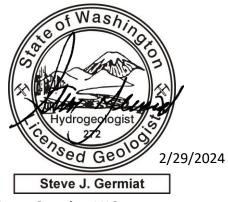
YEAR 1 ANNUAL REPORT FOR GROUNDWATER MONITORED NATURAL ATTENUATION

Lignin Operable Unit, G-P West Site

Prepared for: Port of Bellingham

Project No. AS210368-B-08 • February 29, 2024 FINAL


YEAR 1 ANNUAL REPORT FOR GROUNDWATER MONITORED NATURAL ATTENUATION Lignin Operable Unit, G-P West Site

Prepared for: Port of Bellingham

Project No. AS210368-B-08 • February 29, 2024 FINAL

Aspect Consulting, LLC

Amy Tice, LG Project Geologist amy.tice@aspectconsulting.com

Steve Germiat, LHG Principal Hydrogeologist steve.germiat@aspectconsulting.com

V:\210368 Remedial Dsgn and Cnstrctn Ovrsght, Chlor-Alkali RAU\Deliverables\210368-B Chlor-Alkali RAU\2024_02 Lignin MNA Annual Report Year 1\Final\Lignin MNA Annual Report 1 - Final_2024.02.29.docx

Contents

1	Background for Groundwater Monitoring Program	1
2	 Monitoring Well Installation and Development 2.1 Monitoring Well Installation and Development 2.2 Investigation-Derived Waste 	3
3	Year 1 Groundwater Sampling and Analysis	5
4	Data Evaluation	6
4 5		
-		7

List of Tables

1	Monitoring Well Details and Groundwater Elevations
2	Year 1 Groundwater MNA Monitoring Data

List of Figures

1 Groundwater Monitoring Well Locations

List of Appendices

- A Construction Logs for New Monitoring Wells
- B Data Validation and Laboratory Reports
- C IDW Disposal Manifest

1 Background for Groundwater Monitoring Program

This report presents results from the first year of compliance monitoring for groundwater monitored natural attenuation (MNA), a component of the cleanup action selected by the Washington State Department of Ecology (Ecology), for the Lignin Operable Unit (OU) of the Chlor-Alkali Remedial Action Unit (RAU) of the Georgia-Pacific (G-P) West Site (Site). The Site is being cleaned up under the authority of the Washington State Model Toxics Control Act (MTCA), Chapter 70A.305 of the Revised Code of Washington (RCW), and the MTCA Cleanup Regulation, Chapter 173-340 of the Washington Administrative Code (WAC).

In August 2022, Ecology finalized the Cleanup Action Plan (CAP) for the Lignin OU (Ecology, 2022), and Ecology and the Port of Bellingham (Port) executed the First Amendment to the Site's Consent Decree requiring execution of that CAP.¹ The CAP-selected cleanup action for the Lignin OU included soil excavation to remove soils contaminated with carcinogenic polycyclic aromatic hydrocarbons (cPAHs) and zinc that posed a direct contact risk for an unrestricted land use,² and to remove metals-impacted soil to enhance natural attenuation of metals in groundwater. The soil removal was conducted in September through December of 2022 (Aspect, 2023a). Mercy Housing Northwest has begun construction for 83 affordable housing units and childcare facility on an approximately 2.3-acre portion of the Lignin OU (Mercy Parcel on Figure 1). The Port is in early planning with Millworks LLC regarding mixed-use redevelopment of the 1.1-acre parcel located immediately north of the Mercy Parcel (Port property on Figure 1).

Following the soil removal, the Lignin OU cleanup includes groundwater monitored natural attenuation (MNA) to address low-level residual dissolved chromium and copper concentrations that exceeded groundwater cleanup levels based on protection of discharge to the Whatcom Waterway prior to the soil removal action. The soil removal permanently removed metals-impacted soil to reduce the mass of metals contamination and thereby enhance natural attenuation of metals contamination in groundwater and reduce the groundwater restoration time frame (Ecology, 2022).

Monitoring of the groundwater MNA cleanup action is being conducted in accordance with the "Compliance Monitoring Plan for Groundwater MNA" (CMP; Aspect, 2023a), which was reviewed and approved by Ecology prior to initiation of the monitoring program.

This report documents the first year of groundwater compliance monitoring data and provides recommendations in accordance with the CMP.

¹ The Lignin OU CAP was Exhibit G to the amended Consent Decree.

² Assuming a child's incidental ingestion of soil for a lifetime.

Following this Background section, the organization of the report is as follows:

- *Section 2* outlines the new monitoring well locations, installation, and development.
- *Section 3* the describes the groundwater sampling and analysis completed in the first year of monitoring.
- *Section 4* contains an evaluation of the groundwater analytical data with respect to the cleanup levels.
- *Section 5* presents the conclusions reached from the data to date and recommendations for future work.

2 Monitoring Well Installation and Development

Based on the groundwater elevation mapping, groundwater in the Lignin OU's shallow unconfined water-bearing zone flows generally northwestward toward Laurel Street (Aspect, 2022). In accordance with the CMP, the monitoring well locations were selected as follows:

- **Downgradient.** Monitoring wells LW-MW101, LW-MW102, and LW-MW103 were installed along the downgradient edge (norther boundary) of the Lignin OU, as shown on Figure 1. The purpose of these wells is to determine if MNA within the Lignin OU is sufficient to prevent migration of groundwater exceeding cleanup levels toward the Whatcom Waterway.
- LW-MW02 Replacement. Monitoring well LW-MW104 was installed in the vicinity of decommissioned monitoring well LW-MW02, which was decommissioned during the 2022 soil cleanup action (Aspect, 2023b). The most recent groundwater sampling results at LW-MW02 from 2022 (before the soil cleanup action) showed a chromium exceedance in January 2022 and a copper exceedance in February 2022. The replacement well (LW-MW104) was used to continue monitoring groundwater concentrations as close downgradient of the LW-MW02 location as practical while staying on Port property.
- **Upgradient.** Monitoring well LW-MW105 was installed on the upgradient edge (southeastern boundary) of the Lignin OU (Figure 1) to provide a point of comparison with groundwater concentrations within the Lignin OU.

2.1 Monitoring Well Installation and Development

The new monitoring wells were installed by a state-licensed resource protection well driller using a direct-push probe rig and constructed in accordance with Chapter 173-160 WAC. In accordance with the CMP, the monitoring wells were installed in the locations shown on Figure 1 and were constructed of 2-inch-diameter PVC well casing with 10-foot-long, 10-slot well screens. The top of the well screen for each monitoring well was placed at the water table depth observed during drilling. Screens were prepacked with silica sand, and an annular seal consisting of bentonite chips was placed above the filter pack. A concrete surface seal was set at grade. The finished monitoring wells were protected with flush-mount steel monuments set into the concrete surface seal. Boring logs, including well construction information, for the five new wells are included in Appendix A.

Each newly installed monitoring well was then developed to remove fine-grained material from inside the well casing and filter pack, and to improve hydraulic communication between the well screen and the surrounding water-bearing formation. Well development was performed using a well development pump, gently surging the entire saturated length of the well screen. Each well was developed until turbidity in the development water is reduced to 25 nephelometric turbidity units (NTU) or less. Groundwater produced during well development was managed as described for investigation-derived waste in Section 2.2.

During the four rounds of quarterly groundwater monitoring (May 2023 through January 2024), groundwater was observed in the five monitoring wells at depths ranging from about 2 to 8 feet below ground surface (bgs), representing a groundwater elevation ranging from 9 to 14 feet NAVD88³ (Table 1). The year of water level data indicate seasonal changes in water table elevation ranging from 2.47 to 2.96 feet across the OU.

2.2 Investigation-Derived Waste

The purge water from the development and sampling of the monitoring wells was discharged to the Port's on-site pump station to the Aerated Stabilization Basin (ASB).

The direct-push probe rods from monitoring well installation (Section 2.1) were decontaminated prior to the first boring and between each monitoring well boring using a steam cleaner. Rinsate from decontamination of equipment, and water produced during well development for replacement wells, was managed as described above for purge water. Soil cuttings from replacement wells were placed in a labeled Washington State Department of Transportation-approved drum and was sampled and profiled for appropriate off-Site disposal. Laboratory results from the IDW sampling are included in Appendix A, and the disposal manifest is included as Appendix C.

³ All elevations are determined using North American Vertical Datum of 1988 (NAVD88).

3 Year 1 Groundwater Sampling and Analysis

For the first year of the MNA program, the five monitoring wells were monitored quarterly, in accordance with the CMP (in Mayv⁴ July, October 2023, and January2024). Monitoring wells were sampled using low-flow sampling techniques described in the CMP and were submitted for analysis of dissolved copper and dissolved chromium by U.S. Environmental Protection Agency (EPA) Method 200.8.⁵ In accordance with the CMP, the groundwater samples were analyzed by OnSite Environmental (OnSite) of Redmond, Washington, an Ecology-accredited analytical laboratory, until the fourth round. Prior to conducting the fourth round of monitoring, OnSite informed Aspect that their ICP-MS instrument was inoperable and would remain so for some indeterminate time. To complete the scheduled monitoring on time, Aspect chose to submit the round-four samples to ALS-Environmental in Everett, Washington, an Ecology-accredited laboratory (also running EPA Method 200.8) that has previously conducted analyses of groundwater samples from elsewhere in the Chlor-Alkali RAU.

⁴ The first quarter "April" round was completed on May 3, 2023, immediately following the April 2023 monitoring well installation and development.

⁵ Inductively coupled plasma mass spectrometry (ICP-MS). EPA Method 200.8 is functionally equivalent to EPA Method 6020A.

4 Data Evaluation

During the four rounds of quarterly groundwater monitoring (May 2023 through January 2024), groundwater was measured in the five monitoring wells at depths ranging from about 3 to 9 feet bgs, representing groundwater elevations ranging between about 9 and 12 feet NAVD88 (Table 1). The year 1 water level data indicate seasonal changes in water table elevation ranging from 1 to 2 feet across the OU.

Based on Aspect's independent quality assurance validation of the four rounds of monitoring data, no data were qualified, and the data are usable for their intended purpose. Appendix B provides the data validation report and laboratory reports for the four rounds of data.

The analytical results from the quarterly groundwater monitoring events are presented in Table 2 and are summarized as follows:

- Dissolved chromium was detected below the groundwater cleanup level of 260 micrograms per liter (ug/L) at all five monitoring wells during each quarter of sampling in Year 1.
- Dissolved copper was either not detected or was detected below the groundwater cleanup level of 3.1 ug/L at all five monitoring wells during each quarter of sampling in Year 1.

In short, each sample of groundwater collected during the four quarters of Year 1 complied with the CAP groundwater cleanup levels.

5 Conclusions and Recommendation to Terminate Monitoring

In accordance with the CMP, pending Ecology approval, after the first year of quarterly monitoring has been completed, MNA monitoring can be discontinued for any monitoring well that meets cleanup levels, which is defined as having four consecutive rounds of samples with dissolved chromium and copper concentrations below cleanup levels, as agreed to by Ecology.

Because measured concentrations of chromium and copper in all five wells were below cleanup levels during the four consecutive rounds of quarterly monitoring, we recommend terminating the Lignin OU MNA monitoring program and decommissioning the wells on the OU.

6 References

- Aspect Consulting, LLC (Aspect), 2022, Engineering Design Report, Lignin Operable Unit, Chlor-Alkali Remedial Action Unit, Georgia-Pacific West Site, Bellingham, Washington, May 13, 2022.
- Aspect Consulting, LLC (Aspect), 2023a, As-Built Cleanup Report, Lignin Operable Unit, Georgia-Pacific West Site, Bellingham, Washington, March 2023.
- Aspect Consulting, LLC (Aspect), 2023b, Compliance Monitoring Plan for Groundwater Monitored Natural Attenuation, Lignin Operable Unit, Georgia-Pacific West Site, April 2023.
- Washington State Department of Ecology (Ecology), 2022, Cleanup Action Plan, Lignin Operable Unit, Chlor-Alkali Remedial Action Unit of Georgia-Pacific West Site, Bellingham, Washington, August 2022.

7 Limitations

Work for this project was performed for the Port of Bellingham (Client), and this report was prepared in accordance with generally accepted professional practices for the nature and conditions of work completed in the same or similar localities, at the time the work was performed. This report does not represent a legal opinion. No other warranty, expressed or implied, is made.

All reports prepared by Aspect Consulting for the Client apply only to the services described in the Agreement(s) with the Client. Any use or reuse by any party other than the Client is at the sole risk of that party, and without liability to Aspect Consulting. Aspect Consulting's original files/reports shall govern in the event of any dispute regarding the content of electronic documents furnished to others.

TABLES

Table 1. Monitoring Well Details and Groundwater Elevations

Project 210368B-08, Lignin Operable Unit, GP West Site, Bellingham, Washington

Well ID	Northing (feet)	Easting (feet)	TOC Elevation (feet)	Screen Interval (feet bgs)	Date	Depth to Water (feet BTOC)	Groundwater Elevation (feet)
					5/3/2023	4.17	9.85
		1 040 057 7	44.00		7/12/2023	5.36	8.66
LW-MW101	641,725.1	1,242,057.7	14.02	5 to 15	10/26/2023	4.73	9.29
					1/9/2024	2.89	11.13
					5/3/2023	3.54	10.65
LW-MW102	611 021 0	1 040 171 0	14 10	5 to 15	7/12/2023	4.97	9.22
	641,834.8	1,242,171.2	14.19		10/26/2023	4.95	9.24
					1/9/2024	2.21	11.98
			290.7 14.94	5 to 15	5/3/2023	2.72	12.22
LW-MW103	641 052 5	1 242 200 7			7/12/2023	4.59	10.35
	641,952.5	1,242,290.7			10/26/2023	4.33	10.61
					1/9/2024	1.63	13.31
					5/3/2023	7.35	11.34
LW-MW104	641,824.9	1,242,296.4	18.69	8 to 18	7/12/2023	9.25	9.44
	041,024.9	1,242,290.4	10.09	01010	10/27/2023	9.13	9.56
					1/9/2024	6.35	12.34
					5/3/2023	6.81	12.37
LW-MW105	641,940.5	1,242,507.9	10.18	8 to 18	7/12/2023	8.50	10.68
	041,940.0	1,242,007.9	19.18	8 to 18	10/26/2023	8.60	10.58
					1/9/2024	5.90	13.28

Notes:

Horizontal coordinates (northings and eastings) are in feet relative to Washington State Plane (North Zone) NAD83/1998 grid. Elevations are relative to the North American Vertical Datum (NAVD88).

