December 2009 **Compliance Groundwater Monitoring**

CAP Sante Marine Ecology Agreed Order No. DE-07TCPHQ-4197 Anacortes, Washington

for **Port of Anacortes**

December 23, 2009

Earth Science + Technology

December 2009 Compliance Groundwater Monitoring

CAP Sante Marine Ecology Agreed Order No. DE-07TCPHQ-4197 Anacortes, Washington

for Port of Anacortes

December 23, 2009

Plaza 600 Building 600 Stewart Street, Suite 1700 Seattle, Washington 98101 206.728.2674

December 2009 Compliance Groundwater Monitoring

Cap Sante Marine Ecology Agreed Order No. DE-07TCPHQ-4197 Anacortes, Washington

File No. 5147-005-07

December 23, 2009

Prepared for:

Port of Anacortes First and Commercial Avenue P.O. Box 297 Anacortes, Washington 98221

Prepared by:

GeoEngineers, Inc. Plaza 600 Building 600 Stewart Street, Suite 1700 Seattle, Washington 98101 206.728.2674

James G. Roth, LG, LHG Associate Hydrogeologist

John Herzog, PhD Principal

JGR:JMH:ta SEAT:P:\5\5147005\07\Finals\514700507DEC2009GWMRpt.docx

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

37

James G. Roth

23-09

Copyright© 2009 by GeoEngineers, Inc. All rights reserved.

Table of Contents

LIMITATIONS	2
CONCLUSIONS	2
Groundwater Conditions	2
General	
GROUNDWATER MONITORING RESULTS	1
GROUNDWATER MONITORING ACTIVITIES	1
INTRODUCTION	1

LIST OF TABLES

 Table 1. Summary of Groundwater Levels and Chemical Analytical Data Petroleum Hydrocarbons,

 Volatiles and Lead

- Table 2. Summary of Groundwater Chemical Analytical Data Noncarcinogenic PAHs
- Table 3. Summary of Groundwater Chemical Analytical Data Carcinogenic PAHs
- Table 4. Summary of Groundwater Field Parameters

LIST OF FIGURES

Figure 1. Vicinity Map

- Figure 2. Site Plan: Compliance Monitoring Wells
- Figure 3. Diesel Range Hydrocarbon Concentrations in MW-2A

APPENDICES

Appendix A – Field Procedures Appendix B – Chemical Analytical Program

INTRODUCTION

This report presents the results of the sixth quarterly compliance groundwater monitoring event at the Cap Sante Marine Lease Area (Site) in Anacortes, Washington. The sixth round of groundwater monitoring was completed in December 2009. The Site is located at the Port of Anacortes (Port) Cap Sante Boat Haven as shown in Figure 1. The general Site layout is shown in Figure 2.

The Port completed an Interim Action at the Site in 2007 and 2008 that included removal of underground storage tanks (USTs) and contaminated soil. In accordance with the Cap Sante Marine Interim Action Work Plan Supplement (Work Plan Supplement) dated September 20, 2007, four consecutive quarters of compliance groundwater monitoring were completed to characterize post-interim action groundwater conditions at the Site. Slight exceedances of diesel-range hydrocarbons were detected in one of the four compliance groundwater monitoring wells (MW-2A) during the June and September 2008 sampling events. Diesel-range hydrocarbons were detected in MW-2A at concentrations less than MTCA cleanup levels during the December 2008 and March 2009 sampling events. Groundwater samples from the other three wells were clean for all four quarterly events. Therefore, further sampling is only required by Ecology on MW-2A to demonstrate completeness of the cleanup action. Collection and analysis of additional groundwater samples from the other three monitoring wells at the Site is not required by Ecology.

GROUNDWATER MONITORING ACTIVITIES

The purpose of the December 2009 compliance groundwater monitoring is to measure groundwater depths, evaluate post-interim action groundwater flow direction, and collect groundwater samples from one monitoring well at the site for chemical analyses. Specific activities that were completed are as follows:

- Measure the depths to groundwater and calculate the groundwater elevation in the four wells. Estimate groundwater flow direction at the site based on the groundwater elevations.
- Obtain groundwater samples from monitoring well MW-2A for chemical analysis of benzene, ethylbenzene, toluene and xylenes (BETX) by EPA Method 8021B, gasoline-range hydrocarbons by Washington State Department of Ecology (Ecology) Method NWTPH-G, diesel- and heavy oil-range hydrocarbons by Ecology Method NWTPH-Dx with silica gel cleanup, PAHs by EPA 8270 SIM and lead by EPA 7421. Submit the samples to ALS Laboratories of Everett, Washington for chemical analysis.
- Store the purge water generated during well sampling in drums at a secure location on Port property, pending offsite disposal.
- Evaluate the chemical analytical results relative to MTCA cleanup levels for the Site.

GROUNDWATER MONITORING RESULTS

General

In accordance with the Work Plan Supplement, four monitoring wells (MW-1A through MW-4A) were installed at the Site on May 27, 2008 for compliance groundwater monitoring. Monitoring well MW-1A was installed west (upgradient) of the remedial excavation limits. Monitoring wells MW-2A through MW-4A were installed in the southwest, east-central and northeast portions, respectively, of the remedial excavation. The

approximate locations of the compliance monitoring wells are shown in Figure 2. Groundwater depths, elevations, chemical analytical results and field parameters obtained during previous groundwater monitoring events and the December 2009 event are presented in Tables 1 through 4. Sampling procedures are described in Appendix A. Laboratory reports for the chemical analyses are presented in Appendix B.

