

GROUNDWATER MONITORING REPORT - WET SEASON 2024

RCRA CORRECTIVE ACTION PROGRAM BOEING RENTON FACILITY

Prepared for:

GROUNDWATER MONITORING REPORT - WET SEASON 2024

RCRA CORRECTIVE ACTION PROGRAM BOEING RENTON FACILITY

PROJECT # PS24206850

Prepared for:

The Boeing Company Seattle, Washington

Prepared by:

WSP USA Environment & Infrastructure Inc. 18300 Redmond Way, Suite 200 Redmond, Washington 98052

May 29, 2024

This report was prepared by the staff of WSP USA Environment & Infrastructure Inc. under the supervision of the Hydrogeologist whose seal and signature appear hereon.

The findings, recommendations, specifications, or professional opinions are presented within the limits described by the client, in accordance with generally accepted professional engineering and geologic practice. No warranty is expressed or implied.

WSP USA Environment & Infrastructure Inc.

Chelsen I Joster

Prepared by:

Reviewed/Approved by:

Hydrogeologist 21008038

Kate E. Richards

May 29, 2024

Chelsea Foster, LG

Christy L. Duitman, LG, LHg Vice President

of Washing,

Washington Geologist/Hydrogeologist #2423

May 29, 2024

Copyright and Non-Disclosure Notice

The contents and layout of this report are subject to copyright owned by © WSP USA Environment & Infrastructure Inc. (WSP), save to the extent that copyright has been legally assigned by us to another party or is used by WSP under license. To the extent that we own the copyright in this report, it may not be copied or used without our prior written agreement for any purpose other than the purpose indicated in this report. The methodology (if any) contained in this report is provided to you in confidence and must not be disclosed or copied to third parties without the prior written agreement of WSP. Disclosure of that information may constitute an actionable breach of confidence or may otherwise prejudice our commercial interests. Any third party who obtains access to this report by any means will, in any event, be subject to the third-party disclaimer set out below.

Third-Party Disclaimer

Any disclosure of this report to a third party is subject to this disclaimer. The report was prepared by WSP at the instruction of, and for use by, our client named on the front of the report. It does not in any way constitute advice to any third party who is able to access it by any means. WSP fully excludes, insofar as lawfully permitted, all liability whatsoever for any loss or damage howsoever arising from reliance on the contents of this report. We do not however exclude our liability (if any) for personal injury or death resulting from our negligence, for fraud or any other matter in relation to which we cannot legally exclude liability.

TABLE OF CONTENTS

1	Introduction1						
	1.1	Work	completed in the Wet Season of 2024	2			
	1.2	Deviat	tions from Required Tasks	3			
	1.3	Deviat	tions from CAP	3			
	1.4	Sched	ule of Monitoring	3			
	1.5	Work	Projected for the Next Reporting Period	3			
2	Grour		ampling Methodology				
3	Corre	Corrective Action Activities Completed During the Reporting Period					
	3.1	SWMU-168					
		3.1.1	Cleanup Action Activities	5			
		3.1.2	CMP Deviations	5			
		3.1.3	Water Levels				
		3.1.4	Groundwater Monitoring Results	5			
	3.2	SWMU	J-172 and SWMU-174				
		3.2.1	Cleanup Action Activities	6			
		3.2.2	CMP Deviations				
		3.2.3	Water Levels	6			
		3.2.4	Groundwater Monitoring Results	6			
	3.3	Buildi	ng 4-78/79 SWMU/AOC group				
		3.3.1	Cleanup Action Activities	8			
		3.3.2	CMP Deviations	8			
		3.3.3	Water Levels	8			
		3.3.4	Groundwater Monitoring Results	8			
	3.4	Forme	er Fuel Farm AOC group	9			
		3.4.1	Cleanup Action Activities	9			
		3.4.2	CMP Deviations	9			
		3.4.3	Water Levels	10			
		3.4.4	Groundwater Monitoring Results	10			
	3. 5	AOC-0	01/002	10			
		3.5.1	Cleanup Action Activities	10			
		3.5.2	CMP Deviations	10			
		3.5.3	Water Levels				
		3.5.4	Groundwater Monitoring Results	11			
	3.6	AOC-0	03				
		3.6.1	Cleanup Action Activities	12			
		3.6.2	CMP Deviations	12			
		3.6.3	Water Levels				
		3.6.4	Groundwater Monitoring Results	 12			
	3. 7	AOC-0	04	13			
		3.7.1	Cleanup Action Activities	13			
		3.7.2	CMP Deviations				
		3.7.3	Water Levels				
		3.7.4	Groundwater Monitoring Results				
	3.8	AOC-0	60				
		3.8.1	Cleanup Action Activities				
		3.8.2	CMP Deviations				
		3.8.3	Water Levels				
		3.8.4	Groundwater Monitoring Results				
	3.9		90				
		3.9.1	Cleanup Action Activities				
		3.9.2	CMP Deviations				
		3.9.3	Water Levels	15			

		3.9.4	Groundwater Monitoring Results	
	3.10	Apron .	A Area	16
		3.10.1	Cleanup Action Activities	
		3.10.2	CMP Deviations	
		3.10.3	Water Levels	
		3.10.4	Groundwater Monitoring Results	
	3.11		R Investigation	
4				

LIST OF FIGURES

Figure 1	Renton SWMU and AOC Locations
Figure 2	SWMU-168 Monitoring Well Locations and Groundwater Elevations, February 6, 2024
Figure 3	SWMU-168 Trend Plot for CPOC Area Well GW230I
Figure 4	SWMU-172 and SWMU-174 Monitoring Well Locations and Groundwater Elevations,
	February 2 & 5, 2024
Figure 5	SWMU-172 and SWMU-174 Trend Plots for Source Area Wells GW152S and GW153S
Figure 6	SWMU-172 and SWMU-174 Trend Plots for Downgradient Plume Area Wells GW172S and GW173S
Figure 7	SWMU-172 and SWMU-174 Trend Plots for Downgradient Plume Area Well GW226S
Figure 8	SWMU-172 and SWMU-174 Trend Plots for Arsenic in Select Source Area and Downgradient Plume Area Wells
Figure 9	SWMU-172 and SWMU-174 Trend Plots for cis-1,2-Dichloroethene, Trichloroethene, and Vinyl Chloride in CPOC Area Wells
Figure 10	SWMU-172 and SWMU-174 Trend Plots for Arsenic, Copper, and Lead in CPOC Area Wells
Figure 11	Building 4-78/79 SWMU/AOC Group Monitoring Well Locations and Groundwater Elevations, January 30, February 5 & 6, 2024
Figure 12	Building 4-78/79 SWMU/AOC Group Trend Plots for cis-1,2-Dichloroethene and Benzene in Injection Wells
Figure 13	Building 4-78/79 SWMU/AOC Group Trend Plots for Trichloroethene and Vinyl Chloride in Injection Wells
Figure 14	Building 4-78/79 SWMU/AOC Group Trend Plots for Source Area Wells GW031S and GW033S
Figure 15	Building 4-78/79 SWMU/AOC Group Trend Plots for Source Area Wells GW034S and GW244S
Figure 16	Building 4-78/79 SWMU/AOC Group Trend Plots for Benzene and cis-1,2-Dichloroethene in CPOC Area Wells
Figure 17	Building 4-78/79 SWMU/AOC Group Trend Plots for Trichloroethene and Vinyl Chloride in CPOC Area Wells
Figure 18	Building 4-78/79 SWMU/AOC Group Trend Plots for TPH as Gasoline in CPOC Area Wells
Figure 19	Former Fuel Farm AOC Group Monitoring Well Locations and Groundwater Elevations, February 6 & 8 2024
Figure 20	Former Fuel Farm AOC Group Trend Plots for CPOC Area Wells GW211S, GW221S, and GW224S
Figure 21	AOC-001 and AOC-002 Monitoring Well Locations and Groundwater Elevations, January 31, February 1 & 2, 2024
Figure 22	AOC-001 and -002 Trend Plot for Source Area Well GW193S
Figure 23	AOC-001 and -002 Trend Plots for cis-1,2-Dichloroethene, Trichloroethene, and Vinyl Chloride in Downgradient Area Wells
Figure 24	AOC-001 and -002 Trend Plots for cis-1,2-Dichloroethene, Trichloroethene, and Vinyl Chloride in CPOC Area Wells
Figure 25	AOC-003 Monitoring Well Locations and Groundwater Elevations, February 1 & 2, 2024
Figure 26	AOC-003 Trend Plots for Source Area Well GW249S and Downgradient Plume Area Well GW188S
Figure 27	AOC-003 Trend Plots for CPOC Area Wells GW247S and GW248I
Figure 28	AOC-004 Monitoring Well Locations and Groundwater Elevations, February 6, 2024
Figure 29	AOC-004 Trend Plot for Source Area Well GW250S
Figure 30	AOC-060 Monitoring Well Locations and Groundwater Elevations, February 7, 2024
Figure 31	AOC-060 Trend Plots for Source Area Well GW009S and Downgradient Plume Area Well GW012S

Figure 32	AOC-060 Trend Plots for Downgradient Plume Area Wells GW014S and GW147S
Figure 33	AOC-060 Trend Plots for CPOC Area Wells GW150S and GW253I
Figure 34	AOC-090 Monitoring Well Locations and Groundwater Elevations, February 8, 2024
Figure 35	AOC-090 Trend Plots for Source Area Well GW189S
Figure 36	Apron A Area Monitoring Well Locations and Depth to Groundwater, February 7, 2024
Figure 37	Apron A Trend Plot for Well GW264S

LIST OF TABLES

Table 1	SWMU-168 Groundwater Elevation Data, February 6, 2024
Table 2	SWMU-168 Primary Geochemical Indicators, February 6, 2024
Table 3	SWMU-168 Concentrations of Constituents of Concern, February 6, 2024
Table 4	SWMU-172 and SWMU-174 Group Groundwater Elevation Data, February 2 & 5, 2024
Table 5	SWMU-172 and SWMU-174 Group Primary Geochemical Indicators, February 2 & 5, 2024
Table 6	SWMU-172 and SWMU-174 Group Concentrations of Constituents of Concern,
	February 2 & 5, 2024
Table 7	Building 4-78/79 SWMU/AOC Group Groundwater Elevation Data, January 30,
	February 5 & 6, 2024
Table 8	Building 4-78/79 SWMU/AOC Group Primary Geochemical Indicators, January 30,
	February 5 & 6, 2024
Table 9	Building 4-78/79 SWMU/AOC Group Concentrations of Constituents of Concern,
	February 5 & 6, 2024
Table 10	Former Fuel Farm Groundwater Elevation Data, February 6 & 8, 2024
Table 11	Former Fuel Farm Primary Geochemical Indicators, February 6 & 8, 2024
Table 12	Former Fuel Farm Concentrations of Constituents of Concern, February 6 & 8, 2024
Table 13	AOC-001, - 002, and -003 Groundwater Elevation Data, January 31, February 1 & 2, 2024
Table 14	AOC-001, - 002, and -003 Primary Geochemical Indicators, January 31, February 1 & 2, 2024
Table 15	AOC-001, - 002, and -003 Concentrations of Constituents of Concern, January 31 &
	February 2, 2024
Table 16	AOC-003 Groundwater Elevation Data, February 1 & 2, 2024
Table 17	AOC-003 Primary Geochemical Indicators, February 1 & 2, 2024
Table 18	AOC-003 Concentrations of Constituents of Concern, February 1 & 2, 2024
Table 19	AOC-004 Groundwater Elevation Data, February 6, 2024
Table 20	AOC-004 Primary Geochemical Indicators, February 6, 2024
Table 21	AOC-004 Concentrations of Constituents of Concern, February 6, 2024
Table 22	AOC-060 Groundwater Elevation Data, February 7, 2024
Table 23	AOC-060 Primary Geochemical Indicators, February 7, 2024
Table 24	AOC-060 Concentrations of Constituents of Concern, February 7, 2024
Table 25	AOC-090 Groundwater Elevation Data, February 8, 2024
Table 26	AOC-090 Primary Geochemical Indicators, February 8, 2024
Table 27	AOC-090 Concentrations of Constituents of Concern, February 8, 2024
Table 28	Apron A Groundwater Elevation Data, February 7, 2024
Table 29	Apron A Primary Geochemical Indicators, February 7, 2024
Table 30	Apron A Concentrations of Constituents of Concern, February 7, 2024

LIST OF APPENDICES

Appendix A	Summary of Groundwater Sampling Methodology
Appendix B	Field Forms
Appendix C	Data Validation Memos
Appendix D	Historical Groundwater Data Tables
Appendix E	Summary of Remedial Actions at the Boeing Renton Facility May 2023 – October 2023

LIST OF ABBREVIATIONS AND ACRONYMS

μg/L micrograms per liter

μS/cm microsiemens per centimeter

1,1-DCE 1,1-dichloroethene

Amec Environment & Infrastructure, Inc

AOC area of concern

Boeing The Boeing Company
Calibre CALIBRE Systems, Inc.
CAP Cleanup Action Plan
cis-1,2-DCE cis-1,2-dichloroethene

CMP Compliance Monitoring Plan

COC constituent of concern

CPOC conditional point of compliance

CUL cleanup level
DO dissolved oxygen

Ecology Washington State Department of Ecology

EDR Engineering Design Report

ERD enhanced reductive dechlorination

Facility Boeing Renton facility
MA monitored attenuation
mg/L milligrams per liter

MNA monitored natural attenuation

mV millivolts

Order Agreed Order No. 8191

ORP oxidation/reduction potential

PCE tetrachloroethene

RCRA Resource Conservation and Recovery Act

SU Standard units

SVE soil vapor extraction

SWMU solid waste management unit

TCE trichloroethene
TOC total organic carbon

TPH total petroleum hydrocarbons

VC vinyl chloride

VOCs volatile organic compounds

Wood Environment & Infrastructure Solutions, Inc.

WSP USA Environment & Infrastructure Inc.

1 INTRODUCTION

This report provides progress reporting in conformance with Section VII.B.1 of Agreed Order Number 8191 (Order) and summarizes cleanup actions and monitoring conducted during the dry season of 2023 at The Boeing Company (Boeing) Renton facility (Facility) (Figure 1). This work is required under the Resource Conservation and Recovery Act (RCRA) Corrective Action Program being performed at the Facility. Corrective action activities are performed for those solid waste management units (SWMUs), areas of concern (AOCs), and other areas where cleanup actions are ongoing. Monitoring, cleanup activities, and reporting are being conducted as part of the final remedy implementation described in the Engineering Design Report (EDR) (Amec, 2014).

As approved by the Washington State Department of Ecology (Ecology) in a letter dated July 31, 2020, progress reporting is conducted on a semiannual basis in conjunction with monitoring, operations, and maintenance activities conducted pursuant to the Order and as outlined in the EDR.

The following documents summarize ongoing compliance activities conducted at the Facility:

- The original monitoring plan presented in Appendix D of the EDR (Amec, 2014) was superseded by the Compliance Monitoring Plan (CMP) (Amec Foster Wheeler, 2016a), which was subsequently revised in the first addendum to the CMP (CMP Addendum #1) (Amec Foster Wheeler, 2017).
- The groundwater monitoring program was further revised in the second addendum to the CMP (CMP Addendum #2) (Wood, 2019a), which removed selected areas or wells from the sampling program. Ecology approved these changes (Maeng, 2019).
- Boeing submitted the third addendum to the CMP (CMP Addendum #3) (CALIBRE, 2020) to Ecology on June 30, 2020. This addendum recommended further modifications to the groundwater monitoring program at the Facility. Ecology approved CMP Addendum #3 in July 2020.

Groundwater monitoring and cleanup actions are being conducted at the following areas (the ongoing remedies for each of these areas are noted in parentheses):

- SWMU-168: (monitored natural attenuation [MNA])
- SWMU-172 and SWMU-174: (bioremediation and monitored attenuation [MA]; the soil vapor extraction [SVE] system was shut down October 2022, decommissioning pending approval from Ecology)
- Building 4-78/79 SWMU/AOC Group: (bioremediation and MA; SVE has been discontinued per Ecology's approval of the system decommissioning during the first quarter of 2019)
- Former Fuel Farm AOC Group: (MNA)
- AOC-001 and AOC-002: (bioremediation and MA)
- AOC-003: (MA)
- AOC-004: (MA)
- AOC-060: (bioremediation and MA)
- AOC-090: (bioremediation and MA)
- Apron A: (bioremediation and MA)

The background and investigation history for each affected unit or group of units is described in the Cleanup Action Plan (CAP) (Amec, 2012) or EDR (Amec, 2014).

Although Apron A was not included in the CAP or EDR, this report includes monitoring results for Apron A. Semiannual monitoring of Apron A started in the fourth quarter of 2016 (Amec Foster Wheeler, 2016b).

As described in the CAP, the goals for cleanup of groundwater at the Facility include protection of groundwater for drinking water beneficial use at all areas of the site and demonstration of protection of surface water beneficial uses at the conditional points of compliance (CPOCs) for each SWMU and AOC. Cleanup goals and

comparison with specific criteria are discussed in this report for each SWMU and AOC. Concentrations for protection of groundwater for beneficial use for each constituent of concern (COC) are based on site-specific cleanup levels (CULs) specified in the CAP. In June 2023, Ecology approved the implementation of an updated CUL of 8.0 micrograms per liter (μ g/L) for arsenic (Cramer, 2023), which is the Puget Sound Basin background concentration according to Ecology's Natural Background Groundwater Arsenic Concentrations in Washington State guidance (2022). Previously, the CUL for arsenic was 1.0 μ g/L. This CUL currently applies to SWMU-172/174. Otherwise, the measured COC concentrations in groundwater presented in this report are compared to the CULs specified in the CAP.

This semiannual report:

- Describes work completed during the reporting period.
- Describes any deviations from corrective action tasks required under the Order and/or CAP.
- Describes revisions to the corrective action schedule.
- Describes work projected to occur during the next semiannual sampling event, including any planned deviation from the CAP.
- Discusses remediation operation and maintenance activities conducted at the Facility during the reporting period.
- Documents monitoring activities conducted during the reporting period.
- Describes and discusses trends in monitoring data.
- Assesses remediation at each area.
- Assesses attainment of CULs at the CPOCs.

This report presents information based on monitoring activities conducted during the wet season 2024 for the period from November 1, 2023, through April 30, 2024. In accordance with the requirements of the Order, corrective action activities were conducted at the Facility as described in this report.

1.1 WORK COMPLETED IN THE WET SEASON OF 2024

The following work was completed during the wet season of 2024 (the period from November 1, 2023, through April 30, 2024):

- Boeing submitted the Apron R Investigation Work Plan to Ecology on November 6, 2023.
- Boeing submitted the 2023 dry season Groundwater Monitoring Report to Ecology and City of Renton on November 27, 2023.
- WSP completed the 2024 sitewide wet season sampling between January 31 through February 8, 2024.
- Ecology approved the Apron R Investigation Work Plan (CALIBRE, 2024a) on March 6, 2024 (Myers, 2024). Further information regarding the ongoing Apron R investigation can be found in Section 3.11.
- Boeing submitted the Remedial Progress at the Boeing Renton Plant Periodic Review Technical Memorandum to Ecology on March 19, 2024 (CALIBRE, 2024b). Ecology has indicated that they will complete this document as part of the agency's periodic review process (Myers, personal comm, April 2024).
- In order to expand the footprint of the effective groundwater treatment areas, Calibre installed four bioremediation injection wells on site on March 21 and 22, 2024; two wells in AOC-060 (B060-02 and B060-01) and two wells in AOC-090 (B090-01 and B090-02). These wells were sampled on March 27, 2024, for volatile organic compounds (VOCs).
- Boeing completed bioremediation substrate injections at the Facility between April 15 through April 22, 2024.
 Work was conducted at the following SWMUs/AOCs: Building 4-78/79, AOC-60, AOC-90, SWMU-172/174, and

AOC-001/002. Subsequent evaluation sampling will take place and be discussed in the dry season monitoring report.

1.2 DEVIATIONS FROM REQUIRED TASKS

No deviations from tasks required in the Order occurred during this reporting period.

1.3 DEVIATIONS FROM CAP

No deviations from tasks required in the CAP occurred during this reporting period.

1.4 SCHEDULE OF MONITORING

Ecology approved the modifications to the monitoring plan in CMP Addendum #3 (CALIBRE, 2020) on July 31, 2020, changing to a sitewide semiannual sampling program with sampling events to occur during the wet and dry seasons (in February and August, respectively). The current monitoring plan is detailed in Appendix A, Table A-1. This revised sampling schedule began in August 2020 and will continue until another CMP addendum is approved.

1.5 WORK PROJECTED FOR THE NEXT REPORTING PERIOD

The following work is projected for the upcoming 2024 dry season (May 1, 2024, to October 31, 2024):

- The Apron R Investigation Report will be submitted to Ecology.
- Based on evaluation of the semiannual monitoring data in this report, the following areas are planned for continued ERD treatment of VOCs in groundwater: SWMU-172/174, Building 4-78/79 SWMU/AOC Group, AOC-090, AOC-060 and AOC-001/002. Pursuant to the CAP, AOC-003 is planned to transition from the ERD program to MA.
- Reporting will be completed in accordance with the Order, CAP, EDR, and changes approved by Ecology, including those modifications proposed in CMP Addendum #3 (CALIBRE, 2020).

2 GROUNDWATER SAMPLING METHODOLOGY

Groundwater was sampled and analyzed as described in Appendix A. These procedures are in accordance with the methods specified in the CMP (Amec Foster Wheeler, 2016a) and CMP Addendum #3 (CALIBRE, 2020). Table A-1 summarizes the current groundwater monitoring program and COCs specified in the CAP and revised in CMP Addendum #1 (Amec Foster Wheeler, 2017), CMP Addendum #2 (Wood, 2019a), and CMP Addendum #3 (CALIBRE, 2020) for all Facility corrective action areas. Table A-2 summarizes the current groundwater monitoring program for the corrective action areas that include MNA or MA as part of the cleanup remedy specified in the CAP. Tables A-1 and A-2 also specify monitoring requirements for Apron A, which was not included in the CAP. Any changes or exceptions to the sampling or analytical methods cited in Appendix A during the event is described in the applicable subsections in Section 3. The field data sheets, which document the groundwater sample collection and field parameter monitoring for each well sampled during this event, are included in Appendix B.

The analytical methods, field duplicate, lab duplicate, and matrix spike/matrix spike duplicate frequencies are specified in the Quality Assurance Project Plan (Amec Foster Wheeler, 2016c). The full analytical reports provided by the laboratory are provided separately on a secure online storage application, OneDrive. The data validation memoranda are included in Appendix C.

3 CORRECTIVE ACTION ACTIVITIES COMPLETED DURING THE REPORTING PERIOD

This section describes the corrective action activities conducted at the Facility during the wet season of 2024. Compliance monitoring was conducted in accordance with the CMP (Amec Foster Wheeler, 2016a) and CMP Addendum #3 (CALIBRE, 2020).

3.1 SWMU-168

This section describes corrective action activities conducted at this SWMU. Figure 2 shows the locations of the groundwater monitoring wells at SWMU-168 for which sampling was required under CMP Addendum #3 (CALIBRE, 2020) and the groundwater elevation at the remaining well measured during this monitoring event. The cleanup remedy for SWMU-168 is MNA; therefore, cleanup activities consist of monitoring only.

3.1.1 CLEANUP ACTION ACTIVITIES

No installation/construction activities were conducted for this cleanup action area during this reporting period.

3.1.2 CMP DEVIATIONS

No deviations from the CMP occurred for this area during this reporting period. The well monitored in this SWMU and the COC remained unchanged.

3.1.3 WATER LEVELS

The groundwater elevation measured during this groundwater monitoring event at SWMU-168 is summarized in Table 1 and shown on Figure 2. Groundwater elevation contours are not shown because only one well, GW230I, is currently monitored in this SWMU. The general direction of groundwater flow depicted on Figure 2 is based on historical information.

3.1.4 GROUNDWATER MONITORING RESULTS

Results for primary geochemical indicators are presented in Table 2. The result for the single SWMU-168 COC, vinyl chloride (VC), is presented in Table 3 and COC results for sampling events in recent years are presented in Appendix D.

3.1.4.1 Natural Attenuation/Geochemical Indicators

The geochemical indicator results from CPOC well GW230I indicate that conditions are conducive to natural attenuation of VC in this SWMU. The pH value measured was slightly acidic at 6.43 standard units (SU). The CPOC well GW230I showed reducing conditions, with low dissolved oxygen (DO) and a negative oxidation/reduction potential (ORP) reading. Reducing conditions are present in well GW230I, indicating conditions favorable for continued dechlorination of VOCs.

3.1.4.2 COC Results for Source Area

Groundwater samples were not collected from the source area well, GW228S, for SWMU-168 per CMP Addendum #3 (CALIBRE, 2020).

3.1.4.3 COC Results for CPOC Area

Table 3 lists the analytical result for the SWMU-168 area. The concentration of VC in the groundwater from CPOC area well GW230I was below the CUL of 0.11 μ g/L, at 0.0870 μ g/L. Historical trends for VC in GW230I are shown in Appendix D and depicted on Figure 3. VC concentrations show an apparent historical seasonal pattern, with higher concentrations in the dry season. The last two monitoring events have departed from this trend, with decreasing VC concentrations since the dry season of 2022.

3.2 SWMU-172 AND SWMU-174

This section describes corrective action activities conducted at SWMU-172 and SWMU-174. The cleanup remedy for SWMU-172 and SWMU-174 is a combination of bioremediation and MA. SVE was used from 2015 through 2022. The SVE system has been shut down and is pending Ecology approval for decommissioning. Figure 4 shows the layout of the groundwater monitoring wells for which sampling is required under CMP Addendum #3 (CALIBRE, 2020) and the remediation system for these SWMUs.

3.2.1 CLEANUP ACTION ACTIVITIES

3.2.1.1 Installation/Construction Activities

No installation or construction activities were conducted in this SWMU Group during this reporting period.

3.2.1.2 SVE and Bioremediation Operations

The SVE system was in operation between April 17, 2015, and October 24, 2022. SVE was discontinued on October 24, 2022, as approved by Ecology (Cramer, 2022). Permanent discontinuation and decommissioning are subject to evaluation of the results of the sub-slab vapor sampling, which took place in May 2023. The most recent bioremediation injection was completed in April 2024, including ERD treatments. All of the SVE system equipment and infrastructure has been retained pending future discussions with Ecology regarding permanent discontinuation and removal.

3.2.2 CMP DEVIATIONS

No deviations from the CMP occurred for these SWMUs during this reporting period. The wells monitored in these SWMUs and the COCs remained unchanged.

3.2.3 WATER LEVELS

The groundwater elevations measured during this groundwater monitoring event at SWMU-172 and SWMU-174 are summarized in Table 4 and shown on Figure 4. The groundwater elevation data show a flow direction generally to the northeast, toward the Cedar River Waterway; however, the sheet pile wall to the east of this area prevents a direct groundwater connection to the waterway, as depicted by the groundwater contours on Figure 4.

3.2.4 GROUNDWATER MONITORING RESULTS

Groundwater at these SWMUs is monitored following the analysis protocol presented in Tables A-1 and A-2 in Appendix A. Results for primary geochemical indicators are presented in Table 5; results for the SWMU-172 and SWMU-174 area COCs are presented in Table 6.

3.2.4.1 Monitored Attenuation/Geochemical Indicators

The geochemical indicator results are presented in Table 5. Specific conductivity ranged between 106 and 407 microsiemens per centimeter (μ S/cm) across SWMU-172 and SWMU-174, which are consistent with previously observed values for the groundwater in these SWMUs. Across SWMU-172 and SWMU-174, pH was

slightly acidic, ranging between 6.12 and 6.71 SU. ORP was negative for all wells monitored, with the exceptions of source area well GW152S and CPOC area well GW236S. DO concentrations ranged from 0.01 to 6.53 mg/L, and total organic carbon (TOC) concentrations ranged from 0.74 to 12.70 milligrams per liter (mg/L) for all SWMU-172 and SWMU-174 monitoring wells.

3.2.4.2 COC Results for Source and Downgradient Plume Areas

Table 6 lists the analytical results for the SWMU-172 and SWMU-174 COCs. Historical trend plots for tetrachloroethene (PCE), trichloroethene (TCE), VC, and cis-1,2-dichloroethene (cis-1,2-DCE) in source area wells GW152S and GW153S are shown on Figure 5, in downgradient plume area wells GW172S and GW173S on Figure 6, and in downgradient plume area well GW226S on Figure 7. Groundwater flows generally from the vicinity of source area well GW152S to downgradient plume area well GW172S; groundwater from source area well GW153S is also expected to generally flow toward the downgradient plume area. PCE and TCE are chlorinated solvents that were used at the Facility, and cis-1,2-DCE and VC are breakdown products resulting from the biodegradation processes.

As shown in Figures 5 through 7, the concentrations of VOCs in groundwater from source area wells and downgradient plume area wells have generally remained stable or decreased over time.

Arsenic was detected slightly above the CUL (8.0 μ g/L) in the groundwater from downgradient plume area wells GW173S (9.51 μ g/L) and GW226S (9.01 μ g/L). As shown on Figure 8, the arsenic concentrations in groundwater from source and downgradient plume area wells have generally remained within historical range over the past two years, with the exception of source area well GW152S and its downgradient counterpart GW172S.

Source area groundwater CUL exceedances (Table 6) consisted of the following:

- GW152S: cis-1,2-DCE (4.59 μg/L), PCE (0.238 μg/L), TCE (0.104 μg/L), VC (0.264 μg/L), and lead (1.18 μg/L).
- GW153S: cis-1,2-DCE (0.0677 μg/L), PCE (0.198 μg/L), and TCE (0.049 μg/L).

Downgradient plume area groundwater site-specific CUL exceedances (Table 6) consisted of the following:

- GW172S: cis-1,2-DCE (0.877 μ g/L), TCE (0.266 μ g/L), and VC (0.907 μ g/L).
- GW173S: cis-1,2-DCE (0.145 μ g/L), PCE (0.0543 μ g/L), TCE (0.0307 μ g/L), VC (0.280) μ g/L, arsenic (9.51 μ g/L), and lead (1.41 μ g/L).
- GW226S: cis-1,2-DCE (0.0465 μ g/L), arsenic (9.01 μ g/L), and copper (6.69 μ g/L).

3.2.4.3 COC Results for CPOC Area

As shown in Table 6, cis-1,2-DCE was detected above the CUL (0.03 μ g/L) in the groundwater from CPOC area wells GW232S (0.167 μ g/L), GW234S (0.0495 μ g/L), and GW235I (0.229 μ g/L). VC was detected above the CUL (0.11 μ g/L) in the groundwater from GW232S (0.187 μ g/L).VC was also detected in GW235I, but below the CUL. TCE was detected above the CUL (0.02 μ g/L) in GW235I (0.0207 μ g/L), and PCE was detected above the CUL (0.02 μ g/L) in GW236S (0.0262 μ g/L). Trend charts for cis-1,2-DCE, TCE, and VC for all CPOC area wells are presented in Figure 9. Figure 9 shows that the COCs in the CPOC area have primarily decreased over the past two years of sampling, or maintained concentrations below respective CULs.

No metals were detected above their respective CULs during this reporting period. Figure 10 shows arsenic, copper, and lead concentration trends in groundwater from the CPOC area wells since the beginning of compliance monitoring. As shown in Figure 10, these COCs have remained within historical range or decreased since the last monitoring event.

3.3 BUILDING 4-78/79 SWMU/AOC GROUP

This section describes corrective action activities conducted at the Building 4-78/79 SWMU/AOC Group. The cleanup remedy for this SWMU/AOC Group is bioremediation and MA as well as excavation of soils contaminated with total petroleum hydrocarbons (TPH); discontinuation of SVE was approved by Ecology on November 1, 2018,

and the system was decommissioned during the first quarter of 2019. Figure 11 shows the location of the September 2021 TPH source area soil excavation; groundwater monitoring wells for which sampling is required under CMP Addendum #3 (CALIBRE, 2020); extraction wells; decommissioned wells; horizontal SVE wells; and bioremediation injection wells for this area.

3.3.1 CLEANUP ACTION ACTIVITIES

3.3.1.1 Installation/Construction Activities

No installation or construction activities were conducted in this SWMU/AOC Group during this reporting period.

3.3.1.2 SVE and Bioremediation Activities

SVE operations were discontinued in late 2018; the current remediation method is ERD of chlorinated solvents and anaerobic biodegradation of benzene by substrate injections. The most recent injection event was conducted in April 2024. Additional details regarding the injections can be found in Appendix E. Certain bioremediation injection wells are still sampled to monitor the status of COCs. Trend charts for cis-1,2-DCE and benzene in nitrate/sulfate injection wells are presented in Figure 12, and trend charts for TCE and VC in the injection wells are presented in Figure 13. Information regarding the injection that occurred during this reporting period can be found in Appendix E.

3.3.2 CMP DEVIATIONS

No deviations from the CMP occurred for this SWMU/AOC Group during this reporting period. The wells monitored in SWMU/AOC Group and the COCs remained unchanged.

3.3.3 WATER LEVELS

The groundwater elevations measured during this groundwater monitoring event at Building 4-78/79 SWMU/AOC Group are summarized in Table 7 and shown on Figure 11. A groundwater flow direction to the northwest is depicted on the figure based on current and historical groundwater elevation data.

3.3.4 GROUNDWATER MONITORING RESULTS

Groundwater in this area is monitored following the analysis protocol presented in Tables A-1 and A-2 in Appendix A. Results for primary geochemical indicators are presented in Table 8; results for Building 4-78/79 SWMU/AOC Group COCs are presented in Table 9.

3.3.4.1 Natural Attenuation/Geochemical Indicators

The geochemical indicator results are presented in Table 8. In general, source area and CPOC area wells had levels of DO ranging from 0.04 to 5.82 μ g/L and moderate specific conductivity. The pH measured in monitored wells was uniform and slightly acidic, ranging between 6.28 and 6.56 SU. ORP was negative in all wells monitored TOC concentrations in source area and CPOC area wells ranged from 4.62 to 12.98 mg/L. With the exception of DO, geochemical indicators were generally consistent in all wells monitored in this area.

3.3.4.2 COC Results for Source Area

Table 9 lists the analytical results for Building 4-78/79 SWMU/AOC Group COCs. Figures 14 and 15 show historical trends for COCs in source area wells.

VC was detected at all four source area monitoring wells with concentrations ranging between 0.230 μ g/L and 0.940 μ g/L which are above the CUL (0.2 μ g/L). Benzene was detected above the CUL (0.80 μ g/L) in GW033S (6.49 μ g/L) and its associated duplicate sample (6.51 μ g/L). Cis-1,2-DCE was detected at two source area locations below the CUL (0.70 μ g/L). TCE was not detected in any of the source area wells. TPH as gasoline was detected at one source area monitoring well, GW033S. Detected concentration of TPH at GW033S and its duplicate sample

were below the CUL of 800 μ g/L. The continued downward trend of TPH levels since 2021 is likely a result of the removal of TPH-contaminated soil that took place in September 2021.

Figure 14 presents historical results for VOCs in source area wells GW031S and GW031S. GW031S-R results were added to the existing trend chart for GW031S. COCs in GW031S appear to be stabilizing over the past four monitoring events. COCs detected in GW031S during this period have remained in historical ranges after a single-event decrease observed during the 2023 wet season.

Figure 15 presents historical results for VOCs in source area wells GW034S and GW244S. GW244S-R results were added to the existing trend chart for GW244S. TCE has remained undetected in GW034S for the last several years, and concentrations of all other COCs in GW034S have decreased or remained undetected since the last reporting period. COCs in GW244S have remained within historical ranges, with TCE and benzene remaining undetected.

Cis-1,2-DCE, benzene, and VC have returned to the generally stable levels observed before the significant increase in concentrations detected during the 2023 wet season monitoring event. Concentrations of COCs in GW244S appear have a decreasing trend since the start of compliance monitoring.

3.3.4.3 COC Results for CPOC Area

As shown in Table 9, VC was detected above the CUL (0.20 $\mu g/L$) in groundwater from GW237S (6.47 $\mu g/L$). All other detections of benzene and cis-1,2-DCE are below their respective CULs. TPH as gasoline was detected above the CUL (800 $\mu g/L$) in groundwater at GW237S (915 $\mu g/L$). TCE was not detected in any CPOC area wells sampled.

Trend charts for CPOC area wells are shown in Figures 16 through 18.

Figure 16 shows that benzene and cis-1,2-DCE have been sporadically detected above the CUL in CPOC area wells GW237S and GW143S, respectively. A seasonal trend appears to be forming for benzene in GW237S with higher concentrations detected during the wet season. Benzene was detected in GW237S (6.47 μ g/L) above the CUL (0.80 μ g/L) during this monitoring period. Cis-1,2-DCE was detected in GW143S below (0.290 μ g/L) the CUL (0.70 μ g/L).

Figure 17 shows that TCE has not been detected in the CPOC area for the past several events, with the exception of GW143S during the 2022 dry season sampling event. VC was detected above the CUL (0.20 μ g/L) in CPOC area well GW237S (0.290 μ g/L) during this event, which has shown the highest levels of VC of the three wells since the 2022 wet season monitoring events. Figure 18 shows that TPH as gasoline has been detected only in GW237S since monitoring began and has been generally decreasing over time, with a trend of higher concentrations detected during the wet season in the last five reporting periods.

3.4 FORMER FUEL FARM AOC GROUP

This section describes corrective action activities conducted at the Former Fuel Farm AOC Group. Figure 19 shows the layout of the groundwater monitoring wells for which sampling is required under CMP Addendum #3 (CALIBRE, 2020). The final remedy for the Former Fuel Farm is MNA.

3.4.1 CLEANUP ACTION ACTIVITIES

No installation/construction activities were conducted for this AOC Group during this reporting period.

3.4.2 CMP DEVIATIONS

No deviations from the CMP occurred for this cleanup action area during this reporting period. The wells monitored and the COCs remained the same for this AOC Group.

3.4.3 WATER LEVELS

The groundwater elevations measured during this groundwater monitoring event at the Former Fuel Farm AOC Group are summarized in Table 10 and shown on Figure 19. Groundwater elevation contours are not shown because only three wells are monitored in this group and data are too limited to produce accurate contours. Groundwater flow direction to the northeast is based on historical information from this AOC.

3.4.4 GROUNDWATER MONITORING RESULTS

Groundwater at Former Fuel Farm AOC Group is monitored following the analysis protocol presented in Tables A-1 and A-2 in Appendix A. Results for primary geochemical indicators are presented in Table 11; results for the Former Fuel Farm AOC Group COCs are presented in Table 12.

3.4.4.1 MNA Indicators

The geochemical indicator results are presented in Table 11. Specific conductivity was low for groundwater. Slightly acidic pH was observed in CPOC area wells ranging from 6.12 to 6.35 SU, with concentrations of DO ranging from 0.35 to 6.12 mg/L. ORP measurements ranged from -22.6 to 34.3 millivolts (mV) across the AOC. The geochemical indicators indicate natural attenuation of the COCs for the Former Fuel Farm AOC Group may be occurring.

3.4.4.2 COC Results for Source Area

The single source area well for this AOC Group was removed from the monitoring plan with Ecology's acceptance of CMP Addendum #3 (CALIBRE, 2020).

3.4.4.3 COC Results for CPOC Area

Table 12 presents the analytical results for the Former Fuel Farm AOC Group COCs. Figure 20 shows trend data for CPOC area wells GW211S, GW221S, and GW224S. Samples were analyzed for TPH as diesel, as motor oil, and as Jet A. In GW224S, TPH as diesel and as Jet A were detected above their CUL of 0.5 mg/L at 0.764 mg/L and 1.27 mg/L, respectively. TPH as motor oil was not detected in any CPOC area wells; no CULs are established for this analyte. TPH as diesel and as Jet A at CPOC area well GW221S were detected above their respective CUL (0.5 mg/L) at 3.57 mg/L and 2.65 mg/L, respectively. No COCs were detected at CPOC area well GW211S. TPH as diesel and Jet A in GW211S have been below the CULs and/or non-detect since the wet season of 2017 (Figure 20). Figure 20 shows COC concentrations in GW221S and GW224S remain within historical ranges since 2020.

3.5 AOC-001/002

This section describes corrective action activities conducted at AOC-001/002. The monitoring and future/continued cleanup actions for this AOC will be determined in the next CMP addendum prepared for Ecology approval. Figure 21 shows the layout of the groundwater monitoring wells.

3.5.1 CLEANUP ACTION ACTIVITIES

No installation/construction activities were conducted for this AOC during this reporting period.

3.5.2 CMP DEVIATIONS

No deviations from the CMP occurred for AOC-001/002 during this reporting period.

3.5.3 WATER LEVELS

The groundwater elevations measured during this groundwater monitoring event at AOC-001 and AOC-002 are summarized in Table 13. A groundwater flow direction to the northwest is depicted on the figure based on current and historical groundwater elevation data.

3.5.4 GROUNDWATER MONITORING RESULTS

Groundwater at this area is monitored following the analysis protocol presented in Tables A-1 and A-2 in Appendix A. Results for geochemical indicators are presented in Table 14; results for the AOC-001 and AOC-002 COCs are presented in Table 15.

3.5.4.1 Monitored Attenuation/Geochemical Indicators

The geochemical indicator results are presented in Table 14. Moderate to high specific conductivity and negative ORP (with the exception of reading of 122.1 mV in GW192S-R) were observed during this reporting period. pH readings varied from slightly acidic to basic, ranging from 6.12 to 8.93 SU. Measured concentrations of DO ranged from 0.01 to 6.46 mg/L. TOC was measured between 2.01 mg/L and 20.26 mg/L.

3.5.4.2 COC Results for Source Area, Cross-Gradient, and Downgradient Plume Area

Table 15 lists the analytical results for the AOC-001 and AOC-002 COCs. Samples from wells in this group were analyzed for benzene, 1,1-dichloroethene (1,1-DCE), cis-1,2-DCE, TCE, and VC. Analytes present in Table 15 are the COCs analyzed during the last sampling event that all wells in AOC-001 and AOC-002 were sampled before decommissioning for construction (Wood, 2019b).

Source area and cross-gradient well groundwater CUL exceedances (Table 15) consisted of the following:

- GW193S-R: cis-1,2-DCE (0.135 μ g/L), TCE (0.0291 μ g/L), and VC (0.130 μ g/L).
- GW213S-R: cis-1,2-DCE (0.0932 μg/L), and VC (0.123 μg/L).
- GW214S-R: cis-1,2-DCE (0.0347 μg/L).
- GW215S-R: cis-1,2-DCE (0.0.368 μg/L).

Figures 22 and 23 show the historical trends of cis-1,2-DCE, TCE, and VC concentrations in source area well GW193S and downgradient plume area wells compared to the concentrations detected during this monitoring period. All replacement well results were added to the existing trend charts for this AOC.

3.5.4.3 COC Results for CPOC Area

The concentrations of these analytes can be found in Table 15. Analytes listed in Table 15 are the COCs analyzed during the last sampling event that all wells in AOC-001 and AOC-002 were sampled before decommissioning for construction (Wood, 2019b).

Downgradient plume area and CPOC groundwater site-specific CUL exceedances (Table 15) consisted of the following:

- GW190S-R: cis-1,2-DCE (0.0924 µg/L) and VC (0.0506 µg/L).
- GW191D-R: cis-1,2-DCE (0.0254 μ g/L) and VC (0.0627 μ g/L).
- GW192S-R: cis-1,2-DCE (0.0254 μ g/L), TCE (0.0231 μ g/L), and VC (0.166 μ g/L).
- GW264S-R: cis-1,2-DCE $(0.167 \mu g/L)$ and VC $(0.303 \mu g/L)$.
- GW158S-R: cis-1,2-DCE (0.112 μ g/L) and VC (0.0823 μ g/L).
- GW195S-R: cis-1,2-DCE (0.0899 μ g/L) and VC (0.0998 μ g/L).

- GW196D-R: cis-1,2-DCE (0.0282 μg/L).
- GW197S-R: 1,1-DCE (0.150 μg/L), cis-1,2-DCE (41.6 μg/L), TCE (0.580 μg/L), and VC (27.0 μg/L).
- GW245S-RS-R: cis-1,2-DCE (0.135 μ g/L) and TCE (0.0235 μ g/L).

VC and cis-1,2-DCE were detected at elevated concentrations compared to historic levels (27.0 μ g/L and 41.6 μ g/L, respectively) in GW197S-R. Plans for remedial actions are forthcoming and will be prepared for Ecology approval.

3.6 AOC-003

This section describes corrective action activities conducted at AOC-003. The cleanup remedy for this AOC is MA. Figure 25 shows the location of groundwater monitoring wells for which sampling is required under CMP Addendum #3 (CALIBRE, 2020) and bioremediation wells, as well as the groundwater elevations measured during this monitoring event.

3.6.1 CLEANUP ACTION ACTIVITIES

No installation/construction activities were conducted for this AOC during this reporting period.

3.6.2 CMP DEVIATIONS

No deviations from the CMP occurred in this AOC during this reporting period.

3.6.3 WATER LEVELS

The groundwater elevations measured during this groundwater monitoring event at AOC-003 are summarized in Table 16 and shown on Figure 25. Groundwater elevations measured during this event are consistent with historical groundwater flow directions to the northwest.

3.6.4 GROUNDWATER MONITORING RESULTS

Groundwater at this AOC is monitored following the analysis protocol presented in Tables A-1 and A-2 in Appendix A. Results for geochemical indicators are presented in Table 17; results for the AOC-003 COCs are presented in Table 18.

3.6.4.1 Monitored Attenuation/Geochemical Indicators

The geochemical indicator results are presented in Table 17. High specific conductivity, low DO (with the exception of a reading of 5.98~mg/L at GW188S), and negative ORP were observed during this reporting period. pH readings were slightly acidic for all wells in this area, ranging between 6.22~and~6.38~SU. TOC concentrations ranged from 11.37~to~12.16~mg/L.

3.6.4.2 COC Results for Source Area and Downgradient Plume Area

Table 18 lists the analytical results for the AOC-003 COCs. Samples from wells in this group were analyzed for cis-1,2-DCE, TCE, PCE, and VC. VC was detected below the CUL (0.24 μ g/L) in GW249S and GW188S. No detected concentrations of TCE or PCE were observed in the source area and downgradient plume area wells. Cis-1,2-DCE was detected in both source area and downgradient plume wells below the CUL (0.78 μ g/L). Figure 26 shows the historical trends for VC in source area well GW249S and downgradient plume area well GW188S.

3.6.4.3 COC Results for CPOC Area

VC was detected above the CUL (0.24 μ g/L) in CPOC area wells GW247S-R (0.467 μ g/L) and GW248I (0.383 μ g/L) (Table 18). No detected concentrations of TCE or PCE were found in the CPOC area wells. Cis-1,2-DCE was detected in CPOC area well GW248I below the CUL (0.78 μ g/L) and was not detected in GW247S-R.

Figure 27 shows the historical trends for VC in CPOC area wells GW247S and GW248I. GW247S-R results were added to the existing trend chart for GW247S. Results from the new well, beginning with the dry season 2023, appear to be within historical ranges of the initial GW247S. VC concentrations in GW247S-R appear to be increasing since 2022 and decreasing in GW248I over the same timeframe.

3.7 AOC-004

This section describes corrective action activities conducted at AOC-004. The cleanup remedy for this AOC is MA. Figure 28 shows the location of the groundwater monitoring well for which sampling is required under CMP Addendum #3 (CALIBRE, 2020), the bioremediation wells, and the groundwater elevation measured during this monitoring event.

3.7.1 CLEANUP ACTION ACTIVITIES

No installation/construction activities were conducted for this AOC during this reporting period.

3.7.2 CMP DEVIATIONS

No deviations from the CMP occurred for this AOC during this reporting period and COCs remained the same for this AOC.

3.7.3 WATER LEVELS

The groundwater elevation measured during this groundwater monitoring event at AOC-004 is summarized in Table 19 and shown on Figure 28. Groundwater contouring and flow direction cannot be determined from the single groundwater elevation measurement, but a general direction of groundwater flow based on historical information is shown on Figure 28.

3.7.4 GROUNDWATER MONITORING RESULTS

Groundwater at AOC-004 is monitored following the analysis protocol presented in Tables A-1 and A-2 in Appendix A. Results for geochemical indicators are presented in Table 20; the result for the AOC-004 COC (lead) is presented in Table 21.

3.7.4.1 Monitored Attenuation/Geochemical Indicators

The geochemical indicator results are presented in Table 20. The pH reading was near neutral at 6.95 SU. Moderate specific conductivity, negative ORP, and high DO readings were observed during this monitoring event.

3.7.4.2 COC Results for Source Area

Table 21 lists the analytical result for the AOC-004 COC. Lead was detected in the single source area monitoring well GW250S at 0.112 μ g/L, below the CUL of 1 μ g/L. Figure 29 shows the historical trend chart for lead in GW250S, which has been detected below the CUL since the wet season of 2023.

Project # PS24206850
The Boeing Company
https://wsponlinenam-my.sharepoint.com/personal/cherlyn_carter_wsp_com/documents/desktop/haas/boeing renton_lsa2024_progress report_clean.docx
Page 13
Page 13

3.8 AOC-060

This section describes corrective action activities conducted at AOC-060. The cleanup remedy for this AOC is bioremediation and MA. Figure 30 shows the location of groundwater monitoring wells for which sampling is required under CMP Addendum #3 (CALIBRE, 2020), the bioremediation wells, and the groundwater elevations measured during this monitoring event.

3.8.1 CLEANUP ACTION ACTIVITIES

3.8.1.1 INSTALLATION/CONSTRUCTION ACTIVITIES

Two bioremediation injection wells (B060-01 and B060-02) were installed on March 21 and 22, 2024. No other installation/construction activities were conducted for this AOC during this reporting period.

3.8.1.2 BIOREMEDIATION ACTIVITIES

The current remediation method is bioremediation injections and ERD treatment. Bioremediation injection wells B060-01 and B060-02 were installed on March 21, 2024, and sampled for VOCs on March 27, 2024. The samples were collected from newly installed injection wells as an evaluation parameter to understand initial conditions at the intended injection points. These samples are not part of a compliance monitoring and therefore are not included with the source area and CPOC monitoring results in this area. The most recent injection in this area occurred in April 2024. Substrate injections were conducted in B060-01, B060-02, and GW147S. Additional details regarding the injection can be found in Appendix E.

3.8.2 CMP DEVIATIONS

No deviations from the CMP occurred for this AOC during this reporting period. The wells monitored and COCs remained the same for this AOC.

3.8.3 WATER LEVELS

The groundwater elevations measured during this groundwater monitoring event at AOC-060 are summarized in Table 22 and shown on Figure 30. Groundwater flow direction is generally to the west-southwest toward the Cedar River Waterway.

3.8.4 GROUNDWATER MONITORING RESULTS

Groundwater at AOC-060 is monitored following the analysis protocol presented in Tables A-1 and A-2 in Appendix A. Results for geochemical indicators are presented in Table 23; results for the AOC-060 COCs are presented in Table 24.

3.8.4.1 Monitored Attenuation/Geochemical Indicators

The geochemical indicator results are presented in Table 23. Conductivity ranged from 175 to 1575 μ S/cm. DO concentrations ranged from 0.01 to 6.36 mg/L. The pH was slightly acidic in this AOC, between 6.13 and 6.59 SU. TOC results from all wells varied greatly, with a range from 4.03 to 338.2 mg/L.

3.8.4.2 COC Results for Source, Cross-Gradient, and Downgradient Plume Areas

Table 24 lists the analytical results for the AOC-060 COCs. Wells in this group were analyzed for cis-1,2-DCE, TCE, and VC. Groundwater from source area well GW009S, cross-gradient wells GW012S and GW0145S, and downgradient plume area well GW147S exceeded their respective CULs for all three COCs, with the exception of the detected concentration of VC below the CUL (0.26 μ g/L) in GW147S (0.0638 μ g/L).

Figure 31 shows historical trends for COCs in source area well GW009S, which have remained within historical ranges since monitoring began. Figures 31 and 32 show historical trends for COCs in downgradient plume area wells. COC results in GW014S have been generally consistent and without large fluctuation since monitoring began., GW012S and GW147S exhibit more fluctuation in COC concentrations but appear to remain within a site-specific amplitude of historical range. This fluctuation may be associated with seasonal groundwater flow variations. TCE in GW012S appears to have increasing fluctuation over the last five monitoring events, departing from the lows observed in 2018 and 2019, but concentrations remain within the historical range for TCE concentrations in this well.

3.8.4.3 COC Results for CPOC Area

As shown in Table 24, detected concentrations of cis-1,2-DCE exceeded the CUL (0.08 μ g/L) in groundwater from CPOC area well GW253I (0.0929 μ g/L). cis-1,2-DCE was also detected below the CUL in well GW150S (0.0509 μ g/L) and TCE and VC were detected in groundwater from CPOC area well GW253I but did not exceed their respective CULs (0.02 μ g/L and 0.26 μ g/L, respectively). VC was also detected below the CUL in GW150S (0.0608 μ g/L). Figure 33 shows historical trends for COCs in CPOC area wells GW150S and GW253I. Considerable fluctuation is still present for cis-1,2-DCE and VC, but TCE appears to be stabilized below the CUL in both CPOC area wells.

3.9 AOC-090

This section describes corrective action activities conducted at AOC-090. The cleanup remedy for this AOC is bioremediation and MA. Figure 34 shows the location of groundwater monitoring wells for which sampling is required under CMP Addendum #3 (CALIBRE, 2020), the bioremediation wells, and the groundwater elevations measured during this monitoring event.

3.9.1 CLEANUP ACTION ACTIVITIES

3.9.1.1 INSTALLATION/CONSTRUCTION ACTIVITIES

In order to expand the effective footprint of the treatment area, two bioremediation injection wells (B090-01 and B090-02) were installed on March 21 and 22, 2024. No other installation/construction activities were conducted for this AOC during this reporting period.

3.9.1.2 BIOREMEDIATION ACTIVITIES

The current remediation method is bioremediation injections and ERD treatment. Bioremediation injection wells B090-01 and B090-02 were installed on March 21, 2024, and sampled for VOCs on March 27, 2024. The samples were collected from newly installed injection wells as an evaluation parameter to understand initial conditions at the intended injection points. These samples are not a part of compliance monitoring and therefore are not included with the source area and CPOC monitoring results in this area. The most recent injection in this area occurred in April 2024. Substrate injections were conducted in B090-01 and B090-02 and did not include GW189S because the current vinyl chloride concentration was non-detect (< $0.02 \mu g/L$). The need for continued/further treatment in this source area will be evaluated in the future as this area transitions to monitored attenuation. Additional details regarding the injection can be found in Appendix E.

3.9.2 CMP DEVIATIONS

No deviations from the CMP occurred for this area during this reporting period. The wells monitored and COCs remained the same for this AOC.

3.9.3 WATER LEVELS

The groundwater elevations measured during this groundwater monitoring event at AOC-090 are summarized in Table 25 and shown on Figure 34. Groundwater flow direction is to the northwest toward the Cedar River

Waterway; however, the sheet pile wall to the west of this area prevents a direct groundwater connection to the waterway, as depicted by the contours.

3.9.4 GROUNDWATER MONITORING RESULTS

Groundwater at AOC-090 is monitored following the analysis protocol presented in Tables A-1 and A-2 in Appendix A. Results for geochemical indicators are presented in Table 26; results for the AOC-090 COCs are presented in Table 27.

3.9.4.1 Monitored Attenuation/Geochemical Indicators

The geochemical indicator results are presented in Table 26. Results showed moderate to high specific conductivity and high DO values across the area (with the exception of a DO concentration of 0.03 mg/L in GW208S). The pH was slightly acidic in this AOC, with all wells ranging between 6.20 and 6.74 SU. TOC was measured at 1.70 mg/L in source area well GW189S. The trend plot for TOC in GW189S (Figure 35) shows TOC has stayed consistent with a slight overall decrease since a substrate injection in 2017. Subsequent injections were completed in May 2023 and April 2024.

3.9.4.2 COC Results for Source and Downgradient Plume Areas

Table 27 lists the analytical results for the AOC-090 COCs. 1,1,2,2-Tetrachloroethane was detected below the CUL (0.17 μg /L) in source area well GW189S at 0.158 μg /L.VC was detected above the CUL (0.13 μg /L) in downgradient plume area well GW176S at 0.21 μg /L. Historical trends for GW189S show chlorinated VOCs have been trending downward since the start of monitoring (Figure 35).

3.9.4.3 COC Results for CPOC Area

VC was detected above the CUL in CPOC area wells GW178S (0.27 µg/L) and GW208S (0.298 µg/L).

3.10 APRON A AREA

This section describes corrective action activities conducted at the Apron A area. The cleanup remedy proposed for the Apron A area is bioremediation and MA. Figure 36 shows the locations of the groundwater monitoring wells in the Apron A area for which sampling is required under CMP Addendum #3 (CALIBRE, 2020).

3.10.1 CLEANUP ACTION ACTIVITIES

No construction or operations work was conducted in the Apron A area during this reporting period.

3.10.2 CMP DEVIATIONS

No deviations from the CMP occurred for this area during this reporting period. The wells monitored in this group and COCs remained the same.

3.10.3 WATER LEVELS

The groundwater elevation measurement from this groundwater monitoring event at Apron A is in Table 28 and shown on Figure 36. Groundwater elevation contours are not shown because only three wells are monitored in this group and data are too limited to produce accurate contours. Groundwater flow direction is estimated based on historical information and an expected flow east toward the Cedar River Waterway.

3.10.4 GROUNDWATER MONITORING RESULTS

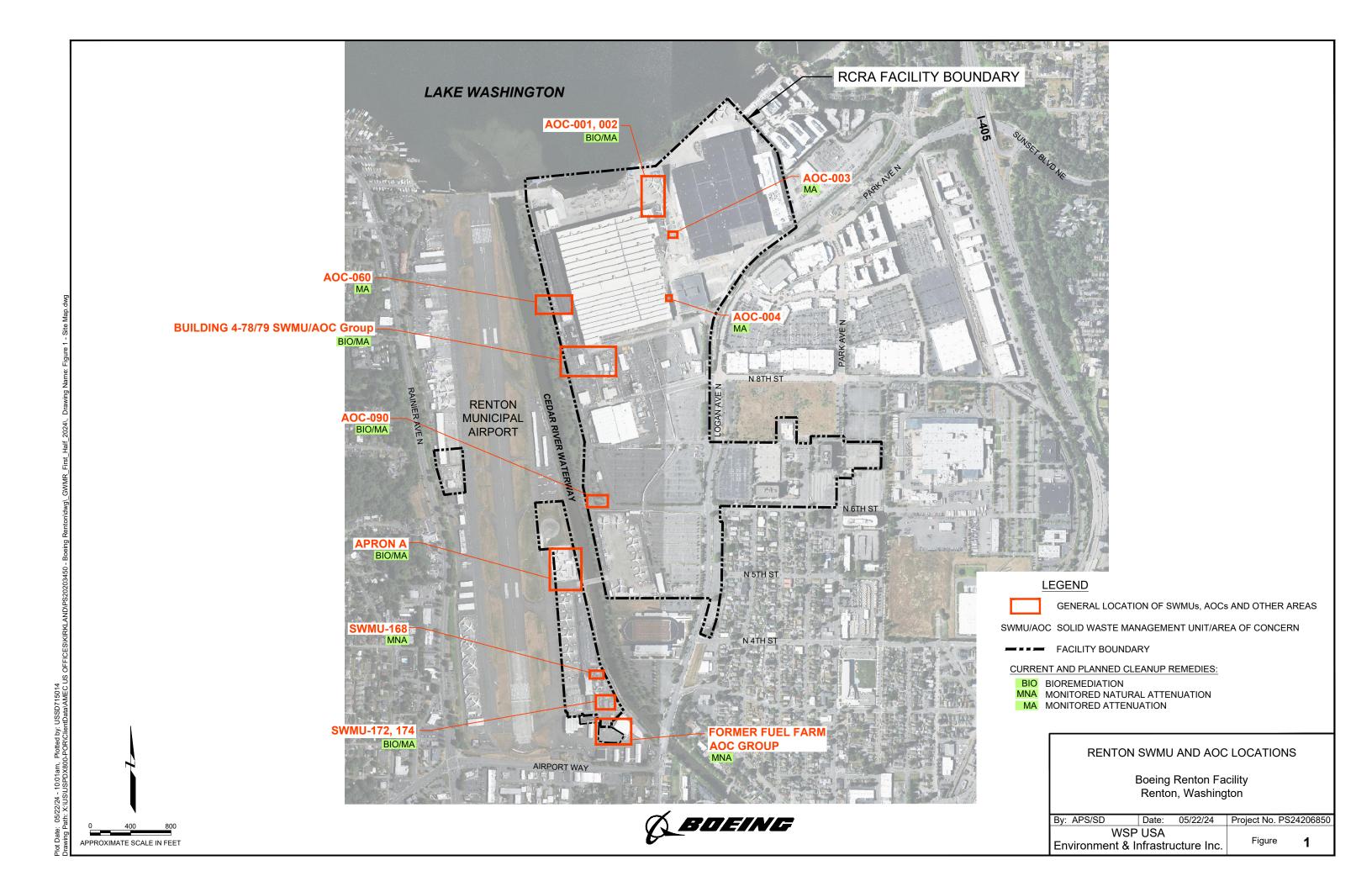
Groundwater at Apron A is monitored following the analysis protocol presented in Tables A-1 and A-2 in Appendix A. Results for primary geochemical indicators presented in Table 29; results for the Apron A area COCs are presented in Table 30.

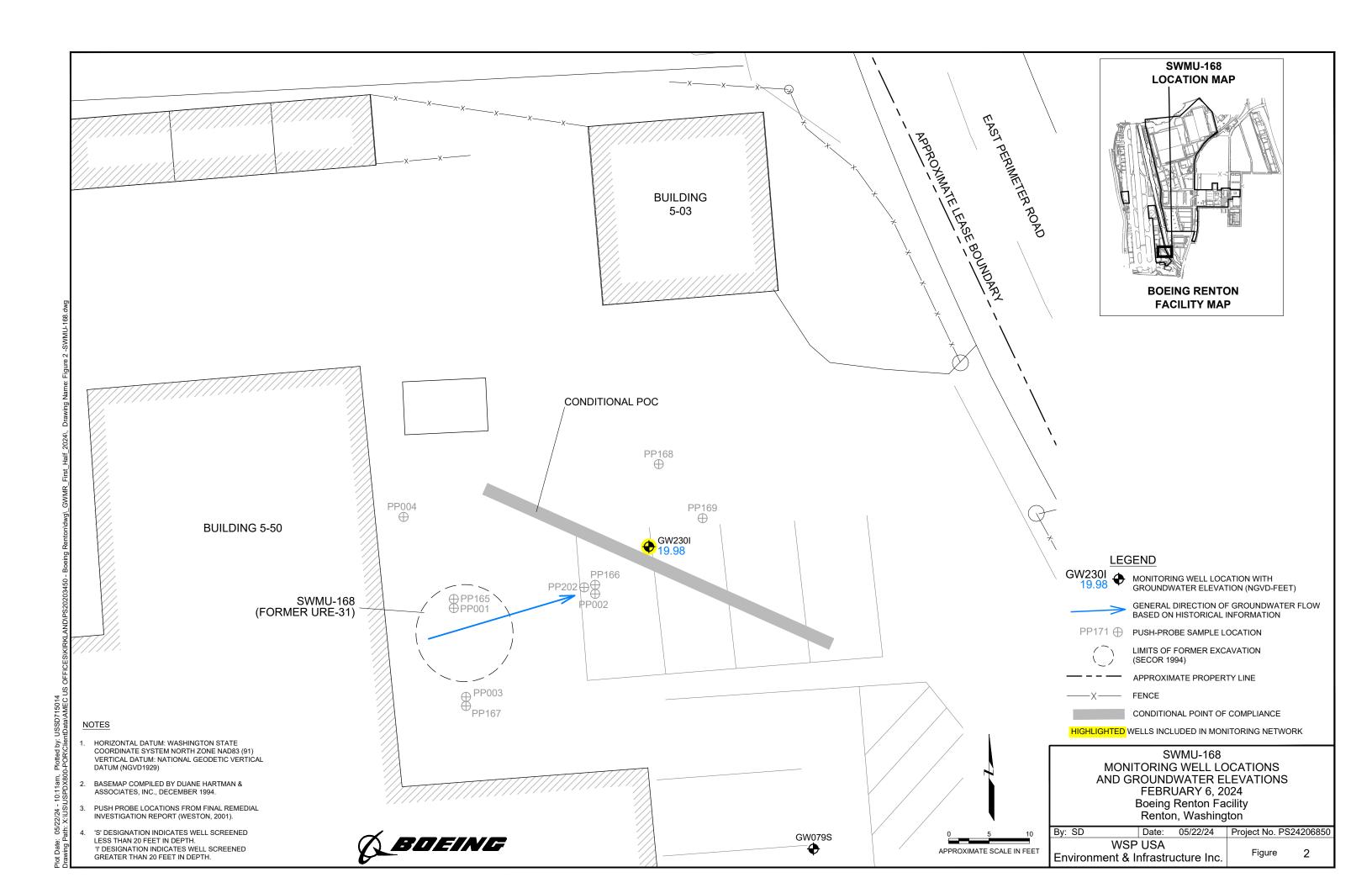
3.10.4.1 Monitored Attenuation/Geochemical Indicators

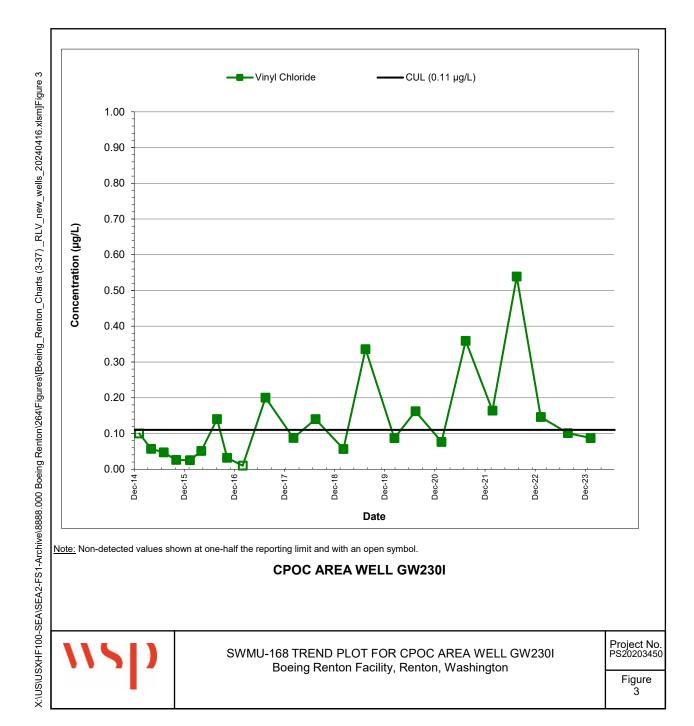
The geochemical indicator results are presented in Table 29. Observations included high specific conductivity, low DO, slightly acidic pH, and a negative ORP reading. TOC was detected in GW264S at a concentration of 24.58 mg/L.

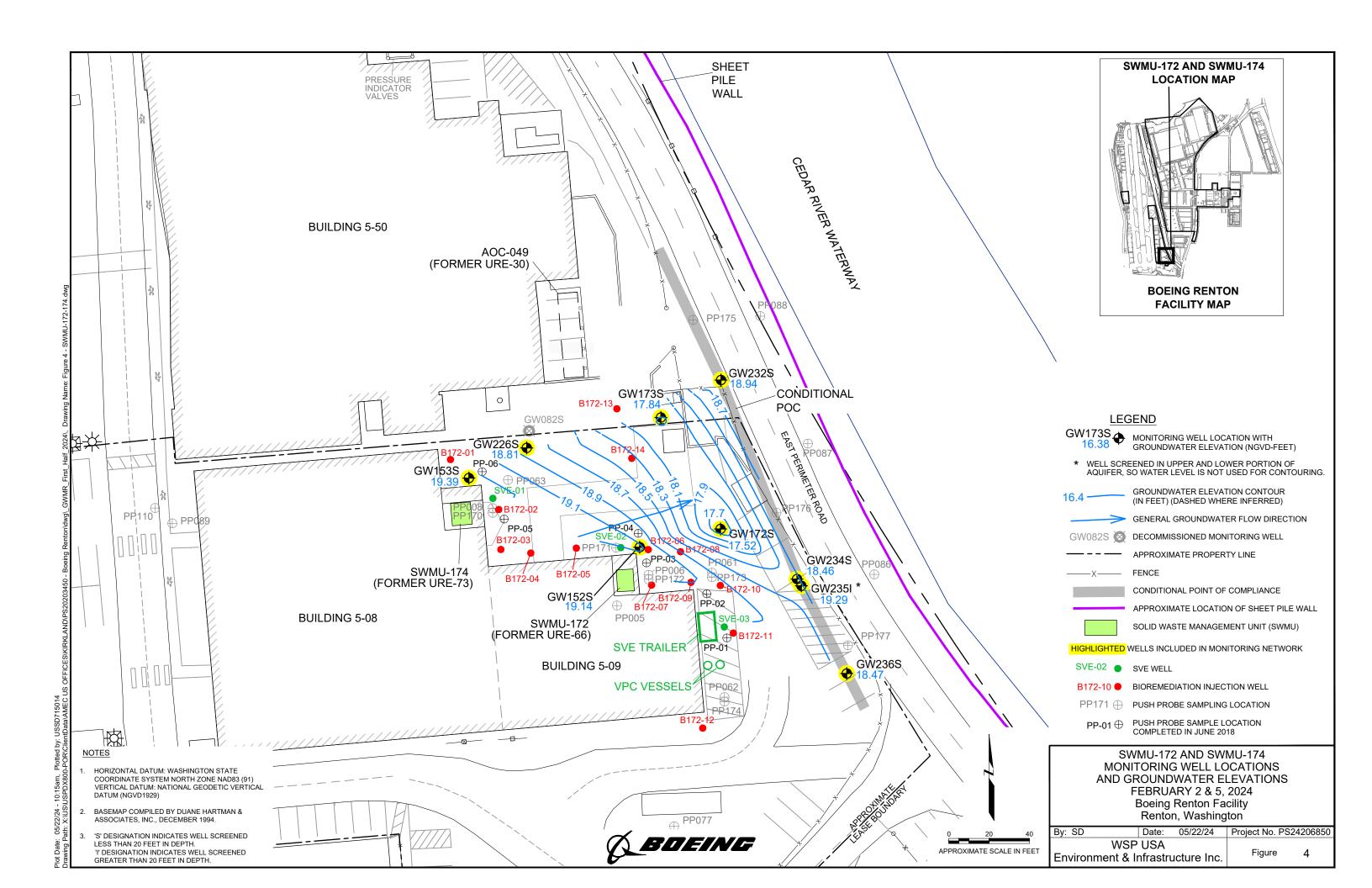
3.10.4.2 COC Results

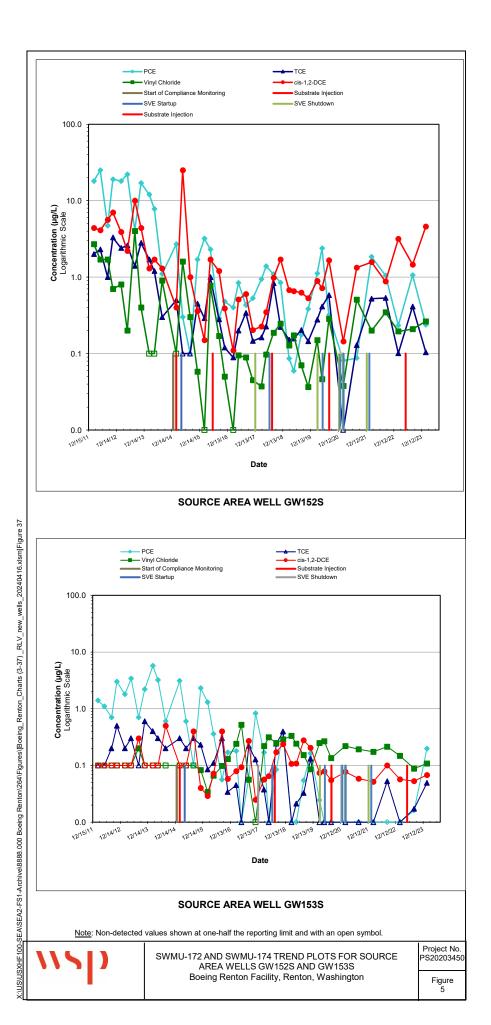
Table 30 lists the analytical results for the Apron A area COCs (cis-1,2-DCE and VC). Cis-1,2-DCE was reported as non-detect (< 0.200 μ g/L). VC was detected at a concentration of 0.810 μ g/L. Analytes from Apron A samples do not have established CULs because they were added to the monitoring program after the CAP was in place (CALIBRE, 2020). Additional monitoring of the soil and groundwater in Apron A was completed in 2016 and included installation of the monitoring wells in this area (Amec Foster Wheeler, 2016b). Neither cis-1,2-DCE nor VC were detected in the groundwater from well GW264S. The trend plot for COCs in GW264S is shown in Figure 37. Cis-1,2-DCE has not been detected for six consecutive reporting periods. VC appears to be fluctuating, but demonstrated the lowest concentration observed since 2020 this reporting period.

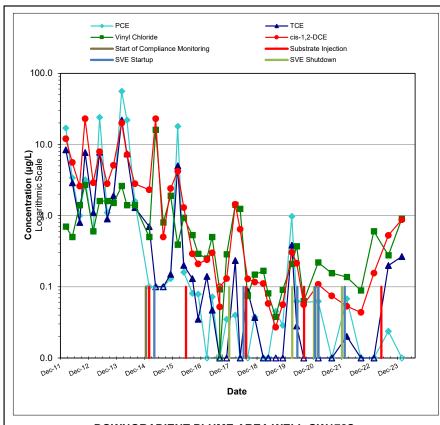

3.11 APRON R INVESTIGATION

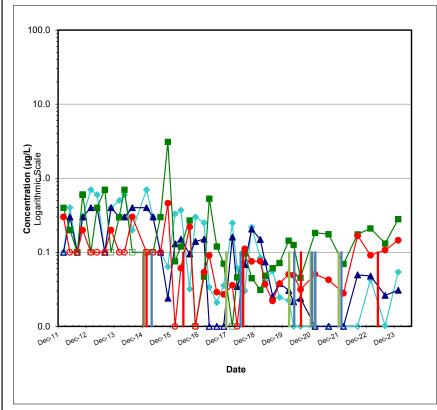

In July 2021, total petroleum hydrocarbons (TPH) were observed in an excavation in the Apron R area during site construction work. Samples were collected and work was stopped while Boeing informed Ecology (through a teleconference in July 2021) and discussed next steps for investigation work to be undertaken upon construction project completion. As discussed with Ecology during the July 2021 teleconference, Boeing installed a layered geotechnical membrane backfilled with granular activated carbon (GAC) above and below the observed TPH to mitigate further migration of the observed TPH in the Apron R excavation trench. This work was completed in parallel with site construction during July 2021. Boeing submitted to Ecology a technical memorandum which described the construction work in the Apron R vicinity, as well as initial characterization sampling results from the Apron R excavation trench (CALIBRE, 2021). Ecology provided comments in a letter dated August 10, 2021. Apron R construction work was completed in December 2023. In February 2024, Boeing submitted an Apron R Investigation Work Plan (CALIBRE, 2024a) for Ecology review and approval (Myers, 2024; approved by Ecology in March 2024 as noted above). Boeing conducted direct push probe sampling in ten discrete Apron R locations on March 18 and 19, 2024; these direct push probe samples were collected in continuation of the potential TPH source investigation. A technical memorandum with results from this work is in-progress and will be submitted to Ecology upon completion.


4 REFERENCES


- Amec Environment & Infrastructure, Inc. (Amec), 2012, Draft Cleanup Action Plan, Boeing Renton Facility, Renton, Washington, Prepared for The Boeing Company, September.
- ———, 2014, Draft Engineering Design Report, Boeing Renton Cleanup Plan Implementation, Boeing Renton Facility, Renton, Washington, Prepared for The Boeing Company, July.
- Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler), 2016a, Compliance Monitoring Plan (CMP), Boeing Renton Facility, Renton, Washington, Prepared for The Boeing Company, February.
- ———, 2016b, Apron A Investigation Results, Renton Municipal Airport—Boeing Apron A, Renton, Washington, June.
- ——, 2016c, Quality Assurance Project Plan, Boeing Renton Facility, Renton, Washington, Prepared for The Boeing Company, February.
- ———, 2017, Addendum to the Compliance Monitoring Plan, Boeing Renton Facility, Renton, Washington, Prepared for The Boeing Company, February.
- CALIBRE Systems, Inc. (CALIBRE), 2020, Evaluation of Recent Groundwater Sampling at the Boeing Renton Facility, Recommendation for Modifications to Compliance Monitoring Plan as Addendum #3 to CMP, June 30.
- ———, 2021, Boeing Renton Summary of Recent Excavation Work and Sampling at Apron R Construction Site, July.
- ——, 2024a, Work Plan for Investigation of Apron R Area, Rev 3, Boeing Renton Facility, Renton, Washington, Prepared for The Boeing Company, February.
- ---, 2024b, Remedial Progress Review at the Boeing Renton Plant, March.
- Cramer, Valerie, Environmental Engineer, 2022, Washington State Department of Ecology, email to Nick Garson, Remediation Project Manager, The Boeing Company, September 20, 2022.
- Cramer, Valerie, Environmental Engineer, 2022, Washington State Department of Ecology, email to Nick Garson, Remediation Project Manager, The Boeing Company, June 13, 2023.
- Maeng, Byung, PE, 2019, Hazardous Waste and Toxics Reduction Program, Washington State Department of Ecology, letter to Carl Bach, The Boeing Company, April 30, 2019.
- Myers, Michelle, PE, 2024, Approval Work Plan for Investigation of Apron R Area, Rev 3, Washington State Department of Ecology, letter to Nick Garson, The Boeing Company, March 6, 2024.
- Washington State Department of Ecology (Ecology), 2022, Natural Background Groundwater Arsenic Concentrations in WA State, Study Results, Publication No. 14-09-044, January.
- Wood Environment & Infrastructure Solutions, Inc. (Wood), 2019a, Addendum to the Compliance Monitoring Plan, Boeing Renton Facility, Renton, Washington: Prepared for the Boeing Company, April.
- Wood. 2019b. Quarterly report, third quarter 2019. RCRA Corrective Action Program, Boeing Renton Facility. November 15.
- ——, 2021, Apron R Well Abandonment and Replacement: AOC-001 and AOC-002, Boeing Renton Corrective Action Program, Renton, Washington: Prepared for the Boeing Company, November 11.


FIGURES





DOWNGRADIENT PLUME AREA WELL GW172S

DOWNGRADIENT PLUME AREA WELL GW173S

Note: Non-detected values shown at one-half the reporting limit and with an open symbol.

SWMU-172 AND SWMU-174 TREND PLOTS FOR DOWNGRADIENT PLUME AREA WELLS GW172S AND GW173S

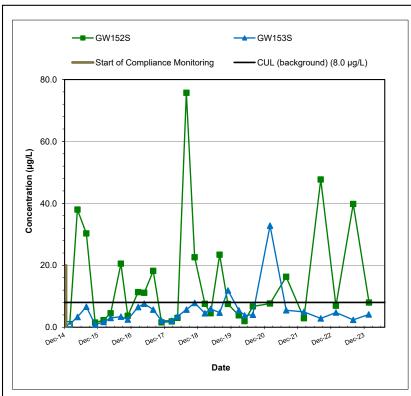
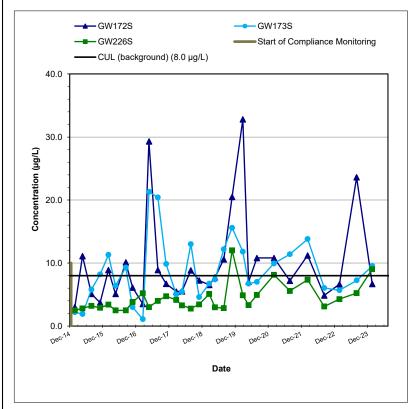

Boeing Renton Facility, Renton, Washington

Figure 6


Project No.