Abbreviations:

bgs = below ground surface BTOC = below top of casing TOC = top of casing

Table 2. Year 1 Groundwater MNA Monitoring Data

Project 210368B-08, Lignin Operable Unit, GP West Site, Bellingham, Washington

				Downgradient Wells									Well Near Center of OU					
				LW-M	W101			LW-M	W102			LW-M	W103		LW-MW104			
Analyte	Unit	Groundwater Cleanup Level	05/03/23	07/12/23	10/26/23	01/09/24	05/03/23	07/12/23	10/26/23	01/09/24	05/03/23	07/12/23	10/26/23	01/09/24	05/03/23	07/12/23	10/27/23	01/09/24
Dissolved Metals																		
Chromium	ug/L	260	1.9	6.0	4.1	2.0 U	9.0	19	19	8.6	190	190	90	230	4.9	24	18	3.2
Copper	ug/L	3.1	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.4	1.3	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	2.0 U
Field Parameters																		
Temperature	deg C		11.0	16.0	15.4	9.8	11.3	15.0	15.6	10.9	11.8	15.4	16.2	11.6	12.8	15.9	13.9	11.3
Elec. Conductivity	uS/cm		398	526	1,894	779	772	570	1,289	941	917	807	2,087	1,142	2,382	1,872	4,535	2,652
Dissolved Oxygen	mg/L		0.00	0.14	0.29	0.23	0.00	0.14	0.28	0.52	0.00	0.11	0.20	0.23	0.00	0.13	0.20	0.44
pН	SU		8.05	7.62	7.21	7.49	7.07	7.03	6.79	6.96	7.50	7.41	7.15	7.46	8.46	8.35	8.19	8.29
ORP	mVolts		-218	-294	-283	-262	-188	-312	-308	-278	-194	-271	-309	-301	-252	-336	-368	-344
Turbidity	NTU		3	2	N/M	2	2	1	N/M	3	3	3	N/M	6	2	1	N/M	1

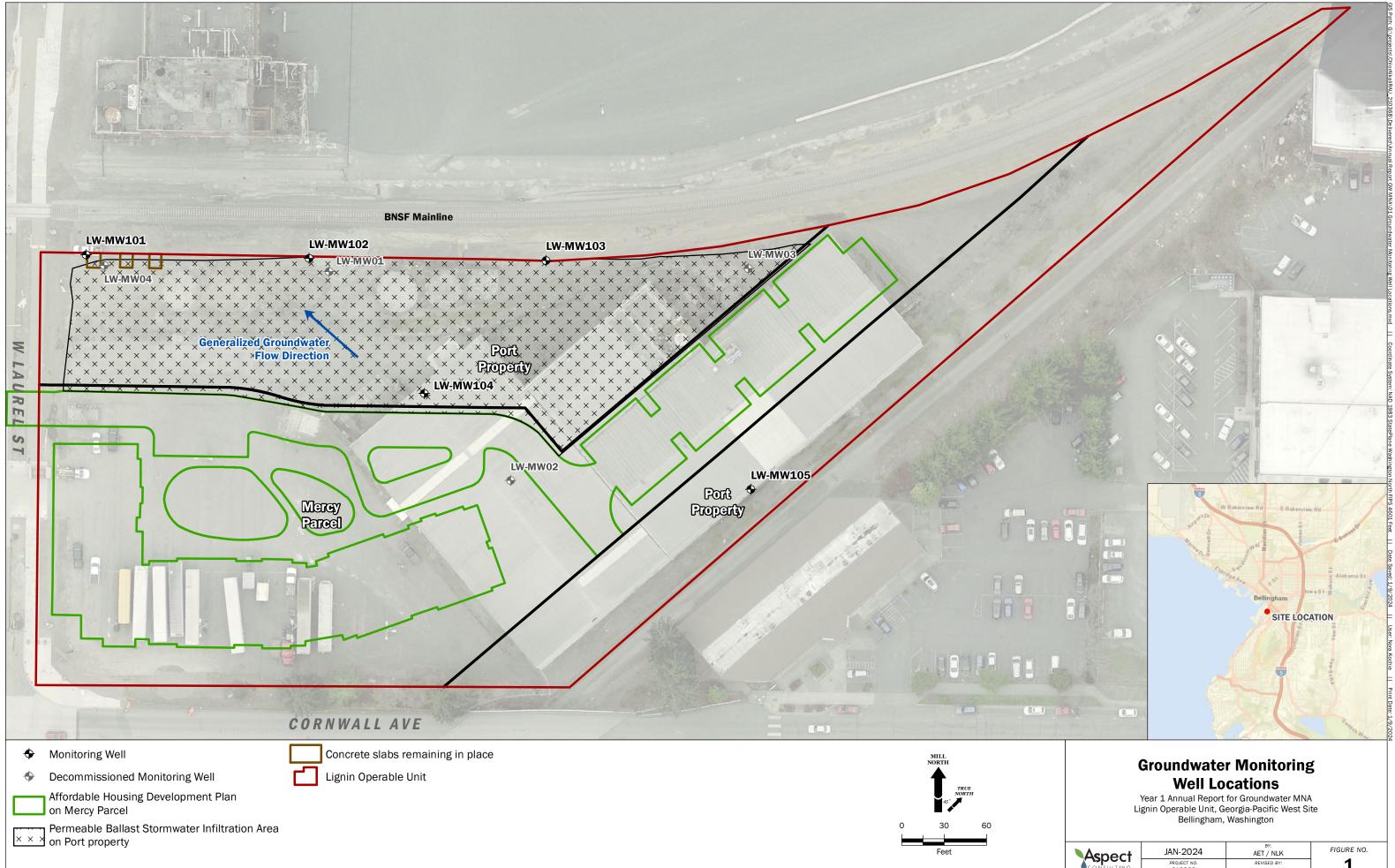
			Upgradient Well					
				LW-M	W105			
Analyte	Unit	Groundwater Cleanup Level	05/03/23	07/12/23	10/26/23	01/09/24		
Dissolved Metals								
Chromium	ug/L	260	2.1	2.5	2.8	2.2		
Copper	ug/L	3.1	1.0 U	1.0 U	1.0 U	2.0 U		
Field Parameters								
Temperature	deg C		11.0	14.1	15.7	12.0		
Elec. Conductivity	uS/cm		1,840	1,160	2,754	1,931		
Dissolved Oxygen	mg/L		0.00	0.10	0.08	0.39		
рН	SU		7.89	7.29	6.86	7.26		
ORP	mVolts		-111	-200	-241	-273		
Turbidity	NTU		4	2	N/M	2		

Notes:

Groundwater cleanup levels from the Lignin Operable Unit Cleanup Action Plan (Ecology, 2022).

Bold - detected

Blue Shaded - Detected result exceeded respective cleanup level


 $\ensuremath{\mathsf{U}}$ - Analyte not detected at or above the reporting limit shown

J - Analyte was positively identified, and the reported value is an estimate

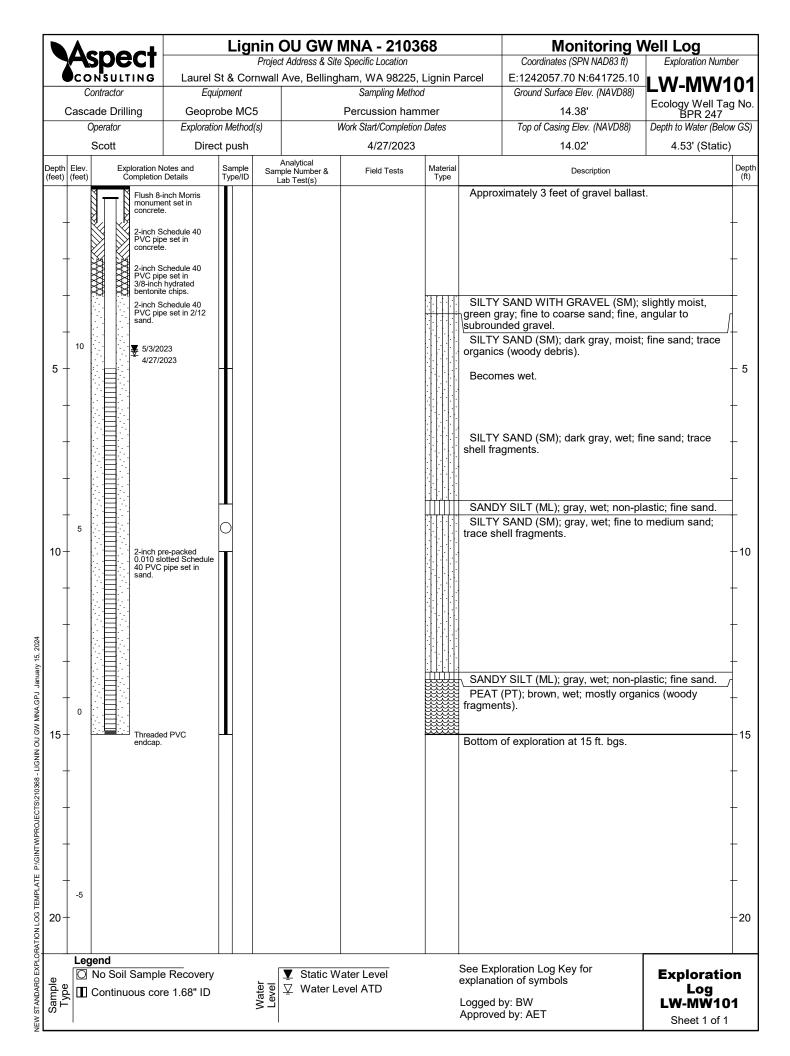
N/M: Turbidity meter malfunctioned during the October 2023 monitoring event.

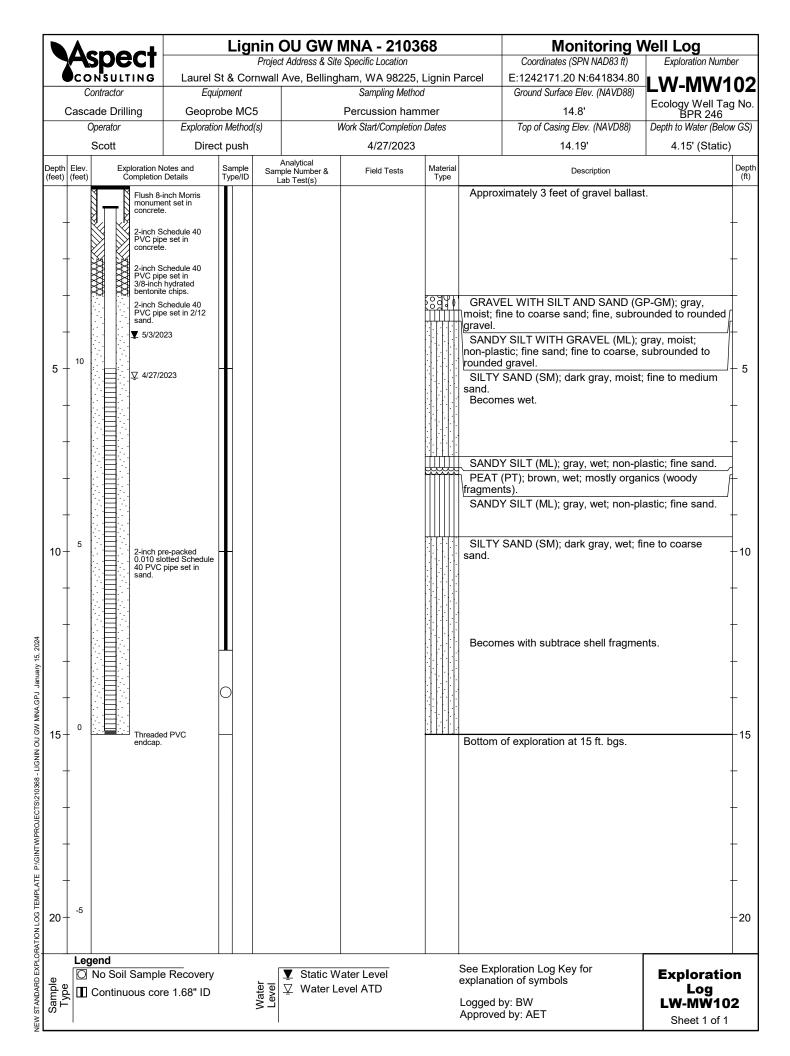
deg C - degrees Celsius, ug/L - micrograms per liter, uS/cm - microsiemens per centimeter, mg/L - milligrams per liter, mVolts - millivolts, NTU - Nephelometric Turbidity Units, SU - standard units

