2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

Anchor QEA, LLC 1201 Third Ave. Suite 2600 Seattle, WA 98101 March 28, 2022

ATTN: Ms. Delaney Peterson dpeterson@anchorqea.com

SUBJECT: Port of Bellingham, Data Validation

Dear Ms. Peterson,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on February 15, 2022. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #53482:

SDG # Fraction

22B0007 Polynuclear Aromatic Hydrocarbons, Polychlorinated Biphenyls as

Congeners, Metals, Wet Chemestry

The data validation was performed under Stage 2B guidelines. The analyses were validated using the following documents, as applicable to each method:

- PRDI Work Plan Attachment C Quality Assurance Project Plan (October 2021)
- USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020)
- USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (November 2020).
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

Christina Rink crink@lab-data.com

Project Manager/Senior Chemist

eiotina Prink

Attachment 1 14 pages-ADV LDC# 53482 (Anchor Environmental - Seattle, WA / Port of Bellingham) Stage 2B EDD **TCLP TCLP** Total DATE DATE **PAHs PCBs** Metals Metals Hg TOC Solids REC'D DUE (8270E) (8082A) (6010D) (6010D) (7470A) (9060A) (2540G) SDG# LDC w s w s w s w s ws S Matrix: Water/Sediment 0 0 7 0 2 0 7 0 7 0 2 02/15/22 03/09/22 0 9 22B0007 0 0 0 0 0 T/CR Total

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Port of Bellingham

LDC Report Date:

March 24, 2022

Parameters:

Polynuclear Aromatic Hydrocarbons

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc., Tukwila, WA

Sample Delivery Group (SDG): 22B0007

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HS-08SC-0-2-220120	22B0007-13	Sediment	01/20/22
HS-08SC-0-2-220120DL	22B0007-13DL	Sediment	01/20/22
HS-08SC-2-3-220120	22B0007-14	Sediment	01/20/22
FD-20220122	22B0007-37	Sediment	01/22/22
FD-20220122DL	22B0007-37DL	Sediment	01/22/22
HS-07SC-0-2-220122	22B0007-38	Sediment	01/22/22
HS-07SC-2-3-220122	22B0007-39	Sediment	01/22/22
HS-09SC-0-2-220122	22B0007-43	Sediment	01/22/22
HS-09SC-2-3-220122	22B0007-44	Sediment	01/22/22
HS-09SC-0-2-220122MS	22B0007-43MS	Sediment	01/22/22
HS-09SC-0-2-220122MSD	22B0007-43MSD	Sediment	01/22/22
HS-07SC-0-2-220122DL	22B0007-38DL	Sediment	01/22/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the PRDI Work Plan Attachment C Quality Assurance Project Plan (October 2021) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check was performed at the required frequency.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all analytes.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
02/08/22	Fluoranthene	20.7	HS-08SC-0-2-220120	J (all detects)	Α
02/09/22	Fluoranthene	25.8	HS-08SC-0-2-220120DL HS-08SC-2-3-220120 FD-20220122 FD-20220122DL HS-07SC-0-2-220122 HS-07SC-2-3-220122 HS-07SC-0-2-220122DL	J (all detects)	А
02/11/22	Fluoranthene Pyrene	39.7 29.2	HS-09SC-0-2-220122 HS-09SC-2-3-220122	J (all detects) J (all detects)	А

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples FD-20220122 and HS-07SC-0-2-220122 and samples FD-20220122DL and HS-07SC-0-2-220122DL were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (ug/Kg)			
Analyte	FD-20220122 HS-07SC-0-2-220122		RPD (Limits)	Difference (Limits)
Naphthalene	592	620	5 (≤50)	-
2-Methylnaphthalene	144	163	12 (≤50)	-
Acenaphthylene	109	102	7 (≤50)	-
Acenaphthene	229	167	31 (≤50)	-
Fluorene	233	171	31 (≤50)	-
Phenanthrene	1460	719	68 (≤50)	-

	Concentration (ug/Kg)			
Analyte	FD-20220122	HS-07SC-0-2-220122	RPD (Limits)	Difference (Limits)
Anthracene	408	266	42 (≤50)	-
Fluoranthene	2010	855	81 (≤50)	-
Pyrene	4100	2780	38 (≤50)	-
Benzo(a)anthracene	798	456	55 (≤50)	-
Chrysene	1330	978	31 (≤50)	-
Chlorobenzilate	1990	1500	28 (≤50)	-
Benzo(a)pyrene	905	690	27 (≤50)	-
Indeno(1,2,3-cd)pyrene	424	286	39 (≤50)	-
Dibenzo(a,h)anthracene	179	107	50 (≤50)	-
Benzo(g,h,i)perylene	464	308	40 (≤50)	

	Concentration (ug/Kg)			
Analyte FD-20220122DL HS-07SC-0-2-220122DL		RPD (Limits)	Difference (Limits)	
Naphthalene	519	557	7 (≤50)	-
2-Methylnaphthalene	117	136	-	19 (≤199.8)
Acenaphthylene	98.8	99.4	-	1 (≤199.8)
Acenaphthene	215	142	-	73 (≤199.8)
Fluorene	199	151	-	48 (≤199.8)
Phenanthrene	1170	626	61 (≤50)	-
Anthracene	353	246	-	107 (≤199.8)
Fluoranthene	1710	832	69 (≤50)	-
Pyrene	3060	2360	26 (≤50)	-
Benzo(a)anthracene	707	426	-	281 (≤199.8)

	Concentrat	tion (ug/Kg)		
Analyte	FD-20220122DL	HS-07SC-0-2-220122DL	RPD (Limits)	Difference (Limits)
Chrysene	1060	832	24 (≤50)	-
Chlorobenzilate	1640	1290	24 (≤50)	-
Benzo(a)pyrene	816	601	30 (≤50)	-
Indeno(1,2,3-cd)pyrene	421	300	_	121 (≤199.8)
Dibenzo(a,h)anthracene	125	122	-	3 (≤199.8)
Benzo(g,h,i)perylene	451	329	-	122 (≤199.8)

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

All target analyte quantitations met validation criteria with the following exceptions:

Sample	Analyte	Finding	Criteria	Flag	A or P
HS-08SC-0-2-220120	Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzofluoranthenes, total Benzo(a)pyrene	Sample result exceeded calibration range.	Reported result should be within calibration range.	J (all detects)	A
FD-20220122	Fluoranthene Pyrene	Sample result exceeded calibration range.	Reported result should be within calibration range.	J (all detects) J (all detects)	Α
HS-07SC-0-2-220122	Pyrene	Sample result exceeded calibration range.	Reported result should be within calibration range.	J (all detects)	А

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Analyte	Reason	Flag	A or P
HS-08SC-0-2-220120	Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzofluoranthenes, total Benzo(a)pyrene	Results exceeded calibration range.	Not reportable	-
HS-08SC-0-2-220120DL	All analytes except Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzofluoranthenes, total Benzo(a)pyrene	Results from undiluted analyses were more usable.	Not reportable	-
FD-20220122	Fluoranthene Pyrene	Results exceeded calibration range.	Not reportable	-
FD-20220122DL	All analytes except Fluoranthene Pyrene	Results from undiluted analyses were more usable.	Not reportable	-
HS-07SC-0-2-220122	Pyrene	Results exceeded calibration range.	Not reportable	-
HS-07SC-0-2-220122DL	All analytes except Pyrene	Results from undiluted analyses were more usable.	Not reportable	-

Due to continuing calibration %D, data were qualified as estimated in seven samples.

Port of Bellingham Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 22B0007

Sample	Analyte	Flag	A or P	Reason
HS-08SC-0-2-220120DL HS-08SC-2-3-220120 FD-20220122DL HS-07SC-0-2-220122 HS-07SC-2-3-220122	Fluoranthene	J (all detects)	А	Continuing calibration (%D)
HS-09SC-0-2-220122 HS-09SC-2-3-220122	Fluoranthene Pyrene	J (all detects) J (all detects)	Α	Continuing calibration (%D)
HS-08SC-0-2-220120	Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzofluoranthenes, total Benzo(a)pyrene	Not reportable	-	Overall assessment of data
HS-08SC-0-2-220120DL	All analytes except Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzofluoranthenes, total Benzo(a)pyrene	Not reportable	-	Overall assessment of data
FD-20220122	Fluoranthene Pyrene	Not reportable	-	Overall assessment of data
FD-20220122DL	All analytes except Fluoranthene Pyrene	Not reportable	-	Overall assessment of data
HS-07SC-0-2-220122	Pyrene	Not reportable	-	Overall assessment of data
HS-07SC-0-2-220122DL	All analytes except Pyrene	Not reportable	-	Overall assessment of data

Port of Bellingham Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification **Summary - SDG 22B0007**

No Sample Data Qualified in this SDG

_DC #: <u>53482A2a</u>	_ VALIDATION COMPLETENESS WORKSHEET
SDG #:22B0007	_ Stage 2B
_aboratory: Analytical Resour	rces, Inc., Tukwila, WA

Page: 1 of 1
Reviewer: 576
2nd Reviewer:

METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW-846 Method 8270E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments	
1.	Sample receipt/Technical holding times	A,A		
11.	GC/MS Instrument performance check	A		
111.	Initial calibration/ICV	A, A	RSD = 20%	10V = 30/2
IV.	Continuing calibration	SW	2D = 20%	
V.	Laboratory Blanks	Á		
VI.	Field blanks	7		
VII.	Surrogate spikes	A		
VIII.	Matrix spike/Matrix spike duplicates	A		
IX.	Laboratory control samples	A	LCS /b	
X.	Field duplicates	ŚW	LCS /p D = 4/6 5/12	
XI.	Internal standards	A		
XII.	Target analyte quantitation	SIM		
XIII.	Target analyte identification	N		
XIV.	System performance	N		
XV.	Overall assessment of data	SA		

Note:

12

2

A = Acceptable

ND = No compounds detected D = Duplicate

SB=Source blank

N = Not provided/applicable SW = See worksheet R = Rinsate FB = Field blank TB = Trip blank EB = Equipment blank OTHER:

Client ID Lab ID Matrix Date HS-08SC-0-2-220120 22B0007-13 Sediment 01/20/22 2 HS-08SC-0-2-220120DL 22B0007-13DL Sediment 01/20/22 3 HS-08SC-2-3-220120 22B0007-14 Sediment 01/20/22 1 り、 FD-20220122 22B0007-37 Sediment 01/22/22 Da FD-20220122DL 22B0007-37DL Sediment 01/22/22 \mathcal{D} , 6 HS-07SC-0-2-220122 22B0007-38 Sediment 01/22/22 HS-07SC-2-3-220122 7

22B0007-39 Sediment 01/22/22 8 HS-09SC-0-2-220122 22B0007-43 Sediment 01/22/22 9 HS-09SC-2-3-220122 22B0007-44 Sediment 01/22/22 HS-09SC-0-2-220122MS 10 22B0007-43MS Sediment 01/22/22 11

13 | 14 | BKB0082-BIKI

BKBO184_BLKI

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

VIETHOD, GC/MS SVOA				
A. Phenol	GG. Acenaphthene	MMM. Bis(2-Chloroisopropyl)ether	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	Y1. 3,3'-Dimethylbenzidine
B. Bis (2-chloroethyl) ether	HH. 2,4-Dinitrophenol	NNN. Aniline	TTTT. 1-Methyldibenzothiophene (1MDT)	Z1. o-Toluidine
C. 2-Chlorophenol	II. 4-Nitrophenol	OOO. N-Nitrosodimethylamine	UUUU 2,3,4,6-Tetrachlorophenol	A2. Benzo(j)fluoranthene
D. 1,3-Dichlorobenzene	JJ. Dibenzofuran	PPP. Benzoic Acid	VVVV. 1,2,4,5-Tetrachlorobenzene	B2. Benzofluoranthenes, total
E. 1,4-Dichlorobenzene	KK. 2,4-Dinitrotoluene	QQQ. Benzyl alcohol	WWWW 2-Picoline	C2. trans-Decalin
F. 1,2-Dichlorobenzene	LL. Diethylphthalate	RRR. Pyridine	XXXX. 3-Methylcholanthrene	D2. cis-Decalin
G. 2-Methylphenol	MM. 4-Chlorophenyl-phenyl ether	SSS. Benzidine	YYYY. a,a-Dimethylphenethylamine	E2. Dibenzo(a)anthracenes
H. 2,2'-Oxybis(1-chloropropane)	NN. Fluorene	TTT. 1-Methylnaphthalene	ZZZZ. Hexachloropropene	F2. Benzo(j)+(k)fluoranthene
I. 4-Methylphenol	OO. 4-Nitroaniline	UUU.Benzo(b)thiophene	A1. N-Nitrosodiethylamine	G2. Dibenzo(ah)+(ac)anthracene
J. N-Nitroso-di-n-propylamine	PP. 4,6-Dinitro-2-methylphenol	VVV.Benzonaphthothiophene	B1. N-Nitrosodi-n-butylamine	H2. Bis(2-ethylhexyl)adipate
K. Hexachloroethane	QQ. N-Nitrosodiphenylamine	WWW.Benzo(e)pyrene	C1. N-Nitrosomethylethylamine	12.
L. Nitrobenzene	RR. 4-Bromophenyl-phenylether	XXX. 2,6-Dimethylnaphthalene	D1. N-Nitrosomorpholine	J2.
M. Isophorone	SS. Hexachlorobenzene	YYY. 2,3,5-Trimethylnaphthalene	E1. N-Nitrosopyrrolidine	K2.
N. 2-Nitrophenol	TT. Pentachlorophenol	ZZZ. Perylene	F1. Phenacetin	L2.
O. 2,4-Dimethylphenol	UU. Phenanthrene	AAAA. Dibenzothiophene	G1. 2-Acetylaminofluorene	M2.
P. Bis(2-chloroethoxy)methane	VV. Anthracene	BBBB. Benzo(a)fluoranthene	H1. Pronamide	N2.
Q. 2,4-Dichlorophenol	WW. Carbazole	CCCC. Benzo(b)fluorene	I1. Methyl methanesulfonate	02.
R. 1,2,4-Trichlorobenzene	XX. Di-n-butylphthalate	DDDD. cis/trans-Decalin	J1. Ethyl methanesulfonate	P2.
S. Naphthalene	YY. Fluoranthene	EEEE. Biphenyl	K1. o,o',o''-Triethylphosphorothioate	Q2.
T. 4-Chloroaniline	ZZ. Pyrene	FFFF. Retene	L1. n-Phenylene diamine	R2.
U. Hexachlorobutadiene	AAA. Butylbenzylphthalate	GGGG. C30-Hopane	M1. 1,4-Naphthoquinone	S2.
V. 4-Chloro-3-methylphenol	BBB. 3,3'-Dichlorobenzidine	HHHH. 1-Methylphenanthrene	N1. N-Nitro-o-toluidine	T2.
W. 2-Methylnaphthalene	CCC. Benzo(a)anthracene	IIII. 1,4-Dioxane	O1. 1,3,5-Trinitrobenzene	U2.
X. Hexachlorocyclopentadiene	DDD. Chrysene	JJJJ. Acetophenone	P1. Pentachlorobenzene	V2
Y. 2,4,6-Trichlorophenol	EEE. Bis(2-ethylhexyl)phthalate	KKKK. Atrazine	Q1. 4-Aminobiphenyl	W2
Z. 2,4,5-Trichlorophenol	FFF. Di-n-octylphthalate	LLLL. Benzaldehyde	R1. 2-Naphthylamine	X2
AA. 2-Chloronaphthalene	GGG. Benzo(b)fluoranthene	MMMM. Caprolactam	S1. Triphenylene	Y2.
BB. 2-Nitroaniline	HHH. Benzo(k)fluoranthene	NNNN. 2,6-Dichlorophenol	T1. Octachlorostyrene	Z2.
CC. Dimethylphthalate	III. Benzo(a)pyrene	OOOO. 1,2-Diphenylhydrazine	U1. Famphur	
DD. Acenaphthylene	JJJ. Indeno(1,2,3-cd)pyrene	PPPP. 3-Methylphenol	V1. 1,4-phenylenediamine	
EE. 2,6-Dinitrotoluene	KKK. Dibenz(a,h)anthracene	QQQQ. 3&4-Methylphenol	W1. Methapyrilene	
FF. 3-Nitroaniline	LLL. Benzo(a.h.i)pervlene	RRRR. 4-Dimethyldibenzothiophene	X1. Pentachloroethane	

LDC #:	53	482	Aza
LDO π .	_	•	

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page: 1 of 7
Reviewer: JVG

METHOD: GC/MS BNA (EPA SW 846 Method 8270 E)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y(N) N/A

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

Y(N) N/A

Were percent differences (%D) ≤20 % and relative response factors (RRF) within the method criteria?