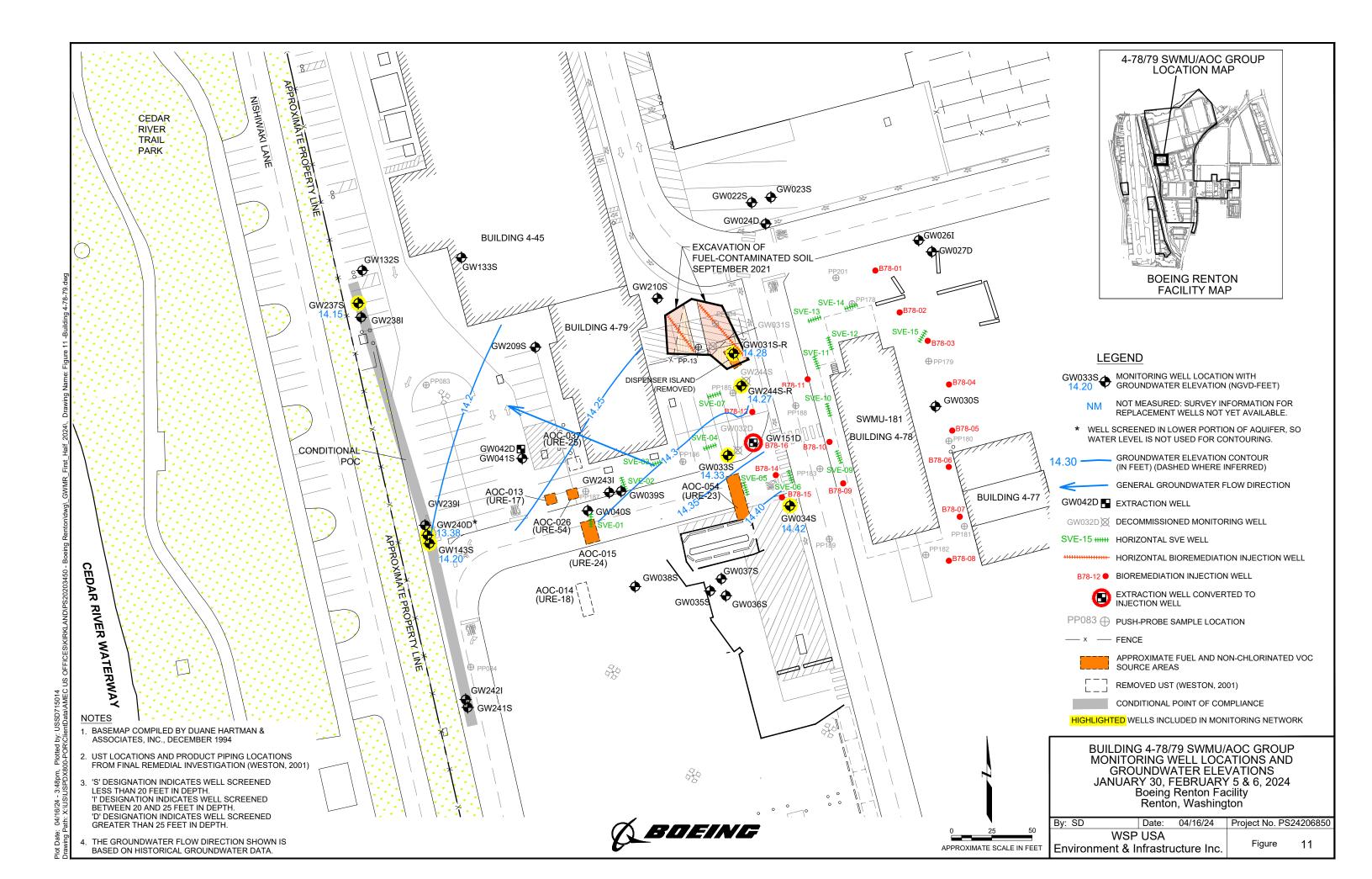
PS20203450

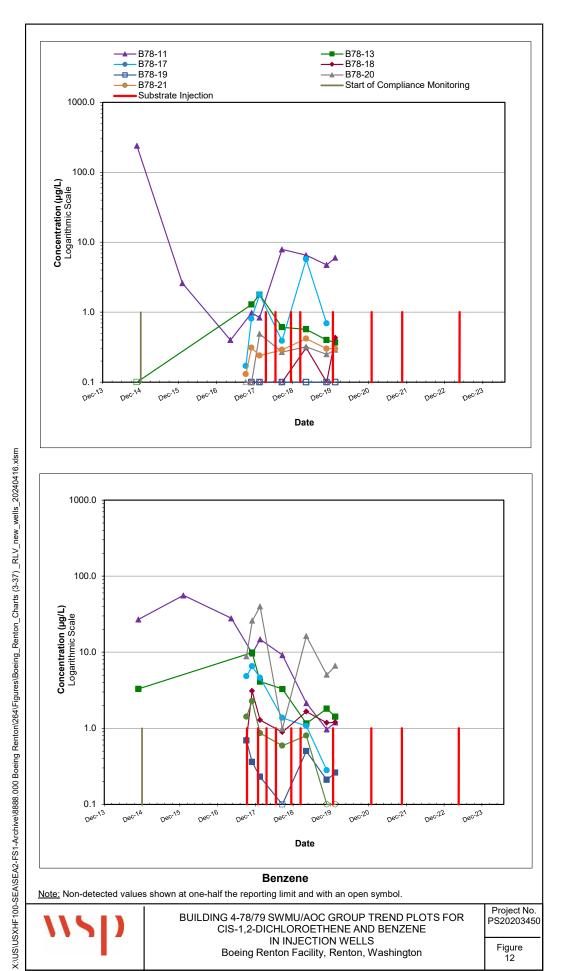
X:\US\USXHF100-SEA\SEA2-FS1-Archive\8888.000 Boeing Renton\Z64\Figures\[Boeing_Renton_Charts (3-37)_RLV_new_wells_20240416.xlsm]Figure 3

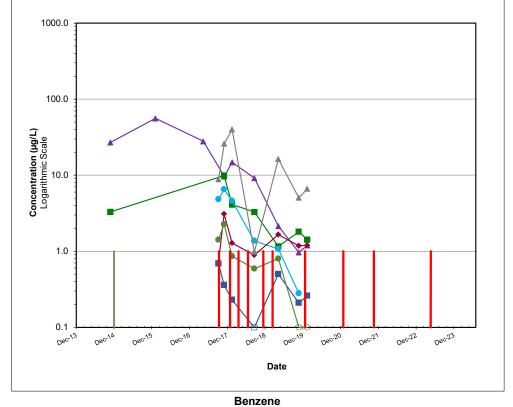
TOTAL ARSENIC IN SOURCE AREA WELLS

TOTAL ARSENIC IN DOWNGRADIENT PLUME AREA WELLS

 $\underline{\text{Note}}\text{: Non-detected values shown at one-half the reporting limit and with an open symbol.}$

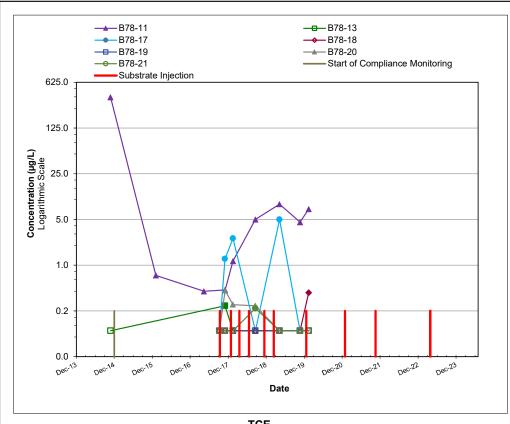


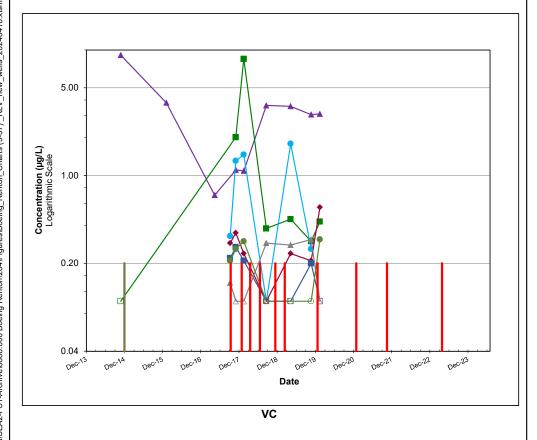

SWMU-172 AND SWMU-174 TREND PLOTS FOR ARSENIC IN SELECT SOURCE AREA AND DOWNGRADIENT PLUME AREA WELLS Boeing Renton Facility, Renton, Washington Project No. PS20203450


> Figure 8

X:US\USXHF100-SEA\SEA2-FS1-Archive\8888.000 Boeing Renton\264\Figures\Boeing_Renton_Charts (3-37) _RLV_new_wells_20240416.xism

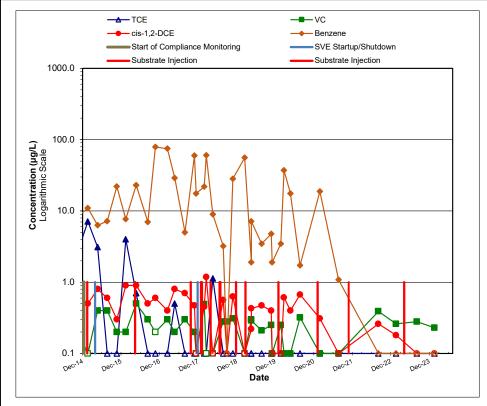
X:\US\US\USXHF100-SEA\SEA2-FS1-Archive\\8888.000 Boeing Renton\264\Figures\Boeing_Renton_Charts (3-37)_RLV_new_wells_20240416.x\sm



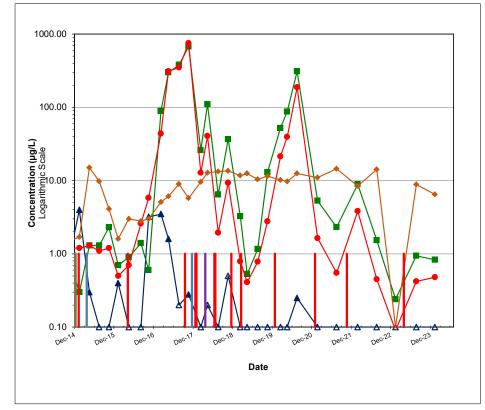

Note: Non-detected values shown at one-half the reporting limit and with an open symbol.

BUILDING 4-78/79 SWMU/AOC GROUP TREND PLOTS FOR CIS-1,2-DICHLOROETHENE AND BENZENE
IN INJECTION WELLS Boeing Renton Facility, Renton, Washington

Project No. PS20203450



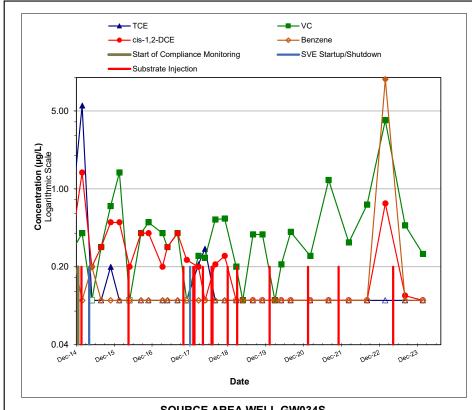
Note: Non-detected values shown at one-half the reporting limit and with an open symbol.



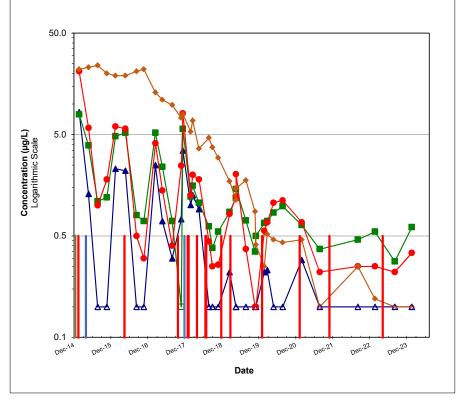
BUILDING 4-78/79 SWMU/AOC GROUP TREND PLOTS FOR TRICHLOROETHENE AND VINYL CHLORIDE IN INJECTION WELLS Boeing Renton Facility, Renton, Washington

Project No. PS20203450

SOURCE AREA WELL GW031S



SOURCE AREA WELL GW033S

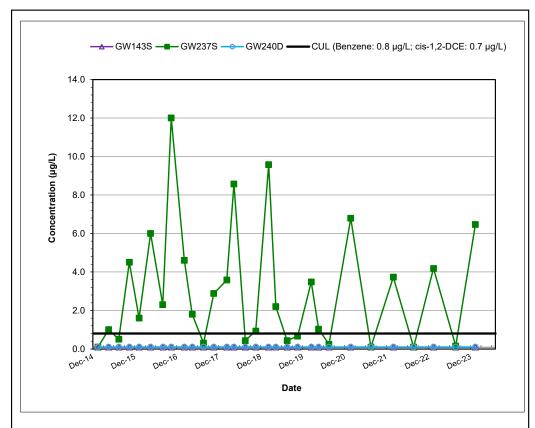

Note: Non-detected values shown at one-half the reporting limit and with an open symbol.

BUILDING 4-78/79 SWMU/AOC GROUP TREND PLOTS FOR SOURCE AREA WELLS GW031S AND GW033S Boeing Renton Facility, Renton, Washington Project No. PS20203450

SOURCE AREA WELL GW034S

SOURCE AREA WELL GW244S

Note: Non-detected values shown at one-half the reporting limit and with an open symbol.



BLDG 4-78/79 SWMU/AOC GROUP TREND PLOTS FOR SOURCE AREA WELLS GW034S AND GW244S Boeing Renton Facility, Renton, Washington

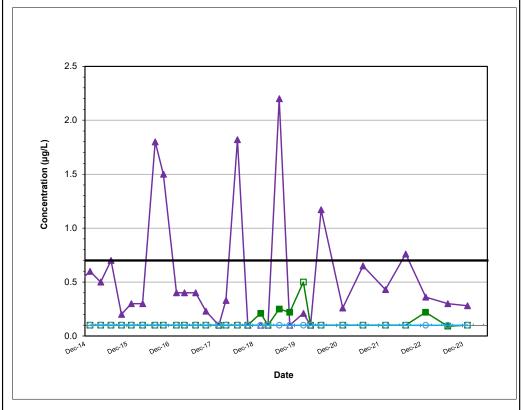
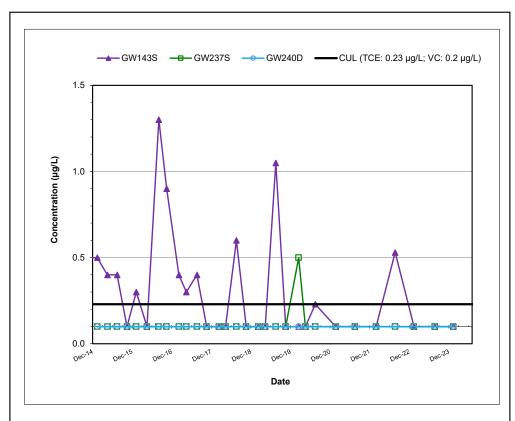

Project No. PS20203450

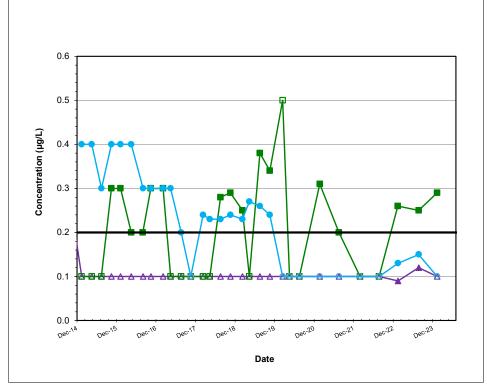
Figure 15

X:US\USXHF100-SEA\SEA2-FS1-Archive\8888.000 Boeing Renton\264Figures\Boeing_Renton_Charts (3-37)_RLV_new_wells_20240416.xism

Benzene



cis-1,2-DCE

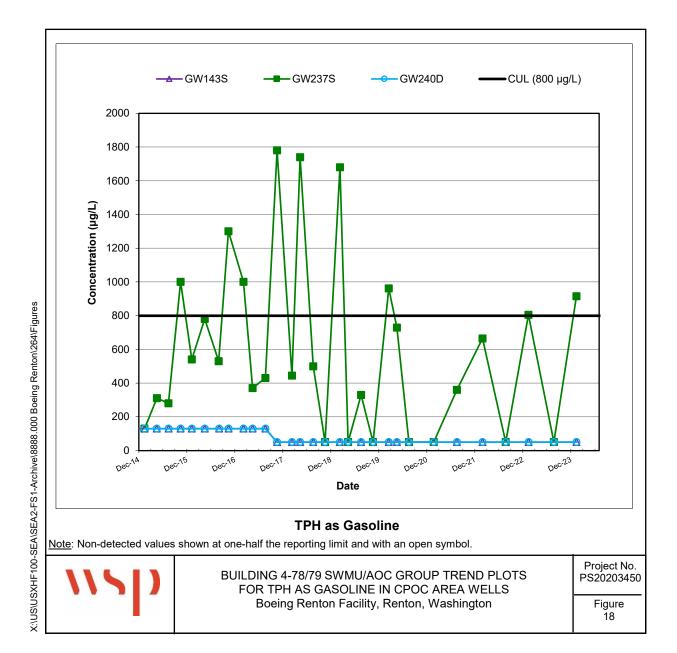

Note: Non-detected values shown at one-half the reporting limit and with an open symbol.

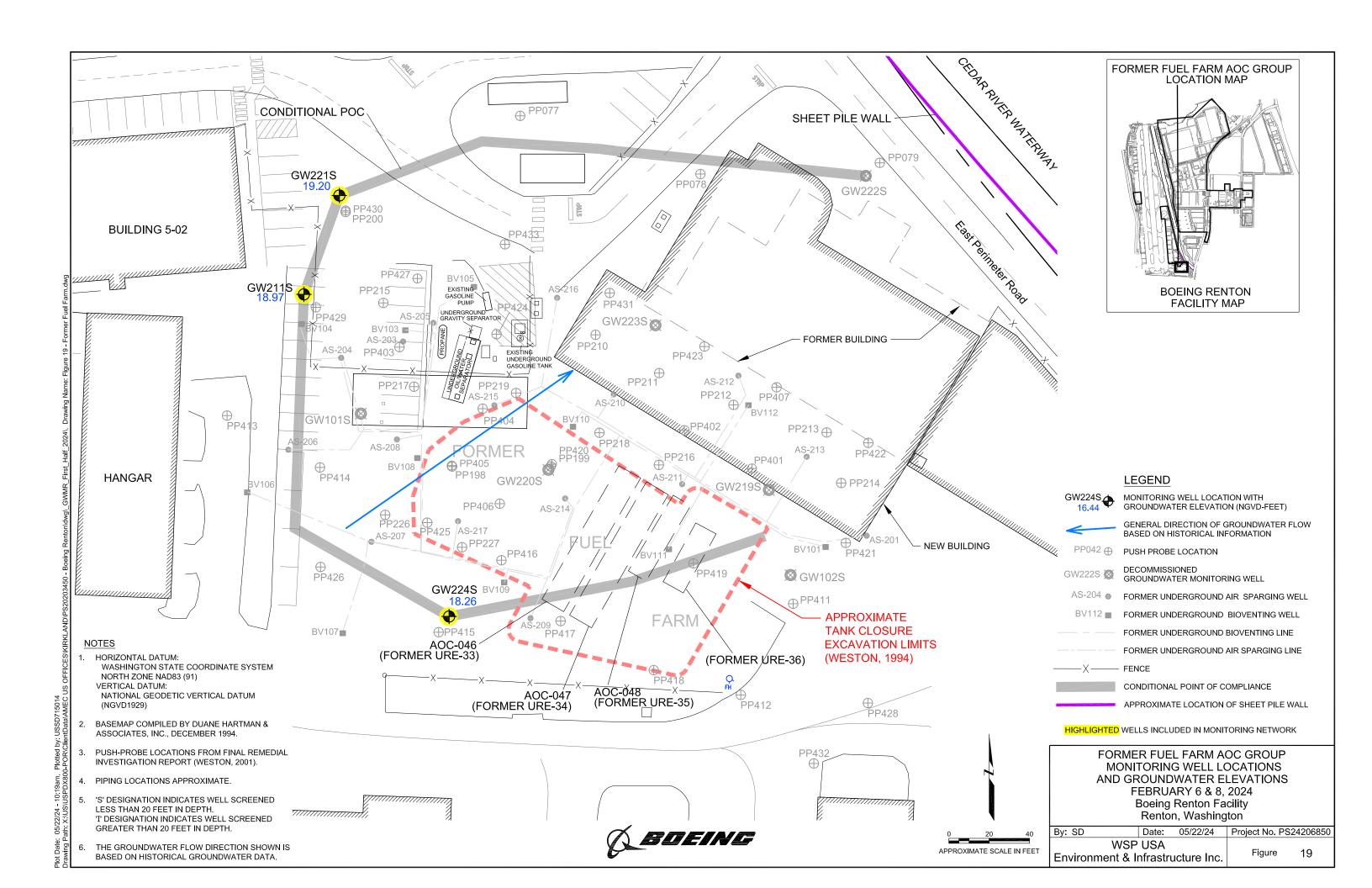
BUILDING 4-78/79 SWMU/AOC GROUP TREND PLOTS FOR BENZENE AND CIS-1,2-DICHLOROETHENE IN CPOC AREA WELLS Boeing Renton Facility, Renton, Washington Project No. PS20203450

TCE

VC

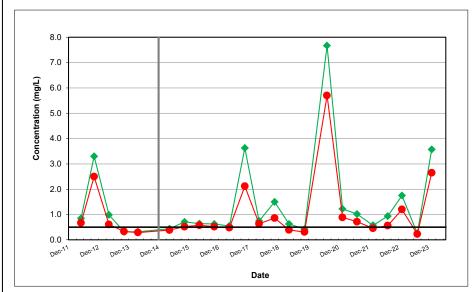
 $\underline{\text{Note}}\text{: Non-detected values shown at one-half the reporting limit and with an open symbol.}$

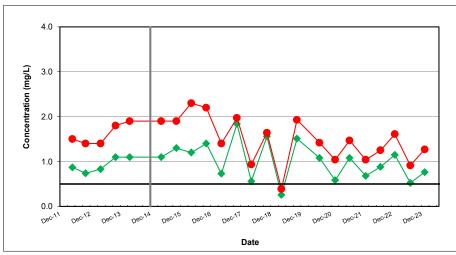



BUILDING 4-78/79 SWMU/AOC GROUP TREND PLOTS FOR TRICHLOROETHENE AND VINYL CHLORIDE IN CPOC AREA WELLS Boeing Renton Facility, Renton, Washington


Project No. PS20203450

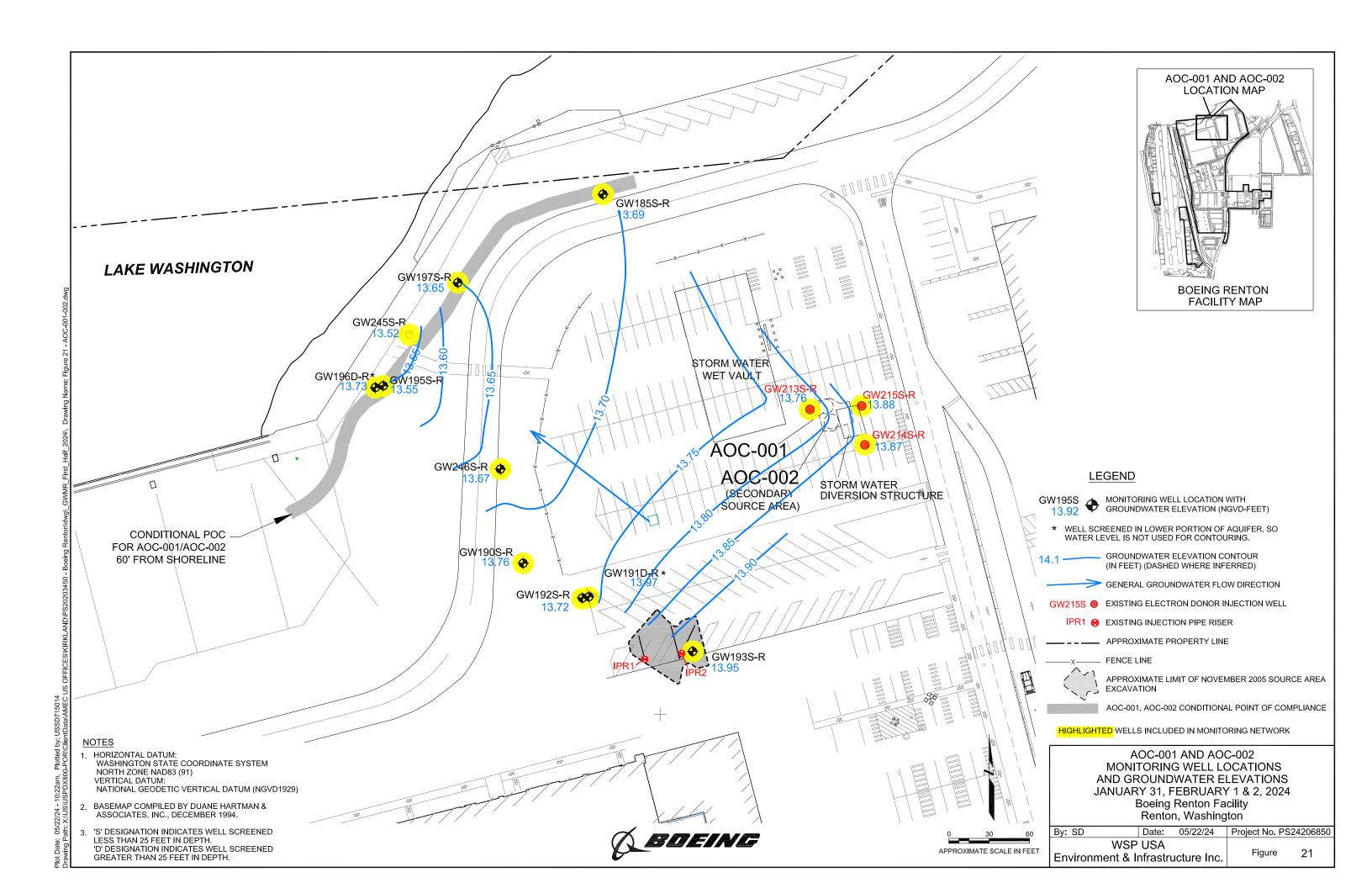
Figure 17


X:US\US\USXHF100-SEA\SEA2-FS1-Archive\8888.000 Boeing Renton\264\Figures\Boeing_Renton_Charts (3-37)_RLV_new_wells_20240416.x\sm

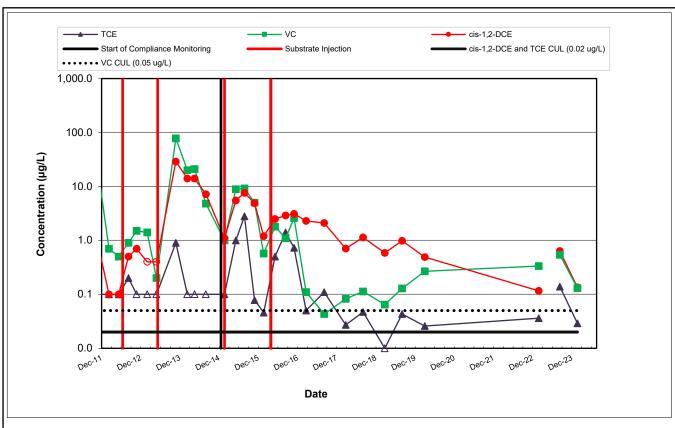


CPOC WELL GW211S

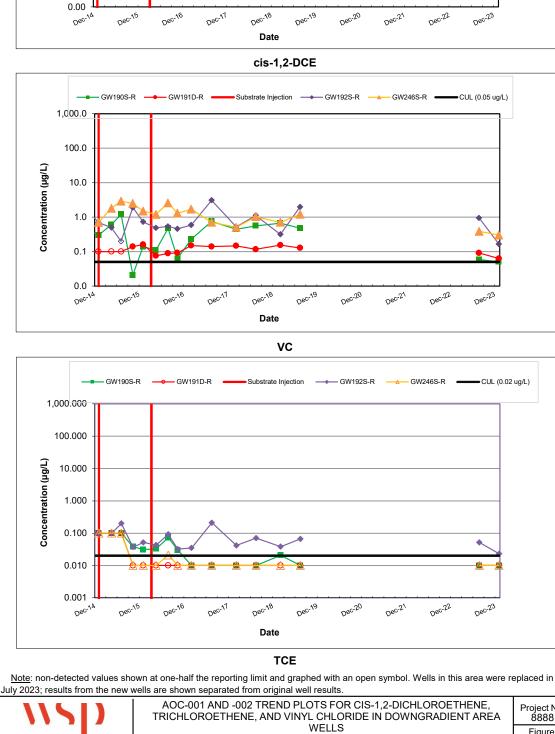
CPOC WELL GW221S




CPOC WELL GW224S


<u>Note</u>: Non-detected values shown at one-half the reporting limit and with an open symbol. Reporting limits were elevated for February 2022 results in GW211S.

FORMER FUEL FARM AOC GROUP TREND PLOTS FOR CPOC AREA WELLS GW211S, GW221S, AND GW224S Boeing Renton Facility, Renton, Washington Project No. PS20203450



SOURCE AREA WELL GW193S-R

Note: non-detected values shown at one-half the reporting limit and are graphed with an open symbol. This well was replaced in July 2023; results from the new well are shown separated from original well results.

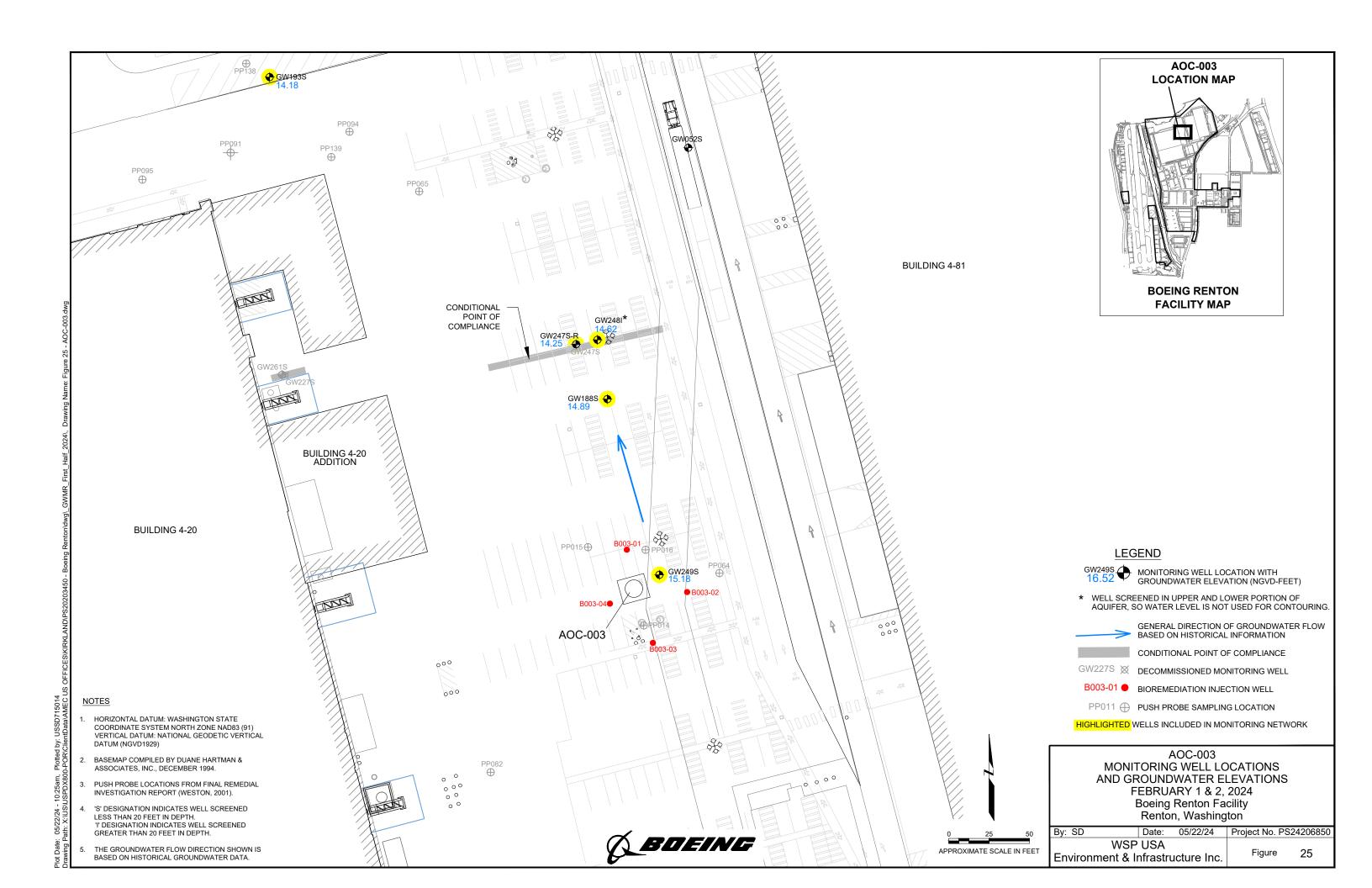
AOC-001 AND -002 TREND PLOT FOR SOURCE AREA WELL GW193S Boeing Renton Facility Renton, Washington Project No. 8888

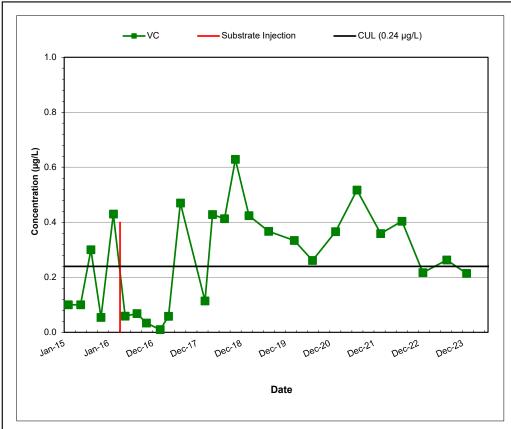
- GW190S-R

- GW191D-R

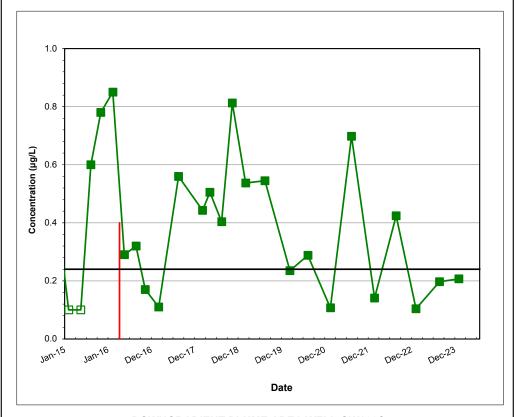
1,000.00 100.00 Concentration (µg/L) 10.00 1.00 0.10 0.01 Dec-19 Dec-20 Dec-21 Dec-22 Dec-23 cis-1,2-DCE Substrate Injection → GW192S-R → GW246S-R -Dec-19 Dec-21 Dec-22 Substrate Injection —— GW192S-R —≜— GW246S-R Dec-22 Dec-23

Substrate Injection —— GW192S-R


GW246S-R =

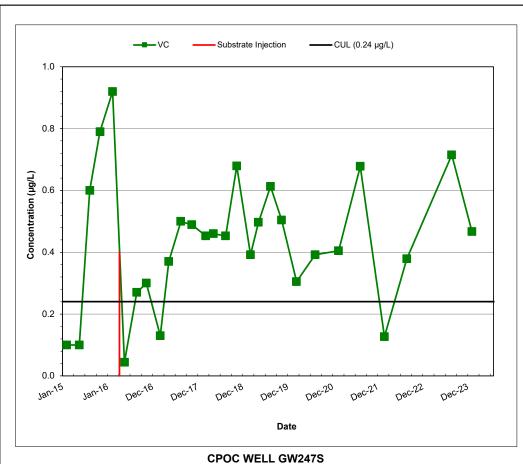

■CUL (0.02 ug/L)

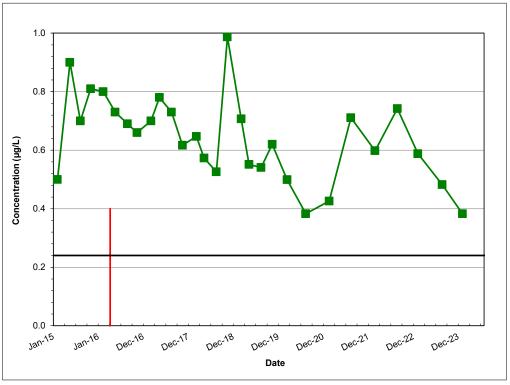
AOC-001 AND -002 TREND PLOTS FOR CIS-1,2-DICHLOROETHENE, TRICHLOROETHENE, AND VINYL CHLORIDE IN DOWNGRADIENT AREA


WELLS **Boeing Renton Facility** Renton, Washington

Project No. 8888

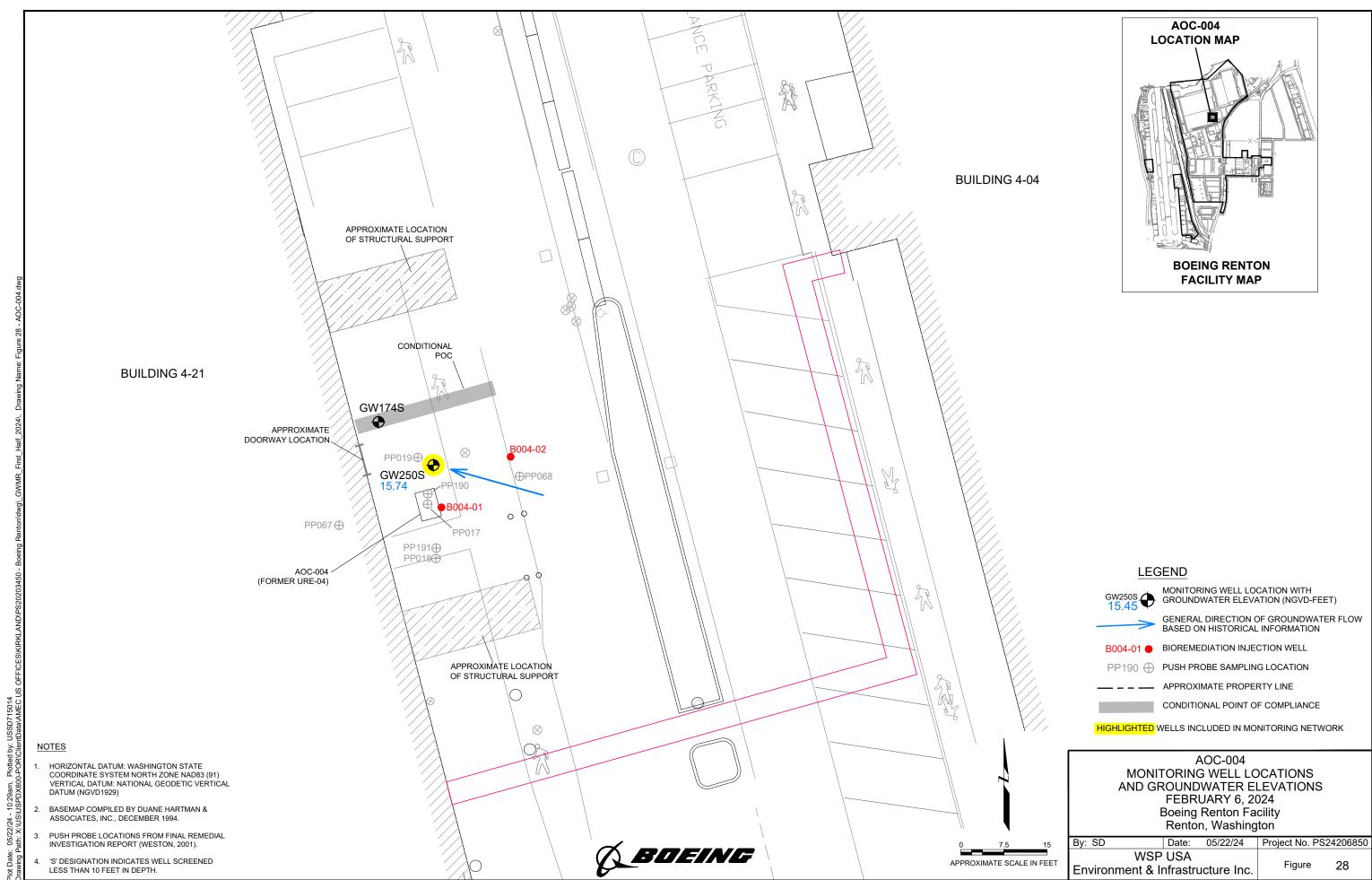
SOURCE AREA WELL GW249S

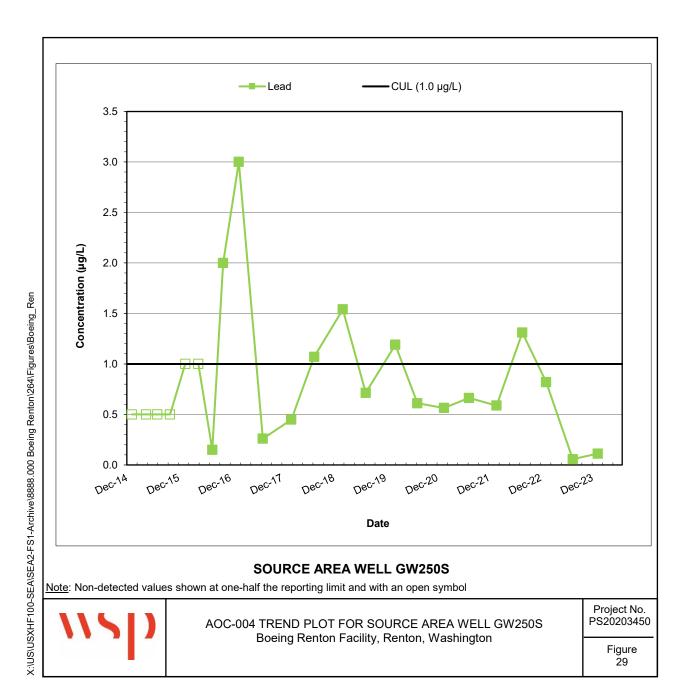


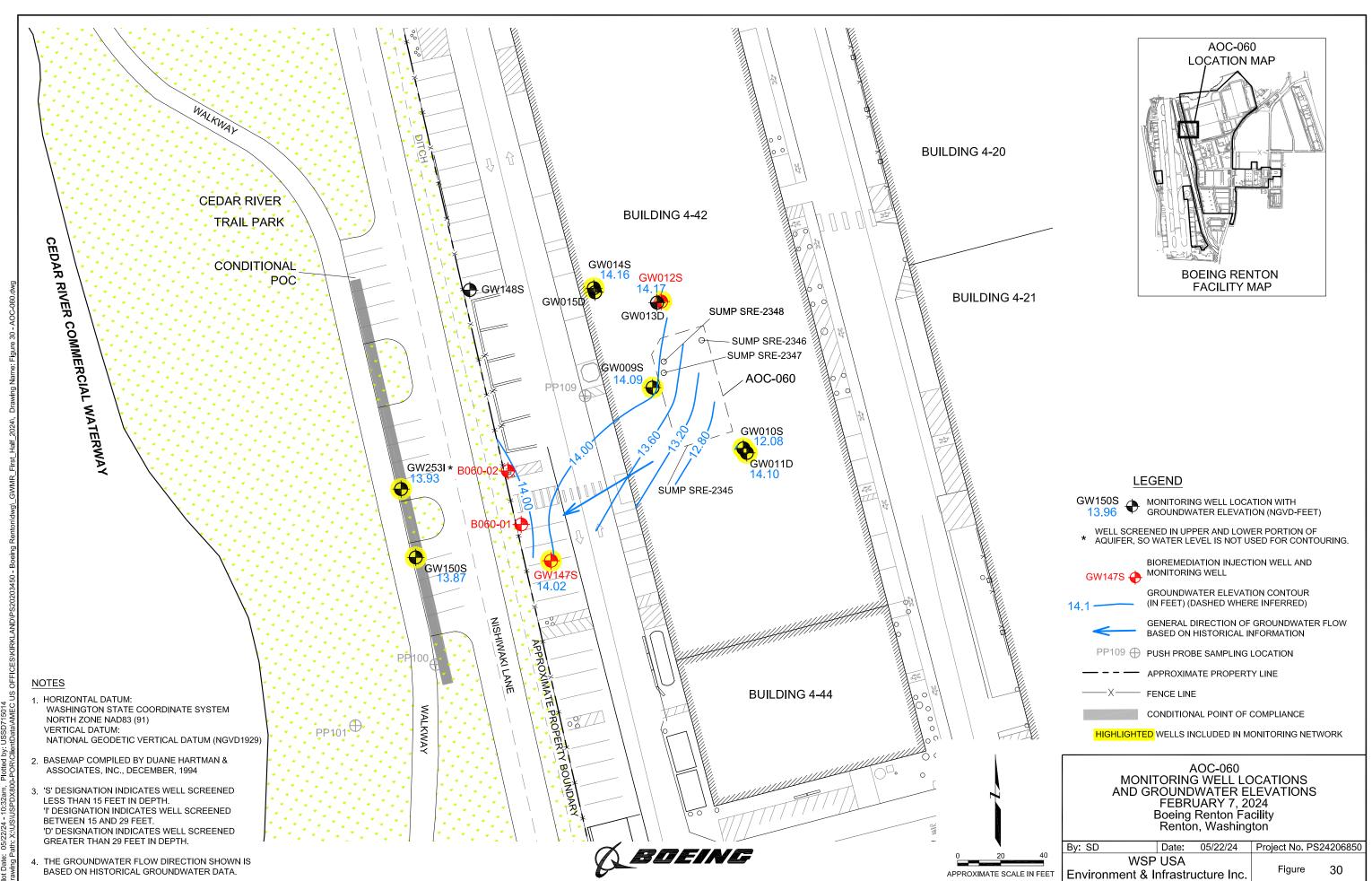

DOWNGRADIENT PLUME AREA WELL GW188S

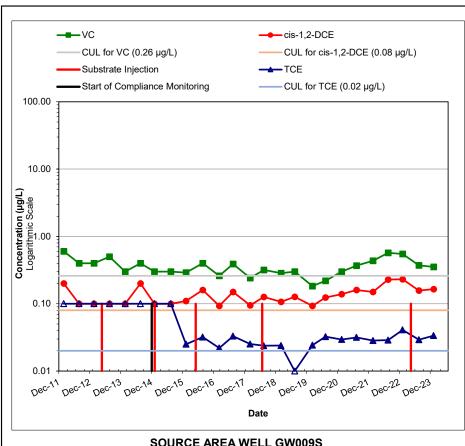
Note: Non-detected values shown at one-half the reporting limit and with an open symbol

AOC-003 TREND PLOTS FOR SOURCE AREA WELL GW249S AND DOWNGRADIENT PLUME AREA WELL GW188S Boeing Renton Facility, Renton, Washington Project No. PS20203450

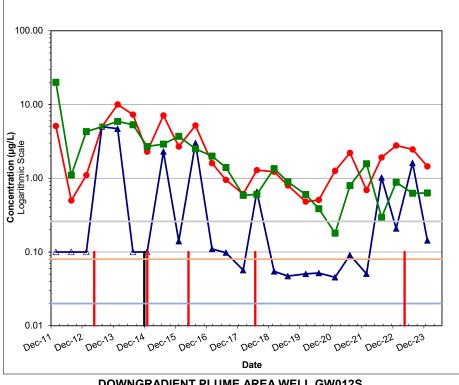

CPOC WELL GW248I


Note: Non-detected values shown at one-half the reporting limit and with an open symbol




AOC-003 TREND PLOTS FOR CPOC WELLS GW247S AND GW248I Boeing Renton Facility, Renton, Washington

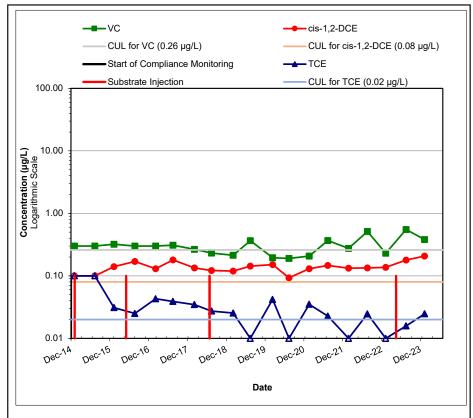
Project No. PS20203450



SOURCE AREA WELL GW009S

DOWNGRADIENT PLUME AREA WELL GW012S

Note: Non-detected values shown at one-half the reporting limit and with an open symbol.



AOC-060 TREND PLOTS FOR SOURCE AREA WELL GW009S AND DOWNGRADIENT PLUME AREA WELL GW012S Boeing Renton Facility, Renton, Washington

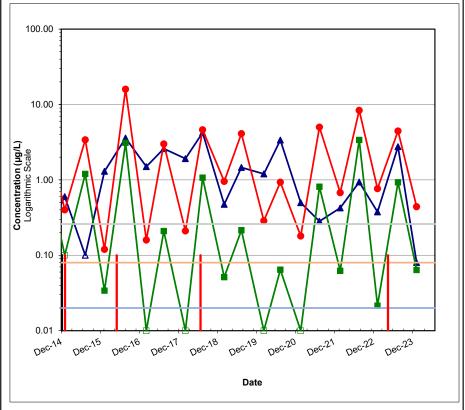
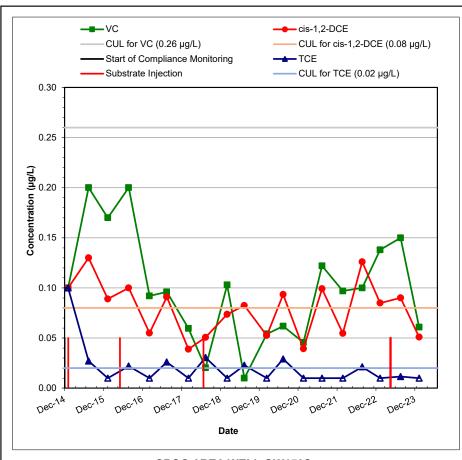

Project No. PS2020345

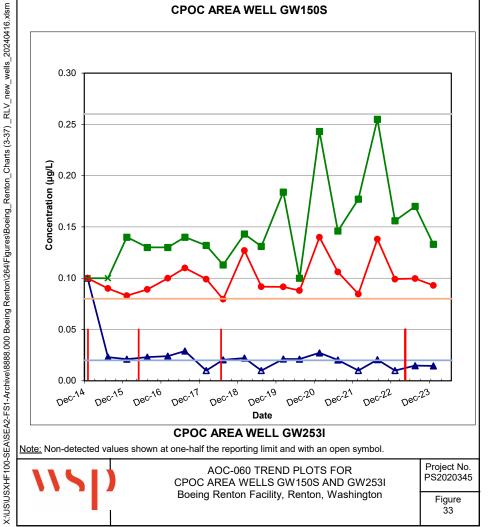
Figure 31

X:\US\USXHF100-SEA\SEA2-FS1-Archive\8888.000 Boeing Renton\264\Figures\Boeing_Renton_Charts (3-37)_RLV_new_wells_20240520.xlsm

DOWNGRADIENT PLUME AREA WELL GW014S

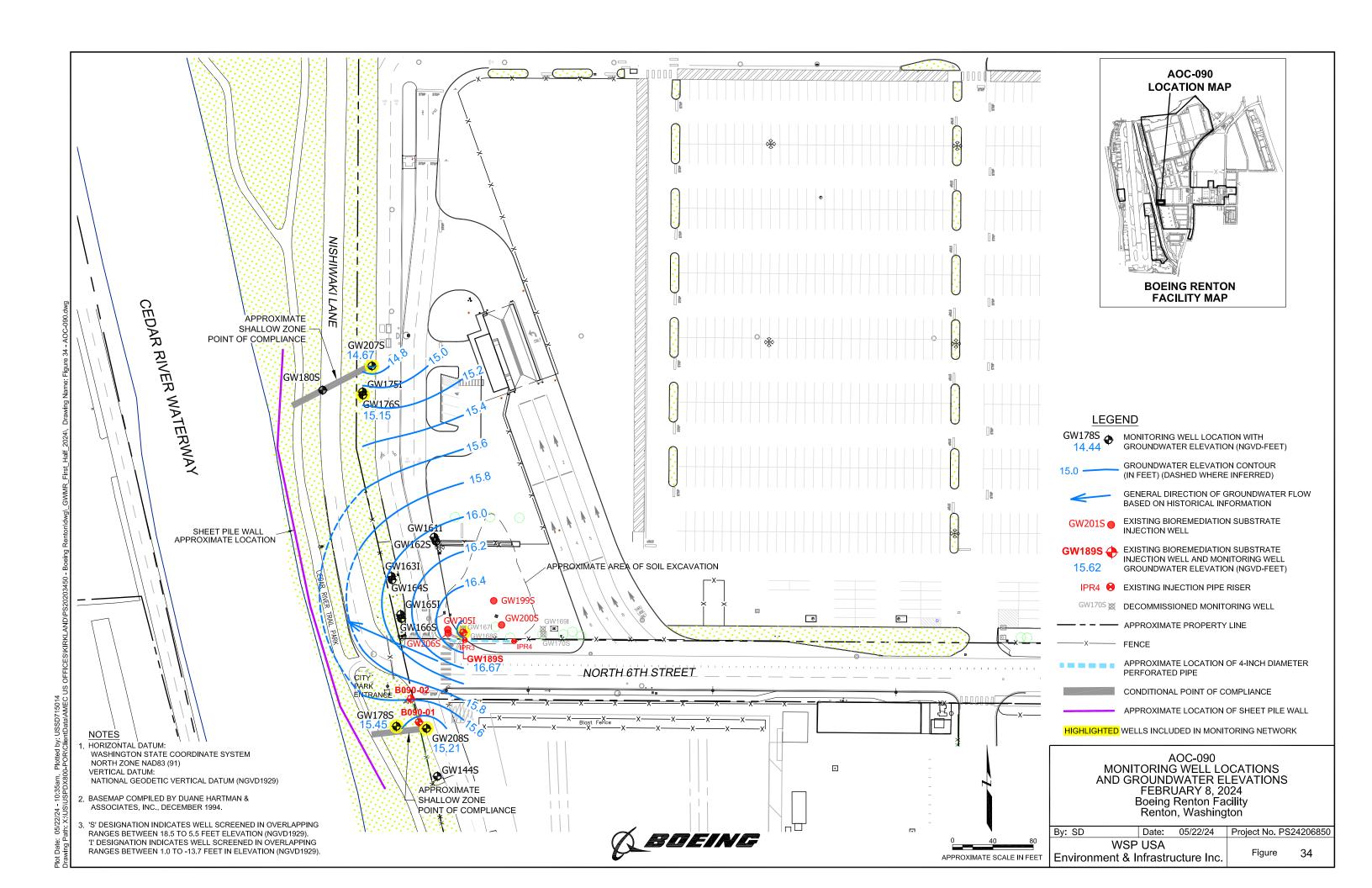
DOWNGRADIENT PLUME AREA WELL GW147S

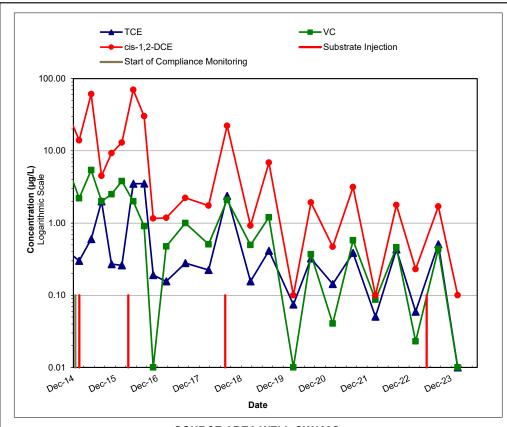

Note: Non-detected values shown at one-half the reporting limit and with an open symbol.

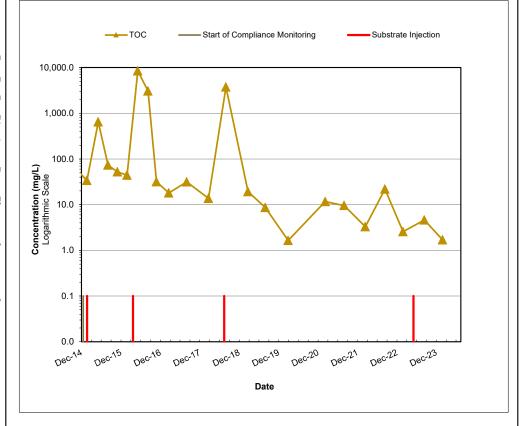

AOC-060 TREND PLOTS FOR DOWNGRADIENT PLUME AREA WELLS GW014S AND GW147S Boeing Renton Facility, Renton, Washington Project No. PS2020345

> Figure 32

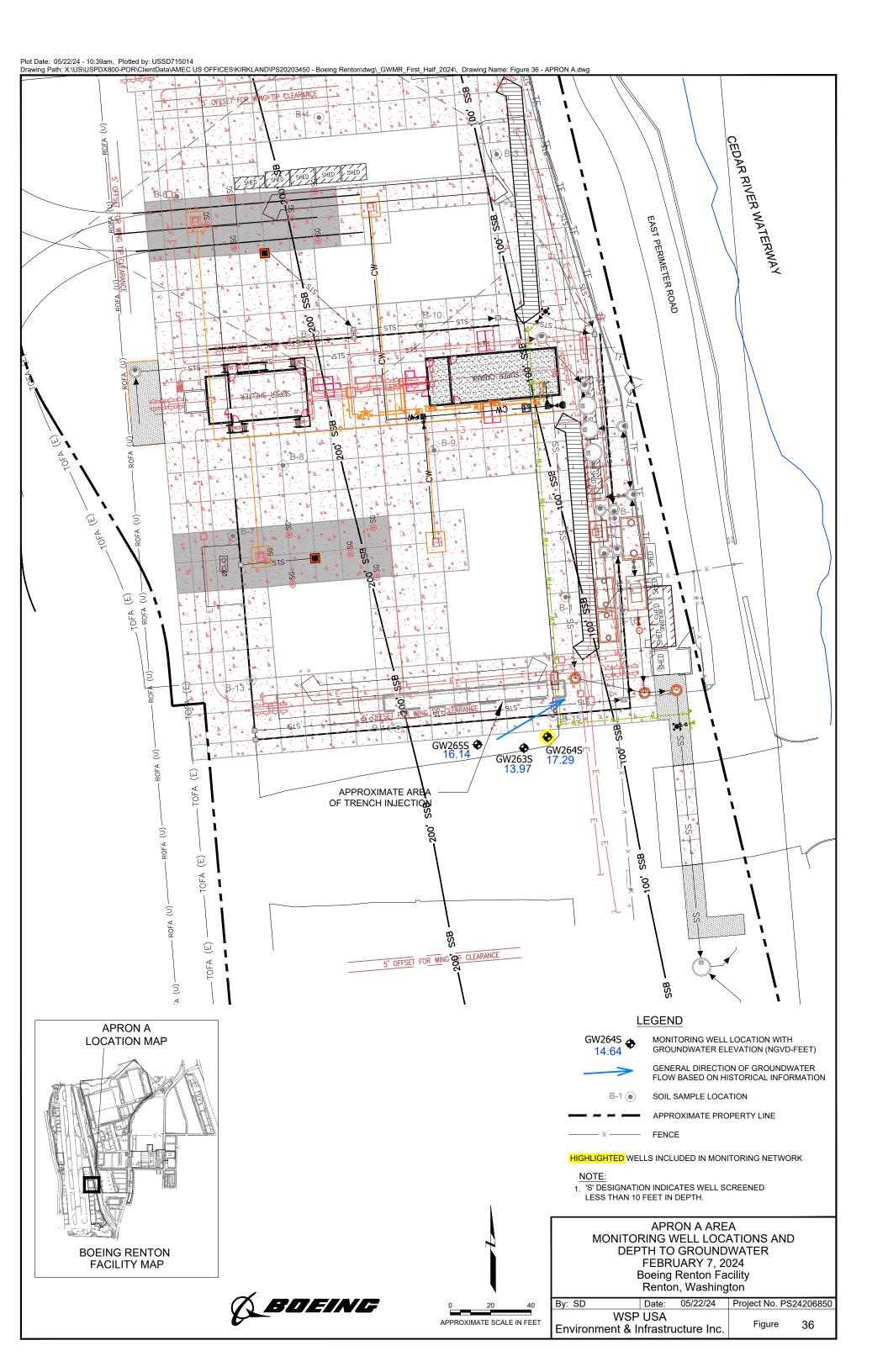
X:\US\USXHF100-SEA\SEA2-FS1-Archive\8888.000 Boeing Renton\264\Figures\Boeing Renton_Charts (3-37)_RLV_new wells_20240520.xlsm

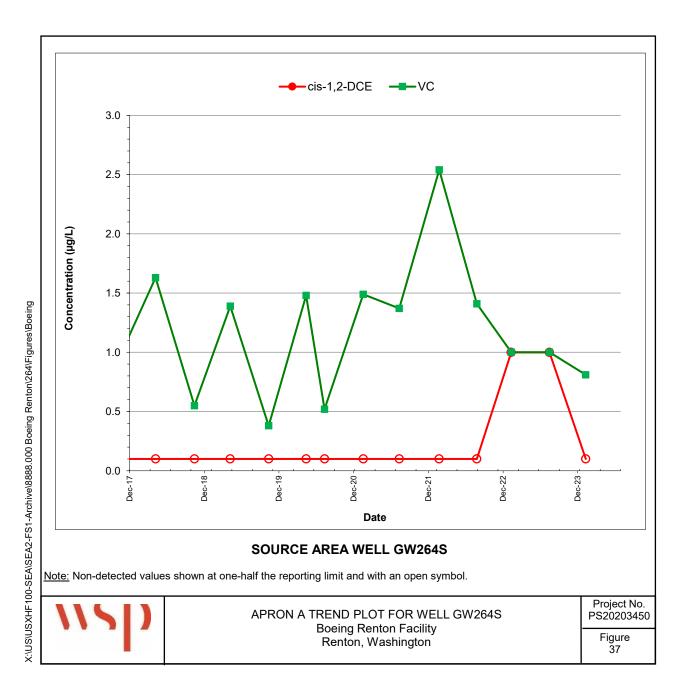



CPOC AREA WELL GW150S


AOC-060 TREND PLOTS FOR CPOC AREA WELLS GW150S AND GW253I Boeing Renton Facility, Renton, Washington

Project No. PS2020345


SOURCE AREA WELL GW189S



Note: Non-detected values shown at one-half the reporting limit and with an open symbol.

AOC-090 TREND PLOTS FOR SOURCE AREA WELL GW189S Boeing Renton Facility, Renton, Washington Project No. PS20203450

TABLES

Table 1: SWMU-168 Groundwater Elevation Data

February 6, 2024

Boeing Renton Facility, Renton, Washington

	Screen Interval Depth	TOC Elevation	Depth to Groundwater	Groundwater Elevation
Well ID ¹	(feet bgs)	(feet) ²	(feet below TOC)	(feet) ²
GW230I	4 to 14	24.86	4.88	19.98

Notes:

- 1. I = intermediate well.
- 2. Elevations in feet relative to National Geodetic Vertical Datum of 1929.

Abbreviations:

bgs = below ground surface SWMU = solid waste management unit TOC = top of casing

Table 2: SWMU-168 Primary Geochemical Indicators ¹ Febraury 6, 2024

Boeing Renton Facility, Renton, Washington

	Well ID ²
	CPOC Area
Parameter	GW230I
Temperature (degrees C)	12
Specific Conductivity (µS/cm)	410
Dissolved Oxygen (mg/L)	0.05
pH (standard units)	6.43
Oxidation/Reduction Potential (mV)	-67.1

Notes:

- 1. Primary geochemical indicators are measured in the field.
- 2. I = intermediate well.

Abbreviations:

μS/cm = microsiemens per centimeter CPOC = conditional point of compliance degrees C = degrees Celsius mg/L = milligrams per liter mV = millivolts SWMU = solid waste management unit

Table 3: SWMU-168 Concentrations of Constituents of Concern $^{1,\,2}$ February 6, 2024

Boeing Renton Facility, Renton, Washington

		Well ID ²
		CPOC Area
Analyte	Cleanup Level ¹	GW230I
Volatile Organic Compounds (μg/L)		
Vinyl Chloride	0.11	0.0870

Notes:

- 1. Cleanup levels obtained from Table 2 of the Cleanup Action Plan.
- 2. I = intermediate well.

Abbreviations:

 $\mu g/L$ = micrograms per liter CPOC = conditional point of compliance

SWMU = solid waste management unit

Table 4: SWMU-172 and SWMU-174 Group Groundwater Elevation Data February 2 & 5, 2024

Boeing Renton Facility, Renton, Washington

Well ID ¹	Screen Interval Depth (feet bgs)	TOC Elevation (feet) ³	Depth to Groundwater (feet below TOC)	Groundwater Elevation (feet) ³
GW152S	5 to 20 ²	26.98	7.84	19.14
GW153S	5 to 20 ²	27.47	8.08	19.39
GW172S	8 to 18 ²	26.44	8.92	17.52
GW173S	8 to 18 ²	26.51	8.67	17.84
GW226S	5 to 20 ²	26.86	8.05	18.81
GW232S	4 to 14	24.45	5.51	18.94
GW234S	3 to 13	24.95	6.49	18.46
GW235I	15 to 25	24.90	5.61	19.29
GW236S	5 to 15	24.36	5.89	18.47

Notes:

- 1. S = shallow well; I = intermediate well.
- 2. Screen intervals are approximate and based on database listings of the screen interval depths for these wells.
- 3. Elevations in feet relative to National Geodetic Vertical Datum of 1929.

Abbreviations:

bgs = below ground surface SWMU = solid waste management unit TOC = top of casing

Table 5: SWMU-172 and SWMU-174 Group Primary Geochemical Indicators¹ February 2 & 5, 2024
Boeing Renton Facility, Renton, Washington

	Well ID ²										
	Sourc	Source Area		Downgradient Plume Area				CPOC Area			
Parameter	GW152S	GW153S	GW172S	GW172S (field dup.)	GW173S	GW226S	GW232S	GW234S	GW235I	GW236S	
Temperature (degrees C)	12.5	14.8	14.2	NA	12.3	16.0	10.7	12.2	13.2	11.2	
Specific Conductivity (μS/cm)	197	246	307	NA	288	275	407	217	199	106	
Dissolved Oxygen (mg/L)	6.20	5.88	0.02	NA	6.23	5.59	6.53	0.05	0.01	2.90	
pH (standard units)	6.12	6.43	6.42	NA	6.65	6.41	6.30	6.40	6.71	6.50	
Oxidation/Reduction Potential (mV)	8.9	-45.9	-86.9	NA	-65.6	-53.5	-26.1	-24.0	-50.7	64.9	
Total Organic Carbon (mg/L) ³	3.22	6.64	3.43	3.36	4.95	12.70	6.1	1.76	0.74	1.17	

Notes

- 1. Primary geochemical indicators are measured in the field, with the exception of total organic carbon, which is measured in the laboratory
- 2. S = shallow well; I = intermediate well.
- 3. Data qualifiers are as follows:

J = the value is estimated.

<u>Abbreviations</u>

 $\mu S/cm$ = microsiemens per centimeter

CPOC = conditional point of compliance

degrees C = degrees Celsius

field dup. = field duplicate

mg/L = milligrams per liter

mV = millivolts

SWMU = solid waste management unit

Table 6: SWMU-172 and SWMU-174 Group Concentrations of Constituents of Concern^{1, 2} February 2 & 5, 2024
Boeing Renton Facility, Renton, Washington

		Well ID ³									
		Source	e Area	Downgradient Plume Area				CPOC Area			
	Cleanup				GW172S						
Analyte	Level ⁴	GW152S	GW153S	GW172S	duplicate	GW173S	GW226S	GW232S	GW234S	GW235I	GW236S
Volatile Organic Compounds (μg/L)											
cis -1,2-Dichloroethene	0.03	4.59	0.0677	0.877	0.890	0.145	0.0465	0.167	0.0495	0.229	0.0200 U
Tetrachloroethene	0.02	0.238	0.198	0.0200 U	0.0200 U	0.0543	0.0200 U	0.0200 U	0.0200 U	0.0200 U	0.0262
Trichloroethene	0.02	0.104	0.049	0.266	0.258	0.0307	0.0200 U	0.0200 U	0.0200 U	0.0207	0.0200 U
Vinyl Chloride	0.11	0.264	0.108	0.907	0.902	0.280	0.0394	0.187	0.0200 U	0.0215	0.0200 U
Total Metals (μg/L)											
Arsenic	8.0	7.95	4.12	6.68	6.73	9.51	9.01	2.19	0.626	0.400 U	1.00 U
Copper	3.5	2.44	1.00 U	1.08	1.00 U	3.07	6.69	1.00 U	2.26	1.00 U	2.50 U
Lead	1.0	1.18	0.232	0.714	0.668	1.41	0.950	0.200 U	0.876	0.200 U	0.795

Notes:

- 1. Data qualifiers are as follows:
 - U = The analyte was not detected at the reporting limit indicated.
 - J = the value is estimated.
- 2. **Bolded** values exceed the cleanup levels.
- 3. S = shallow well; I = intermediate well.
- 4. Cleanup levels obtained from Table 2 of the Cleanup Action Plan.

Abbreviations:

 μ g/L = micrograms per liter

CPOC = conditional point of compliance

SWMU = solid waste management unit

Table 7: Building 4-78/79 SWMU/AOC Group Groundwater Elevation Data January 30, February 5 & 6, 2024

Boeing Renton Facility, Renton, Washington

Well ID ¹	Screen Interval Depth (feet bgs)	TOC Elevation (feet) ²	Depth to Groundwater (feet below TOC)	Groundwater Elevation (feet) ²
GW031S-R	5 to 25	19.59	5.31	14.28
GW033S	5 to 25	19.49	5.16	14.33
GW034S	5 to 25	19.65	4.34	14.42
GW143S	10 to 15	19.81	5.61	14.20
GW237S	5 to 15	18.85	4.7	14.15
GW240D	22 to 27	19.81	6.43	13.38
GW244S-R	5 to 15	19.42	5.15	14.27

Notes:

- 1. S = shallow well; D = deep well; R = replaced.
- 2. Elevations in feet relative to National Geodetic Vertical Datum of 1929.

Abbreviations:

AOC = area of concern

bgs = below ground surface

NA = not available

SWMU = solid waste management unit

TOC = top of casing

Table 8: Building 4-78/79 SWMU/AOC Group Primary Geochemical Indicators¹ January 30, February 5 & 6, 2024

Boeing Renton Facility, Renton, Washington

		Well ID ²									
			Source Area	CPOC Area							
			GW033S								
Parameter	GW031S-R	GW033S	(field dup.)	GW034S	GW244S-R	GW143S	GW237S	GW240D			
Temperature (degrees C)	14.8	14.9	NA	12.5	14.1	14.4	13.0	14.6			
Specific Conductivity (µS/cm)	342	566	NA	529	434	359	290	252			
Dissolved Oxygen (mg/L)	5.75	0.04	NA	0.04	5.82	5.74	0.48	5.76			
pH (standard units)	6.29	6.28	NA	6.45	6.29	6.37	6.39	6.56			
Oxidation/Reduction Potential (mV)	-31.6	-84.0	NA	-96.8	-38.0	-60.4	-55	-71.7			
Total Organic Carbon (mg/L) ³	10.99	10.17	10.13	7.59	12.98	9.13	5.92	4.62			

Notes

- 1. Primary geochemical indicators are measured in the field, with the exception of total organic carbon, which is measured in the laboratory
- 2. S = shallow well; D = deep well.
- 3. Data qualifiers are as follows:

J = the value is estimated.

Abbreviations

 μ S/cm = microsiemens per centimeter

AOC = area of concern

CPOC = conditional point of compliance

degrees C = degrees Celsius

field dup. = field duplicate

mg/L = milligrams per liter

mV = millivolts

NA = not analyzed

SWMU = solid waste management unit

Table 9: Building 4-78/79 SWMU/AOC Group Concentrations of Constituents of Concern^{1, 2} February 5 & 6, 2024
Boeing Renton Facility, Renton, Washington

					D ³					
				Source Area				CPOC Area		
	Cleanup			GW033S						
Analyte	Level ⁴	GW031S-R	GW033S	(field dup.)	GW034S	GW244S-R	GW143S	GW237S	GW240D	
Volatile Organic Compounds (με	g/L)									
Benzene	0.80	0.200 U	6.49	6.51	0.200 U	0.200 U	0.200 U	6.47	0.200 U	
cis -1,2-Dichloroethene	0.70	0.200 U	0.480	0.430	0.200 U	0.340	0.280	0.200 U	0.200 U	
Trichloroethene	0.23	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	
Vinyl Chloride	0.20	0.230	0.830	0.940	0.260	0.610	0.200 U	0.290	0.200 U	
Total Petroleum Hydrocarbons (μg/L)										
TPH-G (C7-C12)	800	100 U	141	141	100 U	100 U	100 U	915	100 U	

Notes:

1. Data qualifiers are as follows:

U = The analyte was not detected at the reporting limit indicated.

- J = The value is estimated.
- 2. Bolded values exceed the cleanup levels.
- 3. S = shallow well; D = deep well.
- 4. Cleanup levels obtained from Table 2 of the Cleanup Action Plan.

Abbreviations:

μg/L = micrograms per liter

AOC = area of concern

CPOC = conditional point of compliance

field dup. = field duplicate

SWMU = solid waste management unit

TPH-G = total petroleum hydrocarbons as gasoline

Table 10: Former Fuel Farm Groundwater Elevation Data February 6 & 8, 2024

Boeing Renton Facility, Renton, Washington

Well ID ¹	Screen Interval Depth (feet bgs)	TOC Elevation (feet) ²	Depth to Groundwater (feet below TOC)	Groundwater Elevation (feet) ²
GW211S	4.8 to 14.7	27.77	8.80	18.97
GW221S	5 to 15	27.93	8.73	19.20
GW224S	5 to 15	27.98	9.72	18.26

Notes

- 1. S = shallow well
- 2. Elevations in feet relative to National Geodetic Vertical Datum of 1929.

Abbreviations

bgs = below ground surface

TOC = top of casing

Table 11: Former Fuel Farm Primary Geochemical Indicators ¹ February 6 & 8, 2024
Boeing Renton Facility, Renton, Washington

Well ID² CPOC Area GW221S Parameter GW211S GW224S Temperature (degrees C) 12.5 13.4 13.9 Specific Conductivity (μS/cm) 213 202 162 Dissolved Oxygen (mg/L) 0.35 6.12 6.03 pH (standard units) 6.35 6.27 6.12 Oxidation/Reduction Potential (mV) -22.6 7.7 34.3

Notes

- 1. Primary geochemical indicators are measured in the field.
- 2. S = shallow well.

Abbreviations

 μ S/cm = microsiemens per centimeter CPOC = conditional point of compliance degrees C = degrees Celsius mg/L = milligrams per liter mV = millivolts

Table 12: Former Fuel Farm Concentrations of Constituents of Concern $^{1,\,2}$ February 6 & 8, 2024

Boeing Renton Facility, Renton, Washington

		Well ID ³						
	Cleanup	CPOC Area						
					GW224S			
Analyte	Level 4	GW211S	GW221S	GW224S	(field dup.)			
Total Petroleum Hydrocarbons (r	ng/L)							
TPH-D (C12-C24)	0.5	0.100 U	3.57	0.764	0.966			
TPH-O (C24-C38)	NE	0.200 U	0.200 U	0.200 U	0.200 U			
Jet A (C10-C18)	0.5	0.100 U	2.65	1.27	1.55			

Notes

- 1. Data qualifiers are as follows:
 - U = The analyte was not detected at the reporting limit indicated.
 - J = The value is estimated.
- 2. **Bolded** values exceed the cleanup levels.
- 3. S = shallow well.
- 4. Cleanup levels obtained from Table 2 of the Cleanup Action Plan.

Abbreviations

CPOC = conditional point of compliance

field dup. = field duplicate

mg/L = milligrams per liter

NE = not established

TPH-D = total petroleum hydrocarbons as diesel

TPH-O = total petroleum hydrocarbons as motor oil

Table 13: AOC-001 and -002 Groundwater Elevation Data January 31, February 1 & 2, 2024

Boeing Renton Facility, Renton, Washington

Well ID ¹	Screen Interval Depth (feet bgs)	TOC Elevation (feet) ²	Depth to Groundwater (feet below TOC)	Groundwater Elevation (feet) ²
GW185S-R	4.5 to 14.5	17.83	4.14	13.69
GW190S-R	3 to 13	17.97	4.21	13.76
GW191D-R	26 to 36	17.94	3.97	13.97
GW192S-R	4.5 to 9.5	17.67	3.95	13.72
GW193S-R	3 to 12.8	18.39	4.44	13.95
GW195S-R	7 to 12	18.45	4.90	13.55
GW196D-R	26 to 36	18.43	4.70	13.73
GW197S-R	7.5 to 12.5	18.34	4.69	13.65
GW213S-R	3 to 13	18.14	4.38	13.76
GW214S-R	3.5 to 13.5	18.27	4.40	13.87
GW215S-R	3 to 13	18.22	4.34	13.88
GW245S-R	3 to 13	18.32	4.80	13.52
GW246S-R	4 to 14	17.85	4.18	13.67

Notes:

- 1. S = shallow well; D = deep well.
- 2. Elevations in feet relative to National Geodetic Vertical Datum of 1929.

Abbreviations:

AOC = area of concern

bgs = below ground surface

NA = not applicable

NM = not measured

TOC = top of casing

Table 14: AOC-001, -002, and -003 Primary Geochemical Indicators ¹ January 31, February 1 & 2, 2024
Boeing Renton Facility, Renton, Washington

Parameter		Well ID ²											
	AOC-001 / /	AOC-001 / AOC-002 Cross-Gradient Wells		AOC-001 / AOC- 002 Source Area AOC-001 / AOC-002 Downgradient Plume Wells Wells		AOC-001 / AOC-002 CPOC Wells							
	GW213S-R	GW214S-R	GW215S-R	GW193S-R	GW190S-R	GW191D-R	GW192S-R	GW246S-R	GW185S-R	GW195S-R	GW196D-R	GW197S-R	GW245S-R
Temperature (degrees C)	12.5	12.7	12.5	11.3	11.9	12.9	11.6	12.5	12.0	11.9	13.7	10.5	12.2
Specific Conductivity (μS/cm)	865	866	727	543	647	326	214	347.9	498	393	419	144	415.9
Dissolved Oxygen (mg/L)	6.02	6.19	6.02	6.38	0.01	6.15	0.30	0.02	1.69	6.21	5.80	6.46	0.01
pH (standard units)	6.71	6.41	6.55	6.16	6.35	6.39	6.22	6.43	6.46	6.22	6.12	8.93	8.72
Oxidation/Reduction Potential (mV)	-105.4	-115.6	-120.8	-81.2	-43.2	-77.6	122.1	-132.8	-35.8	-104.9	-99.7	-217.4	-334.3
Total Organic Carbon (mg/L) ³	20.26	16.81	18.95	16.77	11.5	5.81	2.01	6.13	9.28	8.07	8.19	2.81	19.67

<u>Notes</u>

1. Primary geochemical indicators are measured in the field, with the exception of total organic carbon, which is measured in the laboratory.

2. S = shallow well; D = deep well.

<u>Abbreviations</u>

μS/cm = microsiemens per centimeter
AOC = area of concern
CPOC = conditional point of compliance
degrees C = degrees Celsius
mg/L = milligrams per liter
mV = millivolts
NA = not analyzed

Table 15: AOC -001 and -002 Concentrations of Constituents of Concern¹ January 31 & February 2, 2024 Boeing Renton Facility, Renton, Washington

			Well ID ²											
	Cleanup	AOC-001 / AOC-002 Source Area	AOC-001 / A	AOC-002 Cross-0	Gradient Wells	AOC-001 ,	/ AOC-002 Do	wngradient Pl	ume Wells		AOC-001	/ AOC-002 CP	OC Wells	
Analyte	Level 4	GW193S-R	GW213S-R	GW214S-R	GW215S-R	GW190S-R	GW191D-R	GW192S-R	GW246S-R	GW185S-R	GW195S-R	GW196D-R	GW197S-R	GW245S-R
Volatile Organic Compounds (μg/L)														
Benzene	0.80	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.320	0.350
1,1-Dichloroethene	0.057	0.0200 U	0.0200 U	0.0200 U	0.0200 U	0.0200 U	0.0200 U	0.0200 U	0.0200 U	0.0200 U	0.0200 U	0.0200 U	0.150	0.0200 U
cis-1,2-Dichloroethene	0.02	0.135	0.0932	0.0347	0.0368	0.0924	0.0254	0.326	0.167	0.112	0.0899	0.0282	41.6	0.135
Trichloroethene	0.02	0.0291	0.0200 U	0.0200 U	0.0200 U	0.0200 U	0.0200 U	0.0231	0.0200 U	0.0200 U	0.0200 U	0.0200 U	0.580	0.0235
Vinyl Chloride	0.05	0.130	0.123	0.0200 U	0.0200 U	0.0506	0.0627	0.166	0.303	0.0823	0.0998	0.0243	27.0	0.0200 U

Notes:

- 1. Data qualifiers are as follows:
 - U = The analyte was not detected at the reporting limit indicated.
 - J = The value is estimated.
- 2. Bolded values exceed the cleanup levels.
- 3. S = shallow well; I = intermediate well.
- 4. Cleanup levels obtained from Table 2 of the Cleanup Action Plan.

Abbreviations:

μg/L = micrograms per liter

AOC = area of concern

CPOC = conditional point of compliance

NA = not analyzed

NE = not established

Table 16: AOC-003 Groundwater Elevation Data

February 1 & 2, 2024

Boeing Renton Facility, Renton, Washington

Well ID ¹	Screen Interval Depth (feet bgs)	TOC Elevation (feet) ²	Depth to Groundwater (feet below TOC)	Groundwater Elevation (feet) ²
GW188S	3.5 to 13.5	18.78	3.89	14.89
GW247S-R	4 to 14	18.93	4.68	14.25
GW248I	10 to 20	18.78	4.16	14.62
GW249S	4 to 14	18.85	3.67	15.18

Notes:

- 1. S = shallow well; I = intermediate well.
- 2. Elevations in feet relative to National Geodetic Vertical Datum of 1929.

Abbreviations:

AOC = area of concern

bgs = below ground surface

NA = not applicable

NM = not measured

TOC = top of casing

Table 17: AOC-003 Primary Geochemical Indicators ¹ February 1 & 2, 2024
Boeing Renton Facility, Renton, Washington

Parameter				
		AOC-003		
	AOC-003	Downgradient Plume	AOC-0	03
	Source Area	Area	CPOC A	rea
	GW249S	GW188S	GW247S-R	GW248I
Temperature (degrees C)	14.6	13.8	12.6	14.1
Specific Conductivity (µS/cm)	373	416	552	543
Dissolved Oxygen (mg/L)	0.02	5.98	0.03	0.01
pH (standard units)	6.30	6.22	6.38	6.37
Oxidation/Reduction Potential (mV)	-90.7	-76.6	-109.1	-96.4
Total Organic Carbon (mg/L) ³	12.16	11.68	11.37	11.77

Notes

- 1. Primary geochemical indicators are measured in the field, with the exception of total organic carbon, which is measured in the laboratory.
- 2. S = shallow well; I = intermediate well.

Abbreviations

 μ S/cm = microsiemens per centimeter

AOC = area of concern

CPOC = conditional point of compliance

degrees C = degrees Celsius

mg/L = milligrams per liter

mV = millivolts

NA = not analyzed

Table 18: AOC -003 Concentrations of Constituents of Concern¹ February 1 & 2, 2024

Boeing Renton Facility, Renton, Washington

		Well ID ³					
	Cleanup	AOC-003 Source Area	AOC-003 Downgradient Plume Area	AOC-003 (CPOC Area		
Analyte	Level 4, 5	GW249S	GW188S	GW247S-R	GW248I		
Volatile Organic Compounds (µg/L)							
cis-1,2-Dichloroethene	0.78	0.0576	0.0315	0.0200 U	0.0207		
Trichloroethene	0.16	0.0200 U	0.0200 U	0.0200 U	0.0200 U		
Tetrachloroethene	0.02	0.0200 U	0.0200 U	0.0200 U	0.0200 U		
Vinyl Chloride	0.24	0.214	0.207	0.467	0.383		

Notes:

- 1. Data qualifiers are as follows:
 - U = The analyte was not detected at the reporting limit indicated.
 - J = The value is estimated.
- 2. **Bolded** values exceed the cleanup levels.
- 3. S = shallow well; I = intermediate well.
- 4. Cleanup levels obtained from Table 2 of the Cleanup Action Plan.
- 5. Cleanup levels for cis, 1,2-dichloroethene, trichloroethene, and tetrachloroethene are established for wells in AOC-003 only.

Abbreviations:

μg/L = micrograms per liter

AOC = area of concern

CPOC = conditional point of compliance

NA = not analyzed

NE = not established

Table 19: AOC-004 Groundwater Elevation Data

February 6, 2024

Boeing Renton Facility, Renton, Washington

	Screen Interval Depth	TOC Elevation	Depth to Groundwater	Groundwater Elevation
Well ID ¹	(feet bgs)	(feet) ²	(feet below TOC)	(feet) ²
GW250S	4 to 14	19.31	3.57	15.74

Notes:

- 1. S = shallow well.
- 2. Elevations in feet relative to National Geodetic Vertical Datum of 1929.

Abbreviations:

AOC = area of concern bgs = below ground surface

TOC = top of casing

Table 20: AOC-004 Primary Geochemical Indicators ¹ February 6, 2024 Boeing Renton Facility, Renton, Washington

	Well ID ² Source Area
Parameter	GW250S
Temperature (degrees C)	13.4
Specific Conductivity (µS/cm)	138
Dissolved Oxygen (mg/L)	6.18
pH (standard units)	6.95
Oxidation/Reduction Potential (mV)	-53.1

Notes:

- 1. Primary geochemical indicators are measured in the field.
- 2. S = shallow well.

Abbreviations:

μS/cm = microsiemens per centimeter
AOC = area of concern
degrees C = degrees Celsius
mg/L = milligrams per liter
mV = millivolts

Table 21: AOC-004 Concentrations of Constituents of Concern February 6, 2024

Boeing Renton Facility, Renton, Washington

		Well ID ²
		Source Area
Analyte	Cleanup Level ³	GW250S
Metals (μg/L)		
Lead	1	0.112

Notes:

- 1. Data qualifiers are as follows:
 - J = The value is estimated.
- 2. S = shallow well.
- 3. Cleanup levels obtained from Table 2 of the Cleanup Action Plan.

Abbreviations:

AOC = area of concern μg/L = micrograms per liter

Table 22: AOC-060 Groundwater Elevation Data February 7, 2024

Boeing Renton Facility, Renton, Washington

Well ID ¹	Screen Interval Depth (feet bgs)	TOC Elevation (feet) ²	Depth to Groundwater (feet below TOC)	Groundwater Elevation (feet) ²
GW009S	4.5 to 14.5	19.36	5.27	14.09
GW010S	4.5 to 14.5	19.47	7.39	12.08
GW011D	29 to 39	19.49	5.39	14.10
GW012S	4.5 to 14.5	19.11	4.94	14.17
GW014S	4.5 to 14.5	19.24	5.08	14.16
GW147S	5 to 15	18.73	4.71	14.02
GW150S	5 to 15	19.10	5.23	13.87
GW253I	10 to 20	19.02	5.09	13.93

Notes:

- 1. S = shallow well; D = deep well; I = intermediate well.
- 2. Elevations in feet relative to National Geodetic Vertical Datum of 1929.

Abbreviations:

AOC = area of concern bgs = below ground surface

TOC = top of casing

Table 23: AOC-060 Primary Geochemical Indicators¹ February 7, 2024
Boeing Renton Facility, Renton, Washington

				Well ID ²			
	Source Area		Downgradier	nt Plume Area		CPOC Area	
				GW014S			
Parameter	GW009S	GW012S	GW014S	(field dup.)	GW147S	GW150S	GW253I
Temperature (degrees C)	20.0	21.1	19.6	NA	14.1	13.1	14.1
Specific Conductivity (µS/cm)	335	1575	505	NA	175	224	356
Dissolved Oxygen (mg/L)	0.02	0.01	5.23	NA	0.03	6.36	6.26
pH (standard units)	6.44	6.13	6.38	NA	6.16	6.57	6.59
Oxidation/Reduction Potential (mV)	-98.1	-145.9	-52.6	NA	-29.2	-20.1	-41.2
Total Organic Carbon (mg/L)	6.40	338.2	4.16	4.07	4.03	4.79	4.48

Notes:

1. Primary geochemical indicators are measured in the field, with the exception of total organic carbon, which is measured in the laboratory.