Groundwater Conditions

Groundwater conditions at the Site were evaluated by measuring groundwater levels in MW-1A through MW-4A and obtaining groundwater samples from MW-2A on December 3, 2009. Depths to groundwater ranged from approximately 3.6 to 4.7 feet bgs (Table 1). The inferred direction of groundwater flow beneath the Site based on the December 2009 measurements is toward the southeast (Figure 2). Groundwater flow direction during this monitoring event is consistent with previous groundwater monitoring events in 2008 and 2009.

Groundwater field parameters including pH, conductivity, turbidity, dissolved oxygen and temperature were measured prior to obtaining samples from MW-2A. Groundwater field parameter data are summarized in Table 4. Groundwater samples from MW-2A were submitted to ALS Laboratory Group in Everett, Washington, for chemical analysis of BETX, gasoline-, diesel- and oil-range hydrocarbons, PAHs and lead. The groundwater analytical results are presented in Tables 1, 2 and 3. The contaminants of concern either were not detected in MW-2A or were detected at concentrations that did not exceed Site cleanup levels. Two cPAHs (benzo[a]anthracene and chrysene) were detected in MW-2A at concentrations exceeding the 0.018 ppb cleanup level. However, the cPAH detections did not exceed the 0.1 ppb cleanup level for cPAHs using the toxicity equivalency methodology (TEQ) described in WAC 173-340-708(8). Therefore, cPAHs were not detected in MW-2A at concentrations of regulatory concern based on the TEQ methodology. Diesel-range petroleum hydrocarbons were detected in MW-2A at a concentration of 440 parts per billion (ppb) in December 2009, which is less than the 500 ppb MTCA cleanup level. Diesel-range hydrocarbon concentrations in MW-2A in December 2009 and previous monitoring events are shown in Figure 3.

CONCLUSIONS

Contaminants of concern either were not detected or were detected at concentrations that did not exceed Site cleanup levels in compliance monitoring well MW-2A. Based on the 2008 and 2009 sampling results, the low-level, diesel-range groundwater exceedance detected in MW-2A in June and September 2008 have attenuated over time. The December 2009 results mark the fourth consecutive quarter with no groundwater exceedances in MW-2A, thus confirming four consecutive rounds of groundwater monitoring results below cleanup levels in all of the wells located at the Site. Based on the 2008 and 2009 groundwater monitoring results, groundwater cleanup levels have been attained at the Site and in accordance with Ecology requirements, no additional compliance sampling will be necessary to demonstrate completeness of the cleanup actions for closure of the Site.

LIMITATIONS

We have prepared this report for the exclusive use of the Port of Anacortes, their authorized agents and regulatory agencies in their review of compliance groundwater monitoring at the Port of Anacortes Cap Sante

Marine Lease Area Site located in Anacortes, Washington. No other party may rely on the product of our services unless we agree in advance and in writing to such reliance.

Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted environmental science practices in this area at the time this report was prepared. No warranty or other conditions, express or implied, should be understood.

Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

TABLE 1 SUMMARY OF GROUNDWATER LEVELS AND CHEMICAL ANALYTICAL DATA PETROLEUM HYDROCARBONS, VOLATILES AND LEAD INTERIM REMEDIAL ACTION - CAP SANTE MARINE ANACORTES, WASHINGTON

				Petroleum Hydrocarbons ²		Volatile Organic Compounds (VOCs) ³						
					(µq/l)			(µ	q/l)			
Monitoring		Depth to	Groundwater					u u	, 		Le	ad
Well ¹	Date	Groundwater	Elevation	Gasoline-	Diesel-	Heavy Oil-		Ethyl-			(µ(g/l)
(top of casing elevation - feet)	Sampled	(feet)	(feet)	Range	Range	Range	Benzene	benzene	Toluene	Xylenes	Total	Dissolved
	06/05/08	4.04	8.59	<50	<130	<250	<1	<1	<1	<3	<3	<3
	09/09/08	5.47	7.16	<50	<130	<250	<1	<1	<1	<3	<3	
MW-1A	12/10/08	4.66	7.97	<50	<130	<250	<1	<1	<1	<3	<3	
(12.63)	03/11/09	5.16	7.47	<50	<130	<250	<1	<1	<1	<3	<3	
	09/10/09	5.35	7.28									
	12/03/09	4.21	8.42									
	06/05/08	4.71	8.25	150	810	<250	3	<1	1	<3	40	<3
	06/23/08	5.63	7.33		<130	<250					<3	
N/10/ 00	09/09/08	6.11	6.85	75	540	<250	1	<1	<1	<3	<3	
(12.96)	12/10/08	5.58	7.38	140	340	<250	<1	<1	<1	<3	<3	
(12.90)	03/11/09	5.74	7.22	120	340	<250	<1	<1	<1	<3	<3	
	09/10/09	5.98	6.98	100	500	<250	<1	<1	<1	<3	<1	
	12/03/09	4.66	8.30	130	440	<250	<1	<1	<1	<3	<1	
	06/05/08	3.74	8.29	<50	<130	<250	<1	<1	<1	<3	<3	<3
	09/09/08	5.20	6.83	<50	<130	<250	<1	<1	<1	<3	<3	
MW-3A	12/10/08	4.51	7.52	<50	<130	<250	<1	<1	<1	<3	<3	
(12.03)	03/11/09	4.74	7.29	<50	<130	<250	<1	<1	<1	<3	5	
	09/10/09	5.08	6.95									
	12/03/09	3.60	8.43									
	06/05/08	4.12	8.29	<50	<130	<250	<1	<1	<1	<3	<3	<3
	09/09/08	5.33	7.08	<50	<130	<250	<1	<1	<1	<3	<3	
MW-4A	12/10/08	4.52	7.89	<50	<130	<250	<1	<1	<1	<3	4	
(12.41)	03/11/09	4.95	7.46	<50	<130	<250	<1	<1	<1	<3	<3	
	09/10/09	5.20	7.21									
	12/03/09	3.99	8.42									
D-060508	06/05/08			<50	<130	<250	<1	<1	<1	<3	<3	<3
D-9/9/08	09/09/08			<50	<130	<250	<1	<1	<1	<3	<3	
D-12/10/08	12/10/08			<50	<130	<250	<1	<1	<1	<3	<3	
D-03/11/09	03/11/09			<50	<130	<250	<1	<1	<1	<3	<3	
	06/06/08			<50			<1	<1	<1	<3		
Trip Blank	09/09/08			<50			<1	<1	<1	<3		
пр Ванк	12/10/08			<50			<1	<1	<1	<3		
	03/11/09			<50			<1	<1	<1	<3		
MTCA Groundwater Cleanup Level				800/1,000 4	500	500	51	2,100	15,000	1,000	8.1	NE

