Receipt Temperature is less than, or equal to, 6 degC (not frozen), or received on ice the same day as sampling.								
	(See Cooler Receipt Form for details)								
Cooler #1	3.6	degC	Cooler #2 2.6 degC						
	0.1	uego	-						

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW	Project: <u>Auburn VW</u>	
20204 SE 284th Street	Project Number: BE-0107-E	Report ID:
Kent, WA 98042	Project Manager: Dan Hatch	A4L1552 - 01 16 25 1218

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION									
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received					
MW-1	A4L1552-01	Water	12/17/24 14:15	12/19/24 10:46					
MW-3	A4L1552-02	Water	12/17/24 12:10	12/19/24 10:46					
MW-4	A4L1552-03	Water	12/17/24 12:45	12/19/24 10:46					
MW-5	A4L1552-04	Water	12/17/24 13:20	12/19/24 10:46					
MW-6	A4L1552-05	Water	12/18/24 09:55	12/19/24 10:46					
MW-7	A4L1552-06	Water	12/18/24 10:35	12/19/24 10:46					
MW-9	A4L1552-07	Water	12/18/24 11:25	12/19/24 10:46					
MW-18	A4L1552-08	Water	12/18/24 12:45	12/19/24 10:46					
MW-20	A4L1552-09	Water	12/18/24 12:05	12/19/24 10:46					

Apex Laboratories

Cameron O'Brien, Project Manager

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW

20204 SE 284th Street

Project: <u>Auburn VW</u>

Project Number: **BE-0107-E** Project Manager: **Dan Hatch** <u>Report ID:</u> A4L1552 - 01 16 25 1218

Kent, WA 98042

ANALYTICAL CASE NARRATIVE

Work Order: A4L1552

Apex Laboratories

Subcontract

This report is complete only if it includes the attached subcontract laboratory report from ALS -Kelso Laboratories.

Cameron O'Brien Project Manager

Apex Laboratories

Cameron O'Brien, Project Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1552 - 01 16 25 1218

ANALYTICAL SAMPLE RESULTS

	Hydro	ocarbon Identifi	cation So	creen by NWTP	H-HCID			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-1 (A4L1552-01)				Matrix: Wate	er	Batch:	24L0852	
Gasoline Range Organics	ND		0.0962	mg/L	1	12/23/24 21:22	NWTPH-HCID	
Diesel Range Organics	ND		0.240	mg/L	1	12/23/24 21:22	NWTPH-HCID	
Oil Range Organics	ND		0.240	mg/L	1	12/23/24 21:22	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recovery	: 85 %	Limits: 50-150 %	1	12/23/24 21:22	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			36 %	10-120 %	5 1	12/23/24 21:22	NWTPH-HCID	
MW-3 (A4L1552-02)				Matrix: Wate	ər	Batch	24L0852	
Gasoline Range Organics	ND		0.0943	mg/L	1	12/23/24 21:45	NWTPH-HCID	
Diesel Range Organics	ND		0.236	mg/L	1	12/23/24 21:45	NWTPH-HCID	
Oil Range Organics	ND		0.236	mg/L	1	12/23/24 21:45	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recovery	: 88 %	Limits: 50-150 %	5 1	12/23/24 21:45	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			39 %	10-120 %	5 1	12/23/24 21:45	NWTPH-HCID	
MW-4 (A4L1552-03)				Matrix: Wate	ər	Batch: 24L0852		
Gasoline Range Organics	ND		0.0943	mg/L	1	12/23/24 22:09	NWTPH-HCID	
Diesel Range Organics	ND		0.236	mg/L	1	12/23/24 22:09	NWTPH-HCID	
Oil Range Organics	ND		0.236	mg/L	1	12/23/24 22:09	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recovery	: 91 %	Limits: 50-150 %	5 1	12/23/24 22:09	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			35 %	10-120 %	5 1	12/23/24 22:09	NWTPH-HCID	
MW-5 (A4L1552-04)				Matrix: Wate	ər	Batch	24L0852	
Gasoline Range Organics	ND		0.0962	mg/L	1	12/23/24 22:56	NWTPH-HCID	
Diesel Range Organics	ND		0.240	mg/L	1	12/23/24 22:56	NWTPH-HCID	
Oil Range Organics	ND		0.240	mg/L	1	12/23/24 22:56	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recovery	: 97 %	Limits: 50-150 %	1	12/23/24 22:56	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			53 %	10-120 %	5 1	12/23/24 22:56	NWTPH-HCID	
MW-6 (A4L1552-05)				Matrix: Wate	er	Batch	24L0852	
Gasoline Range Organics	DET		0.101	mg/L	1	12/23/24 23:19	NWTPH-HCID	
Diesel Range Organics	DET		0.253	mg/L	1	12/23/24 23:19	NWTPH-HCID	F-13
Oil Range Organics	ND		0.253	mg/L	1	12/23/24 23:19	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recovery	: 92 %	Limits: 50-150 %	1	12/23/24 23:19	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			34 %	10-120 %	1	12/23/24 23:19	NWTPH-HCID	
MW-7 (A4L1552-06)				Matrix: Wate	ər	Batch	24L0852	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1552 - 01 16 25 1218

ANALYTICAL SAMPLE RESULTS

	Hydrocarbon Identification Screen by NWTPH-HCID										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
MW-7 (A4L1552-06)				Matrix: Wate	er	Batch:	24L0852				
Gasoline Range Organics	ND		0.0971	mg/L	1	12/23/24 23:43	NWTPH-HCID				
Diesel Range Organics	ND		0.243	mg/L	1	12/23/24 23:43	NWTPH-HCID				
Oil Range Organics	ND		0.243	mg/L	1	12/23/24 23:43	NWTPH-HCID				
Surrogate: o-Terphenyl (Surr)		Recovery	v: 93 %	Limits: 50-150 %	1	12/23/24 23:43	NWTPH-HCID				
4-Bromofluorobenzene (Surr)			41 %	10-120 %	1	12/23/24 23:43	NWTPH-HCID				
MW-9 (A4L1552-07)				Matrix: Wate	er	Batch:	24L0852				
Gasoline Range Organics	ND		0.0943	mg/L	1	12/24/24 00:06	NWTPH-HCID				
Diesel Range Organics	ND		0.236	mg/L	1	12/24/24 00:06	NWTPH-HCID				
Oil Range Organics	ND		0.236	mg/L	1	12/24/24 00:06	NWTPH-HCID				
Surrogate: o-Terphenyl (Surr)		Recovery	v: 94 %	Limits: 50-150 %	1	12/24/24 00:06	NWTPH-HCID				
4-Bromofluorobenzene (Surr)			42 %	10-120 %	1	12/24/24 00:06	NWTPH-HCID				
MW-18 (A4L1552-08)				Matrix: Wate	er	Batch: 24L0852					
Gasoline Range Organics	ND		0.0962	mg/L	1	12/24/24 00:30	NWTPH-HCID				
Diesel Range Organics	ND		0.240	mg/L	1	12/24/24 00:30	NWTPH-HCID				
Oil Range Organics	ND		0.240	mg/L	1	12/24/24 00:30	NWTPH-HCID				
Surrogate: o-Terphenyl (Surr)		Recovery	v: 94 %	Limits: 50-150 %	1	12/24/24 00:30	NWTPH-HCID				
4-Bromofluorobenzene (Surr)			50 %	10-120 %	1	12/24/24 00:30	NWTPH-HCID				
MW-20 (A4L1552-09)				Matrix: Wate	er	Batch:	24L0852				
Gasoline Range Organics	ND		0.0990	mg/L	1	12/24/24 00:53	NWTPH-HCID				
Diesel Range Organics	ND		0.248	mg/L	1	12/24/24 00:53	NWTPH-HCID				
Oil Range Organics	ND		0.248	mg/L	1	12/24/24 00:53	NWTPH-HCID				
Surrogate: o-Terphenyl (Surr)		Recovery	v: 98 %	Limits: 50-150 %	1	12/24/24 00:53	NWTPH-HCID				
4-Bromofluorobenzene (Surr)			50 %	10-120 %	1	12/24/24 00:53	NWTPH-HCID				

Apex Laboratories

Cameron O'Brien, Project Manager

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW	
20204 SE 284th Street	

Kent, WA 98042

Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

Auburn VW

Project:

<u>Report ID:</u> A4L1552 - 01 16 25 1218

ANALYTICAL SAMPLE RESULTS

Diesel and/or Oil Hydrocarbons by NWTPH-Dx									
	Sample	Detection	Reporting			Date			
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes	
MW-6 (A4L1552-05)				Matrix: Wate	ər	Batch:	24L0852		
Diesel	202		202	ug/L	1	12/23/24 23:19	NWTPH-Dx	F-18	
Oil	ND		404	ug/L	1	12/23/24 23:19	NWTPH-Dx		
Surrogate: o-Terphenyl (Surr)		Recon	very: 92 %	Limits: 50-150 %	5 I	12/23/24 23:19	NWTPH-Dx		

Apex Laboratories

Cameron O'Brien, Project Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street

Kent, WA 98042

Project:Auburn VWProject NumberBE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1552 - 01 16 25 1218

ANALYTICAL SAMPLE RESULTS

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx										
	Sample	Detection	Reporting			Date				
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes		
MW-6 (A4L1552-05RE1)				Matrix: Wate	er	Batch	: 24L0911			
Gasoline Range Organics	1440		100	ug/L	1	12/24/24 20:11	NWTPH-Gx (MS)			
Surrogate: 4-Bromofluorobenzene (Sur)		Recove	ery: 106 %	Limits: 50-150 %	5 I	12/24/24 20:11	NWTPH-Gx (MS)			
1,4-Difluorobenzene (Sur)			111 %	50-150 %	5 I	12/24/24 20:11	NWTPH-Gx (MS)			

Apex Laboratories

Cameron O'Brien, Project Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1552 - 01 16 25 1218

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	nic Compoun	ds by EPA 8	260D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analvzed	Method Ref.	Notes
MW-6 (A4L1552-05RE1)				Matrix: Wa	ater	Batch:	24L0911	
Acetone	ND		20.0	ng/I	1	12/24/24 20:11	EPA 8260D	
Acetone	ND		20.0	ug/L	1	12/24/24 20:11	EPA 8260D	
Bangana	ND		2.00	ug/L	1	12/24/24 20:11	EPA 8260D	
Benzene	ND		0.200	ug/L	1	12/24/24 20:11	EPA 8260D	
Bromobenzene	ND		0.500	ug/L	1	12/24/24 20:11	EFA 8200D	
Bromochloromethane	ND		1.00	ug/L	1	12/24/24 20:11	EPA 8200D	
Bromodichloromethane	ND		1.00	ug/L	1	12/24/24 20:11	EPA 8260D	
Bromotorm	ND		1.00	ug/L	l	12/24/24 20:11	EPA 8260D	
Bromomethane	ND		5.00	ug/L	1	12/24/24 20:11	EPA 8260D	
2-Butanone (MEK)	ND		10.0	ug/L	1	12/24/24 20:11	EPA 8260D	
n-Butylbenzene	4.13		1.00	ug/L	1	12/24/24 20:11	EPA 8260D	
sec-Butylbenzene	8.90		1.00	ug/L	1	12/24/24 20:11	EPA 8260D	
tert-Butylbenzene	ND		1.00	ug/L	1	12/24/24 20:11	EPA 8260D	
Carbon disulfide	ND		10.0	ug/L	1	12/24/24 20:11	EPA 8260D	
Carbon tetrachloride	ND		1.00	ug/L	1	12/24/24 20:11	EPA 8260D	
Chlorobenzene	ND		0.500	ug/L	1	12/24/24 20:11	EPA 8260D	
Chloroethane	ND		10.0	ug/L	1	12/24/24 20:11	EPA 8260D	
Chloroform	ND		1.00	ug/L	1	12/24/24 20:11	EPA 8260D	
Chloromethane	ND		5.00	ug/L	1	12/24/24 20:11	EPA 8260D	
2-Chlorotoluene	ND		1.00	ug/L	1	12/24/24 20:11	EPA 8260D	
4-Chlorotoluene	ND		1.00	ug/L	1	12/24/24 20:11	EPA 8260D	
Dibromochloromethane	ND		1.00	ug/L	1	12/24/24 20:11	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	12/24/24 20:11	EPA 8260D	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	12/24/24 20:11	EPA 8260D	
Dibromomethane	ND		1.00	ug/L	1	12/24/24 20:11	EPA 8260D	
1,2-Dichlorobenzene	ND		0.500	ug/L	1	12/24/24 20:11	EPA 8260D	
1,3-Dichlorobenzene	ND		0.500	ug/L	1	12/24/24 20:11	EPA 8260D	
1,4-Dichlorobenzene	ND		0.500	ug/L	1	12/24/24 20:11	EPA 8260D	
Dichlorodifluoromethane	ND		2.00	ug/L	1	12/24/24 20:11	EPA 8260D	
1.1-Dichloroethane	ND		0.400	ug/L	1	12/24/24 20:11	EPA 8260D	
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	12/24/24 20:11	EPA 8260D	
1.1-Dichloroethene	ND		0.400	ug/L	1	12/24/24 20:11	EPA 8260D	
cis-1 2-Dichloroethene	ND		0.400	11g/L	1	12/24/24 20:11	EPA 8260D	
trans-1.2-Dichloroethene	ND		0.400	ug/L	1	12/24/24 20:11	EPA 8260D	
1.2-Dichloropropane	ND		0 500	110/L	1	12/24/24 20:11	EPA 8260D	
1 3-Dichloropropane	ND		1.00	ug/I	1	12/24/24 20:11	EPA 8260D	
2 2-Dichloropropane	ND		1.00	110/I	1	12/24/24 20:11	EPA 8260D	
1 1-Dichloropropene			1.00	и <u>д</u> /L	1	12/24/24 20:11	EPA 8260D	
1,1-Diemoropropene			1.00	ug/L	1	12/2//2/2011	LINGLOOD	

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1552 - 01 16 25 1218

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0D			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-6 (A4L1552-05RE1)				Matrix: Wate	r	Batch:	24L0911	
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	12/24/24 20:11	EPA 8260D	
trans-1,3-Dichloropropene	ND		1.00	ug/L	1	12/24/24 20:11	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	12/24/24 20:11	EPA 8260D	
Hexachlorobutadiene	ND		5.00	ug/L	1	12/24/24 20:11	EPA 8260D	
2-Hexanone	ND		10.0	ug/L	1	12/24/24 20:11	EPA 8260D	
Isopropylbenzene	1.63		1.00	ug/L	1	12/24/24 20:11	EPA 8260D	
4-Isopropyltoluene	ND		1.00	ug/L	1	12/24/24 20:11	EPA 8260D	
Methylene chloride	ND		10.0	ug/L	1	12/24/24 20:11	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	12/24/24 20:11	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	12/24/24 20:11	EPA 8260D	
Naphthalene	8.76		5.00	ug/L	1	12/24/24 20:11	EPA 8260D	
n-Propylbenzene	11.6		0.500	ug/L	1	12/24/24 20:11	EPA 8260D	
Styrene	ND		1.00	ug/L	1	12/24/24 20:11	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	12/24/24 20:11	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	12/24/24 20:11	EPA 8260D	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	12/24/24 20:11	EPA 8260D	
Toluene	ND		1.00	ug/L	1	12/24/24 20:11	EPA 8260D	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	12/24/24 20:11	EPA 8260D	
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	12/24/24 20:11	EPA 8260D	
1,1,1-Trichloroethane	ND		0.400	ug/L	1	12/24/24 20:11	EPA 8260D	
1,1,2-Trichloroethane	ND		0.500	ug/L	1	12/24/24 20:11	EPA 8260D	
Trichloroethene (TCE)	ND		0.400	ug/L	1	12/24/24 20:11	EPA 8260D	
Trichlorofluoromethane	ND		2.00	ug/L	1	12/24/24 20:11	EPA 8260D	
1,2,3-Trichloropropane	ND		1.00	ug/L	1	12/24/24 20:11	EPA 8260D	
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1	12/24/24 20:11	EPA 8260D	
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	12/24/24 20:11	EPA 8260D	
Vinyl chloride	ND		0.200	ug/L	1	12/24/24 20:11	EPA 8260D	
m,p-Xylene	ND		1.00	ug/L	1	12/24/24 20:11	EPA 8260D	
o-Xylene	ND		0.500	ug/L	1	12/24/24 20:11	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 104 %	Limits: 80-120 %	1	12/24/24 20:11	EPA 8260D	
Toluene-d8 (Surr)			105 %	80-120 %	1	12/24/24 20:11	EPA 8260D	
4-Bromofluorobenzene (Surr)			95 %	80-120 %	1	12/24/24 20:11	EPA 8260D	

MW-9 (A4L1552-07RE1)		Matrix: Water		Batch: 24	4L0911		
Acetone	ND		20.0	ug/L	1	12/24/24 20:38	EPA 8260D
Acrylonitrile	ND		2.00	ug/L	1	12/24/24 20:38	EPA 8260D
Benzene	ND		0.200	ug/L	1	12/24/24 20:38	EPA 8260D

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1552 - 01 16 25 1218

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compoun	ds by EPA 8	260D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-9 (A4L1552-07RE1)				Matrix: Wa	ater	Batch:	24L0911	
Bromohenzene	ND		0.500	11g/I	1	12/24/24 20:38	EPA 8260D	
Bromochloromethane	ND		1.00	ug/L	1	12/24/24 20:38	EPA 8260D	
Bromodichloromethane	ND		1.00	ug/L	1	12/24/24 20:38	EPA 8260D	
Bromoform	ND		1.00	ug/L	1	12/24/24 20:38	EPA 8260D	
Bromomethane	ND		5.00	ug/L	1	12/24/24 20:38	EPA 8260D	
2-Butanone (MEK)	ND		10.0	ug/L	1	12/24/24 20:38	EPA 8260D	
n Butylbenzene	ND		1.00	ug/L	1	12/24/24 20:38	EPA 8260D	
sec Butylbenzene	ND		1.00	ug/L	1	12/24/24 20:38	EPA 8260D	
tert Butylbenzene	ND		1.00	ug/L	1	12/24/24 20:38	EPA 8260D	
Carbon digulfido			1.00	ug/L	1	12/24/24 20:38	EPA 8260D	
Carbon tatrachlarida			1.00	ug/L	1	12/24/24 20:38	EPA 8260D	
Chlorohonzono	ND		1.00	ug/L	1	12/24/24 20:38	EPA 8260D	
Chloroothana			0.300	ug/L	1	12/24/24 20:38	EPA 8260D	
Chloroform			10.0	ug/L	1	12/24/24 20:38	EPA 8260D	
Chloromothana			1.00 5.00	ug/L	1	12/24/24 20:38	EPA 8260D	
2 Chlorate have			3.00	ug/L	1	12/24/24 20:38	EFA 8200D	
	ND		1.00	ug/L	1	12/24/24 20:38	EPA 8260D	
4-Chlorotoluene	ND		1.00	ug/L	1	12/24/24 20:38	EPA 8200D	
Dibromochloromethane	ND		1.00	ug/L	1	12/24/24 20:38	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	12/24/24 20:38	EPA 8260D	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	12/24/24 20:38	EPA 8260D	
Dibromomethane	ND		1.00	ug/L	1	12/24/24 20:38	EPA 8260D	
1,2-Dichlorobenzene	ND		0.500	ug/L	1	12/24/24 20:38	EPA 8260D	
1,3-Dichlorobenzene	ND		0.500	ug/L	1	12/24/24 20:38	EPA 8260D	
1,4-Dichlorobenzene	ND		0.500	ug/L	1	12/24/24 20:38	EPA 8260D	
Dichlorodifluoromethane	ND		2.00	ug/L	1	12/24/24 20:38	EPA 8260D	
1,1-Dichloroethane	ND		0.400	ug/L	1	12/24/24 20:38	EPA 8260D	
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	12/24/24 20:38	EPA 8260D	
1,1-Dichloroethene	ND		0.400	ug/L	1	12/24/24 20:38	EPA 8260D	
cis-1,2-Dichloroethene	ND		0.400	ug/L	1	12/24/24 20:38	EPA 8260D	
trans-1,2-Dichloroethene	ND		0.400	ug/L	1	12/24/24 20:38	EPA 8260D	
1,2-Dichloropropane	ND		0.500	ug/L	1	12/24/24 20:38	EPA 8260D	
1,3-Dichloropropane	ND		1.00	ug/L	1	12/24/24 20:38	EPA 8260D	
2,2-Dichloropropane	ND		1.00	ug/L	1	12/24/24 20:38	EPA 8260D	
1,1-Dichloropropene	ND		1.00	ug/L	1	12/24/24 20:38	EPA 8260D	
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	12/24/24 20:38	EPA 8260D	
trans-1,3-Dichloropropene	ND		1.00	ug/L	1	12/24/24 20:38	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	12/24/24 20:38	EPA 8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1552 - 01 16 25 1218

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D												
	Sample	Detection	Reporting			Date						
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes				
MW-9 (A4L1552-07RE1)				Matrix: Water	,	Batch:	24L0911					
Hexachlorobutadiene	ND		5.00	ug/L	1	12/24/24 20:38	EPA 8260D					
2-Hexanone	ND		10.0	ug/L	1	12/24/24 20:38	EPA 8260D					
Isopropylbenzene	ND		1.00	ug/L	1	12/24/24 20:38	EPA 8260D					
4-Isopropyltoluene	ND		1.00	ug/L	1	12/24/24 20:38	EPA 8260D					
Methylene chloride	ND		10.0	ug/L	1	12/24/24 20:38	EPA 8260D					
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	12/24/24 20:38	EPA 8260D					
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	12/24/24 20:38	EPA 8260D					
Naphthalene	ND		5.00	ug/L	1	12/24/24 20:38	EPA 8260D					
n-Propylbenzene	ND		0.500	ug/L	1	12/24/24 20:38	EPA 8260D					
Styrene	ND		1.00	ug/L	1	12/24/24 20:38	EPA 8260D					
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	12/24/24 20:38	EPA 8260D					
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	12/24/24 20:38	EPA 8260D					
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	12/24/24 20:38	EPA 8260D					
Toluene	ND		1.00	ug/L	1	12/24/24 20:38	EPA 8260D					
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	12/24/24 20:38	EPA 8260D					
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	12/24/24 20:38	EPA 8260D					
1,1,1-Trichloroethane	ND		0.400	ug/L	1	12/24/24 20:38	EPA 8260D					
1,1,2-Trichloroethane	ND		0.500	ug/L	1	12/24/24 20:38	EPA 8260D					
Trichloroethene (TCE)	ND		0.400	ug/L	1	12/24/24 20:38	EPA 8260D					
Trichlorofluoromethane	ND		2.00	ug/L	1	12/24/24 20:38	EPA 8260D					
1,2,3-Trichloropropane	ND		1.00	ug/L	1	12/24/24 20:38	EPA 8260D					
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1	12/24/24 20:38	EPA 8260D					
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	12/24/24 20:38	EPA 8260D					
Vinyl chloride	ND		0.200	ug/L	1	12/24/24 20:38	EPA 8260D					
m,p-Xylene	ND		1.00	ug/L	1	12/24/24 20:38	EPA 8260D					
o-Xylene	ND		0.500	ug/L	1	12/24/24 20:38	EPA 8260D					
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	y: 104 %	Limits: 80-120 %	1	12/24/24 20:38	EPA 8260D					
Toluene-d8 (Surr)			106 %	80-120 %	1	12/24/24 20:38	EPA 8260D					
4-Bromofluorobenzene (Surr)			101 %	80-120 %	1	12/24/24 20:38	EPA 8260D					

Apex Laboratories

Cameron O'Brien, Project Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street Kent, WA 98042

Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

Project:

<u>Report ID:</u> A4L1552 - 01 16 25 1218

ANALYTICAL SAMPLE RESULTS

Auburn VW

Total Metals by EPA 6020B (ICPMS)										
	Sample	Detection	Reporting			Date				
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes		
MW-1 (A4L1552-01)				Matrix: Wa	ater					
Batch: 25A0028										
Arsenic	20.8		1.00	ug/L	1	01/03/25 08:53	EPA 6020B			
MW-3 (A4L1552-02)				Matrix: Wa	iter					
Batch: 25A0028										
Arsenic	20.6		1.00	ug/L	1	01/03/25 08:58	EPA 6020B			
MW-4 (A4L1552-03)				Matrix: Wa	iter					
Batch: 25A0028										
Arsenic	10.3		1.00	ug/L	1	01/03/25 09:14	EPA 6020B			
MW-5 (A4L1552-04)				Matrix: Wa	ater					
Batch: 25A0028										
Arsenic	28.0		1.00	ug/L	1	01/03/25 09:19	EPA 6020B			
MW-6 (A4L1552-05)				Matrix: Wa	iter					
Batch: 25A0144										
Arsenic	24.2		1.00	ug/L	1	01/07/25 23:37	EPA 6020B			
Barium	16.8		2.00	ug/L	1	01/07/25 23:37	EPA 6020B			
Cadmium	ND		0.200	ug/L	1	01/07/25 23:37	EPA 6020B			
Chromium	ND		2.00	ug/L	1	01/07/25 23:37	EPA 6020B			
Lead	0.584		0.200	ug/L	1	01/07/25 23:37	EPA 6020B			
Mercury	ND		0.0800	ug/L	1	01/07/25 23:37	EPA 6020B			
Silver	ND		0.200	ug/L	1	01/07/25 23:37	EPA 6020B			
MW-6 (A4L1552-05RE1)				Matrix: Wa	ater					
Batch: 25A0144										
Selenium	ND		1.00	ug/L	1	01/08/25 10:05	EPA 6020B			
MW-7 (A4L1552-06)				Matrix: Wa	iter					
Batch: 25A0144										
Arsenic	5.70		1.00	ug/L	1	01/07/25 23:42	EPA 6020B			
Cadmium	ND		0.200	ug/L	1	01/07/25 23:42	EPA 6020B			
Chromium	ND		2.00	ug/L	1	01/07/25 23:42	EPA 6020B			
Lead	ND		0.200	ug/L	1	01/07/25 23:42	EPA 6020B			
Mercury	ND		0.0800	ug/L	1	01/07/25 23:42	EPA 6020B			

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW		Pro	ect: Aubu	rn VW				
20204 SE 284th Street		Project	Report ID:					
Kent, WA 98042		Project		A4L1552 - 01 16 25	1218			
		ANALYTI	CAL SAMPI	LE RESULT	ſS			
		Total Meta	als by EPA 60	20B (ICPMS	5)			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-9 (A4L1552-07)				Matrix: W	ater			
Batch: 25A0144								
Arsenic	17.0		1.00	ug/L	1	01/07/25 23:47	EPA 6020B	
Barium	35.6		2.00	ug/L	1	01/07/25 23:47	EPA 6020B	
Cadmium	ND		0.200	ug/L	1	01/07/25 23:47	EPA 6020B	
Chromium	ND		2.00	ug/L	1	01/07/25 23:47	EPA 6020B	
Lead	ND		0.200	ug/L	1	01/07/25 23:47	EPA 6020B	
Mercury	ND		0.0800	ug/L	1	01/07/25 23:47	EPA 6020B	
Silver	ND		0.200	ug/L	1	01/07/25 23:47	EPA 6020B	
MW-9 (A4L1552-07RE1)				Matrix: W	ater			
Batch: 25A0144								
Selenium	ND		1.00	ug/L	1	01/08/25 10:10	EPA 6020B	
MW-18 (A4L1552-08)				Matrix: W	ater			
Batch: 25A0144								
Arsenic	5.00		1.00	ug/L	1	01/07/25 23:52	EPA 6020B	
MW-20 (A4L1552-09)				Matrix: W	ater			
Batch: 25A0144								
Arsenic	53.8		1.00	ug/L	1	01/07/25 23:58	EPA 6020B	
Cadmium	ND		0.200	ug/L	1	01/07/25 23:58	EPA 6020B	
Chromium	3.70		2.00	ug/L	1	01/07/25 23:58	EPA 6020B	
Lead	ND		0.200	ug/L	1	01/07/25 23:58	EPA 6020B	
Mercury	ND		0.0800	ug/L	1	01/07/25 23:58	EPA 6020B	

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

Project:

<u>Report ID:</u> A4L1552 - 01 16 25 1218

ANALYTICAL SAMPLE RESULTS

Auburn VW

	Dissolved Metals by EPA 6020B (ICPMS)											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
MW-1 (A4L1552-01)				Matrix: W	ater							
Batch: 24L1102												
Arsenic	20.6		1.00	ug/L	1	01/03/25 04:23	EPA 6020B (Diss)					
MW-3 (A4L1552-02)				Matrix: W	/ater							
Batch: 24L1102												
Arsenic	21.7		1.00	ug/L	1	01/03/25 04:29	EPA 6020B (Diss)					
MW-3 (A4L1552-02RE1)				Matrix: W	ater							
Batch: 25A0365												
Arsenic	2.70		1.00	ug/L	1	01/13/25 12:39	EPA 6020B (Diss)	FILT1				
MW-4 (A4L1552-03)				Matrix: W	ater							
Batch: 24L1102												
Arsenic	10.1		1.00	ug/L	1	01/03/25 04:34	EPA 6020B (Diss)					
MW-5 (A4L1552-04)				Matrix: W	ater							
Batch: 24L1102												
Arsenic	26.8		1.00	ug/L	1	01/03/25 04:39	EPA 6020B (Diss)					
MW-6 (A4L1552-05)				Matrix: W	ater							
Batch: 24L1102												
Arsenic	20.0		1.00	ug/L	1	01/03/25 04:55	EPA 6020B (Diss)					
Barium	10.6		1.00	ug/L	1	01/03/25 04:55	EPA 6020B (Diss)					
Cadmium	ND		0.200	ug/L	1	01/03/25 04:55	EPA 6020B (Diss)					
Chromium	ND		2.00	ug/L	1	01/03/25 04:55	EPA 6020B (Diss)					
Lead	ND		0.200	ug/L	1	01/03/25 04:55	EPA 6020B (Diss)					
Selenium	ND		1.00	ug/L	1	01/03/25 04:55	EPA 6020B (Diss)					
Silver	ND		0.200	ug/L	1	01/03/25 04:55	EPA 6020B (Diss)					
MW-6 (A4L1552-05RE1)				Matrix: W	/ater							
Batch: 24L1102												
Mercury	ND		0.0800	ug/L	1	01/03/25 14:47	EPA 6020B (Diss)					
MW-7 (A4L1552-06)				Matrix: W	ater							
Batch: 24L1102												

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW		Proj	ject: <u>Aubu</u>	rn VW				
20204 SE 284th Street		Project	t Number: BE-0	107-Е Т-4-к			Report ID:	210
Kent, WA 98042		Project		A4L1552 - 01 16 25 1	218			
		ANALYTI	CAL SAMPI	LE RESULT	ГS			
		Dissolved M	etals by EPA	6020B (ICP	MS)			
Analuta	Sample	Detection	Reporting	Unite	Dilution	Date	Mathad Paf	Notor
	Kesun	Liiiit	Liiiit	Matrix: W		Analyzed	Wethod Kei.	INDICS
WW-7 (A4L1552-06)				Watrix. W	alei			
Arsenic	5.30		1.00	ug/L	1	01/03/25 05:00	EPA 6020B (Diss)	
Cadmium	ND		0.200	ug/L	1	01/03/25 05:00	EPA 6020B (Diss)	
Chromium	ND		2.00	ug/L	1	01/03/25 05:00	EPA 6020B (Diss)	
Lead	ND		0.200	ug/L	1	01/03/25 05:00	EPA 6020B (Diss)	
MW-7 (A4L1552-06RE1)				Matrix: W	ater			
Batch: 24L1102								
Mercury	ND		0.0800	ug/L	1	01/03/25 14:52	EPA 6020B (Diss)	
MW-9 (A4L1552-07)				Matrix: W	ater			
Batch: 24L1102								
Arsenic	15.2		1.00	ug/L	1	01/03/25 05:06	EPA 6020B (Diss)	
Barium	33.9		1.00	ug/L	1	01/03/25 05:06	EPA 6020B (Diss)	
Cadmium	ND		0.200	ug/L	1	01/03/25 05:06	EPA 6020B (Diss)	
Chromium	ND		2.00	ug/L	1	01/03/25 05:06	EPA 6020B (Diss)	
Lead	ND		0.200	ug/L	1	01/03/25 05:06	EPA 6020B (Diss)	
Selenium	ND		1.00	ug/L	1	01/03/25 05:06	EPA 6020B (Diss)	
Silver	ND		0.200	ug/L	1	01/03/25 05:06	EPA 6020B (Diss)	
MW-9 (A4L1552-07RE1)				Matrix: W	ater			
Batch: 24L1102								
Mercury	ND		0.0800	ug/L	1	01/03/25 14:57	EPA 6020B (Diss)	
MW-18 (A4L1552-08)				Matrix: W	ater			
Batch: 24L1102								
Arsenic	4.54		1.00	ug/L	1	01/03/25 05:11	EPA 6020B (Diss)	
MW-20 (A4L1552-09)				Matrix: W	ater			
Batch: 24L1102								
Arsenic	52.0		1.00	ug/L	1	01/03/25 05:16	EPA 6020B (Diss)	
Cadmium	ND		0.200	ug/L	1	01/03/25 05:16	EPA 6020B (Diss)	
Chromium	2.77		2.00	ug/L	1	01/03/25 05:16	EPA 6020B (Diss)	
Lead	ND		0.200	ug/L	1	01/03/25 05:16	EPA 6020B (Diss)	
				Matrix: W	ater			

Batch: 24L1102

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW	Project: <u>Auburn VW</u>	
20204 SE 284th Street	Project Number: BE-0107-E	Report ID:
Kent, WA 98042	Project Manager: Dan Hatch	A4L1552 - 01 16 25 1218

ANALYTICAL SAMPLE RESULTS

Dissolved Metals by EPA 6020B (ICPMS)												
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
MW-20 (A4L1552-09RE1)	Matrix: Water											
Mercury Batch: 25A0365	ND		0.0800	ug/L	1	01/03/25 15:13	EPA 6020B (Diss)					
Arsenic	3.53		1.00	ug/L	1	01/13/25 12:45	EPA 6020B (Diss)	FILT1				

Apex Laboratories

Cameron O'Brien, Project Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW	Project: <u>Auburn VW</u>
20204 SE 284th Street	Project Number: BE-0107-E
Kent, WA 98042	Project Manager: Dan Hatch

<u>Report ID:</u> A4L1552 - 01 16 25 1218

ANALYTICAL SAMPLE RESULTS

	Solid and Moisture Determinations												
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes					
MW-3 (A4L1552-02)													
Batch: 24L0777													
Total Suspended Solids	134000 5000		5000	ug/L	1	12/20/24 10:34	SM 2540 D						
MW-5 (A4L1552-04)				Matrix: Wa	iter								
Batch: 24L0777													
Total Suspended Solids	ND		5000	ug/L	1	12/20/24 10:34	SM 2540 D	TSS					
MW-6 (A4L1552-05)				Matrix: Wa	iter								
Batch: 24L0813													
Total Suspended Solids	26000		5000	ug/L	1	12/20/24 17:28	SM 2540 D						
MW-20 (A4L1552-09)				Matrix: Wa	iter								
Batch: 24L0813													
Total Suspended Solids	126000		5000	ug/L	1	12/20/24 17:28	SM 2540 D						

Apex Laboratories

Cameron O'Brien, Project Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

QUALITY CONTROL (QC) SAMPLE RESULTS

		Hydr	ocarbon Ic	lentificat	ion Scree	n by NW	TPH-HCIL	<u>) </u>				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0852 - EPA 3510C (F	uels/Acid	Ext.)		,			Wate	ər				,
Blank (24L0852-BLK1)		Prepared:	12/23/24 11:	15 Analyz	ed: 12/23/24	4 20:12						
NWTPH-HCID												
Gasoline Range Organics	ND		0.100	mg/L	1							
Diesel Range Organics	ND		0.250	mg/L	1							
Oil Range Organics	ND		0.250	mg/L	1							
Surr: o-Terphenyl (Surr)		Recon	very: 84 %	Limits: 50	7-150 %	Dilu	tion: 1x					
4-Bromofluorobenzene (Surr)			27 %	16	-120 %		"					

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

<u>Report ID:</u> A4L1552 - 01 16 25 1218

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/o	or Oil Hyc	irocarbon	is by NWT	[PH-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0852 - EPA 3510C	(Fuels/Acid	Ext.)					Wate	er				
Blank (24L0852-BLK1)		Prepared	: 12/23/24 11:	:15 Analyz	zed: 12/23/24	4 20:12						
NWTPH-Dx												
Diesel	ND		200	ug/L	1							
Oil	ND		400	ug/L	1							
Surr: o-Terphenyl (Surr)		Reco	overy: 83 %	Limits: 50	0-150 %	Dilı	ution: 1x					
LCS (24L0852-BS1)		Prepared	: 12/23/24 11:	:15 Analyz	zed: 12/23/24	4 20:35						
NWTPH-Dx												
Diesel	1010		200	ug/L	1	1250		81 3	36 - 132%			
Surr: o-Terphenyl (Surr)		Rec	overy: 88 %	Limits: 50	0-150 %	Dilı	ution: 1x					
LCS Dup (24L0852-BSD1)		Prepared	: 12/23/24 11:	:15 Analyz	zed: 12/23/24	4 20:59						Q-19
NWTPH-Dx												
Diesel	1000		200	ug/L	1	1250		80 3	36 - 132%	1	30%	
Surr: o-Terphenyl (Surr)		Rec	overy: 90 %	Limits: 50	0-150 %	Dilı	ution: 1x					