2. S = shallow well; I = intermediate well.

Abbreviations:

 μ S/cm = microsiemens per centimeter AOC = area of concern CPOC = conditional point of compliance degrees C = degrees Celsius field dup. = field duplicate mg/L = milligrams per liter mV = millivolts

Table 24: AOC-060 Concentrations of Constituents of Concern^{1, 2} February 7, 2024
Boeing Renton Facility, Renton, Washington

			Well ID ³					
		Source Area Cross-Gradient Wells			Downgradient Plume Well	СРОС	Area	
Analyte	Cleanup Levels ⁴	GW009S	GW012S	GW014S	GW014S (field dup.)	GW147S	GW150S	GW253I
Volatile Organic Compounds (με	g/L)							
cis -1,2-Dichloroethene	0.08	0.165	1.45	0.207	0.221	0.442	0.0509	0.0929
Trichloroethene	0.02	0.0336	0.143	0.0247	0.0279	0.0802	0.0200 U	0.0145 J
Vinyl Chloride	0.26	0.353	0.632	0.380	0.437	0.0638	0.0608	0.133

Notes:

- 1. Data qualifiers are as follows:
 - J = The value is estimated.
- 2. **Bolded** values exceed the cleanup levels.
- 3. S = shallow well; I = intermediate well.
- 4. Cleanup levels obtained from Table 2 of the Cleanup Action Plan.

Abbreviations:

μg/L = micrograms per liter

AOC = area of concern

CPOC = conditional point of compliance

field dup. = field duplicate

Table 25: AOC-090 Groundwater Elevation Data

February 8, 2024

Boeing Renton Facility, Renton, Washington

Well ID ¹	Screen Interval Depth (feet bgs)	TOC Elevation (feet) ²	Depth to Groundwater (feet below TOC)	Groundwater Elevation (feet) ²
GW176S	10 to 14.3	20.15	5	15.15
GW178S	11.2 to 15.5	22.73	7.28	15.45
GW189S	4 to 14	22.01	5.34	16.67
GW207S	7.3 to 12	21.12	6.45	14.67
GW208S	6.3 to 11	22.45	7.24	15.21

Notes:

- 1. S = shallow well.
- 2. Elevations in feet relative to National Geodetic Vertical Datum of 1929.

Abbreviations:

AOC = area of concern

bgs = below ground surface

TOC = top of casing

Table 26: AOC-090 Primary Geochemical Indicators ¹

February 8, 2024

Boeing Renton Facility, Renton, Washington

	Well ID ²					
		Downgradient				
	Source Area	Plume Area	Shallow	/ Zone CPOC A	rea	
Parameter	GW189S ³	GW176S	GW178S	GW207S	GW208S	
Temperature (degrees C)	10.7	12.4	11.9	12.8	12.0	
Specific Conductivity (µS/cm)	151	486	344	366	495	
Dissolved Oxygen (mg/L)	7.25	6.85	6.82	6.75	0.03	
pH (standard units)	6.74	6.30	6.20	6.56	6.35	
Oxidation/Reduction Potential (mV)	-36.4	-47.9	-19.0	-44.1	-61.9	
Total Organic Carbon (mg/L)	1.70	NA	NA	NA	NA	

Notes

- 1. Primary geochemical indicators are measured in the field, with the exception of total organic carbon, which is measured in the laboratory.
- 2. S = shallow well.
- 3. GW189S is the replacement well for GW168S.

Abbreviations:

 μ S/cm = microsiemens per centimeter

AOC = area of concern

CPOC = conditional point of compliance

degrees C = degrees Celsius

mg/L = milligrams per liter

mV = millivolts

NA = not analyzed

Table 27: AOC-090 Concentrations of Constituents of Concern ^{1, 2} February 8, 2024
Boeing Renton Facility, Renton, Washington

		Well ID ³					
	Cleanup	Source Area	Downgradient		Shallow Zone CPOC Area		
Analyte	Levels ⁴	GW189S ⁵	GW176S	GW178S	GW207S	GW208S	
Chlorinated Volatile Organic Comp	ounds (μg/L)						
1,1,2,2-Tetrachloroethane	0.17	0.158	NA	NA	NA	NA	
1,1,2-Trichloroethane	0.2	0.200 U	NA	NA	NA	NA	
1,1-Dichloroethene	0.057	0.0200 U	NA	NA	NA	NA	
Acetone	300	5.00 U	NA	NA	NA	NA	
Benzene	0.8	0.200 U	NA	NA	NA	NA	
Carbon Tetrachloride	0.23	0.200 U	NA	NA	NA	NA	
Chloroform	2	0.200 U	NA	NA	NA	NA	
cis-1,2-Dichloroethene	2.4	0.200 U	NA	NA	NA	NA	
Methylene Chloride	2	1.00 U	NA	NA	NA	NA	
Toluene	75	0.200 U	NA	NA	NA	NA	
trans-1,2-Dichloroethene	53.9	0.200 U	NA	NA	NA	NA	
Tetrachloroethene	0.05	0.0200 U	NA	NA	NA	NA	
Trichloroethene	0.08	0.0200 U	NA	NA	NA	NA	
Vinyl Chloride	0.13	0.0200 U	0.21	0.27	0.111	0.298	
Total Petroleum Hydrocarbons (μg	;/L)						
TPH-G (C7-C12)	800	100 U	NA	NA	NA	NA	
TPH-D (C12-C24)	500	100 U	NA	NA	NA	NA	
TPH-O (C24-C38)	500	200 U	NA	NA	NA	NA	

Notes:

- 1. Data qualifiers are as follows:
 - U = The analyte was not detected at the reporting limit indicated.
- 2. **Bolded** values exceed the cleanup levels.
- 3. S = shallow well.
- 4. Cleanup levels obtained from Table 2 of the Cleanup Action Plan.
- 5. GW189S is the replacement well for GW168S.

Abbreviations:

 μ g/L = micrograms per liter

AOC = area of concern

CPOC = conditional point of compliance

NA = not analyzed

TPH-D = total petroleum hydrocarbons as diesel

TPH-G = total petroleum hydrocarbons as gasoline

TPH-O = total petroleum hydrocarbons as motor oil

Table 28: Apron A Groundwater Elevation Data February 7, 2024

Boeing Renton Facility, Renton, Washington

Well ID ¹	Screen Interval Depth (feet bgs)	TOC Elevation (feet)	Depth to Groundwater (feet below TOC)	Groundwater Elevation (feet)
GW263S	8 to 18	21.68	7.71	13.97
GW264S	8 to 18	21.55	4.26	17.29
GW265S	8 to 18	21.64	5.50	16.14

<u>Notes</u>

1. S = shallow well.

<u>Abbreviations</u>

bgs = below ground surface

NA = not available

TOC = top of casing

Table 29: Apron A Primary Geochemical Indicators ¹ February 7, 2024
Boeing Renton Facility, Renton, Washington

	Well ID ²
	Source Area
Parameter	GW264S
Temperature (degrees C)	14.1
Specific Conductivity (μS/cm)	871
Dissolved Oxygen (mg/L)	0.05
pH (standard units)	6.13
Oxidation/Reduction Potential (mV)	-80.7
Total Organic Carbon (mg/L)	24.58

Notes

- 1. Primary geochemical indicators are measured in the field, with the exception of total organic carbon, which is measured in the laboratory.
- 2. S = shallow well.

Abbreviations

 $\mu S/cm$ = microsiemens per centimeter degrees C = degrees Celsius mg/L = milligrams per liter mV = millivolts

Table 30: Apron A Concentrations of Constituents of Concern $^{\rm 1}$ February 7, 2024

Boeing Renton Facility, Renton, Washington

Analyte	Cleanup Levels	Well ID ² GW264S
Volatile Organic Compounds (μg/L)		
cis- 1,2-Dichloroethene	NE	0.200 U
Vinyl Chloride	NE	0.810

Notes

- 1. Data qualifiers are as follows:
 - U = The analyte was not detected at the reporting limit indicated.
- 2. S = shallow well.

Abbreviations

 μ g/L = micrograms per liter

NE = not established

APPENDIX A

SUMMARY OF GROUNDWATER SAMPLING METHODOLOGY

TABLE A-1: GROUNDWATER COMPLIANCE MONITORING PLAN

Boeing Renton Facility, Renton, Washington

			Monitoring Wells ¹				
Cleanup Action Area	Cross-Gradient Wells	Source Area Wells	Downgradient Plume Wells	CPOC Wells	Additional Water Level Monitoring Wells ³	Constituents of Concern ⁴	Analyses ⁵
SWMU-168	NA	NA	NA	GW230I	NA	VC	SW8260D SIM
SWMU-172/	NA	GW152S and GW153S	GW172S, GW173S,	GW232S, GW234S,	NA	cis -1,2-DCE, PCE, TCE, VC	SW8260D SIM ⁷
SWMU-174	IVA	GW 1525 and GW 1555	and GW226S	GW235I, and GW236S	IVA	Arsenic, copper, and lead	EPA 6020A
Building 4-78/79	NA	GW031S-R, GW033S,	NA	GW143S, GW237S, and	NA	VC, TCE, cis -1,2-DCE, benzene	SW8260D
SWMU/AOC Group	IVA	GW034S, and GW244S-R	IVA	GW240D	IVA	TPH-gasoline	NWTPH-Gx
Former Fuel Farm SWMU/AOC Group	NA	NA	NA	GW211S, GW221S, and GW224S	NA	TPH-jet fuel, TPH-diesel	NWTPH-Dx
AOC-001/	GW213S-R,	CM/1035 P	GW190S-R, GW191D-R,	GW185S-R, GW195S-R,	NIA	Benzene	SW8260D
AOC-002 ⁶	GW214S-R, GW215S-R	GW193S-R	GW192S-R, and GW246S-R	and GW245S-R	NA	TCE, cis -1,2-DCE, 1,1-dichloroethene, VC	SW8260D SIM ⁷
AOC-003	NA	GW249S	GW188S	GW247S-R and GW248I	NA	VC	SW8260D
AOC-004	NA	GW250S	NA	NA	NA	Lead	EPA 6020A
AOC-060	GW012S and GW014S	GW009S	GW147S	GW150S and GW253I	GW010S and GW011D	VC, TCE, cis-1,2-DCE	SW8260D SIM ⁷
						1,1,2-Trichloroethane, acetone, benzene, toluene, carbon tetrachloride, chloroform, <i>cis</i> - 1,2-DCE, <i>trans</i> -1,2-DCE, methylene chloride	SW8260D
AOC-090 ⁸	AOC-090 ⁸ NA	NA GW189S GW	GW176S	GW178S, GW207S, and GW208S	NA	1,1-Dichloroethene, 1,1,2,2-tetrachloroethane, VC, PCE, TCE	SW8260D SIM ⁷
						TPH-gasoline	NWPTH-Gx
						TPH-diesel, TPH-motor oil	NWTPH-Dx
Apron A	NA	GW264S	NA	NA	GW263S, GW265S	cis -1,2-DCE and VC	SW8260D

Notes:

- 1. The EDR presents the groundwater monitoring frequency for each SWMU/AOC. All sites are monitored on a semi-annual basis with sampling events occurring in February and August.
- 2. Groundwater monitoring wells are also monitored for groundwater levels.
- 3. Additional wells are monitored for groundwater levels only.
- 4. In addition to COCs, primary geochemical indicators will be monitored during each regular monitoring event. Geochemical indicators are listed in Table A-2.
- 5. Details of analytical methods are specified in the Quality Assurance Project Plan, which is Appendix E to the Cleanup Action Plan (AMEC, 2012).
- 6. Monitoring wells were abandoned on 11/25/2019 prior to Apron R construction and were replaced upon completion of construction.
- 7. SIM methods will be used if the cleanup level is lower than the reporting limit achieved by the conventional 8021, 8260, or 8270 method. If cleanup levels become higher or if the conventional 8021, 8260, or 8270 method are updated and able to achieve reporting limits below the cleanup levels, then the conventional method rather than the SIM method will be used.
- 8. GW189S will be sampled for CVOCs and TPH, all other wells will only be sampled for VC.

Abbreviations:

AOC = area of concern cis -1,2-DCE = cis -1,2 dichloroethene COCs = constituents of concern CPOC = conditional point of compliance CVOCs = chlorinated volatile organic compounds EDR = Engineering Design Report

EPA = Environmental Protection Agency
NA = not applicable
PCE = tetrachloroethene

SIM = selected ion monitoring SWMU = solid waste management unit TCE = trichloroethene TPH = total petroleum hydrocarbons trans -1,2-DCE = trans -1,2 dichloroethene VC = vinyl chloride

TABLE A-2: MONITORED NATURAL ATTENUATION/MONITORED ATTENUATION PLAN

Boeing Renton Facility, Renton, Washington

Cleanup Action		Groundwa	Primary Geochemical Parameters ^{1, 2}		
Area	Cross-Gradient Wells	Source Area Wells	Downgradient Plume Wells	CPOC Wells	Indicators
SWMU-168	NA	NA	NA	GW230I	Dissolved oxygen, pH, ORP, temperature, specific conductance
SWMU-172/SWMU-174	NA	GW152S and GW153S	GW172S, GW173S, and GW226S	GW232S, GW234S, GW235I, and GW236S	Dissolved oxygen, pH, ORP, temperature, specific conductance, TOC
Building 4-78/79 SWMU/AOC Group	NA	GW031S-R, GW033S, GW034S, and GW244S-R	NA	GW143S, GW237S, and GW240D	Dissolved oxygen, pH, ORP, temperature, specific conductance, TOC
Former Fuel Farm SWMU/AOC Group	NA	NA	NA	GW211S, GW221S, and GW224S	Dissolved oxygen, pH, ORP, temperature, specific conductance
AOC-001/AOC-002 ³	GW213S-R, GW214S-R, GW215S-R	GW193S-R	GW190S-R, GW191D-R, GW192S- R, and GW246S-R	GW185S-R, GW195S-R, GW196D- R, GW197S-R, and GW245S-R	Dissolved oxygen, pH, ORP, temperature, specific conductance, TOC
AOC-003	NA	GW249S	GW188S	GW247S-R and GW248I	Dissolved oxygen, pH, ORP, temperature, specific conductance, TOC
AOC-004	NA	GW250S	NA	NA	Dissolved oxygen, pH, ORP, temperature, specific conductance
AOC-060	GW012S and GW014S	GW009S	GW147S	GW150S and GW253I	Dissolved oxygen, pH, ORP, temperature, specific conductance, TOC
AOC-090	NA	GW189S	GW176S	GW178S, GW207S, and GW208S	Dissolved oxygen, pH, ORP, temperature, specific conductance, TOC ⁴
Apron A	NA	GW264S	NA	NA	Dissolved oxygen, pH, ORP, temperature, specific conductance, TOC

Notes

- 1. In addition to COCs listed in Table A-1, primary geochemical indicators will be monitored during each regular monitoring event.
- 2. All primary geochemical indicators except TOC are monitored in the field during sampling. TOC is analyzed in the laboratory following methods specified in the Quality Assurance Project Plan, which is Appendix E to the Cleanup Action Plan (AMEC, 2012).
- The primary geochemical indicators differ slightly depending on whether the site is a fuel-related site or a solvent-related site.
- At a fuel-related site, TOC is not necessary; at a solvent-related site, TOC is a measure of how much electron donor remains present. All MNA parameters are measured semiannually in all wells on a wet season/dry season basis.
- 3. Monitoring wells were abandoned on 11/25/2019 prior to Apron R construction and were replaced upon completion of construction.
- 4. TOC will only be analyzed in the groundwater from the source area well (GW189S).

Abbreviations:

AOC = area of concern

COCs = constituents of concern

CPOC = conditional point of compliance

MNA = monitored natural attenuation

NA = not applicable

ORP = oxidation reduction potential

SWMU = solid waste management unit

TOC = total organic carbon

APPENDIX BFIELD FORMS

Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057

98057 Client: The Boeing Company

RGW185S-R

1-Well Integrity

Date	01/31/2024	Time	15:17
Inspector Name	Jacklyn Perkins	Well Permit Number	No tag
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	Yes	Outside ID Intact	No
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	No
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None
Any repairs/replacement (explain)	None	Pump	QED portable Bladder Pump (non dedicated)
Total drawdown	-0.15000000000000036	Did well meet SAP/WP stabilization requirements before sampling?	No; DO did not stabilize, <0.10 DO; SPC did not stabilize; turbidity did not stabilize; purged >30 min
Instrument calibration date	01/29/2024	Instrument calibration time	12:00
Comments	None		
2-Gauging			
Date	01/31/2024	Time	15:17
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	4.14
Final DTW (ft)	4.29	Groundwater elevation	NA
Well Depth (ft)	13.48	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Final dtw 4.29		
3-Wellhead			
Date	02/01/2024	Time	12:55
Weather Conditions	Partly Sunny	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	180
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	4
Pump Intake Depth (ft omp)	9.5	Depth to Water (ft bmp)	4.14
Measured Well Depth (ft bmp)	13.48	Water Column in Well	NA

Detailed Low Flow Sampling Info Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

Gallons in Well	NA	Casing Volume to Remove	NA
Total Volume to Remove	NA		
Remarks	None		

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
01/31/24	12:13	180	360	360	4.26	5.64	11.7	6.53	0.282	1.8	88.77	
02/01/24	12:17	180	720		4.28	5.08	11.5	6.51	0.276	7.1	85.13	
02/01/24	12:21	180	720.0		4.29	5.04	11.4	6.51	0.270	10.1	84.80	
02/01/24	12:25	180	720.0		4.30	4.96	11.4	6.49	0.287	7.4	79.20	
02/01/24	12:29	180	720.0		4.31	3.88	11.7	6.46	0.387	-10.9	153.38	
02/01/24	12:33	180	720.0		4.31	2.63	11.9	6.46	0.447	-22.5	36.64	
02/01/24	12:37	180	720.0		4.31	2.23	12	6.46	0.471	-27.9	32.83	
02/01/24	12:41	180	720.0		4.32	2.02	12	6.46	0.480	-30.6	31.89	
02/01/24	12:45	180	720.0		4.32	1.83	12	6.46	0.491	-33.4	30.05	
02/01/24	12:49	180	720.0		4.32	1.69	12.0	6.46	0.498	-35.8	26.83	

5-Sample

Date	02/01/2024	Time	12:52
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/01/2024	Sample Time	12:40
Sample ID	RGW185S-R-02012024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Jacklyn Perkins
Sampler's Signature:	NA	No. of Containers	7
Analysis	EPA 8260D, SM 5310C,8260D SIN	 Matrix	Water
Filtered?	NO	COC	24B0043
Bottles	6x HCl VOA, 1x 250mL H2SO4 amber	Sampler Signature	Johnford
Remarks	None		

737 Logan Avenue N, Renton, Washington 98057 Client: The Boeing Company

Project No: PS20203450

RGW190S-R

1-Well Integrity

Date	02/01/2024	Time	09:09
Inspector Name	Jacklyn Perkins	Well Permit Number	BPQ-882
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	Yes	Outside ID Intact	Yes
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	Yes
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None
Any repairs/replacement (explain)	None	Pump	GeoTech Bladder Pump
	-0.089999999999986	Did well meet SAP/WP stabilization requirements	Yes
Total drawdown	01/29/2024	before sampling?	12:00
Instrument calibration date		Instrument calibration time	
Comments	None		
2-Gauging			
Date	02/01/2024	Time	09:10
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	4.21
Final DTW (ft)	4.3	Groundwater elevation	NA
Well Depth (ft)	13.07	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Final dtw 4.3		
3-Wellhead			
Date	02/01/2024	Time	09:12
Weather Conditions	Cloudy, Rain	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	230
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	4
Pump Intake Depth (ft bmp)	8	Depth to Water (ft bmp)	4.21
Measured Well Depth (ft	13.07	Water Column in Well	8.86
bmp)	5.78046		NA
Gallons in Well		Casing Volume to Remove	

Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

Total Volume to Remove

NA			

Remarks

None

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/01/24	09:12	230	115	115	4.25	2.74	11.8	6.52	0.636	-62.8	92.87	
02/01/24	09:16	230			4.27	0.35	11.9	6.35	0.655	-50.5	93.44	
02/01/24	09:20	230			4.28	0.14	11.9	6.35	0.656	-45.7	86.46	
02/01/24	09:24	230			4.30	0.06	11.8	6.35	0.651	-44.0	81.68	
02/01/24	09:29	230			4.30	0.01	11.9	6.37	0.648	-42.8	75.32	
02/01/24	09:32	230			4.30	0.01	11.9	6.36	0.649	-43.1	73.80	
02/01/24	09:36	230			4.30	0.01	11.9	6.35	0.647	-43.2	72.43	Orange tint, bacterial growth in casing

5-Sample

Date	02/01/2024	Time	09:32
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/01/2024	Sample Time	09:40
Sample ID	RGW190S-R-02012024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Jacklyn Perkins
Sampler's Signature:	NA	No. of Containers	7
Analysis	EPA 8260D, SM 5310C,8260D SIN	[∬] Matrix	Water
Filtered?	NO	COC	24B0043
Bottles	6x HCI VOA, 1x 250mL H2SO4 amber	Sampler Signature	John Duh-
Remarks	None		

Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

RGW191D-R

1-Well Integrity

Date	02/02/2024	Time	08:44
Inspector Name	Lindsey Wielick	Well Permit Number	BPQ-820
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	Yes	Outside ID Intact	Yes
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	No
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None
Any repairs/replacement (explain)	None	Pump	GeoTech Bladder Pump
Total drawdown	0.1900000000000004	Did well meet SAP/WP stabilization requirements	Yes
Instrument calibration date	01/29/2024	before sampling? Instrument calibration time	12:00
	None		
Comments	None		
2-Gauging			
Date	02/02/2024	Time	08:45
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	3.97
Final DTW (ft)	3.78	Groundwater elevation	NA
Well Depth (ft)	34.02	Free Product?	No
Depth To NAPL	NA	Well Dry?	<u>N</u>
Remarks	Final DTW: 3.78		
3-Wellhead			
Date	02/02/2024	Time	08:45
Weather Conditions	Cloudy	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	115
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	4
Pump Intake Depth (ft omp)	31	Depth to Water (ft bmp)	3.97
Measured Well Depth (ft bmp)	34.02	Water Column in Well	30.05
Gallons in Well	19.6052878	Casing Volume to Remove	NA
		=	

Detailed Low Flow Sampling Info Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

T	otal	Volume	to	Remove
	Otal	v Olullic	w	INCITIONE

NA			

Remarks

None

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/02/24	08:50	115	200	200	3.78	7.32	11.9	6.37	0.309	45.1	12.98	
02/02/24	08:54	115			3.78	6.41	12.8	6.22	0.327	-18.3	17.46	
02/02/24	08:58	115			3.79	6.31	12.8	6.25	0.331	-38.3	22.76	
02/02/24	09:02	115			3.78	6.19	12.8	6.26	0.333	-51.1	25.33	
02/02/24	09:06	115			3.78	6.18	12.8	6.28	0.334	-57.2	19.99	
02/02/24	09:10	115			3.78	6.18	12.7	6.32	0.332	-63.8	21.94	
02/02/24	09:14	115			3.79	6.15	12.8	6.34	0.330	-68.7	58.31	
02/02/24	09:18	115			3.78	6.20	12.8	6.38	0.328	-71.2	74.03	
02/02/24	09:22	115			3.78	6.18	12.8	6.37	0.326	-74.2	75.63	
02/02/24	09:26	115	460.0		3.78	6.15	12.9	6.39	0.326	-77.6	69.72	

5-Sample

Date	02/02/2024	Time	08:51
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/02/2024	Sample Time	09:35
Sample ID	RGW191D-R-02022024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Lindsey Wielick
Sampler's Signature:	NA	No. of Containers	7
Analysis	EPA 8260D, SM 5310C,8260D SIM	¹ Matrix	Water
Filtered?	NO	COC	24B0049
Bottles	6x HCl VOA, 1x 250mL H2SO4 amber	Sampler Signature	John John
Remarks	None		

Detailed Low Flow Sampling InfoSite: Boeing Renton
737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

RGW192S-R

1-Well Integrity

Date	02/01/2024	Time	10:39
Inspector Name	Jacklyn Perkins	Well Permit Number	BPQ-821
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	Yes	Outside ID Intact	No
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	No
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None
Any repairs/replacement (explain)	None	Pump	GeoTech Bladder Pump
Total drawdown	-2.39999999999999	Did well meet SAP/WP stabilization requirements before sampling?	No; DO did not stabilize, <0.10 DO; ORP did not stabilize; purged >30 min
Instrument calibration date	01/29/2024	Instrument calibration time	12:00
Comments	None		
2-Gauging			
Date	02/01/2024	Time	10:39
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	3.95
Final DTW (ft)	6.35	Groundwater elevation	NA
Well Depth (ft)	9.44	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Final dtw 6.35		
3-Wellhead			
Date	02/01/2024	Time	11:17
Weather Conditions	Partly Sunny	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	200
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	4
Pump Intake Depth (ft bmp)	7	Depth to Water (ft bmp)	3.95
Measured Well Depth (ft bmp)	9.44	Water Column in Well	NA
Gallons in Well	NA	Casing Volume to Remove	NA
		~	

Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

Total	Volume to Remove
-------	------------------

NA			

Remarks

None

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/01/24	10:43	200	200	200	4.30	2.65	11.5	6.41	0.217	69.1	22.41	
02/01/24	10:47	200			4.44	0.83	11.5	6.25	0.213	92.0	20.79	
02/01/24	10:51	200			4.59	0.49	11.5	6.20	0.213	109.6	18.89	
02/01/24	10:55	200			4.72	0.37	11.5	6.19	0.213	122.1	18.87	
02/01/24	11:03	200			5.14	0.27	11.6	6.18	0.216	131.5	17.75	
02/01/24	11:08	200			5.38	0.42	11.6	6.18	0.216	132.9	17.60	
02/01/24	11:12	200			5.47	0.35	11.6	6.19	0.218	125.0	16.79	
02/01/24	11:16	200			5.66	0.25	11.6	6.20	0.220	107.2	17.30	
02/01/24	11:20	200			5.88	0.25	11.6	6.21	0.220	100.2	17.07	
02/01/24	11:24	200			6.07	0.26	11.6	6.24	0.220	99.2	18.17	
02/01/24	11:59	200			4.93	0.30	11.6	6.22	0.214	122.1	18.14	

5-Sample

Date	02/01/2024	Time	10:52
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/01/2024	Sample Time	11:30
Sample ID	RGW192S-R-02012024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Jacklyn Perkins
Sampler's Signature:	NA	No. of Containers	7
Analysis	EPA 8260D, SM 5310C,8260D SI	M Matrix	Water
Filtered?	NO	COC	24B0043
Bottles	6x HCI VOA, 1x 250mL H2SO4 amber	Sampler Signature	John John Land
Remarks	None		

Detailed Low Flow Sampling Info Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057 Client: The Boeing Company

Project No: PS20203450

RGW193S-R

1-Well Integrity

1-Wen integrity			
Date	02/01/2024	Time	09:58
nspector Name	Lindsey Wielick	Well Permit Number	BPQ-818
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	Yes	Outside ID Intact	Yes
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	Yes
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None
Any repairs/replacement (explain)	None	Pump	GeoTech Bladder Pump
Total drawdown	0	Did well meet SAP/WP stabilization requirements before sampling?	Yes
Instrument calibration date	01/29/2024	Instrument calibration time	12:00
Comments	None		
2-Gauging			
Date	02/01/2024	Time	09:58
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	4.44
Final DTW (ft)	4.44	Groundwater elevation	NA
Well Depth (ft)	12.29	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Final DTW: 4.44		
3-Wellhead			
Date	02/01/2024	Time	09:58
Weather Conditions	Cloudy, Rain	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	230
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	4
Pump Intake Depth (ft omp)	7.9	Depth to Water (ft bmp)	4.44
Measured Well Depth (ft bmp)	12.29	Water Column in Well	7.85
.			

Casing Volume to Remove NA

Gallons in Well

5.1215144

Detailed Low Flow Sampling InfoSite: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

Total Volume to Remove	INA

None Remarks

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/01/24	10:03	230	200	200	4.45	7.25	11.3	6.13	0.586	-21.8	37.86	
02/01/24	10:07	230			4.44	6.56	11.3	6.13	0.545	-49.5	50.12	
02/01/24	10:11	230			4.43	6.50	11.2	6.14	0.541	-62.3	45.16	
02/01/24	10:15	230			4.44	6.46	11.2	6.15	0.543	-69.8	38.11	
02/01/24	10:19	230			4.43	6.45	11.2	6.15	0.543	-74.5	34.22	
02/01/24	10:23	230			4.43	6.42	11.2	6.15	0.543	-78.0	32.16	
02/01/24	10:28	230	1150.0		4.45	6.38	11.3	6.16	0.543	-81.2	31.68	Slight sheen on wastewa

5-Sample

Date	02/01/2024	Time	10:10
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/01/2024	Sample Time	10:35
Sample ID	RGW193S-R-02012024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Lindsey Wielick
Sampler's Signature:	NA	No. of Containers	7
Analysis	EPA 8260D, SM 5310C,8260D S	^{IM} Matrix	Water
Filtered?	NO	COC	24B0043
Bottles	6x HCl VOA, 1x 250mL H2SO4 amber	Sampler Signature	John Quh-
Remarks	None		

Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

RGW195S-R

1-Well Integrity

1-Wen integrity			
Date	01/31/2024	Time	11:32
Inspector Name	Lindsey Wielick	Well Permit Number	BPQ-824
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	Yes	Outside ID Intact	Yes
Well Cap Present	Yes	Inside Measurement Point	No
nside Casing Clear of Debris	Yes	Ponded Water Inside Casing	No
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None
Any repairs/replacement (explain)	None	Pump	GeoTech Bladder Pump
Total drawdown	-0.0499999999999982	Did well meet SAP/WP stabilization requirements before sampling?	Yes
Instrument calibration date	01/29/2024	Instrument calibration time	12:00
Comments	None		
2-Gauging			
Date	01/31/2024	Time	11:32
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	4.90
Final DTW (ft)	4.95	Groundwater elevation	NA
Well Depth (ft)	11.68	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Final DTW: 4.95		
3-Wellhead			
Date	01/31/2024	Time	11:33
Weather Conditions	Cloudy, light rain	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	166
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	4
Pump Intake Depth (ft omp)	9.5	Depth to Water (ft bmp)	4.90
Measured Well Depth (ft bmp)	11.68	Water Column in Well	6.78
* *	4 400 4007		N.1.A

Casing Volume to Remove NA

Project No: PS20203450

4.4234227

Gallons in Well

Client: The Boeing Company

Total	Volume to Remove	
-------	------------------	--

NA			

Remarks

None

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
01/31/24	11:50	166	200	200	4.96	6.45	12.3	6.05	0.386	-57.5	15.23	
01/31/24	11:54	166			4.97	4.21	12.1	6.14	0.394	-92.6	28.07	
01/31/24	11:58	166			4.98	6.19	12.0	6.17	0.394	-99.7	26.15	
01/31/24	12:02	166			4.97	6.22	12.0	6.19	0.394	-102.1	31.41	
01/31/24	12:06	166			4.99	6.18	12.0	6.21	0.394	-105.2	31.79	
01/31/24	12:10	166			4.99	6.21	11.9	6.22	0.393	-104.9	31.63	

5-Sample

Date	01/31/2024	Time	12:12
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	01/31/2024	Sample Time	12:15
Sample ID	RGW-195S-R-01312024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Lindsey Wielick
Sampler's Signature:	NA	No. of Containers	7
Analysis	EPA 8260D, SM 5310C,8260D SIM	Matrix	Water
Filtered?	NO	COC	24B0045
Bottles	6x HCl VOA, 1x 250mL H2SO4 amber	Sampler Signature	John Quh
Remarks	None		

Client: The Boeing Company

RGW196D-R

1-Well Integrity

Date	01/31/2024	Time	12:44
Inspector Name	Lindsey Wielick	Well Permit Number	BPQ-825
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	Yes	Outside ID Intact	Yes
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	No
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None
Any repairs/replacement (explain)	None	Pump	GeoTech Bladder Pump
Total drawdown	-0.0599999999999961	Did well meet SAP/WP stabilization requirements before sampling?	No; turbidity did not stabilize
Instrument calibration date	01/29/2024	Instrument calibration time	12:00
	None	Instrument campitation time	
Comments	None		
2-Gauging			
Date	01/31/2024	Time	12:45
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	4.70
Final DTW (ft)	4.76	Groundwater elevation	NA
Well Depth (ft)	34.34	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Final DTW: 4.76		
3-Wellhead			
Date	01/31/2024	Time	12:45
Weather Conditions	Cloudy, Rain	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	166
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	4
Pump Intake Depth (ft bmp)	31	Depth to Water (ft bmp)	4.70
Measured Well Depth (ft bmp)	34.34	Water Column in Well	29.64
Gallons in Well	19.3377947	Casing Volume to Remove	NA

Client: The Boeing Company

Total	Volume to Remove	
-------	------------------	--

NA			

Remarks

None

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
01/31/24	12:51	166	200	200	4.72	6.61	12.9	6.19	0.420	-29.2	12.12	
01/31/24	12:55	166			4.74	5.92	13.7	6.07	0.419	-64.6	14.78	
01/31/24	12:59	166			4.74	5.84	13.8	6.12	0.422	-85.6	14.06	
01/31/24	13:03	166			4.75	5.87	13.8	6.12	0.422	-91.7	14.02	
01/31/24	13:07	166			4.72	5.87	13.8	6.12	0.422	-97.1	12.89	
01/31/24	13:11	166			4.75	5.80	13.7	6.12	0.419	-99.7	13.34	

5-Sample

Date	01/31/2024	Time	12:54
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	01/31/2024	Sample Time	13:15
Sample ID	RGW-196D-R-01312024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Lindsey Wielick
Sampler's Signature:	NA	No. of Containers	7
Analysis	EPA 8260D, SM 5310C,8260D SIM	Matrix	Water
Filtered?	NO	COC	24B0045
Bottles	6x HCl VOA, 1x 250mL H2SO4 amber	Sampler Signature	John Doh
Remarks	None		

Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

RGW197S-R

1-Well Integrity

1-Well integrity			
Date	01/31/2024	Time	15:03
Inspector Name	Lindsey Wielick	Well Permit Number	No tag
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	Yes	Outside ID Intact	Yes
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	No
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None
Any repairs/replacement (explain)	None	Pump	GeoTech Bladder Pump
Total drawdown	-0.0599999999999961	Did well meet SAP/WP stabilization requirements before sampling?	Yes
Instrument calibration date	01/29/2024	Instrument calibration time	12:00
Comments	None		
2-Gauging			
Date	01/31/2024	Time	15:10
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	4.69
Final DTW (ft)	4.75	Groundwater elevation	NA
Well Depth (ft)	12.15	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Final DTW: 4.75		
3-Wellhead			
Date	01/31/2024	Time	15:10
Weather Conditions	Cloudy, Rain	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	230
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	4
Pump Intake Depth (ft omp)	10	Depth to Water (ft bmp)	4.69
Measured Well Depth (ft bmp)	12.15	Water Column in Well	NA

Project No: PS20203450

Casing Volume to Remove NA

Gallons in Well

NA

Remarks

Detailed Low Flow Sampling InfoSite: Boeing Renton
737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

Total Volume to Remove	٦.
------------------------	----

INA			

None

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
01/31/24	15:13	230	300	300	4.71	6.67	10.7	8.55	0.195	-153.1	34.21	
01/31/24	15:17	230			4.71	6.47	10.6	8.96	0.144	-198.7	18.51	
01/31/24	15:21	230			4.72	6.44	10.6	8.99	0.143	-214.4	18.27	
01/31/24	15:25	230			4.70	6.42	10.6	8.98	0.144	-233.9	15.41	
01/31/24	15:29	230			4.72	6.42	10.6	8.94	0.144	-225.3	13.11	
01/31/24	15:33	230			4.71	6.43	10.5	8.96	0.144	-222.7	13.92	
01/31/24	15:37	230			4.71	6.46	10.5	8.93	0.144	-217.4	12.09	

5-Sample

Date	01/31/2024	Time	15:19
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	01/31/2024	Sample Time	15:45
Sample ID	RGW-197S-R-01312024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Lindsey Wielick
Sampler's Signature:	NA	No. of Containers	7
Analysis	EPA 8260D, SM 5310C,8260D SIM	[∬] Matrix	Water
Filtered?	NO	COC	24B0045
Bottles	6x HCl VOA, 1x 250mL H2SO4 amber	Sampler Signature	John Dohn
Remarks	None		

737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

RGW213S-R

1-Well Integrity

Date	02/01/2024	Time	14:29
Inspector Name	Lindsey Wielick	Well Permit Number	BPQ-829
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	Yes	Outside ID Intact	Yes
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	No
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None
Any repairs/replacement (explain)	None	Pump	GeoTech Bladder Pump
		Did well meet SAP/WP stabilization requirements	
Total drawdown	-0.3200000000000003	before sampling?	Yes
Instrument calibration date	01/29/2024	Instrument calibration time	12:00
Comments	None		
2-Gauging			
Date	02/01/2024	Time	14:29
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	4.38
Final DTW (ft)	4.7	Groundwater elevation	NA
Well Depth (ft)	12.89	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Final DTW: 4.70		
3-Wellhead			
Date	02/01/2024	Time	14:30
Weather Conditions	Sunny	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	170
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	4
Pump Intake Depth (ft bmp)	8	Depth to Water (ft bmp)	4.38
Measured Well Depth (ft bmp)	12.89	Water Column in Well	8.51
Gallons in Well	5.5521131	Casing Volume to Remove	NA
Canona in well		Casing volume to Remove	

Project No: PS20203450

Client: The Boeing Company

Total Volume to Remove	NA
Remarks	None

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperal (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/01/24	14:30	170	90	90	4.28	6.57	12.6	6.79	0.778	-46.2	30.46	
02/01/24	14:34	170			4.36	6.14	12.6	6.74	0.850	-70.6	14.41	
02/01/24	14:38	170			4.50	6.06	12.6	6.72	0.863	-88.3	13.78	
02/01/24	14:42	170			4.54	6.03	12.6	6.72	0.865	-96.0	15.25	
02/01/24	14:46	170			4.61	6.02	12.5	6.71	0.865	-101.6	15.08	
02/01/24	14:50	170			4.68	6.02	12.5	6.71	0.865	-105.4	15.45	

5-Sample

Date	02/01/2024	Time	14:35
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/01/2024	Sample Time	14:55
Sample ID	RGW213S-R-02012024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Lindsey Wielick
Sampler's Signature:	NA	No. of Containers	7
Analysis	EPA 8260D, SM 5310C,8260D SIM	Matrix	Water
Filtered?	NO	COC	24B0043
Bottles	6x HCl VOA, 1x 250mL H2SO4 amber	Sampler Signature	July July
Remarks	None		

Client: The Boeing Company

RGW214S-R

1-Well Integrity

Date	02/01/2024	Time	12:05
Inspector Name	Lindsey Wielick	Well Permit Number	BPQ-828
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	Yes	Outside ID Intact	Yes
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	Yes
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None
Any repairs/replacement (explain)	None	Pump	GeoTech Bladder Pump
	-0.529999999999994	Did well meet SAP/WP stabilization requirements	Yes
Total drawdown	01/29/2024	before sampling?	12:00
Instrument calibration date		Instrument calibration time	
Comments	None		
2-Gauging			
Date	02/01/2024	Time	12:05
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	4.40
Final DTW (ft)	4.93	Groundwater elevation	NA
Well Depth (ft)	13.35	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Final DTW 4.93		
3-Wellhead			
Date	02/01/2024	Time	12:06
Weather Conditions	Partly Sunny	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	200
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	4
Pump Intake Depth (ft omp)	NA	Depth to Water (ft bmp)	4.40
Measured Well Depth (ft bmp)	13.35	Water Column in Well	NA
Gallons in Well	NA	Casing Volume to Remove	NA
Sanono in TTOII		Casing volume to remove	

Project No: PS20203450

Remarks

Detailed Low Flow Sampling Info Site: Boeing Renton

Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

V

NA			
None			

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/01/24	12:07	200	200	200	4.11	7.28	12.4	6.35	0.697	-33.9	22.42	
02/01/24	12:11	200			4.24	6.90	12.6	6.38	0.849	-77.4	13.13	
02/01/24	12:15	200			4.32	6.64	12.6	6.39	0.860	-92.8	11.08	
02/01/24	12:19	200			4.42	6.50	12.6	6.39	0.863	-102.3	11.83	
02/01/24	12:23	200			4.49	6.34	12.7	6.40	0.864	-108.6	11.79	
02/01/24	12:27	200			4.57	6.25	12.7	6.43	0.865	-113.2	12.54	
02/01/24	12:31	200			4.62	6.19	12.7	6.41	0.866	-115.6	12.38	

5-Sample

Date	02/01/2024	Time	12:20
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/01/2024	Sample Time	12:35
Sample ID	RGW214S-R-02012024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Lindsey Wielick
Sampler's Signature:	NA	No. of Containers	7
Analysis	EPA 8260D, SM 5310C,8260D SIN	M Matrix	Water
Filtered?	NO	COC	24B0043
Bottles	6x HCl VOA, 1x 250mL H2SO4 amber	Sampler Signature	John John
Remarks	None		

737 Logan Avenue N, Renton, Washington 98057 Client: The Boeing Company

RGW215S-R

1-Well Integrity

1-Well integrity			
Date	02/01/2024	Time	11:09
Inspector Name	Lindsey Wielick	Well Permit Number	BPQ-830
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	Yes	Outside ID Intact	Yes
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	Yes
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None
Any repairs/replacement (explain)	None	Pump	GeoTech Bladder Pump
Total drawdown	-0.25	Did well meet SAP/WP stabilization requirements before sampling?	No; turbidity did not stabilize
Instrument calibration date	01/29/2024	Instrument calibration time	12:00
Comments	None		
2-Gauging			
Date	02/01/2024	Time	11:09
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	4.34
Final DTW (ft)	4.59	Groundwater elevation	NA
Well Depth (ft)	12.88	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Final DTW: 4.59		
3-Wellhead			
Date	02/01/2024	Time	11:09
Weather Conditions	Partly Cloudy, Partly Sunny	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	144
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	4
Pump Intake Depth (ft bmp)	8	Depth to Water (ft bmp)	4.34
Measured Well Depth (ft bmp)	12.88	Water Column in Well	8.54
- *	= ==100=0		N.1.A

Project No: PS20203450

Casing Volume to Remove NA

Gallons in Well

5.5716858

Client: The Boeing Company

Total	Volume	to	Remove
lotai	v Olullic	w	IXCIIIOVC

NA			

Remarks

None

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/01/24	11:12	144	144	144	4.21	6.89	12.1	6.41	0.624	1.9	17.48	
02/01/24	11:16	144			4.31	6.18	12.5	6.56	0.723	-79.9	17.18	
02/01/24	11:20	144			4.41	6.11	12.5	6.53	0.726	-97.2	17.80	
02/01/24	11:24	144			4.48	6.06	12.6	6.54	0.727	-108.2	13.19	
02/01/24	11:28	144			4.50	6.04	12.5	6.55	0.727	-113.6	14.40	
02/01/24	11:32	144			4.52	6.03	12.5	6.55	0.727	-117.8	12.38	
02/01/24	11:36	144			4.57	6.02	12.5	6.55	0.727	-120.8	13.34	

5-Sample

Date	02/01/2024	Time	11:31
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/01/2024	Sample Time	11:45
Sample ID	RGW215S-R-02012024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Lindsey Wielick
Sampler's Signature:	NA	No. of Containers	7
Analysis	EPA 8260D, SM 5310C,8260D SIM	[/] Matrix	Water
Filtered?	NO	COC	24B0043
Bottles	6x HCl VOA, 1x 250mL H2SO4 amber	Sampler Signature	John John
Remarks	None		

Client: The Boeing Company

RGW245S-R

1-Well Integrity

Date	01/31/2024	Time	11:34
Inspector Name	Jacklyn Perkins	Well Permit Number	BPQ-826
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	Yes	Outside ID Intact	Yes
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	No
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None
Any repairs/replacement (explain)	None	Pump	GeoTech Bladder Pump
Total drawdown	-0.319999999999994	Did well meet SAP/WP stabilization requirements before sampling?	Yes
Instrument calibration date	01/29/2024	Instrument calibration time	12:00
Date	01/31/2024	 Time	12:43
Inspector Name	Jacklyn Perkins	Well Permit Number	BPQ-826
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	Yes	Outside ID Intact	Yes
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	Yes
No Apparent Physical Damage	Yes	Pump	GeoTech Bladder Pump
Total drawdown	-0.319999999999994	Did well meet SAP/WP stabilization requirements before sampling?	Yes

Project No: PS20203450

Detailed Low Flow Sampling Info Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

Instrument calibration date	01/29/2024	Instrument calibration time	12:00
Comments	None		
2-Gauging			
Date	01/31/2024	Time	12:43
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	4.8
Final DTW (ft)	5.14	Groundwater elevation	NA
Well Depth (ft)	12.59	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Final DTW 5.14		
3-Wellhead			
Date	01/31/2024	Time	11:39
Weather Conditions	Cloudy, light rain	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	200
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	4
Pump Intake Depth (ft bmp)	8	Depth to Water (ft bmp)	4.80
Measured Well Depth (ft bmp)	12.59	Water Column in Well	7.79
Gallons in Well	5.08237	Casing Volume to Remove	NA
Total Volume to Remove	NA		
Remarks	None		

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
01/31/24	12:03	200	200	200	4.97	0.00	12.2	9.02	380.9	-265.8	8.14	
01/31/24	12:07	200			5.03	0.00	12.2	9.01	381.8	-280.9	6.31	
01/31/24	12:11	200					12.2					Paused purging until 12:53
01/31/24	12:53	200			4.90	-0.08	12.1	8.79	403.0	-239.5	7.42	
01/31/24	12:57	200			5.00	-0.09	12.2	8.79	406.1	-296.3	6.29	
01/31/24	13:01	200			5.04	-0.09	12.2	8.78	407.3	-319.1	4.96	
01/31/24	13:05	200			5.07	-0.09	12.2	8.74	411.9	-324.5	5.80	

Project No: PS20203450

Detailed Low Flow Sampling Info Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057 Client: The Boeing Company

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
01/31/24	13:09	200			5.08	-0.09	12.2	8.72	415.9	-330.8	5.60	
01/31/24	13:13	200			5.10	-0.09	12.2	8.72	415.9	-334.3	5.58	Greyish tinge, slight diesel odor

5-Sample

Date	01/31/2024	Time	12:43
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	01/31/2024	Sample Time	13:30
Sample ID	RGW245S-R-01312024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Jacklyn Perkins
Sampler's Signature:	NA	No. of Containers	7
Analysis	EPA 8260D, SM 5310C,8260D SIM	¹ Matrix	Water
Filtered?	NO	COC	24B0045
Bottles	6x HCl VOA, 1x 250mL H2SO4 amber	Sampler Signature	Joh Polh
Remarks	Greyish tinge		

Client: The Boeing Company

RGW246S-R

1-Well Integrity

1-vvcii integrity			
Date	01/31/2024	Time	09:42
Inspector Name	Jacklyn Perkins, Lindsey Wielick	Well Permit Number	BPQ-823
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	Yes	Outside ID Intact	Yes
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	No
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None
Any repairs/replacement (explain)	None	Pump	GeoTech Bladder Pump
Total drawdown	-0.240000000000002	Did well meet SAP/WP stabilization requirements before sampling?	No; DO did not stabilize, <0.10 DO
Instrument calibration date	01/29/2024	Instrument calibration time	12:00
Comments	None		
2-Gauging			
Date	01/31/2024	Time	09:44
Top of Casing	NA	Screen Interval	NA
	NA		<u> </u>

Date	01/31/2024	Time	09:44
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	4.18
Final DTW (ft)	4.42	Groundwater elevation	NA
Well Depth (ft)	13.25	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Final DTW: 4.42 ft		

3-Wellhead

Date	01/31/2024	Time	09:46
Weather Conditions	Cloudy	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	115
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	4
Pump Intake Depth (ft bmp)	9	Depth to Water (ft bmp)	4.18
Measured Well Depth (ft bmp)	13.25	Water Column in Well	9.07
Gallons in Well	5.9174696	Casing Volume to Remove	NA

Client: The Boeing Company

Total Volume to Remove	NA		
Remarks	None		

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolvec Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
01/31/24	10:17	115	115	115	4.21	0.85	12.7	6.43	356.3	-99.7	0.21	
01/31/24	10:21	115			4.22	0.18	12.6	6.43	352.7	-118.3	0.00	
01/31/24	10:25	115			4.21	0.08	12.5	6.43	350.3	-125.5	-0.24	
01/31/24	10:29	115			4.22	0.04	12.6	6.43	349.5	-129.8	-0.18	
01/31/24	10:33	115			4.23	0.02	12.5	6.43	347.9	-132.8	-0.23	

5-Sample

Date	01/31/2024	Time	10:39
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	01/31/2024	Sample Time	10:40
Sample ID	RGW-246S-R-01312024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Jacklyn Perkins
Sampler's Signature:	NA	No. of Containers	7
Analysis	EPA 8260D, SM 5310C,8260D SIM	Matrix	Water
Filtered?	NO	coc	24B0045
Bottles	6x HCl VOA, 1x 250mL H2SO4 amber	Sampler Signature	John John
Remarks	None		

Client: The Boeing Company

RGW188S

1-Well Integrity

1-Well Integrity			
Date	02/02/2024	Time	10:16
Inspector Name	Lindsey Wielick	Well Permit Number	No tag
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	No	Outside ID Intact	NA
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	No
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None
Any repairs/replacement (explain)	None	Pump	QED Bladder Pump
(CAPICILITY	0.3700000000000045	Did well meet SAP/WP stabilization requirements	Vac
Total drawdown	-0.3799999999999945	before sampling?	Yes
Instrument calibration date	01/29/2024	Instrument calibration time	12:00
Comments	None		
2-Gauging			
Date	02/02/2024	Time	10:16
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	3.89
Final DTW (ft)	4.27	Groundwater elevation	NA
Well Depth (ft)	13.95	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Final DTW:4.27		
3-Wellhead			
Date	02/02/2024	Time	10:16
Weather Conditions	Partly Cloudy, Partly Sunny	Durge Method	Low-flow Bladder Pump

Date	02/02/2024	_ Time	10:16
Weather Conditions	Partly Cloudy, Partly Sunny	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	_ Purge Rate	125
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	2
Pump Intake Depth (ft bmp)	8.5	Depth to Water (ft bmp)	3.89
Measured Well Depth (ft bmp)	13.95	Water Column in Well	10.06
Gallons in Well	1.6408419	Casing Volume to Remove	NA

Client: The Boeing Company

T	otal	Volume	to	Remove	
---	------	--------	----	--------	--

NA		

Remarks

None

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperal (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/02/24	10:17	125	300	300	4.28	6.28	13.7	6.08	0.415	12.8	196.7	
02/02/24	10:21	125			4.24	6.18	13.5	6.18	0.416	-27.5	65.39	
02/02/24	10:25	125			4.24	6.22	13.2	6.20	0.415	-42.5	56.67	
02/02/24	10:29	125			4.24	6.19	13.2	6.24	0.415	-54.0	39.35	
02/02/24	10:33	125			4.23	6.15	13.3	6.22	0.416	-60.6	38.29	
02/02/24	10:37	125			4.24	6.11	13.4	6.22	0.417	-66.2	29.67	
02/02/24	10:41	125			4.27	6.08	13.5	6.23	0.417	-70.7	26.78	
02/02/24	10:45	125			4.27	6.03	13.7	6.23	0.416	-73.9	26.05	
02/02/24	10:49	125			4.27	5.98	13.8	6.22	0.416	-76.6	27.67	Slight sheen on purged water

5-Sample

Date	02/02/2024	Time	10:52
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/02/2024	_ Sample Time	10:45
Sample ID	RGW188S-R-02022024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Lindsey Wielick
Sampler's Signature:	NA	No. of Containers	4
Analysis	SM 5310C,VOC-8260D SIM	Matrix	Water
Filtered?	NO	COC	24B0055
Bottles	3x HCl VOA, 1x 250mL H2SO4 amber	Sampler Signature	
Remarks	None		

Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

RGW247S-R

1-Well Integrity

Date	02/02/2024	Time	08:55
Inspector Name	Jacklyn Perkins	Well Permit Number	BPQ-827
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	Yes	Outside ID Intact	Yes
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	No
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None
Any repairs/replacement (explain)	New lock	Pump	GeoTech Bladder Pump
Total drawdown	-0.209999999999999	Did well meet SAP/WP stabilization requirements before sampling?	No; DO did not stabilize, <0.10
Instrument calibration date	01/29/2024	Instrument calibration time	12:00
Comments	None		
2-Gauging			
Date	02/02/2024	Time	08:55
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	4.68
Final DTW (ft)	4.89	Groundwater elevation	NA
Well Depth (ft)	14.03	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Final dtw 4.89		
3-Wellhead			
Date	02/02/2024	Time	09:00
Weather Conditions	Partly Cloudy	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	250
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	4
Pump Intake Depth (ft bmp)	8	Depth to Water (ft bmp)	4.68
Measured Well Depth (ft bmp)	14.03	Water Column in Well	9.35
Gallons in Well	6.10015	Casing Volume to Remove	NA
Ja5110 111 11011		Caomy volume to Nomove	

Client: The Boeing Company

Total V	olume to	Remove
---------	----------	--------

NA			

Remarks

None

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/02/24	08:59	250	250	250	4.78	2.14	11.7	6.45	0.572	-90.4	14.36	
02/02/24	09:03	250	1000.0	1250.0	4.83	0.29	12.4	6.38	0.553	-100.5	4.95	
02/02/24	09:07	250	1000.0	2250.0	4.84	0.15	12.5	6.38	0.553	-104.7	5.80	
02/02/24	09:11	250	1000.0	3250.0	4.87	0.08	12.6	6.38	0.553	-106.3	9.28	
02/02/24	09:15	250	1000.0	4250.0	4.87	0.06	12.5	6.38	0.553	-107.9	9.97	
02/02/24	09:19	250	1000.0	5250.0	4.87	0.03	12.6	6.38	0.552	-109.1	9.78	

5-Sample

Date	02/02/2024	Time	09:10
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/02/2024	Sample Time	09:20
Sample ID	RGW247S-R-02022024	Duplicate Sample ID	NA
Dup Sample Time	00:00	Sampler's Name	Jacklyn Perkins
Sampler's Signature:	Johnforth	No. of Containers	4
Analysis	SM 5310C,VOC-8260D SIM	Matrix	Water
Filtered?	NO	coc	24B0055
Bottles	3x HCl VOA, 1x 250mL H2SO4 amber	Sampler Signature	Johnfilm
Remarks	None		

Client: The Boeing Company

RGW248I

1-Well Integrity

Date	02/02/2024	Time	10:06
Inspector Name	Jacklyn Perkins	Well Permit Number	No tag
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	No	Outside ID Intact	No
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	Yes
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None
Any repairs/replacement (explain)	Lock rusted shut, replaced with new 1g022	_ Pump	GeoTech Bladder Pump
Total drawdown	-0.75	Did well meet SAP/WP stabilization requirements before sampling?	No; DO did not stabilize, <0.10 DO; turbidity did not stabilize
Instrument calibration date	01/29/2024	Instrument calibration time	12:00
Comments	None		
2-Gauging			
Date	02/02/2024	Time	10:06
Top of Casing	NA	Screen Interval	NA
PID	NA	_ Initial DTW (ft)	4.16
Final DTW (ft)	4.91	Groundwater elevation	NA
Well Depth (ft)	20	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Final dtw 4.91		
3-Wellhead			
Date	02/02/2024	_ Time	10:06
Weather Conditions	Partly Cloudy	_ Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	_ Purge Rate	200
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	2
Pump Intake Depth (ft bmp)	15	Depth to Water (ft bmp)	4.16
Measured Well Depth (ft bmp)	20	Water Column in Well	15.84
Gallons in Well	2.58359	_ Casing Volume to Remove	NA
		-	

Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

Total	Volume to Remove
-------	------------------

NA			

Remarks

None

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/02/24	10:13	200	600	600	4.74	0.54	13.7	6.38	0.544	-66.3	23.84	
02/02/24	10:17	200	800.0	1400.0	4.78	0.16	14.0	6.38	0.545	-85.0	18.09	
02/02/24	10:21	200	800.0	2200.0	4.88	0.10	14.0	6.38	0.545	-89.3	12.14	
02/02/24	10:25	200	800.0	3000.0	4.92	0.06	14.0	6.38	0.544	-92.9	9.66	
02/02/24	10:29	200	800.0	3800.0	4.85	0.03	14.1	6.38	0.543	-95.1	6.34	Cleared bubbles of sensor
02/02/24	10:33	200	800.0	4600.0	4.87	0.01	14.1	6.37	0.543	-96.4	5.42	

5-Sample

Date	02/02/2024	Time	10:34
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/02/2024	Sample Time	10:30
Sample ID	RGW248I-02022024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Jacklyn Perkins
Sampler's Signature:	NA	No. of Containers	4
Analysis	SM 5310C,VOC-8260D SIM	Matrix	Water
Filtered?	NO	COC	24B0055
Bottles	3x HCl VOA, 1x 250mL H2SO4 amber	Sampler Signature	John Pode
Remarks	None		

Client: The Boeing Company

RGW249S

1-Well Integrity

Date	02/01/2024	Time	14:38
Inspector Name	Jacklyn Perkins	Well Permit Number	BID-805
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	No	Outside ID Intact	No
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	No
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None
Any repairs/replacement (explain)	New lock	Pump	GeoTech Bladder Pump
Total drawdown	-0.0500000000000000266	Did well meet SAP/WP stabilization requirements before sampling?	No; DO did not stabilize, <0.10 DO
Instrument calibration date	01/29/2024	Instrument calibration time	12:00
Comments	None		
2-Gauging			
Date	02/01/2024	Time	14:38
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	3.67
Final DTW (ft)	3.72	Groundwater elevation	NA
Well Depth (ft)	14	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Final dtw 3.72		
3-Wellhead			
Date	02/01/2024	Time	14:38
Weather Conditions	Sunny	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	180
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	2
Pump Intake Depth (ft omp)	9	Depth to Water (ft bmp)	3.67
Measured Well Depth (ft bmp)	14	Water Column in Well	10.33
Gallons in Well	1.68488	Casing Volume to Remove	NA

Client: The Boeing Company

NA			

Remarks

None

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/01/24	14:41	180	360	360	3.73	1.96	14.4	6.33	0.436	-96.8	94.24	Cloudy
02/01/24	14:44	180	540.0		3.69	0.47	14.7	6.30	0.377	-85.6	15.42	
02/01/24	14:48	180	720.0		3.71	0.16	14.7	6.30	0.374	-86.2	8.44	
02/01/24	14:52	180	720.0		3.72	0.08	14.7	6.30	0.373	-88.4	8.31	
02/01/24	14:56	180	720.0		3.72	0.04	14.6	6.30	0.373	-89.6	8.93	
02/01/24	15:00	180	720.0		3.72	0.02	14.6	6.30	0.373	-90.7	8.56	

5-Sample

Date	02/01/2024	_ Time	14:46
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/01/2024	_ Sample Time	15:00
Sample ID	RGW249S-02012024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Jacklyn Perkins
Sampler's Signature:	NA	No. of Containers	4
Analysis	SM 5310C,VOC-8260D SIM	Matrix	Water
Filtered?	NO	COC	24B0044
Bottles	3x HCl VOA, 1x 250mL H2SO4 amber	Sampler Signature	Julifah
Remarks	None		

Client: The Boeing Company

RGW250S

1-Well Integrity

Date	02/06/2024	Time	10:56
Inspector Name	Lindsey Wielick	Well Permit Number	BIP-838
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	No	Outside ID Intact	Yes
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	Yes
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None
Any repairs/replacement (explain)	None	Pump	GeoTech Bladder Pump
Total drawdown	-0.779999999999998	Did well meet SAP/WP stabilization requirements before sampling?	No; ORP did not stabilize; turbidity did not stabilize; purged >30 min
Instrument calibration date	01/29/2024	Instrument calibration time	12:00
Comments	None		
2-Gauging			
Date	02/06/2024	Time	11:04
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	3.57
Final DTW (ft)	4.35	Groundwater elevation	NA
Well Depth (ft)	14	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Final DTW: 4.35		
3-Wellhead			
Date	02/06/2024	Time	11:04
Weather Conditions	Cloudy, light rain	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	200
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	2
Pump Intake Depth (ft bmp)	8	Depth to Water (ft bmp)	3.57
Measured Well Depth (ft bmp)	14	Water Column in Well	10.43
Gallons in Well	1.7011909	Casing Volume to Remove	NA
		-	

Client: The Boeing Company

Total Volume to Remove	NA				
Domorko	None				
Remarks	None				

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/06/24	11:05	200	100	100	4.01	7.26	13.1	6.76	0.129	64.5	137.04	
02/06/24	11:09	200			4.26	6.33	13.3	6.87	0.131	41.1	131.84	
02/06/24	11:13	200			4.41	6.25	13.3	6.91	0.130	22.3	332.46	
02/06/24	11:17	200			4.58	6.28	13.3	6.92	0.129	4.2	814.54	Water is orange looking in the YSI containel
02/06/24	11:21	200			4.68	6.16	13.3	6.94	0.130	-9.9	1155.93	
02/06/24	11:25	200			4.65	6.15	13.3	6.93	0.132	-17.8	242.01	
02/06/24	11:29	200			4.73	6.23	13.2	6.93	0.137	-25.7	54.27	
02/06/24	11:33	200			4.66	6.23	13.2	6.94	0.138	-33.3	30.17	
02/06/24	11:37	200			4.68	6.20	13.3	6.94	0.138	-40.9	24.86	
02/06/24	11:41	200			4.74	6.20	13.3	6.94	0.138	-47.4	19.27	
02/06/24	11:45	200			4.68	6.18	13.4	6.95	0.138	-53.1	14.53	

5-Sample

Date	02/06/2024	Time	11:04
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/06/2024	Sample Time	11:55
Sample ID	RGW250S-02062024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Lindsey Wielick
Sampler's Signature:	NA	No. of Containers	1
Analysis	6020A	Matrix	Water
Filtered?	NO	COC	24B0240
Bottles	1x 250mL HNO3 poly	Sampler Signature	JA PA
Remarks	None		

Detailed Low Flow Sampling Info Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057 Client: The Boeing Company

Project No: PS20203450

RGW009S

1-Well Integrity

Date	02/07/2024	Time	12:51
Inspector Name	Jacklyn Perkins	Well Permit Number	No tag
Type of well head	Flush Mount	Freely accessible	No
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	Yes	Outside ID Intact	No
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	No
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	NA
Any repairs/replacement (explain)	NA	_ Pump	QED Bladder Pump
Total drawdown	-0.020000000000000462	Did well meet SAP/WP stabilization requirements before sampling?	No; DO did not stabilize, <0.10 DO
Instrument calibration date	01/29/2024	Instrument calibration time	12:00
Comments	Under carpet tile at office desk		
2-Gauging			
Date	02/07/2024	Time	12:51
Top of Casing	NA	Screen Interval	NA
PID	NA	_ Initial DTW (ft)	5.27
Final DTW (ft)	5.29	Groundwater elevation	NA
Well Depth (ft)	14.5	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Final dtw 5.29		
3-Wellhead			
Date	02/07/2024	Time	13:06
Weather Conditions	Sunny, Cold	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	180
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	2
Pump Intake Depth (ft bmp)	9.5	Depth to Water (ft bmp)	5.27
Measured Well Depth (ft bmp)	14.5	Water Column in Well	9.23
Gallons in Well	1.50546	Casing Volume to Remove	NA

Client: The Boeing Company

Total Volume to Remove	NA			
Remarks	None			

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/07/24	12:52	180	720	720	5.34	1.01	20.1	6.30	0.362	5.3	1.34	
02/07/24	12:56	180	720.0	1440.0	5.34	0.27	20.1	6.37	0.339	-45.6	2.37	
02/07/24	13:00	180	720.0	2160.0	5.29	0.11	20.0	6.41	0.335	-73.8	1.48	
02/07/24	13:04	180	720.0	2880.0	5.28	0.07	20.0	6.43	0.335	-83.3	1.31	
02/07/24	13:08	180	720.0	3600.0	5.29	0.04	20.0	6.44	0.335	-91.0	1.20	
02/07/24	13:12	180	720.0	4320.0	5.29	0.03	20.0	6.44	0.335	-95.2	1.44	
02/07/24	13:16	180	720.0	5040.0	5.29	0.02	20.0	6.44	0.335	-98.1	1.32	

5-Sample

Date	02/07/2024	_ Time	12:57
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/07/2024	_ Sample Time	13:20
Sample ID	RGW009S-02072024	Duplicate Sample ID	NA
Dup Sample Time	NA	_ Sampler's Name	Jacklyn Perkins
Sampler's Signature:	NA	No. of Containers	4
Analysis	VOC-8260D SIM, SM5310 C	Matrix	Water
Filtered?	NO	coc	24B0191
Bottles	3x HCI VOA, 1x 250mL H2SO4 amber	Sampler Signature	Jh fh
Remarks	None		

Client: The Boeing Company

RGW012S

1-Well Integrity

Date	02/07/2024	Time	11:27
Inspector Name	Jacklyn Perkins	Well Permit Number	No tag
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	Yes	Outside ID Intact	No
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	Yes
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None
Any repairs/replacement (explain)	None	Pump	QED Bladder Pump
	-0.609999999999994	Did well meet SAP/WP stabilization requirements	Yes
Total drawdown Instrument calibration date	01/29/2024	before sampling? Instrument calibration time	12:00
		instrument calibration time	
Comments	None		
2-Gauging			
Date	02/07/2024	Time	11:27
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	4.94
Final DTW (ft)	5.55	Groundwater elevation	NA
Well Depth (ft)	14.5	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Final dtw 5.55		
3-Wellhead			
Date	02/07/2024	Time	11:41
Weather Conditions	Sunny, Cold	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	125
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	2
Pump Intake Depth (ft bmp)	9.5	Depth to Water (ft bmp)	4.94
Measured Well Depth (ft bmp)	14.5	Water Column in Well	9.56
Gallons in Well	1.5592891	Casing Volume to Remove	NA

737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

Total Volume to Remove	NA

Remarks None

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/07/24	11:31	200	600	600	5.23	1.15	21.3	4.87	4.316	70.5	152.00	Cloudy white, foul sharp odor
02/07/24	11:35	125	500.0	1100.0	5.52	0.21	21.4	5.81	2.547	-81.5	152.66	
02/07/24	11:39	125	500.0	1600.0	5.56	0.12	21.3	5.98	2.458	-116.6	112.13	
02/07/24	11:43	125	500.0	2100.0	5.59	0.06	21.3	6.03	2.410	-127.8	61.38	
02/07/24	11:47	125	500.0	2600.0	5.60	0.05	21.2	6.07	2.348	-133.3	66.13	
02/07/24	11:51	125	500.0	3100.0	5.60	0.04	21.2	6.09	2.283	-137.0	66.85	
02/07/24	11:55	125	500.0	3600.0	5.54	0.02	21.1	6.12	2.131	-142.1	51.95	
02/07/24	12:00	125	625.0	4225.0	5.54	0.01	21.1	6.13	1.995	-144.1	50.87	
02/07/24	12:04	125	500.0	4725.0	5.55	0.01	21.1	6.13	1.856	-145.5	53.95	
02/07/24	12:08	125	500.0	5225.0	5.55	0.00	21.0	6.13	1.674	-146.0	54.79	
02/07/24	12:12	125	500.0	5725.0	5.55	-0.01	21.1	6.13	1.621	-146.0	30.13	
02/07/24	12:16	125	500.0	6225.0	5.55	-0.02	21.0	6.13	1.597	-145.9	28.51	
02/07/24	12:20	125	500.0	6725.0	5.55	-0.01	21.1	6.13	1.575	-145.9	31.36	

5-Sample

Date	02/07/2024	Time	11:34
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/07/2024	_ Sample Time	12:20
Sample ID	RGW012S-02072024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Jacklyn Perkins
Sampler's Signature:	NA	No. of Containers	4
Analysis	VOC-8260D SIM, SM5310 C	Matrix	Water
Filtered?	NO	COC	24B0191
Bottles	3x HCl VOA, 1x 250mL H2SO4 amber	Sampler Signature	JAPA
Remarks	None		

Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

RGW014S

1-Well Integrity

1-well integrity				
Date	02/07/2024	Time	11:15	
Inspector Name	Lindsey Wielick	Well Permit Number	No tag	
Type of well head	Flush Mount	Freely accessible	Yes	
Ground Pad Intact	Yes	Security Case and Cover	Yes	
Lock Present and Operable	Yes	Outside ID Intact	NA	
Well Cap Present	Yes	Inside Measurement Point	No	
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	No	
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	NA	
Any repairs/replacement (explain)	NA	Pump	QED Bladder Pump	
Total drawdown	-0.2299999999999954	Did well meet SAP/WP stabilization requirements before sampling?	No; SPC did not stabilize; purged >30 min	
Instrument calibration date	01/29/2024	Instrument calibration time	12:00	
Comments	None			
2-Gauging				
Date	02/07/2024	Time	11:28	
Top of Casing	NA	Screen Interval	NA	
PID	NA	Initial DTW (ft)	5.08	
Final DTW (ft)	5.31	Groundwater elevation	NA	
Well Depth (ft)	14.4	Free Product?	No	
Depth To NAPL	NA	Well Dry?	N	
Remarks	Final DTW: 5.31			
3-Wellhead				
Date	02/07/2024	Time	11:28	
Weather Conditions	Sunny	Purge Method	Low-flow Bladder Pump	
Purge Volume Units	mL	Purge Rate	335	
Water Quality Meter	YSI	Sampling Type	Low Flow	
Casing Material	PVC	Casing Diameter (in)	2	
Pump Intake Depth (ft bmp)	9.5	Depth to Water (ft bmp)	5.08	
Measured Well Depth (ft	14.4	Water Column in Well	9.32	

Project No: PS20203450

bmp)

Gallons in Well

1.5201438

Water Column in Well

Casing Volume to Remove

NA

Remarks

Detailed Low Flow Sampling InfoSite: Boeing Renton

Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

Total	Volume	tο	Remove
TOLAL	volullie	ιυ	Remove

NA			
None			

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/07/24	11:29	335	160	160	5.27	6.59	18.7	6.30	0.554	79.5	54.03	Odor coming from well
02/07/24	11:33	335			5.27	5.59	19.2	6.28	0.607	37.0	30.51	
02/07/24	11:37	335			5.29	5.46	19.3	6.39	0.615	7.5	16.29	
02/07/24	11:41	335			5.37	5.40	19.4	6.35	0.616	-8.7	9.82	
02/07/24	11:45	335			5.42	5.33	19.5	6.35	0.608	-20.4	6.54	
02/07/24	11:49	335			5.33	5.32	19.5	6.36	0.593	-28.6	5.68	
02/07/24	11:53	335			5.32	5.29	19.5	6.37	0.573	-35.3	4.42	
02/07/24	11:57	335			5.32	5.27	19.6	6.37	0.557	-39.9	3.72	
02/07/24	12:01	335			5.34	5.26	19.6	6.38	0.541	-44.0	3.46	
02/07/24	12:05	335			5.36	5.25	19.6	6.38	0.534	-47.3	3.53	
02/07/24	12:09	335			5.36	5.25	19.6	6.38	0.515	-50.2	3.12	
02/07/24	12:13	335	1340.0		5.31	5.23	19.6	6.38	0.505	-52.6	2.75	Conducti didn't stabilize

5-Sample

Date	02/07/2024	Time	11:16
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/07/2024	Sample Time	12:15
Sample ID	RGW014S-02072024	Duplicate Sample ID	DUP4-02072024
Dup Sample Time	00:00	Sampler's Name	Lindsey Wielick
Sampler's Signature:	NA	No. of Containers	4
Analysis	VOC-8260D SIM, SM5310 C	Matrix	Water
Filtered?	NO	COC	24B0191
Bottles	3x HCI VOA, 1x 250mL H2SO4 amber	Sampler Signature	John
Remarks	None		

Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

RGW147S

1-Well Integrity

Date	02/07/2024	Time	09:54
Inspector Name	Jacklyn Perkins	Well Permit Number	No tag
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	Yes	Outside ID Intact	Yes
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	No
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	NA
Any repairs/replacement (explain)	NA	Pump	QED Bladder Pump
Total drawdown	-0.030000000000000025	Did well meet SAP/WP stabilization requirements before sampling?	No; DO did not stabilize, <0.10 DO; SPC did not stabilize; turbidity did not stabilize; purged >30 min
Instrument calibration date	01/29/2024	Instrument calibration time	12:00
Comments	Exterior ID : AEB456, Functio	ning 1g032 lock	
2-Gauging			
Date	02/07/2024	Time	09:54
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	4.71
Final DTW (ft)	4.74	Groundwater elevation	NA
Well Depth (ft)	15.2	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Final dtw 4.74		
3-Wellhead			
Date	02/07/2024	Time	10:33
Weather Conditions	Sunny, Cold	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	140
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	2
Pump Intake Depth (ft omp)	10	Depth to Water (ft bmp)	4.71
Measured Well Depth (ft bmp)	15.2	Water Column in Well	10.49

Client: The Boeing Company

Gallons in Well	1.71098	Casing Volume to Remove	NA
Total Volume to Remove	NA		
Remarks	None		

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/07/24	09:58	140	280	280	4.72	0.92	13.4	5.14	1.016	86.9	32.32	Foul sharp odor
02/07/24	10:02	140	560.0	840.0	4.73	0.32	13.6	5.31	0.290	67.1	30.50	
02/07/24	10:06	140	560.0	1400.0	4.74	0.18	13.7	5.66	0.100	37.0	24.90	
02/07/24	10:10	140	560.0	1960.0	4.72	0.12	13.7	5.87	0.068	24.3	21.40	
02/07/24	10:14	140	560.0	2520.0	4.73	0.09	13.8	5.91	0.071	19.3	20.01	
02/07/24	10:18	140	560.0	3080.0	4.72	0.08	13.8	5.99	0.088	10.3	17.52	
02/07/24	10:22	140	560.0	3640.0	4.73	0.06	13.9	6.01	0.102	5.0	17.32	
02/07/24	10:26	140	560.0	4200.0	4.73	0.05	14.0	6.06	0.121	-5.2	17.97	
02/07/24	10:30	140	560.0	4760.0	4.74	0.05	14.0	6.09	0.140	-11.6	21.64	
02/07/24	10:34	140	560.0	5320.0	4.74	0.04	14.0	6.13	0.156	-21.5	21.97	
02/07/24	10:38	140	560.0	5880.0	4.75	0.04	14.0	6.13	0.154	-23.5	22.35	
02/07/24	10:42	140	560.0	6440.0	4.74	0.03	14.1	6.16	0.175	-29.2	15.24	

5-Sample

Date	02/07/2024	Time	10:03
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/07/2024	Sample Time	10:30
Sample ID	RGW147S-02062024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Jacklyn Perkins
Sampler's Signature:	NA	No. of Containers	4
Analysis	VOC-8260D SIM, SM5310 C	Matrix	Water
Filtered?	NO	COC	24B0191
Bottles	3x HCl VOA, 1x 250mL H2SO4 amber	Sampler Signature	John Pol
Remarks	None		

Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

RGW150S

1-Well Integrity

Date	02/07/2024	Time	09:55	
Inspector Name	Lindsey Wielick	Well Permit Number	No tag	
Type of well head Ground Pad Intact Lock Present and Operable	Flush Mount Yes No	Freely accessible	Yes	
		Security Case and Cover	Yes	
		Outside ID Intact	NA	
Well Cap Present	Yes	Inside Measurement Point	No	
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	No	
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	NA	
Any repairs/replacement (explain)	NA	Pump	QED Bladder Pump	
Total drawdown	0.010000000000000675	Did well meet SAP/WP stabilization requirements before sampling?	No; turbidity did not stabilize; purged >30 min	
Instrument calibration date	01/29/2024	Instrument calibration time	12:00	
Comments	None			
	110110			
2-Gauging				
Date	02/07/2024	Time	09:55	
Top of Casing	NA	Screen Interval	NA	
PID	NA	Initial DTW (ft)	5.23	
Final DTW (ft)	5.22	Groundwater elevation	NA	
Well Depth (ft)	18.3	Free Product?	No	
Depth To NAPL	NA	Well Dry?	N	
Remarks	Final DTW: 5.22			
3-Wellhead				
Date	02/07/2024	Time	09:55	
Weather Conditions	Partly Sunny, Partly Cloudy	Purge Method	Low-flow Bladder Pump	
Purge Volume Units	mL	Purge Rate	250	
Water Quality Meter	YSI	Sampling Type	Low Flow	
Casing Material	PVC	Casing Diameter (in)	2	
Pump Intake Depth (ft omp)	10	Depth to Water (ft bmp)	5.23	
Measured Well Depth (ft bmp)	18.3	Water Column in Well	13.07	
Gallons in Well	2.1317896	Casing Volume to Remove	NA	

Detailed Low Flow Sampling Info Site: Boeing Renton

Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

Total Volume to Remove NA	NA		
Remarks None			

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/07/24	09:55	250	100	100	5.2	7.11	12.1	6.73	0.212	16.9	335.26	
02/07/24	09:59	250			5.22	6.68	12.8	6.57	0.205	14.5	95.11	
02/07/24	10:03	250			5.19	6.53	12.9	6.56	0.205	8.8	176.54	Water is orange looking in probe
02/07/24	10:07	250			5.20	6.51	13.0	6.56	0.205	3.7	171.32	
02/07/24	10:11	250			5.26	6.47	13.0	6.57	0.206	-0.5	183.95	
02/07/24	10:15	250			5.20	6.44	13.1	6.58	0.207	-4.6	210.67	
02/07/24	10:19	250			5.18	6.45	13.2	6.56	0.213	-5.2	248.14	
02/07/24	10:23	250			5.21	6.43	13.2	6.56	0.212	-6.7	253.40	
02/07/24	10:27	250			5.19	6.39	13.1	6.56	0.214	-10.7	267.05	
02/07/24	10:31	250			5.20	6.37	13.1	6.57	0.218	-15.4	80.31	
02/07/24	10:35	250			5.22	6.37	13.1	6.57	0.218	-17.2	28.44	
02/07/24	10:39	250	1000.0		5.29	6.36	13.1	6.57	0.224	-20.1	16.25	

5-Sample

Date	02/07/2024	Time	10:29
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/07/2024	Sample Time	10:35
Sample ID	RGW150S-02072024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Lindsey Wielick
Sampler's Signature:	NA	No. of Containers	4
Analysis	VOC-8260D SIM, SM5310 C	Matrix	Water
Filtered?	NO	COC	24B0191
Bottles	3x HCI VOA, 1x 250mL H2SO4 amber	Sampler Signature	Jul Dah
Remarks	None		

Client: The Boeing Company

Project No: PS20203450

RGW253I

1 Wall Intogrity

02/07/2024	Time	08:46
Lindsey Wielick	Well Permit Number	BID-810
Flush Mount	Freely accessible	Yes
Yes	Security Case and Cover	Yes
No	Outside ID Intact	No
Yes	Inside Measurement Point	No
Yes	Ponded Water Inside Casing	Yes
Yes	Any cleanup performed (explain)	None
None	Pump	GeoTech Bladder Pump
-0.03000000000000025	Did well meet SAP/WP stabilization requirements before sampling?	No; ORP did not stabilize; purged >30 min
01/29/2024	Instrument calibration time	12:00
None		
02/07/2024	Time	08:54
NA	Screen Interval	NA
NA	Initial DTW (ft)	5.09
5.12	Groundwater elevation	NA
20	Free Product?	No
NA	Well Dry?	N
	Lindsey Wielick Flush Mount Yes No Yes Yes Yes None -0.030000000000000000000000000000000000	Lindsey Wielick Flush Mount Yes Security Case and Cover No Outside ID Intact Inside Measurement Point Ponded Water Inside Casing Any cleanup performed (explain) None Pump Did well meet SAP/WP stabilization requirements before sampling? O1/29/2024 Instrument calibration time None O2/07/2024 Time NA Screen Interval NA Initial DTW (ft) 5.12 Groundwater elevation Free Product?