Notes:

¹The approximate monitoring well locations are shown in Figure 2.

²Petroleum hydrocarbons analyzed using Ecology Method NWTPH-Gx and NWTPH-Dx with acid/silica gel cleanup.

³VOCs analyzed using EPA Method 8021B.

⁴MTCA Method A cleanup level is 800 µg/l when benzene is present, 1,000 µg/l when benzene is not present.

µg/l = micrograms per liter.

D = Duplicate groundwater sample. Samples D-060508 and D-03/11/09 are representative of the June 2008 and March 2009 samples from MW-4A. Samples Dup-9/9/08 and D-12/10/08 are representative of the September and December 2008 samples from MW-3A.

NE = not established.

Chemical analyses performed by CCI Analytical Laboratories/ALS Laboratory Group, Everett, Washington.

Bolding indicates analyte was detected. Shading indicates the detected concentration exceeds the respective cleanup level.

SEAT:\5\5147005\05\Finals\514700505Tables1-4 Mar 09.xls

TABLE 2 SUMMARY OF GROUNDWATER CHEMICAL ANALYTICAL DATA NONCARCINOGENIC PAHS INTERIM REMEDIAL ACTION - CAP SANTE MARINE ANACORTES, WASHINGTON

		Noncarcinogenic PAHs ² (µg/I)								
Monitoring	Date	Acenaph-	Acenaph-	Anthra-	Benzo(ghi)-	Fluoran-		Naph-	Phenan-	
Well ¹	Sampled	thene	thylene	cene	perylene	thene	Fluorene	thalenes	threne	Pyrene
	06/05/08	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.04	<0.02	0.07
	09/09/08	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018
	12/10/08	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018
	03/11/09	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	0.019	<0.018	<0.018
	06/05/08	110	2.4	6.4	<0.02	7.7	54	434	38	3.4
	09/09/08	60	1.2	3.0	<0.018	3.2	31	413	20	1.4
	12/10/08	49	1.2	1.8	<0.018	2.4	15	322	11	1.2
IVIVV-ZA	03/11/09	61	1.1	2.2	<0.018	2.6	24	242.6	16	0.97
	09/10/09	71	1.4	3.7	<0.018	2.7	27	46	22	1.5
	12/03/09	47	1.1	1.2	<0.018	0.94	15	25.86	8.5	0.5
	06/05/08	<0.02	0.03	<0.02	<0.02	<0.02	<0.02	0.20	<0.02	<0.02
M///_2A	09/09/08	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018
10100-37	12/10/08	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018
	03/11/09	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018
	06/05/08	0.04	<0.02	<0.02	<0.02	<0.02	<0.02	0.03	<0.02	<0.02
	09/09/08	<0.019	0.04	<0.018	<0.018	<0.018	0.02	<0.018	0.03	<0.018
10100-47	12/10/08	0.02	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018
	03/11/09	0.019	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018
D-060508	06/05/08	0.04	<0.02	<0.02	<0.02	<0.02	<0.02	0.04	0.02	<0.02
D-9/9/08	09/09/08	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018
D-12/10/08	12/10/08	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018
D-03/11/09	03/11/09	0.019	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018
MTCA Groundwate	er Cleanup Level	643	NE	25,900	NE	90	3,460	4,940	NE	2,590

Notes:

¹The approximate monitoring well locations are shown in Figure 2.

²Polycyclic aromatic hydrocarbons (PAHs) analyzed using EPA Method 8270SIM. The full list of PAHs that were analyzed is presented in Appendix B.

µg/l = micrograms per liter.

NE = not established.

D = Duplicate groundwater sample. Samples D-060508 and D-03/11/09 are representative of the June 2008 and March 2009 samples from MW-4A. Samples Dup-9/9/08 and D-12/10/08 are representative of the September and December 2008 samples from MW-3A.

Chemical analyses performed by CCI Analytical Laboratories, Everett, Washington.

Bolding indicates analyte was detected. Shading indicates the detected concentration exceeds the respective cleanup level.

