Port of Seattle Lora Lake Apartments Site

2024 Annual Compliance Monitoring Report

Prepared for

Port of Seattle Aviation Environmental Programs Seattle-Tacoma International Airport 17900 International Boulevard, Suite 402 SeaTac, Washington 98188-4238

March 2025

Two Union Square • 601 Union Street • Suite 600 Seattle, Washington 98101 • tel: 206.292.2078

Certified

LIMITATIONS

This report has been prepared for the exclusive use of the Port of Seattle, their authorized agents, and regulatory agencies. It has been prepared following the described methods and information available at the time of the work. No other party should use this report for any purpose other than that originally intended, unless Floyd | Snider agrees in advance to such reliance in writing. The information contained herein should not be utilized for any purpose or project except the one originally intended. Under no circumstances shall this document be altered, updated, or revised without written authorization of Floyd | Snider.

2024 Annual Compliance Monitoring Report

This document was prepared for The Port of Seattle under the supervision of:

3

Name: Amanda McKay Date: March 12, 2025

Table of Contents

1.0	Intro	duction	
	1.1	BACKG	ROUND1-1
		1.1.1	Site Description1-1
		1.1.2	Remedial Actions Implemented1-2
		1.1.3	Compliance Monitoring Requirements1-2
2.0	Lora I	Lake Apa	rtments Parcel 2-1
	2.1	COMPL	IANCE MONITORING PLAN ACTIVITIES COMPLETED
		2.1.1	Groundwater Monitoring Program2-1
	2.2	GROUN	IDWATER COMPLIANCE MONITORING SUMMARY2-1
	2.3	GROUN	IDWATER ANALYTICAL SUMMARY2-2
		2.3.1	Arsenic
		2.3.2	Data Validation2-2
	2.4	TEMPO	PRARY SOIL CAP INSPECTION
3.0	Lora I	Lake Parc	el
	3.1	COMPL	IANCE MONITORING PLAN ACTIVITIES COMPLETED
		3.1.1	Groundwater Monitoring Completed3-1
		3.1.2	Maintenance Activities Completed3-1
	3.2	GROUN	IDWATER COMPLIANCE MONITORING SUMMARY
	3.3	GROUN	IDWATER ANALYTICAL SUMMARY3-1
		3.3.1	Arsenic
		3.3.2	Dioxins/Furans
		3.3.3	Data Validation3-2
		3.3.4	Sediment Remedy Confirmation Monitoring3-2
4.0	1982	Dredged	Material Containment Area 4-1
	4.1	WILDLI	FE BARRIER INSPECTION4-1
5.0	Sedin	nent Rem	edy Confirmation Monitoring Evaluation5-1
	5.1	DETER	VINATION OF SITE VICINITY BACKGROUND CONCENTRATIONS5-1
	5.2	COMPA	ARISON OF SITE DATA TO BACKGROUND CONCENTRATIONS5-1
		5.2.1	Arsenic
		5.2.2	Dioxin/Furan TEQ5-2

6.0	Recommendations	6-1
7.0	References	7-1

List of Tables

- Table 2.1 Lora Lake Apartments Parcel Groundwater Analytical Data
- Table 3.1 Lora Lake Parcel Groundwater Analytical Data
- Table 5.1 Summary Statistics

List of Figures

- Figure 1.1 Site Map
- Figure 2.1 Lora Lake Apartments Parcel 2024 Groundwater Analytical Results
- Figure 3.1 Lora Lake Parcel 2024 Groundwater Analytical Results
- Figure 5.1 Arsenic Concentrations Time-Series Plots

List of Appendices

- Appendix A Groundwater Sample Collection Forms
- Appendix B Laboratory Reports and Data Validation Summaries
- Appendix C Soil Cap and Wildlife Barrier Inspection Logs and Photographs
- Appendix D Post-Maintenance Photographs
- Appendix E ProUCL Outputs

List of Abbreviations

Abbreviation	Definition
ARL	Analytical Resources, LLC
САР	Cleanup Action Plan
CD	Consent Decree
СМР	Compliance Monitoring Plan
DMCA	1982 Dredged Material Containment Area
Ecology	Washington State Department of Ecology
μg/L	Micrograms per liter

Abbreviation	Definition
pg/g	Picograms per gram
pg/L	Picograms per liter
Port	Port of Seattle
Site	Lora Lake Apartments Site
TEQ	Toxic equivalent
UCL	Upper confidence limit
USEPA	U.S. Environmental Protection Agency
WSDOT	Washington State Department of Transportation

1.0 Introduction

This Annual Compliance Monitoring Report was prepared by Floyd|Snider on behalf of the Port of Seattle (Port) to document the compliance monitoring events conducted in 2024 at the Lora Lake Apartments Site (Site) in Burien, Washington. Compliance monitoring activities were conducted in accordance with the 2015 Compliance Monitoring Plan (CMP), as revised and finalized in 2022 (Floyd|Snider 2022).

The objective of this report is to describe the compliance monitoring program activities performed from January through December 2024. This report includes the results from compliance monitoring activities, which comprises groundwater compliance monitoring, sediment remedy confirmation monitoring, and wildlife barrier and cap performance inspections at the Site. The cumulative data from these events are used in the first 5-year periodic review to confirm the effectiveness of the remedial action and identify when site-wide compliance with groundwater cleanup standards have been achieved for the Site. The first 5-year periodic review additionally assesses the appropriate monitoring frequency for the next 5 years. A sediment remedy compliance evaluation is included in this report.

1.1 BACKGROUND

1.1.1 Site Description

The Site is located at 15001 Des Moines Memorial Drive South in Burien, Washington, and straddles the boundary between the City of Burien (Burien) and City of SeaTac (SeaTac), Washington (refer to Figure 1.1). The Site, as defined by Washington Administrative Code 173-340-200, is made up of three areas: the Lora Lake Apartments Parcel, and areas within the Lora Lake Parcel and 1982 Dredged Material Containment Area (DMCA) where contamination has come to be located. Historical operations at the Lora Lake Apartments Parcel included barrel-washing and auto-wrecking operations, which, along with site regrading, led to soil and groundwater contamination throughout the Site. The Site is owned by the Port and is located within the security fencing for the Seattle-Tacoma International Airport except for the portion of the Lora Lake Apartments Parcel owned by the Washington State Department of Transportation (WSDOT), described below. Descriptions of the Site areas are as follows:

• The Lora Lake Apartments Parcel is located on the west side of Des Moines Memorial Drive in Burien and consists of approximately 8.3 acres of previously vacant land. A portion of the Lora Lake Apartments Parcel in the northeast corner was sold to WSDOT in May 2017 for the construction of State Route 518 off-ramp. This area is retained within the Site boundary although no longer owned by the Port. To the south of the Lora Lake Apartments Parcel is the former Seattle City Light Sunnydale Substation Parcel, which was purchased by the Port in 2011. Contamination has come to be located on a portion of the former Sunnydale Substation Parcel and this area therefore falls within the Site boundary.

- The Lora Lake Parcel is located on the east side of Des Moines Memorial Drive in SeaTac and consists of approximately 7.1 acres of land, including the former approximately 3-acre Lora Lake and a Port-constructed wetland habitat mitigation area.
- The DMCA is an approximately 2.75-acre area located adjacent to the Lora Lake Parcel, to the northeast. The DMCA was constructed in 1982 when King County dredged approximately 4 feet of Lora Lake sediments and placed the dredged material in a specifically constructed facility, now referred to as the DMCA.

The Port and the Washington State Department of Ecology (Ecology) entered a Consent Decree (CD) in September 2015 under the mutual objective of providing remedial action at the Site. The CD required the Port to perform a final cleanup action and associated compliance monitoring at the Site, as described in the Cleanup Action Plan (CAP; State of Washington 2015).

1.1.2 Remedial Actions Implemented

As described in the CAP, the remedial actions at the Site were determined for each parcel.

- The Lora Lake Apartments Parcel remedial actions taken include excavation of soils with a dioxin/furan toxic equivalent (TEQ) greater than 100 picograms per gram (pg/g), construction of a temporary clean soil cap, and future implementation of a constructed engineered surface to contain remaining soils with concentrations greater than the dioxin/furan TEQ cleanup level of 13 pg/g at the time of future site redevelopment. The final engineered surface shall be installed by October 31, 2026, as approved by Ecology via email on September 8, 2021. The excavation and temporary clean soil cap were completed in 2018.
- The Lora Lake Parcel remedial actions taken include construction of a sand cap, followed by site restoration into an intermittent scrub/shrub wetland. The sand cap was completed in 2019, and the wetland restoration was completed in early 2020.
- DMCA remedial actions completed include construction of a wildlife barrier. Restrictive Covenants limiting future site uses have been implemented for all parcels to protect from contact with contamination remaining in place. Restrictive Covenants for the Lora Lake Apartments Parcel, Lora Lake Parcel, DMCA, and the former Sunnydale Substation Parcel were filed with King County on January 28, 2022, after receipt of Ecology signatures. Compliance monitoring of the remedial actions is being conducted under the CMP (Floyd | Snider 2022).

1.1.3 Compliance Monitoring Requirements

In accordance with Washington Administrative Code 173-340-410, compliance monitoring of site groundwater is required to confirm that human health and the environment are adequately protected, the remedial action has achieved the cleanup standards, and the cleanup action remains protective after cleanup standards have been met.

The Ecology-approved CMP includes requirements for each of the Site's three parcels. Requirements for the Lora Lake Apartments Parcel include analysis of groundwater for arsenic, pentachlorophenol, and dioxins/furans, and four consecutive events with concentrations less than the established cleanup levels throughout the monitoring network prior to termination of sampling. The CMP also includes annual inspections of the soil cap to identify and document general condition, as well as any areas of exposed underlying soil, loss of barrier material, or substantial plant growth that may impact the functionality of the cap. Once constructed, annual monitoring of the permanent cap (redeveloped surface) will also be required to ensure integrity of the cap.

The Lora Lake Parcel requirements include annual analysis of groundwater for arsenic and dioxins/furans. Groundwater data is subject to a 5-year periodic review to assess appropriate monitoring frequency for the next 5 years, and subsequent 5-year reviews will set the frequency for the following 5-year period. Additionally, as described in the CMP, sediment remedy compliance is also evaluated every 5 years through a statistical comparison of Lora Lake Parcel groundwater quality to site vicinity groundwater quality, for assessment of the sediment cap performance and containment of contamination in the now-contained subsurface sediment beneath the restored wetland. The first 5-year periodic review and sediment remedy compliance evaluation is presented in this report.

Compliance monitoring requirements at the DMCA include annual wildlife barrier physical inspections to identify and document general condition, as well as any areas of exposed underlying soil, loss of barrier material, or substantial plant growth that may impact the functionality of the wildlife barrier.

2.0 Lora Lake Apartments Parcel

2.1 COMPLIANCE MONITORING PLAN ACTIVITIES COMPLETED

2.1.1 Groundwater Monitoring Program

Compliance monitoring at the Lora Lake Apartments Parcel began in December 2018. Four consecutive quarters of groundwater samples with pentachlorophenol and dioxin/furan concentrations less than cleanup levels were collected at MW-C1, MW-C2, and MW-C3 during the December 2018, March 2019, June 2019, and September 2019 monitoring events. With Ecology's approval, sampling for pentachlorophenol and dioxin/furan analysis was terminated after the September 2019 event. Sampling for dissolved arsenic continues as discussed below.

Groundwater samples, as described in this report, were collected from the full monitoring network (MW-C1, MW-C2, MW-C3, and MW-C4) on March 30, 2020, and June 20, 2020. In August 2020, Floyd|Snider submitted the *Evaluation of Arsenic in Groundwater at the Lora Lake Apartments Site* memorandum (hereafter referred to as the Arsenic Evaluation Memorandum; Floyd|Snider 2020) to Ecology on behalf of the Port to describe outlier arsenic data trends observed at MW-C2 and propose a change in the monitoring approach.

As described in the Arsenic Evaluation Memorandum, seasonal exceedances of arsenic concentrations correlated with elevated pH and high groundwater table elevation, likely associated with the crushed concrete fill placed after the demolition of the Lora Lake Apartments buildings and excavation of underlying impacted soil. Even though this recycled concrete was placed above the historical high water table elevation it may be impacting pH and arsenic in groundwater during the wet season. Because the pattern observed at MW-C2 is unique to the location and not observed within the rest of the monitoring network, the Port requested termination of quarterly sampling of the full monitoring network. The Port proposed annual sampling of MW-C2 and downgradient location MW-C3 during the wet season to continue to confirm that elevated arsenic concentrations are not migrating off-site.

On September 21, 2020, Ecology approved the proposed approach of terminating quarterly sampling at the Lora Lake Apartments Parcel and coordinating annual sampling of MW-C2 and the downgradient location, MW-C3, concurrent with Lora Lake annual monitoring each spring (refer to Appendix A of the 2020 Annual Compliance Monitoring Report [Floyd|Snider 2021]). Annual monitoring of MW-C2 and MW-C3 will monitor trends and confirm arsenic-impacted waters are not migrating off-property. The 2024 annual monitoring is described in this report.

2.2 GROUNDWATER COMPLIANCE MONITORING SUMMARY

MW-C2 and MW-C3 were sampled on March 20, 2024. The groundwater monitoring network is presented in Figure 2.1.

Groundwater samples were collected using standard low-flow sampling methods. The collected samples were generally clear, with no apparent odor. Purge water was collected and placed in

an on-site, labeled, 55-gallon drum. All samples were submitted to Analytical Resources, LLC (ARL) under chain-of-custody procedures for analysis of arsenic. Groundwater sample collection forms for the event are included in Appendix A.

2.3 GROUNDWATER ANALYTICAL SUMMARY

This section summarizes the analytical results for arsenic. Analytical results are presented in Figure 2.1 and Table 2.1, and laboratory reports and data validation summaries are included in Appendix B.

2.3.1 Arsenic

In the sample collected from MW-C3, arsenic was detected at an estimated concentration of 0.15 micrograms per liter (μ g/L), less than the Site cleanup level of 5 μ g/L. The arsenic concentration in the sample collected from MW-C2 was 42 μ g/L, exceeding the Site cleanup level.

The elevated arsenic concentration on March 20, 2024, is consistent with the trend observed between 2019 and 2023. The likely cause of elevated arsenic at MW-C2 was evaluated and described in Section 2.1.1 and in the Arsenic Evaluation Memorandum (Floyd|Snider 2020).

2.3.2 Data Validation

A Compliance Screening (USEPA Stage 2B) data quality review was performed on metals data resulting from laboratory analysis by U.S. Environmental Protection Agency (USEPA) Methods 6020B. The analytical data were validated by Floyd | Snider in accordance with the USEPA *National Functional Guidelines for Inorganic Superfund Methods Data Review* (USEPA 2020).

Field and laboratory quality control parameters for all samples met project criteria. At some monitoring well locations, arsenic results were detected at concentrations less than the method reporting limit; these results were qualified by the laboratory as estimated concentrations. No additional qualifiers were added to the analytical results for metals based on the data quality review. Metals data are determined to be of acceptable quality for use as reported by the laboratory.

2.4 TEMPORARY SOIL CAP INSPECTION

On March 20, 2024, a cap inspection was conducted to document the integrity of the temporary soil cap that was installed at the Lora Lake Apartments Parcel in October 2017. The cap inspection was conducted in accordance with the CMP. During the cap inspection, the following items were noted for maintenance: (1) areas in need of vegetation replacement along the southern property boundaries near the entrance and near the biofiltration swale and (2) some animal burrowing. Appendix C includes field observations and photographs taken during the temporary soil cap inspection.

Instruction for required maintenance of the temporary soil cap was provided to the Port as part of required landscape operations and maintenance. Placement of topsoil and reseeding of areas

where mowing activities had impacted the soil barrier as noted in Table C.1 was conducted in October 2024. Mowing was also conducted throughout the year. No additional maintenance was required or conducted in 2024. Appendix D includes photographs of post-maintenance site conditions.

3.0 Lora Lake Parcel

3.1 COMPLIANCE MONITORING PLAN ACTIVITIES COMPLETED

3.1.1 Groundwater Monitoring Completed

Previously reported annual monitoring was completed at the Lora Lake Parcel in October 2020, March 2021, March 2022, and April 2023. The fifth round of annual monitoring occurred on April 24, 2024, and is described in this report. In accordance with the CMP, on-site and vicinity well locations were sampled for arsenic and dioxins/furans. The full monitoring network includes on-site well locations MW-CP1, MW-CP2, MW-CP3, MW-CP4, MW-CP5, MW-CP6, and MW-CP-7, as well as vicinity well locations MW-C1/VB1, MW-VB2, MW-VB3, and HCOO-B312 (Figure 3.1).

3.1.2 Maintenance Activities Completed

No maintenance actions were identified for the Lora Lake Parcel, and no maintenance activities were conducted during the year.

3.2 GROUNDWATER COMPLIANCE MONITORING SUMMARY

This section summarizes the compliance monitoring events at the Lora Lake Parcel in 2024. The monitoring network is presented in Figure 3.1, and the groundwater sample collection forms are in Appendix A.

The full monitoring network (MW-CP1, MW-CP2, MW-CP3, MW-CP4, MW-CP5, MW-CP6, MW-CP-7, MW-C1/VB1, MW-VB2, MW-VB3, and HCOO-B312) was sampled on April 24, 2024. Groundwater samples were collected using standard low-flow groundwater sampling methods. Duplicate samples were collected at MW-C1/VB1 and MW-CP1 for laboratory quality control. Samples were generally clear with no visible turbidity and no apparent odor. Purge water was collected and placed in an on-site, labeled, 55-gallon drum for future disposal by the Port. All samples were submitted to ARL under chain-of-custody procedures for analysis of arsenic and dioxins/furans.

3.3 GROUNDWATER ANALYTICAL SUMMARY

This section summarizes the analytical results for arsenic and dioxins/furans. Analytical results are presented in Figure 3.1 and Table 3.1, and laboratory reports and data validation summaries are included in Appendix B.

3.3.1 Arsenic

Arsenic concentrations in samples collected from all on-site wells and all vicinity wells were less than the Site cleanup level of 5 μ g/L, with the exception of MW-CP5, which exceeded the Site cleanup level with a concentration of 9.8 μ g/L.

The CUL exceedance at MW-CP5 is the first exceedance observed at the Lora Lake Parcel since monitoring began in October 2020. Prior concentrations of arsenic in MW-CP5 have ranged from $1.2 \,\mu$ g/L to $3.7 \,\mu$ g/L, which are typically greater than arsenic concentrations in other on-site wells. The 5-year periodic review of analytical data relative to sediment cap performance is presented in Section 5.1.

3.3.2 Dioxins/Furans

The Site groundwater cleanup level for dioxin/furan TEQ is 6.7 picograms per liter (pg/L). Dioxin/furan TEQ was not detected in any on-site wells or vicinity wells.

3.3.3 Data Validation

A Compliance Screening (USEPA Stage 2B) data quality review was performed on metals data resulting from laboratory analysis by USEPA Method 6020B. The analytical data were validated by Floyd|Snider in accordance with the USEPA *National Functional Guidelines for Inorganic Superfund Methods Data Review* (USEPA 2020). A full data validation (USEPA Stage 4) was performed on dioxin/furan data resulting from laboratory analysis by USEPA Method 1613B. The dioxin/furan data were validated by EcoChem, Inc. EcoChem data validation reports are included in Appendix B.

Field and laboratory quality control parameters for samples met project criteria. All data are determined to be of acceptable quality for use as reported or qualified.

3.3.4 Sediment Remedy Confirmation Monitoring

As detailed in the CMP, the sediment cap is designed to achieve compliance with surface water quality criteria at the cap surface. The surface water quality criterion of 0.005 pg/L dioxin/furan TEQ is significantly less than current laboratory practical quantitation limits. As described in the CMP, statistical comparison of groundwater confirmation samples collected within and downgradient of the former Lora Lake cleanup area to site vicinity background groundwater samples was conducted for confirmation of the sediment remedy performance. This statistical comparison method for confirmation monitoring samples provides a measurable method to determine if quality of groundwater samples collected immediately above the sediment cap are different than samples collected from site vicinity background locations. This statistical analysis is presented in Section 5.1. Statistical comparison has been conducted in accordance with the procedures described in the CMP.

4.0 1982 Dredged Material Containment Area

4.1 WILDLIFE BARRIER INSPECTION

The DMCA wildlife barrier was inspected on March 20, 2024. Dust and organic debris associated with a large deciduous tree were documented at the southwest corner (station DMCA 09) of the DMCA area during the inspection. The DMCA was swept in the second quarter of 2024 by Port Field Crews, as part of regular maintenance to address dust and debris as noted during the inspection. Overall, the general integrity and condition of the pervious pavement was in good condition. Signs of potential material loss at the surface previously noted at DMCA 05 during the 2023 inspection appeared stable and unchanged. Although the potential material loss does not appear to impact the barrier's ability to restrict contact with underlying soils, continued monitoring of this location is recommended. The wildlife barrier inspection log and photographs are included in Appendix C.

5.0 Sediment Remedy Confirmation Monitoring Evaluation

As previously described, a 5-year periodic review is required to be completed in 2024 at the Lora Lake Parcel to evaluate sediment cap performance through a statistical comparison of Lora Lake Parcel groundwater quality in the confirmation monitoring wells to site vicinity groundwater quality. Results of this evaluation support assessment of the appropriate monitoring frequency for the next 5 years and are described below.

5.1 DETERMINATION OF SITE VICINITY BACKGROUND CONCENTRATIONS

The site vicinity background concentrations for arsenic and dioxin/furan TEQ were calculated using the statistical software ProUCL (USEPA 2022) according to Section 4.3.3.2 and Figure 12 of the *Statistical Guidance for Ecology Site Managers* (Ecology Statistical Guidance; Ecology 1992). All ProUCL outputs are provided in Appendix E. Site vicinity wells include MW-C1/VB1, MW-VB2, MW-VB3, and HCOO-B312 (Figure 3.1).

A goodness-of-fit test was conducted in ProUCL to determine the statistical distribution of arsenic and dioxins/furans in the site vicinity wells dataset using a significance level of 5% (p<0.05). The arsenic site vicinity dataset was determined to be normally distributed, and the dioxin/furan TEQ site vicinity dataset was determined to be gamma distributed. Based on the data distribution, the 90th percentile values and median were calculated. Ecology Statistical Guidance requires the background concentration to be set to the lesser value of either the 90th percentile value or 4 times the median (Ecology 1992).

For both arsenic and dioxin/furan TEQ, the 90th percentile was determined to be less than 4 times the median and selected for use as the site vicinity background concentration. The site vicinity background concentration for arsenic is 0.43 μ g/L and for dioxin/furan TEQ is 3.11 pg/L. Summary statistics for the arsenic and dioxin/furan TEQ datasets are presented in Table 5.1.

5.2 COMPARISON OF SITE DATA TO BACKGROUND CONCENTRATIONS

To compare the confirmation monitoring well dataset to the site vicinity background concentration, the 95% upper confidence limit (UCL) of the true mean of the compliance monitoring well dataset was calculated. Confirmation monitoring wells include MW-CP1 through MW-CP7 (Figure 3.1). The resulting 95% UCL recommended by ProUCL for arsenic is 1.6 μ g/L (greater than site vicinity background concentration) and for dioxin/furan TEQ is 1.25 pg/L (less than site vicinity background concentration).

As described in the CMP and Ecology Statistical Guidance, if more than 20% of the sample results exceed the site vicinity background concentration, or a detected result exceeds 2 times the site vicinity background concentration, the sediment cap confirmation monitoring groundwater data will be considered to exceed the site vicinity background.

5.2.1 Arsenic

For arsenic, greater than 50% of the confirmation monitoring dataset exceeds the site vicinity background concentration, and 11 of the 35 sampling results were greater than 2 times the site vicinity background concentration in MW-CP3, MW-CP4, MW-CP5, and MW-CP6. Therefore, for arsenic, the sediment cap confirmation groundwater monitoring data are considered to exceed the site vicinity background.

To further evaluate arsenic groundwater concentrations at the Lora Lake Parcel, time-series plots of arsenic concentrations in each monitoring well are presented in Figure 5.1. A review of both the site vicinity background and compliance monitoring wells do not indicate any concentration trends over time; concentrations at all locations appear variable over time and increasing trends are not observed.

Of the 35 samples collected, only 1 indicates an arsenic concentration greater than the Site CUL of 5 μ g/L (MW-CP5 in 2024 at a concentration of 9.8 μ g/L). The greatest concentrations in the compliance monitoring well network have consistently been observed at this location, with prior concentrations ranging from 1.2 μ g/L to 3.7 μ g/L. It is unclear based on the existing dataset if the Site CUL exceedance in 2024 was anomalous or indicative of an actual change in groundwater quality; additional data are required for further evaluation. Notably, when MW-CP5 is excluded from the compliance monitoring well dataset to assess compliance within this individual well location, the resulting 95% UCL for the compliance monitoring well dataset is less than 2 times the site vicinity background concentration (refer to Table 5.1).

5.2.2 Dioxin/Furan TEQ

For dioxins/furans, only one sample result exceeded the site vicinity background concentration at MW-CP5 in 2023. This exceedance is non-detect at a reporting limit of 3.86 pg/L, less than 1.5 times the site vicinity background concentration. Therefore, for dioxin/furan TEQ, the sediment cap confirmation monitoring data are not considered to exceed the site vicinity background concentration and the sediment cap remedy has been effective.

6.0 Recommendations

In accordance with the CMP, the first 5-year periodic review assesses the appropriate monitoring frequency for the next 5 years, and subsequent 5-year periodic reviews will set the frequency for the following 5-year periods. Based on the 5 consecutive years of compliance monitoring and the sediment remedy confirmation monitoring evaluation, the Port recommends the following to commence in the 2025 compliance monitoring event:

- Termination of groundwater compliance monitoring at the Lora Lake Apartments Parcel. The 5 years of groundwater monitoring for arsenic confirms that the elevated arsenic concentrations detected at MW-C2 due to the placement of crushed concrete during the remedial action are isolated to MW-C2 and are not migrating off-site. At MW-C3, the monitoring well downgradient of MW-C2, arsenic has consistently been detected at levels well below the Site CUL of 5 μ g/L, with a maximum concentration of 0.26 μ g/L in 2019. With the termination of groundwater compliance monitoring, MW-C2 and MW-C3 would be decommissioned.
- Continuation of Lora Lake Apartments Parcel temporary soil cap annual inspections. The Lora Lake Apartments Parcel temporary soil cap continues to be intact but minor repairs are periodically required, as described in prior compliance monitoring reports. The Port therefore recommends continued annual inspections.
- Continuation of Lora Lake Parcel sediment cap confirmation groundwater monitoring for arsenic. As described in the CMP, if the sediment cap confirmation monitoring groundwater data exceeds the site vicinity background, the Port, in coordination with and at the direction of Ecology, will determine what contingency actions may be necessary and appropriate. The arsenic confirmational monitoring 95% UCL exceeds the calculated site vicinity background; however, no concentration trend is present in the monitoring data and individual well location MW-CP5 is a substantial driver in the 95% UCL value. Consistent with the CMP, the proposed contingency action after the first 5 years of monitoring is to continue annual monitoring of arsenic for 3 additional years to increase the size of the dataset and therefore, the power of statistical comparison.

The statistical evaluation and concentration trends will be updated in future compliance monitoring reports. If arsenic concentrations continue to exceed the Site CUL or increasing concentrations of arsenic are observed, the spatial extent of arsenic will be evaluated and additional continency actions may be required. Any potential continency actions would be identified in coordination with Ecology. As described in the CMP, in the evaluation of potential contingency actions, Ecology will consider the net environmental benefit of the contingency action relative to disturbance of a wetland mitigation area.

• Termination of Lora Lake Parcel sediment cap confirmation groundwater monitoring for dioxins/furans. Dioxin/furan TEQ results in groundwater collected within the sediment cap area do not exceed the site vicinity background concentration and

therefore no contingency actions are warranted. Because dioxin/furan TEQ concentrations are in compliance with CULs, and do not exceed the site vicinity background concentration, the Port recommends the termination of sediment cap confirmation monitoring for dioxins/furans at the Lora Lake Parcel.

• Continuation of DMCA wildlife barrier annual inspections. The DMCA wildlife barrier continues to be intact but minor repairs and maintenance are periodically required, as described in prior monitoring reports. The Port therefore recommends continued annual inspections.

7.0 References

- Floyd|Snider. 2020. Evaluation of Arsenic in Groundwater at the Lora Lake Apartments Site. Memorandum from Adia Jumper, Mark Jusayan, and Megan King, Floyd|Snider, to Sunny Becker, Washington State Department of Ecology. 17 August.
- _____. 2021. Port of Seattle Lora Lake Apartments Site 2020 Annual Compliance Monitoring Report. March.
- _____. 2022. Port of Seattle Lora Lake Apartments Site Compliance Monitoring Plan. Originally published September 2015, revised May 2020 and January 2022.
- State of Washington. 2015. *Consent Decree re: Lora Lake Apartments Site, Burien, Washington*. 9 September.
- U.S. Environmental Protection Agency (USEPA). 2020. *National Functional Guidelines for Inorganic Superfund Methods Data Review*. EPA-540-R-20-006. November.
- _____. 2022. ProUCL: Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations. Version 5.2., 2022, https://www.epa.gov/land-research/proucl-software.
- Washington State Department of Ecology (Ecology). 1992. *Statistical Guidance for Ecology Site Managers*. Publication No. 92-54. 1 August.

Lora Lake Apartments Site

2024 Annual Compliance Monitoring Report

Tables

Table 2.1 Lora Lake Apartments Parcel Groundwater Analytical Data

r																	
		Lo	ocation Name								V-C1				•		
				MW-C1-	MW-C1-	MW-C1-	MW-C1-	MW-C1-	MW-C1-	MW-C1-	MW-C1-	MW-C1-	MW-C1-	MW-C1-	MW-C1-	MW-C1-	MW-C1-
			Sample ID	121218	121218-D	031519	031519-D	062119	062119-D	092019	092019-D	121819	121819-D	033020	033020-D	061720	061720D
			Sample Date	12/12/2018	12/12/2018	3/15/2019	3/15/2019	6/21/2019	6/21/2019	9/20/2019	9/20/2019	12/18/2019	12/18/2019	3/30/2020	3/30/2020	6/17/2020	6/17/2020
Analyte	CAS No.	Site CUL	Units														
Field Parameters																	
Turbidity			ntu														
Dissolved Metals by USEP	A 200.8																
Arsenic	7440-38-2	5	μg/L	0.11 JQ	0.11 JQ	0.11 JQ	0.096 JQ	0.15 JQ	0.12 JQ	0.16 JQ	0.15 JQ	0.10 JQ	0.091 JQ	0.12 JQ	0.13 JQ	0.14 JQ	0.14 JQ
Phenols by USEPA 8041A																	
Pentachlorophenol	87-86-5	1	μg/L	0.025 U	0.025 U	0.025 U	0.025 U	0.025	0.025	0.025 U	0.025 U						
Dioxins/Furans by USEPA	1613B																
2,3,7,8-TCDD	1746-01-6		pg/L	0.520 U	0.290 U	2.68 U	1.65 U	1.01 U	0.860 U	2.11 U	1.53 U						
1,2,3,7,8-PeCDD	40321-76-4		pg/L	0.490 U	0.350 U	3.25 U	1.64 U	1.02 U	0.990 U	1.17 U	1.48 U						
1,2,3,4,7,8-HxCDD	39227-28-6		pg/L	0.470 U	0.330 U	3.02 U	1.71 U	0.850 U	0.920 U	1.28 U	1.83 U						
1,2,3,6,7,8-HxCDD	57653-85-7		pg/L	0.430 U	0.320 U	2.95 U	1.72 U	0.790 U	0.860 U	1.11 U	1.68 U						
1,2,3,7,8,9-HxCDD	19408-74-3		pg/L	0.470 U	0.340 U	3.11 U	1.79 U	0.850 U	0.920 U	1.22 U	1.80 U						
1,2,3,4,6,7,8-HpCDD	35822-46-9		pg/L	1.48 U	0.980 U	11.0 U	2.11 UJ	1.54 UJ	1.24 UJ	2.04 U	1.60 U						
OCDD	3268-87-9		pg/L	3.37 J	5.71 J	148 J	9.90 J	4.65 UJ	5.59 UJ	7.48 UJ	15.5 U						
2,3,7,8-TCDF	51207-31-9		pg/L	0.380 U	0.340 U	2.64 U	1.67 U	1.32 U	1.10 U	1.95 U	1.45 U						
1,2,3,7,8-PeCDF	57117-41-6		pg/L	0.450 U	0.310 U	3.47 U	1.71 U	1.89 UJ	1.50 U	1.16 U	1.42 U						
2,3,4,7,8-PeCDF	57117-31-4		pg/L	0.410 U	0.280 U	3.14 U	1.53 U	1.43 U	1.24 U	0.930 U	1.15 U						
1,2,3,4,7,8-HxCDF	70648-26-9		pg/L	0.260 U	0.240 U	1.80 U	1.01 U	0.470 UJ	0.430 U	0.980 U	1.34 U						
1,2,3,6,7,8-HxCDF	57117-44-9		pg/L	0.260 U	0.250 U	1.86 U	1.01 U	0.500 UJ	0.450 UJ	0.960 U	1.42 U						
1,2,3,7,8,9-HxCDF	72918-21-9		pg/L	0.280 U	0.650 U	2.10 U	1.11 U	0.530 UJ	0.460 U	1.04 U	1.45 U						
2,3,4,6,7,8-HxCDF	60851-34-5		pg/L	0.260 U	0.240 U	1.66 U	0.960 U	0.450 UJ	0.410 UJ	0.980 U	1.34 U						
1,2,3,4,6,7,8-HpCDF	67562-39-4		pg/L	0.270 U	0.290 U	1.74 U	1.20 U	0.420 UJ	0.580 UJ	1.02 U	0.720 U						
1,2,3,4,7,8,9-HpCDF	55673-89-7		pg/L	0.370 U	0.250 U	2.36 U	1.70 UJ	0.600 UJ	0.860 UJ	1.69 U	1.06 U						
OCDF	39001-02-0		pg/L	1.22 UJ	0.860 UJ	11.2 UJ	4.23 UJ	1.53 UJ	1.99 UJ	2.65 UJ	2.15 U						
Dioxin/furan TEQ		6.7	pg/L	0.726 J	0.512 J	4.57 J	2.48 J	1.56 UJ	1.43 UJ	2.30 UJ	2.33 U						

Notes:

Blank cells are intentional.

-- Not available.

BOLD/RED Analyte detected at a concentration greater than the site cleanup level.

1 In 2018, location MW-C4 was found to be filled with sand and was not sampled in December 2018, March 2019, or June 2019. Following coordination with Ecology, this well was abandoned and a replacement well was installed within a few feet of the original well location in August 2019.

Abbreviations:

CAS Chemical Abstracts Service	OCDD Octachlorodibenzodioxin
CUL Cleanup level	OCDF Octachlorodibenzofuran
Ecology Washington State Department of Ecology	PeCDD Pentachlorodibenzo-p - dioxin
HpCDD Heptachlorodibenzo-p -dioxin	PeCDF Pentachlorodibenzofuran
HpCDF Heptachlorodibenzofuran	pg/L Picograms per liter
HxCDD Hexachlorodibenzo-p -dioxin	TCDD Tetrachlorodibenzo-p -dioxin
HxCDF Hexachlorodibenzofuran	TCDF Tetrachlorodibenzofuran
μg/L Micrograms per liter	TEQ Toxic equivalent
ntu Nephelometric turbidity units	USEPA U.S. Environmental Protection Agency
Qualifiers:	

J Analyte was detected; concentration is considered to be an estimate.

JQ Analyte was detected between the method detection limit and reporting limit; concentration is considered to be an estimate.

U Analyte was not detected at the given reporting limit.

Table 2.1Lora Lake Apartments Parcel Groundwater Analytical Data

		L	ocation Name						MM	V-C2					
				MW-C2-	MW-C2-	MW-C2-	MW-C2-	MW-C2-	MW-C2-	MW-C2-	MW-C2-	MW-C2-	MW-C2-	MW-C2-	MW-C2-
			Sample ID	121218	031519	062119	092019	121819	033020	061720	102820	031621	032422	041423	032024
			Sample Date	12/12/2018	3/15/2019	6/21/2019	9/20/2019	12/18/2019	3/30/2020	6/17/2020	10/28/2020	3/16/2021	3/24/2022	4/14/2023	3/20/2024
Analyte	CAS No.	Site CUL	Units												
Field Parameters															
Turbidity			ntu								0.80	1.90		3.57	1.78
Dissolved Metals by USEP	A 200.8														
Arsenic	7440-38-2	5	μg/L	2.6	14	3.7	2.1	1.9	27	11	3.1	22	24	55	42
Phenols by USEPA 8041A															
Pentachlorophenol	87-86-5	1	μg/L	0.062	0.69	0.051	0.031								
Dioxins/Furans by USEPA 1	1613B														
2,3,7,8-TCDD	1746-01-6		pg/L	0.370 U	2.41 U	1.94 U	1.95 U								
1,2,3,7,8-PeCDD	40321-76-4		pg/L	0.440 U	3.25 U	1.82 U	1.17 U								
1,2,3,4,7,8-HxCDD	39227-28-6		pg/L	0.530 U	3.69 U	1.20 U	1.50 U								
1,2,3,6,7,8-HxCDD	57653-85-7		pg/L	0.900 U	4.96 J	1.11 U	1.29 U								
1,2,3,7,8,9-HxCDD	19408-74-3		pg/L	0.550 U	3.65 U	1.19 U	1.42 U								
1,2,3,4,6,7,8-HpCDD	35822-46-9		pg/L	22.5	86.5	47.8	14.8								
OCDD	3268-87-9		pg/L	232 J	553	515 J	126 J								
2,3,7,8-TCDF	51207-31-9		pg/L	0.450 U	3.49 U	1.87 U	1.69 U								
1,2,3,7,8-PeCDF	57117-41-6		pg/L	0.670 U	2.62 U	1.67 U	1.42 U								
2,3,4,7,8-PeCDF	57117-31-4		pg/L	0.400 U	2.35 U	1.42 U	1.10 U								
1,2,3,4,7,8-HxCDF	70648-26-9		pg/L	0.550 J	1.87 U	1.26 U	1.11 U								
1,2,3,6,7,8-HxCDF	57117-44-9		pg/L	0.450 U	1.89 U	1.27 U	1.12 U								
1,2,3,7,8,9-HxCDF	72918-21-9		pg/L	0.330 U	2.08 U	1.31 U	1.25 U								
2,3,4,6,7,8-HxCDF	60851-34-5		pg/L	0.530 J	1.70 U	1.15 U	1.10 U								
1,2,3,4,6,7,8-HpCDF	67562-39-4		pg/L	4.71 J	13.8	12.0 U	3.60 U								
1,2,3,4,7,8,9-HpCDF	55673-89-7		pg/L	0.580 U	2.03 U	1.84 U	0.740 U								
OCDF	39001-02-0		pg/L	21.2 J	40.5	45.2 J	13.8 J								
Dioxin/furan TEQ		6.7	pg/L	1.09 J	5.83 J	3.35 J	2.48 J								

Notes:

Blank cells are intentional.

-- Not available.

CUL Cleanup level

CAS Chemical Abstracts Service

HpCDD Heptachlorodibenzo-p -dioxin

HxCDD Hexachlorodibenzo-p -dioxin

HpCDF Heptachlorodibenzofuran

HxCDF Hexachlorodibenzofuran

µg/L Micrograms per liter

BOLD/RED Analyte detected at a concentration greater than the site cleanup level.

1 In 2018, location MW-C4 was found to be filled with sand and was not sampled in December 2018, March 2019, or June 2019. Following coordination with Ecology, this well was abandoned and a replacement well was installed within a few feet of the original well location in August 2019.

Abbreviations:

- OCDD Octachlorodibenzodioxin OCDF Octachlorodibenzofuran
- Ecology Washington State Department of Ecology
 PeCDD Pentachlorodibenzo-p-dioxin
 - PeCDD Pentachlorodibenzo-p-dio
 - pg/L Picograms per liter
 - TCDD Tetrachlorodibenzo-p -dioxin
 - TCDF Tetrachlorodibenzofuran
 - TEQ Toxic equivalent
- ntu Nephelometric turbidity units USEPA U.S. Environmental Protection Agency

Qualifiers:

J Analyte was detected; concentration is considered to be an estimate.

JQ Analyte was detected between the method detection limit and reporting limit; concentration is considered to be an estimate.

U Analyte was not detected at the given reporting limit.

Table 2.1 Lora Lake Apartments Parcel Groundwater Analytical Data

											-									
		Loca	ation Name							MW-C3								MW-C	4 ⁽¹⁾	
				MW-C3-	MW-C3-	MW-C3-	MW-C3-	MW-C3-	MW-C3-	MW-C3-	MW-C3-	MW-C3-	MW-C3-	MW-C3-	MW-C3-	MW-C3-	MW-C4-	MW-C4-	MW-C4-	MW-C4-
			Sample ID	121218	031519	062119	092019	121819	033020	061720	102820	031621	031621-D	032422	041423	032024	092019	121819	033020	061720
		Sa	ample Date	12/12/2018	3/15/2019	6/21/2019	9/20/2019	12/18/2019	3/30/2020	6/17/2020	10/28/2020	3/16/2021	3/16/2021	3/24/2022	4/14/2023	3/20/2024	9/20/2019	12/18/2019	3/30/2020	6/17/2020
Analyte	CAS No.	Site CUL	Units																	
Field Parameters																				
Turbidity			ntu								1.93	2.57			1.64	1.66				
Dissolved Metals by USEP	PA 200.8																			
Arsenic	7440-38-2	5	μg/L	0.24	0.26	0.20 JQ	0.22	0.22	0.25	0.22	0.22	0.19 JQ	0.21	0.19 JQ	0.18 J	0.15 J	0.47	0.42	0.37	0.49
Phenols by USEPA 8041A																				
Pentachlorophenol	87-86-5	1	μg/L	0.025 U	0.025 U	0.025	0.025 U										0.025 U			
Dioxins/Furans by USEPA	1613B																			
2,3,7,8-TCDD	1746-01-6		pg/L	0.350 U	0.650 U	2.01 U	1.71 U										1.73 U			
1,2,3,7,8-PeCDD	40321-76-4		pg/L	0.330 U	0.670 U	1.14 U	1.34 U										0.980 U			
1,2,3,4,7,8-HxCDD	39227-28-6		pg/L	0.390 U	0.770 U	1.02 U	1.55 UJ										0.960 U			
1,2,3,6,7,8-HxCDD	57653-85-7		pg/L	0.380 U	0.730 U	0.940 U	1.39 U										0.870 U			
1,2,3,7,8,9-HxCDD	19408-74-3		pg/L	0.400 U	0.780 U	1.01 U	1.50 U										0.930 U			
1,2,3,4,6,7,8-HpCDD	35822-46-9		pg/L	0.520 U	1.03 U	1.45 U	1.60 U										1.45 U			
OCDD	3268-87-9		pg/L	3.23 J	9.11 J	4.34 J	4.98 UJ										10.7 U			
2,3,7,8-TCDF	51207-31-9		pg/L	0.310 U	0.710 U	1.49 U	1.92 U										1.82 U			
1,2,3,7,8-PeCDF	57117-41-6		pg/L	0.310 U	0.820 U	1.23 U	1.19 U										1.03 U			
2,3,4,7,8-PeCDF	57117-31-4		pg/L	0.290 U	0.750 U	1.00 U	0.960 U										0.850 U			
1,2,3,4,7,8-HxCDF	70648-26-9		pg/L	0.180 U	0.540 U	0.800 U	0.750 U										0.720 U			
1,2,3,6,7,8-HxCDF	57117-44-9		pg/L	0.180 U	0.510 U	0.830 U	0.720 U										0.700 U			
1,2,3,7,8,9-HxCDF	72918-21-9		pg/L	0.520 U	0.540 U	0.870 U	0.830 U										0.750 U			
2,3,4,6,7,8-HxCDF	60851-34-5		pg/L	0.180 U	0.500 U	0.760 U	0.740 U										0.700 U			
1,2,3,4,6,7,8-HpCDF	67562-39-4		pg/L	0.140 U	0.330 U	0.580 U	0.550 U										0.590 U			
1,2,3,4,7,8,9-HpCDF	55673-89-7		pg/L	0.180 U	0.440 U	0.750 UJ	0.810 U										0.860 U			
OCDF	39001-02-0		pg/L	0.690 UJ	1.02 U	2.82 UJ	2.76 UJ										2.80 U			
Dioxin/furan TEQ		6.7	pg/L	0.520 J	1.05 J	2.15 J	2.17 UJ										1.89 U			

Notes:

Blank cells are intentional.

-- Not available.

BOLD/RED Analyte detected at a concentration greater than the site cleanup level.

1 In 2018, location MW-C4 was found to be filled with sand and was not sampled in December 2018, March 2019, or June 2019. Following coordination with Ecology, this well was abandoned and a replacement well was installed within a few feet of the original well location in August 2019.

Abbreviations:

CAS Ch	hemical Abstracts Service	OCDD	Octachlorodibenzodioxin
CUL CI	leanup level	OCDF	Octachlorodibenzofuran
Ecology W	/ashington State Department of Ecology	PeCDD	Pentachlorodibenzo-p -dioxin
HpCDD He	eptachlorodibenzo-p -dioxin	PeCDF	Pentachlorodibenzofuran
HpCDF He	eptachlorodibenzofuran	pg/L	Picograms per liter
HxCDD He	exachlorodibenzo- <i>p</i> -dioxin	TCDD	Tetrachlorodibenzo-p -dioxin
HxCDF He	exachlorodibenzofuran	TCDF	Tetrachlorodibenzofuran
μg/L M	licrograms per liter	TEQ	Toxic equivalent
ntu Ne	ephelometric turbidity units	USEPA	U.S. Environmental Protection Agency

Qualifiers:

J Analyte was detected; concentration is considered to be an estimate.

JQ Analyte was detected between the method detection limit and reporting limit; concentration is considered to be an estimate.

U Analyte was not detected at the given reporting limit.

Table 3.1Lora Lake Parcel Groundwater Analytical Data

		Locat	ion Group								On-Site Wells	6						
		Locat	tion Name				MW-	CP1							MW-CP2			
				MW-CP1-	MW-CP1-	MW-CP1-	MW-CP1-	MW-CP1-	MW-CP1-	MW-CP1-	MW-CP1-	MW-CP2-	MW-CP2-	MW-CP2-	MW-CP2-	MW-CP2-	MW-CP2-	MW-CP2-
			Sample ID	102720	031721	032322	032322-D	041323	041323-D	042424	042424-D	102720	102720-D	031721	031721-D	032322	041323	042424
		Sa	mple Date	10/27/2020	3/17/2021	3/23/2022	3/23/2022	4/13/2023	4/13/2023	4/24/2024	4/24/2024	10/27/2020	10/27/2020	3/17/2021	3/17/2021	3/23/2022	4/13/2023	4/24/2024
Analyte	CAS No.	Site CUL	Unit															
Field Parameters																		
Turbidity			ntu	0.6	0.58					0.44		1.34		1.36				0.99
Dissolved Metals by USEF	PA 200.8																	
Arsenic	7440-38-2	5	μg/L	0.46	0.46	0.55	0.51	0.49	0.49	0.48	0.42	0.21	0.24	0.21	0.21	0.33	0.39	0.36
Dioxins/Furans by USEPA	1613B																	
2,3,7,8-TCDD	1746-01-6		pg/L	1.05 U	0.580 U	1.38 U	1.19 U	1.05 U	0.730 U	1.49 U	1.53 U	0.960 U	0.800 U	0.630 U	0.450 U	1.44 U	0.780 U	1.01 U
1,2,3,7,8-PeCDD	40321-76-4		pg/L	0.870 U	0.720 U	1.60 U	1.43 U	1.11 U	1.02 U	2.28 U	2.25 U	0.950 U	0.620 U	0.760 U	0.500 U	1.93 U	1.44 U	1.45 U
1,2,3,4,7,8-HxCDD	39227-28-6		pg/L	1.37 U	0.780 U	1.74 U	1.44 U	0.980 U	0.700 U	4.24 U	2.92 U	1.06 U	0.780 U	0.700 U	0.660 U	1.69 U	0.820 U	1.96 U
1,2,3,6,7,8-HxCDD	57653-85-7		pg/L	1.20 U	0.710 U	1.65 U	1.23 U	0.900 U	0.670 U	4.12 U	2.93 U	0.900 U	0.650 U	0.650 U	0.670 U	1.65 U	0.760 U	1.87 U
1,2,3,7,8,9-HxCDD	19408-74-3		pg/L	1.43 U	0.770 U	1.83 U	1.36 U	1.03 U	0.750 U	4.53 U	3.18 U	1.09 U	0.790 U	0.690 U	0.710 U	1.80 U	0.870 U	2.14 U
1,2,3,4,6,7,8-HpCDD	35822-46-9		pg/L	9.24 U	0.990 U	1.79 J	3.19 U	2.83 U	1.91 U	4.33 U	3.00 U	1.68 U	1.26 U	0.820 U	0.620 U	1.64 U	11.2 U	2.26 U
OCDD	3268-87-9		pg/L	165 J	6.64 U	17.3 U	15.7 U	7.62 U	5.58 U	6.25 U	4.45 U	27.0 UJ	21.3 UJ	6.64 U	3.10 U	3.60 U	72.9 U	3.04 U
2,3,7,8-TCDF	51207-31-9		pg/L	1.16 U	0.640 U	1.11 U	0.780 U	1.13 U	0.960 U	1.72 U	1.49 U	1.15 U	0.800 U	0.620 U	0.530 U	0.940 U	1.03 U	1.77 U
1,2,3,7,8-PeCDF	57117-41-6		pg/L	1.64 U	0.700 U	1.08 U	1.60 U	1.33 U	1.02 U	2.02 U	1.66 U	1.39 U	1.11 U	0.820 U	0.940 U	1.14 U	1.24 U	1.12 U
2,3,4,7,8-PeCDF	57117-31-4		pg/L	1.51 U	0.630 U	1.01 U	0.750 U	1.20 U	0.930 U	2.03 U	1.70 U	1.26 U	0.990 U	0.750 U	0.690 U	1.04 U	1.16 U	1.19 U
1,2,3,4,7,8-HxCDF	70648-26-9		pg/L	0.850 U	0.640 U	1.30 U	1.85 U	1.13 U	0.660 U	1.92 U	1.44 U	0.610 U	0.440 U	0.660 U	0.620 U	1.36 U	0.620 U	1.02 U
1,2,3,6,7,8-HxCDF	57117-44-9		pg/L	0.880 U	0.660 U	1.35 U	1.83 J	0.880 U	0.650 U	1.88 U	1.39 U	0.570 U	0.430 U	0.670 U	0.630 U	1.39 U	0.620 U	1.00 U
1,2,3,7,8,9-HxCDF	72918-21-9		pg/L	1.25 U	0.740 U	1.60 U	1.15 U	0.950 U	0.750 U	2.66 U	1.95 U	0.900 U	0.630 U	0.770 U	0.710 U	1.66 U	0.710 U	1.57 U
2,3,4,6,7,8-HxCDF	60851-34-5		pg/L	0.900 U	0.620 U	1.33 U	0.990 U	0.890 U	0.690 U	2.00 U	1.59 U	0.600 U	0.460 U	0.640 U	0.610 U	1.39 U	0.640 U	1.10 U
1,2,3,4,6,7,8-HpCDF	67562-39-4		pg/L	2.35 U	0.620 U	1.18 U	0.900 U	1.14 U	0.830 U	2.24 U	1.71 U	0.560 U	0.550 U	0.550 U	0.940 U	1.15 U	5.84 J	1.07 U
1,2,3,4,7,8,9-HpCDF	55673-89-7		pg/L	1.23 U	0.790 U	1.72 U	1.20 U	1.63 U	1.21 U	4.06 U	2.82 U	0.840 U	0.790 U	0.720 U	0.690 U	1.59 U	1.37 U	1.98 U
OCDF	39001-02-0		pg/L	20.2 UJ	18.8 U	2.71 U	1.70 U	2.12 U	2.27 U	4.70 U	3.73 U	3.08 UJ	2.88 UJ	12.0 U	6.36 U	2.86 U	29.3	3.32 U
Dioxin/furan TEQ		6.7	pg/L	1.78 J	0.720 U	2.29 J	2.35 J	1.11 U	1.02 U	2.28 U	2.25 U	0.480 UJ	1.14 UJ	0.760 U	0.500 U	1.93 U	1.75 J	1.45 U

Notes:

-- Not available.