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

<u>Report ID:</u> A4L1552 - 01 16 25 1218

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolir	ne Range H	lydrocarbo	ons (Benz	zene throu	igh Napht	thalene) l	oy NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0911 - EPA 5030C							Wate	ər				
Blank (24L0911-BLK1)		Prepared:	12/24/24 15:	00 Analyz	zed: 12/24/24	1 18:21						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		100	ug/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Recov	ery: 100 %	Limits: 50	9-150 %	Dilu	tion: 1x					
1,4-Difluorobenzene (Sur)			110 %	50)-150 %		"					
LCS (24L0911-BS2)		Prepared:	12/24/24 15:	00 Analyz	red: 12/24/24	117:47						
NWTPH-Gx (MS)												
Gasoline Range Organics	481		100	ug/L	1	500		96 8	30 - 120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	wery: 97 %	Limits: 50	9-150 %	Dilu	tion: 1x					
1,4-Difluorobenzene (Sur)			104 %	50)-150 %		"					

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0829 - EPA 5030C							Wate	ər				
Blank (24L0829-BLK1)		Prepared	: 12/23/24 07:4	47 Analyz	ed: 12/23/24	4 10:27						
EPA 8260D												
Acetone	ND		20.0	ug/L	1							
Acrylonitrile	ND		2.00	ug/L	1							
Benzene	ND		0.200	ug/L	1							
Bromobenzene	ND		0.500	ug/L	1							
Bromochloromethane	ND		1.00	ug/L	1							
Bromodichloromethane	ND		1.00	ug/L	1							
Bromoform	ND		1.00	ug/L	1							
Bromomethane	ND		5.00	ug/L	1							
2-Butanone (MEK)	ND		10.0	ug/L	1							
n-Butylbenzene	ND		1.00	ug/L	1							
sec-Butylbenzene	ND		1.00	ug/L	1							
tert-Butylbenzene	ND		1.00	ug/L	1							
Carbon disulfide	ND		10.0	ug/L	1							
Carbon tetrachloride	ND		1.00	ug/L	1							
Chlorobenzene	ND		0.500	ug/L	1							
Chloroethane	ND		10.0	ug/L	1							
Chloroform	ND		1.00	ug/L	1							
Chloromethane	ND		5.00	ug/L	1							
2-Chlorotoluene	ND		1.00	ug/L	1							
4-Chlorotoluene	ND		1.00	ug/L	1							
Dibromochloromethane	ND		1.00	ug/L	1							
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1							
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1							
Dibromomethane	ND		1.00	ug/L	1							
1,2-Dichlorobenzene	ND		0.500	ug/L	1							
1,3-Dichlorobenzene	ND		0.500	ug/L	1							
1,4-Dichlorobenzene	ND		0.500	ug/L	1							
Dichlorodifluoromethane	ND		2.00	ug/L	1							
1,1-Dichloroethane	ND		0.400	ug/L	1							
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1							
1,1-Dichloroethene	ND		0.400	ug/L	1							
cis-1,2-Dichloroethene	ND		0.400	ug/L	1							
trans-1,2-Dichloroethene	ND		0.400	ug/L	1							

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

QUALITY CONTROL (QC) SAMPLE RESULTS

		Volatile Organic Compounds by EPA 8260D											
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 24L0829 - EPA 5030C							Wate	ər					
Blank (24L0829-BLK1)		Prepared	: 12/23/24 07:4	47 Analyz	ed: 12/23/24	4 10:27							
1,2-Dichloropropane	ND		0.500	ug/L	1								
1,3-Dichloropropane	ND		1.00	ug/L	1								
2,2-Dichloropropane	ND		1.00	ug/L	1								
1,1-Dichloropropene	ND		1.00	ug/L	1								
cis-1,3-Dichloropropene	ND		1.00	ug/L	1								
trans-1,3-Dichloropropene	ND		1.00	ug/L	1								
Ethylbenzene	ND		0.500	ug/L	1								
Hexachlorobutadiene	ND		5.00	ug/L	1								
2-Hexanone	ND		10.0	ug/L	1								
Isopropylbenzene	ND		1.00	ug/L	1								
4-Isopropyltoluene	ND		1.00	ug/L	1								
Methylene chloride	ND		10.0	ug/L	1								
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1								
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1								
Naphthalene	ND		5.00	ug/L	1								
n-Propylbenzene	ND		0.500	ug/L	1								
Styrene	ND		1.00	ug/L	1								
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1								
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1								
Tetrachloroethene (PCE)	ND		0.400	ug/L	1								
Toluene	ND		0.500	ug/L	1								
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1								
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1								
1,1,1-Trichloroethane	ND		0.400	ug/L	1								
1,1,2-Trichloroethane	ND		0.500	ug/L	1								
Trichloroethene (TCE)	ND		0.400	ug/L	1								
Trichlorofluoromethane	ND		2.00	ug/L	1								
1,2,3-Trichloropropane	ND		1.00	ug/L	1								
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1								
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1								
Vinyl chloride	ND		0.200	ug/L	1								
m,p-Xylene	ND		1.00	ug/L	1								
o-Xylene	ND		0.500	ug/L	1								
Surr: 1,4-Difluorobenzene (Surr)		Recon	very: 102 %	Limits: 80)-120 %	Dilu	tion: 1x						

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW
20204 SE 284th Street

Kent, WA 98042

Project: <u>Auburn VW</u> Project Number: **BE-0107-E**

Project Manager: Dan Hatch

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	anic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0829 - EPA 5030C							Wate	er				
Blank (24L0829-BLK1)		Prepared	: 12/23/24 07:4	7 Analyz	ed: 12/23/24	10:27						
Surr: Toluene-d8 (Surr)		Recon	very: 104 %	Limits: 80	0-120 %	Dilt	ution: 1x					
4-Bromofluorobenzene (Surr)			104 %	80	-120 %		"					
LCS (24L0829-BS1)		Prepared	: 12/23/24 07:4	7 Analyz	ed: 12/23/24	1 09:30						
EPA 8260D		1										
Acetone	38.4		20.0	ug/L	1	40.0		96	80 - 120%			
Acrylonitrile	19.8		2.00	ug/L	1	20.0		99	80 - 120%			
Benzene	19.5		0.200	ug/L	1	20.0		97	80 - 120%			
Bromobenzene	19.8		0.500	ug/L	1	20.0		99	80 - 120%			
Bromochloromethane	20.8		1.00	ug/L	1	20.0		104	80 - 120%			
Bromodichloromethane	21.2		1.00	ug/L	1	20.0		106	80 - 120%			
Bromoform	23.8		1.00	ug/L	1	20.0		119	80 - 120%			
Bromomethane	27.2		5.00	ug/L	1	20.0		136	80 - 120%			Q-56
2-Butanone (MEK)	41.0		10.0	ug/L	1	40.0		102	80 - 120%			
n-Butylbenzene	20.6		1.00	ug/L	1	20.0		103	80 - 120%			
sec-Butylbenzene	20.8		1.00	ug/L	1	20.0		104	80 - 120%			
tert-Butylbenzene	21.5		1.00	ug/L	1	20.0		108	80 - 120%			
Carbon disulfide	23.8		10.0	ug/L	1	20.0		119	80 - 120%			
Carbon tetrachloride	22.4		1.00	ug/L	1	20.0		112	80 - 120%			
Chlorobenzene	19.8		0.500	ug/L	1	20.0		99	80 - 120%			
Chloroethane	19.4		10.0	ug/L	1	20.0		97	80 - 120%			
Chloroform	19.5		1.00	ug/L	1	20.0		97	80 - 120%			
Chloromethane	17.4		5.00	ug/L	1	20.0		87	80 - 120%			
2-Chlorotoluene	21.2		1.00	ug/L	1	20.0		106	80 - 120%			
4-Chlorotoluene	22.1		1.00	ug/L	1	20.0		110	80 - 120%			
Dibromochloromethane	23.8		1.00	ug/L	1	20.0		119	80 - 120%			
1,2-Dibromo-3-chloropropane	21.3		5.00	ug/L	1	20.0		106	80 - 120%			
1,2-Dibromoethane (EDB)	20.9		0.500	ug/L	1	20.0		104	80 - 120%			
Dibromomethane	21.2		1.00	ug/L	1	20.0		106	80 - 120%			
1,2-Dichlorobenzene	21.2		0.500	ug/L	1	20.0		106	80 - 120%			
1,3-Dichlorobenzene	21.2		0.500	ug/L	1	20.0		106	80 - 120%			
1,4-Dichlorobenzene	20.1		0.500	ug/L	1	20.0		101	80 - 120%			
Dichlorodifluoromethane	19.6		2.00	ug/L	1	20.0		98	80 - 120%			
1,1-Dichloroethane	20.1		0.400	ug/L	1	20.0		100	80 - 120%			

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0829 - EPA 5030C							Wat	er				
LCS (24L0829-BS1)		Prepared	: 12/23/24 07:4	7 Analyz	ed: 12/23/24	4 09:30						
1,2-Dichloroethane (EDC)	19.7		0.400	ug/L	1	20.0		98 8	30 - 120%			
1,1-Dichloroethene	22.2		0.400	ug/L	1	20.0		111 8	30 - 120%			
cis-1,2-Dichloroethene	19.6		0.400	ug/L	1	20.0		98 8	30 - 120%			
trans-1,2-Dichloroethene	19.4		0.400	ug/L	1	20.0		97 8	30 - 120%			
1,2-Dichloropropane	19.9		0.500	ug/L	1	20.0		100 8	30 - 120%			
1,3-Dichloropropane	20.2		1.00	ug/L	1	20.0		101 8	30 - 120%			
2,2-Dichloropropane	27.7		1.00	ug/L	1	20.0		139 8	80 - 120%			Q-56
1,1-Dichloropropene	20.7		1.00	ug/L	1	20.0		103 8	30 - 120%			
cis-1,3-Dichloropropene	23.4		1.00	ug/L	1	20.0		117 8	30 - 120%			
trans-1,3-Dichloropropene	21.8		1.00	ug/L	1	20.0		109 8	30 - 120%			
Ethylbenzene	21.1		0.500	ug/L	1	20.0		106 8	30 - 120%			
Hexachlorobutadiene	23.8		5.00	ug/L	1	20.0		119 8	30 - 120%			
2-Hexanone	41.4		10.0	ug/L	1	40.0		104 8	30 - 120%			
Isopropylbenzene	19.3		1.00	ug/L	1	20.0		97 8	30 - 120%			
4-Isopropyltoluene	20.4		1.00	ug/L	1	20.0		102 8	30 - 120%			
Methylene chloride	18.9		10.0	ug/L	1	20.0		95 8	30 - 120%			
4-Methyl-2-pentanone (MiBK)	42.2		10.0	ug/L	1	40.0		105 8	30 - 120%			
Methyl tert-butyl ether (MTBE)	21.5		1.00	ug/L	1	20.0		107 8	30 - 120%			
Naphthalene	17.9		5.00	ug/L	1	20.0		90 8	30 - 120%			
n-Propylbenzene	22.2		0.500	ug/L	1	20.0		111 8	30 - 120%			
Styrene	19.1		1.00	ug/L	1	20.0		95 8	30 - 120%			
1,1,1,2-Tetrachloroethane	22.0		0.400	ug/L	1	20.0		110 8	30 - 120%			
1,1,2,2-Tetrachloroethane	20.3		0.500	ug/L	1	20.0		102 8	30 - 120%			
Tetrachloroethene (PCE)	20.2		0.400	ug/L	1	20.0		101 8	30 - 120%			
Toluene	19.1		0.500	ug/L	1	20.0		95 8	30 - 120%			
1,2,3-Trichlorobenzene	21.2		2.00	ug/L	1	20.0		106 8	30 - 120%			
1,2,4-Trichlorobenzene	21.0		2.00	ug/L	1	20.0		105 8	30 - 120%			
1,1,1-Trichloroethane	21.2		0.400	ug/L	1	20.0		106 8	30 - 120%			
1,1,2-Trichloroethane	19.7		0.500	ug/L	1	20.0		99 8	30 - 120%			
Trichloroethene (TCE)	19.8		0.400	ug/L	1	20.0		99 8	30 - 120%			
Trichlorofluoromethane	23.2		2.00	ug/L	1	20.0		116 8	30 - 120%			
1,2,3-Trichloropropane	19.9		1.00	ug/L	1	20.0		100 8	30 - 120%			
1,2,4-Trimethylbenzene	20.2		1.00	ug/L	1	20.0		101 8	30 - 120%			
1,3,5-Trimethylbenzene	22.2		1.00	ug/L	1	20.0		111 8	30 - 120%			
•				-								

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project:Auburn VWProject NumberBE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1552 - 01 16 25 1218

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0829 - EPA 5030C	,					,	Wate	er				
LCS (24L0829-BS1)		Prepared:	: 12/23/24 07:4	47 Analyz	red: 12/23/24	4 09:30						
Vinyl chloride	19.4		0.200	ug/L	1	20.0		97	80 - 120%			
m,p-Xylene	39.6		1.00	ug/L	1	40.0		99	80 - 120%			
o-Xylene	18.8		0.500	ug/L	1	20.0		94	80 - 120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 99%	Limits: 80)-120 %	Dilu	ution: 1x					
Toluene-d8 (Surr)			100 %	80	7-120 %		"					
4-Bromofluorobenzene (Surr)			96 %	80)-120 %		"					

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0911 - EPA 5030C	Water											
Blank (24L0911-BLK1)		Prepared	: 12/24/24 15:0	00 Analyz	ed: 12/24/24	4 18:21						
EPA 8260D												
Acetone	ND		20.0	ug/L	1							
Acrylonitrile	ND		2.00	ug/L	1							
Benzene	ND		0.200	ug/L	1							
Bromobenzene	ND		0.500	ug/L	1							
Bromochloromethane	ND		1.00	ug/L	1							
Bromodichloromethane	ND		1.00	ug/L	1							
Bromoform	ND		1.00	ug/L	1							
Bromomethane	ND		5.00	ug/L	1							
2-Butanone (MEK)	ND		10.0	ug/L	1							
n-Butylbenzene	ND		1.00	ug/L	1							
sec-Butylbenzene	ND		1.00	ug/L	1							
tert-Butylbenzene	ND		1.00	ug/L	1							
Carbon disulfide	ND		10.0	ug/L	1							
Carbon tetrachloride	ND		1.00	ug/L	1							
Chlorobenzene	ND		0.500	ug/L	1							
Chloroethane	ND		10.0	ug/L	1							
Chloroform	ND		1.00	ug/L	1							
Chloromethane	ND		5.00	ug/L	1							
2-Chlorotoluene	ND		1.00	ug/L	1							
4-Chlorotoluene	ND		1.00	ug/L	1							
Dibromochloromethane	ND		1.00	ug/L	1							
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1							
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1							
Dibromomethane	ND		1.00	ug/L	1							
1,2-Dichlorobenzene	ND		0.500	ug/L	1							
1,3-Dichlorobenzene	ND		0.500	ug/L	1							
1,4-Dichlorobenzene	ND		0.500	ug/L	1							
Dichlorodifluoromethane	ND		2.00	ug/L	1							
1,1-Dichloroethane	ND		0.400	ug/L	1							
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1							
1,1-Dichloroethene	ND		0.400	ug/L	1							
cis-1,2-Dichloroethene	ND		0.400	ug/L	1							
trans-1,2-Dichloroethene	ND		0.400	ug/L	1							

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0911 - EPA 5030C	Water											
Blank (24L0911-BLK1)		Prepared	: 12/24/24 15:0	0 Analyz	ed: 12/24/24	1 18:21						
1,2-Dichloropropane	ND		0.500	ug/L	1							
1,3-Dichloropropane	ND		1.00	ug/L	1							
2,2-Dichloropropane	ND		1.00	ug/L	1							
1,1-Dichloropropene	ND		1.00	ug/L	1							
cis-1,3-Dichloropropene	ND		1.00	ug/L	1							
trans-1,3-Dichloropropene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Hexachlorobutadiene	ND		5.00	ug/L	1							
2-Hexanone	ND		10.0	ug/L	1							
Isopropylbenzene	ND		1.00	ug/L	1							
4-Isopropyltoluene	ND		1.00	ug/L	1							
Methylene chloride	ND		10.0	ug/L	1							
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1							
Naphthalene	ND		5.00	ug/L	1							
n-Propylbenzene	ND		0.500	ug/L	1							
Styrene	ND		1.00	ug/L	1							
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1							
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1							
Tetrachloroethene (PCE)	ND		0.400	ug/L	1							
Toluene	ND		1.00	ug/L	1							
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1							
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1							
1,1,1-Trichloroethane	ND		0.400	ug/L	1							
1,1,2-Trichloroethane	ND		0.500	ug/L	1							
Trichloroethene (TCE)	ND		0.400	ug/L	1							
Trichlorofluoromethane	ND		2.00	ug/L	1							
1,2,3-Trichloropropane	ND		1.00	ug/L	1							
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1							
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1							
Vinyl chloride	ND		0.200	ug/L	1							
m,p-Xylene	ND		1.00	ug/L	1							
p-Xylene	ND		0.500	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 106 %	Limits: 80	-120 %	Dilu	tion: 1x					

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E**

Project Manager: Dan Hatch

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Co	mpounds	by EPA 8	3260D						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 24L0911 - EPA 5030C	Water												
Blank (24L0911-BLK1)		Prepared	: 12/24/24 15:0	00 Analyz	ed: 12/24/24	4 18:21							
Surr: Toluene-d8 (Surr)		Recon	very: 105 %	Limits: 80	-120 %	Dil	ution: 1x						
4-Bromofluorobenzene (Surr)			103 %	80-	-120 %		"						
LCS (24L0911-BS1)		Prepared	: 12/24/24 15:0	00 Analyz	ed: 12/24/24	4 17:20							
EPA 8260D													
Acetone	30.8		20.0	ug/L	1	40.0		77 8	80 - 120%			Q-55	
Acrylonitrile	18.4		2.00	ug/L	1	20.0		92	80 - 120%				
Benzene	20.2		0.200	ug/L	1	20.0		101	80 - 120%				
Bromobenzene	20.0		0.500	ug/L	1	20.0		100	80 - 120%				
Bromochloromethane	22.2		1.00	ug/L	1	20.0		111	80 - 120%				
Bromodichloromethane	22.4		1.00	ug/L	1	20.0		112	80 - 120%				
Bromoform	24.4		1.00	ug/L	1	20.0		122 8	80 - 120%			Q-56	
Bromomethane	34.3		5.00	ug/L	1	20.0		171 8	80 - 120%			Q-56	
2-Butanone (MEK)	36.0		10.0	ug/L	1	40.0		90	80 - 120%				
n-Butylbenzene	19.9		1.00	ug/L	1	20.0		100	80 - 120%				
sec-Butylbenzene	20.3		1.00	ug/L	1	20.0		102	80 - 120%				
tert-Butylbenzene	20.8		1.00	ug/L	1	20.0		104	80 - 120%				
Carbon disulfide	26.0		10.0	ug/L	1	20.0		130 8	80 - 120%			Q-56	
Carbon tetrachloride	23.0		1.00	ug/L	1	20.0		115	80 - 120%				
Chlorobenzene	20.5		0.500	ug/L	1	20.0		102	80 - 120%				
Chloroethane	40.7		10.0	ug/L	1	20.0		203 8	80 - 120%			Q-56	
Chloroform	20.7		1.00	ug/L	1	20.0		104	80 - 120%				
Chloromethane	20.0		5.00	ug/L	1	20.0		100	80 - 120%				
2-Chlorotoluene	21.2		1.00	ug/L	1	20.0		106	80 - 120%				
4-Chlorotoluene	22.4		1.00	ug/L	1	20.0		112	80 - 120%				
Dibromochloromethane	24.5		1.00	ug/L	1	20.0		122 8	80 - 120%			Q-56	
1,2-Dibromo-3-chloropropane	19.9		5.00	ug/L	1	20.0		100	80 - 120%				
1,2-Dibromoethane (EDB)	20.7		0.500	ug/L	1	20.0		103	80 - 120%				
Dibromomethane	21.8		1.00	ug/L	1	20.0		109	80 - 120%				
1,2-Dichlorobenzene	21.0		0.500	ug/L	1	20.0		105	80 - 120%				
1,3-Dichlorobenzene	21.5		0.500	ug/L	1	20.0		107	80 - 120%				
1,4-Dichlorobenzene	20.6		0.500	ug/L	1	20.0		103	80 - 120%				
Dichlorodifluoromethane	20.7		2.00	ug/L	1	20.0		104	80 - 120%				
1,1-Dichloroethane	21.6		0.400	ug/L	1	20.0		108	80 - 120%				

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0911 - EPA 5030C							Wate	er				
LCS (24L0911-BS1)		Prepared	: 12/24/24 15:(00 Analyz	ed: 12/24/24	4 17:20						
1,2-Dichloroethane (EDC)	20.6		0.400	ug/L	1	20.0		103	80 - 120%			
1,1-Dichloroethene	24.4		0.400	ug/L	1	20.0		122 8	80 - 120%			Q-56
cis-1,2-Dichloroethene	20.5		0.400	ug/L	1	20.0		102	80 - 120%			
trans-1,2-Dichloroethene	20.3		0.400	ug/L	1	20.0		102	80 - 120%			
1,2-Dichloropropane	20.9		0.500	ug/L	1	20.0		104	80 - 120%			
1,3-Dichloropropane	20.9		1.00	ug/L	1	20.0		105	80 - 120%			
2,2-Dichloropropane	25.5		1.00	ug/L	1	20.0		128 8	80 - 120%			Q-56
1,1-Dichloropropene	21.0		1.00	ug/L	1	20.0		105	80 - 120%			
cis-1,3-Dichloropropene	23.4		1.00	ug/L	1	20.0		117	80 - 120%			
trans-1,3-Dichloropropene	21.7		1.00	ug/L	1	20.0		108	80 - 120%			
Ethylbenzene	21.6		0.500	ug/L	1	20.0		108	80 - 120%			
Hexachlorobutadiene	21.1		5.00	ug/L	1	20.0		105	80 - 120%			
2-Hexanone	36.9		10.0	ug/L	1	40.0		92 8	80 - 120%			
Isopropylbenzene	18.5		1.00	ug/L	1	20.0		92 8	80 - 120%			
4-Isopropyltoluene	19.4		1.00	ug/L	1	20.0		97 8	80 - 120%			
Methylene chloride	20.0		10.0	ug/L	1	20.0		100	80 - 120%			
4-Methyl-2-pentanone (MiBK)	39.3		10.0	ug/L	1	40.0		98 8	80 - 120%			
Methyl tert-butyl ether (MTBE)	20.0		1.00	ug/L	1	20.0		100	80 - 120%			
Naphthalene	17.4		5.00	ug/L	1	20.0		87 8	80 - 120%			
n-Propylbenzene	22.3		0.500	ug/L	1	20.0		112	80 - 120%			
Styrene	19.1		1.00	ug/L	1	20.0		95	80 - 120%			
1,1,1,2-Tetrachloroethane	22.4		0.400	ug/L	1	20.0		112	80 - 120%			
1,1,2,2-Tetrachloroethane	21.0		0.500	ug/L	1	20.0		105	80 - 120%			
Tetrachloroethene (PCE)	19.9		0.400	ug/L	1	20.0		99	80 - 120%			
Toluene	19.8		1.00	ug/L	1	20.0		99	80 - 120%			
1,2,3-Trichlorobenzene	21.0		2.00	ug/L	1	20.0		105	80 - 120%			
1,2,4-Trichlorobenzene	19.1		2.00	ug/L	1	20.0		96	80 - 120%			
1,1,1-Trichloroethane	21.6		0.400	ug/L	1	20.0		108	80 - 120%			
1,1,2-Trichloroethane	20.1		0.500	ug/L	1	20.0		101	80 - 120%			
Trichloroethene (TCE)	20.5		0.400	ug/L	1	20.0		103	80 - 120%			
Trichlorofluoromethane	26.4		2.00	ug/L	1	20.0		132 8	30 - 120%			Q-56
1,2,3-Trichloropropane	20.5		1.00	ug/L	1	20.0		103	80 - 120%			
1,2,4-Trimethylbenzene	20.2		1.00	ug/L	1	20.0		101	80 - 120%			
1,3,5-Trimethylbenzene	21.8		1.00	ug/L	1	20.0		109	80 - 120%			

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number <u>BE-0107-E</u> Project Manager: Dan Hatch

<u>Report ID:</u> A4L1552 - 01 16 25 1218

QUALITY CONTROL (QC) SAMPLE RESULTS

		·	Volatile Or	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0911 - EPA 5030C							Wate	ər				
LCS (24L0911-BS1)		Prepared:	12/24/24 15:	00 Analyz	red: 12/24/24	4 17:20						
Vinyl chloride	23.0		0.200	ug/L	1	20.0		115	80 - 120%			
m,p-Xylene	40.1		1.00	ug/L	1	40.0		100	80 - 120%			
o-Xylene	18.5		0.500	ug/L	1	20.0		93	80 - 120%			
Surr: 1,4-Difluorobenzene (Surr)		Recov	ery: 100 %	Limits: 80	9-120 %	Dilu	tion: 1x					
Toluene-d8 (Surr)			101 %	80	7-120 %		"					
4-Bromofluorobenzene (Surr)			95 %	80	9-120 %		"					

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Cameron O'Brien, Project Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

<u>Report ID:</u> A4L1552 - 01 16 25 1218

QUALITY CONTROL (QC) SAMPLE RESULTS

	Total Metals by EPA 6020B (ICPMS)												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 25A0028 - EPA 3015A							Wate	er					
Blank (25A0028-BLK1)		Prepared:	01/02/25 10:5	59 Analyz	red: 01/03/2	5 06:30							
EPA 6020B													
Arsenic	ND		1.00	ug/L	1								
LCS (25A0028-BS1)		Prepared:	01/02/25 10:5	59 Analyz	zed: 01/03/2:	5 06:35							
EPA 6020B													
Arsenic	55.2		1.00	ug/L	1	55.6		99 8	80 - 120%				

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	etals by	EPA 6020	B (ICPMS	;)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 25A0144 - EPA 3015A							Wate	ər				
Blank (25A0144-BLK1)		Prepared	01/07/25 07:5	54 Analyz	ed: 01/07/25	5 23:26						
EPA 6020B												
Arsenic	ND		1.00	ug/L	1							
Barium	ND		2.00	ug/L	1							
Cadmium	ND		0.200	ug/L	1							
Chromium	ND		2.00	ug/L	1							
Lead	ND		0.200	ug/L	1							
Mercury	ND		0.0800	ug/L	1							
Silver	ND		0.200	ug/L	1							
Blank (25A0144-BLK2)		Prepared	01/07/25 07:5	i4 Analyz	ed: 01/08/25	5 09:55						
EPA 6020B												
Selenium	ND		1.00	ug/L	1							Q-16
LCS (25A0144-BS1)		Prepared	01/07/25 07:5	i4 Analyz	ed: 01/07/25	5 23:31						
EPA 6020B												
Arsenic	54.4		1.00	ug/L	1	55.6		98	80 - 120%			
Barium	54.2		2.00	ug/L	1	55.6		98	80 - 120%			
Cadmium	54.0		0.200	ug/L	1	55.6		97	80 - 120%			
Chromium	54.1		2.00	ug/L	1	55.6		97	80 - 120%			
Lead	55.9		0.200	ug/L	1	55.6		101	80 - 120%			
Mercury	1.08		0.0800	ug/L	1	1.11		97	80 - 120%			
Selenium	27.4		2.00	ug/L	1	27.8		99	80 - 120%			
Silver	27.2		0.200	ug/L	1	27.8		98	80 - 120%			

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

QUALITY CONTROL (QC) SAMPLE RESULTS

			Dissolved	Metals	by EPA 60	D20B (ICP	MS)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L1102 - Matrix Mat	ched Direct I	nject					Wate	er				
Blank (24L1102-BLK1)		Prepared	: 12/31/24 14:5	56 Analyz	red: 01/03/25	5 03:57						
EPA 6020B (Diss)												
Arsenic	ND		1.00	ug/L	1							
Barium	ND		1.00	ug/L	1							
Cadmium	ND		0.200	ug/L	1							
Chromium	ND		2.00	ug/L	1							
Lead	ND		0.200	ug/L	1							
Selenium	ND		1.00	ug/L	1							
Silver	ND		0.200	ug/L	1							
Blank (24L1102-BLK2)		Prepared	: 12/31/24 14:5	56 Analyz	red: 01/03/25	5 14:20						
EPA 6020B (Diss)												
Mercury	ND		0.0800	ug/L	1							Q-16
LCS (24L1102-BS1)		Prepared	: 12/31/24 14:5	56 Analyz	red: 01/03/25	5 04:02						
EPA 6020B (Diss)												
Arsenic	53.9		1.00	ug/L	1	55.6		97	80 - 120%			
Barium	56.6		1.00	ug/L	1	55.6		102	80 - 120%			
Cadmium	54.6		0.200	ug/L	1	55.6		98	80 - 120%			
Chromium	54.5		2.00	ug/L	1	55.6		98	80 - 120%			
Lead	55.5		0.200	ug/L	1	55.6		100	80 - 120%			
Selenium	28.1		1.00	ug/L	1	27.8		101	80 - 120%			
Silver	27.6		0.200	ug/L	1	27.8		99	80 - 120%			
LCS (24L1102-BS2)		Prepared	: 12/31/24 14:5	56 Analyz	red: 01/03/25	5 14:25						
EPA 6020B (Diss)		-										
Mercury	1.10		0.0800	ug/L	1	1.11		99	80 - 120%			Q-16

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

<u>Report ID:</u> A4L1552 - 01 16 25 1218

QUALITY CONTROL (QC) SAMPLE RESULTS

			Dissolved	Metals	by EPA 60	20B (ICP	MS)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 25A0365 - Matrix Matche	d Direct l	Inject					Wate	ər				
Blank (25A0365-BLK1)		Prepared:	: 01/13/25 08:2	26 Analyz	ed: 01/13/25	5 12:29						
EPA 6020B (Diss) Arsenic	ND		1.00	ug/L	1							FILT3
LCS (25A0365-BS1)		Prepared:	: 01/13/25 08:2	26 Analyz	ed: 01/13/25	5 12:34						
EPA 6020B (Diss) Arsenic	54.1		1.00	ug/L	1	55.6		97 8	30 - 120%			
Duplicate (25A0365-DUP1)		Prepared:	01/13/25 08:2	26 Analyz	ed: 01/13/25	5 12:50						
OC Source Sample: MW-20 (A4L) EPA 6020B (Diss)	1552-09RE1	<u>L)</u>										
Arsenic	3.47		1.00	ug/L	1		3.53			2	20%	FILT1
Matrix Spike (25A0365-MS1)		Prepared:	: 01/13/25 08:2	26 Analyz	ed: 01/13/25	5 12:55						
<u>QC Source Sample: MW-20 (A4L)</u> EPA 6020B (Diss)	<u>1552-09RE1</u>	<u>D</u>										
Arsenic	58.3		1.00	ug/L	1	55.6	3.53	99 7	/5 - 125%			FILT1

Apex Laboratories

Cameron O'Brien, Project Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

<u>Report ID:</u> A4L1552 - 01 16 25 1218

QUALITY CONTROL (QC) SAMPLE RESULTS

			Solid a	nd Mois	ture Dete	rmination	s					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0777 - Total Susper	nded Solids	s - 2022					Wat	er				
Blank (24L0777-BLK1)		Prepared:	12/20/24 10:3	34 Analyz	zed: 12/20/24	4 10:34						
<u>SM 2540 D</u>												
Total Suspended Solids	ND		5000	ug/L	1							
Reference (24L0777-SRM1)		Prepared:	12/20/24 10:3	34 Analyz	zed: 12/20/24	4 10:34						
<u>SM 2540 D</u>												
Total Suspended Solids	866			mg/L	1	854		101	85 - 115%			

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

<u>Report ID:</u> A4L1552 - 01 16 25 1218

QUALITY CONTROL (QC) SAMPLE RESULTS

			Solid a	nd Mois	ture Dete	rmination	s					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0813 - Total Susper	nded Solid	s - 2022					Wat	er				
Blank (24L0813-BLK1)		Prepared	: 12/20/24 17:2	8 Analyz	zed: 12/20/24	4 17:28						
<u>SM 2540 D</u>												
Total Suspended Solids	ND		5000	ug/L	1							
Reference (24L0813-SRM1)		Prepared	: 12/20/24 17:2	8 Analyz	zed: 12/20/24	4 17:28						
<u>SM 2540 D</u>												
Total Suspended Solids	867			mg/L	1	854		102	85 - 115%			

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Cameron O'Brien, Project Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project:Auburn VWProject NumberBE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1552 - 01 16 25 1218

SAMPLE PREPARATION INFORMATION

		Hydrocarbor	Identification Scree	n by NWTPH-HCID			
Prep: EPA 3510C ((Fuels/Acid Ext.)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24L0852							
A4L1552-01	Water	NWTPH-HCID	12/17/24 14:15	12/23/24 13:57	1040mL/5mL	1000mL/5mL	0.96
A4L1552-02	Water	NWTPH-HCID	12/17/24 12:10	12/23/24 13:57	1060mL/5mL	1000mL/5mL	0.94
A4L1552-03	Water	NWTPH-HCID	12/17/24 12:45	12/23/24 13:57	1060mL/5mL	1000mL/5mL	0.94
A4L1552-04	Water	NWTPH-HCID	12/17/24 13:20	12/23/24 13:57	1040mL/5mL	1000mL/5mL	0.96
A4L1552-05	Water	NWTPH-HCID	12/18/24 09:55	12/23/24 13:57	990mL/5mL	1000mL/5mL	1.01
A4L1552-06	Water	NWTPH-HCID	12/18/24 10:35	12/23/24 13:57	1030mL/5mL	1000mL/5mL	0.97
A4L1552-07	Water	NWTPH-HCID	12/18/24 11:25	12/23/24 13:57	1060mL/5mL	1000mL/5mL	0.94
A4L1552-08	Water	NWTPH-HCID	12/18/24 12:45	12/23/24 13:57	1040mL/5mL	1000mL/5mL	0.96
A4L1552-09	Water	NWTPH-HCID	12/18/24 12:05	12/23/24 13:57	1010mL/5mL	1000mL/5mL	0.99

		Diesel an	d/or Oil Hydrocarbon	is by NWTPH-Dx			
Prep: EPA 3510C (Fuels/Acid Ext.)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24L0852							
A4L1552-05	Water	NWTPH-Dx	12/18/24 09:55	12/23/24 13:57	990mL/5mL	1000mL/5mL	1.01

	Gas	oline Range Hydrocarb	oons (Benzene thro	ugh Naphthalene) b	y NWTPH-Gx		
Prep: EPA 5030C					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24L0911							
A4L1552-05RE1	Water	NWTPH-Gx (MS)	12/18/24 09:55	12/24/24 15:00	5mL/5mL	5mL/5mL	1.00

		Volatile	Organic Compounds	by EPA 8260D			
Prep: EPA 5030C					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24L0911							
A4L1552-05RE1	Water	EPA 8260D	12/18/24 09:55	12/24/24 15:00	5mL/5mL	5mL/5mL	1.00
A4L1552-07RE1	Water	EPA 8260D	12/18/24 11:25	12/24/24 15:00	5mL/5mL	5mL/5mL	1.00

Total Metals by EPA 6020B (ICPMS)									
Prep: EPA 3015A					Sample	Default	RL Prep		
Lab Number	Matrix	Method	Method Sampled		Initial/Final	Initial/Final	Factor		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Cameron O'Brien, Project Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

<u>Report ID:</u> A4L1552 - 01 16 25 1218

SAMPLE PREPARATION INFORMATION

Total Metals by EPA 6020B (ICPMS)									
Prep: EPA 3015A					Sample	Default	RL Prep		
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor		
Batch: 25A0028									
A4L1552-01	Water	EPA 6020B	12/17/24 14:15	01/02/25 10:59	45mL/50mL	45mL/50mL	1.00		
A4L1552-02	Water	EPA 6020B	12/17/24 12:10	01/02/25 10:59	45mL/50mL	45mL/50mL	1.00		
A4L1552-03	Water	EPA 6020B	12/17/24 12:45	01/02/25 10:59	45mL/50mL	45mL/50mL	1.00		
A4L1552-04	Water	EPA 6020B	12/17/24 13:20	01/02/25 10:59	45mL/50mL	45mL/50mL	1.00		
Batch: 25A0144									
A4L1552-05	Water	EPA 6020B	12/18/24 09:55	01/07/25 07:54	45mL/50mL	45mL/50mL	1.00		
A4L1552-05RE1	Water	EPA 6020B	12/18/24 09:55	01/07/25 07:54	45mL/50mL	45mL/50mL	1.00		
A4L1552-06	Water	EPA 6020B	12/18/24 10:35	01/07/25 07:54	45mL/50mL	45mL/50mL	1.00		
A4L1552-07	Water	EPA 6020B	12/18/24 11:25	01/07/25 07:54	45mL/50mL	45mL/50mL	1.00		
A4L1552-07RE1	Water	EPA 6020B	12/18/24 11:25	01/07/25 07:54	45mL/50mL	45mL/50mL	1.00		
A4L1552-08	Water	EPA 6020B	12/18/24 12:45	01/07/25 07:54	45mL/50mL	45mL/50mL	1.00		
A4L1552-09	Water	EPA 6020B	12/18/24 12:05	01/07/25 07:54	45mL/50mL	45mL/50mL	1.00		

Dissolved Metals by EPA 6020B (ICPMS)

			-				
Prep: Matrix Matched Direct Inject					Sample	Default	RL Prep
Lab Number Matrix		Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24L1102							
A4L1552-01	Water	EPA 6020B (Diss)	12/17/24 14:15	12/31/24 14:56	45mL/50mL	45mL/50mL	1.00
A4L1552-02	Water	EPA 6020B (Diss)	12/17/24 12:10	12/31/24 14:56	45mL/50mL	45mL/50mL	1.00
A4L1552-03	Water	EPA 6020B (Diss)	12/17/24 12:45	12/31/24 14:56	45mL/50mL	45mL/50mL	1.00
A4L1552-04	Water	EPA 6020B (Diss)	12/17/24 13:20	12/31/24 14:56	45mL/50mL	45mL/50mL	1.00
A4L1552-05	Water	EPA 6020B (Diss)	12/18/24 09:55	12/31/24 14:56	45mL/50mL	45mL/50mL	1.00
A4L1552-05RE1	Water	EPA 6020B (Diss)	12/18/24 09:55	12/31/24 14:56	45mL/50mL	45mL/50mL	1.00
A4L1552-06	Water	EPA 6020B (Diss)	12/18/24 10:35	12/31/24 14:56	45mL/50mL	45mL/50mL	1.00
A4L1552-06RE1	Water	EPA 6020B (Diss)	12/18/24 10:35	12/31/24 14:56	45mL/50mL	45mL/50mL	1.00
A4L1552-07	Water	EPA 6020B (Diss)	12/18/24 11:25	12/31/24 14:56	45mL/50mL	45mL/50mL	1.00
A4L1552-07RE1	Water	EPA 6020B (Diss)	12/18/24 11:25	12/31/24 14:56	45mL/50mL	45mL/50mL	1.00
A4L1552-08	Water	EPA 6020B (Diss)	12/18/24 12:45	12/31/24 14:56	45mL/50mL	45mL/50mL	1.00
A4L1552-09	Water	EPA 6020B (Diss)	12/18/24 12:05	12/31/24 14:56	45mL/50mL	45mL/50mL	1.00
A4L1552-09RE1	Water	EPA 6020B (Diss)	12/18/24 12:05	12/31/24 14:56	45mL/50mL	45mL/50mL	1.00
Batch: 25A0365							
A4L1552-02RE1	Water	EPA 6020B (Diss)	12/17/24 12:10	01/13/25 08:26	45mL/50mL	45mL/50mL	1.00
A4L1552-09RE1	Water	EPA 6020B (Diss)	12/18/24 12:05	01/13/25 08:26	45mL/50mL	45mL/50mL	1.00

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042

Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1552 - 01 16 25 1218

SAMPLE PREPARATION INFORMATION

Solid and Moisture Determinations									
Prep: Total Suspende	d Solids - 2022				Sample	Default	RL Prep		
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor		
Batch: 24L0777									
A4L1552-02	Water	SM 2540 D	12/17/24 12:10	12/20/24 10:34	100mL	100mL	1.00		
A4L1552-04	Water	SM 2540 D	12/17/24 13:20	12/20/24 10:34 100mL		100mL	1.00		
Batch: 24L0813									
A4L1552-05	Water	SM 2540 D	12/18/24 09:55	12/20/24 17:28	100mL	100mL	1.00		
A4L1552-09	Water	SM 2540 D	12/18/24 12:05	12/20/24 17:28	100mL	100mL	1.00		
Lab Filtration									
Prep: Lab Filtration					Sample	Default	RL Prep		
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor		
Batch: 25A0311									

12/17/24 12:10

12/18/24 12:05

NA

NA

Water

Water

Apex Laboratories

A4L1552-02

A4L1552-09

Cameron O'Brien, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

150mL/150mL

150mL/150mL

01/10/25 11:01

01/10/25 11:21

NA

NA

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E**

Project Manager: Dan Hatch

<u>Report ID:</u> A4L1552 - 01 16 25 1218

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

F-13 The chromatographic pattern does not resemble the fuel standard used for quantitation F-18 Result for Diesel (Diesel Range Organics, C12-C25) is due to overlap from Gasoline or a Gasoline Range product. FILT1 Sample was lab filtered and acid preserved prior to analysis. See sample preparation section of report for date and time of filtration. FILT3 This is a laboratory filtration blank, associated with filtration batch 25A0311. See Prep page of report for associated samples. Q-16 Reanalysis of an original Batch QC sample. Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for Q-19 analysis. Q-55 Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260, however there is adequate sensitivity to ensure detection at the reporting level. Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260. Samples that are ND (Non-Detect) are not Q-56 impacted. TSS Dried residue was less than 2.5mg as specified in the method. Results meet regulatory requirements.