SEAT:\5\5147005\05\Finals\514700505Tables1-4 Mar 09.xls

TABLE 3 SUMMARY OF GROUNDWATER CHEMICAL ANALYTICAL DATA CARCINOGENIC PAHS INTERIM REMEDIAL ACTION - CAP SANTE MARINE ANACORTES, WASHINGTON

		Carcinogenic PAHs ² (µg/I)							
Monitoring	Date	Benzo(a)-	Benzo(a)-	Benzo(b)-	Benzo(k)-		Dibenz(a,h)-	Indeno(1,2,3-cd)-	Total cPAHs
Well ¹	Sampled	anthracene	pyrene	fluoranthene	fluoranthene	Chrysene	anthracene	pyrene	(TEQ) ³
	06/05/08	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.020
	09/09/08	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	0.013
IVIV-IA	12/10/08	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	0.013
	03/11/09	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	0.013
	06/05/08	0.21	0.02	0.03	0.03	0.19	<0.02	<0.02	0.050
	09/09/08	0.07	<0.018	<0.018	<0.018	0.07	<0.018	<0.018	0.020
M/M/ 20	12/10/08	0.1	<0.018	<0.018	<0.018	0.09	<0.018	<0.018	0.024
IVIVY-ZA	03/11/09	0.049	<0.018	<0.018	<0.018	0.045	<0.018	<0.018	0.018
	09/10/09	0.047	<0.018	<0.018	<0.018	0.048	<0.018	<0.018	0.018
	12/03/09	0.036	<0.018	<0.018	<0.018	0.03	<0.018	<0.018	0.017
	06/05/08	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.020
M/M/_2A	09/09/08	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	0.013
WWV-5A	12/10/08	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	0.013
	03/11/09	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	0.013
	06/05/08	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.020
	09/09/08	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	0.013
10100-474	12/10/08	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	0.013
	03/11/09	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	0.013
D-060508	06/05/08	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.020
D-9/9/08	09/09/08	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	0.013
D-12/10/08	12/10/08	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	0.013
D-03/11/09	03/11/09	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	0.013
MTCA Groundwater	Cleanup Level	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.100

Notes:

¹The approximate monitoring well locations are shown in Figure 2.

²Polycyclic aromatic hydrocarbons (PAHs) analyzed using EPA Method 8270SIM. The full list of PAHs that were analyzed is presented in Appendix B.

³Total carcinogenic PAHs calculated using toxicity equivalency (TEQ) methodology relative to benzo(a)pyrene. cPAHs that were not detected were assigned a value of one half of the detection limit

for these calculations.

µg/l = micrograms per liter.

D = Duplicate groundwater sample. Samples D-060508 and D-03/11/09 are representative of the June 2008 and March 2009 samples from MW-4A. Samples Dup-9/9/08 and D-12/10/08 are representative of the September and December 2008 samples from MW-3A.

Chemical analyses performed by CCI Analytical Laboratories, Everett, Washington.

Bolding indicates analyte was detected. Shading indicates the detected concentration exceeds the respective cleanup level.

SEAT:\5\5147005\05\Finals\514700505Tables1-4 Mar 09.xls

TABLE 4 SUMMARY OF GROUNDWATER FIELD PARAMETERS INTERIM REMEDIAL ACTION - CAP SANTE MARINE ANACORTES, WASHINGTON

Monitoring Well ¹	Date Measured	рН ²	Conductivity ² (mS/cm)	Turbidity ² (ntu)	Dissolved Oxygen ² (ppm)	Temperature ² (°C)
	06/05/08	7.0	4.4	17	1.1	13
	09/09/08	6.9	2.0	16	1.3	18
IVIV-IA	12/10/08	6.0	2.0	12	1.2	12
	03/11/09	5.2	1.8	6	2.9	9
	06/05/08	6.8	7.7	550	1.6	13
	06/23/08	6.3	0.6	27	3.8	16
	09/09/08	6.5	0.6	29	3.2	18
MW-2A	12/10/08	5.9	0.7	2	2.7	12
	03/11/09	5.1	10.8	4	2.9	8
	09/10/09	5.3	10.7	4	2.8	12
	12/03/09	5.8	10.2	3	2.8	8
	06/05/08	6.7	8.1	63	2.5	12
	09/09/08	6.7	7.8	25	2.4	19
IVIV-3A	12/10/08	6.0	6.4	12	2.5	12
	03/11/09	5.0	3.3	7	2.7	8
	06/05/08	7.6	18.9	7	1.1	12
	09/09/08	7.4	16.2	12	1.3	18
1VIV -4A	12/10/08	6.1	22.6	5	2.1	12
	03/11/09	5.1	30.0	6	2.9	8

Notes:

¹ The approximate monitoring well locations are shown in Figure 2.

²Measurements made using a Horiba-22 water quality meter.

mS/cm = milliSiemens per centimeter ntu = nephelometric turbidity units ppm = parts per million °C = Degrees Centigrade

SEA:\5\5147005\07\Finals\514700507Tables1-4 Sept 09.xls

accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Reference: Base Map based on As-built Survey, April 2008 by Leonard, Boudinot &

Skodje Inc.

15:15

2009 -

DEC 09,

FFFT

P:\5\5147005\07\CAD\0514700507 Fig3 Dec 09.Dwg\TAB:Fig 3 modified by tmichaud on Dec 22, 2009 - 13:53

APPENDIX A FIELD PROCEDURES

Groundwater Elevations

Well casing rim elevations were surveyed by GeoEngineers. Groundwater elevations are referenced to actual elevations of site features based on survey information provided to GeoEngineers by the Port of Anacortes. The depth to groundwater was measured in the monitoring wells using an electric water level indicator. The depth to groundwater was measured relative to the top of the well casings. Water level measurement equipment was washed in a Liqui-Nox[®] solution, followed by a distilled water rinse prior to use in the well. Groundwater elevations were calculated by subtracting the depth to water from the casing rim elevation.