BOLD/RED Analyte detected at a concentration greater than the site cleanup level.

1 On October 28, 2020, MW-VB2 was dry and samples were unable to be collected.

Abbreviations:

CAS Chemical Abstracts Service	OCDD Octachlorodibenzodioxin
CUL Cleanup level	OCDF Octachlorodibenzofuran
HpCDD Heptachlorodibenzo-p -dioxin	PeCDD Pentachlorodibenzo-p -dioxin
HpCDF Heptachlorodibenzofuran	PeCDF Pentachlorodibenzofuran
HxCDD Hexachlorodibenzo-p-dioxin	pg/L Picograms per liter
HxCDF Hexachlorodibenzofuran	TCDD Tetrachlorodibenzo-p -dioxin
μg/L Micrograms per liter	TCDF Tetrachlorodibenzofuran
NS Not sampled	TEQ Toxic equivalent
ntu Nephelometric turbidity units	USEPA U.S. Environmental Protection Agency

Qualifiers:

J Analyte was detected; concentration is considered to be an estimate.

JQ Analyte was detected between the method detection limit and reporting limit; concentration is considered to be an estimate.

U Analyte was not detected at the given reporting limit.

Table 3.1Lora Lake Parcel Groundwater Analytical Data

			tion Group		Or	-Site Wells (cor	t.)		Vicinity Wells										
		Loca	tion Name								MW-CP4			MW-CP5					
				MW-CP3-	MW-CP3-	MW-CP3-	MW-CP3-	MW-CP3-	MW-CP4-	MW-CP4-	MW-CP4-	MW-CP4-	MW-CP4-	MW-CP5-	MW-CP5-	MW-CP5-	MW-CP5-	MW-CP5-	
			Sample ID		031721	032322	041323	042424	102720	031621	032322	041323	042424	102720	031621	032322	041323	042424	
	mple Date	10/27/2020	3/17/2021	3/23/2022	4/13/2023	4/24/2024	10/27/2020	3/16/2021	3/23/2022	4/13/2023	4/24/2024	10/27/2020	3/16/2021	3/23/2022	4/13/2023	4/24/2024			
Analyte	CAS No.	Site CUL	Unit															<u> </u>	
Field Parameters			-									-							
Turbidity			ntu	0.74	0.91			0.82	0.95	0.55			0.81	17.1	9.38			4.5	
Dissolved Metals by USEPA	200.8																		
Arsenic	7440-38-2	5	μg/L	0.41	0.33	0.97	0.11 J	2.9	0.098 JQ	0.14 JQ	0.093 JQ	1.6	0.13 J	3.2	2.1	3.7	1.2	9.8	
Dioxin/Furans by USEPA 1	51 3 B																		
2,3,7,8-TCDD	1746-01-6		pg/L	1.03 U	0.800 U	1.31 U	0.860 U	1.31 U	1.05 U	0.630 U	1.22 U	1.27 U	1.23 U	0.780 U	0.690 U	1.38 U	3.86 UJ	1.01 U	
1,2,3,7,8-PeCDD	40321-76-4		pg/L	0.840 U	0.730 U	1.53 U	1.36 U	2.03 U	0.940 U	0.950 U	1.31 U	1.27 U	1.82 U	0.670 U	0.930 U	1.66 U	3.30 UJ	1.81 U	
1,2,3,4,7,8-HxCDD	39227-28-6		pg/L	1.36 U	0.650 U	1.75 U	1.05 U	2.15 U	1.41 U	0.960 U	1.53 U	0.980 U	2.23 U	0.670 U	0.720 U	1.55 U	1.72 UJ	1.69 U	
1,2,3,6,7,8-HxCDD	57653-85-7		pg/L	1.18 U	0.620 U	1.67 U	1.01 U	2.16 U	1.21 U	0.930 U	1.54 U	0.920 U	2.14 U	0.630 UJ	0.720 U	1.44 U	1.61 UJ	1.61 U	
1,2,3,7,8,9-HxCDD	19408-74-3		pg/L	1.41 U	0.650 U	1.24 U	1.13 U	2.41 U	1.46 U	0.970 U	1.66 U	1.04 U	2.44 U	0.720 U	0.740 U	1.61 U	1.83 UJ	1.84 U	
1,2,3,4,6,7,8-HpCDD	35822-46-9		pg/L	2.03 U	0.700 U	1.78 U	1.49 U	2.23 U	2.57 U	1.74 U	1.47 U	1.38 U	2.14 U	2.18 J	2.12 U	1.74 U	3.33 UJ	2.04 U	
OCDD	3268-87-9		pg/L	33.0 UJ	9.26 U	3.54 U	6.58 U	3.36 U	54.1 UJ	5.92 U	5.33 U	5.61 U	3.38 U	23.8 UJ	10.6 U	4.65 U	17.0 UJ	3.06 U	
2,3,7,8-TCDF	51207-31-9		pg/L	1.39 U	0.710 U	0.950 U	1.32 U	1.90 U	1.23 U	0.550 U	0.890 U	1.49 U	1.97 U	0.780 U	0.680 U	0.950 U	5.23 UJ	1.96 U	
1,2,3,7,8-PeCDF	57117-41-6		pg/L	1.29 U	0.900 U	1.02 U	1.73 U	1.64 U	1.83 U	0.850 U	1.20 U	1.38 U	1.57 U	1.32 U	1.07 U	1.09 U	3.53 UJ	1.37 U	
2,3,4,7,8-PeCDF	57117-31-4		pg/L	1.17 U	0.860 U	0.960 U	1.19 U	1.71 U	1.65 U	0.770 U	1.12 U	1.25 U	1.64 U	1.18 U	0.780 U	1.07 U	3.18 UJ	1.41 U	
1,2,3,4,7,8-HxCDF	70648-26-9		pg/L	0.790 U	0.590 U	1.31 U	0.820 U	1.09 U	0.720 U	0.660 U	1.06 U	0.790 U	1.09 U	0.590 U	0.640 U	1.10 U	1.58 UJ	0.920 U	
1,2,3,6,7,8-HxCDF	57117-44-9		pg/L	0.740 U	0.590 U	1.30 U	0.790 U	1.05 U	0.650 U	0.630 U	1.07 U	0.820 U	1.02 U	0.570 U	0.670 U	1.07 U	1.46 UJ	0.890 U	
1,2,3,7,8,9-HxCDF	72918-21-9		pg/L	1.20 U	0.700 U	1.69 U	0.970 U	1.67 U	1.05 U	0.810 U	1.33 U	0.890 U	1.56 U	0.760 U	0.750 U	1.35 U	1.83 UJ	1.38 U	
2,3,4,6,7,8-HxCDF	60851-34-5		pg/L	0.820 U	0.590 U	1.33 U	0.860 U	1.21 U	0.770 U	0.660 U	1.06 U	0.800 U	1.14 U	0.560 U	0.630 U	1.04 U	1.56 UJ	0.990 U	
1,2,3,4,6,7,8-HpCDF	67562-39-4		pg/L	0.880 U	1.13 U	1.25 U	0.960 U	1.19 U	0.600 U	1.07 U	1.06 U	1.08 U	0.920 U	0.680 U	1.26 U	1.25 U	2.17 UJ	0.910 U	
1,2,3,4,7,8,9-HpCDF	55673-89-7		pg/L	1.14 U	0.690 U	1.71 U	1.43 U	2.02 U	0.960 U	1.49 U	1.58 U	1.60 U	1.70 U	0.760 U	0.710 U	1.68 U	3.01 UJ	1.68 U	
OCDF	39001-02-0		pg/L	2.84 UJ	24.3 U	2.66 U	3.09 U	3.43 U	5.93 J	18.2 U	2.10 U	2.23 U	2.95 U	4.01 UJ	24.8 U	2.40 U	3.35 UJ	2.25 U	
Dioxin/furan TEQ		6.7	pg/L	0.515 UJ	0.800 U	2.23 U	1.36 U	2.03 U	1.73 J	0.950 U	1.98 U	1.27 U	1.82 U	1.22 J	0.930 U	2.23 U	3.86 UJ	1.81 U	
•																			

Notes:

-- Not available.

BOLD/RED Analyte detected at a concentration greater than the site cleanup level.

1 On October 28, 2020, MW-VB2 was dry and samples were unable to be collected.

Abbreviations:

CAS Chemical Abstracts Service	OCDD Octachlorodibenzodioxin
CUL Cleanup level	OCDF Octachlorodibenzofuran
HpCDD Heptachlorodibenzo-p -dioxin	PeCDD Pentachlorodibenzo-p -dioxin
HpCDF Heptachlorodibenzofuran	PeCDF Pentachlorodibenzofuran
HxCDD Hexachlorodibenzo-p -dioxin	pg/L Picograms per liter
HxCDF Hexachlorodibenzofuran	TCDD Tetrachlorodibenzo-p -dioxin
µg/L Micrograms per liter	TCDF Tetrachlorodibenzofuran
NS Not sampled	TEQ Toxic equivalent
ntu Nephelometric turbidity units	USEPA U.S. Environmental Protection Agency

Qualifiers:

J Analyte was detected; concentration is considered to be an estimate.

JQ Analyte was detected between the method detection limit and reporting limit; concentration is considered to be an estimate.

U Analyte was not detected at the given reporting limit.

Table 3.1Lora Lake Parcel Groundwater Analytical Data

		Loc	ation Group						Vicinity Wells (cont.)									
	ation Name	e MW-CP6				MW-CP7				HCOO-B312								
	Sample ID			MW-CP6- 102720	MW-CP6- 031621	MW-CP6- 032322	MW-CP6- 041323	MW-CP6- 042424	MW-CP7- 102720	MW-CP7- 031621	MW-CP7- 032322	MW-CP7- 041323	MW-CP7- 042424	HCOO-B312- 102820	HCOO-B312- 031621	HCOO-B312- 032322	HCOO-B312- 041323	HCOO-B312- 042424
		S	ample Date	10/27/2020	3/16/2021	3/23/2022	4/13/2023	4/24/2024	10/27/2020	3/16/2021	3/23/2022	4/13/2023	4/24/2024	10/28/2020	3/16/2021	3/23/2022	4/13/2023	4/24/2024
Analyte	CAS No.	Site CUL	Unit															
Field Parameters																		
Turbidity			ntu	1.15	3.73			5.52	2.08	1.05			1.14	0.73	1.8			1.69
Dissolved Metals by USEPA	200.8						•	•								•		
Arsenic	7440-38-2	5	μg/L	1.1	1.1	0.85	0.68	0.92	0.42	0.43	0.37	0.38	0.32	0.17 JQ	0.17 JQ	0.17 JQ	0.15 J	0.18 J
Dioxin/Furans by USEPA 16	13B																	
2,3,7,8-TCDD	1746-01-6		pg/L	0.930 U	1.33 U	0.980 U	1.76 U	1.07 U	0.670 U	1.15 U	1.01 U	0.830 U	1.13 U	0.870 U	2.89 UJ	1.11 U	0.710 U	1.32 U
1,2,3,7,8-PeCDD	40321-76-4		pg/L	0.920 UJ	2.26 U	1.41 U	0.960 U	1.80 U	0.660 U	1.08 U	1.29 U	1.26 U	1.68 U	0.910 U	3.16 UJ	1.48 U	1.17 U	2.46 U
1,2,3,4,7,8-HxCDD	39227-28-6		pg/L	1.40 U	1.95 U	1.50 U	0.760 U	2.01 U	0.810 U	1.36 U	0.940 U	1.15 U	1.94 U	1.08 U	3.33 U	1.33 U	0.890 U	3.49 U
1,2,3,6,7,8-HxCDD	57653-85-7		pg/L	1.20 U	1.93 U	1.44 U	0.720 U	1.93 U	0.680 U	1.29 U	0.890 U	1.09 U	1.87 U	1.00 U	3.21 U	1.31 U	0.840 U	3.47 U
1,2,3,7,8,9-HxCDD	19408-74-3		pg/L	1.44 U	2.00 U	1.59 U	0.810 U	2.20 U	0.830 U	1.36 U	0.980 U	1.23 U	2.13 U	1.16 U	3.36 U	1.43 U	0.950 U	3.77 U
1,2,3,4,6,7,8-HpCDD	35822-46-9		pg/L	1.32 U	1.77 U	2.46 J	0.950 U	2.45 U	3.02 J	1.85 U	1.44 U	1.42 U	2.08 U	1.10 U	6.85 UJ	3.78 J	1.41 U	3.68 U
OCDD	3268-87-9		pg/L	28.6 UJ	2.46 U	34.6 U	6.55 U	3.74 U	36.1 UJ	10.5 U	3.28 U	9.81 U	3.35 U	10.2 UJ	16.4 UJ	23.3 U	5.86 U	5.45 U
2,3,7,8-TCDF	51207-31-9		pg/L	0.990 U	1.34 U	0.970 U	2.09 U	1.89 U	0.740 U	1.20 U	0.790 U	1.11 U	1.73 U	0.870 U	4.22 UJ	0.640 U	1.04 U	1.85 U
1,2,3,7,8-PeCDF	57117-41-6		pg/L	1.53 UJ	1.83 U	1.05 U	0.980 U	1.34 U	1.14 U	1.04 U	1.15 U	1.21 U	1.49 U	1.19 U	4.27 UJ	0.950 U	1.43 U	1.94 U
2,3,4,7,8-PeCDF	57117-31-4		pg/L	1.42 UJ	1.73 U	0.970 U	0.890 U	1.35 U	1.01 U	0.950 U	0.910 U	1.09 U	1.50 U	1.07 U	4.39 UJ	1.70 U	1.30 U	1.99 U
1,2,3,4,7,8-HxCDF	70648-26-9		pg/L	0.700 U	1.59 U	1.18 U	0.520 U	1.22 U	0.540 U	1.25 U	0.940 U	0.740 U	1.01 U	0.600 U	2.67 U	0.920 U	0.730 U	1.75 U
1,2,3,6,7,8-HxCDF	57117-44-9		pg/L	0.690 U	1.63 U	1.22 U	0.520 U	1.09 U	0.500 U	1.25 U	0.960 U	0.740 U	0.960 U	0.570 U	2.67 U	0.970 U	0.730 U	1.68 U
1,2,3,7,8,9-HxCDF	72918-21-9		pg/L	1.09 U	2.04 U	1.55 U	0.640 U	1.96 U	0.790 U	1.55 U	1.27 U	0.870 U	1.50 U	0.850 U	6.79 UJ	1.21 U	0.890 U	2.29 U
2,3,4,6,7,8-HxCDF	60851-34-5		pg/L	0.720 U	1.81 U	1.20 U	0.520 U	1.25 U	0.570 U	1.25 U	0.960 U	0.790 U	1.09 U	0.640 U	5.20 UJ	1.07 J	0.750 U	1.74 U
1,2,3,4,6,7,8-HpCDF	67562-39-4		pg/L	0.660 U	1.02 U	1.12 U	0.630 U	1.15 U	0.510 U	1.43 U	0.760 U	1.12 U	1.13 U	0.590 U	4.44 J	1.28 U	0.970 U	1.65 U
1,2,3,4,7,8,9-HpCDF	55673-89-7		pg/L	1.06 U	1.44 U	1.63 U	0.900 U	2.24 U	0.730 U	1.96 U	1.11 U	1.65 U	2.00 U	0.820 U	6.37 UJ	1.89 U	1.51 U	3.08 U
OCDF	39001-02-0		pg/L	3.20 UJ	15.3 U	2.08 U	1.63 U	2.94 U	5.16 UJ	25.4 U	2.03 U	3.32 U	3.13 U	2.09 UJ	117 UJ	2.82 U	2.49 U	5.07 U
Dioxin/furan TEQ		6.7	pg/L	0.465 UJ	2.26 U	1.94 J	1.76 U	1.80 U	1.15 J	1.15 U	1.73 U	1.26 U	1.68 U	0.455 UJ	5.45 J	2.43 J	1.17 U	2.46 U

Notes:

-- Not available.

BOLD/RED Analyte detected at a concentration greater than the site cleanup level.

1 On October 28, 2020, MW-VB2 was dry and samples were unable to be collected.

Abbreviations:

CAS Chemical Abstracts Service	OCDD Octachlorodibenzodioxin
CUL Cleanup level	OCDF Octachlorodibenzofuran
HpCDD Heptachlorodibenzo-p -dioxin	PeCDD Pentachlorodibenzo-p -dioxin
HpCDF Heptachlorodibenzofuran	PeCDF Pentachlorodibenzofuran
HxCDD Hexachlorodibenzo-p -dioxin	pg/L Picograms per liter
HxCDF Hexachlorodibenzofuran	TCDD Tetrachlorodibenzo-p -dioxin
μg/L Micrograms per liter	TCDF Tetrachlorodibenzofuran
NS Not sampled	TEQ Toxic equivalent
ntu Nephelometric turbidity units	USEPA U.S. Environmental Protection Agency

Qualifiers:

J Analyte was detected; concentration is considered to be an estimate.

JQ. Analyte was detected between the method detection limit and reporting limit; concentration is considered to be an estimate.

U Analyte was not detected at the given reporting limit.

Table 3.1Lora Lake Parcel Groundwater Analytical Data

Location Group										Vicinity Wells	(cont.)						
		Loca	tion Name	MW-C1/VB1									MW-VB2				
		MW-C1/VB1-	MW-C101-	MW-C1/VB1-	MW-C1/VB1-	MW-C1/VB1-	MW-VB1-	MW-VB1-	MW-C1-VB1-	MW-C1-VB1-		MW-VB2-	MW-VB2-	MW-VB2-	MW-VB2-		
			Sample ID	102820	102820	031721	032422	032422-D	041423	041423-D	042424	042424-D		031721	032422	041423	042424
		Sa	mple Date	10/28/2020	10/28/2020	3/17/2021	3/24/2022	3/24/2022	4/14/2023	4/14/2023	4/24/2024	4/24/2024	10/28/2020 ⁽¹⁾	3/17/2021	3/24/2022	4/14/2023	4/24/2024
Analyte	CAS No.	Site CUL	Unit														
Field Parameters																	
Turbidity			ntu	0.36		1.01						0.81		6.88			2.57
Dissolved Metals by USEPA	200.8																
Arsenic	7440-38-2	5	μg/L	0.16 JQ	0.16 JQ	0.11 JQ	0.077 JQ	0.090 JQ	0.11 J	0.10 J	0.11 J	0.11 J	NS	0.47	0.35	0.37	0.40
Dioxin/Furans by USEPA 161	L3B																
2,3,7,8-TCDD	1746-01-6		pg/L	0.750 U	0.860 U	0.460 U	1.12 U	1.11 U	0.670 U	0.710 U	0.870 U	1.05 U	NS	0.750 U	1.09 U	0.670 U	1.16 U
1,2,3,7,8-PeCDD	40321-76-4		pg/L	0.900 U	0.820 UJ	0.560 U	1.55 U	1.49 U	1.31 U	1.10 U	1.67 U	2.05 U	NS	1.00 U	1.41 U	1.13 U	2.52 U
1,2,3,4,7,8-HxCDD	39227-28-6		pg/L	1.03 U	0.990 U	1.08 U	1.91 U	1.47 U	0.950 U	0.690 U	2.14 U	2.60 U	NS	0.900 U	1.24 U	0.980 U	2.87 U
1,2,3,6,7,8-HxCDD	57653-85-7		pg/L	0.920 U	0.840 U	1.03 U	1.79 U	1.42 U	0.900 U	0.670 U	2.13 U	2.56 U	NS	0.860 U	1.19 U	0.940 U	2.84 U
1,2,3,7,8,9-HxCDD	19408-74-3		pg/L	1.08 U	1.02 U	1.08 U	1.99 U	1.56 U	1.02 U	0.750 U	2.32 U	2.80 U	NS	0.910 U	1.31 U	1.05 U	3.10 U
1,2,3,4,6,7,8-HpCDD	35822-46-9		pg/L	1.76 U	1.42 U	2.16 U	1.53 U	2.91 U	1.42 U	3.61 J	2.37 U	2.66 U	NS	1.32 U	2.02 U	1.93 U	3.45 U
OCDD	3268-87-9		pg/L	49.1 UJ	66.5 UJ	10.8 U	3.18 U	5.59 U	2.02 U	9.88 U	5.10 U	4.44 U	NS	7.27 U	8.71 U	8.10 U	4.81 U
2,3,7,8-TCDF	51207-31-9		pg/L	1.11 U	0.810 U	0.470 U	0.730 U	0.880 U	1.12 U	1.08 U	1.27 U	1.44 U	NS	0.680 U	0.770 U	0.970 U	1.60 U
1,2,3,7,8-PeCDF	57117-41-6		pg/L	1.41 U	1.29 U	0.660 U	1.09 U	0.910 U	1.34 U	1.13 U	1.52 U	1.85 U	NS	0.800 U	0.830 J	1.14 U	1.96 U
2,3,4,7,8-PeCDF	57117-31-4		pg/L	1.36 U	1.18 UJ	0.490 U	1.03 U	0.880 U	1.22 U	1.04 U	1.53 U	1.94 U	NS	0.730 U	0.900 U	1.01 U	1.96 U
1,2,3,4,7,8-HxCDF	70648-26-9		pg/L	0.710 U	0.650 U	0.620 U	1.15 U	1.19 U	0.830 U	0.690 U	1.00 U	1.27 U	NS	0.940 U	1.17 U	0.640 U	1.70 U
1,2,3,6,7,8-HxCDF	57117-44-9		pg/L	0.730 U	0.590 U	0.590 U	1.17 U	1.18 U	0.870 U	0.690 U	1.03 U	1.25 U	NS	0.890 U	1.15 U	0.690 U	1.67 U
1,2,3,7,8,9-HxCDF	72918-21-9		pg/L	1.11 U	0.940 U	0.710 U	1.55 U	1.58 U	0.940 U	0.780 U	1.41 U	1.70 U	NS	1.13 U	1.48 U	0.730 U	2.17 U
2,3,4,6,7,8-HxCDF	60851-34-5		pg/L	0.750 U	0.690 U	0.600 U	1.17 U	1.22 U	0.910 U	0.740 U	1.05 U	1.45 U	NS	1.30 J	1.14 U	0.690 U	1.75 U
1,2,3,4,6,7,8-HpCDF	67562-39-4		pg/L	0.660 U	0.770 U	0.550 U	1.01 U	1.18 U	1.11 U	0.930 U	1.27 U	1.31 U	NS	0.820 U	0.840 U	0.940 U	2.37 U
1,2,3,4,7,8,9-HpCDF	55673-89-7		pg/L	0.940 U	1.25 U	0.700 U	1.52 U	1.64 U	1.55 U	1.36 U	2.26 U	2.32 U	NS	1.16 U	1.23 U	1.37 U	4.20 U
OCDF	39001-02-0		pg/L	5.84 UJ	10.2 J	28.9 U	1.96 U	2.36 U	2.20 U	2.37 U	2.82 U	3.86 U	NS	9.61 U	2.61 U	2.52 U	4.68 U
Dioxin/furan TEQ		6.7	pg/L	0.450 UJ	1.39 J	0.560 U	2.10 U	2.15 U	1.31 U	1.43 J	1.67 U	2.05 U	NS	1.46 J	1.91 J	1.13 U	2.52 U

Notes:

-- Not available.

BOLD/RED Analyte detected at a concentration greater than the site cleanup level.

1 On October 28, 2020, MW-VB2 was dry and samples were unable to be collected.

Abbreviations:

c		
CAS	Chemical Abstracts Service	OCDD Octachlorodibenzodioxin
CUL	Cleanup level	OCDF Octachlorodibenzofuran
HpCDD	Heptachlorodibenzo-p -dioxin	PeCDD Pentachlorodibenzo-p -dioxin
HpCDF	Heptachlorodibenzofuran	PeCDF Pentachlorodibenzofuran
HxCDD	Hexachlorodibenzo-p -dioxin	pg/L Picograms per liter
HxCDF	Hexachlorodibenzofuran	TCDD Tetrachlorodibenzo-p -dioxin
μg/L	Micrograms per liter	TCDF Tetrachlorodibenzofuran
NS	Not sampled	TEQ Toxic equivalent
ntu	Nephelometric turbidity units	USEPA U.S. Environmental Protection Agency

Qualifiers:

J Analyte was detected; concentration is considered to be an estimate.

JQ Analyte was detected between the method detection limit and reporting limit; concentration is considered to be an estimate.

U Analyte was not detected at the given reporting limit.

Table 3.1Lora Lake Parcel Groundwater Analytical Data

		Loca		Vic	inity Wells (co	nt.)			
		Loca	MW-VB3						
			MW-VB3-	MW-VB3-	MW-VB3-	MW-VB3-	MW-VB3-		
			102720	031621	032322	041323	042424		
		Sa	10/27/2020	3/16/2021	3/23/2022	4/13/2023	4/24/2024		
Analyte	CAS No.	Site CUL	Unit						
Field Parameters									
Turbidity			ntu	4.79	2.33			1.36	
Dissolved Metals by USEPA	200.8								
Arsenic	7440-38-2	5	μg/L	0.45	0.39	0.38	0.38	0.30	
Dioxin/Furans by USEPA 16	513B								
2,3,7,8-TCDD	1746-01-6		pg/L	1.10 U	0.550 U	1.09 U	0.810 U	1.51 U	
1,2,3,7,8-PeCDD	40321-76-4		pg/L	0.910 U	0.510 U	1.72 U	1.11 U	3.30 U	
1,2,3,4,7,8-HxCDD	39227-28-6		pg/L	1.07 U	0.590 U	1.56 U	1.02 U	4.13 U	
1,2,3,6,7,8-HxCDD	57653-85-7		pg/L	0.960 U	0.580 U	1.43 U	0.950 U	4.21 U	
1,2,3,7,8,9-HxCDD	19408-74-3		pg/L	1.13 U	0.600 U	1.61 U	1.08 U	4.53 U	
1,2,3,4,6,7,8-HpCDD	35822-46-9		pg/L	1.74 U	1.25 U	3.18 U	1.67 U	4.61 U	
OCDD	3268-87-9		pg/L	35.3 UJ	9.72 U	23.9 U	8.28 U	6.29 U	
2,3,7,8-TCDF	51207-31-9		pg/L	1.29 U	0.660 U	0.980 U	1.15 U	1.87 U	
1,2,3,7,8-PeCDF	57117-41-6		pg/L	1.63 U	0.680 U	1.04 U	1.20 U	2.14 U	
2,3,4,7,8-PeCDF	57117-31-4		pg/L	1.47 U	0.620 U	1.03 U	1.08 U	2.12 U	
1,2,3,4,7,8-HxCDF	70648-26-9		pg/L	0.780 U	0.460 U	1.28 U	0.840 U	1.95 U	
1,2,3,6,7,8-HxCDF	57117-44-9		pg/L	0.690 U	0.450 U	1.29 U	0.810 U	1.90 U	
1,2,3,7,8,9-HxCDF	72918-21-9		pg/L	1.15 U	0.570 U	1.65 U	0.990 U	2.64 U	
2,3,4,6,7,8-HxCDF	60851-34-5		pg/L	0.820 U	0.450 U	1.38 U	0.900 U	2.17 U	
1,2,3,4,6,7,8-HpCDF	67562-39-4		pg/L	1.35 U	1.24 U	2.17 U	0.930 U	2.09 U	
1,2,3,4,7,8,9-HpCDF	55673-89-7		pg/L	1.30 U	0.680 U	2.03 U	1.25 U	4.23 U	
OCDF	39001-02-0		pg/L	5.29 J	23.3 U	2.50 U	2.98 U	5.17 U	
Dioxin/furan TEQ		6.7	pg/L	1.67 J	0.550 U	2.21 U	1.11 U	3.30 U	

Notes:

-- Not available.

BOLD/RED Analyte detected at a concentration greater than the site cleanup level.

1 On October 28, 2020, MW-VB2 was dry and samples were unable to be collected.

Abbreviations:

CAS	Chemical Abstracts Service
CUL	Cleanup level
HpCDD	Heptachlorodibenzo- <i>p</i> -dioxin
HpCDF	Heptachlorodibenzofuran
HxCDD	Hexachlorodibenzo- <i>p</i> -dioxin

ntu Nephelometric turbidity units

HxCDF Hexachlorodibenzofuran

µg/L Micrograms per liter

NS Not sampled

OCDF Octachlorodibenzofuran PeCDD Pentachlorodibenzo-*p*-dioxin PeCDF Pentachlorodibenzofuran

pg/L Picograms per liter

TCDD Tetrachlorodibenzo-p - dioxin

TCDF Tetrachlorodibenzofuran

OCDD Octachlorodibenzodioxin

- TEQ Toxic equivalent
- USEPA U.S. Environmental Protection Agency

Qualifiers:

J Analyte was detected; concentration is considered to be an estimate.

JQ Analyte was detected between the method detection limit and reporting limit; concentration is considered to be an estimate.

U Analyte was not detected at the given reporting limit.

UJ Analyte was not detected; concentration given is the reporting limit, which is considered to be an estimate.

2024 Annual Compliance Monitoring Report Table 3.1

Table 5.1 Summary Statistics

	Site Vicinity Wells ⁽¹⁾	Compliance Monitoring Wells ⁽²⁾	Compliance Monitoring Wells Excluding MW-CP5
Arsenic	Site vicinity wens		
Sample Count ⁽³⁾	19	35	30
Data Distribution	Normal (p=0.01)	Lognormal (p=0.10)	Lognormal (p=0.10)
Minimum (Detects Only)	0.09	0.093	0.093
Median (Detects Only)	0.18	0.46	0.42
Maximum (Detects Only)	0.47	9.8	2.9
Coefficient of Variation	0.51	1.6	0.98
Site Vicinity Background Concentration ⁽⁴⁾	0.43		
ProUCL Recommended 95% UCL Method		H Statistic	H Statistic
95% UCL		1.6	0.82
Percent of Results Exceeding Site Vicinity Background		54%	46%
Dioxin/Furan TEQ	•	•	
Sample Count ⁽³⁾	19	35	
Data Distribution	Gamma (p<0.05)	Normal (p<0.01)	
Minimum (Detects Only)	1.39	1.15	
Median (Detects Only)	1.91	1.78	
Maximum (Detects Only)	5.45	2.35	
Coefficient of Variation	0.826	0.671	
Site Vicinity Background Concentration ⁽⁴⁾	3.11		
ProUCL Recommended 95% UCL Method		Kaplan–Meier (t)	
95% UCL		1.25	
Percent of Results Exceeding Site Vicinity Background		3%	

Notes:

-- Not applicable

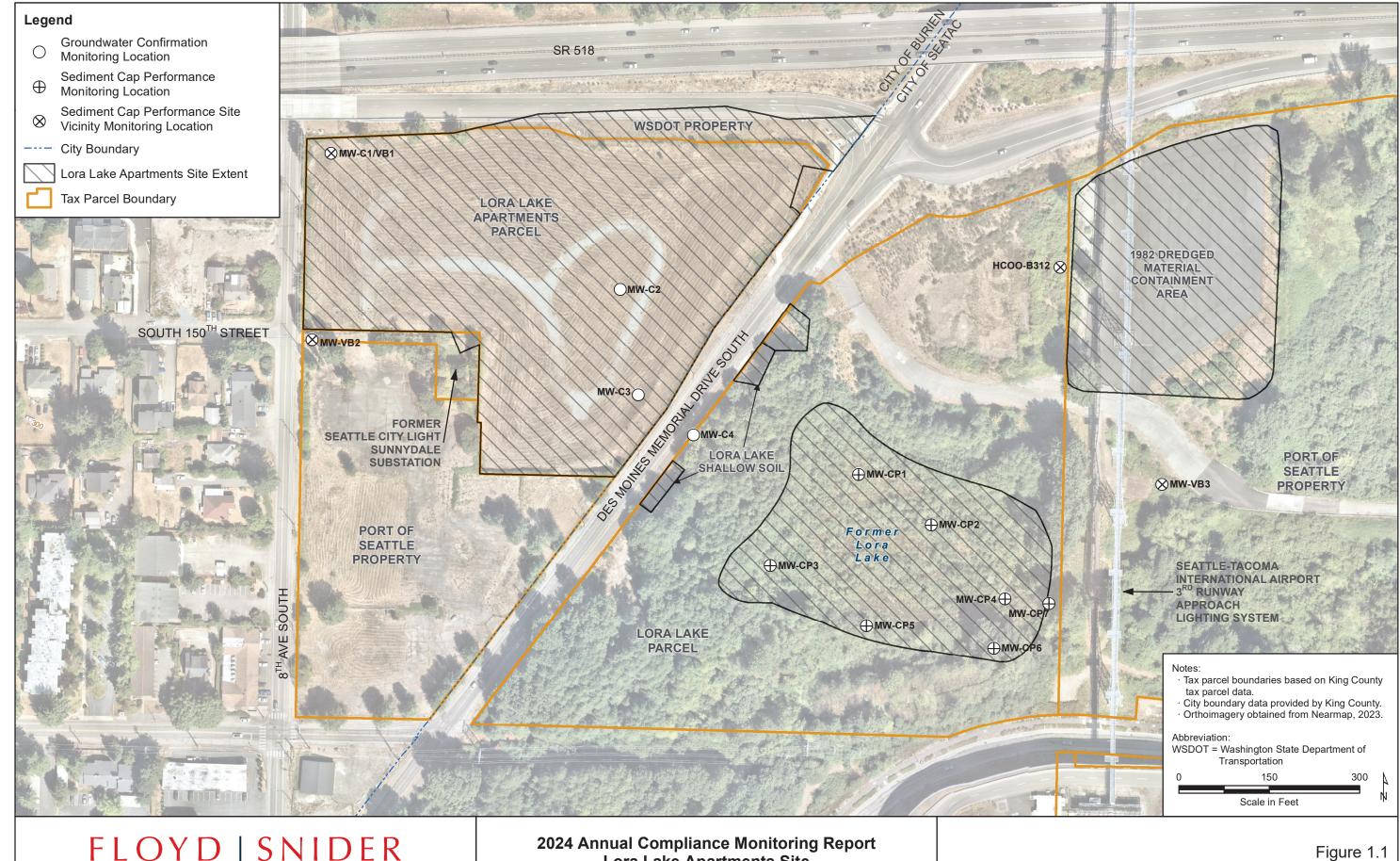
1 Includes wells MW-C1/VB1, MW-VB2, MW-VB3, and HCOO-B312. MW-VB2 was not sampled in the October 2020 monitoring event because the monitoring well was dry.

2 Includes wells MW-CP1, MW-CP2, MW-CP3, MW-CP4, MW-CP5, MW-CP6, and MW-CP7.

3 Field sample duplicate pairs were reduced to the maximum detected result between the two results. If both results were non-detect, the result with the lower method detection limit was used in this analysis.

4 Determined as the 90th percentile of site vicinity wells.

Abbreviations:


TEQ Toxic equivalent

UCL Upper confidence limit

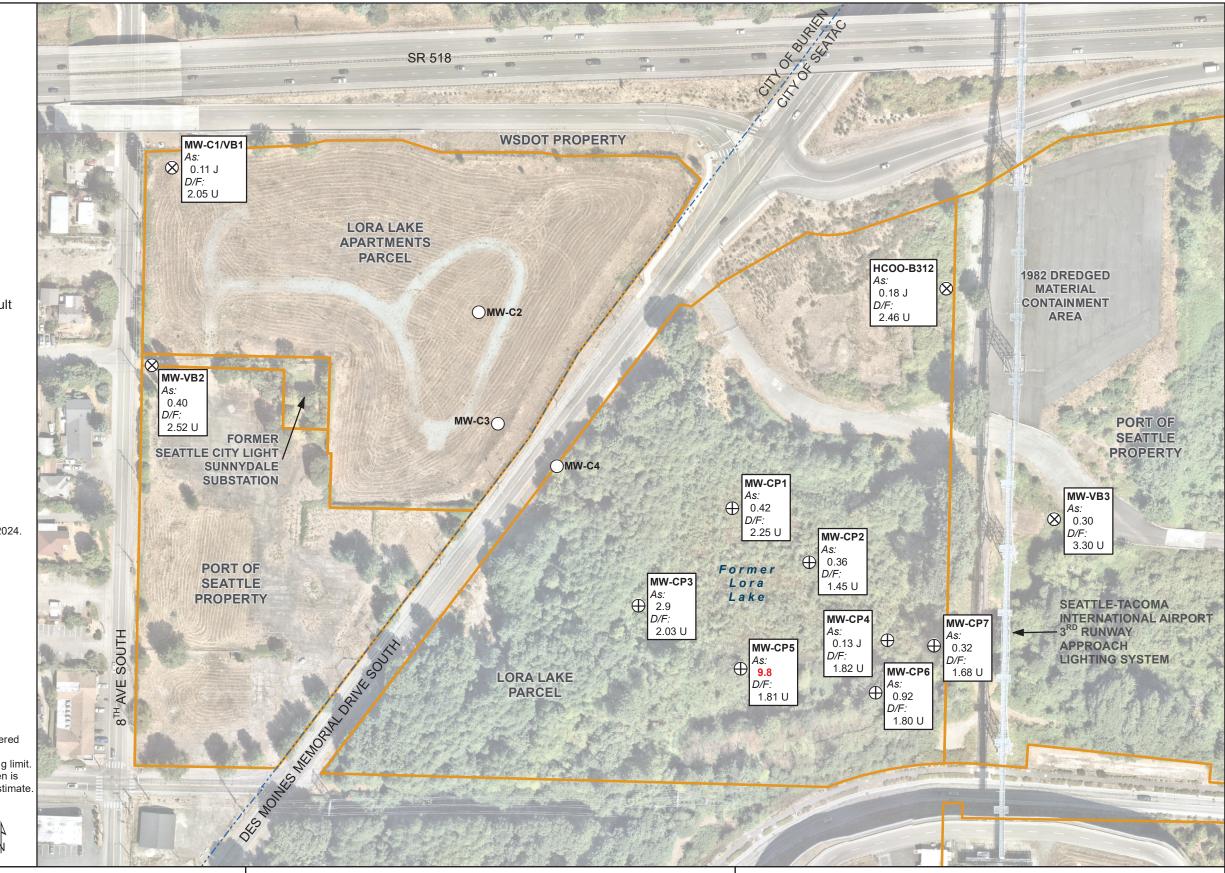
Lora Lake Apartments Site

2024 Annual Compliance Monitoring Report

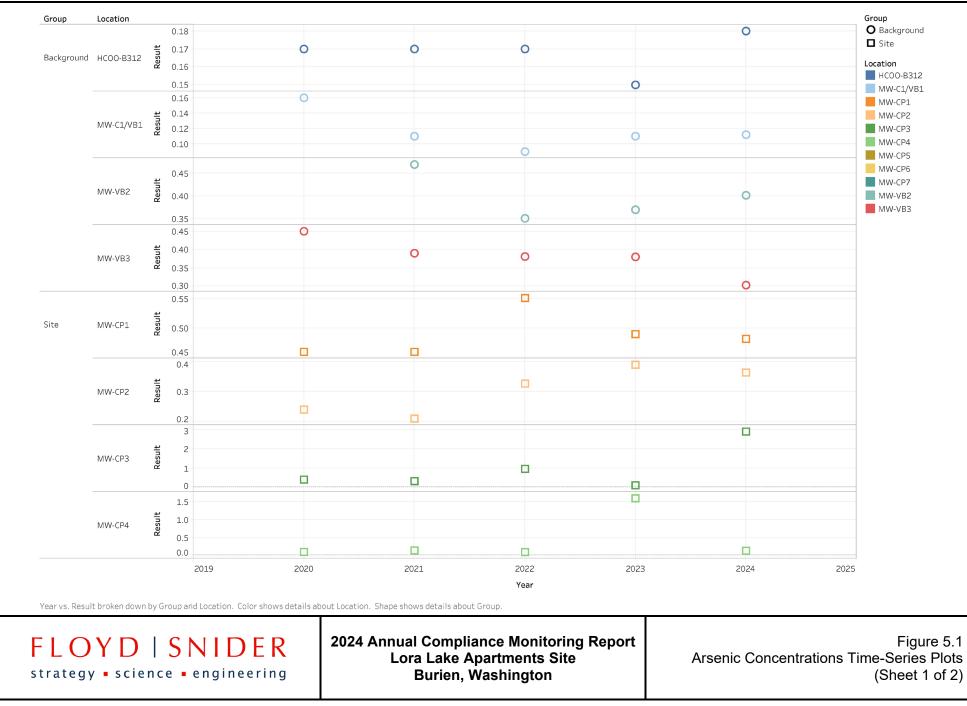
Figures

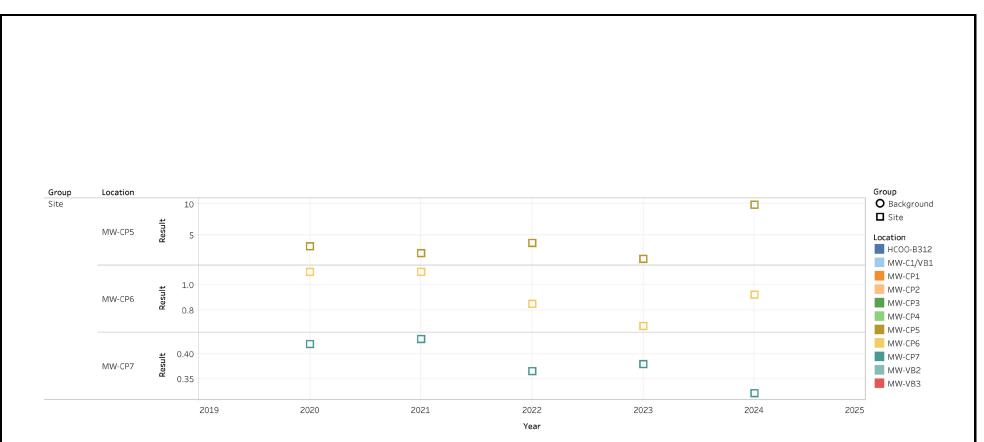
FLOYD | SNIDER strategy • science • engineering

Lora Lake Apartments Site **Burien**, Washington


Site Map

I:\GIS\Projects\POS_LLA\MXD\Task8140\Annual Compliance Monitoring Report\2024\Figure 1.1 Site Map.mxd


L:\GIS\Projects\POS_LLA\MXD\Task8140\Annual Compliance Monitoring Report\2024\Figure 2.1 Lora Lake Apartments Parcel 2023 Groundwater Analytical Results.mxd 11/20/2024


Legend Groundwater Confirmation Ο Monitoring Location Sediment Cap Performance \oplus Monitoring Location Sediment Cap Performance Site \otimes Vicinity Monitoring Location City Boundary _ _ _ _ Tax Parcel Boundary Label Key Location MW-C1/VB1 Name As: Arsenic Result 0.11 J -(µg/L) D/F: Dioxin/Furan 1.31 U Result (pg/L) Notes: · Cleanup levels for arsenic and dioxins/furans are 5 µg/L and 6.7 pg/L, respectively. · All results are from samples collected on 4/24/2024. · Analytical results for duplicate samples are not presented. Tax parcel boundaries based on King County tax parcel data. · City boundary data provided by King County. · Orthoimagery obtained from Nearmap, 2023. Abbreviation: AVE SOUTH As = Arsenic D/F = Dioxins/Furans µg/L = Micrograms per liter pg/L = Picograms per liter WSDOT = Washington State Department of Transportation 8TH Qualifiers: J = Analyte was detected; concentration is considered 1 to be an estimate. U = Analyte was not detected at the given reporting limit. UJ = Analyte was not detected; concentration given is the reporting limit, which is considered to be an estimate 300 150 Scale in Feet

FLOYD | SNIDER strategy • science • engineering

2024 Annual Compliance Monitoring Report Lora Lake Apartments Site Burien, Washington Figure 3.1 Lora Lake Parcel 2024 Groundwater Analytical Results

Year vs. Result broken down by Group and Location. Color shows details about Location. Shape shows details about Group.