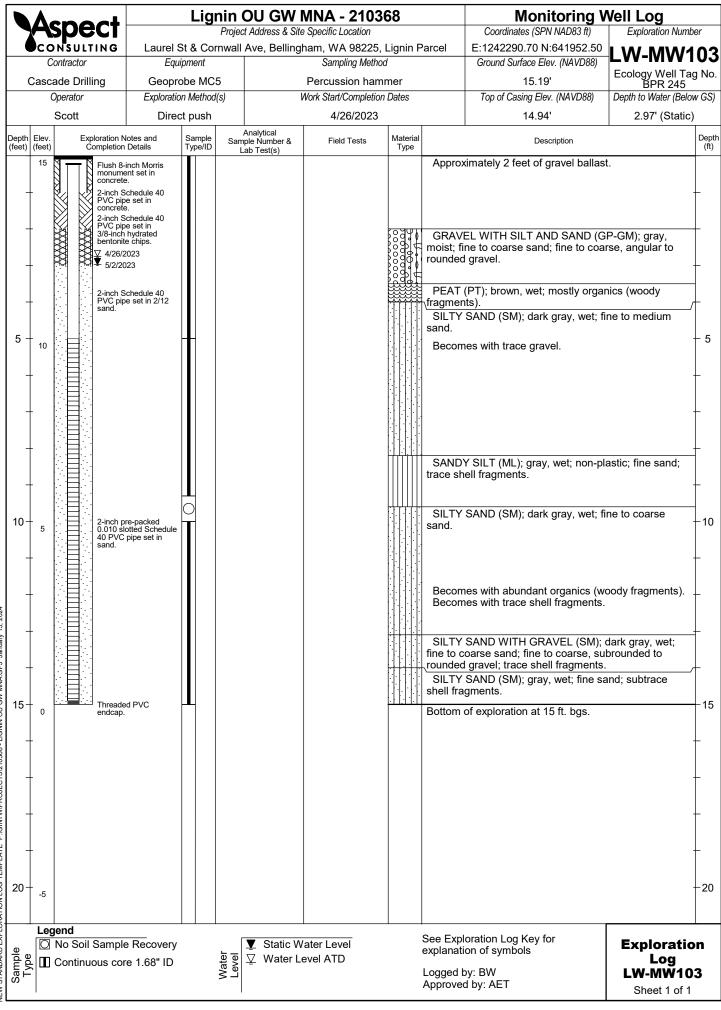
FIGURES

	JAN-2024	BY: AET / NLK	FIGURE NO.
CONSULTING	PROJECT NO. 210368	REVISED BY:	1

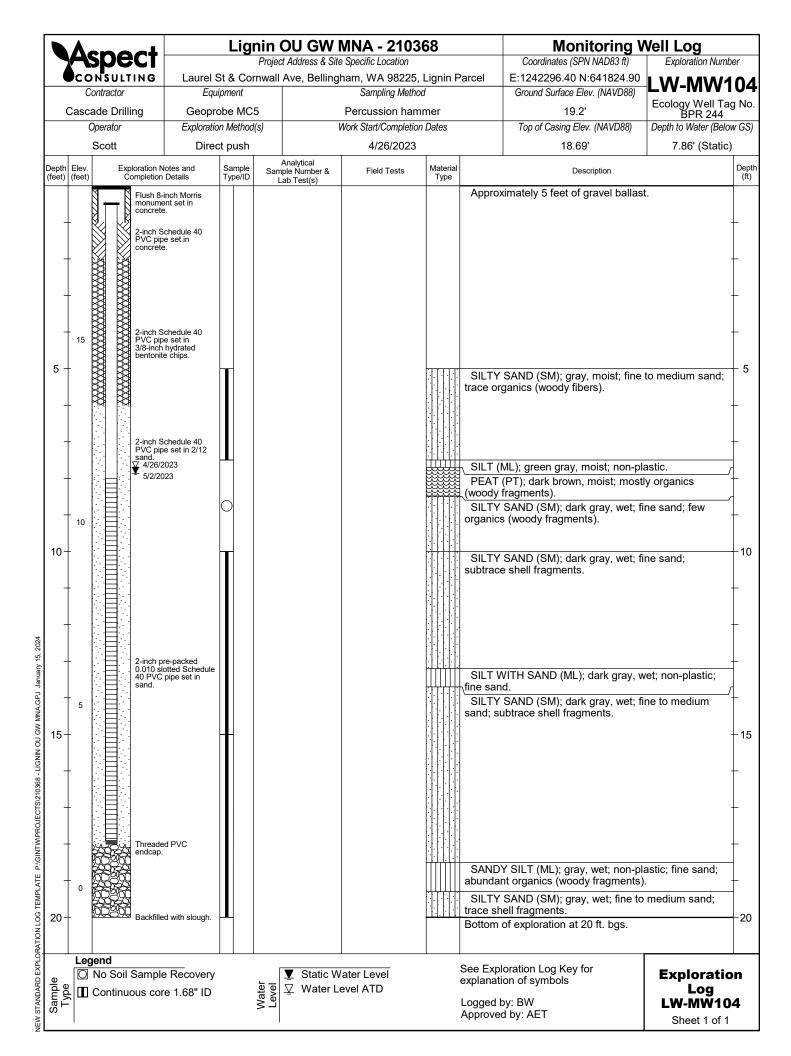
APPENDIX A

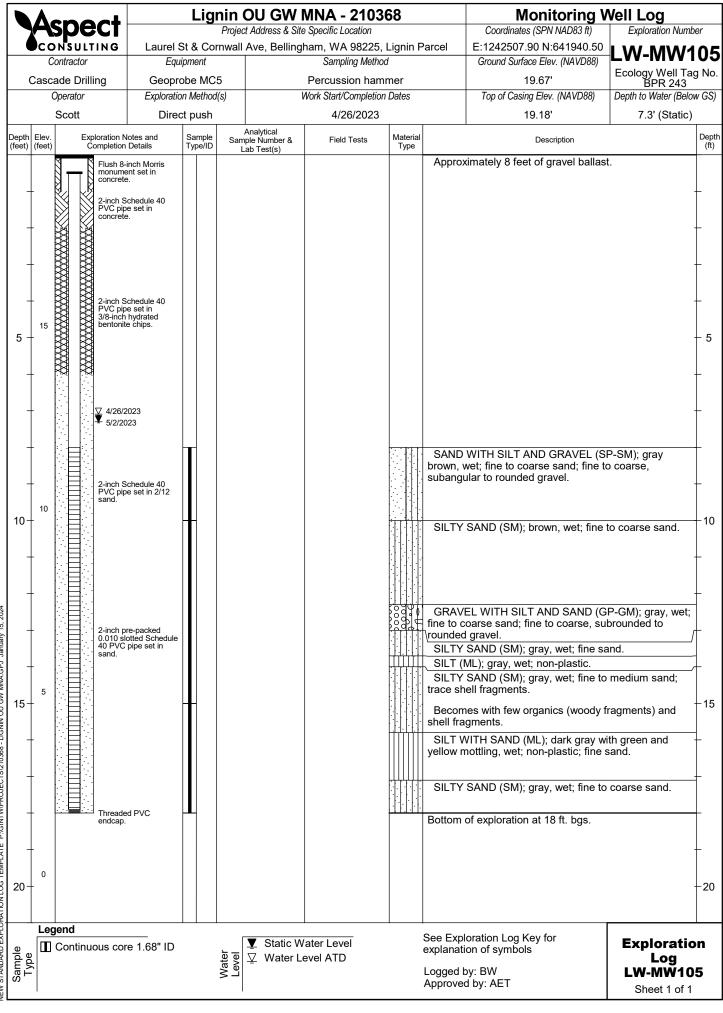

Construction Logs for New Monitoring Wells


No. 200 Sieve	Gravels - More than $50\%^4$ of Coarse Fraction Retained on No. 4 Sieve	S% F 000000000000000000000000000000000000	2	Well-graded GRAVEL Well-graded GRAVEL WITH SAND Poorly-graded GRAVEL Poorly-graded GRAVEL WITH SAND	MC=Natural Moisture Content PSGEOTECHNICAL LAB TESTSPS=Particle Size Distribution FC=Fines Content (% < 0.075 mm)GH=Hydrometer Test AL=Atterberg Limits C=AL=Atterberg Limits C=Consolidation TestStr=Strength Test OC=Organic Content (% Loss by Ignition) Comp=Proctor Test K=Hydraulic Conductivity Test SG=Specific Gravity Test
ained on	More than 50% ¹ (Retained on No.	% Fines	GM	SILTY GRAVEL SILTY GRAVEL WITH SAND	Organic Chemicals CHEMICAL LAB TESTS BTEX = Benzene, Toluene, Ethylbenzene, Xylenes
50%1 Retained on No.	Gravels -	≥15%	GC	CLAYEY GRAVEL CLAYEY GRAVEL WITH SAND	TPH-Dx=Diesel and Oil-Range Petroleum HydrocarbonsTPH-G=Gasoline-Range Petroleum HydrocarbonsVOCs=Volatile Organic CompoundsSVOCs=Semi-Volatile Organic Compounds
. More than	of Coarse Fraction 4 Sieve	Fines	SW	Well-graded SAND Well-graded SAND WITH GRAVEL	PAHs = Polycyclic Aromatic Hydrocarbon Compounds PCBs = Polychlorinated Biphenyls <u>Metals</u> RCRA8 = As, Ba, Cd, Cr, Pb, Hg, Se, Ag, (d = dissolved, t = total)
ned Soils -	of Coarse 4 Sieve	≤5%	SP	Poorly-graded SAND Poorly-graded SAND WITH GRAVEL	MTCA5 = As, Cd, Cr, Hg, Pb (d = dissolved, t = total) PP-13 = Ag, As, Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Se, Tl, Zn (d=dissolved, t=total)
Coarse-Grained Soils - More than	- 50% ¹ or More Passes No.	Fines	SM	SILTY SAND SILTY SAND WITH GRAVEL	PID=Photoionization DetectorFIELD TESTSSheen=Oil Sheen TestSPT2=SPT2=Standard Penetration TestSPTNSPT=Non-Standard Penetration TestDCPT=Dynamic Cone Penetration Test
	Sands - 5	≥15%	SC	CLAYEY SAND CLAYEY SAND WITH GRAVEL	Descriptive Term BouldersSize Range and Sieve Number Larger than 12 inchesCOMPONENT DEFINITIONSCobbles=3 inches to 12 inchesDEFINITIONS
Sieve	ys Jan 50%		ML	SILT SANDY or GRAVELLY SILT SILT WITH SAND SILT WITH GRAVEL	Coarse Gravel = 3 inches to 3/4 inches Fine Gravel = 3/4 inches to No. 4 (4.75 mm) Coarse Sand = No. 4 (4.75 mm) to No. 10 (2.00 mm) Medium Sand = No. 10 (2.00 mm) to No. 40 (0.425 mm) Fine Sand = No. 40 (0.425 mm) to No. 200 (0.075 mm)
s No. 200	Silts and Clays		CL	LEAN CLAY SANDY or GRAVELLY LEAN CLAY LEAN CLAY WITH SAND LEAN CLAY WITH GRAVEL	Silt and Clay = Smaller than No. 200 (0.075 mm) % by Weight Modifier % by Weight Modifier ESTIMATED ¹ <1
ore Passes No.	Sil		OL	ORGANIC SILT SANDY or GRAVELLY ORGANIC SILT ORGANIC SILT WITH SAND	1 to <5 = Trace 30 to 45 = Some 5 to 10 = Few >50 = Mostly
ls - 50%1 or M	/S More		мн	ORGANIC SILT WITH GRAVEL ELASTIC SILT SANDY OF GRAVELLY ELASTIC SILT ELASTIC SILT WITH SAND ELASTIC SILT WITH GRAVEL	Dry=Absence of moisture, dusty, dry to the touchMOISTURESlightly Moist=Perceptible moistureCONTENTMoist=Damp but no visible waterCONTENTVery Moist=Water visible but not free drainingVetWet=Visible free water, usually from below water table
Fine-Grained Soils	Silts and Clays		сн	FAT CLAY SANDY or GRAVELLY FAT CLAY FAT CLAY WITH SAND FAT CLAY WITH GRAVEL	Non-Cohesive or Coarse-Grained SoilsRELATIVE DENSITY $\underline{Density^3}$ $\underline{SPT^2 Blows/Foot}$ $\underline{Penetration with 1/2" Diameter Rod}$ Very Loose= 0 to 4 $\geq 2'$
Fine-(Si		он	ORGANIC CLAY SANDY OF GRAVELLY ORGANIC CLAY ORGANIC CLAY WITH SAND ORGANIC CLAY WITH GRAVEL	Loose = 5 to 10 1' to 2' Medium Dense = 11 to 30 3" to 1' Dense = 31 to 50 1" to 3" Very Dense = > 50 < 1"
Highly	Organic Soils		PT	PEAT and other mostly organic soils	Cohesive or Fine-Grained Soils CONSISTENCY Consistency ³ SPT ² Blows/Foot Manual Test Very Soft 0 to 1 Penetrated >1" easily by thumb. Extrudes between thumb & fingers. Soft 2 to 4 Penetrated 1/4" to 1" easily by thumb. Easily molded.
name; e.g. GRAVEL" r gravel. • "	., SP-SM • ' means 15 t Well-gradee	'SILTY" or "C o 30% sand d" means ap	LAYEY" me and grave proximate	% silt and clay, denoted by a "." in the group eans >15% silt and clay • "WITH SAND" or "WITH I. • "SANDV" or "GRAVELLY" means >30% sand and ly equal amounts of fine to coarse grain sizes • "Poorly izes • Groun names separated by ?" means soil	Medium Stiff=5 to 8Penetrated >1/4" with effort by thumb. Molded with strong pressure.Stiff=9 to 15Indented $\sim 1/4"$ with effort by thumb.Very Stiff=16 to 30Indented easily by thumbnail.Hard=>30Indented with difficulty by thumbnail.
contains la Soils were	raded" means unequal amounts of grain sizes • Group names separated by "/" means soil ontains layers of the two soil types; e.g., SM/ML. soils were described and identified in the field in general accordance with the methods described in			//ML.	GEOLOGIC CONTACTS Observed and Distinct Observed and Gradual Inferred
ASTM D24	188. Where	indicated in	the log, so	bils were classified using ASTM D2487 or other report accompanying these exploration logs for details.	


Aspect

Estimated or measured percentage by dry weight
 (SPT) Standard Penetration Test (ASTM D1586)
 Determined by SPT, DCPT (ASTM STP399) or other field methods. See report text for details.


Exploration Log Key



NEW STANDARD EXPLORATION LOG TEMPLATE P:/GINTW/PROJECTS/210368 - LIGNIN OU GW MNA.GPJ January 15, 2022

NEW STANDARD EXPLORATION LOG TEMPLATE PAGINTWPROJECTSI210368 - LIGNIN OU GW MNA.GPJ January 15, 2024

APPENDIX B

Data Validation and Laboratory Reports

DATA VALIDATION REPORT

Lignin OU of GP West Site Rounds 1 – 4 Groundwater Sampling January 2024 Sample Delivery Groups 2305-0043, 2307-088, 2311-003, and EV24010052

> Prepared by: Aspect Consulting, LLC 710 2nd Ave, Suite 550 Seattle, WA 98104

Project No. 210368-B-08 • January 15, 2024

1 Introduction

This report summarizes the findings of a U.S. Environmental Protection Agency (EPA) Stage 2A data validation performed on analytical data groundwater samples collected from May 2023 through January 2024 for the GP West Lignin OU groundwater monitoring program.

Samples were analyzed for select metals by EPA method 200.8 by ALS Lab Group (ALS) in Everett, Washington or by OnSite Environmental Inc. (OnSite) in Redmond, Washington. Refer to the table below for further information.

Sample Collection Date	Sample Delivery Group	Analysis	Method	Laboratory
May 2023	2305-0043	Chromium and Copper	EPA 200.8	OnSite
July 2023	2307-088	Chromium and Copper	EPA 200.8	OnSite
October 2023	2311-003	Chromium and Copper	EPA 200.8	OnSite
January 2024	EV24010052	Chromium and Copper	EPA 200.8	ALS

Table 1. Analytical Methods

The validation followed the procedures documented in the analytical methods, and the *National Functional Guidelines for Organic Data Review* (EPA, 2017), and *Contract Laboratory Program SOW* (EPA, 2016).

Data assigned a J qualifier (estimated) may be used for site evaluation purposes, but the reasons for qualification should be considered when interpreting sample concentrations. Data marked as rejected (R) should not be used under any circumstances. Values without qualification meet all data measurement quality objectives and are suitable for use.

No data were qualified in the course of this review; all quality control (QC) requirements were met.

2 Data Validation Findings for Sample Delivery Group 2305-0043

Water samples in this sample delivery group (SDG), and the chemical analyses performed on them, are tabulated below. The sections below describe the results of the data quality review.

Sample Name	Sample Date	Sample Matrix	Dissolved Chromium	Dissolved Copper					
LW-MW101-20230503	5/3/23 11:00	Water	Х	Х					
LW-MW102-20230503	5/3/23 10:00	Water	Х	Х					
LW-MW103-20230502	5/3/23 14:38	Water	Х	Х					
LW-MW104-20230502	5/3/23 13:40	Water	Х	Х					
LW-MW105-20230502	5/3/23 11:30	Water	Х	Х					

Table 2. Sample Index

2.1 Metals (EPA 200.8)

2.1.1 Sample Receipt, Preservation, and Holding Times

Sample receipt and preservation (2–6 degrees Celsius [C]) were acceptable. Samples were analyzed within the requisite holding time limit.

2.1.2 Method Blanks / Detection Levels

Target analytes were not detected at or above the reporting levels in the method blank. No qualification or action was needed.

2.1.3 Laboratory Control Samples

All laboratory control sample (LCS) percent recoveries (% R) were within the laboratory-specified control limits for requested analytes. No qualification or action was needed.

2.1.4 Laboratory Duplicate Sample

All laboratory duplicate sample relative percent differences (RPDs) were within the laboratory-specified control limits for all target analytes. No qualification or action was needed.

2.1.5 Matrix Spike / Matrix Spike Duplicates

All matrix spike (MS) and MS duplicate sample %Rs and RPDs were within the laboratory-specified control limits for all target analytes. No qualification or actions were needed.

2.1.6 Overall Assessment

Accuracy was acceptable based on the LCS and MS/MSD %Rs and precision was acceptable based on the laboratory duplicate and MS/MSD RPD values. The data are of known quality and are acceptable for use.

3 Data Validation Findings for Sample Delivery Group 2307-088

Water samples in this SDG, and the chemical analyses performed on them, are tabulated below. The sections below describe the results of the data quality review.

Sample Name	Sample Date	Sample Matrix	Dissolved Chromium	Dissolved Copper					
LW-MW101-20230712	7/12/23 15:45	Water	Х	Х					
LW-MW102-20230712	7/12/23 14:45	Water	Х	Х					
LW-MW103-20230712	7/12/23 13:50	Water	Х	Х					
LW-MW104-20230712	7/12/23 11:45	Water	Х	Х					
LW-MW105-20230712	7/12/23 10:30	Water	Х	Х					

Table 3. Sample Index

3.1 Metals (EPA 200.8)

3.1.1 Sample Receipt, Preservation, and Holding Times

Sample receipt and preservation (2–6 degrees C) were acceptable. Samples were analyzed within the requisite holding time limit.

3.1.2 Method Blanks / Detection Levels

Target analytes were not detected at or above the reporting levels in the method blank. No qualification or action was needed.

3.1.3 Laboratory Control Samples

All LCS %R were within the laboratory-specified control limits for requested analytes. No qualification or action was needed.

3.1.4 Laboratory Duplicate Sample

All laboratory duplicate sample RPDs were within the laboratory-specified control limits for all target analytes. No qualification or action was needed.

3.1.5 Matrix Spike / Matrix Spike Duplicates

All MS and MS duplicate sample %Rs and RPDs were within the laboratory-specified control limits for all target analytes. No qualification or actions were needed.

3.1.6 Overall Assessment

Accuracy was acceptable based on the LCS and MS/MSD %Rs and precision was acceptable based on the laboratory duplicate and MS/MSD RPD values. The data are of known quality and are acceptable for use.

4 Data Validation Findings for Sample Delivery Group 2311-003

Water samples in this SDG, and the chemical analyses performed on them, are tabulated below. The sections below describe the results of the data quality review.

Sample Name	Sample Date	Sample Matrix	Dissolved Chromium	Dissolved Copper
LW-MW101-20230503	10/26/23 13:30	Water	Х	Х
LW-MW102-20230503	10/26/23 14:40	Water	Х	Х
LW-MW103-20230502	10/26/23 16:10	Water	Х	Х
LW-MW104-20230502	10/27/23 9:45	Water	Х	Х
LW-MW105-20230502	10/26/23 17:25	Water	Х	Х

Table 4. Sample Index

4.1 Metals (EPA 200.8)

4.1.1 Sample Receipt, Preservation, and Holding Times

Sample receipt and preservation (2–6 degrees C) were acceptable. Samples were analyzed within the requisite holding time limit.

4.1.2 Method Blanks / Detection Levels

Target analytes were not detected at or above the reporting levels in the method blank. No qualification or action was needed.

4.1.3 Laboratory Control Samples

All LCS %R were within the laboratory-specified control limits for requested analytes. No qualification or action was needed.

4.1.4 Laboratory Duplicate Sample

All laboratory duplicate sample RPDs were within the laboratory-specified control limits for all target analytes. No qualification or action was needed.

4.1.5 Matrix Spike / Matrix Spike Duplicates

All MS and MS duplicate sample %Rs and RPDs were within the laboratory-specified control limits for all target analytes. No qualification or actions were needed.

4.1.6 Overall Assessment

Accuracy was acceptable based on the LCS and MS/MSD %Rs and precision was acceptable based on the laboratory duplicate and MS/MSD RPD values. The data are of known quality and are acceptable for use.

5 Data Validation Findings for Sample Delivery Group EV24010052

Water samples in this SDG, and the chemical analyses performed on them, are tabulated below. The sections below describe the results of the data quality review.

Sample Name	Sample Date	Sample Matrix	Dissolved Chromium	Dissolved Copper
LW-MW101-20240109	01/09/2024 10:15	Water	Х	Х
LW-MW102-20240109	01/09/2024 11:05	Water	Х	Х
LW-MW103-20240109	01/09/2024 12:05	Water	Х	Х
LW-MW104-20240109	01/09/2024 13:30	Water	Х	Х
LW-MW105-20240109	01/09/2024 14:55	Water	Х	Х

Table 5. Sample Index

5.1 Metals (EPA 200.8)

5.1.1 Sample Receipt, Preservation, and Holding Times

Sample receipt and preservation (2–6 degrees C) were acceptable. Samples were analyzed within the requisite holding time limit.

5.1.2 Method Blanks / Detection Levels

Target analytes were not detected at or above the reporting levels in the method blank. No qualification or action was needed.

5.1.3 Laboratory Control Samples

All LCS %R were within the laboratory specified control limits for requested analytes. No qualification or action was needed.

5.1.4 Overall Assessment

Accuracy was acceptable based on the LCS percent recoveries, and precision was acceptable based on the LCS RPD values. The data are of known quality and are acceptable for use.