3-Wellhead

Remarks

Final DTW: 5.12

Date	02/07/2024	Time	08:56
Weather Conditions	Partly Sunny, Partly Cloudy	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	250
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	2
Pump Intake Depth (ft bmp)	15	Depth to Water (ft bmp)	5.09
Measured Well Depth (ft bmp)	20	Water Column in Well	14.91
Gallons in Well	2.4319038	Casing Volume to Remove	NA

Detailed Low Flow Sampling Info Site: Boeing Renton

Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

Total Volume to Remove	NA		
Remarks	None		
Nemarks	None		

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/07/24	08:57	250	125	125	5.12	7.40	12.9	6.26	0.343	182.5	131.11	
02/07/24	09:01	250			5.16	6.53	14.0	6.39	0.354	126.0	108.83	
02/07/24	09:05	250			5.15	6.43	14.1	6.46	0.355	81.5	22.09	
02/07/24	09:09	250			5.15	6.39	14.1	6.51	0.355	43.1	12.96	
02/07/24	09:13	250			5.14	6.35	14.1	6.53	0.356	18.9	11.79	
02/07/24	09:17	250			5.14	6.32	14.2	6.54	0.356	-1.1	10.76	
02/07/24	09:21	250			5.12	6.32	14.1	6.56	0.356	-13.7	8.59	
02/07/24	09:25	250			5.12	6.29	14.3	6.56	0.356	-27.2	9.10	
02/07/24	09:29	250			5.15	6.25	14.2	6.57	0.356	-33.8	9.37	
02/07/24	09:33	250			5.13	6.26	14.1	6.59	0.356	-41.2	9.55	

5-Sample

Date	02/07/2024	_ Time	09:03
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/07/2024	Sample Time	09:45
Sample ID	RGW253I-02072024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Lindsey Wielick
Sampler's Signature:	NA	No. of Containers	4
Analysis	VOC-8260D SIM, SM5310 C	Matrix	Water
Filtered?	NO	COC	24B0191
Bottles	3x HCl VOA, 1x 250mL H2SO4 amber	Sampler Signature	Johnach
Remarks	None		

Detailed Low Flow Sampling InfoSite: Boeing Renton

Site: Boeing Renton
737 Logan Avenue N, Renton, Washington
98057
Client: The Boeing Company

Project No: PS20203450

RGW176S

1-Well Integrity

Date	02/08/2024	Time	10:09
Inspector Name	Lindsey Wielick	Well Permit Number	No tag
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	No	Outside ID Intact	NA
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	No
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None
Any repairs/replacement (explain)	None	Pump	QED Bladder Pump
Total drawdown	-0.41000000000000014	Did well meet SAP/WP stabilization requirements before sampling?	No; turbidity did not stabilize; purged >30 min
Instrument calibration date	01/29/2024	Instrument calibration time	12:00
Comments	None		
	- Tone		
2-Gauging			
Date	02/08/2024	Time	10:14
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	5.0
Final DTW (ft)	5.41	Groundwater elevation	NA
Well Depth (ft)	14.8	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Final DTW: 5.41		
3-Wellhead			
Date	02/08/2024	Time	10:14
Weather Conditions	Cloudy	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	250
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	2
Pump Intake Depth (ft bmp)	12.15	Depth to Water (ft bmp)	5.0
Measured Well Depth (ft	14.8	Water Column in Well	9.8
bmp)	1.5984344		NA
Gallons in Well		Casing Volume to Remove	

Client: The Boeing Company

Total Volume to Remove	NA		
	N		
Remarks	None		

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/08/24	10:14	250	125	125	5.19	7.95	12.1	6.29	0.477	6.5	34.84	
02/08/24	10:18	250			5.31	7.06	12.4	6.25	0.485	-3.1	26.72	
02/08/24	10:22	250			5.34	6.96	12.4	6.25	0.485	-14.1	13.81	
02/08/24	10:26	250			5.44	6.94	12.3	6.26	0.483	-23.1	13.45	
02/08/24	10:30	250			5.48	6.89	12.4	6.27	0.480	-30.7	9.62	
02/08/24	10:34	250			5.48	6.88	12.4	6.27	0.482	-37.9	9.83	
02/08/24	10:38	250			5.51	6.86	12.4	6.29	0.485	-43.9	9.03	
02/08/24	10:42	250	1000.0		5.49	6.85	12.4	6.30	0.486	-47.9	7.11	

5-Sample

Date	02/08/2024	Time	10:35
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/08/2024	Sample Time	10:45
Sample ID	RGW176S-02082024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Lindsey Wielick
Sampler's Signature:	NA	No. of Containers	3
Analysis	8260 SIM	Matrix	Water
Filtered?	NO	coc	24B0240
Bottles	3x HCI VOA	Sampler Signature	JARA
Remarks	None		

Detailed Low Flow Sampling InfoSite: Boeing Renton

Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

RGW178S

1-Well Integrity

Date	02/08/2024	Time	14:26
Inspector Name	Lindsey Wielick	Well Permit Number	AHN071
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact Lock Present and Operable Yes No	Yes	Security Case and Cover	Yes
	No	Outside ID Intact	Yes
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	No
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None
Any repairs/replacement (explain)	None	Pump	QED Bladder Pump
	-0.0299999999999936	Did well meet SAP/WP stabilization requirements	Yes
Total drawdown	01/29/2024	before sampling?	12:00
Instrument calibration date		Instrument calibration time	12.00
Comments	None		
2-Gauging			
Date	02/08/2024	Time	14:26
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	7.28
Final DTW (ft)	7.31	Groundwater elevation	NA
Well Depth (ft)	15.1	Free Product?	No
Depth To NAPL	NA	Well Dry?	<u>N</u>
Remarks	7.31 final DTW		
3-Wellhead			
Date	02/08/2024	Time	14:27
Weather Conditions	Sunny	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	320
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	2
Pump Intake Depth (ft bmp)	13.35	Depth to Water (ft bmp)	7.28
Measured Well Depth (ft bmp)	15.1	Water Column in Well	7.82
Gallons in Well	1.2754854	Casing Volume to Remove	NA
Ganona in Wen		Casing volume to Remove	

Client: The Boeing Company

Total Volume to Remove	NA		
Remarks	None		

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperal (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/08/24	14:27	320	100	100	7.19	8.11	12.3	6.25	0.421	45.8	65.69	
02/08/24	14:31	320			7.29	7.09	12.3	6.18	0.353	32.7	70.70	
02/08/24	14:35	320			7.28	6.97	12.2	6.18	0.365	21.5	69.82	
02/08/24	14:39	320			7.22	6.92	12.1	6.20	0.359	9.9	44.79	
02/08/24	14:43	320			7.21	6.88	12.0	6.20	0.353	2.0	26.18	
02/08/24	14:47	320			7.29	6.87	12.0	6.20	0.350	-3.8	17.99	
02/08/24	14:51	320			7.28	6.85	12.0	6.30	0.348	-8.2	13.67	
02/08/24	14:55	320			7.24	6.83	11.9	6.20	0.347	-12.3	11.13	
02/08/24	14:59	320			7.23	6.83	11.9	6.20	0.344	-16.0	10.66	
02/08/24	15:03	320	1280.0		7.30	6.82	11.9	6.20	0.344	-19.0	10.81	

5-Sample

Date	02/08/2024	Time	14:29
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/08/2024	Sample Time	15:15
Sample ID	RGW178S-02082024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Lindsey Wielick
Sampler's Signature:	NA	No. of Containers	3
Analysis	8260 SIM	Matrix	Water
Filtered?	NO	coc	24B0240
Bottles	3x HCI VOA	Sampler Signature	John
Remarks	None		

Client: The Boeing Company

RGW189S

1-Well Integrity			
Date	02/08/2024	Time	13:07
Inspector Name	Lindsey Wielick, Jacklyn Perkins	Well Permit Number	No tag
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	No	Outside ID Intact	No
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	No
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None
Any repairs/replacement (explain)	None	Pump	QED Bladder Pump
Total drawdown	-0.1000000000000053	Did well meet SAP/WP stabilization requirements before sampling?	No; turbidity did not stabilize; purged >30 min
Instrument calibration date	01/29/2024	Instrument calibration time	12:00
Comments	None		
2-Gauging			
Date	02/08/2024	Time	13:08
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	5.34
Final DTW (ft)	5.44	Groundwater elevation	NA
Well Depth (ft)	14.1	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Final DTW: 5.44		

3-Wellhead

Date	02/08/2024	Time	13:08
Weather Conditions	Cloudy	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	250
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	2
Pump Intake Depth (ft bmp)	9	Depth to Water (ft bmp)	5.34
Measured Well Depth (ft bmp)	14.1	Water Column in Well	8.76
Gallons in Well	1.4288047	Casing Volume to Remove	NA

Client: The Boeing Company

Total Volume to Remove	NA		
Remarks	None		

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/08/24	13:10	250	200	200	5.49	8.29	11.0	6.34	0.251	64.4	54.20	
02/08/24	13:14	250			5.49	7.52	11.0	6.60	0.159	31.7	26.38	
02/08/24	13:18	250			5.54	7.51	10.8	6.68	0.155	16.4	20.59	
02/08/24	13:22	250			5.51	7.59	10.7	6.71	0.154	5.5	14.71	
02/08/24	13:26	250			5.50	7.41	10.6	6.73	0.153	-4.2	9.46	
02/08/24	13:30	250			5.51	7.36	10.6	6.73	0.153	-13.1	9.22	
02/08/24	13:34	250			5.49	7.28	10.8	6.74	0.153	-19.1	7.09	
02/08/24	13:38	250			5.52	7.28	10.7	6.74	0.152	-27.4	6.67	
02/08/24	13:42	250			5.58	7.30	10.6	6.75	0.152	-31.9	5.62	
02/08/24	13:46	250			5.49	7.25	10.7	6.74	0.151	-36.4	5.74	

5-Sample

Date	02/08/2024	Time	13:12
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/08/2024	Sample Time	13:50
Sample ID	RGW189S-02082024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Lindsey Wielick
Sampler's Signature:	NA	No. of Containers	9
Analysis	8260 SIM	Matrix	Water
Filtered?	NO	COC	24B0240
Bottles	9x HCl VOA, 1x 250mL H2SO4 amber, 1x 500mL amber	_ Sampler Signature	JARA
Remarks	MS/MSD collected		

Detailed Low Flow Sampling Info
Site: Boeing Renton
737 Logan Avenue N, Renton, Washington
98057
Client: The Boeing Company

RGW207S

1-Well Integrity

1-Well Integrity				
Date	02/08/2024	Time	09:01	
Inspector Name	Lindsey Wielick	Well Permit Number	No tag	
Type of well head	Flush Mount	Freely accessible	Yes	
Ground Pad Intact	Yes	Security Case and Cover	Yes	
Lock Present and Operable	No	Outside ID Intact	NA	
Well Cap Present	Yes	Inside Measurement Point	No	
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	Yes	
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None	
Any repairs/replacement (explain)	None	Pump	QED Bladder Pump	
Total drawdown	0.259999999999998	Did well meet SAP/WP stabilization requirements before sampling?	Yes	
Instrument calibration date	01/29/2024	Instrument calibration time	12:00	
Comments	None			
2-Gauging				
Date	02/08/2024	Time	09:11	
Top of Casing	NA	Screen Interval	NA	
PID	NA	Initial DTW (ft)	6.45	
Final DTW (ft)	6.19	Groundwater elevation	NA	
Well Depth (ft)	12.6	Free Product?	No	
Depth To NAPL	NA	Well Dry?	<u>N</u>	
Remarks	Final DTW: 6.19			
3-Wellhead				
	00/00/0004			

Date	02/08/2024	Time	09:12
Weather Conditions	Cloudy	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	200
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	2
Pump Intake Depth (ft bmp)	9.65	Depth to Water (ft bmp)	6.45
Measured Well Depth (ft bmp)	12.6	Water Column in Well	6.15
Gallons in Well	1.0030992	Casing Volume to Remove	NA

Client: The Boeing Company

Total Volume to Remove	NA		
Remarks	None		

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/08/24	09:12	200	200	200	6.23	7.94	12.6	6.37	0.378	182.0	10.59	
02/08/24	09:16	200			6.28	7.03	13.0	6.41	0.383	121.8	7.83	
02/08/24	09:20	200			6.30	6.91	13.0	6.50	0.379	64.7	6.50	
02/08/24	09:24	200			6.22	6.86	13.0	6.52	0.374	35.8	6.74	
02/08/24	09:28	200			6.23	6.84	12.9	6.53	0.373	15.3	6.52	
02/08/24	09:32	200			6.25	6.82	12.9	6.54	0.371	-1.1	5.28	
02/08/24	09:36	200			6.20	6.80	12.9	6.54	0.370	-11.2	5.07	
02/08/24	09:40	200			6.30	6.79	12.9	6.55	0.368	-21.3	4.30	
02/08/24	09:44	200			6.24	6.77	12.9	6.55	0.369	-28.7	4.25	
02/08/24	09:48	200			6.23	6.76	12.8	6.55	0.367	-34.5	3.92	
02/08/24	09:52	200			6.27	6.76	12.8	6.56	0.367	-39.6	3.70	
02/08/24	09:56	200			6.32	6.75	12.8	6.56	0.366	-44.1	3.58	Slight sheen on purged water

5-Sample

Date	02/08/2024	Time	09:13		
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant		
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab		
Sample Date	02/08/2024	Sample Time	09:55		
Sample ID	RGW207S-02082024	Duplicate Sample ID	NA		
Dup Sample Time	NA	Sampler's Name	Lindsey Wielick		
Sampler's Signature:	NA	No. of Containers	3		
Analysis	8260 SIM	Matrix	Water		
Filtered?	NO	COC	24B0240		
Bottles	3x HCI VOA	Sampler Signature	JARA		
Remarks	None				

Detailed Low Flow Sampling Info Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057 Client: The Boeing Company

Project No: PS20203450

RGW208S

1-Well Integrity

1-vven integrity				
Date	02/08/2024	Time	14:37	
Inspector Name	tor Name Jacklyn Perkins Well Permit Number		No tag	
Type of well head	Flush Mount	Freely accessible	Yes	
Ground Pad Intact	Yes	Security Case and Cover	Yes	
Lock Present and Operable	No	Outside ID Intact	No	
Well Cap Present	Yes	Inside Measurement Point	No	
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	No	
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None	
Any repairs/replacement (explain)	None	Pump	QED Bladder Pump	
Total drawdown	-0.14999999999999947	Did well meet SAP/WP stabilization requirements before sampling?	No; DO did not stabilize, <0.10 DO; purged >30 min	
Instrument calibration date	01/29/2024	Instrument calibration time	12:00	
Comments	None			
2-Gauging				
Date	02/08/2024	Time	14:37	
Top of Casing	NA	Screen Interval	NA	
PID	NA	Initial DTW (ft)	7.24	
Final DTW (ft)	7.39	Groundwater elevation	NA	
Well Depth (ft)	11.4	Free Product?	No	
Depth To NAPL	NA	Well Dry?	<u>N</u>	
Remarks	Final dtw 7.39			
3-Wellhead				
Date	02/08/2024	Time	14:51	
Weather Conditions	Partly Sunny	Purge Method	Low-flow Bladder Pump	
Purge Volume Units	mL	Purge Rate	225	
Water Quality Meter	YSI	Sampling Type	Low Flow	
Casing Material	PVC	Casing Diameter (in)	2	
Pump Intake Depth (ft bmp)	8.65	Depth to Water (ft bmp)	7.24	
Measured Well Depth (ft bmp)	11.4	Water Column in Well	4.16	
Gallons in Well	0.678519	Casing Volume to Remove	NA	

Client: The Boeing Company

Total Volume to Remove	NA

Remarks None

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/08/24	14:38	225	115	115	7.31	3.14	12.4	6.31	0.543	87.3	17.79	
02/08/24	14:42	225	900.0	1015.0	7.37	0.42	12.4	6.27	0.548	42.0	4.97	
02/08/24	14:46	225	900.0	1915.0	7.41	0.14	12.2	6.31	0.521	-6.8	2.60	
02/08/24	14:50	225	900.0	2815.0	7.41	0.11	12.1	6.32	0.514	-19.2	2.47	
02/08/24	14:54	225	900.0	3715.0	7.41	0.08	12.1	6.33	0.507	-34.4	1.95	
02/08/24	14:58	225	900.0	4615.0	7.41	0.06	12.0	6.34	0.500	-45.9	1.77	
02/08/24	15:02	225	900.0	5515.0	7.41	0.05	12.0	6.34	0.498	-52.2	1.54	
02/08/24	15:06	225	900.0	6415.0	7.39	0.03	12.0	6.34	0.495	-57.3	1.54	
02/08/24	15:10	225	900.0	7315.0	7.39	0.03	12.0	6.35	0.495	-61.9	1.41	

5-Sample

Date	02/08/2024	Time	14:45		
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant		
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab		
Sample Date	02/08/2024	Sample Time	15:10		
Sample ID	RGW208S-02082024	Duplicate Sample ID	NA		
Dup Sample Time	NA	Sampler's Name	Jacklyn Perkins		
Sampler's Signature:	NA	No. of Containers	3		
Analysis	8260 SIM	Matrix	Water		
Filtered?	NO	coc	1 0 1		
Bottles	3x HCI VOA	Sampler Signature	John Colh		
Remarks	None				

Client: The Boeing Company

RGW264S

1-Well Integrity

Date	02/07/2024	Time	15:18
Inspector Name	Jacklyn Perkins, Lindsey Wielick	Well Permit Number	BJU-193
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	No	Outside ID Intact	No
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	Yes
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None
Any repairs/replacement (explain)	None	Pump	Peristaltic (lowest setting, sample if drawdown exceeded)
Total drawdown	-3.83	Did well meet SAP/WP stabilization requirements before sampling?	No; DO did not stabilize, <0.10 DO; turbidity did not stabilize; purged >30 min
Instrument calibration date	01/29/2024	Instrument calibration time	12:00
Comments	No lock, none left for replacement		
2-Gauging			
Date	02/07/2024	Time	15:19
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	4.26
Final DTW (ft)	8.09	Groundwater elevation	NA
Well Depth (ft)	18	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Final DTW: 8.09		
3-Wellhead			
Date	02/07/2024	Time	15:32
Weather Conditions	Partly Sunny, Partly Cloudy	Purge Method	Peristaltic Pump
Purge Volume Units	mL	Purge Rate	160
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	2
Pump Intake Depth (ft bmp)	13	Depth to Water (ft bmp)	4.26
Measured Well Depth (ft bmp)	18	Water Column in Well	13.74
Gallons in Well	2.2410703	Casing Volume to Remove	NA

Client: The Boeing Company

Total Volume to Remove	NA		
Remarks	None		

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/07/24	15:23	160	500	500	5.23	0.54	14.1	6.07	0.87	4.4	11.61	
02/07/24	15:27	160	640.0	1140.0	5.70	0.23	13.9	6.09	0.866	-31.6	11.96	
02/07/24	15:31	160	640.0	1780.0	6.09	0.16	13.9	6.10	0.865	-47.0	19.09	
02/07/24	15:35	160	640.0	1140.1	6.46	0.11	14.0	6.10	0.865	-58.5	18.50	
02/07/24	15:39	160	640.0	1780.1	6.88	0.09	14.0	6.13	0.871	-65.2	35.29	
02/07/24	15:43	160	640.0	1140.2	7.11	0.08	14.0	6.12	0.871	-71.5	25.40	
02/07/24	15:47	160	640.0	1780.2	6.94	0.05	13.3	6.12	0.877	-76.4	44.46	Battery died and had to replace with new one
02/07/24	15:51	160	640.0	1140.3	7.18	0.06	14.0	6.12	0.871	-78.0	33.29	
02/07/24	15:55	160	640.0	1780.3	7.54	0.05	14.1	6.13	0.871	-80.7	38.22	

5-Sample

Date	02/07/2024	Time	15:30
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/07/2024	Sample Time	15:50
Sample ID	RGW264S-02072024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Lindsey Wielick
Sampler's Signature:	NA	No. of Containers	4
Analysis	VOC-8260D, SM5310 C	Matrix	Water
Filtered?	NO	COC	24B0200
Bottles	3x HCl VOA, 1x 250mL H2SO4 amber	Sampler Signature	John
Remarks	None		

Detailed Low Flow Sampling InfoSite: Boeing Renton

737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

RGW031S-R

1-Well Integrity

Date	02/06/2024	Time	13:13	
Inspector Name	Lindsey Wielick	Well Permit Number	BNE-654	
Type of well head	Flush Mount	Freely accessible	Yes	
Ground Pad Intact	Yes	Security Case and Cover	Yes	
Lock Present and Operable	Yes	Outside ID Intact	Yes	
Well Cap Present	Yes	Inside Measurement Point	No	
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	No	
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None	
Any repairs/replacement (explain)	None	Pump	QED Bladder Pump	
Total drawdown	0	Did well meet SAP/WP stabilization requirements before sampling?	Yes	
Instrument calibration date	01/29/2024	Instrument calibration time	12:00	
Comments	None			
2-Gauging				
Date	02/06/2024	Time	13:13	
Top of Casing	NA	Screen Interval	NA	
PID	NA	Initial DTW (ft)	5.31	
Final DTW (ft)	5.31	Groundwater elevation	NA	
Well Depth (ft)	25	Free Product?	No	
Depth To NAPL	NA	Well Dry?	N	
Remarks	Final DTW:5.31			
3-Wellhead				
Date	02/06/2024	Time	13:13	
Weather Conditions	Cloudy	Purge Method	Low-flow Bladder Pump	
Purge Volume Units	mL	Purge Rate	250	
Water Quality Meter	YSI	Sampling Type	Low Flow	
Casing Material	PVC	Casing Diameter (in)	2	
Pump Intake Depth (ft bmp) 20		Depth to Water (ft bmp)	5.31	
Measured Well Depth (ft bmp)	25	Water Column in Well	19.69	

Casing Volume to Remove NA

Project No: PS20203450

3.2115484

Gallons in Well

Client: The Boeing Company

Total Volume to Remove	NA			
Remarks	None			
Remarks	None			

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/06/24	13:14	250	100	100	5.32	6.84	13.2	6.24	0.309	89.5	18.73	
02/06/24	13:18	250			5.30	6.10	14.5	6.22	0.341	66.4	10.93	
02/06/24	13:22	250			5.30	5.96	14.6	6.24	0.342	39.5	6.37	
02/06/24	13:26	250			5.31	5.88	14.7	6.26	0.342	19.2	4.52	
02/06/24	13:30	250			5.31	5.84	14.7	6.27	0.343	-1.1	3.91	
02/06/24	13:34	250			5.30	5.80	14.8	6.27	0.343	-7.4	3.25	
02/06/24	13:38	250			5.30	5.78	14.8	6.28	0.343	-15.6	3.33	
02/06/24	13:42	250			5.30	5.76	14.8	6.28	0.343	-22.7	2.95	
02/06/24	13:46	250			5.30	5.75	14.8	6.28	0.343	-27.3	2.57	
02/06/24	13:50	250	1000.0		5.31	5.75	14.8	6.29	0.342	-31.6	2.55	Sheen on purged water

5-Sample

Date	02/06/2024	Time	13:16
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/06/2024	Sample Time	13:55
Sample ID	RGW031S-R-02062024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Lindsey Wielick
Sampler's Signature:	NA	No. of Containers	7
Analysis	VOC-8260D, NWTPH-Gx, SM5310 C	Matrix	Water
Filtered?	NO	COC	24B0141
Bottles	6x HCI VOA, 1x 250mL H2SO4 amber	Sampler Signature	Johnfall
Remarks	None		

Client: The Boeing Company

RGW033S

1-Well Integrity

Sack Perkins Well Permit Number No tag	<u> </u>			
Type of Well head Flush Mount Freely accessible Yes	Date	02/06/2024	Time	12:59
Security Case and Cover Yes Security Case and Cover No Security Case and Cover Security Case Securit	Inspector Name	Jacklyn Perkins	Well Permit Number	No tag
Cock Present and Operable No Outside ID Intact No Outside Measurement Point No Outside Measurement Point No Outside Measurement Point No	Type of well head	Flush Mount	Freely accessible	Yes
Depende No Outside Dintact No No No No No No No N	Ground Pad Intact	Yes	Security Case and Cover	Yes
Inside Casing Clear of Debris No Casing Clear of Debris No Apparent Physical Damage (explain)	Lock Present and Operable	No	Outside ID Intact	No
Debris No Apparent Physical Damage Any cleanup performed (explain) None Any repairs/replacement (explain) Total drawdown To	Well Cap Present	Yes	Inside Measurement Point	No
Damage Any repairs/replacement (explain) Any repairs/replacement (explain) None Pump Did well meet SAP/WP stabilization requirements before sampling? Instrument calibration date Comments Local surface of paved area ponds at this location, approx 6 gallons of water removed from wellhead continuously over purging/ sampling time 2-Gauging Date O2/06/2024 Time 13:17 Top of Casing NA Screen Interval PID NA Initial DTW (ft) 5.25 Groundwater elevation Well Depth (ft) Depth To NAPL NA Well Dry? NO Date O2/06/2024 Time 17:36 Date O2/06/2024 Time 17:36 Date O2/06/2024 Time 17:36 Date O2/06/2024 Time 17:36 Low-flow Bladder Pump NA Low-flow Bladder Pump NA Low-flow Bladder Pump NA Purge Rate NA Water Quality Meter Casing Material Pump Intake Depth (ft Domp) NA Depth to Water (ft bmp) NA	Inside Casing Clear of Debris	No		Yes
Pump Did well meet SAP/WP Stabilization requirements before sampling? Instrument calibration date Instrument calibra	No Apparent Physical Damage	Yes		None
Total drawdown Total drawdown Instrument calibration date	Any repairs/replacement	None	Pumn	QED Bladder Pump
Total drawdown 0 stabilization requirements before sampling? DO DO DO DO DO DO DO D	(explain)		•	·
Comments Local surface of paved area ponds at this location, approx 6 gallons of water removed from wellhead continuously over purging/ sampling time 2-Gauging Date Date Date Date NA Screen Interval Initial DTW (ft) 5.16 Final DTW (ft) 5.25 Groundwater elevation NA Well Depth (ft) Depth To NAPL Remarks Final dtw 5.25 B-Wellhead Date Date	Total drawdown	0	stabilization requirements	
Part of Casing NA Screen Interval NA Initial DTW (ft) 5.16 Final DTW (ft) 25 Groundwater elevation NA Well Depth (ft) NA Well Dry? NO	Instrument calibration date	01/29/2024	Instrument calibration time	12:00
Date 02/06/2024 Time 13:17 Top of Casing NA Screen Interval NA PID NA Initial DTW (ft) 5.16 Final DTW (ft) 5.25 Groundwater elevation NA Well Depth (ft) 25 Free Product? No Depth To NAPL NA Well Dry? N Remarks Final dtw 5.25 B-Wellhead Date 02/06/2024 Time 17:36 Weather Conditions Cloudy Purge Method Low-flow Bladder Pump NA Purge Volume Units ML Purge Rate NA Water Quality Meter YSI Sampling Type NA Casing Material NA Casing Diameter (in) NA Measured Well Depth (ft NA Depth to Water (ft bmp) NA Measured Well Depth (ft NA Water Column in Well NA Mater Column in Well NA Mater Column in Well NA	Comments	Local surface of paved area pond- wellhead continuously over purgin	s at this location, approx 6 ga	allons of water removed from
Time NA	2-Gauging			
PID NA Initial DTW (ft) 5.16 Final DTW (ft) 5.25 Groundwater elevation NA Well Depth (ft) 25 Free Product? No Depth To NAPL NA Well Dry? N Remarks Final dtw 5.25 B-Wellhead Date 02/06/2024 Time 17:36 Weather Conditions Cloudy Purge Method Low-flow Bladder Pump Purge Volume Units ML Purge Rate NA Water Quality Meter YSI Sampling Type NA Casing Material NA Casing Diameter (in) NA Pump Intake Depth (ft omp) Measured Well Depth (ft omp) Measured W	Date	02/06/2024	Time	13:17
Final DTW (ft) 5.25 Groundwater elevation Free Product? No Depth To NAPL Remarks Final dtw 5.25 S-Wellhead Date 02/06/2024 Time 17:36 Low-flow Bladder Pump Purge Volume Units Water Quality Meter Casing Material Pump Intake Depth (ft omp) Measured Well Depth (ft omp) Measured Well Depth (ft omp) Measured Well Depth (ft omp) Ma Water Column in Well NA NA Water Column in Well NA NA NA Water Column in Well NA NA NA Water Column in Well NA NA NA NA Water Column in Well NA NA NA NA NA Water Column in Well NA NA NA NA NA Water Column in Well NA NA NA NA NA NA NA NA Water Column in Well NA NA NA NA NA NA NA NA Water Column in Well NA NA NA NA NA NA NA NA NA	Top of Casing	NA	Screen Interval	NA
Well Depth (ft) Depth To NAPL Remarks Final dtw 5.25 B-Wellhead Date O2/06/2024 Depth Conditions Cloudy Purge Method Purge Volume Units Water Quality Meter Value Quality Meter Casing Material NA Depth (ft) NA Depth to Water (ft bmp) Measured Well Depth (ft bmp) Ma Water Column in Well NA NA NA Water Column in Well NA NA NA NA NA Water Column in Well NA NA NA NA NA NA NA NA NA	PID	NA	Initial DTW (ft)	5.16
Depth To NAPL NA Well Dry? N Remarks Final dtw 5.25 3-Wellhead Date Date Date O2/06/2024 Time Time 17:36 Low-flow Bladder Pump MA Water Quality Meter VSI Sampling Type Casing Material Pump Intake Depth (ft omp) Measured Well Depth (ft omp) Measured Well Depth (ft omp) Ma Water Column in Well NA NA NA NA NA NA NA NA NA	Final DTW (ft)	5.25	Groundwater elevation	NA
Remarks Final dtw 5.25 Final dtw 5.25 Final dtw 5.25 Remarks Final dtw 5.25 Fina	Well Depth (ft)	25	Free Product?	No
Date 02/06/2024 Time 17:36 Low-flow Bladder Pump Weather Conditions Purge Method Purge Volume Units Purge Rate Water Quality Meter YSI Sampling Type NA Casing Material NA Casing Diameter (in) NA Pump Intake Depth (ft omp) Measured Well Depth (ft omp) Measured Well Depth (ft omp) Water Column in Well NA	Depth To NAPL	NA	Well Dry?	N
Date	Remarks	Final dtw 5.25		
Weather Conditions Weather Conditions Purge Wethod Purge Rate Water Quality Meter Casing Material Pump Intake Depth (ft omp) Measured Well Depth (ft omp) Ma Vater Column in Well Purge Method NA NA NA NA NA NA NA NA NA N	3-Wellhead			
Purge Volume Units ML Purge Rate Water Quality Meter Casing Material Pump Intake Depth (ft bmp) Measured Well Depth (ft bmp) Measured Well Depth (ft bmp) NA Water Column in Well NA NA NA NA NA NA NA NA NA	Date	02/06/2024	Time	17:36
Water Quality Meter VSI Sampling Type NA Casing Material Pump Intake Depth (ft omp) NA Depth to Water (ft bmp) NA Water Column in Well NA NA NA NA NA NA NA NA NA	Weather Conditions	Cloudy	Purge Method	Low-flow Bladder Pump
Casing Material Pump Intake Depth (ft bmp) MA Depth to Water (ft bmp) Ma Water Column in Well NA NA NA NA NA NA NA NA NA	Purge Volume Units	mL	Purge Rate	NA
Pump Intake Depth (ft bmp) Measured Well Depth (ft bmp) NA NA Water Column in Well NA	Water Quality Meter	YSI	Sampling Type	NA
Depth to Water (ft bmp) Measured Well Depth (ft bmp) NA Water Column in Well NA	Casing Material	NA	Casing Diameter (in)	NA
omp) Water Column in Well NA	Pump Intake Depth (ft	NA	, ,	NA
Gallons in Well NA Casing Volume to Remove NA	Measured Well Depth (ft bmp)	NA	Water Column in Well	NA
	Gallons in Well	NA	Casing Volume to Remove	NA

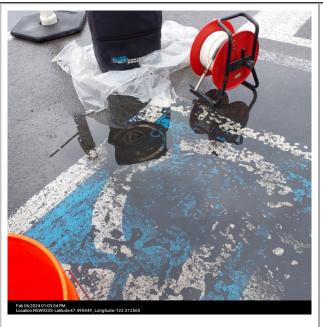
Client: The Boeing Company

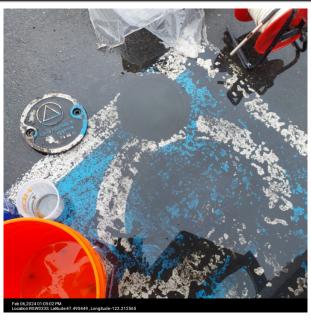
Total Volume to Remove	NA	
Remarks	None	

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperal (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/06/24	13:22	190	300	300	5.25	0.92	14.4	6.26	0.558	-50.4	4.64	
02/06/24	13:26	190	760.0	1060.0	5.25	0.23	14.7	6.27	0.566	-69.3	2.24	
02/06/24	13:30	190	760.0	1820.0	5.26	0.12	14.8	6.28	0.567	-76.9	2.10	
02/06/24	13:34	190	760.0	2580.0	5.25	0.09	14.8	6.28	0.567	-79.5	2.51	
02/06/24	13:38	190	760.0	3340.0	5.26	0.06	14.8	6.28	0.567	-82.0	3.36	
02/06/24	13:42	190	760.0	4100.0	5.25	0.04	14.9	6.28	0.566	-84.0	5.07	

5-Sample


Date	02/06/2024	Time	13:33
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/06/2024	Sample Time	13:50
Sample ID	RGW033S-02062024	Duplicate Sample ID	DUP2-02062024
Dup Sample Time	00:00	Sampler's Name	Jacklyn Perkins
Sampler's Signature:	Johnan	No. of Containers	7
Analysis	VOC-8260D, NWTPH-Gx, SM5310 C	Matrix	Water
Filtered?	NO	COC	24B0141
Bottles	6x HCl VOA, 1x 250mL H2SO4 amber	Sampler Signature	Jh. Joh
Remarks	None		



Project No: PS20203450

Detailed Low Flow Sampling Info
Site: Boeing Renton
737 Logan Avenue N, Renton, Washington
98057
Client: The Boeing Company

Photos

Client: The Boeing Company

RGW034S 1-Well Integrity

Date	02/06/2024	Time	15:06
Inspector Name	Jacklyn Perkins	Well Permit Number	No tag
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	No	Outside ID Intact	No
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	Yes
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	Pumped ponded water out
Any repairs/replacement (explain)	Lock rusted shut, replaced with new 1g022	_ Pump	QED Bladder Pump
Total drawdown	-0.980000000000004	Did well meet SAP/WP stabilization requirements before sampling?	No; DO did not stabilize, <0.10
Instrument calibration date	01/29/2024	Instrument calibration time	12:00
Comments	None		
2-Gauging			
Date	02/06/2024	Time	15:06
Top of Casing	NA	Screen Interval	NA
PID	NA	_ Initial DTW (ft)	4.34
Final DTW (ft)	5.32	Groundwater elevation	NA
Well Depth (ft)	25	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Final DTW 5.32		
3-Wellhead			
Date	02/06/2024	Time	15:12
Weather Conditions	Cloudy	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	_ Purge Rate	200
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	2
Pump Intake Depth (ft bmp)	20	Depth to Water (ft bmp)	4.34
Measured Well Depth (ft bmp)	25	Water Column in Well	20.66
Gallons in Well	3.36976	Casing Volume to Remove	NA

Client: The Boeing Company

Total Volume to Remove	NA
Remarks	None

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/06/24	15:09	200	500	500	5.35	1.63	12.1	6.50	0.472	-19.7	2.00	
02/06/24	15:13	200	800.0	1300.0	5.35	0.35	12.2	6.46	0.537	-65.6	1.48	
02/06/24	15:17	200	800.0	2100.0	5.35	0.15	12.3	6.46	0.536	-84.0	0.78	
02/06/24	15:21	200	800.0	2900.0	5.35	0.08	13.4	6.47	0.532	-90.9	0.63	
02/06/24	15:25	200	800.0	3700.0	5.36	0.06	12.4	6.46	0.528	-94.3	0.50	
02/06/24	15:29	200	800.0	4500.0	5.31	0.04	12.5	6.45	0.529	-96.8	0.42	

5-Sample

Date	02/06/2024	Time	15:14
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/06/2024	Sample Time	15:30
Sample ID	RGW034S-02062024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Jacklyn Perkins
Sampler's Signature:	NA	No. of Containers	7
Analysis	VOC-8260D, NWTPH-Gx, SM5310 C	Matrix	Water
Filtered?	NO	COC	24B0141
Bottles	6x HCl VOA, 1x 250mL H2SO4 amber	Sampler Signature	J.hfSh
Remarks	None		

Detailed Low Flow Sampling Info Site: Boeing Renton

Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

RGW143S

1-Well Integrity

Date	02/05/2024	Time	15:12
Inspector Name	Lindsey Wielick	Well Permit Number	No tag
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	No	Outside ID Intact	NA
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	No	Ponded Water Inside Casing	Yes
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None
Any repairs/replacement (explain)	None	Pump	QED Bladder Pump
	0.08000000000000007	Did well meet SAP/WP stabilization requirements	Yes
Total drawdown Instrument calibration date	01/29/2024	before sampling? Instrument calibration time	12:00
Comments	None		
2-Gauging			
Date	02/05/2024	Time	15:15
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	5.61
Final DTW (ft)	5.53	Groundwater elevation	NA
Well Depth (ft)	15.9	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Final DTW: 5.53		
3-Wellhead			
Date	02/05/2024	Time	15:15
Weather Conditions	Rain, Cloudy	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	250
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	2
Pump Intake Depth (ft bmp)	12.5	Depth to Water (ft bmp)	5.61
Measured Well Depth (ft bmp)	15.9	Water Column in Well	10.29
Gallons in Well	1.6783562	Casing Volume to Remove	NA

Client: The Boeing Company

Total Volume to Remove	NA
Remarks	None

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/05/24	15:36	250	125	125	5.61	7.47	13.3	6.33	0.351	14.9	46.18	
02/05/24	15:40	250			5.62	6.77	13.7	6.34	0.358	-2.7	23.82	
02/05/24	15:44	250			5.67	6.03	14.1	6.35	0.359	-22.9	21.62	
02/05/24	15:48	250			5.61	5.95	14.2	6.35	0.360	-35.4	22.97	
02/05/24	15:52	250			5.64	5.84	14.3	6.36	0.361	-44.8	19.35	
02/05/24	15:56	250			5.66	5.77	14.4	6.36	0.360	-51.6	12.68	
02/05/24	16:00	250			5.63	5.75	14.4	6.37	0.360	-56.4	11.96	
02/05/24	16:04	250	1000.0		5.61	5.74	14.4	6.37	0.359	-60.4	11.79	

5-Sample

Date	02/05/2024	Time	15:49
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/05/2024	Sample Time	16:15
Sample ID	RGW143S-R-02052024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Lindsey Wielick
Sampler's Signature:	NA	No. of Containers	7
Analysis	VOC-8260D, NWTPH-Gx, SM5310	^C Matrix	Water
Filtered?	NO	COC	24B0106
Bottles	6x HCl VOA, 1x 250mL H2SO4 amber	Sampler Signature	Johnfash
Remarks	None		

Client: The Boeing Company

RGW237S

1-Well Integrity

1-Well integrity			
Date	02/05/2024	Time	14:20
Inspector Name	Jacklyn Perkins	Well Permit Number	No tag
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable Well Cap Present	No	Outside ID Intact	No
	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Any cleanup performed	Yes
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	Pumped ponded water out
Any repairs/replacement (explain)	New lock	Pump	GeoTech Bladder Pump
Total drawdown	-0.00999999999999787	Did well meet SAP/WP stabilization requirements before sampling?	No; turbidity did not stabilize; purged >30 min
Instrument calibration date	01/29/2024	Instrument calibration time	12:00
Comments	Lock rusted shut, replaced with	h new 1g022	
2-Gauging	·		
Date	02/05/2024	Time	14:21
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	4.70
Final DTW (ft)	4.71	Groundwater elevation	NA
Well Depth (ft)	15	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Final dtw 4.71		
3-Wellhead			
Date	02/05/2024	Time	14:49
Weather Conditions	Rain, Cloudy	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	150
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	2
Pump Intake Depth (ft bmp)	10	Depth to Water (ft bmp)	4.70
Measured Well Depth (ft	15	Matar Calumn in Mall	10.3

Project No: PS20203450

Water Column in Well

Casing Volume to Remove

bmp)

Gallons in Well

1.67999

Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

T	otal	Vol	ume	to	Remove

NA			

Remarks

None

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/05/24	14:23	225	500	500	4.70	0.98	12.8	6.50	0.334	-51.5	225.50	Cloudy, orange
02/05/24	14:27	225	1125.0	1625.0	4.70	0.30	13.8	6.46	0.314	-51.6	510.06	Cloudy, orange
02/05/24	14:31	150			4.71	0.22	13.7	6.45	0.298	-45.6	526.14	Cloudy, orange
02/05/24	14:46	150	1000		4.71	2.30	13.4	6.39	0.300	-33.3	251.61	Emptied out follow cell, it refilled with very thick organic matter rich water, increased flow psi to flush from bladder. Turbidity decrease from 1700 to 300.
02/05/24	14:50	150			4.71	1.00	13.1	6.37	0.302	-36.6	187.74	
02/05/24	14:54	150			4.71	0.61	13.0	6.38	0.306	-45.3	104.32	
02/05/24	14:58	150			4.71	0.49	13.0	6.38	0.306	-49.6	58.42	
02/05/24	15:02	150			4.71	0.50	13.1	6.43	0.293	-52.7	40.45	
02/05/24	15:06	150			4.71	0.48	13.2	6.39	0.298	-54.0	41.96	
02/05/24	15:10	150			4.71	0.48	13.0	6.39	0.290	-55.0	25.75	

5-Sample

02/05/2024 14:49 Time Date Boeing RTN wastewater Location of disposed treatment plant No Did Well Dewater? purge water How were samples How were samples Cooler with regular ice Sampler drop-off at lab transported to lab? preserved?

Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

02/05/2024 15:10 Sample Date Sample Time RGW237S-02052024 NA Sample ID **Duplicate Sample ID** Jacklyn Perkins NA **Dup Sample Time** Sampler's Name NA Sampler's Signature: No. of Containers VOC-8260D, NWTPH-Gx, SM5310 C Matrix Water Analysis NO 24B0106 Filtered? COC 6x HCI VOA, 1x 250mL H2SO4

amber Sampler Signature

Remarks None

Photos

Bottles

Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

Project No: PS20203450

RGW240D

1-Well Integrity

Gallons in Well

bmp)

bmp)

Pump Intake Depth (ft

Measured Well Depth (ft

1-Well Integrity			
Date	02/05/2024	Time	14:19
Inspector Name	Lindsey Wielick	Well Permit Number	No tag
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	No	Outside ID Intact	Yes
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	Yes
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None
Any repairs/replacement (explain)	None	Pump	GeoTech Bladder Pump
Total drawdown	-0.919999999999999	Did well meet SAP/WP stabilization requirements before sampling?	Yes
Instrument calibration date	01/29/2024	Instrument calibration time	12:00
Comments	None		
2-Gauging			
Date	02/05/2024	Time	14:20
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	6.43
Final DTW (ft)	7.35	Groundwater elevation	NA
Well Depth (ft)	27	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Final DTW: 7.35		
3-Wellhead			
Date	02/05/2024	Time	14:20
Weather Conditions	Rain, Cloudy	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	200
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	2

Depth to Water (ft bmp)

Water Column in Well

Casing Volume to Remove

6.43

20.57

NA

24.5

27

3.3550813

Client: The Boeing Company

Total	Volume to Remove	
-------	------------------	--

NA			

Remarks

None

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/05/24	14:21	200	100	100	6.44	7.22	11.9	6.33	0.250	105.0	229.46	
02/05/24	14:25	200			6.95	6.02	14.3	6.34	0.260	60.7	381.12	
02/05/24	14:29	200			7.18	5.94	14.4	6.49	0.256	18.7	122.92	
02/05/24	14:33	200			7.32	5.88	14.5	6.55	0.252	-11.9	50.73	
02/05/24	14:37	200			7.41	5.86	14.5	6.56	0.250	-31.7	32.95	
02/05/24	14:41	200			7.45	5.83	14.5	6.56	0.249	-45.9	29.16	
02/05/24	14:45	200			7.49	5.81	14.5	6.57	0.250	-55.0	22.42	
02/05/24	14:49	200			7.56	5.79	14.6	6.57	0.249	-61.9	19.04	
02/05/24	14:53	200			7.47	5.78	14.6	6.57	0.252	-67.2	18.75	
02/05/24	14:57	200			7.51	5.76	14.6	6.56	0.252	-71.7	19.93	Slight sheen on purged water

5-Sample

Date	02/05/2024	Time	14:38
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/05/2024	Sample Time	15:05
Sample ID	RGW240D-R-02052024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Lindsey Wielick
Sampler's Signature:	NA	No. of Containers	7
Analysis	VOC-8260D, NWTPH-Gx, SM5310	C Matrix	Water
Filtered?	NO	coc	24B0106
Bottles	6x HCI VOA, 1x 250mL H2SO4 amber	Sampler Signature	Johnfalh
Remarks	None		

Detailed Low Flow Sampling InfoSite: Boeing Renton

Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057

98057 Client: The Boeing Company

RGW-244S-R

1-Well Integrity

Date	02/06/2024	Time	14:11			
Inspector Name	Lindsey Wielick	Well Permit Number	BNE-655			
Type of well head	Flush Mount	Freely accessible	Yes			
Ground Pad Intact	Yes	Security Case and Cover	Yes			
Lock Present and Operable Yes	Yes	Outside ID Intact	Yes			
Well Cap Present	Yes	Inside Measurement Point	No			
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	No			
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None			
Any repairs/replacement (explain)	None	Pump	GeoTech Bladder Pump			
Total drawdown	-0.15999999999999925	Did well meet SAP/WP stabilization requirements before sampling?	No; turbidity did not stabilize; purged >30 min			
Instrument calibration date	01/29/2024	Instrument calibration time	12:00			
Comments	None					
2-Gauging						
Date	02/06/2024	Time	14:12			
Top of Casing	NA	Screen Interval	NA			
PID	NA	Initial DTW (ft)	5.15			
Final DTW (ft)	5.31	Groundwater elevation	NA			
Well Depth (ft)	15	Free Product?	No			
Depth To NAPL	NA	Well Dry?	N			
Remarks	Final DTW: 5.31					
3-Wellhead						
Date	02/06/2024	Time	14:11			
Weather Conditions	Cloudy	Purge Method	Low-flow Bladder Pump			
Purge Volume Units	mL	Purge Rate	250			
Water Quality Meter	YSI	Sampling Type	Low Flow			
Casing Material	PVC	Casing Diameter (in)	2			
Pump Intake Depth (ft omp)	10	Depth to Water (ft bmp)	5.15			
Measured Well Depth (ft bmp)	15	Water Column in Well	9.85			
Gallons in Well	1.6065897	Casing Volume to Remove	NA			

Client: The Boeing Company

Total Volume to Remove	NA		
Remarks	None		
Remarks	None		

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
01/30/24	10:44	250	250	250	90	7	20	7	1000	120	2	Remark
02/06/24	14:16	250			5.15	7.25	12.6	6.27	0.382	43.4	44.82	
02/06/24	14:20	250			5.14	6.10	14.0	6.23	0.442	30.9	35.48	
02/06/24	14:24	250			5.14	5.93	14.3	6.32	0.442	9.4	15.91	
02/06/24	14:28	250			5.15	5.86	14.5	6.28	0.439	-2.3	13.67	
02/06/24	14:32	250			5.14	5.85	14.5	6.29	0.435	-13.4	9.72	
02/06/24	14:36	250			5.15	5.79	14.8	6.29	0.435	-21.8	9.32	
02/06/24	14:40	250			5.15	5.75	14.7	6.29	0.433	-28.4	7.81	
02/06/24	14:44	250			5.15	5.78	14.5	6.30	0.434	-33.9	8.64	
02/06/24	14:48	250	1000.0		5.16	5.82	14.1	6.29	0.434	-38.0	9.72	

5-Sample

Date	02/06/2024	Time	14:16
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/06/2024	Sample Time	14:55
Sample ID	RGW244S-R-02062024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Lindsey Wielick
Sampler's Signature:	NA	No. of Containers	7
Analysis	VOC-8260D, NWTPH-Gx, SM5310 C	Matrix	Water
Filtered?	NO	COC	24B0141
Bottles	6x HCl VOA, 1x 250mL H2SO4 amber	Sampler Signature	JARA
Remarks	None		

Client: The Boeing Company

RGW211S

1-Well Integrity

Date	02/08/2024	Time	09:15
Inspector Name	Jacklyn Perkins	Well Permit Number	BAB-498
Type of well head	Flush Mount	Freely accessible	No
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	Yes	Outside ID Intact	Yes
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	No
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None
Any repairs/replacement (explain)	None	Pump	QED n.d. sample Pro SS & PE, peristaltic pump
		Did well meet SAP/WP	
Total drawdown	-0.04999999999998934	stabilization requirements before sampling?	Yes
Instrument calibration date	01/29/2024	Instrument calibration time	12:00
Comments	Ran out of co2, completed pur	ge and sampling with okay by CF	=
2-Gauging			
Date	02/08/2024	Time	09:15
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	8.80
Final DTW (ft)	8.85	Groundwater elevation	NA
Well Depth (ft)	14.75	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Final DTW 8.85		
3-Wellhead			
Date	02/08/2024	Time	10:41
Weather Conditions	Cloudy	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	200
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	2
Pump Intake Depth (ft bmp)	NA	Depth to Water (ft bmp)	8.80
Measured Well Depth (ft	14.75	Water Column in Well	5.95
bmp)	0.970478		NA
Gallons in Well		Casing Volume to Remove	

Project No: PS20203450

Site: Boeing Renton
737 Logan Avenue N, Renton, Washington
98057
Client: The Boeing Company

Total Volume to Remove	NA		
Domorko	None		
Remarks	None		

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/08/24	09:16	200	300	300	8.80	2.76	10.8	6.82	0.353	53.9	960.34	Brown, v turbid with organic
02/08/24	09:20	200	800.0	1100.0	8.80	6.28	11.6	6.61	0.223	18.3	344.05	Emptied out flow cell prior to reading
02/08/24	09:24	200	800.0	1900.0	8.82	2.46	12.1	6.43	0.214	-9.3	91.83	Emptied out flow cell prior to readings
02/08/24	09:28	200	800.0	2700.0	8.81	0.67	12.1	6.40	0.214	-13.2	72.14	
02/08/24	09:32	200	800.0	3500.0	8.81	0.20	12.1	6.44	0.214	-20.0	55.61	
02/08/24	09:36	200	800.0	4300.0	8.83	0.12	12.3	6.36	0.215	-24.4	47.70	
02/08/24	09:40	200	800.0		8.83	0.09	12.3	6.34	0.216	-27.0	37.09	
02/08/24	10:08	250	250.0	5200	8.83	1.23	12.1	6.39	0.201	-14.9	79.54	Switched to peristaltic pump
02/08/24	10:12	250			8.84	0.55	12.3	6.36	0.208	-16.5	84.16	
02/08/24	10:16	250			8.85	0.38	12.4	6.35	0.209	-20.1	76.55	
02/08/24	10:20	250			8.85	0.36	12.5	6.35	0.212	-22.1	79.99	
02/08/24	10:24	250			8.85	0.35	12.5	6.35	0.213	-22.6	72.58	Slight deisel odor, slight sheen on purgewat

5-Sample

Printed: Mar 8, 2024 7:17 PM GMT

Date

Date

Did Well Dewater?

No

Did Well Dewater?

How were samples preserved?

Cooler with regular ice

Time

Location of disposed purge water

How were samples transported to lab?

Sampler drop-off at lab

Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

02/08/2024 10:00 Sample Date Sample Time RGW211S-02082024 NA Sample ID Duplicate Sample ID Jacklyn Perkins NA Dup Sample Time Sampler's Name NA 2 Sampler's Signature: No. of Containers NWTPH-Dx Water Analysis Matrix 24B0221 NO Filtered? COC 2x 500mL amber Bottles Sampler Signature None Remarks

Client: The Boeing Company

RGW221S

1-Well Integrity

Date	02/06/2024	Time	09:21
Inspector Name	Lindsey Wielick	Well Permit Number	BHB-417
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	Yes	Outside ID Intact	Yes
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	Yes
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None
Any repairs/replacement (explain)	None	Pump	QED n.d. sample Pro SS & PE
	0	Did well meet SAP/WP stabilization requirements	Yes
Total drawdown	01/29/2024	before sampling?	12:00
Instrument calibration date		Instrument calibration time	12.00
Comments	None		
2-Gauging			
Date	02/06/2024	Time	09:32
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	8.73
Final DTW (ft)	8.73	Groundwater elevation	NA
Well Depth (ft)	15	Free Product?	No
Depth To NAPL	NA	Well Dry?	<u>N</u>
Remarks	Final DTW: 8.73		
3-Wellhead			
Date	02/06/2024	Time	09:32
Weather Conditions	Cloudy, light rain	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	250
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	2
Pump Intake Depth (ft bmp)	10	Depth to Water (ft bmp)	8.73
Measured Well Depth (ft bmp)	15	Water Column in Well	6.27
Gallons in Well	1.0226718	Casing Volume to Remove	NA

Client: The Boeing Company

Total Volume to Remove	NA		
Remarks	None		
remarks	INOLIC		

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/06/24	09:34	250	200	200	8.71	7.67	11.9	6.24	0.215	53.7	55.28	
02/06/24	09:38	250			8.72	6.39	13.2	6.24	0.201	38.7	16.57	
02/06/24	09:42	250			8.75	6.24	13.3	6.26	0.202	27.7	7.62	
02/06/24	09:46	250			8.76	6.18	13.4	6.27	0.202	20.3	13.20	
02/06/24	09:50	250			8.74	6.16	13.4	6.27	0.202	15.1	9.84	
02/06/24	09:54	250			8.72	6.14	13.4	6.28	0.202	11.0	9.60	
02/06/24	09:58	250			8.72	6.12	13.4	6.27	0.202	7.7	9.71	Sheen on purged water

5-Sample

Date	02/06/2024	Time	09:38
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/06/2024	Sample Time	10:05
Sample ID	RGW221S-R-02062024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Lindsey Wielick
Sampler's Signature:	NA	No. of Containers	2
Analysis	NWTPH-Dx	Matrix	Water
Filtered?	NO	coc	24B0139
Bottles	2x 500mL amber	Sampler Signature	JARA
Remarks	None		

Client: The Boeing Company

RGW224S

1-Well Integrity

Date	02/06/2024	Time	08:10
Inspector Name	Lindsey Wielick	Well Permit Number	BHB440
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	ck Present and		
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	Yes
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None
Any repairs/replacement (explain)	None	Pump	QED n.d. sample Pro SS & PE
	-0.30999999999987	Did well meet SAP/WP stabilization requirements	Yes
Total drawdown	01/29/2024	before sampling?	12:00
Instrument calibration date	U 1/23/202 4	Instrument calibration time	12.00
Comments	None		
2-Gauging			
Date	02/06/2024	Time	08:17
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	9.72
Final DTW (ft)	10.03	Groundwater elevation	NA
Well Depth (ft)	15	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Final DTW: 10.03		
3-Wellhead			
Date	02/06/2024	Time	08:17
Weather Conditions	light rain, Cloudy	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	240
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	2
Pump Intake Depth (ft bmp)	10	Depth to Water (ft bmp)	9.72
Measured Well Depth (ft bmp)	15	Water Column in Well	5.28
Gallons in Well	0.8611973	Casing Volume to Remove	NA
		-	

Client: The Boeing Company

Total Volume to Remove	NA
Remarks	None
Remarks	None

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/06/24	08:22	240	120	120	10.01	7.83	12.4	5.85	0.151	175.3	154.17	
02/06/24	08:26	240			10.06	6.39	13.7	5.94	0.171	140.3	130.44	
02/06/24	08:30	240			10.01	6.22	13.8	6.01	0.170	105.0	55.17	
02/06/24	08:34	240			10.05	6.17	13.8	6.05	0.169	82.1	38.14	
02/06/24	08:38	240			10.06	6.14	13.8	6.09	0.167	66.8	20.79	
02/06/24	08:42	240			10.02	6.10	13.9	6.10	0.166	57.6	16.24	
02/06/24	08:46	240			10.05	6.08	13.9	6.11	0.165	49.9	11.82	
02/06/24	08:50	240			10.04	6.07	13.8	6.11	0.164	43.3	9.16	
02/06/24	08:54	240			10.02	6.06	13.8	6.12	0.163	38.5	9.45	
02/06/24	08:58	240			10.01	6.03	13.9	6.12	0.162	34.3	8.40	

5-Sample

Date	02/06/2024	Time	08:35
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/06/2024	Sample Time	09:05
Sample ID	RGW224S-R-02062024	Duplicate Sample ID	DUP3-02062024
Dup Sample Time	00:00	Sampler's Name	Lindsey Wielick
Sampler's Signature:	July Rul	No. of Containers	2
Analysis	NWTPH-Dx	Matrix	Water
Filtered?	NO	COC	24B0139
Bottles	2x 500mL amber	Sampler Signature	Johnfuh
Remarks	None		

Client: The Boeing Company

RGW230I

1-Well Integrity

Date	02/06/2024	Time	10:35
Inspector Name	Jacklyn Perkins	Well Permit Number	No tag
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	No	Outside ID Intact	Yes
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	Yes
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	Pumped out ponded water
Any repairs/replacement (explain)	Old lock rusted shut, replaced with new 1g022	_ Pump	GeoTech Bladder Pump
V 1 /		Did well meet SAP/WP	
Total drawdown	-1.00999999999998	stabilization requirements before sampling?	No; DO did not stabilize, <0.10
Instrument calibration date	01/29/2024	Instrument calibration time	12:00
Comments	DO did not stabilize, <0.10		
2-Gauging			
Date	02/06/2024	Time	10:35
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	4.88
Final DTW (ft)	5.86	Groundwater elevation	NA
Well Depth (ft)	14	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Final dtw 5.89		
3-Wellhead			
Date	02/06/2024	Time	10:44
Weather Conditions	Cloudy, light rain	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	140
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	2
Pump Intake Depth (ft bmp)	9	Depth to Water (ft bmp)	4.88
Measured Well Depth (ft bmp)	14	Water Column in Well	9.12
Gallons in Well	1.48752	Casing Volume to Remove	NA

Remarks

Detailed Low Flow Sampling Info Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

T	otal	Volume	to F	Remove

NA		
None		

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/06/24	10:39	140	140	140	5.89	2.20	11.2	6.29	0.419	20.5	17.90	
02/06/24	10:43	140	560.0	700.0	5.90	0.44	12.1	6.34	0.421	-38.7	16.31	
02/06/24	10:47	140	560.0	1260.0	5.89	0.22	12.1	6.35	0.420	-51.6	12.84	
02/06/24	10:51	140	560.0	1820.0	5.90	0.13	12.1	6.36	0.419	-58.4	9.92	
02/06/24	10:55	140	560.0	2380.0	5.89	0.09	12.1	6.37	0.417	-62.2	7.41	
02/06/24	10:59	140	560.0	2940.0	5.89	0.07	12.0	6.39	0.413	-64.8	5.10	
02/06/24	11:04	140	700.0	3640.0	5.89	0.05	12.0	6.43	0.410	-67.1	3.95	

5-Sample

Date	02/06/2024	Time	10:36
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/06/2024	Sample Time	11:10
Sample ID	RGW230I-02062024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Jacklyn Perkins
Sampler's Signature:	NA	No. of Containers	3
Analysis	8260 SIM	Matrix	Water
Filtered?	NO	coc	24B0120
			Julifich
Bottles	3 HCI VOA	Sampler Signature	
Remarks	None		

Client: The Boeing Company

RGW152S

1-Well Integrity

Date	02/05/2024	Time	08:51
Inspector Name	Lindsey Wielick	Well Permit Number	No tag
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	No	Outside ID Intact	NA
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	No
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None
Any repairs/replacement (explain)	New lock	Pump	GeoTech Bladder Pump
(c.piani)		Did well meet SAP/WP	
Total drawdown	-0.020000000000000462	stabilization requirements before sampling?	Yes
Instrument calibration date	01/29/2024	Instrument calibration time	12:00
Comments	None		
2-Gauging			
Date	02/05/2024	Time	08:52
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	7.84
Final DTW (ft)	7.86	Groundwater elevation	NA
Well Depth (ft)	14.95	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Final DTW: 7.86		
3-Wellhead			
Date	02/05/2024	Time	08:53
Weather Conditions	Cloudy, Rain	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	145
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	2
Pump Intake Depth (ft bmp)	12.5	Depth to Water (ft bmp)	7.84
Measured Well Depth (ft bmp)	14.95	Water Column in Well	7.11
Gallons in Well	1.1596805	Casing Volume to Remove	NA
Canono in Well		Juding volume to itemove	

Detailed Low Flow Sampling Info Site: Boeing Renton

Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

Total Volume to Remove NA	
Remarks None	

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/05/24	08:53	145	145	145	7.88	6.61	12.4	6.40	0.632	43.5	902.16	
02/05/24	08:57	145			7.86	6.34	12.7	6.26	0.238	12.6	426.10	
02/05/24	09:01	145			7.85	6.30	12.6	6.17	0.199	15.1	219.66	
02/05/24	09:05	145			7.87	6.26	12.6	6.14	0.196	16.9	110.45	
02/05/24	09:09	145			7.88	6.25	12.5	6.13	0.196	16.2	100.18	
02/05/24	09:13	145			7.89	6.22	12.6	6.13	0.196	14.0	42.16	
02/05/24	09:17	145			7.87	6.21	12.5	6.13	0.197	11.5	42.24	
02/05/24	09:21	145	580.0		7.88	6.20	12.5	6.12	0.197	8.9	40.47	

5-Sample

Date	02/05/2024	Time	08:59
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/05/2024	Sample Time	09:25
Sample ID	RGW152S-R-02052024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Lindsey Wielick
Sampler's Signature	NA	No. of Containers	5
Analysis	VOC-8260D SIM, EPA 6020A, SM5310 C	Matrix	Water
Filtered?	NO	COC	24B0107
Bottles	3x HCl VOA, 1x 250mL H2SO4 amber, 1x 250mL HNO3 poly	Sampler Signature	Jhfinh
Remarks	None		

Detailed Low Flow Sampling Info

Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

RGW153S

1-Well Integrity

1-Well Integrity			
Date	02/02/2024	Time	13:01
Inspector Name	Lindsey Wielick	Well Permit Number	No tag
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	Yes	Outside ID Intact	NA
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	No
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None
Any repairs/replacement (explain)	None	Pump	GeoTech Bladder Pump
Total drawdown	-0.050000000000000071	Did well meet SAP/WP stabilization requirements before sampling?	Yes
Instrument calibration date	01/29/2024	Instrument calibration time	12:00
Comments	None		
2-Gauging			
Date	02/02/2024	Time	13:06
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	8.08
Final DTW (ft)	8.13	Groundwater elevation	NA
Well Depth (ft)	14.65	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Final DTW: 8.13		
3-Wellhead			
Date	02/02/2024	Time	13:07
Weather Conditions	Sunny	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	200
Water Quality Meter	YSI	Sampling Type	Low Flow
	D) (0		

Project No: PS20203450

Casing Diameter (in)

Depth to Water (ft bmp)

Water Column in Well

Casing Volume to Remove

2

8.08

6.57

NA

Casing Material

Gallons in Well

bmp)

bmp)

Pump Intake Depth (ft

Measured Well Depth (ft

PVC

12.5

14.65

1.0716035

Client: The Boeing Company

Total Volume to Remove	NA		
Remarks	None		

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/02/24	13:08	180	300	300	8.14	7.96	14.7	6.47	0.246	77.5	223.79	
02/02/24	13:12	180			8.12	6.19	15.5	6.48	0.276	9.5	256.76	
02/02/24	13:16	180			8.09	5.92	15.4	6.49	0.270	-21.2	253.48	
02/02/24	13:20	180			8.11	5.90	15.4	6.48	0.262	-34.8	187.18	
02/02/24	13:24	180			8.12	5.83	15.3	6.46	0.257	-41.2	154.43	
02/02/24	13:28	180			8.11	5.85	15.0	6.45	0.251	-45.2	155.48	
02/02/24	13:32	180			8.13	5.86	15.0	6.44	0.249	-45.3	150.04	
02/02/24	13:36	180	720.0		8.13	5.88	14.8	6.43	0.246	-45.9	143.72	

5-Sample

Date	02/02/2024	Time	13:27
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/02/2024	Sample Time	13:45
Sample ID	RGW153S-R02022024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Lindsey Wielick
Sampler's Signature:	NA	No. of Containers	5
Analysis	EPA 6020D, SM 5310C, VOC-8260D SIM	Matrix	Water
Filtered?	NO	coc	24B0053
Bottles	3x HCl VOA, 1x 250mL H2SO4 amber, 1x 250mL HNO3 poly	Sampler Signature	Johnfoh
Remarks	None		

Client: The Boeing Company

Project No: PS20203450

RGW172S

1-Well Integrity

1-Well Integrity			
Date	02/05/2024	Time	09:18
Inspector Name	Jacklyn Perkins	Well Permit Number	No tag
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	Yes	Outside ID Intact	No
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	No	Ponded Water Inside Casing	No
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None
Any repairs/replacement (explain)	None	Pump	GeoTech Bladder Pump
Total drawdown	-0.5	Did well meet SAP/WP stabilization requirements before sampling?	No; DO did not stabilize, <0.10; purged for >30 min
Instrument calibration date	01/29/2024	Instrument calibration time	12:00
Comments	Wellhead mostly full of moist dirt		
2-Gauging			
Date	02/05/2024	Time	09:19
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	8.92
Final DTW (ft)	9.42	Groundwater elevation	NA

Date	02/05/2024	Time	09:19
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	8.92
Final DTW (ft)	9.42	Groundwater elevation	NA
Well Depth (ft)	17.82	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Final dtw 9.42		

3-Wellhead

Date	02/05/2024	Time	09:19
Weather Conditions	Cloudy	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	150
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	2
Pump Intake Depth (ft bmp)	13	Depth to Water (ft bmp)	8.92
Measured Well Depth (ft bmp)	17.82	Water Column in Well	8.9
Gallons in Well	1.45164	Casing Volume to Remove	NA

Remarks

Detailed Low Flow Sampling Info Site: Boeing Renton

Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

T	otal	Voli	ıme	to	Remove

NA			
None			

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/05/24	09:24	180	360	360	9.39	1.02	14.0	6.64	0.402	-101.5	258.32	Grey sediment
02/05/24	09:28	150	600.0	960.0	9.35	0.30	14.7	6.58	0.325	-100.1	204.52	
02/05/24	09:32	150	600.0	1560.0	9.23	0.14	14.0	6.54	0.314	-97.8	94.65	
02/05/24	09:36	150	600.0	2160.0	9.25	0.09	14.2	6.48	0.308	-91.3	44.13	
02/05/24	09:40	150	600.0	2760.0	9.21	0.07	14.2	6.45	0.305	-88.2	26.71	
02/05/24	09:45	150	750.0	3510.0	9.21	0.04	14.2	6.43	0.305	-86.8	19.46	
02/05/24	09:49	150	600		9.20	0.03	14.2	6.42	0.307	-86.8	17.07	
02/05/24	09:52	150	450.0		9.20	0.02	14.2	6.42	0.307	-86.9	18.29	

5-Sample


Date	02/05/2024	_ Time	09:24
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/05/2024	Sample Time	09:40
Sample ID	RGW172S-02052024	Duplicate Sample ID	DUP1-02052024
Dup Sample Time	00:00	Sampler's Name	Jacklyn Perkins
Sampler's Signature:	NA	No. of Containers	5
Analysis	VOC-8260D SIM, EPA 6020A, SM5310	_ ^C Matrix	Water
Filtered?	NO	COC	24B0107
Bottles	3x HCl VOA, 1x 250mL H2SO4 amber, 1x 250mL HNO3 poly	Sampler Signature	Mehr
Remarks	None		

Project No: PS20203450

Detailed Low Flow Sampling Info
Site: Boeing Renton
737 Logan Avenue N, Renton, Washington
98057
Client: The Boeing Company

Photos

33 / 114

Detailed Low Flow Sampling InfoSite: Boeing Renton

Site: Boeing Renton
737 Logan Avenue N, Renton, Washington
98057
Client: The Boeing Company

Project No: PS20203450

RGW173S

1-Well Integrity

Date	02/05/2024	Time	09:50
Inspector Name	Lindsey Wielick	Well Permit Number	No tag
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	Yes	Outside ID Intact	NA
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	No	Ponded Water Inside Casing	No
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None
Any repairs/replacement (explain)	None	Pump	GeoTech Bladder Pump
V - 16.5		Did well meet SAP/WP stabilization requirements	~
Total drawdown	-0.109999999999943	before sampling?	Yes
Instrument calibration date	01/29/2024	Instrument calibration time	12:00
Comments	None		
2-Gauging			
Date	02/05/2024	Time	10:06
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	8.67
Final DTW (ft)	8.78	Groundwater elevation	NA
Well Depth (ft)	17.2	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Final DTW: 8.78		
3-Wellhead			
Date	02/05/2024	Time	10:06
Weather Conditions	Cloudy	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	170
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	2
Pump Intake Depth (ft omp)	13	Depth to Water (ft bmp)	8.67
Measured Well Depth (ft bmp)	17.2	Water Column in Well	8.53
Gallons in Well	1.3912904	Casing Volume to Remove	NA
		-	

Remarks

Detailed Low Flow Sampling Info Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

T	otal	Volume	to Re	move
	olai			,,,,,,,,,,

NA			
None			

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/05/24	10:07	170	170	170	8.73	8.09	10.7	6.51	0.318	45.8	229.31	
02/05/24	10:11	170			8.67	7.12	11.0	6.54	0.314	21.5	392.80	
02/05/24	10:15	170			8.72	6.42	12.3	6.60	0.305	-6.2	232.75	
02/05/24	10:19	170			8.73	6.32	12.4	6.63	0.303	-26.6	137.7	
02/05/24	10:23	170			8.78	6.30	12.4	6.64	0.302	-39.7	105.38	
02/05/24	10:27	170			8.71	6.27	12.4	6.65	0.300	-48.0	83.18	
02/05/24	10:31	170			8.71	6.26	12.3	6.65	0.296	-54.5	76.33	
02/05/24	10:35	170			8.76	6.24	12.3	6.65	0.293	-59.3	74.47	
02/05/24	10:39	170			8.71	6.22	12.4	6.65	0.291	-62.8	67.83	
02/05/24	10:43	170			8.79	6.23	12.3	6.65	0.288	-65.6	68.59	

5-Sample

Date	02/05/2024	Time	09:50
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/05/2024	Sample Time	10:45
Sample ID	RGW173S-R-02052024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Lindsey Wielick
Sampler's Signature:	NA	No. of Containers	5
Analysis	OC-8260D SIM, EPA 6020A, SM5310	^C Matrix	Water
Filtered?	NO	COC	24B0107
Bottles	3x HCl VOA, 1x 250mL H2SO4 amber, 1x 250mL HNO3 poly	Sampler Signature	Jhfah
Remarks	None		

Detailed Low Flow Sampling Info Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057 Client: The Boeing Company

Project No: PS20203450

RGW226S

1-Well Integrity

Date	02/02/2024	Time	14:01
Inspector Name	Lindsey Wielick	Well Permit Number	BHB-419
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	No	Outside ID Intact	Yes
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	No
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None
Any repairs/replacement (explain)	New lock	Pump	GeoTech Bladder Pump
		Did well meet SAP/WP	
Total drawdown	0.16000000000000103	stabilization requirements before sampling?	Yes
Instrument calibration date	01/29/2024	Instrument calibration time	12:00
Comments	None		
2-Gauging			
Date	02/02/2024	Time	14:07
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	8.05
Final DTW (ft)	7.89	Groundwater elevation	NA
Well Depth (ft)	20	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	final DTW: 7.89		
3-Wellhead			
Date	02/02/2024	Time	14:07
Weather Conditions	Sunny	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	200
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	2
Pump Intake Depth (ft omp)	12.5	Depth to Water (ft bmp)	8.05
Measured Well Depth (ft bmp)	20	Water Column in Well	11.95
Gallons in Well	1.9491114	Casing Volume to Remove	NA

Client: The Boeing Company

Total Volume to Remove	NA
Remarks	None

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/02/24	14:11	200		200	7.89	7.57	14.5	6.42	0.308	31.7	287.39	
02/02/24	14:15	200			7.89	5.85	15.8	6.44	0.291	-7.2	105.60	
02/02/24	14:19	200			7.92	5.73	16.0	6.43	0.279	-25.7	71.48	
02/02/24	14:23	200			7.85	5.67	16.0	6.43	0.276	-36.2	40.77	
02/02/24	14:27	200			7.87	5.64	16.0	6.42	0.275	-43.2	27.79	
02/02/24	14:31	200			7.92	5.61	16.0	6.42	0.275	-47.7	25.98	
02/02/24	14:35	200			7.86	5.59	16.0	6.41	0.275	-50.5	26.11	
02/02/24	14:39	200			7.87	5.59	16.0	6.41	0.275	-53.5	24.84	

5-Sample

Date	02/02/2024	Time	14:12
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/02/2024	Sample Time	14:45
Sample ID	RGW226S-R-02022024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Lindsey Wielick
Sampler's Signature:	NA	No. of Containers	5
Analysis	EPA 6020D, SM 5310C,VOC-8260D SIM	Matrix	Water
Filtered?	NO	COC	24B0053
Bottles	3x HCl VOA, 1x 250mL H2SO4 amber, 1x 250mL HNO3 poly	Sampler Signature	Johnfold
Remarks	None		

Client: The Boeing Company

RGW232S

1-Well Integrity

Date	02/05/2024	Time	11:27
Inspector Name	Lindsey Wielick	Well Permit Number	BID-798
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	No	Outside ID Intact	Yes
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	No
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None
Any repairs/replacement (explain)	None	Pump	GeoTech Bladder Pump
	-3.060000000000005	Did well meet SAP/WP stabilization requirements	Yes
Total drawdown	01/29/2024	before sampling?	12:00
Instrument calibration date		Instrument calibration time	12.00
Comments	None		
2-Gauging			
Date	02/05/2024	Time	11:27
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	5.51
Final DTW (ft)	8.57	Groundwater elevation	NA
Well Depth (ft)	14	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Final DTW: 8.57		
3-Wellhead			
Date	02/05/2024	Time	11:27
Weather Conditions	Rain, Cloudy	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	170
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	2
Pump Intake Depth (ft omp)	9	Depth to Water (ft bmp)	5.51
Measured Well Depth (ft bmp)	14	Water Column in Well	8.49
Gallons in Well	1.3847662	Casing Volume to Remove	NA
	·	~	

Remarks

Detailed Low Flow Sampling Info Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

Total	Volume	to R	emove

NA			
None			

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/05/24	11:28	170	170	170	5.89	7.11	12.0	6.18	0.424	55.7	26.59	
02/05/24	11:32	170			6.36	6.35	12.6	6.27	0.410	29.8	12.46	
02/05/24	11:36	170			6.69	6.35	12.2	6.29	0.410	11.6	11.37	
02/05/24	11:40	170			6.88	6.38	11.8	6.29	0.410	-1.1	7.66	
02/05/24	11:44	170			7.10	6.50	11.6	6.29	0.409	-7.2	12.31	
02/05/24	11:48	170			7.29	6.47	11.6	6.29	0.409	-13.0	13.33	
02/05/24	11:52	170			7.40	6.44	11.3	6.30	0.410	-18.2	10.75	
02/05/24	11:56	170			7.49	6.46	11.1	6.30	0.409	-21.6	9.62	
02/05/24	12:00	170			7.59	6.48	10.9	6.30	0.409	-24.1	8.36	
02/05/24	12:04	170			7.69	6.53	10.7	6.30	0.407	-26.1	8.74	

5-Sample

Date	02/05/2024	Time	11:37
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/05/2024	Sample Time	12:15
Sample ID	RGW232S-R-02052024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Lindsey Wielick
Sampler's Signature:	NA	No. of Containers	5
Analysis	VOC-8260D SIM, EPA 6020A, SM5310	^C Matrix	Water
Filtered?	NO	COC	24B0107
Bottles	3x HCl VOA, 1x 250mL H2SO4 amber, 1x 250mL HNO3 poly	Sampler Signature	Jhffinh
Remarks	None		

Client: The Boeing Company

RGW234S

1-Well Integrity

Date	02/02/2024	Time	13:07
Inspector Name	Jacklyn Perkins	Well Permit Number	BID-841
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	No	Outside ID Intact	No
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	Yes
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None
Any repairs/replacement (explain)	New lock	Pump	GeoTech Bladder Pump
Total drawdown	-0.0199999999999574	Did well meet SAP/WP stabilization requirements before sampling?	No; DO did not stabilize, <0.10; turbidity did not stabilize; purged >30 min
Instrument calibration date	01/29/2024	Instrument calibration time	12:00
Comments	No lock present, added new 1		
2-Gauging		9~	
Date	02/02/2024	Time	13:07
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	6.49
Final DTW (ft)	6.51	Groundwater elevation	NA
Well Depth (ft)	13	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Final dtw 6.51		
3-Wellhead			
Date	02/02/2024	Time	13:35
Weather Conditions	Sunny	Purge Method	Low-flow Bladder Pump
	mL	Purge Rate	180
Purge Volume Units	mL YSI	Purge Rate Sampling Type	180 Low Flow
Purge Volume Units Water Quality Meter		-	
Purge Volume Units Water Quality Meter Casing Material Pump Intake Depth (ft	YSI	Sampling Type	Low Flow
Purge Volume Units Water Quality Meter Casing Material Pump Intake Depth (ft bmp) Measured Well Depth (ft bmp)	YSI PVC	Sampling Type Casing Diameter (in)	Low Flow 2

Client: The Boeing Company

NA			

Remarks

None

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/02/24	13:21	180	500	500	6.51	5.17	11.9	6.59	0.252	-6.8	555.52	
02/02/24	13:25	180	720.0	1220.0	6.51	0.72	12.2	6.44	0.217	-14.6	91.46	
02/02/24	13:29	180	720.0	1940.0	6.51	0.27	12.2	6.42	0.215	-14.5	25.13	
02/02/24	13:33	180	720.0	2660.0	6.51	0.19	12.1	6.41	0.216	-16.5	21.15	
02/02/24	13:37	180	720.0	3380.0	6.51	0.13	12.1	6.41	0.216	-18.4	42.51	
02/02/24	13:41	180	720.0	4100.0	6.51	0.10	12.1	6.41	0.217	-21.0	22.0	
02/02/24	13:45	180	720.0	4820.0	6.51	0.07	12.1	6.40	0.217	-23.1	21.30	
02/02/24	13:49	180	720.0	5540.0	6.51	0.05	12.2	6.40	0.217	-24.0	13.09	

5-Sample

Date	02/02/2024	Time	13:36
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/02/2024	Sample Time	14:00
Sample ID	RGW234S-02022024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Jacklyn Perkins
Sampler's Signature:	NA	No. of Containers	5
Analysis	EPA 6020D, SM 5310C, VOC-8260D SIM	 Matrix	Water
Filtered?	NO	COC	24B0053
Bottles	3x HCl VOA, 1x 250mL H2SO4 amber, 1x 250mL HNO3 poly	Sampler Signature	Johnfold
Remarks	None		

Client: The Boeing Company

RGW235I

1-Well Integrity

Date	02/02/2024	Time	14:24
Inspector Name	Jacklyn Perkins	Well Permit Number	No tag
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	No	Outside ID Intact	Yes
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	Yes
No Apparent Physical Damage	No	Any cleanup performed (explain)	None
Any repairs/replacement (explain)	New lock	Pump	GeoTech Bladder Pump
Total drawdown	-0.0599999999999961	Did well meet SAP/WP stabilization requirements before sampling?	No; DO did not stabilize, <0.10
Instrument calibration date	01/29/2024	Instrument calibration time	12:00
	Current 1a022 Heat mustad at		
Comments	Current 1g022 I lock rusted sh	iui, repiaced with new 19022	
2-Gauging			
Date	02/02/2024	Time	14:25
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	5.61
Final DTW (ft)	5.67	Groundwater elevation	NA
Well Depth (ft)	25	Free Product?	No
Depth To NAPL	NA	Well Dry?	<u>N</u>
Remarks	Final dtw 5.67		
3-Wellhead			
Date	02/02/2024	Time	14:24
Weather Conditions	Sunny	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	170
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	2
Pump Intake Depth (ft bmp)	20	Depth to Water (ft bmp)	5.61
Measured Well Depth (ft bmp)	25	Water Column in Well	19.39
Gallons in Well	3.16262	Casing Volume to Remove	NA
		-	

Remarks

Detailed Low Flow Sampling InfoSite: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

Total	Volume to Remove	
ıotai	Volume to Itemove	

NA			
None			

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/02/24	14:26	170	170	170	5.65	4.93	11.9	6.86	0.219	-31.1	19.38	
02/02/24	14:30	170	680.0	850.0	5.65	0.36	13.1	6.73	0.204	-57.6	10.06	
02/02/24	14:34	170	680.0	1530.0	5.65	0.16	13.2	6.73	0.200	-53.4	5.40	
02/02/24	14:38	170	680.0	2210.0	5.67	0.08	13.2	6.72	0.199	-51.0	1.45	
02/02/24	14:42	170	680.0	2890.0	5.67	0.03	13.2	6.73	0.199	-50.9	0.76	
02/02/24	14:46	170	680.0	3570.0	5.67	0.01	13.2	6.71	0.199	-50.7	0.48	

5-Sample

Date	02/02/2024	Time	14:28
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/02/2024	Sample Time	14:50
Sample ID	RGW235I-02022024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Jacklyn Perkins
Sampler's Signature:	NA	No. of Containers	5
Analysis	EPA 6020D, SM 5310C, VOC-8260D SIM	Matrix	Water
Filtered?	NO	COC	24B0053
Bottles	3x HCl VOA, 1x 250mL H2SO4 amber, 1x 250mL HNO3 poly	Sampler Signature	Ohfele
Remarks	None		

Client: The Boeing Company

RGW236S

1-Well Integrity

Date	02/05/2024	Time	10:54
Inspector Name	Jacklyn Perkins	Well Permit Number	No tag
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	No	Outside ID Intact	Yes
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	Yes
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	Pumped out ponded water
Any repairs/replacement (explain)	Old 1g022 lock rusted shut, replaced with new 1g022	Pump	GeoTech Bladder Pump
Total drawdown	-0.560000000000005	Did well meet SAP/WP stabilization requirements before sampling?	No; turbidity did not stabilize; purged >30 min
Instrument calibration date	01/29/2024	Instrument calibration time	12:00
Comments	None		
2-Gauging			
Date	02/05/2024	Time	10:56
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	5.89
Final DTW (ft)	5.91	Groundwater elevation	NA
Well Depth (ft)	15	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Final dtw 5.91		
3-Wellhead			
Date	02/05/2024	Time	10:54
Weather Conditions	Cloudy	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	210
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	2
Pump Intake Depth (ft bmp)	10	Depth to Water (ft bmp)	5.89
Measured Well Depth (ft bmp)	15	Water Column in Well	NA
Gallons in Well	NA	Casing Volume to Remove	NA

Remarks

Detailed Low Flow Sampling Info Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

T	otal	Volume	to Re	move
	olai			,,,,,,,,,,

NA			
None			

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
02/05/24	10:56	240	500	500	5.92	4.13	11.5	6.74	0.204	3.0	266.46	Orange, cloudy
02/05/24	11:00	240	960.0	1460.0	5.92	2.24	11.8	6.59	0.127	4.1	173.38	
02/05/24	11:04	210	840.0	2300.0	5.91	2.65	11.5	6.49	0.121	24.1	111.45	
02/05/24	11:08	210	840.0		5.90	2.86	11.4	6.46	0.118	41.2	113.02	
02/05/24	11:12	210	840.0		5.89	2.95	11.4	6.50	0.115	46.6	70.17	
02/05/24	11:16	210	840.0		5.90	2.97	11.3	6.48	0.112	54.7	49.83	
02/05/24	11:20	210	840.0		5.91	2.96	11.3	6.48	0.109	59.2	38.83	
02/05/24	11:24	210	840.0		5.91	2.95	11.2	6.50	0.107	62.3	28.02	
02/05/24	11:28	210	840.0		591	2.90	11.2	6.50	0.106	64.9	23.58	

5-Sample

Date	02/05/2024	Time	10:59
Did Well Dewater?	No	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	02/05/2024	Sample Time	11:30
Sample ID	RGW236S-02052024	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	Jacklyn Perkins
Sampler's Signature:	NA	No. of Containers	5
Analysis	/OC-8260D SIM, EPA 6020A, SM5310	^C Matrix	Water
Filtered?	NO	COC	24B0107
Bottles	3x HCl VOA, 1x 250mL H2SO4 amber, 1x 250mL HNO3 poly	Sampler Signature	Jhffinh
Remarks	MS/MSD collected		

Client: The Boeing Company

RGW010S

1-Well Integrity

Date	02/07/2024	Time	12:45
Inspector Name	Lindsey Wielick	Well Permit Number	No tag
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	Yes	Outside ID Intact	NA
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	No
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	NA
Any repairs/replacement (explain)	NA	Pump	NA
(Did well meet SAP/WP	
Total drawdown	NA	stabilization requirements before sampling?	Not sampled
Instrument calibration date	01/29/2024	Instrument calibration time	12:00
Comments	None		
2-Gauging			
Date	02/07/2024	Time	12:48
Top of Casing	NA	Screen Interval	
PID	NA	Initial DTW (ft)	7.39
Final DTW (ft)	NA	Groundwater elevation	NA
Well Depth (ft)	14.5	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Not sampled		
3-Wellhead			
Date	02/07/2024	Time	12:48
Weather Conditions	Sunny	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	NA
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	2
Pump Intake Depth (ft bmp)	9.5	Depth to Water (ft bmp)	7.39
Measured Well Depth (ft bmp)	14.5	Water Column in Well	7.11
Gallons in Well	1.1596805	Casing Volume to Remove	NA
			

Client: The Boeing Company

Total Volume to Remove	NA			
Remarks	None			

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks

5-Sample

Date	02/07/2024	Time	12:54
Did Well Dewater?	NA	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	Cooler with regular ice	How were samples transported to lab?	Sampler drop-off at lab
Sample Date	NA	Sample Time	NA
Sample ID	NA	Duplicate Sample ID	
Dup Sample Time	NA	Sampler's Name	NA
Sampler's Signature:	NA	No. of Containers	NA
Analysis	NA	Matrix	Water
Filtered?	NO	COC	NA
Bottles	NA	Sampler Signature	NA
Remarks	None		

Detailed Low Flow Sampling Info Site: Boeing Renton

Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

RGW011D

1-Well Integrity

Date	02/07/2024	Time	12:51
Inspector Name	Lindsey Wielick	Well Permit Number	No tag
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	Yes	Outside ID Intact	NA
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	No	Ponded Water Inside Casing	No
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	NA
Any repairs/replacement (explain)	NA	Pump	NA
(1)		Did well meet SAP/WP	
Total drawdown	NA	stabilization requirements before sampling?	Not sampled
Instrument calibration date	01/29/2024	Instrument calibration time	12:00
Comments	None		
2-Gauging			
Date	02/07/2024	Time	12:54
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	5.39
Final DTW (ft)	NA	Groundwater elevation	NA
Well Depth (ft)	39	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Not sampled		
3-Wellhead			
Date	02/07/2024	Time	12:54
Weather Conditions	Sunny	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	NA
Water Quality Meter	YSI	Sampling Type	Low Flow
Casing Material	PVC	Casing Diameter (in)	2
Pump Intake Depth (ft bmp)	34	Depth to Water (ft bmp)	5.39
Measured Well Depth (ft bmp)	39	Water Column in Well	33.61
Gallons in Well	5.4819777	Casing Volume to Remove	NA
		cacing volume to recinove	

Detailed Low Flow Sampling Info Site: Boeing Renton

Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

Total Volume to Remove	NA
Remarks	None

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks

5-Sample

Date	02/07/2024	Time	NA
Did Well Dewater?	NA	Location of disposed purge water	Boeing RTN wastewater treatment plant
How were samples preserved?	NA	How were samples transported to lab?	NA
Sample Date	NA	Sample Time	NA
Sample ID	NA	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	NA
Sampler's Signature:	NA	No. of Containers	NA
Analysis	NA	Matrix	NA
Filtered?	NO	COC	NA
Bottles	NA	Sampler Signature	NA
Remarks	None		