Apex Laboratories

Cameron O'Brien, Project Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Project: <u>Auburn VW</u> Project Number: **BE-0107-E**

Project Manager: Dan Hatch

<u>Report ID:</u> A4L1552 - 01 16 25 1218

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

Kent, WA 98042

- DET Analyte DETECTED at or above the detection or reporting limit.
- ND Analyte NOT DETECTED at or above the detection or reporting limit.
- NR Result Not Reported.

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ). If no value is listed ('-----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as " dry", " wet", or " " (blank) designation.

- <u>" dry"</u> Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry") See Percent Solids section for details of dry weight analysis.
- "wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___ Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) are not included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

- "--- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.
- " *** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to one half of the Reporting Limit (RL). Blank results for gravimetric analyses are evaluated to the Reporting Level, not to half of the Reporting Level. -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier. -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street Project: <u>Auburn VW</u> Project Number: **BE-0107-E**

Project Manager: Dan Hatch

<u>Report ID:</u> A4L1552 - 01 16 25 1218

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Kent, WA 98042

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW	Project: <u>Auburn VW</u>	
20204 SE 284th Street	Project Number: BE-0107-E	<u>Report ID:</u>
Kent, WA 98042	Project Manager: Dan Hatch	A4L1552 - 01 16 25 1218

Decanted Samples:

Soils/Sediments:

Unless TCLP analysis is required or there is notification otherwise for a specific project, all Soil and Sediments containing excess water are decanted prior to analysis in order to provide the most representative sample for analysis.

Water Samples:

Water samples containing solids and sediment may need to be decanted in order to eliminate these particulates from the water extractions. In the case of organics extractions, a solvent rinse of the container will not be performed.

Volatiles Soils (5035s)

Samples that are field preserved by 5035 for volatiles are dry weight corrected using the same dry weight corretion as for normal analyses. In the case of decanted samples, the dry weight may be performed on a decanted sample, while the aliquot for 5035 may not have been treated the same way. If this is a concern, please submit separate containers for dry weight analysis for volatiles can be provided.

All samples decanted in the laboratory are noted in this report with the DCNT qualifier indicating the sample was decanted.

Apex Laboratories

Cameron O'Brien, Project Manager

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E**

Project Manager: Dan Hatch

<u>Report ID:</u> A4L1552 - 01 16 25 1218

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories								
Matrix	Analysis	TNI_ID	Analyte	TNI_ID	Accreditation			

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation. Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW
20204 SE 284th Street
Kent, WA 98042

Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1552 - 01 16 25 1218

Cli	ent: Bluestone Element WO#: A4_1652
Pro	ject/Project #: Auburn VW/BE-0107-E
De	livery Info:
Da	etime received: 12/9/21 @ 1046 By: ANW
De	livered by: Apex_Client_ESS_FedEx_UPSX Radio_Morgan_SDS_Evergreen_Other
Fre	m USDA Regulated Origin? Yes No χ
Co	oler Inspection Date/time inspected: 12/19/14 @ 11/16 By: 39
Ch	ain of Custody included? Yes <u>No</u> No
Sig	ned/dated by client? Yes No
Co	ntains USDA Reg. Soils? Yes No Unsure (email RegSoils)
	Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Ter	nporature (°C) <u>3.6 2.6 0.1</u>
Cu	stody seals? (Y/N)
Re	ceived on ice? (Y/N)
Te	np. blanks? (Y/N)
lce	type: (Gel/Real/Other) <u>Real</u>
Co	ndition (In/Out):
Co	oler out of temp? (Y/N) Possible reason why:
Gr	sen dots applied to out of temperature samples? Ves/No)
Sa	mple Inspection: Date/time inspected: 11/19/14 @ 13/10 By: MAN
All	samples intact? Yes X No Comments:
Во	ttle labels/COCs agree? Yes No X Comments: Missing Samples MW-2, MW-15, and MW-16,
CC	C/container discrepancies form initiated? Yes No $\underline{\times}$
Co	ntainers/volumes received appropriate for analysis? Yes 🔀 No 🔄 Comments:
Do	VOA viais have visible headspace? Yes $_$ No \angle NA $_$
Co	mments
Wa	iter samples: pH checked: Yes XNoNApH appropriate? Yes XNoNApH ID: <u>#135</u> 172
Co	mments:
100	$-\alpha \mathcal{O} \mathcal{M} = \alpha \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O}$
- 17	CISOLOS DE 2347 4072 TE UNUNSUISMENTANT TE CIDINES DE ETAT MAI

Apex Laboratories

Cameron O'Brien Apex Laboratories 6700 SW Sandburg St. Tigard, OR 97223

Laboratory Results for: A4L1552

Dear Cameron,

Enclosed are the results of the sample(s) submitted to our laboratory December 26, 2024 For your reference, these analyses have been assigned our service request number **K2413612**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3260. You may also contact me via email at Luke.Rahn@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

ydney allow

for Luke Rahn Project Manager

ADDRESS 1317 S. 13th Avenue, Kelso, WA 98626 PHONE +1 360 577 7222 | FAX +1 360 636 1068 ALS Group USA, Corp. dba ALS Environmental

Narrative Documents

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Client: Apex Laboratories Project: A4L1552 Sample Matrix: Water Service Request: K2413612 Date Received: 12/26/2024

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Four water samples were received for analysis at ALS Environmental on 12/26/2024. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

General Chemistry:

No significant anomalies were noted with this analysis.

Alla Date Approved by

01/06/2025

SAMPLE DETECTION SUMMARY

This form includes only detections above the reporting levels. For a full listing of sample results, continue to the Sample Results section of this Report.

CLIENT ID: MW-3		Lab ID: K2413612-001				
Analyte	Results	Flag	MDL	MRL	Units	Method
Carbon, Total Organic	72.0		0.8	5.0	mg/L	SM 5310 C
CLIENT ID: MW-5		Lab	DID: K2413	8612-002		
Analyte	Results	Flag	MDL	MRL	Units	Method
Carbon, Total Organic	22.4		0.4	2.0	mg/L	SM 5310 C
CLIENT ID: MW-6	Lab ID: K2413612-003					
Analyte	Results	Flag	MDL	MRL	Units	Method
Carbon, Total Organic	4.20		0.08	0.50	mg/L	SM 5310 C
CLIENT ID: MW-20		Lab	D: K2413	8612-004		
Analyte	Results	Flag	MDL	MRL	Units	Method
Carbon, Total Organic	32.8		0.4	2.0	mg/L	SM 5310 C

Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Client:Apex LaboratoriesProject:A4L1552

SAMPLE CROSS-REFERENCE

SAMPLE # CLIENT SAMPLE ID	DATE	<u>TIME</u>
K2413612-001 MW-3	12/17/2024	1210
K2413612-002 MW-5	12/17/2024	1320
K2413612-003 MW-6	12/18/2024	0955
K2413612-004 MW-20	12/18/2024	1205

SUBCONTRACT ORDER

#2413e12 2Kan

Apex Laboratories

12/20/14A4L1552

SENDING LABORATORY:

Apex Laboratories 6700 S.W. Sandburg Street Tigard, OR 97223 Phone: (503) 718-2323 Fax: (503) 336-0745 Project Manager: Cameron O'Brien

RECEIVING LABORATORY:

ALS Group USA - Kelso 1317 S 13th Avenue Kelso, WA 98626 Phone :(360) 577-7222 Fax: (360) 636-1068

Sample Name: MW-3			Sampled: 12/17/24 12:10	(A4L1552-02)
Anałysis	Due	Expires	Comments	
Total Organic Carbon - H2O (5310C) <i>Containers Supplied:</i> (F)250 mL Poly - Sulfuric (H2SO4)	01/03/25 17:00	01/14/25 12:10		
Sample Name: MW-5			Sampled: 12/17/24 13:20	(A4L1552-04
Analysis	Due	Expires	Comments	
Total Organic Carbon - H2O (5310C) <i>Containers Supplied:</i> (F)250 mL Poly - Sulfuric (H2SO4)	01/03/25 17:00	01/14/25 13:20		
Sample Name: MW-6	•		Sampled: 12/18/24 09:55	(A4L1552-05
Analysis	Due	Expires	Comments	
Total Organic Carbon - H2O (5310C) Containers Supplied: (F)250 mL Poly - Sulfuric (H2SO4)	01/03/25 17:00	01/15/25 09:55		
Sample Name: MW-20			Sampled: 12/18/24 12:05	(A4L1552-09)
Analysis	Due	Expires	Comments	
Total Organic Carbon - H2O (5310C) <i>Containers Supplied:</i> (F)250 mL Poly - Sulfuric (H2SO4)	01/03/25 17:00	01/15/25 12:05		
Stanc	lard TAT			
10/12 JA 12/26/2	4 12 35	Repetited By	12/26/24	1235
12/26/24 1425 Refeased By Date	ie	M-Mu Received By	Uliph 17 Date	124/24/142

Page 1 of 1

C F 1 2 3	Client <u>HP-CX</u> Received: <u>HU UL (Opened:</u> Samples were received via? USPS Samples were received in: (circle) Were <u>custody seals</u> on coolers? If present, were custody seals intact?	Cooler Receipt an Fed Ex UPS Fed Ex UPS NA Y N If you Y N If pu	Ad Preservatic Sen By: <i>DHL</i> <i>Envelope</i> es, how many and w resent, were they sig	on Form vice Request K24_ Unloaded: PDX Other vhere? gned and dated?	BLC By: Durier Hand Do	PM 	<u>L</u>
	Temp Blank Sample Temp IR Gun	Cooler #COC ID / NA	Out of temp indicate with "X	PM Notified If out of temp	Tracking Num	ber NA	Filed
4 5 ا: ی 6	 Was a Temperature Blank present in cooler? If no, take the temperature of a representative. Were samples received within the method specified on ice and same day of applicable, tissue samples were received: Packing material: <i>Inserts Baggies Bag</i> 	NA Y N If your of the sample bottle contained we contained the sample bottle contained we contained the sample bottle contained of the sample bottle wrap Gel Packs (es, notate the tempe within the cooler; no the cooler # above ad Thawed Wet Ice Dry Ice	rature in the appropri- state in the column " and notify the PM. Sleeves	iate column above: Sample Temp": NA NA Y	N N	
age 8 of 24	 Were custody papers properly filled out (ink Were samples received in good condition (u. Were all sample labels complete (ie, analysi Did all sample labels and tags agree with cust. Were appropriate bottles/containers and volu 	s, signed, etc.)? nbroken) s, preservation, etc.)? stody papers? umes received for the tests	indicated?		NA (Y NA (Y NA (Y NA (Y NA (Y	> N N N N) N	
1 1 1 1	 Were the pH-preserved bottles (see SMO GI Were VOA vials received without headspace Was C12/Res negative? Were samples received within the method sp Were 100ml sterile microbiology bottles fill 	EN SOP) received at the app e? Indicate in the table bel pecified time limit? If not, r ed exactly to the 100ml ma	propriate pH? India ow. sotate the error belo rk? NA	ate in the table belo w and notify the PM Y N	W NA Y SA Y NA Y Underfilled	N N N N Overfilled	
	Sample ID on Bottle	Sample ID	on COC		Identified by:		
	Sample ID	Bottle Count He Bottle Type spi	ad- ice Broke pH	Volun Reagent adde	ne Reagent Lot d Number	Initials	Time

Sample ID	Bottle Type	space	Broke	pН	Reagent	added	Number	Initials	Time
						T			
994 - 1916		1				+		<u> </u>	
· · · · · · · · · · · · · · · · · · ·									

Notes, Discrepancies, Resolutions:

G:\SMO\2024 Forms

Reviewed: NP 1/3/2024

Miscellaneous Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value over the calibration range.
- J The result is an estimated value between the MDL and the MRL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- ${f F}$ The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Web Site	Number
http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
http://www.azdhs.gov/lab/license/env.htm	AZ0339
http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
http://health.hawaii.gov/	-
http://www.pjlabs.com/	L16-57
http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
http://www.maine.gov/dhhs/	WA01276
http://www.health.state.mn.us/accreditation	053-999-457
http://ndep.nv.gov/bsdw/labservice.htm	WA01276
http://www.nj.gov/dep/enforcement/oqa.html	WA005
https://www.wadsworth.org/regulatory/elap	12060
https://deq.nc.gov/about/divisions/water-resources/water-resources- data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- certification	605
http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA100010
http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water	-
www.alsglobal.com	NA
	Web Site http://dec.alaska.gov/eh/lab/cs/csapproval.htm http://www.azdhs.gov/lab/license/env.htm http://www.azdhs.gov/lab/license/env.htm http://www.adeq.state.ar.us/techsvs/labcert.htm http://www.deq.state.ar.us/techsvs/labcert.htm http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm http://www.denix.osd.mil/edqw/Accreditation/Accreditation http://www.denix.osd.mil/edqw/Accreditation http://www.pilabs.com/ http://www.neqlouisiana.gov/page/la-lab-accreditation http://www.heql.ouisiana.gov/page/la-lab-accreditation http://www.health.state.mn.us/accreditation http://www.health.state.mn.us/accreditation http://www.nj.gov/dbg//labservice.htm http://www.alsgov/dep/enforcement/oqa.html http://www.adg.state.ok.us/CSDnew/labcert.htm http://www.deq.state.ok.us/CSDnew/labcert.htm http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx http://www.scdhec.gov/environment/EnvironmentalLabCertification/ http://w

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH tr	Total Petroleum Hydrocarbons Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

ALS Group USA, Corp. dba ALS Environmental

Analyst Summary report

Client: Project:	Apex Laboratories A4L1552/	Service Request:	K2413612
Troject.	111111111111111111		
Sample Name:	MW-3	Date Collected:	12/17/24
Lab Code:	K2413612-001	Date Received:	12/26/24
Sample Matrix:	Water		

Analysis Method		Extracted/Digested By	Analyzed By		
SM 5310 C			MSPECHT		
Sample Name:	MW-5		Date Collected: 12/17/24		
Lab Code:	K2413612-002		Date Received: 12/26/24		
Sample Matrix:	Water				
Analysis Method		Extracted/Digested By	Analyzed By		
SM 5310 C			MSPECHT		
Sample Name:	MW-6		Date Collected: 12/18/24		
Lab Code:	K2413612-003		Date Received: 12/26/24		
Sample Matrix:	Water				
Analysis Method		Extracted/Digested By	Analyzed By		
SM 5310 C			MSPECHT		
Sample Name:	MW-20		Date Collected: 12/18/24		
Lab Code:	K2413612-004		Date Received: 12/26/24		
Sample Matrix:	Water				

Analysis Method

SM 5310 C

Analyzed By

MSPECHT

Extracted/Digested By

Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

ALS Group USA, Corp. dba ALS Environmental

Analytical ReportClient:Apex LaboratoriesService Request:K2413612Project:A4L1552Date Collected:12/17/24 12:10Sample Matrix:WaterDate Received:12/26/24 14:25Sample Name:MW-3Basis:NALab Code:K2413612-001K2413612-001

General Chemistry Parameters

	Analysis							
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Carbon, Total Organic	SM 5310 C	72.0	mg/L	5.0	0.8	10	01/03/25 14:01	
Analytical ReportClient:Apex LaboratoriesService Request:K2413612Project:A4L1552Date Collected:12/17/24 13:20Sample Matrix:WaterDate Received:12/26/24 14:25Sample Name:MW-5Basis:NALab Code:K2413612-002K2413612-002

	Analysis							
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Carbon, Total Organic	SM 5310 C	22.4	mg/L	2.0	0.4	4	01/03/25 14:01	

Analytical ReportClient:Apex LaboratoriesService Request:K2413612Project:A4L1552Date Collected:12/18/24 09:55Sample Matrix:WaterDate Received:12/26/24 14:25Sample Name:MW-6Basis:NALab Code:K2413612-003K2413612-003

	Analysis							
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Carbon, Total Organic	SM 5310 C	4.20	mg/L	0.50	0.08	1	01/03/25 14:01	

Analytical ReportClient:Apex LaboratoriesService Request:K2413612Project:A4L1552Date Collected:12/18/2412:05Sample Matrix:WaterDate Received:12/26/2414:25Sample Name:MW-20Basis:NALab Code:K2413612-004K2413612-004

	Analysis							
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Carbon, Total Organic	SM 5310 C	32.8	mg/L	2.0	0.4	4	01/03/25 14:01	

QC Summary Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

	Analyti	cal Report	
Client:	Apex Laboratories	Service Request:	K2413612
Project:	A4L1552	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA
Sample Name:	Method Blank	Basis:	NA
Lab Code:	K2413612-MB		

	Analysis							
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Carbon, Total Organic	SM 5310 C	ND U	mg/L	0.50	0.08	1	01/03/25 14:01	

QA/QC Report

Client:	Apex Laborat	ories		Service R	equest:	K241361	2
Project:	A4L1552			Date Anal	lyzed:	01/03/25	
Sample Matrix:	Water			Date Extr	acted:	NA	
		I	ab Control Sample Summary				
			Carbon, Total Organic				
Analysis Method:	SM 5310 C			Units:		mg/L	
Prep Method:	None			Basis:		NA	
				Analysis I	Lot:	866041	
Sample Name		Lab Code	Result	Spike Amount	% Rec	2	% Rec Limits
Lab Control Sample		K2413612-LCS	23.8	25.0	95		83-117

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Monday, January 6, 2025 Dan Hatch Bluestone Environmental NW 20204 SE 284th Street Kent, WA 98042

RE: A4L1255 - Auburn VW - BE-0107-E

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A4L1255, which was received by the laboratory on 12/13/2024 at 11:20:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <u>cobrien@apex-labs.com</u>, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

Acceptable Receipt Temperature is less than, or equal to, 6 degC (not frozen), or received on ice the same day as sampling.

(See Cooler Receipt Form for details)

Default Cooler 4.4 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW	Project: <u>Auburn</u>	VW
20204 SE 284th Street	Project Number: BE-010	7-E <u>Report ID:</u>
Kent, WA 98042	Project Manager: Dan Ha	tch A4L1255 - 01 06 25 1919

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION										
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received						
MW-6-5	A4L1255-01	Soil	12/10/24 09:30	12/13/24 11:20						
MW-6-7	A4L1255-02	Soil	12/10/24 09:35	12/13/24 11:20						
MW-6-12	A4L1255-04	Soil	12/10/24 09:40	12/13/24 11:20						
MW-7-5	A4L1255-06	Soil	12/10/24 11:30	12/13/24 11:20						
MW-7-10	A4L1255-08	Soil	12/10/24 11:40	12/13/24 11:20						
MW-8-5	A4L1255-09	Soil	12/10/24 12:30	12/13/24 11:20						
MW-8-10	A4L1255-10	Soil	12/10/24 12:35	12/13/24 11:20						
MW-9-5	A4L1255-12	Soil	12/10/24 15:00	12/13/24 11:20						
MW-9-10	A4L1255-13	Soil	12/10/24 15:05	12/13/24 11:20						
MW-10-5	A4L1255-15	Soil	12/11/24 08:40	12/13/24 11:20						
MW-10-8	A4L1255-16	Soil	12/11/24 08:45	12/13/24 11:20						
MW-11-6	A4L1255-19	Soil	12/11/24 10:20	12/13/24 11:20						
MW-11-10	A4L1255-20	Soil	12/11/24 10:25	12/13/24 11:20						
MW-12-6	A4L1255-22	Soil	12/11/24 12:40	12/13/24 11:20						
MW-12-10	A4L1255-23	Soil	12/11/24 12:45	12/13/24 11:20						
MW-13-5	A4L1255-25	Soil	12/11/24 14:30	12/13/24 11:20						
MW-13-12	A4L1255-26	Soil	12/11/24 14:35	12/13/24 11:20						

Apex Laboratories

Cameron O'Brien, Project Manager

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1255 - 01 06 25 1919

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
MW-7-10 (A4L1255-08)				Matrix: Soil		Batch:	24L0573	DCNT
Gasoline Range Organics	ND		25.2	mg/kg dry	1	12/17/24 01:35	NWTPH-HCID	
Diesel Range Organics	ND		63.1	mg/kg dry	1	12/17/24 01:35	NWTPH-HCID	
Oil Range Organics	ND		126	mg/kg dry	1	12/17/24 01:35	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 66 %	Limits: 50-150 %	1	12/17/24 01:35	NWTPH-HCID	
4-Bromofluorobenzene (Surr)	·		65 %	50-150 %	1	12/17/24 01:35	NWTPH-HCID	
MW-8-10 (A4L1255-10)				Matrix: Soil		Batch:	24L0573	DCNT
Gasoline Range Organics	ND		25.0	mg/kg dry	1	12/17/24 02:22	NWTPH-HCID	
Diesel Range Organics	ND		62.4	mg/kg dry	1	12/17/24 02:22	NWTPH-HCID	
Oil Range Organics	ND		125	mg/kg dry	1	12/17/24 02:22	NWTPH-HCID	_
Surrogate: o-Terphenyl (Surr)		Recove	ery: 79 %	Limits: 50-150 %	1	12/17/24 02:22	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			78 %	50-150 %	1	12/17/24 02:22	NWTPH-HCID	
MW-9-10 (A4L1255-13)				Matrix: Soil		Batch:	24L0573	DCNT
Gasoline Range Organics	ND		26.0	mg/kg dry	1	12/17/24 02:45	NWTPH-HCID	
Diesel Range Organics	ND		64.9	mg/kg dry	1	12/17/24 02:45	NWTPH-HCID	
Oil Range Organics	ND		130	mg/kg dry	1	12/17/24 02:45	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 79 %	Limits: 50-150 %	1	12/17/24 02:45	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			76 %	50-150 %	1	12/17/24 02:45	NWTPH-HCID	
MW-10-8 (A4L1255-16)				Matrix: Soil		Batch:	24L0573	DCNT
Gasoline Range Organics	ND		27.3	mg/kg dry	1	12/17/24 03:08	NWTPH-HCID	
Diesel Range Organics	ND		68.3	mg/kg dry	1	12/17/24 03:08	NWTPH-HCID	
Oil Range Organics	ND		137	mg/kg dry	1	12/17/24 03:08	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recove	2ry: 84 %	Limits: 50-150 %	1	12/17/24 03:08	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			83 %	50-150 %	1	12/17/24 03:08	NWTPH-HCID	
MW-11-10 (A4L1255-20)				Matrix: Soil		Batch:	24L0573	
Gasoline Range Organics	ND		24.5	mg/kg dry	1	12/17/24 03:32	NWTPH-HCID	
Diesel Range Organics	ND		61.4	mg/kg dry	1	12/17/24 03:32	NWTPH-HCID	
Oil Range Organics	ND		123	mg/kg dry	1	12/17/24 03:32	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 83 %	Limits: 50-150 %	1	12/17/24 03:32	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			77 %	50-150 %	1	12/17/24 03:32	NWTPH-HCID	
MW-12-10 (A4I 1255-23)				Matrix: Soil		Ratch	241 0573	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

ANALYTICAL SAMPLE RESULTS

	Hydro	carbon Ident	ification Sc	creen by NWTP	H-HCID			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-12-10 (A4L1255-23)				Matrix: Soil		Batch:	24L0573	
Gasoline Range Organics	ND		25.3	mg/kg dry	1	12/17/24 03:55	NWTPH-HCID	
Diesel Range Organics	ND		63.4	mg/kg dry	1	12/17/24 03:55	NWTPH-HCID	
Oil Range Organics	ND		127	mg/kg dry	1	12/17/24 03:55	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 75 %	Limits: 50-150 %	5 1	12/17/24 03:55	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			71 %	50-150 %	5 1	12/17/24 03:55	NWTPH-HCID	
MW-13-12 (A4L1255-26)				Matrix: Soil		Batch	24L0573	DCNT
Gasoline Range Organics	ND		23.7	mg/kg dry	1	12/17/24 04:18	NWTPH-HCID	
Diesel Range Organics	ND		59.2	mg/kg dry	1	12/17/24 04:18	NWTPH-HCID	
Oil Range Organics	DET		118	mg/kg dry	1	12/17/24 04:18	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 80 %	Limits: 50-150 %	5 I	12/17/24 04:18	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			75 %	50-150 %	5 I	12/17/24 04:18	NWTPH-HCID	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project:Auburn VWProject NumberBE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1255 - 01 06 25 1919

ANALYTICAL SAMPLE RESULTS

	Die	sel and/or O	il Hydrocar	bons by NWTPI	H-Dx			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-6-7 (A4L1255-02)				Matrix: Soil		Batch:	24L0717	DCNT
Diesel	109		23.4	mg/kg dry	1	12/19/24 23:46	NWTPH-Dx	
Oil	ND		46.9	mg/kg dry	1	12/19/24 23:46	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	very: 87 %	Limits: 50-150 %	1	12/19/24 23:46	NWTPH-Dx	
MW-6-12 (A4L1255-04)				Matrix: Soil		Batch:	24L0717	
Diesel	ND		25.5	mg/kg dry	1	12/20/24 00:07	NWTPH-Dx	
Oil	ND		51.0	mg/kg dry	1	12/20/24 00:07	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	very: 82 %	Limits: 50-150 %	1	12/20/24 00:07	NWTPH-Dx	
MW-13-12 (A4L1255-26)				Matrix: Soil		Batch:	24L0717	DCNT
Diesel	ND		41.7	mg/kg dry	2	12/20/24 07:04	NWTPH-Dx	
Oil	102		83.3	mg/kg dry	2	12/20/24 07:04	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recon	very: 90 %	Limits: 50-150 %	2	12/20/24 07:04	NWTPH-Dx	S-05

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1255 - 01 06 25 1919

ANALYTICAL SAMPLE RESULTS

Gasoli	Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units		Dilution	Date Analyzed	Method Ref.	Notes		
MW-6-7 (A4L1255-02)				Matrix: Soil Batch: 24L0596				: 24L0596			
Gasoline Range Organics	347		7.78	mg/kg c	dry	50	12/17/24 13:28	NWTPH-Gx (MS)			
Surrogate: 4-Bromofluorobenzene (Sur)		Recove	ery: 111 %	Limits: 50-	150 %	1	12/17/24 13:28	NWTPH-Gx (MS)			
1,4-Difluorobenzene (Sur)			98 %	50-	150 %	1	12/17/24 13:28	NWTPH-Gx (MS)			
MW-6-12 (A4L1255-04)				Matrix:	Soil		Batch	: 24L0596			
Gasoline Range Organics	38.4		8.11	mg/kg c	dry	50	12/17/24 12:05	NWTPH-Gx (MS)			
Surrogate: 4-Bromofluorobenzene (Sur)		Recove	ry: 100 %	Limits: 50-	150 %	1	12/17/24 12:05	NWTPH-Gx (MS)			
1,4-Difluorobenzene (Sur)			96 %	50-	·150 %	1	12/17/24 12:05	NWTPH-Gx (MS)			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1255 - 01 06 25 1919

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compoun	ds by EPA 82	60D			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-6-7 (A4L1255-02)				Matrix: Soil		Batch: 24L0596		
Acetone	ND		1.56	mg/kg dry	50	12/17/24 13:28	5035A/8260D	
Acrylonitrile	ND		0.156	mg/kg dry	50	12/17/24 13:28	5035A/8260D	
Benzene	ND		0.0156	mg/kg dry	50	12/17/24 13:28	5035A/8260D	
Bromobenzene	ND		0.0389	mg/kg dry	50	12/17/24 13:28	5035A/8260D	
Bromochloromethane	ND		0.0778	mg/kg dry	50	12/17/24 13:28	5035A/8260D	
Bromodichloromethane	ND		0.0778	mg/kg dry	50	12/17/24 13:28	5035A/8260D	
Bromoform	ND		0.156	mg/kg dry	50	12/17/24 13:28	5035A/8260D	
Bromomethane	ND		0.778	mg/kg dry	50	12/17/24 13:28	5035A/8260D	
2-Butanone (MEK)	ND		0.778	mg/kg dry	50	12/17/24 13:28	5035A/8260D	
n-Butylbenzene	2.12		0.0778	mg/kg dry	50	12/17/24 13:28	5035A/8260D	
sec-Butylbenzene	1.58		0.0778	mg/kg dry	50	12/17/24 13:28	5035A/8260D	
tert-Butylbenzene	ND		0.0778	mg/kg dry	50	12/17/24 13:28	5035A/8260D	
Carbon disulfide	ND		0.778	mg/kg dry	50	12/17/24 13:28	5035A/8260D	
Carbon tetrachloride	ND		0.0778	mg/kg dry	50	12/17/24 13:28	5035A/8260D	
Chlorobenzene	ND		0.0389	mg/kg drv	50	12/17/24 13:28	5035A/8260D	
Chloroethane	ND		0.778	mg/kg drv	50	12/17/24 13:28	5035A/8260D	
Chloroform	ND		0.0778	mg/kg drv	50	12/17/24 13:28	5035A/8260D	
Chloromethane	ND		0.389	mg/kg drv	50	12/17/24 13:28	5035A/8260D	
2-Chlorotoluene	ND		0.0778	mg/kg drv	50	12/17/24 13:28	5035A/8260D	
4-Chlorotoluene	ND		0.0778	mg/kg drv	50	12/17/24 13:28	5035A/8260D	
Dibromochloromethane	ND		0.156	mg/kg drv	50	12/17/24 13:28	5035A/8260D	
1.2-Dibromo-3-chloropropane	ND		0.389	mg/kg dry	50	12/17/24 13:28	5035A/8260D	
1 2-Dibromoethane (EDB)	ND		0.0778	mg/kg dry	50	12/17/24 13:28	5035A/8260D	
Dibromomethane	ND		0.0778	mg/kg dry	50	12/17/24 13:28	5035A/8260D	
1.2-Dichlorobenzene	ND		0.0389	mg/kg dry	50	12/17/24 13:28	5035A/8260D	
1 3-Dichlorobenzene	ND		0.0389	mg/kg dry	50	12/17/24 13:28	5035A/8260D	
1 4-Dichlorobenzene	ND		0.0389	mg/kg dry	50	12/17/24 13:28	5035A/8260D	
Dichlorodifluoromethane	ND		0.156	mg/kg dry	50	12/17/24 13:28	5035A/8260D	
1 1-Dichloroethane	ND		0.0389	mg/kg dry	50	12/17/24 13:28	5035A/8260D	
1.2-Dichloroethane (EDC)	ND		0.0389	mg/kg dry	50	12/17/24 13:28	5035A/8260D	
1 1-Dichloroethene	ND		0.0389	mg/kg dry	50	12/17/24 13:28	5035A/8260D	
cis 1.2 Dichloroethene	ND		0.0389	mg/kg dry	50	12/17/24 13:28	5035A/8260D	
trang 1.2 Dichloroothono	ND		0.0389	mg/kg dry	50	12/17/24 13:28	50354/8260D	
1.2 Dichloropropage			0.0369	mg/kg ury	50	12/17/24 13:28	5035A/8260D	
1.2 Dichloropropane			0.0389	mg/kg ury	50	12/17/24 13.20	50354/8260D	
2.2 Dichloropropane			0.0779	mg/kg ury	50	12/17/24 13.20	50354/82600	
2,2-Dichloropropane	ND		0.0770	mg/kg ary	50	12/17/24 13:28	5025A/8260D	
1,1-Dichloropropene	ND		0.0778	mg/kg dry	50	12/1//24 13:28	3033A/8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project: Auburn VW Project Number: **BE-0107-E** Project Manager: Dan Hatch