#	Date	Standard ID	Compound	Finding %D (Limit: <u>≤</u> 20.0%)	Finding RRF (Limit)	Associated Samples	Qualifications
	02/08/22	NT1022020802	74	20.7		1, MB1 (Det)	J/NJ/A
	02/09/22	NT 1022 020902	YY	25.8		2-7, 12, (Det)	
	02/11/22	NT1022021102	77	39.7		8,9,10,11, MB2 (1	let)
			ZZ	29.2			I /
	-						
 							· · · · · · · · · · · · · · · · · · ·

Note: * Ave RRF failed method criteria but within validation criteria

LDC#: 53482A2a

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:_1_of_1_ Reviewer:__JVG__

METHOD: GCMS SVOA (EPA SW 846 Method 8270E)

	Concentrat	Concentration (ug/Kg)			
Compound	4	6	RPD (≤50%)	Difference (ug/Kg)	Limits (±2XRL)
s	592	620	5		
w	144	163	12		
DD	109	102	7		
GG	229	167	31		
NN	233	171	31		
UU	1460	719	68		
w	408	266	42		
YY	2010	855	81		
ZZ	4100	2780	38	:	
ccc	798	456	55		
DDD	1330	978	31		
B2	1990	1500	28		
ш	905	690	27		
JJJ	424	286	39		
ккк	179	107	50		
LLL	464	308	40		

	Concentration (ug/Kg)					
Compound	5	12	RPD (≤50%)	Difference (ug/Kg)	Limits (±2XRL)	
s	519	557	7			
w	117	136		19	≤199.8	
DD	98.8	99.4		1	≤199.8	
GG	215	142		73	≤199.8	
NN	199	151		48	≤199.8	
υυ	1170	626	61			
vv	353	246		107	≤199.8	
YY	1710	832	69			
ZZ	3060	2360	26			
ccc	707	426		281	≤199.8	
DDD	1060	832	24			
B2	1640	1290	24			
111	816	601	30			
JJJ	421	300		121	≤199.8	
KKK	125	122		3	≤199.8	
LLL	451	329		122	≤199.8	

LDC #: 53482 A2a

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported RLs

Page:	<u></u> of
eviewer:	JVG

METHOD: GC/MS BNA (EPA SW 846 Method 8270E)

Please	see qua	lifications below for all questions answered "N". Not applicable questions are identified as "N/A".
YNN	<u> //A</u>	Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?
Y/N N		Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation

#	Sample ID	Compound	Finding	Qualifications
	1		Finding 7 Cal range	J dets/A
		UU, VV YY ZZ, CCC, DDD, Be III		
	4	YY 22		
	<u> </u>	72	у	Y

Comments: _	See sample calculation verification worksheet for recalculations

LDC#: 53482 Ara

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page:	of
Reviewer	JVG

METHOD: GC/MS BNA (EPA SW 846 Method 8270 ぞ

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Y) N/A

Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Compound	Finding	Qualifications
			UU, VV YY ZZ CCC,	> cal range	NR
			DDD BZ III		
<u> </u>				0.00	
		2	All except above	di)	
		4	YY ZZ	> Cul range	
		5	All except above	di)	
		6	ZZ	7 cal range	
		12	All except ZZ	di)	
-					

Comments:			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Port of Bellingham

LDC Report Date:

March 24, 2022

Parameters:

Polychlorinated Biphenyls

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc., Tukwila, WA

Sample Delivery Group (SDG): 22B0007

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
HS-08SC-0-2-220120	22B0007-13	Sediment	01/20/22
HS-08SC-2-3-220120	22B0007-14	Sediment	01/20/22
FD-20220122	22B0007-37	Sediment	01/22/22
HS-07SC-0-2-220122	22B0007-38	Sediment	01/22/22
HS-07SC-2-3-220122	22B0007-39	Sediment	01/22/22
HS-09SC-0-2-220122	22B0007-43	Sediment	01/22/22
HS-09SC-2-3-220122	22B0007-44	Sediment	01/22/22
HS-09SC-0-2-220122MS	22B0007-43MS	Sediment	01/22/22
HS-09SC-0-2-220122MSD	22B0007-43MSD	Sediment	01/22/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the PRDI Work Plan Attachment C Quality Assurance Project Plan (October 2021) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020). Where specific quidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) (EPA) SW 846 Method 8082A

by Environmental Protection Agency

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

Samples FD-20220122 and HS-07SC-0-2-220122 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concent	ration (ug/Kg)		
Analyte	FD-20220122	HS-07SC-0-2-220122	RPD (Limits)	Difference (Limits)
Aroclor-1254	1550	202	154 (≤50)	-
Aroclor-1260	492	237	70 (≤50)	-

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Port of Bellingham Polychlorinated Biphenyls as Congeners - Data Qualification Summary - SDG 22B0007

No Sample Data Qualified in this SDG

Port of Bellingham Polychlorinated Biphenyls as Congeners - Laboratory Blank Data Qualification **Summary - SDG 22B0007**

No Sample Data Qualified in this SDG

LDC	#:	53482A3b
	_	

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

SDG #: 22B0007 Laboratory: <u>Analytical Resources, Inc., Tukwila, WA</u> Date: 63/6/22
Page: 1 of 1
Reviewer: 3/6
2nd Reviewer:

METHOD: GC Polychlorinated Biphenyls (EPA SW-846 Method 8082A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	AIA	
II.	Initial calibration/ICV	AIA	20 5 20%. IWE 20%.
111.	Continuing calibration	L'A	20 € 202
IV.	Laboratory Blanks	A	
V.	Field blanks	N	
VI.	Surrogate spikes	Ā	· · · · · · · · · · · · · · · · · · ·
VII.	Matrix spike/Matrix spike duplicates	'A	
VIII.	Laboratory control samples	Ä	LCS/D
IX.	Field duplicates	SN	$D = \frac{3}{4}$
X.	Target analyte quantitation	N	
XI.	Target analyte identification	N	
XIL	Overall assessment of data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

	Client ID	Lab ID	Matrix	Date
1	HS-08SC-0-2-220120	22B0007-13	Sediment	01/20/22
2	HS-08SC-2-3-220120	22B0007-14	Sediment	01/20/22
3	FD-20220122 D	22B0007-37	Sediment	01/22/22
4	HS-07SC-0-2-220122	22B0007-38	Sediment	01/22/22
5	HS-07SC-2-3-220122	22B0007-39	Sediment	01/22/22
6	HS-09SC-0-2-220122	22B0007-43	Sediment	01/22/22
7	HS-09SC-2-3-220122	22B0007-44	Sediment	01/22/22
8	HS-09SC-0-2-220122MS	22B0007-43MS	Sediment	01/22/22
9	HS-09SC-0-2-220122MSD	22B0007-43MSD	Sediment	01/22/22
10				
11				
12				
13 Notes:				

BK\$0083-BILL			

LDC#: 53482A3b

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:_1_of_1_ Reviewer: _JVG_

METHOD: GC PCB (EPA SW 846 Method 8082)

	Concentration (ug/Kg)				
Compound	3	4	RPD (≤50%)	Difference (ug/Kg)	Limits (±2XRL)
Aroclor 1254	1550	202	154		
Aroclor 1260	492	237	70		

V:\Josephine\FIELD DUPLICATES\53482A3b anchor port of bellingham diff.wpd

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Port of Bellingham

LDC Report Date:

March 24, 2022

Parameters:

Metals

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc., Tukwila, WA

Sample Delivery Group (SDG): 22B0007

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
HS-08SC-0-2-220120	22B0007-13	Sediment	01/20/22
HS-08SC-2-3-220120	22B0007-14	Sediment	01/20/22
FD-20220122	22B0007-37	Sediment	01/22/22
HS-07SC-0-2-220122	22B0007-38	Sediment	01/22/22
HS-07SC-2-3-220122	22B0007-39	Sediment	01/22/22
HS-09SC-0-2-220122	22B0007-43	Sediment	01/22/22
HS-09SC-2-3-220122	22B0007-44	Sediment	01/22/22
HS-COMP-A-220120(TCLP)	22B0007-18(TCLP)	Sediment	01/20/22
HS-COMP-B-220121(TCLP)	22B0007-36(TCLP)	Sediment	01/21/22
HS-09SC-0-2-220122MS	22B0007-43MS	Sediment	01/22/22
HS-09SC-0-2-220122DUP	22B0007-43DUP	Sediment	01/22/22
HS-COMP-A-220120(TCLP)MS	22B0007-18(TCLP)MS	Sediment	01/20/22
HS-COMP-A-220120(TCLP)DUP	22B0007-18(TCLP)DUP	Sediment	01/20/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the PRDI Work Plan Attachment C Quality Assurance Project Plan (October 2021) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (November 2020). Where specific quidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Arsenic, Barium, Cadmium, Chromium, Copper, Lead, Selenium, Silver, and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6010D Mercury by EPA SW 846 Methods 7470A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- (Rejected): The sample results were rejected due to gross non-conformances R discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Instrument Calibration

Initial and continuing calibrations were performed as required by the method.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

III. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Barium Mercury	0.0491 mg/L 0.000044 mg/L	HS-COMP-A-220120(TCLP) HS-COMP-B-220121(TCLP)
ICB/CCB	Mercury	0.000043 mg/L	HS-COMP-A-220120(TCLP) HS-COMP-B-220121(TCLP)

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
HS-COMP-A-220120(TCLP)	Barium	0.0986 mg/L	0.0986U mg/L
	Mercury	0.000045 mg/L	0.000100U mg/L
HS-COMP-B-220121(TCLP)	Barium	0.132 mg/L	0.132U mg/L
	Mercury	0.000044 mg/L	0.000100U mg/L

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits with the following exceptions:

DUP ID (Associated Samples)	Analyte	RPD (Limits)	Difference (Limits)	Flag	A or P
HS-09SC-0-2-220122DUP (HS-08SC-0-2-220120 HS-08SC-2-3-220120 FD-20220122 HS-07SC-0-2-220122 HS-07SC-2-3-220122 HS-09SC-0-2-220122 HS-09SC-0-2-220122	Copper	32.3 (≤30)	-	J (all detects)	A

VIII. Serial Dilution

Serial dilution was not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples FD-20220122 and HS-07SC-0-2-220122 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentrat	ion (mg/Kg)			
Analyte	FD-20220122	HS-07SC-0-2-220122	RPD (Limits)	Difference (Limits)	
Arsenic	14.1	11.5	-	2.6 (≤45.2)	
Cadmium	1.45	1.36	-	0.09 (≤1.81)	
Copper	152	140	8 (≤50)	-	

	Concentrat	ion (mg/Kg)		
Analyte	FD-20220122	HS-07SC-0-2-220122	RPD (Limits)	Difference (Limits)
Zinc	262	220	17 (≤50)	-

XI. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to DUP RPD, data were qualified as estimated in seven samples.

Due to laboratory blank contamination, data were qualified as not detected in two samples.

Port of Bellingham

Metals - Data Qualification Summary - SDG 22B0007

Sample	Analyte	Flag	A or P	Reason
HS-08SC-0-2-220120 HS-08SC-2-3-220120 FD-20220122 HS-07SC-0-2-220122 HS-07SC-2-3-220122 HS-09SC-0-2-220122 HS-09SC-0-2-220122	Copper	J (all detects)	Α	Duplicate sample analysis (RPD)

Port of Bellingham

Metals - Laboratory Blank Data Qualification Summary - SDG 22B0007

Sample	Analyte	Modified Final Concentration	A or P
HS-COMP-A-220120(TCLP)	Barium Mercury	0.0986U mg/L 0.000100U mg/L	Α
HS-COMP-B-220121(TCLP)	Barium Mercury	0.132U mg/L 0.000100U mg/L	Α

LDC	#:	53482A4b
	···—	<u> </u>

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

SDG #: 22B0007 Laboratory: Analytical Resources, Inc., Tukwila, WA

METHOD: Metals (EPA SW-846 Method 6010D/7470A)

2nd Reviewe

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	AJA	
11.	Instrument Calibration	A	
111.	ICP Interference Check Sample (ICS) Analysis	A	
IV.	Laboratory Blanks	SW	
V.	Field Blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	A	
VII.	Duplicate sample analysis	SW	
VIII.	Serial Dilution	\mathcal{N}	
IX.	Laboratory control samples	A	LC)
X.	Field Duplicates	SW	(3, 9)
XI.	Target Analyte Quantitation	N .	, ,
XII	Overall Assessment of Data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank
EB = Equipment blank

SB=Source blank

OTHER:

	Client ID	Lab ID	Matrix	Date
1_	HS-08SC-0-2-220120	22B0007-13	Sediment	01/20/22
2	HS-08SC-2-3-220120	22B0007-14	Sediment	01/20/22
3	FD-20220122	22B0007-37	Sediment	01/22/22
4	HS-07SC-0-2-220122	22B0007-38	Sediment	01/22/22
5	HS-07SC-2-3-220122	22B0007-39	Sediment	01/22/22
6	HS-09SC-0-2-220122	22B0007-43	Sediment	01/22/22
7	HS-09SC-2-3-220122	22B0007-44	Sediment	01/22/22
8	HS-COMP-A-220120(TCLP)	22B0007-18(TCLP)	Sediment	01/20/22
9	HS-COMP-B-220121(TCLP)	22B0007-36(TCLP)	Sediment	01/21/22
10	HS-09SC-0-2-220122MS	22B0007-43MS	Sediment	01/22/22
11	HS-09SC-0-2-220122DUP	22B0007-43DUP	Sediment	01/22/22
12	HS-COMP-A-220120(TCLP)MS	22B0007-18(TCLP)MS	Sediment	01/20/22
13	HS-COMP-A-220120(TCLP)DUP	22B0007-18(TCLP)DUP	Sediment	01/20/22
14				
15				
16_				

Notes:

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

LDC #: 53482A4b

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List
1 to 7	As, Cd, Cu, Zn
8, 9	As, Ba, Cd, Cr, Pb, Se, Ag, Hg
QC	
10, 11	As, Cd, Cu, Zn
12, 13	As, Ba, Cd, Cr, Pb, Se, Ag, Hg
 	
	Analysis Method
ICP	As, Ba, Cd, Cr, Cu Pb, Se, Ag, Zn
ICP-MS	
CVAA	Hg

Page 1 of 1 Reviewer:CR

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)

Soil preparation factor applied (if applicable):

Sample Concentration, unless otherwise noted: mg/L

Associated Samples: 8, 9

				Sample Identification								
Analyte	PB (mg/L)	Maximum ICB/CCB (mg/L)	Action Level	8	9							
Ва	0.0491		0.2455	0.0986	0.132							
Hg	0.000044	0.000043		,	0.000044 / 0.000100		:					
								<u> </u>				

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)

Laboratory duplicate analysis was performed by the laboratory. All laboratory duplicates were with the relative percent difference (RPD) for samples >5X the reporting limits with the exceptions listed below. If samples were <5X the reporting limits, the difference was within 1X the reporting limit for water samples and within 2X the reporting limit for soil samples for all samples with the exceptions listed below.