Client: The Boeing Company

RGW263S

1-Well Integrity

Date	02/07/2024	Time	15:20
Inspector Name	Lindsey Wielick	Well Permit Number	BIX-489
Type of well head	Flush Mount	Freely accessible	Yes
Ground Pad Intact	Yes	Security Case and Cover	Yes
Lock Present and Operable	No	Outside ID Intact	Yes
Well Cap Present	Yes	Inside Measurement Point	No
Inside Casing Clear of Debris	Yes	Ponded Water Inside Casing	Yes
No Apparent Physical Damage	Yes	Any cleanup performed (explain)	None
Any repairs/replacement (explain)	None	Pump	NA
Total drawdown	NA	Did well meet SAP/WP stabilization requirements before sampling?	Not sampled
Instrument calibration date	01/29/2024	Instrument calibration time	12:00
Comments	None		
2-Gauging			
Date	02/07/2024	Time	15:20
Top of Casing	NA	Screen Interval	NA
PID	NA	Initial DTW (ft)	7.71
Final DTW (ft)	NA	Groundwater elevation	NA
Well Depth (ft)	18	Free Product?	No
Depth To NAPL	NA	Well Dry?	N
Remarks	Not sampled		
3-Wellhead			
Date	02/07/2024	Time	15:20
Weather Conditions	Partly Cloudy, Partly Sunny	Purge Method	Low-flow Bladder Pump
Purge Volume Units	mL	Purge Rate	NA
	YSI	Sampling Type	Low Flow
Water Quality Meter			
Water Quality Meter Casing Material	PVC	Casing Diameter (in)	2
Casing Material Pump Intake Depth (ft bmp)	PVC 13		7.71
Casing Material Pump Intake Depth (ft		Casing Diameter (in)	

Client: The Boeing Company

Total Volume to Remove	NA
Remarks	None

4-Stabilization Parameters

Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks

5-Sample

Date	NA	Time	NA
Did Well Dewater?	NA	Location of disposed purge water	NA
How were samples preserved?	NA	How were samples transported to lab?	NA
Sample Date	NA	Sample Time	NA
Sample ID	NA	Duplicate Sample ID	NA
Dup Sample Time	NA	Sampler's Name	NA
Sampler's Signature:	NA	No. of Containers	NA
Analysis	NA	Matrix	NA
Filtered?	NO	coc	NA
Bottles	NA	Sampler Signature	NA
Remarks	None		

Detailed Low Flow Sampling Info Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057 Client: The Boeing Company

Project No: PS20203450

RGW265S

1-Well Integrity

Date				
Type of well head Flush Mount Yes Security Case and Cover Operable Over Present and Operable Well Cap Present Inside Casing Clear of Debris No Apparent Physical Damage Any repairs/replacement (explain) Total drawdown Instrument calibration date O1/29/2024 Date O2/07/2024 Time Pind Free Product? Free Product? Well Depth (th) Depth To NAPL Remarks Not sampled 3-Wellhead Date O2/07/2024 Date	Date	02/07/2024	Time	15:21
Ground Pad Intact Lock Present and Operable Ves Unside Casing Clear of Debris No Apparent Physical Damage Any repairs/replacement (explain) Ves Outside ID Intact No Outside ID Intact No Outside ID Intact No No Pronded Water Inside Casing Any cleanup performed (explain) Ves Any repairs/replacement (explain) No Pump Did well meel SAP/WP stabilization requirements before sampling? Instrument calibration date Comments 2-Gauging Date O2/07/2024 Time Initial DTW (ft) Initial DTW (ft) Final DTW (ft) Is Final DTW (ft) Is Fine Product? Well Depth (ft) Depth To NAPL Remarks Not sampled 3-Wellhead 3-Wellhead Date O2/07/2024 Time Initial DTW; Well Dry? No No No No Pump NA No No No No No No No No No Pump No Initial DTW; No	Inspector Name	Lindsey Wielick	Well Permit Number	No tag
Security Case and Cover Look Present and Operable No Outside ID Intact NA	Type of well head	Flush Mount	Freely accessible	Yes
Operable No Outside ID Intact NA Well Cap Present Yes Inside Measurement Point Point Point Poblis No Apparent Physical Casing Ponded Water Inside Casing Yes No Apparent Physical Damage Any repairs/replacement (explain) Yes Any cleanup performed (explain) No Apparent Physical Policy Poli	Ground Pad Intact	Yes	Security Case and Cover	Yes
Inside Casing Clear of Debris Yes Ponded Water Inside Casing Any cleanup performed (explain) Pump NA		No	Outside ID Intact	NA
Debris Yes Casing Any cleanup performed (explain) No Apparent Physical Damage Yes Any cleanup performed (explain) Any repairs/replacement (explain) Total drawdown Instrument calibration date Comments 2-Gauging Date 02/07/2024 Time 15:21 Top of Casing Screen Interval PID Initial DTW (ft) Groundwater elevation Well Depth (ft) 18 Free Product? Well Depth To NAPL Remarks Not sampled 3-Wellhead Date 02/07/2024 Time 15:21 Final DTW (ft) 18 Free Product? Well Dry? No No No No No No No Purge Method Low-flow Bladder Pump Purge Volume Units mL Purge Rate NA Water Quality Meter YSI Sampling Type Low Flow Casing Material PVC Casing Diameter (in) Purge Naes Water Column in Well Purge Naes Water Column in Well Purge Measured Well Depth (ft bmp) MA Not sampled S-So Casing Diameter (in) Purge Measured Well Depth (ft bmp) Purge Mater Column in Well	Well Cap Present	Yes	Inside Measurement Point	No
Damage Any repairs/replacement (explain) Any repairs/replacement (explain) Total drawdown Instrument calibration date Comments 2-Gauging Date 02/07/2024 Time 15:21 Top of Casing Screen Interval PID Initial DTW (ft) 5.50 Final DTW (ft) 18 Free Product? No Depth To NAPL Well Depth (ft) Pemarks Not sampled 15:42 Not sampled 15:21 No Pump Did well meet SAP/WP 12:000 12:0	Debris	Yes	Casing	Yes
Pump Did well meet SAP/WP Stabilization requirements before sampling? Instrument calibration date O1/29/2024 Instrument calibration time O1/29/2024 Instrument calibration time O1/29/2024 O1/29/29/29/29/29/29/29/29/29/29/29/29/29/	Damage	Yes		
Total drawdown Instrument calibration date Comments 2-Gauging Date Top of Casing PID Final DTW (ft) Depth (ft) Depth To NAPL Remarks Not sampled 2-Wealther Conditions Partly Sunny, Partly Cloudy Purge Volume Units Water Quality Meter Casing Maesured Well Depth (ft bmp) Measured Well Depth (ft bmp) Measured Well Depth (ft bmp) Mot sampled Did well meet SAP/WP stabilization requirements before sampling? Not sampled 12:00 12:00 12:00 12:00 12:00 12:00 15:21 15:21 15:21 15:50 15:50 Groundwater elevation Well DTW (ft) Free Product? No No No No No No Partly Sunny, Partly Cloudy Purge Method Low-flow Bladder Pump NA Low Flow Low Flow Low Flow Low Flow Low Flow Purge Not Well Depth (ft bmp) Measured Well Depth (ft bmp) Not sampled 12:00 13:00 13:00 13:00 14:00 15:21 15:42 12:00 12:00 12:00 12:00 12:00 13:00 13:00 14:00 15:00 15:00 16:00 16:00 16:00 16:00 16:00 17:00 17:00 18:00 18:00 18:00 18:00 18:00 18:00 18:00 18:00 18:00 18:00 18:00 18:00 18:00 18:00 18:00 18:00 18:00 18:0			Pump	NA
Instrument calibration date Comments 2-Gauging Date Top of Casing PID Final DTW (ft) Depth To NAPL Remarks Not sampled 3-Wellhead Date 02/07/2024 Time Initial DTW? Weather Conditions Partly Sunny, Partly Cloudy Purge Welthod Purge Volume Units Water Quality Meter Casing Maesured Well Depth (ft bmp) Mot sampled 12:00 13:21 Time 15:21 5.50 6.50 18 No Free Product? No	(OAPIGIII)		Did well meet SAP/WP	
Instrument calibration date Comments 2-Gauging Date 02/07/2024 Time 15:21 Top of Casing Screen Interval Initial DTW (ft) 5.50 Final DTW (ft) Groundwater elevation Well Depth (ft) 18 Free Product? No	Total drawdown			Not sampled
Date 02/07/2024 Time 15:21		01/29/2024	. •	12:00
Date	Comments			
Top of Casing PID Initial DTW (ft) Socreen Interval Initial DTW (ft) Final DTW (ft) Well Depth (ft) Depth To NAPL Remarks Not sampled 3-Wellhead Date Weather Conditions Purge Volume Units Water Quality Meter Casing Material Pump Intake Depth (ft bmp) Measured Well Depth (ft bmp) Measured Well Depth (ft bmp) Measured Well Depth (ft bmp) Socreen Interval Socreen Interval Initial DTW (ft) Socreen Interval Soccion Soccion Soccion No	2-Gauging			
PID Final DTW (ft) Well Depth (ft) Depth To NAPL Remarks Not sampled 3-Wellhead Date Weather Conditions Purge Volume Units Water Quality Meter Casing Material Pump Intake Depth (ft bmp) Measured Well Depth (ft bmp) Initial DTW (ft) Groundwater elevation No	Date	02/07/2024	Time	15:21
Final DTW (ft) Well Depth (ft) Depth To NAPL Remarks Not sampled 3-Well head Date Weather Conditions Purge Volume Units Water Quality Meter Casing Material Pump Intake Depth (ft bmp) Measured Well Depth (ft bmp) Measured Well Depth (ft bmp) Free Product? No No No No No No No No No N	Top of Casing		Screen Interval	
Well Depth (ft) 18 Free Product? No Depth To NAPL Well Dry? N Remarks Not sampled 3-Wellhead Date 02/07/2024 Time 15:42 Weather Conditions Partly Sunny, Partly Cloudy Purge Method Low-flow Bladder Pump Purge Volume Units MA NA Water Quality Meter YSI Sampling Type Low Flow Casing Material PVC Casing Diameter (in) 2 Pump Intake Depth (ft bmp) 13 Depth to Water (ft bmp) 5.50 Measured Well Depth (ft bmp) 18 Water Column in Well	PID		Initial DTW (ft)	5.50
Depth To NAPL Remarks Not sampled 3-Wellhead Date Date Weather Conditions Purge Volume Units Water Quality Meter Casing Material Pump Intake Depth (ft bmp) Measured Well Depth (ft bmp) Measured Well Depth (ft bmp) Well Dry? N N 15:42 Low-flow Bladder Pump NA Low Flow Low Flow Casing Diameter (in) Depth to Water (ft bmp) Mater Column in Well	Final DTW (ft)		Groundwater elevation	
Remarks Not sampled 3-Wellhead Date Date Partly Sunny, Partly Cloudy Purge Method Purge Volume Units Water Quality Meter Casing Material Pump Intake Depth (ft bmp) Measured Well Depth (ft bmp) Measured Well Depth (ft bmp) Not sampled Time 15:42 Low-flow Bladder Pump Purge Rate NA Purge Rate PVC Casing Diameter (in) Sampling Type Casing Diameter (in) Depth to Water (ft bmp) Measured Well Depth (ft bmp) Measured Well Depth (ft bmp) Measured Well Depth (ft bmp)	Well Depth (ft)	18	Free Product?	No
Date Date Partly Sunny, Partly Cloudy Purge Method Purge Volume Units Water Quality Meter Casing Material Pump Intake Depth (ft bmp) Measured Well Depth (ft bmp) Partly Sunny, Partly Cloudy Purge Method Purge Rate Purge Rate NA Low-flow Bladder Pump NA Low Flow Low Flow Casing Diameter (in) 5.50 Water Column in Well	Depth To NAPL		Well Dry?	N
Date Date D	Remarks	Not sampled		
Weather Conditions Purge Volume Units Purge Volume Units Purge Rate Water Quality Meter Casing Material Pump Intake Depth (ft bmp) Measured Well Depth (ft bmp) Partly Sunny, Partly Cloudy Purge Method Purge Rate Purge Rate Sampling Type Casing Diameter (in) Casing Diameter (ft bmp) Depth to Water (ft bmp) Water Column in Well	3-Wellhead			
Purge Volume Units ML Purge Rate YSI Sampling Type Casing Material Pump Intake Depth (ft bmp) Measured Well Depth (ft bmp) Measured Well Depth (ft bmp) Water Column in Well Purge Rate NA Low Flow 2 Depth to Water (ft bmp) Material Water Column in Well	Date	02/07/2024	Time	15:42
Water Quality Meter Casing Material Pump Intake Depth (ft bmp) Measured Well Depth (ft bmp) YSI Sampling Type Low Flow Casing Diameter (in) Depth to Water (ft bmp) S.50 Water Column in Well	Weather Conditions	Partly Sunny, Partly Cloudy	Purge Method	Low-flow Bladder Pump
Casing Material Pump Intake Depth (ft bmp) Personal Measured Well Depth (ft bmp) Personal Measured Well Depth (ft bmp) Water Column in Well	Purge Volume Units	mL	Purge Rate	NA
Pump Intake Depth (ft bmp) Measured Well Depth (ft bmp) Measured Well Depth (ft bmp) Water Column in Well	Water Quality Meter	YSI	Sampling Type	Low Flow
bmp) 13 Depth to Water (ft bmp) 5.50 Measured Well Depth (ft bmp) Water Column in Well	Casing Material	PVC	Casing Diameter (in)	2
bmp) <u>18</u> Water Column in Well		13	Depth to Water (ft bmp)	5.50
Gallons in Well Casing Volume to Remove		18	Water Column in Well	
	Gallons in Well		Casing Volume to Remove	

Total Volume to Remove

Detailed Low Flow Sampling Info Site: Boeing Renton 737 Logan Avenue N, Renton, Washington 98057

Client: The Boeing Company

Remarks		_										
4-Stabili	zation Pa	rameter	's									
Date	Time	Flow Rate	Purge Volume	Cuml Vol Purged	DTW (ft)	Dissolved Oxygen (mg/L)	Temperat (C)	pH (SU)	Spec Cond (mS/cm)	ORP (mV)	Turbidity (NTU)	Remarks
5-Sampl	e											
Date		_				Time						
Did Well I How were preserved	e samples	-		Location of disposed purge water How were samples transported to lab?								
Sample D	Date	_				Sample	Time					
Sample II	D	_				_ Duplica	te Sample	ID				
Dup Sam	ple Time	_				Sampler's Name						
Sampler's	s Signature	: _				No. of Containers						
Analysis		Matrix										
Filtered?		_				COC						
Bottles		_				Sample	r Signature	е				
Remarks												

APPENDIX C DATA VALIDATION MEMOS

Memo

To: Patrick McCarthy, Project Manager Project: PS2420685.03

From: Caitlin Riechmann c: Project File

Tel: (503) 207-9629 Date: March 4, 2024

Subject: Summary Data Quality Review

February 2024 Boeing Renton Groundwater Sampling

SWMU-168

ARI Work Order Number: 24B0120

This memo presents the summary data quality review of one primary groundwater sample and one trip blank sample collected on February 6, 2024. The samples were submitted to Analytical Resources, Inc. (ARI), located in Tukwila, Washington, a laboratory accredited by the Washington State Department of Ecology. The samples were analyzed for the volatile organic compound vinyl chloride by U.S. Environmental Protection Agency (EPA) Method 8260D with selected ion monitoring.

The samples and the analyses conducted on the samples are listed below.

Sample ID	Laboratory Sample ID	Requested Analyses
RGW230I-02062024	24B0120-01	vinyl chloride
TB-02062024	24B0120-02	vinyl chloride

Data were reviewed in accordance with the appropriate method procedures and criteria documented in the Quality Assurance Project Plan (QAPP) (Amec Foster Wheeler, 2016). The control limits provided in the QAPP are advisory limits; therefore, the most current control limits provided by the laboratory were used to evaluate the quality control data. In cases where the laboratory did not track limits for an analyte, the limits in the QAPP were used.

Holding times, method/trip blanks, surrogate recoveries, laboratory control samples (LCS) and laboratory control sample duplicates (LCSD), matrix spike/matrix spike duplicates (MS/MSD), field duplicates, and reporting limits were reviewed where available to assess compliance with applicable methods. If qualification was required, data were qualified based on the definitions and use of qualifying flags outlined in the EPA guidance documents (EPA, 2020).

ARI received the samples on February 6, 2024. The temperature of the cooler was recorded upon receipt and the cooler was below the maximum acceptable temperature of 6 degrees Celsius.

ORGANIC ANALYSES

Samples were analyzed for vinyl chloride. Laboratory data were evaluated for the following parameters:

- 1. Preservation and Holding Times Acceptable
- 2. Blanks Acceptable
- 3. Surrogates Acceptable
- LCS/LCSD Acceptable
- 5. MS/MSD Acceptable

Extra volume was not submitted for analysis of MS/MSD samples. The project frequency requirement was achieved with MS/MSD analysis conducted at other sites included in this sampling event.

6. Field Duplicates - Acceptable

Field duplicates were not collected at this site during this sampling event. The project frequency requirement of one field duplicate for every 20 samples was achieved with field duplicate samples collected at other sites included in this sampling event.

7. Reporting Limits and Laboratory Flags - Acceptable.

OVERALL ASSESSMENT OF DATA

The table below summarizes the data assessment. The completeness of ARI work order number 24B0120 is 100 percent. The usefulness of these data was evaluated based on EPA guidance documents listed in the introduction to this report. No problems were identified, and analytical performance was within specified limits.

Sample ID	Qualified Analyte
RGW230I-02062024	none
TB-02062024	none

REFERENCES

Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler), 2016, Quality Assurance Project Plan, Boeing Renton Facility, Renton, Washington: Prepared for the Boeing Company, February.

U.S. Environmental Protection Agency (EPA), 2020, U.S. EPA National Functional Guidelines for Organic Superfund Methods Data Review: EPA 540-R-20-005, November.

x:\us\hf100-sea\sea2-fs1-archive\8888.000 boeing renton\264\app c dv memos\c1. swmu 168 dv memo.docx

Memo

To: Patrick McCarthy, Project Manager Project: PS2420685.03

From: Caitlin Riechmann c: Project File

Tel: (503) 207-9629 Date: March 4, 2024

Subject: Summary Data Quality Review

February 2024 Boeing Renton Groundwater Sampling

SWMU-172/174

ARI Group Numbers: 24B0053, 24B0107

This memo presents the summary data quality review of 9 primary groundwater samples, one groundwater field duplicate, and two trip blank samples collected on February 2 and 5, 2024. The samples were submitted to Analytical Resources, Inc. (ARI), located in Tukwila, Washington, a laboratory accredited by the Washington State Department of Ecology. The samples were analyzed for the following:

- Volatile organic compounds (VOCs) (cis-1,2-dichloroethene, tetrachloroethene, trichloroethene, and vinyl chloride) by U.S. Environmental Protection Agency (EPA) Method 8260D with selected ion monitoring;
- Total organic carbon (TOC) by Standard Method 5310B; and
- Total metals (arsenic, copper, and lead) by EPA Method 6020A.

The samples and the analyses conducted on the samples are listed below.

Sample ID	Laboratory Sample ID	Requested Analyses
RGW153S-02022024	24B0053-01	all
RGW226S-02022024	24B0053-02	all
RGW234S-02022024	24B0053-03	all
RGW235I-02022024	24B0053-04	all
TB-02022024	24B0053-05	VOCs
RGW172S-02052024	24B0107-01	all
RGW173S-02052024	24B0107-02	all
RGW152S-02052024	24B0107-03	all
RGW236S-02052024	24B0107-04	all
RGW232S-02052024	24B0107-05	all
DUP01-02052024	24B0107-06	all
TB-02052024	24B0107-07	VOCs

Data were reviewed in accordance with the appropriate method procedures and criteria documented in the Quality Assurance Project Plan (QAPP) (Amec Foster Wheeler, 2016). The control limits provided in the QAPP are advisory limits; therefore, the most current control limits provided by the laboratory were used to evaluate the quality control data. In cases where the laboratory did not track limits for an analyte, the limits in the QAPP were used.

Holding times, method/trip blanks, surrogate recoveries, laboratory control samples (LCS) and laboratory control sample duplicates (LCSD), matrix spike/matrix spike duplicates (MS/MSD), field duplicates, and reporting limits were reviewed where available to assess compliance with applicable methods. If qualification was required, data were qualified based on the definitions and use of qualifying flags outlined in the EPA guidance documents (EPA, 2020a and b).

ARI received the samples on February 2 and 5, 2024. The temperature of the coolers was recorded upon receipt and all coolers were below the maximum acceptable temperature of 6 degrees Celsius. According to the COC, the trip blank TB-02052024 should have been analyzed for metals as well as VOCs. ARI properly analyzed the trip blank for VOCs only.

ORGANIC ANALYSES

Samples were analyzed for VOCs. Laboratory data were evaluated for the following parameters:

- 1. Preservation and Holding Times Acceptable
- 2. Blanks Acceptable
- 3. Surrogates Acceptable
- 4. LCS/LCSD Acceptable
- 5. MS/MSD Acceptable
- 6. Field Duplicates Acceptable

One field duplicate was submitted for each analysis during this sampling event, meeting the project frequency requirement of five percent, or one for every 20 samples. Primary and duplicate results are summarized in the table below. The project-specific control limit for field duplicate relative percent differences (RPDs) is 30 percent for concentrations greater than five times the reporting limit. The field duplicate RPDs were within the control limits.

Sample ID/ Field Duplicate ID	Analyte	Primary Result (ng/L)	Duplicate Result (ng/L)	Reporting Limit (ng/L)	RPD (%)
	vinyl chloride	907	902	20	0.6
RGW172S-02052024/ DUP01-02052024	cis-1,2-dichloroethene	877	890	20	2
	trichloroethene	266	258	20	3

Abbreviations

ng/L = nanograms per liter

RPD = relative percent difference

7. Reporting Limits and Laboratory Flags – Acceptable

INORGANIC ANALYSES

Samples were analyzed for metals and TOC. Laboratory data were evaluated for the following parameters.

- 1. Preservation and Holding Times Acceptable
- 2. Blanks Acceptable
- 3. LCS Acceptable
- 4. MS Acceptable
- 5. Laboratory Duplicates Acceptable
- 6. Field Duplicates Acceptable

One field duplicate was submitted for each analysis during this sampling event, meeting the project frequency requirement of five percent, or one for every 20 samples. Primary and duplicate results are summarized in the table below. The project-specific control limit for field duplicate RPDs is 30 percent for concentrations greater than five times the reporting limit. The RPD is not calculated for results that are less than five times the reporting limit, as indicated on the table below by "NC." In these cases, the absolute value of the difference between the primary and duplicate result should not exceed the value of the reporting limit. The field duplicate RPDs were within control limits.

Sample ID/ Field Duplicate ID	Analyte	Primary Result	Duplicate Result	Average Reporting Limit	RPD (%)
	TOC	3.43 mg/L	3.36 mg/L	0.50 mg/L	2
RGW172S-02052024/ DUP01-02052024	total arsenic	6.68 µg/L	6.73 μg/L	0.400 μg/L	0.8
	total copper	1.08 μg/L	ND	1.00 μg/L	NC
	total lead	0.714 μg/L	0.668 μg/L	0.200 μg/L	NC

Abbreviations:

 $\mu g/L = micrograms per liter$ mg/L = milligrams per liter

NC = not calculated

TOC = total organic carbon RPD = relative percent difference ND = not detected

7. Reporting Limits and Laboratory Flags – Acceptable

OVERALL ASSESSMENT OF DATA

The table below summarizes the data assessment. The completeness of work order numbers 24B0053 and 24B0107 is 100 percent. The usefulness of these data was evaluated based on EPA guidance documents listed in the introduction to this report. No problems were identified, and analytical performance was within specified limits. The data meet the project's data quality objectives.

Sample ID	Qualified Analyte	Reason for Qualifier	Qualified Result
RGW153S-02022024	None	NA	NA
RGW226S-02022024	None	NA	NA
RGW234S-02022024	None	NA	NA
RGW235I-02022024	None	NA	NA
TB-02022024	None	NA	NA
RGW172S-02052024	None	NA	NA
RGW173S-02052024	None	NA	NA
RGW152S-02052024	None	NA	NA
RGW236S-02052024	None	NA	NA
RGW232S-02052024	None	NA	NA
DUP01-02052024	None	NA	NA
TB-02052024	None	NA	NA

Abbreviation

NA = not applicable

REFERENCES

Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler), 2016, Quality Assurance Project Plan, Boeing Renton Facility, Renton, Washington: Prepared for the Boeing Company, February.

U.S. Environmental Protection Agency (EPA), 2020a, U.S. EPA National Functional Guidelines for Organic Superfund Methods Data Review: EPA 540-R-20-005, November.

EPA, 2020b, U.S. EPA National Functional Guidelines for Inorganic Superfund Methods Data Review: EPA 542-R-20-006, November.

x:\us\usxhf100-sea\sea2-fs1-archive\8888.000 boeing renton\264\app c dv memos\c2. swmu 172-174 dv memo.docx

Memo

To: Patrick McCarthy, Project Manager

Project: PS2420685.03

From: Caitlin Riechmann

Project File

Tel: (503) 207-9629 Date: March 4, 2024

Subject: Summary Data Quality Review

February 2024 Boeing Renton Groundwater Sampling

Building 4-78/79 SWMU/AOC Group ARI Work Order Numbers: 24B0106, 24B0141

This memo presents the summary data quality review of 7 primary groundwater samples, one field duplicate, and two trip blanks collected on February 5 and 6, 2024. The samples were submitted to Analytical Resources, Inc. (ARI), located in Tukwila, Washington, a laboratory accredited by the Washington State Department of Ecology (Ecology). The samples were analyzed for the following:

- Volatile organic compounds (VOCs) (limited suite: benzene, vinyl chloride, cis-1,2-dichloroethene, and trichloroethene) by U.S. Environmental Protection Agency (EPA) Method 8260D;
- Total petroleum hydrocarbons as gasoline (TPH-G) by Ecology Method NWTPH Gx; and
- Total organic carbon (TOC) by Standard Method 5310B-00.

The samples and the analyses conducted on the samples are listed below.

Sample ID	Laboratory Sample ID	Requested Analyses
RGW237S-02052024	24B0106-01	all
RGW240D-02052024	24B0106-02	all
RGW143S-02052024	24B0106-03	all
TB-020520224	24B0106-04	VOCs, TPH-G
RGW033S-02062024	24B0141-01	all
RGW034S-02062024	24B0141-02	all
RGW031S-R-02062024	24B0141-03	all
RGW244S-R-02062024	24B0141-04	all
DUP02-02062024	24B0141-05	all
TB-02062024	24B0141-06	VOCs, TPH-G

Data were reviewed in accordance with the appropriate method procedures and criteria documented in the Quality Assurance Project Plan (QAPP) (Amec Foster Wheeler, 2016). The control limits provided in the QAPP are advisory limits; therefore, the most current control limits provided by the laboratory were used to evaluate the quality control data. In cases where the laboratory did not track limits for an analyte, the limits in the QAPP were used.

Holding times, method/trip blanks, surrogate recoveries, laboratory control samples (LCS) and laboratory control sample duplicates (LCSD), matrix spike/matrix spike duplicates (MS/MSD), field duplicates, and reporting limits were reviewed where available to assess compliance with applicable methods. If qualification was required, data were qualified based on the definitions and use of qualifying flags outlined in EPA guidelines (EPA, 2020a and b).

ARI received the samples on February 5 and 6, 2024. The temperature of the coolers were recorded upon receipt and all coolers were below the maximum acceptable temperature of 6 degrees Celsius.

ORGANIC ANALYSES

Samples were analyzed for VOCs and TPH-G. Laboratory data were evaluated for the following parameters:

- 1. Preservation and Holding Times Acceptable
- 2. Blanks Acceptable
- 3. Surrogates Acceptable
- 4. LCS/LCSD Acceptable
- 5. MS/MSD Acceptable

Extra volume was not submitted for analysis of MS/MSD samples. The project frequency requirement was achieved with MS/MSD analysis conducted at other sites included in this sampling event.

6. Field Duplicates – Acceptable

One field duplicate was submitted for each analysis during this sampling event, meeting the project frequency requirement of five percent, or one for every 20 samples. Primary and duplicate results are summarized in the table below. The relative percent differences (RPDs) for the field duplicate are within the project-specific control limit of 30 percent for concentrations greater than five times the reporting limit. The RPD is not calculated for results that are less than five times the reporting limit, as indicated on the table below by "NC." In these cases, the absolute value of the difference between the primary and duplicate result should not exceed the value of the reporting limit. As shown in the table below, the field duplicate results are acceptable.

Sample ID/ Field Duplicate ID	Analyte	Primary Result (μg/L)	Duplicate Result (μg/L)	Reporting Limit (µg/L)	RPD (%)
RGW033S-02062024 / DUP02-02062024	vinyl chloride	0.83	0.94	0.20	NC
	cis-1,2-dichloroethene	0.48	0.43	0.20	NC
	benzene	6.49	6.51	0.20	0.3
	TPH-G	141	141	100	NC

<u>Abbreviations</u>

 $\mu g/L$ = micrograms per liter

NC = not calculated

RPD = relative percent difference

TPH-G = total petroleum hydrocarbons as gasoline

7. Reporting Limits and Laboratory Flags – Acceptable

INORGANIC ANALYSES

Samples were analyzed for TOC. Laboratory data were evaluated for the following parameters:

- 1. Preservation and Holding Times Acceptable
- 2. Blanks Acceptable
- 3. LCS Acceptable
- 4. MS Acceptable
- 5. Laboratory Duplicates Acceptable

6. Field Duplicates - Acceptable

One field duplicate was submitted for each analysis during this sampling event, meeting the project frequency requirement of five percent, or one for every 20 samples. Primary and duplicate results are summarized in the table below. The RPD is acceptable.

Sample ID/	Analyte	Primary Result	Duplicate Result	Reporting Limit	RPD
Field Duplicate ID		(mg/L)	(mg/L)	(mg/L)	(%)
RGW033S-02062024 / DUP02-02062024	TOC	10.17	10.13	0.50	0.4

Abbreviations:

mg/L = milligrams per liter

RPD = relative percent difference

TOC = total organic carbon

7. Reporting Limits and Laboratory Flags - Acceptable

OVERALL ASSESSMENT OF DATA

The table below summarizes the data assessment. The completeness of work order numbers 24B0106 and 24B0141 is 100 percent. Evaluation of the usefulness of these data is based on EPA guidance documents identified in the introduction to this report. No problems were identified, and analytical performance was within specified limits. The data meet the project's data quality objectives.

Sample ID	Qualified Analyte
RGW237S-02052024	none
RGW240D-02052024	none
RGW143S-02052024	none
TB-020520224	none
RGW033S-02062024	none
RGW034S-02062024	none
RGW031S-R-02062024	none
RGW244S-R-02062024	none
DUP02-02062024	none
TB-02062024	none

REFERENCES

Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler), 2016, Quality Assurance Project Plan, Boeing Renton Facility, Renton, Washington: Prepared for the Boeing Company, February.

U.S. Environmental Protection Agency (EPA), 2020a, U.S. EPA National Functional Guidelines for Organic Superfund Methods Data Review: EPA 540-R-20-005, November.

EPA, 2020b, U.S. EPA National Functional Guidelines for Inorganic Superfund Methods Data Review: EPA 542-R-20-006, November.

Memo

Tel:

To: Patrick McCarthy, Project Manager Project:

Project: PS2420685.03

Project File

From: Caitlin Riechmann

(503) 207-9629

Date: March 4, 2024

Subject: Summary Data Quality Review

February 2024 Boeing Renton Groundwater Sampling

Former Fuel Farm AOC Group

ARI Work Order Number: 24B0139, 24B0221

This memo presents the summary data quality review of three primary groundwater samples and one field duplicate collected on February 6 and 8, 2024. The samples were submitted to Analytical Resources Inc. (ARI), a Washington State Department of Ecology (Ecology)-accredited laboratory located in Tukwila, Washington. The samples were analyzed for total petroleum hydrocarbons as diesel (TPH-D), plus motor oil (TPH-O) and Jet A (TPH-Jet A) ranges by Ecology Method NWTPH-Dx.

The samples and the analyses conducted on the samples are listed below.

Sample ID	Laboratory Sample ID	Requested Analyses
RGW221S-02062024	24B0139-01	all
RGW224S-02062024	24B0139-02	all
DUP03-02062024	24B0139-03	all
RGW211S-02082024	24B0221-01	all

Data were reviewed in accordance with the appropriate method procedures and criteria documented in the Quality Assurance Project Plan (QAPP) (Amec Foster Wheeler, 2016). The control limits provided in the QAPP are advisory limits; therefore, the most current control limits provided by the laboratory were used to evaluate the quality control data. In cases where the laboratory did not track limits for an analyte, the limits in the QAPP were used.

Holding times, method/trip blanks, surrogate recoveries, laboratory control samples (LCS) and laboratory control sample duplicates (LCSD), matrix spike/matrix spike duplicates (MS/MSD), field duplicates, and reporting limits were reviewed where available to assess compliance with applicable methods. If qualification was required, data were qualified based on the definitions and use of qualifying flags outlined in EPA guidelines (EPA, 2020).

ARI received the samples on February 6 and 8, 2024. The temperature of the cooler was recorded upon receipt and the cooler was below the maximum acceptable temperature of 6 degrees Celsius.

ORGANIC ANALYSES

Samples were analyzed for TPH-D plus TPH-O and TPH-Jet A ranges. Laboratory data were evaluated for the following parameters:

1. Preservation and Holding Times – Acceptable except as noted:

According to the cooler receipt form, the sample IDs on the container labels for samples RGW221S-02062024, RGW224S-02062024, and DUP03-02062024 did not match the IDs listed on the COC. ARI logged the samples per the COC.

According to the cooler receipt form, the laboratory received an additional container for sample RGW221S-02062024 that was not listed on the COC.

2. Blanks - Acceptable

- 3. Surrogates Acceptable
- 4. LCS/LCSD Acceptable
- 5. MS/MSD Acceptable

Extra volume was not submitted for analysis of MS/MSD samples. The project frequency requirement was achieved with MS/MSD analysis conducted at other sites included in this sampling event.

6. Field Duplicates – Acceptable

One field duplicate was submitted for each analysis during this sampling event, meeting the project frequency requirement of 5 percent, or one for every 20 samples. Primary and duplicate results are summarized in the table below. The project-specific control limit for field duplicate relative percent differences (RPDs) is 30 percent for concentrations greater than five times the reporting limit. The field duplicate RPDs were within control limits.

Sample ID/ Field Duplicate ID	Analyte	Primary Result (mg/L)	Duplicate Result (mg/L)	Reporting Limit (mg/L)	RPD (%)
RGW224S-02062024/	TPH-D (C12-C24)	0.764	0.966	0.100	23
DUP03-02062024	TPH-Jet A (C10-C18)	1.27	1.55	0.100	20

Abbreviations

mg/L = milligrams per liter RPD = relative percent difference TPH-D = total petroleum hydrocarbons as diesel TPH-Jet A = total petroleum hydrocarbons in the Jet A range

7. Reporting Limits and Laboratory Flags – Acceptable

OVERALL ASSESSMENT OF DATA

The table below summarizes the data review. The completeness of ARI work order numbers 24B0139 and 24B0221 is 100 percent. Evaluation of the usefulness of these data is based on EPA guidance documents listed in the introduction to this report. No problems were identified, and analytical performance was within specified limits. The data meet the project's data quality objectives.

Sample ID	Qualified Analyte	Reason for Qualifier	Qualified Result
RGW221S-02062024	None	NA	NA
RGW224S-02062024	None	NA	NA
DUP03-02062024	None	NA	NA
RGW211S-02082024	None	NA	NA

REFERENCES

Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler), 2016, Quality Assurance Project Plan, Boeing Renton Facility, Renton, Washington: Prepared for the Boeing Company, February.

U.S. Environmental Protection Agency (EPA), 2020a, U.S. EPA National Functional Guidelines for Organic Superfund Methods Data Review: EPA 540-R-20-005, November.

x:\us\usxhf100-sea\sea2-fs1-archive\8888.000 boeing renton\264\app c dv memos\c4. fff dv memo.docx

Memo

To: Patrick McCarthy, Project Manager

Project: PS2420685.03

From: Caitlin Riechmann

Project File

Tel: (503) 207-9629 Date: April 16, 2024

Subject: Summary Data Quality Review

February 2024 Boeing Renton Groundwater Sampling

AOC-001, -002, and -003

ARI Work Order Numbers: 24B0043, 24B0044, 24B0045, 24B0049, 24B0055

This memo presents the summary data quality review of 17 primary groundwater samples and 4 trip blank samples collected between January 31 and February 2, 2024. The samples were submitted to Analytical Resources, Inc. (ARI), located in Tukwila, Washington, a laboratory accredited by the Washington State Department of Ecology. The samples were analyzed for the following:

- Benzene (a volatile organic compound) by U.S. Environmental Protection Agency (EPA) Method 8260D;
- Volatile organic compounds (VOCs) (limited suite: vinyl chloride, 1,1-dichloroethene, cis-1,2-dichloroethene, trichloroethene, and/or tetrachloroethene) by U.S. Environmental Protection Agency (EPA) Method 8260D with selected ion monitoring; and/or
- Total organic carbon (TOC) by Standard Method 5310B-00.

The samples and the analyses conducted on the samples are listed below.

Sample ID	Laboratory Sample ID	Requested Analyses
RGW190S-R-02012024	24B0043-01	all
RGW192S-R-02012024	24B0043-02	all
RGW185S-R-02012024	24B0043-03	all
RGW193S-R-02012024	24B0043-04	all
RGW215S-R-02012024	24B0043-05	all
RGW214S-R-02012024	24B0043-06	all
RGW213S-R-02012024	24B0043-07	all
Trip Blank	24B0043-08	Benzene, VOCs
RGW249S-R-02012024	24B0044-01	VOCs, TOC
Trip Blank	24B0044-02	VOCs
RGW246S-R-01312024	24B0045-01	all
RGW196D-R-01312024	24B0045-02	all
RGW195S-R-01312024	24B0045-03	all
RGW245S-R-01312024	24B0045-04	all
RGW197S-R-01312024	24B0045-05	all
RGW191D-R-020224	24B0049-01	all
TB-020224	24B0049-02	Benzene, VOCs

Sample ID	Laboratory Sample ID	Requested Analyses
RGW188S-02022024	24B0055-01	VOCs, TOC
RGW247S-R-02022024	24B0055-02	VOCs, TOC
RGW248I-02022024	24B0055-03	VOCs, TOC
TB-02022024	24B0055-04	VOCs

Data were reviewed in accordance with the appropriate method procedures and criteria documented in the Quality Assurance Project Plan (QAPP) (Amec Foster Wheeler, 2016). The control limits provided in the QAPP are advisory limits; therefore, the most current control limits provided by the laboratory were used to evaluate the quality control data. In cases where the laboratory did not track limits for an analyte, the limits in the QAPP were used.

Holding times, method/trip blanks, surrogate recoveries, laboratory control samples (LCS) and laboratory control sample duplicates (LCSD), matrix spike/matrix spike duplicates (MS/MSD), field duplicates, and reporting limits were reviewed where available to assess compliance with applicable methods. If qualification was required, data were qualified based on the definitions and use of qualifying flags outlined in the EPA guidance documents (EPA, 2020a and b).

ARI received the samples between January 31 and February 2, 2024. The temperature of the coolers was recorded upon receipt and all of the coolers were below the maximum acceptable temperature of 6 degrees Celsius.

ORGANIC ANALYSES

Samples were analyzed for VOCs. Laboratory data were evaluated for the following parameters:

- 1. Preservation and Holding Times Acceptable except as noted:
 - According to the cooler receipt form, the sample ID for sample RGW247S-R-02022024 on the container label did not match the ID listed on the COC. ARI logged the sample per the COC.
- 2. Blanks Acceptable
- 3. Surrogates Acceptable
- 4. LCS/LCSD Acceptable
- 5. MS/MSD Acceptable

Extra volume was not submitted for analysis of MS/MSD samples. The project frequency requirement was achieved with MS/MSD analysis conducted at other sites included in this sampling event.

- 6. Field Duplicates Acceptable
 - Field duplicates were not collected at this site during this sampling event. The project frequency requirement of one field duplicate for every 20 samples was achieved with field duplicate samples collected at other sites included in this sampling event.
- 7. Reporting Limits and Laboratory Flags Acceptable

INORGANIC ANALYSES

Samples were analyzed for TOC. Laboratory data were evaluated for the following parameters:

- 1. Preservation and Holding Times Acceptable
- 2. Blanks Acceptable
- 3. LCS Acceptable

4. MS/MSD - Acceptable

Extra volume was not submitted for analysis of MS/MSD samples. The project frequency requirement was achieved with MS/MSD analysis conducted at other sites included in this sampling event.

5. Laboratory Duplicates – Acceptable

The laboratory did not perform duplicate analyses on the samples reviewed in this report.

6. Field Duplicates – Acceptable

Field duplicates were not collected at this site during this sampling event. The project frequency requirement of one field duplicate for every 20 samples was achieved with field duplicate samples collected at other sites included in this sampling event.

7. Reporting Limits and Laboratory Flags – Acceptable

OVERALL ASSESSMENT OF DATA

The table below summarizes the data assessment. The completeness of work order numbers 24B0043, 24B0044, 24B0045, 23B0049, and 24B0055 is 100 percent. The usefulness of these data was evaluated based on EPA guidance documents listed in the introduction to this report. No problems were identified, and analytical performance was within specified limits.

Sample ID	Qualified Analyte
RGW190S-R-02012024	none
RGW192S-R-02012024	none
RGW185S-R-02012024	none
RGW193S-R-02012024	none
RGW215S-R-02012024	none
RGW214S-R-02012024	none
RGW213S-R-02012024	none
Trip Blank	none
RGW249S-R-02012024	none
Trip Blank	none
RGW246S-R-01312024	none
RGW196D-R-01312024	none
RGW195S-R-01312024	none
RGW245S-R-01312024	none
RGW197S-R-01312024	none
RGW191D-R-020224	none
TB-020224	none
RGW188S-02022024	none
RGW247S-R-02022024	none

Sample ID	Qualified Analyte
RGW248I-02022024	none
TB-02022024	none

REFERENCES

Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler), 2016, Quality Assurance Project Plan, Boeing Renton Facility, Renton, Washington: Prepared for the Boeing Company, February.

U.S. Environmental Protection Agency (EPA), 2020a, U.S. EPA National Functional Guidelines for Organic Superfund Methods Data Review: EPA 540-R-20-005, November.

EPA, 2020b, U.S. EPA National Functional Guidelines for Inorganic Superfund Methods Data Review: EPA 542-R-20-006, November.

Memo

To: Patrick McCarthy, Project Manager Project: PS2420685.03

From: Caitlin Riechmann c: Project File

Tel: (503) 207-9629 Date: March 4, 2024

Subject: Summary Data Quality Review

February 2024 Boeing Renton Groundwater Sampling

AOC-004

ARI Work Order Number: 24B0128

This memo presents the summary data quality review of one primary groundwater sample collected on February 6, 2024. The sample was submitted to Analytical Resources, Inc. (ARI), located in Tukwila, Washington, a laboratory accredited by the Washington State Department of Ecology. The sample was analyzed for total lead by U.S. Environmental Protection Agency (EPA) Method 6020A.

The sample and the analyses conducted on the sample are listed below.

Sample ID	Laboratory Sample ID	Requested Analyses
RGW250S-02062024	24B0128-01	total lead

Data were reviewed in accordance with the appropriate method procedures and criteria documented in the Quality Assurance Project Plan (QAPP) (Amec Foster Wheeler, 2016). The control limits provided in the QAPP are advisory limits; therefore, the most current control limits provided by the laboratory were used to evaluate the quality control data. In cases where the laboratory did not track limits for an analyte, the limits in the QAPP were used.

Holding times, method/trip blanks, laboratory control samples (LCS) and laboratory control sample duplicates (LCSD), matrix spike/matrix spike duplicates (MS/MSD), field duplicates, and reporting limits were reviewed where available to assess compliance with applicable methods. If qualification was required, data were qualified based on the definitions and use of qualifying flags outlined in the EPA guidance documents (EPA, 2020).

ARI received the sample on February 6, 2024. The temperature of the cooler was recorded upon receipt and was below the maximum acceptable temperature of 6 degrees Celsius.

INORGANIC ANALYSES

Samples were analyzed for total lead. Laboratory data were evaluated for the following parameters:

- 1. Preservation and Holding Times Acceptable except as noted:
 - According to the cooler receipt form, the sample ID for sample RGW250S-02062024 on the container label did not match the ID listed on the COC. ARI logged the sample per the COC.
- 2. Blanks Acceptable
- 3. LCS Acceptable
- MS Acceptable

Extra volume was not submitted for analysis of MS/MSD samples. The project frequency requirement was achieved with MS/MSD analysis conducted at other sites included in this sampling event.

5. Laboratory Duplicates - Acceptable

The laboratory did not perform duplicate analyses on the sample reviewed in this report.

6. Field Duplicates – Acceptable

Field duplicates were not collected at this site during this sampling event. The project frequency requirement of one field duplicate for every 20 samples was achieved with field duplicate samples collected at other sites included in this sampling event.

7. Reporting Limits and Laboratory Flags - Acceptable

OVERALL ASSESSMENT OF DATA

The table below summarizes the data assessment. The completeness of work order number 24B0128 is 100 percent. The usefulness of these data was evaluated based on EPA guidance documents listed in the introduction to this report. No problems were identified, and analytical performance was within specified limits.

Sample ID	Qualified Analyte
RGW250S-02062024	none

REFERENCES

Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler), 2016, Quality Assurance Project Plan, Boeing Renton Facility, Renton, Washington: Prepared for the Boeing Company, February.

EPA, 2020b, U.S. EPA National Functional Guidelines for Inorganic Superfund Methods Data Review: EPA 542-R-20-006, November.

x:\us\hf100-sea\sea2-fs1-archive\8888.000 boeing renton\264\app c dv memos\c6. aoc 004 dv memo.docx

Memo

To: Patrick McCarthy, Project Manager Project: PS2420685.03

From: Caitlin Riechmann c: Project File

Tel: (503) 207-9629 Date: March 5, 2024

Subject: Summary Data Quality Review

February 2024 Boeing Renton Groundwater Sampling

AOC-060

ARI Work Order Numbers: 24B0191

This memo presents the summary data quality review of six primary groundwater samples, one field duplicate, and one trip blank sample collected on February 7, 2024. The samples were submitted to Analytical Resources, Inc. (ARI), located in Tukwila, Washington, a laboratory accredited by the Washington State Department of Ecology. The samples were selectively analyzed for the following:

- Volatile organic compounds (VOCs) (cis-1,2-dichloroethene, trichloroethene, and vinyl chloride) by U.S.
 Environmental Protection Agency (EPA) Method 8260D with selected ion monitoring; and
- Total organic carbon (TOC) by Standard Method 5310B-00.

The samples and the analyses conducted on the samples are listed below.

Sample ID	Laboratory Sample ID	Requested Analyses
RGW253I-02072024	24B0191-01	all
RGW150S-02072024	24B0191-02	all
RGW147S-02072024	24B0191-03	all
RGW014S-02072024	24B0191-04	all
RGW012S-02072024	24B0191-05	all
RGW009S-02072024	24B0191-06	all
DUP04-02072024	24B0191-07	all
TB-02072024	24B0191-08	VOCs

Data were reviewed in accordance with the appropriate method procedures and criteria documented in the Quality Assurance Project Plan (QAPP) (Amec Foster Wheeler, 2016). The control limits provided in the QAPP are advisory limits; therefore, the most current control limits provided by the laboratory were used to evaluate the quality control data. In cases where the laboratory did not track limits for an analyte, the limits in the QAPP were used.

Hold times, method/trip blanks, surrogate recoveries, laboratory control samples (LCS) and laboratory control sample duplicates (LCSD), matrix spike/matrix spike duplicates (MS/MSD), field duplicates, and reporting limits were reviewed where available to assess compliance with applicable methods. If qualification was required, data were qualified based on the definitions and use of qualifying flags outlined in EPA guidelines (EPA, 2020a and b).

Samples were received by ARI on February 7, 2024. The temperature of the cooler was recorded upon receipt and was below the maximum acceptable temperature of 6 degrees Celsius.

ORGANIC ANALYSES

Samples were analyzed for VOCs. Laboratory data were evaluated for the following parameters:

1. Preservation and Holding Times - Acceptable

- 2. Blanks Acceptable
- 3. Surrogates Acceptable
- 4. LCS/LCSD Acceptable
- 5. MS/MSD Acceptable

Extra volume was not submitted for analysis of MS/MSD samples. The project frequency requirement was achieved with MS/MSD analysis conducted at other sites included in this sampling event.

6. Field Duplicates - Acceptable

One field duplicate was submitted for each analysis during this sampling event, meeting the project frequency requirement of five percent, or one for every 20 samples. Primary and duplicate results are summarized in the table below. The project-specific control limit for field duplicate relative percent differences (RPDs) is 30 percent for concentrations greater than five times the reporting limit. The RPD is not calculated for results that are less than five times the reporting limit, as indicated on the table below by "NC." In these cases, the absolute value of the difference between the primary and duplicate result should not exceed the value of the reporting limit. The field duplicate RPDs were within the control limits.

Sample ID/ Field Duplicate ID	Analyte	Primary Result (ng/L)	Duplicate Result (ng/L)	Reporting Limit (ng/L)	RPD (%)
RGW014S-02072024 / DUP04-02072024	vinyl chloride	380	437	20.0	14
	cis-1,2-dichloroethene	207	221	20.0	7
	trichloroethene	24.7	27.9	20.0	NC

Abbreviations

ng/L = nanograms per liter

NC = not calculated

RPD = relative percent difference

7. Reporting Limits and Laboratory Flags – Acceptable except as noted:

ARI J qualified the detected trichloroethene result from sample RGW253I-02072024 because the detected result was less than the reporting limit. WSP agrees that the result is quantitatively uncertain and has maintained ARI's J qualifier.

INORGANIC ANALYSES

Samples were analyzed for TOC. Laboratory data were evaluated for the following parameters:

- 1. Preservation and Holding Times Acceptable
- 2. Blanks Acceptable
- 3. LCS Acceptable
- 4. MS/MSD Acceptable

Extra volume was not submitted for analysis of MS/MSD samples. The project frequency requirement was achieved with MS/MSD analysis conducted at other sites included in this sampling event.

5. Laboratory Duplicates – Acceptable

The laboratory did not perform duplicate analyses on the samples reviewed in this report.

6. Field Duplicates - Acceptable

One field duplicate was submitted for TOC analysis during this sampling event, meeting the project frequency requirement of five percent, or one for every 20 samples. Primary and duplicate results are summarized in the table below. The project-specific control limit for field duplicate RPDs is 30 percent for concentrations greater than five times the reporting limit. The field duplicate RPD was within the control limits.

Sample ID/	Analyte	Primary Result	Duplicate Result	Reporting Limit	RPD
Field Duplicate ID		(mg/L)	(mg/L)	(mg/L)	(%)
RGW014S-02072024 / DUP04-02072024	тос	4.16	4.07	0.50	2

Abbreviations

mg/L = milligrams per liter RPD= relative percent difference TOC = total organic carbon

7. Reporting Limits and Laboratory Flags – Acceptable

OVERALL ASSESSMENT OF DATA

A summary of the data assessment is presented in the table below. The completeness of work order numbers 24B0191 is 100 percent. Evaluation of the usefulness of these data is based on the EPA guidance document listed in the introduction to this report. No problems were identified, and analytical performance was within specified limits. The data meet the project's data quality objectives.

Sample ID	Qualified Analyte	Reason for Qualifier	Qualified Result (ng/L)
RGW253I-02072024	Trichloroethene	Detected result less than the RL	14.5 J
RGW150S-02072024	none	NA	NA
RGW147S-02072024	none	NA	NA
RGW014S-02072024	none	NA	NA
RGW012S-02072024	none	NA	NA
RGW009S-02072024	none	NA	NA
DUP04-02072024	none	NA	NA
TB-02072024	none	NA	NA

Abbreviations:

NA = not applicable

ng/L = nanograms per liter

RL = reporting limit

REFERENCES

Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler), 2016, Quality Assurance Project Plan, Boeing Renton Facility, Renton, Washington: Prepared for the Boeing Company, February.

U.S. Environmental Protection Agency (EPA), 2020a, U.S. EPA National Functional Guidelines for Organic Superfund Methods Data Review: EPA 540-R-20-005, November.

EPA, 2020b, U.S. EPA National Functional Guidelines for Inorganic Superfund Methods Data Review: EPA 542-R-20-006, November.

x:\us\usxhf100-sea\sea2-fs1-archive\8888.000 boeing renton\264\app c dv memos\c7. aoc-060 dv memo.docx

Memo

To: Patrick McCarthy, Project Manager Project: PS2420685.03

From: Caitlin Riechmann c: Project File

Tel: (503) 207-9629 Date: March 4, 2024

Subject: Summary Data Quality Review

August 2023 Boeing Renton Groundwater Sampling

AOC-090

ARI Work Order Number: 24B0240

This memo summarizes the data quality review of five primary groundwater samples and one trip blank sample collected on February 8, 2024. The samples were submitted to Analytical Resources, Inc. (ARI), located in Tukwila, Washington, a laboratory accredited by the Washington State Department of Ecology (Ecology). The samples were selectively analyzed for the following:

- Volatile organic compounds (VOCs) (acetone, methylene chloride, trans-1,2-dichlorethene,
 cis-1,2-dichloroethene, chloroform, carbon tetrachloride, benzene, toluene, and 1,1,2-trichloroethane) by U.S.
 Environmental Protection Agency (EPA) Method 8260D);
- VOCs (vinyl chloride, 1,1-dichloroethene, trichloroethene, tetrachloroethene, and/or 1,1,2,2-tetrachloroethane) by EPA Method 8260D with selected ion monitoring (SIM);
- Total petroleum hydrocarbons in the gasoline range (TPH-G) by Ecology Method NWTPH Gx;
- Total petroleum hydrocarbons in the diesel and motor oil ranges (TPH-D and TPH-MO) by Ecology Method NWTPH-Dx (with silica gel cleanup); and
- Total organic carbon (TOC) by Standard Method 5310B-00.

The samples and the analyses conducted on the samples are listed below.

Sample ID	Laboratory Sample ID	Requested Analyses
RGW207S-02082024	24B0240-01	Vinyl chloride
RGW176S-02082024	24B0240-02	Vinyl chloride
RGW208S-02082024	24B0240-03	Vinyl chloride
RGW189S-02082024	24B0240-04	all
TB-02082024	24B0240-05	VOCs, TPH-G
RGW178S-02082024	24B0240-06	Vinyl chloride

Data were reviewed in accordance with the appropriate method procedures and criteria documented in the Quality Assurance Project Plan Addendum (QAPP) (Amec Foster Wheeler, 2016). The control limits provided in the QAPP are advisory limits; therefore, the most current control limits provided by the laboratory were used to evaluate the quality control data. In cases where the laboratory did not track limits for an analyte, the limits in the QAPP were used.

Holding times, method/trip blanks, surrogate recoveries, laboratory control samples (LCS), laboratory duplicates (LCSD), matrix spike/matrix spike duplicates (MS/MSD), field duplicates, and reporting limits were reviewed where available to assess compliance with applicable methods. If qualification was required, data were qualified based on the definitions and use of qualifying flags outlined in EPA guidelines (EPA, 2020a and b).

ARI received the samples on February 8, 2024. The temperature of the cooler was recorded upon receipt and was below the maximum acceptable temperature of 6 degrees Celsius.

ORGANIC ANALYSES

Samples were analyzed for VOCs and TPH. Laboratory data were evaluated for the following parameters:

- 1. Preservation and Holding Times Acceptable
- 2. Blanks Acceptable except as noted:

Methylene chloride was detected at a concentration of 1.40 μ g/L in the trip blank associated with the samples reviewed in this report. Methylene chloride either was not detected or it was not a target analyte in the associated samples and data usability is not adversely affected by the trip blank detection.

- 3. Surrogates Acceptable
- 4. LCS/LCSD Acceptable
- 5. MS/MSD Acceptable except as noted:

TPH-G recovery was high at 132% in the MSD performed on sample RGW189S-02082024. TPH-G was not detected in the unspiked native sample and data usability is not adversely affected by potential high analytical bias.

6. Field Duplicates - Acceptable

Field duplicates were not collected at this site during this sampling event. The project frequency requirement of one field duplicate for every 20 samples was achieved with field duplicate samples collected at other sites included in this sampling event.

7. Reporting Limits and Laboratory Flags - Acceptable

INORGANIC ANALYSES

Samples were analyzed for TOC. Laboratory data were evaluated for the following parameters:

- 1. Preservation and Holding Times Acceptable
- 2. Blanks Acceptable
- 3. LCS Acceptable
- 4. MS/MSD Acceptable
- 5. Laboratory Duplicates Acceptable
- 6. Field Duplicates Acceptable

Field duplicates were not collected at this site during this sampling event. The project frequency requirement of one field duplicate for every 20 samples was achieved with field duplicate samples collected at other sites included in this sampling event.

7. Reporting Limits and Laboratory Flags- Acceptable

OVERALL ASSESSMENT OF DATA

The completeness of ARI work order number 24B0240 is 100 percent. Evaluation of the usefulness of these data was evaluated based on EPA guidance documents listed in the introduction to this report. No problems were identified, and analytical performance was within specified limits. The data meet the project's data quality objectives.

A summary of the data quality review is presented in the table below.

Sample ID	Qualified Analyte	Qualifier Reason	Qualified Result
RGW207S-02082024	S-02082024 None NA		NA
RGW176S-02082024	None	NA	NA
RGW208S-02082024	None	NA	NA
RGW189S-02082024	None	NA	NA
TB-02082024	None	NA	NA
RGW178S-02082024	None	NA	NA

Abbreviations:
NA = not applicable

REFERENCES

Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler), 2016, Quality Assurance Project Plan, Boeing Renton Facility, Renton, Washington: Prepared for the Boeing Company, February.

U.S. Environmental Protection Agency (EPA), 2020a, U.S. EPA National Functional Guidelines for Organic Superfund Methods Data Review: EPA 540-R-20-005, November.

EPA, 2020b, U.S. EPA National Functional Guidelines for Inorganic Superfund Methods Data Review: EPA 542-R-20-006, November.

x:\us\hf100-sea\sea2-fs1-archive\8888.000 boeing renton\264\app c dv memos\c8. aoc-090 dv memo.docx

Memo

To: Patrick McCarthy, Project Manager Project: PS2420685.03

From: Caitlin Riechmann c: Project File

Date: March 4, 2024 Tel: (503) 207-9629

Subject: Summary Data Quality Review

February 2024 Boeing Renton Groundwater

Sampling Apron A

ARI Work Order Number: 24B0200

This memo presents the summary data quality review of one primary groundwater sample and one trip blank sample collected on February 7, 2023. The samples were submitted to Analytical Resources, Inc., (ARI), located in Tukwila, Washington, a laboratory accredited by the Washington State Department of Ecology. The samples were analyzed for the following:

- Volatile organic compounds (VOCs) (vinyl chloride and cis-1,2-dichloroethene) by U.S. Environmental Protection Agency (EPA) Method 8260D; and
- Total organic carbon (TOC) by Standard Method 5310B.

The samples and the analyses conducted on the samples are listed below.

Sample ID	Laboratory Sample ID	Requested Analyses
RGW264S-02072024	24B0200-01	all
TB-02072024	24B0200-02	VOCs

Data were reviewed in accordance with the appropriate method procedures and criteria documented in the Quality Assurance Project Plan (QAPP) (Amec Foster Wheeler, 2016). The control limits provided in the QAPP are advisory limits; therefore, the most current control limits provided by the laboratory were used to evaluate the quality control data. In cases where the laboratory did not track limits for an analyte, the limits in the QAPP were used.

Holding times, method/trip blanks, surrogate recoveries, laboratory control samples (LCS) and laboratory control sample duplicates (LCSD), matrix spike/matrix spike duplicates (MS/MSD), field duplicates, and reporting limits were reviewed where available to assess compliance with applicable methods. If qualification was required, data were qualified based on the definitions and use of qualifying flags outlined in the EPA guidance documents (EPA, 2020a and b).

ARI received the samples on February 7, 2024. The temperature of the coolers was recorded upon receipt and was below the maximum acceptable temperature of 6 degrees Celsius (°C).

ORGANIC ANALYSES

Samples were analyzed for VOCs. Laboratory data were evaluated for the following parameters:

- 1. Preservation and Holding Times Acceptable
- 2. Blanks Acceptable
- Surrogates Acceptable
- 4. LCS/LCSD Acceptable

5. MS/MSD - Acceptable

Extra volume was not submitted for analysis of MS/MSD samples. The project frequency requirement was achieved with MS/MSD analysis conducted at other sites included in this sampling event.

6. Field Duplicates – Acceptable

Field duplicates were not collected at this site during this sampling event. The project frequency requirement of one field duplicate for every 20 samples was achieved with field duplicate samples collected at other sites included in this sampling event.

7. Reporting Limits and Laboratory Flags - Acceptable.

INORGANIC ANALYSES

Samples were analyzed for TOC. Laboratory data were evaluated for the following parameters:

- 1. Preservation and Holding Times Acceptable
- 2. Blanks Acceptable
- 3. LCS Acceptable
- 4. MS/MSD Acceptable

Extra volume was not submitted for analysis of MS/MSD samples. The project frequency requirement was achieved with MS/MSD analysis conducted at other sites included in this sampling event.

5. Laboratory Duplicates – Acceptable

The laboratory did not perform duplicate analyses on the samples reviewed in this report.

6. Field Duplicates – Acceptable

Field duplicates were not collected at this site during this sampling event. The project frequency requirement of one field duplicate for every 20 samples was achieved with field duplicate samples collected at other sites included in this sampling event.

7. Reporting Limits and Laboratory Flags – Acceptable.

OVERALL ASSESSMENT OF DATA

The table below summarizes the data assessment. The completeness of work order number 24B0200 is 100 percent. The usefulness of these data was evaluated based on EPA guidance documents listed in the introduction to this report. No problems were identified, and analytical performance was within specified limits. The data meet the project's data quality objectives.

Sample ID	Qualified Analyte
RGW264S-02072024	none
TB-02072024	none

REFERENCES

Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler), 2016, Quality Assurance Project Plan, Boeing Renton Facility, Renton, Washington: Prepared for the Boeing Company, February.

U.S. Environmental Protection Agency (EPA), 2020a, U.S. EPA National Functional Guidelines for Organic Superfund Methods Data Review: EPA 540-R-20-005, November.

EPA, 2020b, U.S. EPA National Functional Guidelines for Inorganic Superfund Methods Data Review: EPA 542-R-20-006, November.

x:\us\usxhf100-sea\sea2-fs1-archive\8888.000 boeing renton\264\app c dv memos\c9. apron a dv memo.docx

APPENDIX D

HISTORICAL GROUNDWATER DATA TABLES

TABLE D-1: SWMU-168 HISTORICAL CONCENTRATIONS OF CONSTITUENTS OF CONCERN^{1, 2}

Boeing Renton Facility, Renton, Washington

	Current	Well ID ³ CPOC Area							
	Cleanup		GW229S						
Analyte	Level⁴	11/7/2016	3/1/2017	8/14/2017	3/5/2018	8/13/2018	3/4/2019	8/12/2019	3/9/2020
Volatile Organic Compo	ounds (μg/L)								
Vinyl Chloride	0.11	0.020 U	0.020 U	0.021	0.0273	0.020 U	0.0211	0.020 U	0.020 U

	Current					ll ID³ CArea										
	Cleanup	GW230I														
Analyte	Level ⁴	8/10/2020	2/15/2021	8/10/2021	2/21/2022	8/17/2022	2/9/2023	8/24/2023	2/6/2024							
Volatile Organic Comp	ounds (μg/L)															
Vinyl Chloride	0.11	0.162	0.076	0.359 J	0.164	0.539 J	0.146	0.101	0.087							

		Current					ll ID ³ CArea										
ı		Cleanup	GW231S														
ı	Analyte	Level⁴	11/7/2016	3/1/2017	8/14/2017	3/5/2018	8/13/2018	3/4/2019	8/12/2019	3/9/2020							
,	Volatile Organic Compo	unds (μg/L)															
	Vinyl Chloride	0.11	0.020 U	0.020 U	0.020 U	0.039	0.033	0.033	0.026	0.020 U							

Notes:

- 1. Data qualifiers are as follows:
 - U = The analyte was not detected at the reporting limit indicated.
- 2. **Bolded** values exceed the cleanup levels.
- 3. S = shallow well; I = intermediate well.
- 4. Current cleanup levels obtained from Table 2 of the Cleanup Action Plan and are based on each individual SWMU or AOC.

Abbreviations:

 μ g/L = micrograms per liter

AOC = area of concern

 $\label{eq:CPOC} \textbf{CPOC} = \textbf{conditional point of compliance}$

TABLE D-2: SWMU-172 AND SWMU-174 GROUP HISTORICAL CONCENTRATIONS OF CONSTITUENTS OF CONCERN^{1, 2}

Boeing Renton Facility, Renton, Washington

										1	Well ID ³								
	Current									So	urce Area								
	Cleanup					GW152S									GW153S				
Analyte	Level⁴	8/10/2020	2/15/2021	8/10/2021	2/21/2022	2/21/2022	8/24/2022	2/8/2023	8/15/2023	2/5/2024	5/11/2020	8/10/2020	2/15/2021	8/10/2021	2/21/2022	8/24/2022	2/8/2023	8/15/2023	2/2/2024
Volatile Organic Compounds	(μg/L)																		
cis-1,2-Dichloroethene	0.03	1.66	0.144	1.330	1.57	1.59	0.877	3.16 J	1.46	4.59	0.0789	0.0551	0.077	0.0582 J	0.0517	0.100	0.0569 J	0.053	0.068
Tetrachloroethene	0.02	0.319	0.081	0.0872	1.84	1.71	1.05	0.234 J	1.06	0.238	0.020 U	0.020 U	0.020 U	0.020 UJ	0.0200 U	0.0200 U	0.0200 UJ	0.0161 J	0.198
Trichloroethene	0.02	0.579	0.020 U	0.129	0.522	0.497	0.534	0.101 J	0.412	0.104	0.020 U	0.020 U	0.020 U	0.020 UJ	0.0200 U	0.0525	0.0200 UJ	0.0172 J	0.049
Vinyl Chloride	0.11	0.284	0.0378	0.506	0.200	0.219	0.346	0.195 J	0.209	0.264	0.266	0.135	0.220	0.193 J	0.174	0.214	0.148 J	0.0881	0.108
Total Metals (μg/L)																			
Arsenic	8.0	6.72	7.67	16.3	2.88	2.34	47.7	6.92	39.8	7.95	3.85	4.05	32.8	32.8	4.98	2.85	4.76	2.39	4.12
Copper	3.5	7.45 J	17.2 J	9.08 J	5.07	3.88	9.17	6.61	4.98 J	2.44	1.73	1.68	33.9	33.9	1.45	0.641	1.14	0.408 J	1.00 U
Lead	1.0	3.89	12.5 J	5.38 J	2.78 J	1.90 J	5.75	4.24 J	32.2	1.18	0.372	0.326	5.80	5.80	0.302	0.123	0.256	0.200 U	0.232

										V	Vell ID ³								
	Current										lient Plume Area								
	Cleanup					GW172S						<u> </u>			GW173S				
Analyte	Level⁴	5/11/2020	8/10/2020	2/15/2021	8/10/2021	2/21/2022	8/24/2022	2/8/2023	8/16/2023	2/5/2024	5/11/2020	8/10/2020	2/15/2021	8/10/2021	2/21/2022	8/24/2022	2/8/2023	8/17/2023	2/5/2024
Volatile Organic Compounds	(μg/L)																		
cis-1,2-Dichloroethene	0.03	0.214	0.0561	0.108	0.0746	0.0532	0.0436	0.155 J	0.528	0.877	0.0488	0.0313	0.0505	0.0424 J	0.0280	0.168	0.0909 J	0.107	0.145
Tetrachloroethene	0.02	0.0625	0.0603	0.0624	0.020 U	0.0677	0.0200 U	0.0200 UJ	0.0237	0.0200 U	0.020 U	0.020 U	0.020 U	0.020 UJ	0.0200 U	0.0200 U	0.0429 J	0.0102 J	0.0543
Trichloroethene	0.02	0.028	0.020 U	0.020 U	0.020 U	0.0201	0.0200 U	0.0200 UJ	0.199	0.266	0.0215	0.0239	0.020 U	0.020 UJ	0.0200 U	0.0496	0.0479 J	0.0262	0.0307
Vinyl Chloride	0.11	0.369	0.0628	0.219	0.155	0.137	0.0887	0.601 J	0.277	0.907	0.126	0.0455	0.183	0.176 J	0.0696	0.175	0.210 J	0.132	0.280
Total Metals (µg/L)																			
Arsenic	8.0	7.03	10.8	10.8	7.18	11.2	4.86	6.64	23.6	6.68	6.72	7.00	9.94	11.4	13.8	6.04	5.69	7.26	9.51
Copper	3.5	2.2	6.12	3.89	2.86	2.86	1.52	6.17	17.70	1.08	0.875	3.19	3.11	5.96	2.58	1.54	2.98	1.09	3.07
Lead	1.0	1.07	2.58	1.98	1.33	1.37	1.32	3.80	14.7 J	0.714	0.215	0.470	0.850	1.65	0.788	0.468	0.752	0.384	1.41

										V	Vell ID ³								
	Current				Dow	ngradient Plum	ne Area								CPOC Area				
	Cleanup					GW226S									GW232S				
Analyte	Level ⁴	5/11/2020	8/10/2020	2/15/2021	8/10/2021	2/21/2022	8/24/2022	2/8/2023	8/16/2023	2/2/2024	5/11/2020	8/10/2020	2/15/2021	8/10/2021	2/21/2022	8/24/2022	2/8/2023	8/16/2023	2/5/2024
Volatile Organic Compounds	(μg/L)																		
cis-1,2-Dichloroethene	0.03	0.0305	0.0218	0.020 U	0.0335 J	0.0363	0.0255	0.0431 J	0.0169 J	0.0465	0.352	0.482	0.219	0.464 J	0.197	0.325	0.206 J	0.236	0.167
Tetrachloroethene	0.02	0.020 U	0.0279	0.020 U	0.0202 J	0.0200 U	0.0200 U	0.0200 UJ	0.0200 U	0.0200 U	0.020 U	0.020 U	0.020 U	0.020 UJ	0.0200 U	0.0200 U	0.0200 UJ	0.0200 U	0.0200 U
Trichloroethene	0.02	0.020 U	0.020 U	0.020 U	0.020 UJ	0.0200 U	0.0200 U	0.0200 UJ	0.00910 J	0.0200 U	0.020 U	0.020 U	0.020 U	0.020 UJ	0.0200 U	0.0200 U	0.0200 UJ	0.0129 J	0.0200 U
Vinyl Chloride	0.11	0.0594	0.0415	0.0519	0.0516 J	0.0414	0.128	0.0734 J	0.0886	0.0394	0.337	0.425	0.263	0.653 J	0.307	0.558	0.290 J	0.348	0.187
Total Metals (μg/L)																			
Arsenic	8.0	3.33	4.93	8.12	5.57	7.33	3.09	4.28	5.22	9.01	4.71	3.83	4.78	6.19	3.75	3.83	3.51	6.16	2.19
Copper	3.5	0.704	1.48	3.92	1.48	2.40	0.500 U	0.500 U	1.31 J	6.69	0.539	0.627	2.09	1.79	1.09	0.500 U	0.915	1.26 J	1.00 U
Lead	1.0	0.190	0.136	0.513	0.124	0.237	0.100 U	0.100 U	0.500 U	0.95	0.100 U	0.100 U	0.318	0.262	0.234	0.122	0.124	0.285 J	0.200 U

TABLE D-2: SWMU-172 AND SWMU-174 GROUP HISTORICAL CONCENTRATIONS OF CONSTITUENTS OF CONCERN^{1, 2}

Boeing Renton Facility, Renton, Washington

										V	Vell ID ³								
	Current									CF	OC Area								
	Cleanup					GW234S									GW235I				
Analyte	Level⁴	5/11/2020	8/10/2020	2/15/2021	8/10/2021	2/21/2022	8/24/2022	2/9/2023	8/16/2023	2/2/2024	5/11/2020	8/10/2020	2/15/2021	8/10/2021	2/21/2022	8/24/2022	2/9/2023	8/16/2023	2/2/2024
Volatile Organic Compounds	(μg/L)																		
cis-1,2-Dichloroethene	0.03	0.092	0.0914	0.020 U	0.0892	0.0591	0.134	0.0581 J	0.103	0.0495	0.156	0.104	0.128	0.179	0.175	0.227	0.235 J	0.225	0.229
Tetrachloroethene	0.02	0.020 U	0.020 U	0.020 U	0.020 U	0.0200 U	0.0200 U	0.0200 UJ	0.0200 U	0.0200 U	0.020 U	0.020 U	0.0292	0.020 U	0.0200 U	0.0200 U	0.0200 UJ	0.0200 U	0.0200 U
Trichloroethene	0.02	0.020 U	0.020 U	0.020 U	0.020 U	0.0200 U	0.0200 U	0.0200 UJ	0.0163 J	0.0200 U	0.031	0.0227	0.020 U	0.0285	0.0253	0.0250	0.0296 J	0.0189 J	0.0207
Vinyl Chloride	0.11	0.032	0.0279	0.020 U	0.0497	0.0318	0.170	0.0304 J	0.0726	0.0200 U	0.020 U	0.020 U	0.020 U	0.24	0.0259	0.0280	0.0310 J	0.0313	0.0215
Total Metals (μg/L)																			
Arsenic	8.0	5.31	3.26	6.29	1.18	1.76	0.974	5.90	0.93	0.626	0.289	0.288	0.200 U	0.200 U	0.200 U	0.200 U	0.283	0.318 J	0.400 U
Copper	3.5	2.43	3.21	11.4	2.58	2.13	2.31	16.6	1.3	2.26	1.08	1.30	0.727	0.689	0.687	0.500 U	1.23	0.676 J	1.00 U
Lead	1.0	0.671	1.25	4.13	1.01	0.930	0.830	6.75	0.27	0.876	0.223	0.304	0.174	0.179	0.159	0.100 U	0.332	0.224	0.200 U

						Well ID ³				
	Current					CPOC Area				
	Cleanup					GW236S				
Analyte	Level ⁴	5/11/2020	8/10/2020	2/15/2021	8/10/2021	2/21/2022	8/24/2022	2/9/2023	8/17/2023	2/5/2024
Volatile Organic Compounds	(μg/L)									
cis-1,2-Dichloroethene	0.03	0.036	0.0881	0.020 U	0.0791	0.0200 U	0.0572	0.0364 J	0.0473	0.020 U
Tetrachloroethene	0.02	0.020 U	0.020 U	0.020 U	0.020 U	0.0206	0.0200 U	0.0200 UJ	0.0200 U	0.0262
Trichloroethene	0.02	0.020 U	0.020 U	0.020 U	0.020 U	0.0200 U	0.0200 U	0.0200 UJ	0.0187 J	0.0200 U
Vinyl Chloride	0.11	0.020 U	0.020 U	0.020 U	0.0223	0.0200 U	0.0200 U	0.0200 UJ	0.0128 J	0.0200 U
Total Metals (μg/L)										
Arsenic	8.0	2.10	10.1	2.89	5.49	1.97	0.995	1.64	1.55	1.00 U
Copper	3.5	4.24	10.8	9.70	2.47	5.27	1.22	2.07	1.00 U	2.50 U
Lead	1.0	2.61	10.8	6.31	1.79	3.32	0.798	1.38	0.160 J	0.795

Notes

1. Data qualifiers are as follows:

U = The analyte was not detected at the reporting limit indicated.

J = The value is an estimate.

2. Bolded values exceed the cleanup levels.

3. S = shallow well; I = intermediate well.

4. Current cleanup levels obtained from Table 2 of the Cleanup Action Plan and are based on each individual SWMU or AOC.

<u>Abbreviations</u>

μg/L = micrograms per liter

AOC = area of concern

CPOC = conditional point of compliance

TABLE D-3: BUILDING 4-78/79 SWMU/AOC GROUP HISTORICAL CONCENTRATIONS OF CONSTITUENTS OF CONCERN 1, 2

Boeing Renton Facility, Renton, Washington

											'ell ID ³								
	Current										eii iD rce Area								
	Cleanup					GW031S					ite Alea				GW033S				
Analyte	Level ⁴	3/11/2020	5/11/2020	8/11/2020	2/15/2021	8/11/2021	8/23/2022	2/7/2023	8/22/2023	2/6/2024	8/11/2020	2/16/2021	8/11/2021	2/22/2022	2/22/2022	8/17/2022	2/7/2023	8/18/2023	2/6/2024
Volatile Organic Compounds	(μg/L)																		
Benzene	0.80	37.1	17.6	1.72 J	18.8 J	1.08	0.20 U	0.20 U	0.200 U	0.200 U	12.5	11.0	14.5	8.41	8.57	14.2 J	0.20 U	8.85	6.49
cis-1,2-Dichloroethene	0.70	0.61	0.40 J	0.67 J	0.31 J	0.20 U	0.26	0.18 J	0.200 U	0.200 U	188	1.64	0.55	3.82	4.04	0.45 J	0.09 J	0.42	0.480
Trichloroethene	0.23	0.20 U	0.20 U	0.20 UJ	0.20 UJ	0.20 U	0.20 U	0.20 U	0.200 U	0.200 U	0.25	0.20 U	0.20 U	0.200 U	0.200 U	0.20 U	0.20 U	0.200 U	0.200 U
Vinyl Chloride	0.20	0.20 U	0.20 U	0.32 J	0.20 UJ	0.20 U	0.39	0.26	0.28	0.230	310	5.31	2.31	8.90	9.28	1.53 J	0.24	0.94	0.830
Total Petroleum Hydrocarbon	ns (μg/L)																		
TPH-G (C7-C12)	800	2,980	1,880	1,160	2,340	1,540	100 U	100 U	100 U	100 U	255	323	360	168	166	300 J	100 U	223	141

	Current										'ell ID ³ rce Area								
	Cleanup					GW034S					lechica				GW244S				
Analyte	Level ⁴	5/11/2020	8/11/2020	2/15/2021	8/11/2021	2/22/2022	8/17/2022	2/8/2023	8/18/2023	2/6/2024	3/11/2020	5/11/2020	8/11/2020	2/15/2021	8/11/2021	8/23/2022	2/7/2023	8/22/2023	1/30/2024
Volatile Organic Compounds	(μg/L)																		
Benzene	0.80	0.20 U	0.20 U	0.20 U	0.20 U	0.200 U	1.47	9.62	0.200 U	0.200 U	0.52	0.46	0.43	0.46	0.20 U	0.25	0.12 J	0.200 U	0.200 U
cis-1,2-Dichloroethene	0.70	0.20 U	0.20 U	0.20 U	0.20 U	0.200 U	2.03	0.74	0.110 J	0.200 U	0.68	1.06	1.12	0.68	0.22	0.25	0.25	0.22	0.340
Trichloroethene	0.23	0.20 U	0.20 U	0.20 U	0.20 U	0.200 U	0.20 U	0.20 U	0.200 U	0.200 U	0.23	0.20 U	0.20 U	0.29	0.20 U	0.20 U	0.20 U	0.200 U	0.200 U
Vinyl Chloride	0.20	0.21	0.41	0.25	1.20	0.330	1.45	4.12	0.47	0.260	0.7	0.85	0.98	0.64	0.37	0.46	0.55	0.28	0.610
Total Petroleum Hydrocarbon	ns (μg/L)																		
TPH-G (C7-C12)	800	100 U	350	100 U	100 U	100 U	100 U	100 U	100 U	100 U	100 U	100 U	100 U	100 U					

										14	ell ID ³								
	Current									CP	OC Area								
	Cleanup					GW143S									GW237S				
Analyte	Level ⁴	5/11/2020	8/11/2020	2/15/2021	8/11/2021	2/22/2022	8/17/2022	2/7/2023	8/18/2023	2/5/2024	5/11/2020	8/11/2020	2/16/2021	8/11/2021	2/22/2022	8/17/2022	2/6/2023	8/18/2023	2/5/2024
Volatile Organic Compounds	(μg/L)																		
Benzene	0.80	0.20 U	0.20 U	0.20 U	0.20 U	0.200 U	0.20 U	0.20 U	0.200 U	0.200 U	1.03	0.24	6.79 J	0.20 U	3.73	0.20 U	4.18	0.150 J	6.47
cis-1,2-Dichloroethene	0.70	0.20 U	1.17	0.26	0.65	0.430	0.76 J	0.36	0.30	0.280	0.20 U	0.20 U	0.20 UJ	0.20 U	0.200 U	0.20 U	0.22	0.0900 J	0.200 U
Trichloroethene	0.23	0.20 U	0.23	0.20 U	0.20 U	0.200 U	0.53 J	0.10 J	0.200 U	0.200 U	0.20 U	0.20 U	0.20 UJ	0.20 U	0.200 U	0.20 U	0.20 U	0.200 U	0.200 U
Vinyl Chloride	0.20	0.20 U	0.20 U	0.20 U	0.20 U	0.200 U	0.20 U	0.09 J	0.120 J	0.200 U	0.20 U	0.20 U	0.31 J	0.20	0.200 U	0.20 U	0.26	0.25	0.290
Total Petroleum Hydrocarbo	ns (µg/L)																		
TPH-G (C7-C12)	800	100 U	100 U	100 U	100 U	729	100 U	100 UJ	360	664	100 U	805	100 U	915					

	Current Cleanup					Well ID ³ CPOC Area GW240D				
Analyte	Level⁴	5/11/2020	8/11/2020	2/15/2021	8/11/2021	2/22/2022	8/17/2022	2/7/2023	8/18/2023	2/5/2024
Volatile Organic Compounds	(μg/L)									
Benzene	0.80	0.20 U	0.20 U	0.20 U	0.20 U	0.200 U	0.20 U	0.20 U	0.200 U	0.200 U
cis-1,2-Dichloroethene	0.70	0.20 U	0.20 U	0.20 U	0.20 U	0.200 U	0.20 U	0.20 U	0.200 U	0.200 U
Trichloroethene	0.23	0.20 U	0.20 U	0.20 U	0.20 U	0.200 U	0.20 U	0.20 U	0.200 U	0.200 U
Vinyl Chloride	0.20	0.20 U	0.20 U	0.20 U	0.20 U	0.200 U	0.20 U	0.13 J	0.150 J	0.200 U
Total Petroleum Hydrocarbon	ns (µg/L)									
TPH-G (C7-C12)	800	100 U	100 U	100 U	100 U	100 U				

Notes

1. Data qualifiers are as follows:

U = The analyte was not detected at the reporting limit indicated.

UJ = The result is estimated and was not detected at the reporting limit indicated.

J = The value is an estimate.

2. **Bolded** values exceed the cleanup levels.

3. S = shallow well; D = deep well.

4. Current cleanup levels obtained from Table 2 of the Cleanup Action Plan and are based on each individual SWMU or AOC.

<u>Abbreviations</u>

 μ g/L = micrograms per liter

AOC = area of concern

CPOC = conditional point of compliance

SWMU = solid waste management unit

TPH-G = total petroleum hydrocarbons as gasoline

TABLE D-4: FORMER FUEL FARM HISTORICAL CONCENTRATIONS OF CONSTITUENTS OF CONCERN¹

Boeing Renton Facility, Renton, Washington

										Wel	II ID² CArea								
						GW211S									GW221S				
Analyte	Current Cleanup Level ³	5/11/2020	8/10/2020	2/15/2021	8/10/2021	2/21/2022	8/19/2022	2/9/2023	8/15/2023	2/8/2024	5/11/2020	8/10/2020	2/15/2021	8/10/2021	2/21/2022	8/19/2022	2/9/2023	8/15/2023	2/6/2024
Total Petroleum Hydrocarbo	ns (mg/L)																		
TPH-D (C12-C24)	0.5	0.282	0.192	0.284	0.140	1.00 U	0.100 U	0.100 U	0.100 U	0.100 U	1.58	7.67	1.22	1.02	0.575	0.940	1.75	0.258	3.57
TPH-O (C24-C38)	NE	NA	0.200 U	0.225 U	0.200 U	2.00 U	0.200 U	0.200 U	0.200 U	0.200 U	NA	0.200 U	0.215 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U
Jet A	0.5	0.267	0.155	0.262	0.100 U	1.00 U	0.100 U	0.100 U	0.100 U	0.100 U	1.09	5.70	0.89	0.718	0.460	0.562	1.20	0.229	2.65

						Well ID ² CPOC Area				
						GW224S				
Analyte	Current Cleanup Level ³	8/10/2020	2/15/2021	8/10/2021	2/21/2022	2/21/2022	8/19/2022	2/9/2023	8/15/2023	2/6/2024
Total Petroleum Hydrocarbon	ıs (mg/L)									
TPH-D (C12-C24)	0.5	1.08	0.584	1.08	0.682	1.01	0.881	1.15	0.526 J	0.764
TPH-O (C24-C38)	NE	0.200 U	0.200 U	0.200 U	0.324	0.200 U				
Jet A	0.5	1.42	1.04	1.47	1.04	1.76	1.25	1.61	0.913 J	1.27

Notes

1. **Bolded** values exceed the cleanup levels.