Report ID: A4L1255 - 01 06 25 1919

ANALYTICAL SAMPLE RESULTS

	V	olatile Organi	c Compou	nds by EPA 826	0D				
	Sample	Detection	Reporting			Date			
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes	
MW-6-7 (A4L1255-02)				Matrix: Soil		Batch:	Batch: 24L0596		
cis-1,3-Dichloropropene	ND		0.0778	mg/kg dry	50	12/17/24 13:28	5035A/8260D		
trans-1,3-Dichloropropene	ND		0.0778	mg/kg dry	50	12/17/24 13:28	5035A/8260D		
Ethylbenzene	ND		0.0389	mg/kg dry	50	12/17/24 13:28	5035A/8260D		
Hexachlorobutadiene	ND		0.156	mg/kg dry	50	12/17/24 13:28	5035A/8260D		
2-Hexanone	ND		0.778	mg/kg dry	50	12/17/24 13:28	5035A/8260D		
Isopropylbenzene	0.204		0.0778	mg/kg dry	50	12/17/24 13:28	5035A/8260D		
4-Isopropyltoluene	ND		0.0778	mg/kg dry	50	12/17/24 13:28	5035A/8260D		
Methylene chloride	ND		0.778	mg/kg dry	50	12/17/24 13:28	5035A/8260D		
4-Methyl-2-pentanone (MiBK)	ND		1.24	mg/kg dry	50	12/17/24 13:28	5035A/8260D	R-02	
Methyl tert-butyl ether (MTBE)	ND		0.0778	mg/kg dry	50	12/17/24 13:28	5035A/8260D		
Naphthalene	0.730		0.156	mg/kg dry	50	12/17/24 13:28	5035A/8260D		
n-Propylbenzene	1.32		0.0389	mg/kg dry	50	12/17/24 13:28	5035A/8260D		
Styrene	ND		0.0778	mg/kg dry	50	12/17/24 13:28	5035A/8260D		
1,1,1,2-Tetrachloroethane	ND		0.0389	mg/kg dry	50	12/17/24 13:28	5035A/8260D		
1,1,2,2-Tetrachloroethane	ND		0.0778	mg/kg dry	50	12/17/24 13:28	5035A/8260D		
Tetrachloroethene (PCE)	ND		0.0389	mg/kg dry	50	12/17/24 13:28	5035A/8260D		
Toluene	ND		0.0778	mg/kg dry	50	12/17/24 13:28	5035A/8260D		
1,2,3-Trichlorobenzene	ND		0.389	mg/kg dry	50	12/17/24 13:28	5035A/8260D		
1,2,4-Trichlorobenzene	ND		0.389	mg/kg dry	50	12/17/24 13:28	5035A/8260D		
1,1,1-Trichloroethane	ND		0.0389	mg/kg dry	50	12/17/24 13:28	5035A/8260D		
1,1,2-Trichloroethane	ND		0.0389	mg/kg dry	50	12/17/24 13:28	5035A/8260D		
Trichloroethene (TCE)	ND		0.0389	mg/kg dry	50	12/17/24 13:28	5035A/8260D		
Trichlorofluoromethane	ND		0.389	mg/kg dry	50	12/17/24 13:28	5035A/8260D		
1,2,3-Trichloropropane	ND		0.0778	mg/kg dry	50	12/17/24 13:28	5035A/8260D		
1,2,4-Trimethylbenzene	ND		0.0778	mg/kg dry	50	12/17/24 13:28	5035A/8260D		
1,3,5-Trimethylbenzene	ND		0.0778	mg/kg dry	50	12/17/24 13:28	5035A/8260D		
Vinyl chloride	ND		0.0389	mg/kg dry	50	12/17/24 13:28	5035A/8260D		
m,p-Xylene	ND		0.0778	mg/kg dry	50	12/17/24 13:28	5035A/8260D		
o-Xylene	ND		0.0389	mg/kg dry	50	12/17/24 13:28	5035A/8260D		
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	y: 102 %	Limits: 80-120 %	1	12/17/24 13:28	5035A/8260D		
Toluene-d8 (Surr)			95 %	80-120 %	1	12/17/24 13:28	5035A/8260D		
4-Bromofluorobenzene (Surr)			100 %	79-120 %	1	12/17/24 13:28	5035A/8260D		
				Matrius Call		Detaha	041.0500		

MW-6-12 ((A4L1255-04)
-----------	--------------

WWV-6-12 (A4L1255-04)				Matrix: Soli		Batch: 24	10000
Acetone	ND		1.62	mg/kg dry	50	12/17/24 12:05	5035A/8260D
Acrylonitrile	ND		0.162	mg/kg dry	50	12/17/24 12:05	5035A/8260D
Benzene	ND		0.0162	mg/kg dry	50	12/17/24 12:05	5035A/8260D

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1255 - 01 06 25 1919

ANALYTICAL SAMPLE RESULTS

	v	olatile Organ	ic Compoun	ds by EPA 82	60D			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-6-12 (A4L1255-04)				Matrix: Soi	I	Batch: 24L0596		
Bromobenzene	ND		0.0406	mg/kg dry	50	12/17/24 12:05	5035A/8260D	
Bromochloromethane	ND		0.0811	mg/kg dry	50	12/17/24 12:05	5035A/8260D	
Bromodichloromethane	ND		0.0811	mg/kg dry	50	12/17/24 12:05	5035A/8260D	
Bromoform	ND		0.162	mg/kg dry	50	12/17/24 12:05	5035A/8260D	
Bromomethane	ND		0.811	mg/kg dry	50	12/17/24 12:05	5035A/8260D	
2-Butanone (MEK)	ND		0.811	mg/kg dry	50	12/17/24 12:05	5035A/8260D	
n-Butylbenzene	0.496		0.0811	mg/kg dry	50	12/17/24 12:05	5035A/8260D	
sec-Butylbenzene	0.391		0.0811	mg/kg dry	50	12/17/24 12:05	5035A/8260D	
tert-Butylbenzene	ND		0.0811	mg/kg dry	50	12/17/24 12:05	5035A/8260D	
Carbon disulfide	ND		0.811	mg/kg dry	50	12/17/24 12:05	5035A/8260D	
Carbon tetrachloride	ND		0.0811	mg/kg dry	50	12/17/24 12:05	5035A/8260D	
Chlorobenzene	ND		0.0406	mg/kg dry	50	12/17/24 12:05	5035A/8260D	
Chloroethane	ND		0.811	mg/kg dry	50	12/17/24 12:05	5035A/8260D	
Chloroform	ND		0.0811	mg/kg dry	50	12/17/24 12:05	5035A/8260D	
Chloromethane	ND		0.406	mg/kg dry	50	12/17/24 12:05	5035A/8260D	
2-Chlorotoluene	ND		0.0811	mg/kg dry	50	12/17/24 12:05	5035A/8260D	
4-Chlorotoluene	ND		0.0811	mg/kg drv	50	12/17/24 12:05	5035A/8260D	
Dibromochloromethane	ND		0.162	mg/kg drv	50	12/17/24 12:05	5035A/8260D	
1.2-Dibromo-3-chloropropane	ND		0.406	mg/kg drv	50	12/17/24 12:05	5035A/8260D	
1.2-Dibromoethane (EDB)	ND		0.0811	mg/kg drv	50	12/17/24 12:05	5035A/8260D	
Dibromomethane	ND		0.0811	mg/kg drv	50	12/17/24 12:05	5035A/8260D	
1.2-Dichlorobenzene	ND		0.0406	mg/kg drv	50	12/17/24 12:05	5035A/8260D	
1.3-Dichlorobenzene	ND		0.0406	mg/kg drv	50	12/17/24 12:05	5035A/8260D	
1.4-Dichlorobenzene	ND		0.0406	mg/kg drv	50	12/17/24 12:05	5035A/8260D	
Dichlorodifluoromethane	ND		0.162	mg/kg drv	50	12/17/24 12:05	5035A/8260D	
1.1-Dichloroethane	ND		0.0406	mg/kg drv	50	12/17/24 12:05	5035A/8260D	
1.2-Dichloroethane (EDC)	ND		0.0406	mg/kg dry	50	12/17/24 12:05	5035A/8260D	
1.1-Dichloroethene	ND		0.0406	mg/kg dry	50	12/17/24 12:05	5035A/8260D	
cis-1.2-Dichloroethene	ND		0.0406	mg/kg dry	50	12/17/24 12:05	5035A/8260D	
trans-1.2-Dichloroethene	ND		0.0406	mg/kg dry	50	12/17/24 12:05	5035A/8260D	
1.2-Dichloropropane	ND		0.0406	mg/kg dry	50	12/17/24 12:05	5035A/8260D	
1.3-Dichloropropane	ND		0.0811	mg/kg dry	50	12/17/24 12:05	5035A/8260D	
2 2-Dichloropropane	ND		0.0811	mg/kg dry	50	12/17/24 12:05	5035A/8260D	
1 1-Dichloropropene	ND		0.0811	mg/kg dry	50	12/17/24 12:05	5035A/8260D	
cis-1 3-Dichloropropene	ND		0.0811	mg/kg dry	50	12/17/24 12:05	5035A/8260D	
trans-1 3-Dichloropropene	ND		0.0811	mg/kg dry	50	12/17/24 12:05	5035A/8260D	
Ethylhenzene			0.0011	mg/kg dry	50	12/17/24 12:05	5035A/8260D	
Euryidenzene	ND		0.0400	mg/kg dry	50	12/1//27 12:03	5055140200D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1255 - 01 06 25 1919

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D											
	Sample	Detection	Reporting			Date					
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes			
MW-6-12 (A4L1255-04)				Matrix: Soil		Batch:	24L0596				
Hexachlorobutadiene	ND		0.162	mg/kg dry	50	12/17/24 12:05	5035A/8260D				
2-Hexanone	ND		0.811	mg/kg dry	50	12/17/24 12:05	5035A/8260D				
Isopropylbenzene	0.0965		0.0811	mg/kg dry	50	12/17/24 12:05	5035A/8260D				
4-Isopropyltoluene	ND		0.0811	mg/kg dry	50	12/17/24 12:05	5035A/8260D				
Methylene chloride	ND		0.811	mg/kg dry	50	12/17/24 12:05	5035A/8260D				
4-Methyl-2-pentanone (MiBK)	ND		0.811	mg/kg dry	50	12/17/24 12:05	5035A/8260D				
Methyl tert-butyl ether (MTBE)	ND		0.0811	mg/kg dry	50	12/17/24 12:05	5035A/8260D				
Naphthalene	1.55		0.162	mg/kg dry	50	12/17/24 12:05	5035A/8260D				
n-Propylbenzene	1.00		0.0406	mg/kg dry	50	12/17/24 12:05	5035A/8260D				
Styrene	ND		0.0811	mg/kg dry	50	12/17/24 12:05	5035A/8260D				
1,1,1,2-Tetrachloroethane	ND		0.0406	mg/kg dry	50	12/17/24 12:05	5035A/8260D				
1,1,2,2-Tetrachloroethane	ND		0.0811	mg/kg dry	50	12/17/24 12:05	5035A/8260D				
Tetrachloroethene (PCE)	ND		0.0406	mg/kg dry	50	12/17/24 12:05	5035A/8260D				
Toluene	ND		0.0811	mg/kg dry	50	12/17/24 12:05	5035A/8260D				
1,2,3-Trichlorobenzene	ND		0.406	mg/kg dry	50	12/17/24 12:05	5035A/8260D				
1,2,4-Trichlorobenzene	ND		0.406	mg/kg dry	50	12/17/24 12:05	5035A/8260D				
1,1,1-Trichloroethane	ND		0.0406	mg/kg dry	50	12/17/24 12:05	5035A/8260D				
1,1,2-Trichloroethane	ND		0.0406	mg/kg dry	50	12/17/24 12:05	5035A/8260D				
Trichloroethene (TCE)	ND		0.0406	mg/kg dry	50	12/17/24 12:05	5035A/8260D				
Trichlorofluoromethane	ND		0.406	mg/kg dry	50	12/17/24 12:05	5035A/8260D				
1,2,3-Trichloropropane	ND		0.0811	mg/kg dry	50	12/17/24 12:05	5035A/8260D				
1,2,4-Trimethylbenzene	ND		0.0811	mg/kg dry	50	12/17/24 12:05	5035A/8260D				
1,3,5-Trimethylbenzene	ND		0.0811	mg/kg dry	50	12/17/24 12:05	5035A/8260D				
Vinyl chloride	ND		0.0406	mg/kg dry	50	12/17/24 12:05	5035A/8260D				
m,p-Xylene	0.0892		0.0811	mg/kg dry	50	12/17/24 12:05	5035A/8260D				
o-Xylene	ND		0.0406	mg/kg dry	50	12/17/24 12:05	5035A/8260D				
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	100 %	Limits: 80-120 %	1	12/17/24 12:05	5035A/8260D				
Toluene-d8 (Surr)			98 %	80-120 %	1	12/17/24 12:05	5035A/8260D				
4-Bromofluorobenzene (Surr)			98 %	79-120 %	1	12/17/24 12:05	5035A/8260D				
MW-9-10 (A4L1255-13)				Matrix: Soil		Batch:	24L0596				
Acetone	ND		1.44	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
Acrylonitrile	ND		0.144	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
Benzene	ND		0.0144	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
Bromobenzene	ND		0.0361	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
Bromochloromethane	ND		0.0722	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
Bromodichloromethane	ND		0.0722	mg/kg dry	50	12/17/24 12:33	5035A/8260D				

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1255 - 01 06 25 1919

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D											
	Sample	Detection	Reporting			Date					
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes			
MW-9-10 (A4L1255-13)				Matrix: Soi	I	Batch:	24L0596				
Bromoform	ND		0.144	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
Bromomethane	ND		0.722	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
2-Butanone (MEK)	ND		0.722	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
n-Butylbenzene	ND		0.0722	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
sec-Butylbenzene	ND		0.0722	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
tert-Butylbenzene	ND		0.0722	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
Carbon disulfide	ND		0.722	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
Carbon tetrachloride	ND		0.0722	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
Chlorobenzene	ND		0.0361	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
Chloroethane	ND		0.722	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
Chloroform	ND		0.0722	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
Chloromethane	ND		0.361	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
2-Chlorotoluene	ND		0.0722	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
4-Chlorotoluene	ND		0.0722	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
Dibromochloromethane	ND		0.144	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
1,2-Dibromo-3-chloropropane	ND		0.361	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
1,2-Dibromoethane (EDB)	ND		0.0722	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
Dibromomethane	ND		0.0722	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
1,2-Dichlorobenzene	ND		0.0361	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
1,3-Dichlorobenzene	ND		0.0361	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
1,4-Dichlorobenzene	ND		0.0361	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
Dichlorodifluoromethane	ND		0.144	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
1,1-Dichloroethane	ND		0.0361	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
1,2-Dichloroethane (EDC)	ND		0.0361	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
1,1-Dichloroethene	ND		0.0361	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
cis-1,2-Dichloroethene	ND		0.0361	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
trans-1.2-Dichloroethene	ND		0.0361	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
1,2-Dichloropropane	ND		0.0361	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
1,3-Dichloropropane	ND		0.0722	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
2,2-Dichloropropane	ND		0.0722	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
1,1-Dichloropropene	ND		0.0722	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
cis-1,3-Dichloropropene	ND		0.0722	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
trans-1.3-Dichloropropene	ND		0.0722	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
Ethylbenzene	ND		0.0361	mg/kg dry	50	12/17/24 12:33	5035A/8260D				
Hexachlorobutadiene	ND		0.144	mg/kg drv	50	12/17/24 12:33	5035A/8260D				
2-Hexanone	ND		0.722	mg/kg drv	50	12/17/24 12:33	5035A/8260D				
Isopropylbenzene	ND		0.0722	mg/kg drv	50	12/17/24 12:33	5035A/8260D				
1 17			=								

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1255 - 01 06 25 1919

ANALYTICAL SAMPLE RESULTS

	V	olatile Organi	ic Compou	nds by EPA 826	0D			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-9-10 (A4L1255-13)				Matrix: Soil		Batch:	24L0596	
4-Isopropyltoluene	ND		0.0722	mg/kg dry	50	12/17/24 12:33	5035A/8260D	
Methylene chloride	ND		0.722	mg/kg dry	50	12/17/24 12:33	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND		0.722	mg/kg dry	50	12/17/24 12:33	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND		0.0722	mg/kg dry	50	12/17/24 12:33	5035A/8260D	
Naphthalene	ND		0.144	mg/kg dry	50	12/17/24 12:33	5035A/8260D	
n-Propylbenzene	ND		0.0361	mg/kg dry	50	12/17/24 12:33	5035A/8260D	
Styrene	ND		0.0722	mg/kg dry	50	12/17/24 12:33	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND		0.0361	mg/kg dry	50	12/17/24 12:33	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND		0.0722	mg/kg dry	50	12/17/24 12:33	5035A/8260D	
Tetrachloroethene (PCE)	ND		0.0361	mg/kg dry	50	12/17/24 12:33	5035A/8260D	
Toluene	ND		0.0722	mg/kg dry	50	12/17/24 12:33	5035A/8260D	
1,2,3-Trichlorobenzene	ND		0.361	mg/kg dry	50	12/17/24 12:33	5035A/8260D	
1,2,4-Trichlorobenzene	ND		0.361	mg/kg dry	50	12/17/24 12:33	5035A/8260D	
1,1,1-Trichloroethane	ND		0.0361	mg/kg dry	50	12/17/24 12:33	5035A/8260D	
1,1,2-Trichloroethane	ND		0.0361	mg/kg dry	50	12/17/24 12:33	5035A/8260D	
Trichloroethene (TCE)	ND		0.0361	mg/kg dry	50	12/17/24 12:33	5035A/8260D	
Trichlorofluoromethane	ND		0.361	mg/kg dry	50	12/17/24 12:33	5035A/8260D	
1,2,3-Trichloropropane	ND		0.0722	mg/kg dry	50	12/17/24 12:33	5035A/8260D	
1,2,4-Trimethylbenzene	ND		0.0722	mg/kg dry	50	12/17/24 12:33	5035A/8260D	
1,3,5-Trimethylbenzene	ND		0.0722	mg/kg dry	50	12/17/24 12:33	5035A/8260D	
Vinyl chloride	ND		0.0361	mg/kg dry	50	12/17/24 12:33	5035A/8260D	
m,p-Xylene	ND		0.0722	mg/kg dry	50	12/17/24 12:33	5035A/8260D	
o-Xylene	ND		0.0361	mg/kg dry	50	12/17/24 12:33	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ry: 101 %	Limits: 80-120 %	1	12/17/24 12:33	5035A/8260D	
Toluene-d8 (Surr)			96 %	80-120 %	1	12/17/24 12:33	5035A/8260D	
4-Bromofluorobenzene (Surr)			99 %	79-120 %	1	12/17/24 12:33	5035A/8260D	
MW-10-8 (A4L1255-16)				Matrix: Soil		Batch:	24L0596	
Acetone	ND		1.36	mg/kg dry	50	12/17/24 13:00	5035A/8260D	

Acetone	ND	 1.36	mg/kg dry	50	12/17/24 13:00	5035A/8260D
Acrylonitrile	ND	 0.136	mg/kg dry	50	12/17/24 13:00	5035A/8260D
Benzene	ND	 0.0136	mg/kg dry	50	12/17/24 13:00	5035A/8260D
Bromobenzene	ND	 0.0340	mg/kg dry	50	12/17/24 13:00	5035A/8260D
Bromochloromethane	ND	 0.0680	mg/kg dry	50	12/17/24 13:00	5035A/8260D
Bromodichloromethane	ND	 0.0680	mg/kg dry	50	12/17/24 13:00	5035A/8260D
Bromoform	ND	 0.136	mg/kg dry	50	12/17/24 13:00	5035A/8260D
Bromomethane	ND	 0.680	mg/kg dry	50	12/17/24 13:00	5035A/8260D
2-Butanone (MEK)	ND	 0.680	mg/kg dry	50	12/17/24 13:00	5035A/8260D

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1255 - 01 06 25 1919

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compoun	ds by EPA 82	60D			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-10-8 (A4L1255-16)				Matrix: Soi	I	Batch:	24L0596	
n-Butylbenzene	ND		0.0680	mg/kg dry	50	12/17/24 13:00	5035A/8260D	
sec-Butylbenzene	ND		0.0680	mg/kg dry	50	12/17/24 13:00	5035A/8260D	
tert-Butylbenzene	ND		0.0680	mg/kg dry	50	12/17/24 13:00	5035A/8260D	
Carbon disulfide	ND		0.680	mg/kg dry	50	12/17/24 13:00	5035A/8260D	
Carbon tetrachloride	ND		0.0680	mg/kg dry	50	12/17/24 13:00	5035A/8260D	
Chlorobenzene	ND		0.0340	mg/kg dry	50	12/17/24 13:00	5035A/8260D	
Chloroethane	ND		0.680	mg/kg dry	50	12/17/24 13:00	5035A/8260D	
Chloroform	ND		0.0680	mg/kg dry	50	12/17/24 13:00	5035A/8260D	
Chloromethane	ND		0.340	mg/kg dry	50	12/17/24 13:00	5035A/8260D	
2-Chlorotoluene	ND		0.0680	mg/kg dry	50	12/17/24 13:00	5035A/8260D	
4-Chlorotoluene	ND		0.0680	mg/kg dry	50	12/17/24 13:00	5035A/8260D	
Dibromochloromethane	ND		0.136	mg/kg dry	50	12/17/24 13:00	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND		0.340	mg/kg dry	50	12/17/24 13:00	5035A/8260D	
1,2-Dibromoethane (EDB)	ND		0.0680	mg/kg dry	50	12/17/24 13:00	5035A/8260D	
Dibromomethane	ND		0.0680	mg/kg dry	50	12/17/24 13:00	5035A/8260D	
1,2-Dichlorobenzene	ND		0.0340	mg/kg dry	50	12/17/24 13:00	5035A/8260D	
1,3-Dichlorobenzene	ND		0.0340	mg/kg dry	50	12/17/24 13:00	5035A/8260D	
1.4-Dichlorobenzene	ND		0.0340	mg/kg drv	50	12/17/24 13:00	5035A/8260D	
Dichlorodifluoromethane	ND		0.136	mg/kg dry	50	12/17/24 13:00	5035A/8260D	
1,1-Dichloroethane	ND		0.0340	mg/kg dry	50	12/17/24 13:00	5035A/8260D	
1,2-Dichloroethane (EDC)	ND		0.0340	mg/kg dry	50	12/17/24 13:00	5035A/8260D	
1,1-Dichloroethene	ND		0.0340	mg/kg dry	50	12/17/24 13:00	5035A/8260D	
cis-1.2-Dichloroethene	ND		0.0340	mg/kg drv	50	12/17/24 13:00	5035A/8260D	
trans-1.2-Dichloroethene	ND		0.0340	mg/kg drv	50	12/17/24 13:00	5035A/8260D	
1.2-Dichloropropane	ND		0.0340	mg/kg drv	50	12/17/24 13:00	5035A/8260D	
1,3-Dichloropropane	ND		0.0680	mg/kg dry	50	12/17/24 13:00	5035A/8260D	
2.2-Dichloropropane	ND		0.0680	mg/kg drv	50	12/17/24 13:00	5035A/8260D	
1.1-Dichloropropene	ND		0.0680	mg/kg drv	50	12/17/24 13:00	5035A/8260D	
cis-1.3-Dichloropropene	ND		0.0680	mg/kg drv	50	12/17/24 13:00	5035A/8260D	
trans-1.3-Dichloropropene	ND		0.0680	mg/kg drv	50	12/17/24 13:00	5035A/8260D	
Ethylbenzene	ND		0.0340	mg/kg drv	50	12/17/24 13:00	5035A/8260D	
Hexachlorobutadiene	ND		0.136	mg/kg drv	50	12/17/24 13:00	5035A/8260D	
2-Hexanone	ND		0.680	mg/kg drv	50	12/17/24 13:00	5035A/8260D	
Isopropylbenzene	ND		0.0680	mg/kg drv	50	12/17/24 13:00	5035A/8260D	
4-Isopropyltoluene	ND		0.0680	mg/kg drv	50	12/17/24 13:00	5035A/8260D	
Methylene chloride	ND		0.680	mg/kg drv	50	12/17/24 13:00	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND		0.680	mø/kø drv	50	12/17/24 13:00	5035A/8260D	
·			0.000	mb, nb ary	50			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1255 - 01 06 25 1919

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compour	nds by EPA 826	0D				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
MW-10-8 (A4L1255-16)				Matrix: Soil	Matrix: Soil Batch: 24L0596				
Methyl tert-butyl ether (MTBE)	ND		0.0680	mg/kg dry	50	12/17/24 13:00	5035A/8260D		
Naphthalene	ND		0.136	mg/kg dry	50	12/17/24 13:00	5035A/8260D		
n-Propylbenzene	ND		0.0340	mg/kg dry	50	12/17/24 13:00	5035A/8260D		
Styrene	ND		0.0680	mg/kg dry	50	12/17/24 13:00	5035A/8260D		
1,1,1,2-Tetrachloroethane	ND		0.0340	mg/kg dry	50	12/17/24 13:00	5035A/8260D		
1,1,2,2-Tetrachloroethane	ND		0.0680	mg/kg dry	50	12/17/24 13:00	5035A/8260D		
Tetrachloroethene (PCE)	ND		0.0340	mg/kg dry	50	12/17/24 13:00	5035A/8260D		
Toluene	ND		0.0680	mg/kg dry	50	12/17/24 13:00	5035A/8260D		
1,2,3-Trichlorobenzene	ND		0.340	mg/kg dry	50	12/17/24 13:00	5035A/8260D		
1,2,4-Trichlorobenzene	ND		0.340	mg/kg dry	50	12/17/24 13:00	5035A/8260D		
1,1,1-Trichloroethane	ND		0.0340	mg/kg dry	50	12/17/24 13:00	5035A/8260D		
1,1,2-Trichloroethane	ND		0.0340	mg/kg dry	50	12/17/24 13:00	5035A/8260D		
Trichloroethene (TCE)	ND		0.0340	mg/kg dry	50	12/17/24 13:00	5035A/8260D		
Trichlorofluoromethane	ND		0.340	mg/kg dry	50	12/17/24 13:00	5035A/8260D		
1,2,3-Trichloropropane	ND		0.0680	mg/kg dry	50	12/17/24 13:00	5035A/8260D		
1,2,4-Trimethylbenzene	ND		0.0680	mg/kg dry	50	12/17/24 13:00	5035A/8260D		
1,3,5-Trimethylbenzene	ND		0.0680	mg/kg dry	50	12/17/24 13:00	5035A/8260D		
Vinyl chloride	ND		0.0340	mg/kg dry	50	12/17/24 13:00	5035A/8260D		
m,p-Xylene	ND		0.0680	mg/kg dry	50	12/17/24 13:00	5035A/8260D		
o-Xylene	ND		0.0340	mg/kg dry	50	12/17/24 13:00	5035A/8260D		
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ry: 102 %	Limits: 80-120 %	1	12/17/24 13:00	5035A/8260D		
Toluene-d8 (Surr)			96 %	80-120 %	1	12/17/24 13:00	5035A/8260D		
4-Bromofluorobenzene (Surr)			98 %	79-120 %	1	12/17/24 13:00	5035A/8260D		

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Report ID:

A4L1255 - 01 06 25 1919

Method Ref.

EPA 6020B

Notes

Q-39

DCNT

DCNT

DCNT

DCNT

DCNT

DCNT

DCNT

Date

Analyzed

12/27/24 21:21

12/27/24 21:37

12/27/24 21:37

12/27/24 21:37

12/27/24 21:37

12/27/24 21:37

12/27/24 21:37

12/27/24 21:37

Dilution

10

10

10

10

10

10

10

10

Bluestone Environmental NW Project: Auburn VW 20204 SE 284th Street Project Number: BE-0107-E Kent, WA 98042 Project Manager: Dan Hatch ANALYTICAL SAMPLE RESULTS Total Metals by EPA 6020B (ICPMS) Sample Detection Reporting Result Limit Limit Units Analyte MW-6-5 (A4L1255-01) Matrix: Soil Batch: 24L0973 8.29 1.34 Arsenic mg/kg dry ---MW-6-7 (A4L1255-02) Matrix: Soil Batch: 24L0973 Arsenic 3.53 1.46 mg/kg dry Barium 48.5 1.46 mg/kg dry ---Cadmium ND 0.292 mg/kg dry 1.46 Chromium 12.2 mg/kg dry 3.01 0.292 mg/kg dry Lead ---ND 0.117 mg/kg dry Mercury ---ND 1.46 mg/kg dry Selenium ---Silv M٧ Ars Baı

Silver	ND		0.292	mg/kg dry	10	12/27/24 21:37	EPA 6020B	DCNT				
MW-6-12 (A4L1255-04)	Matrix: Soil											
Batch: 24L0973												
Arsenic	4.29		1.51	mg/kg dry	10	12/27/24 21:42	EPA 6020B					
Barium	52.3		1.51	mg/kg dry	10	12/27/24 21:42	EPA 6020B					
Cadmium	ND		0.302	mg/kg dry	10	12/27/24 21:42	EPA 6020B					
Chromium	13.3		1.51	mg/kg dry	10	12/27/24 21:42	EPA 6020B					
Lead	3.16		0.302	mg/kg dry	10	12/27/24 21:42	EPA 6020B					
Mercury	ND		0.121	mg/kg dry	10	12/27/24 21:42	EPA 6020B					
Selenium	ND		1.51	mg/kg dry	10	12/27/24 21:42	EPA 6020B					
Silver	ND		0.302	mg/kg dry	10	12/27/24 21:42	EPA 6020B					
MW-7-5 (A4L1255-06)				Matrix: Soil								
Batch: 24L0973												
Arsenic	10.8		1.53	mg/kg dry	10	12/27/24 21:48	EPA 6020B					
MW-8-5 (A4L1255-09)				Matrix: Soil								
Batch: 24L0973												
Arsenic	11.9		1.42	mg/kg dry	10	12/27/24 22:03	EPA 6020B					
MW-8-10 (A4L1255-10)				Matrix: Soil								
Batch: 24L0973												
Arsenic	5.17		1.35	mg/kg dry	10	12/27/24 22:09	EPA 6020B	DCNT				

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW
20204 SE 284th Street
Kent, WA 98042

Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1255 - 01 06 25 1919

ANALYTICAL SAMPLE RESULTS

		Total Meta	als by EPA 60	20B (ICPMS)				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-8-10 (A4L1255-10)				Matrix: Soi	il			
Barium	52.4		1.35	mg/kg dry	10	12/27/24 22:09	EPA 6020B	DCNT
Cadmium	ND		0.270	mg/kg dry	10	12/27/24 22:09	EPA 6020B	DCNT
Chromium	13.0		1.35	mg/kg dry	10	12/27/24 22:09	EPA 6020B	DCNT
Copper	24.1		2.70	mg/kg dry	10	12/27/24 22:09	EPA 6020B	DCNT
Lead	3.29		0.270	mg/kg dry	10	12/27/24 22:09	EPA 6020B	DCNT
Mercury	ND		0.108	mg/kg dry	10	12/27/24 22:09	EPA 6020B	DCNT
Selenium	ND		1.35	mg/kg dry	10	12/27/24 22:09	EPA 6020B	DCNT
Silver	ND		0.270	mg/kg dry	10	12/27/24 22:09	EPA 6020B	DCNT
MW-9-5 (A4L1255-12)				Matrix: Soi	I			
Batch: 24L0973								
Arsenic	5.71		1.33	mg/kg dry	10	12/27/24 22:14	EPA 6020B	
MW-9-10 (A4L1255-13)				Matrix: Soi	I			
Batch: 24L0973								
Arsenic	2.43		1.31	mg/kg dry	10	12/27/24 22:19	EPA 6020B	DCNT
Barium	67.9		1.31	mg/kg dry	10	12/27/24 22:19	EPA 6020B	DCNT
Cadmium	ND		0.262	mg/kg dry	10	12/27/24 22:19	EPA 6020B	DCNT
Chromium	14.3		1.31	mg/kg dry	10	12/27/24 22:19	EPA 6020B	DCNT
Lead	3.38		0.262	mg/kg dry	10	12/27/24 22:19	EPA 6020B	DCNT
Mercury	ND		0.105	mg/kg dry	10	12/27/24 22:19	EPA 6020B	DCNT
Selenium	ND		1.31	mg/kg dry	10	12/27/24 22:19	EPA 6020B	DCNT
Silver	ND		0.262	mg/kg dry	10	12/27/24 22:19	EPA 6020B	DCNT
MW-10-5 (A4L1255-15)				Matrix: Soi	I			
Batch: 24L0973								
Arsenic	11.5		1.44	mg/kg dry	10	12/27/24 22:24	EPA 6020B	
MW-10-8 (A4L1255-16)				Matrix: Soi	I			
Batch: 24L0973								
Arsenic	6.11		1.44	mg/kg dry	10	12/27/24 22:30	EPA 6020B	DCNT
Barium	77.6		1.44	mg/kg dry	10	12/27/24 22:30	EPA 6020B	DCNT
Cadmium	ND		0.289	mg/kg dry	10	12/27/24 22:30	EPA 6020B	DCNT
Chromium	16.2		1.44	mg/kg dry	10	12/27/24 22:30	EPA 6020B	DCNT
Lead	5.12		0.289	mg/kg dry	10	12/27/24 22:30	EPA 6020B	DCNT
Mercury	ND		0.116	mg/kg dry	10	12/27/24 22:30	EPA 6020B	DCNT

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042

Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1255 - 01 06 25 1919

ANALYTICAL SAMPLE RESULTS

		Total Meta	als by EPA 60	20B (ICPMS)				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-10-8 (A4L1255-16)				Matrix: Soil	I			
Selenium	ND		1.44	mg/kg dry	10	12/27/24 22:30	EPA 6020B	DCNT
Silver	ND		0.289	mg/kg dry	10	12/27/24 22:30	EPA 6020B	DCNT
MW-11-6 (A4L1255-19)				Matrix: Soil	l			
Batch: 24L0973								
Arsenic	4.28		1.46	mg/kg dry	10	12/27/24 22:35	EPA 6020B	
MW-12-6 (A4L1255-22)				Matrix: Soil	l			
Batch: 24L0973								
Arsenic	3.51		1.35	mg/kg dry	10	12/27/24 22:40	EPA 6020B	
MW-13-5 (A4L1255-25)				Matrix: Soil	l			
Batch: 24L0973								
Arsenic	16.1		1.24	mg/kg dry	10	12/27/24 22:45	EPA 6020B	
MW-13-12 (A4L1255-26)				Matrix: Soil	l			
Batch: 24L0973								
Arsenic	1.40		1.21	mg/kg dry	10	12/27/24 22:51	EPA 6020B	DCNT
Barium	18.2		1.21	mg/kg dry	10	12/27/24 22:51	EPA 6020B	DCNT
Cadmium	ND		0.242	mg/kg dry	10	12/27/24 22:51	EPA 6020B	DCNT
Chromium	7.37		1.21	mg/kg dry	10	12/27/24 22:51	EPA 6020B	DCNT
Copper	9.16		2.42	mg/kg dry	10	12/27/24 22:51	EPA 6020B	DCNT
Lead	1.74		0.242	mg/kg dry	10	12/27/24 22:51	EPA 6020B	DCNT
Mercury	ND		0.0967	mg/kg dry	10	12/27/24 22:51	EPA 6020B	DCNT
Selenium	ND		1.21	mg/kg dry	10	12/27/24 22:51	EPA 6020B	DCNT
Silver	ND		0.242	mg/kg dry	10	12/27/24 22:51	EPA 6020B	DCNT

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Cameron O'Brien, Project Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1255 - 01 06 25 1919

ANALYTICAL SAMPLE RESULTS

Percent Dry Weight													
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes					
MW-6-5 (A4L1255-01)				Matrix: Soi	I	Batch:	24L0615						
% Solids	77.0		1.00	%	1	12/18/24 05:13	EPA 8000D						
MW-6-7 (A4L1255-02)				Matrix: Soi	I	Batch:	24L0615	DCNT					
% Solids	73.4		1.00	%	1	12/18/24 05:13	EPA 8000D						
MW-6-12 (A4L1255-04)				Matrix: Soi	l	Batch:	24L0615						
% Solids	70.3		1.00	%	1	12/18/24 05:13	EPA 8000D						
MW-7-5 (A4L1255-06)				Matrix: Soi	I	Batch:	24L0615						
% Solids	71.7		1.00	%	1	12/18/24 05:13	EPA 8000D						
MW-7-10 (A4L1255-08)				Matrix: Soi	l	Batch:	24L0615	DCNT					
% Solids	74.9		1.00	%	1	12/18/24 05:13	EPA 8000D						
MW-8-5 (A4L1255-09)				Matrix: Soi	I	Batch:	24L0615						
% Solids	73.4		1.00	%	1	12/18/24 05:13	EPA 8000D						
MW-8-10 (A4L1255-10)				Matrix: Soi	I	Batch:	24L0615	DCNT					
% Solids	76.1		1.00	%	1	12/18/24 05:13	EPA 8000D						
MW-9-5 (A4L1255-12)				Matrix: Soi	l	Batch:	24L0615						
% Solids	81.7		1.00	%	1	12/18/24 05:13	EPA 8000D						
MW-9-10 (A4L1255-13)				Matrix: Soi	I	Batch:	24L0615	DCNT					
% Solids	74.8		1.00	%	1	12/18/24 05:13	EPA 8000D						
MW-10-5 (A4L1255-15)				Matrix: Soi	l	Batch:	24L0615						
% Solids	73.6		1.00	%	1	12/18/24 05:13	EPA 8000D						
MW-10-8 (A4L1255-16)				Matrix: Soi	l	Batch:	24L0615	DCNT					
% Solids	72.7		1.00	%	1	12/18/24 05:13	EPA 8000D						
MW-11-6 (A4L1255-19)				Matrix: Soi	l	Batch:	24L0615						
% Solids	70.6		1.00	%	1	12/18/24 05:13	EPA 8000D						
MW-11-10 (A4L1255-20)				Matrix: Soi	l	Batch:	24L0615						

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW	
20204 SE 284th Street	
Kent, WA 98042	

Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1255 - 01 06 25 1919

ANALYTICAL SAMPLE RESULTS

		Pe	ercent Dry W	eight				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-11-10 (A4L1255-20)				Matrix: Soil	l	Batch:	24L0615	
% Solids	76.8		1.00	%	1	12/18/24 05:13	EPA 8000D	
MW-12-6 (A4L1255-22)				Matrix: Soil		Batch:	24L0615	
% Solids	74.1		1.00	%	1	12/18/24 05:13	EPA 8000D	
MW-12-10 (A4L1255-23)				Matrix: Soil	l	Batch:	24L0615	
% Solids	78.8		1.00	%	1	12/18/24 05:13	EPA 8000D	
MW-13-5 (A4L1255-25)				Matrix: Soil		Batch:	24L0615	
% Solids	85.3		1.00	%	1	12/18/24 05:13	EPA 8000D	
MW-13-12 (A4L1255-26)				Matrix: Soil		Batch:	24L0615	DCNT
% Solids	81.4		1.00	%	1	12/18/24 05:13	EPA 8000D	