6 Qualified Data Summary

No sample results were qualified in the course of the Stage 2A validation performed.

7 Data Qualifier Definitions

Data Qualifier	Definition
J	The analyte was detected above the reported quantitation limit, and the reported concentration was an estimated value.
R	The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
U	The analyte was analyzed for but was considered not detected at the reporting limit or reported value.
UJ	The analyte was analyzed for, and the associated quantitation limit was an estimated value.

8 References

- U.S. Environmental Protection Agency (EPA), 2017 National Functional Guidelines for Organic Methods Data Review, Office of Superfund Remediation and Technology Innovation (OSRTI), USEPA Publication No. 540-R-2017-002, January.
- U.S. Environmental Protection Agency (EPA), 2016, Contract Laboratory Program (CLP) Statement of Work (SOW) for Organic Superfund Methods, Multi-Media, Multi-Concentration, SOM02.4, October.

May 12, 2023

Amy Tice Aspect Consulting Dexter Horton Building 710 2nd Avenue, Suite 550 Seattle, WA 98104

Re: Analytical Data for Project 210368-B-09 Laboratory Reference No. 2305-043

Dear Amy:

Enclosed are the analytical results and associated quality control data for samples submitted on May 4, 2023.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Date of Report: May 12, 2023 Samples Submitted: May 4, 2023 Laboratory Reference: 2305-043 Project: 210368-B-09

Case Narrative

Samples were collected on April 27, May 2 and 3, 2023 and received by the laboratory on May 4, 2023. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	Comp. Soil-Sp1-202304	27				
Laboratory ID:	05-043-06					
Diesel Range Organics	ND	30	NWTPH-Dx	5-5-23	5-5-23	
Lube Oil Range Organic	s ND	60	NWTPH-Dx	5-5-23	5-5-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	82	50-150				

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0505S1					
Diesel Range Organics	ND	25	NWTPH-Dx	5-5-23	5-5-23	
Lube Oil Range Organics	ND	50	NWTPH-Dx	5-5-23	5-5-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				

Analyte	Res	sult	Spike	Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE										
Laboratory ID:	05-05	59-01								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	40	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	40	
Surrogate:										
o-Terphenyl						70 80	50-150			

SEMIVOLATILE ORGANICS EPA 8270E/SIM page 1 of 2

Matrix: Soil Units: mg/Kg

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
	o. Soil-Sp1-20230427	FQL	Wethou	Flepaleu	Analyzeu	Flays
Laboratory ID:	05-043-06					
n-Nitrosodimethylamine	ND	0.040	EPA 8270E	5-10-23	5-10-23	
Pyridine	ND	0.40	EPA 8270E	5-10-23	5-10-23	
Phenol	ND	0.40	EPA 8270E	5-10-23	5-10-23	
Aniline	ND	0.040	EPA 8270E	5-10-23	5-10-23	
bis(2-Chloroethyl)ether	ND	0.20	EPA 8270E	5-10-23	5-10-23	
2-Chlorophenol	ND	0.040	EPA 8270E	5-10-23	5-10-23	
1,3-Dichlorobenzene	ND	0.040	EPA 8270E	5-10-23	5-10-23	
1,4-Dichlorobenzene	ND	0.040	EPA 8270E	5-10-23	5-10-23	
,	ND			5-10-23		
Benzyl alcohol	ND	0.040 0.040	EPA 8270E EPA 8270E	5-10-23 5-10-23	5-10-23 5-10-23	
1,2-Dichlorobenzene	ND	0.040	EPA 8270E	5-10-23 5-10-23	5-10-23	
2-Methylphenol (o-Cresol)	ND					
bis(2-Chloroisopropyl)ether	ND	0.040	EPA 8270E	5-10-23	5-10-23	
(3+4)-Methylphenol (m,p-Cresol)		0.040	EPA 8270E	5-10-23	5-10-23	
n-Nitroso-di-n-propylamine	ND	0.040	EPA 8270E	5-10-23	5-10-23	
Hexachloroethane	ND	0.040	EPA 8270E	5-10-23	5-10-23	
Nitrobenzene	ND	0.040	EPA 8270E	5-10-23	5-10-23	
Isophorone	ND	0.040	EPA 8270E	5-10-23	5-10-23	
2-Nitrophenol	ND	0.040	EPA 8270E	5-10-23	5-10-23	
2,4-Dimethylphenol	ND	0.040	EPA 8270E	5-10-23	5-10-23	
bis(2-Chloroethoxy)methane	ND	0.040	EPA 8270E	5-10-23	5-10-23	
2,4-Dichlorophenol	ND	0.080	EPA 8270E	5-10-23	5-10-23	
1,2,4-Trichlorobenzene	ND	0.040	EPA 8270E	5-10-23	5-10-23	
Naphthalene	ND	0.0080	EPA 8270E/SIM	5-10-23	5-10-23	
4-Chloroaniline	ND	0.20	EPA 8270E	5-10-23	5-10-23	
Hexachlorobutadiene	ND	0.040	EPA 8270E	5-10-23	5-10-23	
4-Chloro-3-methylphenol	ND	0.040	EPA 8270E	5-10-23	5-10-23	
2-Methylnaphthalene	ND	0.0080	EPA 8270E/SIM	5-10-23	5-10-23	
1-Methylnaphthalene	ND	0.0080	EPA 8270E/SIM	5-10-23	5-10-23	
Hexachlorocyclopentadiene	ND	0.35	EPA 8270E	5-10-23	5-10-23	
2,4,6-Trichlorophenol	ND	0.040	EPA 8270E	5-10-23	5-10-23	
2,3-Dichloroaniline	ND	0.040	EPA 8270E	5-10-23	5-10-23	
2,4,5-Trichlorophenol	ND	0.040	EPA 8270E	5-10-23	5-10-23	
2-Chloronaphthalene	ND	0.040	EPA 8270E	5-10-23	5-10-23	
2-Nitroaniline	ND	0.040	EPA 8270E	5-10-23	5-10-23	
1,4-Dinitrobenzene	ND	0.040	EPA 8270E	5-10-23	5-10-23	
Dimethylphthalate	ND	0.040	EPA 8270E	5-10-23	5-10-23	
1,3-Dinitrobenzene	ND	0.040	EPA 8270E	5-10-23	5-10-23	
2,6-Dinitrotoluene	ND	0.040	EPA 8270E	5-10-23	5-10-23	
1,2-Dinitrobenzene	ND	0.040	EPA 8270E	5-10-23	5-10-23	
Acenaphthylene	ND	0.0080	EPA 8270E/SIM	5-10-23	5-10-23	
3-Nitroaniline	ND	0.040	EPA 8270E	5-10-23	5-10-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

5

SEMIVOLATILE ORGANICS EPA 8270E/SIM page 2 of 2

	D	DC :		Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
	p. Soil-Sp1-202304	27				
_aboratory ID:	05-043-06					
2,4-Dinitrophenol	ND	0.25	EPA 8270E	5-10-23	5-10-23	
Acenaphthene	ND	0.0080	EPA 8270E/SIM	5-10-23	5-10-23	
1-Nitrophenol	ND	0.040	EPA 8270E	5-10-23	5-10-23	
2,4-Dinitrotoluene	ND	0.040	EPA 8270E	5-10-23	5-10-23	
Dibenzofuran	ND	0.040	EPA 8270E	5-10-23	5-10-23	
2,3,5,6-Tetrachlorophenol	ND	0.040	EPA 8270E	5-10-23	5-10-23	
2,3,4,6-Tetrachlorophenol	ND	0.040	EPA 8270E	5-10-23	5-10-23	
Diethylphthalate	ND	0.20	EPA 8270E	5-10-23	5-10-23	
1-Chlorophenyl-phenylether	ND	0.040	EPA 8270E	5-10-23	5-10-23	
1-Nitroaniline	ND	0.040	EPA 8270E	5-10-23	5-10-23	
Fluorene	ND	0.0080	EPA 8270E/SIM	5-10-23	5-10-23	
1,6-Dinitro-2-methylphenol	ND	0.36	EPA 8270E	5-10-23	5-10-23	
n-Nitrosodiphenylamine	ND	0.040	EPA 8270E	5-10-23	5-10-23	
1,2-Diphenylhydrazine	ND	0.040	EPA 8270E	5-10-23	5-10-23	
1-Bromophenyl-phenylether	ND	0.040	EPA 8270E	5-10-23	5-10-23	
Hexachlorobenzene	ND	0.040	EPA 8270E	5-10-23	5-10-23	
Pentachlorophenol	ND	0.20	EPA 8270E	5-10-23	5-10-23	
Phenanthrene	ND	0.0080	EPA 8270E/SIM	5-10-23	5-10-23	
Anthracene	ND	0.0080	EPA 8270E/SIM	5-10-23	5-10-23	
Carbazole	ND	0.040	EPA 8270E	5-10-23	5-10-23	
Di-n-butylphthalate	ND	0.20	EPA 8270E	5-10-23	5-10-23	
Fluoranthene	ND	0.0080	EPA 8270E/SIM	5-10-23	5-10-23	
^D yrene	ND	0.0080	EPA 8270E/SIM	5-10-23	5-10-23	
Butylbenzylphthalate	ND	0.20	EPA 8270E	5-10-23	5-10-23	
bis-2-Ethylhexyladipate	ND	0.20	EPA 8270E	5-10-23	5-10-23	
3,3'-Dichlorobenzidine	ND	0.20	EPA 8270E	5-10-23	5-10-23	
Benzo[a]anthracene	ND	0.0080	EPA 8270E/SIM	5-10-23	5-10-23	
Chrysene	ND	0.0080	EPA 8270E/SIM	5-10-23	5-10-23	
bis(2-Ethylhexyl)phthalate	ND	0.20	EPA 8270E	5-10-23	5-10-23	
Di-n-octylphthalate	ND	0.20	EPA 8270E	5-10-23	5-10-23	
Benzo[b]fluoranthene	ND	0.0080	EPA 8270E/SIM	5-10-23	5-10-23	
Benzo(j,k)fluoranthene	ND	0.0080	EPA 8270E/SIM	5-10-23	5-10-23	
Benzo[a]pyrene	ND	0.0080	EPA 8270E/SIM	5-10-23	5-10-23	
ndeno[1,2,3-cd]pyrene	ND	0.0080	EPA 8270E/SIM	5-10-23	5-10-23	
Dibenz[a,h]anthracene	ND	0.0080	EPA 8270E/SIM	5-10-23	5-10-23	
Benzo[g,h,i]perylene	ND	0.0080	EPA 8270E/SIM	5-10-23	5-10-23	
Surrogate:	Percent Recovery	Control Limits		0-10-20	0-10-20	
2-Fluorophenol	62	11 - 111				
Phenol-d6	64	26 - 117				
Nitrobenzene-d5	66	31 - 111				
2-Fluorobiphenyl	67	38 - 109				
2,4,6-Tribromophenol	77	27 - 127				
Z,4,0-11broniophenoi Terphenyl-d14	76	27 - 127 37 - 116				

SEMIVOLATILE ORGANICS EPA 8270E/SIM QUALITY CONTROL page 1 of 2

Matrix: Soil Units: mg/Kg

Units: mg/Kg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0510S1					
n-Nitrosodimethylamine	ND	0.033	EPA 8270E	5-10-23	5-11-23	
Pyridine	ND	0.33	EPA 8270E	5-10-23	5-11-23	
Phenol	ND	0.033	EPA 8270E	5-10-23	5-11-23	
Aniline	ND	0.17	EPA 8270E	5-10-23	5-11-23	
bis(2-Chloroethyl)ether	ND	0.033	EPA 8270E	5-10-23	5-11-23	
2-Chlorophenol	ND	0.033	EPA 8270E	5-10-23	5-11-23	
1,3-Dichlorobenzene	ND	0.033	EPA 8270E	5-10-23	5-11-23	
1,4-Dichlorobenzene	ND	0.033	EPA 8270E	5-10-23	5-11-23	
Benzyl alcohol	ND	0.033	EPA 8270E	5-10-23	5-11-23	
1,2-Dichlorobenzene	ND	0.033	EPA 8270E	5-10-23	5-11-23	
2-Methylphenol (o-Cresol)	ND	0.033	EPA 8270E	5-10-23	5-11-23	
bis(2-Chloroisopropyl)ether	ND	0.033	EPA 8270E	5-10-23	5-11-23	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.033	EPA 8270E	5-10-23	5-11-23	
n-Nitroso-di-n-propylamine	ND	0.033	EPA 8270E	5-10-23	5-11-23	
Hexachloroethane	ND	0.033	EPA 8270E	5-10-23	5-11-23	
Nitrobenzene	ND	0.033	EPA 8270E	5-10-23	5-11-23	
Isophorone	ND	0.033	EPA 8270E	5-10-23	5-11-23	
2-Nitrophenol	ND	0.033	EPA 8270E	5-10-23	5-11-23	
2,4-Dimethylphenol	ND	0.033	EPA 8270E	5-10-23	5-11-23	
bis(2-Chloroethoxy)methane	ND	0.033	EPA 8270E	5-10-23	5-11-23	
2,4-Dichlorophenol	ND	0.067	EPA 8270E	5-10-23	5-11-23	
1,2,4-Trichlorobenzene	ND	0.033	EPA 8270E	5-10-23	5-11-23	
Naphthalene	ND	0.007	EPA 8270E/SIM	5-10-23	5-10-23	
4-Chloroaniline	ND	0.17	EPA 8270E	5-10-23	5-11-23	
Hexachlorobutadiene	ND	0.033	EPA 8270E	5-10-23	5-11-23	
4-Chloro-3-methylphenol	ND	0.033	EPA 8270E	5-10-23	5-11-23	
2-Methylnaphthalene	ND	0.007	EPA 8270E/SIM	5-10-23	5-10-23	
1-Methylnaphthalene	ND	0.007	EPA 8270E/SIM	5-10-23	5-10-23	
Hexachlorocyclopentadiene	ND	0.46	EPA 8270E	5-10-23	5-11-23	
2,4,6-Trichlorophenol	ND	0.033	EPA 8270E	5-10-23	5-11-23	
2,3-Dichloroaniline	ND	0.033	EPA 8270E	5-10-23	5-11-23	
2,4,5-Trichlorophenol	ND	0.033	EPA 8270E	5-10-23	5-11-23	
2-Chloronaphthalene	ND	0.033	EPA 8270E	5-10-23	5-11-23	
2-Nitroaniline	ND	0.033	EPA 8270E	5-10-23	5-11-23	
1,4-Dinitrobenzene	ND	0.033	EPA 8270E	5-10-23	5-11-23	
Dimethylphthalate	ND	0.033	EPA 8270E	5-10-23	5-11-23	
1,3-Dinitrobenzene	ND	0.033	EPA 8270E	5-10-23	5-11-23	
2,6-Dinitrotoluene	ND	0.033	EPA 8270E	5-10-23	5-11-23	
1,2-Dinitrobenzene	ND	0.033	EPA 8270E	5-10-23	5-11-23	
Acenaphthylene	ND	0.007	EPA 8270E/SIM	5-10-23	5-10-23	
3-Nitroaniline	ND	0.033	EPA 8270E	5-10-23	5-11-23	
3-Nitroaniline	ND	0.033	EPA 8270E	5-10-23	5-11-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