Groundwater Sampling

Groundwater samples were obtained from monitoring well MW-2A using a peristaltic, low-flow pump. Groundwater field parameters were measured with a Horiba-22 water quality meter prior to collecting the samples. The water samples were transferred to clean laboratory-prepared containers. Samples requiring preservative (e.g. hydrochloric acid for volatile organic compound analyses) had the proper preservative in the laboratory-prepared bottles. Groundwater sample containers were filled completely to minimize headspace. The groundwater samples were kept cool during transport to the analytical laboratory.

APPENDIX B CHEMICAL ANALYTICAL PROGRAM

Samples

Chain-of-custody procedures were followed during the transport of the groundwater samples to the accredited analytical laboratory. The samples were held in cold storage pending extraction and/or analysis. The analytical results and laboratory quality control (QC) records are included in this appendix. The analytical results are summarized in the text and tables of this report.

Analytical Data Review

The laboratory maintains an internal quality assurance program as documented in its laboratory quality assurance manual. The laboratory uses a combination of blanks, surrogate recoveries, duplicates, matrix spike recoveries, matrix spike duplicate recoveries, blank spike recoveries and blank spike duplicate recoveries to evaluate the analytical results. The laboratory also uses data quality goals for individual chemicals or groups of chemicals based on the long-term performance of the test methods. The data quality goals were included in the laboratory reports. The laboratory compared each group of samples with the existing data quality goals and noted any exceptions in the laboratory report. Any data quality exceptions documented by the laboratory were reviewed by GeoEngineers and are addressed in the data quality exception section of this appendix.

Data Quality Exception Summary

No quality control exceptions were noted by the testing laboratory. Based on our data quality review, it is our opinion that the analytical data are of acceptable quality for their intended use in this report.

CERTIFICATE	OF ANALYSIS
-------------	--------------------

CLIENT: Geoengineers, Inc. 600 Stewart St. Plaza 600 Building, Suite 1700 Seattle, WA 98101

DATE:	12/18/2009
ALS JOB#:	0912027
DATE RECEIVED:	12/4/2009
WDOE ACCREDITATION #:	C1336

CLIENT CONTACT:	Jim Roth	
CLIENT PROJECT ID	Port of Anac	ortes - Cap Sante Marine
CLIENT SAMPLE ID:	12/3/2009	MW-2A
ALS SAMPLE #:	-01	