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

<u>Report ID:</u> A4L1255 - 01 06 25 1919

QUALITY CONTROL (QC) SAMPLE RESULTS

		Hyd	rocarbon l	dentificat	ion Scree	en by NW	ГРН-НСІІ)				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0573 - EPA 3546 (Fu	iels)						Soil					
Blank (24L0573-BLK1)		Prepared	: 12/16/24 10	:56 Analyz	ed: 12/17/2	4 01:12						
NWTPH-HCID												
Gasoline Range Organics	ND		20.0	mg/kg w	et 1							
Diesel Range Organics	ND		50.0	mg/kg w	et 1							
Oil Range Organics	ND		100	mg/kg w	et 1							
Surr: o-Terphenyl (Surr)		Reco	overy: 69 %	Limits: 50	-150 %	Dilt	ution: 1x					
4-Bromofluorobenzene (Surr)			70 %	50	-150 %		"					
Duplicate (24L0573-DUP1)		Prepared	: 12/16/24 10	:56 Analyz	ed: 12/17/2	4 01:58						DCN
<u>OC Source Sample: MW-7-10 (A4</u> <u>NWTPH-HCID</u>	L1255-08)											
Gasoline Range Organics	ND		25.9	mg/kg di	y 1		ND				30%	
Diesel Range Organics	ND		64.7	mg/kg di	у 1		ND				30%	
Oil Range Organics	ND		129	mg/kg di	у 1		ND				30%	
Surr: o-Terphenyl (Surr)		Reco	overy: 70 %	Limits: 50	-150 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			69 %	50	-150 %		"					

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

<u>Report ID:</u> A4L1255 - 01 06 25 1919

QUALITY CONTROL (QC) SAMPLE RESULTS

	Diesel and/or Oil Hydrocarbons by NWTPH-Dx													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes		
Batch 24L0717 - EPA 3546 (F	-uels)						Soil							
Blank (24L0717-BLK1)		Prepared:	12/19/24 07:	42 Analyze	ed: 12/19/24	1 20:24	_	_		_				
NWTPH-Dx														
Diesel	ND		20.0	mg/kg we	et 1									
Oil	ND		40.0	mg/kg wo	et 1									
Mineral Oil	ND		40.0	mg/kg wo	et 1									
Surr: o-Terphenyl (Surr)		Reco	wery: 82 %	Limits: 50)-150 %	Dilu	tion: 1x							
LCS (24L0717-BS1)		Prepared:	12/19/24 07:	42 Analyze	ed: 12/19/24	1 20:44								
<u>NWTPH-Dx</u>														
Diesel	111		20.0	mg/kg wo	et 1	125		89	38 - 132%					
Surr: o-Terphenyl (Surr)		Reco	wery: 86 %	Limits: 50	-150 %	Dilu	tion: 1x							

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1255 - 01 06 25 1919

QUALITY CONTROL (QC) SAMPLE RESULTS

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx Analyte Detection Reporting Units Dilution Spike Source % REC % REC RPD Limit Notes Analyte Result Detection Reporting Units Dilution Spike Source % REC % REC RPD Limit Notes Att 24L0596 - EPA 5035A Prepared: 12/16/24 13:24 Analyzed: 12/17/24 04:19 Soil WTPH-Gx (MS) Prepared: 12/16/24 13:24 Analyzed: 12/17/24 04:19 <												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0596 - EPA 5035A							Soil					
Blank (24L0596-BLK1)		Prepared:	12/16/24 13:	24 Analyz	zed: 12/17/24	4 04:19						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		5.00	mg/kg v	vet 50							
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 98 %	Limits: 5	0-150 %	Dilu	tion: 1x					
1,4-Difluorobenzene (Sur)			97 %	5	0-150 %		"					
LCS (24L0596-BS2)		Prepared:	12/16/24 13:	24 Analyz	zed: 12/17/24	4 03:52						
NWTPH-Gx (MS)												
Gasoline Range Organics	22.0		5.00	mg/kg v	vet 50	25.0		88	80 - 120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	wery: 96 %	Limits: 5	0-150 %	Dilu	tion: 1x					
1,4-Difluorobenzene (Sur)			96 %	5	0-150 %		"					
Duplicate (24L0596-DUP1)		Prepared:	12/10/24 09:	35 Analyz	zed: 12/17/24	4 13:55						DCNT
QC Source Sample: MW-6-7 (A4L	1255-02)											
NWTPH-Gx (MS)												
Gasoline Range Organics	304		7.78	mg/kg d	iry 50		347			13	30%	
Surr: 4-Bromofluorobenzene (Sur)		Recov	ery: 106 %	Limits: 5	0-150 %	Dilu	tion: 1x					
1,4-Difluorobenzene (Sur)			96 %	5	0-150 %		"					

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Com	pounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units I	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0596 - EPA 5035A							Soil					
Blank (24L0596-BLK1)		Prepared	: 12/16/24 13:2	24 Analyzed	12/17/24	4 04:19						
5035A/8260D												
Acetone	ND		1.00	mg/kg wet	50							
Acrylonitrile	ND		0.100	mg/kg wet	50							
Benzene	ND		0.0100	mg/kg wet	50							
Bromobenzene	ND		0.0250	mg/kg wet	50							
Bromochloromethane	ND		0.0500	mg/kg wet	50							
Bromodichloromethane	ND		0.0500	mg/kg wet	50							
Bromoform	ND		0.100	mg/kg wet	50							
Bromomethane	ND		0.500	mg/kg wet	50							
2-Butanone (MEK)	ND		0.500	mg/kg wet	50							
n-Butylbenzene	ND		0.0500	mg/kg wet	50							
sec-Butylbenzene	ND		0.0500	mg/kg wet	50							
tert-Butylbenzene	ND		0.0500	mg/kg wet	50							
Carbon disulfide	ND		0.500	mg/kg wet	50							
Carbon tetrachloride	ND		0.0500	mg/kg wet	50							
Chlorobenzene	ND		0.0250	mg/kg wet	50							
Chloroethane	ND		0.500	mg/kg wet	50							
Chloroform	ND		0.0500	mg/kg wet	50							
Chloromethane	ND		0.250	mg/kg wet	50							
2-Chlorotoluene	ND		0.0500	mg/kg wet	50							
4-Chlorotoluene	ND		0.0500	mg/kg wet	50							
Dibromochloromethane	ND		0.100	mg/kg wet	50							
1,2-Dibromo-3-chloropropane	ND		0.250	mg/kg wet	50							
1,2-Dibromoethane (EDB)	ND		0.0500	mg/kg wet	50							
Dibromomethane	ND		0.0500	mg/kg wet	50							
1,2-Dichlorobenzene	ND		0.0250	mg/kg wet	50							
1,3-Dichlorobenzene	ND		0.0250	mg/kg wet	50							
1,4-Dichlorobenzene	ND		0.0250	mg/kg wet	50							
Dichlorodifluoromethane	ND		0.100	mg/kg wet	50							
1,1-Dichloroethane	ND		0.0250	mg/kg wet	50							
1,2-Dichloroethane (EDC)	ND		0.0250	mg/kg wet	50							
1,1-Dichloroethene	ND		0.0250	mg/kg wet	50							
cis-1,2-Dichloroethene	ND		0.0250	mg/kg wet	50							
trans-1,2-Dichloroethene	ND		0.0250	mg/kg wet	50							

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0596 - EPA 5035A							Soil					
Blank (24L0596-BLK1)		Prepared	12/16/24 13:2	24 Analyzed	1: 12/17/24	4 04:19						
1,2-Dichloropropane	ND		0.0250	mg/kg wet	50							
1,3-Dichloropropane	ND		0.0500	mg/kg wet	50							
2,2-Dichloropropane	ND		0.0500	mg/kg wet	50							
1,1-Dichloropropene	ND		0.0500	mg/kg wet	50							
cis-1,3-Dichloropropene	ND		0.0500	mg/kg wet	50							
trans-1,3-Dichloropropene	ND		0.0500	mg/kg wet	50							
Ethylbenzene	ND		0.0250	mg/kg wet	50							
Hexachlorobutadiene	ND		0.100	mg/kg wet	50							
2-Hexanone	ND		0.500	mg/kg wet	50							
Isopropylbenzene	ND		0.0500	mg/kg wet	50							
4-Isopropyltoluene	ND		0.0500	mg/kg wet	50							
Methylene chloride	ND		0.500	mg/kg wet	50							
4-Methyl-2-pentanone (MiBK)	ND		0.500	mg/kg wet	50							
Methyl tert-butyl ether (MTBE)	ND		0.0500	mg/kg wet	50							
Naphthalene	ND		0.100	mg/kg wet	50							
n-Propylbenzene	ND		0.0250	mg/kg wet	50							
Styrene	ND		0.0500	mg/kg wet	50							
1,1,1,2-Tetrachloroethane	ND		0.0250	mg/kg wet	50							
1,1,2,2-Tetrachloroethane	ND		0.0500	mg/kg wet	50							
Tetrachloroethene (PCE)	ND		0.0250	mg/kg wet	50							
Toluene	ND		0.0500	mg/kg wet	50							
1,2,3-Trichlorobenzene	ND		0.250	mg/kg wet	50							
1,2,4-Trichlorobenzene	ND		0.250	mg/kg wet	50							
1,1,1-Trichloroethane	ND		0.0250	mg/kg wet	50							
1,1,2-Trichloroethane	ND		0.0250	mg/kg wet	50							
Trichloroethene (TCE)	ND		0.0250	mg/kg wet	50							
Trichlorofluoromethane	ND		0.250	mg/kg wet	50							
1,2,3-Trichloropropane	ND		0.0500	mg/kg wet	50							
1,2,4-Trimethylbenzene	ND		0.0500	mg/kg wet	50							
1,3,5-Trimethylbenzene	ND		0.0500	mg/kg wet	50							
Vinyl chloride	ND		0.0250	mg/kg wet	50							
n,p-Xylene	ND		0.0500	mg/kg wet	50							
o-Xylene	ND		0.0250	mg/kg wet	50							

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E**

Project Manager: Dan Hatch

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Com	pounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units I	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0596 - EPA 5035A							Soil					
Blank (24L0596-BLK1)		Prepared	: 12/16/24 13::	24 Analyzed	: 12/17/2	4 04:19						
Surr: Toluene-d8 (Surr)		Rec	overy: 97 %	Limits: 80-12	20 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			99 %	79-12	20 %		"					
LCS (24L0596-BS1)		Prepared	: 12/16/24 13::	24 Analyzed	: 12/17/2	4 02:57						
5035A/8260D				-								
Acetone	1.69		1.00	mg/kg wet	50	2.00		85	80 - 120%			
Acrylonitrile	0.886		0.100	mg/kg wet	50	1.00		89	80 - 120%			
Benzene	0.934		0.0100	mg/kg wet	50	1.00		93	80 - 120%			
Bromobenzene	0.948		0.0250	mg/kg wet	50	1.00		95	80 - 120%			
Bromochloromethane	0.953		0.0500	mg/kg wet	50	1.00		95	80 - 120%			
Bromodichloromethane	0.884		0.0500	mg/kg wet	50	1.00		88	80 - 120%			
Bromoform	0.873		0.100	mg/kg wet	50	1.00		87	80 - 120%			
Bromomethane	1.34		0.500	mg/kg wet	50	1.00		134	80 - 120%			Q-56
2-Butanone (MEK)	1.66		0.500	mg/kg wet	50	2.00		83	80 - 120%			
n-Butylbenzene	0.889		0.0500	mg/kg wet	50	1.00		89	80 - 120%			
sec-Butylbenzene	0.944		0.0500	mg/kg wet	50	1.00		94	80 - 120%			
tert-Butylbenzene	0.885		0.0500	mg/kg wet	50	1.00		88	80 - 120%			
Carbon disulfide	0.847		0.500	mg/kg wet	50	1.00		85	80 - 120%			
Carbon tetrachloride	1.12		0.0500	mg/kg wet	50	1.00		112	80 - 120%			
Chlorobenzene	0.962		0.0250	mg/kg wet	50	1.00		96	80 - 120%			
Chloroethane	0.836		0.500	mg/kg wet	50	1.00		84	80 - 120%			
Chloroform	0.997		0.0500	mg/kg wet	50	1.00		100	80 - 120%			
Chloromethane	0.790		0.250	mg/kg wet	50	1.00		79	80 - 120%			Q-55
2-Chlorotoluene	0.966		0.0500	mg/kg wet	50	1.00		97	80 - 120%			
4-Chlorotoluene	0.908		0.0500	mg/kg wet	50	1.00		91	80 - 120%			
Dibromochloromethane	0.880		0.100	mg/kg wet	50	1.00		88	80 - 120%			
1,2-Dibromo-3-chloropropane	0.760		0.250	mg/kg wet	50	1.00		76	80 - 120%			Q-55
1,2-Dibromoethane (EDB)	0.990		0.0500	mg/kg wet	50	1.00		99	80 - 120%			
Dibromomethane	0.986		0.0500	mg/kg wet	50	1.00		99	80 - 120%			
1,2-Dichlorobenzene	0.952		0.0250	mg/kg wet	50	1.00		95	80 - 120%			
1,3-Dichlorobenzene	0.977		0.0250	mg/kg wet	50	1.00		98	80 - 120%			
1,4-Dichlorobenzene	0.945		0.0250	mg/kg wet	50	1.00		94	80 - 120%			
Dichlorodifluoromethane	0.864		0.100	mg/kg wet	50	1.00		86	80 - 120%			
1,1-Dichloroethane	0.956		0.0250	mg/kg wet	50	1.00		96	80 - 120%			

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0596 - EPA 5035A							Soil					
LCS (24L0596-BS1)		Prepared	: 12/16/24 13::	24 Analyzed	1: 12/17/2	4 02:57						
1,2-Dichloroethane (EDC)	0.974		0.0250	mg/kg wet	50	1.00		97 8	80 - 120%			
1,1-Dichloroethene	0.954		0.0250	mg/kg wet	50	1.00		95 8	80 - 120%			
cis-1,2-Dichloroethene	0.917		0.0250	mg/kg wet	50	1.00		92 8	80 - 120%			
trans-1,2-Dichloroethene	0.931		0.0250	mg/kg wet	50	1.00		93 8	80 - 120%			
1,2-Dichloropropane	0.916		0.0250	mg/kg wet	50	1.00		92 8	80 - 120%			
1,3-Dichloropropane	0.928		0.0500	mg/kg wet	50	1.00		93 8	80 - 120%			
2,2-Dichloropropane	0.939		0.0500	mg/kg wet	50	1.00		94 8	80 - 120%			
1,1-Dichloropropene	0.974		0.0500	mg/kg wet	50	1.00		97 8	80 - 120%			
cis-1,3-Dichloropropene	0.860		0.0500	mg/kg wet	50	1.00		86 8	80 - 120%			
trans-1,3-Dichloropropene	0.866		0.0500	mg/kg wet	50	1.00		87 8	80 - 120%			
Ethylbenzene	0.955		0.0250	mg/kg wet	50	1.00		96 8	80 - 120%			
Hexachlorobutadiene	0.987		0.100	mg/kg wet	50	1.00		99 8	80 - 120%			
2-Hexanone	1.54		0.500	mg/kg wet	50	2.00		77 8	80 - 120%			Q-55
Isopropylbenzene	0.958		0.0500	mg/kg wet	50	1.00		96 8	80 - 120%			
4-Isopropyltoluene	0.948		0.0500	mg/kg wet	50	1.00		95 8	80 - 120%			
Methylene chloride	0.890		0.500	mg/kg wet	50	1.00		89 8	80 - 120%			
4-Methyl-2-pentanone (MiBK)	1.73		0.500	mg/kg wet	50	2.00		87 8	80 - 120%			
Methyl tert-butyl ether (MTBE)	0.944		0.0500	mg/kg wet	50	1.00		94 8	80 - 120%			
Naphthalene	0.874		0.100	mg/kg wet	50	1.00		87 8	80 - 120%			
n-Propylbenzene	0.928		0.0250	mg/kg wet	50	1.00		93 8	80 - 120%			
Styrene	0.936		0.0500	mg/kg wet	50	1.00		94 8	80 - 120%			
1,1,1,2-Tetrachloroethane	0.946		0.0250	mg/kg wet	50	1.00		95 8	80 - 120%			
1,1,2,2-Tetrachloroethane	0.877		0.0500	mg/kg wet	50	1.00		88 8	80 - 120%			
Tetrachloroethene (PCE)	1.03		0.0250	mg/kg wet	50	1.00		103 8	80 - 120%			
Toluene	0.904		0.0500	mg/kg wet	50	1.00		90 8	80 - 120%			
1,2,3-Trichlorobenzene	0.956		0.250	mg/kg wet	50	1.00		96 8	80 - 120%			
1,2,4-Trichlorobenzene	0.948		0.250	mg/kg wet	50	1.00		95 8	80 - 120%			
1,1,1-Trichloroethane	1.03		0.0250	mg/kg wet	50	1.00		103 8	80 - 120%			
1,1,2-Trichloroethane	0.969		0.0250	mg/kg wet	50	1.00		97 8	80 - 120%			
Trichloroethene (TCE)	1.05		0.0250	mg/kg wet	50	1.00		105 8	80 - 120%			
Trichlorofluoromethane	0.858		0.250	mg/kg wet	50	1.00		86 8	80 - 120%			
1,2,3-Trichloropropane	0.984		0.0500	mg/kg wet	50	1.00		98 8	80 - 120%			
1,2,4-Trimethylbenzene	0.958		0.0500	mg/kg wet	50	1.00		96 8	80 - 120%			
1,3,5-Trimethylbenzene	0.965		0.0500	mg/kg wet	50	1.00		96 8	80 - 120%			
				00								

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: Auburn VW Project Number: BE-0107-E

Project Manager: Dan Hatch

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0596 - EPA 5035A							Soi	I				
LCS (24L0596-BS1)		Prepared	: 12/16/24 13:	24 Analyze	d: 12/17/2	4 02:57						
Vinyl chloride	0.947		0.0250	mg/kg we	t 50	1.00		95	80 - 120%			
m,p-Xylene	1.94		0.0500	mg/kg we	t 50	2.00		97	80 - 120%			
o-Xylene	0.940		0.0250	mg/kg we	t 50	1.00		94	80 - 120%			
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 100 %	Limits: 80-	120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			98 %	80-1	20 %		"					
4-Bromofluorobenzene (Surr)			98 %	79-1	120 %		"					
Duplicate (24L0596-DUP1)		Prepared	: 12/10/24 09:	35 Analyze	d: 12/17/2	4 13:55						DCN
QC Source Sample: MW-6-7 (A4)	L1255-02)											
5035A/8260D	_											
Acetone	ND		1.56	mg/kg dry	50		ND				30%	
Acrylonitrile	ND		0.156	mg/kg dry	50		ND				30%	
Benzene	ND		0.0156	mg/kg dry	50		ND				30%	
Bromobenzene	ND		0.0389	mg/kg dry	50		ND				30%	
Bromochloromethane	ND		0.0778	mg/kg dry	50		ND				30%	
Bromodichloromethane	ND		0.0778	mg/kg dry	50		ND				30%	
Bromoform	ND		0.156	mg/kg dry	50		ND				30%	
Bromomethane	ND		0.778	mg/kg dry	50		ND				30%	
2-Butanone (MEK)	ND		0.778	mg/kg dry	50		ND				30%	
n-Butylbenzene	1.71		0.0778	mg/kg dry	50		2.12			22	30%	
sec-Butylbenzene	1.28		0.0778	mg/kg dry	50		1.58			21	30%	
tert-Butylbenzene	ND		0.0778	mg/kg dry	50		ND				30%	
Carbon disulfide	ND		0.778	mg/kg dry	50		ND				30%	
Carbon tetrachloride	ND		0.0778	mg/kg dry	50		ND				30%	
Chlorobenzene	ND		0.0389	mg/kg dry	50		ND				30%	
Chloroethane	ND		0.778	mg/kg dry	50		ND				30%	
Chloroform	ND		0.0778	mg/kg dry	50		ND				30%	
Chloromethane	ND		0.389	mg/kg dry	50		ND				30%	
2-Chlorotoluene	ND		0.0778	mg/kg dry	50		ND				30%	
4-Chlorotoluene	ND		0.0778	mg/kg dry	50		ND				30%	
Dibromochloromethane	ND		0.156	mg/kg dry	50		ND				30%	
1,2-Dibromo-3-chloropropane	ND		0.389	mg/kg dry	50		ND				30%	
1,2-Dibromoethane (EDB)	ND		0.0778	mg/kg drv	50		ND				30%	
Dibromomethane	ND		0.0778	mg/kg dry	50		ND				30%	

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

QUALITY CONTROL (QC) SAMPLE RESULTS

		Volatile Organic Compounds by EPA 8260D											
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 24L0596 - EPA 5035A							Soil						
Duplicate (24L0596-DUP1)		Prepared	: 12/10/24 09:3	35 Analyzed	1: 12/17/24	4 13:55						DCN	
QC Source Sample: MW-6-7 (A4I	1255-02)												
1,2-Dichlorobenzene	ND		0.0389	mg/kg dry	50		ND				30%		
1,3-Dichlorobenzene	ND		0.0389	mg/kg dry	50		ND				30%		
1,4-Dichlorobenzene	ND		0.0389	mg/kg dry	50		ND				30%		
Dichlorodifluoromethane	ND		0.156	mg/kg dry	50		ND				30%		
1,1-Dichloroethane	ND		0.0389	mg/kg dry	50		ND				30%		
1,2-Dichloroethane (EDC)	ND		0.0389	mg/kg dry	50		ND				30%		
1,1-Dichloroethene	ND		0.0389	mg/kg dry	50		ND				30%		
cis-1,2-Dichloroethene	ND		0.0389	mg/kg dry	50		ND				30%		
trans-1,2-Dichloroethene	ND		0.0389	mg/kg dry	50		ND				30%		
1,2-Dichloropropane	ND		0.0389	mg/kg dry	50		ND				30%		
1,3-Dichloropropane	ND		0.0778	mg/kg dry	50		ND				30%		
2,2-Dichloropropane	ND		0.0778	mg/kg dry	50		ND				30%		
1,1-Dichloropropene	ND		0.0778	mg/kg dry	50		ND				30%		
cis-1,3-Dichloropropene	ND		0.0778	mg/kg dry	50		ND				30%		
trans-1,3-Dichloropropene	ND		0.0778	mg/kg dry	50		ND				30%		
Ethylbenzene	ND		0.0389	mg/kg dry	50		ND				30%		
Hexachlorobutadiene	ND		0.156	mg/kg dry	50		ND				30%		
2-Hexanone	ND		0.778	mg/kg dry	50		ND				30%		
Isopropylbenzene	0.172		0.0778	mg/kg dry	50		0.204			17	30%		
4-Isopropyltoluene	ND		0.0778	mg/kg dry	50		ND				30%		
Methylene chloride	ND		0.778	mg/kg dry	50		ND				30%		
4-Methyl-2-pentanone (MiBK)	ND		1.17	mg/kg dry	50		ND				30%	R-02	
Methyl tert-butyl ether (MTBE)	ND		0.0778	mg/kg dry	50		ND				30%		
Naphthalene	0.659		0.156	mg/kg drv	50		0.730			10	30%		
n-Propylbenzene	1.06		0.0389	mg/kg drv	50		1.32			22	30%		
Styrene	ND		0.0778	mg/kg drv	50		ND				30%		
1,1,1,2-Tetrachloroethane	ND		0.0389	mg/kg drv	50		ND				30%		
1,1,2,2-Tetrachloroethane	ND		0.136	mg/kg drv	50		ND				30%	R-02	
Tetrachloroethene (PCE)	ND		0.0389	mg/kg drv	50		ND				30%		
Foluene	ND		0.0778	mg/kg drv	50		ND				30%		
1.2.3-Trichlorobenzene	ND		0.389	mg/kø drv	50		ND				30%		
1,2,4-Trichlorobenzene	ND		0.389	mg/ko dry	50		ND				30%		
1.1.1-Trichloroethane	ND		0 0380	mø/ka den	50		ND				30%		
,1,1-111011010eulaile	IND		0.0369	mg/ kg ury	50		IND				5070		

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1255 - 01 06 25 1919

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Con	npounds	by EPA 8	260D					1
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0596 - EPA 5035A							Soil	,				
Duplicate (24L0596-DUP1)		Prepared:	12/10/24 09:.	35 Analyze	d: 12/17/2	4 13:55						DCN
QC Source Sample: MW-6-7 (A4L	1255-02)											
1,1,2-Trichloroethane	ND		0.0467	mg/kg dry	/ 50		ND				30%	R-02
Trichloroethene (TCE)	ND		0.0389	mg/kg dry	7 50		ND				30%	
Trichlorofluoromethane	ND		0.389	mg/kg dry	7 50		ND				30%	
1,2,3-Trichloropropane	ND		0.0778	mg/kg dry	7 50		ND				30%	
1,2,4-Trimethylbenzene	ND		0.0778	mg/kg dry	7 50		0.0459			***	30%	
1,3,5-Trimethylbenzene	ND		0.0778	mg/kg dry	7 50		ND				30%	
Vinyl chloride	ND		0.0389	mg/kg dry	7 50		ND				30%	
m,p-Xylene	ND		0.0778	mg/kg dry	v 50		ND				30%	
o-Xylene	ND		0.0389	mg/kg dry	<u> </u>		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recov	ery: 101 %	Limits: 80-	120 %	Dilu	ution: 1x					
Toluene-d8 (Surr)			95 %	80-1	120 %		"					
4-Bromofluorobenzene (Surr)			100 %	79-,	120 %		"					

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0973 - EPA 3051A							Soil					
Blank (24L0973-BLK1)		Prepared:	: 12/27/24 08:4	19 Analyze	d: 12/27/2	4 21:11						
EPA 6020B												
Arsenic	ND		1.00	mg/kg we	t 10							
Barium	ND		1.00	mg/kg we	t 10							
Cadmium	ND		0.200	mg/kg we	t 10							
Chromium	ND		1.00	mg/kg we	t 10							
Copper	ND		2.00	mg/kg we	t 10							
Lead	ND		0.200	mg/kg we	t 10							
Mercury	ND		0.0800	mg/kg we	t 10							
Selenium	ND		1.00	mg/kg we	t 10							
Silver	ND		0.200	mg/kg we	t 10							
LCS (24L0973-BS1)		Prepared:	12/27/24 08:4	19 Analyze	d: 12/27/2	4 21:16						
EPA 6020B		1		.,20								
Arsenic	50.6		1.00	mg/kg we	t 10	50.0		101	80 - 120%			
Barium	51.2		1.00	mg/kg we	t 10	50.0		102	80 - 120%			
Cadmium	50.3		0.200	mg/kg we	t 10	50.0		101	80 - 120%			
Chromium	50.3		1.00	mg/kg we	t 10	50.0		101	80 - 120%			
Copper	53.6		2.00	mg/kg we	t 10	50.0		107	80 - 120%			
Lead	53.4		0.200	mg/kg we	t 10	50.0		107	80 - 120%			
Mercury	1.03		0.0800	mg/kg we	t 10	1.00		103	80 - 120%			
Selenium	25.5		1.00	mg/kg we	t 10	25.0		102	80 - 120%			
Silver	26.8		0.200	mg/kg we	t 10	25.0		107	80 - 120%			_
Duplicate (24L0973-DUP1)		Prepared:	12/27/24 08:4	19 Analyze	d: 12/27/2	4 21:26						
QC Source Sample: MW-6-5 (A4)	L1255-01)											
<u>EPA 6020B</u>			1.5.4		. 10		0.00			• -	A 664	0.04
Arsenic	10.4		1.34	mg/kg dry	/ 10		8.29			23	20%	Q-04
Sarium	60.0		1.54	mg/kg dry	/ 10		80.1			29	20%	Q-04
	ND		0.268	mg/kg dry	/ 10		0.283			***	20%	0.04
nromium	13.6		1.34	mg/kg dry	/ 10		16.9			22	20%	Q-04
Lopper	21.4		2.68	mg/kg dry	7 10		31.6			38	20%	Q-04
Lead	8.80		0.268	mg/kg dry	7 10		15.3			54	20%	Q-04
Mercury	ND		0.107	mg/kg dry	7 10		0.102			***	20%	
selenium	ND		1.34	mg/kg dry	7 10		ND				20%	

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW
20204 SE 284th Street
Kent, WA 98042

Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1255 - 01 06 25 1919

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	etals by E	EPA 602(B (ICPMS	<u>;)</u>		. <u> </u>			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0973 - EPA 3051A	=						Soil	=	=		=	
Duplicate (24L0973-DUP1)		Prepared:	12/27/24 08:4	19 Analyzed	d: 12/27/24	4 21:26						
QC Source Sample: MW-6-5 (A4L	1255-01)											
Silver	ND		0.268	mg/kg dry	/ 10		ND				20%	
Matrix Spike (24L0973-MS1)		Prepared:	12/27/24 08:4	19 Analyzed	d: 12/27/24	4 21:32						
QC Source Sample: MW-6-5 (A4L	1255-01)											
EPA 6020B												
Arsenic	75.9		1.34	mg/kg dry	r 10	67.2	8.29	101	75 - 125%			
Barium	145		1.34	mg/kg dry	7 10	67.2	80.1	97	75 - 125%			
Cadmium	67.1		0.269	mg/kg dry	7 10	67.2	0.283	99	75 - 125%			
Chromium	85.3		1.34	mg/kg dry	r 10	67.2	16.9	102	75 - 125%			
Copper	98.8		2.69	mg/kg dry	r 10	67.2	31.6	100	75 - 125%			
Lead	80.9		0.269	mg/kg dry	r 10	67.2	15.3	98	75 - 125%			
Mercury	1.40		0.107	mg/kg dry	r 10	1.34	0.102	97	75 - 125%			
Selenium	33.6		1.34	mg/kg dry	r 10	33.6	ND	100	75 - 125%			
Silver	35.1		0.269	mg/kg dry	r 10	33.6	ND	104	75 - 125%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1255 - 01 06 25 1919

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Weig	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0615 - Dry Weight Pr	ep (EPA 8	8000D)					Soil					
Duplicate (24L0615-DUP5)		Prepared	: 12/17/24 08:4	16 Analyz	red: 12/18/24	4 05:13						
QC Source Sample: MW-6-5 (A4L EPA 8000D	1255-01)											
% Solids	75.5		1.00	%	1		77.0			2	10%	
Duplicate (24L0615-DUP6)		Prepared	: 12/17/24 08:4	6 Analyz	red: 12/18/24	4 05:13						DCNT
<u>QC Source Sample: MW-6-7 (A4L</u> <u>EPA 8000D</u>	1255-02)											
% Solids	70.8		1.00	%	1		73.4			4	10%	
Duplicate (24L0615-DUP7)		Prepared	: 12/17/24 08:4	6 Analyz	red: 12/18/24	4 05:13						
OC Source Sample: MW-6-12 (A4 EPA 8000D	L1255-04)											
% Solids	70.9		1.00	%	1		70.3			0.8	10%	
Duplicate (24L0615-DUP8)		Prepared	: 12/17/24 08:4	6 Analyz	red: 12/18/24	4 05:13						
QC Source Sample: MW-7-5 (A4L EPA 8000D	<u>1255-06)</u>											
% Solids	71.5		1.00	%	1		71.7			0.3	10%	

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1255 - 01 06 25 1919

SAMPLE PREPARATION INFORMATION

	Hydrocarbon Identification Screen by NWTPH-HCID										
Prep: EPA 3546 (F	uels)				Sample	Default	RL Prep				
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor				
Batch: 24L0573											
A4L1255-08	Soil	NWTPH-HCID	12/10/24 11:40	12/16/24 10:56	10.58g/10mL	10g/10mL	0.95				
A4L1255-10	Soil	NWTPH-HCID	12/10/24 12:35	12/16/24 10:56	10.53g/10mL	10g/10mL	0.95				
A4L1255-13	Soil	NWTPH-HCID	12/10/24 15:05	12/16/24 10:56	10.29g/10mL	10g/10mL	0.97				
A4L1255-16	Soil	NWTPH-HCID	12/11/24 08:45	12/16/24 10:56	10.07g/10mL	10g/10mL	0.99				
A4L1255-20	Soil	NWTPH-HCID	12/11/24 10:25	12/16/24 10:56	10.61g/10mL	10g/10mL	0.94				
A4L1255-23	Soil	NWTPH-HCID	12/11/24 12:45	12/16/24 10:56	10.02g/10mL	10g/10mL	1.00				
A4L1255-26	Soil	NWTPH-HCID	12/11/24 14:35	12/16/24 10:56	10.37g/10mL	10g/10mL	0.96				

	Diesel and/or Oil Hydrocarbons by NWTPH-Dx										
Prep: EPA 3546 (Fuels)				Sample	Default	RL Prep				
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor				
Batch: 24L0717											
A4L1255-02	Soil	NWTPH-Dx	12/10/24 09:35	12/19/24 07:42	11.62g/5mL	10g/5mL	0.86				
A4L1255-04	Soil	NWTPH-Dx	12/10/24 09:40	12/19/24 07:42	11.15g/5mL	10g/5mL	0.90				
A4L1255-26	Soil	NWTPH-Dx	12/11/24 14:35	12/19/24 07:42	11.79g/5mL	10g/5mL	0.85				

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx									
Prep: EPA 5035A					Sample	Default	RL Prep		
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor		
Batch: 24L0596									
A4L1255-02	Soil	NWTPH-Gx (MS)	12/10/24 09:35	12/10/24 09:35	5.71g/5mL	5g/5mL	0.88		
A4L1255-04	Soil	NWTPH-Gx (MS)	12/10/24 09:40	12/10/24 09:40	5.92g/5mL	5g/5mL	0.85		

	Volatile Organic Compounds by EPA 8260D										
<u> Prep: EPA 5035A</u>					Sample	Default	RL Prep				
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor				
Batch: 24L0596											
A4L1255-02	Soil	5035A/8260D	12/10/24 09:35	12/10/24 09:35	5.71g/5mL	5g/5mL	0.88				
A4L1255-04	Soil	5035A/8260D	12/10/24 09:40	12/10/24 09:40	5.92g/5mL	5g/5mL	0.85				
A4L1255-13	Soil	5035A/8260D	12/10/24 15:05	12/10/24 15:05	6.03g/5mL	5g/5mL	0.83				
A4L1255-16	Soil	5035A/8260D	12/11/24 08:45	12/11/24 08:45	6.98g/5mL	5g/5mL	0.72				

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

<u>Report ID:</u> A4L1255 - 01 06 25 1919

SAMPLE PREPARATION INFORMATION

	Total Metals by EPA 6020B (ICPMS)									
Prep: EPA 3051A					Sample	Default	RL Prep			
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor			
Batch: 24L0973										
A4L1255-01	Soil	EPA 6020B	12/10/24 09:30	12/27/24 08:49	0.484g/50mL	0.5g/50mL	1.03			
A4L1255-02	Soil	EPA 6020B	12/10/24 09:35	12/27/24 08:49	0.466g/50mL	0.5g/50mL	1.07			
A4L1255-04	Soil	EPA 6020B	12/10/24 09:40	12/27/24 08:49	0.47g/50mL	0.5g/50mL	1.06			
A4L1255-06	Soil	EPA 6020B	12/10/24 11:30	12/27/24 08:49	0.456g/50mL	0.5g/50mL	1.10			
A4L1255-09	Soil	EPA 6020B	12/10/24 12:30	12/27/24 08:49	0.481g/50mL	0.5g/50mL	1.04			
A4L1255-10	Soil	EPA 6020B	12/10/24 12:35	12/27/24 08:49	0.487g/50mL	0.5g/50mL	1.03			
A4L1255-12	Soil	EPA 6020B	12/10/24 15:00	12/27/24 08:49	0.461g/50mL	0.5g/50mL	1.08			
A4L1255-13	Soil	EPA 6020B	12/10/24 15:05	12/27/24 08:49	0.51g/50mL	0.5g/50mL	0.98			
A4L1255-15	Soil	EPA 6020B	12/11/24 08:40	12/27/24 08:49	0.472g/50mL	0.5g/50mL	1.06			
A4L1255-16	Soil	EPA 6020B	12/11/24 08:45	12/27/24 08:49	0.476g/50mL	0.5g/50mL	1.05			
A4L1255-19	Soil	EPA 6020B	12/11/24 10:20	12/27/24 08:49	0.484g/50mL	0.5g/50mL	1.03			
A4L1255-22	Soil	EPA 6020B	12/11/24 12:40	12/27/24 08:49	0.498g/50mL	0.5g/50mL	1.00			
A4L1255-25	Soil	EPA 6020B	12/11/24 14:30	12/27/24 08:49	0.472g/50mL	0.5g/50mL	1.06			
A4L1255-26	Soil	EPA 6020B	12/11/24 14:35	12/27/24 08:49	0.508g/50mL	0.5g/50mL	0.98			

Percent Dry Weight

Prep: Dry Weight P	Prep (EPA 8000E	<u>))</u>			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24L0615							
A4L1255-01	Soil	EPA 8000D	12/10/24 09:30	12/17/24 08:46	1g	1g	1.00
A4L1255-02	Soil	EPA 8000D	12/10/24 09:35	12/17/24 08:46	1g	1g	1.00
A4L1255-04	Soil	EPA 8000D	12/10/24 09:40	12/17/24 08:46	1g	1g	1.00
A4L1255-06	Soil	EPA 8000D	12/10/24 11:30	12/17/24 08:46	1g	1g	1.00
A4L1255-08	Soil	EPA 8000D	12/10/24 11:40	12/17/24 08:46	1g	1g	1.00
A4L1255-09	Soil	EPA 8000D	12/10/24 12:30	12/17/24 08:46	1g	1g	1.00
A4L1255-10	Soil	EPA 8000D	12/10/24 12:35	12/17/24 08:46	1g	1g	1.00
A4L1255-12	Soil	EPA 8000D	12/10/24 15:00	12/17/24 08:46	1g	1g	1.00
A4L1255-13	Soil	EPA 8000D	12/10/24 15:05	12/17/24 08:46	1g	1g	1.00
A4L1255-15	Soil	EPA 8000D	12/11/24 08:40	12/17/24 08:46	1g	1g	1.00
A4L1255-16	Soil	EPA 8000D	12/11/24 08:45	12/17/24 08:46	1g	1g	1.00
A4L1255-19	Soil	EPA 8000D	12/11/24 10:20	12/17/24 08:46	1g	1g	1.00
A4L1255-20	Soil	EPA 8000D	12/11/24 10:25	12/17/24 08:46	1g	1g	1.00
A4L1255-22	Soil	EPA 8000D	12/11/24 12:40	12/17/24 08:46	1g	1g	1.00
A4L1255-23	Soil	EPA 8000D	12/11/24 12:45	12/17/24 08:46	1g	1g	1.00
A4L1255-25	Soil	EPA 8000D	12/11/24 14:30	12/17/24 08:46	1g	1g	1.00

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW	Project: <u>Auburn VW</u>	
20204 SE 284th Street	Project Number: BE-0107-E	<u>Report ID:</u>
Kent, WA 98042	Project Manager: Dan Hatch	A4L1255 - 01 06 25 1919
	CAMPLE DREDADATION INFORMAT	ION

SAMPLE PREPARATION INFORMATION

	Percent Dry Weight										
Prep: Dry Weight	Prep (EPA 8000D	<u>)</u>			Sample	Default	RL Prep				
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor				
A4L1255-26	Soil	EPA 8000D	12/11/24 14:35	12/17/24 08:46	1g	1g	1.00				

Apex Laboratories

Cameron O'Brien, Project Manager

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent. WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E**

Project Manager: Dan Hatch

<u>Report ID:</u> A4L1255 - 01 06 25 1919

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

- **DCNT** Sample decanted due to the presence of sediment in water samples, or water in sediment or soil samples. (Note: Decanted aqueous sample bottles are not solvent rinsed.)
- Q-04 Spike recovery and/or RPD is outside control limits due to a non-homogeneous sample matrix.
- Q-39 Results for sample duplicate are higher than the sample results. See duplicate results in QC section of the report.
- Q-55 Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260, however there is adequate sensitivity to ensure detection at the reporting level.
- Q-56 Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260. Samples that are ND (Non-Detect) are not impacted.
- **R-02** The Reporting Limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.
- S-05 Surrogate recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Project: <u>Auburn VW</u> Project Number: **BE-0107-E**

Project Manager: Dan Hatch

<u>Report ID:</u> A4L1255 - 01 06 25 1919

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

Kent, WA 98042

- DET Analyte DETECTED at or above the detection or reporting limit.
- ND Analyte NOT DETECTED at or above the detection or reporting limit.
- NR Result Not Reported.