7

SEMIVOLATILE ORGANICS EPA 8270E/SIM QUALITY CONTROL page 2 of 2

Analyte Result PQL Method Prepared Analyzed METHOD BLANK Laboratory ID: MB0510S1 -	Flags
2,4-Dinitrophenol ND 0.36 EPA 8270E 5-10-23 5-11-23 Acenaphthene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 4-Nitrophenol ND 0.033 EPA 8270E 5-10-23 5-11-23 2,4-Dinitrotoluene ND 0.033 EPA 8270E 5-10-23 5-11-23 2,3.5,6-Tetrachlorophenol ND 0.033 EPA 8270E 5-10-23 5-11-23 2,3.4,6-Tetrachlorophenol ND 0.033 EPA 8270E 5-10-23 5-11-23 2,3.4,6-Tetrachlorophenol ND 0.033 EPA 8270E 5-10-23 5-11-23 2,3.4,6-Tetrachlorophenol ND 0.17 EPA 8270E 5-10-23 5-11-23 4-Chlorophenyl-phenylether ND 0.033 EPA 8270E 5-10-23 5-11-23 4-Nitroaniline ND 0.033 EPA 8270E 5-10-23 5-11-23 4-Stroeniyl-phenylether ND 0.033 EPA 8270E 5-10-23 5-11-23 1/2-Diphenylhydrazine ND 0.033	
2,4-Dinitrophenol ND 0.36 EPA 8270E 5-10-23 5-11-23 Acenaphthene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 4-Nitrophenol ND 0.033 EPA 8270E 5-10-23 5-11-23 2,4-Dinitrotoluene ND 0.033 EPA 8270E 5-10-23 5-11-23 2,3,5,6-Tetrachlorophenol ND 0.033 EPA 8270E 5-10-23 5-11-23 2,3,4,6-Tetrachlorophenol ND 0.033 EPA 8270E 5-10-23 5-11-23 2,3,4,6-Tetrachlorophenol ND 0.17 EPA 8270E 5-10-23 5-11-23 2,3,4,6-Tetrachlorophenyl-phenylether ND 0.033 EPA 8270E 5-10-23 5-11-23 4-Chlorophenyl-phenylether ND 0.033 EPA 8270E 5-10-23 5-11-23 4-Stritoralitro-2-methylphenol ND 0.39 EPA 8270E 5-10-23 5-11-23 4-Bromophenyl-phenylether ND 0.033 EPA 8270E 5-10-23 5-11-23 4-Bromophenyl-phenylether <td< td=""><td></td></td<>	
Acenaphthene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 4-Nitrophenol ND 0.033 EPA 8270E 5-10-23 5-11-23 2,4-Dinitrotoluene ND 0.033 EPA 8270E 5-10-23 5-11-23 2,4-Dinitrotoluene ND 0.033 EPA 8270E 5-10-23 5-11-23 2,3,5,6-Tetrachlorophenol ND 0.033 EPA 8270E 5-10-23 5-11-23 2,3,4,6-Tetrachlorophenol ND 0.17 EPA 8270E 5-10-23 5-11-23 2,3,4,6-Tetrachlorophenyl-phenylether ND 0.033 EPA 8270E 5-10-23 5-11-23 4-Chlorophenyl-phenylether ND 0.033 EPA 8270E 5-10-23 5-11-23 4-Nitroaniline ND 0.033 EPA 8270E 5-10-23 5-11-23 Fluorene ND 0.033 EPA 8270E 5-10-23 5-11-23 4-Bromophenyl-phenylether ND 0.033 EPA 8270E 5-10-23 5-11-23 1,2-Diphenylhydrazine ND 0.033	
2,4-Dinitrotoluene ND 0.033 EPA 8270E 5-10-23 5-11-23 Dibenzofuran ND 0.033 EPA 8270E 5-10-23 5-11-23 2,3,5,6-Tetrachlorophenol ND 0.033 EPA 8270E 5-10-23 5-11-23 2,3,4,6-Tetrachlorophenol ND 0.033 EPA 8270E 5-10-23 5-11-23 Diethylphthalate ND 0.17 EPA 8270E 5-10-23 5-11-23 4-Chlorophenyl-phenylether ND 0.033 EPA 8270E 5-10-23 5-11-23 4-Nitroaniline ND 0.033 EPA 8270E 5-10-23 5-11-23 4,6-Dinitro-2-methylphenol ND 0.033 EPA 8270E 5-10-23 5-11-23 1,2-Diphenylhydrazine ND 0.033 EPA 8270E 5-10-23 5-11-23 -NItrosodiphenyl-phenylether ND 0.033 EPA 8270E 5-10-23 5-11-23 -1,2-Diphenylhydrazine ND 0.033 EPA 8270E 5-10-23 5-11-23 -1,2-Diphenylhydrazine ND 0.26	
Dibenzofuran ND 0.033 EPA 8270E 5-10-23 5-11-23 2,3,5,6-Tetrachlorophenol ND 0.033 EPA 8270E 5-10-23 5-11-23 2,3,4,6-Tetrachlorophenol ND 0.133 EPA 8270E 5-10-23 5-11-23 Diethylphthalate ND 0.17 EPA 8270E 5-10-23 5-11-23 4-Chlorophenyl-phenylether ND 0.033 EPA 8270E 5-10-23 5-11-23 4-Nitroaniline ND 0.033 EPA 8270E 5-10-23 5-11-23 4-Nitrosodiphenyl-phenylether ND 0.039 EPA 8270E 5-10-23 5-11-23 4-Bromophenyl-phenylether ND 0.033 EPA 8270E 5-10-23 5-11-23 Pertachlorophenol ND	
2,3,5,6-Tetrachlorophenol ND 0.033 EPA 8270E 5-10-23 5-11-23 2,3,4,6-Tetrachlorophenol ND 0.033 EPA 8270E 5-10-23 5-11-23 Diethylphthalate ND 0.17 EPA 8270E 5-10-23 5-11-23 4-Chlorophenyl-phenylether ND 0.033 EPA 8270E 5-10-23 5-11-23 4-Nitroaniline ND 0.033 EPA 8270E 5-10-23 5-11-23 4-Nitroaniline ND 0.007 EPA 8270E 5-10-23 5-11-23 4-Chlorophenyl-phenylether ND 0.007 EPA 8270E 5-10-23 5-11-23 4-Bornophenyl-phenylamine ND 0.033 EPA 8270E 5-10-23 5-11-23 1,2-Diphenylhydrazine ND 0.033 EPA 8270E 5-10-23 5-11-23 4-Bromophenyl-phenylether ND 0.033 EPA 8270E 5-10-23 5-11-23 4-Bromophenyl-phenylether ND 0.033 EPA 8270E 5-10-23 5-11-23 Pentachlorophenol ND	
2,3,4,6-Tetrachlorophenol ND 0.033 EPA 8270E 5-10-23 5-11-23 Diethylphthalate ND 0.17 EPA 8270E 5-10-23 5-11-23 4-Chlorophenyl-phenylether ND 0.033 EPA 8270E 5-10-23 5-11-23 4-Nitroaniline ND 0.033 EPA 8270E 5-10-23 5-11-23 Fluorene ND 0.007 EPA 8270E 5-10-23 5-11-23 4,6-Dinitro-2-methylphenol ND 0.39 EPA 8270E 5-10-23 5-11-23 1,2-Diphenylhydrazine ND 0.033 EPA 8270E 5-10-23 5-11-23 1,2-Diphenylhydrazine ND 0.033 EPA 8270E 5-10-23 5-11-23 1,2-Diphenylhydrazine ND 0.033 EPA 8270E 5-10-23 5-11-23 4-Bromophenyl-phenylether ND 0.033 EPA 8270E 5-10-23 5-11-23 4-Bromophenol ND 0.26 EPA 8270E 5-10-23 5-11-23 Phenanthrene ND 0.007 EPA 8270E/	
Diethylphthalate ND 0.17 EPA 8270E 5-10-23 5-11-23 4-Chlorophenyl-phenylether ND 0.033 EPA 8270E 5-10-23 5-11-23 4-Nitroaniline ND 0.033 EPA 8270E 5-10-23 5-11-23 Fluorene ND 0.007 EPA 8270E/SIM 5-10-23 5-11-23 4,6-Dinitro-2-methylphenol ND 0.39 EPA 8270E 5-10-23 5-11-23 n-Nitrosodiphenylamine ND 0.033 EPA 8270E 5-10-23 5-11-23 1,2-Diphenylhydrazine ND 0.033 EPA 8270E 5-10-23 5-11-23 4-Bromophenyl-phenylether ND 0.007 EPA 8270E 5-10-23 5-11-23 Pentachlorophenol ND 0.007<	
A-Chlorophenyl-phenylether ND 0.033 EPA 8270E 5-10-23 5-11-23 4-Nitroaniline ND 0.033 EPA 8270E 5-10-23 5-11-23 Fluorene ND 0.007 EPA 8270E 5-10-23 5-11-23 4,6-Dinitro-2-methylphenol ND 0.39 EPA 8270E 5-10-23 5-11-23 n-Nitrosodiphenylamine ND 0.033 EPA 8270E 5-10-23 5-11-23 1,2-Diphenylhydrazine ND 0.033 EPA 8270E 5-10-23 5-11-23 4-Bromophenyl-phenylether ND 0.033 EPA 8270E 5-10-23 5-11-23 Hexachlorobenzene ND 0.033 EPA 8270E 5-10-23 5-11-23 Pentachlorophenol ND 0.26 EPA 8270E 5-10-23 5-11-23 Phenanthrene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 Anthracene ND 0.007 EPA 8270E/SIM 5-10-23 5-11-23 Di-n-butylphthalate ND 0.17 EPA 8270E/SIM	
4-Nitroaniline ND 0.033 EPA 8270E 5-10-23 5-11-23 Fluorene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 4,6-Dinitro-2-methylphenol ND 0.39 EPA 8270E 5-10-23 5-11-23 n-Nitrosodiphenylamine ND 0.033 EPA 8270E 5-10-23 5-11-23 1,2-Diphenylhydrazine ND 0.033 EPA 8270E 5-10-23 5-11-23 4-Bromophenyl-phenylether ND 0.033 EPA 8270E 5-10-23 5-11-23 4-Bromophenyl-phenylether ND 0.033 EPA 8270E 5-10-23 5-11-23 4-Bromophenol ND 0.26 EPA 8270E 5-10-23 5-11-23 Phenanthrene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 Anthracene ND 0.007 EPA 8270E 5-10-23 5-11-23 Di-n-butylphthalate ND 0.17 EPA 8270E 5-10-23 5-11-23 Fluoranthene ND 0.17 EPA 8270E/SIM	
4-Nitroaniline ND 0.033 EPA 8270E 5-10-23 5-11-23 Fluorene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 4,6-Dinitro-2-methylphenol ND 0.39 EPA 8270E 5-10-23 5-11-23 n-Nitrosodiphenylamine ND 0.033 EPA 8270E 5-10-23 5-11-23 1,2-Diphenylhydrazine ND 0.033 EPA 8270E 5-10-23 5-11-23 4-Bromophenyl-phenylether ND 0.033 EPA 8270E 5-10-23 5-11-23 4-Bromophenyl-phenylether ND 0.033 EPA 8270E 5-10-23 5-11-23 4-Bromophenol ND 0.26 EPA 8270E 5-10-23 5-11-23 Pentachlorophenol ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 Anthracene ND 0.007 EPA 8270E/SIM 5-10-23 5-11-23 Carbazole ND 0.17 EPA 8270E 5-10-23 5-11-23 Fluoranthene ND 0.17 EPA 8270E/SIM	
4,6-Dinitro-2-methylphenolND0.39EPA 8270E5-10-235-11-23n-NitrosodiphenylamineND0.033EPA 8270E5-10-235-11-231,2-DiphenylhydrazineND0.033EPA 8270E5-10-235-11-234-Bromophenyl-phenyletherND0.033EPA 8270E5-10-235-11-23HexachlorobenzeneND0.033EPA 8270E5-10-235-11-23PentachlorophenolND0.26EPA 8270E5-10-235-11-23PhenanthreneND0.007EPA 8270E/SIM5-10-235-10-23AnthraceneND0.007EPA 8270E5-10-235-10-23CarbazoleND0.033EPA 8270E5-10-235-11-23Di-n-butylphthalateND0.17EPA 8270E5-10-235-11-23FluorantheneND0.007EPA 8270E/SIM5-10-235-10-23PyreneND0.007EPA 8270E5-10-235-11-23ButylbenzylphthalateND0.17EPA 8270E5-10-235-11-233,3'-DichlorobenzidineND0.17EPA 8270E5-10-235-11-23Benzo[a]anthraceneND0.007EPA 8270E5-10-235-11-23Benzo[a]anthraceneND0.007EPA 8270E5-10-235-11-23Benzo[a]anthraceneND0.007EPA 8270E/SIM5-10-235-10-23ChryseneND0.007EPA 8270E/SIM5-10-235-10-23Bis(2-Ethylhexyl)phthalateND <td< td=""><td></td></td<>	
n-Nitrosodiphenylamine ND 0.033 EPA 8270E 5-10-23 5-11-23 1,2-Diphenylhydrazine ND 0.033 EPA 8270E 5-10-23 5-11-23 4-Bromophenyl-phenylether ND 0.033 EPA 8270E 5-10-23 5-11-23 Hexachlorobenzene ND 0.033 EPA 8270E 5-10-23 5-11-23 Pentachlorophenol ND 0.26 EPA 8270E 5-10-23 5-11-23 Phenanthrene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 Anthracene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 Carbazole ND 0.007 EPA 8270E 5-10-23 5-11-23 Di-n-butylphthalate ND 0.007 EPA 8270E 5-10-23 5-11-23 Piorene ND 0.007 EPA 8270E 5-10-23 5-10-23 Piyrene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 Butylbenzylphthalate ND 0.17 EPA 8270E 5-10-23	
n-Nitrosodiphenylamine ND 0.033 EPA 8270E 5-10-23 5-11-23 1,2-Diphenylhydrazine ND 0.033 EPA 8270E 5-10-23 5-11-23 4-Bromophenyl-phenylether ND 0.033 EPA 8270E 5-10-23 5-11-23 Hexachlorobenzene ND 0.033 EPA 8270E 5-10-23 5-11-23 Pentachlorophenol ND 0.26 EPA 8270E 5-10-23 5-11-23 Phenanthrene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 Anthracene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 Carbazole ND 0.007 EPA 8270E 5-10-23 5-11-23 Di-n-butylphthalate ND 0.007 EPA 8270E 5-10-23 5-11-23 Piroene ND 0.007 EPA 8270E 5-10-23 5-10-23 Piroene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 Butylbenzylphthalate ND 0.17 EPA 8270E 5-10-23	
1,2-Diphenylhydrazine ND 0.033 EPA 8270E 5-10-23 5-11-23 4-Bromophenyl-phenylether ND 0.033 EPA 8270E 5-10-23 5-11-23 Hexachlorobenzene ND 0.033 EPA 8270E 5-10-23 5-11-23 Pentachlorophenol ND 0.26 EPA 8270E 5-10-23 5-11-23 Phenanthrene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 Anthracene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 Carbazole ND 0.033 EPA 8270E 5-10-23 5-11-23 Di-n-butylphthalate ND 0.17 EPA 8270E 5-10-23 5-10-23 Pyrene ND 0.007 EPA 8270E 5-10-23 5-10-23 Butylbenzylphthalate ND 0.007 EPA 8270E 5-10-23 5-10-23 S,3'-Dichlorobenzidine ND 0.17 EPA 8270E 5-10-23 5-11-23 Benzo[a]anthracene ND 0.17 EPA 8270E 5-10-23<	
4-Bromophenyl-phenylether ND 0.033 EPA 8270E 5-10-23 5-11-23 Hexachlorobenzene ND 0.033 EPA 8270E 5-10-23 5-11-23 Pentachlorophenol ND 0.26 EPA 8270E 5-10-23 5-11-23 Phenanthrene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 Anthracene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 Carbazole ND 0.033 EPA 8270E/SIM 5-10-23 5-11-23 Di-n-butylphthalate ND 0.033 EPA 8270E 5-10-23 5-11-23 Piroene ND 0.17 EPA 8270E 5-10-23 5-11-23 Pyrene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 Butylbenzylphthalate ND 0.007 EPA 8270E/SIM 5-10-23 5-11-23 J3,3'-Dichlorobenzidine ND 0.17 EPA 8270E 5-10-23 5-11-23 Benzo[a]anthracene ND 0.17 EPA 8270E 5-10-23 </td <td></td>	
HexachlorobenzeneND0.033EPA 8270E5-10-235-11-23PentachlorophenolND0.26EPA 8270E5-10-235-11-23PhenanthreneND0.007EPA 8270E/SIM5-10-235-10-23AnthraceneND0.007EPA 8270E/SIM5-10-235-10-23CarbazoleND0.033EPA 8270E5-10-235-11-23Di-n-butylphthalateND0.17EPA 8270E5-10-235-11-23FluorantheneND0.007EPA 8270E/SIM5-10-235-10-23PyreneND0.007EPA 8270E/SIM5-10-235-10-23ButylbenzylphthalateND0.007EPA 8270E/SIM5-10-235-10-23ButylbenzylphthalateND0.17EPA 8270E5-10-235-11-23ButylbenzylphthalateND0.17EPA 8270E5-10-235-11-23Bis-2-EthylhexyladipateND0.17EPA 8270E5-10-235-11-23Benzo[a]anthraceneND0.007EPA 8270E/SIM5-10-235-11-23Benzo[a]anthraceneND0.007EPA 8270E/SIM5-10-235-10-23ChryseneND0.007EPA 8270E/SIM5-10-235-10-23bis(2-Ethylhexyl)phthalateND0.007EPA 8270E/SIM5-10-235-10-23bis(2-Ethylhexyl)phthalateND0.17EPA 8270E5-10-235-10-23bis(2-Ethylhexyl)phthalateND0.17EPA 8270E5-10-235-10-23	
Phenanthrene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 Anthracene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 Carbazole ND 0.033 EPA 8270E 5-10-23 5-11-23 Di-n-butylphthalate ND 0.17 EPA 8270E 5-10-23 5-11-23 Fluoranthene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 Pyrene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 Butylbenzylphthalate ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 Bis-2-Ethylhexyladipate ND 0.007 EPA 8270E 5-10-23 5-11-23 Sis-2-Ethylhexyladipate ND 0.17 EPA 8270E 5-10-23 5-11-23 Benzo[a]anthracene ND 0.17 EPA 8270E 5-10-23 5-11-23 Chrysene ND 0.007 EPA 8270E 5-10-23 5-10-23 bis(2-Ethylhexyl)phthalate ND 0.007 EPA 8270E/SIM 5	
AnthraceneND0.007EPA 8270E/SIM5-10-235-10-23CarbazoleND0.033EPA 8270E5-10-235-11-23Di-n-butylphthalateND0.17EPA 8270E5-10-235-11-23FluorantheneND0.007EPA 8270E/SIM5-10-235-10-23PyreneND0.007EPA 8270E/SIM5-10-235-10-23ButylbenzylphthalateND0.007EPA 8270E/SIM5-10-235-10-23ButylbenzylphthalateND0.17EPA 8270E5-10-235-11-23Dis-2-EthylhexyladipateND0.17EPA 8270E5-10-235-11-23Benzo[a]anthraceneND0.17EPA 8270E/SIM5-10-235-11-23ChryseneND0.007EPA 8270E/SIM5-10-235-10-23Dis(2-Ethylhexyl)phthalateND0.17EPA 8270E/SIM5-10-235-10-23Dis(2-Ethylhexyl)phthalateND0.17EPA 8270E5-10-235-10-23Dis(2-Ethylhexyl)phthalateND0.17EPA 8270E5-10-235-10-23	
ND 0.033 EPA 8270E 5-10-23 5-11-23 Di-n-butylphthalate ND 0.17 EPA 8270E 5-10-23 5-11-23 Fluoranthene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 Pyrene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 Butylbenzylphthalate ND 0.007 EPA 8270E 5-10-23 5-11-23 Bitylbenzylphthalate ND 0.17 EPA 8270E 5-10-23 5-11-23 Bitylbenzylphthalate ND 0.007 EPA 8270E 5-10-23 5-11-23 Benzo[a]anthracene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 Chrysene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23	
ND 0.033 EPA 8270E 5-10-23 5-11-23 Di-n-butylphthalate ND 0.17 EPA 8270E 5-10-23 5-11-23 Fluoranthene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 Pyrene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 Butylbenzylphthalate ND 0.17 EPA 8270E 5-10-23 5-11-23 Sis-2-Ethylhexyladipate ND 0.17 EPA 8270E 5-10-23 5-11-23 3,3'-Dichlorobenzidine ND 0.17 EPA 8270E 5-10-23 5-11-23 Benzo[a]anthracene ND 0.17 EPA 8270E 5-10-23 5-11-23 Chrysene ND 0.17 EPA 8270E 5-10-23 5-10-23 Dis(2-Ethylhexyl)phthalate ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 Dis(2-Ethylhexyl)phthalate ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23	
Fluoranthene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 Pyrene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 Butylbenzylphthalate ND 0.17 EPA 8270E 5-10-23 5-11-23 Sis-2-Ethylhexyladipate ND 0.17 EPA 8270E 5-10-23 5-11-23 3,3'-Dichlorobenzidine ND 0.17 EPA 8270E 5-10-23 5-11-23 Benzo[a]anthracene ND 0.007 EPA 8270E/SIM 5-10-23 5-11-23 Chrysene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 Dis(2-Ethylhexyl)phthalate ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 Dis(2-Ethylhexyl)phthalate ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23	
Fluoranthene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 Pyrene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 Butylbenzylphthalate ND 0.17 EPA 8270E 5-10-23 5-11-23 bis-2-Ethylhexyladipate ND 0.17 EPA 8270E 5-10-23 5-11-23 3,3'-Dichlorobenzidine ND 0.17 EPA 8270E 5-10-23 5-11-23 Benzo[a]anthracene ND 0.17 EPA 8270E 5-10-23 5-11-23 Chrysene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 bis(2-Ethylhexyl)phthalate ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23	
ButylbenzylphthalateND0.17EPA 8270E5-10-235-11-23bis-2-EthylhexyladipateND0.17EPA 8270E5-10-235-11-233,3'-DichlorobenzidineND0.17EPA 8270E5-10-235-11-23Benzo[a]anthraceneND0.007EPA 8270E/SIM5-10-235-10-23ChryseneND0.007EPA 8270E/SIM5-10-235-10-23bis(2-Ethylhexyl)phthalateND0.17EPA 8270E5-10-235-11-23	
ButylbenzylphthalateND0.17EPA 8270E5-10-235-11-23bis-2-EthylhexyladipateND0.17EPA 8270E5-10-235-11-233,3'-DichlorobenzidineND0.17EPA 8270E5-10-235-11-23Benzo[a]anthraceneND0.007EPA 8270E/SIM5-10-235-10-23ChryseneND0.007EPA 8270E/SIM5-10-235-10-23bis(2-Ethylhexyl)phthalateND0.17EPA 8270E5-10-235-11-23	
bis-2-Ethylhexyladipate ND 0.17 EPA 8270E 5-10-23 5-11-23 3,3'-Dichlorobenzidine ND 0.17 EPA 8270E 5-10-23 5-11-23 Benzo[a]anthracene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 Chrysene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 bis(2-Ethylhexyl)phthalate ND 0.17 EPA 8270E 5-10-23 5-10-23	
ND 0.17 EPA 8270E 5-10-23 5-11-23 Benzo[a]anthracene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 Chrysene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 bis(2-Ethylhexyl)phthalate ND 0.17 EPA 8270E 5-10-23 5-11-23	
Benzo[a]anthracene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 Chrysene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 bis(2-Ethylhexyl)phthalate ND 0.17 EPA 8270E 5-10-23 5-11-23	
ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23 bis(2-Ethylhexyl)phthalate ND 0.17 EPA 8270E 5-10-23 5-11-23	
bis(2-Ethylhexyl)phthalate ND 0.17 EPA 8270E 5-10-23 5-11-23	
Benzo[b]fluoranthene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23	
Benzo(j,k)fluoranthene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23	
Benzo[a]pyrene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23	
Indeno[1,2,3-cd]pyrene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23	
Dibenz[a,h]anthracene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23	
Benzo[g,h,i]perylene ND 0.007 EPA 8270E/SIM 5-10-23 5-10-23	
Surrogate: Percent Recovery Control Limits	
2-Fluorophenol 75 11 - 111	
Phenol-d6 73 26 - 117	
Nitrobenzene-d5 65 31 - 111	
2-Fluorobiphenyl 68 38 - 109	
2,4,6-Tribromophenol 66 27 - 127	
Terphenyl-d14 70 37 - 116	