					Difference	Difference			
Duplicate ID	Matrix	Analyte	RPD	RPD Limit		Limit	Associated Samples	Qualification	Det/ND
11	s	Cu	32.3	30			1 to 7	J/UJ/A	Det
			1						

Comments:

LDC #: 53482A4b

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page 1 of 1 Reviewer:CR

Method: Metals

<u> </u>	Conc	entration (mg/Kg)	RPD		Diff.
Analyte	3 4		(≤ 50)	Diff.	Limits
Arsenic	14.1	11.5		2.6	(≤45.2)
Cadmium	1.45	1.36		0.09	(≤1.81)
Copper	152	140	8		[
Zinc	262	220	17		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Port of Bellingham

LDC Report Date: March 24, 2022

Parameters: Wet Chemistry

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc., Tukwila, WA

Sample Delivery Group (SDG): 22B0007

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HS-08SC-0-2-220120	22B0007-13	Sediment	01/20/22
HS-08SC-2-3-220120	22B0007-14	Sediment	01/20/22
FD-20220122	22B0007-37	Sediment	01/22/22
HS-07SC-0-2-220122	22B0007-38	Sediment	01/22/22
HS-07SC-2-3-220122	22B0007-39	Sediment	01/22/22
HS-09SC-0-2-220122	22B0007-43	Sediment	01/22/22
HS-09SC-2-3-220122	22B0007-44	Sediment	01/22/22
HS-09SC-0-2-220122MS	22B0007-43MS	Sediment	01/22/22
HS-09SC-0-2-220122DUP1	22B0007-43DUP1	Sediment	01/22/22
HS-09SC-0-2-220122DUP2	22B0007-43DUP2	Sediment	01/22/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the PRDI Work Plan Attachment C Quality Assurance Project Plan (October 2021) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (November 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A

Total Solids by Standard Method 2540G

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- (Estimated): The analyte was analyzed for and positively identified by the J laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples FD-20220122 and HS-07SC-0-2-220122 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra			
Analyte	FD-20220122	HS-07SC-0-2-220122	RPD (Limits)	Difference (Limits)
Total solids	54.87	55.71	2 (≤50)	-
Total organic carbon	1.88	1.53	21 (≤50)	-

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Port of Bellingham Wet Chemistry - Data Qualification Summary - SDG 22B0007

No Sample Data Qualified in this SDG

Port of Bellingham Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 22B0007

No Sample Data Qualified in this SDG

						1 .
LDC	#: 53482A6 VALIDAT I	ION COMP	LETENESS	WORKSHEET		Date: 3// b
	#: <u>22B0007</u>		Stage 2B		_	Page:of
Labo	ratory: Analytical Resources, Inc., Tuk	<u>wila, WA</u>			R 2nd R	Page: of eviewer:
					Zhaji	OVIOWOI
MET	HOD: (Analyte) TOC (EPA SW-846 Me	ethod 9060A)	, Total Solids (SM2540G)		
	samples listed below were reviewed for ation findings worksheets.	each of the fo	ollowing valida	tion areas. Validation	findings are r	oted in attached
	Validation Area			Comme	nts	
I.	Sample receipt/Technical holding times	AA				
II	Initial calibration	A				
III.	Calibration verification	IA				
ΙV	Laboratory Blanks	A			·	
V	Field blanks	1/				
VI.	Matrix Spike/Matrix Spike Duplicates	Å				
VII.	Duplicate sample analysis	A				
VIII	. Laboratory control samples	A	LCS-	<u></u>		
IX.	Field duplicates	SW	(34			
X.	Target Analyte Quantitation	N N	J \	<i>)</i>		
	Overall assessment of data	<u> </u>				
Note:	N = Not provided/applicable R = I	- = No compounds Rinsate = Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Sourc OTHER:	e blank
	Client ID			Lab ID	Matrix	Date
1	HS-08SC-0-2-220120			22B0007-13	Sediment	01/20/22
2	HS-08SC-2-3-220120			22B0007-14	Sediment	01/20/22
3	FD-20220122			22B0007-37	Sediment	01/22/22
4	HS-07SC-0-2-220122			22B0007-38	Sediment	01/22/22
5	HS-07SC-2-3-220122			22B0007-39	Sediment	01/22/22
6	HS-09SC-0-2-220122			22B0007-43	Sediment	01/22/22
7	HS-09SC-2-3-220122			22B0007-44	Sediment	01/22/22
8	HS-09SC-0-2-220122MS			22B0007-43MS	Sediment	01/22/22
9	HS-09SC-0-2-220122DUP			22B0007-43DUP (Sediment	01/22/22
10	HS-09SC-0-2-220122 TRP			22B0007-43TRP-WZ	Sediment	01/22/22
11						
12						
13						
14						

Notes:

Page 1 of 1 Reviewer:CR

LDC #: 53482A6 VALIDATION FINDINGS WORKSHEET <u>Sample Specific Element Reference</u>

All elements are applicable to each sample as noted below.

Sample ID		Target Analyte List
All		TS, TOC
QC		
		тос
		TOC, TS
	10	TS

LDC #: 53482A6

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page 1 of 1 Reviewer:CR

Method: Inorganics

Augusta	Concentrat	ion (mg/Kg)	RPD (≤ 50) Diff.	Diff.		
Analyte	3	4	(≤ 50) Diff.		Limits	
Total solids	54.87	55.71	2			
тос	1.88	1.53	21			

LDC#: 53482

EDD POPULATION COMPLETENESS WORKSHEET

Anchor

Date: 3-26
Page: 1 of 1
2nd Reviewer:

The LDC job number listed above was entered by _______

	EDD Process	Y/N	Initial	Comments/Action
I.	EDD Completeness	<u>-</u>		
Ia.	- All methods present?	4	MH	
Ib.	- All samples present/match report?	4	WH	
Ic.	- All reported analytes present?	7	WH	
Id.	- 10% or 100% verification of EDD?	1	WH	10%
II.	EDD Preparation/Entry	<u>-</u>		
IIa.	- QC Level applied? (EPAStage2B or EPAStage4)	7	MH	EPAStage2B
IIb.	- Laboratory EMPC qualified results qualified (J with reason code 23)?	NA	MH	
III.	Reasonableness Checks	-		
IIIa.	- Do all qualified ND results have ND qualifier (e.g. UJ)?	7	MH	
IIIb.	- Do all qualified detect results have detect qualifier (e.g. J)?	7	MH	
IIIc.	- If reason codes are used, do all qualified results have reason code field populated, and vice versa?	4	WH	
IIId.	- Do blank concentrations in report match EDD, where data was qualified due to blank?	Y	WH	
IIIe.	- Is the detect flag set to "N" for all "U" qualified blank results?	Y	WH	
IIIf.	- Were there multiple results due to dilutions/reanalysis? If so, were results qualified appropriately?	7/4	MH	
IIIg.	-Are all results marked reportable "Yes" unless rejected for overall assessment in the data validation report?	7	MH	
IIIh.	-Are there any lab "R" qualified data? / Are the entry columns blank for these results?	2	WH	
IIIi.	-Are there any discrepancies between the data packet and the EDD?	7	WH	

Notes:	*see discrepancy sheet

LABORATORY DATA CONSULTANTS, INC.

2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

Anchor QEA, LLC
April 22, 2022
1201 Third Ave. Suite 2600

Seattle, WA 98101

ATTN: Ms. Delaney Peterson dpeterson@anchorqea.com

SUBJECT: Port of Bellingham, Data Validation

Dear Ms. Peterson,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on March 9, 2022. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #53706:

SDG #
 Eraction
 22B0184 Polynuclear Aromatic Hydrocarbons, Polychlorinated Biphenyls, Metals, Total Suspended Solids

The data validation was performed under Stage 2B guidelines. The analyses were validated using the following documents, as applicable to each method:

- PRDI Work Plan Attachment C Quality Assurance Project Plan (October 2021)
- USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020)
- USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (November 2020).
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

Christina Rink crink@lab-data.com

Project Manager/Senior Chemist

viotina Prink

7 pages-ADV Attachment 1 LDC# 53706 (Anchor Environmental - Seattle, WA / Port of Bellingham) Stage 2B EDD (4)Diss DATE DATE **PAHs PCBs** Metals Metals TSS DUE (8270E) (8082A) (6010D) (6010D) (160.2) LDC SDG# REC'D w s w s S Matrix: Water/Sediment 3 3 0 3 3 03/09/22 03/30/22 0 22B0184 T/KK Total

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Port of Bellingham

LDC Report Date:

April 21, 2022

Parameters:

Polynuclear Aromatic Hydrocarbons

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc., Tukwila, WA

Sample Delivery Group (SDG): 22B0184

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
DRET-HS-COMP-A-220120	22B00184-01	Water	02/08/22
DRET-HS-COMP-B-220121	22B00184-03	Water	02/08/22
DRET-HS-COMP-A1-220120	22B00184-05	Water	02/08/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the PRDI Work Plan Attachment C Quality Assurance Project Plan (October 2021) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020). Where specific quidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check was performed at the required frequency.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples DRET-HS-COMP-A-220120 and DRET-HS-COMP-A1-220120 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Port of Bellingham

Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 22B0184

No Sample Data Qualified in this SDG

Port of Bellingham Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification **Summary - SDG 22B0184**

No Sample Data Qualified in this SDG

SDG _abor	#:22B0184 atory: <u>Analytical Resources, Inc., Tukwila</u>	S a <u>, WA</u>	tage 2B	WORKSHEET		Date: 04 /10/2/ Page: _of__ Reviewer: _\text{V} Reviewer: _\text{V}
Γhe s	AOD: GC/MS Polynuclear Aromatic Hydro amples listed below were reviewed for eation findings worksheets.				on findings are	noted in attached
	Validation Area			Comm	ents	
1	Sample receipt/Technical holding times	AA				
II.	GC/MS Instrument performance check	A' \				
<u>III.</u>	Initial calibration/ICV	AIA	RSD		2 10	15 30%
IV.	Continuing calibration	A'	87	€ 20%		
V.	Laboratory Blanks	A				
VI.	Field blanks	N				
VII.	Surrogate spikes	A				
VIII.	Matrix spike/Matrix spike duplicates	N_				
IX.	Laboratory control samples	A	Le	is hy		
X.	Field duplicates	ND	D=1+	3		
XI.	Internal standards	A				
XII.	Target analyte quantitation	N				
XIII.	Target analyte identification	N_				
XIV.	System performance	N				
XV.	Overall assessment of data	A				
lote:	N = Not provided/applicable R = Rir	lo compounds nsate ield blank	detected	D = Duplicate TB = Trip blank EB = Equipment blan	OTHER:	rce blank
	Client ID			Lab ID	Matrix	Date
	DRET-HS-COMP-A-220120			22B00184-01	Water	02/08/22
-	DRET-HS-COMP-B-220121	teriti		22B00184-03	Water	02/08/22
3	DRET-HS-COMP-A1-220120		·	22B00184-05	Water	02/08/22
4						
5						
6						
7 _						
8						
9						
lotes:					T T	
- F	3KB0374-BLKI					
					 	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Port of Bellingham

LDC Report Date:

April 22, 2022

Parameters:

Polychlorinated Biphenyls

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc., Tukwila, WA

Sample Delivery Group (SDG): 22B0184

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
DRET-HS-COMP-A-220120	22B00184-01	Water	02/08/22
DRET-HS-COMP-B-220121	22B00184-03	Water	02/08/22
DRET-HS-COMP-A1-220120	22B00184-05	Water	02/08/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the PRDI Work Plan Attachment C Quality Assurance Project Plan (October 2021) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

All internal standard areas and retention times were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

Samples DRET-HS-COMP-A-220120 and DRET-HS-COMP-A1-220120 were identified as field duplicates. No results were detected in any of the samples.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Port of Bellingham Polychlorinated Biphenyls - Data Qualification Summary - SDG 22B0184

No Sample Data Qualified in this SDG

Port of Bellingham Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 22B0184

No Sample Data Qualified in this SDG

DC #:53706A3b	VALIDATION COMPLETENESS WORKSHEET	
SDG #: 22B0184	Stage 2B	

Laboratory: Analytical Resources, Inc., Tukwila, WA

2nd Reviewer:

METHOD: GC Polychlorinated Biphenyls (EPA SW-846 Method 8082A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	AIA	
II.	Initial calibration/ICV	AIA	RSD & 20%. (WE 20%
III.	Continuing calibration	A	20 E 201
IV.	Laboratory Blanks	À	
V.	Field blanks	N	
VI.	Surrogate spikes / I >	A/A	
VII.	Matrix spike/Matrix spike duplicates	N	
VIII.	Laboratory control samples	A	LCS 16
IX.	Field duplicates	Nb	D=1+3
X.	Target analyte quantitation	N N	,
XI.	Target analyte identification	N	
ИX	Overall assessment of data	L A	

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

	Client ID	Lab ID	Matrix	Date
1_	DRET-HS-COMP-A-220120	22B00184-01	Water	02/08/22
2	DRET-HS-COMP-B-220121	22B00184-03	Water	02/08/22
3	DRET-HS-COMP-A1-220120	22B00184-05	Water	02/08/22
4				
5				
6				
7				
—— В				
9 _				
10				
11				
12				
13				
ote	S:			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Port of Bellingham

LDC Report Date:

April 21, 2022

Parameters:

Metals

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc., Tukwila, WA

Sample Delivery Group (SDG): 22B0184

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
DRET-HS-COMP-A-220120	22B00184-01	Water	02/08/22
DRET-HS-COMP-B-220121	22B00184-03	Water	02/08/22
DRET-HS-COMP-A1-220120	22B00184-05	Water	02/08/22
DRET-HS-COMP-A-220120F	22B00184-02	Water	02/08/22
DRET-HS-COMP-B-220121F	22B00184-04	Water	02/08/22
DRET-HS-COMP-A1-220120F	22B00184-06	Water	02/08/22
DRET-HS-COMP-B-220121MS	22B00184-03MS	Water	02/08/22
DRET-HS-COMP-B-220121DUP	22B00184-03DUP	Water	02/08/22
DRET-HS-COMP-A-220120FMS	22B00184-02MS	Water	02/08/22
DRET-HS-COMP-A-220120FDUP	22B00184-02DUP	Water	02/08/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the PRDI Work Plan Attachment C Quality Assurance Project Plan (October 2021) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (November 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Arsenic, Cadmium, Copper, and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6010D

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Instrument Calibration

Initial and continuing calibrations were performed as required by the method.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

III. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples
ICB/CCB	Copper	0.0015 mg/L	DRET-HS-COMP-A-220120 DRET-HS-COMP-B-220121 DRET-HS-COMP-A1-220120

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
DRET-HS-COMP-B-220121	Copper	0.0267 mg/L	0.0300U mg/L

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Serial Dilution

Serial dilution was not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples DRET-HS-COMP-A-220120 and DRET-HS-COMP-A1-220120 and samples DRET-HS-COMP-A-220120F and DRET-HS-COMP-A1-220120F were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra			
Analyte	DRET-HS-COMP-A-220120	DRET-HS-COMP-A1-220120	RPD (Limits)	Difference (Limits)
Copper	0.0334	0.0326	-	0.0008 (≤0.15)
Cadmium	0.0112	0.0116	-	0.0004 (≤0.1)

XI. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to laboratory blank contamination, data were qualified as not detected in one sample.

Port of Bellingham Metals - Data Qualification Summary - SDG 22B0184

No Sample Data Qualified in this SDG

Port of Bellingham

Metals - Laboratory Blank Data Qualification Summary - SDG 22B0184

Sample	Analyte	Modified Final Concentration	A or P
DRET-HS-COMP-B-220121	Copper	0.0300U mg/L	Α

VALIDATION COMPLETENESS WORKSHEET

LDC #: 53706A4b **VALIDATION COMPLETENE**SDG #: 22B0184 Stage 2B

Laboratory: Analytical Resources, Inc., Tukwila, WA

METHOD: Metals (EPA SW-846 Method 6010D)

Date: 4/15/22
Page: 1 of 1
Reviewer: KK
2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	A/A	
II.	Instrument Calibration	Α	
111.	ICP Interference Check Sample (ICS) Analysis	Α	
IV.	Laboratory Blanks	sw_	
V.	Field Blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	Α	
VII.	Duplicate sample analysis	Α	
VIII.	Serial Dilution	N	
IX.	Laboratory control samples	Α	LCS
X.	Field Duplicates	sw	(1,3), (4,6)*
XI.	Target Analyte Quantitation	N	
XII	Overall Assessment of Data	Α	

Note: A = Acceptable

*ND = No compounds detected

D = Duplicate

SB=Source blank

N = Not provided/applicable SW = See worksheet R = Rinsate FB = Field blank TB = Trip blank
EB = Equipment blank

OTHER:

Samples appended with F were analyzed as dissolved.