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ). If no value is listed ('-----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as " dry", " wet", or " " (blank) designation.

- <u>" dry"</u> Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry") See Percent Solids section for details of dry weight analysis.
- "wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___ Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) are not included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

- "--- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.
- "*** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to one half of the Reporting Limit (RL). Blank results for gravimetric analyses are evaluated to the Reporting Level, not to half of the Reporting Level. -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier. -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street Project: <u>Auburn VW</u> Project Number: **BE-0107-E**

Project Manager: Dan Hatch

<u>Report ID:</u> A4L1255 - 01 06 25 1919

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Kent, WA 98042

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW	Project: <u>Auburn VW</u>	
20204 SE 284th Street	Project Number: BE-0107-E	<u>Report ID:</u>
Kent, WA 98042	Project Manager: Dan Hatch	A4L1255 - 01 06 25 1919

Decanted Samples:

Soils/Sediments:

Unless TCLP analysis is required or there is notification otherwise for a specific project, all Soil and Sediments containing excess water are decanted prior to analysis in order to provide the most representative sample for analysis.

Water Samples:

Water samples containing solids and sediment may need to be decanted in order to eliminate these particulates from the water extractions. In the case of organics extractions, a solvent rinse of the container will not be performed.

Volatiles Soils (5035s)

Samples that are field preserved by 5035 for volatiles are dry weight corrected using the same dry weight corretion as for normal analyses. In the case of decanted samples, the dry weight may be performed on a decanted sample, while the aliquot for 5035 may not have been treated the same way. If this is a concern, please submit separate containers for dry weight analysis for volatiles can be provided.

All samples decanted in the laboratory are noted in this report with the DCNT qualifier indicating the sample was decanted.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E**

Project Manager: Dan Hatch

<u>Report ID:</u> A4L1255 - 01 06 25 1919

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

<u>Apex Laboratories</u>									
Matrix	Analysis	TNI_ID	Analyte	TNI_ID	Accreditation				

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation. Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW	Project: <u>Auburn VW</u>	
20204 SE 284th Street	Project Number: BE-0107-E	<u>Report ID:</u>
Kent, WA 98042	Project Manager: Dan Hatch	A4L1255 - 01 06 25 1919
A Client: BUESTAL Project/Project #: Aby M Deliverv Info: Date/time received: MBMM Delivered by: Apex_Client_ESS From USDA Regulated Origin? Y Cooler Inspection Date/time inspect Chain of Custody included? Y Signed/dated by client? Y Contains USDA Reg. Soils? Y Condition seals? Y/N Received on ice? Y/N N Received on ice? N Condition (In/Out): N Condition (In/Out): N Cooler out of temp? (Y/N) N Cooler out of temp? Y Scoler out of temperature samples form initiat Sample Inspection: Date/time inspect	APEX LABS COOLER RECEIPT FORM	<u>55</u>
Bottle labels/COCs agree? YesNo <u>Ill(illveel extra Sample MW-to-1</u> COC/container discrepancies form initi Containers/volumes received appropriat Do VOA vials have visible headspace? <u>Comments</u> Water samples: pH checked: YesNo <u>Comments</u> : <u>IZ CIB OLOS 0) 1795 5095</u> Labeled by:W	to χ Comments: $M[M] - 7 - 5$ [cg]. T [Yacz [O N2][2][24 $\in 08\%$ iated? YesNo into for analysis? Yes X No Comments: YesNoNA oNAp[1 appropriate? YesNoNA X pH witness: AA Cooler Inspected by:	() / (0) S. () / (0) S.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Thursday, January 2, 2025 Dan Hatch Bluestone Environmental NW 20204 SE 284th Street Kent, WA 98042

RE: A4L1385 - Auburn VW - BE-0107-E

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A4L1385, which was received by the laboratory on 12/16/2024 at 11:20:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <u>mpoquiz@apex-labs.com</u>, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler	Receipt Information	
Cooler	Receipt Information	

Acceptable Receipt Temperature is less than, or equal to, 6 degC (not frozen), or received on ice the same day as sampling.

(See Cooler Receipt Form for details)

Default Cooler 2.4 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW	Project: <u>Auburn VW</u>	
20204 SE 284th Street	Project Number: BE-0107-E	<u>Report ID:</u>
Kent, WA 98042	Project Manager: Dan Hatch	A4L1385 - 01 02 25 1503

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION									
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received					
MW-14-6	A4L1385-01	Soil	12/12/24 08:50	12/16/24 11:20					
MW-15-5	A4L1385-04	Soil	12/12/24 10:50	12/16/24 11:20					
MW-15-11	A4L1385-05	Soil	12/12/24 10:55	12/16/24 11:20					
MW-16-5	A4L1385-07	Soil	12/12/24 12:50	12/16/24 11:20					
MW-16-10	A4L1385-08	Soil	12/12/24 12:55	12/16/24 11:20					
MW-17-5	A4L1385-10	Soil	12/12/24 14:20	12/16/24 11:20					
MW-17-10	A4L1385-11	Soil	12/12/24 14:25	12/16/24 11:20					
MW-18-5	A4L1385-13	Soil	12/13/24 08:40	12/16/24 11:20					
MW-18-10	A4L1385-14	Soil	12/13/24 08:45	12/16/24 11:20					
MW-19-5	A4L1385-16	Soil	12/13/24 10:10	12/16/24 11:20					
MW-19-10	A4L1385-17	Soil	12/13/24 10:15	12/16/24 11:20					
MW-20-5	A4L1385-19	Soil	12/13/24 12:30	12/16/24 11:20					
MW-20-10	A4L1385-20	Soil	12/13/24 12:35	12/16/24 11:20					
SWP	A4L1385-22	Soil	12/13/24 10:45	12/16/24 11:20					

Apex Laboratories

milule 09

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

ANALYTICAL SAMPLE RESULTS

	iiyult							
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-15-11 (A4L1385-05)				Matrix: Soil		Batch:	24L0674	CONT
Gasoline Range Organics	ND		28.5	mg/kg dry	1	12/19/24 01:24	NWTPH-HCID	
Diesel Range Organics	ND		71.3	mg/kg dry	1	12/19/24 01:24	NWTPH-HCID	
Oil Range Organics	ND		143	mg/kg dry	1	12/19/24 01:24	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recov	very: 81 %	Limits: 50-150 %	6 I	12/19/24 01:24	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			77 %	50-150 %	6 1	12/19/24 01:24	NWTPH-HCID	
MW-16-10 (A4L1385-08)				Matrix: Soil		Batch:	24L0674	CONT
Gasoline Range Organics	ND		27.1	mg/kg dry	1	12/19/24 01:47	NWTPH-HCID	
Diesel Range Organics	ND		67.6	mg/kg dry	1	12/19/24 01:47	NWTPH-HCID	
Oil Range Organics	ND		135	mg/kg dry	1	12/19/24 01:47	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recov	very: 84 %	Limits: 50-150 %	5 I	12/19/24 01:47	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			57 %	50-150 %	6 1	12/19/24 01:47	NWTPH-HCID	
MW-17-10 (A4L1385-11)				Matrix: Soil		Batch: 24L0674		CONT
Gasoline Range Organics	ND		26.5	mg/kg dry	1	12/19/24 02:10	NWTPH-HCID	
Diesel Range Organics	ND		66.2	mg/kg dry	1	12/19/24 02:10	NWTPH-HCID	
Oil Range Organics	ND		132	mg/kg dry	1	12/19/24 02:10	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recov	very: 87 %	Limits: 50-150 %	6 1	12/19/24 02:10	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			80 %	50-150 %	6 I	12/19/24 02:10	NWTPH-HCID	
MW-18-10 (A4L1385-14)				Matrix: Soil		Batch:	24L0674	CONT
Gasoline Range Organics	ND		23.1	mg/kg dry	1	12/19/24 03:20	NWTPH-HCID	
Diesel Range Organics	ND		57.7	mg/kg dry	1	12/19/24 03:20	NWTPH-HCID	
Oil Range Organics	ND		115	mg/kg dry	1	12/19/24 03:20	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recov	very: 97 %	Limits: 50-150 %	6 1	12/19/24 03:20	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			92 %	50-150 %	6 1	12/19/24 03:20	NWTPH-HCID	
MW-19-10 (A4L1385-17)				Matrix: Soil		Batch:	24L0674	CONT
Gasoline Range Organics	ND		25.6	mg/kg dry	1	12/19/24 02:34	NWTPH-HCID	
Diesel Range Organics	ND		64.0	mg/kg dry	1	12/19/24 02:34	NWTPH-HCID	
Oil Range Organics	ND		128	mg/kg dry	1	12/19/24 02:34	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recov	very: 92 %	Limits: 50-150 %	6 1	12/19/24 02:34	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			84 %	50-150 %	6 1	12/19/24 02:34	NWTPH-HCID	
MW-20-10 (A4L1385-20)				Matrix: Soil		Batch:	24L1045	CONT H-02

Apex Laboratories

milule 690

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project: Auburn VW Project Number BE-0107-E Project Manager: Dan Hatch

ANALYTICAL SAMPLE RESULTS

Hydrocarbon Identification Screen by NWTPH-HCID								
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-20-10 (A4L1385-20)				Matrix: Soil		Batch:	24L1045	CONT, H-02
Gasoline Range Organics	ND		30.1	mg/kg dry	1	12/30/24 16:37	NWTPH-HCID	
Diesel Range Organics	ND		75.1	mg/kg dry	1	12/30/24 16:37	NWTPH-HCID	
Oil Range Organics	ND		150	mg/kg dry	1	12/30/24 16:37	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recove	?ry: 70 %	Limits: 50-150 %	1	12/30/24 16:37	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			70 %	50-150 %	1	12/30/24 16:37	NWTPH-HCID	

Apex Laboratories

milale fog

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW	
20204 SE 284th Street	

Kent, WA 98042

Project: Auburn VW Project Number BE-0107-E Project Manager: Dan Hatch

<u>Report ID:</u> A4L1385 - 01 02 25 1503

ANALYTICAL SAMPLE RESULTS

Diesel and/or Oil Hydrocarbons by NWTPH-Dx								
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
SWP (A4L1385-22RE1)				Matrix: Soil		Batch:	CONT	
Diesel	ND		23.7	mg/kg dry	1	12/20/24 09:21	NWTPH-Dx	
Oil	56.5		47.3	mg/kg dry	1	12/20/24 09:21	NWTPH-Dx	F-17
Surrogate: o-Terphenyl (Surr)		Reco	very: 90 %	Limits: 50-150 %	6 I	12/20/24 09:21	NWTPH-Dx	

Apex Laboratories

milale fog

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1385 - 01 02 25 1503

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D								
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-16-10 (A4L1385-08)				Matrix: Soi	I	Batch:	24L0659	
Acetone	ND		1.44	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
Acrylonitrile	ND		0.144	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
Benzene	ND		0.0144	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
Bromobenzene	ND		0.0360	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
Bromochloromethane	ND		0.0720	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
Bromodichloromethane	ND		0.0720	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
Bromoform	ND		0.144	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
Bromomethane	ND		0.720	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
2-Butanone (MEK)	ND		0.720	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
n-Butylbenzene	ND		0.0720	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
sec-Butylbenzene	ND		0.0720	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
tert-Butylbenzene	ND		0.0720	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
Carbon disulfide	ND		0.720	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
Carbon tetrachloride	ND		0.0720	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
Chlorobenzene	ND		0.0360	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
Chloroethane	ND		0.720	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
Chloroform	ND		0.0720	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
Chloromethane	ND		0.360	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
2-Chlorotoluene	ND		0.0720	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
4-Chlorotoluene	ND		0.0720	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
Dibromochloromethane	ND		0.144	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND		0.360	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
1,2-Dibromoethane (EDB)	ND		0.0720	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
Dibromomethane	ND		0.0720	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
1,2-Dichlorobenzene	ND		0.0360	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
1,3-Dichlorobenzene	ND		0.0360	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
1,4-Dichlorobenzene	ND		0.0360	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
Dichlorodifluoromethane	ND		0.144	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
1,1-Dichloroethane	ND		0.0360	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
1,2-Dichloroethane (EDC)	ND		0.0360	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
1,1-Dichloroethene	ND		0.0360	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
cis-1.2-Dichloroethene	ND		0.0360	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
trans-1,2-Dichloroethene	ND		0.0360	mg/kg drv	50	12/18/24 15:03	5035A/8260D	
1,2-Dichloropropane	ND		0.0360	mg/kg drv	50	12/18/24 15:03	5035A/8260D	
1,3-Dichloropropane	ND		0.0720	mg/kg drv	50	12/18/24 15:03	5035A/8260D	
2,2-Dichloropropane	ND		0.0720	mg/kg drv	50	12/18/24 15:03	5035A/8260D	
1,1-Dichloropropene	ND		0.0720	mg/kg drv	50	12/18/24 15:03	5035A/8260D	
· · · · ·				0.0.5				

Apex Laboratories

milule Poz

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project: Auburn VW Project Number: BE-0107-E Project Manager: Dan Hatch

Report ID: A4L1385 - 01 02 25 1503

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-16-10 (A4L1385-08)				Matrix: Soil		Batch:	24L0659	
cis-1,3-Dichloropropene	ND		0.0720	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
trans-1,3-Dichloropropene	ND		0.0720	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
Ethylbenzene	ND		0.0360	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
Hexachlorobutadiene	ND		0.144	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
2-Hexanone	ND		0.720	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
Isopropylbenzene	ND		0.0720	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
4-Isopropyltoluene	ND		0.0720	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
Methylene chloride	ND		0.720	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND		0.720	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND		0.0720	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
Naphthalene	ND		0.144	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
n-Propylbenzene	ND		0.0360	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
Styrene	ND		0.0720	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND		0.0360	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND		0.0720	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
Tetrachloroethene (PCE)	ND		0.0360	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
Toluene	ND		0.0720	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
1,2,3-Trichlorobenzene	ND		0.360	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
1,2,4-Trichlorobenzene	ND		0.360	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
1,1,1-Trichloroethane	ND		0.0360	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
1,1,2-Trichloroethane	ND		0.0360	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
Trichloroethene (TCE)	ND		0.0360	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
Trichlorofluoromethane	ND		0.360	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
1,2,3-Trichloropropane	ND		0.0720	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
1,2,4-Trimethylbenzene	ND		0.0720	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
1,3,5-Trimethylbenzene	ND		0.0720	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
Vinyl chloride	ND		0.0360	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
m,p-Xylene	ND		0.0720	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
o-Xylene	ND		0.0360	mg/kg dry	50	12/18/24 15:03	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	101 %	Limits: 80-120 %	1	12/18/24 15:03	5035A/8260D	
Toluene-d8 (Surr)			97 %	80-120 %	1	12/18/24 15:03	5035A/8260D	
4-Bromofluorobenzene (Surr)			97 %	79-120 %	1	12/18/24 15:03	5035A/8260D	
 MW-19-10 (A4L1385-17)				Matrix: Soil		Batch:	24L0659	CONT

MW-19-10 (A4L1385-17)
------------	-------------

Acetone	ND	 2.15	mg/kg dry	50	12/18/24 15:30	5035A/8260D
Acrylonitrile	ND	 0.215	mg/kg dry	50	12/18/24 15:30	5035A/8260D
Benzene	ND	 0.0215	mg/kg dry	50	12/18/24 15:30	5035A/8260D

Apex Laboratories

milule 090

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

CONT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1385 - 01 02 25 1503

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compoun	ds by EPA 82	60D			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-19-10 (A4L1385-17)				Matrix: Soi	I	Batch:	24L0659	CONT
Bromobenzene	ND		0.0537	mg/kg dry	50	12/18/24 15:30	5035A/8260D	
Bromochloromethane	ND		0.107	mg/kg dry	50	12/18/24 15:30	5035A/8260D	
Bromodichloromethane	ND		0.107	mg/kg dry	50	12/18/24 15:30	5035A/8260D	
Bromoform	ND		0.215	mg/kg dry	50	12/18/24 15:30	5035A/8260D	
Bromomethane	ND		1.07	mg/kg dry	50	12/18/24 15:30	5035A/8260D	
2-Butanone (MEK)	ND		1.07	mg/kg dry	50	12/18/24 15:30	5035A/8260D	
n-Butylbenzene	ND		0.107	mg/kg dry	50	12/18/24 15:30	5035A/8260D	
sec-Butylbenzene	ND		0.107	mg/kg dry	50	12/18/24 15:30	5035A/8260D	
tert-Butylbenzene	ND		0.107	mg/kg dry	50	12/18/24 15:30	5035A/8260D	
Carbon disulfide	ND		1.07	mg/kg dry	50	12/18/24 15:30	5035A/8260D	
Carbon tetrachloride	ND		0.107	mg/kg dry	50	12/18/24 15:30	5035A/8260D	
Chlorobenzene	ND		0.0537	mg/kg dry	50	12/18/24 15:30	5035A/8260D	
Chloroethane	ND		1.07	mg/kg dry	50	12/18/24 15:30	5035A/8260D	
Chloroform	ND		0.107	mg/kg dry	50	12/18/24 15:30	5035A/8260D	
Chloromethane	ND		0.537	mg/kg dry	50	12/18/24 15:30	5035A/8260D	
2-Chlorotoluene	ND		0.107	mg/kg dry	50	12/18/24 15:30	5035A/8260D	
4-Chlorotoluene	ND		0.107	mg/kg dry	50	12/18/24 15:30	5035A/8260D	
Dibromochloromethane	ND		0.215	mg/kg dry	50	12/18/24 15:30	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND		0.537	mg/kg dry	50	12/18/24 15:30	5035A/8260D	
1,2-Dibromoethane (EDB)	ND		0.107	mg/kg dry	50	12/18/24 15:30	5035A/8260D	
Dibromomethane	ND		0.107	mg/kg dry	50	12/18/24 15:30	5035A/8260D	
1,2-Dichlorobenzene	ND		0.0537	mg/kg dry	50	12/18/24 15:30	5035A/8260D	
1,3-Dichlorobenzene	ND		0.0537	mg/kg dry	50	12/18/24 15:30	5035A/8260D	
1,4-Dichlorobenzene	ND		0.0537	mg/kg dry	50	12/18/24 15:30	5035A/8260D	
Dichlorodifluoromethane	ND		0.215	mg/kg dry	50	12/18/24 15:30	5035A/8260D	
1,1-Dichloroethane	ND		0.0537	mg/kg dry	50	12/18/24 15:30	5035A/8260D	
1,2-Dichloroethane (EDC)	ND		0.0537	mg/kg dry	50	12/18/24 15:30	5035A/8260D	
1,1-Dichloroethene	ND		0.0537	mg/kg dry	50	12/18/24 15:30	5035A/8260D	
cis-1,2-Dichloroethene	ND		0.0537	mg/kg dry	50	12/18/24 15:30	5035A/8260D	
trans-1,2-Dichloroethene	ND		0.0537	mg/kg dry	50	12/18/24 15:30	5035A/8260D	
1,2-Dichloropropane	ND		0.0537	mg/kg dry	50	12/18/24 15:30	5035A/8260D	
1,3-Dichloropropane	ND		0.107	mg/kg dry	50	12/18/24 15:30	5035A/8260D	
2,2-Dichloropropane	ND		0.107	mg/kg dry	50	12/18/24 15:30	5035A/8260D	
1,1-Dichloropropene	ND		0.107	mg/kg dry	50	12/18/24 15:30	5035A/8260D	
cis-1,3-Dichloropropene	ND		0.107	mg/kg dry	50	12/18/24 15:30	5035A/8260D	
trans-1,3-Dichloropropene	ND		0.107	mg/kg dry	50	12/18/24 15:30	5035A/8260D	
Ethylbenzene	ND		0.0537	mg/kg dry	50	12/18/24 15:30	5035A/8260D	

Apex Laboratories

milule Poz

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1385 - 01 02 25 1503

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D											
	Sample	Detection	Reporting								
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes			
MW-19-10 (A4L1385-17)				Matrix: Soil		Batch:	24L0659	CONT			
Hexachlorobutadiene	ND		0.215	mg/kg dry	50	12/18/24 15:30	5035A/8260D				
2-Hexanone	ND		1.07	mg/kg dry	50	12/18/24 15:30	5035A/8260D				
Isopropylbenzene	ND		0.107	mg/kg dry	50	12/18/24 15:30	5035A/8260D				
4-Isopropyltoluene	ND		0.107	mg/kg dry	50	12/18/24 15:30	5035A/8260D				
Methylene chloride	ND		1.07	mg/kg dry	50	12/18/24 15:30	5035A/8260D				
4-Methyl-2-pentanone (MiBK)	ND		1.07	mg/kg dry	50	12/18/24 15:30	5035A/8260D				
Methyl tert-butyl ether (MTBE)	ND		0.107	mg/kg dry	50	12/18/24 15:30	5035A/8260D				
Naphthalene	ND		0.215	mg/kg dry	50	12/18/24 15:30	5035A/8260D				
n-Propylbenzene	ND		0.0537	mg/kg dry	50	12/18/24 15:30	5035A/8260D				
Styrene	ND		0.107	mg/kg dry	50	12/18/24 15:30	5035A/8260D				
1,1,1,2-Tetrachloroethane	ND		0.0537	mg/kg dry	50	12/18/24 15:30	5035A/8260D				
1,1,2,2-Tetrachloroethane	ND		0.107	mg/kg dry	50	12/18/24 15:30	5035A/8260D				
Tetrachloroethene (PCE)	ND		0.0537	mg/kg dry	50	12/18/24 15:30	5035A/8260D				
Toluene	ND		0.107	mg/kg dry	50	12/18/24 15:30	5035A/8260D				
1,2,3-Trichlorobenzene	ND		0.537	mg/kg dry	50	12/18/24 15:30	5035A/8260D				
1,2,4-Trichlorobenzene	ND		0.537	mg/kg dry	50	12/18/24 15:30	5035A/8260D				
1,1,1-Trichloroethane	ND		0.0537	mg/kg dry	50	12/18/24 15:30	5035A/8260D				
1,1,2-Trichloroethane	ND		0.0537	mg/kg dry	50	12/18/24 15:30	5035A/8260D				
Trichloroethene (TCE)	ND		0.0537	mg/kg dry	50	12/18/24 15:30	5035A/8260D				
Trichlorofluoromethane	ND		0.537	mg/kg dry	50	12/18/24 15:30	5035A/8260D				
1,2,3-Trichloropropane	ND		0.107	mg/kg dry	50	12/18/24 15:30	5035A/8260D				
1,2,4-Trimethylbenzene	ND		0.107	mg/kg dry	50	12/18/24 15:30	5035A/8260D				
1,3,5-Trimethylbenzene	ND		0.107	mg/kg dry	50	12/18/24 15:30	5035A/8260D				
Vinyl chloride	ND		0.0537	mg/kg dry	50	12/18/24 15:30	5035A/8260D				
m,p-Xylene	ND		0.107	mg/kg dry	50	12/18/24 15:30	5035A/8260D				
o-Xylene	ND		0.0537	mg/kg dry	50	12/18/24 15:30	5035A/8260D				
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	vry: 101 %	Limits: 80-120 %	1	12/18/24 15:30	5035A/8260D				
Toluene-d8 (Surr)			94 %	80-120 %	1	12/18/24 15:30	5035A/8260D				
4-Bromofluorobenzene (Surr)			98 %	79-120 %	1	12/18/24 15:30	5035A/8260D				

Apex Laboratories

milule Poz

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042

Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

Project:

<u>Report ID:</u> A4L1385 - 01 02 25 1503

ANALYTICAL SAMPLE RESULTS

Auburn VW

		Total Meta	ls by EPA 60	20B (ICPMS)				
Sa	ample	Detection	Reporting			Date		
Analyte R	esult	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-14-6 (A4L1385-01)				Matrix: Soil				
Batch: 24L1028								
Arsenic	9.52		1.52	mg/kg dry	10	12/30/24 18:43	EPA 6020B	
MW-15-5 (A4L1385-04)				Matrix: Soil				
Batch: 24L1028								
Arsenic	4.76		1.22	mg/kg dry	10	12/30/24 18:59	EPA 6020B	CONT
				Matrix: Soil				
Batch: 24L1028								
Arsenic	4.33		1.25	mg/kg dry	10	12/30/24 19:14	EPA 6020B	CONT
				Matrix: Soil				
Batch: 24L1028								
Arsenic	3.17		1.53	mg/kg dry	10	12/30/24 19:20	EPA 6020B	CONT
Barium	69.8		1.53	mg/kg dry	10	12/30/24 19:20	EPA 6020B	CONT
Cadmium	ND		0.306	mg/kg dry	10	12/30/24 19:20	EPA 6020B	CONT
Chromium	18.1		1.53	mg/kg dry	10	12/30/24 19:20	EPA 6020B	CONT
Copper	32.7		3.06	mg/kg dry	10	12/30/24 19:20	EPA 6020B	CONT
Lead	4.25		0.306	mg/kg dry	10	12/30/24 19:20	EPA 6020B	CONT
Mercury	ND		0.123	mg/kg dry	10	12/30/24 19:20	EPA 6020B	CONT
Selenium	ND		1.53	mg/kg dry	10	12/30/24 19:20	EPA 6020B	CONT
Silver	ND		0.306	mg/kg dry	10	12/30/24 19:20	EPA 6020B	CONT
MW-17-5 (A4L1385-10)				Matrix: Soil				
Batch: 24L1028								
Arsenic	3.03		1.24	mg/kg dry	10	12/30/24 19:25	EPA 6020B	CONT
MW-18-5 (A4L1385-13)				Matrix: Soil				
Batch: 24L1028								
Arsenic	4.70		1.30	mg/kg dry	10	12/30/24 19:30	EPA 6020B	CONT
MW-19-5 (A4L1385-16)				Matrix: Soil				
Batch: 24L1028								
Arsenic	5.44		1.31	mg/kg dry	10	12/30/24 19:36	EPA 6020B	CONT

Apex Laboratories

mille Poz

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042

Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1385 - 01 02 25 1503

ANALYTICAL SAMPLE RESULTS

		Total Meta	ls by EPA 60	20B (ICPMS)				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-19-10 (A4L1385-17)				Matrix: Soil	l			
Batch: 24L1028								
Arsenic	7.85		1.43	mg/kg dry	10	12/30/24 19:41	EPA 6020B	CONT
Barium	91.5		1.43	mg/kg dry	10	12/30/24 19:41	EPA 6020B	CONT
Cadmium	ND		0.287	mg/kg dry	10	12/30/24 19:41	EPA 6020B	CONT
Chromium	16.2		1.43	mg/kg dry	10	12/30/24 19:41	EPA 6020B	CONT
Copper	30.8		2.87	mg/kg dry	10	12/30/24 19:41	EPA 6020B	CONT
Lead	4.78		0.287	mg/kg dry	10	12/30/24 19:41	EPA 6020B	CONT
Mercury	ND		0.115	mg/kg dry	10	12/30/24 19:41	EPA 6020B	CONT
Selenium	ND		1.43	mg/kg dry	10	12/30/24 19:41	EPA 6020B	CONT
Silver	ND		0.287	mg/kg dry	10	12/30/24 19:41	EPA 6020B	CONT
MW-20-5 (A4L1385-19)				Matrix: Soil	l			
Batch: 24L1028								
Arsenic	4.81		1.33	mg/kg dry	10	12/30/24 19:46	EPA 6020B	CONT
SWP (A4L1385-22)				Matrix: Soil	l			
Batch: 24L1028								
Arsenic	3.63		1.43	mg/kg dry	10	12/30/24 19:51	EPA 6020B	CONT
Barium	63.0		1.43	mg/kg dry	10	12/30/24 19:51	EPA 6020B	CONT
Cadmium	ND		0.286	mg/kg dry	10	12/30/24 19:51	EPA 6020B	CONT
Chromium	13.2		1.43	mg/kg dry	10	12/30/24 19:51	EPA 6020B	CONT
Lead	7.93		0.286	mg/kg dry	10	12/30/24 19:51	EPA 6020B	CONT
Mercury	ND		0.114	mg/kg dry	10	12/30/24 19:51	EPA 6020B	CONT
Selenium	ND		1.43	mg/kg dry	10	12/30/24 19:51	EPA 6020B	CONT
Silver	ND		0.286	mg/kg dry	10	12/30/24 19:51	EPA 6020B	CONT

Apex Laboratories

milale fog

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street

Kent, WA 98042

Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

Project:

<u>Report ID:</u> A4L1385 - 01 02 25 1503

ANALYTICAL SAMPLE RESULTS

Auburn VW

Percent Dry Weight												
Angleta	Sample	Detection	Reporting	11=:4-	Dibetion	Date	Math-J.D. C	N-4-				
	Kesuit	Liinit	Liiiit	Units Matrix: Cail	Dilution	Allalyzeu		Notes				
WVV-14-6 (A4L1385-01)				Matrix: Soli		Batch:	24L06/9					
% Solids	70.4		1.00	%	1	12/19/24 05:22	EPA 8000D					
MW-15-5 (A4L1385-04)				Matrix: Soil		Batch:	24L0679	CONT				
% Solids	80.7		1.00	%	1	12/19/24 05:22	EPA 8000D					
MW-15-11 (A4L1385-05)				Matrix: Soil		Batch:	24L0679	CONT				
% Solids	69.3		1.00	%	1	12/19/24 05:22	EPA 8000D					
MW-16-5 (A4L1385-07)				Matrix: Soil	l	Batch:	24L0679	CONT				
% Solids	83.9		1.00	%	1	12/19/24 05:22	EPA 8000D					
MW-16-10 (A4L1385-08)				Matrix: Soil	l	Batch:	24L0679	CONT				
% Solids	69.4		1.00	%	1	12/19/24 05:22	EPA 8000D					
MW-17-5 (A4L1385-10)				Matrix: Soil	I	Batch:	24L0679	CONT				
% Solids	81.7		1.00	%	1	12/19/24 05:22	EPA 8000D					
MW-17-10 (A4L1385-11)				Matrix: Soil	I	Batch:	24L0679	CONT				
% Solids	70.6		1.00	%	1	12/19/24 05:22	EPA 8000D					
MW-18-5 (A4L1385-13)				Matrix: Soil	I	Batch:	24L0679	CONT				
% Solids	83.9		1.00	%	1	12/19/24 05:22	EPA 8000D					
MW-18-10 (A4L1385-14)				Matrix: Soil	l	Batch:	24L0679	CONT				
% Solids	83.1		1.00	%	1	12/19/24 05:22	EPA 8000D					
MW-19-5 (A4L1385-16)				Matrix: Soil	l	Batch:	24L0679	CONT				
% Solids	80.8		1.00	%	1	12/19/24 05:22	EPA 8000D					
MW-19-10 (A4L1385-17)				Matrix: Soil	I	Batch:	24L0679	CONT				
% Solids	71.2		1.00	%	1	12/19/24 05:22	EPA 8000D					
MW-20-5 (A4L1385-19)				Matrix: Soil		Batch:	24L0679	CONT				
% Solids	78.8		1.00	%	1	12/19/24 05:22	EPA 8000D					
MW-20-10 (A4L1385-20)				Matrix: Soil		Batch:	24L1081	CONT, H-01				

Apex Laboratories

milale fog

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

	ANALYTICAL SAMPLE RESULTS	
Kent, WA 98042	Project Manager: Dan Hatch	A4L1385 - 01 02 25 1503
20204 SE 284th Street	Project Number: BE-0107-E	Report ID:
Bluestone Environmental NW	Project: <u>Auburn VW</u>	

Percent Dry Weight											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
MW-20-10 (A4L1385-20)				Matrix: Soil Batch: 24L1081 C							
% Solids	64.3		1.00	%	1	01/02/25 06:08	EPA 8000D				
SWP (A4L1385-22)				Matrix: Soil Batch: 24L0679							
% Solids	72.2		1.00	%	1	12/19/24 05:22	EPA 8000D				

Apex Laboratories

milule 09-

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number <u>BE-0107-E</u> Project Manager: Dan Hatch

QUALITY CONTROL (QC) SAMPLE RESULTS

		Hydr	ocarbon l	dentificatior	n Scree	n by NW1		C				
Analyte	Result	Detection L Limit	Reporting Limit	Units D	vilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0674 - EPA 3546 (Fu	els)						Soil	1				
Blank (24L0674-BLK1)		Prepared:	12/18/24 10	:53 Analyzed:	12/18/24	4 19:09				_		
NWTPH-HCID												
Gasoline Range Organics	ND		20.0	mg/kg wet	1							
Diesel Range Organics	ND		50.0	mg/kg wet	1							
Oil Range Organics	ND		100	mg/kg wet	1							
Surr: o-Terphenyl (Surr)		Reco	very: 96 %	Limits: 50-15	0%	Dilu	tion: 1x					
4-Bromofluorobenzene (Surr)			98 %	50-15	0 %		"					
Duplicate (24L0674-DUP2)		Prepared:	12/18/24 10	:53 Analyzed:	12/19/24	4 02:57						CON
QC Source Sample: MW-19-10 (A	4L1385-17)	<u> </u>										
NWTPH-HCID	_											
Gasoline Range Organics	ND		25.6	mg/kg dry	1		ND				30%	
Diesel Range Organics	ND		64.1	mg/kg dry	1		ND				30%	
Oil Range Organics	ND		128	mg/kg dry	_1		ND				30%	
Surr: o-Terphenyl (Surr)		Reco	very: 91 %	Limits: 50-15	0%	Dilu	tion: 1x					
4-Bromofluorobenzene (Surr)			89 %	50-15	0%		"					
Batch 24L1045 - EPA 3546 (Fu	els)						Soil					
Blank (24L1045-BLK1)		Prepared:	12/30/24 12	:11 Analyzed:	12/30/24	1 16:14						
NWTPH-HCID												
Gasoline Range Organics	ND		20.0	mg/kg wet	1							
Diesel Range Organics	ND		50.0	mg/kg wet	1							
Oil Range Organics	ND		100	mg/kg wet	1							
Surr: o-Terphenyl (Surr)		Reco	very: 77 %	Limits: 50-15	0%	Dilu	tion: 1x					
4-Bromofluorobenzene (Surr)			77 %	50-15	0%		"					
Duplicate (24L1045-DUP1)		Prepared:	12/30/24 12	:11 Analyzed:	12/30/24	4 17:00						CON
OC Source Sample: MW-20-10 (A NWTPH-HCID	4L1385-20)	<u></u>										
Gasoline Range Organics	ND		30.4	mg/kg drv	1		ND				30%	
Diesel Range Organics	ND		76.0	mø/kø drv	- 1		ND				30%	
Oil Range Organics	ND		152	mg/kg drv	1		ND				30%	
Surr: o-Terphenyl (Surr)		Reco	very: 75 %	Limits: 50-15	0%	Dilu	tion: 1x					