2. S = shallow well.

3. Current cleanup levels obtained from Table 2 of the Cleanup Action Plan and are based on each individual SWMU or AOC.

Abbreviations

AOC = area of concern

CPOC = conditional point of compliance

mg/L = milligrams per liter

NE = not established

SWMU = solid waste management unit

TPH-D = total petroleum hydrocarbons as diesel

TABLE D-5: AOC-003 HISTORICAL CONCENTRATIONS OF CONSTITUENTS OF CONCERN^{1, 2}

Boeing Renton Facility, Renton, Washington

										Well	ID ³								
						Source Area								Down	gradient Plume A	rea			
	Current Cleanup					GW249S									GW188S				
Analyte	Level ⁴	3/12/2020	8/10/2020	2/16/2021	8/12/2021	2/23/2022	8/24/2022	2/6/2023	8/22/2023	2/1/2024	3/12/2020	8/10/2020	2/16/2021	8/12/2021	2/22/2022	8/23/2022	2/6/2023	8/23/2023	2/2/2024
Volatile Organic Compounds	(μg/L)																		
cis-1,2-Dichloroethene	0.78	0.0604	NA	NA	NA	NA	NA	NA	0.0529	0.0576	0.0362	NA	NA	NA	NA	NA	NA	0.0408	0.0315
Tetrachloroethene	0.02	0.020 U	NA	NA	NA	NA	NA	NA	0.0200 U	0.0200 U	0.0244	NA	NA	NA	NA	NA	NA	0.0200 U	0.0200 U
Trichloroethene	0.16	0.020 U	NA	NA	NA	NA	NA	NA	0.0200 U	0.0200 U	0.020 U	NA	NA	NA	NA	NA	NA	0.0200 U	0.0200 U
Vinyl Chloride	0.24	0.334	0.261	0.366	0.517	0.359 J	0.404 J	0.217	0.263	0.214	0.235	0.288	0.107	0.698	0.141 J	0.404	0.104	0.197	0.207

										Well I									
	Current Cleanup					GW247S									GW248I				
Analyte	Level ⁴	5/13/2020	8/10/2020	2/16/2021	8/11/2021	2/23/2022	8/23/2022	2/6/2023	8/22/2023	2/2/2024	5/13/2020	8/10/2020	2/16/2021	8/11/2021	2/23/2022	8/23/2022	2/6/2023	8/22/2023	2/2/2024
Volatile Organic Compounds	(μg/L)		15/2020 0/10/2020 2/10/2021 0/11/2021 2/25/2022 0/25/2025 0/22/2025 2/2/2024 5/15/2020 2/10/2021 0/1																
cis-1,2-Dichloroethene	0.78	0.584	NA	NA	NA	NA	NA	NA	0.0200 U	0.0200 U	0.020 U	NA	NA	NA	NA	NA	NA	0.0219	0.0207
Tetrachloroethene	0.02	0.020 U	NA	NA	NA	NA	NA	NA	0.0200 U	0.0200 U	0.020 U	NA	NA	NA	NA	NA	NA	0.0200 U	0.0200 U
Trichloroethene	0.16	0.020 U	NA	NA	NA	NA	NA	NA	0.0200 U	0.0200 U	0.020 U	NA	NA	NA	NA	NA	NA	0.0200 U	0.0200 U
Vinyl Chloride	0.24	0.409	0.392	0.405	0.678	0.127 J	0.379	NA	0.715	0.467	0.546	0.383	0.426	0.711	0.598 J	0.742	0.588	0.482	0.383

	Current Cleanup	Source	l ID ³ e Area 193S
Analyte	Level⁴	2/6/2023	8/22/2023
Volatile Organic Compounds (μg/L)		
benzene			0.20 U
cis-1,2-Dichloroethene	0.78	NA	0.635
Tetrachloroethene	0.02	NA	NA
Trichloroethene	0.16	NA	0.139
Vinyl Chloride	0.24	0.334	0.541
1,1-Dichloroethene			0.020 U

<u>Notes</u>

1. Data qualifiers are as follows:

U = The analyte was not detected at the reporting limit indicated.

- 2. **Bolded** values exceed the cleanup levels.
- 3. S = shallow well; I = intermediate well.
- 4. Current cleanup levels obtained from Table 2 of the Cleanup Action Plan and are based on each individual SWMU or AOC.

Abbreviations

μg/L = micrograms per liter

AOC = area of concern

CPOC = conditional point of compliance

NA = not analyzed

TABLE D-6: AOC-004 HISTORICAL CONCENTRATIONS OF CONSTITUENTS OF CONCERN¹

Boeing Renton Facility, Renton, Washington

								Well ID ²					
		Current						Source Area					
		Cleanup						GW250S					
	Analyte	Level ³	3/5/2019	8/14/2019	3/9/2020	8/12/2020	2/16/2021	8/12/2021	2/22/2022	8/23/2022	2/7/2023	8/14/2023	2/6/2024
Metal	ls (mg/L)												
Lea	d	0.001	0.00154	0.000714	0.00119	0.000611	0.000564	0.000663	0.000588	0.00131	0.000820	0.0570 J	0.0001

<u>Notes</u>

- 1. Bolded values exceed the cleanup levels.
- 2. S = shallow well.
- 3. Current cleanup levels obtained from Table 2 of the Cleanup Action Plan and are based on each individual SWMU or AOC.

Abbreviations

AOC = area of concern

CPOC = conditional point of compliance

mg/L = milligrams per liter

TABLE D-7: AOC-060 HISTORICAL CONCENTRATIONS OF CONSTITUENTS OF CONCERN^{1, 2}

Boeing Renton Facility, Renton, Washington

										We	II ID ³								
	Current					Source Area								Down	gradient Plum	e Area			
	Cleanup					GW009S									GW012S				
Analyte	Levels ⁴	3/10/2020	8/11/2020	2/17/2021	8/11/2021	2/22/2022	8/19/2022	2/6/2023	8/18/2023	2/7/2024	3/10/2020	8/11/2020	2/17/2021	8/11/2021	2/22/2022	8/18/2022	2/6/2023	8/17/2023	2/7/2024
Volatile Organic Compounds	(μg/L)																		
cis -1,2-Dichloroethene	0.08	0.093	0.124	0.139	0.368	0.15	0.229	0.231	0.157	0.165	0.482	0.508	1.260	2.210	0.693	1.91 J	2.78	2.46	1.45
Trichloroethene	0.02	0.0242	0.0324	0.0294	0.0316	0.0284	0.0288	0.0409	0.0292	0.0336	0.0505	0.0518	0.0454	0.0908	0.0506	1.02 J	0.208	1.61	0.143
Vinyl Chloride	0.26	0.183	0.219	0.300	0.160	0.434	0.570	0.550	0.371	0.353	0.603	0.387	0.180	0.795	1.57	0.294 J	0.881	0.625	0.632

										We	II ID ³								
	Current									Downgradier	nt Plume Area								
	Cleanup					GW014S									GW147S				
Analyte	Levels ⁴	3/10/2020	8/11/2020	2/17/2021	8/11/2021	2/22/2022	8/18/2022	2/6/2023	8/17/2023	2/7/2024	3/10/2020	8/11/2020	2/17/2021	8/11/2021	2/22/2022	8/19/2022	2/6/2023	8/17/2023	2/7/2024
Volatile Organic Compounds ((μg/L)																		
cis -1,2-Dichloroethene	0.08	0.151	0.0932	0.130	0.147	0.133	0.134 J	0.137	0.179	0.207	0.287	0.931	0.180	0.180	0.679	8.37	0.766	4.46	0.442
Trichloroethene	0.02	0.0419	0.020 U	0.035	0.0227	0.020 U	0.0246 J	0.0200 U	0.0158 J	0.0247	1.20	3.37	0.498	0.498	0.425	0.937	0.376	2.76	0.0802
Vinyl Chloride	0.26	0.195	0.190	0.207	0.367	0.276	0.514 J	0.231	0.551	0.380	0.020 U	0.0643	0.020 U	0.020 U	0.0623	3.39	0.0215	0.928	0.0638

										We	II ID ³								
	Current									СРО	C Area								
	Cleanup					GW150S									GW253I				
Analyte	Levels⁴	3/10/2020	8/11/2020	2/17/2021	8/11/2021	2/22/2022	8/22/2022	2/6/2023	8/17/2023	2/7/2024	3/10/2020	8/11/2020	2/17/2021	8/11/2021	2/22/2022	8/22/2022	2/6/2023	8/17/2023	2/7/2024
Volatile Organic Compounds	(μg/L)																		
cis -1,2-Dichloroethene	0.08	0.0525	0.0935	0.0393	0.0991	0.0547	0.126	0.0849	0.0901	0.0509	0.0915	0.0879	0.140	0.106	0.0846	0.138	0.0991	0.0997	0.0929
Trichloroethene	0.02	0.02 U	0.0291	0.020 U	0.020 U	0.020 U	0.0212	0.0200 U	0.0115 J	0.0200 U	0.0212	0.0211	0.0272	0.0202	0.020 U	0.0205	0.0200 U	0.0147 J	0.0145 J
Vinyl Chloride	0.26	0.0541	0.0619	0.0455	0.122	0.0969	0.100	0.138	0.15	0.0608	0.184	0.100	0.243	0.146	0.177	0.255	0.156	0.17	0.133

Notes:

- 1. Data qualifiers are as follows:
- U = The analyte was not detected at the reporting limit indicated.
- J = The value is an estimate.
- 2. **Bolded** values exceed the cleanup levels.
- 3. S = shallow well; I = intermediate well.
- 4. Current cleanup levels obtained from Table 2 of the Cleanup Action Plan and are based on each individual SWMU or AOC.

Abbreviations:

μg/L = micrograms per liter

AOC = area of concern

CPOC = conditional point of compliance

TABLE D-8: AOC-090 HISTORICAL CONCENTRATIONS OF CONSTITUENTS OF CONCERN^{1, 2}

Boeing Renton Facility, Renton, Washington

		1																	
										Wel	l ID³								
	Current					Source Area								Down	gradient Plum	e Area			
	Cleanup					GW189S⁵									GW176S				
Analyte	Levels ⁴	8/12/2019	8/12/2020	2/17/2021	8/12/2021	2/23/2022	8/24/2022	2/7/2023	8/24/2023	2/8/2024	3/11/2020	8/12/2020	2/17/2021	8/17/2021	2/23/2022	8/23/2022	2/7/2023	8/24/2023	2/8/2024
Volatile Organic Compounds (µg/	L)																		
1,1,2,2-Tetrachloroethane	0.17	0.020 U	0.020 U	0.020 U	0.020 U	0.24 U	0.158	0.153	0.153	0.158	0.020 U	NM	NM	NM	NM	NM	NM	NA	NA
1,1,2-Trichloroethane	0.2	0.20 U	0.20 U	0.200 U	0.200 U	0.200 U	0.20 U	NM	NM	NM	NM	NM	NM	NA	NA				
1,1-Dichloroethene	0.057	0.020 U	0.0529	0.020 U	0.020 U	0.0200 U	0.0432	0.0200 U	0.0322	0.0200 U	0.020 U	NM	NM	NM	NM	NM	NM	NA	NA
Acetone	300	5.0 U	5.00 U	10.6 J	5.00 U	5.00 U	6.28	5.00 U	5.00 U	5.00 U	5.0 U	NM	NM	NM	NM	NM	NM	NA	NA
Benzene	0.8	0.49	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.200 U	0.200 U	0.200 U	0.20 U	NM	NM	NM	NM	NM	NM	NA	NA
Carbon Tetrachloride	0.23	0.20 U	0.20 U	0.200 U	0.200 U	0.200 U	0.20 U	NM	NM	NM	NM	NM	NM	NA	NA				
Chloroform	2	0.20 U	0.20 U	0.200 U	0.200 U	0.200 U	0.20 U	NM	NM	NM	NM	NM	NM	NA	NA				
cis-1,2-Dichloroethene	2.4	6.87	1.93	0.47	3.15	0.20 U	1.78	0.230	1.7	0.200 U	0.25	NM	NM	NM	NM	NM	NM	NA	NA
Methylene Chloride	2	1.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.0 U	NM	NM	NM	NM	NM	NM	NA	NA
Tetrachloroethene	0.05	0.020 U	0.020 U	0.0283	0.020 U	0.0200 U	0.0206	0.200 U	17.2 J	0.0200 U	0.020 U	NM	NM	NM	NM	NM	NM	NA	NA
Toluene	75	3.11	1.05	5.21	2.42	0.47 J	43.7	0.690 J	0.200 U	0.200 U	0.20 U	NM	NM	NM	NM	NM	NM	NA	NA
trans-1,2-Dichloroethene	53.9	0.39	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.200 U	0.0200 U	0.200 U	0.20 U	NM	NM	NM	NM	NM	NM	NA	NA
Trichloroethene	0.08	0.414	0.324	0.143	0.386	0.0505 UJ	0.43	0.0593	0.511	0.0200 U	0.020 U	NM	NM	NM	NM	NM	NM	NA	NA
Vinyl Chloride	0.13	1.20	0.369	0.0405	0.575	0.0867 J	0.460	0.0230	0.438	0.0200 U	0.207	0.232	0.138	0.431	0.311 J	0.364	0.349	0.314	0.21
Total Petroleum Hydrocarbons (μ	g/L)																		
TPH-G (C7-C12)	800	943	699	507	504	370 J	555	246	288	100 U	100 U	NM	NM	NM	NM	NM	NM	NA	NA
TPH-D (C12-C24)	500	432	150	2160	390	192 J	521	648 J	100.0 U	100 U	100 U	NM	NM	NM	NM	NM	NM	NA	NA
TPH-O (C24-C40)	500	853	379	3990	689	263 J	586	1,120	211	200 U	200 U	NM	NM	NM	NM	NM	NM	NA	NA

														a	Well ID ³													
	Current					GW178S								Shalle GW2	ow Zone CPO	C Area			T				GW	2088				
Analyte	Levels ⁴	8/12/2019	8/12/2020	2/17/2021	8/12/2021		8/24/2022	2/7/2023	8/24/2023	2/8/2024	8/12/2020	2/17/2021	8/12/2021			2/7/2023	8/24/2023	2/8/2024	8/12/2019	3/11/2020	8/12/2020	2/17/2021			8/24/2022	2/7/2023	8/24/2023	2/8/2024
olatile Organic Compounds (µ	g/L)	0, 11, 1015	0, 11, 1010		0/11/1011		0/1 // 011	_,,,	3/2 1/2020		0,12,2020	2,23,2022	0,11,1011	_,,	0, 20, 2022		0,2.,2020	2,0,202	0, 12, 2013	0, 11, 1010	0, 11, 1010	_,_,,_	0, 11, 1011		3,2 ., 2022		<i>5,2.,2525</i>	_,0,_0,
1,1,2,2-Tetrachloroethane	0.17	0.020 U	NM	NM	NM	NM	NM	NM	NA	NA	NM	NM	NM	NM	NM	NM	NA	NA	0.020 U	0.020 U	NM	NM	NM	NM	NM	NM	NA	NA
1,1,2-Trichloroethane	0.2	0.20 U	NM	NM	NM	NM	NM	NM	NA	NA	NM	NM	NM	NM	NM	NM	NA	NA	0.20 U	0.20 U	NM	NM	NM	NM	NM	NM	NA	NA
1,1-Dichloroethene	0.057	0.020 U	NM	NM	NM	NM	NM	NM	NA	NA	NM	NM	NM	NM	NM	NM	NA	NA	0.020 U	0.020 U	NM	NM	NM	NM	NM	NM	NA	NA
Acetone	300	5.0 U	NM	NM	NM	NM	NM	NM	NA	NA	NM	NM	NM	NM	NM	NM	NA	NA	5.0 U	5.0 U	NM	NM	NM	NM	NM	NM	NA	NA
Benzene	0.8	0.20 U	NM	NM	NM	NM	NM	NM	NA	NA	NM	NM	NM	NM	NM	NM	NA	NA	0.20 U	0.20 U	NM	NM	NM	NM	NM	NM	NA	NA
Carbon Tetrachloride	0.23	0.20 U	NM	NM	NM	NM	NM	NM	NA	NA	NM	NM	NM	NM	NM	NM	NA	NA	0.20 U	0.20 U	NM	NM	NM	NM	NM	NM	NA	NA
Chloroform	2	0.20 U	NM	NM	NM	NM	NM	NM	NA	NA	NM	NM	NM	NM	NM	NM	NA	NA	0.20 U	0.20 U	NM	NM	NM	NM	NM	NM	NA	NA
cis-1,2-Dichloroethene	2.4	0.20 U	NM	NM	NM	NM	NM	NM	NA	NA	NM	NM	NM	NM	NM	NM	NA	NA	0.20 U	0.20 U	NM	NM	NM	NM	NM	NM	NA	NA
Methylene Chloride	2	1.00 U	NM	NM	NM	NM	NM	NM	NA	NA	NM	NM	NM	NM	NM	NM	NA	NA	1.0 U	1.0 U	NM	NM	NM	NM	NM	NM	NA	NA
Tetrachloroethene	0.05	0.020 U	NM	NM	NM	NM	NM	NM	NA	NA	NM	NM	NM	NM	NM	NM	NA	NA	0.020 U	0.020 U	NM	NM	NM	NM	NM	NM	NA	NA
Toluene	75	0.20 U	NM	NM	NM	NM	NM	NM	NA	NA	NM	NM	NM	NM	NM	NM	NA	NA	0.20 U	0.20 U	NM	NM	NM	NM	NM	NM	NA	NA
trans-1,2-Dichloroethene	53.9	0.20 U	NM	NM	NM	NM	NM	NM	NA	NA	NM	NM	NM	NM	NM	NM	NA	NA	0.20 U	0.20 U	NM	NM	NM	NM	NM	NM	NA	NA
Trichloroethene	0.08	0.020 U	NM	NM	NM	NM	NM	NM	NA	NA	NM	NM	NM	NM	NM	NM	NA	NA	0.0293	0.020 U	NM	NM	NM	NM	NM	NM	NA	NA
Vinyl Chloride	0.13	0.3840	0.141	0.224	0.182	0.361 J	0.390	0.531	0.343	0.27	0.377	0.066	0.232	0.356 J	0.326	0.0200 U	0.293	0.111	0.245	0.419	0.343	0.349	0.313	0.404 J	0.400	0.419	0.242	0.298
otal Petroleum Hydrocarbons	(μg/L)																											
TPH-G (C7-C12)	800	100 U	NM	NM	NM	NM	NM	NM	NA	NA	NM	NM	NM	NM	NM	NM	NA	NA	100 U	100 U	NM	NM	NM	NM	NM	NM	NA	NA
TPH-D (C12-C24)	500	100 U	NM	NM	NM	NM	NM	NM	NA	NA	NM	NM	NM	NM	NM	NM	NA	NA	100 U	100 U	NM	NM	NM	NM	NM	NM	NA	NA
TPH-O (C24-C40)	500	200 U	NM	NM	NM	NM	NM	NM	NA	NA	NM	NM	NM	NM	NM	NM	NA	NA	200 U	200 U	NM	NM	NM	NM	NM	NM	NA	NA

Notes:

Data qualifiers are as follows:

U = The analyte was not detected at the reporting limit indicated.

J = The value is an estimate.

UJ = The analyte was not detected at the estimated reporting limit indicated.

2. **Bolded** values exceed the cleanup levels.

3. S = shallow well.

4. Current cleanup levels obtained from Table 2 of the Cleanup Action Plan and are based on each individual SWMU or AOC.

5. GW189S is the replacement well for GW168S.

Abbreviations:

μg/L = micrograms per liter

AOC = area of concern

CPOC = conditional point of compliance

NM = Analyte not measured

SWMU = solid waste management unit TPH-D = total petroleum hydrocarbons as diesel

TPH-G = total petroleum hydrocarbons as gasoline

TPH-O = total petroleum hydrocarbons as oil

TABLE D-9: APRON A HISTORICAL CONCENTRATIONS OF CONSTITUENTS OF CONCERN1

Boeing Renton Facility, Renton, Washington

					Well ID ² GW264S				
Analyte	5/12/2020	8/10/2020	2/15/2021	8/10/2021	2/21/2022	8/24/2022	2/8/2023	8/14/2023	2/7/2024
Volatile Organic Compounds	(μg/L)								
cis-1,2-Dichloroethene	0.20 U	0.52	0.20 U	0.20 U	0.200 U	0.200 U	2.00 U	2.00 U	0.200 U
Vinyl Chloride	1.48	0.20 U	1.49	1.37	2.54	1.41	2.00 U	2.00 U	0.810

Notes:

1. Data qualifiers are as follows:

U = The analyte was not detected at the reporting limit indicated.

2. S = shallow well

Abbreviations:

μg/L = micrograms per liter

TABLE D-10: AOC-001,-002 HISTORICAL CONCENTRATIONS OF CONSTITUENTS OF CONCERN^{1, 2}

Boeing Renton Facility, Renton, Washington

			Wel	I ID ³	
		AOC-001 / AOC- 002 Source Area	AOC-001 / A	OC-002 Cross-Gr	adient Wells
	Current Cleanup	GW193S-R	GW213S-R	GW214S-R	GW215S-R
Analyte	Level⁴	2/1/2024	2/1/2024	2/1/2024	2/1/2024
Volatile Organic Compounds (μg/L)				
Benzene	0.80	0.200 U	0.200 U	0.200 U	0.200 U
1,1-Dichloroethene	0.057	0.0200 U	0.0200 U	0.0200 U	0.0200 U
cis-1,2-Dichloroethene	0.020	0.135	0.0932	0.0347	0.0368
Trichloroethene	0.02	0.0291	0.0200 U	0.0200 U	0.0200 U
Vinyl Chloride	0.05	0.1300	0.123	0.0200 U	0.0200 U

		Well ID ³			
		CPOC Area			
		AOC-001 / AOC-002 Downgradient Plume Wells			
	Current Cleanup	GW190S-R	GW191D-R	GW192S-R	GW246S-R
Analyte	Level⁴	2/1/2024	2/2/2024	2/1/2024	1/31/2024
Volatile Organic Compounds (μg/L)					
Benzene	0.80	0.200 U	0.200 U	0.200 U	0.200 U
1,1-Dichloroethene	0.057	0.0200 U	0.0200 U	0.0200 U	0.0200 U
cis-1,2-Dichloroethene	0.020	0.0924	0.0254	0.326	0.167
Trichloroethene	0.02	0.0200 U	0.0200 U	0.0231	0.0200 U
Vinyl Chloride	0.05	0.0506	0.0627	0.166	NA

		Well ID ³				
		AOC-001 / AOC-002 CPOC Wells				
	Current Cleanup	GW185S-R	GW195S-R	GW196D-R	GW197S-R	GW245S-R
Analyte	Level⁴	1/31/2024	1/31/2024	1/31/2024	1/31/2024	1/31/2024
Volatile Organic Compounds (μg/L)						
Benzene	0.80	0.200 U	0.200 U	0.200 U	0.32	0.35
1,1-Dichloroethene	0.057	0.0200 U	0.0200 U	0.0200 U	0.15	0.0200 U
cis-1,2-Dichloroethene	0.020	0.112	0.0899	0.0282	41.6	0.135
Trichloroethene	0.02	0.0200 U	0.0200 U	0.0200 U	0.58	0.0235
Vinyl Chloride	0.05	0.0823	NA	NA	NA	NA

Notes

- 1. Data qualifiers are as follows:
 - $\mbox{\bf U}$ = The analyte was not detected at the reporting limit indicated.
- 2. **Bolded** values exceed the cleanup levels.
- 3. S = shallow well; I = intermediate well.
- 4. Current cleanup levels obtained from Table 2 of the Cleanup Action Plan and are based on each individual SWMU or AOC.

<u>Abbreviations</u>

μg/L = micrograms per liter

AOC = area of concern

CPOC = conditional point of compliance

NA = not analyzed

APPENDIX E

SUMMARY OF REMEDIAL ACTIONS AT THE BOEING RENTON FACILITY MAY 2023 – OCTOBER 2023

APPENDIX E

Summary of Remedial Actions at the Boeing Renton Facility November 2023 – April 2024

Boeing Renton Site Renton, Washington

Prepared for:
The Boeing Company
EHS Remediation

Prepared by: CALIBRE Systems, Inc. Project No. T0014538

May 31, 2024

Table of Contents

1.0	Introdu	ction	1
1.1	Faci	lity Location and Background	2
1.2	Obje	ectives and Organization	2
2.0	New W	ell Installation at AOC-060 and AOC-090	2
2.1	Plan	ning, Preparatory and Drilling Activities	3
3.0 AOC-00	•	g Groundwater Treatment (Building 4-78/79, SWMU-172-174, AOC-060, AOC-090, and	4
4.0	Conclusions and Recommendations5		5
5.0	References5		5
Attach	ment A	Information From Well Installation at AOC-060 and AOC-090 (Driller Logs and Boring Logs)	
Attach	ment B	Groundwater Sampling Field Data Sheets	
Attach	ment C	Laboratory Data Packages	

List of Tables

Table 2-1	Well Construction Details
Table 2-2	Detections from Baseline Sampling in New IWs at AOC-060 and AOC-090
Table 3-1	Evaluation of Groundwater Monitoring Results Summary from February 2024 and
	Recommended ERD Treatment
Table 3-2	April 2024 Injection Summary at Renton AOCs

List of Figures

Figure 1-1	Renton SWMU and AOC Locations
Figure 2-1	AOC-060 SWMU/AOC Group New Bioremediation Wells
Figure 2-2	AOC-090 New Bioremediation Wells
Figure 2-3	Representative Well Construction Diagram

Acronyms

Building 4-78/79 Building 4-78/4-79 SWMU/AOC Group

cis-1,2-DCE cis-1,2-Dichloroethene EDR Engineering Design Report

ERD Enhanced Reductive Dechlorination

SVE Soil Vapor Extraction

SWMU Solid Waste Management Unit

TCE Trichloroethene

Tech Memo Technical Memorandum UNC Utility Notification Center

VC vinyl chloride

VOCs Volatile Organic Compounds

1.0 Introduction

CALIBRE Systems, Inc. (CALIBRE) prepared this Technical Memorandum (Tech Memo) for the Boeing Company to summarize remedial actions implemented at the Boeing Renton Facility between November 1, 2023 and April 30, 2024. Remedial actions completed in this period include:

- 1. Installation of supplemental injection wells at Area of Concern (AOC)-060 and AOC-090, and;
- 2. Biological treatment to promote Enhanced Reductive Dechlorination (ERD) of volatile organic compounds (VOCs) in groundwater underway at several AOCs located throughout the Renton Facility.

New site characterization work was completed in the Apron R area following an approved work plan (CALIBRE, 2024). The analytical results from the Apron R sampling were not yet available at the time of this report preparation and will be reported in a subsequent Tech Memo.

CALIBRE completed the work described in this Tech Memo to support remedial activities described in the Engineering Design Report (EDR), (AMEC, 2014). The additional injection wells at AOC-060 and AOC-090 were installed based on data evaluation and recommendations in the recent Biannual Groundwater Monitoring Report (WSP, 2023) for the Renton Facility.

Prior remedial actions at the Site have included soil vapor extraction (SVE) operation at two AOCs/solid waste management units (SWMUs) as part of the Cleanup Action Plan for the Site (AMEC, 2012). SVE systems were installed at the Building 4-78/79 and SWMU-172/174 areas and began operation in April 2015. During the last quarter of 2017, monitoring results from the Building 4-78/79 SVE system indicated that VOC concentrations had attained asymptotically low levels. A rebound test was conducted in early 2018 followed by collection of soil confirmation samples in June 2018. Ecology approved the recommended shutdown and decommissioning of the Building 4-78/79 SVE system (Ecology, 2018) after review and evaluation of the soil confirmation results for that area (CALIBRE, 2018).

During the May 2021 to October 2021 operating period, monitoring results measured from the SWMU-172/174 SVE system indicated that VOC concentrations had attained asymptotically low levels. A rebound test for the system was conducted during December 2021 to January 2022. The rebound results showed marginal increases in PCE concentrations and a slight increase in mass removal after a 35-day rest period; mass removal was approximately 0.003 lbs/day prior to the rebound start and 0.005 lbs/day after the rest period. The slight increase in PCE mass removal was diminished back to prior asymptote levels after 16 days of operation. SVE system shutdown was recommended as the system continued to show asymptotic low level vapor concentrations following rebound testing. Ecology provided approval for the SWMU-172/174 system shutdown in October 2022 (Ecology, 2022). All of the SVE system equipment and infrastructure has been retained pending future discussions with Ecology regarding permanent discontinuation and removal.

1.1 Facility Location and Background

The Renton Facility is used for assembly of 737 airplanes and is located at the southern end of Lake Washington in Renton, Washington. The location of the Renton Facility and the AOCs and SWMUs associated with the Site are presented in Figure 1-1.

1.2 Objectives and Organization

The objective for this Tech Memo is to summarize work completed in accordance with the EDR during the reporting period stated above. This includes a summary of the ongoing biological treatment based on recent groundwater monitoring at the following areas:

```
SWMU-172/174
Building 4-78/4-79 SWMU/AOC Group (Building 4-78/79)
AOC-001/002
AOC-003
AOC-060
AOC-090
```

Additional work completed during the period included installation of two new injection wells at AOC-060 and two new injection wells at AOC-090 in March 2024.

This Tech Memo is organized as follows:

Section 1 – Introduction and Background

Section 2 – Well Installation at AOC-060 and AOC-090

Section 3 – Groundwater Treatment

Section 4 – Conclusions and Recommendations

Section 5 – References

Attachment A Information From Well Installation at AOC-060 and AOC-090 (Driller Logs and Boring Logs)

Attachment B Groundwater Sampling Field Data Sheets

Attachment C Laboratory Data Packages

2.0 New Well Installation at AOC-060 and AOC-090

This section describes the installation of supplemental injection wells at AOC-060 and AOC-090. The wells were installed to support remedial optimization based on recent monitoring evaluation of ERD performance (WSP, 2023). A site map showing individual AOCs is included in Figure 1-1. The well installation work is part of the remedial actions at AOC-060 and AOC-090 and was implemented to promote better substrate distribution upgradient of conditional point of compliance (CPOC) wells in these areas.

At AOC-060, the new injection wells were installed to address continuing low-level VOCs present at CPOC wells GW-150S and GW-253I. These wells continue to exceed the cleanup levels (CULs) for cis-1,2-dichloroethene (cis-1,2-DCE) and trichloroethene (TCE). At AOC-090, the new injection wells were installed

to address VOCs present at compliance wells GW-178S and GW-208S; these 2 wells continue to show vinyl chloride (VC) exceeding the CUL.

The areas for well installation are located downgradient from source areas and recent groundwater monitoring samples collected in August 2023 show all concentrations in nearby CPOC wells are below MCLs (WSP, 2023).

Two new injection wells (B060-01 and B060-02) were installed in the AOC-060 area, located inside the Renton factory area near the western edge of the property (Figure 2-1). In the AOC-090 area, the two new injection wells, B090-01 and B090-02, are located outside the factory area on the western edge of a private Boeing access road, located immediately south of the intersection between North 6th Street and Nishiwaki Lane (Figure 2-2).

2.1 Planning, Preparatory and Drilling Activities

Underground utility clearance (gas, water, sewer, power, communication lines, and other utilities) was completed prior to the drilling work. The first step was to mark the planned work areas. The Utility Notification Center (UNC) was then notified more than 48 hours prior to initiation of intrusive work so that utilities, if any, could be identified and marked. In addition, prior to drilling, a private utility locating service was used to identify buried utilities in the area. Current utility maps for the area were provided to the private utility locating service. Using a combination of electric resistivity and ground penetrating radar, any utilities present in the area were located and marked on the surface.

Cascade Drilling Services was subcontracted to install four wells, two in each AOC. All four wells were installed beginning on March 21, 2024 (the last well was completed early in the morning of March 22). Cascade's well registration and other records are included in Attachment A.

The soil cores were logged by a CALIBRE field geologist using the Unified Soil Classification System (USCS). The soil cores were field tested using a calibrated photoionization detector to field screen the soil cores over the extent of the depth drilled. CPOC wells are below MCLs (WSP, 2023) therefore no soil characterization samples were collected while drilling. Due to time constraints working at night, and the close proximity to B060-02, B060-01 was advanced without collecting soil cores. Soil boring logs are included in Attachment A.

The wells were constructed with 2-inch diameter, schedule 40, flush threaded PVC well casing with 0.020 inch pre-packed well screens. Each well was constructed with blank casing, slotted well screens, end caps, sand, bentonite, and cement/grout delivered to the Site in their original packaging. Post installation, a locking well cap (J-plug) was installed to seal each well, and a traffic rated flush-mount monument was installed as the surface completion. A representative well construction diagram is included in Figure 2-3 and well construction details for the four wells are shown in Table 2-1. After well completion, each well was developed by performing surge and pump cycles until the water was substantially clear. Well development included surging over the length of the screened interval.

These new wells are planned as injection wells and are not part of the Compliance Monitoring Plan. Baseline groundwater samples were collected from each well before the first substrate injection event, see Table 2-2. Sampling used a low-flow peristaltic pump and the samples were collected in laboratory-supplied pre-preserved 40 milliliter vials. The vials were filled to avoid air bubbles and placed on ice in a cooler. The samples were labeled and managed following chain-of-custody procedures and submitted to Analytical Resources, LLC, a Washington state accredited laboratory. The samples were analyzed for VOC using EPA Method 8260D. The field sample data sheets for these baseline samples are included in Attachment B.

The laboratory detections for VOCs from these baseline samples are shown in Table 2-2 and the complete analytical report is included in Attachment C. The sampling identified low-level detections of cis-1,2-DCE, VC, carbon disulfide, and acetone. Acetone is a common by-product of fermentation from the ERD process and is readily biodegraded. The baseline data from the AOC-060 and AOC-090 new injection wells show similar concentrations of cis-1,2-DCE and VC, where detected, compared to the downgradient CPOC wells for each area (all detections of new injection wells and CPOC wells are below 0.50 ug/L). New well B090-01 was non-detect for cis-1,2-DCE and VC.

3.0 Ongoing Groundwater Treatment (Building 4-78/79, SWMU-172-174, AOC-060, AOC-090, and AOC-001/002)

Targeted groundwater treatment (ERD) is being implemented for VOCs at the AOCs/SWMUs listed above. The ERD treatment involves substrate injection using sucrose/fructose as a carbon source to stimulate biological degradation of the chlorinated solvents. The need for continued treatment is evaluated on a semi-annual basis following review of the prior groundwater sampling results, in this case after the February 2024 sampling event. Site-wide groundwater sampling was conducted as part of the biannual monitoring program during this reporting period and the results are discussed in the main text of the summary report. Table 3-1 presents a high-level summary of those groundwater monitoring results by area and ERD treatment recommendations. Table 3-2 presents the list of injection wells by area including substrate volume and mass injected.

The two new injection wells installed at AOC-060 and the two at AOC-090, had sufficient recharge capacity to complete the planned injection volumes. This substrate injection event is the first time the replacement wells in the AOC-001/002 area were used (all prior wells at AOC-001/002 were closed several years ago with construction in the area). Two of the replacement wells in the AOC-001/002 area had a limited recharge capacity (GW-213SR and GW-214SR) and consideration should be given for added redevelopment of these two wells in the future.

The next groundwater monitoring event is planned for August 2024 and those future sampling results will be used to evaluate groundwater conditions and recommendations for continued ERD implementation as necessary.

4.0 Conclusions and Recommendations

Supplemental injection wells were installed at AOC-060 and AOC-090 with the objective to expand the footprint of substrate distribution for continued ERD treatment in these two areas.

Additional substrate injections were completed for the SWMU-172/174, Building 4-78/79, AOC-060, AOC-090, and AOC-001/002 areas in April 2024. Recommendations for potential, continued groundwater treatment will be presented in the next semi-annual groundwater monitoring report.

5.0 References

AMEC Environment & Infrastructure, Inc. (AMEC), 2012, Draft Cleanup Action Plan, Boeing Renton Facility, Renton, Washington, Prepared for The Boeing Company. September 2012.

AMEC, 2014. Draft Engineering Design Report Boeing Renton Cleanup Action Plan Implementation. Prepared by AMEC Environment & Infrastructure, Inc. for The Boeing Company. July 2014.

CALIBRE, 2018. Recommendation to shut down SVE system at Building 4-78/4-79 SWMU/AOC Group; Boeing Renton Site. Prepared by CALIBRE Systems, Inc. for The Boeing Company, EHS Remediation. October 2018.

CALIBRE, 2024. Work Plan for Investigation of Apron R Area, Rev 3. Boeing Renton Facility Renton, Washington. February 27, 2024.

Ecology, 2018. Correspondence from Byung Maeng (Ecology) to Carl Bach (Boeing) approving the shutdown of the SVE System at the 4-78/79 Area. November 1, 2018.

Ecology, 2022. Correspondence from Val Cramer (Ecology) to Nick Garson (Boeing) approving the shutdown of the SWMU-172/174.SVE System. September 20, 2022.

WSP, 2023. Groundwater Monitoring Report – Dry Season 2023. RCRA Corrective Action Program Boeing Renton Facility. Prepared by WSP and CALIBRE Systems, Inc. for the Boeing Company, EHS. November 2023.

TABLES

Table 2-1 Well Construction Details

	Start Card			Total Depth	Screen	Screen
Area	Number	Drilling Date	Well Name	(ft)	Length (ft)	Interval (ft)
B060	BPR909	3/21/2024	B060-02	25	15	10 to 25
B060	BPR910	3/21/2024	B060-01	25	20	5 to 25
B090	BPR911	3/21/2024	B090-02	20	15	5 to 20
B090	BPR912	3/21/2024	B090-01	20	15	5 to 20

Note

ft = feet

Table 2-2 Detections from Baseline Sampling in New IWs at AOC-060 and AOC-090

Sample Location	Date	cis-1,2-DCE	VC	Acetone	Carbon Disulfide
B-060-01	3/27/2024	0.11J	0.09J	1.92J	<0.06
B-060-02	3/27/2024	0.15J	0.29	<1.91	<0.06
B-090-01	3/27/2024	<0.08	<0.08	<1.91	0.08J
B-090-02	3/27/2024	0.09J	0.18J	<1.91	0.11J
DUP01	3/27/2024	0.09J	0.17J	6.61	0.10J
Trip Blank	3/27/2024	<0.08	<0.08	<1.91	<0.06

Notes

all results in micrograms per liter ($\mu g/L$)

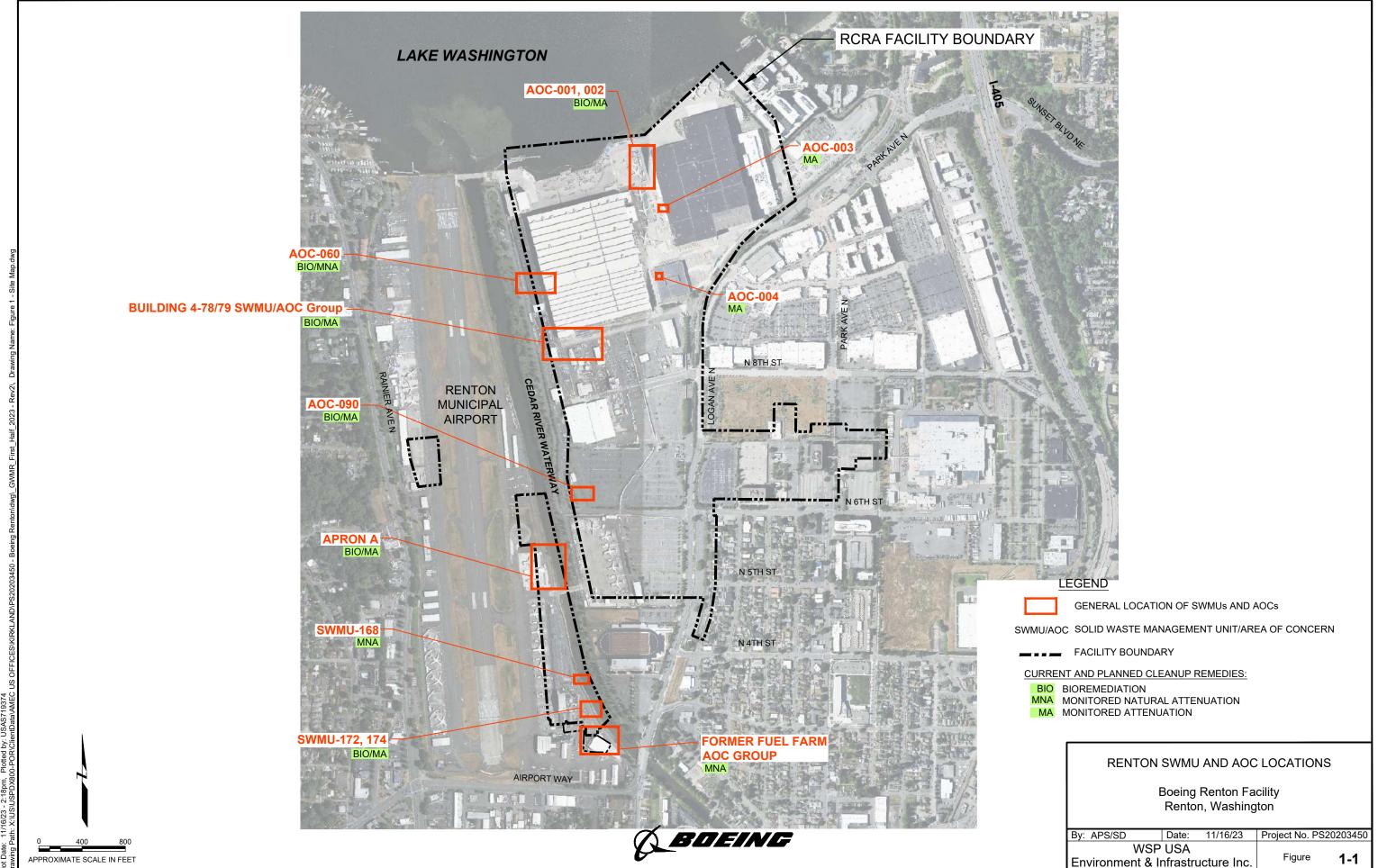
cis-1,2-DCE = cis-1,2-dichloroethene

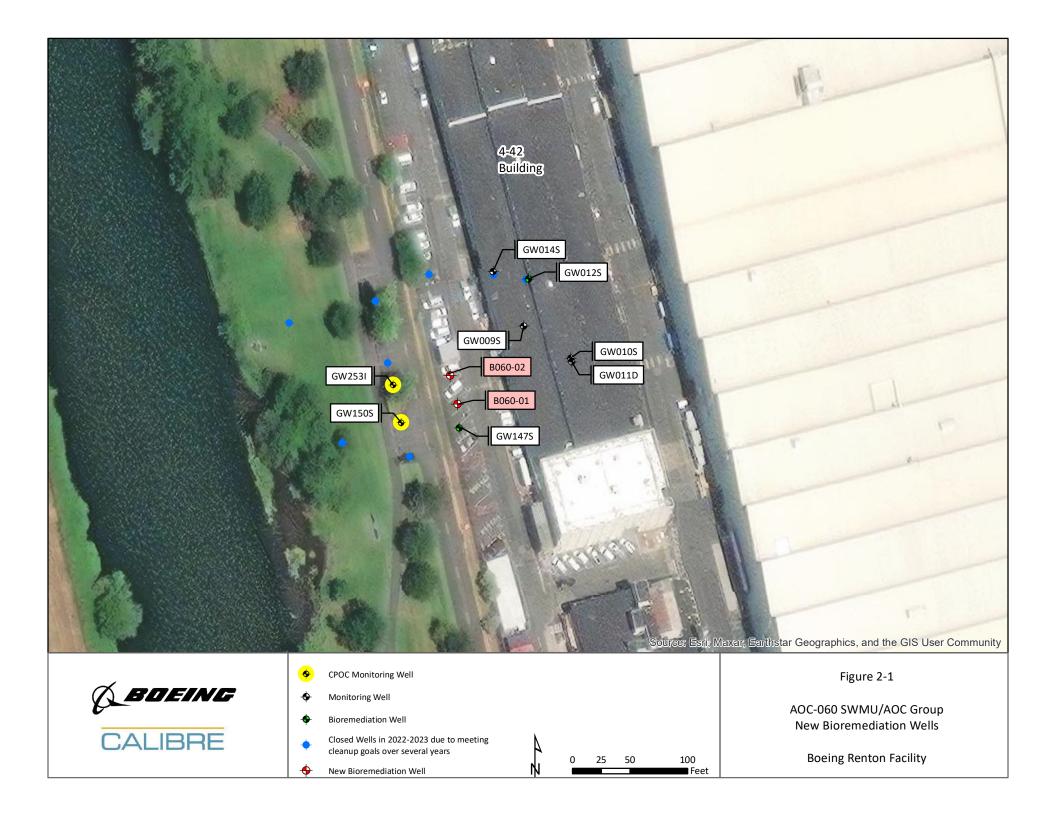
VC = vinyl chloride

J = concentration is estimated

Table 3-1 Evaluation of Groundwater Monitoring Results Summary from February 2024 and Recommended ERD Treatment

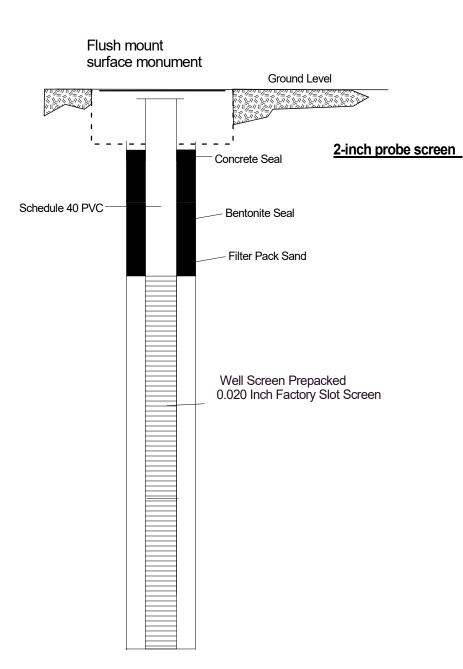
GW Treatment Area	Source and down gradient MWs	CPOC wells	Treatment IWs	ERD Treatment Recommendation
SWMU-172/174	PCE and TCE below 0.30 ug/L, cis-1,2-DCE below 4.6 ug/L and VC below 1.0 ug/L.	All detections are at or below 0.23 ug/L (PCE, TCE, cis-1,2-DCE, and VC detected).	Prior data Feb 2022; North IW B172- 01 is ND for CVOCs, South IW B172- 08 near GW-152S show PCE at 1.6 ug/L and cisDCE at 0.3 ug/L. TOC near background.	Completed substrate injections in April 2024. Evaluate August 2024 results for ERD recommendation.
Building 4-78/4-79 SWMU/AOC Group	TCE is nondetect, cisDCE is under 0.5 ug/L; VC under 1.0 ug/L. Benzene at 6.5 ug/L in GW033S; benzene less than 0.20 ug/L in benzene treatment area.	TCE is nondetect. cisDCE and VC are below 0.30 ug/L. Benzene at 6.5 ug/L in GW237S.	Prior data April 2023; B78-11 showed TCE at 52 ug/L and downgradient B78-16 showed TCE at 2.1 ug/L, cisDCE 34 ug/L, and VC at 71 ug/L. This well and nearby others were injected with sucrose May 2023 and again in April 2024.	Completed substrate injections in April 2024. Evaluate August 2024 results for ERD recommendation.
AOC-001/002	All wells with detections less than 0.35 ug/L, primarily cis- 1,2DCE and VC.	GW-197SR with cis-1,2-DCE at 41.6 ug/L and VC at 27.0 ug/L. All other wells with detections less than 0.60 ug/L.	Prior data Mar 2018, detections at or below 0.30 ug/L (cis-1,2-DCE, VC and benzene detected).	Completed substrate injections in April 2024. Evaluate August 2024 results for ERD recommendation.
AOC-003	PCE and TCE nondetect, cisDCE less than 0.06 ug/L, VC below 0.22 ug/L.	PCE and TCE nondetect, cisDCE at 0.02 ug/L, VC less than 0.50 ug/L.	Prior data Feb 2022; B003-01 showed VC at <0.2 ug/L and TOC near background	Evaluate August 2024 results for ERD recommendation.
AOC-60	Results are primarily cis-1,2DCE and VC. Treatment MWs with total CVOCs less than 2.5 ug/L, other MWs with total CVOCs less than 0.70 ug/L.	MW's with total CVOCs less than 0.23 ug/L, primarily as cis-1,2DCE and VC.	Two new treatment IWs with cis-1,2-DCE and VC detections less than 0.50 ug/L. Substrate injections completed after sampling.	CPOC wells GW150S and GW253I continue to show low detections of cis-1,2-DCE (~0.1 ug/L, versus CUL = 0.08 ug/L) therefore implemented ERD optimization to drive CVOCs lower before Site goes to MNA. Installed two injection wells upgradient of these CPOC wells in March 2024 and treated in April 2024. Evaluate August 2024 results for ERD recommendation.
AOC – 90	Source with total CVOCs of 0.16 ug/L; down gradient well with VC at 0.21 ug/L.	VC less than 0.30 ug/L.	DCE and VC detections either nondetect or less than 0.50 ug/L.	CPOC wells GW1785 and GW2085 continue to show low detections of VC (~0.5 ug/L, versus CUL = 0.13 ug/L) therefore implemented ERD optimization to drive CVOCs lower before Site goes to MNA. Installed two injection wells upgradient of these CPOC wells in March 2024 and treated in April 2024. Evaluate August 2024 results for ERD recommendation.
Apron A	cis-1,2DCE is nondetect and VC at 0.81 ug/L.	-	-	No action at this time.
SWMU-168	-	VC at 0.09 ug/L.	-	No action at this time.


Table 3-2 - April 2024 Injection Summary at Renton AOCs


Area	Injection Well	Volume of Solution (gallons)	Brix (°Bx)	Pounds Substrate in the Solution (lbs)
SWMU-172/174	B172-05	457	10.6	402
	B172-06	650	10.6	572
	B172-07	650	10.6	572
	B172-08	500	10.6	440
	B172-09	526	10.6	463
	B172-13	1029	10.6	906
	B172-14	1017	10.6	896
Building 4-78/79	B78-12	950	8.8	697
	B78-14	955	8.8	701
	B78-15	953	8.8	699
	B78-16	976	8.8	716
AOC-060	GW147S	1051	12.2	1068
	B060-01	1047	12.2	1064
	B060-02	1033	12.2	1050
AOC-090	B090-01	496	11.2	461
	B090-02	491	11.2	457
AOC-001/002	IPR-1	906	13.3	1008
	IPR-2	863	13.3	960
	GW-213SR	290	13.6	329
	GW-214SR	56	13.6	64
	GW-215SR	450	13.6	511
	Total (gal)	15,346	Total (lbs)	14,038


Notes:

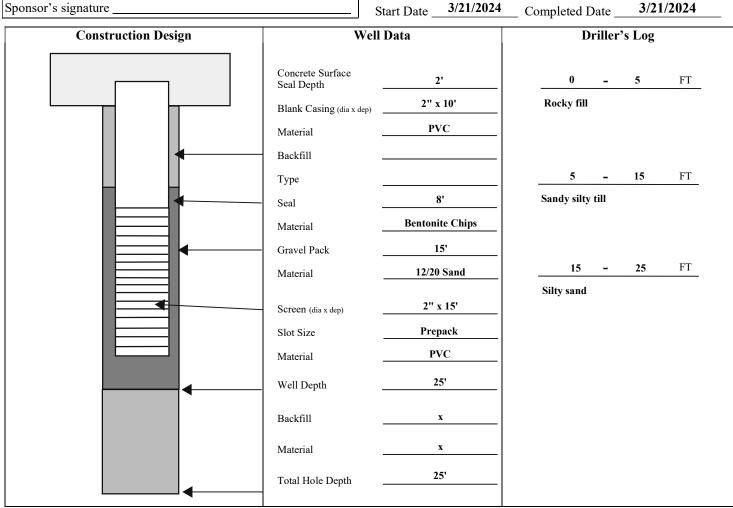
[°]Bx (degrees brix) is a measure of the sugar content in an aqueous solution. One degree Brix is 1 gram of sucrose in 100 grams of solution and represents the strength of the solution as percantage by mass.


FIGURES

New Bioremediation Well

Direct Push Injection Well Dimensions vary by well

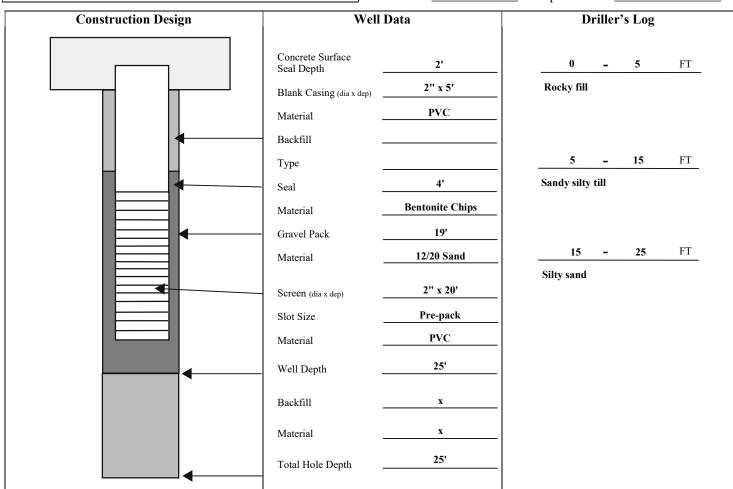
CALIBRE Calibre Systems 16935 SE 39th St Bellevue, WA 98008					
REVISION NO.: DATE: 3/29/24				ACAD FILE: Well Construction.skf	
Figure 2-3. Representative Well Construction Diagram					
DES'D:	CLIENT:	Boeing		PROJECT NO.:	
	LOCATION:			AOC-060	
CHK'D:		Boeing Rento	n		


Attachment A: Information From Well Installation at AOC-060 and AOC-090 (Driller Logs and Boring Logs)

Resource F	Protection	Well	Report
------------	------------	------	--------

Submit one well report per well installed. See page two for instructions.				
Type of Work:				
Construction				
☐ Decommission ➡ Original NOI No.				
Ecology Well ID Tag No. BPR 909				
Site Well Name				
Site Well Name Consulting Firm Calibre Systems				
Was a variance approved for this well/boring? ☐ Yes ■ No				
If yes, what was the variance for?				
WELL CONSTRUCTION CERTIFICATION: I constructed and/or accept responsibility for construction of this well, and its compliance with all Washington well construction standards. Materials used and the information reported are true to my best knowledge and belief.				
■ Driller □ Trainee □ Engineer				
Name (Print Last, First Name) Josh Doty				
Driller/Engineer/Trainee Signature				
License No				
Company Name Cascade Drilling - Seattle				
If trainee box is checked, sponsor's license number:				

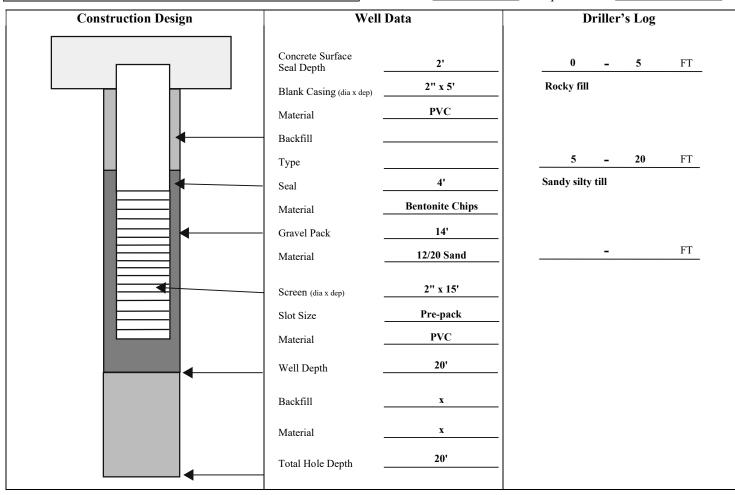
Notice of Intent No.	RE25897
Type of Well:	
Resource Protection We Remediation Well Geotechnical Soil Borin Environmental Boring	Il
Soil- □ Vapor- □ V	Vater-sampling
Property Owner	The Boeing Company
Well Street Address	737 Logan Ave
City Renton	County King
Tax Parcel No.	0723059001
Location (see instructions): <u>SW</u> 1/4-1/4 <u>NE</u> 1/4, Section	WWM □ or EWM ■ n _ 7 _ Town _ 23N _ Range _ 5E _
Latitude (Example: 47.12345	
Longitude (Example: -120.12	
· ·	Coordinate System)
Borehole diameter 2.25 " inc	thes Casing diameter 2 inches
Static water leveln/a_ ft b	pelow top of casing Date
Stick-up of top of well c	a with bollards Flush monument asing ft above ground surface
Start Date 3/21/2024 (Completed Date 3/21/2024



Sponsor's signature

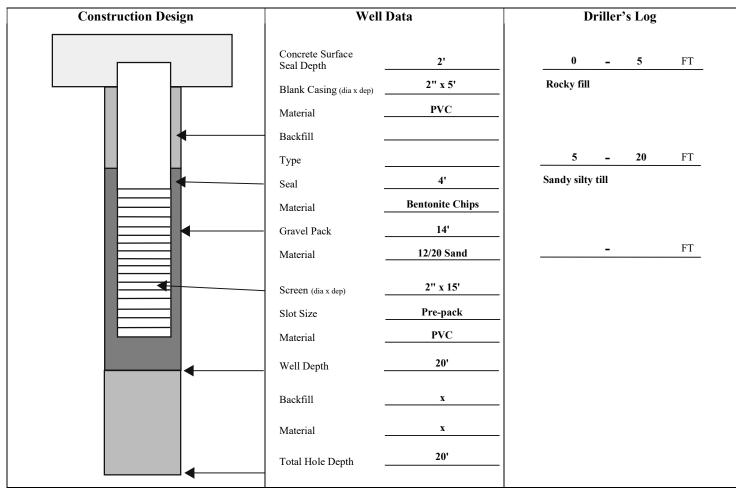
Resource Protection Well Repo	rt
-------------------------------	----

Submit one well report per well installed. See page two for instructions.				
Type of Work:				
■ ConstructionDecommission ⇒ Original NOI No.				
Ecology Well ID Tag No. BPR 910				
Site Well Name				
Consulting Firm Calibre Systems				
Was a variance approved for this well/boring? ☐ Yes ■ No				
If yes, what was the variance for?				
WELL CONSTRUCTION CERTIFICATION: I constructed and/or accept responsibility for construction of this well, and its compliance with all Washington well construction standards. Materials used and the information reported are true to my best knowledge and belief.				
■ Driller □ Trainee □ Engineer				
Name (Print Last, First Name) Josh Doty				
Driller/Engineer/Trainee Signature				
License No. 3358				
Company Name Cascade Drilling - Seattle				
1 7				


Notice of Intent No.	RE25897
Type of Well:	
	☐ Injection Point ☐ Grounding Well ☐ Ground Source Heat Pump ☐ Other
Soil- □ Vapor- □ Wate	er-sampling
Property Owner Th	
Well Street Address	737 Logan Ave
City Renton Co	unty King
Tax Parcel No.	0723059001
Location (see instructions):	WWM □ or EWM ■ 7 Town 23N Range 5E
Longitude (Example: -120.1234	
	rdinate System)
· ·	Casing diameter 2 inches
Static water leveln/a ft belo	ow top of casing Date
_	th bollards Flush monument ng ft above ground surface npleted Date 3/21/2024

Submit one well report per well installed. See page two for instructions.
Type of Work:
■ ConstructionDecommission ⇒ Original NOI No.
Ecology Well ID Tag No. BPR 911
Site Well Name
Consulting Firm Calibre Systems
Was a variance approved for this well/boring? ☐ Yes ■ No
If yes, what was the variance for?
WELL CONSTRUCTION CERTIFICATION: I constructed and/or accept responsibility for construction of this well, and its compliance with all Washington well construction standards. Materials used and the information reported are true to my best knowledge and belief. Driller □ Trainee □ Engineer
Name (Print Last, First Name) Josh Doty
Driller/Engineer/Trainee Signature
License No. 3358
Company Name Cascade Drilling - Seattle
If trainee box is checked, sponsor's license number:
Sponsor's signature

Notice of Intent No. RE25897
Type of Well:
Resource Protection Well Injection Point Grounding Well Geotechnical Soil Boring Ground Source Heat Pump Environmental Boring Other Soil- Vapor- Water-sampling
Property Owner The Boeing Company
Well Street Address 737 Logan Ave
City Renton County King
Tax Parcel No. 0723059001
Location (see instructions): WWM □ or EWM ■ SW 1/4-1/4 NE 1/4, Section 7 Town 23N Range 5E
Latitude (Example: 47.12345) 47.49562
Longitude (Example: -120.12345) -122.20722
(WGS 84 Coordinate System)
Borehole diameter 2.25" inches Casing diameter 2 inches
Static water level <u>n/a</u> ft below top of casing Date
☐ Above-ground completion with bollards ☐ Flush monument Stick-up of top of well casing ft above ground surface
Start Date 3/21/2024 Completed Date 3/21/2024



Sponsor's signature

Resource Protection Well Repo	rt
-------------------------------	----

Submit one well report per well insta	alled. See page t	wo for instructions.
Type of Work:		
■ ConstructionDecommission ⇒ Original	NOI No	
Ecology Well ID Tag No.	BPR 9	912
Site Well Name		
Consulting Firm	Calibre Syster	ms
Was a variance approved for this	well/boring?	□ Yes ■ No
If yes, what was the variance for	?	
WELL CONSTRUCTION CER* accept responsibility for construction of t Washington well construction standards. reported are true to my best knowledge a	his well, and its co Materials used an	ompliance with all
■ Driller □ Trainee □ Engineer		
Name (Print Last, First Name) _	Josh Doty	7 /
Driller/Engineer/Trainee Signatu	re	ovin
License No.	3358	
License NoCompany NameCasc	ade Drilling -	Seattle
If trainee box is checked, sponso	r's license nun	nber:

Notice of Intent No.	RE25897
Type of Well:	
Resource Protection Well Remediation Well Geotechnical Soil Boring Environmental Boring	☐ Injection Point ☐ Grounding Well ☐ Ground Source Heat Pump ☐ Other
Soil- □ Vapor- □ Wa	ter-sampling
Property OwnerT	
Well Street Address	737 Logan Ave
City Renton C	ounty King
Tax Parcel No.	0723059001
Location (see instructions):	WWM □ or EWM ■ 7 _ Town _ 23N _ Range _ 5E _
Longitude (Example: 47.12343) Longitude (Example: -120.123	
· ·	ordinate System) es Casing diameter 2 inches
Static water leveln/a ft bel	ow top of casing Date
	rith bollards Flush monument ing ft above ground surface mpleted Date 3/21/2024
	1

GEOLOGIC BORING LOG

PROJECT: Boeing Renton	JOB NO.:	SHEET	BORING NO.:	
		1 o f 2	B060-02	
PROJECT LOCATION:	BORING LOCATION:		TOTAL DEPTH:	
Renton, WA			25 ft, screened 10-25ft	
	AOC-060	BEGUN:	3/21/2024	
DRILL CONTRACTOR: Cascade	FINISHED):		
DRILL RIG: Geoprobe	DRILLER: Josh	GROUND ELEV.: ~10 ft		
HOLE SIZE: 8"	WEATHER: Cloudy and	GROUND WATER		
	rain	(DEPTH/ELEV.): 4.25 ft bgs		
DRILLING METHOD: Direct Push	DRILLING FLUID/SOURCE:	TOP OF ROCK (DEPTH/ELEV.):		
SAMPLER TYPE: liner	HAMMER	WEIGHT: NA		
SAMPLER LENGTH AND DIAM.: 1.25":	HAMMER	FALL: NA		

				Location Figure						
			-							
			- Recovered							
			eco/							
		_								
	TH/	terva	rive							
_	SAMPLE TYPE/DEPTH/ NUMBER	Sample Interval	Graphic Driven							
ОЕРТН	SAMPLE TYPE/DEI NUMBER	amp	raph	NOTES:	nscs Log					
_	δĹŽ	Š	Ō	(PRODUCT, ODOR, OVA READING, ETC.)	NS LO	STRATIGRAPHIC DESCRIPTION				
0- 1'						Pavement 2" Fill				
					SW	Brown fine to medium sand with cobbler up to 2"in diameter				
2'					344	Brown line to mediam daria with coppier up to 2 in diameter				
3'										
						Grey brown poorly sorted sand				
4'										
5'										
6'				0 ppb, no odor		Only 20% recovery likely too high gravel content				
U										
7'										
8'										
9'										
				0 ppb, no odor	GP	Grey gravel 0.25-0.5" gravel with some sand				
10'				υ μρυ, πο οσοι	-	Grey graver 0.20-0.5 graver with some same				

FROM 0 TO 10 FT

PID = Photo ionization detector; field samples screened with PID over split-spoon sample when opened with calibrated PID.

GSA = Sample for grain size analysis

TA = Target analytes: VOC, SVOC, Metals, TSS

CALIBRE Systems

GEOLOGIC BORING LOG:

Sheet 2 of 2

		_	vered	NOTES: (PRODUCT, ODOR, OVA READING, ETC.)		STRATIGRAPHIC DESCRIPTION
DEPTH	SAMPLE TYPE/DPETH/ NUMBER	Sample Interval	Driven – Recovered		nscs rog	
11'					SP	Grey sorted sand fine-medium
_ ' '				0ppb, no odor		
12'					SW	Grey poorly sorted sand very fine-coarse
13'				Oppb, no odor	SP	Grey semi sorted sand very fine-medium, some clay & silt
14'						
17					CL	Grey clay 3" thick with some sand
15'				0ppb, no odor	SP	Grey sorted sand fine-medium
16'				Onnh na adar	sw	As above with coorser and and loss certing
17'				Oppb, no odor	SW	As above with coarser sand and less sorting
					SC	Grey sandy clay 2" thick
18'				0ppb, no odor	SP	Grey sorted medium sand
4.01				oppo, no oder	SC	Grey sandy clay 2" thick
19'					SW	Grey poorly sorted sand very fine-coarse increasing gravel
001					GW	Content, gravel up to 0.5-1" size, 5-10% clay
20'						
21'				0ppb, no odor	SW	Grey poorly sorted sand very fine-coarse with some Gravel
20'						
22'						
23'				0ppb, no odor		
24'					SW	
25'						
26'						
27'						
28'						
29'						
20'						
30'			·			

FROM 10 TO 30 FT

PID = Photo ionization detector; field samples screened with PID over split-spoon sample when opened with calibrated PID.

GSA = Sample for grain size analysis

TA = Target analytes: VOC, SVOC, Metals, TSS

GEOLOGIC BORING LOG

PROJECT: Boeing Renton	JOB NO.:	SHEET	BORING NO.:		
		1 o f 2	B090-01		
PROJECT LOCATION:	BORING LOCATION:		TOTAL DEPTH:		
Renton, WA			20 ft, Screened 5-20ft		
	AOC-090	BEGUN:	3/21/2024		
DRILL CONTRACTOR: Cascade	GEOLOGIST: RL	FINISHED	: 3/22/2024		
DRILL RIG: Geoprobe	DRILLER: Josh	GROUND ELEV.: ~10 ft			
HOLE SIZE: 8"	WEATHER: Cloudy and	GROUND WATER			
	rain	(DEPTH/ELEV.): 6.8 ft bgs			
DRILLING METHOD: Direct Push	DRILLING FLUID/SOURCE:	TOP OF R	OCK (DEPTH/ELEV.):		
SAMPLER TYPE: liner	HAMMER	WEIGHT: NA			
SAMPLER LENGTH AND DIAM.: 1.25" x	5'	HAMMER	FALL: NA		

				Location Figure						
			70							
			- Recovered							
			Reco							
	7	val	en -							
	SAMPLE TYPE/DEPTH/ NUMBER	Sample Interval	Graphic Driven							
DEPTH	MPLI PE/D MBE	mple	aphic	NOTES:	φ					
	SA TYI NU	Sai	Gr	(PRODUCT, ODOR, OVA READING, ETC.)	DOT NSCS	STRATIGRAPHIC DESCRIPTION				
0- 1'						Pavement 2" Fill				
2'										
3'										
4'										
5'					ML	Grey silty sand				
6'				0 ppb, no odor	SP	Grey sand fine-medium				
7'					ML	Grey silt with clay and sand				
8'										
				0 ppb, no odor						
9'				ο μρυ, πο ουσι	SP	Grey sand fine-coarse				
10'				0 ppb, no odor						
10					CL	Grey clay with sand				

FROM 0 TO 10 FT

PID = Photo ionization detector; field samples screened with PID over split-spoon sample when opened with calibrated PID.

GSA = Sample for grain size analysis TA = Target analytes: VOC, SVOC, Metals, TSS

CALIBRE Systems

GEOLOGIC BORING LOG:

Sheet 2 of 2

			ered	NOTES: (PRODUCT, ODOR, OVA READING, ETC.)		STRATIGRAPHIC DESCRIPTION
DEРТН	SAMPLE TYPE/DPETH/ NUMBER	Sample Interval	Driven – Recovered	,	nscs Log	
11'				400ppb, no odor	SW/ CL	Grey poorly sorted sand with clay
12'				Hoopps, no oder	OL.	
13'				Oppb, no odor	CL	Grey plastic clay with some organic material
14'						
15'				0ppb, no odor	PT CL	2" layer of organic material Grey plastic clay with some organic material
16'				200ppb, no odor		
17'					ML	Grey silt with clay and sand
18'				Oppb, no odor	CL	Grey plastic clay with some organic material
19'					ML	Grey silt with clay and sand
20'				Oppb, no odor	CL ML	Grey plastic clay Grey silt with clay and sand
21'						
22'						
23'						
24'						
25'						
26'						
27'						
28'						
29'						
30'						

FROM 10 TO 30 FT

PID = Photo ionization detector; field samples screened with PID over split-spoon sample when opened with calibrated PID.

GSA = Sample for grain size analysis

TA = Target analytes: VOC, SVOC, Metals, TSS

GEOLOGIC BORING LOG

PROJECT: Boeing Renton	JOB NO.:	SHEET	BORING NO.:	
		1 o f 2	B090-02	
PROJECT LOCATION:	BORING LOCATION:		TOTAL DEPTH:	
Renton, WA			20 ft, screened 5-20 ft	
	AOC-090	BEGUN:	3/21/2024	
DRILL CONTRACTOR: Cascade	GEOLOGIST: RL	FINISHED	: 3/22/2024	
DRILL RIG: Geoprobe	DRILLER: Josh	GROUND ELEV.: ~10 ft		
HOLE SIZE: 8"	WEATHER: Cloudy and	GROUND WATER		
	rain	(DEPTH/ELEV.): 6.8 ft bgs		
DRILLING METHOD: Direct Push	DRILLING FLUID/SOURCE:	TOP OF R	OCK (DEPTH/ELEV.):	
SAMPLER TYPE: liner	HAMMER	WEIGHT: NA		
SAMPLER LENGTH AND DIAM.: 1.25" x	5'	HAMMER	FALL: NA	

						Location Figure
			-			
			vere			
			Reco			
	÷	val	en -			
	SAMPLE TYPE/DEPTH/ NUMBER	Sample Interval	Graphic Driven - Recovered			
DEPTH	/MPL 'PE/D JMBE	mple	aphic	NOTES:	S C	
	S T N	Sa		(PRODUCT, ODOR, OVA READING, ETC.)	USCS LOG	STRATIGRAPHIC DESCRIPTION
0- 1'						Pavement 2" Fill
2'						
3'						
3						
4'						
5'					NAL /	Grey silty sand
6'				1100 ppb, no odor	ML/ SP	Grey Sirty Sariu
7'						
8'					CL	Grey clay with sand
9'				400 ppb, no odor		
10'				940 ppb, no odor	ML	
10	_				IVIL	Grey silt with very fine sand

FROM 0 TO 10 FT

PID = Photo ionization detector; field samples screened with PID over split-spoon sample when opened with calibrated PID.

GSA = Sample for grain size analysis TA = Target analytes: VOC, SVOC, Metals, TSS

CALIBRE Systems

GEOLOGIC BORING LOG:

Sheet 2 of 2

DEPTH	SAMPLE TYPE/DPETH/ NUMBER	Sample Interval	Driven – Recovered	NOTES: (PRODUCT, ODOR, OVA READING, ETC.)	USCS LOG	STRATIGRAPHIC DESCRIPTION
	0, F 2	0,	_		ML	As above with medium sand
11'				500ppb, no odor	IVIL	
12'					CL	Grey plastic clay with some organic material
13'				350ppb, no odor		
14'						
15'				200ppb, no odor		
16'				450ppb, no odor	ML	Grey silt with clay and sand
17'						
18'				320ppb, no odor	CL	Grey plastic clay with some organic material
19'					ML	Grey silt with clay and sand – increasing sand and decreasing Clay with depth
20'				480ppb, no odor		
21'						
22'						
23'						
24'						
25'						
26'						
27'						
28'						
29'						
30'						

FROM 10 TO 30 FT

PID = Photo ionization detector; field samples screened with PID over split-spoon sample when opened with calibrated PID.

GSA = Sample for grain size analysis

TA = Target analytes: VOC, SVOC, Metals, TSS

Attachment B: Groundwater Sampling Field Data Sheets

Date		7 / 7	7 / 24		Well Sampling Data Shee Site Location		Den	ton	AUC 060	O THE PARTY	
Samplers		312			Well ID			B-060-01			
Casing Mater	rio l	,		//	Constructed Depth			B-000 01			
Casing Diam			2"		Condition of Well		ok	9-7-1		(A) - (A) C	
Field Measu			1 2	100	Collation of Well	100	02	7	-		
Time	rement	3.	1200		Depth Measured From:						
				Top of access port							
Depth to Water 4.06				Mark on PVC casing							
							lark of prote		na		
					Ngide of case		ther	ctive casi	ng .		
Purging Info	rmatio	n.			10910 x of casa	10	uici	1			
Pump:			Dedicated	0 1000	Non-dedicated			Perista	ltic		
Bailer:	1		PVC		Stainless Steel			Other:			
Purge Start T	ime			Purge F	nd Time	I		J Other.			
Approximate		e Purged		, uigo Li							
Water Moni											
	V	ol. Purge				1				Turbidit	
Time	(ga		Tempera	ature (°C)	Conductivity (mS/cm)	D	.O. (mg/L)	pН	ORP (mV)	(NTU)	
1211	0		15.5	3	0.469	1	.03	6.72	-174	21.3	
216		.5	15.5	1	0.442	0,30		6.64	-169	9,2	
1221		.)	15.55		0.437	0.14		6.46	-161	9.1	
1226		.5	15.5		0,435).(1	6.56	-168	5.5	
1231	2	. 0	15.51		0.434		.09	6.53	-167	6.0	
										143 FX	
									1 5 5 5 B		
						8			1220	THE RELEASE	
Sampling Da	ıta:					5311	GVENT			E sous	
Time			1235	Sample	ID		000.0		2221		
Vol. Purged (gal)	2000	2.5	Duplicat			2060-0	1-03	2124		
Temperature			15.54		Volumes		- V				
Conductivity		1)	0.431	740							
D.O. (mg/L)			0.06								
		6.54									
ORP (mV) -168											
Turbidity (N	TU)		5.7								
Sampling De	vice:		REPRESENTED IN		?	eri	Staltic			**** 3	
PVC Bailer		900	SS Bailer		Dedicated Pump		×	Teflon E	Railer		
Analyses to b		and better the same	NAME OF STREET					TOTION L	Janet		
Volatile Orga	nics	X	VOCs 8260	SVOCs	by 8270C		Sulfate 3	75.2			
T + 134 1	9 6 1	4				J. P. Co.	RSK-175				

PVC Bailer		SS Bailer	Dedicated Pump	×	Teflon Bailer
Analyses to be Per	formed:		MILITARY SEE STATE OF THE SECOND		Terion Baller
Volatile Organics	X	VOCs 8260	SVOCs by 8270C	Sulfate	375.2
Total Metals	×	RCRA 8 or	SVOCs by 8270C/SIM	RSK-1	75 (methane, ethene)
Dissolved Metals		Priority Pollutants	Total Organic Carbon 415.1	Other	
Sampling Notes: 15' sample Clear, No	ador			Well Diameter 1 inch 2 inch 4 inch 6 inch	Well Volume (Gal/ft) 0.041 0.163 0.653 1.469
				Or:(total dep	th(ft) - DTW(ft)) x Well Dia ² x 0.0408 olume

Well Sampling Data Sheet Renton AUC60 Site Location 24 Date 3/27 B-060-02 Well ID JW Samplers Constructed Depth PUC Casing Material OK Condition of Well 2" Casing Diameter Field Measurements: 1255 Depth Measured From: Time Top of access port 4.25 Depth to Water Mark on PVC casing Mark of protective casing Ngide afcast Other **Purging Information:** Peristaltic Non-dedicated Pump: Dedicated Other: Stainless Steel PVC Bailer: Purge End Time Purge Start Time Approximate Volume Purged Water Monitoring Conditions: Turbidity Vol. Purged ORP (mV) (NTU) D.O. (mg/L) pH Conductivity (mS/cm) Temperature (°C) Time (gal) -114 6.67 19.1 0.305 1.90 1259 14.60 -134 6.34 37.7 0.16 14.97 0.371 1305 0.5 -145 6.46 24.9 0.08 0.379 15.13 1309 1.0 -145 19.6 0.00 6.38 0.384 15.15 1315 1.5 -148 23.0 6.42 0.00 0.385 15.16 1320 2.0

Sampling Data:			
Time	1325	Sample ID	8-060-02-032724
Vol. Purged (gal)	2.5	Duplicates	
Temperature (°C)	15.14	QA/QC Volumes	
Conductivity (mS/cm)	D. 388		
D.O. (mg/L)	0.00		

ORP (mV) -145
Turbidity (NTU) 18.0

pH

6.41

Sampling Device:

PVC Bailer SS Bailer Dedicated Pump Teflon Bailer

1 V C Duner		DO Bailer	Maria		
Analyses to be Perf	ormed:				
Volatile Organics	X	VOCs 8260	SVOCs by 8270C	Sulfate 375	5.2
Total Metals		RCRA 8 or	SVOCs by 8270C/SIM	RSK-175 (m ethane, ethe	
Dissolved Metals		Priority Pollutants	Total Organic Carbon 415.1	Other	
Sampling Notes: 15' sample Clear, noodor				1 inch	Well Volume (Gal/ft) 0.041
Clear, noo				2 inch 4 inch	0.163 0.653

Or:(total depth(ft) - DTW(ft)) x Well Dia² x 0.0408 = 1 Well Volume

1.469

6 inch

Date 3/27/24				ell Sampling Data Sheet Site Location	nton Aur 90				
				Well ID B		0-02			
implers	JV	DU		Constructed Depth					
asing Material		PVC		Condition of Well					
asing Diamete		L		Collection of west		A PARTY			
ield Measure	ments:	141-0)		Depth Measured From:					
ime		6.55		Depth Weasured From	port				
epth to Water		6.37		Mark on PVC					
					Mark of prote	ctive casi	ng		
				Nside of case	Other				
				, , o e e e e e	STATE OF A				
Purging Infor		Dedicated		Non-dedicated		Perista	ltic		
Pump:		PVC		Stainless Steel		Other:			
Bailer: Purge Start Tir		1 10	Purge Er			1 3 6			
	Volume Purged		Taigo Est						
	oring Condition	is:	1 1 1 2 2	BARTE TELEVISION		13.12			
valer would	Vol. Purged		TURE.	HATTER BEET		1.7	OPP (mV)	Turbidity	
Time	(gal)	Temperat		Conductivity (mS/cm)	D.O. (mg/L)	pH	ORP (mV)	(NTU)	
1415	0	13.87	2	0.407	0.08	6.45	-118	15.3	
1420	8.5	13.61		0.493		1000	-136	34.3	
1425	1.0	13.4		0.579	0.00			The state of the s	
1430	1.5	13.4	12	0.602	0,00	6.39		31.7	
1435	2.0	13.4	0	0.623	0.00	10.39	-137	31.3	
Sampling Da	nta:					2 02	27711		
Time		1435	Sample		B-090-02-032724 Dupol-032724 cosa				
Vol. Purged	(gal)		Duplica	Control of the Contro	Darbot	Dato1-036164 6030			
The second secon	(°C)		QA/QC	Volumes					
Temperature	(0)								
Temperature Conductivity D.O. (mg/L)	(mS/cm)								
Temperature Conductivity D.O. (mg/L) pH	(mS/cm)								
Temperature Conductivity D.O. (mg/L) pH ORP (mV)	(mS/cm)								
Temperature Conductivity D.O. (mg/L) pH ORP (mV) Turbidity (N	(mS/cm)				ristaltic				
Temperature Conductivity D.O. (mg/L) pH ORP (mV) Turbidity (N Sampling D	(mS/cm)	SS Bailer		Pe	ristaltic ×	Teflo	n Bailer		
Temperature Conductivity D.O. (mg/L) pH ORP (mV) Turbidity (N Sampling D PVC Bailer	(mS/cm) NTU) evice:	SS Bailer				Teflo	n Bailer		
Temperature Conductivity D.O. (mg/L) pH ORP (mV) Turbidity (N Sampling D PVC Bailer Analyses to	(mS/cm) NTU) evice: be Performed:		SVOCs	Pedicated Pump	× Sulfate	375.2			
Temperature Conductivity D.O. (mg/L) pH ORP (mV) Turbidity (N Sampling D PVC Bailer	(mS/cm) NTU) evice: be Performed:		P Water	Dedicated Pump by 8270C	Sulfate RSK-1	375.2 75 (metha			
Temperature Conductivity D.O. (mg/L) pH ORP (mV) Turbidity (N Sampling D PVC Bailer Analyses to	(mS/cm) NTU) evice: be Performed: ganics X	VOCs 8260 RCRA 8 or	SVOC	Dedicated Pump by 8270C by 8270C/SIM	Sulfate RSK-1	375.2			
Temperature Conductivity D.O. (mg/L) pH ORP (mV) Turbidity (N Sampling D PVC Bailer Analyses to Volatile Org	NTU) evice: be Performed: ganics X	VOCs 8260 RCRA 8 or Priority	SVOCs Total C	Dedicated Pump by 8270C	Sulfate RSK-1 ethane,	375.2 75 (metha			
Temperature Conductivity D.O. (mg/L) pH ORP (mV) Turbidity (N Sampling D PVC Bailer Analyses to Volatile Org Total Metals Dissolved N	NTU) evice: be Performed: anics X	VOCs 8260 RCRA 8 or	SVOC	Dedicated Pump by 8270C by 8270C/SIM	Sulfate RSK-1	375.2 75 (metha			
Temperature Conductivity D.O. (mg/L) pH ORP (mV) Turbidity (N Sampling D PVC Bailer Analyses to Volatile Org Total Metals Dissolved M Sampling	(mS/cm) NTU) evice: be Performed: ganics X Metals Notes:	VOCs 8260 RCRA 8 or Priority Pollutants	SVOCs Total C	Dedicated Pump by 8270C by 8270C/SIM	Sulfate RSK-1 ethane, Other Well Diameter	375.2 75 (metha ethene)		ft)	
Temperature Conductivity D.O. (mg/L) pH ORP (mV) Turbidity (N Sampling D PVC Bailer Analyses to Volatile Org Total Metals Dissolved M Sampling	(mS/cm) NTU) evice: be Performed: ganics X Metals Notes:	VOCs 8260 RCRA 8 or Priority Pollutants	SVOCs Total C	Dedicated Pump by 8270C by 8270C/SIM	Sulfate RSK-1 ethane, Other Well Diameter 1 inch	375.2 75 (metha ethene)	ne,	ft)	
Temperature Conductivity D.O. (mg/L) pH ORP (mV) Turbidity (N Sampling D PVC Bailer Analyses to Volatile Org Total Metals Dissolved M Sampling	(mS/cm) NTU) evice: be Performed: ganics X Metals Notes:	VOCs 8260 RCRA 8 or Priority Pollutants	SVOCs Total C	Dedicated Pump by 8270C by 8270C/SIM	Sulfate RSK-1 ethane, Other Well Diameter 1 inch 2 inch	375.2 75 (metha ethene)	volume (Gal/ 0.041 0.163	ft)	
Temperature Conductivity D.O. (mg/L) pH ORP (mV) Turbidity (N Sampling D PVC Bailer Analyses to Volatile Org Total Metals Dissolved M Sampling	NTU) evice: be Performed: anics X	VOCs 8260 RCRA 8 or Priority Pollutants	SVOCs Total C	Dedicated Pump by 8270C by 8270C/SIM	Sulfate RSK-1 ethane, Other Well Diameter 1 inch 2 inch 4 inch	375.2 75 (metha ethene)	volume (Gal/ 0.041 0.163 0.653	ft)	
Temperature Conductivity D.O. (mg/L) pH ORP (mV) Turbidity (N Sampling D PVC Bailer Analyses to Volatile Org Total Metals Dissolved M Sampling	(mS/cm) NTU) evice: be Performed: ganics X Metals Notes:	VOCs 8260 RCRA 8 or Priority Pollutants	SVOCs Total C	Dedicated Pump by 8270C by 8270C/SIM	Sulfate RSK-1 ethane, Other Well Diameter 1 inch 2 inch 4 inch 6 inch	375.2 75 (metha ethene)	volume (Gal/ 0.041 0.163		

13		- 511		ell Sampling Data Sheet Site Location		Ren	nton	A00-90	
ate	312	1 / 24	-	Well ID		B-0	90-0	1	A CONTRACTOR OF THE PARTY OF TH
amplers	J			Constructed Depth				10000	
asing Materia	1	PUL		Condition of Well					
asing Diamete		2"		Condition of wen					
ield Measure	ments:	III wa		Depth Measured From:		1000			
ime		1452		Top of access port					
epth to Water		6.81		Mark on PVC casing					
			-	Mark of protective casing				ng	
				Nsideofcast	Othe			1000	
			L	11 3020100	1000				
urging Infor	mation:	D 1:		Non-dedicated			Perista	ltic	455
ump:		Dedicated		Stainless Steel	2017		Other:	The State of	
Bailer:		PVC	D F		0.0		Fare .		
urge Start Tin			Purge En	a i ime	1				
	/olume Purged			Part Control	17 19				116123
Nater Monito	Vol. Purgeo					Elvinos	Marie 1		Turbidity
Гіте	(gal)	Temperat	ure (°C)	Conductivity (mS/cm)	D.C). (mg/L)	pH	ORP (mV)	(NTU)
455	0	13.86		0.617		58	6.30	-114	10.9
1500	0.5	14.01		0.627		25	6.17	-121	10.0
505	1.0	14.05		0.628		00	6.19	-126	7.8
1510	1.5	14.13		0.625	0.	00	6.15	-127	11.0
1515	2.0	14.17		0.625		00	6.30	-136	8.8
1212			Sall Sall			F. All St.			
	III Iwa Pilan								
					1				
					TV.			S Salaman	
	ME THE		MEN RE						
Sampling Da	ita:				12		2777		
Time		1520	Sample		0-	090-01	-036	129	
Vol. Purged (gal)	2.5	Duplica	929/2436					
Temperature	Minimum Company	14.20	QA/QC	Volumes		LIESCY AUTO	112 3		
Conductivity	(mS/cm)	0.624							
D.O. (mg/L)	WE'D A TON	0.00							
pH		w. 26 -135							
ORP (mV)									
Turbidity (N		12.6		peristaltic					
Sampling Do	evice:	las n. u				14	T-0-	n Poiler	CONTRACTOR
PVC Bailer		SS Bailer		Dedicated Pump	The state of		Tello	n Bailer	
	be Performed:		SVOC	by 8270C	1	Culfata	275.2		
Volatile Org	anics ×	VOCs 8260	SVOCS	by 8270C		Sulfate 375.2 RSK-175 (methane,			- 7 B D B
Total Metals		RCRA 8 or	SVOCs	by 8270C/SIM		ethane,			
Total Wictals	A STATE OF THE STA	Priority		rganic Carbon					1
Dissolved M		Pollutants	415.1			Other		X Best all is	
Sampling N						Well			
13' Sam	pu					Diameter	Well	Volume (Gal	(tt)
					ALL SAL	1 inch		0.041	

2 inch

4 inch

6 inch

0.163

0.653

1.469

Or:(total depth(ft) - DTW(ft)) x Well Dia² x 0.0408 = 1 Well Volume

Attachment C: Laboratory Data Package

04 April 2024

Tom McKeon **CALIBRE**

RE: Boeing Renton (Boeing Renton)

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s) Associated SDG ID(s)

24C0645

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the requirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

Analytical Resources, LLC

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its

Kelly Bottem, Client Services Manager

Chain of Custody Record & Laboratory Analysis Request Turn-around Requested: Standard ARI Assigned Number: 24 COG 45 Page: ARI Client Company: Analytical Resources, LLC Phone: 425-241-8449 CALIBRE Date: Analytical Chemists and Consultants Ice Present? Client Contact: Tom McKeon 4611 South 134th Place, Suite 100 3/27/24 Tukwila, WA 98168 No. of Cooler Temps: Coolers: 206-695-6200 206-695-6201 (fax) 4.1 Client Project Name: Renton Analysis Requested Boeing Client Project #: Notes/Comments Samplers: JNeste VOCS Sample ID Date Time Matrix No. Containe B-060-01-032724 3/27/24 1235 Gw 3 × B-060-02-032724 1325 LZW 3 × B-090-02-032724 1435 Crw 3 × Dupo1-032724 0800 Gw 3 × B-090-01-032124 Gw 1520 3 X Tri > Blank t X Comments/Special Instructions Relinguished by (Signature) (Signature) Printed Name Printed Nam

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for signed agreement between ARI and the Client.