	Client ID	Lab ID	Matrix	Date
1	DRET-HS-COMP-A-220120	22B00184-01	Water	02/08/22
2	DRET-HS-COMP-B-220121	22B00184-03	Water	02/08/22
3	DRET-HS-COMP-A1-220120	22B00184-05	Water	02/08/22
4	DRET-HS-COMP-A-220120F	22B00184-02	Water	02/08/22
5	DRET-HS-COMP-B-220121F	22B00184-04	Water	02/08/22
6	DRET-HS-COMP-A1-220120F	22B00184-06	Water	02/08/22
7	DRET-HS-COMP-B-220121MS	22B00184-03MS	Water	02/08/22
8	DRET-HS-COMP-B-220121DUP	22B00184-03DUP	Water	02/08/22
9	DRET-HS-COMP-A-220120FMS	22B00184-02MS	Water	02/08/22
10	DRET-HS-COMP-A-220120FDUP	22B00184-02DUP	Water	02/08/22
11_				
12	_			
13				
14				
15				
16				

Notes:

LDC#: 53706A4b

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page 1 of 3 Reviewer: KK

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List
1-6	As, Cd, Cu, Zn
QC	
7	As, Cd, Cu, Zn
8	As, Cd, Cu, Zn
9	As, Cd, Cu, Zn
10	As, Cd, Cu, Zn
	And the Santa I

Analysis Method

ICP	As, Cd, Cu, Zn
ICP-MS	
CVAA	

VALIDATION FINDINGS WORKSHEET Laboratory Blank Contamination (PB/ICB/CCB)

Page 2 of 3 Reviewer: KK

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)

Soil preparation factor applied (if applicable):

Sample Concentration, unless otherwise noted: mg/L

Associated Samples: 1-3

_						Sample	dentificati	on		
Analyte PB (units)	Maximum ICB/CCB (units)	Action Level	2							
Cu	I.	0.0015		0.0267/0.0300						
				·						

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page 3 of 3 Reviewer: KK

Method: Metals

Analyte	Concentra	ation (mg/L)	RPD	Diff.	Diff.	Qualifiers (Parents
Analyte	1	3	(≤ 50)	Dill.	Limits	Only)
Copper	0.0334	0.0326		0.0008	(≤0.15)	
Cadmium	0.0112	0.0116		0.0004	(≤0.1)	
<u> </u>		-4: ((1)			<u> </u>	
Analyte	Concentra	ation (mg/L)	= RPD (≤ 30)	Diff.	Diff. Limits	Qualifiers (Parents Only)
					<u> </u>	
	 		_			
					 	
		,			1	
					<u> </u>	
					<u> </u>	
					<u> </u>	
					ļ	
	1	1	1			ĺ

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Port of Bellingham

LDC Report Date:

April 21, 2022

Parameters:

Total Suspended Solids

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc., Tukwila, WA

Sample Delivery Group (SDG): 22B0184

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
DRET-HS-COMP-A-220120	22B00184-01	Water	02/08/22
DRET-HS-COMP-B-220121	22B00184-03	Water	02/08/22
DRET-HS-COMP-B1-220121	22B00184-07	Water	02/08/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the PRDI Work Plan Attachment C Quality Assurance Project Plan (October 2021) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (November 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Suspended Solids by Environmental Protection Agency (EPA) Method 160.2

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples DRET-HS-COMP-B-220121 and DRET-HS-COMP-B1-220121 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra			
Analyte	DRET-HS-COMP-B-220121	DRET-HS-COMP-B1-220121	RPD (Limits)	Difference (Limits)
Total suspended solids	10	10	0 (≤50)	-

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Port of Bellingham Total Suspended Solids - Data Qualification Summary - SDG 22B0184

No Sample Data Qualified in this SDG

Port of Bellingham Total Suspended Solids - Laboratory Blank Data Qualification Summary - SDG 22B0184

No Sample Data Qualified in this SDG

LDC #: 53706A6	VALIDATION COMPLETENESS WORKS
LDC #: 53706A6	VALIDATION COMPLETENESS WORK

SDG #: 22B0184
Laboratory: Analytical Resources, Inc., Tukwila, WA

IPLETENESS WORKSHEET

Stage 2B

Page: 1 of 1

Reviewer: KK

2nd Reviewer:

METHOD: (Analyte) TSS (EPA Method 160.2)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A/A_	
11	Initial calibration	A	
III.	Calibration verification	A	
IV	Laboratory Blanks	А	
V	Field blanks	N_	
VI.	Matrix Spike/Matrix Spike Duplicates	N	
VII.	Duplicate sample analysis	N	
VIII.	Laboratory control samples	А	LCS
IX.	Field duplicates	sw	(2,3)
X.	Target Analyte Quantitation	N_	
LxL	Overall assessment of data	<u> </u>	<u> </u>

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank
EB = Equipment blank

SB=Source blank

OTHER:

	Client ID	Lab ID	Matrix	Date
1	DRET-HS-COMP-A-220120	22B00184-01	Water	02/08/22
2	DRET-HS-COMP-B-220121	22B00184-03	Water	02/08/22
3	DRET-HS-COMP-B1-220121	22B00184-07	Water	02/08/22
4				
5				
6				
7_				
8				
9				
10				
11	_			
12				
13				
14				
15				

Notes:	 		 		

LDC #: 53706A6

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page 1 of 1 Reviewer: KK

Method: Inorganics

≤50

Concentration (mg/L)							
Analyte	2	3	RPD (≤,20)	Diff.	Diff. Limits	Qualifiers (Parents Only)	
TSS	10	10	0				
		<u> </u>					
-		ļ					
		 					
-							
 							
-							
]		
-							
	<u> </u>						
			<u> </u>				

LDC#: 53706

EDD POPULATION COMPLETENESS WORKSHEET

Date: 4/22/22

Anchor

The LDC job number listed above was entered by $\underline{\hspace{1cm}}$

Page: 1 of 1 2nd Reviewer:

	EDD Process	Y/N	Initial	Comments/Action
I.	EDD Completeness			
Ia.	- All methods present?	Y	WH	mothed 160.2 = 5m254at
Ib.	- All samples present/match report?	Y	WH	
Ic.	- All reported analytes present?	Y	WH	
Id.	- 10% or 100% verification of EDD?	Ý	WH	10%
II.	EDD Preparation/Entry	-		
IIa.	- QC Level applied? (EPAStage2B or EPAStage4)	7	WH	FPAStage 2B
IIb.	- Laboratory EMPC qualified results qualified (J with reason code 23)?	NA	WH	,
III.	Reasonableness Checks	_		
IIIa.	- Do all qualified ND results have ND qualifier (e.g. UJ)?	Y	WH	
IIIb.	- Do all qualified detect results have detect qualifier (e.g. J)?	4	MH	
IIIc.	- If reason codes are used, do all qualified results have reason code field populated, and vice versa?	Y	WH	
IIId.	- Do blank concentrations in report match EDD, where data was qualified due to blank?	Y	WH	
IIIe.	- Is the detect flag set to "N" for all "U" qualified blank results?	Y	WH	
IIIf.	- Were there multiple results due to dilutions/reanalysis? If so, were results qualified appropriately?	MA	WH	
IIIg.	-Are all results marked reportable "Yes" unless rejected for overall assessment in the data validation report?	7	WH	
IIIh.	-Are there any lab "R" qualified data? / Are the entry columns blank for these results?	NA	WH	
IIIi.	-Are there any discrepancies between the data packet and the EDD?	7	MH	

Notes:	*see discrepancy sheet

2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

Anchor QEA, LLC 1201 Third Ave. Suite 2600

Seattle, WA 98101

ATTN: Ms. Delaney Peterson dpeterson@anchorqea.com

SUBJECT: Port of Bellingham, Data Validation

Dear Ms. Peterson,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on February 14, 2022. Attachment 1 is a summary of the samples that were reviewed for each analysis.

Revision: PAH: Updated the MSD %R for phenanthrene

PCB: Corrected Congeners to Aroclors

LDC Project #53481:

SDG # Fraction

22A0533 Polynuclear Aromatic Hydrocarbons, Polychlorinated Biphenyls as

Congeners, Metals, Wet Chemestry

The data validation was performed under Stage 2B guidelines. The analyses were validated using the following documents, as applicable to each method:

- PRDI Work Plan Attachment C Quality Assurance Project Plan (October 2021)
- USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020)
- USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (November 2020).
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

Christina Rink crink@lab-data.com

Project Manager/Senior Chemist

heisting Rink

May 12, 2022

2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

Anchor QEA, LLC 1201 Third Ave. Suite 2600 Seattle, WA 98101

Seattle, WA 98101 ATTN: Ms. Delaney Peterson

dpeterson@anchorqea.com

SUBJECT: Port of Bellingham, Data Validation

Dear Ms. Peterson,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on February 14, 2022. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #53481:

SDG #
 Polynuclear Aromatic Hydrocarbons, Polychlorinated Biphenyls as Congeners, Metals, Wet Chemestry

The data validation was performed under Stage 2B guidelines. The analyses were validated using the following documents, as applicable to each method:

- PRDI Work Plan Attachment C Quality Assurance Project Plan (October 2021)
- USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020)
- USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (November 2020).
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

Christina Rink crink@lab-data.com

Project Manager/Senior Chemist

eistina Prink

March 28, 2022

Attachment 1 12 pages-ADV LDC# 53481 (Anchor Environmental - Seattle, WA / Port of Bellingham) Stage 2B EDD Total DATE DATE **PAHs PCBs** Metals TOC Solids REC'D DUE (8270E) (8082A) (6010D) (9060A) (2540G) LDC SDG# | w | s | w | w s w s Matrix: Water/Sediment 0 0 17 0 17 0 17 0 21 17 02/14/22 03/08/22 22A0533 0 0 0 0 0 0 0 Total T/CR

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Port of Bellingham

LDC Report Date:

May 12, 2022

Parameters:

Polynuclear Aromatic Hydrocarbons

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc., Tukwila, WA

Sample Delivery Group (SDG): 22A0533

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
HS-01SG-0-12-220118	22A0533-01	Sediment	01/18/22
HS-01SG-0-12-220118DL	22A0533-01DL	Sediment	01/18/22
HS-01SG-12-18-220118	22A0533-02	Sediment	01/18/22
HS-01SG-12-18-220118DL	22A0533-02DL	Sediment	01/18/22
HS-02SG-0-12-220118	22A0533-03	Sediment	01/18/22
HS-02SG-12-17-220118	22A0533-04	Sediment	01/18/22
HS-03SG-0-12-220118	22A0533-05	Sediment	01/18/22
HS-03SG-0-12-220118DL	22A0533-05DL	Sediment	01/18/22
HS-03SG-12-17-220118	22A0533-06	Sediment	01/18/22
HS-04SG-0-12-220119	22A0533-07	Sediment	01/19/22
HS-04SG-12-16-220119	22A0533-08	Sediment	01/19/22
HS-1005SG-0-12-220119	22A0533-09	Sediment	01/19/22
HS-05SG-0-12-220119	22A0533-10	Sediment	01/19/22
HS-05SG-12-16-220119	22A0533-11	Sediment	01/19/22
HS-06SG-0-12-220119	22A0533-12	Sediment	01/19/22
HS-06SG-0-12-220119DL	22A0533-12DL	Sediment	01/19/22
HS-06SG-12-17-220119	22A0533-13	Sediment	01/19/22
HS-08SS-220118	22A0533-15	Sediment	01/18/22
HS-10SS-220118	22A0533-17	Sediment	01/18/22
HS-11SS-220118	22A0533-18	Sediment	01/18/22
HS-12SS-220119	22A0533-19	Sediment	01/19/22
HS-01SG-12-18-220118MS	22A0533-02MS	Sediment	01/18/22
HS-01SG-12-18-220118MSD	22A0533-02MSD	Sediment	01/18/22
HS-02SG-12-17-220118MS	22A0533-04MS	Sediment	01/18/22
HS-02SG-12-17-220118MSD	22A0533-04MSD	Sediment	01/18/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the PRDI Work Plan Attachment C Quality Assurance Project Plan (October 2021) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check was performed at the required frequency.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all analytes.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
02/08/22	Fluoranthene	20.7	HS-01SG-0-12-220118DL HS-01SG-12-18-220118 HS-06SG-0-12-220119DL HS-10SS-220118 HS-11SS-220118 HS-12SS-220119	J (all detects)	A
02/09/22	Fluoranthene	25.8	HS-01SG-12-18-220118DL HS-03SG-0-12-220118DL	J (all detects)	А

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
HS-01SG-12-18-220118MS/MSD (HS-01SG-12-18-220118 HS-01SG-12-18-220118DL)	Phenanthrene Benzo(a)anthracene Chrysene Benzo(a)pyrene Fluorene Anthracene Benzofluoranthenes, total Indeno(1,2,3-cd)pyrene	354 (50-150) 233 (50-150) 352 (50-150) 173 (50-150) - 171 (50-150)	781 (50-150) 570 (50-150) 734 (50-150) 587 (50-150) 152 (50-150) 322 (50-150) 459 (50-150) 163 (50-150)	J (all detects)	A

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
HS-01SG-12-18-220118MS/MSD (HS-01SG-12-18-220118 HS-01SG-12-18-220118DL)	Phenanthrene Anthracene Benzo(a)anthracene Chrysene Benzofluoranthenes, total Benzo(a)pyrene	55.0 (≤35) 57.9 (≤35) 48.7 (≤35) 43.5 (≤35) 49.7 (≤35) 60.4 (≤35)	J (all detects)	A

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples HS-1005SG-0-12-220119 and HS-05SG-0-12-220119 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentrat	stration (ug/Kg)		
Analyte	HS-1005SG-0-12-220119	HS-05SG-0-12-220119	RPD (Limits)	Difference (Limits)
Naphthalene	14.3	17.0	-	3 (≤40)
2-Methylnaphthalene	7.5	7.3	-	0 (≤40)
Acenaphthylene	16.7	17.1	-	0 (≤40)
Acenaphthene	18.0	12.3	-	6 (≤40)
Fluorene	26.4	30.6	-	4 (≤50)
Phenanthrene	233	164	35 (≤50)	-
Anthracene	68.8	79.4	-	11 (≤40)
Fluoranthene	373	340	9 (≤50)	-
Pyrene	354	343	3 (≤50)	-
Benzo(a)anthracene	122	204	50 (≤50)	-
Chrysene	215	330	42 (≤50)	-
Benzofluoranthenes, total	241	330	31 (≤50)	-
Benzo(a)pyrene	112	147	27 (≤50)	-
Indeno(1,2,3-cd)pyrene	45.6	54.4	-	9 (≤50)
Dibenzo(a,h)anthracene	17.9	19.7	-	2 (≤50)
Benzo(g,h,i)perylene	40.1	55.1	-	15 (≤50)

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

All target analyte quantitations met validation criteria with the following exceptions:

Sample	Analyte	Finding	Criteria	Flag	A or P
HS-01SG-0-12-220118 HS-01SG-12-18-220118 HS-06SG-0-12-220119	Fluoranthene Pyrene	Sample result exceeded calibration range.	Reported result should be within calibration range.	J (all detects) J (all detects)	А
HS-03SG-0-12-220118	Phenanthrene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	Sample result exceeded calibration range.	Reported result should be within calibration range.	J (all detects)	А

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Analyte	Reason	Flag	A or P
HS-01SG-0-12-220118 HS-01SG-12-18-220118 HS-06SG-0-12-220119	Fluoranthene Pyrene	Results exceeded calibration range.	Not reportable	-
HS-01SG-0-12-220118DL HS-01SG-12-18-220118DL HS-06SG-0-12-220119DL	All analytes except Fluoranthene Pyrene	Results from undiluted analyses were more usable.	Not reportable	-
HS-03SG-0-12-220118	Phenanthrene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	Results exceeded calibration range.	Not reportable	-

Sample	Analyte	Reason	Flag	A or P
HS-03SG-0-12-220118DL	All analytes except Phenanthrene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	Results from undiluted analyses were more usable.	Not reportable	-

Due to continuing calibration %D and MS/MSD %R and RPD, data were qualified as estimated in eight samples.