FLOYDISNIDER
strategy-science-engineering2024 Annual Compliance Monitoring Report
Lora Lake Apartments Site
Burien, WashingtonFigure 5.1
Arsenic Concentrations Time-Series Plots
(Sheet 2 of 2)

Lora Lake Apartments Site

2024 Annual Compliance Monitoring Report

Appendix A Groundwater Sample Collection Forms

lask.					Field Dorson	anol:	T L 4	ha mA	
					Field Persor		1 +1	M 17	
Purge Da									
Well ID:	Sec	cure: 🗹 Yes [No Ec	ology Tag #:	Casing	Type/Diamet	er/Screened	Interval	
Replaceme	nt Required: 🔲 Mo	onument 🔲 Li	id 🔲 Lock	Bolts: Missing] (#) Stripped (#)	01	her Damage:		
	nder decontaminate				-	ume (gal):			
Depth of wa	ater (from TOC):	4.78	Time:	1237	-				
Total Depth	(from log or field m	easurement):			Diameter	O.D.	I.D.	Volume	pe Weight of V
	utes of purging (fron				- 1 1/4"	1.660"	1.380"	(Gal/Linear Ft.) 0.08	(Lbs/Linea 0.64
Begin purge	e (time):	10 End put	rge (time):		- 2" 3"	2.375" 3.500"	2.067" 3.068"	0.17 0.38	1.45
Volume pure	ged:	Purge water di	sposal method		4" 6"	4.500" 6.625"	4.026" 6.065"	0.66 1.5	5.51 12.5
Time	Depth to Water (ft)	Vol. Purged	рН (s u.)	DO (mg/L)	Specific Conductivity (µs/cm)	Turbidity (NTU)	Temp (°C)		Comm
1250	15.03		11.51	0.60	(µ5/cm)	1.86	11.8	-249.7	
1255	15.05	2	11.51	0.42	654	1.92	11.8	- 270.	
300	15.05	_3	11.50	0.36	668	1.78	11-8	-278.6	
					1 <u></u>			<u> </u>	
									-
	·				3. 2.		ē <u> </u>		
Sample No: Date Collect	Mild e Ce ted (mo/dy/yr):	12012	M Tin			W		Filter Type:	
Sample No: Date Collect Type: D Gr Sample Coll Water Qualit Sample Dec	Mai < Ca ted (mo/dy/yr): round Water □ Su lected with: □ Baile ty Instrument Data (con Procedure: Sa	Inface Water Configuration Collected with:	Time: Type: YSI F Sthet: Type: YSI F State: Type: YSI F	ProDSS Turb		W Filtered dider Subr] Unfiltered mersible Ot ted silicon an	Filter Type:	
Sample No: Date Collect Type: 2 Gr Sample Coll Water Qualit Sample Dec Sample Des	Mai < Ca ted (mo/dy/yr): round Water □ Su lected with: □ Baile ty Instrument Data (con Procedure: Sa	Inface Water Configuration Collected with:	Timer:	ProDSS Turb	Sample: [Sample: [Black idity Meter Cher: _ bing; Chisposable tubi	W Filtered dider Subr] Unfiltered mersible Ot ted silicon an	Filter Type:	
Sample No: Date Collect Type: D Gr Sample Coll Water Qualit Sample Dec Sample Des	Missi < California	Inface Water Configuration of the second sec	Timer:	ProDSS Turb	Sample: [Sample:] Black idity Meter _ Other: _ ping; _ disposable tubin	W Filtered dider Subr] Unfiltered nersible Ot ted silicon an	Filter Type:	
Sample No: Date Collect Type: D Gr Sample Coll Water Qualit Sample Dec Sample Des	Missi < California	Inface Water Configuration of the second sec	Timer:	ProDSS Turb	Sample: [Sample:] Black idity Meter _ Other: _ ping; _ disposable tubin	W Filtered d Ider Subr] Unfiltered nersible Ot ted silicon an	Filter Type:	
Sample No: Date Collect Type: D Gr Sample Coll Water Qualit Sample Dec Sample Des	Missi < California	Inface Water Configuration of the second sec	Timer:	ProDSS Turb	Sample: [Sample:] Black idity Meter _ Other: _ ping; _ disposable tubin	W Filtered d Ider Subr] Unfiltered nersible Ot ted silicon an	Filter Type:	
Sample No: Date Collect Type: D Gr Sample Coll Water Qualit Sample Dec Sample Des	Missi < California	Inface Water Configuration of the second sec	Timer:	ProDSS Turb	Sample: [Sample:] Black idity Meter _ Other: _ ping; _ disposable tubin	W Filtered d Ider Subr] Unfiltered nersible Ot ted silicon an	Filter Type:	
Sample No: Date Collect Type: D Gr Sample Coll Water Qualit Sample Dec Sample Des	Missi < California	Inface Water Configuration of the second sec	Timer:	ProDSS Turb	Sample: [Sample:] Black idity Meter _ Other: _ ping; _ disposable tubin	W Filtered d Ider Subr] Unfiltered nersible Ot ted silicon an	Filter Type:	
Sample No: Date Collect Type: D Gr Sample Coll Water Qualit Sample Dec Sample Des	Missi < California	Inface Water Configuration of the second sec	Timer:	ProDSS Turb	Sample: [Sample:] Black idity Meter _ Other: _ ping; _ disposable tubin	W Filtered d Ider Subr] Unfiltered nersible Ot ted silicon an	Filter Type:	
Sample No: Date Collect Type: D Gr Sample Coll Water Qualit Sample Dec Sample Des	Missi < California	Inface Water Configuration of the second sec	Timer:	ProDSS Turb	Sample: [Sample:] Black idity Meter _ Other: _ ping; _ disposable tubin	W Filtered d Ider Subr] Unfiltered nersible Ot ted silicon an	Filter Type:	
Sample No: Date Collect Type: D Gr Sample Coll Water Qualit Sample Dec Sample Des	Missi < California	Inface Water Configuration of the second sec	Timer:	ProDSS Turb	Sample: [Sample:] Black idity Meter _ Other: _ ping; _ disposable tubin	W Filtered d Ider Subr] Unfiltered nersible Ot ted silicon an	Filter Type:	
Sample No: Date Collect Type: D Gr Sample Coll Water Qualit Sample Dec Sample Des Sample Analyte		Inface Water Configuration of the second sec	Timer:	ProDSS Turb	Sample: [Sample:] Black idity Meter _ Other: _ ping; _ disposable tubin	W Filtered d Ider Subr] Unfiltered nersible Ot ted silicon an	Filter Type:	
Sample No: Date Collect Type: D Gr Sample Coll Water Qualit Sample Dec Sample Des Cample A Analyte		Analysis	Timer:	ProDSS Turb	Sample: [Sample:] Sample:] idity Meter] Other: ping;] disposable tubic container Container	W Filtered dider Subr Subr Adedication Quantity Press	Unfiltered Mersible Ot et dilicon an eservative	Filter Type:	
Date Collect Type: 2 Gr Sample Coll Water Qualit Sample Dec Sample Des Sample Des Sample A Analyte		Analysis	Time Ther:	Type ProDSS Turb Intaminated <u>all</u> tub Sample	Sos	W Filtered dider Subr Subr Adedication Quantity Press] Unfiltered nersible Ot ted silicon an	Filter Type:	

Å.,

GROUNDWAT		CE WAT	ER SAMP	LE CC	LLECT	ON FOR	M		
Project: PUS-				Date	of Collec	tion: <u>3</u>	20 202	4	
Task: <u>Pu M</u>	intants			Fie	eld Persor	nnel: <u>M</u>	m		
Purge Data									
Well ID: <u>MW -03</u>	Secure: 🙀 Yes	No Ec	ology Tag #:		Casing	Type/Diamete	er/Screened	Interval _2" [M	Ú
Replacement Required									
Depth Sounder deconta					ie Casing Volu	ıme (gal):			
Depth of water (from T						Volum	e of Sch	edule 40 PVC P	ine
Total Depth (from log o				-	Diameter	O.D.	I.D.	Volume (Gal/Linear Ft.)	Weight of Water (Lbs/Lineal Ft.)
After 5 minutes of purgi Begin purge (time): <u>1</u>				÷ i	1 ¼" 2"	1.660" 2.375"	1.380" 2.067"	0.08 0.17	0.64 1.45
_					- 3" 4"	3.500" 4.500"	3.068" 4.026"	0.38 0.66	3.2 5.51
Volume purged: <u>~7</u>					6"	6.625"	6.065"	1.5	12,5
Time Depth Water	(ft) Purged	рН (s.u.)	DO (mg/L)	Condi	ecific uctivity /cm)	Turbidity (NTU)	Temp (°C)	ORP (mV)	Comments
1240 14.7		5.81	8.73	177		2.84	11.3	<u>136.0</u>	
12.45 14.73	2 2	6.23	8.42	87.		2.35	<u>11.3</u>		
12 55 14.73		6.26	8.13	80.		<u>2.07</u> 1.77	<u> </u>		c
13:00 16.7	$\frac{1}{4}$	6.28	8.75	83.		1.68	<u> .3</u> _ .3		a
13:05 14.7		6.29	8.78	84.		1.66	11.3	<u> </u>	
					<u> </u>	1.60	_(+==	<u></u>	
				-					
Sampling Data									
Sample No: <u>MW</u> - (3-032024	ē.		Loca	tion and Dept	h:			
Date Collected (mo/dy/y	1): 03/20/24	Tin	ne Collected:	3:08		W	eather: <u>Clu</u>	ondy, low 50	35
Type: 🕅 Ground Water									
Sample Collected with:									
Water Quality Instrumer	t Data Collected with:	Type: 😿 YSI P	roDSS 🕱 Turb	idity Mete	r 🛛 Other: _				
Sample Decon Procedu	re: Sample collected	i with: 🔲 decor	ntaminated <u>all</u> tut	oing; 🗖 di	sposable tubir	ng X dedicat	ed silicon an	d poly tubing; 🔲 dea	dicated tubing replaced
Sample Description (Co	lor, Turbidity, Odor, Ot	her):	ar, no o	dev		/			
Sample Analyses	3								
Analyte	Analysis	Method	Sample	Contain	er C	uantity Pre	servative	Notes	
QC samples	()								
Duplicate Sample No	7 0 -		Duplicate 1	Time:		MS/MSD:	🗆 Yes 🗖	No	
Signature:	la for	m						3/20/2024	
https://floydsnider.sharepoin Documents/Field Resources		or	There are a		121.25				Page 1 of 1
Surface Water/Groundwater									-

	Loral	ake			Date	of Collec	tion:	4/2	4 24	
ˈask:						ld Persor			steens	
urge Dat	ta									
vell ID: M	W-CI-VBI Se	cure: 🕅 Yes 🛛]No Eco	logy Tag #: <u>B</u> K	n 343	5 Casing	Type/Diamete	er/Screened	Interval D ¹⁴ PV (2
Replacemer	nt Required: 🔲 M	onument 🔲 Li	d 🔲 Lock 🖸	Bolts: Missing	g (#)	Stripped (#)	01	her Damage	:	
	der decontaminate									
epth of wa	ter (from TOC):	685	Time:) 33	-					
otal Depth	(from log or field n	neasurement):			- 1	Diameter	O.D.	I.D.	edule 40 PVC P Volume	Vipe Weight of Water
fter 5 minu	ites of purging (from	n top of casing):	8.9	8	-	1 ¼"	1.660"	1.380"	(Gal/Linear Ft.) 0.08	(Lbs/Lineal Ft.) 0.64
egin purge	e (time): <u>10:3</u>	<u> </u>	ge (time):		-	2" 3"	2.375" 3.500"	2.067" 3.068"	0.17 0.38	1.45 3.2
olume purç	ged:	Purge water di	sposal method	drum		4" 6"	4.500" 6.625"	4.026" 6.065"	0.66 1.5	5,51 12.5
Time	Depth to Water (ft)	Vol. Purged	рН (s.u.)	DO (mg/L)	Spe Condu (us/		Turbidity (NTU)	Temp (°C)	ORP (mV)	Comments
049	9.01	0.75	6.64	5.46	252		1.06	11.0	69.2	
0:46	903	20	6.26	4.44		.7	0.81			
D:51	9.04	2.75	6 20	4.45	243		079	s <u>11-1</u>		
0:56 1:01	9.03	<u>3.9L</u> 5L	6.16	4.53	240		0.76	$=\frac{ 1. }{ 1. }$		<u> </u>
1:00	9.03	<u> </u>	6.14	4.56	237		0.80		120.3	
1.11	9.04	726	6.14	4.66		7.3	0.81	11.1	125.0	
								5		
mpling	a Data									
	MW-CI-	VB1-042	2424		Loca	tion and Dept	th:			
ate Collect	ted (mo/dy/yr): <u> </u>	24 24	Tim		120		W	/eather: <u>C</u>	loudy, lou	
									Filter Type:	
ample Coll	lected with: D Bail	ler 🕅 Pump C	other:	Туре	e: 🕅 Peris	taltic 🔲 Bla	dder 🛛 Subi	mersible O	ther:	
/ater Quali	ity Instrument Data	Collected with:	Type: 🕅 YSI P	roDSS	bidity Mete	r 🛛 Other:				
ample Dec	con Procedure:	Sample collected	d with: 🗖 decor	taminated <u>all</u> tu	bing; 🔲 di	sposable tubi	ing 灯 dedica	ted silicon a	nd poly tubing; 🔲 de	edicated tubing repla
ample Des	scription (Color, Tu	rbidity, Odor, Ot	her): _Clea	ir, nos	sheer	h, ho	ador			
mple /	Analyses									
	e	Analysis	s Method	Sample	e Contain	er (Quantity Pre	eservative	Notes	
Analyte										
Analyte										
Analyte	-4									
Analyte	-4									
	•									
	•									
C samp										
C samp	Sample No: _M		VB1-04	2424-D 248uplicate	Time: []	35	MS/MSD:	: 🗆 Yes 🕅] No	
C samp			VB1-04	2424-D 248uplicate	Time: []	35	MS/MSD:] No 14 24 24	

	10121	ine			Date	of Colle	ction: 👘 🕹	1241	24	
Task:					Fie	eld Perso	nnel: 🗍	74		
urge Data									/	
Well ID: <u>M</u>	W-VBZ SE	ecure: 🔟 Yes 🗖	No Eco	ology Tag #:		Casing	g Type/Diame	eter/Screened	Interval	
									e:	
		ed Prior to Placen		1						
Depth of wate	er (from TOC):	9.99	Time:	10:25		-				
		neasurement):			101				edule 40 PVC P Volume	veight of Water
After 5 minute	es of purging (from	m top of casing):	10.00	0	_	Diameter	O.D. 1.660"	I.D. 1.380"	(Gal/Linear Ft.) 0.08	(Lbs/Lineal Ft.)
Begin purge (time): <u>10:3(</u>	End purg	ge (time): 👖	.09	_	2" 3"	2.375" 3.500"	2.067"	0.17 0.38	0.64 1.45 3.2
		Purge water dis	posal method	Drum		4" 6"	4.500" 6.625"	4.026" 6.065"	0.38 0.66 1.5	5.2 5.51 12.5
Time	Depth to Water (ft)	Vol. Purged ()	рН (s.u.)	DO (mg/L)	Condu	cific Ictivity cm)	Turbidity (NTU)	Temp (°C)	ORP (mV)	Comments
0435	10,00	1,0	80.0	2,46	200		412	11.2	110.7	
0:45	0.00	15	602	0.55	178	6	4.31	$=\frac{11.4}{11.3}$	126.0	
10:50	10.01	2,0	6.02	0.42	175	7	2.36	= 11,3	130,9	
<u>10:55</u>	16,01	3.0	6.02	6,36	175	2	2.57	11.4	131.8	
								- <u> </u>		
				<u> </u>	·					
ampling	Dala									
	CONTRACT A CONTRACT	1120 01	10100		_	_	200711	10.0		
									(×13'	
ate Collected	d (mo/dy/yr):	4/24/24	Time	e Collected:	1:00		N	Veather: 01	ercast, cu	ul their
oate Collected ype: 🖸 Grou	d (mo/dy/yr): <u>∁</u> ind Water □ St	4/24/24 arface Water Oth	Time	e Collected:	06:11	Sample:	W Filtered	Veather:	ででごううと,<i>こい</i> Filter Type:	cl theez
vate Collected ype: 🖸 Grou	d (mo/dy/yr): <u>∁</u> ind Water □ St	4/24/24 arface Water Oth	Time	e Collected:	06:11	Sample:	W Filtered	Veather:	ercast, cu	cl theez
Date Collected Type: D Grou Sample Collect	d (mo/dy/yr): <u>C</u> Ind Water □ St sted with: □ Baile	4/24/24 arface Water Oth	ner:	e Collected:	: 🗹 Perist	Sample: altic Blac	W Filtered E dder 🖸 Sub	Veather: Unfiltered mersible Ot	е́ у с. 75 у , с. с	cl theez
Date Collected Type: 🖸 Grou Sample Collect Vater Quality	d (mo/dy/yr): <u>C</u> and Water Su sted with: Baile Instrument Data	y/24/24 urface Water Other Ther D Pump Other Collected with: T	ner: ner: ype: 🖸 YSI Pr	e Collected: †ype roDSS 🖸 Turb	: Perist	Sample: altic Blac Other:	W Filtered D dder D Sub	Veather: 0	е́ у с. 75 у , с. с	ul threez
ate Collected ype: Grou ample Collec Vater Quality ample Decor	d (mo/dy/yr): and Water Su sted with: Baile Instrument Data n Procedure: S	y/24/24 urface Water Other Ther D Pump Other Collected with: T	Time ner: per: ype:YSI Pr vith: decont	e Collected: Ťype roDSS 🖸 Turb	: Perist idity Meter ping; 🗋 dis	Sample: altic Blac Other:	W Filtered D dder D Sub	Veather: 0	Events Y, cov Filter Type: her:	ul threez
ate Collected ype: D Grou ample Collect /ater Quality ample Decor ample Descri	d (mo/dy/yr): ind Water Su ited with: Bailed Instrument Data in Procedure:S iption (Color, Tur	<u>Y/2 H/2 H</u> urface Water Oth er ⊡ Pump Oth Collected with: T ample collected w	Time ner: per: ype:YSI Pr vith: decont	e Collected: Ťype roDSS 🖸 Turb	: Perist idity Meter ping; 🗋 dis	Sample: altic Blac Other:	W Filtered D dder D Sub	Veather: 0	Events Y, cov Filter Type: her:	ul threez
ate Collected ype: D Grou ample Collect /ater Quality ample Decor ample Descri	d (mo/dy/yr): ind Water Su ited with: Bailed Instrument Data in Procedure:S iption (Color, Tur	<u>Y/2 H/2 H</u> urface Water Oth er ⊡ Pump Oth Collected with: T ample collected w	Time her: her: ype: YSI Pr vith: D decont er): CUEO	e Collected: Ťype roDSS 🖬 Turb raminated <u>all</u> tub <i>W W</i> / <i>S</i>	: Perist idity Meter ping; 🗋 dis	Sample: : altic □ Blac □ Other: _ posable tubi	W Filtered D dder D Sub	Veather: Unfiltered mersible Ot ted silicon an	Events Y, cov Filter Type: her:	ul threez
ate Collected ype: D Grou ample Collect /ater Quality ample Decor ample Descri	d (mo/dy/yr): ind Water Su ited with: Bailed Instrument Data in Procedure:S iption (Color, Tur	<u>Y</u> /2 <u>H</u> /2 <u>H</u> urface Water Oth er ⊡ Pump Oth Collected with: Tr ample collected w bidity, Odor, Othe	Time her: her: ype: YSI Pr vith: D decont er): CUEO	e Collected: Ťype roDSS 🖬 Turb raminated <u>all</u> tub <i>W W</i> / <i>S</i>	: Perist idity Meter bing; [] dis	Sample: : altic □ Blac □ Other: _ posable tubi	W Gler Sub Ing E dedica	Veather: Unfiltered mersible Ot ted silicon an	Events t, co Filter Type: her:	ul threez
ate Collected ype: D Grou ample Collect Vater Quality ample Decor ample Descri ample An	d (mo/dy/yr): ind Water Su ited with: Bailed Instrument Data in Procedure:S iption (Color, Tur	<u>Y</u> /2 <u>H</u> /2 <u>H</u> urface Water Oth er ⊡ Pump Oth Collected with: Tr ample collected w bidity, Odor, Othe	Time her: her: ype: YSI Pr vith: D decont er): CUEO	e Collected: Ťype roDSS 🖬 Turb raminated <u>all</u> tub <i>W W</i> / <i>S</i>	: Perist idity Meter bing; [] dis	Sample: : altic □ Blac □ Other: _ posable tubi	W Gler Sub Ing E dedica	Veather: Unfiltered mersible Ot ted silicon an	Events t, co Filter Type: her:	ul threez
Date Collected Type: D Grou Sample Collect Vater Quality Sample Decor Sample Descri Cample Descri	d (mo/dy/yr): ind Water Su ited with: Bailed Instrument Data in Procedure:S iption (Color, Tur	<u>Y</u> /2 <u>H</u> /2 <u>H</u> urface Water Oth er ⊡ Pump Oth Collected with: Tr ample collected w bidity, Odor, Othe	Time her: her: ype: YSI Pr vith: D decont er): CUEO	e Collected: Ťype roDSS 🖬 Turb raminated <u>all</u> tub <i>W W</i> / <i>S</i>	: Perist idity Meter bing; I dis	Sample: : altic □ Blac □ Other: _ posable tubi	W Gler Sub Ing E dedica	Veather: Unfiltered mersible Ot ted silicon an	Events t, co Filter Type: her:	ul threez
Date Collected Type: D Grou iample Collect Vater Quality iample Decor ample Descri ample An	d (mo/dy/yr): ind Water Su ited with: Bailed Instrument Data in Procedure:S iption (Color, Tur	<u>Y</u> /2 <u>H</u> /2 <u>H</u> urface Water Oth er ⊡ Pump Oth Collected with: Tr ample collected w bidity, Odor, Othe	Time her: her: ype: YSI Pr vith: D decont er): CUEO	e Collected: Ťype roDSS 🖬 Turb raminated <u>all</u> tub <i>W W</i> / <i>S</i>	Perist idity Meter ping; [] dis	Sample: : altic □ Blac □ Other: _ posable tubi	W Gler Sub Ing E dedica	Veather: Unfiltered mersible Ot ted silicon an	Events t, co Filter Type: her:	ul threez
Date Collected Type: D Grou iample Collect Vater Quality iample Decor ample Descri ample An	d (mo/dy/yr): ind Water Su ited with: Bailed Instrument Data in Procedure:S iption (Color, Tur	<u>Y</u> /2 <u>H</u> /2 <u>H</u> urface Water Oth er ⊡ Pump Oth Collected with: Tr ample collected w bidity, Odor, Othe	Time her: her: ype: YSI Pr vith: D decont er): CUEO	e Collected: Ťype roDSS 🖬 Turb raminated <u>all</u> tub <i>W W</i> / <i>S</i>	: Perist idity Meter bing; I dis	Sample: : altic □ Blac □ Other: _ posable tubi	W Gler Sub Ing E dedica	Veather: Unfiltered mersible Ot ted silicon an	Events t, co Filter Type: her:	ul threez
Date Collected Type: D Grou Sample Collect Vater Quality Sample Decor Sample Descri Cample Descri	d (mo/dy/yr): ind Water Su ited with: Bailed Instrument Data in Procedure:S iption (Color, Tur	<u>Y</u> /2 <u>H</u> /2 <u>H</u> urface Water Oth er ⊡ Pump Oth Collected with: Tr ample collected w bidity, Odor, Othe	Time her: her: ype: YSI Pr vith: D decont er): CUEO	e Collected: Ťype roDSS 🖬 Turb raminated <u>all</u> tub <i>W W</i> / <i>S</i>	Perist idity Meter ping; [] dis	Sample: : altic □ Blac □ Other: _ posable tubi	W Gler Sub Ing E dedica	Veather: Unfiltered mersible Ot ted silicon an	Events t, co Filter Type: her:	ul threez
ate Collected ype: D Grou ample Collect Vater Quality ample Decor ample Descri ample An	d (mo/dy/yr): ind Water Su ited with: Bailed Instrument Data in Procedure:S iption (Color, Tur	<u>Y</u> /2 <u>H</u> /2 <u>H</u> urface Water Oth er ⊡ Pump Oth Collected with: Tr ample collected w bidity, Odor, Othe	Time her: her: ype: YSI Pr vith: D decont er): CUEO	e Collected: Ťype roDSS 🖬 Turb raminated <u>all</u> tub <i>W W</i> / <i>S</i>	Perist idity Meter ping; 🗆 dis	Sample: : altic □ Blac □ Other: _ posable tubi	W Gler Sub Ing E dedica	Veather: Unfiltered mersible Ot ted silicon an	Events t, co Filter Type: her:	ul threez
ate Collected ype: D Grou ample Collect Vater Quality ample Decor ample Descri ample An	d (mo/dy/yr): ind Water Su ind Water Su instrument Data - in Procedure: iption (Color, Tur. intigenetic set intigenetic set i	<u>Y</u> /2 <u>H</u> /2 <u>H</u> urface Water Oth er ⊡ Pump Oth Collected with: Tr ample collected w bidity, Odor, Othe	Time her: her: ype: YSI Pr vith: D decont er): CUEO	e Collected: Ťype roDSS Turb raminated <u>all</u> tub <i>W W I S S</i>	Perist idity Meter ping; 🗆 dis	Sample: : altic □ Blac □ Other: _ posable tubi	W Gler Sub Ing E dedica	Veather: Unfiltered mersible Ot ted silicon an	Events t, co Filter Type: her:	ul threez
ate Collected ype: D Grou ample Collect vater Quality ample Decor ample Descri mple An Analyte	d (mo/dy/yr): ind Water Su ted with: Bailed Instrument Data - in Procedure: Siption (Color, Tur. allyses S	<u>Y</u> /2 <u>H</u> /2 <u>H</u> urface Water Oth er ⊡ Pump Oth Collected with: Tr ample collected w bidity, Odor, Othe	Time her: her: ype: YSI Pr vith: D decont er): CUEO	e Collected:	Perist	Sample: ; alticBlac Other: posable tubi	Vi dder Sub	Veather: Unfiltered mersible Ot ted silicon an eservative	Filter Type: her: d poly tubing; [] dea J fm f Notes	ul threez
ate Collected ype: D Grou ample Collect /ater Quality ample Decor ample Decor imple An Analyte	d (mo/dy/yr): ind Water Su ind Water Su instrument Data - in Procedure: inption (Color, Tur. inalyses inalyses ss mple No:	<u>Y</u> /2 <u>H</u> /2 <u>H</u> urface Water Oth er ⊡ Pump Oth Collected with: Tr ample collected w bidity, Odor, Othe	Time her: her: ype: YSI Pr vith: D decont er): CUEO	e Collected: Ťype roDSS Turb raminated <u>all</u> tub <i>W W I S S</i>	Perist	Sample: ; alticBlac Other: posable tubi	W G Filtered [] dder] Sub ng [] dedica With the Quantity Pre	Veather: Unfiltered mersible Ot ted silicon an , yello eservative	Filter Type: her: d poly tubing; [] dea J fm f Notes	dicated tubing replace

Task:	ake		Date of Collect	tion: U	124/20	+	
			Field Person	nnel: M	SIDG	1	%
urge Data		•				10 A	
Well ID: <u>MW-VB3</u>	Secure: 🗹 Yes 🗌 No 🛛 E	Ecology Tag #:	Casing	Type/Diame	er/Screened In	terval	12
	Monument 🔲 Lid 🗋 Lock						
	ated Prior to Placement in Well:						
Depth of water (from TOC):_	10,83 Time:_	12:03	_				
otal Depth (from log or field	measurement):i0/8	8				Volume	ipe Weight of Water
	rom top of casing):			O.D. 1.660"	I.D, 1.380"	(Gal/Linear Ft.) 0.08	(Lbs/Lineal Ft.) 0.64
Begin purge (time):	1. End purge (time):		- 3"	2.375" 3.500"	2.067" 3.068"	0.17	1.45 3.2
Volume purged: 4.5 L	Purge water disposal metho	Drum	4" 6"	4.500" 6.625"	4.026* 6.065*	0.66 1.5	5.51 12.5
Time Depth to Water (ft)	Vol. pH Purged (s.u.) ()	DO (mg/L)	Specific Conductivity (µs/cm)	Turbidity (NTU)	Temp (°C)	ORP (mV)	Comments
2:07 10.88	0 5.86	2.43	2163	4,07	11.8	194.1	
2:11 10.88	<u>1.0 5,83</u> 2.0 5.84	6/70	217.5	2.50		195.6	
12:19 10:89	<u> </u>	0.57	219,0	2.06	<u>168</u> 11.77	194.6	
2:23 10.89	4.0 5.84	0.41	219.20	1,36	16.7	191.2	X
						· · · · · · · · · · · · · · · · · · ·	
mpling Data	2 41 01 01						
ample No: <u>MW-VB</u>	3-042424						
	04/24/24 Ti						
vipe: 🚺 Ground Water 🛛 🤉	Surface Water Other:		Sample: [Filtered	Unfiltered Fil	ter Type:	
					nersible Othe	r:	
ample Collected with: 🛛 Ba	iler 🗓 Pump Other:	· · · · · · · · · · · · · · · · · · ·					
ample Collected with: 🗌 Ba	iler 🖸 Pump Other: a Collected with: Type: 🗹 YSI	ProDSS 🗹 Turb	idity Meter D Other:				
ample Collected with: 🔲 Ba /ater Quality Instrument Data ample Decon Procedure:	iler 🗓 Pump Other:	ProDSS T urb	idity Meter D Other:				
ample Collected with: Ba /ater Quality Instrument Data ample Decon Procedure: ample Description (Color, Ta	iler D Pump Other:	ProDSS T urb	idity Meter D Other:				
ample Collected with: Ba Ater Quality Instrument Data ample Decon Procedure: ample Description (Color, Ta	iler D Pump Other:	ProDSS Turb entaminated <u>all</u> tub ????	idity Meter ☐ Other: ping; ☐ disposable tubin		ed silicon and p		
ample Collected with: Ba /ater Quality Instrument Data ample Decon Procedure: ample Description (Color, Ta mple Analyses	iler D Pump Other: a Collected with: Type: YSI Sample collected with: D deco urbidity, Odor, Other):	ProDSS Turb entaminated <u>all</u> tub ????	idity Meter ☐ Other: ping; ☐ disposable tubin	g 🗹 dedicat	ed silicon and p	ooly tubing; □ dec	
ample Collected with: Ba /ater Quality Instrument Data ample Decon Procedure: ample Description (Color, Ta mple Analyses	iler D Pump Other: a Collected with: Type: YSI Sample collected with: D deco urbidity, Odor, Other):	ProDSS Turb entaminated <u>all</u> tub ????	idity Meter ☐ Other: ping; ☐ disposable tubin	g 🗹 dedicat	ed silicon and p	ooly tubing; □ dec	
ample Collected with: Ba /ater Quality Instrument Data ample Decon Procedure: ample Description (Color, To mple Analyses	iler D Pump Other: a Collected with: Type: YSI Sample collected with: D deco urbidity, Odor, Other):	ProDSS Turb entaminated <u>all</u> tub ????	idity Meter ☐ Other: ping; ☐ disposable tubin	g 🗹 dedicat	ed silicon and p	ooly tubing; □ dec	
ample Collected with: Ba Vater Quality Instrument Data ample Decon Procedure: ample Description (Color, Ta mple Analyses	iler D Pump Other: a Collected with: Type: YSI Sample collected with: D deco urbidity, Odor, Other):	ProDSS Turb entaminated <u>all</u> tub ????	idity Meter ☐ Other: ping; ☐ disposable tubin	g 🗹 dedicat	ed silicon and p	ooly tubing; □ dec	
ample Collected with: Ba Vater Quality Instrument Data ample Decon Procedure: ample Description (Color, Ta ample Analyses	iler D Pump Other: a Collected with: Type: YSI Sample collected with: D deco urbidity, Odor, Other):	ProDSS Turb entaminated <u>all</u> tub ????	idity Meter ☐ Other: ping; ☐ disposable tubin	g 🗹 dedicat	ed silicon and p	ooly tubing; □ dec	
ample Collected with: Ba /ater Quality Instrument Data ample Decon Procedure: ample Description (Color, To mple Analyses	iler D Pump Other: a Collected with: Type: YSI Sample collected with: D deco urbidity, Odor, Other):	ProDSS Turb entaminated <u>all</u> tub ????	idity Meter ☐ Other: ping; ☐ disposable tubin	g 🗹 dedicat	ed silicon and p	ooly tubing; □ dec	
ample Collected with: Ba Aater Quality Instrument Data ample Decon Procedure: ample Description (Color, To mple Analyses Analyte	iler D Pump Other: a Collected with: Type: YSI Sample collected with: D deco urbidity, Odor, Other):	ProDSS Turb entaminated <u>all</u> tub ????	idity Meter ☐ Other: ping; ☐ disposable tubin	g 🗹 dedicat	ed silicon and p	ooly tubing; □ dec	
ample Collected with: Ba /ater Quality Instrument Data ample Decon Procedure: ample Description (Color, To mple Analyses	iler D Pump Other: a Collected with: Type: YSI Sample collected with: D deco urbidity, Odor, Other):	ProDSS Turb	idity Meter ☐ Other: ping; ☐ disposable tubin	g dedicat	ed silicon and p	Notes	

Surface Water/Groundwater Sample Collection Form.doc

1

٠.,

-11

Project: LOYOL	ake		Date of Colle	ection:	4/20	124	12
Task:			Field Perso		LIN	1	
Purge Data							
Well ID: HC00-B312 s	ecure: 🕅 Yes 🔲 No	Ecology Tag #:	Casir	ng Type/Diamet	er/Screened Int	erval	
Replacement Required:							
Depth Sounder decontaminat							
Depth of water (from TOC):	2. <u>91</u>	ne: 13:10					
Total Depth (from log or field	measurement):		-			Volume	ipe Weight of V
After 5 minutes of purging (fro	om top of casing):	.41	Diamete	r O.D. 1.660"	I.D. 1.380"	Gal/Linear Ft.) 0.08	(Lbs/Linea 0.64
Begin purge (time): 13:1	End purge (time)	:		2.375" 3.500"	2.067" 3.068"	0.17 0.38	1.45 3.2
Volume purged:	Purge water disposal m	ethod	4"	4.500" 6.625"	4.026" 6.065"	0.66	5.51 12.5
Time Depth to	 Vol. p⊢	I DO	Specific	Turbidity	Temp	ORP	Comr
Water (ft)	Purged (s.u ()	, , , , ,	Conductivity (µs/cm)	(NTU)	(°C)	(mV)	
13:17 12.41	11 5.8		172 3	3.79	11.3	218.2	
13:22 12.41	2.0L 5.8		172.2	3.27	<u> </u>	216.0	
13:26 12.41	<u>2.46</u> <u>5.8</u> 3.46 <u>5.8</u>		172.2	2.95	11.2	214.1	
<u>13:30</u> <u>12:41</u> 13:34 12:41					11.2	211.6	
13:38 12.41	4.02 5.8 4.62 5.8		172.2	2.67	11.2		
19-50 12:41		<u> </u>		1.4/1		206.2	-
Sampling Data	· · · · · · · · · · · · · · · · · · ·					<u></u>	
Sample No: <u>HC 00 - P</u>			Location and De				
Sample No: <u>HC 00 i</u> Date Collected (mo/dy/yr):						Hered ra	ain, mi
	4/24/24	Time Collected:	1345	N	leather: <u>5C0</u>		'
Date Collected (mo/dy/yr):	4 24 24 Surface Water Other:	Time Collected:	1345 Sample	W a: □ Filtered	/eather: <u>5C0</u> ØUnfiltered Fil	Iter Type:	,
Date Collected (mo/dy/yr): Type: 🕅 Ground Water 📋 Sample Collected with: 🗋 Ba	Y Y Y Surface Water Other: tiller Y Pump Other:	Time Collected:	<u>1345</u> Sample e: Ø Peristaltic □ B	w e:⊡Filtered ladder □Sub	/eather: <u>5C0</u> ØUnfiltered Fil mersible Othe	lter Type:	
Date Collected (mo/dy/yr): Type: 🕅 Ground Water 📋 Sample Collected with: 🗋 Ba Water Quality Instrument Dat	Y 24 24 Surface Water Other:	Time Collected: Typ	Sample Sample e: Ø Peristaltic B rbidity Meter Other	W e: [] Filtered ladder [] Sub :	veather: <u>500</u> ال Unfiltered Fil mersible Othe	iter Type:	
Date Collected (mo/dy/yr): Type: 🕅 Ground Water 📋 Sample Collected with: 🗋 Ba Water Quality Instrument Dat Sample Decon Procedure:	Y ZY ZY Surface Water Other: niler X Pump Other: a Collected with: Type: Y Sample collected with: □	Time Collected: Typ YSI ProDSS)É Tu decontaminated <u>all</u> t	<u>1345</u> Sample e: Ø Peristaltic □ B rbidity Meter □ Other ubing; □ disposable tu	N a: □ Filtered ladder □ Sub : ubing % dedica	eather: <u>500</u> الاستفادة المعالم معالم معالم معالم معال معالم معالم المعالم الم	iter Type:	
Date Collected (mo/dy/yr): Type: 🕅 Ground Water 📋 Sample Collected with: 🗋 Ba Water Quality Instrument Dat	Y ZY ZY Surface Water Other: niler X Pump Other: a Collected with: Type: Y Sample collected with: □	Time Collected: Typ YSI ProDSS)É Tu decontaminated <u>all</u> t	<u>1345</u> Sample e: Ø Peristaltic □ B rbidity Meter □ Other ubing; □ disposable tu	N a: □ Filtered ladder □ Sub : ubing % dedica	eather: <u>500</u> الاستفادة المعالم معالم معالم معالم معال معالم معالم المعالم الم	iter Type:	
Date Collected (mo/dy/yr): Type: 🕅 Ground Water 📋 Sample Collected with: 🗋 Ba Water Quality Instrument Dat Sample Decon Procedure:	Y ZY ZY Surface Water Other: niler X Pump Other: a Collected with: Type: Y Sample collected with: □	Time Collected: Typ YSI ProDSS)É Tu decontaminated <u>all</u> t	<u>1345</u> Sample e: Ø Peristaltic □ B rbidity Meter □ Other ubing; □ disposable tu	N a: □ Filtered ladder □ Sub : ubing % dedica	eather: <u>500</u> الاستفادة المعالم معالم معالم معالم معال معالم معالم المعالم الم	iter Type:	
Date Collected (mo/dy/yr): Type: 🕅 Ground Water 📋 S Sample Collected with: 🗋 Ba Water Quality Instrument Dat Sample Decon Procedure: Sample Description (Color, Tr	Y ZY ZY Surface Water Other: niler X Pump Other: a Collected with: Type: Y Sample collected with: □	Time Collected: Typ YSI ProDSS)É Tu decontaminated <u>all</u> t	<u>1345</u> Sample e: Ø Peristaltic □ B rbidity Meter □ Other ubing; □ disposable tu	N a: □ Filtered ladder □ Sub : ubing % dedica	Veather: <u>500</u> Unfiltered Fil mersible Other ted silicon and	iter Type:	
Date Collected (mo/dy/yr): Type: Ground Water G Sample Collected with: Ba Water Quality Instrument Dat Sample Decon Procedure: Sample Description (Color, Tr Sample Analyses	Y ZY ZY Surface Water Other:	Time Collected: Typ YSI ProDSS)É Tu decontaminated <u>all</u> t	1345 Sample e: Ø Peristaltic	N a: □ Filtered) ladder □ Sub :	Veather: <u>500</u> Unfiltered Fil mersible Other ted silicon and	iter Type:	
Date Collected (mo/dy/yr): Type: A Ground Water A Sample Collected with: Ba Water Quality Instrument Dat Sample Decon Procedure: Sample Description (Color, Tr Sample Analyses	Y ZY ZY Surface Water Other:	Time Collected: Typ YSI ProDSS)É Tu decontaminated <u>all</u> t	1345 Sample e: Ø Peristaltic	N a: □ Filtered) ladder □ Sub :	Veather: <u>500</u> Unfiltered Fil mersible Other ted silicon and	iter Type:	
Date Collected (mo/dy/yr): Type: A Ground Water A Sample Collected with: Ba Water Quality Instrument Dat Sample Decon Procedure: Sample Description (Color, Tr Sample Analyses	Y ZY ZY Surface Water Other:	Time Collected: Typ YSI ProDSS)É Tu decontaminated <u>all</u> t	1345 Sample e: Ø Peristaltic	N a: □ Filtered) ladder □ Sub :	Veather: <u>500</u> Unfiltered Fil mersible Other ted silicon and	iter Type:	
Date Collected (mo/dy/yr): Type: A Ground Water A Sample Collected with: Ba Water Quality Instrument Dat Sample Decon Procedure: Sample Description (Color, Tr Sample Analyses	Y ZY ZY Surface Water Other:	Time Collected: Typ YSI ProDSS) Tu decontaminated <u>all</u> t	1345 Sample e: Ø Peristaltic	N a: □ Filtered) ladder □ Sub :	Veather: <u>500</u> Unfiltered Fil mersible Other ted silicon and	iter Type:	
Date Collected (mo/dy/yr): Type: A Ground Water A Sample Collected with: Ba Water Quality Instrument Dat Sample Decon Procedure: Sample Description (Color, Tr Sample Analyses	Y ZY ZY Surface Water Other:	Time Collected: Typ YSI ProDSS) Tu decontaminated <u>all</u> t	1345 Sample e: Ø Peristaltic	N a: □ Filtered) ladder □ Sub :	Veather: <u>500</u> Unfiltered Fil mersible Other ted silicon and	iter Type:	
Date Collected (mo/dy/yr): Type: A Ground Water A Sample Collected with: Ba Water Quality Instrument Dat Sample Decon Procedure: Sample Description (Color, Tr Sample Analyses	Y ZY ZY Surface Water Other:	Time Collected: Typ YSI ProDSS) Tu decontaminated <u>all</u> t	1345 Sample e: Ø Peristaltic	N a: □ Filtered) ladder □ Sub :	Veather: <u>500</u> Unfiltered Fil mersible Other ted silicon and	iter Type:	
Date Collected (mo/dy/yr): Type: A Ground Water A Sample Collected with: Ba Water Quality Instrument Dat Sample Decon Procedure: Sample Description (Color, Tr Sample Analyses	Y ZY ZY Surface Water Other:	Time Collected: Typ YSI ProDSS) Tu decontaminated <u>all</u> t	1345 Sample e: Ø Peristaltic	N a: □ Filtered) ladder □ Sub :	Veather: <u>500</u> Unfiltered Fil mersible Other ted silicon and	iter Type:	
Date Collected (mo/dy/yr): Type: A Ground Water A Sample Collected with: Ba Water Quality Instrument Dat Sample Decon Procedure: Sample Description (Color, Tr Sample Analyses	Y ZY ZY Surface Water Other:	Time Collected: Typ YSI ProDSS) Tu decontaminated <u>all</u> t	1345 Sample e: Ø Peristaltic	N a: □ Filtered) ladder □ Sub :	Veather: <u>500</u> Unfiltered Fil mersible Other ted silicon and	iter Type:	
Date Collected (mo/dy/yr): Type: Ground Water G Sample Collected with: G Ba Water Quality Instrument Date Sample Decon Procedure: Sample Description (Color, Tr Sample Analyses Analyte	Y Y Y Y Surface Water Other:	Time Collected:Typ	1345 Sample e: Ø Peristaltic	Aladder 🗍 Sub ladder 🗍 Sub abing 🗭 dedica n 0 ad Quantity Pre	Veather: <u>500</u> Unfiltered Fil mersible Other ted silicon and	Iter Type:	

	ske	Da	te of Collect	tion: 4/	24/2	4	
Task:			Field Person	inel: D	G/A.	Ĵ	
Purge Data							
Well ID: MN-CPI s	Secure: 🗹 Yes 🗆 No 👘 Ecol	ogy Tag #:	Casing	Type/Diamete	er/Screened	Interval	
	Monument 🛄 Lid 🔲 Lock 🗍						
	ted Prior to Placement in Well: 🗹	/					•
Depth of water (from TOC):	2.50 Time: /						
Total Depth (from log or field	measurement):					edule 40 PVC P	ipe Weight of Water
After 5 minutes of purging (fro	om top of casing):2,51		Diameter	O.D. 1.660"	I.D. 1.380"	(Gal/Linear Ft.) 0.08	(Lbs/Lineal Ft.) 0.64
Begin purge (time): 16: 1	End purge (time):		2" 3"	2.375" 3.500"	2.067" 3.068"	0.17 0.38	1.45
Volume purged:	Purge water disposal method	Prom	4" 6"	4.500" 6.625"	4.026" 6.065"	0.66	5.51 12.5
Time Depth to Water (ft)	Vol. pH Purged (s.u.)	(mg/L) Cor	pecific nductivity µs/cm)	Turbidity (NTU)	Temp (°C)	ORP (mV)	Comments
16:20 2.51	0.5 6.09		2.1	1.78	10,9	31,6	
10:25 2.51	1.5 G.W	1.46 13	79	1,10	10,0		
16:28 2.51	<u>2.5</u> 6,56 3.5 6,55		8.7	134	<u> </u>	47,8	3
16:34 2,52	<u>4.5</u> 6.54		8.0	0.38	10.7		
P-J1 _0,56_	<u>- 1910-1910-1910-1910-1910-1910-1910-191</u>		0.0	0.94	10, 7	09.1	
2							-
ampling Data				_			
	-042424		cation and Depth	Minla	CPICE)	
	04/24/24 Time				_	aining	
	Surface Water Other:					~ ~ ~	
	iler E Pump Other:						
	/						
	a Collected with: Type: 🗹 YSI Pro			/			
	Sample collected with: deconta						dicated tubing replace
Sample Description (Color, Τι	urbidity, Odor, Other):	r wible	h parti	culte	chu	iks	
ample Analyses			N				27
Analyte	Analysis Method	Sample Conta	iner Qi	uantity Pres	servative	Notes	£
C samples							
C samples							
	W-C21-04242		16:50	MS/MSD: [TYes 🔽	No	

.

Documents/Field Resources/Field Forms/Groundwater or Surface Water/Groundwater Sample Collection Form.doc

1

6

9

	Lora 1	-ake			Date of Colle	ection:	41	24/24	
Task:					Field Pers	onnel:	JL +		
Purge Data	a								
Well ID: M	J-CP-2 Se	ecure: 🗌 Yes 🛛]No Eco	logy Tag #:	Casir	ng Type/Diamet	er/Screened I	nterval <u><u></u></u>	PCV
Replacement	t Required: 🔲 M	onument 🔲 Li	id 🔲 Lock 🗔	Bolts: Missing	(#) Stripped ((#)O	ther Damage:		
	ler decontaminate								
Depth of wate	er (from TOC):	3.03	Time:	037	(
	from log or field r				Diamete		I.D.	dule 40 PVC P Volume	Weight of Wa
After 5 minute	es of purging (fro	m top of casing):	3.05		1 ¼"	1.660"	1.380"	(Gal/Linear Ft.) 0.08	(Lbs/Lineal I 0.64
Begin purge ((time): 1632	End pur	rge (time):	_	0 14	2.375" 3.500"	2.067" 3.068"	0.17 0.38	1.45 3.2
Volume purge	ed:	Purge water di	sposal method_	drum	4" 6"	4.500" 6.625"	4.026" 6.065"	0.66	5.51 - 12.5
Time	Depth to Water (ft)	Vol. Purged	рН (s.u.)	DO (mg/L)	Specific Conductivity	Turbidity (NTU)	Temp (°C)	ORP (mV)	Comme
11.24	3.06		6.52	(11g/2) 1-56	(µs/cm)	107	10.6	. ,	
1644	3.05	32	6.44	1.04	118.2	0.99	10.0		
1052	3.05	4.52	6.44	1.05	118.0	0.79	10.4	207.7	
1056	3.05	6.02	6.44	1.03	118.5	0.99	10.10	2010.7	e
1700		····							
							-		
Date Collecte	MW-CP	124/24	L Time	e Collected:	Locátion and De	V	/eather:(alny	
Sample No: Date Collecte Type: 🎽 Gro Sample Colle Water Quality	MW - CP ad (mo/dy/yr): bund Water S acted with: _ Bai y Instrument Data	iurface Water C ier DPump C Collected with:	ther: Type: Division Provided the Pro	Type: roDSS 🗗Turbi	Peristaltic B dity Meter Other	We: D Filtered) Bladder D Sub	/eather:(Filter Type:	edicated tubing n
Sample No: Date Collecte Type: M Gro Sample Colle Water Quality Sample Deco	MW - CP ad (mo/dy/yr): bund Water S acted with: _ Bai y Instrument Data	La Collected with:	Dther: Dther: Type: DYSI Pr J with: D decon	Type: roDSS ช Turbi	Fild Sample Sample B	W e: D Filtered) Iladder D Sub : ubing 💅 dedica	/eather:(Unfiltered ! mersible Other nted silicon and	Filter Type:	edicated tubing r
Sample No: Date Collecte Type: M Gro Sample Colle Water Quality Sample Deco	MW - CP ad (mo/dy/yr): aund Water S acted with: Bai y Instrument Data on Procedure: cription (Color, Tu	La Collected with:	Dther: Dther: Type: DYSI Pr J with: D decon	Type: roDSS ช Turbi	Peristaltic B dity Meter Other ing; disposable to	W e: D Filtered) Iladder D Sub : ubing 💅 dedica	/eather:(Unfiltered ! mersible Other nted silicon and	Filter Type:	edicated tubing re
Sample No: Date Collecte Type: M Gro Sample Colle Water Quality Sample Deco Sample Deco	MW - CP ad (mo/dy/yr): aund Water S acted with: Bai y Instrument Data on Procedure: an Procedure: tription (Color, Tu nalyses	Lange Collected with: Sample collected rbidity, Odor, Ot	Dther: Dther: Type: DYSI Pr J with: D decon	roDSS &Turbi taminated <u>all</u> tub	Peristaltic B dity Meter Other ing; disposable to	W e: D Filtered) Iladder D Sub : ubing 💅 dedica	/eather: © Unfiltered I mersible Other ted silicon and COOV	Filter Type:	edicated tubing r
Sample No: Date Collecte Type: M Gro Sample Colle Water Quality Sample Deco Sample Desc Sample Desc	MW - CP ad (mo/dy/yr): aund Water S acted with: Bai y Instrument Data on Procedure: an Procedure: tription (Color, Tu nalyses	Lange Collected with: Sample collected rbidity, Odor, Ot	ther:	roDSS &Turbi taminated <u>all</u> tub	Peristaltic B ØPeristaltic B dity Meter Other ing; disposable to no Shee	W e: D Filtered) Nadder ① Sub :	/eather: © Unfiltered I mersible Other ted silicon and COOV	Filter Type:	edicated tubing m
Sample No: Date Collecte Type: M Gro Sample Colle Water Quality Sample Deco Sample Desc Sample Desc	MW - CP ad (mo/dy/yr): aund Water S acted with: Bai y Instrument Data on Procedure: an Procedure: tription (Color, Tu nalyses	Lange Collected with: Sample collected rbidity, Odor, Ot	ther:	roDSS &Turbi taminated <u>all</u> tub	Peristaltic B ØPeristaltic B dity Meter Other ing; disposable to no Shee	W e: D Filtered) Nadder ① Sub :	/eather: © Unfiltered I mersible Other ted silicon and COOV	Filter Type:	edicated tubing r
Sample No: Date Collecte Type: M Gro Sample Colle Water Quality Sample Deco Sample Desc Sample Desc	MW - CP ad (mo/dy/yr): aund Water S acted with: Bai y Instrument Data on Procedure: an Procedure: tription (Color, Tu nalyses	Lange Collected with: Sample collected rbidity, Odor, Ot	ther:	roDSS &Turbi taminated <u>all</u> tub	Peristaltic B ØPeristaltic B dity Meter Other ing; disposable to no Shee	W e: D Filtered) Nadder ① Sub :	/eather: © Unfiltered I mersible Other ted silicon and COOV	Filter Type:	edicated tubing n
Sample No: Date Collecte Type: M Gro Sample Colle Water Quality Sample Deco Sample Desc Sample Desc	MW - CP ad (mo/dy/yr): aund Water S acted with: Bai y Instrument Data on Procedure: an Procedure: tription (Color, Tu nalyses	Lange Collected with: Sample collected rbidity, Odor, Ot	ther:	roDSS &Turbi taminated <u>all</u> tub	Peristaltic B ØPeristaltic B dity Meter Other ing; disposable to no Shee	W e: D Filtered) Nadder ① Sub :	/eather: © Unfiltered I mersible Other ted silicon and COOV	Filter Type:	edicated tubing r
Sample No: Date Collecte Type: M Gro Sample Colle Water Quality Sample Deco Sample Desc Sample Desc	MW - CP ad (mo/dy/yr): aund Water S acted with: Bai y Instrument Data on Procedure: an Procedure: tription (Color, Tu nalyses	Lange Collected with: Sample collected rbidity, Odor, Ot	ther:	roDSS &Turbi taminated <u>all</u> tub	Peristaltic B ØPeristaltic B dity Meter Other ing; disposable to no Shee	W e: D Filtered) Nadder ① Sub :	/eather: © Unfiltered I mersible Other ted silicon and COOV	Filter Type:	edicated tubing r
Sample No: Date Collecte Type: M Gro Sample Colle Water Quality Sample Deco Sample Desc Sample Desc	MW - CP ad (mo/dy/yr): aund Water S acted with: Bai y Instrument Data on Procedure: an Procedure: tription (Color, Tu nalyses	Lange Collected with: Sample collected rbidity, Odor, Ot	ther:	roDSS &Turbi taminated <u>all</u> tub	Peristaltic B ØPeristaltic B dity Meter Other ing; disposable to no Shee	W e: D Filtered) Nadder ① Sub :	/eather: © Unfiltered I mersible Other ted silicon and COOV	Filter Type:	edicated tubing m
Sample No: Date Collecte Type: M Gro Sample Colle Water Quality Sample Deco Sample Desc Sample Desc	MW - CP ad (mo/dy/yr):	Lange Collected with: Sample collected rbidity, Odor, Ot	ther:	roDSS &Turbi taminated <u>all</u> tub	Peristaltic B ØPeristaltic B dity Meter Other ing; disposable to no Shee	W e: D Filtered) Nadder ① Sub :	/eather: © Unfiltered I mersible Other ted silicon and COOV	Filter Type:	edicated tubing r

Project: Laca Lake	Date of Collection: 4124124
Task:	Field Personnel: Tra / A.)
urge Data	
Well ID: <u>MW-CP3</u> Secure: ⊠Yes □ No Ecology Tag #	#: Casing Type/Diameter/Screened Interval
Replacement Required: 🗌 Monument 📋 Lid 🔲 Lock 🔲 Bolts: M	lissing (#) Stripped (#) Other Damage:
Depth Sounder decontaminated Prior to Placement in Well: 🗹 Yes 🛛	No One Casing Volume (gal):
Depth of water (from TOC): 2,4 Time: 13:19	
Total Depth (from log or field measurement):	Diameter OD LD Volume veight of v
After 5 minutes of purging (from top of casing):	
Begin purge (time):End purge (time):	2" 2.375" 2.067" 0.17 1.45 3" 3.500" 3.068" 0.38 3.2
Volume purged: <u>45</u> Purge water disposal method $\overline{\mathcal{P}m}$	4" 4.500" 4.026" 0.66 5.51 6" 6.625" 6.065" 1.5 12.5
Time Depth to Vol. pH DO Water (ft) Purged (s.u.) (mg/L	· Specific Turbidity Temp ORP Comm) Conductivity (NTU) (°C) (mV)
13:25 2.42 0.5 6.77 3.13	$(\mu s/cm)$ 1.75 0.3 31.7
13:30 2.41 1.0 6.71 1.16	183.3 2.12 10.2 48
$\frac{13:55}{12:40}$ $\frac{2.42}{2.40}$ $\frac{7.0}{2.5}$ $\frac{6.70}{6.40}$ $\frac{6.48}{6.40}$	83.8 1.4 10.2 4.9
13:45 2 44 3.5 61A 0.5	2 1841 382 3012 518
ampling Data Sample No: <u>MW-C73-042424</u>	has 200
Date Collected (mo/dy/yr): 04/24/24 Time Collected	
	Type: Peristaltic Bladder. Submersible Other:
	2
Vater Quality Instrument Data Collected with: Type: 🗹 YSI ProDSS 🛛 🗔	
	<u>all</u> tubing; 🔲 disposable tubing 🗹 dedicated silicon and poly tubing; 🔲 dedicated tubing i
ample Decon Procedure: Sample collected with: 🗖 decontaminated	
ample Description (Color, Turbidity, Odor, Other):	
ample Description (Color, Turbidity, Odor, Other):	
ample Description (Color, Turbidity, Odor, Other):	
ample Description (Color, Turbidity, Odor, Other):	
ample Description (Color, Turbidity, Odor, Other):	
ample Description (Color, Turbidity, Odor, Other):	
ample Description (Color, Turbidity, Odor, Other):	
ample Description (Color, Turbidity, Odor, Other):	
ample Description (Color, Turbidity, Odor, Other):	
Sample Description (Color, Turbidity, Odor, Other): Amalyte Analyte C samples	Imple Container Quantity Preservative Notes
Sample Description (Color, Turbidity, Odor, Other): ample Analyses Analyte Analysis Method Sa 	