Apex Laboratories

milale fog

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street

Kent, WA 98042

Project: Auburn VW Project Number BE-0107-E Project Manager: Dan Hatch

<u>Report ID:</u> A4L1385 - 01 02 25 1503

QUALITY CONTROL (QC) SAMPLE RESULTS

	Hydrocarbon Identification Screen by NWTPH-HCID												
Analyte	Result	Detection L Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 24L1045 - EPA 354	6 (Fuels)						Soil						
Duplicate (24L1045-DUP1)		Prepared:	12/30/24 12:	11 Analy	zed: 12/30/2-	4 17:00						CONT	
<u>OC Source Sample: MW-20</u> Surr: 4-Bromofluorobenzene (S	<mark>)-10 (A4L1385-20</mark>) Surr)	<u>)</u> Reco	wery: 75 %	Limits: 3	50-150 %	Dilt	ution: 1x						

Apex Laboratories

milale fog

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number <u>BE-0107-E</u> Project Manager: Dan Hatch

<u>Report ID:</u> A4L1385 - 01 02 25 1503

QUALITY CONTROL (QC) SAMPLE RESULTS

	Diesel and/or Oil Hydrocarbons by NWTPH-Dx												
Analyte	Result	Detection L Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 24L0737 - EPA 3546 (F	uels)						Soil						
Blank (24L0737-BLK1)		Prepared:	12/19/24 10:	15 Analyz	ed: 12/19/24	1 20:24							
NWTPH-Dx													
Diesel	ND		20.0	mg/kg w	et 1								
Oil	ND		40.0	mg/kg w	et 1								
Surr: o-Terphenyl (Surr)		Reco	very: 81 %	Limits: 50)-150 %	Dilu	ution: 1x						
LCS (24L0737-BS1)		Prepared:	12/19/24 10:	15 Analyz	ed: 12/19/24	4 20:44							
NWTPH-Dx													
Diesel	107		20.0	mg/kg w	et 1	125		86 3	38 - 132%				
Surr: o-Terphenyl (Surr)		Reco	very: 86 %	Limits: 50	-150 %	Dilu	tion: 1x						

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

milale fog

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D												
Analyte	Result	Detection L Limit	Reporting Limit	Units I	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0659 - EPA 5035A							Soil					
Blank (24L0659-BLK1)		Prepared	: 12/18/24 09:0	00 Analyzed	1: 12/18/24	4 11:51						
5035A/8260D												
Acetone	ND		1.00	mg/kg wet	50							
Acrylonitrile	ND		0.100	mg/kg wet	50							
Benzene	ND		0.0100	mg/kg wet	50							
Bromobenzene	ND		0.0250	mg/kg wet	50							
Bromochloromethane	ND		0.0500	mg/kg wet	50							
Bromodichloromethane	ND		0.0500	mg/kg wet	50							
Bromoform	ND		0.100	mg/kg wet	50							
Bromomethane	ND		0.500	mg/kg wet	50							
2-Butanone (MEK)	ND		0.500	mg/kg wet	50							
n-Butylbenzene	ND		0.0500	mg/kg wet	50							
sec-Butylbenzene	ND		0.0500	mg/kg wet	50							
tert-Butylbenzene	ND		0.0500	mg/kg wet	50							
Carbon disulfide	ND		0.500	mg/kg wet	50							
Carbon tetrachloride	ND		0.0500	mg/kg wet	50							
Chlorobenzene	ND		0.0250	mg/kg wet	50							
Chloroethane	ND		0.500	mg/kg wet	50							
Chloroform	ND		0.0500	mg/kg wet	50							
Chloromethane	ND		0.250	mg/kg wet	50							
2-Chlorotoluene	ND		0.0500	mg/kg wet	50							
4-Chlorotoluene	ND		0.0500	mg/kg wet	50							
Dibromochloromethane	ND		0.100	mg/kg wet	50							
1,2-Dibromo-3-chloropropane	ND		0.250	mg/kg wet	50							
1,2-Dibromoethane (EDB)	ND		0.0500	mg/kg wet	50							
Dibromomethane	ND		0.0500	mg/kg wet	50							
1,2-Dichlorobenzene	ND		0.0250	mg/kg wet	50							
1,3-Dichlorobenzene	ND		0.0250	mg/kg wet	50							
1,4-Dichlorobenzene	ND		0.0250	mg/kg wet	50							
Dichlorodifluoromethane	ND		0.100	mg/kg wet	50							
1,1-Dichloroethane	ND		0.0250	mg/kg wet	50							
1,2-Dichloroethane (EDC)	ND		0.0250	mg/kg wet	50							
1,1-Dichloroethene	ND		0.0250	mg/kg wet	50							
cis-1,2-Dichloroethene	ND		0.0250	mg/kg wet	50							
trans-1,2-Dichloroethene	ND		0.0250	mg/kg wet	50							

Apex Laboratories

milule Poz

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

QUALITY CONTROL (QC) SAMPLE RESULTS

Analysia	י ת	Detection L	Reporting	TT'4	Dir	Spike	Source	0/ 850	% REC	סחם	RPD	NT ·
Analyte	Kesult	Limit	Limit	Units	Dilution	Amount	Kesult	% REC	Limits	крр	Limit	Notes
Batch 24L0659 - EPA 5035A							Soil					
Blank (24L0659-BLK1)		Prepared:	12/18/24 09:0	00 Analyzed	1: 12/18/24	4 11:51						
1,2-Dichloropropane	ND		0.0250	mg/kg wet	50							
1,3-Dichloropropane	ND		0.0500	mg/kg wet	50							
2,2-Dichloropropane	ND		0.0500	mg/kg wet	50							
1,1-Dichloropropene	ND		0.0500	mg/kg wet	50							
cis-1,3-Dichloropropene	ND		0.0500	mg/kg wet	50							
trans-1,3-Dichloropropene	ND		0.0500	mg/kg wet	50							
Ethylbenzene	ND		0.0250	mg/kg wet	50							
Hexachlorobutadiene	ND		0.100	mg/kg wet	50							
2-Hexanone	ND		0.500	mg/kg wet	50							
Isopropylbenzene	ND		0.0500	mg/kg wet	50							
4-Isopropyltoluene	ND		0.0500	mg/kg wet	50							
Methylene chloride	ND		0.500	mg/kg wet	50							
4-Methyl-2-pentanone (MiBK)	ND		0.500	mg/kg wet	50							
Methyl tert-butyl ether (MTBE)	ND		0.0500	mg/kg wet	50							
Naphthalene	ND		0.100	mg/kg wet	50							
n-Propylbenzene	ND		0.0250	mg/kg wet	50							
Styrene	ND		0.0500	mg/kg wet	50							
1,1,1,2-Tetrachloroethane	ND		0.0250	mg/kg wet	50							
1,1,2,2-Tetrachloroethane	ND		0.0500	mg/kg wet	50							
Tetrachloroethene (PCE)	ND		0.0250	mg/kg wet	50							
Toluene	ND		0.0500	mg/kg wet	50							
1,2,3-Trichlorobenzene	ND		0.250	mg/kg wet	50							
1,2,4-Trichlorobenzene	ND		0.250	mg/kg wet	50							
1,1,1-Trichloroethane	ND		0.0250	mg/kg wet	50							
1,1,2-Trichloroethane	ND		0.0250	mg/kg wet	50							
Trichloroethene (TCE)	ND		0.0250	mg/kg wet	50							
Trichlorofluoromethane	ND		0.250	mg/kg wet	50							
1,2,3-Trichloropropane	ND		0.0500	mg/kg wet	50							
1,2,4-Trimethylbenzene	ND		0.0500	mg/kg wet	50							
1,3,5-Trimethylbenzene	ND		0.0500	mg/kg wet	50							
Vinyl chloride	ND		0.0250	mg/kg wet	50							
n,p-Xylene	ND		0.0500	mg/kg wet	50							
o-Xylene	ND		0.0250	mg/kg wet	50							
Surr: 1,4-Difluorobenzene (Surr)		Recov	ery: 100 %	Limits: 80-1	20 %	Dilu	tion: 1x					

Apex Laboratories

milale fog

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street

Kent, WA 98042

Project: <u>Auburn VW</u> Project Number: **BE-0107-E**

Project Manager: Dan Hatch

<u>Report ID:</u> A4L1385 - 01 02 25 1503

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D												
Analyte	Result	Detection L Limit	Reporting Limit	Units I	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0659 - EPA 5035A							Soil					
Blank (24L0659-BLK1)		Prepared	12/18/24 09:	00 Analyzed	: 12/18/2	4 11:51						
Surr: Toluene-d8 (Surr)		Reco	very: 96 %	Limits: 80-12	20 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			98 %	79-12	20 %		"					
LCS (24L0659-BS1)		Prepared:	12/18/24 09:	00 Analyzed	: 12/18/2	4 10:29						
5035A/8260D												
Acetone	1.67		1.00	mg/kg wet	50	2.00		83	80 - 120%			
Acrylonitrile	0.897		0.100	mg/kg wet	50	1.00		90	80 - 120%			
Benzene	0.951		0.0100	mg/kg wet	50	1.00		95	80 - 120%			
Bromobenzene	0.949		0.0250	mg/kg wet	50	1.00		95	80 - 120%			
Bromochloromethane	0.970		0.0500	mg/kg wet	50	1.00		97	80 - 120%			
Bromodichloromethane	0.918		0.0500	mg/kg wet	50	1.00		92	80 - 120%			
Bromoform	0.932		0.100	mg/kg wet	50	1.00		93	80 - 120%			
Bromomethane	1.42		0.500	mg/kg wet	50	1.00		142	80 - 120%			Q-56
2-Butanone (MEK)	1.68		0.500	mg/kg wet	50	2.00		84	80 - 120%			
n-Butylbenzene	0.914		0.0500	mg/kg wet	50	1.00		91	80 - 120%			
sec-Butylbenzene	0.965		0.0500	mg/kg wet	50	1.00		96	80 - 120%			
tert-Butylbenzene	0.893		0.0500	mg/kg wet	50	1.00		89	80 - 120%			
Carbon disulfide	0.898		0.500	mg/kg wet	50	1.00		90	80 - 120%			
Carbon tetrachloride	1.18		0.0500	mg/kg wet	50	1.00		118	80 - 120%			
Chlorobenzene	0.978		0.0250	mg/kg wet	50	1.00		98	80 - 120%			
Chloroethane	0.886		0.500	mg/kg wet	50	1.00		89	80 - 120%			
Chloroform	1.01		0.0500	mg/kg wet	50	1.00		101	80 - 120%			
Chloromethane	0.797		0.250	mg/kg wet	50	1.00		80	80 - 120%			
2-Chlorotoluene	0.970		0.0500	mg/kg wet	50	1.00		97	80 - 120%			
4-Chlorotoluene	0.909		0.0500	mg/kg wet	50	1.00		91	80 - 120%			
Dibromochloromethane	0.931		0.100	mg/kg wet	50	1.00		93	80 - 120%			
1,2-Dibromo-3-chloropropane	0.796		0.250	mg/kg wet	50	1.00		80	80 - 120%			
1,2-Dibromoethane (EDB)	1.01		0.0500	mg/kg wet	50	1.00		101	80 - 120%			
Dibromomethane	1.02		0.0500	mg/kg wet	50	1.00		102	80 - 120%			
1,2-Dichlorobenzene	0.962		0.0250	mg/kg wet	50	1.00		96	80 - 120%			
1,3-Dichlorobenzene	0.984		0.0250	mg/kg wet	50	1.00		98	80 - 120%			
1,4-Dichlorobenzene	0.966		0.0250	mg/kg wet	50	1.00		97	80 - 120%			
Dichlorodifluoromethane	0.926		0.100	mg/kg wet	50	1.00		93	80 - 120%			
1,1-Dichloroethane	0.974		0.0250	mg/kg wet	50	1.00		97	80 - 120%			

Apex Laboratories

mille Pog

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

QUALITY CONTROL (QC) SAMPLE RESULTS

	Volatile Organic Compounds by EPA 8260D												
Analyte	Result	Detection L Limit	Reporting Limit	Units I	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 24L0659 - EPA 5035A							Soil						
LCS (24L0659-BS1)		Prepared	12/18/24 09:0	00 Analyzed	: 12/18/2	4 10:29							
1,2-Dichloroethane (EDC)	0.980		0.0250	mg/kg wet	50	1.00		98	80 - 120%				
1,1-Dichloroethene	0.984		0.0250	mg/kg wet	50	1.00		98	80 - 120%				
cis-1,2-Dichloroethene	0.944		0.0250	mg/kg wet	50	1.00		94	80 - 120%				
trans-1,2-Dichloroethene	0.947		0.0250	mg/kg wet	50	1.00		95	80 - 120%				
1,2-Dichloropropane	0.927		0.0250	mg/kg wet	50	1.00		93	80 - 120%				
1,3-Dichloropropane	0.934		0.0500	mg/kg wet	50	1.00		93	80 - 120%				
2,2-Dichloropropane	1.22		0.0500	mg/kg wet	50	1.00		122	80 - 120%			Q-56	
1,1-Dichloropropene	0.991		0.0500	mg/kg wet	50	1.00		99	80 - 120%				
cis-1,3-Dichloropropene	0.901		0.0500	mg/kg wet	50	1.00		90	80 - 120%				
trans-1,3-Dichloropropene	0.920		0.0500	mg/kg wet	50	1.00		92	80 - 120%				
Ethylbenzene	0.965		0.0250	mg/kg wet	50	1.00		96	80 - 120%				
Hexachlorobutadiene	1.04		0.100	mg/kg wet	50	1.00		104	80 - 120%				
2-Hexanone	1.53		0.500	mg/kg wet	50	2.00		77	80 - 120%			Q-55	
Isopropylbenzene	0.969		0.0500	mg/kg wet	50	1.00		97	80 - 120%				
4-Isopropyltoluene	0.962		0.0500	mg/kg wet	50	1.00		96	80 - 120%				
Methylene chloride	0.893		0.500	mg/kg wet	50	1.00		89	80 - 120%				
4-Methyl-2-pentanone (MiBK)	1.72		0.500	mg/kg wet	50	2.00		86	80 - 120%				
Methyl tert-butyl ether (MTBE)	0.964		0.0500	mg/kg wet	50	1.00		96	80 - 120%				
Naphthalene	0.860		0.100	mg/kg wet	50	1.00		86	80 - 120%				
n-Propylbenzene	0.935		0.0250	mg/kg wet	50	1.00		93	80 - 120%				
Styrene	0.949		0.0500	mg/kg wet	50	1.00		95	80 - 120%				
1,1,1,2-Tetrachloroethane	0.992		0.0250	mg/kg wet	50	1.00		99	80 - 120%				
1,1,2,2-Tetrachloroethane	1.01		0.0500	mg/kg wet	50	1.00		101	80 - 120%				
Tetrachloroethene (PCE)	1.05		0.0250	mg/kg wet	50	1.00		105	80 - 120%				
Toluene	0.918		0.0500	mg/kg wet	50	1.00		92	80 - 120%				
1,2,3-Trichlorobenzene	0.968		0.250	mg/kg wet	50	1.00		97	80 - 120%				
1,2,4-Trichlorobenzene	0.944		0.250	mg/kg wet	50	1.00		94	80 - 120%				
1,1,1-Trichloroethane	1.07		0.0250	mg/kg wet	50	1.00		107	80 - 120%				
1,1,2-Trichloroethane	0.986		0.0250	mg/kg wet	50	1.00		99	80 - 120%				
Trichloroethene (TCE)	1.00		0.0250	mg/kg wet	50	1.00		100	80 - 120%				
Trichlorofluoromethane	0.923		0.250	mg/kg wet	50	1.00		92	80 - 120%				
1,2,3-Trichloropropane	0.998		0.0500	mg/kg wet	50	1.00		100	80 - 120%				
1,2,4-Trimethylbenzene	0.955		0.0500	mg/kg wet	50	1.00		96	80 - 120%				
1,3,5-Trimethylbenzene	0.962		0.0500	mg/kg wet	50	1.00		96	80 - 120%				

Apex Laboratories

milule Poz

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street

Kent, WA 98042

Project: <u>Auburn VW</u> Project Number BE-0107-E Project Manager: Dan Hatch

<u>Report ID:</u> A4L1385 - 01 02 25 1503

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D													
Analyte	Result	Detection L Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 24L0659 - EPA 5035A							Soil						
LCS (24L0659-BS1)		Prepared:	12/18/24 09:0	00 Analyze	d: 12/18/2	4 10:29				_			
Vinyl chloride	0.974		0.0250	mg/kg we	t 50 vt	1.00		97	80 - 120%				
m,p-Xylene	1.96		0.0500	mg/kg we	rt 50	2.00		98	80 - 120%				
o-Xylene	0.944		0.0250	mg/kg we	t 50	1.00		94	80 - 120%				
Surr: 1,4-Difluorobenzene (Surr)		Recove	ery: 100 %	Limits: 80-	120 %	Dilu	ution: 1x						
Toluene-d8 (Surr)			97 %	80	120 %		"						
4-Bromofluorobenzene (Surr)			98 %	79	120 %		"						

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

milale fog

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)												
Analyte	Result	Detection L Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L1028 - EPA 3051A							Soil					
Blank (24L1028-BLK1)		Prepared:	12/30/24 09:2	27 Analyze	d: 12/30/24	4 18:32						
EPA 6020B												
Arsenic	ND		1.00	mg/kg we	t 10							
Barium	ND		1.00	mg/kg we	t 10							
Cadmium	ND		0.200	mg/kg we	t 10							
Chromium	ND		1.00	mg/kg we	t 10							
Copper	ND		2.00	mg/kg we	t 10							
Lead	ND		0.200	mg/kg we	t 10							
Mercury	ND		0.0800	mg/kg we	t 10							
Selenium	ND		1.00	mg/kg we	t 10							
Silver	ND		0.200	mg/kg we	t 10							
LCS (24L1028-BS1)		Prepared:	12/30/24 09:2	27 Analyze	d: 12/30/24	4 18:38						
EPA 6020B		1		<u> </u>								
Arsenic	49.7		1.00	mg/kg we	t 10	50.0		99 8	30 - 120%			
Barium	52.6		1.00	mg/kg we	t 10	50.0		105 8	30 - 120%			
Cadmium	48.9		0.200	mg/kg we	t 10	50.0		98 8	30 - 120%			
Chromium	51.5		1.00	mg/kg we	t 10	50.0		103 8	30 - 120%			
Copper	50.8		2.00	mg/kg we	t 10	50.0		102 8	30 - 120%			
Lead	50.3		0.200	mg/kg we	t 10	50.0		101 8	30 - 120%			
Mercury	0.975		0.0800	mg/kg we	t 10	1.00		97 8	30 - 120%			
Selenium	24.9		1.00	mg/kg we	t 10	25.0		99 8	30 - 120%			
Silver	25.4		0.200	mg/kg we	t 10	25.0		102 8	30 - 120%			
Duplicate (24L1028-DUP1)		Prepared:	12/30/24 09:2	27 Analyze	d: 12/30/24	4 18:48						
QC Source Sample: MW-14-6 (A	A4L1385-01)											
EFA 0020B	10 -		1 47	ma/l 1	. 10		0.52			10	2004	
Aiseille	10.5		1.4/	mg/kg dry	10		9.32 07 1			10	∠U% 2004	
Darium	90.5 AUD		1.4/	mg/kg dry	10		0/.4			3	20%	
Cauinium			0.293	mg/kg afy	10		17.5			16	2070	
Conner	20.0		1.4/	mg/kg dry	10		1/.0			10	∠0%0 200/	
Copper	46.4		2.93	mg/kg dry	10		45.5			/ A	20% 2007	
Lead	5.12		0.293	mg/kg dry	10		4.91 ND			4	20%	
Niercury	ND		0.11/	mg/kg dry	/ 10		ND			***	20%	
Selenium	ND		1.47	mg/kg dry	/ 10		0.950			ተተቸ	20%	

Apex Laboratories

milale fog

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project:Auburn VWProject NumberBE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1385 - 01 02 25 1503

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)												
Analyte	Result	Detection L Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L1028 - EPA 3051A							Soil					
Duplicate (24L1028-DUP1)		Prepared:	12/30/24 09:2	?7 Analyze	d: 12/30/24	1 18:48						
QC Source Sample: MW-14-6 (A4	L1385-01)											
Silver	ND		0.293	mg/kg dry	v 10		ND				20%	
Matrix Spike (24L1028-MS1)		Prepared:	12/30/24 09:2	27 Analyze	d: 12/30/24	1 18:53						
QC Source Sample: MW-14-6 (A4	L1385-01)											
EPA 6020B												
Arsenic	84.8		1.52	mg/kg dry	v 10	75.8	9.52	99	75 - 125%			
Barium	170		1.52	mg/kg dry	v 10	75.8	87.4	109	75 - 125%			
Cadmium	73.3		0.303	mg/kg dry	v 10	75.8	ND	97	75 - 125%			
Chromium	97.8		1.52	mg/kg dry	v 10	75.8	17.5	106	75 - 125%			
Copper	119		3.03	mg/kg dry	v 10	75.8	43.3	100	75 - 125%			
Lead	77.4		0.303	mg/kg dry	v 10	75.8	4.91	96	75 - 125%			
Mercury	1.47		0.121	mg/kg dry	v 10	1.52	ND	97	75 - 125%			
Selenium	36.2		1.52	mg/kg dry	v 10	37.9	0.950	93	75 - 125%			
Silver	36.5		0.303	mg/kg dry	v 10	37.9	ND	96	75 - 125%			

Apex Laboratories

milale fog

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project:Auburn VWProject Number:BE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1385 - 01 02 25 1503

QUALITY CONTROL (QC) SAMPLE RESULTS

Percent Dry Weight													
Analyte	Result	Detection L Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 24L0679 - Dry Weight Pr	rep (EPA	8000D)					Soil						
Duplicate (24L0679-DUP1)		Prepared:	12/18/24 11:2	3 Analyz	red: 12/19/24	4 05:22						CON	
OC Source Sample: MW-16-10 (A EPA 8000D	4L1385-08)											
% Solids	72.3		1.00	%	1		69.4			4	10%		
Duplicate (24L0679-DUP2)		Prepared:	12/18/24 11:2	3 Analyz	zed: 12/19/24	4 05:22						CON	
OC Source Sample: MW-15-5 (A4 EPA 8000D	L1385-04)												
% Solids	77.5		1.00	%	1		80.7			4	10%		
Duplicate (24L0679-DUP3)		Prepared:	12/18/24 11:2	3 Analyz	zed: 12/19/24	1 05:22						CON	
OC Source Sample: MW-15-11 (A EPA 8000D	<u>4L1385-05)</u>	1											
% Solids	67.6		1.00	%	1		69.3			3	10%		
Duplicate (24L0679-DUP4)		Prepared:	12/18/24 11:2	3 Analyz	red: 12/19/24	1 05:22						CON	
OC Source Sample: MW-16-5 (A4 EPA 8000D	<u>L1385-07)</u>												
% Solids	83.4		1.00	%	1		83.9			0.6	10%		

Apex Laboratories

milale fog

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW
20204 SE 284th Street
Kent, WA 98042

Project: <u>Auburn VW</u> Project Number: **BE-0107-E**

Project Manager: Dan Hatch

QUALITY CONTROL (QC) SAMPLE RESULTS

Percent Dry Weight												
Analyte	Result	Detection L Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L1081 - Dry Weight Prep (EPA 8000D) Soil												

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

milule 09-

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: Auburn VW Project Number BE-0107-E Project Manager: Dan Hatch

<u>Report ID:</u> A4L1385 - 01 02 25 1503

SAMPLE PREPARATION INFORMATION

Hydrocarbon Identification Screen by NWTPH-HCID												
Prep: EPA 3546 (Fi	uels)				Sample	Default	RL Prep					
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor					
Batch: 24L0674												
A4L1385-05	Soil	NWTPH-HCID	12/12/24 10:55	12/18/24 10:55	10.12g/10mL	10g/10mL	0.99					
A4L1385-08	Soil	NWTPH-HCID	12/12/24 12:55	12/18/24 10:55	10.65g/10mL	10g/10mL	0.94					
A4L1385-11	Soil	NWTPH-HCID	12/12/24 14:25	12/18/24 10:55	10.71g/10mL	10g/10mL	0.93					
A4L1385-14	Soil	NWTPH-HCID	12/13/24 08:45	12/18/24 10:55	10.42g/10mL	10g/10mL	0.96					
A4L1385-17	Soil	NWTPH-HCID	12/13/24 10:15	12/18/24 10:55	10.97g/10mL	10g/10mL	0.91					
Batch: 24L1045												
A4L1385-20	Soil	NWTPH-HCID	12/13/24 12:35	12/30/24 12:14	10.35g/10mL	10g/10mL	0.97					
	Diesel and/or Oil Hydrocarbons by NWTPH-Dx											

Prep: EPA 3546 (I	Fuels)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24L0737							
A4L1385-22RE1	Soil	NWTPH-Dx	12/13/24 10:45	12/19/24 10:15	11.71g/5mL	10g/5mL	0.85

	Volatile Organic Compounds by EPA 8260D												
<u>Prep: EPA 5035A</u>					Sample	Default	RL Prep						
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor						
Batch: 24L0659													
A4L1385-08	Soil	5035A/8260D	12/12/24 12:55	12/12/24 12:55	7.2g/5mL	5g/5mL	0.69						
A4L1385-17	Soil	5035A/8260D	12/13/24 10:15	12/13/24 10:15	4.03g/5mL	5g/5mL	1.24						

Total Metals by EPA 6020B (ICPMS)												
Prep: EPA 3051A					Sample	Default	RL Prep					
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor					
Batch: 24L1028												
A4L1385-01	Soil	EPA 6020B	12/12/24 08:50	12/30/24 09:27	0.467g/50mL	0.5g/50mL	1.07					
A4L1385-04	Soil	EPA 6020B	12/12/24 10:50	12/30/24 09:27	0.508g/50mL	0.5g/50mL	0.98					
A4L1385-07	Soil	EPA 6020B	12/12/24 12:50	12/30/24 09:27	0.475g/50mL	0.5g/50mL	1.05					
A4L1385-08	Soil	EPA 6020B	12/12/24 12:55	12/30/24 09:27	0.47g/50mL	0.5g/50mL	1.06					
A4L1385-10	Soil	EPA 6020B	12/12/24 14:20	12/30/24 09:27	0.493g/50mL	0.5g/50mL	1.01					
A4L1385-13	Soil	EPA 6020B	12/13/24 08:40	12/30/24 09:27	0.46g/50mL	0.5g/50mL	1.09					
A4L1385-16	Soil	EPA 6020B	12/13/24 10:10	12/30/24 09:27	0.471g/50mL	0.5g/50mL	1.06					
A4L1385-17	Soil	EPA 6020B	12/13/24 10:15	12/30/24 09:27	0.49g/50mL	0.5g/50mL	1.02					

Apex Laboratories

milale fog

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environ</u> 20204 SE 284th St Kent, WA 98042	<u>imental NW</u> reet]		<u>Report ID</u> A4L1385 - 01 02 2	<u>:</u> 5 1503		
		SAMPLE	E PREPARATION I	NFORMATION			
		Tota	I Metals by EPA 6020	OB (ICPMS)			
Prep: EPA 3051A	A				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A4L1385-19	Soil	EPA 6020B	12/13/24 12:30	12/30/24 09:27	0.476g/50mL	0.5g/50mL	1.05
A4L1385-22	Soil	EPA 6020B	12/13/24 10:45	12/30/24 09:27	0.485g/50mL	0.5g/50mL	1.03
			Percent Dry Wei	ght			
Prep: Dry Weight	t Prep (EPA 8000D))			Sample	Default	RL Prep
Lab Number	Matrix	- Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24L0679			Sumpreu	Topurou			
A4L1385-01	Soil	EPA 8000D	12/12/24 08:50	12/18/24 12:58	1g	1g	1.00
A4L1385-04	Soil	EPA 8000D	12/12/24 10:50	12/18/24 11:23	1g	1g	1.00
A4L1385-05	Soil	EPA 8000D	12/12/24 10:55	12/18/24 11:23	1g	1g	1.00
A4L1385-07	Soil	EPA 8000D	12/12/24 12:50	12/18/24 11:23	1g	1g	1.00
A4L1385-08	Soil	EPA 8000D	12/12/24 12:55	12/18/24 11:23	1g	1g	1.00
A4L1385-10	Soil	EPA 8000D	12/12/24 14:20	12/18/24 11:23	1g	1g	1.00
A4L1385-11	Soil	EPA 8000D	12/12/24 14:25	12/18/24 11:23	1g	1g	1.00
A4L1385-13	Soil	EPA 8000D	12/13/24 08:40	12/18/24 11:23	1g	1g	1.00
A4L1385-14	Soil	EPA 8000D	12/13/24 08:45	12/18/24 11:23	1g	1g	1.00
A4L1385-16	Soil	EPA 8000D	12/13/24 10:10	12/18/24 11:23	1g	1g	1.00
A4L1385-17	Soil	EPA 8000D	12/13/24 10:15	12/18/24 11:23	1g	1g	1.00
A4L1385-19	Soil	EPA 8000D	12/13/24 12:30	12/18/24 11:23	1g	1g	1.00
A4L1385-22	Soil	EPA 8000D	12/13/24 10:45	12/18/24 11:23	1g	1g	1.00
Batch: 24L1081							
A4L1385-20	Soil	EPA 8000D	12/13/24 12:35	12/31/24 09:59	1g	1g	1.00

Apex Laboratories

milale 69

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E**

Project Manager: Dan Hatch

<u>Report ID:</u> A4L1385 - 01 02 25 1503

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

- CONT The Sample Container provided for this analysis was not provided by Apex Laboratories, and has not been verified as part of the Apex Quality System.
- F-17 No fuel pattern detected. The Diesel result represents carbon range C10 to C25, and the Oil result represents >C25 to C40.
- H-01 Analyzed outside the recommended holding time.
- H-02 This sample was extracted outside of the recommended holding time.
- Q-55 Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260, however there is adequate sensitivity to ensure detection at the reporting level.
- Q-56 Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260. Samples that are ND (Non-Detect) are not impacted.

Apex Laboratories

milale Pog-

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Project: <u>Auburn VW</u> Project Number: **BE-0107-E**

Project Manager: Dan Hatch

<u>Report ID:</u> A4L1385 - 01 02 25 1503

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

Kent, WA 98042

- DET Analyte DETECTED at or above the detection or reporting limit.
- ND Analyte NOT DETECTED at or above the detection or reporting limit.
- NR Result Not Reported.

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ). If no value is listed ('-----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as " dry", " wet", or " " (blank) designation.

- <u>" dry"</u> Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry") See Percent Solids section for details of dry weight analysis.
- "wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.
- " " Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) are not included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

- "--- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.
- "*** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to one half of the Reporting Limit (RL). Blank results for gravimetric analyses are evaluated to the Reporting Level, not to half of the Reporting Level. -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier. -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

Apex Laboratories

milule 1093

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project: <u>Auburn VW</u> Project Number: **BE-0107-E**

Project Manager: Dan Hatch

<u>Report ID:</u> A4L1385 - 01 02 25 1503

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in

the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

mille

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW	Project: <u>A</u>	Auburn VW	
20204 SE 284th Street	Project Number: B	ВЕ-0107-Е	<u>Report ID:</u>
Kent, WA 98042	Project Manager: D	Dan Hatch	A4L1385 - 01 02 25 1503

Decanted Samples:

Soils/Sediments:

Unless TCLP analysis is required or there is notification otherwise for a specific project, all Soil and Sediments containing excess water are decanted prior to analysis in order to provide the most representative sample for analysis.

Water Samples:

Water samples containing solids and sediment may need to be decanted in order to eliminate these particulates from the water extractions. In the case of organics extractions, a solvent rinse of the container will not be performed.

Volatiles Soils (5035s)

Samples that are field preserved by 5035 for volatiles are dry weight corrected using the same dry weight corretion as for normal analyses. In the case of decanted samples, the dry weight may be performed on a decanted sample, while the aliquot for 5035 may not have been treated the same way. If this is a concern, please submit separate containers for dry weight analysis for volatiles can be provided.

All samples decanted in the laboratory are noted in this report with the DCNT qualifier indicating the sample was decanted.

Apex Laboratories

milule 09

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

<u>Report ID:</u> A4L1385 - 01 02 25 1503

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories											
Matrix	Analysis	TNI_ID	Analyte	TNI_ID	Accreditation						

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation. Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

mille Pog

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Apex Laboratories

O

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW
20204 SE 284th Street
Kent, WA 98042

.

Project:Auburn VWProject NumberBE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A4L1385 - 01 02 25 1503

Client: <u>Bluestone</u>	Element WO#: A4L\\$85
Project/Project #: <u>Aub</u>	www. UW
Delivery Info:	
Date/time received: 12/16/1	24 @ //20 By: Kh
Delivered by: ApexClient_	ESSFedExUPSXRadioMorganSDSEvergreenOther
From USDA Regulated Origi	in? Yes No X
Cooler Inspection Date/t	time inspected: 12/16/24 @ 1/20 By: KE
'hain of Custody included?	Yes V No
Signed/dated by client?	Yes No
Contains USDA Reg. Soils?	Yes No V Unsure (email RegSoils)
<u>c</u>	Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
femperature (°C)	2.4
"ustody scals? (Y/N)	N
Received on ice? (Y/N)	<u> </u>
femp. blanks? (Y/N)	Y
ce type: (Gel/Real/Other)	bial
Condition (In/Out):	Th~
Acoler out of temp: (Fally) for Freen dots applied to out of the Out of temperature samples for <u>sample Inspection</u> : Date/ti- MI samples intact? Yes	emperature samples? Ves/No orm initiated? Yes/No ime inspected: 12.1770.0.000 By: ALW No Comments:
Bottle labels/COCs agree? Ye	es XNo Comments:
OC/container discrepancies :	form initiated? Yes No X
ontaincrs/volumes received a idn 4 <u>Yecheve 4a</u> o VOA vials have visible he	appropriate for analysis? Yes No X Comments: <u>MW -14-10 We</u> for party a <u>Marth 10A</u> . adspace? Yes No <u>NA X</u>
omments	
Vater samples: pH checked: Y	YesNoNAXpH appropriate? YesNoNAX_pH ID:
12-CIB 065 01 1036	1 6EU

Apex Laboratories

milule 09:

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Friday, January 24, 2025 Dan Hatch Bluestone Environmental NW 20204 SE 284th Street Kent, WA 98042

RE: A5A1121 - Auburn VW - BE-0107-E

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A5A1121, which was received by the laboratory on 1/14/2025 at 10:28:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <u>cobrien@apex-labs.com</u>, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

Acceptable Receipt Temperature is less than, or equal to, 6 degC (not frozen), or received on ice the same day as sampling.

(See Cooler Receipt Form for details)

Default Cooler 1.9 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW	Project:	<u>Auburn VW</u>	
20204 SE 284th Street	Project Number:	ВЕ-0107-Е	<u>Report ID:</u>
Kent, WA 98042	Project Manager:	Dan Hatch	A5A1121 - 01 24 25 1343

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION											
Client Sample ID	Laboratory ID	Matrix	Date Sampled Date Received								
MW-2	A5A1121-01	Water	01/10/25 12:50 01/14/25 10:28								
MW-15	A5A1121-02	Water	01/10/25 11:30 01/14/25 10:28								
MW-16	A5A1121-03	Water	01/10/25 12:15 01/14/25 10:28								

Apex Laboratories

Cameron O'Brien, Project Manager

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW

20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u>

Project Number: **BE-0107-E** Project Manager: **Dan Hatch** <u>Report ID:</u> A5A1121 - 01 24 25 1343

ANALYTICAL CASE NARRATIVE

Work Order: A5A1121

Apex Laboratories

Subcontract

This report is complete only if it includes the attached subcontract laboratory report from ALS Kelso .