Port of Bellingham Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 22A0533

Sample	Analyte	Flag	A or P	Reason
HS-01SG-0-12-220118DL HS-06SG-0-12-220119DL HS-10SS-220118 HS-11SS-220118 HS-12SS-220119 HS-01SG-12-18-220118DL HS-03SG-0-12-220118DL	Fluoranthene	J (all detects)	А	Continuing calibration (%D)
HS-01SG-12-18-220118	Fluorene Indeno(1,2,3-cd)pyrene	J (all detects) J (all detects)	А	Matrix spike/Matrix spike duplicate (%R)
HS-01SG-12-18-220118	Phenanthrene Anthracene Benzo(a)anthracene Chrysene Benzofluoranthenes, total Benzo(a)pyrene	J (all detects)	А	Matrix spike/Matrix spike duplicate (%R)(RPD)
HS-01SG-0-12-220118 HS-01SG-12-18-220118 HS-06SG-0-12-220119	Fluoranthene Pyrene	Not reportable	-	Overall assessment of data
HS-01SG-0-12-220118DL HS-01SG-12-18-220118DL HS-06SG-0-12-220119DL	All analytes except Fluoranthene Pyrene	Not reportable	-	Overall assessment of data
HS-03SG-0-12-220118	Phenanthrene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	Not reportable	-	Overall assessment of data
HS-03SG-0-12-220118DL	All analytes except Phenanthrene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	Not reportable	-	Overall assessment of data

Port of Bellingham Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification **Summary - SDG 22A0533**

No Sample Data Qualified in this SDG

LDC #: 53481A2a	VALIDATION COMPLETENESS WORKSHEET
SDG #:22A0533	Stage 2B

Laboratory: Analytical Resources, Inc., Tukwila, WA

Date: 03/16/22 Page: 1 of 2 Reviewer: 006 2nd Reviewer: C

METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW-846 Method 8270E)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	A, A	
11.	GC/MS Instrument performance check	A	
111.	Initial calibration/ICV	AA	RSD = 20% W = 30%
IV.	Continuing calibration	SW	20 € 20 %
V.	Laboratory Blanks	A	
VI.	Field blanks	N	
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	SA	
IX.	Laboratory control samples	Ä	US 10
X.	Field duplicates	SW	D = 12/13
XI.	Internal standards	A	
XII.	Target analyte quantitation	Sk	
XIII.	Target analyte identification	N	
XIV.	System performance	N	·
XV.	Overall assessment of data	SW	

A = Acceptable Note:

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	HS-01SG-0-12-220118	22A0533-01	Sediment	01/18/22
2	HS-01SG-0-12-220118DL	22A0533-01DL	Sediment	01/18/22
3 7	HS-01SG-12-18-220118	22A0533-02	Sediment	01/18/22
4 2	HS-01SG-12-18-220118DL	22A0533-02DL	Sediment	01/18/22
5	HS-02SG-0-12-220118	22A0533-03	Sediment	01/18/22
6	HS-02SG-12-17-220118	22A0533-04	Sediment	01/18/22
7	HS-03SG-0-12-220118	22A0533-05	Sediment	01/18/22
8	HS-03SG-0-12-220118DL	22A0533-05DL	Sediment	01/18/22
9	HS-03SG-12-17-220118	22A0533-06	Sediment	01/18/22
10	HS-04SG-0-12-220119	22A0533-07	Sediment	01/19/22
11	HS-04SG-12-16-220119	22A0533-08	Sediment	01/19/22
12	HS-1005SG-0-12-220119	22A0533-09	Sediment	01/19/22
13	HS-05SG-0-12-220119	22A0533-10	Sediment	01/19/22
14	HS-05SG-12-16-220119	22A0533-11	Sediment	01/19/22

LDC #: 53481A2a VALIDATIO	N COMPLETENESS WORKSHEET	Date: 07/6/2-
SDG #: 22A0533	Stage 2B	Page: 2 of 2
Laboratory: Analytical Resources, Inc., Tukwila	<u>, WA</u>	Page: 2 of 2 Reviewer: 50
		2nd Reviewer:
METHOD COMAC Delivered and America March		

METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW-846 Method 8270E)

	Client ID	Lab ID	Matrix	Date
15	HS-06SG-0-12-220119	22A0533-12	Sediment	01/19/22
16	HS-06SG-0-12-220119DL	22A0533-12DL	Sediment	01/19/22
17	HS-06SG-12-17-220119	22A0533-13	Sediment	01/19/22
18	HS-08SS-220118	22A0533-15	Sediment	01/18/22
19	HS-10SS-220118	22A0533-17	Sediment	01/18/22
20	HS-11SS-220118	22A0533-18	Sediment	01/18/22
21	HS-12SS-220119	22A0533-19	Sediment	01/19/22
22	HS-01SG-12-18-220118MS	22A0533-02MS	Sediment	01/18/22
23	HS-01SG-12-18-220118MSD	22A0533-02MSD	Sediment	01/18/22
24	HS-02SG-12-17-220118MS	22A0533-04MS	Sediment	01/18/22
25	HS-02SG-12-17-220118MSD	22A0533-04MSD	Sediment	01/18/22
26				
27				
28				

-			 ·	 	
+	1	BKA0647-BK1			
\mathbb{I}	,	BKB0065-			
					_

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

VIETHOD: GC/MS SVOA				
A. Phenol	GG. Acenaphthene	MMM. Bis(2-Chloroisopropyl)ether	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	Y1. 3,3'-Dimethylbenzidine
B. Bis (2-chloroethyl) ether	HH. 2,4-Dinitrophenol	NNN. Aniline	TTTT. 1-Methyldibenzothiophene (1MDT)	Z1. o-Toluidine
C. 2-Chlorophenol	II. 4-Nitrophenol	OOO. N-Nitrosodimethylamine	UUUU 2,3,4,6-Tetrachlorophenol	A2. Benzo(j)fluoranthene
D. 1,3-Dichlorobenzene	JJ. Dibenzofuran	PPP. Benzoic Acid	VVVV. 1,2,4,5-Tetrachlorobenzene	B2. Benzofluoranthenes, total
E. 1,4-Dichlorobenzene	KK. 2,4-Dinitrotoluene	QQQ. Benzył alcohol	WWWW 2-Picoline	C2. trans-Decalin
F. 1,2-Dichlorobenzene	LL. Diethylphthalate	RRR. Pyridine	XXXX. 3-Methylcholanthrene	D2. cis-Decalin
G. 2-Methylphenol	MM. 4-Chlorophenyl-phenyl ether	SSS. Benzidine	YYYY. a,a-Dimethylphenethylamine	E2. Dibenzo(a)anthracenes
H. 2,2'-Oxybis(1-chloropropane)	NN. Fluorene	TTT. 1-Methylnaphthalene	ZZZZ. Hexachloropropene	F2. Benzo(j)+(k)fluoranthene
I. 4-Methylphenol	OO. 4-Nitroaniline	UUU.Benzo(b)thiophene	A1. N-Nitrosodiethylamine	G2. Dibenzo(ah)+(ac)anthracene
J. N-Nitroso-di-n-propylamine	PP. 4,6-Dinitro-2-methylphenol	WV.Benzonaphthothiophene	B1. N-Nitrosodi-n-butylamine	H2. Bis(2-ethylhexyl)adipate
K. Hexachloroethane	QQ. N-Nitrosodiphenylamine	WWW.Benzo(e)pyrene	C1. N-Nitrosomethylethylamine	12.
L. Nitrobenzene	RR. 4-Bromophenyl-phenylether	XXX. 2,6-Dimethylnaphthalene	D1. N-Nitrosomorpholine	J2.
M. Isophorone	SS. Hexachlorobenzene	YYY. 2,3,5-Trimethylnaphthalene	E1. N-Nitrosopyrrolidine	K2.
N. 2-Nitrophenol	TT. Pentachlorophenol	ZZZ. Perylene	F1. Phenacetin	L2.
O. 2,4-Dimethylphenol	UU. Phenanthrene	AAAA. Dibenzothiophene	G1. 2-Acetylaminofluorene	M2.
P. Bis(2-chloroethoxy)methane	VV. Anthracene	BBBB. Benzo(a)fluoranthene	H1. Pronamide	N2.
Q. 2,4-Dichlorophenol	WW. Carbazole	CCCC. Benzo(b)fluorene	I1. Methyl methanesulfonate	O2.
R. 1,2,4-Trichlorobenzene	XX. Di-n-butylphthalate	DDDD. cis/trans-Decalin	J1. Ethyl methanesulfonate	P2.
S. Naphthalene	YY. Fluoranthene	EEEE. Biphenyl	K1. o,o',o"-Triethylphosphorothioate	Q2.
T. 4-Chloroaniline	ZZ. Pyrene	FFFF. Retene	L1. n-Phenylene diamine	R2.
U. Hexachlorobutadiene	AAA. Butylbenzylphthalate	GGGG. C30-Hopane	M1. 1,4-Naphthoquinone	S2.
V. 4-Chioro-3-methylphenol	BBB. 3,3'-Dichlorobenzidine	HHHH. 1-Methylphenanthrene	N1. N-Nitro-o-toluidine	T2.
W. 2-Methylnaphthalene	CCC. Benzo(a)anthracene	IIII. 1,4-Dioxane	O1. 1,3,5-Trinitrobenzene	U2.
X. Hexachlorocyclopentadiene	DDD. Chrysene	JJJJ. Acetophenone	P1. Pentachiorobenzene	V2
Y. 2,4,6-Trichlorophenol	EEE. Bis(2-ethylhexyl)phthalate	KKKK. Atrazine	Q1. 4-Aminobiphenyl	W2
Z. 2,4,5-Trichlorophenol	FFF. Di-n-octylphthalate	LLLL. Benzaldehyde	R1. 2-Naphthylamine	X2
AA. 2-Chloronaphthalene	GGG. Benzo(b)fluoranthene	MMMM. Caprolactam	S1. Triphenylene	Y2.
BB. 2-Nitroaniline	HHH. Benzo(k)fluoranthene	NNNN. 2,6-Dichlorophenol	T1. Octachlorostyrene	Z2.
CC. Dimethylphthalate	III. Benzo(a)pyrene	OOOO. 1,2-Diphenylhydrazine	U1. Famphur	
DD. Acenaphthylene	JJJ. Indeno(1,2,3-cd)pyrene	PPPP. 3-Methylphenol	V1. 1,4-phenylenediamine	
EE. 2,6-Dinitrotoluene	KKK. Dibenz(a,h)anthracene	QQQQ. 3&4-Methylphenol	W1. Methapyrilene	
FF. 3-Nitroaniline	LLL Benzo(g.h.i)perylene	RRRR. 4-Dimethyldibenzothiophene	X1. Pentachloroethane	

LDC#: 53481 A2a

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page:	_of	
Reviewer:	JVG	

METHOD: GC/MS BNA (EPA SW 846 Method 8270 €)

#	Date	Standard ID	Compound	Finding %D (Limit: ≤20.0%)	Finding RRF (Limit)	Associated Samples	Qualifications
	02/08/22	NT1022020802	77	20,7		2,3 16 19-21 1	1B2 (Det) J/WJ/A
<u> </u>							
	02/09/22	NT 1022 020907	. 77	25.8		4,8 (Det)	
ļ							
						•	
<u> </u>							
-							
<u> </u>							
 							

Note: * Ave RRF failed method criteria but within validation criteria

LDC #: 53481 Aza

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:	<u></u>
Reviewer:	JVG

METHOD: GC/MS BNA (EPA SW 846 Method 8270 ₺)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an

associated MS/MSD. Soil / Water.

Y) N N/A Was a MS/MSD analyzed every 20 samples of each matrix?

Y(N)N/A Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	22/23	ии	354 (50-150)	781 (50-150)	()	3,4 (Det)	Jdets/A
		ccc	233 ()	570 ()	()	1	
		000	352 ()	734 ()	()		
		III_	173 ()	587 ()	()		
		NN	()	152 ()	()		
		7/	()	322 ()	()		
		32	171 (50-150)	459 ()	()		
		717	()	163 ()	()		
		иu	()	()	55.0 (35)		
		VV	()	()	57,9 ()		
		ccc	()	()	48,7 ()		
		DDD	()	()	43,5 ()		
		B2	()	()	49.7 ()		
		III	()	()	60,4 ()	/ /	Y
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	_ ()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		

LDC#: 53481A2a

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:_1_of_1_ Reviewer:__JVG__

METHOD: GCMS SVOA (EPA SW 846 Method 8270E)

	Concentra	tion (ug/Kg)			
Compound	12	13	RPD (≤50%)	Difference (ug/Kg)	Limits (±2XRL)
s	14.3	17.0		3	≤40
w	7.5	7.3		0	≤40
DD	16.7	17.1		0	≤40
GG	18.0	12.3		6	≤40
NN /	26.4	30.6		4	
UU	233	164	35		
w	68.8	79.4		11	≤40
YY	373	340	9		
ZZ	354	343	3		
ccc	122	204	50		
DDD	215	330	42		
B2	241	330	31		
111	112	147	27		
JJJ	45.6	54.4		9	
ккк	17.9	19.7		2	
LLL	40.1	55.1		15	

V:\Josephine\FIELD DUPLICATES\53481A2a anchor port of bellingham diff.wpd

LDC #: 53481 A29

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported RLs

Page:	of	
eviewer:	JVG	

METHOD: GC/MS BNA (EPA SW 846 Method 8270 €)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?

Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?