Company:

Date & Time

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate

Company

Date & Time

Analytical Report

CALIBRE Project: Boeing Renton
- Project Number: Boeing Renton
--,- Project Manager: Tom McKeon 04-Apr-2024 13:12

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B-060-01-032724	24C0645-01	Water	27-Mar-2024 12:35	27-Mar-2024 17:44
B-060-02-032724	24C0645-02	Water	27-Mar-2024 13:25	27-Mar-2024 17:44
B-090-02-032724	24C0645-03	Water	27-Mar-2024 14:35	27-Mar-2024 17:44
DUP01-032724	24C0645-04	Water	27-Mar-2024 08:00	27-Mar-2024 17:44
B-090-01-032724	24C0645-05	Water	27-Mar-2024 15:20	27-Mar-2024 17:44
TRIP BLANK	24C0645-06	Water	27-Mar-2024 12:35	27-Mar-2024 17:44

Analytical Report

CALIBRE Project: Boeing Renton

Project Number: Boeing Renton

Reported:
Project Manager: Tom McKeon

O4-Apr-2024 13:12

Work Order Case Narrative

Volatiles - EPA Method SW8260D

The sample(s) were analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements with the exception of all associated "Q" flagged analytes which are out of control high in the CCAL and chloromethane, vinyl chloride and dichlorodifluoromethane are out of control low. All associated samples that contain analyte have been flagged with a "Q" qualifer.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The blank spike and blank spike duplicate (BS/LCS and BSD/LCSD) spike recoveries and relative percent difference (RPD) were within control limits with the exception of analytes flagged on the associated forms.

Printed: 3/28/2024 10:38:11AM

WORK ORDER

24C0645

Client: CALI Project: Boein		Project Mana	t unless other instructions are received ger: Kelly Bottem
	g Kenton	Project Numb	er: Boeing Renton
Report To: CALIBRE		Invoice To:	
Tom McKeon		CALIBRE	
-		Tom McKeon	
-,		-	
, Phone: (360) 98	1-5606	-,	
Fax:	1 5000	Phone :(360) 9:	81-5606
		Fax:	
Date Due:	11-Apr-2024 18:00 (10 day TAT)		
Received By:	Matthew Daniel	Date Received:	27.14 2021.17
Logged In By:	Vy Dang		27-Mar-2024 17;44
Samples Received at:	4.1°C	Date Logged In:	28-Mar-2024 09:43
Intact, properly si Custody papers p Was sufficient ice All bottles arrived Number of contai Correct bottles us Analyses/bottles r	gned and dated custody seafs attached to our roperly filled out(in, signed, analyses reques used (if appropriate)	ted, etc)	papers included with the cooler
nalysis	Due	TAT Expires	

WORK ORDER

24C0645

Samples will	be discarded 90 days after sub	missio	n of a final report unl	ess other instructions are received
Client: CALIBRE			Project Manager:	
Project: Boeing Renton			Project Number:	Boeing Renton
Analysis	Due	TAT	Expires	Comments
24C0645-01 B-060-01-032	724 [Water] Sampled 27-M	ar-202	4 12:35	
(GMT-08:00) Pacific Time	THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON OF THE PE	h. Marrier reach (COM)	The second secon	readings that was a common appropriate facilities but from \$100 to 100 t
A = VOA Vial, Clear, 40 mL, HCL 8260D VOA	The Property and the state of t	Marie Commission and any	= FOA Fial, Clear, 40 mL	HCL
	11-Apr-2024 15:00	10	10-Apr-2024 23:59	
24C0645-02 B-060-02-0327 (GMT-08:00) Pacific Time	724 Water] Sampled 27-M: (US & Canada)	ar-2024	4 13:25	
A = 1'OA Vial, Clear, 40 mL, HCL	B = 1'OA l'ial, Clear, 40 mL, HC	L C =	FOA Vial, Clear, 40 mL,	TOTAL TOTAL AND
8260D VOA	11-Apr-2024 15:00	10	10-Apr-2024 23:59	Market all the same and the same of the same and the same
24C0645-03 B-090-02-0327 (GMT-08:00) Pacific Time	724 Water Sampled 27-Ma	ar-2024	1 14:35	
A = VOA Vial, Clear, 40 mL, HCL	B = I'OA Vial, Clear, 40 mL, HCL	· · · · · · · · · · · · · · · · · · ·	VOA Vial, Clear, 40 mL,	THE CALL AND A STATE OF THE CA
8260D VOA	II-Apr-2024 15:00	10	10-Арг-2024 23:59	T.C.L
24C0645-04 DUP01-032724 Pacific Time (US & Canada	4 [Water] Sampled 27-Mar	-2024 0		
A = 1'OA l'ial, Clear, 40 mL, HCL	B = VOA Vial, Clear, 40 mL, HCL	. C=	VOA Vial, Clear, 40 mL, 1	MCI
8260D VOA	11-Apr-2024 15:00	10	10-Apr-2024 23:59	PCD
24C0645-05 B-090-01-0327 (GMT-08:00) Pacific Time (24 [Water] Sampled 27-Ma	r-2024		
A = I'OA l'ial, Clear, 40 mL, HCL	B = VOA Vial, Clear, 40 mL, HCL		VOA Vial, Clear, 40 mL, 1	1. Annual management containing the column to the destination of the column column to the column col
8260D VOA	11-Apr-2024 15:00	10	10-Apr-2024 23:59	I. L.
24C0645-06 TRIP BLANK Pacific Time (US & Canada	[Water] Sampled 27-Mar-2	2024 12		
A = 1'OA Vial, Clear, 40 mL, HCL	The second section of the section of the second section of the section of	***************************************	Make Advances the agest make has recognized to the control communication of a sec-	Meta-decorption above decorptions in the section of
8260D VOA	11-Apr-2024 15:00	10	10-Apr-2024 23:59	and the second of the second s

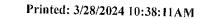
	
aviating De	
leviewed By	Data
3	Date

Cooler Receipt Form

ARI Client: Calibre	Project Name: Boing Renten
COC No(s):NA	Delivered by: Fed-Ex UPS Courier Hand Delivered Other:
Assigned ARI Job No: 24COG45	
Preliminary Examination Phase:	Tracking No:NA
Were intact, properly signed and dated custody seals attached to th	O outside of the cools of
Were custody papers included with the cooler?	
Were custody papers properly filled out (ink, signed, etc.)	YES NO
Time 1741	SITY)
If cooler temperature is out of compliance fill out form 00070F	8.2 9.1
	Temp Gun ID#: 500 9 704
Complete custody forms and	Date: 03/27/24 Time: 1744
Log-In Phase:	d attach all shipping documents
- 10 (1980)	
Was a temperature blank included in the cooler?	YES NO
What kind of packing material was used? Bubble Wrap	Wet Ice Gel Packs Baggies Foam Block Paper Other
Was sufficient ice used (if appropriate)?	NA A VES NO
How were bottles sealed in plastic bags?	Individually Grouped No.
Did all bottles arrive in good condition (unbroken)?	VES. NO
Were all bottle labels complete and legible?	VES NO
Did the number of containers listed on COC match with the number	r of containers received?
Did all bottle labels and tags agree with custody papers?	
Were all bottles used correct for the requested analyses?	
Do any of the analyses (bottles) require preservation? (attach preservation)	envation sheet, excluding VOCs)
Were all VOC vials free of air bubbles?	
Was sufficient amount of sample sent in each bottle?	TUT (TES) NO
Date VOC Trip Blank was made at ARI	NA O3 / 8
VVere the sample(s) split	
Samples Logged by:V0Date:D8	Time:Labels checked by:
** Notify Project Manager of	discrepancies or concerns **
Sample ID on Bottle Sample ID on COC	Sample ID on Bottle Sample ID on COC
Additional Notes, Discrepancies, & Resolutions:	
On mislebeling forone" B-	090-01-032724 VOA vial as
B-090-02-03	090-01-032724 voa vial as 2724 · vo Assu Correct Is based off time YD
labels on vials	le based off time YD
on bott	tes labels.
By: Date:	A second

0016F 01/17/2018

Cooler Receipt Form


Revision 014A

Cooler Temperature Compliance Form

ARI Work Order: 24	C 0645		
Cooler#: /		erature(°C):	8.200
Sample ID		Bottle Count	Bottle Type
Samples rea	rued		Bottle Type
Samples rec			
4,000		-	
Cooler#:	Tempo	erature(°C):	
Sample ID		Bottle Count	Bottle Type
			Bottle Type
		-	
Cooler#:	T		
Sample ID	rempe	rature(°C):Bottle Count	
		Bottle Count	Bottle Type
	11071		
Cooler#:	Temper	rature(°C):	
Sample ID		Bottle Count	Bottle Type
20 -			
	200000000000000000000000000000000000000		
impleted by: 1777			1
070F	~	Date	: 03/21/24 Time: 1741
TO COMPA	Cool	er Temperature (Compliance Form Version 00

3/3/09

WORK ORDER

24C0645

Client: CAL	IBRE		report unless other instructions are received Aanager: Kelly Bottem					
Project: Boein	ng Renton		Project Number: Boeing Renton					
Report To: CALIBRE Tom McKeon, Phone: (360) 98	81-5606	Invoice To: CALIBRE Tom McKed -	<u>.</u> 3					
Date Due: Received By: Logged In By:	11-Apr-2024 18:00 (10 day TAT) Matthew Daniel Vy Dang	Date Receive Date Logged						
Was sufficient to All bottles arrive Number of confa Correct bottles u Analyses/bottles	is IPC signed and dated custody seals attached to our properly filled out(in, signed, analyses reques e used (if appropriate). id in good condition(unbroken). iners listed on COC match number received sed for the requested analyses. require preservation (attach preservation shee RL	ted, etc)	astody papers included with the cooler					
nalysis	Due	TAT Expire						

Printed: 3/28/2024 10:38:11AM

WORK ORDER

24C0645

Samples will	be discarded 90 days after su	ıbmissio	n of a final report un!	ess other instructions are received
Client: CALIBRE			Project Manager:	
Project: Boeing Renton				
Analysis			Project Number:	Boeing Renton
	Duc	TAT	Expires	Comments
24C0645-01 B-060-01-032 (GMT-08:00) Pacific Time	724 [Water] Sampled 27-N (US & Canada)	/ar-202	4 12:35	
A = VOA Vial, Clear, 40 ml., HCL	$B = 1'OA \ l'ial, \ Clear, \ 40 \ mL, \ Ho$	~~~	The street of th	Management and the Committee of the Comm
8260D VOA	11-Apr-2024 15:00	10	= VOA Vial, Clear, 40 mL,	HCL
24C0645-02 B-060-02-0327			10-Apr-2024 23:59	
(GMT-08:00) Pacific Time	(US & Canada)	Tar-2024	4 13:25	
A = FOA Vial, Clear, 40 mL, HCL	B = VOA Vial. Clear, 40 mL, HC	CL C=	VOA Vial, Clear, 40 mL.	HOLE
8260D VOA	11-Apr-2024 15:00	10	10-Apr-2024 23:59	Phys. Let
24C0645-03 B-090-02-0327	24 [Water] Sampled 27-M	lar-2024	(14:35	
(GALI-00.00) Pacific Time	(US & Canada)	2027	14,55	
A = 1'OA Vial, Clear, 40 mL, HCL	B = VOA Fial, Clear, 40 mL, HC	TL C=	VOA Vial, Clear, 40 inL, 1	HCL
8260D VOA	11-Apr-2024 15:00	10	10-Apr-2024 23:59	And the control of th
24C0645-04 DUP01-032724	[Water] Sampled 27-Mar	r-2024 0	8:00 (GMT-08:00)	
acine Time (OS & Canada		***************************************	Arrana de composito de la comp	
A = 1'OA l'ial, Clear, 40 mL, HCL	B = VOA Vial, Clear, 40 mL, HC	L C =	VOA Vial, Clear, 40 mL, F	ICL
8260D VOA	11-Apr-2024 15:00	10	10-Apr-2024 23:59	The state of the s
24C0645-05 B-090-01-03272 (GMT-08:00) Pacific Time (24 [Water] Sampled 27-M	ar-2024	15:20	
A = FOA Fial, Clear, 40 mL, HCL	B = VOA Vial, Clear, 40 mL, HC.		7767 4 87 4 97	and the same to require the contract of the co
8260D VOA	11-Apr-2024 15:00	10	VOA Vial, Clear, 40 mL, h	CL
24C0645-06 TRIP BLANK			10-Apr-2024 23:59	
Pacific Time (US & Canada)	water Sampled 2/-Mar-	2024 12	:35 (GMT-08:00)	
A = 1'OA Fial. Clear, 40 mL, HCL	The control of the co	and a market to compare the second	- pro- training desired and training and the second of the	Committee of the Commit
8260D VOA	11-Apr-2024 15:00	10	10-Apr-2024 23:59	And the state of t
		-	102 (20.0)	

Reviewed By Date

Page 2 of 2

Cooler Receipt Form

ARI Client: Calibre	Project Name: Boing	Renten
COC No(s): NA	Delivered by: Fed-Ex UPS Cou	
Assigned ARI Job No: 24COG45	Tracking No:	
Preliminary Examination Phase:		IVA
Were intact, properly signed and dated custody seals attached to the	ne outside of the cooler?	YES (NO)
Were custody papers included with the cooler?		(YES) NO
Were custody papers properly filled out (ink, signed, etc.)		YES NO
Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for chemis	stry)	NO
Time 1741	8.2 4.1	
If cooler temperature is out of compliance fill out form 00070F		Temp Gun ID#: Joo 970f
Cooler Accepted by:	Date: <u>03/27/24</u> Time	: 1741
Complete custody forms an	d attach all shipping documents	
Log-In Phase:		
Was a temperature blank included in the cooler?		V50
What kind of packing material was used? Bubble Wra		YES (NO
Was sufficient ice used (if appropriate)?		NA A YES NO
How were bottles sealed in plastic bags?		Individually Grouped Not-
Did all bottles arrive in good condition (unbroken)?		YES NO
Were all bottle labels complete and legible?		
Did the number of containers listed on COC match with the number		YES NO
Did all bottle labels and tags agree with custody papers?		120
Were all bottles used correct for the requested analyses?		2 10
Do any of the analyses (bottles) require preservation? (attach pres		YES NO
Were all VOC vials free of air bubbles?		111
Was sufficient amount of sample sent in each bottle?		120
Date VOC Trip Blank was made at ARI		YES NO
Were the sample(s) split (NA) VES Data/Time.		NA 03718
by ARI?	Equipment:	Split by:
Samples Logged by:	(14 Time: 9 . 43 La	ahele chocked by
** Notify Project Manager o	of discrepancies or concerns **	abels checked by/
Sample ID on Bottle Sample ID on COC	Sample ID on Bottle	Sample ID on COC
		Sample ID OII COC
	power service - 4800	
Additional Notes, Discrepancies, & Resolutions:		S VOA
On mislebeling forone" B.	-090-01-032	724 as vial as
B-090-02-03	2724	Assu Correct
labels on vials	labased off.	time YD
an both	tes labele	
By: Date:	local con .	

0016F 01/17/2018

Cooler Receipt Form

Revision 014A

Cooler Temperature Compliance Form

ARI Work Order: 24C 064	5	
Cooler#: / Ten	nperature(°C):	8.200
Samples record Ghore Go oc	Bottle Count	Bottle Type
Chone Ges		
Cooler#: Tem	perature(°C):	
Sample ID	Bottle Count	Bottle Type
0.1.11		
Cooler#:Tem	perature(°C):	
Sample ib	Bottle Count	Bottle Type
Cooler#: Tem	(00)	
Sample ID	perature(°C): Bottle Count	Bottle Type
	Dottie Gount	Bottle Type
ompleted by:	Date	: 03/21/24 Time: 1741
	ooler Temperature (

3/3/09

Extract ID: 24C0645-01 A

 CALIBRE
 Project: Boeing Renton

 Project Number: Boeing Renton

 --, Project Manager: Tom McKeon

 04-Apr-2024 13:12

B-060-01-032724 24C0645-01 (Water)

Volatile Organic Compounds

 Method: EPA 8260D
 Sampled: 03/27/2024 12:35

 Instrument: NT3
 Analyst: LH

 Analyzed: 04/03/2024 14:49

Sample Preparation: Preparation Method: EPA 5030C (Purge and Trap)

Preparation Batch: BMD0082 Sample Size: 10 mL

Prepared: 04/03/2024 Final Volume: 10 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Chloromethane	74-87-3	1	0.27	0.50	ND	ug/L	U
Vinyl Chloride	75-01-4	1	0.08	0.20	0.09	ug/L	J
Bromomethane	74-83-9	1	0.23	1.00	ND	ug/L	U
Chloroethane	75-00-3	1	0.05	0.20	ND	ug/L	U
Trichlorofluoromethane	75-69-4	1	0.13	0.20	ND	ug/L	U
Acrolein	107-02-8	1	2.70	5.00	ND	ug/L	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	1	0.11	0.20	ND	ug/L	U
Acetone	67-64-1	1	1.91	5.00	1.92	ug/L	J
1,1-Dichloroethene	75-35-4	1	0.08	0.20	ND	ug/L	U
Iodomethane	74-88-4	1	0.15	1.00	ND	ug/L	U
Methylene Chloride	75-09-2	1	0.53	1.00	ND	ug/L	U
Acrylonitrile	107-13-1	1	0.40	1.00	ND	ug/L	U
Carbon Disulfide	75-15-0	1	0.06	0.20	ND	ug/L	U
trans-1,2-Dichloroethene	156-60-5	1	0.07	0.20	ND	ug/L	U
Vinyl Acetate	108-05-4	1	0.12	0.20	ND	ug/L	U
1,1-Dichloroethane	75-34-3	1	0.04	0.20	ND	ug/L	U
2-Butanone	78-93-3	1	1.77	5.00	ND	ug/L	U
2,2-Dichloropropane	594-20-7	1	0.11	0.20	ND	ug/L	U
cis-1,2-Dichloroethene	156-59-2	1	0.08	0.20	0.11	ug/L	J
Chloroform	67-66-3	1	0.05	0.20	ND	ug/L	U
Bromochloromethane	74-97-5	1	0.09	0.20	ND	ug/L	U
1,1,1-Trichloroethane	71-55-6	1	0.08	0.20	ND	ug/L	U
1,1-Dichloropropene	563-58-6	1	0.09	0.20	ND	ug/L	U
Carbon tetrachloride	56-23-5	1	0.09	0.20	ND	ug/L	U
1,2-Dichloroethane	107-06-2	1	0.08	0.20	ND	ug/L	U
Benzene	71-43-2	1	0.05	0.20	ND	ug/L	U
Trichloroethene	79-01-6	1	0.07	0.20	ND	ug/L	U
1,2-Dichloropropane	78-87-5	1	0.07	0.20	ND	ug/L	U
Bromodichloromethane	75-27-4	1	0.09	0.20	ND	ug/L	U
Dibromomethane	74-95-3	1	0.06	0.20	ND	ug/L	U
2-Chloroethyl vinyl ether	110-75-8	1	0.55	1.00	ND	ug/L	U
4-Methyl-2-Pentanone	108-10-1	1	1.90	5.00	ND	ug/L	U

CALIBRE Project: Boeing Renton
- Project Number: Boeing Renton
--,- Project Manager: Tom McKeon 04-Apr-2024 13:12

B-060-01-032724 24C0645-01 (Water)

Volatile Organic Compounds

 Method: EPA 8260D
 Sampled: 03/27/2024 12:35

 Instrument: NT3 Analyst: LH
 Analyzed: 04/03/2024 14:49

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
cis-1,3-Dichloropropene	10061-01-5	1	0.09	0.20	ND	ug/L	U
Toluene	108-88-3	1	0.05	0.20	ND	ug/L	U
trans-1,3-Dichloropropene	10061-02-6	1	0.09	0.20	ND	ug/L	U
2-Hexanone	591-78-6	1	2.06	5.00	ND	ug/L	U
1,1,2-Trichloroethane	79-00-5	1	0.10	0.20	ND	ug/L	U
1,3-Dichloropropane	142-28-9	1	0.07	0.20	ND	ug/L	U
Tetrachloroethene	127-18-4	1	0.09	0.20	ND	ug/L	U
Dibromochloromethane	124-48-1	1	0.09	0.20	ND	ug/L	U
1,2-Dibromoethane	106-93-4	1	0.09	0.20	ND	ug/L	U
Chlorobenzene	108-90-7	1	0.06	0.20	ND	ug/L	U
Ethylbenzene	100-41-4	1	0.05	0.20	ND	ug/L	U
1,1,1,2-Tetrachloroethane	630-20-6	1	0.09	0.20	ND	ug/L	U
m,p-Xylene	179601-23-1	1	0.14	0.40	ND	ug/L	U
o-Xylene	95-47-6	1	0.08	0.20	ND	ug/L	U
Xylenes, total	1330-20-7	1	0.22	0.60	ND	ug/L	U
Styrene	100-42-5	1	0.09	0.20	ND	ug/L	U
Bromoform	75-25-2	1	0.15	0.20	ND	ug/L	U
1,1,2,2-Tetrachloroethane	79-34-5	1	0.03	0.20	ND	ug/L	U
1,2,3-Trichloropropane	96-18-4	1	0.16	0.50	ND	ug/L	U
trans-1,4-Dichloro 2-Butene	110-57-6	1	0.60	1.00	ND	ug/L	U
n-Propylbenzene	103-65-1	1	0.07	0.20	ND	ug/L	U
Bromobenzene	108-86-1	1	0.07	0.20	ND	ug/L	U
Isopropyl Benzene	98-82-8	1	0.07	0.20	ND	ug/L	U
2-Chlorotoluene	95-49-8	1	0.06	0.20	ND	ug/L	U
4-Chlorotoluene	106-43-4	1	0.06	0.20	ND	ug/L	U
t-Butylbenzene	98-06-6	1	0.07	0.20	ND	ug/L	U
1,3,5-Trimethylbenzene	108-67-8	1	0.07	0.20	ND	ug/L	U
1,2,4-Trimethylbenzene	95-63-6	1	0.05	0.20	ND	ug/L	U
s-Butylbenzene	135-98-8	1	0.06	0.20	ND	ug/L	U
4-Isopropyl Toluene	99-87-6	1	0.08	0.20	ND	ug/L	U
1,3-Dichlorobenzene	541-73-1	1	0.08	0.20	ND	ug/L	U
1,4-Dichlorobenzene	106-46-7	1	0.10	0.20	ND	ug/L	U
n-Butylbenzene	104-51-8	1	0.18	0.20	ND	ug/L	U
1,2-Dichlorobenzene	95-50-1	1	0.08	0.20	ND	ug/L	U
1,2-Dibromo-3-chloropropane	96-12-8	1	0.39	0.50	ND	ug/L	U
1,2,4-Trichlorobenzene	120-82-1	1	0.21	0.50	ND	ug/L	U
Hexachloro-1,3-Butadiene	87-68-3	1	1.00	2.00	ND	ug/L	U
Naphthalene	91-20-3	1	0.27	0.50	ND	ug/L	U

 CALIBRE
 Project: Boeing Renton

 Project Number: Boeing Renton
 Reported:

 --, Project Manager: Tom McKeon
 04-Apr-2024 13:12

B-060-01-032724 24C0645-01 (Water)

Volatile Organic Compounds

 Method: EPA 8260D
 Sampled: 03/27/2024 12:35

 Instrument: NT3
 Analyst: LH

 Analyzed: 04/03/2024 14:49

Analyte	CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
1,2,3-Trichlorobenzene	87-61-6	1	0.25	0.50	ND	ug/L	U
Dichlorodifluoromethane	75-71-8	1	0.13	0.20	ND	ug/L	U
Methyl tert-butyl Ether	1634-04-4	1	0.14	0.50	ND	ug/L	U
2-Pentanone	107-87-9	1	2.34	5.00	ND	ug/L	U
Surrogate: 1,2-Dichloroethane-d4				80-129 %	103	%	
Surrogate: Toluene-d8				80-120 %	95.4	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	106	%	
Surrogate: 1,2-Dichlorobenzene-d4				80-120 %	103	%	

Extract ID: 24C0645-02 A

CALIBRE Project: Boeing Renton

- Project Number: Boeing Renton

--,Project Manager: Tom McKeon

04-Apr-2024 13:12

B-060-02-032724 24C0645-02 (Water)

Volatile Organic Compounds

 Method: EPA 8260D
 Sampled: 03/27/2024 13:25

 Instrument: NT3
 Analyst: LH

 Analyzed: 04/03/2024 15:11

Sample Preparation: Preparation Method: EPA 5030C (Purge and Trap)

Preparation Batch: BMD0082 Sample Size: 10 mL Prepared: 04/03/2024 Final Volume: 10 mL

Prepared: 04/03/2024	Final Volume: I	10 mL					
			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Chloromethane	74-87-3	1	0.27	0.50	ND	ug/L	U
Vinyl Chloride	75-01-4	1	0.08	0.20	0.29	ug/L	
Bromomethane	74-83-9	1	0.23	1.00	ND	ug/L	U
Chloroethane	75-00-3	1	0.05	0.20	ND	ug/L	U
Trichlorofluoromethane	75-69-4	1	0.13	0.20	ND	ug/L	U
Acrolein	107-02-8	1	2.70	5.00	ND	ug/L	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	1	0.11	0.20	ND	ug/L	U
Acetone	67-64-1	1	1.91	5.00	ND	ug/L	U
1,1-Dichloroethene	75-35-4	1	0.08	0.20	ND	ug/L	U
Iodomethane	74-88-4	1	0.15	1.00	ND	ug/L	U
Methylene Chloride	75-09-2	1	0.53	1.00	ND	ug/L	U
Acrylonitrile	107-13-1	1	0.40	1.00	ND	ug/L	U
Carbon Disulfide	75-15-0	1	0.06	0.20	ND	ug/L	U
trans-1,2-Dichloroethene	156-60-5	1	0.07	0.20	ND	ug/L	U
Vinyl Acetate	108-05-4	1	0.12	0.20	ND	ug/L	U
1,1-Dichloroethane	75-34-3	1	0.04	0.20	ND	ug/L	U
2-Butanone	78-93-3	1	1.77	5.00	ND	ug/L	U
2,2-Dichloropropane	594-20-7	1	0.11	0.20	ND	ug/L	U
cis-1,2-Dichloroethene	156-59-2	1	0.08	0.20	0.15	ug/L	J
Chloroform	67-66-3	1	0.05	0.20	ND	ug/L	U
Bromochloromethane	74-97-5	1	0.09	0.20	ND	ug/L	U
1,1,1-Trichloroethane	71-55-6	1	0.08	0.20	ND	ug/L	U
1,1-Dichloropropene	563-58-6	1	0.09	0.20	ND	ug/L	U
Carbon tetrachloride	56-23-5	1	0.09	0.20	ND	ug/L	U
1,2-Dichloroethane	107-06-2	1	0.08	0.20	ND	ug/L	U
Benzene	71-43-2	1	0.05	0.20	ND	ug/L	U
Trichloroethene	79-01-6	1	0.07	0.20	ND	ug/L	U
1,2-Dichloropropane	78-87-5	1	0.07	0.20	ND	ug/L	U
Bromodichloromethane	75-27-4	1	0.09	0.20	ND	ug/L	U
Dibromomethane	74-95-3	1	0.06	0.20	ND	ug/L	U
2-Chloroethyl vinyl ether	110-75-8	1	0.55	1.00	ND	ug/L	U
4-Methyl-2-Pentanone	108-10-1	1	1.90	5.00	ND	ug/L	U
cis-1,3-Dichloropropene	10061-01-5	1	0.09	0.20	ND	ug/L	U
Toluene	108-88-3	1	0.05	0.20	ND	ug/L	U
trans-1,3-Dichloropropene	10061-02-6	1	0.09	0.20	ND	ug/L	U

CALIBRE Project: Boeing Renton

- Project Number: Boeing Renton

--,Project Manager: Tom McKeon

Reported:
04-Apr-2024 13:12

B-060-02-032724 24C0645-02 (Water)

Volatile Organic Compounds

 Method: EPA 8260D
 Sampled: 03/27/2024 13:25

 Instrument: NT3
 Analyst: LH

 Analyzed: 04/03/2024 15:11

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
2-Hexanone	591-78-6	1	2.06	5.00	ND	ug/L	U
1,1,2-Trichloroethane	79-00-5	1	0.10	0.20	ND	ug/L	U
1,3-Dichloropropane	142-28-9	1	0.07	0.20	ND	ug/L	U
Tetrachloroethene	127-18-4	1	0.09	0.20	ND	ug/L	U
Dibromochloromethane	124-48-1	1	0.09	0.20	ND	ug/L	U
1,2-Dibromoethane	106-93-4	1	0.09	0.20	ND	ug/L	U
Chlorobenzene	108-90-7	1	0.06	0.20	ND	ug/L	U
Ethylbenzene	100-41-4	1	0.05	0.20	ND	ug/L	U
1,1,1,2-Tetrachloroethane	630-20-6	1	0.09	0.20	ND	ug/L	U
m,p-Xylene	179601-23-1	1	0.14	0.40	ND	ug/L	U
o-Xylene	95-47-6	1	0.08	0.20	ND	ug/L	U
Xylenes, total	1330-20-7	1	0.22	0.60	ND	ug/L	U
Styrene	100-42-5	1	0.09	0.20	ND	ug/L	U
Bromoform	75-25-2	1	0.15	0.20	ND	ug/L	U
1,1,2,2-Tetrachloroethane	79-34-5	1	0.03	0.20	ND	ug/L	U
1,2,3-Trichloropropane	96-18-4	1	0.16	0.50	ND	ug/L	U
trans-1,4-Dichloro 2-Butene	110-57-6	1	0.60	1.00	ND	ug/L	U
n-Propylbenzene	103-65-1	1	0.07	0.20	ND	ug/L	U
Bromobenzene	108-86-1	1	0.07	0.20	ND	ug/L	U
Isopropyl Benzene	98-82-8	1	0.07	0.20	ND	ug/L	U
2-Chlorotoluene	95-49-8	1	0.06	0.20	ND	ug/L	U
4-Chlorotoluene	106-43-4	1	0.06	0.20	ND	ug/L	U
t-Butylbenzene	98-06-6	1	0.07	0.20	ND	ug/L	U
1,3,5-Trimethylbenzene	108-67-8	1	0.07	0.20	ND	ug/L	U
1,2,4-Trimethylbenzene	95-63-6	1	0.05	0.20	ND	ug/L	U
s-Butylbenzene	135-98-8	1	0.06	0.20	ND	ug/L	U
4-Isopropyl Toluene	99-87-6	1	0.08	0.20	ND	ug/L	U
1,3-Dichlorobenzene	541-73-1	1	0.08	0.20	ND	ug/L	U
1,4-Dichlorobenzene	106-46-7	1	0.10	0.20	ND	ug/L	U
n-Butylbenzene	104-51-8	1	0.18	0.20	ND	ug/L	U
1,2-Dichlorobenzene	95-50-1	1	0.08	0.20	ND	ug/L	U
1,2-Dibromo-3-chloropropane	96-12-8	1	0.39	0.50	ND	ug/L	U
1,2,4-Trichlorobenzene	120-82-1	1	0.21	0.50	ND	ug/L	U
Hexachloro-1,3-Butadiene	87-68-3	1	1.00	2.00	ND	ug/L	U
Naphthalene	91-20-3	1	0.27	0.50	ND	ug/L	U
1,2,3-Trichlorobenzene	87-61-6	1	0.25	0.50	ND	ug/L	U
Dichlorodifluoromethane	75-71-8	1	0.13	0.20	ND	ug/L	U
Methyl tert-butyl Ether	1634-04-4	1	0.14	0.50	ND	ug/L	U

CALIBRE Project: Boeing Renton
- Project Number: Boeing Renton
--,- Project Manager: Tom McKeon 04-Apr-2024 13:12

B-060-02-032724 24C0645-02 (Water)

Volatile Organic Compounds

 Method: EPA 8260D
 Sampled: 03/27/2024 13:25

 Instrument: NT3
 Analyst: LH

 Analyzed: 04/03/2024 15:11

Analyte	CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
2-Pentanone	107-87-9	1	2.34	5.00	ND	ug/L	U
Surrogate: 1,2-Dichloroethane-d4				80-129 %	112	%	
Surrogate: Toluene-d8				80-120 %	96.2	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	109	%	
Surrogate: 1,2-Dichlorobenzene-d4				80-120 %	102	%	

Extract ID: 24C0645-03 A

CALIBRE Project: Boeing Renton

- Project Number: Boeing Renton

--,Project Manager: Tom McKeon

04-Apr-2024 13:12

B-090-02-032724 24C0645-03 (Water)

Volatile Organic Compounds

 Method: EPA 8260D
 Sampled: 03/27/2024 14:35

 Instrument: NT3
 Analyst: LH

 Analyzed: 04/03/2024 15:33

Sample Preparation: Preparation Method: EPA 5030C (Purge and Trap)

Preparation Batch: BMD0082 Sample Size: 10 mL Prepared: 04/03/2024 Final Volume: 10 mI

Analyte Chloromethane Vinyl Chloride	CAS Number 74-87-3 75-01-4 74-83-9	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Chloromethane Vinyl Chloride	74-87-3 75-01-4			Limit	Result	Units	Notes
Vinyl Chloride	75-01-4	1	0.0-				110103
3			0.27	0.50	ND	ug/L	U
	74.92.0	1	0.08	0.20	0.18	ug/L	J
Bromomethane	/4-03-9	1	0.23	1.00	ND	ug/L	U
Chloroethane	75-00-3	1	0.05	0.20	ND	ug/L	U
Trichlorofluoromethane	75-69-4	1	0.13	0.20	ND	ug/L	U
Acrolein	107-02-8	1	2.70	5.00	ND	ug/L	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	1	0.11	0.20	ND	ug/L	U
Acetone	67-64-1	1	1.91	5.00	ND	ug/L	U
1,1-Dichloroethene	75-35-4	1	0.08	0.20	ND	ug/L	U
Iodomethane	74-88-4	1	0.15	1.00	ND	ug/L	U
Methylene Chloride	75-09-2	1	0.53	1.00	ND	ug/L	U
Acrylonitrile	107-13-1	1	0.40	1.00	ND	ug/L	U
Carbon Disulfide	75-15-0	1	0.06	0.20	0.11	ug/L	J
trans-1,2-Dichloroethene	156-60-5	1	0.07	0.20	ND	ug/L	U
Vinyl Acetate	108-05-4	1	0.12	0.20	ND	ug/L	U
1,1-Dichloroethane	75-34-3	1	0.04	0.20	ND	ug/L	U
2-Butanone	78-93-3	1	1.77	5.00	ND	ug/L	U
2,2-Dichloropropane	594-20-7	1	0.11	0.20	ND	ug/L	U
cis-1,2-Dichloroethene	156-59-2	1	0.08	0.20	0.09	ug/L	J
Chloroform	67-66-3	1	0.05	0.20	ND	ug/L	U
Bromochloromethane	74-97-5	1	0.09	0.20	ND	ug/L	U
1,1,1-Trichloroethane	71-55-6	1	0.08	0.20	ND	ug/L	U
1,1-Dichloropropene	563-58-6	1	0.09	0.20	ND	ug/L	U
Carbon tetrachloride	56-23-5	1	0.09	0.20	ND	ug/L	U
1,2-Dichloroethane	107-06-2	1	0.08	0.20	ND	ug/L	U
Benzene	71-43-2	1	0.05	0.20	ND	ug/L	U
Trichloroethene	79-01-6	1	0.07	0.20	ND	ug/L	U
1,2-Dichloropropane	78-87-5	1	0.07	0.20	ND	ug/L	U
Bromodichloromethane	75-27-4	1	0.09	0.20	ND	ug/L	U
Dibromomethane	74-95-3	1	0.06	0.20	ND	ug/L	U
2-Chloroethyl vinyl ether	110-75-8	1	0.55	1.00	ND	ug/L	U
4-Methyl-2-Pentanone	108-10-1	1	1.90	5.00	ND	ug/L	U
cis-1,3-Dichloropropene	10061-01-5	1	0.09	0.20	ND	ug/L	U
Toluene	108-88-3	1	0.05	0.20	ND	ug/L	U
trans-1,3-Dichloropropene	10061-02-6	1	0.09	0.20	ND	ug/L	U

CALIBRE Project: Boeing Renton

- Project Number: Boeing Renton

--,Project Manager: Tom McKeon

04-Apr-2024 13:12

B-090-02-032724 24C0645-03 (Water)

Volatile Organic Compounds

 Method: EPA 8260D
 Sampled: 03/27/2024 14:35

 Instrument: NT3
 Analyst: LH

 Analyzed: 04/03/2024 15:33

nalyte CAS Number -Hexanone 591-78 .1,2-Trichloroethane 79-00 .3-Dichloropropane 142-28 etrachloroethene 127-18 ibromochloromethane 124-48 .2-Dibromoethane 106-93 hlorobenzene 108-90 thylbenzene 100-41 .1,1,2-Tetrachloroethane 630-20 .p-Xylene 179601-23 -Xylene, tylene, total 1330-20 tyrene 100-42 romoform 75-25	3-6 1 3-5 1 3-9 1 3-4 1 3-1 1 1-4 1 1-7 1	2.06 0.10 0.07 0.09 0.09	5.00 0.20 0.20 0.20 0.20	Result ND ND ND ND ND ND	Units ug/L ug/L ug/L	Notes U U U
1,2-Trichloroethane 79-00 ,3-Dichloropropane 142-28 etrachloroethene 127-18 ibromochloromethane 124-48 ,2-Dibromoethane 106-93 hlorobenzene 108-90 thylbenzene 100-41 ,1,1,2-Tetrachloroethane 630-20 ,2-Xylene 179601-23 -Xylene, total 1330-20 tyrene 100-42 romoform 75-25	0-5 1 1-9 1 1-4 1 1-1 1 1-4 1 10-7 1	0.10 0.07 0.09 0.09 0.09	0.20 0.20 0.20	ND ND	ug/L	U
3-Dichloropropane 142-28 etrachloroethene 127-18 ibromochloromethane 124-48 2-Dibromoethane 106-93 hlorobenzene 108-90 thylbenzene 100-41 1,1,2-Tetrachloroethane 630-20 1,2-Xylene 179601-23 -Xylene 95-47 ylenes, total 1330-20 tyrene 100-42 romoform 75-25	3-9 1 3-4 1 3-1 1 3-4 1 3-7 1 3-4 1	0.07 0.09 0.09 0.09	0.20 0.20	ND	-	
tetrachloroethene 127-18 dibromochloromethane 124-48 2-Dibromoethane 106-93 hlorobenzene 108-90 thylbenzene 100-41 ,1,1,2-Tetrachloroethane 630-20 ,p-Xylene 179601-23 -Xylene 95-47 ylenes, total 1330-20 tyrene 100-42 romoform 75-25	3-4 1 3-1 1 3-4 1 3-7 1 -4 1	0.09 0.09 0.09	0.20		ug/L	II
sibromochloromethane 124-48 2-Dibromoethane 106-93 hlorobenzene 108-90 thylbenzene 100-41 ,1,1,2-Tetrachloroethane 630-20 ,p-Xylene 179601-23 x-Xylene 95-47 ylenes, total 1330-20 tyrene 100-42 romoform 75-25	3-1 1 3-4 1 0-7 1 -4 1	0.09 0.09		ND		U
2-Dibromoethane 106-93 hlorobenzene 108-96 thylbenzene 100-41 1,1,2-Tetrachloroethane 630-26 xp-Xylene 179601-23 xXylene 95-47 ylenes, total 1330-26 tyrene 100-42 romoform 75-25	1-4 1 1-7 1 -4 1	0.09	0.20		ug/L	U
hlorobenzene 108-90 thylbenzene 100-41 .1,1,2-Tetrachloroethane 630-20 .pXylene 179601-23 .Xylene 95-47 tylenes, total 1330-20 tyrene 100-42 romoform 75-25	0-7 1 -4 1			ND	ug/L	U
thylbenzene 100-41 1,1,2-Tetrachloroethane 630-20 1,p-Xylene 179601-23 2,Yylene 95-47 1ylenes, total 1330-20 tyrene 100-42 romoform 75-25	-4 1	0.00	0.20	ND	ug/L	U
1,1,2-Tetrachloroethane 630-20 2,p-Xylene 179601-23 2,Yylene 95-47 2,ylenes, total 1330-20 2,tyrene 100-42 2,romoform 75-25		0.06	0.20	ND	ug/L	U
Lp-Xylene 179601-23 -Xylene 95-47 (ylenes, total) 1330-20 tyrene 100-42 romoform 75-25		0.05	0.20	ND	ug/L	U
-Xylene 95-47 ylenes, total 1330-20 tyrene 100-42 romoform 75-25)-6 1	0.09	0.20	ND	ug/L	U
ylenes, total 1330-20 tyrene 100-42 romoform 75-25	-1 1	0.14	0.40	ND	ug/L	U
tyrene 100-42 romoform 75-25	'-6 1	0.08	0.20	ND	ug/L	U
romoform 75-25)-7 1	0.22	0.60	ND	ug/L	U
	2-5 1	0.09	0.20	ND	ug/L	U
	i-2 1	0.15	0.20	ND	ug/L	U
,1,2,2-Tetrachloroethane 79-34	-5 1	0.03	0.20	ND	ug/L	U
2,3-Trichloropropane 96-18	3-4 1	0.16	0.50	ND	ug/L	U
ans-1,4-Dichloro 2-Butene 110-57	'-6 1	0.60	1.00	ND	ug/L	U
Propylbenzene 103-65	i-1 1	0.07	0.20	ND	ug/L	U
romobenzene 108-86	5-1 1	0.07	0.20	ND	ug/L	U
opropyl Benzene 98-82	2-8 1	0.07	0.20	ND	ug/L	U
-Chlorotoluene 95-49	9-8 1	0.06	0.20	ND	ug/L	U
-Chlorotoluene 106-43	1-4	0.06	0.20	ND	ug/L	U
Butylbenzene 98-06	5-6	0.07	0.20	ND	ug/L	U
3,5-Trimethylbenzene 108-67	'-8 1	0.07	0.20	ND	ug/L	U
2,4-Trimethylbenzene 95-63	1-6	0.05	0.20	ND	ug/L	U
Butylbenzene 135-98	3-8 1	0.06	0.20	ND	ug/L	U
-Isopropyl Toluene 99-87	7-6 1	0.08	0.20	ND	ug/L	U
3-Dichlorobenzene 541-73	-1 1	0.08	0.20	ND	ug/L	U
4-Dichlorobenzene 106-46	5-7 1	0.10	0.20	ND	ug/L	U
Butylbenzene 104-51	-8 1	0.18	0.20	ND	ug/L	U
2-Dichlorobenzene 95-50)-1 1	0.08	0.20	ND	ug/L	U
2-Dibromo-3-chloropropane 96-12	2-8 1	0.39	0.50	ND	ug/L	U
2,4-Trichlorobenzene 120-82	2-1 1	0.21	0.50	ND	ug/L	U
exachloro-1,3-Butadiene 87-68	3-3 1	1.00	2.00	ND	ug/L	U
aphthalene 91-20)-3 1	0.27	0.50	ND	ug/L	U
2,3-Trichlorobenzene 87-61	-6 1	0.35				
richlorodifluoromethane 75-71		0.25	0.50	ND	ug/L	U
Tethyl tert-butyl Ether 1634-04	-8 1	0.25	0.50 0.20	ND ND	ug/L ug/L	U U

 CALIBRE
 Project: Boeing Renton

 Project Number: Boeing Renton
 Reported:

 --, Project Manager: Tom McKeon
 04-Apr-2024 13:12

B-090-02-032724 24C0645-03 (Water)

Volatile Organic Compounds

 Method: EPA 8260D
 Sampled: 03/27/2024 14:35

 Instrument: NT3
 Analyst: LH

 Analyzed: 04/03/2024 15:33

Analyte	CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
2-Pentanone	107-87-9	1	2.34	5.00	ND	ug/L	U
Surrogate: 1,2-Dichloroethane-d4				80-129 %	101	%	
Surrogate: Toluene-d8				80-120 %	95.2	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	99.9	%	
Surrogate: 1,2-Dichlorobenzene-d4				80-120 %	100	%	

Extract ID: 24C0645-04 A

CALIBRE Project: Boeing Renton

- Project Number: Boeing Renton

--,Project Manager: Tom McKeon

04-Apr-2024 13:12

DUP01-032724 24C0645-04 (Water)

Volatile Organic Compounds

 Method: EPA 8260D
 Sampled: 03/27/2024 08:00

 Instrument: NT3
 Analyst: LH

 Analyzed: 04/03/2024 15:55

Sample Preparation: Preparation Method: EPA 5030C (Purge and Trap)

Preparation Batch: BMD0082 Sample Size: 10 mL Prepared: 04/03/2024 Final Volume: 10 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Chloromethane	74-87-3	1	0.27	0.50	ND	ug/L	U
Vinyl Chloride	75-01-4	1	0.08	0.20	0.17	ug/L	J
Bromomethane	74-83-9	1	0.23	1.00	ND	ug/L	U
Chloroethane	75-00-3	1	0.05	0.20	ND	ug/L	U
Trichlorofluoromethane	75-69-4	1	0.13	0.20	ND	ug/L	U
Acrolein	107-02-8	1	2.70	5.00	ND	ug/L	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	1	0.11	0.20	ND	ug/L	U
Acetone	67-64-1	1	1.91	5.00	6.61	ug/L	
1,1-Dichloroethene	75-35-4	1	0.08	0.20	ND	ug/L	U
Iodomethane	74-88-4	1	0.15	1.00	ND	ug/L	U
Methylene Chloride	75-09-2	1	0.53	1.00	ND	ug/L	U
Acrylonitrile	107-13-1	1	0.40	1.00	ND	ug/L	U
Carbon Disulfide	75-15-0	1	0.06	0.20	0.10	ug/L	J
trans-1,2-Dichloroethene	156-60-5	1	0.07	0.20	ND	ug/L	U
Vinyl Acetate	108-05-4	1	0.12	0.20	ND	ug/L	U
1,1-Dichloroethane	75-34-3	1	0.04	0.20	ND	ug/L	U
2-Butanone	78-93-3	1	1.77	5.00	ND	ug/L	U
2,2-Dichloropropane	594-20-7	1	0.11	0.20	ND	ug/L	U
cis-1,2-Dichloroethene	156-59-2	1	0.08	0.20	0.09	ug/L	J
Chloroform	67-66-3	1	0.05	0.20	ND	ug/L	U
Bromochloromethane	74-97-5	1	0.09	0.20	ND	ug/L	U
1,1,1-Trichloroethane	71-55-6	1	0.08	0.20	ND	ug/L	U
1,1-Dichloropropene	563-58-6	1	0.09	0.20	ND	ug/L	U
Carbon tetrachloride	56-23-5	1	0.09	0.20	ND	ug/L	U
1,2-Dichloroethane	107-06-2	1	0.08	0.20	ND	ug/L	U
Benzene	71-43-2	1	0.05	0.20	ND	ug/L	U
Trichloroethene	79-01-6	1	0.07	0.20	ND	ug/L	U
1,2-Dichloropropane	78-87-5	1	0.07	0.20	ND	ug/L	U
Bromodichloromethane	75-27-4	1	0.09	0.20	ND	ug/L	U
Dibromomethane	74-95-3	1	0.06	0.20	ND	ug/L	U
2-Chloroethyl vinyl ether	110-75-8	1	0.55	1.00	ND	ug/L	U
4-Methyl-2-Pentanone	108-10-1	1	1.90	5.00	ND	ug/L	U
cis-1,3-Dichloropropene	10061-01-5	1	0.09	0.20	ND	ug/L	U
Toluene	108-88-3	1	0.05	0.20	ND	ug/L	U
trans-1,3-Dichloropropene	10061-02-6	1	0.09	0.20	ND	ug/L	U
						-	

 CALIBRE
 Project: Boeing Renton

 Project Number: Boeing Renton
 Reported:

 --, Project Manager: Tom McKeon
 04-Apr-2024 13:12

DUP01-032724 24C0645-04 (Water)

Volatile Organic Compounds

 Method: EPA 8260D
 Sampled: 03/27/2024 08:00

 Instrument: NT3
 Analyst: LH

 Analyzed: 04/03/2024 15:55

2-Hiscanone				Detection	Reporting			
1,12-Trichloroethane	Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
1,3-Dichloropropane	2-Hexanone	591-78-6	1	2.06	5.00	ND	ug/L	U
Tetnachloroethene 127-18-4 1 0,09 0,20 ND ug/L L Dibromochloromethane 124-48-1 1 0,09 0,20 ND ug/L L Chloroberone 106-93-4 1 0,09 0,20 ND ug/L L Eltylbenzene 100-41-4 1 0,05 0,20 ND ug/L L Lil,1,2-Tetnachloroethane 30-20-6 1 0,09 0,20 ND ug/L L ny-Sylene 17901-23-1 1 0,14 0,40 ND ug/L L Sylenes, total 133-02-7 1 0,22 0,60 ND ug/L L Sylenes, total 133-02-7 1 0,92 0,0 ND ug/L L Sylenes, total 133-02-7 1 0,92 0,0 ND ug/L L Sylenes, total 13 0,0 0,0 ND ug/L L Lylenes, total <t< td=""><td>1,1,2-Trichloroethane</td><td>79-00-5</td><td>1</td><td>0.10</td><td>0.20</td><td>ND</td><td>ug/L</td><td>U</td></t<>	1,1,2-Trichloroethane	79-00-5	1	0.10	0.20	ND	ug/L	U
Dibromochloromethane	1,3-Dichloropropane	142-28-9	1	0.07	0.20	ND	ug/L	U
1,2-Dibrimonchane 106-93-4 1 0.09 0.20 ND ug/L 1 1 1 1 1 1 1 1 1	Tetrachloroethene	127-18-4	1	0.09	0.20	ND	ug/L	U
Chlorobenzene 108-90-7 1 0.06 0.20 ND ugL L Ethylbenzene 100-41-4 1 0.05 0.20 ND ugL 0 m,2-Xylene 179601-23-1 1 0.14 0.04 ND ugL 0 o-Xylene 95-47-6 1 0.08 0.20 ND ugL 0 Styrene 130-92-7 1 0.02 0.06 ND ugL 0 Styrene 100-42-5 1 0.09 0.20 ND ugL 0 Styrene 100-42-5 1 0.09 0.20 ND ugL 0 Styrene 100-42-5 1 0.09 0.20 ND ugL 0 Styrene 100-60 0.00 0.00 ND ugL 0 0 ND ugL 0 0 ND ugL 0 0 ND ugL 0 0 0 ND ugL	Dibromochloromethane	124-48-1	1	0.09	0.20	ND	ug/L	U
Ethylbenzene 100-41-4 1 0.05 0.20 ND ug/L 1 1,1,1,2-Ertenkloroethane 630-20-6 1 0.09 0.20 ND ug/L 0 m-y-Xylene 176601-23-1 1 0.08 0.20 ND ug/L 0 Xylene 95-47-6 1 0.08 0.20 ND ug/L 0 Slyrene 1330-20-7 1 0.22 0.60 ND ug/L 0 Bromoform 75-25-2 1 0.03 0.20 ND ug/L 0 1,2,2-Trickelhoroethane 79-34-5 1 0.03 0.20 ND ug/L 0 1,2,2-Trickelhoroethane 19-6-18-4 1 0.01 0.00 ND ug/L 0 1,2,2-Trickelhoroethane 19-6-18-4 1 0.03 0.20 ND ug/L 0 1,2,2-Trickelhoroebrane 110-5-7 1 0.07 0.20 ND ug/L 0	1,2-Dibromoethane	106-93-4	1	0.09	0.20	ND	ug/L	U
1,1,2-Tetrachloroethane 630-20-6 1	Chlorobenzene	108-90-7	1	0.06	0.20	ND	ug/L	U
mp-Xylene 179601-23-1 1 0.14 0.40 ND ug/L 1 o-Xylene 95-47-6 1 0.08 0.20 ND ug/L 0.00 Sylenes, toal 1330-20-7 1 0.02 0.60 ND ug/L 0.00 Styrene 100-42-5 1 0.09 0.20 ND ug/L 0.00 Bromoform 75-25-2 1 0.15 0.20 ND ug/L 0.00 1,2,2-Tetrachlorochane 96-18-4 1 0.16 0.50 ND ug/L 0.00 1,2,3-Trichloropropane 96-18-4 1 0.16 0.50 ND ug/L 0.00 1,2,3-Trichloropropane 101-57-6 1 0.00 0.00 ND ug/L 0.00 1,2,3-Trichloropropane 101-57-6 1 0.07 0.20 ND ug/L 0.00 1,2-Drichloropropane 102-57-6 1 0.07 0.20 ND ug/L 0.00	Ethylbenzene	100-41-4	1	0.05	0.20	ND	ug/L	U
o-Xylene 95-47-6 1 0.08 0.20 ND ug/L C Xylenes, total 1330-207 1 0.22 0.60 ND ug/L 0 Styrene 100-42-5 1 0.09 0.20 ND ug/L 0 Incomporm 75-25-2 1 0.15 0.20 ND ug/L 0 1,1,2,2-Tetrachloroethane 79-34-5 1 0.03 0.20 ND ug/L 0 1,2,3-Trichloropropane 96-18-4 1 0.60 0.50 ND ug/L 0 n-PropylBenzene 1103-65-1 1 0.60 0.50 ND ug/L 0 Bornobenzene 108-86-1 1 0.07 0.20 ND ug/L 0 Septopyl Benzene 98-82-8 1 0.07 0.20 ND ug/L 0 4-Chlorotoluene 99-83-6 1 0.06 0.20 ND ug/L 0 4-Butylbenzene<	1,1,1,2-Tetrachloroethane	630-20-6	1	0.09	0.20	ND	ug/L	U
Xylenes, total 1330-20-7 1 0.22 0.60 ND ug/L 1 1 1 1 1 1 1 1 1	m,p-Xylene	179601-23-1	1	0.14	0.40	ND	ug/L	U
Syrene 100-42-5 1 0.09 0.20 ND ug/L ND Bromoform 75-25-2 1 0.15 0.20 ND ug/L 0.00 1,1,2,2-Tetrachloroethane 79-34-5 1 0.03 0.20 ND ug/L 0.00 1,2,3-Trichloroperpane 96-18-4 1 0.16 0.50 ND ug/L 0.00 1,2,3-Trichloroperpane 103-65-1 1 0.07 0.20 ND ug/L 0.00 1-Propylbenzene 103-65-1 1 0.07 0.20 ND ug/L 0.00 1-Propylbenzene 108-86-1 1 0.07 0.20 ND ug/L 0.00 1-Propylbenzene 98-82-8 1 0.07 0.20 ND ug/L 0.00 2-Chlorotoluene 99-84-8 1 0.06 0.20 ND ug/L 0.00 1-Butylbenzene 196-43-4 1 0.06 0.20 ND ug/L 0.00	o-Xylene	95-47-6	1	0.08	0.20	ND	ug/L	U
Bromoform 75-25-2 1 0.15 0.20 ND 0g/L 1 1,1,2,2-Tetrachlorochane 79-34-5 1 0.03 0.20 ND 0g/L 0.15 1,2,3-Trichloropane 96-18-4 1 0.16 0.50 ND 0g/L 0.15 0.10	Xylenes, total	1330-20-7	1	0.22	0.60	ND	ug/L	U
1,1,2,2-Tetrachloroethane 79-34-5 1 0.03 0.20 ND ug/L 1 1,2,3-Trichloropropane 96-18-4 1 0.16 0.50 ND ug/L 0.00 trans-1,4-Dichloro 2-Butene 110-57-6 1 0.60 1.00 ND ug/L 0.00 Bromobenzene 103-65-1 1 0.07 0.20 ND ug/L 0.00 Bromobenzene 108-86-1 1 0.07 0.20 ND ug/L 0.00 spropyl Benzene 98-82-8 1 0.06 0.20 ND ug/L 0.00 2-Chlorotoluene 95-49-8 1 0.06 0.20 ND ug/L 0.00 4-Chlorotoluene 166-43-4 1 0.06 0.20 ND ug/L 0.00 1,3-5-Trimethylbenzene 188-66-6 1 0.07 0.20 ND ug/L 0.00 1,2-4-Trimethylbenzene 198-67-8 1 0.05 0.20 ND ug/L </td <td>Styrene</td> <td>100-42-5</td> <td>1</td> <td>0.09</td> <td>0.20</td> <td>ND</td> <td>ug/L</td> <td>U</td>	Styrene	100-42-5	1	0.09	0.20	ND	ug/L	U
1,2,3-Trichloropropane	Bromoform	75-25-2	1	0.15	0.20	ND	ug/L	U
trans-1,4-Dichloro 2-Butene 110-57-6 1 0.60 1.00 ND ug/L 1.00 n-Propylbenzene 1103-65-1 1 0.07 0.20 ND ug/L 1.00 n-Propylbenzene 1108-86-1 1 0.07 0.20 ND ug/L 1.00 n-Propylbenzene 1106-34 1 0.06 0.20 ND ug/L 1.00 n-Propylbenzene 1106-34 1 0.06 0.20 ND ug/L 1.00 n-Propylbenzene 1108-67-8 1 0.07 0.20 ND ug/L 1.00 n-Propylbenzene 1108-67-8 1 0.08 0.20 ND ug/L 1.00 n-Propylbenzene 1106-46-7 1 0.08 0.20 ND ug/L 1.00 n-Propylbenzene 1108-67-8 1 0.08 0.20 ND ug/L 1.00	1,1,2,2-Tetrachloroethane	79-34-5	1	0.03	0.20	ND	ug/L	U
n-Propylbenzene 103-65-1 1 0.07 0.20 ND ug/L C Bromobenzene 108-86-1 1 0.07 0.20 ND ug/L 0 Isopropyl Benzene 98-82-8 1 0.07 0.20 ND ug/L 0 2-Chlorotoluene 95-49-8 1 0.06 0.20 ND ug/L 0 4-Chlorotoluene 106-43-4 1 0.06 0.20 ND ug/L 0 1-Butylbenzene 108-40-4 1 0.06 0.20 ND ug/L 0 1,3-5-Trimethylbenzene 108-67-8 1 0.07 0.20 ND ug/L 0 1,2-4-Trimethylbenzene 95-63-6 1 0.05 0.20 ND ug/L 0 8-Butylbenzene 153-98-8 1 0.06 0.20 ND ug/L 0 4-Isopropyl Toluene 541-73-1 1 0.08 0.20 ND ug/L 0	1,2,3-Trichloropropane	96-18-4	1	0.16	0.50	ND	ug/L	U
Brombenzene 108-86-1 1 0.07 0.20 ND ug/L 108	trans-1,4-Dichloro 2-Butene	110-57-6	1	0.60	1.00	ND	ug/L	U
Sopropyl Benzene 98-82-8 1 0.07 0.20 ND ug/L 12 2-12	n-Propylbenzene	103-65-1	1	0.07	0.20	ND	ug/L	U
2-Chlorotoluene 95-49-8 1 0.06 0.20 ND ug/L CL Chlorotoluene 106-43-4 1 0.06 0.20 ND ug/L CL CL EButylbenzene 98-06-6 1 0.07 0.20 ND ug/L CL	Bromobenzene	108-86-1	1	0.07	0.20	ND	ug/L	U
4-Chlorotoluene	Isopropyl Benzene	98-82-8	1	0.07	0.20	ND	ug/L	U
t-Butylbenzene 98-06-6 1 0.07 0.20 ND ug/L 1,3,5-Trimethylbenzene 108-67-8 1 0.07 0.20 ND ug/L 1,2,4-Trimethylbenzene 95-63-6 1 0.05 0.20 ND ug/L 1,2,4-Trimethylbenzene 135-98-8 1 0.06 0.20 ND ug/L 1,2,4-Independe 135-98-8 1 0.06 0.20 ND ug/L 1,2,4-Independe 135-98-8 1 0.06 0.20 ND ug/L 1,2,4-Independe 135-98-8 1 0.08 0.20 ND ug/L 1,3-Dichlorobenzene 106-46-7 1 0.08 0.20 ND ug/L 1,4-Dichlorobenzene 106-46-7 1 0.08 0.20 ND ug/L 1,4-Dichlorobenzene 104-51-8 1 0.10 0.20 ND ug/L 1,2-Dichlorobenzene 104-51-8 1 0.18 0.20 ND ug/L 1,2-Dichlorobenzene 95-50-1 1 0.08 0.20 ND ug/L 1,2-Dichlorobenzene 96-12-8 1 0.08 0.20 ND ug/L 1,2,4-Trichlorobenzene 120-82-1 1 0.21 0.50 ND ug/L 1,2,4-Trichlorobenzene 120-82-1 1 0.21 0.50 ND ug/L 1,2,4-Trichlorobenzene 120-82-1 1 0.21 0.50 ND ug/L 1,2,4-Trichlorobenzene 120-83-1 1.00 0.20 ND ug/L 1,2,3-Trichlorobenzene 191-20-3 1 0.27 0.50 ND ug/L 1,2,3-Trichlorobenzene 191-20-3 1 0.25 0.50 ND ug/L 1,2,3-Trichlorobenz	2-Chlorotoluene	95-49-8	1	0.06	0.20	ND	ug/L	U
1,3,5-Trimethylbenzene 108-67-8 1 0.07 0.20 ND ug/L 1 1,2,4-Trimethylbenzene 95-63-6 1 0.05 0.20 ND ug/L U s-Butylbenzene 135-98-8 1 0.06 0.20 ND ug/L U 4-Isopropyl Toluene 99-87-6 1 0.08 0.20 ND ug/L U 1,3-Dichlorobenzene 541-73-1 1 0.08 0.20 ND ug/L U 1,4-Dichlorobenzene 106-46-7 1 0.10 0.20 ND ug/L U n-Butylbenzene 104-51-8 1 0.18 0.20 ND ug/L U 1,2-Dichlorobenzene 95-50-1 1 0.08 0.20 ND ug/L U 1,2-Dibromo-3-chloropropane 96-12-8 1 0.39 0.50 ND ug/L U 1,2,4-Trichlorobenzene 87-68-3 1 0.21 0.50 ND ug/L U Naphthalene 91-20-3 1 0.27 0.50 ND <td>4-Chlorotoluene</td> <td>106-43-4</td> <td>1</td> <td>0.06</td> <td>0.20</td> <td>ND</td> <td>ug/L</td> <td>U</td>	4-Chlorotoluene	106-43-4	1	0.06	0.20	ND	ug/L	U
1,2,4-Trimethylbenzene 95-63-6 1 0.05 0.20 ND ug/L 1 s-Butylbenzene 135-98-8 1 0.06 0.20 ND ug/L 1 4-Isopropyl Toluene 99-87-6 1 0.08 0.20 ND ug/L 1 1,3-Dichlorobenzene 541-73-1 1 0.08 0.20 ND ug/L 1 1,4-Dichlorobenzene 106-46-7 1 0.10 0.20 ND ug/L 0 n-Butylbenzene 104-51-8 1 0.18 0.20 ND ug/L 0 1,2-Dichlorobenzene 95-50-1 1 0.08 0.20 ND ug/L 0 1,2-Dibromo-3-chloropropane 96-12-8 1 0.39 0.50 ND ug/L 0 1,2,4-Trichlorobenzene 120-82-1 1 0.21 0.50 ND ug/L 0 Naphthalene 87-68-3 1 1.00 2.00 ND ug/L 0 1,2,3-Trichlorobenzene 87-61-6 1 0.25 0.50 ND <td>t-Butylbenzene</td> <td>98-06-6</td> <td>1</td> <td>0.07</td> <td>0.20</td> <td>ND</td> <td>ug/L</td> <td>U</td>	t-Butylbenzene	98-06-6	1	0.07	0.20	ND	ug/L	U
s-Butylbenzene 135-98-8 1 0.06 0.20 ND ug/L 0.06 4-Isopropyl Toluene 99-87-6 1 0.08 0.20 ND ug/L 0.08 1,3-Dichlorobenzene 541-73-1 1 0.08 0.20 ND ug/L 0.08 1,4-Dichlorobenzene 106-46-7 1 0.10 0.20 ND ug/L 0.08 1,2-Dichlorobenzene 104-51-8 1 0.18 0.20 ND ug/L 0.09 1,2-Dichlorobenzene 95-50-1 1 0.08 0.20 ND ug/L 0.09 1,2-Dibromo-3-chloropropane 96-12-8 1 0.39 0.50 ND ug/L 0.09 1,2-A-Trichlorobenzene 120-82-1 1 0.21 0.50 ND ug/L 0.09 1,2-A-Trichlorobenzene 87-68-3 1 1.00 2.00 ND ug/L 0.09 1,2-A-Trichlorobenzene 91-20-3 1 0.27 0.50 ND ug/L 0.09 1,2-A-Trichlorobenzene 87-61-6 1 0.25 0.50 ND ug/L 0.09 1,2-A-Trichlorobenzene 97-5-71-8 1 0.13 0.20 ND ug/L 0.09 1,2-A-Trichlorobenzene 97-5-71-8 1 0.01 0.02 ND ug/L 0.00 ND ug	1,3,5-Trimethylbenzene	108-67-8	1	0.07	0.20	ND	ug/L	U
4-Isopropyl Toluene 99-87-6 1 0.08 0.20 ND ug/L 1,3-Dichlorobenzene 541-73-1 1 0.08 0.20 ND ug/L 1,4-Dichlorobenzene 106-46-7 1 0.10 0.20 ND ug/L 1 1 1 1,2-Dichlorobenzene 104-51-8 1 0.18 0.20 ND ug/L 1 1 1 1,2-Dichlorobenzene 95-50-1 1 0.08 0.20 ND ug/L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,2,4-Trimethylbenzene	95-63-6	1	0.05	0.20	ND	ug/L	U
1,3-Dichlorobenzene 541-73-1 1 0.08 0.20 ND ug/L U 1,4-Dichlorobenzene 106-46-7 1 0.10 0.20 ND ug/L U n-Butylbenzene 104-51-8 1 0.18 0.20 ND ug/L U 1,2-Dichlorobenzene 95-50-1 1 0.08 0.20 ND ug/L U 1,2-Dibromo-3-chloropropane 96-12-8 1 0.39 0.50 ND ug/L U 1,2,4-Trichlorobenzene 120-82-1 1 0.21 0.50 ND ug/L U Hexachloro-1,3-Butadiene 87-68-3 1 1.00 2.00 ND ug/L U Naphthalene 91-20-3 1 0.27 0.50 ND ug/L U 1,2,3-Trichlorobenzene 87-61-6 1 0.25 0.50 ND ug/L U Dichlorodiffluoromethane 75-71-8 1 0.13 0.20 ND ug/L U	s-Butylbenzene	135-98-8	1	0.06	0.20	ND	ug/L	U
1,4-Dichlorobenzene 106-46-7 1 0.10 0.20 ND ug/L U n-Butylbenzene 104-51-8 1 0.18 0.20 ND ug/L U 1,2-Dichlorobenzene 95-50-1 1 0.08 0.20 ND ug/L U 1,2-Dibromo-3-chloropropane 96-12-8 1 0.39 0.50 ND ug/L U 1,2,4-Trichlorobenzene 120-82-1 1 0.21 0.50 ND ug/L U Hexachloro-1,3-Butadiene 87-68-3 1 1.00 2.00 ND ug/L U Naphthalene 91-20-3 1 0.27 0.50 ND ug/L U 1,2,3-Trichlorobenzene 87-61-6 1 0.25 0.50 ND ug/L U Dichlorodifluoromethane 75-71-8 1 0.13 0.20 ND ug/L U	4-Isopropyl Toluene	99-87-6	1	0.08	0.20	ND	ug/L	U
n-Butylbenzene 104-51-8 1 0.18 0.20 ND ug/L U 1,2-Dichlorobenzene 95-50-1 1 0.08 0.20 ND ug/L U 1,2-Dibromo-3-chloropropane 96-12-8 1 0.39 0.50 ND ug/L U 1,2,4-Trichlorobenzene 120-82-1 1 0.21 0.50 ND ug/L U Hexachloro-1,3-Butadiene 87-68-3 1 1.00 2.00 ND ug/L U Naphthalene 91-20-3 1 0.27 0.50 ND ug/L U 1,2,3-Trichlorobenzene 87-61-6 1 0.25 0.50 ND ug/L U Dichlorodifluoromethane 75-71-8 1 0.13 0.20 ND ug/L U	1,3-Dichlorobenzene	541-73-1	1	0.08	0.20	ND	ug/L	U
1,2-Dichlorobenzene 95-50-1 1 0.08 0.20 ND ug/L U 1,2-Dibromo-3-chloropropane 96-12-8 1 0.39 0.50 ND ug/L U 1,2,4-Trichlorobenzene 120-82-1 1 0.21 0.50 ND ug/L U Hexachloro-1,3-Butadiene 87-68-3 1 1.00 2.00 ND ug/L U Naphthalene 91-20-3 1 0.27 0.50 ND ug/L U 1,2,3-Trichlorobenzene 87-61-6 1 0.25 0.50 ND ug/L U Dichlorodifluoromethane 75-71-8 1 0.13 0.20 ND ug/L U	1,4-Dichlorobenzene	106-46-7	1	0.10	0.20	ND	ug/L	U
1,2-Dibromo-3-chloropropane 96-12-8 1 0.39 0.50 ND ug/L U 1,2,4-Trichlorobenzene 120-82-1 1 0.21 0.50 ND ug/L U Hexachloro-1,3-Butadiene 87-68-3 1 1.00 2.00 ND ug/L U Naphthalene 91-20-3 1 0.27 0.50 ND ug/L U 1,2,3-Trichlorobenzene 87-61-6 1 0.25 0.50 ND ug/L U Dichlorodifluoromethane 75-71-8 1 0.13 0.20 ND ug/L U	n-Butylbenzene	104-51-8	1	0.18	0.20	ND	ug/L	U
1,2,4-Trichlorobenzene 120-82-1 1 0.21 0.50 ND ug/L U Hexachloro-1,3-Butadiene 87-68-3 1 1.00 2.00 ND ug/L U Naphthalene 91-20-3 1 0.27 0.50 ND ug/L U 1,2,3-Trichlorobenzene 87-61-6 1 0.25 0.50 ND ug/L U Dichlorodifluoromethane 75-71-8 1 0.13 0.20 ND ug/L U	1,2-Dichlorobenzene	95-50-1	1	0.08	0.20	ND	ug/L	U
Hexachloro-1,3-Butadiene 87-68-3 1 1.00 2.00 ND ug/L U Naphthalene 91-20-3 1 0.27 0.50 ND ug/L U 1,2,3-Trichlorobenzene 87-61-6 1 0.25 0.50 ND ug/L U Dichlorodifluoromethane 75-71-8 1 0.13 0.20 ND ug/L U	1,2-Dibromo-3-chloropropane	96-12-8	1	0.39	0.50	ND	ug/L	U
Naphthalene 91-20-3 1 0.27 0.50 ND ug/L U 1,2,3-Trichlorobenzene 87-61-6 1 0.25 0.50 ND ug/L U Dichlorodifluoromethane 75-71-8 1 0.13 0.20 ND ug/L U	1,2,4-Trichlorobenzene	120-82-1	1	0.21	0.50	ND	ug/L	U
1,2,3-Trichlorobenzene 87-61-6 1 0.25 0.50 ND ug/L U Dichlorodifluoromethane 75-71-8 1 0.13 0.20 ND ug/L U	Hexachloro-1,3-Butadiene	87-68-3	1	1.00	2.00	ND	ug/L	U
Dichlorodifluoromethane 75-71-8 1 0.13 0.20 ND ug/L U	Naphthalene	91-20-3	1	0.27	0.50	ND	ug/L	U
	1,2,3-Trichlorobenzene	87-61-6	1	0.25	0.50	ND	ug/L	U
Methyl tert-butyl Ether 1634-04-4 1 0.14 0.50 ND no/L I	Dichlorodifluoromethane	75-71-8	1	0.13	0.20	ND	ug/L	U
, , ,	Methyl tert-butyl Ether	1634-04-4	1	0.14	0.50	ND	ug/L	U

 CALIBRE
 Project: Boeing Renton

 Project Number: Boeing Renton
 Reported:

 --, Project Manager: Tom McKeon
 04-Apr-2024 13:12

DUP01-032724 24C0645-04 (Water)

Volatile Organic Compounds

 Method: EPA 8260D
 Sampled: 03/27/2024 08:00

 Instrument: NT3
 Analyst: LH

 Analyzed: 04/03/2024 15:55

Analyte	CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
2-Pentanone	107-87-9	1	2.34	5.00	ND	ug/L	U
Surrogate: 1,2-Dichloroethane-d4				80-129 %	113	%	
Surrogate: Toluene-d8				80-120 %	95.9	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	104	%	
Surrogate: 1,2-Dichlorobenzene-d4				80-120 %	107	%	

Extract ID: 24C0645-05 A

CALIBRE Project: Boeing Renton Project Number: Boeing Renton Reported: Project Manager: Tom McKeon 04-Apr-2024 13:12

B-090-01-032724 24C0645-05 (Water)

Volatile Organic Compounds

Method: EPA 8260D Sampled: 03/27/2024 15:20 Instrument: NT3 Analyst: LH Analyzed: 04/03/2024 16:17

Sample Preparation: Preparation Method: EPA 5030C (Purge and Trap)

Preparation Batch: BMD0082

Sample Size: 10 mL Prepared: 04/03/2024 Final Volume: 10 mL

				Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Chloromethane	74-87-3	1	0.27	0.50	ND	ug/L	U
Vinyl Chloride	75-01-4	1	0.08	0.20	ND	ug/L	U
Bromomethane	74-83-9	1	0.23	1.00	ND	ug/L	U
Chloroethane	75-00-3	1	0.05	0.20	ND	ug/L	U
Trichlorofluoromethane	75-69-4	1	0.13	0.20	ND	ug/L	U
Acrolein	107-02-8	1	2.70	5.00	ND	ug/L	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	1	0.11	0.20	ND	ug/L	U
Acetone	67-64-1	1	1.91	5.00	ND	ug/L	U
1,1-Dichloroethene	75-35-4	1	0.08	0.20	ND	ug/L	U
Iodomethane	74-88-4	1	0.15	1.00	ND	ug/L	U
Methylene Chloride	75-09-2	1	0.53	1.00	ND	ug/L	U
Acrylonitrile	107-13-1	1	0.40	1.00	ND	ug/L	U
Carbon Disulfide	75-15-0	1	0.06	0.20	0.08	ug/L	J
trans-1,2-Dichloroethene	156-60-5	1	0.07	0.20	ND	ug/L	U
Vinyl Acetate	108-05-4	1	0.12	0.20	ND	ug/L	U
1,1-Dichloroethane	75-34-3	1	0.04	0.20	ND	ug/L	U
2-Butanone	78-93-3	1	1.77	5.00	ND	ug/L	U
2,2-Dichloropropane	594-20-7	1	0.11	0.20	ND	ug/L	U
cis-1,2-Dichloroethene	156-59-2	1	0.08	0.20	ND	ug/L	U
Chloroform	67-66-3	1	0.05	0.20	ND	ug/L	U
Bromochloromethane	74-97-5	1	0.09	0.20	ND	ug/L	U
1,1,1-Trichloroethane	71-55-6	1	0.08	0.20	ND	ug/L	U
1,1-Dichloropropene	563-58-6	1	0.09	0.20	ND	ug/L	U
Carbon tetrachloride	56-23-5	1	0.09	0.20	ND	ug/L	U
1,2-Dichloroethane	107-06-2	1	0.08	0.20	ND	ug/L	U
Benzene	71-43-2	1	0.05	0.20	ND	ug/L	U
Trichloroethene	79-01-6	1	0.07	0.20	ND	ug/L	U
1,2-Dichloropropane	78-87-5	1	0.07	0.20	ND	ug/L	U
Bromodichloromethane	75-27-4	1	0.09	0.20	ND	ug/L	U
Dibromomethane	74-95-3	1	0.06	0.20	ND	ug/L	U
2-Chloroethyl vinyl ether	110-75-8	1	0.55	1.00	ND	ug/L	U
4-Methyl-2-Pentanone	108-10-1	1	1.90	5.00	ND	ug/L	U
cis-1,3-Dichloropropene	10061-01-5	1	0.09	0.20	ND	ug/L	U
Toluene	108-88-3	1	0.05	0.20	ND	ug/L	U
trans-1,3-Dichloropropene	10061-02-6	1	0.09	0.20	ND	ug/L	U

 CALIBRE
 Project: Boeing Renton

 Project Number: Boeing Renton
 Reported:

 --, Project Manager: Tom McKeon
 04-Apr-2024 13:12

B-090-01-032724 24C0645-05 (Water)