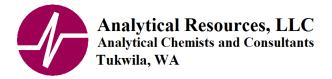
Project: Lora L	ake			Date of Colle		4)74	the second se	
Task:				Field Perso	nnel:	MSI	teenis +	JL
Purge Data				5 19.				
Well ID: MW-CF4 Se	cure: XYes 🗆	No Eco	logy Tag #: MI	nknown casing	Type/Diame	ter/Screened	Interval 2 ^H	pre
Replacement Required: 🔲 M								
Depth Sounder decontaminate	ed Prior to Placem	nent in Well: 🗖]Yes 🗌 No	One Casing Vo	ume (gal):			
Depth of water (from TOC):	1.33	Time:	454	_			- 1- 1- 40 DV/O D	·
Total Depth (from log or field n	neasurement):			Diameter	O.D.	ne of Sch	edule 40 PVC P Volume	Weight of Wat
After 5 minutes of purging (from	m top of casing):	1.5:)	1 1/4"	1.660"	1.380"	(Gal/Linear Ft.) 0.08	(Lbs/Lineal Ft 0.64
Begin purge (time):		e (time):		0	2.375" 3.500"	2.067" 3.068"	0.17 0.38	1.45 3.2
Volume purged:	_Purge water disp	posal method		4" 6"	4.500" 6.625"	4.026" 6.065"	0.66 1.5	5.51 12.5
Time Depth to	Vol.	pH	DO (mg/L)	Specific Conductivity	Turbidity (NTU)	Temp (°C)		Commen
Water (ft)	Purged	(s.u.)		(µs/cm)	117	j).(
1500 1.33	16	6.46	2.37	182.1	1.43	10.8		
1508 1.33	F.22	646	0 58	184.3	0.44			
1502 1.33	4.8L	4.40	0.52	184.9	6.81	10 %		
<u> </u>								
						-	- <u>X</u>	-
						<u></u>		
Sampling Data Sample No: MW-CP	9-0424	24		Location and De			0	
Sample No: MW-CP Date Collected (mo/dy/yr): 4 Type: Ground Water S	Urface Water Ot	Tim	e Collected:	520 Sample:	□ Filtered	Veather: <u>Cl</u>	Filter Type:	
Sample No: MW-CP Date Collected (mo/dy/yr): 4	Urface Water Ot	Tim	e Collected:	520 Sample:	□ Filtered	Veather: <u>Cl</u>	Filter Type:	
Sample No: MW-CP Date Collected (mo/dy/yr): 4 Type: Ground Water S	urface Water Other	Tim	e Collected: _	Sample:	Filtered	Veather: <u>C</u> Unfiltered	Filter Type:	
Sample No: MW-CP Date Collected (mo/dy/yr): 4 Type: Ground Water Sample Collected with: Bail	iurface Water Other ler Pump Other Collected with: T	Tim her: her: Type: XSI P	e Collected: Type roDSS 🏹 Turt	Sample: XPeristattic II Bla bidity Meter II Other:	Filtered	Veather: <u>C</u> Unfiltered	Filter Type:	
Sample No: MW-CP Date Collected (mo/dy/yr): 4 Type: Ground Water S Sample Collected with: Bail Water Quality Instrument Data Sample Decon Procedure: S	iurface Water Other ler Pump Other Collected with: T Sample collected	her: her: Type: XSI P with: 🔲 decon	e Collected: Type roDSS 🏂 Turt tarninated <u>all</u> tu	Sample: Sample: CPeristaltic Bla bidity Meter Other: bing; disposable tub	Filtered	Veather: <u>Cl</u> Unfiltered omersible C	Filter Type:	edicated tubing re
Sample No: MW-CP Date Collected (mo/dy/yr): 4 Type: Ground Water S Sample Collected with: Bail Water Quality Instrument Data Sample Decon Procedure: S Sample Description (Color, Tu	iurface Water Other ler Pump Other Collected with: T Sample collected	her: her: Type: XSI P with: 🔲 decon	e Collected: Type roDSS 🏂 Turt tarninated <u>all</u> tu	Sample: XPeristattic II Bla bidity Meter II Other:	Filtered	Veather: <u>Cl</u> Unfiltered omersible C	Filter Type:	edicated tubing rej
Sample No: MW-CP Date Collected (mo/dy/yr): 4 Type: Ground Water S Sample Collected with: Bail Water Quality Instrument Data Sample Decon Procedure: S Sample Description (Color, Tu Sample Analyses	iurface Water Other Ier Pump Other Collected with: T Sample collected withits ribidity, Odor, Other	Tim ther: Type: YSI P with: decon her):C	Type ToDSS Statur taminated <u>all</u> tu	Sample: Sample: Sample: Sidity Meter Dother: bing; D disposable tut	I Filtered	Veather: <u>C1</u> Unfiltered omersible C ated silicon a	Filter Type:	edicated tubing rej
Sample No: MW-CP Date Collected (mo/dy/yr): 4 Type: Ground Water S Sample Collected with: Bail Water Quality Instrument Data Sample Decon Procedure: S Sample Description (Color, Tu	iurface Water Other ler Pump Other Collected with: T Sample collected	Tim ther: Type: YSI P with: decon her):C	Type ToDSS Statur taminated <u>all</u> tu	Sample: Sample: Sample: Sidity Meter Dother: bing; D disposable tut	Filtered	Veather: <u>C1</u> Unfiltered omersible C ated silicon a	Filter Type:	edicated tubing rej
Sample No: MW-CP Date Collected (mo/dy/yr): 4 Type: Ground Water S Sample Collected with: Bail Water Quality Instrument Data Sample Decon Procedure: S Sample Description (Color, Tu Sample Analyses	iurface Water Other Ier Pump Other Collected with: T Sample collected withits ribidity, Odor, Other	Tim ther: Type: YSI P with: decon her):C	Type ToDSS Statur taminated <u>all</u> tu	Sample: Sample: Sample: Sidity Meter Dother: bing; D disposable tut	I Filtered	Veather: <u>C1</u> Unfiltered omersible C ated silicon a	Filter Type:	edicated tubing rej
Sample No: MW-CP Date Collected (mo/dy/yr): 4 Type: Ground Water S Sample Collected with: Bail Water Quality Instrument Data Sample Decon Procedure: S Sample Description (Color, Tu Sample Analyses	iurface Water Other Ier Pump Other Collected with: T Sample collected withits ribidity, Odor, Other	Tim ther: Type: YSI P with: decon her):C	Type ToDSS Statur taminated <u>all</u> tu	Sample: Sample: Sample: Sidity Meter Dother: bing; D disposable tut	I Filtered	Veather: <u>C1</u> Unfiltered omersible C ated silicon a	Filter Type:	edicated tubing rej
Sample No: MW-CP Date Collected (mo/dy/yr): 4 Type: Ground Water S Sample Collected with: Bail Water Quality Instrument Data Sample Decon Procedure: S Sample Description (Color, Tu Sample Analyses	iurface Water Other Ier Pump Other Collected with: T Sample collected withits ribidity, Odor, Other	Tim ther: Type: YSI P with: decon her):C	Type ToDSS Statur taminated <u>all</u> tu	Sample: Sample: Sample: Sidity Meter Dother: bing; D disposable tut	I Filtered	Veather: <u>C1</u> Unfiltered omersible C ated silicon a	Filter Type:	edicated tubing re
Sample No: MW-CP Date Collected (mo/dy/yr): 4 Type: Ground Water S Sample Collected with: Bail Water Quality Instrument Data Sample Decon Procedure: S Sample Description (Color, Tu Sample Analyses	iurface Water Other Ier Pump Other Collected with: T Sample collected withits ribidity, Odor, Other	Tim ther: Type: YSI P with: decon her):C	Type ToDSS Statur taminated <u>all</u> tu	Sample: Sample: Sample: Sidity Meter Dother: bing; D disposable tut	I Filtered	Veather: <u>C1</u> Unfiltered omersible C ated silicon a	Filter Type:	edicated tubing re
Sample No: MW-CP Date Collected (mo/dy/yr): 4 Type: Ground Water S Sample Collected with: Bail Water Quality Instrument Data Sample Decon Procedure: S Sample Description (Color, Tu Sample Analyses	iurface Water Other Ier Pump Other Collected with: T Sample collected withits ribidity, Odor, Other	Tim ther: Type: YSI P with: decon her):C	Type ToDSS Statur taminated <u>all</u> tu	Sample: Sample: Sample: Sidity Meter Dother: bing; D disposable tut	I Filtered	Veather: <u>C1</u> Unfiltered omersible C ated silicon a	Filter Type:	edicated tubing re
Sample No: MW-CP Date Collected (mo/dy/yr): 4 Type: Ground Water S Sample Collected with: Bail Water Quality Instrument Data Sample Decon Procedure: S Sample Description (Color, Tu Sample Analyses	iurface Water Other Ier Pump Other Collected with: T Sample collected withits ribidity, Odor, Other	Tim ther: Type: YSI P with: decon her):C	Type ToDSS Statur taminated <u>all</u> tu	Sample: Sample: Sample: Sidity Meter Dother: bing; D disposable tut	I Filtered	Veather: <u>C1</u> Unfiltered omersible C ated silicon a	Filter Type:	edicated tubing re
Sample No: MW-CP Date Collected (mo/dy/yr): 4 Type: Ground Water S Sample Collected with: Bail Water Quality Instrument Data Sample Decon Procedure: S Sample Description (Color, Tu Sample Analyses Analyte	iurface Water Other Ier Pump Other Collected with: T Sample collected withits ribidity, Odor, Other	Tim ther: Type: YSI P with: decon her):C	Type ToDSS Statur taminated <u>all</u> tu	Sample: Sample: Sample: Sidity Meter Dother: bing; D disposable tut	I Filtered	Veather: <u>C1</u> Unfiltered omersible C ated silicon a	Filter Type:	edicated tubing re
Sample No: MW-CP Date Collected (mo/dy/yr): 4 Type: S Ground Water S Sample Collected with: Bail Water Quality Instrument Data Sample Decon Procedure: S Sample Description (Color, Tu Sample Analyses Analyte	Analysis	Tim ther: Type: YSI P with: decon her):C	e Collected: Type roDSS 1 Turk taminated <u>all</u> tu CUY Sample	Sample: Sample: Sample: Sidity Meter Dother: bing; D disposable tut Sheen, e Container		Veather: C1 Unfiltered omersible C ated silicon a clov	Filter Type:	edicated tubing rej
Sample No: MW-CP Date Collected (mo/dy/yr): 4 Type: Ground Water S Sample Collected with: Bail Water Quality Instrument Data Sample Decon Procedure: S Sample Description (Color, Tu Sample Analyses Analyte	Analysis	Tim	e Collected: Type roDSS 1/4 Turk itaminated <u>all</u> tu COLY Sample	Sample: Sample: Sample: Sidity Meter Dother: bing; Disposable tut Sheeh, e Container Time:		Veather: Cl	Filter Type:	edicated tubing rep

i.

	Lake		Date of Collect	tion: <u>4</u> ,	124124		
Task:			Field Person	nnel: D	G/AJ		
Purge Data							
Well ID: MW-025	Secure: 🗹 Yes 🗖 No Ec	ology Tag #:	Casing	Type/Diamet	er/Screened	interval	
Replacement Required:	Monument 🗌 Lid 🗋 Lock [Bolts: Missing	(#) Stripped (#)	o	ther Damage	:	
	, ated Prior to Placement in Well:						
Depth of water (from TOC):	2,63	14:20					
Total Depth (from log or field	d measurement):					edule 40 PVC P Volume	ipe Weight of Water
	rom top of casing):3 , r			O.D. 1.660"	I.D. 1.380"	(Gal/Linear Ft.) 0.08	(Lbs/Lineal Ft.) 0,64
Begin purge (time): 14:2	End purge (time):		2" 3"	2.375" 3.500"	2.067" 3.068"	0.17 0.38	1.45 3.2
Volume purged: 4.01	Purge water disposal method	Drum	4" 6"	4.500" 6.625"	4.026" 6.065"	0.66 1.5	5.51 12.5
Time Depth to Water (ft)	Vol. pH Purged (s.u.)	DO (mg/L)	Specific Conductivity (µs/cm)	Turbidity (NTU)	Temp (°C)	ORP (mV)	Comments
14:25 3,07	0.5 6.46	2.10	298.4	2,27	10,0	-24,7	
4-36 3.15	7.0 6,41	1,42	296.9	4.36	9.9	-32,0	
14:35 <u>3,18</u> 14:38 <u>3,</u> 23	<u> </u>	<u>1,24</u> 1,19	<u>296.5</u> 296.5	4,30	$\frac{4.9}{9.9}$	- 36,5	·
14-41 3.26	2.5 6.38	1,24	296.7	4,50	9,9	-47.9	
				-	- <u> </u>		
						<u></u>	
) <u> </u>
ampling Data							
Sample No: MW-CP5			Location and Dept				
Date Collected (mo/dy/yr):	04/24/24 Tim	e Collected: 14	.45	V	/eather:	NACOST	
	0. 6		1				
				dder 🗖 Subi	mersible Of	her:	
	ailer Dump Other:	Туре:	V Peristaltic 🔲 Blac				
Sample Collected with: 🔲 Ba		1					
Sample Collected with: □ Ba Nater Quality Instrument Da	ailer 🖸 Pump Other:	ProDSS Turbi	dity Meter 🔲 Other: _	/			dicated tubing repla
Sample Collected with: □ Ba Vater Quality Instrument Da Sample Decon Procedure:	ailer 💆 Pump Other: ta Collected with: Type: 👿 YSI P Sample collected with: 🗖 decon	ProDSS Turbi	dity Meter Other: _ ing; disposable tubi	ng 😡 dedica	ted silicon an		dicated tubing repla
Sample Collected with: □ Ba Vater Quality Instrument Da Sample Decon Procedure: Sample Description (Color, T	ailer 💆 Pump Other: ta Collected with: Type: 👿 YSI P Sample collected with: 🗖 decon	ProDSS Turbi	dity Meter 🔲 Other: _	ng 😡 dedica	ted silicon an		dicated tubing repla
Sample Collected with: Bample Collected with: Bample Decon Procedure: Sample Description (Color, T ample Analyses	ailer DPump Other: ta Collected with: Type: DYSI P Sample collected with: D decon Furbidity, Odor, Other):	ProDSS Turbi Intaminated <u>all</u> tub 7 r Scr	dity Meter □ Other:_ ing; □ disposable tubi ・ こんいんよ こそ	ng 👽 dedica * ter bidi	ted silicon an	d poly tubing; 📋 de	dicated tubing repla
Sample Collected with: Water Quality Instrument Da Sample Decon Procedure: Sample Description (Color, T	ailer 💆 Pump Other: ta Collected with: Type: 👿 YSI P Sample collected with: 🗖 decon	ProDSS Turbi Intaminated <u>all</u> tub 7 r Scr	dity Meter □ Other:_ ing; □ disposable tubi ・ こんいんよ こそ	ng 😡 dedica	ted silicon an		dicated tubing repla
Sample Collected with: Bample Collected with: Bample Decon Procedure: Sample Description (Color, T ample Analyses	ailer DPump Other: ta Collected with: Type: DYSI P Sample collected with: D decon Furbidity, Odor, Other):	ProDSS Turbi Intaminated <u>all</u> tub 7 r Scr	dity Meter □ Other:_ ing; □ disposable tubi ・ こんいんよ こそ	ng 👽 dedica * ter bidi	ted silicon an	d poly tubing; 📋 de	dicated tubing repla
Sample Collected with: □ Ba Water Quality Instrument Da Sample Decon Procedure: Sample Description (Color, T ample Analyses Analyte	ailer DPump Other: ta Collected with: Type: DYSI P Sample collected with: D decon Furbidity, Odor, Other):	ProDSS Turbi Intaminated <u>all</u> tub 7 r Scr	dity Meter □ Other:_ ing; □ disposable tubi ・ こんいんよ こそ	ng 👽 dedica * ter bidi	ted silicon an	d poly tubing; 📋 de	dicated tubing repla
Sample Collected with: □ Ba Water Quality Instrument Da Sample Decon Procedure: Sample Description (Color, T ample Analyses Analyte	ailer DPump Other: ta Collected with: Type: DYSI P Sample collected with: D decon Furbidity, Odor, Other):	ProDSS Turbi Intaminated <u>all</u> tub 7 r Scr	dity Meter □ Other:_ ing; □ disposable tubi ・ こんいんよ こそ	ng 👽 dedica * ter bidi	ted silicon an	d poly tubing; 📋 de	dicated tubing repla
Sample Collected with: □ Ba Water Quality Instrument Da Sample Decon Procedure: Sample Description (Color, T ample Analyses Analyte	ailer DPump Other: ta Collected with: Type: DYSI P Sample collected with: D decon Furbidity, Odor, Other):	ProDSS Turbi Intaminated <u>all</u> tub 7 r Scr	dity Meter □ Other:_ ing; □ disposable tubi ・ こんいんよ こそ	ng 👽 dedica * ter bidi	ted silicon an	d poly tubing; 📋 de	dicated tubing repla
Sample Collected with: Bawater Quality Instrument Da Sample Decon Procedure: Sample Description (Color, T ample Analyses Analyte	ailer DPump Other: ta Collected with: Type: DYSI P Sample collected with: D decon Furbidity, Odor, Other):	ProDSS Turbi Intaminated <u>all</u> tub 7 r Scr	dity Meter □ Other:_ ing; □ disposable tubi ・ こんいんよ こそ	ng 👽 dedica * ter bidi	ted silicon an	d poly tubing; 📋 de	dicated tubing repla
Sample Collected with: Bample Quality Instrument Da Sample Decon Procedure: Sample Description (Color, T ample Analyte Analyte	ailer DPump Other: ta Collected with: Type: DYSI P Sample collected with: D decon Furbidity, Odor, Other):	ProDSS Turbi Intaminated <u>all</u> tub 7 r Scr	dity Meter □ Other:_ ing; □ disposable tubi ・ こんいんよ こそ	ng 👽 dedica * ter bidi	ted silicon an	d poly tubing; 📋 de	dicated tubing repla
Sample Collected with: Bawater Quality Instrument Da Sample Decon Procedure: Sample Description (Color, T ample Analyses Analyte	ailer DPump Other: ta Collected with: Type: DYSI P Sample collected with: D decon Furbidity, Odor, Other):	ProDSS Turbi Intaminated <u>all</u> tub 7 r Scr	dity Meter □ Other:_ ing; □ disposable tubi ・ こんいんよ こそ	ng 👽 dedica * ter bidi	ted silicon an	d poly tubing; 📋 de	dicated tubing repla
Water Quality Instrument Da Sample Decon Procedure: Sample Description (Color, T ample Analyses Analyte	ailer DPump Other: ta Collected with: Type: DYSI P Sample collected with: D decon Furbidity, Odor, Other):	ProDSS Turbi	dity Meter □ Other: _ ing; □ disposable tubi Chunks cf Container C	ng v dedica - trr bidi Duantity Pre	ted silicon and	d poly tubing; 📋 de	dicated tubing repla
Sample Collected with: Bawater Quality Instrument Da Sample Decon Procedure: Sample Description (Color, T ample Analyses Analyte	ailer DPump Other: ta Collected with: Type: DYSI P Sample collected with: D decon Furbidity, Odor, Other):	ProDSS Turbi	dity Meter □ Other:_ ing; □ disposable tubi ・ こんいんよ こそ	ng v dedica ter bidi Quantity Pre	ted silicon an	d poly tubing; 📋 de	dicated tubing repla

	Lake			Date of Col	lection: 4	12412	4	
Task:				Field Per	sonnel: 🧻	X-1/A)	N
urge Data	•							
Well ID: <u>MW-CP6</u>	Secure: 🛛 Yes 🛛] No Ec	ology Tag #:	Ca	sing Type/Diam	eter/Screened	Interval	
Replacement Required: 🔲	Monument 🗌 Li	id 🗌 Lock	Bolts: Missing	g (#) Stripped	l (#)	Other Damage	:	
Depth Sounder decontamin	ated Prior to Place	ment in Well:	Yes 🗋 No	One Casing	Volume (gal):			
Depth of water (from TOC):	3,10	Time:	15-10	-				
otal Depth (from log or fiel		•		-			edule 40 PVC P Volume	Veight of Water
After 5 minutes of purging (from top of casing):	3.11	4	- 1 ¼		I.D. 1.380"	(Gal/Linear Ft.) 0.08	(Lbs/Lineal Ft.) 0.64
Begin purge (time): 15.	End pur	ge (time):		- 2" 3"	2.375" 3.500"	2.067" 3.068"	0.17 0.38	1.45 3.2
/olume purged:	Purge water dis	sposal method		4" 6"	4.500" 6.625"	4.026" 6.065"	0.66 1,5	5.51 12.5
Time Depth to Water (ft)	Vol.	рН (s.u.)	DO (mg/L)	Specific Conductivity	Turbidity (NTU)	/ . Temp	ORP (mV)	Comments
15:15 3.11	0.5	6.75	2.05	(µs/cm)	10,63	10,9	-18.3	
15:18 3.10	1.0	6.66	0,88	126.6	-	10,9	-12,9	
5:21 3.08	7,0	6.61	0,55	126,4	6.64	10/2	-8,4	
5:24 3.09	3.0	<u>6.59</u>	0,50	126.2	5,38	<u>iØ,8</u>		÷
5:27 3.10	3,5	6.58	0.46	125,8	5.52	10.8	-5,9	
						_		
ampling Data		7						
Sample No: MW-LPE	- 042424	4		l ocation and l	enth: Mu	I-CPL CO)	
Date Collected (mo/dy/yr):								27. V
r i i i i i i i i i i i i i i i i i i i								/
Noe: 🗹 Ground Water 🛛								
		ther:	Тире			hmoraible O	ihor	
Fype: d Ground Water □ Sample Collected with: □ B	ailer 🗗 Pump Of	(1	: 🖬 Peristaltic 🔲				
Sample Collected with: 🔲 B Water Quality Instrument Da	ailer ⊡∕ Pump Of	Type: 🗹 YSI F		: to Peristaltic □ pidity Meter □ Othe	r:			
Sample Collected with: D B Vater Quality Instrument Da Sample Decon Procedure:	ailer dyPump Of ata Collected with: Sample collected	Type: ┏ YSI F with: □ decor	ProDSS Turb	: to Peristaltic □ pidity Meter □ Othe	r:			
Sample Collected with: Vater Quality Instrument Da Sample Decon Procedure:	ailer dyPump Of ata Collected with: Sample collected	Type: ┏ YSI F with: □ decor	ProDSS Turb	: to Peristaltic □ pidity Meter □ Othe	r:			
Sample Collected with: Vater Quality Instrument Da Sample Decon Procedure: Sample Description (Color,	ailer dyPump Of ata Collected with: Sample collected	Type: ┏ YSI F with: □ decor	ProDSS Turb	: to Peristaltic □ pidity Meter □ Othe	r:			
Sample Collected with: Water Quality Instrument Da Sample Decon Procedure: Sample Description (Color,	ailer dyPump Of ata Collected with: Sample collected	Type:	ProDSS Turb	: to Peristaltic □ pidity Meter □ Othe	tubing 🗹 dedi			
Sample Collected with: Vater Quality Instrument Da Sample Decon Procedure: Sample Description (Color, Color, Color, Colo	ailer dyPump Of ata Collected with: Sample collected Turbidity, Odor, Oth	Type:	ProDSS Turb	: to Peristaltic □ pidity Meter □ Othe bing; □ disposable	tubing 🗹 dedi	cated silicon ar	id poly tubing; 🔲 de	
Sample Collected with: Vater Quality Instrument Da Sample Decon Procedure: Sample Description (Color, Color, Color, Colo	ailer dyPump Of ata Collected with: Sample collected Turbidity, Odor, Oth	Type:	ProDSS Turb	: to Peristaltic □ pidity Meter □ Othe bing; □ disposable	tubing 🗹 dedi	cated silicon ar	id poly tubing; 🔲 de	
Sample Collected with: Vater Quality Instrument Da Sample Decon Procedure: Sample Description (Color, Color, Color, Colo	ailer dyPump Of ata Collected with: Sample collected Turbidity, Odor, Oth	Type:	ProDSS Turb	: to Peristaltic □ pidity Meter □ Othe bing; □ disposable	tubing 🗹 dedi	cated silicon ar	id poly tubing; 🔲 de	
Sample Collected with: Water Quality Instrument Da Sample Decon Procedure: Sample Description (Color, Color, Color, Color, Col	ailer dyPump Of ata Collected with: Sample collected Turbidity, Odor, Oth	Type:	ProDSS Turb	: to Peristaltic □ pidity Meter □ Othe bing; □ disposable	tubing 🗹 dedi	cated silicon ar	id poly tubing; 🔲 de	
Sample Collected with: Vater Quality Instrument Da Sample Decon Procedure: Sample Description (Color, Color, Color, Colo	ailer dyPump Of ata Collected with: Sample collected Turbidity, Odor, Oth	Type:	ProDSS Turb	: to Peristaltic □ pidity Meter □ Othe bing; □ disposable	tubing 🗹 dedi	cated silicon ar	id poly tubing; 🔲 de	
Sample Collected with: Vater Quality Instrument Da Sample Decon Procedure: Sample Description (Color, Color, Color, Colo	ailer dyPump Of ata Collected with: Sample collected Turbidity, Odor, Oth	Type:	ProDSS Turb	: to Peristaltic □ pidity Meter □ Othe bing; □ disposable	tubing 🗹 dedi	cated silicon ar	id poly tubing; 🔲 de	
Sample Collected with: Vater Quality Instrument Da Sample Decon Procedure: Sample Description (Color, Color, Color, Colo	ailer dyPump Of ata Collected with: Sample collected Turbidity, Odor, Oth	Type:	ProDSS Turb	: to Peristaltic □ pidity Meter □ Othe bing; □ disposable	tubing 🗹 dedi	cated silicon ar	id poly tubing; 🔲 de	
ample Collected with: Bample Collected with: Bample Decon Procedure: Bample Description (Color, Color, Col	ailer dyPump Of ata Collected with: Sample collected Turbidity, Odor, Oth	Type:	ProDSS Turb	: to Peristaltic □ pidity Meter □ Othe bing; □ disposable	tubing 🗹 dedi	cated silicon ar	id poly tubing; 🔲 de	
Sample Collected with: Bample Collected with: Bample Decon Procedure: Bample Description (Color, Color, Co	ailer dyPump Of ata Collected with: Sample collected Turbidity, Odor, Oth	Type:	Sample	: to Peristaltic Denicity Meter Other bing; disposable	Quantity F	cated silicon an	Id poly tubing; de Notes	
Sample Collected with: Vater Quality Instrument Da Sample Decon Procedure: Sample Description (Color, Color, Color, Colo	ailer dyPump Of ata Collected with: Sample collected Turbidity, Odor, Oth	Type:	Sample	: to Peristaltic □ pidity Meter □ Othe bing; □ disposable	Quantity F	Cated silicon ar	Id poly tubing; de Notes	

Project: LOTA Lake	Date of Collection	on:	4/24	124	
Task:	Field Personr	nel:		JL	
Purge Data					
Well ID: <u>MW-CP</u> → Secure: □ Yes □ No Ecology Tag #:	Casing Ty	ype/Diamete	er/Screened,I	nterval 2" P	UC
Replacement Required: 🗌 Monument 🔲 Lid 🔲 Lock 🔲 Bolts: Missin	g (#) Stripped (#)	Oti	her Damage:		
Depth Sounder decontaminated Prior to Placement in Well: Yes No		ne (gal):			
Depth of water (from TOC): 4 31		Volum	a of Coho	dule 40 PVC P	ine
Total Depth (from log or field measurement): After 5 minutes of purging (from top of casing): 4 · 33	Diameter	O.D.	I.D.	Volume (Gal/Linear Ft.)	Weight of Water (Lbs/Lineal Ft.)
		1.660" 2.375"	1.380" 2.067"	0.08 0.17	0.64 1.45
Begin purge (time):End purge (time):	- 3" 4"	3.500" 4.500"	3.068" 4.026"	0.38 0.66	3.2 5.51
Volume purged: Purge water disposal method drum_	6"	6.625"	6.065"	1.5	12.5
Time Depth to Vol. pH DO Water (ft) Purged (s.u.) (mg/L)	Specific Conductivity (µs/cm)	Turbidity (NTU)	Temp (°C)	ORP (mV)	Comments
1546 <u>4.34</u> <u>11</u> <u>10.05</u> <u>1.47</u>			11.9		
$\frac{1550}{1554} \frac{4.35}{4.35} \frac{21}{31} \frac{6.03}{6.02} \frac{1.04}{0.91}$	177.3 (0.94	12 0	213.9	
1558 4.35 46 602 6.83	177.8 (0.08	12.0	212.6	
1602 4.30 50 6.02 0.81	1+2-0	1.14	12-1	211-6	
		¥			
Sample No: MW - CP 7 - 042424 Date Collected (mo/dy/yr): 4/24/24 Time Collected:	leis	We	eather: <u>SCC</u>	Hered sh	owers mi
Sample No: MW - CP 7 - 042424 Date Collected (mo/dy/yr): 4/24/24 Type: S Ground Water Surface Water Other: Sample Collected with: B Baile Pump Other: Type Water Quality Instrument Data Collected with: Type: YSI ProDSS Turl Sample Decon Procedure: Sample collected with: decontaminated <u>alt</u> tu	Sample: Sample: <td< th=""><th>We Filtered 🌶 er 🗆 Subn</th><th>eather: <u>SCC</u> Unfiltered F hersible Oth</th><th>H<u>ered</u>sh iilterType:</th><th>UWRIS MI</th></td<>	We Filtered 🌶 er 🗆 Subn	eather: <u>SCC</u> Unfiltered F hersible Oth	H <u>ered</u> sh iilterType:	UWRIS MI
Sample No: MW - CP 7 - 042424 Date Collected (mo/dy/yr): 4/24/24 Type: S Ground Water Surface Water Other: Sample Collected with: B Baile Pump Other: Water Quality Instrument Data Collected with: Type: YSI ProDSS Turn Sample Decon Procedure: Sample collected with: decontaminated <u>alt</u> tu Sample Description (Color, Turbidity, Odor, Other):	Sample: Sample: Peristaltic Bladde bidity Meter Other:	We Filtered 🌶 er 🗆 Subn	eather: <u>SCC</u> Unfiltered F hersible Oth	H <u>ered</u> sh iilterType:	UWRIS MI
Sample Analyses	Sample: Sample: Sample: Sample: Bladder	We Filtered Ø er □ Subm	eather: <u>SCC</u> Unfiltered F nersible Oth ed silicon and	Hered Sh	UWEIS MI
Sample No: MW - CP 7 - 042424 Date Collected (mo/dy/yr): 4/24/24 Type: S Ground Water Surface Water Other: Sample Collected with: B Baile Pump Other: Water Quality Instrument Data Collected with: Type: YSI ProDSS Turn Sample Decon Procedure: Sample collected with: decontaminated <u>alt</u> tu Sample Description (Color, Turbidity, Odor, Other): Clear, MC Cample Analyses	Sample: Shech, ho	We Filtered 🌶 er 🗆 Subn	eather: <u>SCC</u> Unfiltered F nersible Oth ed silicon and	H <u>ered</u> sh iilterType:	UWEIS MI
Sample No: MW - CP 7 - 042424 Date Collected (mo/dy/yr): 4/24/24 Type: S Ground Water Surface Water Other: Sample Collected with: B Baile Pump Other: Water Quality Instrument Data Collected with: Type: YSI ProDSS Turn Sample Decon Procedure: Sample collected with: decontaminated <u>alt</u> tu Sample Description (Color, Turbidity, Odor, Other): Clear, MC Cample Analyses	Sample: Sample: Sample: Sample: Bladder	We Filtered Ø er □ Subm	eather: <u>SCC</u> Unfiltered F nersible Oth ed silicon and	Hered Sh	UWEIS MI
Sample No: MW - CP 7 - 042424 Date Collected (mo/dy/yr): 4/24/24 Time Collected: Type: Ø Ground Water D Surface Water Other:	Sample: Sample: Sample: Sample: Bladder	We Filtered Ø er □ Subm	eather: <u>SCC</u> Unfiltered F nersible Oth ed silicon and	Hered Sh	UWEIS MI
Sample No: MW - CP 7 - 042424 Date Collected (mo/dy/yr): 4/24/24 Time Collected: Type: Ø Ground Water D Surface Water Other:	Sample: Sample: Sample: Sample: Bladder	We Filtered Ø er □ Subm	eather: <u>SCC</u> Unfiltered F nersible Oth ed silicon and	Hered Sh	UWEIS MI
Sample No: MW - CP 7 - 042424 Date Collected (mo/dy/yr): 4/24/24 Time Collected: Type: Ø Ground Water D Surface Water Other:	Sample: Sample: Sample: Sample: Bladder	We Filtered Ø er □ Subm	eather: <u>SCC</u> Unfiltered F nersible Oth ed silicon and	Hered Sh	UWRIS MI
Sample No: MW - CP 7 - 042424 Date Collected (mo/dy/yr): 4/24/24 Time Collected: Type: Ø Ground Water D Surface Water Other:	Sample: Sample: Sample: Sample: Bladder	We Filtered Ø er □ Subm	eather: <u>SCC</u> Unfiltered F nersible Oth ed silicon and	Hered Sh	UWRIS MI
Sample No: MW - CP 7 - 042424 Date Collected (mo/dy/yr): 4/24/24 Time Collected:	Sample: Sample: Sample: Sample: Bladder	We Filtered Ø er □ Subm	eather: <u>SCC</u> Unfiltered F nersible Oth ed silicon and	Hered Sh	UWRIS MI
Sample No: MW - CP 7 - 042414 Date Collected (mo/dy/yr): 4/24/24 Time Collected: Type: Ø Ground Water D Surface Water Other: Sample Collected with: Ø Baile Ø Pump Other: Ype: Ø Sound Water Type: Sample Collected with: Ø Baile Ø Pump Other: Ype: Ø Sound Water Type Water Quality Instrument Data Collected with: Type: YSI ProDSS Turk Sample Decon Procedure: Sample collected with: I decontaminated all tu Sample Description (Cotor, Turbidity, Odor, Other): Clear, Ind Sample Analyses Image: Imag	Sample: Sample: Sample: Sample: Bladder	We Filtered Ø er □ Subm	eather: <u>SCC</u> Unfiltered F nersible Oth ed silicon and	Hered Sh	UWRIS MI
Sample No: MW - CP 7 - 042414 Date Collected (mo/dy/yr): 4/24/24 Type: Ground Water Surface Water Other: Sample Collected with: Baile Water Quality Instrument Data Collected with: Type: YSI ProDSS Turk Sample Decon Procedure: Sample collected with: Sample Description (Cotor, Turbidity, Odor, Other): Clear, Ind C samples	Sample: Shech, hc Shech, hc Shech, hc Sample: Shech, hc Sample: Shech, hc Sample: Shech, hc Sample: Sample: Shech, hc Sample:	We Filtered	eather: <u>SCC</u> Unfiltered F nersible Oth ed silicon and <u>Servative</u>	t Hered Sh iller Type: ier: I poly tubing; □ der Notes	UWRIS MI
Sample No: MW - CP 7 - 0424124 Date Collected (mo/dy/yr): 4/24/24 Type: Ground Water Surface Water Other: Sample Collected with: Baile Water Quality Instrument Data Collected with: Type: YSI ProDSS Turk Sample Decon Procedure: Sample collected with: Sample Description (Cotor, Turbidity, Odor, Other): Clear, Ind Cample Analyses Analyte Analysis Method Samples	Sample: Shech, hc Shech, hc Shech, hc Sample: Shech, hc Sample: Shech, hc Sample: Shech, hc Sample: Sample: Shech, hc Sample:	We Filtered 2 er 🗌 Subm MS/MSD:	eather: <u>SCC</u> Unfiltered F nersible Oth ed silicon and Servative	t Hered Sh iller Type: ier: I poly tubing; □ der Notes	UWEIS MI


.

 \mathfrak{h}_i

Lora Lake Apartments Site

2024 Annual Compliance Monitoring Report

Appendix B Laboratory Reports and Data Validation Summaries

11 April 2024

Adia Jumper Floyd - Snider 601 Union Street Two Union Square, Suite 600 Seattle, WA 98101-2341

RE: Lora Lake 2024 (POS - WA 8140)

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s) 24C0462

Associated SDG ID(s) N/A

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the requirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, LLC

Kelly Bottem, Client Services Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

Chain of Custody Record & Laboratory Analysis Request

2400462

ARI Assigned Number:	Turn-around		Stando	ard	Page:]	of	J				c <mark>al Resources, LLC</mark> cal Chemists and Consultants
ARI Client Company: Floyd 15	snider				Date:	312012	и Ice Prese	nt? 🏏			4611 So	outh 134th Place, Suite 100 , WA 98168
Client Company: Floyd IS	McKoy	@ Goyd	Snider, 1	ism	No. of Coolers:	1	Coole Temps	r: 5,0	100			5-6200 206-695-6201 (fax)
Client Project Name: DDS - 1							[Analysis F	Requested			Notes/Comments
Client Project #: PUS-WA \$140	10 1	dia Tump	nor h' Meg	McCann	Ned.							Lab filtered
Sample ID	Date	Time	Matrix	No. Containers	Dissolved AS							*
MW-C2-032024	3/20/24	1305	GW	1	X							
MW-C3-032024	3/20/24	1368	GW	1	Х							
								5			14	×
			6									
			01									
			r v									
									1			
Comments/Special Instructions		Codron of	m	Received by (Signature)	titto De	ee		Relinquished (Signature)	d by:		Received by (Signature)	c.
	Printed Name:	Adra	Jumper	Printed Name:	M. NAIN			Printed Nam	ie:		Printed Nam	16:
	Company:	oydlShi	1der	Company:	ul		æ ^{r i}	Company:			Company:	
	Date & Time:	0/24 10	4:27	Date & Time:	120/24	, 14	27	Date & Time			Date & Time	9:

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Floyd - Snider	Project: Lora Lake 2024	
601 Union Street Two Union Square, Suite 600	Project Number: POS - WA 8140	Reported:
Seattle WA, 98101-2341	Project Manager: Adia Jumper	11-Apr-2024 14:50
	ANALYTICAL REPORT FOR SAMPLES	

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-C2-032024	24C0462-01	Water	20-Mar-2024 13:05	20-Mar-2024 14:27
MW-C3-032024	24C0462-02	Water	20-Mar-2024 13:08	20-Mar-2024 14:27

Floyd - Snider 601 Union Street Two Union Square, Suite 600 Seattle WA, 98101-2341 Project: Lora Lake 2024 Project Number: POS - WA 8140 Project Manager: Adia Jumper

Reported: 11-Apr-2024 14:50

Work Order Case Narrative

Dissolved Metals - EPA Method 6020B

The sample(s) were digested and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The method blank(s) were clean at the reporting limits.

The blank spike (BS/LCS) percent recoveries were within control limits.

The matrix spike (MS) percent recoveries and the duplicate (DUP) relative percent difference (RPD) were within advisory control limits.

WORK ORDER

24C0462

	- Snider			Project Manage	er: Kelly Bottem		
Project: Lora	Lake 2024			Project Number	r: POS - WA 8140		
Report To:				Invoice To:			
Floyd - Snider				Floyd - Snider			
Adia Jumper				Adia Jumper			
	et Two Union Square, Su	te 600		601 Union Stree	t Two Union Square, Suite 600		
Seattle, WA 98				Seattle, WA 9810			
Phone: (206) 29)2-2078			Phone :(206) 292	2-2078		
Fax: -				Fax: -			
Date Due:	03-Apr-2024 18:00 (1	0 day TAT)	1				
Received By:	Matthew Daniel			Date Received:	20-Mar-2024 14:27		
Logged In By:	Vy Dang			Date Logged In: 20-Mar-2024 16:15			
Correct bottles us Analyses/bottles r Sample split at AF	I in good condition(unbroken), ners listed on COC match num ed for the requested analyses equire preservation(attach pres RI	ervation sheet exe	cluding VOC	Yes Bottle label Yes All VOC vi ?)Yes Sufficient a No	abels complete and legible		
1C0.162_01 MW	V-C2-032024 [Water] S						
		04/03/2024	10	3/21/2024	LAB FILTERED		
lter 0.45 micron	Lorr	01020001			ERBTIELERED		
ilter 0.45 micron let Diss 6020B - As I	UCT	04/03/2024	10	9/16/2024	LAB FILTERED		
ilter 0.45 mieron let Diss 6020B - As I letals Prep ICPMS		04/03/2024	10	3/20/2025			
ilter 0.45 micron let Diss 6020B - As l letals Prep ICPMS 4C0462-02 MW	UCT V-C3-032024 [Water] S	04/03/2024 ampled 20-M	10 ar-2024	3/20/2025 13:08	LAB FILTERED		
Iter 0.45 micron let Diss 6020B - As I etals Prep ICPMS 4C0462-02 MW Iter 0.45 micron	V-C3-032024 [Water] S	04/03/2024 ampled 20-M 04/03/2024	10 ar-2024 10	3/20/2025 13:08 3/21/2024	LAB FILTERED		
Iter 0.45 micron let Diss 6020B - As 1 etals Prep ICPMS 4C0462-02 MW	V-C3-032024 [Water] S	04/03/2024 ampled 20-M	10 ar-2024	3/20/2025 13:08	LAB FILTERED LAB FILTERED		

Container Type	pH	
HDPE NM, 500 mL	77 Fair	
HDPE NM, 500 mL	72 Fair	
-	HDPE NM, 500 mL	HDPE NM, 500 mL 72 fair

VD

Preservation Confirmed By

0 4 120 / 2024 Date

Analytical Resources, LLC Analytical Chemists and Consultants	Cooler Receipt Form
ARI Client: Floyd Snider COC No(s): NA)	Project Name:POS-LC
COC No(s):NA	Delivered by: Fed-Ex UPS Courier Hand Delivered Other:
Assigned ARI Job No: 24C 0462	Tracking No:
Preliminary Examination Phase:	
Were intact, properly signed and dated custody seals attached to the	e outside of the cooler? YES NO
Were custody papers included with the cooler?	
Were custody papers properly filled out (ink, signed, etc.)	
Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for chemist	rv)
Time/427	5.4'
If cooler temperature is out of compliance fill out form 00070F	Temp Gun ID#: 5009708
mo	Date: 03/20/24 Time: 1927
	attach all shipping documents
Log-In Phase:	attach an shipping documents
···	
Was a temperature blank included in the cooler?	YES (NO)
What kind of packing material was used? Bubble Wrap	Wet Ice Gel Packs Baggies Foam Block Paper Other:
Was sufficient ice used (if appropriate)?	
How were bottles sealed in plastic bags?	
Did all bottles arrive in good condition (unbroken)?	
Were all bottle labels complete and legible?	YES' NO
Did the number of containers listed on COC match with the number	of containers received?
Did all bottle labels and tags agree with custody papers?	
Were all bottles used correct for the requested analyses?	
Do any of the analyses (bottles) require preservation? (attach prese	nyation sheet evaluding VOCe)
Were all VOC vials free of air bubbles?	
Was sufficient amount of sample sent in each bottle?	
Date VOC Trip Blank was made at ARI	NA (YES) NO
Were the sample(s) split	
by ART?	Equipment: Split by:
Samples Logged by: Date: 0310010	Time: 16:15 Labels checked by: MD

** Notify Project Manager of discrepancies or concerns **

In the second seco	Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sample ID on COC
Iditional Notes, Discrepancies, & Resolutions:		X		cumple ib on coc
Iditional Notes, Discrepancies, & Resolutions:				
ditional Notes, Discrepancies, & Resolutions:				
Iditional Notes, Discrepancies, & Resolutions:				
Iditional Notes, Discrepancies, & Resolutions:				
Iditional Notes, Discrepancies, & Resolutions				
	Iditional Notes, Discrepancie	s & Resolutions:		
: Date:				

WORK ORDER

24C0462

the second s		ieu 90 uays aller st	1011115510		nless other instructions are received				
Client: Floyd -	Client: Floyd - Snider			Project Manage	Project Manager: Kelly Bottem				
Project: Lora L	ake 2024			Project Number	": POS - WA 8140				
Report To:		21		Invoice To:					
Floyd - Snider				Floyd - Snider					
Adia Jumper				Adia Jumper					
601 Union Stree	et Two Union Square,	Suite 600		601 Union Street	t Two Union Square, Suite 600				
Seattle, WA 981	01-2341			Seattle, WA 9810	01-2341				
Phone: (206) 29	2-2078			Phone :(206) 292	2-2078				
Fax: -				Fax: -					
Date Due:	03-Apr-2024 18:00	0 (10 day TAT)		An an ann an Anna an Anna ann an Anna a					
Received By:	Matthew Daniel			Date Received:	20-Mar-2024 14:27				
Logged In By:	Vy Dang			Date Logged In:	20-Mar-2024 16:15				
Custody papers pr Was sufficient ice All bottles arrived Number of contain Correct bottles use Analyses/bottles r Sample split at AF	gned and dated custody sea operly filled out(in, signed used (if appropriate) in good condition(unbrok ners listed on COC match n ed for the requested analys equire preservation (attach R	I, analyses requested e en) number received es preservation sheet exc	tc)	Yes Was a temp Yes All bottles Yes All bottle labe Yes Bottle labe Yes All VOC vi C).Yes Sufficient a	apers included with the cooler berature blank included in the cooler sealed in individual plastic bags abels complete and legible ls and tags agree with COC ials free of air bubbles amount of sample sent in each bottle				
ilter 0.45 micron	/-C2-032024 Water	1 Sampled 20-Ma 04/03/2024	$\frac{10}{10}$	13:05 3/21/2024	LAB FILTERED				
let Diss 6020B - As I	IICT	04/03/2024	10	9/16/2024	LAB FILIERED				
letals Prep ICPMS	kat Nasis I	04/03/2024	10	3/20/2025					
	/-C3-032024 Water		A.946.0		LAB FILTERED				
ilter 0.45 micron		04/03/2024	10	3/21/2024	LAB FILTERED				
let Diss 6020B - As I	UCT	04/03/2024	10	9/16/2024	LAB FILTERED				
ICL D133 0020D - 233 0									

Preservation Confirmation

Container ID	Container Type	рН	
24C0462-01 A	HDPE NM, 500 mL	72 Fail (1)	
24C0462-02 A	HDPE NM, 500 mL	72 5011	

Preservation Confirmed By

OGULO 12024 Date Of: Hord At 0.49m and preserved to PHZZ WITH 0.5m (WILLIS) (WILLIS) OB/24/2475

Floyd - Snider	
601 Union Street Two Union Square, Suite 600	
Seattle WA, 98101-2341	

Project: Lora Lake 2024 Project Number: POS - WA 8140 Project Manager: Adia Jumper

Reported: 11-Apr-2024 14:50

MW-C2-032024

24C0462-01 (Water)

Metals and Metallic Compounds (dissolved)

Method: EPA 6020B UC	T-KED					S	ampled: 03/	20/2024 13:05
Instrument: ICPMS1 Ar	alyst: MCB					Aı	nalyzed: 04/	04/2024 20:13
Sample Preparation:	Preparation Method: REN - EPA 3010A M Preparation Batch: BMC0645 Prepared: 03/25/2024	Sample Size: 2 Final Volume:				F	iltration Bat	C0462-01 A 02 tch: BMC0559 21/2024 09:19
Analyta		CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notos
Analyte Arsenic, Dissolved		7440-38-2	2	0.0746	0.400	42.0	ug/L	Notes D

Floyd - Snider
601 Union Street Two Union Square, Suite 600
Seattle WA, 98101-2341

Project: Lora Lake 2024 Project Number: POS - WA 8140 Project Manager: Adia Jumper

Reported: 11-Apr-2024 14:50

MW-C3-032024

24C0462-02 (Water)

Metals and Metallic Compounds (dissolved)										
Method: EPA 6020B UCT-KED Sampled: 03/20/2024 1										
Instrument: ICPMS1 Analyst: MCB Analyzed: 04/04/2024							/04/2024 20:12			
Sample Preparation: Preparation Method: REN - EPA 3010A M Extract ID: 24C0 Preparation Batch: BMC0645 Sample Size: 25 mL Filtration Batch Prepared: 03/25/2024 Final Volume: 25 mL Filtration Date: 03/2						tch: BMC0559				
				Detection	Reporting					
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes		
Arsenic, Dissolved		7440-38-2	1	0.0373	0.200	0.150	ug/L	J		

Floyd - Snider 601 Union Street Two Union Square, Suite 600 Seattle WA, 98101-2341

Project: Lora Lake 2024 Project Number: POS - WA 8140 Project Manager: Adia Jumper

Reported: 11-Apr-2024 14:50

Analysis by: Analytical Resources, LLC

Metals and Metallic Compounds (dissolved) - Quality Control

Batch BMC0645 - EPA 6020B UCT-KED

Instrument: ICPMS1 Analyst: MCB

			Detection	Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Isotope	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BMC0645-BLK1)					Prepa	ared: 25-Ma	r-2024 Ana	alyzed: 29-	Mar-2024 14	4:57		
Arsenic, Dissolved	75a	ND	0.0373	0.200	ug/L							U
LCS (BMC0645-BS1)					Prepa	ared: 25-Ma	r-2024 Ana	alyzed: 29-	Mar-2024 1:	5:01		
Arsenic, Dissolved	75a	25.7	0.0373	0.200	ug/L	25.0		103	80-120			
Duplicate (BMC0645-DUP1	.)	S	ource: 24C	0462-01	Prepa	ared: 25-Ma	r-2024 Ana	alyzed: 04-	Apr-2024 20	0:15		
Arsenic, Dissolved	75a	41.7	0.0746	0.400	ug/L		42.0			0.75	20	D
Matrix Spike (BMC0645-M	S1)	S	ource: 24C	0462-01	Prepa	ared: 25-Ma	r-2024 Ana	alyzed: 04-	Apr-2024 20	0:16		
Arsenic, Dissolved	75a	69.3	0.0746	0.400	ug/L	25.0	42.0	109	75-125			D
Recovery limits for target analyte	es in MS/MSD QC	samples are	advisory on	y.								
Matrix Spike Dup (BMC064	45-MSD1)	S	ource: 24C	20462-01	Prepa	ared: 25-Ma	r-2024 Ana	alyzed: 04-	Apr-2024 20	0:17		
Arsenic, Dissolved	75a	67.9	0.0746	0.400	ug/L	25.0	42.0	103	75-125	2.13	20	D

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Floyd - Snider 601 Union Street Two Union Square, Suite 600 Seattle WA, 98101-2341 Project: Lora Lake 2024 Project Number: POS - WA 8140 Project Manager: Adia Jumper

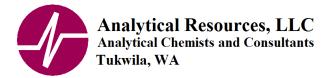
Reported: 11-Apr-2024 14:50

Certified Analyses included in this Report

Analyte

Certifications

EPA 6020B UCT-KED in Water


Arsenic-75a

NELAP,WADOE,DoD-ELAP,ADEC

Code	Description	Number	Expires
ADEC	Alaska Dept of Environmental Conservation	17-015	03/28/2025
DoD-ELAP	DoD-Environmental Laboratory Accreditation Program, PJLA Testing	66169	02/28/2025
NELAP	ORELAP - Oregon Laboratory Accreditation Program	WA100006-012	05/12/2024
WADOE	WA Dept of Ecology	C558	06/30/2024
WA-DW	Ecology - Drinking Water	C558	06/30/2024

Floyd - S	Snider	Project: Lora Lake 2024					
601 Unio	on Street Two Union Square, Suite 600	Project Number: POS - WA 8140	Reported:				
Seattle V	VA, 98101-2341	Project Manager: Adia Jumper	11-Apr-2024 14:50				
		Notes and Definitions					
D	The reported value is from a dilution						
J	Estimated concentration value detected below	the reporting limit.					
U	This analyte is not detected above the reporting limit (RL) or if noted, not detected above the limit of detection (LOD).						
DET	Analyte DETECTED						
ND	Analyte NOT DETECTED at or above the rep	porting limit					
NR	Not Reported						
dry	Sample results reported on a dry weight basis						
RPD	Relative Percent Difference						
[2C]	Indicates this result was quantified on the sec	ond column on a dual column analysis.					