#	Sample ID	Compound	Finding	Qualifications
	1, 3, 15	/y , z _z	> tal range	Jack/A
	7	UU, YY, ZZ, CCC, DDD		
		, ,		
			-	

Comments: _	See sample calculation verification worksheet for recalculations

LDC #: 53481 A2a

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page:	L_of	L
eviewer:	JVG	

METHOD: GC/MS BNA (EPA SW 846 Method 8270 5)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

YN N/A Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Compound	Finding	Qualifications
		1,3,15	77, 22	> calrange	NR
		2,4,16	Λ	dil	
		2, 7, 16	All except above	a11	
		7	UU, YY, ZZ, CCC, DDD	> cal range	
		8	All except above	dil	
			7111	WI	
-					
-					

Comments:			 	 	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Port of Bellingham

LDC Report Date: May 12, 2022

Polychlorinated Biphenyls as Aroclors Parameters:

Stage 2B Validation Level:

Analytical Resources, Inc., Tukwila, WA Laboratory:

Sample Delivery Group (SDG): 22A0533

Sample Identification	Laboratory Sample	Matrix	Collection Date
HS-01SG-0-12-220118	22A0533-01	Sediment	01/18/22
HS-01SG-12-18-220118	22A0533-02	Sediment	01/18/22
HS-02SG-0-12-220118	22A0533-03	Sediment	01/18/22
HS-02SG-12-17-220118	22A0533-04	Sediment	01/18/22
HS-03SG-0-12-220118	22A0533-05	Sediment	01/18/22
HS-03SG-12-17-220118	22A0533-06	Sediment	01/18/22
HS-04SG-0-12-220119	22A0533-07	Sediment	01/19/22
HS-04SG-12-16-220119	22A0533-08	Sediment	01/19/22
HS-1005SG-0-12-220119	22A0533-09	Sediment	01/19/22
HS-05SG-0-12-220119	22A0533-10	Sediment	01/19/22
HS-05SG-12-16-220119	22A0533-11	Sediment	01/19/22
HS-06SG-0-12-220119	22A0533-12	Sediment	01/19/22
HS-06SG-12-17-220119	22A0533-13	Sediment	01/19/22
HS-08SS-220118	22A0533-15	Sediment	01/18/22
HS-10SS-220118	22A0533-17	Sediment	01/18/22
HS-11SS-220118	22A0533-18	Sediment	01/18/22
HS-12SS-220119	22A0533-19	Sediment	01/19/22
HS-12SS-220119MS	22A0533-19MS	Sediment	01/19/22
HS-12SS-220119MSD	22A0533-19MSD	Sediment	01/19/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the PRDI Work Plan Attachment C Quality Assurance Project Plan (October 2021) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) as Aroclors by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

All internal standard areas and retention times were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

Samples HS-06SG-0-12-220119 and HS-06SG-12-17-220119 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concent			
Analyte	HS-06SG-0-12-220119	HS-06SG-12-17-220119	RPD (Limits)	Difference (Limits)
Aroclor-1254	18.0	22.1	-	4 (≤40)
Aroclor-1260	24.3	18.7	-	6 (≤40)

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Port of Bellingham Polychlorinated Biphenyls as Aroclors - Data Qualification Summary - SDG 22A0533

No Sample Data Qualified in this SDG

Port of Bellingham Polychlorinated Biphenyls as Aroclors - Laboratory Blank Data Qualification Summary - SDG 22A0533

No Sample Data Qualified in this SDG

LDC #: 53481A3b

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

SDG #: 22A0533

Laboratory: Analytical Resources, Inc., Tukwila, WA

METHOD: GC Polychlorinated Biphenyls (EPA SW-846 Method 8082A)

Date: 67/6/22
Page: 1 of 7
Reviewer: 1/6
2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments	
l.	Sample receipt/Technical holding times	AIA		
H.	Initial calibration/ICV	AIÀ	RSD & 20%	1645 20%.
III.	Continuing calibration	A'	2,0€ 20%	
IV.	Laboratory Blanks	A		
V.	Field blanks	N		
VI.	Surrogate spikes /15	A/A		
VII.	Matrix spike/Matrix spike duplicates	À		
VIII.	Laboratory control samples	A	Les sp	
IX.	Field duplicates	SW	D = 9/10	
X.	Target analyte quantitation	N		· · · · · · · · · · · · · · · · · · ·
XI.	Target analyte identification	N		
_XII	Overall assessment of data	A		

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

	Client ID.	Lab ID	Matrix	Date
1	HS-01SG-0-12-220118	22A0533-01	Sediment	01/18/22
2	HS-01SG-12-18-220118	22A0533-02	Sediment	01/18/22
3	HS-02SG-0-12-220118	22A0533-03	Sediment	01/18/22
4	HS-02SG-12-17-220118	22A0533-04	Sediment	01/18/22
5	HS-03SG-0-12-220118	22A0533-05	Sediment	01/18/22
6	HS-03SG-12-17-220118	22A0533-06	Sediment	01/18/22
7	HS-04SG-0-12-220119	22A0533-07	Sediment	01/19/22
8	HS-04SG-12-16-220119	22A0533-08	Sediment	01/19/22
9	HS-1005SG-0-12-220119	22A0533-09	Sediment	01/19/22
10	HS-05SG-0-12-220119	22A0533-10	Sediment	01/19/22
11	HS-05SG-12-16-220119	22A0533-11	Sediment	01/19/22
12	HS-06SG-0-12-220119	22A0533-12	Sediment	01/19/22
13	HS-06SG-12-17-220119	22A0533-13	Sediment	01/19/22
14	HS-08SS-220118	22A0533-15	Sediment	01/18/22
15	HS-10S\$-220118	22A0533-17	Sediment	01/18/22
16	HS-11SS-220118	22A0533-18	Sediment	01/18/22
17	HS-12SS-220119	22A0533-19	Sediment	01/19/22

LDC #: 53481A3b	
-----------------	--

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

SDG #: 22A0533

Page: 2 of 2 Reviewer: No 2nd Reviewer:

Laboratory: Analytical Resources, Inc., Tukwila, WA

METHOD: GC Polychlorinated Biphenyls (EPA SW-846 Method 8082A)

	Client ID	Lab ID	Matrix	Date
18	HS-12SS-220119MS	 22A0533-19MS	Sediment	01/19/22
19	HS-12SS-220119MSD	 22A0533-19MSD	Sediment	01/19/22
20				
21				
22				
Votes	:			

NOLE			 	
	BKA0649-BLK1			

LDC#: 53481A3b

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:_1_of_1_ Reviewer:__JVG___

METHOD: GC PCB (EPA SW 846 Method 8082)

	Concentration (ug/Kg) Compound 12 13				Limits (±2XRL)	
Compound			RPD (≤ 5 0%)	Difference (ug/Kg)		
Aroclor 1254	18.0	22.1		4	≤40	
Aroclor 1260	24.3	18.7		6	≤40	

V:\Josephine\FIELD DUPLICATES\53481A3b anchor port of bellingham diff.wpd

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Port of Bellingham

LDC Report Date:

March 24, 2022

Parameters:

Metals

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc., Tukwila, WA

Sample Delivery Group (SDG): 22A0533

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
HS-01SG-0-12-220118	22A0533-01	Sediment	01/18/22
HS-01SG-12-18-220118	22A0533-02	Sediment	01/18/22
HS-02SG-0-12-220118	22A0533-03	Sediment	01/18/22
HS-02SG-12-17-220118	22A0533-04	Sediment	01/18/22
HS-03SG-0-12-220118	22A0533-05	Sediment	01/18/22
HS-03SG-12-17-220118	22A0533-06	Sediment	01/18/22
HS-04SG-0-12-220119	22A0533-07	Sediment	01/19/22
HS-04SG-12-16-220119	22A0533-08	Sediment	01/19/22
HS-1005SG-0-12-220119	22A0533-09	Sediment	01/19/22
HS-05SG-0-12-220119	22A0533-10	Sediment	01/19/22
HS-05SG-12-16-220119	22A0533-11	Sediment	01/19/22
HS-06SG-0-12-220119	22A0533-12	Sediment	01/19/22
HS-06SG-12-17-220119	22A0533-13	Sediment	01/19/22
HS-08SS-220118	22A0533-15	Sediment	01/18/22
HS-10SS-220118	22A0533-17	Sediment	01/18/22
HS-11SS-220118	22A0533-18	Sediment	01/18/22
HS-12SS-220119	22A0533-19	Sediment	01/19/22
HS-01SG-0-12-220118MS	22A0533-01MS	Sediment	01/18/22
HS-01SG-0-12-220118DUP	22A0533-01DUP	Sediment	01/18/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the PRDI Work Plan Attachment C Quality Assurance Project Plan (October 2021) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (November 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Arsenic, Cadmium, Copper, and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6010D

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Instrument Calibration

Initial and continuing calibrations were performed as required by the method.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

III. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	%R (Limits)	Flag	A or P
HS-01SG-0-12-220118MS (All samples in SDG 22A0533)	Zinc	26.5 (70-130)	J (all detects)	А

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits with the following exceptions:

DUP ID (Associated Samples)	Analyte	RPD (Limits)	Difference (Limits)	Flag	A or P
HS-01SG-0-12-220118DUP	Copper	32.8 (≤30)	-	J (all detects)	А
(All samples in SDG 22A0533)	Zinc	43.4 (≤30)	-	J (all detects)	

VIII. Serial Dilution

Serial dilution was not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples HS-1005SG-0-12-220119 and HS-05SG-0-12-220119 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentrat	ion (mg/Kg)		
Analyte	HS-1005SG-0-12-220119	HS-05SG-0-12-220119	RPD (Limits)	Difference (Limits)
Arsenic	4.99	2.57	-	2.42 (≤55.8)
Cadmium	1.32	1.42	-	0.1 (≤2.24)
Copper	44.9	31.1	36 (≤50)	-
Zinc	65.2	67.9	4 (≤50)	-

XI. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to MS %R and DUP RPD, data were qualified as estimated in seventeen samples.

Port of Bellingham Metals - Data Qualification Summary - SDG 22A0533

				_
Sample	Analyte	Flag	A or P	Reason
HS-01SG-0-12-220118 HS-01SG-12-18-220118 HS-02SG-0-12-220118 HS-02SG-12-17-220118 HS-03SG-0-12-220118 HS-03SG-0-12-220119 HS-04SG-0-12-220119 HS-04SG-0-12-220119 HS-05SG-0-12-220119 HS-05SG-0-12-220119 HS-06SG-0-12-220119 HS-06SG-12-17-220119 HS-06SG-12-17-220119 HS-08SS-220118 HS-10SS-220118 HS-11SS-220118	Zinc	J (all detects)	A	Matrix spike (%R)
HS-01SG-0-12-220118 HS-01SG-12-18-220118 HS-02SG-0-12-220118 HS-02SG-12-17-220118 HS-03SG-0-12-220118 HS-03SG-12-17-220118 HS-04SG-0-12-220119 HS-04SG-12-16-220119 HS-05SG-0-12-220119 HS-05SG-12-16-220119 HS-06SG-12-16-220119 HS-06SG-12-17-220119 HS-06SG-12-17-220119 HS-08SS-220118 HS-11SS-220118 HS-11SS-220118	Copper Zinc	J (all detects) J (all detects)	A	Duplicate sample analysis (RPD)

Port of Bellingham

Metals - Laboratory Blank Data Qualification Summary - SDG 22A0533

No Sample Data Qualified in this SDG

LDC #: 53481A4b

SDG #: 22A0533

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Laboratory: Analytical Resources, Inc., Tukwila, WA

Reviewer:

2nd Reviewer:

METHOD: Metals (EPA SW-846 Method 6010D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	AA	
11.	Instrument Calibration	A	
III.	ICP Interference Check Sample (ICS) Analysis	A	
IV.	Laboratory Blanks	A	
V.	Field Blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	SW	
VII.	Duplicate sample analysis	Sw	
VIII.	Serial Dilution	\mathcal{N}	
IX.	Laboratory control samples	A	LC
X.	Field Duplicates	Sin	(9,10)
XI.	Target Analyte Quantitation	N	3 /
XII	Overall Assessment of Data		

Note:

A = Acceptable

SW = See worksheet

N = Not provided/applicable

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

Client ID Lab ID Matrix Date HS-01SG-0-12-220118 22A0533-01 Sediment 01/18/22 01/18/22 2 22A0533-02 HS-01SG-12-18-220118 Sediment 3 HS-02SG-0-12-220118 22A0533-03 Sediment 01/18/22 HS-02SG-12-17-220118 22A0533-04 Sediment 01/18/22 5 HS-03SG-0-12-220118 22A0533-05 Sediment 01/18/22 6 HS-03SG-12-17-220118 22A0533-06 Sediment 01/18/22 7 HS-04SG-0-12-220119 22A0533-07 Sediment 01/19/22 8 HS-04SG-12-16-220119 22A0533-08 Sediment 01/19/22 9 HS-1005SG-0-12-220119 22A0533-09 Sediment 01/19/22 10 HS-05SG-0-12-220119 22A0533-10 Sediment 01/19/22 22A0533-11 11 HS-05SG-12-16-220119 Sediment 01/19/22 12 HS-06SG-0-12-220119 22A0533-12 Sediment 01/19/22 13 HS-06SG-12-17-220119 22A0533-13 Sediment 01/19/22 14 HS-08SS-220118 22A0533-15 Sediment 01/18/22 15 HS-10SS-220118 22A0533-17 Sediment 01/18/22 HS-11SS-220118 16 22A0533-18 Sediment 01/18/22 HS-12SS-220119 22A0533-19 Sediment 01/19/22

LDC #:	53481A4b

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

SDG #: 22A0533 Laboratory: Analytical Resources, Inc., Tukwila, WA

Reviewer: 2nd Reviewer:

METHOD: Metals (EPA SW-846 Method 6010D)

	Client ID	Lab ID	Matrix	Date
18	HS-01SG-0-12-220118MS	22A0533-01MS	Sediment	01/18/22
19	HS-01SG-0-12-220118DUP	22A0533-01DUP	Sediment	01/18/22
20				
21				
22				

NOIES	 	

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

LDC #: 53481A4b

CVAA

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List
All	As, Cd, Cu, Zn
	Analysis Method
ICP	As, Cd, Cu, Zn
ICP-MS	

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)

MS analysis was performed by the laboratory. All MS percent recoveries (%R) were within the acceptable limits with the following exceptions:

MS ID	Matrix	Analyte			Associated Samples	Qualification	Det/ND
18	s	Zn	26.5	70-130	All	J/R/A	Det
					, , , , , , , , , , , , , , , , , , , ,		
	<u> </u>						

Comments:

Page 1 of 1 Reviewer:CR

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)

Laboratory duplicate analysis was performed by the laboratory. All laboratory duplicates were with the relative percent difference (RPD) for samples >5X the reporting limits with the exceptions listed below. If samples were <5X the reporting limits, the difference was within 1X the reporting limit for water samples and within 2X the reporting limit for soil samples for all samples with the exceptions listed below.

Duplicate ID	Matrix	Analyte	RPD	RPD Limit	Difference (units)	Difference Limit	Associated Samples	Qualification	Det/ND
19	S	Cu	32.8	30			All	J/UJ/A	Det
		Zn	43.4	30			All	J/UJ/A	Det
	-								
			1						
			<u> </u>						
								1	
		 							
	-								
			1						
		-	-						

Comments:

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page 1 of 1 Reviewer:CR

Method: Metals

A L . 4 .	C	Concentration (mg/Kg)			Diff.
Analyte	9	10	(≤ 50)	Diff.	Limits
Arsenic	4.99	2.57		2.42	(≤55.8)
Cadmium	1.32	1.42		0.1	(≤2.24)
Copper	44.9	31.1	36		
Zinc	65.2	67.9	4		

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Port of Bellingham

LDC Report Date:

March 24, 2022

Parameters:

Wet Chemistry

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc., Tukwila, WA

Sample Delivery Group (SDG): 22A0533

_	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
HS-01SG-0-12-220118	22A0533-01	Sediment	01/18/22
HS-01SG-12-18-220118	22A0533-02	Sediment	01/18/22
HS-02SG-0-12-220118	22A0533-03	Sediment	01/18/22
HS-02SG-12-17-220118	22A0533-04	Sediment	01/18/22
HS-03SG-0-12-220118	22A0533-05	Sediment	01/18/22
HS-03SG-12-17-220118	22A0533-06	Sediment	01/18/22
HS-04SG-0-12-220119	22A0533-07	Sediment	01/19/22
HS-04SG-12-16-220119	22A0533-08	Sediment	01/19/22
HS-1005SG-0-12-220119	22A0533-09	Sediment	01/19/22
HS-05SG-0-12-220119	22A0533-10	Sediment	01/19/22
HS-05SG-12-16-220119	22A0533-11	Sediment	01/19/22
HS-06SG-0-12-220119	22A0533-12	Sediment	01/19/22
HS-06SG-12-17-220119	22A0533-13	Sediment	01/19/22
HS-08SS-220118	22A0533-15	Sediment	01/18/22
HS-10SS-220118	22A0533-17	Sediment	01/18/22
HS-11SS-220118	22A0533-18	Sediment	01/18/22
HS-12SS-220119	22A0533-19	Sediment	01/19/22
HS-01SG-0-12-220118MS	22A0533-01MS	Sediment	01/18/22
HS-01SG-0-12-220118DUP1	22A0533-01DUP1	Sediment	01/18/22
HS-01SG-0-12-220118DUP2	22A0533-01DUP2	Sediment	01/18/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the PRDI Work Plan Attachment C Quality Assurance Project Plan (October 2021) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (November 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A