DATA RESULTS

TPH-Gasoline		REPORTING	DETECTION	DILUTION		ANALYSIS
ANALYTE	RESULTS*	LIMITS	LIMITS	FACTOR	UNITS**	BY
TPH-Volatile Range	130	50	4.6	1	UG/L	DLC
QC Batch prepared/extracted by EPA-5030 on 12/4/2009 3:24:52 PM. Sample analyzed by NWTPH-GX on 12/4/2009 10:53:31 AM.						
BTEXM by EPA-8021		DEDODTINO	DETECTION			
ANALYTE	RESULTS*	LIMITS	LIMITS	FACTOR	UNITS**	BY
Benzene	ND	1.0	0.12	1	UG/L	DLC
Toluene	ND	1.0	0.2	1	UG/L	DLC
Ethylbenzene	ND	1.0	0.1	1	UG/L	DLC
Xylenes	ND	3.0	0.91	1	UG/L	DLC
QC Batch prepared/extracted by EPA-5030 on 12/4/2009 3:24:52 PM. Sample analyzed by EPA-8021 on 12/4/2009 10:53:31 AM.						
TPH-Diesel						
TPH-Diesel Range	440	130	40	1	UG/I	FBS
TPH-Oil Range	ND	250	36	1	UG/L	EBS
QC Batch prepared/extracted by EPA-3510 on 12/7/2009 11:36:58 AM. Sample analyzed by NWTPH-DX w/ SGA on 12/4/2009 1:32:20 PM.						-
Semi-Volatile Organics by EPA-8270 SIM						
		DEDODTING	DETECTION			ANALYSIS
		LIMITS	LIMITS	FACTOR		BV
ANALYTE Naphthalene	RESULTS* 16	LIMITS 0.018	LIMITS 0.0015	FACTOR 1	UNITS** UG/L	BY
ANALYTE Naphthalene 2-Methvlnaphthalene	RESULTS * 16 0.66	LIMITS 0.018 0.018	LIMITS 0.0015 0.0021	FACTOR 1	UNITS ** UG/L UG/L	BY RAL RAL
ANALYTE Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene	RESULTS * 16 0.66 9.2	LIMITS 0.018 0.018 0.018	LIMITS 0.0015 0.0021 0.0018	FACTOR 1 1	UNITS** UG/L UG/L UG/L	BY RAL RAL RAL
ANALYTE Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene	RESULTS* 16 0.66 9.2 1.1	LIMITS 0.018 0.018 0.018 0.018 0.018	LIMITS 0.0015 0.0021 0.0018 0.0027	FACTOR 1 1 1 1	UNITS** UG/L UG/L UG/L UG/L	BY RAL RAL RAL RAL
ANALYTE Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene	RESULTS* 16 0.66 9.2 1.1 47	LIMITS 0.018 0.018 0.018 0.018 0.018 0.072	LIMITS 0.0015 0.0021 0.0018 0.0027 0.0088	FACTOR 1 1 1 1 1 4	UNITS** UG/L UG/L UG/L UG/L UG/L	BY RAL RAL RAL RAL RAL
ANALYTE Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene	RESULTS* 16 0.66 9.2 1.1 47 15	LIMITS 0.018 0.018 0.018 0.018 0.072 0.018	LIMITS 0.0015 0.0021 0.0018 0.0027 0.0088 0.0028	FACTOR 1 1 1 1 4 1	UNITS** UG/L UG/L UG/L UG/L UG/L UG/L	BY RAL RAL RAL RAL RAL RAL
ANALYTE Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene	RESULTS* 16 0.66 9.2 1.1 47 15 8.5	0.018 0.018 0.018 0.018 0.018 0.072 0.018 0.018	LIMITS 0.0015 0.0021 0.0018 0.0027 0.0088 0.0028 0.0021	FACTOR 1 1 1 1 4 1 1	UNITS** UG/L UG/L UG/L UG/L UG/L UG/L	BY RAL RAL RAL RAL RAL RAL RAL
ANALYTE Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	RESULTS* 16 0.66 9.2 1.1 47 15 8.5 8.5 1.2	LIMITS 0.018 0.018 0.018 0.018 0.072 0.018 0.018 0.018	LIMITS 0.0015 0.0021 0.0018 0.0027 0.0088 0.0028 0.0021 0.0027	FACTOR 1 1 1 1 4 1 1 1 1 1	UNITS** UG/L UG/L UG/L UG/L UG/L UG/L UG/L	BY RAL RAL RAL RAL RAL RAL RAL RAL
ANALYTE Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	RESULTS* 16 0.66 9.2 1.1 47 15 8.5 1.2 0.94	LIMITS 0.018 0.018 0.018 0.018 0.072 0.018 0.018 0.018 0.018	LIMITS 0.0015 0.0021 0.0018 0.0027 0.0088 0.0028 0.0021 0.0027 0.0027 0.0049	FACTOR 1 1 1 1 4 1 1 1 1 1 1	UNITS** UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	BY RAL RAL RAL RAL RAL RAL RAL RAL
ANALYTE Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	RESULTS* 16 0.66 9.2 1.1 47 15 8.5 1.2 0.94 0.50	LIMITS 0.018 0.018 0.018 0.018 0.072 0.018 0.018 0.018 0.018 0.018	LIMITS 0.0015 0.0021 0.0027 0.0088 0.0028 0.0021 0.0027 0.0027 0.0049 0.0051	FACTOR 1 1 1 1 4 1 1 1 1 1 1 1	UNITS** UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	BY RAL RAL RAL RAL RAL RAL RAL RAL RAL
ANALYTE Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo[A]Anthracene	RESULTS* 16 0.66 9.2 1.1 47 15 8.5 1.2 0.94 0.50 0.036	LIMITS 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018	LIMITS 0.0015 0.0021 0.0027 0.0088 0.0027 0.0028 0.0021 0.0027 0.0049 0.0051 0.0044	FACTOR 1 1 1 1 4 1 1 1 1 1 1 1 1 1	UNITS** UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	BY RAL RAL RAL RAL RAL RAL RAL RAL RAL RAL
ANALYTE Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo[A]Anthracene Chrysene	RESULTS* 16 0.66 9.2 1.1 47 15 8.5 1.2 0.94 0.50 0.036 0.030	LIMITS 0.018 0.018 0.018 0.018 0.072 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018	LIMITS 0.0015 0.0021 0.0027 0.0088 0.0027 0.0088 0.0021 0.0027 0.0049 0.0051 0.0044 0.0057	FACTOR 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1	UNITS** UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	BY RAL RAL RAL RAL RAL RAL RAL RAL RAL RAL
ANALYTE Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo[A]Anthracene Chrysene Benzo[B]Fluoranthene	RESULTS* 16 0.66 9.2 1.1 47 15 8.5 1.2 0.94 0.50 0.036 0.030 ND	LIMITS 0.018 0.018 0.018 0.018 0.072 0.018 0	LIMITS 0.0015 0.0021 0.0018 0.0027 0.0088 0.0028 0.0021 0.0027 0.0049 0.0051 0.0044 0.0057 0.0074	FACTOR 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1	UNITS** UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	BY RAL RAL RAL RAL RAL RAL RAL RAL RAL RAL
ANALYTE Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo[A]Anthracene Chrysene Benzo[B]Fluoranthene Benzo[K]Fluoranthene	RESULTS* 16 0.66 9.2 1.1 47 15 8.5 1.2 0.94 0.50 0.036 0.030 ND ND	LIMITS 0.018 0.018 0.018 0.018 0.072 0.018 0	LIMITS 0.0015 0.0021 0.0018 0.0027 0.0088 0.0028 0.0021 0.0027 0.0049 0.0051 0.0044 0.0057 0.0074 0.0074 0.0049	FACTOR 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1	UNITS*** UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	BY RAL RAL RAL RAL RAL RAL RAL RAL RAL RAL
ANALYTE Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo[A]Anthracene Chrysene Benzo[B]Fluoranthene Benzo[K]Fluoranthene Benzo[A]Pyrene	RESULTS* 16 0.66 9.2 1.1 47 15 8.5 1.2 0.94 0.50 0.036 0.030 ND ND ND	LIMITS 0.018 0.018 0.018 0.018 0.072 0.018 0	LIMITS 0.0015 0.0021 0.0027 0.0088 0.0027 0.0088 0.0021 0.0027 0.0049 0.0051 0.0044 0.0057 0.0074 0.0049 0.0049 0.0049	FACTOR 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1	UNITS** UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	BY RAL RAL RAL RAL RAL RAL RAL RAL RAL RAL
ANALYTE Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo[A]Anthracene Chrysene Benzo[B]Fluoranthene Benzo[K]Fluoranthene Benzo[A]Pyrene Indeno[1,2,3-Cd]Pyrene	RESULTS* 16 0.66 9.2 1.1 47 15 8.5 1.2 0.94 0.50 0.036 0.030 ND ND ND ND ND	LIMITS 0.018 0	LIMITS 0.0015 0.0021 0.0027 0.0088 0.0027 0.0028 0.0021 0.0027 0.0049 0.0051 0.0051 0.0057 0.0074 0.0074 0.0049 0.0049 0.0055 0.0077	FACTOR 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1	UNITS** UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	BY RAL RAL RAL RAL RAL RAL RAL RAL RAL RAL
ANALYTE Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo[A]Anthracene Chrysene Benzo[B]Fluoranthene Benzo[K]Fluoranthene Benzo[A]Pyrene Indeno[1,2,3-Cd]Pyrene Dibenz[A,H]Anthracene	RESULTS* 16 0.66 9.2 1.1 47 15 8.5 1.2 0.94 0.50 0.036 0.030 ND ND ND ND ND ND	LIMITS 0.018 0	LIMITS 0.0015 0.0021 0.0027 0.0088 0.0027 0.0088 0.0021 0.0027 0.0049 0.0051 0.0044 0.0057 0.0074 0.0049 0.0074 0.0049 0.0085 0.0077 0.0079	FACTOR 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1	UNITS*** UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	BY RAL RAL RAL RAL RAL RAL RAL RAL RAL RAL