29 May 2024

Amanda McKay Floyd - Snider 601 Union Street Two Union Square, Suite 600 Seattle, WA 98101-2341

RE: Lora Lake 2024 (POS - LLA)

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s) 24D0567 Associated SDG ID(s) N/A

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the requirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, LLC

Kelly Bottem, Client Services Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number: Turn-around Requested:					Page:]	of	2			Analytic	cal Resources, LLC cal Chemists and Consultants
ARI Client Company: Flourd JS	nider	Phone: 2	06-292	2-2078	Date:	1/24/24	Ice Prese	nt?				outh 134th Place, Suite 100 , WA 98168
Client Contact: Amanda McKay							Coole Temps				206-69	5-6200 206-695-6201 (fax)
Client Project Name: POS - ULA								Analysis F	lequested	1	1	Notes/Comments
Client Project #:	Samplers:	MPER	M. STE	FENTS	iv ed	FLAVANS					14	As sample to be lab filtered
Sample ID	Date	Time	Matrix	No. Containers	Dissoiu As	Die						fiteved
MW-CI-VB1-642424	4/24/24	1120	GW	3	X	Х						
MW-CI-VB1-042424-D	1	1135	(3	\times	X						
MH-VB2-042424		1106		3	X	X	, f					
MW-VB3-042424		1230		3	X	X						23
HCOD-B312-042424		1345		3	\times	X						
MWZPI-042424		1640		3	\times	X						2
MW-(P1-042494-D		1650		3	X	×						
MW-CP2-042424		112370		3	\times	×						Sample time: 1710
MW-CP3-042424		1350	$\left\{ \right\}$	3	\times	Х						1 122
MW- CP4 - 042424	V	1580	V	3	X	×						
Comments/Special Instructions	Relinquished by: (Signature)	Colon On	~	Received by: (Signature)	the			Relinquished (Signature)	l by:		Received by (Signature)	Y:
	Printed Name:	tain Si	1 mpor	Printed Name:	Rora	nr.		Printed Nam	e:		Printed Nan	ne:
	Company:	oydisn	1	Company:	And	2		Company:			Company:	
	Date & Time:	25/24		Date & Time:	4/25/	ey or	735	Date & Time			Date & Time	e:

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number: 2470567 ARI Client Company: Ci 1/C	Turn-around	Phone:	1 002	41) 7 •	Page: Date:	2 4/24/20	of Ice Prese	2			Analytic 4611 Sc	cal Resources, LLC cal Chemists and Consultants buth 134th Place, Suite 100
Client Contact: Glient Contact: Amender			19-21-21	-9278	No. of Coolers:	1/24/20	Coole Temps	r				, WA 98168 5-6200 206-695-6201 (fax)
Client Project Name: POS - CLA								Analysis F	Requested			Notes/Comments
Client Project #:	Samplers:	JUMPE	Z M. S.	TECHIS	wed	6xin/ Furan						As sample
Sample ID	Date	Time	Matrix	No. Containers	DIJUN	DIOXIN						As Sample to be lab filtered
MW-CP5-042924	ybyby	1445	GW	3	\times	X						
MW-CP6-012124	ζ	1530		3	X	X						
MW- (17-042424	E	1540	J	3	X	X						
	2											
Comments/Special Instructions	Relinquished by: (Signature)	Color Ol	\sim	Received by: (Signature)	h			Relinquishec (Signature)	by:		Received by (Signature)	
	Printed Name:	ha Su	mper	Printed Name:	Ronan	c .		Printed Nam	e:		Printed Nam	ie:
	Company:	100 00	1 days	Company:	ARI	61		Company:)	91. (Claratic State)	Company:	
	Date & Time: 4/25/2	<u>4 093</u>	s5	Date & Time:	935	4/25,	124	Date & Time			Date & Time	1:

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Floyd - Snider 601 Union Street Two Union Square, Suite 600 Seattle WA, 98101-2341 Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-C1-VB1-042424	24D0567-01	Water	24-Apr-2024 11:20	25-Apr-2024 09:35
MW-C1-VB1-042424-D	24D0567-02	Water	24-Apr-2024 11:35	25-Apr-2024 09:35
MW-VB2-042424	24D0567-03	Water	24-Apr-2024 11:00	25-Apr-2024 09:35
AW-VB3-042424	24D0567-04	Water	24-Apr-2024 12:30	25-Apr-2024 09:35
ICOO-B312-042424	24D0567-05	Water	24-Apr-2024 13:45	25-Apr-2024 09:35
1W-CP1-042424	24D0567-06	Water	24-Apr-2024 16:40	25-Apr-2024 09:35
1W-CP1-042424-D	24D0567-07	Water	24-Apr-2024 16:50	25-Apr-2024 09:35
IW-CP2-042424	24D0567-08	Water	24-Apr-2024 17:10	25-Apr-2024 09:35
1W-CP3-042424	24D0567-09	Water	24-Apr-2024 13:50	25-Apr-2024 09:35
1W-CP4-042424	24D0567-10	Water	24-Apr-2024 15:20	25-Apr-2024 09:35
AW-CP5-042424	24D0567-11	Water	24-Apr-2024 14:45	25-Apr-2024 09:35
1W-CP6-042424	24D0567-12	Water	24-Apr-2024 15:30	25-Apr-2024 09:35
1W-CP7-042424	24D0567-13	Water	24-Apr-2024 15:40	25-Apr-2024 09:35

Floyd - Snider 601 Union Street Two Union Square, Suite 600 Seattle WA, 98101-2341 Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

Work Order Case Narrative

Dioxin/Furans - EPA Method 1613

The sample(s) were extracted and analyzed within the recommended holding times. Analysis was performed using an application specific column developed by Restek. The RTX-Dioxin2 column has unique isomer separation for the 2378-TCDF, eliminating the need for confirmation analysis.

Initial and continuing calibrations were within method requirements.

Labeled internal standard areas were within limits with the exception of labels flagged on the associated forms.

The cleanup surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The OPR (Ongoing Precision and Recovery) standard percent recoveries were within control limits.

Dissolved Metals - EPA Method 6020B

The sample(s) were digested and analyzed within the recommended holding times.

Initial and continuing calibrations including interference checks were within method requirements for reported elements.

The method blank(s) were clean at the reporting limits.

The blank spike (BS/LCS) percent recoveries were within control limits.

The matrix spike (MS) percent recoveries and the duplicate (DUP) relative percent difference (RPD) were within advisory control limits.

WORK ORDER

24D0567

Samples	s will be discarded 90 days after	submis	sion of a fi	nal report unl	ess other instructions are received					
Client: Floyd - Snide	er		Proje	ect Manager	: Kelly Bottem					
Project: Lora Lake 20	Project: Lora Lake 2024			Project Number: POS - LLA						
	Preservation Confirmation									
Container ID	Container Type			рН						
24D0567-01 A	Glass NM, Amber, 1000 mL									
24D0567-01 B	Glass NM, Amber, 1000 mL									
24D0567-01 C	HDPE NM, 500 mL	72	fail							
24D0567-02 A	Glass NM, Amber, 1000 mL									
24D0567-02 B	Glass NM, Amber, 1000 mL									
24D0567-02 C	HDPE NM, 500 mL	72	fail							
24D0567-03 A	Glass NM, Amber, 1000 mL									
24D0567-03 B	Glass NM, Amber, 1000 mL									
24D0567-03 C	HDPE NM, 500 mL	72	fail							
24D0567-04 A	Glass NM, Amber, 1000 mL									
24D0567-04 B	Glass NM, Amber, 1000 mL									
24D0567-04 C	HDPE NM, 500 mL	72	fail							
24D0567-05 A	Glass NM, Amber, 1000 mL									
24D0567-05 B	Glass NM, Amber, 1000 mL									
24D0567-05 C	HDPE NM, 500 mL	72	fail							
24D0567-06 A	Glass NM, Amber, 1000 mL									
24D0567-06 B	Glass NM, Amber, 1000 mL									
24D0567-06 C	HDPE NM, 500 mL	72	Ril							
24D0567-07 A	Glass NM, Amber, 1000 mL									
24D0567-07 B	Glass NM, Amber, 1000 mL									
24D0567-07 C	HDPE NM, 500 mL	72	Foil							
24D0567-08 A	Glass NM, Amber, 1000 mL									
24D0567-08 B	Glass NM, Amber, 1000 mL									
24D0567-08 C	HDPE NM, 500 mL	フレ	? Fil							
24D0567-09 A	Glass NM, Amber, 1000 mL									
24D0567-09B	Glass NM, Amber, 1000 mL				8					
24D0567-09 C	HDPE NM, 500 mL	72	2 fail							
24D0567-10 A	Glass NM, Amber, 1000 mL				-					
24D0567-10 B	Glass NM, Amber, 1000 mL									
24D0567-10 C	HDPE NM, 500 mL	72	- fail							
24D0567-11 A	Glass NM, Amber, 1000 mL									
24D0567-11 B	Glass NM, Amber, 1000 mL		÷							
24D0567-11 C	HDPE NM, 500 mL	22	fail							
24D0567-12 A	Glass NM, Amber, 1000 mL									

Analytical Resources, LLC Analytical Chemists and Consultants

WORK ORDER

24D0567

Client: Floyd - S		Project Manager: Kelly Bottem			
Project: Lora Lak	e 2024	Project Number: POS - LLA			
24D0567-12 B	Glass NM, Amber, 1000 mL				
24D0567-12 C	HDPE NM, 500 mL -2	favil			
24D0567-13 A	Glass NM, Amber, 1000 mL				
24D0567-13 B	Glass NM, Amber, 1000 mL				
24D0567-13 C	HDPE NM, 500 mL	feril			

l

4/25/24 Date

Preservation Confirmed By

Analytical Resources, LLC	
Analytical Chemists and Consultants	

Cooler Receipt Form

ARI Client: Flack S.	nilar	Project Name:	LLA	
COC No(s):	NA			2
Assigned ARI Job No: 24		Delivered by: Fed-Ex UPS Cou		6
Preliminary Examination Phase:		Tracking No:		NA
Were intact, properly signed and	datad austady apple attached to H	ha autoide af the easter?	VE	
			YES	
Were custody papers included wi			YES	NO
Were custody papers properly fill Temperature of Cooler(s) (°C) (re			YES	NO
Time 073^{5}		5,8 3,3	53	
				970 2
If cooler temperature is out of cor		Data: 01/25/24	Temp Gun ID#:	1100
Cooler Accepted by:		_Date/ (Time	: 09 SS	
Les la Dheese	Complete custody forms ar	nd attach all shipping documents		
Log-In Phase:				
Was a temperature blank includ	ed in the cooler?	No. Martin Martin		YES NO
		p Wet Ice Gel Packs Baggies Foam	Block Paper Other:	
Was sufficient ice used (if appro	priate)?		NA	YES NO
How were bottles sealed in plas	tic bags?		Individually	Grouped Not
Did all bottles arrive in good cor	dition (unbroken)?			YES NO
Were all bottle labels complete a	and legible?			YES NO
Did the number of containers lis	ted on COC match with the numb	er of containers received?	•	VES NO
Did all bottle labels and tags ag	ree with custody papers?			NO NO
Were all bottles used correct for	the requested analyses?			YES NO
		servation sheet, excluding VOCs)	NA	YES NO
	Ibbles?		NA	YES NO
	e sent in each bottle?		\bigcirc	(YES) NO
Were the sample(s) split			CNA	(
by ARI?	IA YES Date/Time:	Equipment:	S	plit by:
General Level Level Level G	Date: 4/25/2	1040		
Samples Logged by:			abels checked by:	
	Notity Project manager	of discrepancies or concerns **		
Sample ID on Pottle	Samula ID an COO		1	
Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sample I	D on COC
Additional Notes, Discrepanci	es, & Resolutions:			
10 HOA				
D	51603			
By: D	ate:			

WORK ORDER

24D0567

Samples will be discarded 90 days after submission of a final report unless other instructions are received				
Client: Floyd - Snider			Project Manager:	Kelly Bottem
Project: Lora Lake 2024			Project Number:	POS - LLA
Preservation Confirmation				
Container ID	Container Type		рН	
24D0567-01 A	Glass NM, Amber, 1000 mL			
24D0567-01 B	Glass NM, Amber, 1000 mL			~
24D0567-01 C	HDPE NM, 500 mL	72	fail	(1)
24D0567-02 A	Glass NM, Amber, 1000 mL	4444		-
24D0567-02 B	Glass NM, Amber, 1000 mL			
24D0567-02 C	HDPE NM, 500 mL	72	fail	\bigcirc
24D0567-03 A	Glass NM, Amber, 1000 mL			
24D0567-03 B	Glass NM, Amber, 1000 mL			
24D0567-03 C	HDPE NM, 500 mL	72	Fail	(1)
24D0567-04 A	Glass NM, Amber, 1000 mL			
24D0567-04 B	Glass NM, Amber, 1000 mL			
24D0567-04 C	HDPE NM, 500 mL	72	fail	
24D0567-05 A	Glass NM, Amber, 1000 mL		6	
24D0567-05 B	Glass NM, Amber, 1000 mL			
24D0567-05 C	HDPE NM, 500 mL	72	Ril	(-1)
24D0567-06 A	Glass NM, Amber, 1000 mL			
24D0567-06 B	Glass NM, Amber, 1000 mL			
24D0567-06 C	HDPE NM, 500 mL	72	e fail	
24D0567-07 A	Glass NM, Amber, 1000 mL			
24D0567-07 B	Glass NM, Amber, 1000 mL			
24D0567-07 C	HDPE NM, 500 mL	'z 2	Fail	
24D0567-08 A	Glass NM, Amber, 1000 mL			0
24D0567-08 B	Glass NM, Amber, 1000 mL			~
24D0567-08 C	HDPE NM, 500 mL	7.	2 Fil	\bigcirc
24D0567-09 A	Glass NM, Amber, 1000 mL			
24D0567-09 B	Glass NM, Amber, 1000 mL			P
24D0567-09 C	HDPE NM, 500 mL	72	2 fail	(\mathbf{i})
24D0567-10 A	Glass NM, Amber, 1000 mL			Ų
24D0567-10 B	Glass NM, Amber, 1000 mL			
24D0567-10 C	HDPE NM, 500 mL	ッと	2 fail	()
24D0567-11 A	Glass NM, Amber, 1000 mL			<u> </u>
24D0567-11 B	Glass NM, Amber, 1000 mL		.2	N
24D0567-11 C	HDPE NM, 500 mL	72	Gail	$\left(\right)$
24D0567-12 A	Glass NM, Amber, 1000 mL			

Printed: 4/25/2024 11:22:45AM

WORK ORDER

24D0567

Client: Floyd - Snider Project: Lora Lake 2024			1070) 1010 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101	anager: Kelly Bottem mber: POS - LLA	
24D0567-12 B	Glass NM, Amber, 100	0 mL		2	
24D0567-12 C	HDPE NM, 500 mL	>2	faril	()	
24D0567-13 A	Glass NM, Amber, 100	0 mL			
24D0567-13 B	Glass NM, Amber, 100	0 mL		~~~	
24D0567-13 C	HDPE NM, 500 mL	72	feil		
(ゴワ		4/2	5/24	
Preservation Confirme	d By		Date		1

Ofilterell of 0.46m and preserved to pHcz with 0.5m (concentrated HNO3. (MALETS) 4/19/148

Floyd - Snider 601 Union Street Two Union Square, Suite 600 Seattle WA, 98101-2341 Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

MW-C1-VB1-042424

24D0567-01 (Water)

Method: EPA 1613B						Sa	npled: 04	4/24/2024 11:20
Instrument: AUTOSPEC	01 Analyst: pk					Ana	lyzed: 05	5/22/2024 03:40
Sample Preparation:	Preparation Method: EPA 1613					Extra	et ID: 24	D0567-01 A 0
	Preparation Batch: BME0078		Sample Size: 1060 mL					
	Prepared: 05/03/2024		Final Volume: 20 uL					
Sample Cleanup:	Cleanup Method: Silica Gel					Extra	ct ID: 24	D0567-01 A 0
	Cleanup Batch: CME0052		Initial Volume: 20 uL					
	Cleaned: 06-May-2024		Final Volume: 20 uL					
Sample Cleanup:	Cleanup Method: Florisil					Extr	act ID:24	D0567-01 A 0
	Cleanup Batch: CME0053		Initial Volume: 20 uL					
	Cleaned: 06-May-2024		Final Volume: 20 uL					
					Reporting			
Analyte	DF/Split	Ion Ratio	Ratio Limits	EDL	Limit	Result	Units	Notes
2,3,7,8-TCDF			0.655-0.886	1.27	9.43	ND	pg/L	U
2,3,7,8-TCDD			0.655-0.886	0.87	9.43	ND	pg/L	U
1,2,3,7,8-PeCDF			1.318-1.783	1.52	9.43	ND	pg/L	U
2,3,4,7,8-PeCDF			1.318-1.783	1.53	9.43	ND	pg/L	U
1,2,3,7,8-PeCDD			1.318-1.783	1.67	9.43	ND	pg/L	U
1,2,3,4,7,8-HxCDF			1.054-1.426	1.00	9.43	ND	pg/L	U
1,2,3,6,7,8-HxCDF			1.054-1.426	1.03	9.43	ND	pg/L	U
2,3,4,6,7,8-HxCDF			1.054-1.426	1.05	9.43	ND	pg/L	U
1,2,3,7,8,9-HxCDF			1.054-1.426	1.41	9.43	ND	pg/L	U
1,2,3,4,7,8-HxCDD			1.054-1.426	2.14	9.43	ND	pg/L	U
1,2,3,6,7,8-HxCDD			1.054-1.426	2.13	9.43	ND	pg/L	U
1,2,3,7,8,9-HxCDD			1.054-1.426	2.32	9.43	ND	pg/L	U
1,2,3,4,6,7,8-HpCDF			0.893-1.208	1.27	18.9	ND	pg/L	U
1,2,3,4,7,8,9-HpCDF			0.893-1.208	2.26	9.43	ND	pg/L	U
1,2,3,4,6,7,8-HpCDD			0.893-1.208	2.37	9.43	ND	pg/L	U
OCDF			0.757-1.024	2.82	18.9	ND	pg/L	U
OCDD		1.031	0.757-1.024	3.64	47.2	5.10	pg/L	EMPC, J
Homologue groups								
Total TCDF					9.43	ND	pg/L	U
Total TCDD					9.43	ND	pg/L	U
Total PeCDF					9.43	ND	pg/L	U
Total PeCDD					9.43	ND	pg/L	U
Total HxCDF					9.43	ND	pg/L	U
Total HxCDD					9.43	ND	pg/L	U
Total HpCDF					9.43	ND	pg/L	U
Total HpCDD					9.43	ND	pg/L	U

Floyd - Snider	Project: Lora Lake 2024	
601 Union Street Two Union Square, Suite 600	Project Number: POS - LLA	Reported:
Seattle WA, 98101-2341	Project Manager: Amanda McKay	29-May-2024 13:46
	MW-C1-VB1-042424	
	24D0567-01 (Water)	

Dioxins/Furans Method: EPA 1613B Sampled: 04/24/2024 11:20 Instrument: AUTOSPEC01 Analyst: pk Analyzed: 05/22/2024 03:46 Reporting Analyte DF/Split Ion Ratio Ratio Limits Limit Result Units Notes

DF/Split Ion Ratio Ratio Limits	Lin	nit Result	Units	Notes
Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Ind	luding EMPC): 2.17			
Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, In	cluding EMPC): 0.00			
Total 2.3.7.8 TCDD Equivalance (WHO2005, ND-1/2 EDI	EMPC = N(D), 2.17			

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, EMPC = ND): 2.17

Floyd - Snider 601 Union Street Two Union Square, Suite 600 Seattle WA, 98101-2341

Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

Sampled: 04/24/2024 11:20

MW-C1-VB1-042424

24D0567-01 (Water)

Dioxins/Furans	
Method: EPA 1613B	

nstrument: AUTOSPEC01 Analyst:	pk				An	alyzed: 05/2	22/2024 03
				Reporting			
Analyte	DF/Split	Ion Ratio	Ratio Limits	Limit	Result	Units	Notes
abeled compounds							
3C12-2,3,7,8-TCDF		0.692	0.655-0.886	24-169 %	85.8	%	
3C12-2,3,7,8-TCDD		0.778	0.655-0.886	25-164 %	<i>99.7</i>	%	
3C12-1,2,3,7,8-PeCDF		1.570	1.318-1.783	24-185 %	95.1	%	
3C12-2,3,4,7,8-PeCDF		1.550	1.318-1.783	21-178 %	92.8	%	
3C12-1,2,3,7,8-PeCDD		1.716	1.318-1.783	25-181 %	99.8	%	
3C12-1,2,3,4,7,8-HxCDF		0.521	0.434-0.587	26-152 %	130	%	
3C12-1,2,3,6,7,8-HxCDF		0.507	0.434-0.587	26-123 %	118	%	
3C12-2,3,4,6,7,8-HxCDF		0.518	0.434-0.587	28-136 %	119	%	
3C12-1,2,3,7,8,9-HxCDF		0.553	0.434-0.587	29-147 %	125	%	
3C12-1,2,3,4,7,8-HxCDD		1.254	1.054-1.426	32-141 %	106	%	
3C12-1,2,3,6,7,8-HxCDD		1.225	1.054-1.426	28-130 %	109	%	
3C12-1,2,3,4,6,7,8-HpCDF		0.418	0.374-0.506	28-143 %	114	%	
3C12-1,2,3,4,7,8,9-HpCDF		0.466	0.374-0.506	26-138 %	115	%	
3C12-1,2,3,4,6,7,8-HpCDD		1.035	0.893-1.208	23-140 %	122	%	
3C12-OCDD		0.928	0.757-1.024	17-157 %	110	%	
7Cl4-2,3,7,8-TCDD				35-197 %	99.0	%	

Floyd - Snider 601 Union Street Two Ur Seattle WA, 98101-2341	tion Square, Suite 600	5	Project: Lora La Number: POS - I Manager: Amand	LLA				Керо 29-Мау-20	
			V-C1-VB1-042 D0567-01 (Wat						
Dioxins/Furans									
Method: EPA 1613B	A								24/2024 11:20
Instrument: AUTOSPEC01	Anaiysi: pk					Denertine	AI	halyzed: 05/	22/2024 03:46
Analyte	DF/Spli	t Ion Ratio	Ratio Limits		EDL	Reporting Limit	Result	Units	Notes
		Μ	V-C1-VB1-042	2424					
		24	D0567-01 (Wat	ter)					
Metals and Metallic Co	ompounds (dissolved)								
Method: EPA 6020B UCT-	KED						S	ampled: 04/	24/2024 11:20
Instrument: ICPMS2 Ana	lyst: DOE						Aı	nalyzed: 05/	01/2024 22:02
Sample Preparation:	Preparation Method: REN Preparation Batch: BMD07 Prepared: 04/28/2024		Sample Size: 2 Final Volume:				F	iltration Bat	00567-01 C 02 ch: BMD0643 25/2024 15:10
Analyte	-		CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Arsenic, Dissolved			7440-38-2	1	0.0373	0.200	0.112	ug/L	J

Floyd - Snider
601 Union Street Two Union Square, Suite 600
Seattle WA, 98101-2341

Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

MW-C1-VB1-042424-D

24D0567-02 (Water)

Dioxins/Furans								
Method: EPA 1613B						Sa	mpled: 04/	24/2024 11:35
Instrument: AUTOSPEC	201 Analyst: pk							22/2024 04:35
Sample Preparation:	Preparation Method: EPA 1613 Preparation Batch: BME0078 Prepared: 05/03/2024	Sample Size: 950 mL Final Volume: 20 uL			Extra	ict ID: 24I	D0567-02 A 01	
Sample Cleanup:	Cleanup Method: Silica Gel Cleanup Batch: CME0052 Cleaned: 06-May-2024		Initial Volume: 20 uL Final Volume: 20 uL			Extra	ict ID: 24I	D0567-02 A 01
Sample Cleanup:	Cleanup Method: Florisil Cleanup Batch: CME0053 Cleaned: 06-May-2024		Initial Volume: 20 uL Final Volume: 20 uL			Extr	act ID:24I	D0567-02 A 01
					Reporting			
Analyte	DF/Split	Ion Ratio	Ratio Limits	EDL	Limit	Result	Units	Notes
2,3,7,8-TCDF 2,3,7,8-TCDD			0.655-0.886 0.655-0.886	1.44 1.05	10.5 10.5	ND ND	pg/L pg/L	U U
1,2,3,7,8-PeCDF			1.318-1.783	1.85	10.5	ND	pg/L	U
2,3,4,7,8-PeCDF			1.318-1.783	1.94	10.5	ND	pg/L	U
1,2,3,7,8-PeCDD			1.318-1.783	2.05	10.5	ND	pg/L	U
1,2,3,4,7,8-HxCDF			1.054-1.426	1.27	10.5	ND	pg/L	U
1,2,3,6,7,8-HxCDF			1.054-1.426	1.25	10.5	ND	pg/L	U
2,3,4,6,7,8-HxCDF			1.054-1.426	1.45	10.5	ND	pg/L	U
1,2,3,7,8,9-HxCDF			1.054-1.426	1.70	10.5	ND	pg/L	U
1,2,3,4,7,8-HxCDD			1.054-1.426	2.60	10.5	ND	pg/L	U
1,2,3,6,7,8-HxCDD			1.054-1.426	2.56	10.5	ND	pg/L	U
1,2,3,7,8,9-HxCDD			1.054-1.426	2.80	10.5	ND	pg/L	U
1,2,3,4,6,7,8-HpCDF			0.893-1.208	1.31	21.1	ND	pg/L	U
1,2,3,4,7,8,9-HpCDF			0.893-1.208	2.32	10.5	ND	pg/L	U
1,2,3,4,6,7,8-HpCDD			0.893-1.208	2.66	10.5	ND	pg/L	U
OCDF			0.757-1.024	3.86	21.1	ND	pg/L	U
OCDD			0.757-1.024	4.44	52.6	ND	pg/L	U
Homologue groups								
Total TCDF					10.5	ND	pg/L	U
Total TCDD					10.5	ND	pg/L	U
Total PeCDF					10.5	ND	pg/L	U
Total PeCDD					10.5	ND	pg/L	U
Total HxCDF					10.5	ND	pg/L	U
Total HxCDD					10.5	ND	pg/L	U
Total HpCDF					10.5	ND	pg/L	U
Total HpCDD					10.5	ND	pg/L	U

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 2.65

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 0.00

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, EMPC = ND): 2.65

Floyd - Snider 601 Union Street Two Union Square, Suite 600 Seattle WA, 98101-2341 Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

Sampled: 04/24/2024 11:35

MW-C1-VB1-042424-D

24D0567-02 (Water)

Diox	ins/l	Furans

Method: EPA 1613B

nstrument: AUTOSPEC01 Analyst:		Ar	alyzed: 05/	22/2024 04			
				Reporting			
Analyte	DF/Split	Ion Ratio	Ratio Limits	Limit	Result	Units	Notes
abeled compounds							
3C12-2,3,7,8-TCDF		0.712	0.655-0.886	24-169 %	88.0	%	
3C12-2,3,7,8-TCDD		0.781	0.655-0.886	25-164 %	101	%	
3C12-1,2,3,7,8-PeCDF		1.561	1.318-1.783	24-185 %	96.0	%	
3C12-2,3,4,7,8-PeCDF		1.531	1.318-1.783	21-178 %	91.4	%	
3C12-1,2,3,7,8-PeCDD		1.617	1.318-1.783	25-181 %	93.2	%	
3C12-1,2,3,4,7,8-HxCDF		0.540	0.434-0.587	26-152 %	145	%	
3C12-1,2,3,6,7,8-HxCDF		0.512	0.434-0.587	26-123 %	141	%	*
3C12-2,3,4,6,7,8-HxCDF		0.566	0.434-0.587	28-136 %	132	%	
3C12-1,2,3,7,8,9-HxCDF		0.567	0.434-0.587	29-147 %	143	%	
3C12-1,2,3,4,7,8-HxCDD		1.256	1.054-1.426	32-141 %	116	%	
3C12-1,2,3,6,7,8-HxCDD		1.251	1.054-1.426	28-130 %	121	%	
3C12-1,2,3,4,6,7,8-HpCDF		0.445	0.374-0.506	28-143 %	128	%	
3C12-1,2,3,4,7,8,9-HpCDF		0.446	0.374-0.506	26-138 %	116	%	
3C12-1,2,3,4,6,7,8-HpCDD		0.956	0.893-1.208	23-140 %	131	%	
3C12-OCDD		0.988	0.757-1.024	17-157 %	126	%	
7Cl4-2,3,7,8-TCDD				35-197 %	99.1	%	

Floyd - Snider 601 Union Street Two U Seattle WA, 98101-2341	1	5	Project: Lora La Number: POS - I Manager: Amand	LLA				Repo 29-May-20	
			-C1-VB1-0424 D0567-02 (Wat						
Dioxins/Furans									
Method: EPA 1613B	1 A								24/2024 11:35 22/2024 04:35
Instrument: AUTOSPEC0	i Analyst: pk					Reporting	AI	lalyzed: 03/	22/2024 04:55
Analyte	DF/Split	Ion Ratio	Ratio Limits		EDL	Limit	Result	Units	Notes
		MW	-C1-VB1-0424	424-D					
		24	D0567-02 (Wat	ter)					
Metals and Metallic C	omnounds (dissolved)								
Method: EPA 6020B UCT	• • /						S	ampled: 04/	24/2024 11:35
Instrument: ICPMS2 Ana									01/2024 21:54
Sample Preparation:	Preparation Method: REN - Preparation Batch: BMD070 Prepared: 04/28/2024		Sample Size: 2 Final Volume:				F	iltration Bat	00567-02 C 02 cch: BMD0643 25/2024 15:10
Analyte	*		CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Arsenic, Dissolved			7440-38-2	1	0.0373	0.200	0.105	ug/L	J

Floyd - Snider
601 Union Street Two Union Square, Suite 600
Seattle WA, 98101-2341

Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

MW-VB2-042424

24D0567-03 (Water)

Dioxins/Furans								
Method: EPA 1613B						Sa	mpled: 04/	24/2024 11:00
Instrument: AUTOSPEC	201 Analyst: pk					Ana	lyzed: 05/	22/2024 05:24
Sample Preparation:	Preparation Method: EPA 1613 Preparation Batch: BME0078 Prepared: 05/03/2024		Sample Size: 1040 mL Final Volume: 20 uL			Extra	ict ID: 24I	D0567-03 A 01
Sample Cleanup:	Cleanup Method: Silica Gel Cleanup Batch: CME0052 Cleaned: 06-May-2024		Initial Volume: 20 uL Final Volume: 20 uL			Extra	act ID: 24I	D0567-03 A 01
Sample Cleanup:	Cleanup Method: Florisil Cleanup Batch: CME0053 Cleaned: 06-May-2024		Initial Volume: 20 uL Final Volume: 20 uL			Extr	act ID:24I	D0567-03 A 01
					Reporting			
Analyte	DF/Split	Ion Ratio	Ratio Limits	EDL	Limit	Result	Units	Notes
2,3,7,8-TCDF			0.655-0.886	1.60	9.62	ND	pg/L	U
2,3,7,8-TCDD			0.655-0.886	1.16	9.62	ND	pg/L	U
1,2,3,7,8-PeCDF			1.318-1.783	1.96	9.62	ND	pg/L	U
2,3,4,7,8-PeCDF			1.318-1.783	1.96	9.62	ND	pg/L	U
1,2,3,7,8-PeCDD			1.318-1.783	2.52	9.62	ND	pg/L	U
1,2,3,4,7,8-HxCDF			1.054-1.426	1.70	9.62	ND	pg/L	U
1,2,3,6,7,8-HxCDF			1.054-1.426	1.67	9.62	ND	pg/L	U
2,3,4,6,7,8-HxCDF			1.054-1.426	1.75	9.62	ND	pg/L	U
1,2,3,7,8,9-HxCDF			1.054-1.426	2.17	9.62	ND	pg/L	U
1,2,3,4,7,8-HxCDD			1.054-1.426	2.87	9.62	ND	pg/L	U
1,2,3,6,7,8-HxCDD			1.054-1.426	2.84	9.62	ND	pg/L	U
1,2,3,7,8,9-HxCDD			1.054-1.426	3.10	9.62	ND	pg/L	U
1,2,3,4,6,7,8-HpCDF			0.893-1.208	2.37	19.2	ND	pg/L	U
1,2,3,4,7,8,9-HpCDF			0.893-1.208	4.20	9.62	ND	pg/L	U
1,2,3,4,6,7,8-HpCDD			0.893-1.208	3.45	9.62	ND	pg/L	U
OCDF			0.757-1.024	4.68	19.2	ND	pg/L	U
OCDD			0.757-1.024	4.81	48.1	ND	pg/L	U
Homologue groups								
Total TCDF					9.62	ND	pg/L	U
Total TCDD					9.62	ND	pg/L	U
Total PeCDF					9.62	ND	pg/L	U
Total PeCDD					9.62	ND	pg/L	U
Total HxCDF					9.62	ND	pg/L	U
Total HxCDD					9.62	ND	pg/L	U
Total HpCDF					9.62	ND	pg/L	U
Total HpCDD					9.62	ND	pg/L	U

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 3.10

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 0.00

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, EMPC = ND): 3.10 Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, EMPC = ND): 0.00

Floyd - Snider 601 Union Street Two Union Square, Suite 600 Seattle WA, 98101-2341 Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

MW-VB2-042424

24D0567-03 (Water)

Dioxins/Furans	
	_

Method: EPA 1613B Sampled: 04/24/2024 11:00 Instrument: AUTOSPEC01 Analyst: pk Analyzed: 05/22/2024 05:24 Reporting Analyte DF/Split Ion Ratio Ratio Limits Limit Result Units Notes Labeled compounds 13C12-2,3,7,8-TCDF 0.710 0.655-0.886 24-169 % 83.2 % 13C12-2,3,7,8-TCDD 0.788 0.655-0.886 25-164 % 98.2 % 13C12-1,2,3,7,8-PeCDF 1.528 1.318-1.783 24-185 % 90.3 % 13C12-2,3,4,7,8-PeCDF 1.541 1.318-1.783 21-178 % 86.9 % 25-181 % 13C12-1,2,3,7,8-PeCDD 1.627 1.318-1.783 84.5 % 13C12-1,2,3,4,7,8-HxCDF 0.542 0.434-0.587 26-152 % 130 % 0.518 0.434-0.587 26-123 % 123 13C12-1,2,3,6,7,8-HxCDF % 0.536 0.434-0.587 28-136 % 127 13C12-2.3.4.6.7.8-HxCDF % 13C12-1,2,3,7,8,9-HxCDF 0.539 0.434-0.587 29-147 % 138 % 13C12-1,2,3,4,7,8-HxCDD 1.240 1.054-1.426 32-141 % 108 % 13C12-1,2,3,6,7,8-HxCDD 1.244 1.054-1.426 28-130 % 119 % 13C12-1,2,3,4,6,7,8-HpCDF 0.475 0.374-0.506 28-143 % 114 % 13C12-1,2,3,4,7,8,9-HpCDF 0.477 0.374-0.506 108 26-138 % % 13C12-1,2,3,4,6,7,8-HpCDD 0.932 0.893-1.208 23-140 % 126 % 13C12-OCDD 0.836 0.757-1.024 17-157 % % 123 37Cl4-2,3,7,8-TCDD 35-197 % 93.1 %

Floyd - Snider 601 Union Street Two Un Seattle WA, 98101-2341	nion Square, Suite 600		5	Project: Lora La Number: POS - L Manager: Amanda	LA				Керо 29-Мау-20	
				IW-VB2-0424 D0567-03 (Wat						
Dioxins/Furans										
Method: EPA 1613B										24/2024 11:00
Instrument: AUTOSPEC0	l Analyst: pk							Ar	alyzed: 05/	22/2024 05:24
Analyte	DF	F/Split Ior	n Ratio	Ratio Limits		EDL	Reporting Limit	Result	Units	Notes
			N	IW-VB2-0424	24					
				D0567-03 (Wat						
Metals and Metallic Co	ompounds (dissolved)									
Method: EPA 6020B UCT	-KED							S	ampled: 04/	24/2024 11:00
Instrument: ICPMS2 Ana	lyst: DOE							Ar	alyzed: 05/	01/2024 21:55
Sample Preparation:	Preparation Method: R Preparation Batch: BM Prepared: 04/28/2024		A M	Sample Size: 2 Final Volume:				F	iltration Bat	00567-03 C 02 ch: BMD0643 25/2024 15:10
Analyte				CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Arsenic, Dissolved				7440-38-2	1	0.0373	0.200	0.402	ug/L	

Floyd - Snider
601 Union Street Two Union Square, Suite 600
Seattle WA, 98101-2341

Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

MW-VB3-042424

24D0567-04 (Water)

Dioxins/Furans								
Method: EPA 1613B						Sa	mpled: 04/	24/2024 12:30
Instrument: AUTOSPEC	201 Analyst: pk					Ana	lyzed: 05/	22/2024 06:13
Sample Preparation:	Preparation Method: EPA 1613 Preparation Batch: BME0078 Prepared: 05/03/2024		Sample Size: 1020 mL Final Volume: 20 uL			Extra	act ID: 24I	D0567-04 A 01
Sample Cleanup:	Cleanup Method: Silica Gel Cleanup Batch: CME0052 Cleaned: 06-May-2024		Initial Volume: 20 uL Final Volume: 20 uL			Extra	ict ID: 24I	D0567-04 A 01
Sample Cleanup:	Cleanup Method: Florisil Cleanup Batch: CME0053 Cleaned: 06-May-2024		Initial Volume: 20 uL Final Volume: 20 uL			Extr	act ID:24I	D0567-04 A 01
					Reporting			
Analyte	DF/Split	Ion Ratio	Ratio Limits	EDL	Limit	Result	Units	Notes
2,3,7,8-TCDF			0.655-0.886	1.87	9.80	ND	pg/L	U
2,3,7,8-TCDD			0.655-0.886	1.51	9.80	ND	pg/L	U
1,2,3,7,8-PeCDF			1.318-1.783	2.14	9.80	ND	pg/L	U
2,3,4,7,8-PeCDF			1.318-1.783	2.12	9.80	ND	pg/L	U
1,2,3,7,8-PeCDD			1.318-1.783	3.30	9.80	ND	pg/L	U
1,2,3,4,7,8-HxCDF			1.054-1.426	1.95	9.80	ND	pg/L	U
1,2,3,6,7,8-HxCDF			1.054-1.426	1.90	9.80	ND	pg/L	U
2,3,4,6,7,8-HxCDF			1.054-1.426	2.17	9.80	ND	pg/L	U
1,2,3,7,8,9-HxCDF			1.054-1.426	2.64	9.80	ND	pg/L	U
1,2,3,4,7,8-HxCDD			1.054-1.426	4.13	9.80	ND	pg/L	U
1,2,3,6,7,8-HxCDD			1.054-1.426	4.21	9.80	ND	pg/L	U
1,2,3,7,8,9-HxCDD			1.054-1.426	4.53	9.80	ND	pg/L	U
1,2,3,4,6,7,8-HpCDF			0.893-1.208	2.09	19.6	ND	pg/L	U
1,2,3,4,7,8,9-HpCDF			0.893-1.208	4.23	9.80	ND	pg/L	U
1,2,3,4,6,7,8-HpCDD			0.893-1.208	4.61	9.80	ND	pg/L	U
OCDF			0.757-1.024	5.17	19.6	ND	pg/L	U
OCDD			0.757-1.024	6.29	49.0	ND	pg/L	U
Homologue groups								
Total TCDF					9.80	ND	pg/L	U
Total TCDD					9.80	ND	pg/L	U
Total PeCDF					9.80	ND	pg/L	U
Total PeCDD					9.80	ND	pg/L	U
Total HxCDF					9.80	ND	pg/L	U
Total HxCDD					9.80	ND	pg/L	U
Total HpCDF					9.80	ND	pg/L	U
Total HpCDD					9.80	ND	pg/L	U

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 3.98

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 0.00

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, EMPC = ND): 3.98

Floyd - Snider 601 Union Street Two Union Square, Suite 600 Seattle WA, 98101-2341 Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

MW-VB3-042424

24D0567-04 (Water)

Dio	xin	s/F	ur	ans	

Method: EPA 1613B Sampled: 04/24/2024 12:30 Instrument: AUTOSPEC01 Analyst: pk Analyzed: 05/22/2024 06:13 Reporting Analyte DF/Split Ion Ratio Ratio Limits Limit Result Units Notes Labeled compounds 13C12-2,3,7,8-TCDF 0.715 0.655-0.886 24-169 % 79.0 % 13C12-2,3,7,8-TCDD 0.771 0.655-0.886 25-164 % 91.3 % 13C12-1,2,3,7,8-PeCDF 1.544 1.318-1.783 24-185 % 81.3 % 13C12-2,3,4,7,8-PeCDF 1.533 1.318-1.783 21-178 % 80.8 % 25-181 % 13C12-1,2,3,7,8-PeCDD 1.733 1.318-1.783 84.3 % 13C12-1,2,3,4,7,8-HxCDF 0.530 0.434-0.587 26-152 % 132 % 0.532 0.434-0.587 26-123 % 126 13C12-1,2,3,6,7,8-HxCDF % 0.548 0.434-0.587 28-136 % 120 13C12-2.3.4.6.7.8-HxCDF % 13C12-1,2,3,7,8,9-HxCDF 0.533 0.434-0.587 29-147 % 129 % 13C12-1,2,3,4,7,8-HxCDD 1.248 1.054-1.426 32-141 % 108 % 13C12-1,2,3,6,7,8-HxCDD 1.321 1.054-1.426 28-130 % 112 % 13C12-1,2,3,4,6,7,8-HpCDF 0.417 0.374-0.506 28-143 % 119 % 13C12-1,2,3,4,7,8,9-HpCDF 0.374-0.506 0.442 26-138 % 91.6 % 13C12-1,2,3,4,6,7,8-HpCDD 1.148 0.893-1.208 23-140 % 109 % 13C12-OCDD 0.869 0.757-1.024 17-157 % 111 % 37Cl4-2,3,7,8-TCDD 35-197 % 87.7 %

Floyd - Snider 601 Union Street Two U Seattle WA, 98101-234	Union Square, Suite 600 1			Project: Lora La Number: POS - L Janager: Amanda	LA				Repo 29-May-20	
				W-VB3-0424 D0567-04 (Wat						
Dioxins/Furans										
Method: EPA 1613B										24/2024 12:30
Instrument: AUTOSPEC	01 Analyst: pk							Ar	halyzed: 05/	22/2024 06:13
Analyte	1	DF/Split	Ion Ratio	Ratio Limits		EDL	Reporting Limit	Result	Units	Notes
-			М	W-VB3-0424	24					
				D0567-04 (Wat						
Metals and Metallic (Compounds (dissolved))								
Method: EPA 6020B UC	T-KED							S	ampled: 04/	24/2024 12:30
Instrument: ICPMS2 Ar	nalyst: DOE							Ar	nalyzed: 05/	01/2024 21:57
Sample Preparation:	Preparation Method Preparation Batch: H Prepared: 04/28/202	BMD0764	3010A M	Sample Size: 2 Final Volume:				F	iltration Bat	00567-04 C 02 ch: BMD0643 25/2024 15:10
Analyte				CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Arsenic, Dissolved				7440-38-2	1	0.0373	0.200	0.303	ug/L	

Floyd - Snider
601 Union Street Two Union Square, Suite 600
Seattle WA, 98101-2341

Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

HCOO-B312-042424

24D0567-05 (Water)

Dioxins/Furans								
Method: EPA 1613B						Sa	mpled: 04/	24/2024 13:45
Instrument: AUTOSPEC	201 Analyst: pk					Ana	lyzed: 05/	/22/2024 07:02
Sample Preparation:	Preparation Method: EPA 1613 Preparation Batch: BME0078 Prepared: 05/03/2024		Sample Size: 1040 mL Final Volume: 20 uL			Extra	ict ID: 24I	D0567-05 A 01
Sample Cleanup:	Cleanup Method: Silica Gel Cleanup Batch: CME0052 Cleaned: 06-May-2024		Initial Volume: 20 uL Final Volume: 20 uL			Extra	ict ID: 24I	D0567-05 A 01
Sample Cleanup:	Cleanup Method: Florisil Cleanup Batch: CME0053 Cleaned: 06-May-2024		Initial Volume: 20 uL Final Volume: 20 uL			Extr	act ID:24I	D0567-05 A 01
					Reporting			
Analyte	DF/Split	Ion Ratio	Ratio Limits	EDL	Limit	Result	Units	Notes
2,3,7,8-TCDF			0.655-0.886	1.85	9.62	ND	pg/L	U
2,3,7,8-TCDD			0.655-0.886	1.32	9.62	ND	pg/L	U
1,2,3,7,8-PeCDF			1.318-1.783	1.94	9.62	ND	pg/L	U
2,3,4,7,8-PeCDF			1.318-1.783	1.99	9.62	ND	pg/L	U
1,2,3,7,8-PeCDD			1.318-1.783	2.46	9.62	ND	pg/L	U
1,2,3,4,7,8-HxCDF			1.054-1.426	1.75	9.62	ND	pg/L	U
1,2,3,6,7,8-HxCDF			1.054-1.426	1.68	9.62	ND	pg/L	U
2,3,4,6,7,8-HxCDF			1.054-1.426	1.74	9.62	ND	pg/L	U
1,2,3,7,8,9-HxCDF			1.054-1.426	2.29	9.62	ND	pg/L	U
1,2,3,4,7,8-HxCDD			1.054-1.426	3.49	9.62	ND	pg/L	U
1,2,3,6,7,8-HxCDD			1.054-1.426	3.47	9.62	ND	pg/L	U
1,2,3,7,8,9-HxCDD			1.054-1.426	3.77	9.62	ND	pg/L	U
1,2,3,4,6,7,8-HpCDF			0.893-1.208	1.65	19.2	ND	pg/L	U
1,2,3,4,7,8,9-HpCDF			0.893-1.208	3.08	9.62	ND	pg/L	U
1,2,3,4,6,7,8-HpCDD			0.893-1.208	3.68	9.62	ND	pg/L	U
OCDF			0.757-1.024	5.07	19.2	ND	pg/L	U
OCDD			0.757-1.024	5.45	48.1	ND	pg/L	U
Homologue groups								
Total TCDF					9.62	ND	pg/L	U
Total TCDD					9.62	ND	pg/L	U
Total PeCDF					9.62	ND	pg/L	U
Total PeCDD					9.62	ND	pg/L	U
Total HxCDF					9.62	ND	pg/L	U
Total HxCDD					9.62	ND	pg/L	U
Total HpCDF					9.62	ND	pg/L	U
Total HpCDD					9.62	ND	pg/L	U

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 3.26

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 0.00

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, EMPC = ND): 3.26

Floyd - Snider 601 Union Street Two Union Square, Suite 600 Seattle WA, 98101-2341

Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

Sampled: 04/24/2024 13:45

HCOO-B312-042424

24D0567-05 (Water)

Dioxins/Furan	S
Method: EPA 16	13B

Instrument: AUTOSPEC01 Analyst: pk

nstrument: AUTOSPEC01 Analyst:		Ar	alyzed: 05/2	22/2024 07			
				Reporting			
Analyte	DF/Split	Ion Ratio	Ratio Limits	Limit	Result	Units	Notes
Labeled compounds							
3C12-2,3,7,8-TCDF		0.724	0.655-0.886	24-169 %	79.8	%	
3C12-2,3,7,8-TCDD		0.788	0.655-0.886	25-164 %	<i>88.3</i>	%	
3C12-1,2,3,7,8-PeCDF		1.493	1.318-1.783	24-185 %	84.5	%	
3C12-2,3,4,7,8-PeCDF		1.519	1.318-1.783	21-178 %	80.3	%	
3C12-1,2,3,7,8-PeCDD		1.636	1.318-1.783	25-181 %	81.2	%	
3C12-1,2,3,4,7,8-HxCDF		0.534	0.434-0.587	26-152 %	121	%	
3C12-1,2,3,6,7,8-HxCDF		0.547	0.434-0.587	26-123 %	117	%	
3C12-2,3,4,6,7,8-HxCDF		0.516	0.434-0.587	28-136 %	113	%	
3C12-1,2,3,7,8,9-HxCDF		0.504	0.434-0.587	29-147 %	116	%	
3C12-1,2,3,4,7,8-HxCDD		1.276	1.054-1.426	32-141 %	99.4	%	
3C12-1,2,3,6,7,8-HxCDD		1.242	1.054-1.426	28-130 %	105	%	
3C12-1,2,3,4,6,7,8-HpCDF		0.414	0.374-0.506	28-143 %	109	%	
3C12-1,2,3,4,7,8,9-HpCDF		0.406	0.374-0.506	26-138 %	98.5	%	
3C12-1,2,3,4,6,7,8-HpCDD		1.010	0.893-1.208	23-140 %	108	%	
3C12-OCDD		0.859	0.757-1.024	17-157 %	97.4	%	
7 <i>Cl</i> 4-2,3,7,8- <i>TCDD</i>				35-197 %	85.6	%	

Page 25 of 64 24D0567 ARISample FINAL 29 May 2024 1346

Floyd - Snider			Project: Lora La	ake 2024					
601 Union Street Two Unio	on Square, Suite 600	Project	Number: POS - I	LLA				Repo	rted:
Seattle WA, 98101-2341		Project N	Anager: Amand	a McKay				29-May-20	024 13:46
		НС	OO-B312-042	2424					
		24	D0567-05 (Wat	ær)					
Dioxins/Furans									
Method: EPA 1613B							S	ampled: 04/	24/2024 13:45
Instrument: AUTOSPEC01	Analyst: pk						Ar	nalyzed: 05/	22/2024 07:02
						Reporting			
Analyte	DF/Split	Ion Ratio	Ratio Limits		EDL	Limit	Result	Units	Notes
		нс	OO-B312-042	2424					
		24	D0567-05 (Wat	ær)					
Metals and Metallic Con	1pounds (dissolved)								
Method: EPA 6020B UCT-K	ED						S	ampled: 04/	24/2024 13:45
Instrument: ICPMS2 Analy	st: DOE						Ar	nalyzed: 05/	01/2024 21:58
Sample Preparation:	Preparation Method: REN - Preparation Batch: BMD07		Sample Size: 2	25 mL			F	iltration Bat	00567-05 C 02 ch: BMD0643
	Prepared: 04/28/2024		Final Volume:	25 mL			Filtratic	on Date: 04/	25/2024 15:10
Analyte			CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Arsenic, Dissolved			7440-38-2	1	0.0373	0.200	0.180	ug/L	J

Floyd - Snider
601 Union Street Two Union Square, Suite 600
Seattle WA, 98101-2341

Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

MW-CP1-042424

24D0567-06 (Water)