Total Solids by Standard Method 2540G

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples HS-1005SG-0-12-220119 and HS-05SG-0-12-220119 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentrat			
Analyte	HS-1005SG-0-12-220119	HS-05SG-0-12-220119	RPD (Limits)	Difference (Limits)
Total solids	44.95	42.97	5 (≤50)	-
Total organic carbon	1.38	1.57	13 (≤50)	-

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Port of Bellingham Wet Chemistry - Data Qualification Summary - SDG 22A0533

No Sample Data Qualified in this SDG

Port of Bellingham Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 22A0533

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #:__ 53481A6 Stage 2B SDG #: 22A0533

Laboratory: Analytical Resources, Inc., Tukwila, WA

Reviewer: 2nd Reviewer:

METHOD: (Analyte) TOC	(EPA SW-846 Method 9060A),	Total Solids	(SM2540G)	

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	AA	
	Initial calibration	A	
III.	Calibration verification	4	
IV	Laboratory Blanks	H	
V	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	A	
VII.	Duplicate sample analysis	A	
VIII.	Laboratory control samples	A	LCS
IX.	Field duplicates	51/	(9,10)
X.	Target Analyte Quantitation	N	
ΧL	Overall assessment of data	1	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank EB = Equipment blank

D = Duplicate TB = Trip blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
	Cheff ID	Lab ID	IVIALITX	Date
1	HS-01SG-0-12-220118	22A0533-01	Sediment	01/18/22
2_	HS-01SG-12-18-220118	22A0533-02	Sediment	01/18/22
3	HS-02SG-0-12-220118	22A0533-03	Sediment	01/18/22
4	HS-02SG-12-17-220118	22A0533-04	Sediment	01/18/22
5	HS-03SG-0-12-220118	22A0533-05	Sediment	01/18/22
6_	HS-03SG-12-17-220118	22A0533-06	Sediment	01/18/22
7	HS-04SG-0-12-220119	22A0533-07	Sediment	01/19/22
8	HS-04SG-12-16-220119	22A0533-08	Sediment	01/19/22
9	HS-1005SG-0-12-220119	22A0533-09	Sediment	01/19/22
10	HS-05SG-0-12-220119	22A0533-10	Sediment	01/19/22
11	HS-05SG-12-16-220119	22A0533-11	Sediment	01/19/22
12	HS-06SG-0-12-220119	22A0533-12	Sediment	01/19/22
13	HS-06SG-12-17-220119	22A0533-13	Sediment	01/19/22
14	HS-08SS-220118	22A0533-15	Sediment	01/18/22
15	HS-10SS-220118	22A0533-17	Sediment	01/18/22
16_	HS-11SS-220118	22A0533-18	Sediment	01/18/22
17	HS-12SS-220119	22A0533-19	Sediment	01/19/22

SDG	#: 53481A6 VALIDATION C #: 22A0533 pratory: Analytical Resources, Inc., Tukwila, W	COMPLETENESS WORKSHEET Stage 2B VA	R 2nd F	Date:3/16/2 Page:2_of 2 Reviewer:Reviewer:
MET	HOD: (Analyte) TOC (EPA SW-846 Method 9	060A), Total Solids (SM2540G)		
	Client ID	Lab ID	Matrix	Date
18	HS-01SG-0-12-220118MS	22A0533-01MS	Sediment	01/18/22
19	HS-01SG-0-12-220118DUP	22A0533-01DUP	Sediment	01/18/22
20	HS-01SG-0-12-220118TRP DQU	22A0533-01 TRP DAP2	Sediment	01/18/22
21				
22				
i				

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

All elements are applicable to each sample as noted below.

Sample ID	Target Analyt	rte List	
All	TS, TOC		
QC			
	18 TOC		
	19 TOC, TS		
	20 TS		

LDC #: 53481A6

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page 1 of 1 Reviewer:CR

Method: Inorganics

A1.4-	Concentrat	ion (mg/Kg)	RPD	Diff	Diff.
Analyte	9	10	(≤ 50)	Diff.	Limits
Total solids	44.95	42.97	5		
тос	1.38	1.57	13		

LDC#: 53481

EDD POPULATION COMPLETENESS WORKSHEET Anchor

Date: 3-28-2

Page: 1 of 1 2nd Reviewer:

The LDC job number listed above was entered by _______.

	EDD Process	Y/N	Initial	Comments/Action
I.	EDD Completeness			
Ia.	- All methods present?	Y	WH	
Ib.	- All samples present/match report?	Y	WH	
Ic.	- All reported analytes present?	Ý	WH	
Id.	- 10% or 100% verification of EDD?	Y	MH	106
II.	EDD Preparation/Entry			
IIa.	- QC Level applied? (EPAStage2B or EPAStage4)	Y	WH	EPA Stage 2B
IIb.	- Laboratory EMPC qualified results qualified (J with reason code 23)?	NA	WH	
III.	Reasonableness Checks	<u>-</u>		
IIIa.	- Do all qualified ND results have ND qualifier (e.g. UJ)?	7	HW	
IIIb.	- Do all qualified detect results have detect qualifier (e.g. J)?	Y	MH	
IIIc.	- If reason codes are used, do all qualified results have reason code field populated, and vice versa?	Υ	WH	
IIId.	- Do blank concentrations in report match EDD, where data was qualified due to blank?	NA	HW H	
IIIe.	- Is the detect flag set to "N" for all "U" qualified blank results?	NA	WH	
IIIf.	- Were there multiple results due to dilutions/reanalysis? If so, were results qualified appropriately?	4/4	WH	
IIIg.	-Are all results marked reportable "Yes" unless rejected for overall assessment in the data validation report?	4	MH	
IIIh.	-Are there any lab "R" qualified data? / Are the entry columns blank for these results?	NA	WH	
IIIi.	-Are there any discrepancies between the data packet and the EDD?	7	WH	

Notes:	*see discrepancy sheet	 	
		-	

LABORATORY DATA CONSULTANTS, INC. 2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

Anchor QEA, LLC 1201 Third Ave. Suite 2600

Seattle, WA 98101

ATTN: Ms. Delaney Peterson dpeterson@anchorqea.com

SUBJECT: Port of Bellingham, Data Validation

Dear Ms. Peterson,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on April 1, 2022. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #53881:

SDG #	<u>Fraction</u>
22C0093	Polynuclear Aromatic Hydrocarbons, Polychlorinated Biphenyls, Metals, Wet
	Chemistry

The data validation was performed under Stage 2B guidelines. The analyses were validated using the following documents, as applicable to each method:

- PRDI Work Plan Attachment C Quality Assurance Project Plan (October 2021)
- USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020)
- USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (November 2020).
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

Kevin Kha

kkha@lab-data.com

Project Manager/Senior Chemist

May 27, 2022

_	12 pa	ages-ADV		R1 (add													mer																					
	Stage	e 2B EDD)		LE	OC#	‡ 53	888	1 (/	۱nc	ho	r E	nvii	ron	me	nta	I - S	Sea	ttle	e, V	VA.	/ Po	ort	of E	3el	ling	jha	m)										
LD	oc se	OG#	DATE REC'D	(3) DATE DUE	(827	_	(808)	_	Me (601			60A)	To Sol (254	lids 10G)										•		•								1				
Ma	atrix: Wate			I	W			S				1	W		W	S	W	S	W	S	W	s	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S
Α	. 22C	:0093	04/01/22	04/22/22	0	2	0	1	0	1	0	1	0	1																					Ш	$\vdash\vdash$	$\vdash\vdash$	H
																																			H	\square	\square	H
																																					\Box	
																																						П
-																																			\square	\vdash		\vdash
<u> </u> -																																				\vdash	\square	\vdash
-																																			\vdash	\Box	\Box	
-									-			<u> </u>																										
																																			\vdash		\vdash	Н
-																																			\vdash			
-												<u> </u>																										Н
																																				\vdash	$\vdash\vdash$	$\vdash\vdash$
\vdash																																			$\vdash \vdash$			Н
\vdash																																			\vdash	\Box		H
																																			Ш			Щ
L					<u> </u>				<u> </u>			<u> </u>	<u> </u>		_					_	_			_	_	_	_		_									Н
Tot	tal T/	KK			0	2	0	1	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Port of Bellingham

LDC Report Date:

May 19, 2022

Parameters:

Wet Chemistry

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc., Tukwila, WA

Sample Delivery Group (SDG): 22C0093

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HS-09SS-220118	22C0093-01	Sediment	01/18/22
HS-09SS-220118DUP	22C0093-01DUP	Sediment	01/18/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the PRDI Work Plan Attachment C Quality Assurance Project Plan (October 2021) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (November 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A

Total Solids by Standard Method 2540G

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met with the following exceptions:

Sample	Analyte	Total Time From Sample Collection Until Analysis	Required Holding Time From Sample Collection Until Analysis	Flag	A or P
HS-09SS-220118	Total organic carbon	79 days	14 days	J (all detects)	Р

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to technical holding time, data were qualified as estimated in one sample.

Port of Bellingham Wet Chemistry - Data Qualification Summary - SDG 22C0093

Sample	Analyte	Flag	A or P	Reason
HS-09SS-220118	Total organic carbon	J (all detects)	Р	Technical holding times

Port of Bellingham

Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 22C0093

No Sample Data Qualified in this SDG

LDC #:	53881A6	VALIDATION COMPLETENESS WORKSHEET
SDG #:	22C0093	Stage 2B

SDG #: 22C0093 Laboratory: Analytical Resources, Inc., Tukwila, WA

Reviewer: 1 2nd Reviewer: 150

METHOD: (Ar	nalyte	TOC	(EPA S	SW-846	Method	9060A),	Total	Solids	(SM2540G)	

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	A /SW	
- 11	Initial calibration	A	
III.	Calibration verification	A	
IV	Laboratory Blanks	A	
<u></u>	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	N	<u>·</u>
VII.	Duplicate sample analysis	A	
VIII.	Laboratory control samples	A	LCS
IX.	Field duplicates	N	
X.	Target Analyte Quantitation	N	
ΧI	Overall assessment of data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	HS-09SS-220118	22C0093-01	Sediment	01/18/22
2	HS-09SS-220118DUP	22C0093-01DUP	Sediment	01/18/22
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15_				

Notes:		

LDC #: 53881A6

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page 1 of 1 Reviewer: Jada Morales

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List
1	TOC,Total Solids
QC:	
2	Total Solids

VALIDATION FINDINGS WORKSHEETS <u>Holding Time</u>

Reviewer: Jada Morales

Page 1 of 1

METHOD: Inorganics

All samples were properly preserved and within the requried holding time with the following exceptions.

			Method: Analyte: Total (Holding Tim	Organic Carbon	
Sample ID	Sampling Date	Analysis Date	Total Time from Collection to Analysis	Qualifier	Det/ND
1	1/18/2022	4/7/2022	79	J/R/P	Det

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Port of Bellingham

LDC Report Date:

May 19, 2022

Parameters:

Polynuclear Aromatic Hydrocarbons

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc., Tukwila, WA

Sample Delivery Group (SDG): 22C0093

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HS-09SS-220118	22C0093-01	Sediment	01/18/22
HS-09SS-220118DL	22C0093-01DL	Sediment	01/18/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the PRDI Work Plan Attachment C Quality Assurance Project Plan (October 2021) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check was performed at the required frequency.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all analytes.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
03/22/22	Fluoranthene Pyrene	83.1 38.9	HS-09SS-220118	J (all detects) J (all detects)	A

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples DRET-HS-COMP-A-220120 and DRET-HS-COMP-A1-220120 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

All target analyte quantitations met validation criteria with the following exceptions:

Sample	Analyte	Finding	Criteria	Flag	A or P
HS-09SS-220118	Fluoranthene Pyrene Chrysene	Sample result exceeded calibration range.	Reported result should be within calibration range.	J (all detects) J (all detects) J (all detects)	A

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Analyte	Reason	Flag	A or P
HS-09SS-220118	Fluoranthene Pyrene Chrysene	Results exceeded calibration range.	Not reportable	-
HS-09SS-220118DL	All analytes except Fluoranthene Pyrene Chrysene	Results from undiluted analyses were more usable.	Not reportable	-

Port of Bellingham Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 22C0093

Sample	Analyte	Flag	A or P	Reason
HS-09SS-220118	Fluoranthene Pyrene Chrysene	Not reportable	-	Overall assessment of data
HS-09SS-220118DL All analytes except Fluoranthene Pyrene Chrysene		Not reportable	-	Overall assessment of data

Port of Bellingham

Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification **Summary - SDG 22C0093**

No Sample Data Qualified in this SDG

SDG # Labora	53881A2a VALIDA : 22C0093 tory: Analytical Resources, Inc., Tul OD: GC/MS Polynuclear Aromatic H	Sta <u>kwila, WA</u>	.ETENESS WORKSHEE age 2B PA SW-846 Method 8270E)		Date: ٥5/١٥/ Page: _of Reviewer: _ <i>Y</i> 6 Reviewer: _
The sa	mples listed below were reviewed for on findings worksheets.			tion findings are i	noted in attached
	Validation Area		Com	ments	
1.	Sample receipt/Technical holding times	A /A			
II.	GC/MS Instrument performance check	A			
III.	Initial calibration/ICV	AIA	RSD = 20?	10	N = 362
IV.	Continuing calibration	SW	RSD = 20? 2 D = 202		
V.	Laboratory Blanks	A			
VI.	Field blanks	N			
VII.	Surrogate spikes	Ä			
VIII.	Matrix spike/Matrix spike duplicates	N			
IX.	Laboratory control samples		us b		
X.	Field duplicates	N			
XI.	Internal standards	A			
XII.	Target analyte quantitation	SM			
XIII.	Target analyte identification	N			
XIV.	System performance	N			
XV.	Overall assessment of data	SW			,
Note:	N = Not provided/applicable R	D = No compounds o = Rinsate 3 = Field blank	detected D = Duplicate TB = Trip blank EB = Equipment bl	SB=Sour OTHER: ank	ce blank
	client ID		Lab ID	Matrix	Date
	IS-09SS-220118		22C0093-01	Sediment	01/18/22
	IS-09SS-220118DL		22C0093-01DL	Sediment	01/18/22
3					
4					
5					
6					
7		-			
8					
9					
lotes:					

(Frozen sample)

BKC0240-B161

LDC #: 53881 A26

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page:	of/	
Reviewer:	JVG	

METHOD: GC/MS BNA (EPA SW 846 Method 8270)
Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

(Y)N N/A Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? Y(N)N/A Were percent differences (%D) ≤20 % and relative response factors (RRF) within the method criteria?

#	Date	Standard ID	Compound	Finding %D (Limit: <20.0%)	Finding RRF (Limit)	Associated Samples	Qualifications
	03/22/20	NT1022032209	77 (+) Zz (+)			1 (Det)	J dets/A
 		,	ZZ (t)	38.9		\frac{1}{2}	<i>\</i>
<u> </u>							
<u> </u>							
-							
ļ							
-							
ļ							
<u> </u>		_					
<u> </u>							
-							

Note: * Ave RRF failed method criteria but within validation criteria

LDC #: 53861 A 2a

Y/N N/A

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported RLs

Page:	lof
Reviewer:	JVG '

METHOD: GC/MS BNA (EPA SW 846 Method 8270€)

			qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".
N	. N	N/A	Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the

Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?

Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?