Page 1

Everett, WA 98208 425 3

425 356-2600 FA

			CER	TIFICATE OF A	NALYSIS				
CLIENT: Geoengineers, Inc. 600 Stewart St. Plaza 600 Building, Suite 1700 Seattle, WA 98101				D WDOE ACC		12/18/2009 0912027 12/4/2009 C1336			
CLIENT CO CLIENT PF CLIENT SA ALS SAMF	ONTACT: ROJECT ID AMPLE ID: PLE #:	Jim Roth Port of Anac 12/3/2009 -01	cortes - Cap MW-2A	Sante Marine					
				DATA RESUL	TS				
Benzo[G,ł QC Batch p Sample ana	H,I]Perylene repared/extracted by lyzed by EPA-8270 S	EPA-3510 on 12/14/20 IM on 12/11/2009 9:05	009 11:44:03 AM. :00 PM.	ND	0.018	0.0077	1	UG/L	RAL
ICP/MS Meta ANALYTE Lead QC Batch p Sample ana	Is Analysis by E repared/extracted by lyzed by EPA-6020 o	EPA-6020 EPA-6020 on 12/10/20 n 12/10/2009.	009.	RESULTS * ND	REPORTING LIMITS 1.0	DETECTION LIMITS 1	DILUTION FACTOR 1	UNITS ** UG/L	ANALYSIS BY ARI

Chromatogram indicates that it is likely that sample contains highly weathered gasoline and weathered diesel.

* "ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMT.

** UNITS FOR ALL NON-LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS.

APPROVED BY:

Part Bayun

CERTIFICATE OF ANALYSIS

CLIENT: Geoengineers, Inc. 600 Stewart St. Plaza 600 Building, Suite 1700 Seattle, WA 98101

DATE:	12/18/2009
ALS JOB#:	0912027
DATE RECEIVED:	12/4/2009
WDOE ACCREDITATION #:	C1336

CLIENT CONTACT: Jim Roth CLIENT PROJECT ID Port of Anacortes - Cap Sante Marine

QUALITY CONTROL RESULTS

SURROGATE RECOVERY

ALS SAMPLE ID	METHOD	SUR ID	% RECV
0912027-01	NWTPH-GX	TFT	102%
0912027-01	EPA-8021	TFT	91%
0912027-01	NWTPH-DX	C25	89%
0912027-01	EPA-8270 SIM	Terphenyl-d14	100%
0912027-01 4X Dilution	EPA-8270 SIM	Terphenyl-d14	101%

APPROVED BY:

Por Bagun

8620 Holly Drive Suite 100 Everett, WA 98208 425 356-2600 FAX 425 356-2626 Seattle 206 292-9059

Page 3

CERTIFICATE OF ANALYSIS

CLIENT: Geoengineers, Inc. 600 Stewart St. Plaza 600 Building, Suite 1700 Seattle, WA 98101