Dioxins/Furans								
Method: EPA 1613B						Sai	npled: 04/	24/2024 16:40
Instrument: AUTOSPEC	01 Analyst: pk					Ana	lyzed: 05/	22/2024 07:51
Sample Preparation:	Preparation Method: EPA 1613 Preparation Batch: BME0078 Prepared: 05/03/2024		Sample Size: 1020 mL Final Volume: 20 uL					
Sample Cleanup:	Cleanup Method: Silica Gel Cleanup Batch: CME0052 Cleaned: 06-May-2024		Initial Volume: 20 uL Final Volume: 20 uL	Extract ID: 24D0567-06				
Sample Cleanup:	Cleanup Method: Florisil Cleanup Batch: CME0053 Cleaned: 06-May-2024		Initial Volume: 20 uL Final Volume: 20 uL			Extr	act ID:24I	00567-06 A 01
					Reporting			
Analyte	DF/Split	Ion Ratio	Ratio Limits	EDL	Limit	Result	Units	Notes
2,3,7,8-TCDF 2,3,7,8-TCDD			0.655-0.886 0.655-0.886	1.72 1.49	9.80 9.80	ND ND	pg/L pg/L	U U
1,2,3,7,8-PeCDF			1.318-1.783	2.02	9.80	ND	pg/L	U
2,3,4,7,8-PeCDF			1.318-1.783	2.03	9.80	ND	pg/L	U
1,2,3,7,8-PeCDD			1.318-1.783	2.28	9.80	ND	pg/L	U
1,2,3,4,7,8-HxCDF			1.054-1.426	1.92	9.80	ND	pg/L	U
1,2,3,6,7,8-HxCDF			1.054-1.426	1.88	9.80	ND	pg/L	U
2,3,4,6,7,8-HxCDF			1.054-1.426	2.00	9.80	ND	pg/L	U
1,2,3,7,8,9-HxCDF			1.054-1.426	2.66	9.80	ND	pg/L	U
1,2,3,4,7,8-HxCDD			1.054-1.426	4.24	9.80	ND	pg/L	U
1,2,3,6,7,8-HxCDD			1.054-1.426	4.12	9.80	ND	pg/L	U
1,2,3,7,8,9-HxCDD			1.054-1.426	4.53	9.80	ND	pg/L	U
1,2,3,4,6,7,8-HpCDF			0.893-1.208	2.24	19.6	ND	pg/L	U
1,2,3,4,7,8,9-HpCDF			0.893-1.208	4.06	9.80	ND	pg/L	U
1,2,3,4,6,7,8-HpCDD			0.893-1.208	4.33	9.80	ND	pg/L	U
OCDF			0.757-1.024	4.70	19.6	ND	pg/L	U
OCDD			0.757-1.024	6.25	49.0	ND	pg/L	U
Homologue groups								
Total TCDF					9.80	ND	pg/L	U
Total TCDD					9.80	ND	pg/L	U
Total PeCDF					9.80	ND	pg/L	U
Total PeCDD					9.80	ND	pg/L	U
Total HxCDF					9.80	ND	pg/L	U
Total HxCDD					9.80	ND	pg/L	U
Total HpCDF					9.80	ND	pg/L	U
Total HpCDD					9.80	ND	pg/L	U

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 3.43

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 0.00

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, EMPC = ND): 3.43

Floyd - Snider
601 Union Street Two Union Square, Suite 600
Seattle WA, 98101-2341

Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

MW-CP1-042424

24D0567-06 (Water)

Dioxins	/Furans

Method: EPA 1613B			Sampled: 04/24/2024 16:40					
Instrument: AUTOSPEC01 Analyst: pk			Analyzed:					
			Reporting					
Analyte DF/Split	Ion Ratio	Ratio Limits	Limit	Result	Units	Notes		
Labeled compounds								
13C12-2,3,7,8-TCDF	0.703	0.655-0.886	24-169 %	78.6	%			
13C12-2,3,7,8-TCDD	0.840	0.655-0.886	25-164 %	94.7	%			
13C12-1,2,3,7,8-PeCDF	1.509	1.318-1.783	24-185 %	86.0	%			
13C12-2,3,4,7,8-PeCDF	1.603	1.318-1.783	21-178 %	84.6	%			
13C12-1,2,3,7,8-PeCDD	1.539	1.318-1.783	25-181 %	83.2	%			
13C12-1,2,3,4,7,8-HxCDF	0.549	0.434-0.587	26-152 %	117	%			
13C12-1,2,3,6,7,8-HxCDF	0.573	0.434-0.587	26-123 %	116	%			
13C12-2,3,4,6,7,8-HxCDF	0.546	0.434-0.587	28-136 %	111	%			
13C12-1,2,3,7,8,9-HxCDF	0.550	0.434-0.587	29-147 %	119	%			
13C12-1,2,3,4,7,8-HxCDD	1.276	1.054-1.426	32-141 %	96.9	%			
13C12-1,2,3,6,7,8-HxCDD	1.242	1.054-1.426	28-130 %	107	%			
13C12-1,2,3,4,6,7,8-HpCDF	0.484	0.374-0.506	28-143 %	105	%			
13C12-1,2,3,4,7,8,9-HpCDF	0.476	0.374-0.506	26-138 %	88.1	%			
13C12-1,2,3,4,6,7,8-HpCDD	1.130	0.893-1.208	23-140 %	109	%			
13C12-OCDD	0.831	0.757-1.024	17-157 %	102	%			
37Cl4-2,3,7,8-TCDD			35-197 %	88.0	%			

Floyd - Snider			Project: Lora La	ake 2024						
601 Union Street Two Unior	n Square, Suite 600	Project	Number: POS - I	LLA				Repo	rted:	
Seattle WA, 98101-2341		Project Manager: Amanda McKay						29-May-2024 13:46		
		Ν	IW-CP1-0424	24						
		24	D0567-06 (Wat	ær)						
Dioxins/Furans										
Method: EPA 1613B							S	ampled: 04/	24/2024 16:40	
Instrument: AUTOSPEC01 A	Analyst: pk						Aı	nalyzed: 05/	22/2024 07:51	
						Reporting				
Analyte	DF/Split	Ion Ratio	Ratio Limits		EDL	Limit	Result	Units	Notes	
		Ν	IW-CP1-0424	24						
		24	D0567-06 (Wat	ær)						
Metals and Metallic Com	pounds (dissolved)									
Method: EPA 6020B UCT-KE	D						S	ampled: 04/	24/2024 16:40	
Instrument: ICPMS2 Analyst	: DOE						Aı	nalyzed: 05/	01/2024 21:59	
Sample Preparation:	Preparation Method: REN - EI Preparation Batch: BMD0764	PA 3010A M	Sample Size: 2				F	iltration Bat	00567-06 C 02 ch: BMD0643	
[Prepared: 04/28/2024		Final Volume:	25 mL			Filtratio	on Date: 04/	25/2024 15:10	
Analyte			CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes	
Arsenic, Dissolved			7440-38-2	1	0.0373	0.200	0.482	ug/L		

Floyd - Snider
601 Union Street Two Union Square, Suite 600
Seattle WA, 98101-2341

Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

MW-CP1-042424-D

24D0567-07 (Water)

Dioxins/Furans								
Method: EPA 1613B						Sa	mpled: 04/	24/2024 16:50
Instrument: AUTOSPEC	01 Analyst: pk					Ana	alyzed: 05/	22/2024 08:40
Sample Preparation:	Preparation Method: EPA 1613 Preparation Batch: BME0078 Prepared: 05/03/2024		Sample Size: 1020 mL Final Volume: 20 uL			Extra	act ID: 24I	D0567-07 A 01
Sample Cleanup:	Cleanup Method: Silica GelExtract IECleanup Batch: CME0052Initial Volume: 20 uLCleaned: 06-May-2024Final Volume: 20 uL							D0567-07 A 01
Sample Cleanup:	Cleanup Method: Florisil Cleanup Batch: CME0053 Cleaned: 06-May-2024		Initial Volume: 20 uL Final Volume: 20 uL			Extr	act ID:24I	D0567-07 A 01
					Reporting			
Analyte	DF/Split	Ion Ratio	Ratio Limits	EDL	Limit	Result	Units	Notes
2,3,7,8-TCDF			0.655-0.886	1.49	9.80	ND	pg/L	U
2,3,7,8-TCDD			0.655-0.886	1.53	9.80	ND	pg/L	U
1,2,3,7,8-PeCDF			1.318-1.783	1.66	9.80	ND	pg/L	U
2,3,4,7,8-PeCDF			1.318-1.783	1.70	9.80	ND	pg/L	U
1,2,3,7,8-PeCDD			1.318-1.783	2.25	9.80	ND	pg/L	U
1,2,3,4,7,8-HxCDF			1.054-1.426	1.44	9.80	ND	pg/L	U
1,2,3,6,7,8-HxCDF			1.054-1.426	1.39	9.80	ND	pg/L	U
2,3,4,6,7,8-HxCDF			1.054-1.426	1.59	9.80	ND	pg/L	U
1,2,3,7,8,9-HxCDF			1.054-1.426	1.95	9.80	ND	pg/L	U
1,2,3,4,7,8-HxCDD			1.054-1.426	2.92	9.80	ND	pg/L	U
1,2,3,6,7,8-HxCDD			1.054-1.426	2.93	9.80	ND	pg/L	U
1,2,3,7,8,9-HxCDD			1.054-1.426	3.18	9.80	ND	pg/L	U
1,2,3,4,6,7,8-HpCDF			0.893-1.208	1.71	19.6	ND	pg/L	U
1,2,3,4,7,8,9-HpCDF			0.893-1.208	2.82	9.80	ND	pg/L	U
1,2,3,4,6,7,8-HpCDD			0.893-1.208	3.00	9.80	ND	pg/L	U
OCDF			0.757-1.024	3.73	19.6	ND	pg/L	U
OCDD			0.757-1.024	4.45	49.0	ND	pg/L	U
Homologue groups								
Total TCDF					9.80	ND	pg/L	U
Total TCDD					9.80	ND	pg/L	U
Total PeCDF					9.80	ND	pg/L	U
Total PeCDD					9.80	ND	pg/L	U
Total HxCDF					9.80	ND	pg/L	U
Total HxCDD					9.80	ND	pg/L	U
Total HpCDF					9.80	ND	pg/L	U
Total HpCDD					9.80	ND	pg/L	U

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 3.05

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 0.00

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, EMPC = ND): 3.05

Floyd - Snider
601 Union Street Two Union Square, Suite 600
Seattle WA, 98101-2341

Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

Sampled: 04/24/2024 16:50

MW-CP1-042424-D

24D0567-07 (Water)

Dioxins/Furans	
Method: EPA 1613B	

nstrument: AUTOSPEC01 Analyst:	P			Donortino	2 11	alyzed: 05	22,2024 0
Analyte	DF/Split	Ion Ratio	Ratio Limits	Reporting Limit	Result	Units	Notes
abeled compounds							
3C12-2,3,7,8-TCDF		0.702	0.655-0.886	24-169 %	88.2	%	
3C12-2,3,7,8-TCDD		0.782	0.655-0.886	25-164 %	98.1	%	
3C12-1,2,3,7,8-PeCDF		1.576	1.318-1.783	24-185 %	99 .7	%	
3C12-2,3,4,7,8-PeCDF		1.515	1.318-1.783	21-178 %	92.4	%	
3C12-1,2,3,7,8-PeCDD		1.497	1.318-1.783	25-181 %	99.5	%	
3C12-1,2,3,4,7,8-HxCDF		0.533	0.434-0.587	26-152 %	128	%	
3C12-1,2,3,6,7,8-HxCDF		0.538	0.434-0.587	26-123 %	125	%	*
3C12-2,3,4,6,7,8-HxCDF		0.553	0.434-0.587	28-136 %	117	%	
3C12-1,2,3,7,8,9-HxCDF		0.530	0.434-0.587	29-147 %	128	%	
3C12-1,2,3,4,7,8-HxCDD		1.227	1.054-1.426	32-141 %	103	%	
3C12-1,2,3,6,7,8-HxCDD		1.227	1.054-1.426	28-130 %	109	%	
3C12-1,2,3,4,6,7,8-HpCDF		0.444	0.374-0.506	28-143 %	107	%	
3C12-1,2,3,4,7,8,9-HpCDF		0.417	0.374-0.506	26-138 %	102	%	
3C12-1,2,3,4,6,7,8-HpCDD		1.108	0.893-1.208	23-140 %	120	%	
3C12-OCDD		0.845	0.757-1.024	17-157 %	98.5	%	
7 <i>Cl4-2,3,7,8-TCDD</i>				35-197 %	99.0	%	

Page 31 of 64 24D0567 ARISample FINAL 29 May 2024 1346

Floyd - Snider 601 Union Street Two U	der Project: Lora Lake 2024 Street Two Union Square, Suite 600 Project Number: POS - LLA							Repo	rtade
Seattle WA, 98101-2341	mon square, suite ooo	5	Manager: Amand					29-May-20	
		Μ	W-CP1-04242	4-D					
		2	4D0567-07 (Wat	ter)					
Dioxins/Furans									
Method: EPA 1613B							S	ampled: 04/	24/2024 16:50
Instrument: AUTOSPEC0	1 Analyst: pk						Aı	nalyzed: 05/	22/2024 08:40
						Reporting			
Analyte	DF/S	plit Ion Ratio	Ratio Limits		EDL	Limit	Result	Units	Notes
		Μ	W-CP1-04242	4-D					
		2	4D0567-07 (Wat	ter)					
Metals and Metallic C	ompounds (dissolved)								
Method: EPA 6020B UCT	-KED						S	ampled: 04/	24/2024 16:50
Instrument: ICPMS2 Analyst: DOE							Aı	nalyzed: 05/	01/2024 22:01
Sample Preparation:	N - EPA 3010A M 00764	Sample Size: 2 Final Volume:				F	iltration Bat	00567-07 C 02 ch: BMD0643 25/2024 15:10	
	Prepared: 04/28/2024		i mai voidille.	20 1112	Detection	Reporting	1 mate	511 Date: 04/	25,2027 13.10
Analyte			CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Arsenic, Dissolved			7440-38-2	1	0.0373	0.200	0.421	ug/L	

Floyd - Snider
601 Union Street Two Union Square, Suite 600
Seattle WA, 98101-2341

Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

MW-CP2-042424

24D0567-08 (Water)

Dioxins/Furans								
Method: EPA 1613B						Sa	mpled: 04/	24/2024 17:10
Instrument: AUTOSPEC	01 Analyst: pk					Ana	alyzed: 05/	28/2024 16:13
Sample Preparation:	Preparation Method: EPA 1613 Preparation Batch: BME0312 Prepared: 05/13/2024		Sample Size: 1060 mL Final Volume: 20 uL			Extra	act ID: 24I	D0567-08 A 01
Sample Cleanup:	Cleanup Method: Silica Gel Cleanup Batch: CME0114 Cleaned: 14-May-2024		Initial Volume: 20 uL Final Volume: 20 uL			Extra	act ID: 24I	D0567-08 A 01
Sample Cleanup:	Cleanup Method: Florisil Cleanup Batch: CME0115 Cleaned: 14-May-2024		Initial Volume: 20 uL Final Volume: 20 uL			Extr	act ID:24I	D0567-08 A 01
					Reporting			
Analyte	DF/Split	Ion Ratio	Ratio Limits	EDL	Limit	Result	Units	Notes
2,3,7,8-TCDF			0.655-0.886	1.77	9.43	ND	pg/L	U
2,3,7,8-TCDD			0.655-0.886	1.01	9.43	ND	pg/L	U
1,2,3,7,8-PeCDF			1.318-1.783	1.12	9.43	ND	pg/L	U
2,3,4,7,8-PeCDF			1.318-1.783	1.19	9.43	ND	pg/L	U
1,2,3,7,8-PeCDD			1.318-1.783	1.45	9.43	ND	pg/L	U
1,2,3,4,7,8-HxCDF			1.054-1.426	1.02	9.43	ND	pg/L	U
1,2,3,6,7,8-HxCDF			1.054-1.426	1.00	9.43	ND	pg/L	U
2,3,4,6,7,8-HxCDF			1.054-1.426	1.10	9.43	ND	pg/L	U
1,2,3,7,8,9-HxCDF			1.054-1.426	1.57	9.43	ND	pg/L	U
1,2,3,4,7,8-HxCDD			1.054-1.426	1.96	9.43	ND	pg/L	U
1,2,3,6,7,8-HxCDD			1.054-1.426	1.87	9.43	ND	pg/L	U
1,2,3,7,8,9-HxCDD			1.054-1.426	2.14	9.43	ND	pg/L	U
1,2,3,4,6,7,8-HpCDF			0.893-1.208	1.07	18.9	ND	pg/L	U
1,2,3,4,7,8,9-HpCDF			0.893-1.208	1.98	9.43	ND	pg/L	U
1,2,3,4,6,7,8-HpCDD			0.893-1.208	2.26	9.43	ND	pg/L	U
OCDF			0.757-1.024	3.32	18.9	ND	pg/L	U
OCDD			0.757-1.024	3.04	47.2	ND	pg/L	U
Homologue groups								
Total TCDF					9.43	ND	pg/L	U
Total TCDD					9.43	ND	pg/L	U
Total PeCDF					9.43	ND	pg/L	U
Total PeCDD					9.43	ND	pg/L	U
Total HxCDF					9.43	ND	pg/L	U
Total HxCDD					9.43	ND	pg/L	U
Total HpCDF					9.43	ND	pg/L	U
Total HpCDD					9.43	ND	pg/L	U

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 2.07

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 0.00

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, EMPC = ND): 2.07

Floyd - Snider
601 Union Street Two Union Square, Suite 600
Seattle WA, 98101-2341

Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

MW-CP2-042424

24D0567-08 (Water)

Dioxins	/Furans

Method: EPA 1613B			S	ampled: 04	/24/2024 17:10		
Instrument: AUTOSPEC01 Analyst: pk Analyzed: 05/28/2024 16							
				Reporting			
Analyte	DF/Split	Ion Ratio	Ratio Limits	Limit	Result	Units	Notes
Labeled compounds							
13C12-2,3,7,8-TCDF		0.746	0.655-0.886	24-169 %	91.9	%	
13C12-2,3,7,8-TCDD		0.799	0.655-0.886	25-164 %	100	%	
13C12-1,2,3,7,8-PeCDF		1.546	1.318-1.783	24-185 %	102	%	
13C12-2,3,4,7,8-PeCDF		1.541	1.318-1.783	21-178 %	98.5	%	
13C12-1,2,3,7,8-PeCDD		1.690	1.318-1.783	25-181 %	92.6	%	
13C12-1,2,3,4,7,8-HxCDF		0.537	0.434-0.587	26-152 %	127	%	
13C12-1,2,3,6,7,8-HxCDF		0.546	0.434-0.587	26-123 %	124	%	*
13C12-2,3,4,6,7,8-HxCDF		0.532	0.434-0.587	28-136 %	120	%	
13C12-1,2,3,7,8,9-HxCDF		0.561	0.434-0.587	29-147 %	112	%	
13C12-1,2,3,4,7,8-HxCDD		1.247	1.054-1.426	32-141 %	102	%	
13C12-1,2,3,6,7,8-HxCDD		1.248	1.054-1.426	28-130 %	107	%	
13C12-1,2,3,4,6,7,8-HpCDF		0.464	0.374-0.506	28-143 %	111	%	
13C12-1,2,3,4,7,8,9-HpCDF		0.471	0.374-0.506	26-138 %	102	%	
13C12-1,2,3,4,6,7,8-HpCDD		1.022	0.893-1.208	23-140 %	116	%	
13C12-OCDD		0.935	0.757-1.024	17-157 %	119	%	
37Cl4-2,3,7,8-TCDD				35-197 %	101	%	

Floyd - Snider 601 Union Street Two Unio Seattle WA, 98101-2341	601 Union Street Two Union Square, Suite 600 Project Number: POS - LLA							Керо 29-Мау-20	
		-	MW-CP2-0424 4D0567-08 (Wat						
Dioxins/Furans									
Method: EPA 1613B									24/2024 17:10
Instrument: AUTOSPEC01	Analyst: pk						Ar	alyzed: 05/.	28/2024 16:13
Analyte	DF/Split	Ion Ratio	Ratio Limits		EDL	Reporting Limit	Result	Units	Notes
		Ι	MW-CP2-0424	24					
		2	4D0567-08 (Wat	ær)					
Metals and Metallic Con	npounds (dissolved)								
Method: EPA 6020B UCT-K	ED						S	ampled: 04/	24/2024 17:10
Instrument: ICPMS2 Analy					Ar	alyzed: 05/	01/2024 22:13		
Sample Preparation: Preparation Method: REN - EPA 3010A M Preparation Batch: BMD0764 Prepared: 04/28/2024			Sample Size: 2 Final Volume:				F	iltration Bat	00567-08 C 02 ch: BMD0643 25/2024 15:10
Analyte	-		CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Arsenic, Dissolved			7440-38-2	1	0.0373	0.200	0.364	ug/L	

Floyd - Snider
601 Union Street Two Union Square, Suite 600
Seattle WA, 98101-2341

Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

MW-CP3-042424

24D0567-09 (Water)

Dioxins/Furans								
Method: EPA 1613B						Sa	mpled: 04/	24/2024 13:50
Instrument: AUTOSPEC	201 Analyst: pk					Ana	lyzed: 05/	28/2024 17:02
Sample Preparation:	Preparation Method: EPA 1613					Extra	et ID: 24I	00567-09 A 01
1 1	Preparation Batch: BME0312		Sample Size: 1030 mL					
	Prepared: 05/13/2024		Final Volume: 20 uL					
Sample Cleanup:	Cleanup Method: Silica Gel					Extra	ct ID: 24I	00567-09 A 01
	Cleanup Batch: CME0114		Initial Volume: 20 uL					
	Cleaned: 14-May-2024		Final Volume: 20 uL					
Sample Cleanup:	Cleanup Method: Florisil					Extr	act ID:24I	00567-09 A 01
	Cleanup Batch: CME0115		Initial Volume: 20 uL					
	Cleaned: 14-May-2024		Final Volume: 20 uL					
					Reporting			
Analyte	DF/Split	Ion Ratio	Ratio Limits	EDL	Limit	Result	Units	Notes
2,3,7,8-TCDF			0.655-0.886	1.90	9.71	ND	pg/L	U
2,3,7,8-TCDD			0.655-0.886	1.31	9.71	ND	pg/L	U
1,2,3,7,8-PeCDF			1.318-1.783	1.64	9.71	ND	pg/L	U
2,3,4,7,8-PeCDF			1.318-1.783	1.71	9.71	ND	pg/L	U
1,2,3,7,8-PeCDD			1.318-1.783	2.03	9.71	ND	pg/L	U
1,2,3,4,7,8-HxCDF			1.054-1.426	1.09	9.71	ND	pg/L	U
1,2,3,6,7,8-HxCDF			1.054-1.426	1.05	9.71	ND	pg/L	U
2,3,4,6,7,8-HxCDF			1.054-1.426	1.21	9.71	ND	pg/L	U
1,2,3,7,8,9-HxCDF			1.054-1.426	1.67	9.71	ND	pg/L	U
1,2,3,4,7,8-HxCDD			1.054-1.426	2.15	9.71	ND	pg/L	U
1,2,3,6,7,8-HxCDD			1.054-1.426	2.16	9.71	ND	pg/L	U
1,2,3,7,8,9-HxCDD			1.054-1.426	2.41	9.71	ND	pg/L	U
1,2,3,4,6,7,8-HpCDF			0.893-1.208	1.19	19.4	ND	pg/L	U
1,2,3,4,7,8,9-HpCDF			0.893-1.208	2.02	9.71	ND	pg/L	U
1,2,3,4,6,7,8-HpCDD			0.893-1.208	2.23	9.71	ND	pg/L	U
OCDF			0.757-1.024	3.43	19.4	ND	pg/L	U
OCDD			0.757-1.024	3.36	48.5	ND	pg/L	U
Homologue groups								
Total TCDF					9.71	ND	pg/L	U
Total TCDD					9.71	ND	pg/L	U
Total PeCDF					9.71	ND	pg/L	U
Total PeCDD					9.71	ND	pg/L	U
Total HxCDF					9.71	ND	pg/L	U
Total HxCDD					9.71	ND	pg/L	U
Total HpCDF					9.71	ND	pg/L	U
Total HpCDD					9.71	ND	pg/L	U

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 2.66

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 0.00

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, EMPC = ND): 2.66

Floyd - Snider 601 Union Street Two Union Square, Suite 600 Seattle WA, 98101-2341 Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

MW-CP3-042424

24D0567-09 (Water)

Dioxins/Furans	
	_

Method: EPA 1613B Sampled: 04/24/2024 13:50 Instrument: AUTOSPEC01 Analyst: pk Analyzed: 05/28/2024 17:02 Reporting Analyte DF/Split Ion Ratio Ratio Limits Limit Result Units Notes Labeled compounds 13C12-2,3,7,8-TCDF 0.729 0.655-0.886 24-169 % 86.0 % 13C12-2,3,7,8-TCDD 0.797 0.655-0.886 25-164 % 96.0 % 13C12-1,2,3,7,8-PeCDF 1.520 1.318-1.783 24-185 % 99.6 % 13C12-2,3,4,7,8-PeCDF 1.598 1.318-1.783 21-178 % 97.2 % 25-181 % 13C12-1,2,3,7,8-PeCDD 1.774 1.318-1.783 94.5 % 13C12-1,2,3,4,7,8-HxCDF 0.528 0.434-0.587 26-152 % 124 % 0.513 0.434-0.587 26-123 % 125 13C12-1,2,3,6,7,8-HxCDF % 0.560 0.434-0.587 28-136 % 115 % 13C12-2.3.4.6.7.8-HxCDF 13C12-1,2,3,7,8,9-HxCDF 0.565 0.434-0.587 29-147 % 112 % 13C12-1,2,3,4,7,8-HxCDD 1.250 1.054-1.426 32-141 % 96.5 % 13C12-1,2,3,6,7,8-HxCDD 1.288 1.054-1.426 28-130 % 104 % 13C12-1,2,3,4,6,7,8-HpCDF 0.463 0.374-0.506 28-143 % 108 % 13C12-1,2,3,4,7,8,9-HpCDF 0.374-0.506 0.442 26-138 % 105 % 13C12-1,2,3,4,6,7,8-HpCDD 1.065 0.893-1.208 23-140 % 122 % 13C12-OCDD 1.001 0.757-1.024 17-157 % 107 % 37Cl4-2,3,7,8-TCDD 35-197 % 98.1 %

Floyd - Snider				Project: Lora La	ke 2024						
601 Union Street Two Union Square, Suite 600 Project Number: POS - LLA						Reported:					
Seattle WA, 98101-2341		P	roject M	lanager: Amanda	а МсКау				29-May-20)24 13:46	
			Μ	W-CP3-0424	24						
			241	D0567-09 (Wat	er)						
Dioxins/Furans											
Method: EPA 1613B								S	ampled: 04/	24/2024 13:50	
Instrument: AUTOSPEC01	Analyst: pk							Ar	alyzed: 05/	28/2024 17:02	
							Reporting				
Analyte	DF	/Split Ion R	atio	Ratio Limits		EDL	Limit	Result	Units	Notes	
			Μ	W-CP3-0424	24						
			241	D0567-09 (Wat	er)						
Metals and Metallic Cor	npounds (dissolved)										
Method: EPA 6020B UCT-K	KED							S	ampled: 04/	24/2024 13:50	
Instrument: ICPMS2 Analyst: DOE								Ar	alyzed: 05/	01/2024 22:14	
Sample Preparation: Preparation Method: REN - EPA 3010A			М					Ext	ract ID: 24D	00567-09 C 02	
	Preparation Batch: BM	ID0764		Sample Size: 2						ch: BMD0643	
	Prepared: 04/28/2024			Final Volume:	25 mL			Filtratic	on Date: 04/	25/2024 15:10	
1						Detection	Reporting				
Analyte				CAS Number	Dilution	Limit	Limit	Result	Units	Notes	

Floyd - Snider
601 Union Street Two Union Square, Suite 600
Seattle WA, 98101-2341

Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

MW-CP4-042424

24D0567-10 (Water)

Dioxins/Furans								
Method: EPA 1613B						Sa	mpled: 04/	24/2024 15:20
Instrument: AUTOSPEC	01 Analyst: pk					Ana	alyzed: 05/	28/2024 17:51
Sample Preparation:	Preparation Method: EPA 1613 Preparation Batch: BME0312 Prepared: 05/13/2024		Sample Size: 1060 mL Final Volume: 20 uL			Extra	act ID: 24I	D0567-10 A 01
Sample Cleanup:	Cleanup Method: Silica Gel Cleanup Batch: CME0114 Cleaned: 14-May-2024	Cleanup Method: Silica Gel Extract ID: 24D0 Cleanup Batch: CME0114 Initial Volume: 20 uL						
Sample Cleanup:	Cleanup Method: Florisil Cleanup Batch: CME0115 Cleaned: 14-May-2024		Initial Volume: 20 uL Final Volume: 20 uL			Extr	act ID:24I	D0567-10 A 01
					Reporting			
Analyte	DF/Split	Ion Ratio	Ratio Limits	EDL	Limit	Result	Units	Notes
2,3,7,8-TCDF			0.655-0.886	1.97	9.43	ND	pg/L	U
2,3,7,8-TCDD			0.655-0.886	1.23	9.43	ND	pg/L	U
1,2,3,7,8-PeCDF			1.318-1.783	1.57	9.43	ND	pg/L	U
2,3,4,7,8-PeCDF			1.318-1.783	1.64	9.43	ND	pg/L	U
1,2,3,7,8-PeCDD			1.318-1.783	1.82	9.43	ND	pg/L	U
1,2,3,4,7,8-HxCDF			1.054-1.426	1.09	9.43	ND	pg/L	U
1,2,3,6,7,8-HxCDF			1.054-1.426	1.02	9.43	ND	pg/L	U
2,3,4,6,7,8-HxCDF			1.054-1.426	1.14	9.43	ND	pg/L	U
1,2,3,7,8,9-HxCDF			1.054-1.426	1.56	9.43	ND	pg/L	U
1,2,3,4,7,8-HxCDD			1.054-1.426	2.23	9.43	ND	pg/L	U
1,2,3,6,7,8-HxCDD			1.054-1.426	2.14	9.43	ND	pg/L	U
1,2,3,7,8,9-HxCDD			1.054-1.426	2.44	9.43	ND	pg/L	U
1,2,3,4,6,7,8-HpCDF			0.893-1.208	0.92	18.9	ND	pg/L	U
1,2,3,4,7,8,9-HpCDF			0.893-1.208	1.70	9.43	ND	pg/L	U
1,2,3,4,6,7,8-HpCDD			0.893-1.208	2.14	9.43	ND	pg/L	U
OCDF			0.757-1.024	2.95	18.9	ND	pg/L	U
OCDD			0.757-1.024	3.38	47.2	ND	pg/L	U
Homologue groups								
Total TCDF					9.43	ND	pg/L	U
Total TCDD					9.43	ND	pg/L	U
Total PeCDF					9.43	ND	pg/L	U
Total PeCDD					9.43	ND	pg/L	U
Total HxCDF					9.43	ND	pg/L	U
Total HxCDD					9.43	ND	pg/L	U
Total HpCDF					9.43	ND	pg/L	U
Total HpCDD					9.43	ND	pg/L	U

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 2.50

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 0.00

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, EMPC = ND): 2.50

Floyd - Snider
601 Union Street Two Union Square, Suite 600
Seattle WA, 98101-2341

Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

MW-CP4-042424

24D0567-10 (Water)

Dioxins/Furans	5

Method: EPA 1613B Sampled: 04/24/2024 15:20 Instrument: AUTOSPEC01 Analyst: pk Analyzed: 05/28/2024 17:51 Reporting Analyte DF/Split Ion Ratio Ratio Limits Limit Result Units Notes Labeled compounds 13C12-2,3,7,8-TCDF 0.727 0.655-0.886 24-169 % 79.5 % 13C12-2,3,7,8-TCDD 0.785 0.655-0.886 25-164 % 86.9 % 13C12-1,2,3,7,8-PeCDF 1.509 1.318-1.783 24-185 % 92.6 % 13C12-2,3,4,7,8-PeCDF 1.608 1.318-1.783 21-178 % 88.9 % 25-181 % 13C12-1,2,3,7,8-PeCDD 1.654 1.318-1.783 81.7 % 13C12-1,2,3,4,7,8-HxCDF 0.532 0.434-0.587 26-152 % 116 % 0.540 0.434-0.587 26-123 % 120 13C12-1,2,3,6,7,8-HxCDF % 0.528 0.434-0.587 28-136 % 110 13C12-2.3.4.6.7.8-HxCDF % 13C12-1,2,3,7,8,9-HxCDF 0.519 0.434-0.587 29-147 % 113 % 13C12-1,2,3,4,7,8-HxCDD 1.275 1.054-1.426 32-141 % 91.1 % 13C12-1,2,3,6,7,8-HxCDD 1.254 1.054-1.426 28-130 % 101 % 13C12-1,2,3,4,6,7,8-HpCDF 0.451 0.374-0.506 28-143 % 104 % 13C12-1,2,3,4,7,8,9-HpCDF 0.374-0.506 0.444 26-138 % 98.6 % 13C12-1,2,3,4,6,7,8-HpCDD 1.012 0.893-1.208 23-140 % 115 % 13C12-0CDD 0.880 0.757-1.024 17-157 % 113 % 37Cl4-2,3,7,8-TCDD 35-197 % 90.9 %

Floyd - Snider				Project: Lora La	ke 2024						
601 Union Street Two Uni	on Square, Suite 600	I	Project N	Number: POS - I	LA				Repo	ted:	
Seattle WA, 98101-2341		Project Manager: Amanda McKay						29-May-2024 13:46			
			М	W-CP4-0424	24						
			241	00567-10 (Wat	er)						
Dioxins/Furans											
Method: EPA 1613B								S	ampled: 04/	24/2024 15:20	
Instrument: AUTOSPEC01	Analyst: pk							Ar	nalyzed: 05/	28/2024 17:51	
							Reporting				
Analyte	DF	7/Split Ion R	latio	Ratio Limits		EDL	Limit	Result	Units	Notes	
			Μ	W-CP4-0424	24						
			241	00567-10 (Wat	er)						
Metals and Metallic Cor	npounds (dissolved)										
Method: EPA 6020B UCT-k	KED							S	ampled: 04/	24/2024 15:20	
Instrument: ICPMS2 Analy	yst: DOE							Ar	nalyzed: 05/	01/2024 22:15	
Sample Preparation:	Preparation Method: F	REN - EPA 3010A	М					Ext	ract ID: 24I	00567-10 C 02	
Preparation Batch: BM		4D0764	D0764 Sample Size: 25 mL					Filtration Batch: BMD0643			
	Prepared: 04/28/2024			Final Volume:	25 mL			Filtratio	on Date: 04/	25/2024 15:10	
						Detection	Reporting				
Analyte				CAS Number	Dilution	Limit	Limit	Result	Units	Notes	

Floyd - Snider
601 Union Street Two Union Square, Suite 600
Seattle WA, 98101-2341

Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

MW-CP5-042424

24D0567-11 (Water)

Dioxins/Furans								
Method: EPA 1613B						Sa	mpled: 04/	24/2024 14:45
Instrument: AUTOSPEC	201 Analyst: pk					Ana	lyzed: 05/	28/2024 18:40
Sample Preparation:	Preparation Method: EPA 1613					Extra	act ID: 24I	D0567-11 A 01
	Preparation Batch: BME0312		Sample Size: 990 mL					
	Prepared: 05/13/2024		Final Volume: 20 uL					
Sample Cleanup:	Cleanup Method: Silica Gel					Extra	act ID: 24I	00567-11 A 01
	Cleanup Batch: CME0114		Initial Volume: 20 uL					
	Cleaned: 14-May-2024		Final Volume: 20 uL					
Sample Cleanup:	Cleanup Method: Florisil					Extr	act ID:24I	D0567-11 A 01
	Cleanup Batch: CME0115		Initial Volume: 20 uL					
	Cleaned: 14-May-2024		Final Volume: 20 uL					
					Reporting			
Analyte	DF/Split	Ion Ratio	Ratio Limits	EDL	Limit	Result	Units	Notes
2,3,7,8-TCDF			0.655-0.886	1.96	10.1	ND	pg/L	U
2,3,7,8-TCDD			0.655-0.886	1.01	10.1	ND	pg/L	U
1,2,3,7,8-PeCDF			1.318-1.783	1.37	10.1	ND	pg/L	U
2,3,4,7,8-PeCDF			1.318-1.783	1.41	10.1	ND	pg/L	U
1,2,3,7,8-PeCDD			1.318-1.783	1.81	10.1	ND	pg/L	U
1,2,3,4,7,8-HxCDF			1.054-1.426	0.92	10.1	ND	pg/L	U
1,2,3,6,7,8-HxCDF			1.054-1.426	0.89	10.1	ND	pg/L	U
2,3,4,6,7,8-HxCDF			1.054-1.426	0.99	10.1	ND	pg/L	U
1,2,3,7,8,9-HxCDF			1.054-1.426	1.38	10.1	ND	pg/L	U
1,2,3,4,7,8-HxCDD			1.054-1.426	1.69	10.1	ND	pg/L	U
1,2,3,6,7,8-HxCDD			1.054-1.426	1.61	10.1	ND	pg/L	U
1,2,3,7,8,9-HxCDD			1.054-1.426	1.84	10.1	ND	pg/L	U
1,2,3,4,6,7,8-HpCDF			0.893-1.208	0.91	20.2	ND	pg/L	U
1,2,3,4,7,8,9-HpCDF			0.893-1.208	1.68	10.1	ND	pg/L	U
1,2,3,4,6,7,8-HpCDD			0.893-1.208	2.04	10.1	ND	pg/L	U
OCDF			0.757-1.024	2.25	20.2	ND	pg/L	U
OCDD			0.757-1.024	3.06	50.5	ND	pg/L	U
Homologue groups								
Total TCDF					10.1	ND	pg/L	U
Total TCDD					10.1	ND	pg/L	U
Total PeCDF					10.1	ND	pg/L	U
Total PeCDD					10.1	ND	pg/L	U
Total HxCDF					10.1	ND	pg/L	U
Total HxCDD					10.1	ND	pg/L	U
Total HpCDF					10.1	ND	pg/L	U
Total HpCDD					10.1	ND	pg/L	U

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 2.23

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 0.00

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, EMPC = ND): 2.23

Floyd - Snider 601 Union Street Two Union Square, Suite 600 Seattle WA, 98101-2341 Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

MW-CP5-042424

24D0567-11 (Water)

Dioxins/	Furans

Method: EPA 1613B Sampled: 04/24/2024 14:45 Instrument: AUTOSPEC01 Analyst: pk Analyzed: 05/28/2024 18:40 Reporting Analyte DF/Split Ion Ratio Ratio Limits Limit Result Units Notes Labeled compounds 13C12-2,3,7,8-TCDF 0.786 0.655-0.886 24-169 % 87.7 % 13C12-2,3,7,8-TCDD 0.799 0.655-0.886 25-164 % 93.6 % 13C12-1,2,3,7,8-PeCDF 1.548 1.318-1.783 24-185 % 101 % 13C12-2,3,4,7,8-PeCDF 1.592 1.318-1.783 21-178 % 99.9 % 25-181 % 13C12-1,2,3,7,8-PeCDD 1.669 1.318-1.783 89.7 % 13C12-1,2,3,4,7,8-HxCDF 0.543 0.434-0.587 26-152 % 124 % 0.538 0.434-0.587 26-123 % 127 13C12-1,2,3,6,7,8-HxCDF % 0.525 0.434-0.587 28-136 % 121 13C12-2.3.4.6.7.8-HxCDF % 13C12-1,2,3,7,8,9-HxCDF 0.555 0.434-0.587 29-147 % 119 % 13C12-1,2,3,4,7,8-HxCDD 1.282 1.054-1.426 32-141 % 96.6 % 13C12-1,2,3,6,7,8-HxCDD 1.247 1.054-1.426 28-130 % 107 % 13C12-1,2,3,4,6,7,8-HpCDF 0.4380.374-0.506 28-143 % 110 % 13C12-1,2,3,4,7,8,9-HpCDF 0.374-0.506 0.442 26-138 % 100 % 13C12-1,2,3,4,6,7,8-HpCDD 1.035 0.893-1.208 23-140 % 114 % 13C12-OCDD 0.759 0.757-1.024 17-157 % 116 % 37Cl4-2,3,7,8-TCDD 35-197 % 103 %

Floyd - Snider				Project: Lora La	ike 2024							
601 Union Street Two L	Union Square, Suite 600		Project	Number: POS - I	LA				Repor	rted:		
Seattle WA, 98101-234	1		Project N	Manager: Amand	a McKay				29-May-2024 13:46			
			Μ	IW-CP5-0424	24							
			24	D0567-11 (Wat	er)							
Dioxins/Furans												
Method: EPA 1613B								Sa	ampled: 04/	24/2024 14:45		
Instrument: AUTOSPECO	01 Analyst: pk							Ar	alyzed: 05/	28/2024 18:40		
							Reporting					
Analyte		DF/Split	Ion Ratio	Ratio Limits		EDL	Limit	Result	Units	Notes		
			Μ	IW-CP5-0424	24							
			24	D0567-11 (Wat	er)							
Metals and Metallic C	Compounds (dissolved)										
Method: EPA 6020B UCT	Г-KED							Sa	ampled: 04/	24/2024 14:45		
Instrument: ICPMS2 An	alyst: DOE							Ar	alyzed: 05/	01/2024 22:17		
Sample Preparation:	Preparation Method Preparation Batch:		3010A M	Sample Size: 2	5 mL					00567-11 C 02 ch: BMD0643		
	Prepared: 04/28/20	24		Final Volume:	25 mL			Filtratic	on Date: 04/	25/2024 15:10		
Analyte				CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes		
Arsenic, Dissolved				7440-38-2	1	0.0373	0.200	9.79	ug/L			

Floyd - Snider
601 Union Street Two Union Square, Suite 600
Seattle WA, 98101-2341

Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

MW-CP6-042424

24D0567-12 (Water)

Dioxins/Furans									
Method: EPA 1613B						Sa	mpled: 04	4/24/2024 15:30	
Instrument: AUTOSPEC	201 Analyst: pk					Ana	alyzed: 05	5/28/2024 21:14	
Sample Preparation:	Preparation Method: EPA 1613 Preparation Batch: BME0312		Sample Size: 1060 mL			Extra	act ID: 24	D0567-12 A 01	
	Prepared: 05/13/2024		Final Volume: 20 uL						
Sample Cleanup:	Cleanup Method: Silica Gel Cleanup Batch: CME0114 Cleaned: 14-May-2024		Initial Volume: 20 uL Final Volume: 20 uL	Extract ID: 24D0567-12 A (
Sample Cleanup:	Cleanup Method: Florisil Cleanup Batch: CME0115 Cleaned: 14-May-2024		Initial Volume: 20 uL Final Volume: 20 uL			Extr	act ID:24	D0567-12 A 01	
					Reporting				
Analyte	DF/Split	Ion Ratio	Ratio Limits	EDL	Limit	Result	Units	Notes	
2,3,7,8-TCDF			0.655-0.886	1.89	9.43	ND	pg/L	U	
2,3,7,8-TCDD			0.655-0.886	1.07	9.43	ND	pg/L	U	
1,2,3,7,8-PeCDF			1.318-1.783	1.34	9.43	ND	pg/L	U	
2,3,4,7,8-PeCDF			1.318-1.783	1.35	9.43	ND	pg/L	U	
1,2,3,7,8-PeCDD			1.318-1.783	1.80	9.43	ND	pg/L	U	
1,2,3,4,7,8-HxCDF			1.054-1.426	1.22	9.43	ND	pg/L	U	
1,2,3,6,7,8-HxCDF			1.054-1.426	1.09	9.43	ND	pg/L	U	
2,3,4,6,7,8-HxCDF			1.054-1.426	1.25	9.43	ND	pg/L	U	
1,2,3,7,8,9-HxCDF			1.054-1.426	1.96	9.43	ND	pg/L	U	
1,2,3,4,7,8-HxCDD			1.054-1.426	2.01	9.43	ND	pg/L	U	
1,2,3,6,7,8-HxCDD			1.054-1.426	1.93	9.43	ND	pg/L	U	
1,2,3,7,8,9-HxCDD			1.054-1.426	2.20	9.43	ND	pg/L	U	
1,2,3,4,6,7,8-HpCDF			0.893-1.208	1.15	18.9	ND	pg/L	U	
1,2,3,4,7,8,9-HpCDF			0.893-1.208	2.24	9.43	ND	pg/L	U	
1,2,3,4,6,7,8-HpCDD			0.893-1.208	2.45	9.43	ND	pg/L	U	
OCDF			0.757-1.024	2.94	18.9	ND	pg/L	U	
OCDD		0.594	0.757-1.024	4.38	47.2	3.74	pg/L	EMPC, J	
Homologue groups									
Total TCDF					9.43	ND	pg/L	U	
Total TCDD					9.43	ND	pg/L	U	
Total PeCDF					9.43	ND	pg/L	U	
Total PeCDD					9.43	ND	pg/L	U	
Total HxCDF					9.43	ND	pg/L	U	
Total HxCDD					9.43	ND	pg/L	U	
Total HpCDF					9.43	ND	pg/L	U	
Total HpCDD					9.43	ND	pg/L	U	

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 2.37

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 0.00

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, EMPC = ND): 2.37

Floyd - Snider
601 Union Street Two Union Square, Suite 600
Seattle WA, 98101-2341

Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

Sampled: 04/24/2024 15:30

MW-CP6-042424

24D0567-12 (Water)

Dioxins/Furans	
Method: EPA 1613B	

nstrument: AUTOSPEC01 Analyst:	pk				Ar	alyzed: 05	/28/2024 2
				Reporting			
Analyte	DF/Split	Ion Ratio	Ratio Limits	Limit	Result	Units	Notes
abeled compounds							
3C12-2,3,7,8-TCDF		0.707	0.655-0.886	24-169 %	84.5	%	
3C12-2,3,7,8-TCDD		0.776	0.655-0.886	25-164 %	90.3	%	
3C12-1,2,3,7,8-PeCDF		1.594	1.318-1.783	24-185 %	93.0	%	
3C12-2,3,4,7,8-PeCDF		1.567	1.318-1.783	21-178 %	89.5	%	
3C12-1,2,3,7,8-PeCDD		1.660	1.318-1.783	25-181 %	82.4	%	
3C12-1,2,3,4,7,8-HxCDF		0.555	0.434-0.587	26-152 %	137	%	
3C12-1,2,3,6,7,8-HxCDF		0.533	0.434-0.587	26-123 %	148	%	*
3C12-2,3,4,6,7,8-HxCDF		0.516	0.434-0.587	28-136 %	134	%	
3C12-1,2,3,7,8,9-HxCDF		0.560	0.434-0.587	29-147 %	117	%	
3C12-1,2,3,4,7,8-HxCDD		1.275	1.054-1.426	32-141 %	105	%	
3C12-1,2,3,6,7,8-HxCDD		1.261	1.054-1.426	28-130 %	121	%	
3C12-1,2,3,4,6,7,8-HpCDF		0.467	0.374-0.506	28-143 %	118	%	
3C12-1,2,3,4,7,8,9-HpCDF		0.499	0.374-0.506	26-138 %	99.0	%	
3C12-1,2,3,4,6,7,8-HpCDD		1.041	0.893-1.208	23-140 %	117	%	
3C12-OCDD		0.848	0.757-1.024	17-157 %	121	%	
7Cl4-2,3,7,8-TCDD				35-197 %	102	%	

Floyd - Snider			Project: Lora La	ake 2024								
601 Union Street Two Unio	n Square, Suite 600	Proje	ct Number: POS - I	LLA				Repo	rted:			
Seattle WA, 98101-2341		Projec	et Manager: Amand	a McKay			29-May-2024 13:4					
			MW-CP6-0424	24								
			24D0567-12 (Wat	ter)								
Dioxins/Furans												
Method: EPA 1613B							S	ampled: 04/	24/2024 15:30			
Instrument: AUTOSPEC01	Analyst: pk						Ar	nalyzed: 05/	28/2024 21:14			
	Reporting											
Analyte	DF/Split	Ion Ratio	Ratio Limits		EDL	Limit	Result	Units	Notes			
			MW-CP6-0424	24								
			24D0567-12 (Wat	ter)								
Metals and Metallic Com	pounds (dissolved)											
Method: EPA 6020B UCT-K	ED						S	ampled: 04/	24/2024 15:30			
Instrument: ICPMS2 Analys	st: DOE						Ar	nalyzed: 05/	01/2024 22:18			
Sample Preparation:	Preparation Method: REN - E	PA 3010A M					Ext	ract ID: 24I	D0567-12 C 02			
	Preparation Batch: BMD0764		Sample Size: 2				Filtration Batch: BMD064					
	Prepared: 04/28/2024		Final Volume:	25 mL			Filtratio	on Date: 04/	25/2024 15:10			
Analyte			CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes			
Arsenic, Dissolved			7440-38-2	1	0.0373	0.200	0.923	ug/L				

Floyd - Snider
601 Union Street Two Union Square, Suite 600
Seattle WA, 98101-2341

Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

MW-CP7-042424

24D0567-13 (Water)

Dioxins/Furans											
Method: EPA 1613B						Sa	mpled: 04/	24/2024 15:40			
Instrument: AUTOSPEC	01 Analyst: pk					Ana	lyzed: 05/	28/2024 22:03			
Sample Preparation:	Preparation Method: EPA 1613 Preparation Batch: BME0312 Prepared: 05/13/2024		Sample Size: 990 mL Final Volume: 20 uL			Extra	ict ID: 24I	D0567-13 A 01			
Sample Cleanup:	Cleanup Method: Silica Gel Cleanup Batch: CME0114 Cleaned: 14-May-2024		Initial Volume: 20 uL Final Volume: 20 uL		Extract ID: 24D0567-13 A						
Sample Cleanup:	Cleanup Method: Florisil Cleanup Batch: CME0115 Cleaned: 14-May-2024		Initial Volume: 20 uL Final Volume: 20 uL			Extr	act ID:24I	D0567-13 A 01			
					Reporting						
Analyte	DF/Split	Ion Ratio	Ratio Limits	EDL	Limit	Result	Units	Notes			
2,3,7,8-TCDF			0.655-0.886	1.73	10.1	ND	pg/L	U			
2,3,7,8-TCDD			0.655-0.886	1.13	10.1	ND	pg/L	U			
1,2,3,7,8-PeCDF			1.318-1.783	1.49	10.1	ND	pg/L	U			
2,3,4,7,8-PeCDF			1.318-1.783	1.50	10.1	ND	pg/L	U			
1,2,3,7,8-PeCDD			1.318-1.783	1.68	10.1	ND	pg/L	U			
1,2,3,4,7,8-HxCDF			1.054-1.426	1.01	10.1	ND	pg/L	U			
1,2,3,6,7,8-HxCDF			1.054-1.426	0.96	10.1	ND	pg/L	U			
2,3,4,6,7,8-HxCDF			1.054-1.426	1.09	10.1	ND	pg/L	U			
1,2,3,7,8,9-HxCDF			1.054-1.426	1.50	10.1	ND	pg/L	U			
1,2,3,4,7,8-HxCDD			1.054-1.426	1.94	10.1	ND	pg/L	U			
1,2,3,6,7,8-HxCDD			1.054-1.426	1.87	10.1	ND	pg/L	U			
1,2,3,7,8,9-HxCDD			1.054-1.426	2.13	10.1	ND	pg/L	U			
1,2,3,4,6,7,8-HpCDF			0.893-1.208	1.13	20.2	ND	pg/L	U			
1,2,3,4,7,8,9-HpCDF			0.893-1.208	2.00	10.1	ND	pg/L	U			
1,2,3,4,6,7,8-HpCDD			0.893-1.208	2.08	10.1	ND	pg/L	U			
OCDF			0.757-1.024	3.13	20.2	ND	pg/L	U			
OCDD			0.757-1.024	3.35	50.5	ND	pg/L	U			
Homologue groups											
Total TCDF					10.1	ND	pg/L	U			
Total TCDD					10.1	ND	pg/L	U			
Total PeCDF					10.1	ND	pg/L	U			
Total PeCDD					10.1	ND	pg/L	U			
Total HxCDF					10.1	ND	pg/L	U			
Total HxCDD					10.1	ND	pg/L	U			
Total HpCDF					10.1	ND	pg/L	U			
Total HpCDD					10.1	ND	pg/L	U			