Cameron O'Brien Project Manager

Apex Laboratories

Cameron O'Brien, Project Manager

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Kent, WA 98042

Project: <u>Auburn VW</u> Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

<u>Report ID:</u> A5A1121 - 01 24 25 1343

ANALYTICAL SAMPLE RESULTS

Hydrocarbon Identification Screen by NWTPH-HCID										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
MW-2 (A5A1121-01RE1)				Matrix: Wate	r	Batch:	25A0539			
Gasoline Range Organics	ND		0.147	mg/L	1	01/17/25 20:45	NWTPH-HCID			
Diesel Range Organics	ND		0.245	mg/L	1	01/17/25 20:45	NWTPH-HCID			
Oil Range Organics	ND		0.245	mg/L	1	01/17/25 20:45	NWTPH-HCID			
Surrogate: o-Terphenyl (Surr)		Recov	very: 91 %	Limits: 50-150 %	1	01/17/25 20:45	NWTPH-HCID			
4-Bromofluorobenzene (Surr)			53 %	10-120 %	1	01/17/25 20:45	NWTPH-HCID			
MW-15 (A5A1121-02RE1)				Matrix: Wate	r	Batch:	25A0539			
Gasoline Range Organics	ND		0.144	mg/L	1	01/17/25 21:08	NWTPH-HCID	,		
Diesel Range Organics	ND		0.240	mg/L	1	01/17/25 21:08	NWTPH-HCID			
Oil Range Organics	ND		0.240	mg/L	1	01/17/25 21:08	NWTPH-HCID			
Surrogate: o-Terphenyl (Surr)		Recov	very: 93 %	Limits: 50-150 %	1	01/17/25 21:08	NWTPH-HCID			
4-Bromofluorobenzene (Surr)			49 %	10-120 %	1	01/17/25 21:08	NWTPH-HCID			
MW-16 (A5A1121-03RE1)				Matrix: Wate	r	Batch:	25A0539			
Gasoline Range Organics	ND		0.144	mg/L	1	01/17/25 21:32	NWTPH-HCID			
Diesel Range Organics	ND		0.240	mg/L	1	01/17/25 21:32	NWTPH-HCID			
Oil Range Organics	ND		0.240	mg/L	1	01/17/25 21:32	NWTPH-HCID			
Surrogate: o-Terphenyl (Surr)		Recov	very: 92 %	Limits: 50-150 %	1	01/17/25 21:32	NWTPH-HCID			
4-Bromofluorobenzene (Surr)			44 %	10-120 %	1	01/17/25 21:32	NWTPH-HCID			

Apex Laboratories

Cameron O'Brien, Project Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW		Proj	ect: <u>Aubu</u>	rn VW							
20204 SE 284th Street		Project Number: BE-0107-E									
Kent, WA 98042		Project	Manager: Dan I	Hatch			A5A1121 - 01 24 25 1	343			
		ANALYTI	CAL SAMPI	LE RESULT	TS .						
		Total Meta	lls by EPA 60	20B (ICPMS	5)						
	Sample	Detection	Reporting			Date					
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes			
MW-2 (A5A1121-01)	Matrix: Water										
Batch: 25A0682											
Arsenic	66.4		1.00	ug/L	1	01/21/25 15:18	EPA 6020B				
MW-15 (A5A1121-02)				Matrix: W	ater						
Batch: 25A0682											
Arsenic	9.41		1.00	ug/L	1	01/21/25 15:24	EPA 6020B				
MW-16 (A5A1121-03)				Matrix: W	ater						
Batch: 25A0682											
Arsenic	12.0		1.00	ug/L	1	01/21/25 15:40	EPA 6020B				
Cadmium	ND		0.200	ug/L	1	01/21/25 15:40	EPA 6020B				
Chromium	3.17		2.00	ug/L	1	01/21/25 15:40	EPA 6020B				
Lead	ND		0.200	ug/L	1	01/21/25 15:40	EPA 6020B				

0.0800

ug/L

ND

Apex Laboratories

Mercury

Cameron O'Brien, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

01/21/25 15:40

1

EPA 6020B

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW	Project: <u>Auburn VW</u>	
20204 SE 284th Street	Project Number: BE-0107-E	<u>Report ID:</u>
Kent, WA 98042	Project Manager: Dan Hatch	A5A1121 - 01 24 25 1343

ANALYTICAL SAMPLE RESULTS

Dissolved Metals by EPA 6020B (ICPMS)									
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
MW-2 (A5A1121-01)	Matrix: Water								
Batch: 25A0441									
Arsenic	66.5		1.00	ug/L	1	01/14/25 23:06	EPA 6020B (Diss)		
MW-15 (A5A1121-02)				Matrix: Wa	ater				
Batch: 25A0441									
Arsenic	8.86		1.00	ug/L	1	01/14/25 23:11	EPA 6020B (Diss)		
MW-16 (A5A1121-03)				Matrix: Wa	ater				
Batch: 25A0441									
Arsenic	10.2		1.00	ug/L	1	01/14/25 23:27	EPA 6020B (Diss)		
Cadmium	ND		0.200	ug/L	1	01/14/25 23:27	EPA 6020B (Diss)		
Lead	ND		0.200	ug/L 1 01/14/25 23:27 EPA 60207		EPA 6020B (Diss)			
Mercury	ND		0.0800	ug/L	1	01/14/25 23:27	EPA 6020B (Diss)		
MW-16 (A5A1121-03RE1)				Matrix: Wa	ater				
Batch: 25A0723									
Chromium	2.79		2.00	ug/L	1	01/22/25 12:09	EPA 6020B (Diss)		

Apex Laboratories

Cameron O'Brien, Project Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042		Proj Project Project	ect: <u>Aubu</u> Number: BE-0 Manager: Dan I		<u>Report ID:</u> A5A1121 - 01 24 25 1	1343			
		ANALYTI	CAL SAMPI	LE RESULT	S				
		Solid and	Moisture Det	terminations	\$				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
MW-2 (A5A1121-01)				Matrix: Wa	ater				
Batch: 25A0440 Total Suspended Solids	68000		5000	ug/L	1	01/14/25 14:08	SM 2540 D		
MW-16 (A5A1121-03)	Matrix: Water								
Batch: 25A0440 Total Suspended Solids	178000		5000	ug/L	1	01/14/25 14:08	SM 2540 D		

Apex Laboratories

Cameron O'Brien, Project Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

QUALITY CONTROL (QC) SAMPLE RESULTS

		Hydı	rocarbon lo	lentificat	ion Scree	n by NW1		<u>`</u>				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 25A0539 - EPA 3510C (F	uels/Acid	Ext.)					Wate	ər				
Blank (25A0539-BLK2)		Prepared:	01/01/25 11:	10 Analyz	ed: 01/17/25	5 20:22						
NWTPH-HCID												
Gasoline Range Organics	ND		0.135	mg/L	1							
Diesel Range Organics	ND		0.250	mg/L	1							
Oil Range Organics	ND		0.250	mg/L	1							
Surr: o-Terphenyl (Surr)		Reco	very: 89 %	Limits: 50)-150 %	Dilu	ution: 1x					
4-Bromofluorobenzene (Surr)			42 %	10	-120 %		"					

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Cameron O'Brien, Project Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 25A0682 - EPA 3015A							Wat	er				
Blank (25A0682-BLK1)		Prepared	: 01/21/25 07:5	6 Analyz	ed: 01/21/2:	5 15:03						
EPA 6020B		-										
Arsenic	ND		1.00	ug/L	1							
Cadmium	ND		0.200	ug/L	1							
Chromium	ND		2.00	ug/L	1							
Lead	ND		0.200	ug/L	1							
Mercury	ND		0.0800	ug/L	1							
LCS (25A0682-BS1)		Prepared	: 01/21/25 07:5	6 Analyz	ed: 01/21/2:	5 15:08						
EPA 6020B												
Arsenic	53.4		1.00	ug/L	1	55.6		96	80 - 120%			
Cadmium	55.3		0.200	ug/L	1	55.6		100	80 - 120%			
Chromium	52.8		2.00	ug/L	1	55.6		95	80 - 120%			
Lead	55.0		0.200	ug/L	1	55.6		99	80 - 120%			
Mercury	1.09		0.0800	ug/L	1	1.11		98	80 - 120%			
Duplicate (25A0682-DUP1)		Prepared	: 01/21/25 07:5	6 Analyz	ed: 01/21/2:	5 15:29						
QC Source Sample: MW-15 (A5A	1121-02)											
EPA 6020B												
Arsenic	9.59		1.00	ug/L	1		9.41			2	20%	
Cadmium	ND		0.200	ug/L	1		ND				20%	
Chromium	ND		2.00	ug/L	1		1.62			***	20%	
Lead	ND		0.200	ug/L	1		ND				20%	
Mercury	ND		0.0800	ug/L	1		ND				20%	
Matrix Spike (25A0682-MS1)		Prepared	: 01/21/25 07:5	6 Analyz	ed: 01/21/2:	5 15:34						
QC Source Sample: MW-15 (A5A	1121-02)											
EPA 6020B	-											
Arsenic	65.3		1.00	ug/L	1	55.6	9.41	101	75 - 125%			
Cadmium	55.9		0.200	ug/L	1	55.6	ND	101	75 - 125%			
Chromium	55.3		2.00	ug/L	1	55.6	1.62	97	75 - 125%			
Lead	53.9		0.200	ug/L	1	55.6	ND	97	75 - 125%			
Mercury	1.10		0.0800	ug/L	1	1.11	ND	99	75 - 125%			

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

QUALITY CONTROL (QC) SAMPLE RESULTS

Dissolved Metals by EPA 6020B (ICPMS)												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 25A0441 - Matrix Match	ed Direct	Inject					Wate	ər				
Blank (25A0441-BLK1)		Prepared	: 01/14/25 14:3	0 Analyz	ed: 01/14/25	5 22:50						
EPA 6020B (Diss)												
Arsenic	ND		1.00	ug/L	1							
Cadmium	ND		0.200	ug/L	1							
Chromium	ND		2.00	ug/L	1							B-02
Lead	ND		0.200	ug/L	1							
Mercury	ND		0.0800	ug/L	1							
LCS (25A0441-BS1)		Prepared	: 01/14/25 14:3	0 Analyz	ed: 01/14/25	5 22:56						
EPA 6020B (Diss)												
Arsenic	53.6		1.00	ug/L	1	55.6		97	80 - 120%			
Cadmium	53.6		0.200	ug/L	1	55.6		96	80 - 120%			
Chromium	53.0		2.00	ug/L	1	55.6		95	80 - 120%			B-02
Lead	54.4		0.200	ug/L	1	55.6		98	80 - 120%			
Mercury	1.09		0.0800	ug/L	1	1.11		98	80 - 120%			
Duplicate (25A0441-DUP1)		Prepared	: 01/14/25 14:3	0 Analyz	ed: 01/14/25	5 23:17						
QC Source Sample: MW-15 (A5A	1121-02)											
EPA 6020B (Diss)	-											
Arsenic	8.93		1.00	ug/L	1		8.86			0.8	20%	
Cadmium	ND		0.200	ug/L	1		ND				20%	
Chromium	ND		2.00	ug/L	1		1.43			***	20%	
Lead	ND		0.200	ug/L	1		ND				20%	
Mercury	ND		0.0800	ug/L	1		ND				20%	
Matrix Spike (25A0441-MS1)		Prepared	: 01/14/25 14:3	0 Analyz	ed: 01/14/25	5 23:22				_	_	
OC Source Sample: MW-15 (A5A	<u>(1121-02</u>)											
EPA 6020B (Diss)												
Arsenic	64.2		1.00	ug/L	1	55.6	8.86	100	75 - 125%			
Cadmium	54.9		0.200	ug/L	1	55.6	ND	99	75 - 125%			
Chromium	54.3		2.00	ug/L	1	55.6	1.43	95	75 - 125%			B-02
Lead	53.0		0.200	ug/L	1	55.6	ND	95	75 - 125%			
Mercury	0.970		0.0800	ug/L	1	1.11	ND	87	75 - 125%			

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

<u>Report ID:</u> A5A1121 - 01 24 25 1343

QUALITY CONTROL (QC) SAMPLE RESULTS

Dissolved Metals by EPA 6020B (ICPMS)												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 25A0723 - Matrix Matched Direct Inject Water												
Blank (25A0723-BLK1)		Prepared:	01/22/25 09:4	46 Analyz	zed: 01/22/2:	5 11:47						
EPA 6020B (Diss)												
Chromium	ND		2.00	ug/L	1							
LCS (25A0723-BS1) Prepared: 01/22/25 09:46 Analyzed: 01/22/25 12:03												
EPA 6020B (Diss)												
Chromium	53.1		2.00	ug/L	1	55.6		96	80 - 120%			

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Cameron O'Brien, Project Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

<u>Report ID:</u> A5A1121 - 01 24 25 1343

QUALITY CONTROL (QC) SAMPLE RESULTS

Solid and Moisture Determinations												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 25A0440 - Total Suspended Solids - 2022 Water												
Blank (25A0440-BLK1)		Prepared	: 01/14/25 14:0)8 Analyz	zed: 01/14/2	5 14:08						
<u>SM 2540 D</u>												
Total Suspended Solids	ND		5000	ug/L	1							
Reference (25A0440-SRM1)		Prepared	: 01/14/25 14:0)8 Analyz	zed: 01/14/2	5 14:08						
<u>SM 2540 D</u>												
Total Suspended Solids	836			mg/L	1	854		97.9	85 - 115%			

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042 Project:Auburn VWProject NumberBE-0107-EProject Manager:Dan Hatch

<u>Report ID:</u> A5A1121 - 01 24 25 1343

SAMPLE PREPARATION INFORMATION

Hydrocarbon Identification Screen by NWTPH-HCID											
Prep: EPA 3510C (F	-uels/Acid Ext.)				Sample	Default	RL Prep				
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor				
Batch: 25A0539											
A5A1121-01RE1	Water	NWTPH-HCID	01/10/25 12:50	01/16/25 11:10	1020mL/5mL	1000mL/5mL	0.98				
A5A1121-02RE1	Water	NWTPH-HCID	01/10/25 11:30	01/16/25 11:10	1040mL/5mL	1000mL/5mL	0.96				
A5A1121-03RE1	Water	NWTPH-HCID	01/10/25 12:15	01/16/25 11:10	1040mL/5mL	1000mL/5mL	0.96				

Total Metals by EPA 6020B (ICPMS)											
Prep: EPA 3015A					Sample	Default	RL Prep				
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor				
Batch: 25A0682											
A5A1121-01	Water	EPA 6020B	01/10/25 12:50	01/21/25 07:56	45mL/50mL	45mL/50mL	1.00				
A5A1121-02	Water	EPA 6020B	01/10/25 11:30	01/21/25 07:56	45mL/50mL	45mL/50mL	1.00				
A5A1121-03	Water	EPA 6020B	01/10/25 12:15	01/21/25 07:56	45mL/50mL	45mL/50mL	1.00				

Dissolved Metals by EPA 6020B (ICPMS)											
Prep: Matrix Matched Direct Inject					Sample	Default	RL Prep				
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor				
Batch: 25A0441											
A5A1121-01	Water	EPA 6020B (Diss)	01/10/25 12:50	01/14/25 14:30	45mL/50mL	45mL/50mL	1.00				
A5A1121-02	Water	EPA 6020B (Diss)	01/10/25 11:30	01/14/25 14:30	45mL/50mL	45mL/50mL	1.00				
A5A1121-03	Water	EPA 6020B (Diss)	01/10/25 12:15	01/14/25 14:30	45mL/50mL	45mL/50mL	1.00				
Batch: 25A0723	Batch: 25A0723										
A5A1121-03RE1	Water	EPA 6020B (Diss)	01/10/25 12:15	01/22/25 09:46	45mL/50mL	45mL/50mL	1.00				

Solid and Moisture Determinations										
Prep: Total Suspe	ended Solids - 2022				Sample	Default	RL Prep			
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor			
Batch: 25A0440										
A5A1121-01	Water	SM 2540 D	01/10/25 12:50	01/14/25 14:08	100mL	100mL	1.00			
A5A1121-03	Water	SM 2540 D	01/10/25 12:15	01/14/25 14:08	100mL	100mL	1.00			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street Project: <u>Auburn VW</u> Project Number: **BE-0107-E**

Project Manager: Dan Hatch

<u>Report ID:</u> A5A1121 - 01 24 25 1343

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

Kent, WA 98042

B-02 Analyte detected in an associated blank at a level between one-half the MRL and the MRL. (See Notes and Conventions below.)

Apex Laboratories

Cameron O'Brien, Project Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street

Project: <u>Auburn VW</u> Project Number: **BE-0107-E**

Project Manager: Dan Hatch

<u>Report ID:</u> A5A1121 - 01 24 25 1343

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

Kent, WA 98042

- DET Analyte DETECTED at or above the detection or reporting limit.
- ND Analyte NOT DETECTED at or above the detection or reporting limit.
- NR Result Not Reported.

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ). If no value is listed ('-----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as " dry", " wet", or " " (blank) designation.

- <u>" dry"</u> Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry") See Percent Solids section for details of dry weight analysis.
- "wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.
- "___ Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) are not included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

- "--- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.
- " *** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to one half of the Reporting Limit (RL). Blank results for gravimetric analyses are evaluated to the Reporting Level, not to half of the Reporting Level. -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier. -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street Project: <u>Auburn VW</u> Project Number: **BE-0107-E**

Project Manager: Dan Hatch

<u>Report ID:</u> A5A1121 - 01 24 25 1343

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Kent, WA 98042

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW	Project: <u>Auburn</u>	<u>ı VW</u>
20204 SE 284th Street	Project Number: BE-010'	7-E <u>Report ID:</u>
Kent, WA 98042	Project Manager: Dan Ha	A5A1121 - 01 24 25 1343

Decanted Samples:

Soils/Sediments:

Unless TCLP analysis is required or there is notification otherwise for a specific project, all Soil and Sediments containing excess water are decanted prior to analysis in order to provide the most representative sample for analysis.

Water Samples:

Water samples containing solids and sediment may need to be decanted in order to eliminate these particulates from the water extractions. In the case of organics extractions, a solvent rinse of the container will not be performed.

Volatiles Soils (5035s)

Samples that are field preserved by 5035 for volatiles are dry weight corrected using the same dry weight corretion as for normal analyses. In the case of decanted samples, the dry weight may be performed on a decanted sample, while the aliquot for 5035 may not have been treated the same way. If this is a concern, please submit separate containers for dry weight analysis for volatiles can be provided.

All samples decanted in the laboratory are noted in this report with the DCNT qualifier indicating the sample was decanted.

Apex Laboratories

Cameron O'Brien, Project Manager

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Bluestone Environmental NW</u> 20204 SE 284th Street Kent, WA 98042

т 1

. .

Project: <u>Auburn VW</u> Project Number: **BE-0107-E**

Project Manager: Dan Hatch

<u>Report ID:</u> A5A1121 - 01 24 25 1343

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Lab	oratories									
Matrix	Analysis	TNI_ID	Analyte	TNI_II	Accreditation					
	All reported analytes are included in Apex Laboratories' current ORELAP scope.									

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation. Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

ANALYTICAL REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

ANALYTICAL REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Bluestone Environmental NW 20204 SE 284th Street Kent, WA 98042 Project: <u>Auburn VW</u> Project Number: **BE-0107-E** Project Manager: **Dan Hatch**

<u>Report ID:</u> A5A1121 - 01 24 25 1343

Client:	Bluestone Element WO#: ASANU
Project	Project #: AUDUNN VW
Deliver	y Info:
Date/tin	ne received: 1/14/25 @ 1028 By: APN
Deliver	ed by: Apex Client ESS FedEx UPS Radio Morgan SDS EvergreenOther
From U	SDA Regulated Origin? Yes No χ
Cooler	Inspection Date/time inspected: $1/14/25$ @ 1028 By: AAV
Chain o	f Custody included? Yes <u>Y</u> No <u></u>
Signed/	dated hy client? Yes No
Contain	s USDA Reg. Soils? Yes No Unsure (email RegSoils)
Temper	$\frac{\text{Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7}{1 0}$
Custody	seals? (Y/N) V
Receive	d on jce? (Y/N)
Temp. b	lanks? (Y/N)
lee type	(Gel/Real/Other)
Conditio	on (In/Out): 4-0
Green d Out of t Sample All sam	ots applied to out of temperature samples? Yes/Ye) emperature samples form initiated? Yes/Ye) Inspection: Date/time inspected: 1/1/1/25 @ 10/19 By: MM ples intact? Yes X No Comments:
Bottle la	ibels/COCs agree? Yes X No Comments:
COC/co	ntainer discrepancies form initiated? Yes <u>No</u>
Contain	ers/volumes received appropriate for analysis? Yes <u>No</u> Comments:
Do VOA Comme	A vials have visible headspace? Yes No No NA
Water sa	amples: pH checked: Yes No NA pH appropriate? Yes No NA pH ID: A23172
Comme	nts:
ZCIBC	les 34 0507 1111
Labeled	by: A (Witness: A Cooler Inspected by: A A

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Service Request No:K2500536

Cameron O'Brien Apex Laboratories 6700 SW Sandburg St. Tigard, OR 97223

Laboratory Results for: A5A1121

Dear Cameron,

Enclosed are the results of the sample(s) submitted to our laboratory January 16, 2025 For your reference, these analyses have been assigned our service request number **K2500536**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3260. You may also contact me via email at Luke.Rahn@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

le Mahar

Luke Rahn Project Manager

ADDRESS 1317 S. 13th Avenue, Kelso, WA 98626 PHONE +1 360 577 7222 | FAX +1 360 636 1068 ALS Group USA, Corp. dba ALS Environmental

Narrative Documents

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Client: Apex Laboratories Project: A5A1121

Sample Matrix: Water

Service Request: K2500536 Date Received: 01/16/2025

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Two water samples were received for analysis at ALS Environmental on 01/16/2025. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

General Chemistry:

No significant anomalies were noted with this analysis.

Approved by

Jule Bala

Date

e 01/23/2025

SAMPLE DETECTION SUMMARY

This form includes only detections above the reporting levels. For a full listing of sample results, continue to the Sample Results section of this Report.

CLIENT ID: MW-2	Lab ID: K2500536-001					
Analyte	Results	Flag	MDL	MRL	Units	Method
Carbon, Total Organic	31.0		0.8	5.0	mg/L	SM 5310 C
CLIENT ID: MW-16		Lab	D: K2500	0536-002		
Analyte	Results	Flag	MDL	MRL	Units	Method
Carbon, Total Organic	52.0		0.8	5.0	mg/L	SM 5310 C

Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Client:Apex LaboratoriesProject:A5A1121

SAMPLE CROSS-REFERENCE

<u>SAMPLE #</u>	CLIENT SAMPLE ID	DATE	TIME
K2500536-001	MW-2	1/10/2025	1250
K2500536-002	MW-16	1/10/2025	1215

NGOODOU EST SUBCONTRACT ORDER EST

03 1/14/25 A5A1121

SENDING LABORATORY:

Apex Laboratories 6700 S.W. Sandburg Street Tigard, OR 97223 Phone: (503) 718-2323 Fax: (503) 336-0745 Project Manager: Cameron O'Brien

RECEIVING LABORATORY:

ALS Group USA - Kelso 1317 S 13th Avenue Kelso, WA 98626 Phone :(360) 577-7222 Fax: (360) 636-1068

Sample Name: MW-2			Sampled: 01/10/25 12:50	(A5A1121-01)
Analysis	Due	Expires	Comments	
Total Organic Carbon - H2O (5310C) Containers Supplied: (F)250 mL Poly - Sulfuric (H2SO4)	01/27/25 17:00	02/07/25 12:50		
Sample Name: MW-16			Sampled: 01/10/25 12:15	(A5A1121-03)
Analysis	Due	Expires	Comments	
Total Organic Carbon - H2O (5310C) <i>Containers Supplied:</i> (F)250 mL Poly - Sulfuric (H2SO4)	01/27/25 17:00	02/07/25 12:15		

Stundard THT

Alm me ilich	5 13:12	Ang	1-16-25	1312
Released By	Date	Received By	Date	······
In Ch	1-16-25 1	1730 Mayor	Mille 1/10/25	1430
Refeased By	Date	Received By	Date	
		/		Page 1 of 1

Page 27 of 41

										PM	7
17			Cooler Recei	ipt and I	Preservat	ion Form	n	- 0	1	1.111	
Client <u>TH</u>	<u>X</u>				Se	rvice Reg	uest K25 (DO52	d		
Received:	116/25	Opened:	1116125	By: _	MM	Unload	led:	125	By:	M	
1. Samples w	ere received via?	USPS	Fed Ex	UPS	DHL	PDX	. Ka	urier	Hand Deli	vered	
2. Samples w	ere received in: (ci	ircle)	poler Box	c E	nvelope	Other				NA	
3. Were custo	dy seals on coolers	s? 1	NA Y (N), If yes, h	ow many and	where?					
If present, v	vere custody seals	intact?	Y N	If prese	nt, were they	signed and	dated?		Y	N	
Temp Blank	Sample Temp	IR Gun	Cooler #/COC ID	/NA C	ut of temp indicate with	PM No	otified It of temp	Track	ing Numbe	r NA	Filed
	5.0	TANO			<u>.</u>						
		1 Ar No Car									
	1										
	1										
			\frown								
4. Was a Temp	erature Blank pres	ent in cooler?	NA Y (N	If yes,	notate the ten	perature in	the appropri	iate column	above:		
If no, take	the temperature of	a representative	e sample bottle cor	ntained with	in the cooler	, notate in tl	he column "	Sample Tem	p":		
5. Were sampl	es received within	the method spe	cified temperature	ranges?				Ŋ¢	ξ (γ)	N	
If no, were	they received on is	ce and same day	as collected? If n	ot, notate th	e cooler # ab	ove and not	tify the PM.	ÍNA	V Y	N	
If applicable, t	issue samples were	e received:	Frozen Partiall	v Thawed	Thawed		•	C	ノ		
·····,		\cap		,	\wedge						
6. Packing m	aterial: Inserts	Buggies Bu	bble Wrap Gel I	Packs W	t Ice Dry I	ce Sleeve	\$			······	
7. Were custo	ody papers properly	y filled out (ink	, signed, etc.)?		\smile			NA	· (Y	N N	
8. Were samp	oles received in go	od condition (u	nbroken)					N	$A \left(X \right)$	N	
9. Were all si	ample labels comp	lete (ie, analysis	s, preservation, etc	:.)?				N		N	
10. Did all san	nple labels and tag	s agree with cu	stody papers?					N.	* Å	N	
 Were appr 	opriate bottles/con	tainers and volu	umes received for	the tests ind	icated?			N.	A LY	, N	
12. Were the j	H-preserved bottle	es (see SMO Gl	EN SOP) received	at the appro	priate pH? I	ndicate in ti	he table bela	w N.	$A \left(Y \right)$	N	
13. Were VOA	A vials received wi	ithout headspac	c? Indicate in the	table below	,			(N	\mathbf{A}	N	
14. Was C12/	Res negative?							N	A Y	N	
15. Were sam	ples received withi	in the method s	pecified time limit	? If not, not	ate the error l	below and n	otify the PN	1 (Ñ	λ, Y	N	
16. Were 100	ml sterile microbio	logy bottles fill	ed exactly to the 1	00ml mark		Y	N	Und	effilled	Overfilled	1
	iamole ID on Bo	ttie	Sai	nple ID or	COC			Identif	ied by:		
		······································					······································				
<u>}</u>		·····					·	······		·	
L	·					L					
[Bottle Cou	nt Head	-	T	Volu	me Read	ent Lot		
	Sample ID		Bottle Typ	e spac	Broke ph	Reag	ent add	ed Nu	mber	Initials	Time
ļ					<u></u>						
								1			

Notes, Discrepancies, Resolutions: _

G:\SMO\2024 Forms

SOP: SMO-GEN

Reviewed: NP 1/2/2025

Miscellaneous Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value over the calibration range.
- J The result is an estimated value between the MDL and the MRL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
North Carolina DEQ	https://deq.nc.gov/about/divisions/water-resources/water-resources- data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH tr	Total Petroleum Hydrocarbons Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

ALS Group USA, Corp. dba ALS Environmental

Analyst Summary report

Client: Project:	Apex Laboratories A5A1121/	Service Request: K2500536
Sample Name:	MW-2	Date Collected: 01/10/25
Lab Code:	K2500536-001	Date Received: 01/16/25
Sample Matrix:	Water	

SM 5310 C		MSPECHT
Sample Name:	MW-16	Date Collected: 01/10/25
Lab Code:	K2500536-002	Date Received: 01/16/25
Sample Matrix:	Water	
Sumple Mutlix.		

Analysis Method	
SM 5310 C	

Analysis Method

Extracted/Digested By

Extracted/Digested By

Analyzed By MSPECHT

Analyzed By

Page 33 of 41

Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

ALS Group USA, Corp. dba ALS Environmental

Analytical ReportClient:Apex LaboratoriesService Request:K2500536Project:A5A1121Date Collected:01/10/25 12:50Sample Matrix:WaterDate Received:01/16/25 14:30Sample Name:MW-2Basis:NALab Code:K2500536-001K2500536-001

General Chemistry Parameters

	Analysis							
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Carbon, Total Organic	SM 5310 C	31.0	mg/L	5.0	0.8	10	01/21/25 15:12	

ALS Group USA, Corp. dba ALS Environmental

Analytical ReportClient:Apex LaboratoriesService Request:K2500536Project:A5A1121Date Collected:01/10/25 12:15Sample Matrix:WaterDate Received:01/16/25 14:30Sample Name:MW-16Basis:NALab Code:K2500536-002K2500536-002

General Chemistry Parameters

	Analysis							
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Carbon, Total Organic	SM 5310 C	52.0	mg/L	5.0	0.8	10	01/21/25 15:12	

QC Summary Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

ALS Group USA, Corp. dba ALS Environmental

	Analyt	ical Report	
Client:	Apex Laboratories	Service Request:	K2500536
Project:	A5A1121	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA
Sample Name:	Method Blank	Basis:	NA
Lab Code:	K2500536-MB		

General Chemistry Parameters

	Analysis							
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Carbon, Total Organic	SM 5310 C	ND U	mg/L	0.50	0.08	1	01/21/25 15:12	

Page 40 of 41

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client:	Apex Laborat	ories		Service R	equest:	K250053	6
Project:	A5A1121			Date Ana	lyzed:	01/21/25	
Sample Matrix:	Water			Date Extr	acted:	NA	
		Ι	Lab Control Sample Summary				
			Carbon, Total Organic				
Analysis Method:	SM 5310 C			Units:		mg/L	
Prep Method:	None			Basis:		NA	
				Analysis 1	Lot:	867580	
Sample Name		Lab Code	Result	Spike Amount	% Rec	2	% Rec Limits
Lab Control Sample		K2500536-LCS	23.2	25.0	93	-	83-117

Appendix F

Voluntary Cleanup Program

Washington State Department of Ecology Toxics Cleanup Program

TERRESTRIAL ECOLOGICAL EVALUATION FORM

Under the Model Toxics Control Act (MTCA), a terrestrial ecological evaluation is necessary if hazardous substances are released into the soils at a Site. In the event of such a release, you must take one of the following three actions as part of your investigation and cleanup of the Site:

- 1. Document an exclusion from further evaluation using the criteria in WAC 173-340-7491.
- 2. Conduct a simplified evaluation as set forth in WAC 173-340-7492.
- 3. Conduct a site-specific evaluation as set forth in WAC 173-340-7493.

When requesting a written opinion under the Voluntary Cleanup Program (VCP), you must complete this form and submit it to the Department of Ecology (Ecology). The form documents the type and results of your evaluation.

Completion of this form is not sufficient to document your evaluation. You still need to document your analysis and the basis for your conclusion in your cleanup plan or report.

If you have questions about how to conduct a terrestrial ecological evaluation, please contact the Ecology site manager assigned to your Site. For additional guidance, please refer to https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Terrestrial-ecological-evaluation.

Step 1: IDENTIFY HAZARDOUS WASTE SITE

Please identify below the hazardous waste site for which you are documenting an evaluation.

Facility/Site Name: Auburn VW

Facility/Site Address: 3109	Auburn	Way	North,	Auburn,	WA	98002	
-----------------------------	--------	-----	--------	---------	----	-------	--

Facility/Site No:	57361549
-------------------	----------

VCP Project No.: TBD

Title: President

Step 2: IDENTIFY EVALUATOR

Please identify below the person who conducted the evaluation and their contact information.

atch

Organization: Bluestone Environmental NW

Mailing address: 27177 185th Avenue SE, Suite 111-224					
City: Covington			te:wa	Zip code: 98042	
Phone: 260-641-9603	Fax:		E-mail: danh	n@bluestonenw.com	

St	tep 3: Do	OCUMENT EVALUATION TYPE AND RESULTS
А.	Exclusi	on from further evaluation.
1.	Does th	e Site qualify for an exclusion from further evaluation?
	Х	Yes If you answered "YES," then answer Question 2.
	 Ur	No or If you answered " NO" or "UNKNOWN," then skip to Step 3B of this form.
2.	What is	the basis for the exclusion? Check all that apply. Then skip to Step 4 of this form.
	Point of	Compliance: WAC 173-340-7491(1)(a)
		All soil contamination is, or will be,* at least 15 feet below the surface.
		All soil contamination is, or will be,* at least 6 feet below the surface (or alternative depth if approved by Ecology), and institutional controls are used to manage remaining contamination.
	Barriers	to Exposure: WAC 173-340-7491(1)(b)
		All contaminated soil, is or will be,* covered by physical barriers (such as buildings or paved roads) that prevent exposure to plants and wildlife, and institutional controls are used to manage remaining contamination.
	Undeve	loped Land: WAC 173-340-7491(1)(c)
		There is less than 0.25 acres of contiguous [#] undeveloped [±] land on or within 500 feet of any area of the Site and any of the following chemicals is present: chlorinated dioxins or furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, heptachlor epoxide, benzene hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol, or pentachlorobenzene.
	x	For sites not containing any of the chemicals mentioned above, there is less than 1.5 acres of contiguous [#] undeveloped [±] land on or within 500 feet of any area of the Site.
	Backgro	ound Concentrations: WAC 173-340-7491(1)(d)
		Concentrations of hazardous substances in soil do not exceed natural background levels as described in WAC 173-340-200 and 173-340-709.
* / ac ± ' pro # ' hių by	An exclusi ceptable to "Undevelo event wildl "Contiguou ghways, ex wildlife.	on based on future land use must have a completion date for future development that is o Ecology. ped land" is land that is not covered by building, roads, paved areas, or other barriers that would life from feeding on plants, earthworms, insects, or other food in or on the soil. us" undeveloped land is an area of undeveloped land that is not divided into smaller areas of ktensive paving, or similar structures that are likely to reduce the potential use of the overall area

B.	Simplified evaluation.							
1.	. Does the Site qualify for a simplified evaluation?							
	□ Y	es If you answered "YES," then answer Question 2 below.						
	🗌 N Unkn	lo or If you answered " NO " or " UNKNOWN, " then skip to Step 3C of this form. own						
2.	Did you co	onduct a simplified evaluation?						
	□ Y	es If you answered "YES," then answer Question 3 below.						
	🗌 N	lo If you answered " NO, " then skip to Step 3C of this form.						
3.	Was furthe	er evaluation necessary?						
	□ Y	es If you answered "YES," then answer Question 4 below.						
	🗆 N	lo If you answered " NO, " then answer Question 5 below.						
4.	lf further e	valuation was necessary, what did you do?						
		Used the concentrations listed in Table 749-2 as cleanup levels. If so, then skip to Step 4 of this form.						
		Conducted a site-specific evaluation. If so, then skip to Step 3C of this form.						
5.	If no furthe to Step 4 o	er evaluation was necessary, what was the reason? Check all that apply. Then skip f this form.						
	Exposure A	Analysis: WAC 173-340-7492(2)(a)						
		Area of soil contamination at the Site is not more than 350 square feet.						
		Current or planned land use makes wildlife exposure unlikely. Used Table 749-1.						
	Pathway A	nalysis: WAC 173-340-7492(2)(b)						
		No potential exposure pathways from soil contamination to ecological receptors.						
	Contamina	nt Analysis: WAC 173-340-7492(2)(c)						
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations that exceed the values listed in Table 749-2.						
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations that exceed the values listed in Table 749-2, and institutional controls are used to manage remaining contamination.						
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays.						
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays, and institutional controls are used to manage remaining contamination.						

-		
C.	Site-speci the probler require cor	fic evaluation. A site-specific evaluation process consists of two parts: (1) formulating n, and (2) selecting the methods for addressing the identified problem. Both steps insultation with and approval by Ecology. See WAC 173-340-7493(1)(c).
1.	Was there	a problem? See WAC 173-340-7493(2).
	□ Y	es If you answered "YES," then answer Question 2 below.
	□ N	If you answered " NO ," then identify the reason here and then skip to Question 5 below:
		No issues were identified during the problem formulation step.
		While issues were identified, those issues were addressed by the cleanup actions for protecting human health.
2.	What did y	you do to resolve the problem? See WAC 173-340-7493(3).
		Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below.
		Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. <i>If so, then answer Questions 3 and 4 below.</i>
3.	If you con Check all th	ducted further site-specific evaluations, what methods did you use? nat apply. See WAC 173-340-7493(3).
		Literature surveys.
		Soil bioassays.
		Wildlife exposure model.
		Biomarkers.
		Site-specific field studies.
		Weight of evidence.
		Other methods approved by Ecology. If so, please specify:
4.	What was	the result of those evaluations?
		Confirmed there was no problem.
		Confirmed there was a problem and established site-specific cleanup levels.
5.	Have you problem re	already obtained Ecology's approval of both your problem formulation and esolution steps?
	□ Y	es If so, please identify the Ecology staff who approved those steps:
	□ N	0
-		

Step 4: SUBMITTAL

Please mail your completed form to the Ecology site manager assigned to your Site. If a site manager has not yet been assigned, please mail your completed form to the Ecology regional office for the County in which your Site is located.

If you need this publication in an alternate format, please call the Toxics Cleanup Program at 360-407-7170. People with hearing loss can call 711 for Washington Relay Service. People with a speech disability can call 877-833-6341.