Volatile Organic Compounds

 Method: EPA 8260D
 Sampled: 03/27/2024 15:20

 Instrument: NT3
 Analyst: LH

 Analyzed: 04/03/2024 16:17

Analyte C 2-Hexanone 1,1,2-Trichloroethane 1,3-Dichloropropane Tetrachloroethene Dibromochloromethane 1,2-Dibromoethane Chlorobenzene	591-78-6 79-00-5 142-28-9 127-18-4 124-48-1 106-93-4 108-90-7 100-41-4	Dilution 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.06 0.10 0.07 0.09 0.09	5.00 0.20 0.20 0.20 0.20	ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	Notes U U U
1,1,2-Trichloroethane 1,3-Dichloropropane Fetrachloroethene Dibromochloromethane 1,2-Dibromoethane	79-00-5 142-28-9 127-18-4 124-48-1 106-93-4 108-90-7	1 1 1 1	0.10 0.07 0.09 0.09	0.20 0.20 0.20	ND ND	ug/L ug/L	U U
1,3-Dichloropropane Fetrachloroethene Dibromochloromethane 1,2-Dibromoethane	142-28-9 127-18-4 124-48-1 106-93-4 108-90-7	1 1 1 1	0.07 0.09 0.09	0.20 0.20	ND	ug/L	U
Tetrachloroethene Dibromochloromethane 1,2-Dibromoethane	127-18-4 124-48-1 106-93-4 108-90-7	1 1 1	0.09 0.09	0.20			
Dibromochloromethane 1,2-Dibromoethane	124-48-1 106-93-4 108-90-7	1 1	0.09		ND	ησ/Ι.	
,2-Dibromoethane	106-93-4 108-90-7	1		0.20		45/ L	U
	108-90-7			0.20	ND	ug/L	U
Chlorobenzene		1	0.09	0.20	ND	ug/L	U
	100-41-4	1	0.06	0.20	ND	ug/L	U
Ethylbenzene		1	0.05	0.20	ND	ug/L	U
1,1,1,2-Tetrachloroethane	630-20-6	1	0.09	0.20	ND	ug/L	U
n,p-Xylene	179601-23-1	1	0.14	0.40	ND	ug/L	U
p-Xylene	95-47-6	1	0.08	0.20	ND	ug/L	U
Xylenes, total	1330-20-7	1	0.22	0.60	ND	ug/L	U
Styrene	100-42-5	1	0.09	0.20	ND	ug/L	U
Bromoform	75-25-2	1	0.15	0.20	ND	ug/L	U
1,1,2,2-Tetrachloroethane	79-34-5	1	0.03	0.20	ND	ug/L	U
2,3-Trichloropropane	96-18-4	1	0.16	0.50	ND	ug/L	U
rans-1,4-Dichloro 2-Butene	110-57-6	1	0.60	1.00	ND	ug/L	U
n-Propylbenzene	103-65-1	1	0.07	0.20	ND	ug/L	U
Bromobenzene	108-86-1	1	0.07	0.20	ND	ug/L	U
sopropyl Benzene	98-82-8	1	0.07	0.20	ND	ug/L	U
2-Chlorotoluene	95-49-8	1	0.06	0.20	ND	ug/L	U
1-Chlorotoluene	106-43-4	1	0.06	0.20	ND	ug/L	U
-Butylbenzene	98-06-6	1	0.07	0.20	ND	ug/L	U
1,3,5-Trimethylbenzene	108-67-8	1	0.07	0.20	ND	ug/L	U
1,2,4-Trimethylbenzene	95-63-6	1	0.05	0.20	ND	ug/L	U
s-Butylbenzene	135-98-8	1	0.06	0.20	ND	ug/L	U
4-Isopropyl Toluene	99-87-6	1	0.08	0.20	ND	ug/L	U
3Dichlorobenzene	541-73-1	1	0.08	0.20	ND	ug/L	U
,4-Dichlorobenzene	106-46-7	1	0.10	0.20	ND	ug/L	U
n-Butylbenzene	104-51-8	1	0.18	0.20	ND	ug/L	U
,2-Dichlorobenzene	95-50-1	1	0.08	0.20	ND	ug/L	U
,2-Dibromo-3-chloropropane	96-12-8	1	0.39	0.50	ND	ug/L	U
,2,4-Trichlorobenzene	120-82-1	1	0.21	0.50	ND	ug/L	U
Hexachloro-1,3-Butadiene	87-68-3	1	1.00	2.00	ND	ug/L	U
Naphthalene	91-20-3	1	0.27	0.50	ND	ug/L	U
1,2,3-Trichlorobenzene	87-61-6	1	0.25	0.50	ND	ug/L	U
Dichlorodifluoromethane	75-71-8	1	0.13	0.20	ND	ug/L	U
Methyl tert-butyl Ether	1634-04-4	1	0.14	0.50	ND	ug/L	U

 CALIBRE
 Project: Boeing Renton

 Project Number: Boeing Renton
 Reported:

 --, Project Manager: Tom McKeon
 04-Apr-2024 13:12

B-090-01-032724 24C0645-05 (Water)

Volatile Organic Compounds

 Method: EPA 8260D
 Sampled: 03/27/2024 15:20

 Instrument: NT3
 Analyst: LH

 Analyzed: 04/03/2024 16:17

Analyte	CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
2-Pentanone	107-87-9	1	2.34	5.00	ND	ug/L	U
Surrogate: 1,2-Dichloroethane-d4				80-129 %	115	%	_
Surrogate: Toluene-d8				80-120 %	95.2	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	103	%	
Surrogate: 1,2-Dichlorobenzene-d4				80-120 %	105	%	

Extract ID: 24C0645-06 A

 CALIBRE
 Project:
 Boeing Renton

 Project Number:
 Boeing Renton
 Reported:

 --, Project Manager:
 Tom McKeon
 04-Apr-2024 13:12

TRIP BLANK 24C0645-06 (Water)

Volatile Organic Compounds

 Method: EPA 8260D
 Sampled: 03/27/2024 12:35

 Instrument: NT3
 Analyst: LH

 Analyzed: 04/03/2024 10:43

Sample Preparation: Preparation Method: EPA 5030C (Purge and Trap)

Preparation Batch: BMD0082 Sample Size: 10 mL Prepared: 04/03/2024 Final Volume: 10 mI

Prepared: 04/03/2024	Final Volume: 1	0 mL					
			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Chloromethane	74-87-3	1	0.27	0.50	ND	ug/L	U
Vinyl Chloride	75-01-4	1	0.08	0.20	ND	ug/L	U
Bromomethane	74-83-9	1	0.23	1.00	ND	ug/L	U
Chloroethane	75-00-3	1	0.05	0.20	ND	ug/L	U
Trichlorofluoromethane	75-69-4	1	0.13	0.20	ND	ug/L	U
Acrolein	107-02-8	1	2.70	5.00	ND	ug/L	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	1	0.11	0.20	ND	ug/L	U
Acetone	67-64-1	1	1.91	5.00	ND	ug/L	U
1,1-Dichloroethene	75-35-4	1	0.08	0.20	ND	ug/L	U
Iodomethane	74-88-4	1	0.15	1.00	ND	ug/L	U
Methylene Chloride	75-09-2	1	0.53	1.00	ND	ug/L	U
Acrylonitrile	107-13-1	1	0.40	1.00	ND	ug/L	U
Carbon Disulfide	75-15-0	1	0.06	0.20	ND	ug/L	U
trans-1,2-Dichloroethene	156-60-5	1	0.07	0.20	ND	ug/L	U
Vinyl Acetate	108-05-4	1	0.12	0.20	ND	ug/L	U
1,1-Dichloroethane	75-34-3	1	0.04	0.20	ND	ug/L	U
2-Butanone	78-93-3	1	1.77	5.00	ND	ug/L	U
2,2-Dichloropropane	594-20-7	1	0.11	0.20	ND	ug/L	U
cis-1,2-Dichloroethene	156-59-2	1	0.08	0.20	ND	ug/L	U
Chloroform	67-66-3	1	0.05	0.20	ND	ug/L	U
Bromochloromethane	74-97-5	1	0.09	0.20	ND	ug/L	U
1,1,1-Trichloroethane	71-55-6	1	0.08	0.20	ND	ug/L	U
1,1-Dichloropropene	563-58-6	1	0.09	0.20	ND	ug/L	U
Carbon tetrachloride	56-23-5	1	0.09	0.20	ND	ug/L	U
1,2-Dichloroethane	107-06-2	1	0.08	0.20	ND	ug/L	U
Benzene	71-43-2	1	0.05	0.20	ND	ug/L	U
Trichloroethene	79-01-6	1	0.07	0.20	ND	ug/L	U
1,2-Dichloropropane	78-87-5	1	0.07	0.20	ND	ug/L	U
Bromodichloromethane	75-27-4	1	0.09	0.20	ND	ug/L	U
Dibromomethane	74-95-3	1	0.06	0.20	ND	ug/L	U
2-Chloroethyl vinyl ether	110-75-8	1	0.55	1.00	ND	ug/L	U
4-Methyl-2-Pentanone	108-10-1	1	1.90	5.00	ND	ug/L	U
cis-1,3-Dichloropropene	10061-01-5	1	0.09	0.20	ND	ug/L	U
Toluene	108-88-3	1	0.05	0.20	ND	ug/L	U

CALIBRE Project: Boeing Renton
- Project Number: Boeing Renton
--,- Project Manager: Tom McKeon 04-Apr-2024 13:12

TRIP BLANK 24C0645-06 (Water)

Volatile Organic Compounds

 Method: EPA 8260D
 Sampled: 03/27/2024 12:35

 Instrument: NT3
 Analyst: LH

 Analyzed: 04/03/2024 10:43

Altersanem				Detection	Reporting			
1,12-Trichlorochlane	Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
1,3-Dichloropropane 142-28-9 1	2-Hexanone	591-78-6	1	2.06	5.00	ND	ug/L	U
Tetrachloroschene 127-18-4 1	1,1,2-Trichloroethane	79-00-5	1	0.10	0.20	ND	ug/L	U
Dibromechinomethine 12448-1 1 0,0	1,3-Dichloropropane	142-28-9	1	0.07	0.20	ND	ug/L	U
1.2-Dibromochane 106-93-4 1 0.09 0.20 ND 0.21	Tetrachloroethene	127-18-4	1	0.09	0.20	ND	ug/L	U
Chlorobenzene 108-90-7 1 0.06 0.20 ND 0.21 Ethylkenzene 100-41-4 1 0.05 0.20 ND 0.21 Ethylkenzene 100-41-4 1 0.05 0.20 ND 0.21 In,1,2-Tetrachlorochane 17960-23-1 1 0.14 0.40 ND 0.21 In,p-Xylene 17960-23-1 1 0.14 0.40 ND 0.21 In,y-Xylene 159-47-6 1 0.08 0.20 ND 0.21 In,y-Lylene 159-47-6 1 0.08 0.20 ND 0.21 In,y-Lylene 100-42-5 1 0.09 0.20 ND 0.21 In,y-Lylene 100-42-5 1 0.09 0.20 ND 0.21 In,y-Lylene 100-42-5 1 0.01 0.20 ND 0.21 In,y-Lylene 100-42-5 1 0.07 0.20 ND 0.21 In,y-Lylene 100-42-5 1 0.07 0.20 ND 0.21 In,y-Lylene 100-45-6 1 0.07 0.20 ND 0.21 In,y-Lylene 100-45-6 1 0.07 0.20 ND 0.21 In,y-Lylene 100-45-6 1 0.07 0.20 ND 0.21 In,y-Lylene 100-45-8 1 0.08 0.20 N	Dibromochloromethane	124-48-1	1	0.09	0.20	ND	ug/L	U
Ethylbenzene	1,2-Dibromoethane	106-93-4	1	0.09	0.20	ND	ug/L	U
1,1,2-Tetachlorochlane 630-20-6 1 0.09 0.20 ND ug/L mp-Xylene 179601-23-1 1 0.14 0.40 ND ug/L cxylene, Oxylene 1379-01-23-1 1 0.02 0.00 ND ug/L Xylene, Oxylene, Stotal 1330-20-7 1 0.22 0.00 ND ug/L Styrene 100-42-5 1 0.05 0.20 ND ug/L Bromoform 75-25-2 1 0.05 0.20 ND ug/L 1,2,2-Trichloropropane 96-18-4 1 0.06 0.00 ND ug/L 1,2,3-Trichloropropane 100-57-6 1 0.06 0.00 ND ug/L 1,2,3-Trichloropropane 100-57-6 1 0.00 1.00 ND ug/L 1,2,3-Trichloropropane 100-57-6 1 0.00 1.00 ND ug/L 1-20-10-10-10-10-10-10-10-10-10-10-10-10-10	Chlorobenzene	108-90-7	1	0.06	0.20	ND	ug/L	U
mp-Xylene 179601-23-1 1 0.14 0.40 ND ug/L o-Xylene 95.47-6 1 0.08 0.20 ND ug/L Sylene, total 130-20-7 1 0.22 0.60 ND ug/L Styrene 100-42-5 1 0.15 0.20 ND ug/L 11,2,2-Tettachlorethane 75-25-2 1 0.15 0.20 ND ug/L 1,2,2-Tettachlororepane 96-18-4 1 0.16 0.50 ND ug/L 1,2,3-Trichlororyopane 110-57-6 1 0.00 1.00 ND ug/L 1,2,3-Trichlororyopane 110-57-6 1 0.00 1.00 ND ug/L 1,2,3-Trichlororyopane 103-65-1 1 0.07 0.20 ND ug/L 1,2,3-Trichlororyopane 103-65-6 1 0.07 0.20 ND ug/L 1,2-Drichlororyopane 103-65-6 1 0.07 0.20 ND ug/L <	Ethylbenzene	100-41-4	1	0.05	0.20	ND	ug/L	U
o-Xylene 95.47-6 1 0.08 0.20 ND ug/L Xylene, total 1330-20-7 1 0.22 0.06 ND ug/L Styrene 10042-5 1 0.09 0.20 ND ug/L Bromoform 75-25-2 1 0.15 0.20 ND ug/L 1,2,2-Tetachlorochtane 79-34-5 1 0.03 0.20 ND ug/L 1,2,3-Tichloropropane 96-18-4 1 0.16 0.50 ND ug/L n-Propylbenzene 110-57-6 1 0.06 1.00 ND ug/L 1-propylbenzene 103-65-1 1 0.07 0.20 ND ug/L 1-propyl Benzene 108-86-1 1 0.07 0.20 ND ug/L 2-Chlorotoluene 98-89-8 1 0.07 0.20 ND ug/L 4-Burylbenzene 196-34-8 1 0.06 0.20 ND ug/L 4-Burylbenzene	1,1,1,2-Tetrachloroethane	630-20-6	1	0.09	0.20	ND	ug/L	U
Xylenes, total 1330-20-7 1 0.22 0.60 ND ug/L Styrene 100-42-5 1 0.09 0.20 ND ug/L Bromoform 75-25-2 1 0.15 0.20 ND ug/L 1.2,2-Tetrachloroethane 79-34-5 1 0.03 0.20 ND ug/L 1.2,2-Trichloropropane 96-18-4 1 0.16 0.50 ND ug/L 1-Propylbenzene 103-65-1 1 0.07 0.20 ND ug/L 1-Propylbenzene 103-65-1 1 0.07 0.20 ND ug/L 1-Propylbenzene 108-86-1 1 0.07 0.20 ND ug/L 1-Propylbenzene 98-82-8 1 0.07 0.20 ND ug/L 1-Suppropyl Benzene 98-82-8 1 0.06 0.20 ND ug/L 2-Chlorotluene 98-82-8 1 0.06 0.20 ND ug/L 1-Bullybenze	m,p-Xylene	179601-23-1	1	0.14	0.40	ND	ug/L	U
Syrene 100-42-5 1 0.09 0.20 ND ug/L Bromoform 75-25-2 1 0.15 0.20 ND ug/L 1,1,2,2-Tetrachloroethane 75-25-2 1 0.16 0.50 ND ug/L 1,2,3-Tichloropropane 96-18-4 1 0.16 0.50 ND ug/L 1,2,3-Tichloropropane 103-65-1 1 0.07 0.20 ND ug/L Bromobenzene 103-65-1 1 0.07 0.20 ND ug/L Bromobenzene 108-86-1 1 0.07 0.20 ND ug/L Bromobenzene 98-82-8 1 0.07 0.20 ND ug/L 2-Chlorotoluene 95-49-8 1 0.06 0.20 ND ug/L 4-Butylbenzene 106-43-4 1 0.06 0.20 ND ug/L 1-Butylbenzene 108-67-8 1 0.07 0.20 ND ug/L 1-Butylbenzene	o-Xylene	95-47-6	1	0.08	0.20	ND	ug/L	U
Bromoform	Xylenes, total	1330-20-7	1	0.22	0.60	ND	ug/L	U
1,1,2,2-Tetrachloroethane 79-34-5 1 0.03 0.20 ND ug/L 1,2,3-Trichloropropane 96-18-4 1 0.16 0.50 ND ug/L trans-1,4-Dichloro 2-Butene 110-57-6 1 0.60 1.00 ND ug/L n-Propylbenzene 103-65-1 1 0.07 0.20 ND ug/L Bromobenzene 108-86-1 1 0.07 0.20 ND ug/L Spropyl Benzene 98-82-8 1 0.07 0.20 ND ug/L 2-Chlorotoluene 95-49-8 1 0.06 0.20 ND ug/L 4-Chlorotoluene 106-43-4 1 0.06 0.20 ND ug/L 4-Butylbenzene 18-67-6 1 0.06 0.20 ND ug/L 4-Butylbenzene 195-63-6 1 0.05 0.20 ND ug/L 4-Isopropyl Toluene 195-63-6 1 0.05 0.20 ND ug/L	Styrene	100-42-5	1	0.09	0.20	ND	ug/L	U
1,2,3-Trichloropropane 96-18-4 1 0.16 0.50 ND ug/L trans-1,4-Dichloro 2-Butene 110-57-6 1 0.60 1.00 ND ug/L n-Propylbenzene 103-65-1 1 0.07 0.20 ND ug/L Bromobenzene 108-86-1 1 0.07 0.20 ND ug/L Bromobenzene 98-82-8 1 0.06 0.20 ND ug/L 2-Chlorotoluene 95-49-8 1 0.06 0.20 ND ug/L 4-Chlorotoluene 106-43-4 1 0.06 0.20 ND ug/L 4-Butylbenzene 98-06-6 1 0.07 0.20 ND ug/L 1,3-5-Trimethylbenzene 95-63-6 1 0.07 0.20 ND ug/L 4-Isopropyl Toluene 99-87-6 1 0.06 0.20 ND ug/L 4-Isopropyl Toluene 99-87-6 1 0.08 0.20 ND ug/L	Bromoform	75-25-2	1	0.15	0.20	ND	ug/L	U
trans-1,4-Dichloro 2-Butene 110-57-6 1 0.60 1.00 ND ug/L n-Propylbenzene 103-65-1 1 0.07 0.20 ND ug/L Bromobenzene 108-86-1 1 0.07 0.20 ND ug/L Isopropyl Benzene 98-82-8 1 0.07 0.20 ND ug/L 2-Chlorotoluene 196-43-4 1 0.06 0.20 ND ug/L 4-Chlorotoluene 196-43-4 1 0.06 0.20 ND ug/L 4-Butylbenzene 98-06-6 1 0.07 0.20 ND ug/L 1,2,4-Trimethylbenzene 108-67-8 1 0.07 0.20 ND ug/L 1,2,4-Trimethylbenzene 135-98-8 1 0.05 0.20 ND ug/L 4-Isopropyl Toluene 59-87-6 1 0.08 0.20 ND ug/L 4,4-Dichlorobenzene 541-73-1 1 0.08 0.20 ND ug/L	1,1,2,2-Tetrachloroethane	79-34-5	1	0.03	0.20	ND	ug/L	U
n-Propylbenzene 103-65-1 1 0.07 0.20 ND ug/L Bromobenzene 108-86-1 1 0.07 0.20 ND ug/L Isopropyl Benzene 98-82-8 1 0.07 0.20 ND ug/L 2-Chlorotoluene 95-49-8 1 0.06 0.20 ND ug/L 4-Chlorotoluene 106-43-4 1 0.06 0.20 ND ug/L 1-Butylbenzene 98-06-6 1 0.07 0.20 ND ug/L 1,3-5-Trimethylbenzene 108-67-8 1 0.07 0.20 ND ug/L 1,2-4-Trimethylbenzene 95-63-6 1 0.05 0.20 ND ug/L 8-Butylbenzene 135-98-8 1 0.06 0.20 ND ug/L 4-Isopropyl Toluene 541-73-1 1 0.08 0.20 ND ug/L 1,4-Dichlorobenzene 104-45-7 1 0.08 0.20 ND ug/L	1,2,3-Trichloropropane	96-18-4	1	0.16	0.50	ND	ug/L	U
Bromobenzene 108-86-1 1 0.07 0.20 ND ug/L	trans-1,4-Dichloro 2-Butene	110-57-6	1	0.60	1.00	ND	ug/L	U
Isopropyl Benzene 98-82-8 1 0.07 0.20 ND ug/L 2-Chlorotoluene 95-49-8 1 0.06 0.20 ND ug/L 4-Chlorotoluene 106-43-4 1 0.06 0.20 ND ug/L 1-Butylbenzene 98-06-6 1 0.07 0.20 ND ug/L 1,3-5-Trimethylbenzene 108-67-8 1 0.07 0.20 ND ug/L 1,2-4-Trimethylbenzene 95-63-6 1 0.05 0.20 ND ug/L 4-Isopropyl Toluene 99-87-6 1 0.06 0.20 ND ug/L 4-Isopropyl Toluene 99-87-6 1 0.08 0.20 ND ug/L 1,4-Dichlorobenzene 106-46-7 1 0.08 0.20 ND ug/L 1,4-Dichlorobenzene 106-46-7 1 0.10 0.20 ND ug/L 1,2-Dichlorobenzene 95-50-1 1 0.08 0.20 ND ug/L	n-Propylbenzene	103-65-1	1	0.07	0.20	ND	ug/L	U
Sopropyl Benzene 98-82-8 1 0.07 0.20 ND ug/L	Bromobenzene	108-86-1	1	0.07	0.20	ND	ug/L	U
4-Chlorotoluene 106-43-4 1 0.06 0.20 ND ug/L t-Butylbenzene 98-06-6 1 0.07 0.20 ND ug/L 1,3,5-Trimethylbenzene 108-67-8 1 0.07 0.20 ND ug/L 1,2,4-Trimethylbenzene 95-63-6 1 0.05 0.20 ND ug/L s-Butylbenzene 135-98-8 1 0.06 0.20 ND ug/L 4-Isopropyl Toluene 99-87-6 1 0.08 0.20 ND ug/L 1,3-Dichlorobenzene 541-73-1 1 0.08 0.20 ND ug/L 1,4-Dichlorobenzene 106-46-7 1 0.10 0.20 ND ug/L 1,2-Dichlorobenzene 104-51-8 1 0.18 0.20 ND ug/L 1,2-Dibromo-3-chloropropane 95-50-1 1 0.08 0.20 ND ug/L 1,2,4-Trichlorobenzene 120-82-1 1 0.21 0.50 ND ug/L <td>Isopropyl Benzene</td> <td>98-82-8</td> <td>1</td> <td>0.07</td> <td>0.20</td> <td>ND</td> <td></td> <td>U</td>	Isopropyl Benzene	98-82-8	1	0.07	0.20	ND		U
t-Butylbenzene 98-6-6 1 0.07 0.20 ND ug/L 1,3,5-Trimethylbenzene 108-6-8 1 0.07 0.20 ND ug/L 1,2,4-Trimethylbenzene 95-63-6 1 0.05 0.20 ND ug/L 1,2,4-Trimethylbenzene 95-63-6 1 0.05 0.20 ND ug/L 1,2,4-Trimethylbenzene 99-87-6 1 0.06 0.20 ND ug/L 1,2-Dichlorobenzene 99-87-6 1 0.08 0.20 ND ug/L 1,3-Dichlorobenzene 106-46-7 1 0.08 0.20 ND ug/L 1,4-Dichlorobenzene 106-46-7 1 0.08 0.20 ND ug/L 1,4-Dichlorobenzene 104-51-8 1 0.08 0.20 ND ug/L 1,2-Dichlorobenzene 104-51-8 1 0.08 0.20 ND ug/L 1,2-Dichlorobenzene 95-50-1 1 0.08 0.20 ND ug/L 1,2-Dichlorobenzene 96-12-8 1 0.08 0.20 ND ug/L 1,2-Dichlorobenzene 96-12-8 1 0.09 0.50 ND ug/L 1,2,4-Trichlorobenzene 120-82-1 1 0.21 0.50 ND ug/L 1,2,4-Trichlorobenzene 87-68-3 1 0.21 0.50 ND ug/L 1,2,3-Trichlorobenzene 91-20-3 1 0.27 0.50 ND ug/L 1,2,3-Trichlorobenzene 87-61-6 1 0.25 0.50 ND ug/L 1,2,3-Trichlorobenzene 87-61-6 ND ug/L 1,2,3-Trichlorobenzene 87-61-6 ND ug/L 1,2,3-Trichlorobenzene 87-61-6 ND ug/L 1,2,3-Trichlorobenz	2-Chlorotoluene	95-49-8	1	0.06	0.20	ND	ug/L	U
1,3,5-Trimethylbenzene 108-67-8 1 0.07 0.20 ND ug/L 1,2,4-Trimethylbenzene 95-63-6 1 0.05 0.20 ND ug/L s-Butylbenzene 135-98-8 1 0.06 0.20 ND ug/L 4-Isopropyl Toluene 99-87-6 1 0.08 0.20 ND ug/L 1,3-Dichlorobenzene 541-73-1 1 0.08 0.20 ND ug/L 1,4-Dichlorobenzene 106-46-7 1 0.10 0.20 ND ug/L n-Butylbenzene 104-51-8 1 0.18 0.20 ND ug/L 1,2-Dichlorobenzene 95-50-1 1 0.08 0.20 ND ug/L 1,2-Dibromo-3-chloropropane 96-12-8 1 0.39 0.50 ND ug/L 1,2,4-Trichlorobenzene 120-82-1 1 0.21 0.50 ND ug/L Hexachloro-1,3-Butadiene 87-68-3 1 1.00 2.00 ND ug/L Naphthalene 91-20-3 1 0.25 0.50 <t< td=""><td>4-Chlorotoluene</td><td>106-43-4</td><td>1</td><td>0.06</td><td>0.20</td><td>ND</td><td>ug/L</td><td>U</td></t<>	4-Chlorotoluene	106-43-4	1	0.06	0.20	ND	ug/L	U
1,2,4-Trimethylbenzene 95-63-6 1 0.05 0.20 ND ug/L s-Butylbenzene 135-98-8 1 0.06 0.20 ND ug/L 4-Isopropyl Toluene 99-87-6 1 0.08 0.20 ND ug/L 1,3-Dichlorobenzene 541-73-1 1 0.08 0.20 ND ug/L 1,4-Dichlorobenzene 106-46-7 1 0.10 0.20 ND ug/L n-Butylbenzene 104-51-8 1 0.18 0.20 ND ug/L 1,2-Dichlorobenzene 95-50-1 1 0.08 0.20 ND ug/L 1,2-Dibromo-3-chloropropane 96-12-8 1 0.39 0.50 ND ug/L 1,2,4-Trichlorobenzene 120-82-1 1 0.21 0.50 ND ug/L Hexachloro-1,3-Butadiene 87-68-3 1 1.00 2.00 ND ug/L Naphthalene 91-20-3 1 0.27 0.50 ND ug/L 1,2,3-Trichlorobenzene 87-61-6 1 0.25 0.50 <td< td=""><td>t-Butylbenzene</td><td>98-06-6</td><td>1</td><td>0.07</td><td>0.20</td><td>ND</td><td>ug/L</td><td>U</td></td<>	t-Butylbenzene	98-06-6	1	0.07	0.20	ND	ug/L	U
s-Butylbenzene 135-98-8 1 0.06 0.20 ND ug/L 4-Isopropyl Toluene 99-87-6 1 0.08 0.20 ND ug/L 1,3-Dichlorobenzene 541-73-1 1 0.08 0.20 ND ug/L 1,4-Dichlorobenzene 106-46-7 1 0.10 0.20 ND ug/L 1,2-Dichlorobenzene 104-51-8 1 0.18 0.20 ND ug/L 1,2-Dibromo-3-chloropropane 95-50-1 1 0.08 0.20 ND ug/L 1,2,4-Trichlorobenzene 96-12-8 1 0.39 0.50 ND ug/L 1,2,4-Trichlorobenzene 120-82-1 1 0.21 0.50 ND ug/L Hexachloro-1,3-Butadiene 87-68-3 1 1.00 2.00 ND ug/L Naphthalene 91-20-3 1 0.27 0.50 ND ug/L 1,2,3-Trichlorobenzene 87-61-6 1 0.25 0.50 ND ug/L Dichlorodifluoromethane 75-71-8 1 0.13 0.20	1,3,5-Trimethylbenzene	108-67-8	1	0.07	0.20	ND	ug/L	U
4-Isopropyl Toluene 99-87-6 1 0.08 0.20 ND ug/L 1,3-Dichlorobenzene 541-73-1 1 0.08 0.20 ND ug/L 1,4-Dichlorobenzene 106-46-7 1 0.10 0.20 ND ug/L n-Butylbenzene 104-51-8 1 0.18 0.20 ND ug/L 1,2-Dichlorobenzene 95-50-1 1 0.08 0.20 ND ug/L 1,2-Dibromo-3-chloropropane 96-12-8 1 0.39 0.50 ND ug/L 1,2,4-Trichlorobenzene 120-82-1 1 0.21 0.50 ND ug/L Hexachloro-1,3-Butadiene 87-68-3 1 1.00 2.00 ND ug/L Naphthalene 91-20-3 1 0.27 0.50 ND ug/L 1,2,3-Trichlorobenzene 87-61-6 1 0.25 0.50 ND ug/L Dichlorodifluoromethane 75-71-8 1 0.13 0.20 ND ug/L	1,2,4-Trimethylbenzene	95-63-6	1	0.05	0.20	ND	ug/L	U
1,3-Dichlorobenzene 541-73-1 1 0.08 0.20 ND ug/L 1,4-Dichlorobenzene 106-46-7 1 0.10 0.20 ND ug/L n-Butylbenzene 104-51-8 1 0.18 0.20 ND ug/L 1,2-Dichlorobenzene 95-50-1 1 0.08 0.20 ND ug/L 1,2-Dibromo-3-chloropropane 96-12-8 1 0.39 0.50 ND ug/L 1,2,4-Trichlorobenzene 120-82-1 1 0.21 0.50 ND ug/L Hexachloro-1,3-Butadiene 87-68-3 1 1.00 2.00 ND ug/L Naphthalene 91-20-3 1 0.27 0.50 ND ug/L 1,2,3-Trichlorobenzene 87-61-6 1 0.25 0.50 ND ug/L Dichlorodifluoromethane 75-71-8 1 0.13 0.20 ND ug/L	s-Butylbenzene	135-98-8	1	0.06	0.20	ND	ug/L	U
1,4-Dichlorobenzene 106-46-7 1 0.10 0.20 ND ug/L n-Butylbenzene 104-51-8 1 0.18 0.20 ND ug/L 1,2-Dichlorobenzene 95-50-1 1 0.08 0.20 ND ug/L 1,2-Dibromo-3-chloropropane 96-12-8 1 0.39 0.50 ND ug/L 1,2,4-Trichlorobenzene 120-82-1 1 0.21 0.50 ND ug/L Hexachloro-1,3-Butadiene 87-68-3 1 1.00 2.00 ND ug/L Naphthalene 91-20-3 1 0.27 0.50 ND ug/L 1,2,3-Trichlorobenzene 87-61-6 1 0.25 0.50 ND ug/L Dichlorodifluoromethane 75-71-8 1 0.13 0.20 ND ug/L	4-Isopropyl Toluene	99-87-6	1	0.08	0.20	ND	ug/L	U
n-Butylbenzene 104-51-8 1 0.18 0.20 ND ug/L 1,2-Dichlorobenzene 95-50-1 1 0.08 0.20 ND ug/L 1,2-Dibromo-3-chloropropane 96-12-8 1 0.39 0.50 ND ug/L 1,2,4-Trichlorobenzene 120-82-1 1 0.21 0.50 ND ug/L Hexachloro-1,3-Butadiene 87-68-3 1 1.00 2.00 ND ug/L Naphthalene 91-20-3 1 0.27 0.50 ND ug/L 1,2,3-Trichlorobenzene 87-61-6 1 0.25 0.50 ND ug/L Dichlorodifluoromethane 75-71-8 1 0.13 0.20 ND ug/L	1,3-Dichlorobenzene	541-73-1	1	0.08	0.20	ND	ug/L	U
1,2-Dichlorobenzene 95-50-1 1 0.08 0.20 ND ug/L 1,2-Dibromo-3-chloropropane 96-12-8 1 0.39 0.50 ND ug/L 1,2,4-Trichlorobenzene 120-82-1 1 0.21 0.50 ND ug/L Hexachloro-1,3-Butadiene 87-68-3 1 1.00 2.00 ND ug/L Naphthalene 91-20-3 1 0.27 0.50 ND ug/L 1,2,3-Trichlorobenzene 87-61-6 1 0.25 0.50 ND ug/L Dichlorodifluoromethane 75-71-8 1 0.13 0.20 ND ug/L	1,4-Dichlorobenzene	106-46-7	1	0.10	0.20	ND	ug/L	U
1,2-Dibromo-3-chloropropane 96-12-8 1 0.39 0.50 ND ug/L 1,2,4-Trichlorobenzene 120-82-1 1 0.21 0.50 ND ug/L Hexachloro-1,3-Butadiene 87-68-3 1 1.00 2.00 ND ug/L Naphthalene 91-20-3 1 0.27 0.50 ND ug/L 1,2,3-Trichlorobenzene 87-61-6 1 0.25 0.50 ND ug/L Dichlorodifluoromethane 75-71-8 1 0.13 0.20 ND ug/L	n-Butylbenzene	104-51-8	1	0.18	0.20	ND	ug/L	U
1,2,4-Trichlorobenzene 120-82-1 1 0.21 0.50 ND ug/L Hexachloro-1,3-Butadiene 87-68-3 1 1.00 2.00 ND ug/L Naphthalene 91-20-3 1 0.27 0.50 ND ug/L 1,2,3-Trichlorobenzene 87-61-6 1 0.25 0.50 ND ug/L Dichlorodifluoromethane 75-71-8 1 0.13 0.20 ND ug/L	1,2-Dichlorobenzene	95-50-1	1	0.08	0.20	ND	ug/L	U
Hexachloro-1,3-Butadiene 87-68-3 1 1.00 2.00 ND ug/L Naphthalene 91-20-3 1 0.27 0.50 ND ug/L 1,2,3-Trichlorobenzene 87-61-6 1 0.25 0.50 ND ug/L Dichlorodifluoromethane 75-71-8 1 0.13 0.20 ND ug/L	1,2-Dibromo-3-chloropropane	96-12-8	1	0.39	0.50	ND	ug/L	U
Naphthalene 91-20-3 1 0.27 0.50 ND ug/L 1,2,3-Trichlorobenzene 87-61-6 1 0.25 0.50 ND ug/L Dichlorodifluoromethane 75-71-8 1 0.13 0.20 ND ug/L	1,2,4-Trichlorobenzene	120-82-1	1	0.21	0.50	ND	ug/L	U
1,2,3-Trichlorobenzene 87-61-6 1 0.25 0.50 ND ug/L Dichlorodifluoromethane 75-71-8 1 0.13 0.20 ND ug/L	Hexachloro-1,3-Butadiene	87-68-3	1	1.00	2.00	ND	ug/L	U
Dichlorodifluoromethane 75-71-8 1 0.13 0.20 ND ug/L	Naphthalene	91-20-3	1	0.27	0.50	ND	ug/L	U
	1,2,3-Trichlorobenzene	87-61-6	1	0.25	0.50	ND	ug/L	U
M d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d	Dichlorodifluoromethane	75-71-8	1	0.13	0.20	ND	ug/L	U
Methyl tert-butyl Ether 1634-04-4 I 0.14 0.50 ND ug/L	Methyl tert-butyl Ether	1634-04-4	1	0.14	0.50	ND	ug/L	U

CALIBRE Project: Boeing Renton

- Project Number: Boeing Renton

--,Project Manager: Tom McKeon

04-Apr-2024 13:12

TRIP BLANK 24C0645-06 (Water)

Volatile Organic Compounds

 Method: EPA 8260D
 Sampled: 03/27/2024 12:35

 Instrument: NT3
 Analyst: LH

 Analyzed: 04/03/2024 10:43

Analyte	CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
2-Pentanone	107-87-9	1	2.34	5.00	ND	ug/L	U
Surrogate: 1,2-Dichloroethane-d4				80-129 %	106	%	
Surrogate: Toluene-d8				80-120 %	99.0	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	104	%	
Surrogate: 1,2-Dichlorobenzene-d4				80-120 %	104	%	

 CALIBRE
 Project: Boeing Renton

 Project Number: Boeing Renton
 Reported:

 --, Project Manager: Tom McKeon
 04-Apr-2024 13:12

Analysis by: Analytical Resources, LLC

Volatile Organic Compounds - Quality Control

Batch BMD0082 - EPA 8260D

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BMD0082-BLK1) Chloromethane	ND	0.27	0.50	ug/L	ared: 03-Apı	r-2024 Ana	ilyzed: 03-A	Apr-2024 09	7:14		U
Vinyl Chloride	ND ND	0.27	0.30	ug/L ug/L							U
Bromomethane	ND ND	0.08	1.00	ug/L ug/L							U
Chloroethane	ND ND	0.23	0.20	ug/L ug/L							U
Trichlorofluoromethane	ND ND	0.03	0.20	ug/L ug/L							U
Acrolein	ND	2.70	5.00	ug/L ug/L							U
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.11	0.20	ug/L ug/L							U
Acetone	ND	1.91	5.00	ug/L ug/L							U
,1-Dichloroethene	ND	0.08	0.20	ug/L							U
odomethane	ND	0.15	1.00	ug/L							U
Methylene Chloride	ND	0.53	1.00	ug/L							U
Acrylonitrile	ND	0.40	1.00	ug/L							U
Carbon Disulfide	ND	0.06	0.20	ug/L							U
rans-1,2-Dichloroethene	ND	0.07	0.20	ug/L							U
Vinyl Acetate	ND	0.12	0.20	ug/L							U
,1-Dichloroethane	ND	0.04	0.20	ug/L							U
-Butanone	ND	1.77	5.00	ug/L							U
,2-Dichloropropane	ND	0.11	0.20	ug/L							U
is-1,2-Dichloroethene	ND	0.08	0.20	ug/L							U
Chloroform	ND	0.05	0.20	ug/L							U
Bromochloromethane	ND	0.09	0.20	ug/L							U
,1,1-Trichloroethane	ND	0.08	0.20	ug/L							U
,1-Dichloropropene	ND	0.09	0.20	ug/L							U
Carbon tetrachloride	ND	0.09	0.20	ug/L							U
,2-Dichloroethane	ND	0.08	0.20	ug/L							U
Benzene	ND	0.05	0.20	ug/L							U
Trichloroethene	ND	0.07	0.20	ug/L							U
,2-Dichloropropane	ND	0.07	0.20	ug/L							U
Bromodichloromethane	ND	0.09	0.20	ug/L							U
Dibromomethane	ND	0.06	0.20	ug/L							U
-Chloroethyl vinyl ether	ND	0.55	1.00	ug/L							U
-Methyl-2-Pentanone	ND	1.90	5.00	ug/L							U
is-1,3-Dichloropropene	ND	0.09	0.20	ug/L							U
Toluene	ND	0.05	0.20	ug/L							U
rans-1,3-Dichloropropene	ND	0.09	0.20	ug/L							U

 CALIBRE
 Project: Boeing Renton

 Project Number: Boeing Renton
 Reported:

 --, Project Manager: Tom McKeon
 04-Apr-2024 13:12

Analysis by: Analytical Resources, LLC

Volatile Organic Compounds - Quality Control

Batch BMD0082 - EPA 8260D

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BMD0082-BLK1)						r-2024 Ana					
2-Hexanone	ND	2.06	5.00	ug/L	пса. 05-Арг	1-2024 Alla	11 y ZCu. 03-F	1p1-2024 03	·.17		U
1,1,2-Trichloroethane	ND	0.10	0.20	ug/L ug/L							U
1,3-Dichloropropane	ND	0.07	0.20	ug/L							U
Tetrachloroethene	ND	0.09	0.20	ug/L							U
Dibromochloromethane	ND	0.09	0.20	ug/L							U
1,2-Dibromoethane	ND	0.09	0.20	ug/L							U
Chlorobenzene	ND	0.06	0.20	ug/L							U
Ethylbenzene	ND	0.05	0.20	ug/L							U
1,1,2-Tetrachloroethane	ND	0.09	0.20	ug/L							U
m,p-Xylene	ND	0.14	0.40	ug/L							U
o-Xylene	ND	0.08	0.20	ug/L							U
Xylenes, total	ND	0.22	0.60	ug/L							U
Styrene	ND	0.09	0.20	ug/L							U
Bromoform	ND	0.15	0.20	ug/L							U
1,1,2,2-Tetrachloroethane	ND	0.03	0.20	ug/L							U
1,2,3-Trichloropropane	ND	0.16	0.50	ug/L							U
trans-1,4-Dichloro 2-Butene	ND	0.60	1.00	ug/L							U
n-Propylbenzene	ND	0.07	0.20	ug/L							U
Bromobenzene	ND	0.07	0.20	ug/L							U
Isopropyl Benzene	ND	0.07	0.20	ug/L							U
2-Chlorotoluene	ND	0.06	0.20	ug/L							U
4-Chlorotoluene	ND	0.06	0.20	ug/L							U
t-Butylbenzene	ND	0.07	0.20	ug/L							U
1,3,5-Trimethylbenzene	ND	0.07	0.20	ug/L							U
1,2,4-Trimethylbenzene	ND	0.05	0.20	ug/L							U
s-Butylbenzene	ND	0.06	0.20	ug/L							U
4-Isopropyl Toluene	ND	0.08	0.20	ug/L							U
1,3-Dichlorobenzene	ND	0.08	0.20	ug/L							U
1,4-Dichlorobenzene	ND	0.10	0.20	ug/L							U
n-Butylbenzene	ND	0.18	0.20	ug/L							U
1,2-Dichlorobenzene	ND	0.08	0.20	ug/L							U
1,2-Dibromo-3-chloropropane	ND	0.39	0.50	ug/L							U
1,2,4-Trichlorobenzene	ND	0.21	0.50	ug/L							U
Hexachloro-1,3-Butadiene	ND	1.00	2.00	ug/L							U
Naphthalene	ND	0.27	0.50	ug/L							U

 CALIBRE
 Project: Boeing Renton

 Project Number: Boeing Renton
 Reported:

 --, Project Manager: Tom McKeon
 04-Apr-2024 13:12

Analysis by: Analytical Resources, LLC

Volatile Organic Compounds - Quality Control

Batch BMD0082 - EPA 8260D

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BMD0082-BLK1)				Prepa	ared: 03-Apr	-2024 Ana	alyzed: 03-A	Apr-2024 09	:14		
1,2,3-Trichlorobenzene	ND	0.25	0.50	ug/L							U
Dichlorodifluoromethane	ND	0.13	0.20	ug/L							U
Methyl tert-butyl Ether	ND	0.14	0.50	ug/L							U
2-Pentanone	ND	2.34	5.00	ug/L							U
Surrogate: 1,2-Dichloroethane-d4	4.99			ug/L	5.00		99.8	80-129			
Surrogate: Toluene-d8	4.87			ug/L	5.00		97.5	80-120			
Surrogate: 4-Bromofluorobenzene	4.97			ug/L	5.00		99.3	80-120			
Surrogate: 1,2-Dichlorobenzene-d4	5.11			ug/L	5.00		102	80-120			

CALIBRE Project: Boeing Renton

Project Number: Boeing Renton

Reported:

Project Manager: Tom McKeon

04-Apr-2024 13:12

Analysis by: Analytical Resources, LLC

Volatile Organic Compounds - Quality Control

Batch BMD0082 - EPA 8260D

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
LCS (BMD0082-BS1)				Prepa	ared: 03-Apr	-2024 Ana	alyzed: 03-A	Apr-2024 07	:46		
Chloromethane	7.74	0.27	0.50	ug/L	10.0		77.4	60-138			Q
Vinyl Chloride	7.88	0.08	0.20	ug/L	10.0		78.8	66-133			Q
Bromomethane	8.52	0.23	1.00	ug/L	10.0		85.2	72-131			
Chloroethane	8.20	0.05	0.20	ug/L	10.0		82.0	60-155			
Trichlorofluoromethane	8.34	0.13	0.20	ug/L	10.0		83.4	62-141			
Acrolein	43.1	2.70	5.00	ug/L	50.0		86.2	52-190			
1,1,2-Trichloro-1,2,2-Trifluoroethane	8.81	0.11	0.20	ug/L	10.0		88.1	76-129			
Acetone	46.1	1.91	5.00	ug/L	50.0		92.1	58-142			
1,1-Dichloroethene	8.45	0.08	0.20	ug/L	10.0		84.5	69-135			
Iodomethane	9.06	0.15	1.00	ug/L	10.0		90.6	56-147			
Methylene Chloride	8.37	0.53	1.00	ug/L	10.0		83.7	65-135			
Acrylonitrile	8.97	0.40	1.00	ug/L	10.0		89.7	64-134			
Carbon Disulfide	8.06	0.06	0.20	ug/L	10.0		80.6	78-125			
trans-1,2-Dichloroethene	8.79	0.07	0.20	ug/L	10.0		87.9	78-128			
Vinyl Acetate	9.50	0.12	0.20	ug/L	10.0		95.0	55-138			
1,1-Dichloroethane	8.81	0.04	0.20	ug/L	10.0		88.1	76-124			
2-Butanone	47.0	1.77	5.00	ug/L	50.0		94.1	61-140			
2,2-Dichloropropane	9.17	0.11	0.20	ug/L	10.0		91.7	66-147			
cis-1,2-Dichloroethene	8.44	0.08	0.20	ug/L	10.0		84.4	80-121			
Chloroform	9.33	0.05	0.20	ug/L	10.0		93.3	80-122			
Bromochloromethane	8.94	0.09	0.20	ug/L	10.0		89.4	80-121			
1,1,1-Trichloroethane	9.87	0.08	0.20	ug/L	10.0		98.7	79-123			
1,1-Dichloropropene	9.28	0.09	0.20	ug/L	10.0		92.8	80-127			
Carbon tetrachloride	9.08	0.09	0.20	ug/L	10.0		90.8	53-137			
1,2-Dichloroethane	10.3	0.08	0.20	ug/L	10.0		103	75-123			
Benzene	9.08	0.05	0.20	ug/L	10.0		90.8	80-120			
Trichloroethene	9.35	0.07	0.20	ug/L	10.0		93.5	80-120			
1,2-Dichloropropane	9.16	0.07	0.20	ug/L	10.0		91.6	80-120			
Bromodichloromethane	9.76	0.09	0.20	ug/L	10.0		97.6	80-121			
Dibromomethane	9.38	0.06	0.20	ug/L	10.0		93.8	80-120			
2-Chloroethyl vinyl ether	9.87	0.55	1.00	ug/L	10.0		98.7	64-120			
4-Methyl-2-Pentanone	49.1	1.90	5.00	ug/L	50.0		98.3	67-133			
cis-1,3-Dichloropropene	9.37	0.09	0.20	ug/L	10.0		93.7	80-124			
Toluene	9.42	0.05	0.20	ug/L	10.0		94.2	80-120			
trans-1,3-Dichloropropene	9.90	0.09	0.20	ug/L	10.0		99.0	71-127			

CALIBRE Project: Boeing Renton

- Project Number: Boeing Renton

--,- Project Manager: Tom McKeon 04-Apr-2024 13:12

Analysis by: Analytical Resources, LLC

Volatile Organic Compounds - Quality Control

Batch BMD0082 - EPA 8260D

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Result	Liiiit	Dillit							Liiiit	110105
LCS (BMD0082-BS1)					ared: 03-Apr	-2024 Ana	•	•	7:46		
2-Hexanone	52.4	2.06	5.00	ug/L	50.0		105	69-133			
1,1,2-Trichloroethane	9.56	0.10	0.20	ug/L	10.0		95.6	80-121			
1,3-Dichloropropane	9.45	0.07	0.20	ug/L	10.0		94.5	80-120			
Tetrachloroethene	9.87	0.09	0.20	ug/L	10.0		98.7	80-120			
Dibromochloromethane	10.4	0.09	0.20	ug/L	10.0		104	65-135			
1,2-Dibromoethane	9.61	0.09	0.20	ug/L	10.0		96.1	80-121			
Chlorobenzene	9.93	0.06	0.20	ug/L	10.0		99.3	80-120			
Ethylbenzene	9.99	0.05	0.20	ug/L	10.0		99.9	80-120			
1,1,1,2-Tetrachloroethane	9.79	0.09	0.20	ug/L	10.0		97.9	80-120			
m,p-Xylene	19.9	0.14	0.40	ug/L	20.0		99.4	80-121			
o-Xylene	10.3	0.08	0.20	ug/L	10.0		103	80-121			
Xylenes, total	30.1	0.22	0.60	ug/L	30.0		100	76-127			
Styrene	10.4	0.09	0.20	ug/L	10.0		104	80-124			
Bromoform	9.86	0.15	0.20	ug/L	10.0		98.6	51-134			
1,1,2,2-Tetrachloroethane	8.77	0.03	0.20	ug/L	10.0		87.7	77-123			
1,2,3-Trichloropropane	9.70	0.16	0.50	ug/L	10.0		97.0	76-125			
trans-1,4-Dichloro 2-Butene	8.60	0.60	1.00	ug/L	10.0		86.0	55-129			
n-Propylbenzene	10.4	0.07	0.20	ug/L	10.0		104	78-130			
Bromobenzene	9.79	0.07	0.20	ug/L	10.0		97.9	80-120			
Isopropyl Benzene	10.0	0.07	0.20	ug/L	10.0		100	80-128			
2-Chlorotoluene	10.1	0.06	0.20	ug/L	10.0		101	78-122			
4-Chlorotoluene	9.99	0.06	0.20	ug/L	10.0		99.9	80-121			
t-Butylbenzene	10.8	0.07	0.20	ug/L	10.0		108	78-125			
1,3,5-Trimethylbenzene	10.4	0.07	0.20	ug/L	10.0		104	80-129			
1,2,4-Trimethylbenzene	10.6	0.05	0.20	ug/L	10.0		106	80-127			
s-Butylbenzene	10.7	0.06	0.20	ug/L	10.0		107	78-129			
4-Isopropyl Toluene	10.8	0.08	0.20	ug/L	10.0		108	79-130			
1,3-Dichlorobenzene	10.4	0.08	0.20	ug/L	10.0		104	80-120			
1,4-Dichlorobenzene	10.2	0.10	0.20	ug/L	10.0		102	80-120			
n-Butylbenzene	11.0	0.18	0.20	ug/L	10.0		110	74-129			
1,2-Dichlorobenzene	10.5	0.08	0.20	ug/L	10.0		105	80-120			
1,2-Dibromo-3-chloropropane	10.5	0.39	0.50	ug/L	10.0		105	62-123			
1,2,4-Trichlorobenzene	13.3	0.21	0.50	ug/L	10.0		133	64-124			*, Q
Hexachloro-1,3-Butadiene	14.6	1.00	2.00	ug/L	10.0		146	65-145			*, Q
Naphthalene	12.7	0.27	0.50	ug/L	10.0		127	50-134			Q

 CALIBRE
 Project: Boeing Renton

 Project Number: Boeing Renton
 Reported:

 --, Project Manager: Tom McKeon
 04-Apr-2024 13:12

Analysis by: Analytical Resources, LLC

Volatile Organic Compounds - Quality Control

Batch BMD0082 - EPA 8260D

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
LCS (BMD0082-BS1)				Prepa	ared: 03-Apr	-2024 Ana	alyzed: 03-A	Apr-2024 07	7:46		
1,2,3-Trichlorobenzene	13.6	0.25	0.50	ug/L	10.0		136	49-133			*, Q
Dichlorodifluoromethane	7.47	0.13	0.20	ug/L	10.0		74.7	48-147			Q
Methyl tert-butyl Ether	9.38	0.14	0.50	ug/L	10.0		93.8	71-132			
2-Pentanone	45.2	2.34	5.00	ug/L	50.0		90.5	69-134			
Surrogate: 1,2-Dichloroethane-d4	4.79			ug/L	5.00		95.8	80-129			
Surrogate: Toluene-d8	4.82			ug/L	5.00		96.3	80-120			
Surrogate: 4-Bromofluorobenzene	5.11			ug/L	5.00		102	80-120			
Surrogate: 1,2-Dichlorobenzene-d4	5.06			ug/L	5.00		101	80-120			

 CALIBRE
 Project:
 Boeing Renton

 Project Number:
 Boeing Renton

 --, Project Manager:
 Tom McKeon
 04-Apr-2024 13:12

Analysis by: Analytical Resources, LLC

Volatile Organic Compounds - Quality Control

Batch BMD0082 - EPA 8260D

OC Samula/Analyta	D agg-14	Detection	Reporting	Lluita	Spike	Source	0/DEC	%REC	DDD	RPD	Nata-
QC Sample/Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
LCS Dup (BMD0082-BSD1)				Prepa	ared: 03-Apr	r-2024 Ana	ılyzed: 03-A	Apr-2024 08	3:30		
Chloromethane	7.47	0.27	0.50	ug/L	10.0		74.7	60-138	3.55	30	Q
Vinyl Chloride	7.94	0.08	0.20	ug/L	10.0		79.4	66-133	0.80	30	Q
Bromomethane	8.15	0.23	1.00	ug/L	10.0		81.5	72-131	4.37	30	
Chloroethane	8.22	0.05	0.20	ug/L	10.0		82.2	60-155	0.33	30	
Trichlorofluoromethane	8.10	0.13	0.20	ug/L	10.0		81.0	62-141	2.89	30	
Acrolein	44.5	2.70	5.00	ug/L	50.0		89.1	52-190	3.30	30	
1,1,2-Trichloro-1,2,2-Trifluoroethane	8.28	0.11	0.20	ug/L	10.0		82.8	76-129	6.24	30	
Acetone	46.1	1.91	5.00	ug/L	50.0		92.2	58-142	0.09	30	
1,1-Dichloroethene	8.25	0.08	0.20	ug/L	10.0		82.5	69-135	2.37	30	
Iodomethane	9.13	0.15	1.00	ug/L	10.0		91.3	56-147	0.79	30	
Methylene Chloride	8.75	0.53	1.00	ug/L	10.0		87.5	65-135	4.45	30	
Acrylonitrile	8.65	0.40	1.00	ug/L	10.0		86.5	64-134	3.63	30	
Carbon Disulfide	7.83	0.06	0.20	ug/L	10.0		78.3	78-125	2.86	30	
trans-1,2-Dichloroethene	8.64	0.07	0.20	ug/L	10.0		86.4	78-128	1.61	30	
Vinyl Acetate	9.47	0.12	0.20	ug/L	10.0		94.7	55-138	0.35	30	
1,1-Dichloroethane	8.92	0.04	0.20	ug/L	10.0		89.2	76-124	1.26	30	
2-Butanone	47.7	1.77	5.00	ug/L	50.0		95.5	61-140	1.47	30	
2,2-Dichloropropane	9.20	0.11	0.20	ug/L	10.0		92.0	66-147	0.34	30	
cis-1,2-Dichloroethene	8.45	0.08	0.20	ug/L	10.0		84.5	80-121	0.05	30	
Chloroform	9.12	0.05	0.20	ug/L	10.0		91.2	80-122	2.31	30	
Bromochloromethane	8.96	0.09	0.20	ug/L	10.0		89.6	80-121	0.24	30	
1,1,1-Trichloroethane	9.64	0.08	0.20	ug/L	10.0		96.4	79-123	2.39	30	
1,1-Dichloropropene	9.25	0.09	0.20	ug/L	10.0		92.5	80-127	0.26	30	
Carbon tetrachloride	9.71	0.09	0.20	ug/L	10.0		97.1	53-137	6.68	30	
1,2-Dichloroethane	10.5	0.08	0.20	ug/L	10.0		105	75-123	1.82	30	
Benzene	9.22	0.05	0.20	ug/L	10.0		92.2	80-120	1.56	30	
Trichloroethene	9.41	0.07	0.20	ug/L	10.0		94.1	80-120	0.66	30	
1,2-Dichloropropane	9.14	0.07	0.20	ug/L	10.0		91.4	80-120	0.24	30	
Bromodichloromethane	10.0	0.09	0.20	ug/L	10.0		100	80-121	2.65	30	
Dibromomethane	9.59	0.06	0.20	ug/L	10.0		95.9	80-120	2.20	30	
2-Chloroethyl vinyl ether	9.94	0.55	1.00	ug/L	10.0		99.4	64-120	0.74	30	
4-Methyl-2-Pentanone	50.2	1.90	5.00	ug/L	50.0		100	67-133	2.13	30	
cis-1,3-Dichloropropene	9.43	0.09	0.20	ug/L	10.0		94.3	80-124	0.56	30	
Toluene	9.42	0.05	0.20	ug/L	10.0		94.2	80-120	0.01	30	
trans-1,3-Dichloropropene	9.83	0.09	0.20	ug/L	10.0		98.3	71-127	0.71	30	
• •				-							

 CALIBRE
 Project:
 Boeing Renton

 Project Number:
 Boeing Renton

 --, Project Manager:
 Tom McKeon
 04-Apr-2024 13:12

Analysis by: Analytical Resources, LLC

Volatile Organic Compounds - Quality Control

Batch BMD0082 - EPA 8260D

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
LCS Dup (BMD0082-BSD1)				Prepa	ared: 03-Apr	-2024 Ana	alyzed: 03-A	Apr-2024 08	3:30		
2-Hexanone	52.2	2.06	5.00	ug/L	50.0		104	69-133	0.33	30	
1,1,2-Trichloroethane	9.70	0.10	0.20	ug/L	10.0		97.0	80-121	1.37	30	
1,3-Dichloropropane	9.68	0.07	0.20	ug/L	10.0		96.8	80-120	2.35	30	
Tetrachloroethene	9.90	0.09	0.20	ug/L	10.0		99.0	80-120	0.29	30	
Dibromochloromethane	10.4	0.09	0.20	ug/L	10.0		104	65-135	0.32	30	
1,2-Dibromoethane	9.61	0.09	0.20	ug/L	10.0		96.1	80-121	0.06	30	
Chlorobenzene	10.3	0.06	0.20	ug/L	10.0		103	80-120	3.43	30	
Ethylbenzene	9.95	0.05	0.20	ug/L	10.0		99.5	80-120	0.39	30	
1,1,1,2-Tetrachloroethane	9.59	0.09	0.20	ug/L	10.0		95.9	80-120	2.06	30	
m,p-Xylene	20.4	0.14	0.40	ug/L	20.0		102	80-121	2.50	30	
o-Xylene	10.4	0.08	0.20	ug/L	10.0		104	80-121	0.99	30	
Xylenes, total	30.7	0.22	0.60	ug/L	30.0		102	76-127	1.99	30	
Styrene	10.3	0.09	0.20	ug/L	10.0		103	80-124	0.43	30	
Bromoform	9.98	0.15	0.20	ug/L	10.0		99.8	51-134	1.27	30	
1,1,2,2-Tetrachloroethane	9.32	0.03	0.20	ug/L	10.0		93.2	77-123	6.16	30	
1,2,3-Trichloropropane	10.2	0.16	0.50	ug/L	10.0		102	76-125	5.10	30	
trans-1,4-Dichloro 2-Butene	8.43	0.60	1.00	ug/L	10.0		84.3	55-129	2.07	30	
n-Propylbenzene	10.5	0.07	0.20	ug/L	10.0		105	78-130	0.40	30	
Bromobenzene	10.1	0.07	0.20	ug/L	10.0		101	80-120	2.68	30	
Isopropyl Benzene	10.1	0.07	0.20	ug/L	10.0		101	80-128	1.03	30	
2-Chlorotoluene	10.4	0.06	0.20	ug/L	10.0		104	78-122	3.09	30	
4-Chlorotoluene	10.3	0.06	0.20	ug/L	10.0		103	80-121	2.72	30	
t-Butylbenzene	10.8	0.07	0.20	ug/L	10.0		108	78-125	0.21	30	
1,3,5-Trimethylbenzene	10.7	0.07	0.20	ug/L	10.0		107	80-129	1.97	30	
1,2,4-Trimethylbenzene	10.7	0.05	0.20	ug/L	10.0		107	80-127	1.13	30	
s-Butylbenzene	10.7	0.06	0.20	ug/L	10.0		107	78-129	0.30	30	
4-Isopropyl Toluene	11.0	0.08	0.20	ug/L	10.0		110	79-130	1.24	30	
1,3-Dichlorobenzene	10.6	0.08	0.20	ug/L	10.0		106	80-120	1.65	30	
1,4-Dichlorobenzene	10.5	0.10	0.20	ug/L	10.0		105	80-120	3.22	30	
n-Butylbenzene	11.2	0.18	0.20	ug/L	10.0		112	74-129	1.54	30	
1,2-Dichlorobenzene	10.8	0.08	0.20	ug/L	10.0		108	80-120	2.31	30	
1,2-Dibromo-3-chloropropane	11.1	0.39	0.50	ug/L	10.0		111	62-123	6.42	30	
1,2,4-Trichlorobenzene	13.3	0.21	0.50	ug/L	10.0		133	64-124	0.43	30	*, Q
Hexachloro-1,3-Butadiene	14.4	1.00	2.00	ug/L	10.0		144	65-145	1.25	30	Q
Naphthalene	12.9	0.27	0.50	ug/L	10.0		129	50-134	1.80	30	Q

 CALIBRE
 Project: Boeing Renton

 Project Number: Boeing Renton
 Reported:

 --, Project Manager: Tom McKeon
 04-Apr-2024 13:12

Analysis by: Analytical Resources, LLC

Volatile Organic Compounds - Quality Control

Batch BMD0082 - EPA 8260D

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
LCS Dup (BMD0082-BSD1)				Prep	ared: 03-Apı	-2024 Ana	alyzed: 03-	Apr-2024 08	3:30		
1,2,3-Trichlorobenzene	14.1	0.25	0.50	ug/L	10.0		141	49-133	3.48	30	*, Q
Dichlorodifluoromethane	6.68	0.13	0.20	ug/L	10.0		66.8	48-147	11.20	30	Q
Methyl tert-butyl Ether	9.27	0.14	0.50	ug/L	10.0		92.7	71-132	1.16	30	
2-Pentanone	46.4	2.34	5.00	ug/L	50.0		92.7	69-134	2.45	30	
Surrogate: 1,2-Dichloroethane-d4	4.69			ug/L	5.00		93.8	80-129			
Surrogate: Toluene-d8	4.88			ug/L	5.00		97.5	80-120			
Surrogate: 4-Bromofluorobenzene	5.27			ug/L	5.00		105	80-120			
Surrogate: 1,2-Dichlorobenzene-d4	5.06			ug/L	5.00		101	80-120			

CALIBRE Project: Boeing Renton
- Project Number: Boeing Renton
--, - Project Manager: Tom McKeon 04-Apr-2024 13:12

Certifications

Certified Analyses included in this Report

Analyte

Allalyte	Certifications
EPA 8260D in Water	
Chloromethane	DoD-ELAP,ADEC,NELAP,WADOE
Vinyl Chloride	DoD-ELAP,ADEC,NELAP,WADOE
Bromomethane	DoD-ELAP,ADEC,NELAP,WADOE
Chloroethane	DoD-ELAP,ADEC,NELAP,WADOE
Trichlorofluoromethane	DoD-ELAP,ADEC,NELAP,WADOE
Acrolein	DoD-ELAP,NELAP,WADOE
1,1,2-Trichloro-1,2,2-Trifluoroeth	DoD-ELAP,ADEC,NELAP,WADOE
Acetone	DoD-ELAP,ADEC,NELAP,WADOE
Acetone	DoD-ELAP,ADEC,NELAP,WADOE

CALIBRE	Project: Boeing Renton	
-	Project Number: Boeing Renton	Reported:
,-	Project Manager: Tom McKeon	04-Apr-2024 13:12
Acetone	DoD-FLAP ADEC NELAP WADOE	

Acetone DoD-ELAP,ADEC,NELAP,WADOE
Acetone DoD-ELAP,ADEC,NELAP,WADOE
1,1-Dichloroethene DoD-ELAP,ADEC,NELAP,WADOE
1,1-Dichloroethene DoD-ELAP,ADEC,NELAP,WADOE
1,1-Dichloroethene DoD-ELAP,ADEC,NELAP,WADOE
1,1-Dichloroethene DoD-ELAP,ADEC,NELAP,WADOE

IodomethaneDoD-ELAP,NELAP,WADOEIodomethaneDoD-ELAP,NELAP,WADOEIodomethaneDoD-ELAP,NELAP,WADOEIodomethaneDoD-ELAP,NELAP,WADOE

Methylene Chloride DoD-ELAP,ADEC,NELAP,WADOE
Methylene Chloride DoD-ELAP,ADEC,NELAP,WADOE
Methylene Chloride DoD-ELAP,ADEC,NELAP,WADOE
Methylene Chloride DoD-ELAP,ADEC,NELAP,WADOE

Acrylonitrile DoD-ELAP, NELAP, WADOE DoD-ELAP, NELAP, WADOE Acrylonitrile Acrylonitrile DoD-ELAP, NELAP, WADOE Acrylonitrile DoD-ELAP, NELAP, WADOE Carbon Disulfide DoD-ELAP, NELAP, WADOE

trans-1,2-Dichloroethene DoD-ELAP,ADEC,NELAP,WADOE trans-1,2-Dichloroethene DoD-ELAP,ADEC,NELAP,WADOE trans-1,2-Dichloroethene DoD-ELAP,ADEC,NELAP,WADOE trans-1,2-Dichloroethene DoD-ELAP,ADEC,NELAP,WADOE

Vinyl Acetate DoD-ELAP,NELAP,WADOE
Vinyl Acetate DoD-ELAP,NELAP,WADOE
Vinyl Acetate DoD-ELAP,NELAP,WADOE
Vinyl Acetate DoD-ELAP,NELAP,WADOE

1,1-DichloroethaneDoD-ELAP,ADEC,NELAP,WADOE1,1-DichloroethaneDoD-ELAP,ADEC,NELAP,WADOE1,1-DichloroethaneDoD-ELAP,ADEC,NELAP,WADOE

•			
	,-	Project Manager: Tom McKeon	04-Apr-2024 13:12
	-	Project Number: Boeing Renton	Reported:
	CALIBRE	Project: Boeing Renton	

1,1-Dichloroethane	DoD-ELAP,ADEC,NELAP,WADOE
2-Butanone	DoD-ELAP,NELAP,WADOE
2,2-Dichloropropane	DoD-ELAP,ADEC,NELAP,WADOE
cis-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,WADOE
Chloroform	DoD-ELAP,ADEC,NELAP,WADOE
Bromochloromethane	DoD-ELAP,ADEC,NELAP,WADOE
1,1,1-Trichloroethane	DoD-ELAP,ADEC,NELAP,WADOE
1,1-Dichloropropene	DoD-ELAP,ADEC,NELAP,WADOE
Carbon tetrachloride	DoD-ELAP,ADEC,NELAP,WADOE

CALIBRE	Project: Boeing Renton	
-	Project Number: Boeing Renton	Reported:
,-	Project Manager: Tom McKeon	04-Apr-2024 13:12
1,2-Dichloroethane	DoD-ELAP,ADEC,NELAP,WADOE	
Benzene	DoD-ELAP,ADEC,NELAP,WADOE	
Trichloroethene	DoD-ELAP,ADEC,NELAP,WADOE	
1,2-Dichloropropane	DoD-ELAP,ADEC,NELAP,WADOE	
Bromodichloromethane	DoD-ELAP,ADEC,NELAP,WADOE	
Dibromomethane	DoD-ELAP,ADEC,NELAP,WADOE	
2-Chloroethyl vinyl ether	DoD-ELAP,ADEC,NELAP,WADOE	
4-Methyl-2-Pentanone	DoD-ELAP,NELAP,WADOE	
cis-1,3-Dichloropropene	DoD-ELAP,ADEC,NELAP,WADOE	

1,2-Dibromoethane

Analytical Report

CALIBRE	Project: Boeing Renton	
-	Project Number: Boeing Renton	Reported:
,-	Project Manager: Tom McKeon	04-Apr-2024 13:12
cis-1,3-Dichloropropene	DoD-ELAP,ADEC,NELAP,WADOE	
cis-1,3-Dichloropropene	DoD-ELAP,ADEC,NELAP,WADOE	
cis-1,3-Dichloropropene	DoD-ELAP,ADEC,NELAP,WADOE	
Toluene	DoD-ELAP,ADEC,NELAP,WADOE	
trans-1,3-Dichloropropene	DoD-ELAP,ADEC,NELAP,WADOE	
2-Hexanone	DoD-ELAP,NELAP,WADOE	
1,1,2-Trichloroethane	DoD-ELAP,ADEC,NELAP,WADOE	
1,3-Dichloropropane	DoD-ELAP,ADEC,NELAP,WADOE	
Tetrachloroethene	DoD-ELAP,ADEC,NELAP,WADOE	
Dibromochloromethane	DoD-ELAP,ADEC,NELAP,WADOE	
1,2-Dibromoethane	DoD-ELAP,NELAP,WADOE	

DoD-ELAP, NELAP, WADOE

CALIBRE	Project: Boeing Renton	
-	Project Number: Boeing Renton	Reported:
,-	Project Manager: Tom McKeon	04-Apr-2024 13:12

,-	Project Manager: Tom McKeon
1,2-Dibromoethane	DoD-ELAP,NELAP,WADOE
1,2-Dibromoethane	DoD-ELAP,NELAP,WADOE
Chlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE
Ethylbenzene	DoD-ELAP,ADEC,NELAP,WADOE
1,1,1,2-Tetrachloroethane	DoD-ELAP,ADEC,NELAP,WADOE
m,p-Xylene	DoD-ELAP,ADEC,NELAP,WADOE
o-Xylene	DoD-ELAP,ADEC,NELAP,WADOE
Styrene	DoD-ELAP,NELAP,WADOE
Bromoform	DoD-ELAP,NELAP,WADOE
1,1,2,2-Tetrachloroethane	DoD-ELAP,ADEC,NELAP,WADOE
1,1,2,2-Tetrachloroethane	DoD-ELAP,ADEC,NELAP,WADOE
1.1.2.2.Tetrachloroethane	DOD-ELAPADEC NELAPWADOE

1,1,2,2-Tetrachloroethane DoD-ELAP,ADEC,NELAP,WADOE

CALIBRE	Project: Boeing Renton	
-	Project Number: Boeing Renton	Reported:
,-	Project Manager: Tom McKeon	04-Apr-2024 13:12
1,1,2,2-Tetrachloroethane	DoD-ELAP,ADEC,NELAP,WADOE	
1,2,3-Trichloropropane	DoD-ELAP,ADEC,NELAP,WADOE	
trans-1,4-Dichloro 2-Butene	DoD-ELAP,ADEC,NELAP,WADOE	
n-Propylbenzene	DoD-ELAP,NELAP,WADOE	
Bromobenzene	DoD-ELAP,NELAP,WADOE	
Isopropyl Benzene	DoD-ELAP,NELAP,WADOE	
2-Chlorotoluene	DoD-ELAP,ADEC,NELAP,WADOE	
4-Chlorotoluene	DoD-ELAP,ADEC,NELAP,WADOE	
t-Butylbenzene	DoD-ELAP,NELAP,WADOE	

Project Number: Bosting Renton Reported:	CALIBRE	Project: Boeing Renton	
1,3.5-Trimethylbenzene 1,2.4-Trimethylbenzene 1,3-Dichlorobenzene 1,3-Dichloro	-		
1,3,5-Trimethylbenzene 1,3,5-Trimethylbenzene 1,3,5-Trimethylbenzene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3-Dichlenzene 1,4-Dichlenzene 1,4-Dic	,-	Project Manager: Tom McKeon	04-Apr-2024 13:12
1,3.5-Trimethylbenzene 1,3.5-Trimethylbenzene 1,2.4-Trimethylbenzene 1,2-Trimethylbenzene	1,3,5-Trimethylbenzene	DoD-ELAP,NELAP,WADOE	
1,3,5-Trimethylbenzene DoD-ELAP,NELAP,WADOE 1,2,4-Trimethylbenzene DoD-ELAP,NELAP,WADOE 1,2,4-Trimethylbenzene DoD-ELAP,NELAP,WADOE 1,2,4-Trimethylbenzene DoD-ELAP,NELAP,WADOE 1,2,4-Trimethylbenzene DoD-ELAP,NELAP,WADOE s-Butylbenzene DoD-ELAP,NELAP,WADOE 4-Isopropyl Toluene DoD-ELAP,NELAP,WADOE 4-Isopropyl Toluene DoD-ELAP,NELAP,WADOE 4-Isopropyl Toluene DoD-ELAP,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,NELAP,WADOE n-Butylbenzene DoD-ELAP,NEL	1,3,5-Trimethylbenzene	DoD-ELAP,NELAP,WADOE	
1.2.4-Trimethylbenzene DoD-ELAP,NELAP,WADOE 1.2.4-Trimethylbenzene DoD-ELAP,NELAP,WADOE 1.2.4-Trimethylbenzene DoD-ELAP,NELAP,WADOE 1.2.4-Trimethylbenzene DoD-ELAP,NELAP,WADOE 1.2.4-Trimethylbenzene DoD-ELAP,NELAP,WADOE 5-Butylbenzene DoD-ELAP,NELAP,WADOE 5-Butylbenzene DoD-ELAP,NELAP,WADOE 5-Butylbenzene DoD-ELAP,NELAP,WADOE 5-Butylbenzene DoD-ELAP,NELAP,WADOE 5-Butylbenzene DoD-ELAP,NELAP,WADOE 5-Butylbenzene DoD-ELAP,NELAP,WADOE 4-Isopropyl Toluene DoD-ELAP,NELAP,WADOE 4-Isopropyl Toluene DoD-ELAP,NELAP,WADOE 4-Isopropyl Toluene DoD-ELAP,NELAP,WADOE 4-Isopropyl Toluene DoD-ELAP,NELAP,WADOE 1.3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1.3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1.3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1.3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1.4-Dichlorobenzene DoD-ELAP,NELAP,WADOE	1,3,5-Trimethylbenzene	DoD-ELAP,NELAP,WADOE	
1.2.4-Trimethylbenzene DoD-ELAP,NELAP,WADOE 1.2.4-Trimethylbenzene DoD-ELAP,NELAP,WADOE 1.2.4-Trimethylbenzene DoD-ELAP,NELAP,WADOE 8-Butylbenzene DoD-ELAP,NELAP,WADOE 8-Butylbenzene DoD-ELAP,NELAP,WADOE 8-Butylbenzene DoD-ELAP,NELAP,WADOE 8-Butylbenzene DoD-ELAP,NELAP,WADOE 8-Butylbenzene DoD-ELAP,NELAP,WADOE 8-Butylbenzene DoD-ELAP,NELAP,WADOE 4-Isopropyl Toluene DoD-ELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,DEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE	1,3,5-Trimethylbenzene	DoD-ELAP,NELAP,WADOE	
1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 5-Butylbenzene 6-Butylbenzene 6-But	1,2,4-Trimethylbenzene	DoD-ELAP,NELAP,WADOE	
1,2,4-Trimethylbenzene DoD-ELAP,NELAP,WADOE s-Butylbenzene DoD-ELAP,NELAP,WADOE s-Butylbenzene DoD-ELAP,NELAP,WADOE s-Butylbenzene DoD-ELAP,NELAP,WADOE s-Butylbenzene DoD-ELAP,NELAP,WADOE s-Butylbenzene DoD-ELAP,NELAP,WADOE 4-Isopropyl Toluene DoD-ELAP,NELAP,WADOE 4-Isopropyl Toluene DoD-ELAP,NELAP,WADOE 4-Isopropyl Toluene DoD-ELAP,NELAP,WADOE 4-Isopropyl Toluene DoD-ELAP,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,5-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,5-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,5-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,5-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,5-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,5-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,5-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,5-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,5-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE	1,2,4-Trimethylbenzene	DoD-ELAP,NELAP,WADOE	
s-Butylbenzene DoD-ELAP,NELAP,WADOE s-Butylbenzene DoD-ELAP,NELAP,WADOE s-Butylbenzene DoD-ELAP,NELAP,WADOE s-Butylbenzene DoD-ELAP,NELAP,WADOE s-Butylbenzene DoD-ELAP,NELAP,WADOE 4-Isopropyl Toluene DoD-ELAP,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,5-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,5-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,5-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,5-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,5-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,5-Dichlorobenzene DoD-ELAP,NELAP,WADOE	1,2,4-Trimethylbenzene	DoD-ELAP,NELAP,WADOE	
s-Butylbenzene DoD-ELAP,NELAP,WADOE s-Butylbenzene DoD-ELAP,NELAP,WADOE s-Butylbenzene DoD-ELAP,NELAP,WADOE 4-Isopropyl Toluene DoD-ELAP,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE	1,2,4-Trimethylbenzene	DoD-ELAP,NELAP,WADOE	
s-Butylbenzene DoD-ELAP,NELAP,WADOE s-Butylbenzene DoD-ELAP,NELAP,WADOE 4-Isopropyl Toluene DoD-ELAP,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,5-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,5-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE	s-Butylbenzene	DoD-ELAP,NELAP,WADOE	
s-Butylbenzene DoD-ELAP,NELAP,WADOE 4-Isopropyl Toluene DoD-ELAP,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE	s-Butylbenzene	DoD-ELAP,NELAP,WADOE	
4-Isopropyl Toluene DoD-ELAP,NELAP,WADOE 4-Isopropyl Toluene DoD-ELAP,NELAP,WADOE 4-Isopropyl Toluene DoD-ELAP,NELAP,WADOE 4-Isopropyl Toluene DoD-ELAP,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,NELAP,WADOE n-Butylbenzene DoD-ELAP,NELAP,WADOE n-Butylbenzene DoD-ELAP,NELAP,WADOE n-Butylbenzene DoD-ELAP,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE <td< td=""><td>s-Butylbenzene</td><td>DoD-ELAP,NELAP,WADOE</td><td></td></td<>	s-Butylbenzene	DoD-ELAP,NELAP,WADOE	
4-Isopropyl Toluene DoD-ELAP,NELAP,WADOE 4-Isopropyl Toluene DoD-ELAP,NELAP,WADOE 4-Isopropyl Toluene DoD-ELAP,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1-Butylbenzene DoD-ELAP,NELAP,WADOE 1-Butylbenzene DoD-ELAP,NELAP,WADOE 1-Butylbenzene DoD-ELAP,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE	s-Butylbenzene	DoD-ELAP,NELAP,WADOE	
4-Isopropyl Toluene DoD-ELAP,NELAP,WADOE 4-Isopropyl Toluene DoD-ELAP,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,5-Butylbenzene DoD-ELAP,NELAP,WADOE 1-Butylbenzene DoD-ELAP,NELAP,WADOE 1-Butylbenzene DoD-ELAP,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE	4-Isopropyl Toluene	DoD-ELAP,NELAP,WADOE	
4-Isopropyl Toluene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,5-Dichlorobenzene 1,5-Dichlorobenzene 1,6-Dichlorobenzene 1,6-Di	4-Isopropyl Toluene	DoD-ELAP,NELAP,WADOE	
1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,NELAP,WADOE n-Butylbenzene DoD-ELAP,NELAP,WADOE n-Butylbenzene DoD-ELAP,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE	4-Isopropyl Toluene	DoD-ELAP,NELAP,WADOE	
1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE	4-Isopropyl Toluene	DoD-ELAP,NELAP,WADOE	
1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE n-Butylbenzene DoD-ELAP,NELAP,WADOE n-Butylbenzene DoD-ELAP,NELAP,WADOE n-Butylbenzene DoD-ELAP,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE	1,3-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
1,3-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE n-Butylbenzene DoD-ELAP,NELAP,WADOE n-Butylbenzene DoD-ELAP,NELAP,WADOE n-Butylbenzene DoD-ELAP,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE	1,3-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE n-Butylbenzene DoD-ELAP,NELAP,WADOE n-Butylbenzene DoD-ELAP,NELAP,WADOE n-Butylbenzene DoD-ELAP,NELAP,WADOE n-Butylbenzene DoD-ELAP,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE	1,3-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE n-Butylbenzene DoD-ELAP,NELAP,WADOE n-Butylbenzene DoD-ELAP,NELAP,WADOE n-Butylbenzene DoD-ELAP,NELAP,WADOE n-Butylbenzene DoD-ELAP,NELAP,WADOE n-Butylbenzene DoD-ELAP,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE	1,3-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,4-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE n-Butylbenzene DoD-ELAP,NELAP,WADOE n-Butylbenzene DoD-ELAP,NELAP,WADOE n-Butylbenzene DoD-ELAP,NELAP,WADOE n-Butylbenzene DoD-ELAP,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE	1,4-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
1,4-DichlorobenzeneDoD-ELAP,ADEC,NELAP,WADOEn-ButylbenzeneDoD-ELAP,NELAP,WADOEn-ButylbenzeneDoD-ELAP,NELAP,WADOEn-ButylbenzeneDoD-ELAP,NELAP,WADOEn-ButylbenzeneDoD-ELAP,NELAP,WADOE1,2-DichlorobenzeneDoD-ELAP,ADEC,NELAP,WADOE1,2-DichlorobenzeneDoD-ELAP,ADEC,NELAP,WADOE1,2-DichlorobenzeneDoD-ELAP,ADEC,NELAP,WADOE1,2-DichlorobenzeneDoD-ELAP,ADEC,NELAP,WADOE1,2-DichlorobenzeneDoD-ELAP,ADEC,NELAP,WADOE1,2-DichlorobenzeneDoD-ELAP,ADEC,NELAP,WADOE	1,4-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
n-Butylbenzene DoD-ELAP,NELAP,WADOE n-Butylbenzene DoD-ELAP,NELAP,WADOE n-Butylbenzene DoD-ELAP,NELAP,WADOE n-Butylbenzene DoD-ELAP,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE	1,4-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
n-Butylbenzene DoD-ELAP,NELAP,WADOE n-Butylbenzene DoD-ELAP,NELAP,WADOE n-Butylbenzene DoD-ELAP,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE	1,4-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
n-Butylbenzene DoD-ELAP,NELAP,WADOE n-Butylbenzene DoD-ELAP,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE	n-Butylbenzene	DoD-ELAP,NELAP,WADOE	
n-Butylbenzene DoD-ELAP,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE 1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE	n-Butylbenzene	DoD-ELAP,NELAP,WADOE	
1,2-DichlorobenzeneDoD-ELAP,ADEC,NELAP,WADOE1,2-DichlorobenzeneDoD-ELAP,ADEC,NELAP,WADOE1,2-DichlorobenzeneDoD-ELAP,ADEC,NELAP,WADOE1,2-DichlorobenzeneDoD-ELAP,ADEC,NELAP,WADOE	n-Butylbenzene	DoD-ELAP,NELAP,WADOE	
1,2-DichlorobenzeneDoD-ELAP,ADEC,NELAP,WADOE1,2-DichlorobenzeneDoD-ELAP,ADEC,NELAP,WADOE1,2-DichlorobenzeneDoD-ELAP,ADEC,NELAP,WADOE	n-Butylbenzene	DoD-ELAP,NELAP,WADOE	
1,2-DichlorobenzeneDoD-ELAP,ADEC,NELAP,WADOE1,2-DichlorobenzeneDoD-ELAP,ADEC,NELAP,WADOE	1,2-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
1,2-Dichlorobenzene DoD-ELAP,ADEC,NELAP,WADOE	1,2-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
	1,2-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
1,2-Dibromo-3-chloropropane DoD-ELAP,ADEC,NELAP,WADOE	1,2-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
	1,2-Dibromo-3-chloropropane	DoD-ELAP,ADEC,NELAP,WADOE	

2-Pentanone

Analytical Report

CALIBRE	Project: Boeing Renton	
-	Project Number: Boeing Renton	Reported:
,-	Project Manager: Tom McKeon	04-Apr-2024 13:12
1,2-Dibromo-3-chloropropane	DoD-ELAP,ADEC,NELAP,WADOE	
1,2-Dibromo-3-chloropropane	DoD-ELAP,ADEC,NELAP,WADOE	
1,2-Dibromo-3-chloropropane	DoD-ELAP,ADEC,NELAP,WADOE	
1,2,4-Trichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
Hexachloro-1,3-Butadiene	DoD-ELAP,ADEC,NELAP,WADOE	
Naphthalene	DoD-ELAP,ADEC,NELAP,WADOE	
1,2,3-Trichlorobenzene	DoD-ELAP,ADEC,NELAP,WADOE	
Dichlorodifluoromethane	DoD-ELAP,ADEC,NELAP,WADOE	
Methyl tert-butyl Ether	DoD-ELAP,ADEC,NELAP,WADOE	
2-Pentanone	WADOE	
2-Pentanone	WADOE	
2-Pentanone	WADOE	

WADOE

CALIBRE	Project: Boeing Renton	
-	Project Number: Boeing Renton	Reported:
, -	Project Manager: Tom McKeon	04-Apr-2024 13:12

Code	Description	Number	Expires
ADEC	Alaska Dept of Environmental Conservation	17-015	03/28/2025
DoD-ELAP	DoD-Environmental Laboratory Accreditation Program, PJLA Testing	66169	02/28/2025
NELAP	ORELAP - Oregon Laboratory Accreditation Program	WA100006-012	05/12/2024
WADOE	WA Dept of Ecology	C558	06/30/2024
WA-DW	Ecology - Drinking Water	C558	06/30/2024

CALIBRE	Project: Boeing Renton	
-	Project Number: Boeing Renton	Reported:
,-	Project Manager: Tom McKeon	04-Apr-2024 13:12

Notes and Definitions

*	Flagged value is not within established control limits.
J	Estimated concentration value detected below the reporting limit.
Q	Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria ($<20\%$ RSD, $<20\%$ drift or minimum RRF)
U	This analyte is not detected above the reporting limit (RL) or if noted, not detected above the limit of detection (LOD).
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
[2C]	Indicates this result was quantified on the second column on a dual column analysis.