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 2.29

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 0.00

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, EMPC = ND): 2.29

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, EMPC = ND): 0.00

Floyd - Snider 601 Union Street Two Union Square, Suite 600 Seattle WA, 98101-2341 Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

MW-CP7-042424

24D0567-13 (Water)

Dioxins/	Furans

37Cl4-2,3,7,8-TCDD

Method: EPA 1613B Instrument: AUTOSPEC01 Analyst: pk Reporting Analyte DF/Split Ion Ratio Ratio Limits Limit Result Units Labeled compounds 13C12-2,3,7,8-TCDF 0.720 0.655-0.886 24-169 % 84.8 % 13C12-2,3,7,8-TCDD 0.803 0.655-0.886 25-164 % 93.4 % 13C12-1,2,3,7,8-PeCDF 1.568 1.318-1.783 24-185 % 96.6 % 13C12-2,3,4,7,8-PeCDF 1.639 1.318-1.783 21-178 % 93.5 % 25-181 % 13C12-1,2,3,7,8-PeCDD 1.676 1.318-1.783 90.0 % 13C12-1,2,3,4,7,8-HxCDF 0.554 0.434-0.587 26-152 % 127 % 0.550 0.434-0.587 26-123 % 137 13C12-1,2,3,6,7,8-HxCDF % 0.544 0.434-0.587 28-136 % 124 13C12-2.3.4.6.7.8-HxCDF % 13C12-1,2,3,7,8,9-HxCDF 0.508 0.434-0.587 29-147 % 125 % 13C12-1,2,3,4,7,8-HxCDD 1.258 1.054-1.426 32-141 % 96.1 % 13C12-1,2,3,6,7,8-HxCDD 1.247 1.054-1.426 28-130 % 110 % 13C12-1,2,3,4,6,7,8-HpCDF 0.495 0.374-0.506 28-143 % 116 % 13C12-1,2,3,4,7,8,9-HpCDF 0.374-0.506 102 0.423 26-138 % % 13C12-1,2,3,4,6,7,8-HpCDD 1.133 0.893-1.208 23-140 % 110 % 13C12-0CDD 0.968 0.757-1.024 17-157 % 107 %

35-197 %

96.1

%

Sampled: 04/24/2024 15:40

Analyzed: 05/28/2024 22:03

Notes

Floyd - Snider				Project: Lora La	ike 2024					
601 Union Street Two U	Union Square, Suite 600		Project	Number: POS - I	LA				Repor	rted:
Seattle WA, 98101-234	1		Project N	Manager: Amand	a McKay				024 13:46	
			N	IW-CP7-0424	24					
			24	D0567-13 (Wat	er)					
Dioxins/Furans										
Method: EPA 1613B								Sa	ampled: 04/	24/2024 15:40
Instrument: AUTOSPEC	01 Analyst: pk							Ar	nalyzed: 05/	28/2024 22:03
	Reporting									
Analyte		DF/Split	Ion Ratio	Ratio Limits		EDL	Limit	Result	Units	Notes
			Ν	IW-CP7-0424	24					
			24	D0567-13 (Wat	er)					
Metals and Metallic (Compounds (dissolve	d)								
Method: EPA 6020B UC	T-KED							Sa	ampled: 04/	24/2024 15:40
Instrument: ICPMS2 Ar	nalyst: DOE							Ar	nalyzed: 05/	01/2024 22:19
Sample Preparation:	Preparation Metho Preparation Batch:		A 3010A M	Sample Size: 2	5 mL					00567-13 C 02 cch: BMD0643
	Prepared: 04/28/20)24		Final Volume:	25 mL			Filtratic	on Date: 04/	25/2024 15:10
							Reporting			
Analyte				CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Arsenic, Dissolved				7440-38-2	1	0.0373	0.200	0.322	ug/L	

Floyd - Snider 601 Union Street Two Union Square, Suite 600 Seattle WA, 98101-2341 Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

Analysis by: Analytical Resources, LLC

Dioxins/Furans - Quality Control

Batch BME0078 - EPA 1613B

Instrument: AUTOSPEC01 Analyst: pl

	Ion	Ratio		Reporting				%REC		RPD	
QC Sample/Analyte	Ratio	Limits	EDL	Limit	Result	Units	%REC	Limits	RPD	Limit	Notes
Blank (BME0078-BLK2)				Prepared: 03-N	/lay-2024	Analyzed	: 21-May-	2024 17:5	2		
2,3,7,8-TCDF		0.655-0.886	1.71	10.0	ND	pg/L					U
2,3,7,8-TCDD		0.655-0.886	1.13	10.0	ND	pg/L					U
1,2,3,7,8-PeCDF		1.318-1.783	1.55	10.0	ND	pg/L					U
2,3,4,7,8-PeCDF		1.318-1.783	1.58	10.0	ND	pg/L					U
1,2,3,7,8-PeCDD		1.318-1.783	1.83	10.0	ND	pg/L					U
1,2,3,4,7,8-HxCDF		1.054-1.426	1.18	10.0	ND	pg/L					U
1,2,3,6,7,8-HxCDF		1.054-1.426	1.13	10.0	ND	pg/L					U
2,3,4,6,7,8-HxCDF		1.054-1.426	1.25	10.0	ND	pg/L					U
1,2,3,7,8,9-HxCDF		1.054-1.426	1.70	10.0	ND	pg/L					U
1,2,3,4,7,8-HxCDD		1.054-1.426	2.56	10.0	ND	pg/L					U
1,2,3,6,7,8-HxCDD		1.054-1.426	2.55	10.0	ND	pg/L					U
1,2,3,7,8,9-HxCDD		1.054-1.426	2.77	10.0	ND	pg/L					U
1,2,3,4,6,7,8-HpCDF		0.893-1.208	1.38	20.0	ND	pg/L					U
1,2,3,4,7,8,9-HpCDF		0.893-1.208	2.20	10.0	ND	pg/L					U
1,2,3,4,6,7,8-HpCDD		0.893-1.208	2.89	10.0	ND	pg/L					U
OCDF		0.757-1.024	3.57	20.0	ND	pg/L					U
OCDD		0.757-1.024	4.28	50.0	ND	pg/L					U
Homologue group											
Total TCDF				10.0	ND	pg/L					U
Total TCDD				10.0	ND	pg/L					U
Total PeCDF				10.0	ND	pg/L					U
Total PeCDD				10.0	ND	pg/L					U
Total HxCDF				10.0	ND	pg/L					U
Total HxCDD				10.0	ND	pg/L					U
Total HpCDF				10.0	ND	pg/L					U
Total HpCDD				10.0	ND	pg/L					U

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 0.13

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 0.00

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, EMPC=ND): 0.13

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0 EDL, EMPC=ND): 0.00

Labeled compounds

13C12-2,3,7,8-TCDF	0.725	0.655-0.886	90.0	24-169 %
13C12-2,3,7,8-TCDD	0.811	0.655-0.886	100	25-164 %

Floyd - Snider 601 Union Street Two Union Square, Suite 600 Seattle WA, 98101-2341 Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

Analysis by: Analytical Resources, LLC

Dioxins/Furans - Quality Control

Batch BME0078 - EPA 1613B

	Ion	Ratio		Reporting			%REC		RPD	
QC Sample/Analyte	Ratio	Limits	EDL	Limit	Result U	nits %REC	Limits	RPD	Limit	Notes
Blank (BME0078-BLK2)				Prepared: 03-N	lay-2024 Ana	lyzed: 21-May	-2024 17:5	2		
13C12-1,2,3,7,8-PeCDF	1.558	1.318-1.783			97.0	0		24	-185 %	
13C12-2,3,4,7,8-PeCDF	1.533	1.318-1.783			94	3		21	-178 %	
13C12-1,2,3,7,8-PeCDD	1.762	1.318-1.783			10.	I		25	-181 %	
13C12-1,2,3,4,7,8-HxCDF	0.530	0.434-0.587			13	0		26	-152 %	
13C12-1,2,3,6,7,8-HxCDF	0.511	0.434-0.587			12	7		26	-123 %	*
13C12-2,3,4,6,7,8-HxCDF	0.546	0.434-0.587			12.	2		28	-136 %	
13C12-1,2,3,7,8,9-HxCDF	0.564	0.434-0.587			13-	4		29	-147 %	
13C12-1,2,3,4,7,8-HxCDD	1.250	1.054-1.426			10-	4		32	-141 %	
13C12-1,2,3,6,7,8-HxCDD	1.225	1.054-1.426			11.	3		28	-130 %	
13C12-1,2,3,4,6,7,8-HpCDF	0.484	0.374-0.506			110	6		28	-143 %	
13C12-1,2,3,4,7,8,9-HpCDF	0.416	0.374-0.506			110	6		26	-138 %	
13C12-1,2,3,4,6,7,8-HpCDD	1.052	0.893-1.208			11.	2		23	-140 %	
13C12-OCDD	0.934	0.757-1.024			100	8		17	-157 %	
37Cl4-2,3,7,8-TCDD					98	3		35	-197 %	

Floyd - Snider 601 Union Street Two Union Square, Suite 600 Seattle WA, 98101-2341 Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

Analysis by: Analytical Resources, LLC

Dioxins/Furans - Quality Control

Batch BME0078 - EPA 1613B

	Ion	Ratio		Reporting				%REC		RPD	
QC Sample/Analyte	Ratio	Limits	EDL	Limit	Result	Units	%REC	Limits	RPD	Limit	Notes
LCS (BME0078-BS2)				Prepared: 03-M	[av-2024	Analvzed	l: 21-Mav-	-2024 18:41			
2,3,7,8-TCDF	0.794	0.655-0.886		10.0	198	pg/L	98.9	75-158 %			
2,3,7,8-TCDD	0.752	0.655-0.886		10.0	195	pg/L	97.5	67-158 %			
1,2,3,7,8-PeCDF	1.535	1.318-1.783		10.0	956	pg/L	95.6	80-134 %			
2,3,4,7,8-PeCDF	1.577	1.318-1.783		10.0	969	pg/L	96.9	68-160 %			
1,2,3,7,8-PeCDD	1.732	1.318-1.783		10.0	967	pg/L	96.7	70-142 %			
1,2,3,4,7,8-HxCDF	1.239	1.054-1.426		10.0	990	pg/L	99.0	72-134 %			
1,2,3,6,7,8-HxCDF	1.210	1.054-1.426		10.0	1180	pg/L	118	84-130 %			
2,3,4,6,7,8-HxCDF	1.232	1.054-1.426		10.0	1180	pg/L	118	70-156 %			
1,2,3,7,8,9-HxCDF	1.232	1.054-1.426		10.0	1080	pg/L	108	78-130 %			
1,2,3,4,7,8-HxCDD	1.228	1.054-1.426		10.0	1120	pg/L	112	70-164 %			
1,2,3,6,7,8-HxCDD	1.201	1.054-1.426		10.0	1110	pg/L	111	76-134 %			
1,2,3,7,8,9-HxCDD	1.235	1.054-1.426		10.0	1230	pg/L	123	64-162 %			
1,2,3,4,6,7,8-HpCDF	1.101	0.893-1.208		20.0	930	pg/L	93.0	82-122 %			
1,2,3,4,7,8,9-HpCDF	1.021	0.893-1.208		10.0	1040	pg/L	104	78-138 %			
1,2,3,4,6,7,8-HpCDD	0.966	0.893-1.208		10.0	967	pg/L	96.7	70-140 %			
OCDF	0.897	0.757-1.024		20.0	1660	pg/L	83.1	63-170 %			
OCDD	0.823	0.757-1.024		50.0	1720	pg/L	85.9	78-144 %			
Labeled compounds											
13C12-2,3,7,8-TCDF	0.737	0.655-0.886				89.7			24	-169 %	
13C12-2,3,7,8-TCDD	0.805	0.655-0.886				99.8			25	-164 %	
13C12-1,2,3,7,8-PeCDF	1.569	1.318-1.783				99.3			24	-185 %	
13C12-2,3,4,7,8-PeCDF	1.602	1.318-1.783				96.9			21	-178 %	
13C12-1,2,3,7,8-PeCDD	1.725	1.318-1.783				105			25	-181 %	
13C12-1,2,3,4,7,8-HxCDF	0.530	0.434-0.587				138			26	-152 %	
13C12-1,2,3,6,7,8-HxCDF	0.538	0.434-0.587				131			26	-123 %	*
13C12-2,3,4,6,7,8-HxCDF	0.546	0.434-0.587				127			28	-136 %	
13C12-1,2,3,7,8,9-HxCDF	0.540	0.434-0.587				146			29	-147 %	
13C12-1,2,3,4,7,8-HxCDD	1.263	1.054-1.426				113			32	-141 %	

Floyd - Snider
601 Union Street Two Union Square, Suite 600
Seattle WA, 98101-2341

Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

Analysis by: Analytical Resources, LLC

Dioxins/Furans - Quality Control

Batch BME0078 - EPA 1613B

	Ion	Ratio		Reporting				%REC		RPD	
QC Sample/Analyte	Ratio	Limits	EDL	Limit	Result	Units	%REC	Limits	RPD	Limit	Notes
LCS (BME0078-BS2)				Prepared: 03-M	lay-2024 Ai	nalyzed	: 21-May-	2024 18:4	1		
13C12-1,2,3,6,7,8-HxCDD	1.201	1.054-1.426				119			28	-130 %	
13C12-1,2,3,4,6,7,8-HpCDF	0.421	0.374-0.506			1	137			28	-143 %	
13C12-1,2,3,4,7,8,9-HpCDF	0.424	0.374-0.506			i	122			26	-138 %	
13C12-1,2,3,4,6,7,8-HpCDD	1.156	0.893-1.208			i	136			23	-140 %	
13C12-OCDD	0.960	0.757-1.024			i	136			17	-157 %	
37Cl4-2,3,7,8-TCDD					i	102			35	-197 %	

Floyd - SniderProject:Lora Lake 2024601 Union Street Two Union Square, Suite 600Project Number:POS - LLASeattle WA, 98101-2341Project Manager:Amanda McKay

Reported: 29-May-2024 13:46

Dioxins/Furans - Quality Control

Batch BME0312 - EPA 1613B

Instrument: AUTOSPEC01 Analyst: pl

	Ion	Ratio		Reporting				%REC		RPD	
QC Sample/Analyte	Ratio	Limits	EDL	Limit	Result	Units	%REC	Limits	RPD	Limit	Notes
Blank (BME0312-BLK1)				Prepared: 13-N	/lay-2024	Analyzed	l: 28-May-	2024 13:4	0		
2,3,7,8-TCDF		0.655-0.886	1.58	10.0	ND	pg/L					U
2,3,7,8-TCDD		0.655-0.886	1.22	10.0	ND	pg/L					U
1,2,3,7,8-PeCDF		1.318-1.783	1.52	10.0	ND	pg/L					U
2,3,4,7,8-PeCDF		1.318-1.783	1.50	10.0	ND	pg/L					U
1,2,3,7,8-PeCDD		1.318-1.783	1.60	10.0	ND	pg/L					U
1,2,3,4,7,8-HxCDF		1.054-1.426	1.09	10.0	ND	pg/L					U
1,2,3,6,7,8-HxCDF		1.054-1.426	1.06	10.0	ND	pg/L					U
2,3,4,6,7,8-HxCDF		1.054-1.426	1.17	10.0	ND	pg/L					U
1,2,3,7,8,9-HxCDF		1.054-1.426	1.68	10.0	ND	pg/L					U
1,2,3,4,7,8-HxCDD		1.054-1.426	1.93	10.0	ND	pg/L					U
1,2,3,6,7,8-HxCDD		1.054-1.426	1.87	10.0	ND	pg/L					U
1,2,3,7,8,9-HxCDD		1.054-1.426	2.12	10.0	ND	pg/L					U
1,2,3,4,6,7,8-HpCDF		0.893-1.208	1.24	20.0	ND	pg/L					U
1,2,3,4,7,8,9-HpCDF		0.893-1.208	2.07	10.0	ND	pg/L					U
1,2,3,4,6,7,8-HpCDD		0.893-1.208	2.24	10.0	ND	pg/L					U
OCDF		0.757-1.024	3.16	20.0	ND	pg/L					U
OCDD		0.757-1.024	3.50	50.0	ND	pg/L					U
Homologue group											
Total TCDF				10.0	ND	pg/L					U
Total TCDD				10.0	ND	pg/L					U
Total PeCDF				10.0	ND	pg/L					U
Total PeCDD				10.0	ND	pg/L					U
Total HxCDF				10.0	ND	pg/L					U
Total HxCDD				10.0	ND	pg/L					U
Total HpCDF				10.0	ND	pg/L					U
Total HpCDD				10.0	ND	pg/L					U

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 0.12

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 0.00

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, EMPC=ND): 0.12

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0 EDL, EMPC=ND): 0.00

Labeled compounds				
13C12-2,3,7,8-TCDF	0.762	0.655-0.886	101	24-169 %
13C12-2,3,7,8-TCDD	0.777	0.655-0.886	105	25-164 %
13C12-1,2,3,7,8-PeCDF	1.582	1.318-1.783	109	24-185 %
13C12-2,3,4,7,8-PeCDF	1.529	1.318-1.783	107	21-178 %

Floyd - Snider 601 Union Street Two Union Square, Suite 600 Seattle WA, 98101-2341 Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

Analysis by: Analytical Resources, LLC

Dioxins/Furans - Quality Control

Batch BME0312 - EPA 1613B

Ion	Ratio		Reporting				%REC		RPD	
Ratio	Limits	EDL	Limit	Result	Units	%REC	Limits	RPD	Limit	Notes
			Prepared: 13-N	1ay-2024	Analyzed	l: 28-May-	2024 13:4	0		
1.626	1.318-1.783				103			25	-181 %	
0.538	0.434-0.587				146			26	-152 %	
0.543	0.434-0.587				146			26	-123 %	*
0.545	0.434-0.587				139			28	-136 %	*
0.550	0.434-0.587				129			29	-147 %	
1.298	1.054-1.426				113			32	-141 %	
1.209	1.054-1.426				121			28	-130 %	
0.452	0.374-0.506				130			28	-143 %	
0.406	0.374-0.506				120			26	-138 %	
1.091	0.893-1.208				128			23	-140 %	
0.917	0.757-1.024				136			17	-157 %	
					102			35	-197 %	
	Ratio 1.626 0.538 0.543 0.545 0.550 1.298 1.209 0.452 0.406 1.091	Ratio Limits 1.626 1.318-1.783 0.538 0.434-0.587 0.543 0.434-0.587 0.545 0.434-0.587 0.550 0.434-0.587 1.298 1.054-1.426 1.209 1.054-1.426 0.452 0.374-0.506 0.406 0.374-0.506 1.091 0.893-1.208	Ratio Limits EDL 1.626 1.318-1.783	Ratio Limits EDL Limit Prepared: 13-M 1.626 1.318-1.783 0.538 0.434-0.587 0.543 0.434-0.587 0.543 0.434-0.587 0.550 0.434-0.587 1.298 1.054-1.426 1.209 1.054-1.426 0.452 0.374-0.506 0.406 0.374-0.506 1.091 0.893-1.208	Ratio Limits EDL Limit Result Prepared: 13-May-2024 1.626 1.318-1.783 0.538 0.434-0.587 0.543 0.434-0.587 0.550 0.434-0.587 1.298 1.054-1.426 1.209 1.054-1.426 0.452 0.374-0.506 0.406 0.374-0.506 1.091 0.893-1.208	Ratio Limits EDL Limit Result Units Prepared: 13-May-2024 Analyzed 1.626 1.318-1.783 103 0.538 0.434-0.587 146 0.543 0.434-0.587 146 0.545 0.434-0.587 146 0.550 0.434-0.587 129 1.298 1.054-1.426 113 1.209 1.054-1.426 121 0.452 0.374-0.506 120 1.091 0.893-1.208 128 0.917 0.757-1.024 136	Ratio Limits EDL Limit Result Units %REC Prepared: 13-May-2024 Analyzed: 28-May- 1.626 1.318-1.783 103 103 0.538 0.434-0.587 146 146 0.543 0.434-0.587 146 146 0.545 0.434-0.587 139 129 0.550 0.434-0.587 129 129 1.298 1.054-1.426 113 121 0.452 0.374-0.506 130 120 1.091 0.893-1.208 128 128 0.917 0.757-1.024 136 136	Ratio Limits EDL Limit Result Units %REC Limits Prepared: 13-May-2024 Analyzed: 28-May-2024 13:4 1.626 1.318-1.783 103 103 0.538 0.434-0.587 146 146 0.543 0.434-0.587 146 146 0.550 0.434-0.587 129 146 0.550 0.434-0.587 129 146 1.209 1.054-1.426 113 120 1.209 1.054-1.426 121 146 0.452 0.374-0.506 120 120 1.091 0.893-1.208 128 128 0.917 0.757-1.024 136 136	Ratio Limits EDL Limit Result Units %REC Limits RPD Prepared: 13-May-2024 Analyzed: 28-May-2024 13:40 1.626 1.318-1.783 103 25 0.538 0.434-0.587 104 26 0.543 0.434-0.587 146 26 0.545 0.434-0.587 146 26 0.550 0.434-0.587 129 29 1.298 1.054-1.426 113 32 1.209 1.054-1.426 121 28 0.452 0.374-0.506 120 26 1.091 0.893-1.208 128 23 0.917 0.757-1.024 136 17	Ratio Limits EDL Limit Result Units %REC Limits RPD Limit Prepared: 13-May-2024 Analyzed: 28-May-2024 13:40 1.626 1.318-1.783 103 25-181 % 0.538 0.434-0.587 146 26-152 % 0.543 0.434-0.587 146 26-123 % 0.545 0.434-0.587 139 28-136 % 0.550 0.434-0.587 129 29-147 % 1.298 1.054-1.426 113 32-141 % 1.209 1.054-1.426 120 28-136 % 0.436 0.374-0.506 120 28-138 % 0.406 0.374-0.506 120 28-143 % 1.091 0.893-1.208 128 23-140 % 0.917 0.757-1.024 136 17-157 %

Floyd - Snider 601 Union Street Two Union Square, Suite 600 Seattle WA, 98101-2341 Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

Analysis by: Analytical Resources, LLC

Dioxins/Furans - Quality Control

Batch BME0312 - EPA 1613B

	Ion	Ratio		Reporting				%REC		RPD	
QC Sample/Analyte	Ratio	Limits	EDL	Limit	Result	Units	%REC	Limits	RPD	Limit	Notes
LCS (BME0312-BS1)				Prepared: 13-M	Lary 2024	A malarmad	. 29 Mar	2024 14.26			
2,3,7,8-TCDF	0.802	0.655-0.886		10.0	1ay-2024 1 197	pg/L	98.6	75-158 %			
2,3,7,8-TCDD	0.302	0.655-0.886		10.0	197	pg/L pg/L	93.0	67-158 %			
1,2,3,7,8-PeCDF	1.546	1.318-1.783		10.0	948	pg/L pg/L	94.8	80-134 %			
2,3,4,7,8-PeCDF	1.715	1.318-1.783		10.0	1060	pg/L	106	68-160 %			
1,2,3,7,8-PeCDD	1.612	1.318-1.783		10.0	1010	pg/L	100	70-142 %			
1,2,3,4,7,8-HxCDF	1.275	1.054-1.426		10.0	1010	pg/L	101	72-134 %			
1,2,3,6,7,8-HxCDF	1.325	1.054-1.426		10.0	1020	pg/L	102	84-130 %			
2,3,4,6,7,8-HxCDF	1.381	1.054-1.426		10.0	1070	pg/L	107	70-156 %			
1,2,3,7,8,9-HxCDF	1.308	1.054-1.426		10.0	1130	pg/L	113	78-130 %			
1,2,3,4,7,8-HxCDD	1.256	1.054-1.426		10.0	1140	pg/L	114	70-164 %			
1,2,3,6,7,8-HxCDD	1.192	1.054-1.426		10.0	1040	pg/L	104	76-134 %			
1,2,3,7,8,9-HxCDD	1.255	1.054-1.426		10.0	1130	pg/L	113	64-162 %			
1,2,3,4,6,7,8-HpCDF	0.959	0.893-1.208		20.0	948	pg/L	94.8	82-122 %			
1,2,3,4,7,8,9-HpCDF	1.114	0.893-1.208		10.0	1030	pg/L	103	78-138 %			
1,2,3,4,6,7,8-HpCDD	1.064	0.893-1.208		10.0	995	pg/L	99.5	70-140 %			
OCDF	0.985	0.757-1.024		20.0	1920	pg/L	96.0	63-170 %			
OCDD	0.952	0.757-1.024		50.0	1840	pg/L	92.2	78-144 %			
Labeled compounds											
13C12-2,3,7,8-TCDF	0.732	0.655-0.886				91.6			24	-169 %	
13C12-2,3,7,8-TCDD	0.812	0.655-0.886				100			25	-164 %	
13C12-1,2,3,7,8-PeCDF	1.533	1.318-1.783				103			24	-185 %	
13C12-2,3,4,7,8-PeCDF	1.548	1.318-1.783				99.6			21	-178 %	
13C12-1,2,3,7,8-PeCDD	1.712	1.318-1.783				98.8			25	-181 %	
13C12-1,2,3,4,7,8-HxCDF	0.560	0.434-0.587				123			26	-152 %	
13C12-1,2,3,6,7,8-HxCDF	0.535	0.434-0.587				125			26	-123 %	*
13C12-2,3,4,6,7,8-HxCDF	0.544	0.434-0.587				119			28	-136 %	
13C12-1,2,3,7,8,9-HxCDF	0.527	0.434-0.587				116			29	-147 %	
13C12-1,2,3,4,7,8-HxCDD	1.266	1.054-1.426				99.7			32	-141 %	

Floyd - Snider
601 Union Street Two Union Square, Suite 600
Seattle WA, 98101-2341

Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

Analysis by: Analytical Resources, LLC

Dioxins/Furans - Quality Control

Batch BME0312 - EPA 1613B

	Ion	Ratio		Reporting				%REC		RPD	
QC Sample/Analyte	Ratio	Limits	EDL	Limit	Result	Units	%REC	Limits	RPD	Limit	Notes
LCS (BME0312-BS1)				Prepared: 13-M	1ay-2024 A	Analyzed	: 28-May-	2024 14:3	6		
13C12-1,2,3,6,7,8-HxCDD	1.224	1.054-1.426				107			28	-130 %	
13C12-1,2,3,4,6,7,8-HpCDF	0.399	0.374-0.506				120			28	-143 %	
13C12-1,2,3,4,7,8,9-HpCDF	0.397	0.374-0.506				106			26	-138 %	
13C12-1,2,3,4,6,7,8-HpCDD	1.096	0.893-1.208				113			23	-140 %	
13C12-OCDD	0.968	0.757-1.024				110			17	-157 %	
37Cl4-2,3,7,8-TCDD						100			35	-197 %	

Floyd - Snider 601 Union Street Two Union Square, Suite 600 Seattle WA, 98101-2341 Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

Analysis by: Analytical Resources, LLC

Dioxins/Furans - Quality Control

Batch BME0312 - EPA 1613B

	Ion	Ratio		Reporting				%REC		RPD	
QC Sample/Analyte	Ratio	Limits	EDL	Limit	Result	Units	%REC	Limits	RPD	Limit	Notes
LCS Dup (BME0312-BSD1)				Prepared: 13-M	•						
2,3,7,8-TCDF	0.802	0.655-0.886		10.0	204	pg/L	102	75-158 %		25	
2,3,7,8-TCDD	0.761	0.655-0.886		10.0	188	pg/L	94.2	67-158 %		25	
1,2,3,7,8-PeCDF	1.598	1.318-1.783		10.0	1000	pg/L	100	80-134 %		25	
2,3,4,7,8-PeCDF	1.551	1.318-1.783		10.0	1060	pg/L	106	68-160 %		25	
1,2,3,7,8-PeCDD	1.583	1.318-1.783		10.0	997	pg/L	99.7	70-142 %	1.25	25	
1,2,3,4,7,8-HxCDF	1.284	1.054-1.426		10.0	992	pg/L	99.2	72-134 %	1.48	25	
1,2,3,6,7,8-HxCDF	1.202	1.054-1.426		10.0	1040	pg/L	104	84-130 %		25	
2,3,4,6,7,8-HxCDF	1.188	1.054-1.426		10.0	1040	pg/L	104	70-156 %		25	
1,2,3,7,8,9-HxCDF	1.387	1.054-1.426		10.0	1120	pg/L	112	78-130 %		25	
1,2,3,4,7,8-HxCDD	1.259	1.054-1.426		10.0	1140	pg/L	114	70-164 %		25	
1,2,3,6,7,8-HxCDD	1.279	1.054-1.426		10.0	1080	pg/L	108	76-134 %		25	
1,2,3,7,8,9-HxCDD	1.240	1.054-1.426		10.0	1100	pg/L	110	64-162 %		25	
1,2,3,4,6,7,8-HpCDF	1.014	0.893-1.208		20.0	978	pg/L	97.8	82-122 %		25	
1,2,3,4,7,8,9-HpCDF	1.015	0.893-1.208		10.0	1030	pg/L	103	78-138 %		25	
1,2,3,4,6,7,8-HpCDD	1.163	0.893-1.208		10.0	999	pg/L	99.9	70-140 %		25	
OCDF	0.934	0.757-1.024		20.0	1950	pg/L	97.3	63-170 %		25	
OCDD	0.856	0.757-1.024		50.0	2130	pg/L	106	78-144 %	14.20	25	
Labeled compounds											
13C12-2,3,7,8-TCDF	0.745	0.655-0.886				85.5			24	-169 %	
13C12-2,3,7,8-TCDD	0.782	0.655-0.886				93.5			25	-164 %	
13C12-1,2,3,7,8-PeCDF	1.550	1.318-1.783				93.5			24	-185 %	
13C12-2,3,4,7,8-PeCDF	1.590	1.318-1.783				93.5			21	-178 %	
13C12-1,2,3,7,8-PeCDD	1.716	1.318-1.783				91.2			25	-181 %	
13C12-1,2,3,4,7,8-HxCDF	0.537	0.434-0.587				130			26	-152 %	
13C12-1,2,3,6,7,8-HxCDF	0.551	0.434-0.587				129			26	-123 %	*
13C12-2,3,4,6,7,8-HxCDF	0.545	0.434-0.587				124			28	-136 %	
13C12-1,2,3,7,8,9-HxCDF	0.524	0.434-0.587				116			29	-147 %	
13C12-1,2,3,4,7,8-HxCDD	1.238	1.054-1.426				104			32	-141 %	

Floyd - Snider
601 Union Street Two Union Square, Suite 600
Seattle WA, 98101-2341

Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

Analysis by: Analytical Resources, LLC

Dioxins/Furans - Quality Control

Batch BME0312 - EPA 1613B

	Ion	Ratio		Reporting				%REC		RPD	
QC Sample/Analyte	Ratio	Limits	EDL	Limit	Result U	nits %	REC	Limits	RPD	Limit	Notes
LCS Dup (BME0312-BSD1)				Prepared: 13-M	lay-2024 Ana	alyzed: 28	-May-	2024 15:2:	5		
13C12-1,2,3,6,7,8-HxCDD	1.224	1.054-1.426			10	9			28	-130 %	
13C12-1,2,3,4,6,7,8-HpCDF	0.491	0.374-0.506			11	4			28	-143 %	
13C12-1,2,3,4,7,8,9-HpCDF	0.405	0.374-0.506			10	4			26	-138 %	
13C12-1,2,3,4,6,7,8-HpCDD	1.146	0.893-1.208			11	6			23	-140 %	
13C12-OCDD	0.941	0.757-1.024			10	9			17	-157 %	
37Cl4-2,3,7,8-TCDD					96.	3			35	-197 %	

Floyd - Snider 601 Union Street Two Union Square, Suite 600 Seattle WA, 98101-2341 Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

Analysis by: Analytical Resources, LLC

Metals and Metallic Compounds (dissolved) - Quality Control

Batch BMD0764 - EPA 6020B UCT-KED

Instrument: ICPMS2 Analyst: DOE

QC Sample/Analyte	Isotope	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BMD0764-BLK1)					Prepa	ared: 28-Api	-2024 Ana	lyzed: 01-	May-2024 1	5:32		
Arsenic, Dissolved	75a	ND	0.0373	0.200	ug/L							U
LCS (BMD0764-BS1)					Prepa	ared: 28-Ap	-2024 Ana	lyzed: 01-	May-2024 1	5:33		
Arsenic, Dissolved	75a	27.0	0.0373	0.200	ug/L	25.0		108	80-120			
Duplicate (BMD0764-DUP1)		S	ource: 24D	0567-01	Prepa	ared: 28-Ap	:-2024 Ana	lyzed: 01-	May-2024 2	2:03		
Arsenic, Dissolved	75a	0.0940	0.0373	0.200	ug/L		0.112			17.50	20	J
Matrix Spike (BMD0764-MS1)		S	ource: 24D	0567-01	Prepa	ared: 28-Apr	:-2024 Ana	lyzed: 01-	May-2024 2	2:05		
Arsenic, Dissolved	75a	26.8	0.0373	0.200	ug/L	25.0	0.112	107	75-125			

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Floyd - Snider 601 Union Street Two Union Square, Suite 600 Seattle WA, 98101-2341

Analytical Report

Project: Lora Lake 2024 Project Number: POS - LLA Project Manager: Amanda McKay

Reported: 29-May-2024 13:46

Certified Analyses included in this Report

Analyte	Certifications
EPA 1613B in Water	
2,3,7,8-TCDF	DoD-ELAP,NELAP,WADOE
2,3,7,8-TCDD	DoD-ELAP,NELAP,WADOE
1,2,3,7,8-PeCDF	DoD-ELAP,NELAP,WADOE
2,3,4,7,8-PeCDF	DoD-ELAP,NELAP,WADOE
1,2,3,7,8-PeCDD	DoD-ELAP,NELAP,WADOE
1,2,3,4,7,8-HxCDF	DoD-ELAP,NELAP,WADOE
1,2,3,6,7,8-HxCDF	DoD-ELAP,NELAP,WADOE
2,3,4,6,7,8-HxCDF	DoD-ELAP,NELAP,WADOE
1,2,3,7,8,9-HxCDF	DoD-ELAP,NELAP,WADOE
1,2,3,4,7,8-HxCDD	DoD-ELAP,NELAP,WADOE
1,2,3,6,7,8-HxCDD	DoD-ELAP,NELAP,WADOE
1,2,3,7,8,9-HxCDD	DoD-ELAP,NELAP,WADOE
1,2,3,4,6,7,8-HpCDF	DoD-ELAP,NELAP,WADOE
1,2,3,4,7,8,9-HpCDF	DoD-ELAP,NELAP,WADOE
1,2,3,4,6,7,8-HpCDD	DoD-ELAP,NELAP,WADOE
OCDF	DoD-ELAP,NELAP,WADOE
OCDD	DoD-ELAP,NELAP,WADOE
Total TCDF	DoD-ELAP,NELAP
Total TCDD	DoD-ELAP,NELAP
Total PeCDF	DoD-ELAP,NELAP
Total PeCDD	DoD-ELAP,NELAP
Total HxCDF	DoD-ELAP,NELAP
Total HxCDD	DoD-ELAP,NELAP
Total HpCDF	DoD-ELAP,NELAP
Total HpCDD	DoD-ELAP,NELAP
13C12-2,3,7,8-TCDF	DoD-ELAP
13C12-2,3,7,8-TCDD	DoD-ELAP
13C12-1,2,3,7,8-PeCDF	DoD-ELAP
13C12-2,3,4,7,8-PeCDF	DoD-ELAP
13C12-1,2,3,7,8-PeCDD	DoD-ELAP

Floyd - Snider	Project: Lora Lake 2024	
601 Union Street Two Union Square, Suite 600	Project Number: POS - LLA	Reported:
Seattle WA, 98101-2341	Project Manager: Amanda McKay	29-May-2024 13:46
13C12-1,2,3,4,7,8-HxCDF	DoD-ELAP	
13C12-1,2,3,6,7,8-HxCDF	DoD-ELAP	
13C12-2,3,4,6,7,8-HxCDF	DoD-ELAP	
13C12-1,2,3,7,8,9-HxCDF	DoD-ELAP	
13C12-1,2,3,4,7,8-HxCDD	DoD-ELAP	
13C12-1,2,3,6,7,8-HxCDD	DoD-ELAP	
13C12-1,2,3,4,6,7,8-HpCDF	DoD-ELAP	
13C12-1,2,3,4,7,8,9-HpCDF	DoD-ELAP	
13C12-1,2,3,4,6,7,8-HpCDD	DoD-ELAP	
13C12-OCDD	DoD-ELAP	
37Cl4-2,3,7,8-TCDD	DoD-ELAP	
EPA 6020B UCT-KED in Water		

Arsenic-75a

NELAP,WADOE,DoD-ELAP,ADEC

Code	Description	Number	Expires
ADEC	Alaska Dept of Environmental Conservation	17-015	03/28/2025
DoD-ELAP	DoD-Environmental Laboratory Accreditation Program, PJLA Testing	66169	02/28/2025
NELAP	ORELAP - Oregon Laboratory Accreditation Program	WA100006-012	05/12/2024
WADOE WA Dept of Ecology		C558	06/30/2024
WA-DW	Ecology - Drinking Water	C558	06/30/2024

Floyd - S	Snider	Project: Lora Lake 2024	
601 Unic	on Street Two Union Square, Suite 600	Project Number: POS - LLA	Reported:
Seattle W	VA, 98101-2341	Project Manager: Amanda McKay	29-May-2024 13:46
		Notes and Definitions	
*	Flagged value is not within established control limit	its.	
D	The reported value is from a dilution		
EMPC	Estimated Maximum Possible Concentration qualif	fier for HRGCMS Dioxin	
J	Estimated concentration value detected below the r	eporting limit.	
U	This analyte is not detected above the reporting lim	it (RL) or if noted, not detected above the limit of detection (LOD).
DET	Analyte DETECTED		
ND	Analyte NOT DETECTED at or above the reportin	g limit	
NR	Not Reported		
dry	Sample results reported on a dry weight basis		
RPD	Relative Percent Difference		
[2C]	Indicates this result was quantified on the second co	olumn on a dual column analysis.	

Data Validation Summary

Prepared by:	Chell Black
Date:	June 11, 2024
Project ID:	POS-LLA Lora Lake Apartments Investigation & Site Remediation
Sample Event(s):	2024 Annual Monitoring
Sample Delivery Group(s):	24C0462 and 24D0567
Sample Media:	Groundwater

A Compliance Screening (USEPA Stage 2A) data quality review was performed on dissolved arsenic data resulting from laboratory analysis. The data were reviewed using guidance and quality control (QC) criteria documented in Appendix B of the 2010 Remedial Investigation/Feasibility Study for the Lora Lake Apartments Site (Floyd|Snider 2010), *Test Methods for Evaluating Solid Waste: Physical/Chemical Methods* (USEPA 1986) and the *National Functional Guidelines for Inorganic Superfund Methods Data Review* (USEPA 2020).

A total of 13 groundwater samples and 2 field duplicate samples were submitted to Analytical Resources, LLC (ARL) in Tukwila, Washington, for chemical analysis by U.S. Environmental Protection Agency (USEPA) Method 6020B. The laboratory reported results under two sample delivery groups: 24C0462 and 24D0567.

DATA QUALITY REVIEW

Field and laboratory QC parameters for all samples met project criteria.

DATA QUALITY SUMMARY

All data are determined to be of acceptable quality for use as reported.

REFERENCES

- Floyd|Snider. 2010. Sampling and Analysis Plan and Quality Assurance Project Plan, Remedial Investigation/Feasibility Study for the Lora Lake Apartments Site. 30 July.
- U.S. Environmental Protection Agency (USEPA). 1986. *Test Methods for Evaluating Solid Waste: Physical/Chemical Methods.* U.S. Prepared by the Office of Solid Waste and Emergency Response. EPA-530/SW-846.
- _____. 2020. National Functional Guidelines for Inorganic Superfund Methods Data Review. Prepared by the Office of Superfund Remediation and Technology Innovation. EPA-542-R-20-006/OLEM 9240.1-66. November.

DATA VALIDATION REPORT

LORA LAKE - ANNUAL LAKESIDE GW MONITORING 2024

Prepared for:

Floyd | Snider 601 Union Street, Suite 600 Seattle, WA 98101

Prepared by:

EcoChem, Inc. 500 Union Street, Suite 1010 Seattle, WA 98101

EcoChem Project: C15231-5

June 11, 2024

Approved for Release:

RUN

Christine Ransom Senior Project Chemist **EcoChem, Inc.**

PROJECT NARRATIVE

Basis for the Data Validation

This report summarizes the results of data validation performed on groundwater and quality control (QC) sample data for the Lora Lake Lakeside GW Monitoring project. The dioxin data received full validation (EPA Stage 4). A complete list of samples is provided in the **Sample Index**.

Analytical Resources in Tukwila, WA performed the analyses. The analytical method and EcoChem project chemists are listed in the table below.

Analysis	Method	PRIMARY REVIEW	SECONDARY REVIEW
Dioxins	EPA 1613B	E. Clayton	C. Ransom

The data were reviewed using guidance and quality control criteria documented in the analytical methods; *Port of Seattle Lora Lake Parcel, Remedial Investigation/Feasibility Study Work Plan* (Floyd Snider February 11, 2011); *National Functional Guidelines for Chlorinated Dibenzo-p-Dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) Data Review* (USEPA, September 2011); *National Functional Guidelines for High Resolution Superfund Methods Data Review* (USEPA, April 2016, 2020).

EcoChem's goal in assigning data assessment qualifiers is to assist in proper data interpretation. If values are estimated (J or UJ), data may be used for site evaluation and risk assessment purposes but reasons for data qualification should be taken into consideration when interpreting sample concentrations. If values are assigned an R or DNR, the data should not be used for any site evaluation purposes. If values have no data qualifier assigned, then the data meet the data quality objectives as stated in the documents and methods referenced above.

Data qualifier definitions, reason codes, and validation criteria are included as **Appendix A**. A Qualified Data Summary Table is included in **Appendix B**. Data Validation Worksheets will be kept on file at EcoChem, Inc. A qualified laboratory electronic data deliverable (EDD) is also submitted with this report.

Sample Index Lora Lake - Annual Lakeside GW Monitoring 2024

SDG	SAMPLE ID	LAB ID	1613B Dioxins
24D0567	MW-C1-VB1-042424	24D0567-01	\checkmark
24D0567	MW-C1-VB1-042424-D	24D0567-02	\checkmark
24D0567	MW-VB2-042424	24D0567-03	\checkmark
24D0567	MW-VB3-042424	24D0567-04	\checkmark
24D0567	HCOO-B312-042424	24D0567-05	\checkmark
24D0567	MW-CP1-042424	24D0567-06	\checkmark
24D0567	MW-CP1-042424-D	24D0567-07	\checkmark
24D0567	MW-CP2-042424	24D0567-08	\checkmark
24D0567	MW-CP3-042424	24D0567-09	\checkmark
24D0567	MW-CP4-042424	24D0567-10	\checkmark
24D0567	MW-CP5-042424	24D0567-11	\checkmark
24D0567	MW-CP6-042424	24D0567-12	\checkmark
24D0567	MW-CP7-042424	24D0567-13	\checkmark

DATA VALIDATION REPORT Lora Lake - Annual Lakeside GW Monitoring 2024 Dioxin/Furan Compounds by Method 1613B

This report documents the review of analytical data from the analysis of groundwater samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Analytical Resources, Inc., Tukwila, Washington. Refer to the **SAMPLE INDEX** for a complete list of samples.

SDG	Number of Samples	VALIDATION LEVEL
24D0567	13 Groundwater	EPA Stage 4

DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

EDD TO HARDCOPY VERIFICATION

Sample results and related quality control data were received as an electronic data deliverable (EDD) and laboratory report. The EDD was verified against the laboratory report (10%). The following discrepancies were noted:

TECHNICAL DATA VALIDATION

The quality control (QC) requirements reviewed are summarized in the following table:

\checkmark	Sample Receipt, Preservation, and Holding Times	\checkmark	Ongoing Precision and Recovery (OPR)
\checkmark	System Performance and Resolution Checks	1	Field Duplicates
\checkmark	Initial Calibration (ICAL)	\checkmark	Target Analyte List
\checkmark	Calibration Verification	\checkmark	Reported Results
1	Blanks (Laboratory and Field)	2	Compound Identification
1	Labeled Compounds	1	Calculation Verification

 \checkmark Stated method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

1 Quality control results are discussed below, but no data were qualified.

2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Blanks

No field blanks were submitted.

Labeled Compound Recovery

Isotope-stable labeled compounds were added to each field and QC sample. With the following exceptions, percent recovery (%R) values for the field samples were within the project specific criteria of 70%-130%. No action is taken for outliers associated with QC samples.

The recoveries for the labeled compound 13C-1,2,3,6,7,8-HxCDF were greater than the upper control limit of 130% in samples MW-C1-VB1-042424-D, MW-CP6-042424, and MW-CP7-042424. The native compound 1,2,3,6,7,8-HxCDF was not detected in these samples; no data were qualified.

Field Duplicates

The RPD control limit is 35% for results greater than 5x the reporting limit (RL). For results less than 5x the RL, the difference between the sample and duplicate must be less than the RL.

Two sets of field duplicates were submitted: MW-C1-VB1-042424 & MW-C1-VB1-042424-D and MW-CP1-042424 &. MW-CP1-042424 -D. Field precision was acceptable.

Compound Identification

The method requires the confirmation of 2,3,7,8-TCDF using an alternate GC column as the DB5 column that is typically used cannot fully separate 2,3,7,8-TCDF from closely eluting non-target TCDF isomers. The laboratory uses an RTX-Dioxin2 column which provides adequate resolution of the TCDF isomers as indicated by the acceptable peak to valley ratios. Since the 2,3,7,8-TCDF resolution was acceptable, no confirmation was necessary.

The laboratory assigned an "EMPC" flag to indicate that the ion ratio criterion for positive identification was not met. Since the ion abundance ratio is the primary identification criterion for high resolution mass spectroscopy, an outlier indicates that the reported result may be a false positive. These "EMPC" flagged results were qualified as not detected (U-25) at the reported concentration to stay consistent with historical treatment of EMPCs for this project.

Calculation Verification

Several results were verified by recalculation from the raw data. No calculation or transcription errors were found.

OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical method. With the exceptions noted above, accuracy was acceptable as demonstrated by the labeled compound and on-going precision and recovery (OPR)/OPR Duplicate recoveries and precision was acceptable as demonstrated by the OPR/OPR Dup and field duplicate RPD values.

Detection limits were elevated based on ion ratio outliers.

All data, as qualified, are acceptable for use.

APPENDIX A

DATA QUALIFIER DEFINITIONS REASON CODES AND CRITERIA TABLES

Z:\Shared\EC Final Docs\EarthCon 268\26804 Columbus\26804-2\APPENDIX A.docx

DATA VALIDATION QUALIFIER CODES Based on National Functional Guidelines

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents the approximate concentration.
UJ	The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
R	The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
The following is an EcoChem	qualifier that may also be assigned during the data review process:

DNR Do not report; a more appropriate result is reported from another analysis or dilution.