8

SEMIVOLATILE ORGANICS EPA 8270E/SIM QUALITY CONTROL page 1 of 2

Matrix: Soil Units: mg/Kg

Analyta	D	alt	Spiles		Source		cent	Recovery		RPD Limit	Flore
Analyte MATRIX SPIKES	Re	sult	Бріке	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
	05.0	10 02									
Laboratory ID:	MS	048-03 MSD	MS	MSD		MS	MSD				
n-Nitrosodimethylamine	0.607	0.605	0.667	0.667	ND	91	91	20 - 120	0	30	
-	0.455	0.451	0.667	0.667	ND	68	68	20 - 120 20 - 120	1	30 30	
Pyridine	0.579	0.564	0.667	0.667	ND	87	85	20 - 120 28 - 112		39	
Phenol Aniline	0.535	0.504	0.667	0.667	ND	80	78	20 - 112	3 3	39 30	
bis(2-Chloroethyl)ether	0.535	0.529	0.667	0.667	ND	80 81	79	20 - 120 20 - 120	2	30	
2-Chlorophenol	0.573	0.549	0.667	0.667	ND	86	82	20 - 120 30 - 108	4	40	
1,3-Dichlorobenzene	0.535	0.533	0.667	0.667	ND	80	80	20 - 100 20 - 120	4	30	
1,4-Dichlorobenzene	0.535	0.535	0.667	0.667	ND	80 81	80	20 - 120 25 - 106	1	30 44	
Benzyl alcohol	0.681	0.588	0.667	0.667	ND	102	88	20 - 120	15	30	
1,2-Dichlorobenzene	0.545	0.538	0.667	0.667	ND	82	81	20 - 120	1	30	
2-Methylphenol (o-Cresol)	0.590	0.546	0.667	0.667	ND	88	82	20 - 120	8	30	
bis(2-Chloroisopropyl)ether	0.568	0.559	0.667	0.667	ND	85	84	20 - 120	2	30	
(3+4)-Methylphenol (m,p-Cresol)	0.584	0.567	0.667	0.667	ND	88	85	20 - 120 20 - 120	3	30	
n-Nitroso-di-n-propylamine	0.597	0.579	0.667	0.667	ND	90	87	32 - 112	3	42	
Hexachloroethane	0.490	0.490	0.667	0.667	ND	73	73	20 - 120	0	30	
Nitrobenzene	0.567	0.567	0.667	0.667	ND	85	85	20 - 120	0	30	
Isophorone	0.568	0.562	0.667	0.667	ND	85	84	20 - 120	1	30	
2-Nitrophenol	0.546	0.539	0.667	0.667	ND	82	81	20 - 120	1	30	
2,4-Dimethylphenol	0.531	0.523	0.667	0.667	ND	80	78	20 - 120	2	30	
bis(2-Chloroethoxy)methane	0.540	0.538	0.667	0.667	ND	81	81	20 - 120	0	30	
2,4-Dichlorophenol	0.576	0.561	0.667	0.667	ND	86	84	20 - 120	3	30	
1,2,4-Trichlorobenzene	0.545	0.548	0.667	0.667	ND	82	82	30 - 110	1	40	
Naphthalene	0.574	0.578	0.667	0.667	ND	86	87	20 - 120	1	30	
4-Chloroaniline	0.564	0.573	0.667	0.667	ND	85	86	20 - 120	2	30	
Hexachlorobutadiene	0.567	0.564	0.667	0.667	ND	85	85	20 - 120	1	30	
4-Chloro-3-methylphenol	0.593	0.589	0.667	0.667	ND	89	88	44 - 112	1	28	
2-Methylnaphthalene	0.560	0.559	0.667	0.667	ND	84	84	20 - 120	0	30	
1-Methylnaphthalene	0.581	0.576	0.667	0.667	ND	87	86	20 - 120	1	30	
Hexachlorocyclopentadiene	0.312	0.304	0.667	0.667	ND	47	46	20 - 120	3	30	
2,4,6-Trichlorophenol	0.596	0.571	0.667	0.667	ND	89	86	20 - 120	4	30	
2,3-Dichloroaniline	0.595	0.569	0.667	0.667	ND	89	85	20 - 120	4	30	
2,4,5-Trichlorophenol	0.614	0.574	0.667	0.667	ND	92	86	20 - 120	7	30	
2-Chloronaphthalene	0.581	0.559	0.667	0.667	ND	87	84	20 - 120	4	30	
2-Nitroaniline	0.622	0.585	0.667	0.667	ND	93	88	20 - 120	6	30	
1,4-Dinitrobenzene	0.614	0.580	0.667	0.667	ND	92	87	20 - 120	6	30	
Dimethylphthalate	0.590	0.570	0.667	0.667	ND	88	85	20 - 120	3	30	
1,3-Dinitrobenzene	0.582	0.558	0.667	0.667	ND	87	84	20 - 120	4	30	
2,6-Dinitrotoluene	0.578	0.569	0.667	0.667	ND	87	85	20 - 120	2	30	
1,2-Dinitrobenzene	0.587	0.574	0.667	0.667	ND	88	86	20 - 120	2	30	
Acenaphthylene	0.633	0.611	0.667	0.667	ND	95	92	20 - 120	4	30	
3-Nitroaniline	0.593	0.566	0.667	0.667	ND	89	85	20 - 120	5	30	

M

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

9

SEMIVOLATILE ORGANICS EPA 8270E/SIM QUALITY CONTROL page 2 of 2

Analyte	Re	sult	Snike	Level	Source Result		rcent overy	Recovery Limits	RPD	RPD Limit	Flags
MATRIX SPIKES	1.00	oun	Opino	LOVOI	Rooun	1100	overy	Linito			i lugo
Laboratory ID:	05-04	48-03									
	MS	MSD	MS	MSD		MS	MSD				
2,4-Dinitrophenol	0.292	0.257	0.667	0.667	ND	44	39	20 - 120	13	30	
Acenaphthene	0.561	0.545	0.667	0.667	ND	84	82	34 - 107	3	33	
4-Nitrophenol	0.703	0.674	0.667	0.667	ND	105	101	33 - 140	4	34	
2,4-Dinitrotoluene	0.598	0.584	0.667	0.667	ND	90	88	38 - 111	2	31	
Dibenzofuran	0.590	0.574	0.667	0.667	ND	88	86	20 - 120	3	30	
2,3,5,6-Tetrachlorophenol	0.542	0.507	0.667	0.667	ND	81	76	20 - 120	7	30	
2,3,4,6-Tetrachlorophenol	0.630	0.562	0.667	0.667	ND	94	84	20 - 120	11	30	
Diethylphthalate	0.613	0.588	0.667	0.667	ND	92	88	20 - 120	4	30	
4-Chlorophenyl-phenylether		0.560	0.667	0.667	ND	87	84	20 - 120	3	30	
4-Nitroaniline	0.606	0.591	0.667	0.667	ND	91	89	20 - 120	3	30	
Fluorene	0.595	0.575	0.667	0.667	ND	89	86	20 - 120	3	30	
4,6-Dinitro-2-methylphenol	0.304	0.278	0.667	0.667	ND	46	42	20 - 120	9	30	
n-Nitrosodiphenylamine	0.574	0.555	0.667	0.667	ND	86	83	20 - 120	3	30	
1,2-Diphenylhydrazine	0.560	0.538	0.667	0.667	ND	84	81	20 - 120	4	30	
4-Bromophenyl-phenylether	0.583	0.559	0.667	0.667	ND	87	84	20 - 120	4	30	
Hexachlorobenzene	0.571	0.545	0.667	0.667	ND	86	82	20 - 120	5	30	
Pentachlorophenol	0.525	0.486	0.667	0.667	ND	79	73	27 - 141	8	36	
Phenanthrene	0.592	0.572	0.667	0.667	ND	89	86	20 - 120	3	30	
Anthracene	0.591	0.579	0.667	0.667	ND	89	87	20 - 120	2	30	
Carbazole	0.574	0.560	0.667	0.667	ND	86	84	20 - 120	2	30	
Di-n-butylphthalate	0.611	0.592	0.667	0.667	ND	92	89	20 - 120	3	30	
Fluoranthene	0.589	0.564	0.667	0.667	ND	88	85	20 - 120	4	30	
Pyrene	0.592	0.568	0.667	0.667	ND	89	85	28 - 126	4	33	
Butylbenzylphthalate	0.580	0.557	0.667	0.667	ND	87	84	20 - 120	4	30	
bis-2-Ethylhexyladipate	0.572	0.545	0.667	0.667	ND	86	82	20 - 120	5	30	
3,3'-Dichlorobenzidine	0.567	0.547	0.667	0.667	ND	85	82	20 - 120	4	30	
Benzo[a]anthracene	0.568	0.548	0.667	0.667	ND	85	82	20 - 120	4	30	
Chrysene	0.581	0.563	0.667	0.667	ND	87	84	20 - 120	3	30	
bis(2-Ethylhexyl)phthalate	0.628	0.596	0.667	0.667	ND	94	89	20 - 120	5	30	
Di-n-octylphthalate	0.595	0.572	0.667	0.667	ND	89	86	20 - 120	4	30	
Benzo[b]fluoranthene	0.581	0.553	0.667	0.667	ND	87	83	20 - 120	5	30	
Benzo(j,k)fluoranthene	0.562	0.537	0.667	0.667	ND	84	81	20 - 120	5	30	
Benzo[a]pyrene	0.586	0.564	0.667	0.667	ND	88	85	20 - 120	4	30	
Indeno[1,2,3-cd]pyrene	0.641	0.594	0.667	0.667	ND	96	89	20 - 120	8	30	
Dibenz[a,h]anthracene	0.618	0.592	0.667	0.667	ND	93	89	20 - 120	4	30	
Benzo[g,h,i]perylene	0.598	0.580	0.667	0.667	ND	90	87	20 - 120	3	30	
Surrogate:											
2-Fluorophenol						77	75	11 - 111			
Phenol-d6						81	76	26 - 117			
Nitrobenzene-d5						80	79	31 - 111			
2-Fluorobiphenyl						83	79	38 - 109			
2,4,6-Tribromophenol						94	89	27 - 127			
Terphenyl-d14						88	83	37 - 116			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

10

TOTAL METALS EPA 6010D/7471B

Matrix: Soil Units: mg/Kg (ppm)