DATE:	12/18/2009
ALS JOB#:	0912027
DATE RECEIVED:	12/4/2009
WDOE ACCREDITATION #:	C1336

CLIENT CONTACT: CLIENT PROJECT ID Jim Roth Port of Anacortes - Cap Sante Marine

QUALITY CONTROL RESULTS

BLANK RESULTS

QC SAMPLE ID	MATRIX	METHOD	ANALYTE	RESULT	UNITS
MBG-120409W	Water	NWTPH-GX	TPH-Volatile Range	ND(<50)	UG/L
MB-120409W	Water	EPA-8021	Benzene	ND(<1.0)	UG/L
MB-120409W	Water	EPA-8021	Toluene	ND(<1.0)	UG/L
MB-120409W	Water	EPA-8021	Ethylbenzene	ND(<1.0)	UG/L
MB-120409W	Water	EPA-8021	Xylenes	ND(<3.0)	UG/L
MB-120409W	Water	NWTPH-DX	TPH-Diesel Range	ND(<130)	UG/L
MB-120409W	Water	NWTPH-DX	TPH-Oil Range	ND(<250)	UG/L
MB-121109W	Water	EPA-8270 SIM	Naphthalene	ND(<0.018)	UG/L
MB-121109W	Water	EPA-8270 SIM	2-Methylnaphthalene	ND(<0.018)	UG/L
MB-121109W	Water	EPA-8270 SIM	1-Methylnaphthalene	ND(<0.018)	UG/L
MB-121109W	Water	EPA-8270 SIM	Acenaphthylene	ND(<0.018)	UG/L
MB-121109W	Water	EPA-8270 SIM	Acenaphthene	ND(<0.018)	UG/L
MB-121109W	Water	EPA-8270 SIM	Fluorene	ND(<0.018)	UG/L
MB-121109W	Water	EPA-8270 SIM	Phenanthrene	ND(<0.018)	UG/L
MB-121109W	Water	EPA-8270 SIM	Anthracene	ND(<0.018)	UG/L
MB-121109W	Water	EPA-8270 SIM	Fluoranthene	ND(<0.018)	UG/L
MB-121109W	Water	EPA-8270 SIM	Pyrene	ND(<0.018)	UG/L
MB-121109W	Water	EPA-8270 SIM	Benzo[A]Anthracene	ND(<0.018)	UG/L
MB-121109W	Water	EPA-8270 SIM	Chrysene	ND(<0.018)	UG/L
MB-121109W	Water	EPA-8270 SIM	Benzo[B]Fluoranthene	ND(<0.018)	UG/L
MB-121109W	Water	EPA-8270 SIM	Benzo[K]Fluoranthene	ND(<0.018)	UG/L
MB-121109W	Water	EPA-8270 SIM	Benzo[A]Pyrene	ND(<0.018)	UG/L
MB-121109W	Water	EPA-8270 SIM	Indeno[1,2,3-Cd]Pyrene	ND(<0.018)	UG/L
MB-121109W	Water	EPA-8270 SIM	Dibenz[A,H]Anthracene	ND(<0.018)	UG/L
MB-121109W	Water	EPA-8270 SIM	Benzo[G,H,I]Perylene	ND(<0.018)	UG/L
MBLK-12102009	Water	EPA-6020	Lead	ND(<1.0)	UG/L

APPROVED BY:

for Bagun

Page 4

CERTIFICATE OF ANALYSIS

CLIENT: Geoengineers, Inc. 600 Stewart St. Plaza 600 Building, Suite 1700 Seattle, WA 98101

DATE:	12/18/2009
ALS JOB#:	0912027
DATE RECEIVED:	12/4/2009
WDOE ACCREDITATION #:	C1336

CLIENT CONTACT: Jim Roth CLIENT PROJECT ID Port of Anacortes - Cap Sante Marine

QUALITY CONTROL RESULTS

BLANK SPIKE/BLANK SPIKE DUPLICATE RESULTS

DUPLICATE RECOVERY	RPD	
88%	3	
102%	4	
100%	4	
99%	4	
100%	4	
91%	5	
71%	1	
70%	4	
81%	1	
80%	12	
NA	NA	
	100% 91% 71% 70% 81% 80% NA	

APPROVED BY:

Part Bagun

Page 5

ALS Labora 8620 Holl Everett, W Phone (42)	t ory Group y Drive, Suite 100 /A 98208 25) 356-2600 06) 292-9059 Seattl	e		Lab	Cora	Cha ato	ain ory	O Ar	f C naly	us ysi	to is l	dy/ Re	/ qu	es	t					 	ALS Job	# (L (2_ (aboratory U	se Only	·)
(ALS) (42 htt	25) 356-2626 Fax p://www.alsenviro.c	om			-												Date	12	-3	9 9 Pa	age		Of 6	i 	
PROJECT ID: PONET OF A REPORT TO COMPANY: JIM A PROJECT MANAGER: JIM A ADDRESS: GEOFA PHONE: 206-23 PO. NUMBER: 5147-0 INVOICE TO COMPANY: ATTENTION: ADDRESS:	AWACORTIS - ROT IT - C DOTH DOTH DOTH DOTH DOTH DATE	САР SAN SEGENC - SEAT 206-72 DROTHE	TE MAA SWEER TLE 8 - 273 26 Saenci	LAB#	WTPH-HCID	WTPH-DX wITH SILICA GEL CLEAN UP TO	MTPH-GX	TEX by EPA-8021ら	11BE by EPA-8021 🗆 EPA-8260 🗆	alogenated Volatiles by EPA 8260	olatile Organic Compounds by EPA 8260	DB / EDC by EPA 8260 SIM (water)	DB / EDC by EPA 8260 (soil)	emivolatile Organic Compounds by EPA 8270	olycyclic Aromatic Hydrocarbons (PAH) by EPA-8270 SIM	CB 🗌 Pesticides 🗌 by EPA 8081/8082	letals-MTCA-5 🗆 RCRA-8 🗇 Pri Pol 🗆 TAL 🗔	etals Other (Specify) 70744 LEAD Sy	CLP-Metals 🗆 VOA 🗌 Semi-Vol 🗌 Pest 🗌 Herbs	OTHE	R (Sp	ecify)		NUMBER OF CONTAINERS	RECEIVED IN GOOD CONDITION?
1. MW-2.4	123	1656	w W		Z	×	Ž	Ž	2	<u> </u>	>	Ξ	Ξ	S	ج ا	a.	M	¥	<u> </u>					5	
3 4 5																									
6 7																				· · · · · · · · · · · · · · · · · · ·					
8																	a								

SIGNATURES (Name, Company, Date, Time);	TURNAROUND	D REQUESTED in Business Days*					
- Balinguiched Bur Bretand and June 12-4-07	Organic, Metals & Inorganic Analysis	OTHER:					
Received By Shawy Cholese ALS 124/09 9:45	5 3 2 1 SAME DAY	Specify:					
	Fuels & Hydrocarbon Analysis						
2. Relinquished By:							
Received By:	Stalidard						

* Turnaround request less than standard may incur Rush Charges

Have we delivered World Class Client Service? Please let us know by visiting **www.geoengineers.com/feedback**.