DATA QUALIFIER REASON CODES

Group	Code	Reason for Qualification
Sample Handling	1	Improper Sample Handling or Sample Preservation (i.e., headspace, cooler temperature, pH, summa canister pressure); Exceeded Holding Times
	24	Instrument Performance (i.e., tune, resolution, retention time window, endrin breakdown, lock-mass)
	5A	Initial Calibration (RF, %RSD, r ²)
Instrument Performance	5B	Calibration Verification (CCV, CCAL; RF, %D, %R) Use bias flags (H,L) ¹ where appropriate
	5C	Initial Calibration Verification (ICV %D, %R) Use bias flags (H,L) ¹ where appropriate
	6	Field Blank Contamination (Equipment Rinsate, Trip Blank, etc.)
Blank Contamination	7	Lab Blank Contamination (i.e., method blank, instrument blank, etc.) Use low bias flag (L) ¹ for negative instrument blanks
	8	Matrix Spike (MS and/or MSD) Recoveries Use bias flags (H,L) ¹ where appropriate
	9A	Precision (Lab QC replicates: LCS/LCSD, MS/MSD, Lab Replicate)
	9B	Precision (Field QC replicates)
Precision and Accuracy	10	Laboratory Control Sample Recoveries (a.k.a. Blank Spikes) Use bias flags (H,L) ¹ where appropriate
	12	Reference Material Use bias flags (H,L) ¹ where appropriate
	13	Surrogate Spike Recoveries (a.k.a. labeled compounds, recovery standards) Use bias flags (H,L) ¹ where appropriate
	16	ICP/ICP-MS Serial Dilution Percent Difference
	17	ICP/ICP-MS Interference Check Standard Recovery Use bias flags (H,L) ¹ where appropriate
Interferences	19	Internal Standard Performance (i.e., area, retention time, recovery)
	22	Elevated Detection Limit due to Interference (i.e., chemical and/or matrix)
	23	Bias from Matrix Interference (i.e. diphenyl ether, PCB/pesticides)
	2	Chromatographic pattern in sample does not match pattern of calibration standard
	3	2 nd column confirmation (RPD or %D)
	4	Tentatively Identified Compound (TIC) (associated with NJ only)
Identification and Quantitation	20	Calibration Range or Linear Range Exceeded
actinication and edunitation	25	Compound Identification (i.e., ion ratio, retention time, relative abundance, etc.)
	27	Alkylated PAH compound not calibrated (C1-C4 homologs) - calculated using response from parent compounds
	28	Multiple PCB Aroclors reported in sample (overlapping patterns)
Miscellaneous	11	A more appropriate result is reported (multiple reported analyses i.e., dilutions, re- extractions, etc. Associated with "R" and "DNR" only)
	14	Other (See DV report for details)

¹H = high bias indicated

L = low bias indicated

QC Element	Acceptance Criteria	Source of Criteria	And Methods EPA 1613B and SW-846 8290) Action for Non-Conformance	Reason	Discussion and Comments			
ample Handling								
Cooler/Storage Temperature Preservation	Waters/Solids ≤ 6°C & in the dark Tissues <-10°C & in the dark Preservation Aqueous: If Cl ₂ is present Thiosulfate must be added and if pH > 9 it must be adjusted to 7 - 9	NFG ⁽¹⁾ Method ^(2,3)	J(pos)/R(ND) if thiosulfate not added if Cl ₂ present; J(pos)/UJ(ND) if pH not adjusted J(pos)/UJ(ND) if temp > 20°C	1	EcoChem PJ, see TM-05			
Holding Time	If properly stored, 1 year or: Extraction (all matrices): 30 days from collection Analysis (all matrices): 45 days from extraction	NFG ⁽¹⁾ Method ^(2,3)	If not properly stored or HT exceedance: J(pos)/UJ(ND)	1	EcoChem PJ, see TM-05 Gross exceedance = > 1 year 2011 NFG Note: Under CWA, SDWA, and RCRA the HT for H2O is 7 days.			
Instrument Performance					-			
Mass Resolution (PFK)(Tuning)	PFK (Perfluorokerosene) Analyzed prior to ICAL and at the beginning and end of each 12 hr. shift. ≥10,000 resolving power at m/z low and high mass (e.g. 304.9824 and 380.9760) Lock-mass for each descriptot w/in 5 ppm of theoretical value	NFG ⁽¹⁾ Method ^(2,3)	R(pos/ND) all analytes in all samples associated with the tune	24	Notify PM			
Windows Defining Mix (WDM)	Peaks for first and last eluters must be within established retention time windows for each selector group (chlorination level)	NFG ⁽¹⁾ Method ^(2,3)	If peaks are not completely within windows (clipped): If natives are ok, J(pos)/UJ(ND) homologs (Totals) If natives are affected, R all results for that selector group	24	Notify PM			

Table: HRMS-DXN Revision No.: Draft Last Rev. Date: 11/23/23 Page: 2 of 6

QC Element	Acceptance Criteria	Source of Criteria	Action for Non-Conformance	Reason Code	Discussion and Comments	
AND Isomer Specificity Check (ISC)	Both mixes must be analyzed before ICAL and CCAL Valley < 25% (valley = (x/y)*100%) where x = ht. of TCDD (or TCDF) & y = baseline to bottom of valley For all isomers eluting near the 2378-TCDD (TCDF) peak (TCDD only for 8290)	NFG ⁽¹⁾ Method ^(2,3)	J(pos) if valley > 25%	24	EcoChem PJ, see TM-05, Rev. 2; Note: TCDF is evaluated only if second column confirmation is performed	
OR Column Performance Solution (CPS) (combined WDM and ISC)	Peaks for first and last eluters must be within established retention time windows for each selector group (chlorination level) Both mixes must be analyzed before ICAL and CCAL Valley < 25% (valley = (x/y)*100%) where x = ht. of TCDD (or TCDF) & y = baseline to bottom of valley For all isomers eluting near the 2378-TCDD (TCDF) peak (TCDD only for 8290)	NFG ⁽¹⁾ Method ^(2,3)	If peaks are not completely within windows (clipped): If natives are ok, J(pos)/UJ(ND) homologs (Totals) If natives are affected, R all results for that selector group J(pos) if valley > 25%		Notify PM EcoChem PJ, see TM-05, Rev. 2; Note: TCDF is evaluated only if second column confirmation is performed	
Initial Calibration Sensitivity	S/N ratio > 10 for all native and labeled compounds in CS1 std.	NFG ⁽¹⁾ Method ^(2,3)	If <10, elevate Det. Limit or R(ND)	5A		
Initial Calibration Selectivity	Ion Abundance ratios within QC limits (Table 8 of method 8290) NFG ⁽¹⁾ If 2 or more ion ratios are out for one compound in ICAL, J(pos) (Table 9 of method 1613B) Method ^(2.3) one compound in ICAL, J(pos)		5A	EcoChem PJ, see TM-05, Rev. 2		
	%RSD < 20% for native compounds %RSD <30% for labeled compounds (%RSD < 35% for labeled compounds under 1613b)	NFG ⁽¹⁾ Method ^(2,3)	J(pos) natives if %RSD > 20%			
Initial Calibration (Minimum 5 stds.) Stability				5A		
	Absolute RT of ¹³ C ₁₂ -1234-TCDD >25 min on DB5 & >15 min on DB-225	NFG ⁽¹⁾ Method ^(2,3)			EcoChem PJ, see TM-05, Rev. 2	

Draft Dioxin/Furan Analysis by HRMS (Based on Dioxin NFG 2016, 2020 and Methods EPA 1613B and SW-846 8290)

Table: HRMS-DXN Revision No.: Draft Last Rev. Date: 11/23/23 Page: 3 of 6

(Based on Dioxin NFG 2016, 2020 and Methods EPA 1613B and SW-846 8290)								
QC Element	Acceptance Criteria	Source of Criteria Action for Non-Conformance		Reason Code	Discussion and Comments			
Continuing Calibration (Prior to each 12 hr. shift) Sensitivity	S/N ratio for CS3 standard > 10	NFG ⁽¹⁾ Method ^(2,3) If <10, elevate Det. Limit or R(ND)		5B				
Continuing Calibration (Prior to each 12 hr. shift) Selectivity	lon Abundance ratios within QC limits (Table 8 of method 8290) (Tables 8 and 9 of method 1613B)	NFG ⁽¹⁾ Method ^(2,3) For congener with ion ratio outlier, J(pos) nati samples associated with CCAL. No action fo congener ion ratio outliers.		25	EcoChem PJ, see TM-05			
Continuing Calibration (Prior to each 12 hr. shift) Stability	%D+/-20% for native compounds %D +/-30% for labeled compounds (Must meet limits in Table 6, Method 1613B) If %D in the closing CCAL are within 25%/35%, the mean RF from the two CCAL may be used to calculate samples (Section 8.3.2.4 of 8290).	NFG ⁽¹⁾ Method ^(2,3)	Labeled compounds: Narrate, no action. Native compounds: 1613: J(pos)/UJ(ND)if %D is outside Table 6 limits J(pos)/R(ND) if %D is +/-75% of Table 6 limits 8290: J(pos)/UJ(ND) if %D = 20% - 75% J(pos)/R(ND) if %D > 75%	5B (H,L) ⁴				
	Absolute RT of ¹³ C ₁₂ -1234-TCDD and ¹³ C ₁₂ -123789-HxCDD should be +/- 15 seconds of ICAL RRT for all other compounds must meet criteria listed in Table 2 Method 1316.	NFG ⁽¹⁾ Method ^(2,3)	Narrate, no action	5B	EcoChem PJ, see TM-05			
Blank Contamination								
Method Blank (MB)	MB: One per matrix per batch of (of ≤ 20 samples) No detected compounds > RL	NFG ⁽¹⁾ Method ^(2,3)	U(pos) if result is < 5X action level.	7	Hierarchy of blank review: #1 - Review MB, qualify as needed			
Field Blank (FB)	FB: frequency as per QAPP No detected compounds > RL		U(pos) if result is < 5X action level.	6	#2 - Review FB , qualify as needed			

(Based on Dioxin NFG 2016, 2020 and Methods EPA 1613B and SW-846 8290)									
QC Element	Acceptance Criteria	Source of Criteria Action for Non-Conformance		Reason Code	Discussion and Comments				
Precision and Accuracy									
MS/MSD (recovery)	MS/MSD not typically required for HRMS analyses. If lab analyzes MS/MSD then one set per matrix per batch (of ≤ 20 samples) Use most current laboratory control limits	EcoChem standard policy	$\label{eq:constraint} \begin{array}{l} J(pos) \mbox{ if both } \ensuremath{\%} R > UCL - high bias \\ J(pos)/UJ(ND) \mbox{ if both } \ensuremath{\%} R < LCL - low bias \\ J(pos)/R(ND) \mbox{ if both } \ensuremath{\%} R < 10\% - very low bias \\ J(pos)/UJ(ND) \mbox{ if one } VCL \ensuremath{\& one } < LCL, \ensuremath{~ with no bias } \\ \ensuremath{\textbf{PJ if only one } \ensuremath{\%} R \ensuremath{~ outlier} \end{array}$	8 (H,L) ⁴	No action if only one spike %R is outside criteria. No action if parent concentration is >4x the amount spiked. Qualify parent sample only unless other QC indicates systemation problems.				
MS/MSD (RPD)	MS/MSD not typically required for HRMS analyses. If lab analyzes MS/MSD then one set per matrix per batch (of ≤ 20 samples) Use most current laboratory control limits	EcoChem standard policy	J(pos) in parent sample if RPD > CL	9	Qualify parent sample only.				
LCS (or OPR)	One per lab batch (of ≤ 20 samples) Use most current laboratory control limits or Limits from Table 6 of 1613B	NFG ⁽¹⁾ Method ^(2,3)	J(pos) if %R > UCL - high bias J(pos)/UJ(ND) if %R < LCL - low bias J(pos)/R(ND) if %R < 10% - very low bias	10 (H,L) ⁴	No action if only one spike %R is outside criteria, when LCSD is analyzed. Qualify all associated samples.				
LCS/LCSD (RPD)	LCSD not typically required for HRMS analyses. One set per matrix and batch of 20 samples RPD < 35%	Method ^(2,3) Ecochem standard policy	J(pos) assoc. compound in all samples if RPD > CL	oc. compound in all samples if RPD > CL 9					
Lab Duplicate (RPD)	Lab Dup not typically required for HRMS analyses. One per lab batch (of ≤ 20 samples) Use most current laboratory control limits	EcoChem standard policy	J(pos)/UJ(ND) if RPD > CL	9					
Precision and Accuracy (cont	inued)			•					
Labeled Compounds (Internal Standards and cleanup standards)	Added to all samples %R = 40% - 135% in all samples 8290 %R must meet limits in Table 7 Method 1613B	NFG ⁽¹⁾	J(pos) if %R > UCL - high bias J(pos)/UJ(ND) if %R < LCL - low bias J(pos)/R(ND) if %R < 10% - very low bias	13 (H,L) ⁴					
	Ion Abundance Ratio Method 1613B: Table 8 (required m/z to monitor) Table 9 (QC limits) Method 8290A: Table 8	Method ^(2,3)							

Table: HRMS-DXN Revision No.: Draft Last Rev. Date: 11/23/23 Page: 5 of 6

(Based on Dioxin NFG 2016, 2020 and Methods EPA 1613B and SW-846 8290)								
QC Element	Acceptance Criteria	Source of Criteria	Action for Non-Conformance	Code	Discussion and Comments			
Field Duplicates	Solids: RPD <50% OR difference < 2X RL (for results < 5X RL) Aqueous: RPD <35% OR difference < 1X RL (for results < 5X RL)	EcoChem standard policy and default criteria	icy Narrate and qualify (J/UJ) if required by project		QAPP may have other specified control limits Control limit for this project is 75%			
Compound ID and Calculation								
Quantitation/ Identification	All ions for each isomer must maximize within +/- 2 seconds. S/N ratio >2.5 Ion ratios must meet criteria listed in Table 8 Method 8290, or Table 9 of 1613B; RRTs w/in limits in Table 2 of 1613B	NFG ⁽¹⁾ Method ^(2,3)	Narrate in report; qualify if necessary U(pos) for retention time outliers. J(pos) for ion ratio outliers.	25	EcoChem PJ, see TM-05			
EMPC (estimated maximum possible concentration)	If quantitation identification criteria are not met, laboratory should report an EMPC value.	NFG ⁽¹⁾ Method ^(2,3)	If laboratory correctly reported an EMPC value, qualify the native compound J(pos) to indicate that the value is a detection limit and qualify total homolog groups J (pos)		Projec SAP/QAPP may require EMPCS to be considered ND; in that csae U-25 natives, J-25 Totals professional judgment See TM-18			
Interferences	Interferences from chlorodiphenyl ether compounds	NFG ⁽¹⁾ Method ^(2,3)	J(pos)/UJ(ND) if present	23	See TM-16			
	Lock masses must not deviate +/- 20% from values in Table 8 of 1613B	Method ^(2,3)	J(pos)/UJ(ND) if present	24	See TM-17			
Second Column Confirmation	All 2,3,7,8-TCDF hits must be confirmed on a DB-225 (or equiv) column. All QC criteria must also be met for the confirmation analysis.	NFG ⁽¹⁾ Method ^(2,3)	Report the DB-225 value. If not performed use PJ.		DNR-11 DB5 result if both results from both columns are reported. EcoChem PJ, see TM-05			

Draft Dioxin/Furan Analysis by HRMS (Based on Dioxin NFG 2016, 2020 and Methods EPA 1613B and SW-846 8290)

QC Element	Acceptance Criteria	Source of Criteria	Action for Non-Conformance	Reason Code	Discussion and Comments			
Calculation Check	Check 10% of field & QC sample results	EcoChem standard policy	Contact laboratory for resolution and/or corrective action	na	Full data validation only.			
Electronic Data Deliverable (EDD)								
Verification of EDD to hardcopy data	EcoChem verify @ 10% unless problems noted; then increase level up to 100% for next several packages.		Depending on scope of problem, correct at EcoChem (minor issues) to resubmittal by laboratory (major issues).	na	EcoChem Project Manager and/or Database Administrator will work with lab to provide long-term corrective action.			
Dilutions, Re-extractions and/or Reanalyses	Report only one result per analyte	Standard reporting policy	Use "DNR" to flag results that will not be reported.	11				

(pos) - positive (detected) results; (ND) - not detected results

¹ National Functional Guidelines for Chlorinated Dibenzo-p-Dioxins (CDDs) & Chlorinated Dibenzofurans (CDFs) Data Review, September 2011

National Functional Guidelines for High Resolution Superfunds Methods Data Review, April 2016

National Functional Guidelines for High Resolution Superfunds Methods Data Review, November 2020

² Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by High-Resolution Gas Chromatography/High-Resolution Mass Spectrometry (HRGC/HRMS), USEPA SW-846, Method 8290

² EPA Method 1613, Rev.B, Tetra-through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRGS/HRMS, October 1994

³ NFG suggests using "+ / -" to indicate bias; EcoChem has chosen "H" = high bias indicated; "L" = low bias indicated.

⁴ SICPs = Selected Ion Current Profiles

 5 x = height from valley of least resolved adjacent isomer to baseline; y = peak height of the shorter fo the adjacent peaks

APPENDIX B

QUALIFIED DATA SUMMARY TABLE

W:\APPENDICES\APPENDIX B QDST.docx

Qualified Data Summary Table Lora Lake - Annual Lakeside GW Monitoring 2024

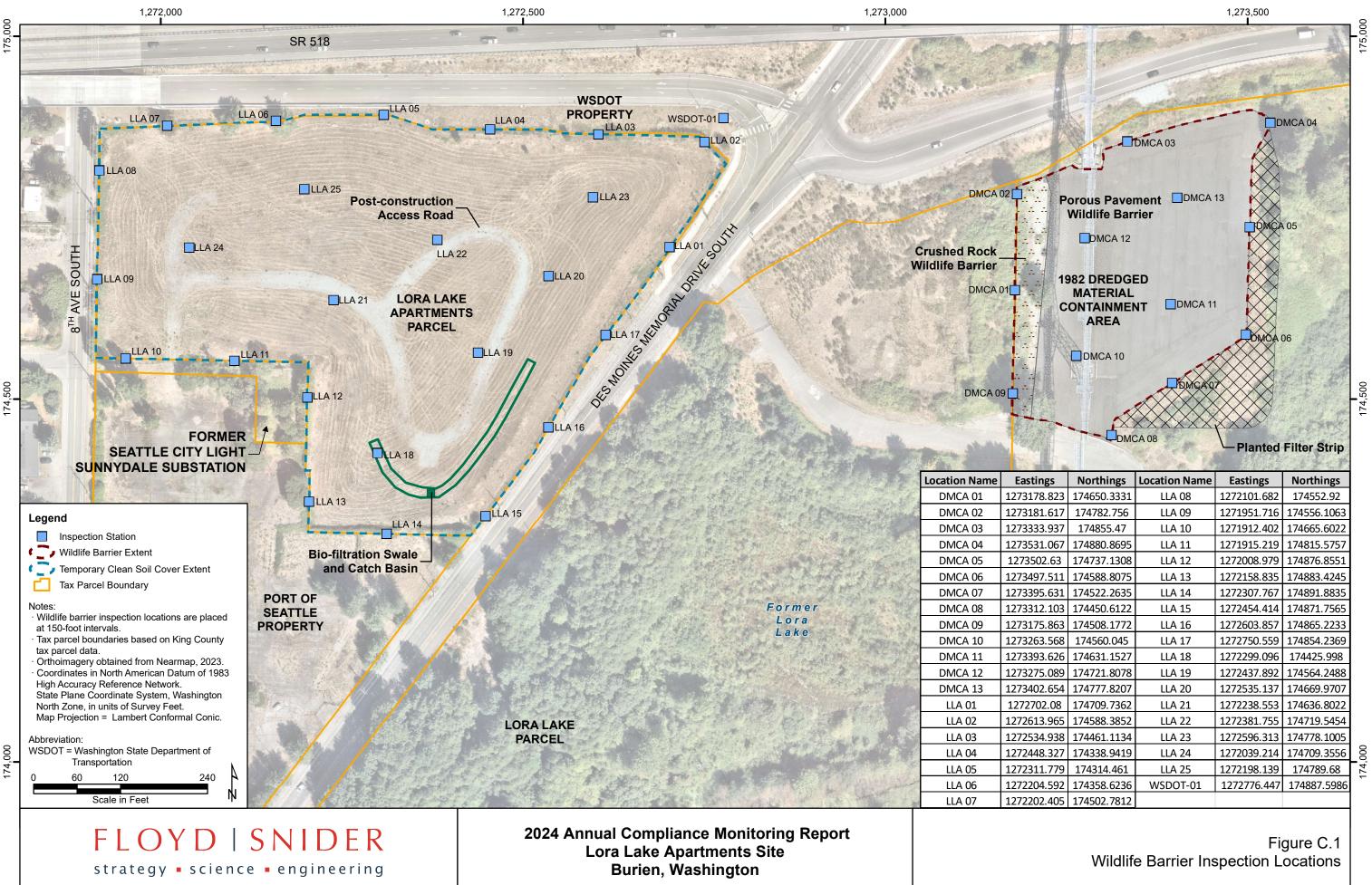
							DV	DV
SAMPLE ID	LAB ID	METHOD	ANALYTE	RESULT	UNITS	LAB QUAL	QUAL	CODE
MW-C1-VB1-042424	24D0567-01	EPA 1613	OCDD	5.1	Wet	EMPC, J	U	25
MW-CP6-042424	24D0567-12	EPA 1613	OCDD	3.74	Wet	EMPC, J	U	25

Lora Lake Apartments Site

2024 Annual Compliance Monitoring Report

Appendix C Soil Cap and Wildlife Barrier Inspection Logs and Photographs

Table of Contents


- Figure C.1 Wildlife Barrier Inspection Locations
- Attachment C.1 Lora Lake Apartments Parcel Inspection Log and Photographs
- Attachment C.2 DMCA Inspection Log and Photographs

Lora Lake Apartments Site

2024 Annual Compliance Monitoring Report

Appendix C Soil Cap and Wildlife Barrier Inspection Logs and Photographs

Figure

I:\GIS\Projects\POS_LLA\MXD\Task8140\Annual Compliance Monitoring Report\2023\Appendix C\Figure C.1 Wildlife Barrier Inspection Locations.mxd 10/11/2023

Lora Lake Apartments Site

2024 Annual Compliance Monitoring Report

Appendix C Soil Cap and Wildlife Barrier Inspection Logs and Photographs

	Lora Lake Apartment						rtments [·]	Temporary Cap Inspection Form					
			Check all that apply Overall Condition of Barrier Repair Needed										
Monitoring Station	Photo Number	Engineered surface characteristics condition compromised	Exposed underlying soil	Loss of barrier material	Down-slope movement of barrier material	Presence of debris on barrier surface	Substantial plant growth	Good	Fair	Poor	Yes	<u>Р</u> Х	
LLA 01	L1							Х				Х	
LLA 02								Х				Х	
LLA 03	L2							Х				Х	
LLA 04	L2							Х				Х	
LLA 05	L2							Х				Х	
LLA 06								Х				Х	
LLA 07	L3							Х				Х	
LLA 08	L3							Х				Х	
LLA 09	L3							Х				Х	
LLA 10	L3							Х				Х	
LLA 11	L4			Х					Х			Х	Some loss of b
LLA 12	L4, L5			Х					Х			Х	2023. Appears
LLA 13	L4			Х					Х			Х	maintenance
LLA 14	L6			Х					Х			Х	with regular m
LLA 15	L6							Х				Х	
LLA 16	L7		Х						Х			Х	Exposed soil d
LLA 17	L1							Х				Х	
LLA 18								Х				Х	
LLA 19								Х				Х	
LLA 20	L1							Х				Х	
LLA 21								Х				Х	
LLA 22								Х				Х	
LLA 23	L1							Х				Х	
LLA 24								Х				Х	
LLA 25								Х	1			Х	
LLA 26								Х				Х	
LLA 27				1				Х				Х	
WSDOT 01								Х				Х	

Comments/Observations
barrier material (plant coverage) similar to
rs to be related to maintenance and
vehicles or minor erosion. Should resolve
maintenance/planting.
due to animal burrowing

Photograph L1. Stations LLA 01, LLA 17, LLA 20, and LLA 23 in good condition.

Photograph L2. Stations LLA 03, LLA 04, and LLA 05 in good condition.

2024 Annual Compliance Monitoring Report Lora Lake Apartments Site Burien, Washington

Photograph L3. Stations LLA 07, LLA 08, LLA 09, and LLA 10 in good condition.

Photograph L4. Stations LLA 11, LLA 12, and LLA 13. Loss of barrier material.

FLOYD | SNIDER strategy • science • engineering 2024 Annual Compliance Monitoring Report Lora Lake Apartments Site Burien, Washington

Photograph L5. Station LLA 12. Loss of barrier material.

Photograph L6. Station LLA 14 with some loss of barrier material and LLA 15 in good condition.

2024 Annual Compliance Monitoring Report Lora Lake Apartments Site Burien, Washington

Photograph L7. Station LLA 16 with exposed soil due to animal burrowing.

FLOYD | SNIDER strategy • science • engineering

2024 Annual Compliance Monitoring Report Lora Lake Apartments Site Burien, Washington

Lora Lake Apartments Site

2024 Annual Compliance Monitoring Report

Appendix C Soil Cap and Wildlife Barrier Inspection Logs and Photographs

Attachment C.2 DMCA Inspection Log and Photographs

FLOYD | SNIDER

DMCA Wildlife Barrier Inspection Form													
			-	Check all t	hat apply			Overall	Condition o	of Barrier	Repair	Needed	
Monitoring Station	Photo Number	Engineered surface characteristics condition compromised	Exposed underlying soil	Loss of barrier material	Down-slope movement of barrier material	Presence of debris on barrier surface	Substantial plant growth	Good	Fair	Poor	Yes	Q	
DMCA 01	D1					Х		Х				Х	
DMCA 02	D2							Х				Х	
DMCA 03	DZ							Х				Х	
DMCA 04								Х				Х	
DMCA 05	D3							Х				Х	Potentia
DMCA 06								Х				Х	noted in
DMCA 07	D4							Х				Х	
DMCA 08								Х				Х	
DMCA 09	D5					х		х				x	Dust and large de
DMCA 10								Х				Х	
DMCA 11	D6							Х				Х	
DMCA 12								Х				Х	
DMCA 13								Х				Х	

Lora Lake Apartments Site

Comments/Observations
ential material loss area previously
ed in 2023 is stable.
t and organic debris associated with
e deciduous tree.

Photograph D1. Station DMCA 01 in good condition.

Photograph D2. Stations DMCA 02 and 03 in good condition.

FLOYD | SNIDER strategy • science • engineering 2024 Annual Compliance Monitoring Report Lora Lake Apartments Site Burien, Washington

Attachment C.2 DMCA Inspection Logs and Photographs

Photograph D3. Previously noted area of potential material loss between DMC 04 and DMCA 05 is stable.

Photograph D4. Stations DMCA 06, 07, and 08. Previously noted area of potential material loss is stable in DMCA 06 and 07.

2024 Annual Compliance Monitoring Report Lora Lake Apartments Site Burien, Washington

Attachment C.2 DMCA Inspection Logs and Photographs

Photograph D5. Stations DMCA 09. Presence of debris on barrier surface.

Photograph D6. Stations DMCA 10, 11, and 12 in good condition.

2024 Annual Compliance Monitoring Report Lora Lake Apartments Site Burien, Washington

Attachment C.2 DMCA Inspection Logs and Photographs Lora Lake Apartments Site

2024 Annual Compliance Monitoring Report

Photograph 1. Reseeded slope near Stations LLA 12 and LLA 13 at the Lora Lake Apartments Parcel looking southwest. The area previously showed minor loss of barrier material.

Photograph 2. Reseeded slope near Stations LLA 11 and LLA 12 at the Lora Lake Apartments Parcel looking south.

2024 Annual Compliance Monitoring Report Lora Lake Apartments Site Burien, Washington

Photograph 3. Reseeded slope near stations LLA 11 and LLA 12 at the Lora Lake Apartments Parcel looking east.

Photograph 4. Reseeded area near Station LLA 14 at the Lora Lake Apartments Parcel looking east. The area previously showed signs of loss of barrier material.

FLOYD | SNIDER strategy • science • engineering 2024 Annual Compliance Monitoring Report Lora Lake Apartments Site Burien, Washington

Photograph 5. Reseeded area near Stations LLA 15 and LLA 16 at the Lora Lake Apartments Parcel looking northeast.

Photograph 6. Reseeded area near Station LLA 16 at the Lora Lake Apartments Parcel looking north. The area previously showed signs of exposed underlying soil, animal burrowing, and loss of barrier material.

FLOY	DISNIDER
strategy •	science • engineering

2024 Annual Compliance Monitoring Report Lora Lake Apartments Site Burien, Washington

Lora Lake Apartments Site

2024 Annual Compliance Monitoring Report

Appendix E ProUCL Outputs

Background Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation	ProUCL 5.2 8/2/2024 9:59:39 AM
From File	Background.xls
Full Precision	OFF
Confidence Coefficient	95%
Coverage	95%
Different or Future K Observations	1
Number of Bootstrap Operations	2000

Result

	General Statistics		
Total Number of Observations	19	Number of Missing Observations	0
Number of Distinct Observations	18		
Number of Detects	9	Number of Non-Detects	10
Number of Distinct Detects	9	Number of Distinct Non-Detects	10
Minimum Detect	1.39	Minimum Non-Detect	0.455
Maximum Detect	5.45	Maximum Non-Detect	3.3
Variance Detected	1.596	Percent Non-Detects	52.63%
Mean Detected	2.233	SD Detected	1.263
Mean of Detected Logged Data	0.707	SD of Detected Logged Data	0.424

Critical Values for Background Threshold Values (BTVs)

Tolerance Factor K (For UTL)	2.423
------------------------------	-------

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.663	Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value	0.764	Data Not Normal at 1% Significance Level
Lilliefors Test Statistic	0.327	Lilliefors GOF Test
1% Lilliefors Critical Value	0.316	Data Not Normal at 1% Significance Level
Data Not N	lormal at 1%	b Significance Level

Kaplan Meier (KM) Background Statistics Assuming Normal Distribution

1.434	KM SD	1.185
4.304	95% KM UPL (t)	3.541
2.952	95% KM Percentile (z)	3.382
4.19	95% KM USL	4.432
	2.952	4.304 95% KM UPL (t) 2.952 95% KM Percentile (z)

d2max (for USL)

2.531

DL/2 Substitution Background Statistics Assuming Normal Distribution

Mean	1.451	SD	1.187
95% UTL95% Coverage	4.327	95% UPL (t)	3.563
90% Percentile (z)	2.972	95% Percentile (z)	3.403
99% Percentile (z)	4.213	95% USL	4.456

DL/2 is not a recommended method. DL/2 provided for comparisons and historical reasons

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.843	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.723	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.255	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.28	5% K-S Critical Value

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	5.369	k star (bias corrected MLE)	3.653
Theta hat (MLE)	0.416	Theta star (bias corrected MLE)	0.611
nu hat (MLE)	96.63	nu star (bias corrected)	65.76
MLE Mean (bias corrected)	2.233		
MLE Sd (bias corrected)	1.168	95% Percentile of Chisquare (2kstar)	14.51

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0174	Mean	1.233
Maximum	5.45	Median	0.944
SD	1.325	CV	1.074
k hat (MLE)	0.521	k star (bias corrected MLE)	0.474
Theta hat (MLE)	2.367	Theta star (bias corrected MLE)	2.603
nu hat (MLE)	19.8	nu star (bias corrected)	18.01
MLE Mean (bias corrected)	1.233	MLE Sd (bias corrected)	1.792
95% Percentile of Chisquare (2kstar)	3.711	90% Percentile	3.374
95% Percentile	4.829	99% Percentile	8.427

The following statistics are computed using Gamma ROS Statistics on Imputed Data

Upper Limits using Wilson Hilferty (WH) and Hawkins Wixle	(HW) Methods	
---	--------------	--

	WH	HW		WH	HW
95% Approx. Gamma UTL with 95% Coverage	8.466	11	95% Approx. Gamma UPL	5.183	6.093
95% Gamma USL	9.126	12.05			

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	1.434	SD (KM)	1.185
Variance (KM)	1.403	SE of Mean (KM)	0.3
k hat (KM)	1.465	k star (KM)	1.268
nu hat (KM)	55.65	nu star (KM)	48.2
theta hat (KM)	0.979	theta star (KM)	1.13
80% gamma percentile (KM)	2.258	90% gamma percentile (KM)	3.113
95% gamma percentile (KM)	3.953	99% gamma percentile (KM)	5.872

The following statistics are computed using gamma distribution and KM estimates

Upper Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods

	WH	HW		WH	HW
95% Approx. Gamma UTL with 95% Coverage	5.18	5.465	95% Approx. Gamma UPL	3.73	3.815
95% KM Gamma Percentile	3.467	3.525	95% Gamma USL	5.455	5.787

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.816	Shapiro Wilk GOF Test
10% Shapiro Wilk Critical Value	0.859	Data Not Lognormal at 10% Significance Level
Lilliefors Test Statistic	0.224	Lilliefors GOF Test
10% Lilliefors Critical Value	0.252	Detected Data appear Lognormal at 10% Significance Level
Detected Data anneas Ann		a mammal at 100/ Olimificance Laurel

Detected Data appear Approximate Lognormal at 10% Significance Level

Background Lognormal ROS Statistics Assuming Lognormal Distribution Using Imputed Non-Detects

Mean in Original Scale	1.547	Mean in Log Scale	0.284
SD in Original Scale	1.087	SD in Log Scale	0.525

95% UTL95% Coverage	4.736	95% BCA UTL95% Coverage	5.45
95% Bootstrap (%) UTL95% Coverage	5.45	95% UPL (t)	3.378
90% Percentile (z)	2.602	95% Percentile (z)	3.149
99% Percentile (z)	4.502	95% USL	5.013
Statistics using KM estimates or	n Logged [Data and Assuming Lognormal Distribution	
KM Mean of Logged Data	0.0602	95% KM UTL (Lognormal)95% Coverage	6.993
KM SD of Logged Data	0.778	95% KM UPL (Lognormal)	4.238
95% KM Percentile Lognormal (z)	3.818	95% KM USL (Lognormal)	7.607
Background DL/2 St	atistics As	suming Lognormal Distribution	
Mean in Original Scale	1.451	Mean in Log Scale	0.0729
SD in Original Scale	1.187	SD in Log Scale	0.839
95% UTL95% Coverage	8.205	95% UPL (t)	4.782
90% Percentile (z)	3.151	95% Percentile (z)	4.273
99% Percentile (z)	7.566	95% USL	8.984
DL/2 is not a Recommended Method	d. DL/2 pro	ovided for comparisons and historical reasons.	
Nonparametric D	istribution	Free Background Statistics	
Data appear	to follow a	Discernible Distribution	
		nction made between detects and nondetects)	
Order of Statistic, r	19	95% UTL with95% Coverage	5.45
Approx, f used to compute achieved CC	1	Approximate Actual Confidence Coefficient achieved by UTL	0.623
Approximate Sample Size needed to achieve specified CC	59	95% UPL	5.45
95% USL	5.45	95% KM Chebyshev UPL	6.732

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV.

General Statistics on Uncensored Data

Date/Time of Computation ProUCL 5.2 8/2/2024 10:03:23 AM

User Selected Options

From File Background.xls

Full Precision OFF

From File: Background.xls

General Statistics for Censored Datasets (with NDs) using Kaplan Meier Method

Variable	NumObs	# Missing	Num Ds	NumNDs	% NDs	Min ND	Max ND	KM Mean	KM Var	KM SD	KM CV
Result	19	0	9	10	52.63%	0.455	3.3	1.434	1.403	1.185	0.826

General Statistics for Raw Dataset using Detected Data Only

Variable	NumObs	# Missing	Minimum	Maximum	Mean	Median	Var	SD	MAD/0.675	Skewness	CV
Result	9	0	1.39	5.45	2.233	1.91	1.596	1.263	0.667	2.51	0.566

Percentiles using all Detects (Ds) and Non-Detects (NDs)

Variable	NumObs	# Missing	10%ile	20%ile	25%ile(Q1)	50%ile(Q2)	75%ile(Q3)	80%ile	90%ile	95%ile	99%ile
Result	19	0	0.558	1.122	1.15	1.67	2.32	2.442	2.676	3.515	5.063

General Statistics on Uncensored Data

Date/Time of Computation ProUCL 5.2 8/5/2024 11:51:23 AM

User Selected Options

From File Site.xls

Full Precision OFF

From File: Site.xls

General Statistics for Censored Datasets (with NDs) using Kaplan Meier Method

Variable	NumObs	# Missing	Num Ds	NumNDs	% NDs	Min ND	Max ND	KM Mean	KM Var	KM SD	KM CV
Result	35	0	11	24	68.57%	0.465	3.86	1.014	0.464	0.681	0.672

General Statistics for Raw Dataset using Detected Data Only

Variable	NumObs	# Missing	Minimum	Maximum	Mean	Median	Var	SD	MAD/0.675	Skewness	CV
Result	11	0	1.15	2.35	1.826	1.78	0.149	0.386	0.297	-0.542	0.211

Percentiles using all Detects (Ds) and Non-Detects (NDs)

Variable	NumObs	# Missing	10%ile	20%ile	25%ile(Q1)	50%ile(Q2)	75%ile(Q3)	80%ile	90%ile	95%ile	99%ile
Result	35	0	0.597	0.946	1.085	1.73	1.935	1.99	2.242	2.287	3.347

UCL Statistics for Data Sets with Non-Detects

User Selected Options

- Date/Time of Computation ProUCL 5.2 8/5/2024 10:17:32 AM From File Site.xls Full Precision OFF
- Confidence Coefficient 95% Number of Bootstrap Operations 2000

Result

	General Statistics		
Total Number of Observations	35	Number of Distinct Observations	32
Number of Detects	11	Number of Non-Detects	24
Number of Distinct Detects	9	Number of Distinct Non-Detects	24
Minimum Detect	1.15	Minimum Non-Detect	0.465
Maximum Detect	2.35	Maximum Non-Detect	3.86
Variance Detects	0.149	Percent Non-Detects	68.57%
Mean Detects	1.826	SD Detects	0.386
Median Detects	1.78	CV Detects	0.211
Skewness Detects	-0.542	Kurtosis Detects	-0.246
Mean of Logged Detects	0.58	SD of Logged Detects	0.231

Normal GOF Test on Detects Only

0.918	Shapiro Wilk GOF Test
0.792	Detected Data appear Normal at 1% Significance Level
0.22	Lilliefors GOF Test
0.291	Detected Data appear Normal at 1% Significance Level
	0.792 0.22

Detected Data appear Normal at 1% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

1.014	KM Standard Error of Mean	0.138
0.681	95% KM (BCA) UCL	1.246
1.247	95% KM (Percentile Bootstrap) UCL	1.248
1.241	95% KM Bootstrap t UCL	1.264
1.427	95% KM Chebyshev UCL	1.615
1.875	99% KM Chebyshev UCL	2.385
	0.681 1.247 1.241 1.427	0.681 95% KM (BCA) UCL 1.247 95% KM (Percentile Bootstrap) UCL 1.241 95% KM Bootstrap t UCL 1.427 95% KM Chebyshev UCL

Gamma (GOF Tests	on Detected	Observations Only
---------	-----------	-------------	-------------------

A-D Test Statistic	0.542	Anderson-Darling GOF Test				
5% A-D Critical Value	0.729	Detected data appear Gamma Distributed at 5% Significance Level				
K-S Test Statistic	0.246	Kolmogorov-Smirnov GOF				
5% K-S Critical Value	0.255	Detected data appear Gamma Distributed at 5% Significance Level				
Detected data appear Commo Distributed at 5% Significance Loval						

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

16.16	k star (bias corrected MLE)	22.14	k hat (MLE)
0.113	Theta star (bias corrected MLE)	0.0825	Theta hat (MLE)
355.5	nu star (bias corrected)	487	nu hat (MLE)
		1.826	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.966	Mean	1.302
Maximum	2.35	Median	1.148
SD	0.424	CV	0.326
k hat (MLE)	11.65	k star (bias corrected MLE)	10.67
Theta hat (MLE)	0.112	Theta star (bias corrected MLE)	0.122
nu hat (MLE)	815.3	nu star (bias corrected)	746.7
Adjusted Level of Significance (β)	0.0425		
Approximate Chi Square Value (746.75, α)	684.3	Adjusted Chi Square Value (746.75, β)	681.5
95% Gamma Approximate UCL	1.421	95% Gamma Adjusted UCL	1.427

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	1.014	SD (KM)	0.681
Variance (KM)	0.464	SE of Mean (KM)	0.138
k hat (KM)	2.216	k star (KM)	2.045
nu hat (KM)	155.1	nu star (KM)	143.1
theta hat (KM)	0.458	theta star (KM)	0.496
80% gamma percentile (KM)	1.514	90% gamma percentile (KM)	1.962
95% gamma percentile (KM)	2.388	99% gamma percentile (KM)	3.333

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (143.13, α)	116.5	Adjusted Chi Square Value (143.13, β)	115.3
95% KM Approximate Gamma UCL	1.246	95% KM Adjusted Gamma UCL	1.258

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.878	Shapiro Wilk GOF Test						
10% Shapiro Wilk Critical Value	0.876	Detected Data appear Lognormal at 10% Significance Level						
Lilliefors Test Statistic	0.264	Lilliefors GOF Test						
10% Lilliefors Critical Value	0.231	Detected Data Not Lognormal at 10% Significance Level						
Detected Data appear Approximate Lognormal at 10% Significance Level								

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	1.326	Mean in Log Scale	0.243
SD in Original Scale	0.408	SD in Log Scale	0.269
95% t UCL (assumes normality of ROS data)	1.442	95% Percentile Bootstrap UCL	1.445
95% BCA Bootstrap UCL	1.458	95% Bootstrap t UCL	1.473
95% H-UCL (Log ROS)	1.436		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

0.811	KM Geo Mean	-0.209	KM Mean (logged)
2.083	95% Critical H Value (KM-Log)	0.659	KM SD (logged)
1.275	95% H-UCL (KM -Log)	0.138	KM Standard Error of Mean (logged)
2.083	95% Critical H Value (KM-Log)	0.659	KM SD (logged)
		0.138	KM Standard Error of Mean (logged)

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed						
Mean in Original Scale	1.061	Mean in Log Scale	-0.151					
SD in Original Scale	0.649	SD in Log Scale	0.694					
95% t UCL (Assumes normality)	1.246	95% H-Stat UCL	1.407					

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 1% Significance Level

Suggested UCL to Use

95% KM (t) UCL 1.247

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Background Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation	ProUCL 5.2 8/5/2024 11:54:38 AM
From File	Background.xls
Full Precision	OFF
Confidence Coefficient	95%
Coverage	95%
Different or Future K Observations	1
Number of Bootstrap Operations	2000

Result

General Statistics

Total Number of Observations	19	Number of Distinct Observations	16
Minimum	0.09	First Quartile	0.155
Second Largest	0.45	Median	0.18
Maximum	0.47	Third Quartile	0.381
Mean	0.259	SD	0.133
Coefficient of Variation	0.513	Skewness	0.211
Mean of logged Data	-1.492	SD of logged Data	0.561
Critical Values fo	r Background	Threshold Values (BTVs)	
Tolerance Factor K (For UTL)	2.423	d2max (for USL)	2.531
	Normal GO	F Test	
Shapiro Wilk Test Statistic	0.867	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.863	Data appear Normal at 1% Significance Level	
Lilliefors Test Statistic	0.25	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.229	Data Not Normal at 1% Significance Level	
Data appear Appro	oximate Norma	al at 1% Significance Level	
Background St	atistics Assum	ing Normal Distribution	
95% UTL with 95% Coverage	0.581	90% Percentile (z)	0.429
95% UPL (t)	0.495	95% Percentile (z)	0.477
95% USL	0.595	99% Percentile (z)	0.568
	Gamma GC	PF Test	
A-D Test Statistic	1.052	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.746	Data Not Gamma Distributed at 5% Significance Leve	ł
K-S Test Statistic	0.211	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.199	Data Not Gamma Distributed at 5% Significance Leve	el
Data Not Gamm	a Distributed	at 5% Significance Level	
	Gamma Sta	atistics	
k hat (MLE)	3.715	k star (bias corrected MLE)	3.164
Theta hat (MLE)	0.0697	Theta star (bias corrected MLE)	0.0818
nu hat (MLE)	141.2	nu star (bias corrected)	120.2
MLE Mean (bias corrected)	0.259	MLE Sd (bias corrected)	0.146
Background Sta	atistics Assum	ing Gamma Distribution	
n Hilferty (WH) Approx, Commo LIPI	0 552	90% Percentile	0 4 5 4

95% Wilson Hilferty (WH) Approx. Gamma UPL	0.552	90% Percentile	0.454
95% Hawkins Wixley (HW) Approx. Gamma UPL	0.563	95% Percentile	0.535
95% WH Approx. Gamma UTL with 95% Coverage	0.713	99% Percentile	0.71
95% HW Approx. Gamma UTL with 95% Coverage	0.743		
95% WH USL	0.743	95% HW USL	0.777

Lognormal GOF Test

0.883

0.917

0.207

0.18

Shapiro Wilk Test Statistic

10% Lilliefors Critical Value

Lilliefors Test Statistic

10% Shapiro Wilk Critical Value

Shapiro Wilk Lognormal GOF Test

Data Not Lognormal at 10% Significance Level

Lilliefors Lognormal GOF Test

Data Not Lognormal at 10% Significance Level

Data Not Lognormal at 10% Significance Level

Background Statistics assuming Lognormal Distribution

95% UTL with 95% Coverage	0.876	90% Percentile (z)	0.462
95% UPL (t)	0.61	95% Percentile (z)	0.566
95% USL	0.931	99% Percentile (z)	0.83

Nonparametric Distribution Free Background Statistics

Data appear Approximate Normal at 1% Significance Level

Nonparametric Upper Limits for Background Threshold Values

Order of Statistic, order	19	95% UTL with 95% Coverage	0.47
Approx, f used to compute achieved CC	1	Approximate Actual Confidence Coefficient achieved by UTL	0.623
		Approximate Sample Size needed to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	0.47	95% BCA Bootstrap UTL with 95% Coverage	0.47
95% UPL	0.47	90% Percentile	0.412
90% Chebyshev UPL	0.667	95% Percentile	0.452
95% Chebyshev UPL	0.852	99% Percentile	0.466
95% USL	0.47		

Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20.

Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers

and consists of observations collected from clean unimpacted locations.

The use of USL tends to provide a balance between false positives and false negatives provided the data

represents a background data set and when many onsite observations need to be compared with the BTV.

General Statistics on Uncensored Data

Date/Time of Computation ProUCL 5.2 8/5/2024 11:56:22 AM

User Selected Options

From File Background.xls

Full Precision OFF

From File: Background.xls

General Statistics for Censored Datasets (with NDs) using Kaplan Meier Method

Variable	NumObs	# Missing	Num Ds	NumNDs	% NDs	Min ND	Max ND	KM Mean	KM Var	KM SD	KM CV
Result	19	0	19	0	0.00%	N/A	N/A	0.259	0.0176	0.133	0.513

General Statistics for Raw Dataset using Detected Data Only

Variable	NumObs	# Missing	Minimum	Maximum	Mean	Median	Var	SD	MAD/0.675	Skewness	CV
Result	19	0	0.09	0.47	0.259	0.18	0.0176	0.133	0.133	0.211	0.513

Percentiles using all Detects (Ds) and Non-Detects (NDs)

Variable	NumObs	# Missing	10%ile	20%ile	25%ile(Q1)	50%ile(Q2)	75%ile(Q3)	80%ile	90%ile	95%ile	99%ile
Result	19	0	0.11	0.135	0.155	0.18	0.381	0.385	0.412	0.452	0.466

General Statistics on Uncensored Data

Date/Time of Computation ProUCL 5.2 8/5/2024 4:26:03 PM

User Selected Options

From File Site.xls

Full Precision OFF

From File: Site.xls

General Statistics for Censored Datasets (with NDs) using Kaplan Meier Method									

Variable	NumObs	# Missing	Num Ds	NumNDs	% NDs	Min ND	Max ND	KM Mean	KM Var	KM SD	KM CV
Result	35	0	35	0	0.00%	N/A	N/A	1.067	3.094	1.759	1.648

General Statistics for Raw Dataset using Detected Data Only

Variable	NumObs	# Missing	Minimum	Maximum	Mean	Median	Var	SD	MAD/0.675	Skewness	CV
Result	35	0	0.093	9.79	1.067	0.46	3.094	1.759	0.371	3.955	1.648

Percentiles using all Detects (Ds) and Non-Detects (NDs)

Variable	NumObs	# Missing	10%ile	20%ile	25%ile(Q1)	50%ile(Q2)	75%ile(Q3)	80%ile	90%ile	95%ile	99%ile
Result	35	0	0.134	0.306	0.329	0.46	1.034	1.12	2.586	3.359	7.73

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Number of Bootstrap Operations 2000

Date/Time of Computation ProUCL 5.2 8/5/2024 3:03:12 PM From File Site.xls Full Precision OFF Confidence Coefficient 95%

Result

	General Statistic	3	
Total Number of Observations	35	Number of Distinct Observations	33
		Number of Missing Observations	0
Minimum	0.093	Mean	1.067
Maximum	9.79	Median	0.46
SD	1.759	Std. Error of Mean	0.297
Coefficient of Variation	1.648	Skewness	3.955
	Normal GOF Tes	t	
Shapiro Wilk Test Statistic	0.529	Shapiro Wilk GOF Test	
1% Shapiro Wilk Critical Value	0.91	Data Not Normal at 1% Significance Level	
Lilliefors Test Statistic	0.299	Lilliefors GOF Test	
1% Lilliefors Critical Value	0.172	Data Not Normal at 1% Significance Level	
Data Not I	Normal at 1% Signif	icance Level	
Ass	uming Normal Distr		
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	1.57	95% Adjusted-CLT UCL (Chen-1995)	1.769
		95% Modified-t UCL (Johnson-1978)	1.603
	Gamma GOF Tes		
A-D Test Statistic	1.679	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.781	Data Not Gamma Distributed at 5% Significance Level	I
K-S Test Statistic	0.21	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.154	Data Not Gamma Distributed at 5% Significance Level	I
	a Distributed at 5%	-	
	Gamma Statistic	3	
k hat (MLE)	0.894	k star (bias corrected MLE)	0.837
Theta hat (MLE)	1.194	Theta star (bias corrected MLE)	1.276
nu hat (MLE)	62.59	nu star (bias corrected)	58.56
MLE Mean (bias corrected)	1.067	MLE Sd (bias corrected)	1.167
		Approximate Chi Square Value (0.05)	41.96
Adjusted Level of Significance	0.0425	Adjusted Chi Square Value	41.3
	uming Gamma Dist		
95% Approximate Gamma UCL	1.489	95% Adjusted Gamma UCL	1.513
	Lognormal GOF Te	pet .	
Shapiro Wilk Test Statistic	0.958	Shapiro Wilk Lognormal GOF Test	
10% Shapiro Wilk Critical Value	0.944	Data appear Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.146	Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value	0.140	Data Not Lognormal at 10% Significance Level	
	0.100	Bata Not Lognormal at 10/0 Orginitative Level	

Data appear Approximate Lognormal at 10% Significance Level

Lognormal Statistics

Minimum of Logged Data	-2.375	Mean of logged Data	-0.589
Maximum of Logged Data	2.281	SD of logged Data	1.073

Assuming Lognormal Distribution

95% H-UCL	1.577	90% Chebyshev (MVUE) UCL	1.579
95% Chebyshev (MVUE) UCL	1.859	97.5% Chebyshev (MVUE) UCL	2.247
99% Chebyshev (MVUE) UCL	3.008		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution

Nonparametric Distribution Free UCLs

1.556	95% BCA Bootstrap UCL	1.753
1.538	95% Bootstrap-t UCL	2.15
3.37	95% Percentile Bootstrap UCL	1.563
1.959	95% Chebyshev(Mean, Sd) UCL	2.363
2.924	99% Chebyshev(Mean, Sd) UCL	4.025
	1.538 3.37 1.959	1.53895% Bootstrap-t UCL3.3795% Percentile Bootstrap UCL1.95995% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% H-UCL 1.577

The calculated UCLs are based on assumptions that the data were collected in a random and unbiased manner. Please verify the data were collected from random locations. If the data were collected using judgmental or other non-random methods,

then contact a statistician to correctly calculate UCLs.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

t-Test Sample 1 vs Sample 2 Comparison for Uncensored Full Data Sets without NDs

User Selected Options	6
Date/Time of Computation	ProUCL 5.2 8/6/2024 4:06:21 PM
From File	AllBasedata.xls
Full Precision	OFF
Confidence Coefficient	95%
Substantial Difference (S)	0.000
Selected Null Hypothesis	Sample 1 Mean <= Sample 2 Mean (Form 1)
Alternative Hypothesis	Sample 1 Mean > the Sample 2 Mean

Sample 1 Data: Result(site) Sample 2 Data: Result(background)

Raw Statistics

	Sample 1	Sample 2
Number of Valid Observations	35	19
Number of Distinct Observations	33	16
Minimum	0.093	0.09
Maximum	9.79	0.47
Mean	1.067	0.259
Median	0.46	0.18
SD	1.759	0.133
SE of Mean	0.297	0.0305

Sample 1 vs Sample 2 Two-Sample t-Test

H0: Mean of Sample 1 - Mean of Sample 2 <= 0

		t-Test	Critical	
Method	DF	Value	t (0.05)	P-Value
Pooled (Equal Variance)	52	1.992	1.675	0.026
Welch-Satterthwaite (Unequal Variand	34.7	2.705	1.690	0.005

Pooled SD 1.424

Conclusion with Alpha = 0.050

Student t (Pooled) Test: Reject H0, Conclude Sample 1 > Sample 2

Welch-Satterthwaite Test: Reject H0, Conclude Sample 1 > Sample 2

Test of Equality of Variances

	Variance of Sample 1 Variance of Sample 2	3.094 0.0176	
Numerator DF	Denominator DF	F-Test Value	P-Value
34	18	175.596	0.000

Conclusion with Alpha = 0.05

Two variances are not equal

Wilcoxon-Mann-Whitney Sample 1 vs Sample 2 Comparison Test for Data Sets with Non-Detects

User Selected Options	3
Date/Time of Computation	ProUCL 5.2 8/6/2024 4:08:45 PM
From File	AllBasedata.xls
Full Precision	OFF
Confidence Coefficient	95%
Selected Null Hypothesis	Sample 1 Mean/Median <= Sample 2 Mean/Median (Form 1)
Alternative Hypothesis	Sample 1 Mean/Median > Sample 2 Mean/Median

Sample 1 Data: Result(site)

Sample 2 Data: Result(background)

Raw Statistics

	Sample 1	Sample 2
Number of Valid Data	35	19
Number of Non-Detects	0	0
Number of Detect Data	35	19
Minimum Non-Detect	N/A	N/A
Maximum Non-Detect	N/A	N/A
Percent Non-detects	0.00%	0.00%
Minimum Detect	0.093	0.09
Maximum Detect	9.79	0.47
Mean of Detects	1.067	0.259
Median of Detects	0.46	0.18
SD of Detects	1.759	0.133

Wilcoxon-Mann-Whitney (WMW) Test

H0: Mean/Median of Sample 1 <= Mean/Median of Sample 2

Sample 1 Rank Sum W-Stat	1139
Standardized WMW U-Stat	3.189
Mean (U)	332.5
SD(U) - Adj ties	55.2
Approximate U-Stat Critical Value (0.05)	1.645
P-Value (Adjusted for Ties)	7.1463E-4

Conclusion with Alpha = 0.05

Reject H0, Conclude Sample 1 > Sample 2 P-Value < alpha (0.05)