	. ,			Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Comp. Soil-Sp1-20230427					
Laboratory ID:	05-043-06					
Arsenic	ND	12	EPA 6010D	5-9-23	5-9-23	
Barium	39	3.0	EPA 6010D	5-9-23	5-9-23	
Cadmium	ND	0.60	EPA 6010D	5-9-23	5-9-23	
Chromium	23	0.60	EPA 6010D	5-9-23	5-9-23	
Lead	ND	6.0	EPA 6010D	5-9-23	5-9-23	
Mercury	ND	0.30	EPA 7471B	5-10-23	5-10-23	
Selenium	ND	12	EPA 6010D	5-9-23	5-9-23	
Silver	ND	1.2	EPA 6010D	5-9-23	5-9-23	

TOTAL METALS EPA 6010D/7471B QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0509SM2					
Arsenic	ND	10	EPA 6010D	5-9-23	5-9-23	
Barium	ND	2.5	EPA 6010D	5-9-23	5-9-23	
Cadmium	ND	0.50	EPA 6010D	5-9-23	5-9-23	
Chromium	ND	0.50	EPA 6010D	5-9-23	5-9-23	
Lead	ND	5.0	EPA 6010D	5-9-23	5-9-23	
Selenium	ND	10	EPA 6010D	5-9-23	5-9-23	
Silver	ND	1.0	EPA 6010D	5-9-23	5-9-23	
Laboratory ID:	MB0510S1					
Mercury	ND	0.25	EPA 7471B	5-10-23	5-10-23	

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	05-04	18-03								
	ORIG	DUP								
Arsenic	ND	ND	NA	NA		NA	NA	NA	20	
Barium	49.5	42.7	NA	NA		NA	NA	15	20	
Cadmium	ND	ND	NA	NA		NA	NA	NA	20	
Chromium	15.8	14.4	NA	NA		NA	NA	9	20	
Lead	18.3	12.1	NA	NA		NA	NA	41	20	С
Selenium	ND	ND	NA	NA		NA	NA	NA	20	
Silver	ND	ND	NA	NA		NA	NA	NA	20	
Laboratory ID:	05-07	77-01								
Mercury	ND	ND	NA	NA		NA	NA	NA	20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010D/7471B QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	05-04	48-03									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	88.5	86.9	100	100	ND	89	87	75-125	2	20	
Barium	138	138	100	100	49.5	88	89	75-125	0	20	
Cadmium	51.8	51.4	50.0	50.0	ND	104	103	75-125	1	20	
Chromium	106	106	100	100	15.8	90	90	75-125	0	20	
Lead	256	254	250	250	18.3	95	94	75-125	1	20	
Selenium	89.7	88.5	100	100	ND	90	89	75-125	1	20	
Silver	20.5	20.1	25.0	25.0	ND	82	80	75-125	2	20	
Laboratory ID:	05-07	77-01									
Mercury	0.512	0.513	0.500	0.500	0.00917	101	101	80-120	0	20	
SPIKE BLANK											
Laboratory ID:	SB050)9SM2									
Arsenic	92	2.4	1	00	N/A	ę	92	80-120			
Barium	92	2.5	10	00	N/A	9	93	80-120			
Cadmium	51	.1	50	0.0	N/A	1	02	80-120			
Chromium	94	.5	1(00	N/A	ę	95	80-120			
Lead	2	53	2	50	N/A	1	01	80-120			
Selenium	90	.3	1(00	N/A	ę	90	80-120			
Silver	22	.3	25	5.0	N/A	8	39	80-120			
Laboratory ID:	SB05	10S1									
Mercury	0.4	75	0.5	500	N/A	9	95	80-120			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED METALS EPA 200.8

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	LW-MW101-20230503					
Laboratory ID:	05-043-01					
Chromium	1.9	1.0	EPA 200.8		5-10-23	
Copper	ND	1.0	EPA 200.8		5-10-23	
Client ID:	LW-MW102-20230503					
Laboratory ID:	05-043-02					
Chromium	9.0	1.0	EPA 200.8		5-10-23	
Copper	ND	1.0	EPA 200.8		5-10-23	
Client ID:	LW-MW103-20230502					
Laboratory ID:	05-043-03					
Chromium	190	1.0	EPA 200.8		5-10-23	
Copper	1.4	1.0	EPA 200.8		5-10-23	
Client ID:	LW-MW104-20230502					
Laboratory ID:	05-043-04					
Chromium	4.9	1.0	EPA 200.8		5-10-23	
Copper	ND	1.0	EPA 200.8		5-10-23	
Client ID:	LW-MW105-20230502					
Laboratory ID:	05-043-05					
Chromium	2.1	1.0	EPA 200.8		5-10-23	
Copper	ND	1.0	EPA 200.8		5-10-23	

DISSOLVED METALS EPA 200.8 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0509F1					
Chromium	ND	1.0	EPA 200.8	5-9-23	5-10-23	
Copper	ND	1.0	EPA 200.8	5-9-23	5-10-23	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	05-09	90-01									
	ORIG	DUP									
Chromium	ND	ND	NA	NA			NA	NA	NA	20	
Copper	1.67	1.68	NA	NA			NA	NA	1	20	
MATRIX SPIKES											
Laboratory ID:	05-09	90-01									
	MS	MSD	MS	MSD		MS	MSD				
Chromium	78.2	79.0	80.0	80.0	ND	98	99	75-125	1	20	
Copper	79.4	79.6	80.0	80.0	1.67	97	97	75-125	0	20	
SPIKE BLANK											
Laboratory ID:	SB05	09F1									
Chromium	72	.2	80	0.0	N/A		90	85-115			
Copper	72	4	80	0.0	N/A		91	85-115			

% MOISTURE

Client ID	Lab ID	% Moisture	Date Analyzed
Comp. Soil-Sp1-20230427	05-043-06	17	5-5-23

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature		6 Comp. So; 1-5p1-20230427	5 LW-MW105-20230502	4 LW-MW104-20230502	3 LW-MW103-20230502	2 LW-MW102-20230503	1 LW-MW101-20230503	Lab ID Sample Identification	sampled by: Bo Ward	Croyer Manager:	Lynin OU MNA	210368-B-09	Project Number	14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.
Reviewed/Date					1 plan 5/4/15/12.00	- Aspect Consultin, 5/3/23 12:00	Company Date Time		X 1 1/195 00.21 E2/F2/H	5/2/23 11:30 4 1	1 0H:EI 22/2/5	5/2/23 14:38 1	5/3/23 10:00 1	5/3/23 11:00 Watar 1	NWTP NWTP NWTP NWTP Volatile	H-HCIE H-Gx/E H-Gx H-Dx (\$	BTEX (8)	021 8		1 Day	(Check One) Laboratory Number:	Chain of Custody
Chromatograms with final report 🗌 Electronic Data Deliverables (EDDs) 🗌	Data Package: Standard Level III Level IV	* 7, eld L, Herry			9 0. 1 - 10 - 10		Comments/Special Instructions		×			×		×	Semivo (with lo PAHs & PCBs Organo Organo Chlorir	olatiles w-levevage 3270/SI 8082 bochlorin pphosp nated A Wetals bil and s solution	8270/S II PAHs) IM (low- ne Pesti horus F cid Her letals	level) cides 80 pesticides bicides	081 ss 827 8151	0/SIM	05-043	Page / _ of _ /

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

July 20, 2023

Amy Tice Aspect Consulting Dexter Horton Building 710 2nd Avenue, Suite 550 Seattle, WA 98104

Re: Analytical Data for Project 210368 Laboratory Reference No. 2307-088

Dear Amy:

Enclosed are the analytical results and associated quality control data for samples submitted on July 13, 2023.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: July 20, 2023 Samples Submitted: July 13, 2023 Laboratory Reference: 2307-088 Project: 210368

Case Narrative

Samples were collected on July 12, 2023 and received by the laboratory on July 13, 2023. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED METALS EPA 200.8

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	LW-MW101-20230712					
Laboratory ID:	07-088-01					
Chromium	6.0	1.0	EPA 200.8		7-27-23	
Copper	ND	1.0	EPA 200.8		7-27-23	
Client ID:	LW-MW102-20230712					
Laboratory ID:	07-088-02					
Chromium	19	1.0	EPA 200.8		7-27-23	
Copper	ND	1.0	EPA 200.8		7-27-23	
Client ID:	LW-MW103-20230712					
Laboratory ID:	07-088-03					
Chromium	190	1.0	EPA 200.8		7-27-23	
Copper	1.3	1.0	EPA 200.8		7-27-23	
Client ID:	LW-MW104-20230712					
Laboratory ID:	07-088-04					
Chromium	24	1.0	EPA 200.8		7-27-23	
Copper	ND	1.0	EPA 200.8		7-27-23	
Client ID:	LW-MW105-20230712					
Laboratory ID:	07-088-05					
Chromium	2.5	1.0	EPA 200.8		7-27-23	
Copper	ND	1.0	EPA 200.8		7-27-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED METALS EPA 200.8 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0712F1					
Chromium	ND	10	EPA 200.8	7-12-23	7-18-23	
Copper	ND	10	EPA 200.8	7-12-23	7-18-23	

					Source	Per	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	07-07	70-01									
	ORIG	DUP									
Chromium	ND	ND	NA	NA		1	NA	NA	NA	20	
Copper	ND	ND	NA	NA		1	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	07-07	70-01									
	MS	MSD	MS	MSD		MS	MSD				
Chromium	73.6	75.0	80.0	80.0	ND	92	94	75-125	2	20	
Copper	79.8	79.8	80.0	80.0	ND	100	100	75-125	0	20	
SPIKE BLANK											
Laboratory ID:	SB07	12F1									
Chromium	74	.8	80	0.0	N/A	9	94	85-115			
Copper	80	.4	80	0.0	N/A	1	01	85-115			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

4

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished	Heceived	att	Relinquished	Signature		5 LW-MW105-20230712	4 LW-MW104-20230712	3 LW-MW103-2013@712	2 LW-MW 102-20230712	1 LW-MW101-20230712	Lab ID Sample Identification	Sampled by: Do Wrod	Amy Tre	L'In: NOU MWA	292012	Project Number: Project Consulting	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.
Reviewed/Date					J (1888 7115105		sclaft 11 1	Company Date Time		× 10:30 × ×	11:45	13:50	14:45	7/12/23 15:45 Wanter 1	NWTF NWTF NWTF NWTF Volatil	PH-Gx PH-Dx (les 8260) BTEX (8 6G Clea	021 8] 1 Day	(Check One) (Check One)	Chain of Custody
Chromatograms with final report Electronic Data Deliverables (EDDs)	Data Package: Standard Level III Level IV				1400		-	Comments/Special Instructions			×	×	X		EDB E Semiv (with J PAHs PCBs Organ Organ Organ Chlorii Total F Total N TCLP	volatiles ow-leve 8270/SI 8082 ochlorir ophosp nated A RCRA M ATCA M Metals oil and g	1 (Wate 8270/S I PAHs) M (low- ne Pesti horus F cid Her letals	ers Only) IM -level) -cides 80 Pesticides	081 es 8270		umber: $0^{\gamma} - 0^{88}$	Page + of 1

November 10, 2023

Amy Tice Aspect Consulting Dexter Horton Building 710 2nd Avenue, Suite 550 Seattle, WA 98104

Re: Analytical Data for Project 210368 Laboratory Reference No. 2311-003

Dear Amy:

Enclosed are the analytical results and associated quality control data for samples submitted on November 1, 2023.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: November 10, 2023 Samples Submitted: November 1, 2023 Laboratory Reference: 2311-003 Project: 210368

Case Narrative

Samples were collected on October 26 and 27, 2023 and received by the laboratory on November 1, 2023. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below. However the soil results for the QA/QC samples are reported on a wet-weight basis.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED METALS EPA 200.8

Matrix: Water Units: ug/L (ppb)

• • • •				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	LW-MW101-20231026					
Laboratory ID:	11-003-01					
Chromium	4.1	1.0	EPA 200.8		11-7-23	
Copper	ND	1.0	EPA 200.8		11-7-23	
Client ID:	LW-MW102-20231026					
Laboratory ID:	11-003-02					
Chromium	19	1.0	EPA 200.8		11-7-23	
Copper	ND	1.0	EPA 200.8		11-7-23	
Client ID:	LW-MW103-20231026					
Laboratory ID:	11-003-03					
Chromium	90	1.0	EPA 200.8		11-7-23	
Copper	ND	1.0	EPA 200.8		11-7-23	
Client ID:	LW-MW104-20231027					
Laboratory ID:	11-003-04					
Chromium	18	1.0	EPA 200.8		11-7-23	
Copper	ND	1.0	EPA 200.8		11-7-23	
Client ID:	LW-MW105-20231026					
Laboratory ID:	11-003-05					
Chromium	2.8	1.0	EPA 200.8		11-7-23	
Copper	ND	1.0	EPA 200.8		11-7-23	

DISSOLVED METALS EPA 200.8 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1107D1					
Chromium	ND	1.0	EPA 200.8		11-7-23	
Copper	ND	1.0	EPA 200.8		11-7-23	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Result		Spike Level		Result	Recovery		Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	11-00)2-05									
	ORIG	DUP									
Chromium	6.88	7.08	NA	NA		1	NA	NA	3	20	
Copper	ND	ND	NA	NA		1	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	11-00)2-05									
	MS	MSD	MS	MSD		MS	MSD				
Chromium	87.2	90.8	80.0	80.0	6.88	100	105	75-125	4	20	
Copper	74.2	75.0	80.0	80.0	ND	93	94	75-125	1	20	
SPIKE BLANK											
Laboratory ID:	SB11	07D1									
Chromium	77	.2	80	0.0	N/A		97	85-115			
Copper	76	6.0	80	0.0	N/A		95	85-115			

4

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Numerical region Chain of Custory Number of Custory Number of Custory Number of Custory Image: Summary of Custory <th>Reviewed/Date</th> <th>Received</th> <th>Relinquished</th> <th>Received</th> <th>Relinquished</th> <th>Received</th> <th>Relinquished</th> <th>Signature</th> <th></th> <th></th> <th>5 LW -MW/05-2023/026</th> <th>4 Lu - Muilod-2023/027</th> <th>3 LW -MW103-2023/026</th> <th>2 LW - MW102-20231026</th> <th>1 LW-MW101-2023/026</th> <th>Lab ID Sample Identification</th> <th>campies is Sol Ward</th> <th>Project Manager,</th> <th>Project Name: <u> <u> <u> </u> <u> </u></u></u></th> <th>2/03/7</th> <th>Company: ASpect</th> <th>Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com</th> <th>Environmental Inc.</th>	Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature			5 LW -MW/05-2023/026	4 Lu - Muilod-2023/027	3 LW -MW103-2023/026	2 LW - MW102-20231026	1 LW-MW101-2023/026	Lab ID Sample Identification	campies is Sol Ward	Project Manager,	Project Name: <u> <u> <u> </u> <u> </u></u></u>	2/03/7	Company: ASpect	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.
Image: region of custom Image: region of custom <td>Revie</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>16p.</td> <td>Compan</td> <td></td> <td></td> <td>~</td> <td></td> <td></td> <td>~</td> <td></td> <td>-</td> <td></td> <td></td> <td>Standard (7</td> <td>2 Days</td> <td>Same Day</td> <td>Turnarou (in work</td> <td></td>	Revie						16p.	Compan			~			~		-			Standard (7	2 Days	Same Day	Turnarou (in work	
Image: Standard I Level III Level	wed/Date					COR	e-1-	IY				5	6	40	Wa		(other)		Days)	3 Days		nd Request ing days)	hain of
Image: Standard Comments/Special Instructions Level IV Level IV Level IV												-	-	~		1			ers			: <u>.</u>	Ĉ
Image: Standard Comments/Special Instructions Level IV Level IV						in	0	Dat	 										021 8	260])		Labo	Sn
Image: Standard Comments/Special Instructions Level IV Level IV						51/2	Si	e								NWTF	PH-Gx					orati	O
Opport Level IV L						3												~	an-up 🗌)		Vio	yp
Openation Openation <t< td=""><td></td><td></td><td></td><td></td><td></td><td>Ø</td><td>160</td><td>Time</td><td> _</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>s 8260</td><td></td><td></td><td></td><td></td></t<>						Ø	160	Time	 _										s 8260				
Openation Openation <t< td=""><td></td><td></td><td></td><td></td><td>4</td><td>22</td><td>0</td><td></td><td> </td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>)</td><td></td><td>Iber</td><td></td></t<>					4	22	0)		Iber	
Electronic Data Deliverables (EDDs)	ор Ср	Da	1			١		C	 	 													
Bill	Iroma	ita Pa						omme															
Bill	togran	ckage						nts/Sp								PCBs	8082						
Bill	ns wit							ecial														0	
Electronic Data Deliverables (EDDs)	h final	ndard						Instru	 												/SIM	ω	
Electronic Data Deliverables (EDDs)	repo							ctions	 _	 									rdicides	8151			
Image: Second constraints Image: Second constrat Image: Second constraint Image		Level							 	 												-	
	Electro	Ξ							 	 						TCLP	Metals					-	Page
	nic Da	Lev														HEM (oil and	grease)	1664				~
	ta Deli	\leq									K	$\boldsymbol{\prec}$	\sim	К	×	Dis	solu	ind a	chron	nium	+ (.	,	of.
	verable																						
	es (EDI								 														
) (s								 							% Moi	sture						

January 12, 2024

Ms. Amy Tice Aspect Consulting, LLC 710 - 2nd Ave, Suite 550 Seattle, WA 98104

Dear Ms. Tice,

On January 10th, 5 samples were received by our laboratory and assigned our laboratory project number EV24010052. The project was identified as your 210368 - Lignin OU MNA. The sample identification and requested analyses are outlined on the attached chain of custody record.

No abnormalities or nonconformances were observed during the analyses of the project samples.

Please do not hesitate to call me if you have any questions or if I can be of further assistance.

Sincerely,

ALS Laboratory Group

Rob Greer Laboratory Director

Page 1
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

CERTIFICATE OF ANALYSIS

CLIENT:	Aspect Consulting 710 - 2nd Ave, Su Seattle, WA 98104	te 550		DATE: ALS JOB#: ALS SAMPLE#:	1/12/2024 EV24010052 EV24010052-01			
CLIENT CONTACT:	Amy Tice		D	ATE RECEIVED:	01/10/20)24		
CLIENT PROJECT:	210368 - Lignin O	J MNA	COLI	ECTION DATE:	1/9/2024 10:15:00 AM			
CLIENT SAMPLE ID	LW-MW10120240	109	WDOE AC	CREDITATION:	C601			
		SAMPLE	DATA RESULTS					
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS / DATE	ANALYSIS BY	
Chromium (Dissolved)	EPA-200.8	U	2.0	1	UG/L	01/12/2024	EBS	
Copper (Dissolved)	EPA-200.8	U	2.0	1	UG/L	01/12/2024	EBS	

U - Analyte analyzed for but not detected at level above reporting limit.

Page 2
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

		CERTIFIC	ATE OF ANALYSIS					
CLIENT:	Aspect Consulting	, LLC		DATE:	1/12/2024			
	710 - 2nd Ave, Su	ite 550		ALS JOB#:	EV24010052			
	Seattle, WA 98104	4		EV24010052-02				
CLIENT CONTACT:	Amy Tice		D	ATE RECEIVED:	01/10/20)24		
CLIENT PROJECT:	210368 - Lignin O	U MNA	COL	LECTION DATE:	1/9/2024	11:05:00 A	Μ	
CLIENT SAMPLE ID	LW-MW10220240	109	WDOE AC	CCREDITATION:	C601			
		SAMPLE	DATA RESULTS					
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS / DATE	ANALYSIS BY	
Chromium (Dissolved)	EPA-200.8	8.6	2.0	1	UG/L	01/12/2024	EBS	
Copper (Dissolved)	EPA-200.8	U	2.0	1	UG/L	01/12/2024	EBS	

Page 3
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

		CERTIFIC	ATE OF ANALYSIS					
CLIENT:	Aspect Consulting	, LLC		DATE:	1/12/202	24		
	710 - 2nd Ave, Su			ALS JOB#:	EV24010052			
	Seattle, WA 98104	4		ALS SAMPLE#:	EV24010052-03			
CLIENT CONTACT:	Amy Tice		D	ATE RECEIVED:	01/10/20)24		
CLIENT PROJECT:	210368 - Lignin O	U MNA	COL	LECTION DATE:	1/9/2024	12:05:00 P	Μ	
CLIENT SAMPLE ID	LW-MW10320240	109	WDOE AC	CCREDITATION:	C601			
		SAMPLE	DATA RESULTS					
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS / DATE	ANALYSIS BY	
Chromium (Dissolved)	EPA-200.8	230	2.0	1	UG/L	01/12/2024	EBS	
Copper (Dissolved)	EPA-200.8	U	2.0	1	UG/L	01/12/2024	EBS	

Page 4
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

		CERTIFIC	ATE OF ANALYSIS				
CLIENT:	Aspect Consulting	, LLC		DATE:	1/12/202	24	
	710 - 2nd Ave, Su			ALS JOB#:	EV24010052		
	Seattle, WA 98104	4		ALS SAMPLE#:	EV2401	0052-04	
CLIENT CONTACT:	Amy Tice		D	ATE RECEIVED:	01/10/20)24	
CLIENT PROJECT:	210368 - Lignin O	U MNA	COL	LECTION DATE:	1/9/2024	1:30:00 PN	1
CLIENT SAMPLE ID	LW-MW10420240	109	WDOE AC	CCREDITATION:	C601		
		SAMPLE	DATA RESULTS				
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS / DATE	ANALYSIS BY
Chromium (Dissolved)	EPA-200.8	3.2	2.0	1	UG/L	01/12/2024	EBS
Copper (Dissolved)	EPA-200.8	U	2.0	1	UG/L	01/12/2024	EBS

Page 5
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

		CERTIFIC	ATE OF ANALYSIS					
CLIENT:	Aspect Consulting	, LLC		DATE:	1/12/2024			
	710 - 2nd Ave, Su			ALS JOB#:	EV24010052			
	Seattle, WA 98104	4		ALS SAMPLE#:	EV2401	0052-05		
CLIENT CONTACT:	Amy Tice		D	ATE RECEIVED:	01/10/20)24		
CLIENT PROJECT:	210368 - Lignin O	U MNA	COL	LECTION DATE:	1/9/2024	1 2:55:00 PN	1	
CLIENT SAMPLE ID	LW-MW10520240	109	WDOE AC	CCREDITATION:	C601			
		SAMPLE	DATA RESULTS					
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS / DATE	ANALYSIS BY	
Chromium (Dissolved)	EPA-200.8	2.2	2.0	1	UG/L	01/12/2024	EBS	
Copper (Dissolved)	EPA-200.8	U	2.0	1	UG/L	01/12/2024	EBS	

Page 6 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

CERTIFICATE OF ANALYSIS

CLIENT:	Aspect Consulting, LLC	DATE:	1/12/2024
	710 - 2nd Ave, Suite 550	ALS SDG#:	EV24010052
	Seattle, WA 98104	WDOE ACCREDITATION:	C601
CLIENT CONTACT: CLIENT PROJECT:	Amy Tice 210368 - Lignin OU MNA		

LABORATORY BLANK RESULTS

MB-011024W - Batch 205885 - Water by EPA-200.8

				REPORTING	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	UNITS	LIMITS	DATE	BY
Chromium (Dissolved)	EPA-200.8	U	UG/L	2.0	01/12/2024	EBS
Copper (Dissolved)	EPA-200.8	U	UG/L	2.0	01/12/2024	EBS

U - Analyte analyzed for but not detected at level above reporting limit.

Page 7 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

CERTIFICATE OF ANALYSIS

CLIENT:

CLIENT PROJECT:

Aspect Consulting, LLC 710 - 2nd Ave, Suite 550 Seattle, WA 98104 **CLIENT CONTACT:** Amy Tice

210368 - Lignin OU MNA

DATE: ALS SDG#: WDOE ACCREDITATION:

1/12/2024 EV24010052 C601

LABORATORY CONTROL SAMPLE RESULTS

ALS Test Batch ID: 205885 - Water by EPA-200.8

	····· ·				LIN	NITS	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	MIN	MAX	DATE	
Chromium (Dissolved) - BS	EPA-200.8	94.3			86.2	107	01/12/2024	EBS
Chromium (Dissolved) - BSD	EPA-200.8	94.2	0		86.2	107	01/12/2024	EBS
Copper (Dissolved) - BS	EPA-200.8	97.1			85.4	109	01/12/2024	EBS
Copper (Dissolved) - BSD	EPA-200.8	98.7	2		85.4	109	01/12/2024	EBS

APPROVED BY

Rob Greer Laboratory Director

Page 8 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

OnSite	Environmental	Analytical Laboratory Testing Services	14648 NF 95th Street . Bedmony
X			

0
4
0
10000000000
3
C
0

	-	-	-	-										 	 	 							1
							ture	sioM %															DDs) 🗌
/																							Electronic Data Deliverables (EDDs)
of			2	t wh	NON	42 F	האיני	^{\$5,'} (]	X	X	X	X	X									≥ 8	a Delive
-					t991	l (əseəl	6 pue li	o) MƏH														Level IV	c Dat
ge							r4. 1	тсгр м															ctronic
Page						etals	M ADT	M IstoT								10						Level III	
						etals	M ARC)A listoT								ns						Le	ont []
5	i			1918	3 sebioio	cid Herb	oA bets	Chlorin								 ructio							hal rep
200		_	MIS	8/0728 s	seticides	a suror	hqsodd	Organo								 I Inst						Standard	/ith fir
EV/24010052				18	08 səbi:	e Pestic	chlorine	Organo								 specia							ams v
C//1	1						2808	PCBs 8						 	 	 ents/S						ackag	atogra
ц	1	_			(ləvə	(eHA9 I-wol) M								 	 	 Comments/Special Instructions						Data Package:	Chromatograms with final report
	1				Ν	IIS/0228								 	 	 0						Ő	ō
	ber	╟			(yInO a	i (Water	1108 Ac	EDB EL						 	 		0	30					
	Laboratory Number:	╟	0828 səlitsid Volatiles 8260											 	 Time	1600	833						
	Z	-	Volatiles 8260												 	 T		\odot					
Custody	ator		NMTPH-Dx (SG Clean-up □)											 		6	0						
Sto	por	I		(□.097	28 <u>[</u>][Z	08) XIT									 	 Date	1/0	N	2				
n	La							HATWN				-											
					S.I	iənistro	o <mark>) i</mark> o 10	ədmuN	-	-	/		1										
O			VB	ays			1	Matrix	fer				0										
	est		1 Dav] 3 Days				Ma	Werter				8				7						te
Chain	Requ	1040			lays)		(other)	le bled		5	N	Q	55				pec	41					ed/Da
0	Turnaround Request (in working days)	lono Anado)	olleck Jav	d d	Standard (7 Days)		0	Time Sampled	[0/S	1105	1205	33	145			Company	454	S					Reviewed/Date
	Turna		Same Dav	2 Days	itanda			ed				~	/			 Cor		đ					
					0			Date	1/9				P										
	20	1												 	 								
	RUFO	V.com			97				5	6	6	6	. 6			46	1						
OnSite		Phone: (425) 883-3881 • www.onsite-env.com						20.5	W-MW10120240109	- MW10220240109	010	010	WW10520240109				- Annual State						
6	irvices	ww.ons			V	-		cation	240	124	24	24	124				N	1					
	sting Se	31 • WV			SL	0	and	Sample Identification	20	20	20	20	520			ure	L	2					
	tory Tes	33-388			2	Tice	5	ole Id	101	102	103	104	105			Signature	12	3					
te	Analytical Laboratory Testing Services 14648 NE 95th Street • Beckmond	425) 88		bo	OU MNA	v	3	Sam	76.	SIC	IN.	15	35	6		5		- <u>_</u>					
OnSite	alytical 648 NI	one: (4	1	036		Ama			1-1	2	2	N-	3										
0ú 2	An 14	Ph	Speet	er: 210368	a not	Ber: An	30		3	3	LW-MW10320240109	W-MW10420240109	ľ,				σ		ğ		ğ		Date
3				Project Number:	Project Name:	Project Manager:			7	7	1	7	7				Relinquished	ived	Relinquished	ived	Relinquished	ived	Reviewed/Date
5			Company:	roject	roject	roject	Sampled by:	Lab ID		2	3	ų	D				Relinc	Received	Relin	Received	Relin	Received	Revie
			0	<u>م</u>	<u>ш</u>	Г ^L	0)	Lo .		14	·)		12)										<u> </u>

ALS ENVIRONMENTAL Sample Receiving Checklist

Client: ASPECT		ALS Job#:	EV24010)057-	
Project: 210368		·			
Login Date: 110 24	Login Time: 🛛	935	Login By:	re	
Type of Shipping Container: Coo	ler 🖉 Box	Other			
Shipped via: FedEx Ground FedEx Express	UPSC	ourier I	Hand Delivered 🛓)_ ALS Cou	rier
L			Yes	No	<u>N/A</u>
Were custody seals on outside of s If yes, how many? Custody seal date:	Where?				Σ
Was Chain of Custody properly fill	led out (ink, signed,	dated, etc.)?	\sim		
Did all bottles have labels?			$\underline{\times}$		
Did all bottle labels and tags agree	with Chain of Custo	ody?	X N		
Were samples received within hold	time?		Q		
Did all bottles arrive in good condit	tion (unbroken, etc.)	?	$\underline{\aleph}$		
Was sufficient amount of sample se	ent for the tests indic	cated?	\otimes		
Was correct preservation added to s	amples?		$\underline{\mathbf{v}}$		
Subcontract test containers added to	Subcontract Bin?		·		X
Wetchem test containers marked wi	th required Tests?				b
Short hold time test containers deliv	vered to analysts?				X
Were VOA vials checked for absence	ce of air bubbles?				$\tilde{\mathbf{x}}$
Bubbles present in sample #:					<u> </u>
5035A kits received? # Low Kits:	# High Kits:				\aleph
5035A kits returned?		•			
# Low Kits:	# High Kits:				
Temperature of cooler upon receipt:	2.400	On ice?	γ		
Explain any discrepancies:		-			
				v	
Was client contacted?	Who was called? _	By	whom?	Date:	

Outcome of call:

APPENDIX C

IDW Disposal Manifest

_			A second second		1.1.1.1.1.1.1	and the second of the				S				
	NON-HAZARDOUS WASTE MANIFEST	1. Generator ID Number	2. Page 1 of	3. Emergency Respon	se Phone	4. Waste T	racking Number	v- 52	4-2-	-731				
	5. Generator's Name and Maili	None Required	1	Generator's Site Addre		han mailing add		15	162	01				
	5. Generator 5 Name and Main	Port of Bellingh	1718	denerator s one Addre		nan maling add	633)							
	300 W Laurel St													
	Generator's Phone:													
	6. Transporter 1 Company Nar	ne	CRITIS I			U.S. EPA ID	Number							
	CH Environm	ental, Inc.				VIAIHO	WAH000047217							
	7. Transporter 2 Company Nar	ne				U.S. EPA ID	Number							
	8. Designated Facility Name and	nd Site Address			1.1	U.S. EPA ID Number								
		Marginal Way SN	0.1 0											
	Seattle, WA SELOS													
	Facility's Phone: (206) 583-5518													
	9. Waste Shipping Nam	e and Description		10. Cor		11. Total	12. Unit							
			and the second second	No.	Туре	Quantity	Wt./Vol.							
E	1. Material N	bt Regulated by DDT (no	n-regulated ICW so	il)										
RATO				01	DM	200	P							
GENERATOR	2.													
GE	2.													
	3.				-									
					1.1									
	4.													
					1									
	13. Special Handling Instructions and Additional Information													
	1) []-	HASPCT-POB-IDW- SCIL												
		R'S CERTIFICATION: I hereby declare that						nd are classifie	d, package	ed,				
	marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. Generator's/Offeror's Printed/Typed Name Met													
	Joke		Sig	24	2			Month	24	Year 72				
-	15. International Shipments				0			MJ	de T	63				
INT'L	Transporter Signature (for exp	Import to U.S.	Export from		entry/exit: aving U.S.:				-					
	16. Transporter Acknowledgme			Date le	aving 0.5.									
RE	Transporter 1 Printed/Typed N		Sig	nature 1				Month	Day	Year				
PO	Jake	Heatherly	/	MH	7			05	24	23				
TRANSPORTER	Transporter 2 Printed/Typed N	ame	Sig	nature				Month	Day	Year				
TR			L											
	17. Discrepancy													
	17a. Discrepancy Indication Sp	Dace Quantity	Residue		Partial Rejection									
	Tra. Disclepancy indication space Quantity Type Residue Partial Rejection Full Rejection													
1			U.S. EPA ID Number											
È	17b. Alternate Facility (or Gene	erator)			U.S. EPA ID	Number								
ACIL					1									
DF	Facility's Phone: 17c. Signature of Alternate Fac	sility (or Generator)					Month	Day	Year					
ATE	The orginature of Alternate Fat	Sincy (of Generator)						buy	rear					
IGN														
DESIGNATED FACILITY														
	18. Designated Facility Owner	or Operator: Certification of receipt of mater	rials covered by the manifest excer	ot as noted in Item 17a				10						
	Printed/Typed Name	Lui III FA		nature	1 11			Month	Day	Year				
	1 milear pour tanto					(black)					