#	Sample ID	Compound	Finding	Qualifications
		YY ZZ DDD	> cul range	Jaets/A
-		' '	3	
-				
-				
				
<u> </u>				

Comments: <u>See sample calculation ve</u>	rification worksheet for recalculations

LDC #: 53881 A24

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page: _	of	1
Reviewer:	JVG	7

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

YN N/A

Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Compound	Finding	Qualifications
			YY, ZZ, DDD	> cal range	NR. /A
		2	An except abo	ve di)	
			,		

 /₩	VA/P	ነሰ

Comments:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Port of Bellingham

LDC Report Date: May 19, 2022

Parameters: Polychlorinated Biphenyls

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc., Tukwila, WA

Sample Delivery Group (SDG): 22C0093

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HS-09SS-220118	22C0093-01	Sediment	01/18/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the PRDI Work Plan Attachment C Quality Assurance Project Plan (October 2021) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was analyzed for and positively identified by the laboratory: however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Standard	Column	Analyte	%D	Associated Samples	Flag	A or P
03/10/22	SKC0142-SCV1	2C	Aroclor-1260	20.8	HS-09SS-220118	J (all detects)	Α

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to ICV %D, data were qualified as estimated in one sample.

Port of Bellingham

Polychlorinated Biphenyls - Data Qualification Summary - SDG 22C0093

Sample	Analyte	Flag	A or P	Reason
HS-09SS-220118	Aroclor-1260	J (all detects)	Α	Initial calibration verification (%D)

Port of Bellingham

Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 22C0093

No Sample Data Qualified in this SDG

LDC #: <u>53881A3b</u>	LDC:	#:	53881	A3b
------------------------	------	----	-------	-----

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

SDG #: 22C0093 Laboratory: Analytical Resources, Inc., Tukwila, WA

Reviewer: 2nd Reviewer:

METHOD: GC Polychlorinated Biphenyls (EPA SW-846 Method 8082A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comm	ents
l.	Sample receipt/Technical holding times	AIA		
II.	Initial calibration/ICV	A /SW		101 = 203
III.	Continuing calibration	I A L	2 p & 20/2	
IV.	Laboratory Blanks	A		
V.	Field blanks	$\frac{1}{1}$		
VI.	Surrogate spikes	Ä		
VII.	Matrix spike/Matrix spike duplicates			
VIII.	Laboratory control samples	A	45	
IX.	Field duplicates	N		
X.	Target analyte quantitation	N		
XI.	Target analyte identification	N		
_XII	Overall assessment of data	A		·

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

		T B - T ICIG DIGTIK	 		
	Client ID		Lab ID	Matrix	Date
1+	HS-09SS-220118		 22C0093-01	Sediment	01/18/22
2	·				
3			i		
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
Votes	:				
	BKC0281-BIKA			-	

LDC#: 53881 A36

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

Page:	of
Reviewer:	JVG

METHOD: GC Pesticides/PCBs (EPA SW 846 Method 8081/8082)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". What type of initial calibration verification calculation was performed? ____%D or _____%R

Y N/A Was an initial calibration verification standard analyzed after each ICAL for each instrument?

Y(N)N/A Did the initial calibration verification standards meet the %D / %R validation criteria of <20.0% / 80-120%?

#_		Standard ID	Detector/ Column	Compound	%D (Limit ≤ 20.0)	Associated Samples	Qualifications
	03/10/22	SKC0142-SC	V1 2C	Aroclor 1260	÷) 20.8	All (bet)	Jacts A
	7.00					1111 (101)	
H							
					, , , , , , , , , , , , , , , , , , , ,		

(ICV performed on all PCBs)

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Port of Bellingham

LDC Report Date:

May 19, 2022

Parameters:

Metals

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc., Tukwila, WA

Sample Delivery Group (SDG): 22C0093

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HS-09SS-220118	22C0093-01	Sediment	01/18/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the PRDI Work Plan Attachment C Quality Assurance Project Plan (October 2021) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (November 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Arsenic, Cadmium, Copper, and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6010D

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Instrument Calibration

Initial and continuing calibrations were performed as required by the method.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

III. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Serial Dilution

Serial dilution was not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Port of Bellingham Metals - Data Qualification Summary - SDG 22C0093

No Sample Data Qualified in this SDG

Port of Bellingham Metals - Laboratory Blank Data Qualification Summary - SDG 22C0093

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #:___ 53881A4b

Stage 2B

SDG #: 22C0093 Laboratory: Analytical Resources, Inc., Tukwila, WA

Reviewer: ~ 2nd Reviewer:

METHOD: Metals (EPA SW-846 Method 6010D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	A/A	
II.	Instrument Calibration	A	
<u>III.</u>	ICP Interference Check Sample (ICS) Analysis	A	
IV.	Laboratory Blanks	A	
V	Field Blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	N	
VII.	Duplicate sample analysis	N	
VIII.	Serial Dilution	N	
IX.	Laboratory control samples	A	îcs
X.	Field Duplicates	N	·
XI.	Target Analyte Quantitation	N	
XII	Overall Assessment of Data	<u>A</u>	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

	Client ID	Lab ID	Matrix	Date
1	HS-09SS-220118	22C0093-01	Sediment	01/18/22
2				
3				
4				
5				
6				
7				
8			<u> </u>	
9				
10				
11				
12				
13				
14				
15				
16	<u> </u>	<u> </u>		

	 	 <u> </u>		
Natasi		 		
Notes:				
	 	 		

LDC #: 53881A4b

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page 1 of 1 Reviewer: Jada Morales

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List
1	As,Cd,Cu,Zn
· · · · · · · · · · · · · · · · · · ·	
	Analysis Method
ICP	As,Cd,Cu,Zn
ICP-MS	
CVAA	

LDC#: 5388 |

EDD POPULATION COMPLETENESS WORKSHEET Anchor

_{Date:} <u>5/2</u>7/2

Page: 1 of 1 2nd Reviewer:

The LDC job number listed above was entered by ______.

	EDD Process	Y/N	Initial	Comments/Action
I.	EDD Completeness	-		
Ia.	- All methods present?	Y	MH	
Ib.	- All samples present/match report?	Ý	WH	
Ic.	- All reported analytes present?	Y	WH	
Id.	- 10% or 100% verification of EDD?	Y	WH	10%
II.	EDD Preparation/Entry			
IIa.	- QC Level applied? (EPAStage2B or EPAStage4)	7	MH	EPAStage 2B
IIb.	- Laboratory EMPC qualified results qualified (J with reason code 23)?	NA	MH	
III.	Reasonableness Checks	-		
IIIa.	- Do all qualified ND results have ND qualifier (e.g. UJ)?	Y	MH	
IIIb.	- Do all qualified detect results have detect qualifier (e.g. J)?	Y	MH	
IIIc.	- If reason codes are used, do all qualified results have reason code field populated, and vice versa?	Y	WH	
IIId.	- Do blank concentrations in report match EDD, where data was qualified due to blank?	NA	MH	
IIIe.	- Is the detect flag set to "N" for all "U" qualified blank results?	NA	WH	
III£.	- Were there multiple results due to dilutions/reanalysis? If so, were results qualified appropriately?	NY	WH	
IIIg.	-Are all results marked reportable "Yes" unless rejected for overall assessment in the data validation report?	N	WH	method 8082A
IIIh.	-Are there any lab "R" qualified data? / Are the entry columns blank for these results?	NA	WH	
IIIi.	-Are there any discrepancies between the data packet and the EDD?	N	WH	

Notes:	*see discrepancy sheet	
_		_
		_

Anchor QEA, LLC 1201 Third Ave. Suite 2600 Seattle, WA 98101 ATTN: Ms. Delaney Peterson dpeterson@anchorgea.com

September 6, 2022

SUBJECT: Port of Bellingham - Data Validation

Dear Ms. Peterson,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on June 8, 2022. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #54461 RV1:

<u>SDG #</u>	<u>Fraction</u>
22D0380	Polynuclear Aromatic Hydrocarbons, Polychlorinated Biphenyls, Metals, Wet Chemistry

The data validation was performed under Stage 2B guidelines. The analyses were validated using the following documents, as applicable to each method:

- PRDI Work Plan Attachment C Quality Assurance Project Plan (October 2021)
- USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020)
- USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (November 2020)
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

Stella Cuenco

scuenco@lab-data.com

Project Manager/Senior Chemist

Anchor QEA, LLC 1201 Third Ave. Suite 2600 Seattle, WA 98101 ATTN: Ms. Delaney Peterson dpeterson@anchorgea.com

August 22, 2022

SUBJECT: Port of Bellingham - Data Validation

Dear Ms. Peterson,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on June 8, 2022. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #54461:

SDG #	<u>Fraction</u>
22D0380	Polynuclear Aromatic Hydrocarbons, Polychlorinated Biphenyls, Metals, Wet Chemistry

The data validation was performed under Stage 2B guidelines. The analyses were validated using the following documents, as applicable to each method:

- PRDI Work Plan Attachment C Quality Assurance Project Plan (October 2021)
- USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020)
- USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (November 2020)
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

Stella Cuenco

scuenco@lab-data.com

Project Manager/Senior Chemist

Attachment 1 7 pages-ADV LDC# 54461 (Anchor Environmental - Seattle, WA / Harris Ave. Shipyard, Port of Bellingham) Stage 2B EDD 7 TCLP **TCLP** Total DATE DATE **PAHs PCBs** Metals Metals Hg TOC Solids DUE (8270E) (8082A) (6010D) (6010D) (7470A) (9060A) (2540G) SDG# REC'D LDC w s w s w s w s ws Matrix: Water/Sediment 0 2 0 0 0 0 0 0 2 06/08/22 06/29/22 22D0380 0 0 T/KK Total

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Port of Bellingham

LDC Report Date:

July 28, 2022

Parameters:

Polynuclear Aromatic Hydrocarbons

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc., Tukwila, WA

Sample Delivery Group (SDG): 22D0380

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
HS-02HA-0-0.39-220419	22D0380-03	Sediment	04/19/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the PRDI Work Plan Attachment C Quality Assurance Project Plan (October 2021) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020). Where specific quidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check was performed at the required frequency.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all analytes.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Port of Bellingham Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 22D0380

No Sample Data Qualified in this SDG

Port of Bellingham Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification **Summary - SDG 22D0380**

No Sample Data Qualified in this SDG

SDG # _abora	#:22D0380 atory: <u>Analytical Resources, Inc., Tukwila,</u>	Si , WA	tage 2B	3	WORKSHEET		Date: 7/2/ Page:of eviewer:
Γhe sa	IOD: GC/MS Polynuclear Aromatic Hydro amples listed below were reviewed for each	·				n findings are no	oted in attached
/alloai	tion findings worksheets.	T					
	Validation Area				Comme	<u>ents</u>	
<u>l.</u>	Sample receipt/Technical holding times	4/4					
II.	GC/MS Instrument performance check	<u> </u>	0/				
III.	Initial calibration/ICV	AIA	10	PS		101 4 3	30
iV.	Continuing calibration	<u> </u>			CW £	. 20	
V.	Laboratory Blanks	A					
VI.	Field blanks	N					
VII.	Surrogate spikes	A					
VIII.	Matrix spike/Matrix spike duplicates	2	\Diamond	,			
IX.	Laboratory control samples / GRM	AA	L	cs	SRM		
X.	Field duplicates	N			7		
XI.	Internal standards	A					
XII.	Target analyte quantitation	N				·	
XIII.	Target analyte identification	N					
XIV.	System performance	N					
XV.	Overall assessment of data	7					
Note:	A = Acceptable ND = No N = Not provided/applicable R = Rins	o compounds sate eld blank	detected		D = Duplicate TB = Trip blank EB = Equipment blank	SB=Source OTHER:	: blank
	Client ID				Lab ID	Matrix	Date
1+ 1	HS-02HA-0-0.39-220419				22D0380-03	Sediment	04/19/22
2							
3							
4							
5							
6						 	
7							
						+	
8						 	
g lotes:							
	BKEOO 4-BLKI						
-+-						-	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Port of Bellingham

LDC Report Date:

July 28, 2022

Parameters:

Polychlorinated Biphenyls

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc., Tukwila, WA

Sample Delivery Group (SDG): 22D0380

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HS-02HA-0-0.39-220419	22D0380-03	Sediment	04/19/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the PRDI Work Plan Attachment C Quality Assurance Project Plan (October 2021) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- (Not Applicable): The non-conformance discovered during data validation NA demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Standard	Column	Analyte	%D	Associated Samples	Flag	A or P
04/15/22	ICV	Col1 Col2	Aroclor-1260 Aroclor-1260	25.1 30.9	All samples in SDG 22D0380	NA	-

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Standard	Column	Analyte	%D	Associated Samples	Affected Analytes	Flag	A or P
05/25/22	CCV4	Col2	Aroclor-1260	23.5	All samples in SDG 22D0380	Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268	NA	ı

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Port of Bellingham Polychlorinated Biphenyls - Data Qualification Summary - SDG 22D0380

No Sample Data Qualified in this SDG

Port of Bellingham Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 22D0380

No Sample Data Qualified in this SDG

SDG # .abora	t: <u>22D0380</u> atory: <u>Analytical Resources, Inc., Tukwila</u>	Sta <u>a, WA</u>	age 2B	SS WORKSHEET	R	Date: 7/21/ Page: of / Reviewer: 7/21/ Reviewer: 7/21/
Γhe sa	OD: GC Polychlorinated Biphenyls (EPA amples listed below were reviewed for eation findings worksheets.				on findings are ı	noted in attached
	Validation Area			Comn	nents	
<u>l.</u>	Sample receipt/Technical holding times	AIA				·
ĮI.	Initial calibration/ICV	A 15W	0/0	PSD/101=	20	
Ш.	Continuing calibration	5W	·	cw =	20	V-144 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
IV.	Laboratory Blanks	Δ				- 10 mg/g
V.	Field blanks	N				
VI.	Surrogate spikes	SW				
VII.	Matrix spike/Matrix spike duplicates	2	O)			
VIII.	Laboratory control samples	4	las	10		
IX.	Field duplicates	N				
X.	Target analyte quantitation	N				
XI.	Target analyte identification	N				
XII	Overall assessment of data	4	a	The same of the sa		
lote:	N = Not provided/applicable R = Rir	lo compounds on sate ield blank	detected	D = Duplicate TB = Trip blank EB = Equipment bla	SB=Sour OTHER: nk	ce blank
	Client ID		N. NI CALLED	Lab ID	Matrix	Date
1 1	HS-02HA-0-0.39-220419			22D0380-03	Sediment	04/19/22
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13 lotes:						
	BKE000B-BLK)					

VALIDATION FINDINGS WORKSHEET

METHOD: Pesticide/PCBs (EPASW 846 Method 8081/8082)

A. alpha-BHC	I. Dieldrin	Q. Endrin ketone	Y. Aroclor-1242	GG. Chlordane
B. beta-BHC	J. 4,4'-DDE	R. Endrin aldehyde	Z. Aroclor-1248	HH. Chlordane (Technical)
C. delta-BHC	K. Endrin	S. alpha-Chlordane	AA. Aroclor-1254	II. Aroclor 1262
D. gamma-BHC	L. Endosulfan II	T. gamma-Chlordane	BB. Aroclor-1260	JJ. Aroclor 1268
E. Heptachlor	M. 4,4'-DDD	U. Toxaphene	CC. 2,4'-DDD	KK. Oxychlordane
F. Aldrin	N. Endosulfan sulfate	V. Aroclor-1016	DD. 2,4'-DDE	LL. trans-Nonachlor
G. Heptachlor epoxide	O. 4,4'-DDT	W. Aroclor-1221	EE. 2,4'-DDT	MM. cis-Nonachlor
H. Endosulfan I	P. Methoxychlor	X. Aroclor-1232	FF. Hexachlorobenzene	NN.

Notes:		

LDC #: 54461 A3b

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

Page: 1_of_1_ Reviewer:___FT

METHOD: \angle GC _ HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

₩hat type of initial calibration verification calculation was performed? __%D or ___%R

YN N/A YN N/A Was an initial calibration verification standard analyzed after each ICAL for each instrument?

Did the initial calibration verification standards meet the %D / %R validation criteria of <20.0% / 80-120%?

FE		N/A Did the initial calibration verification standards meet the %D / %R validation criteria of <20.0% / 80-120% / Detector/ %D						
#	Date	Standard ID	Colu		Compound	(Limit ≤ 20.0)	Associated Samples	Qualifications
	4/15/22	101	ao	1	BB	25.1	AI)	Idu/A qual BB (ND)
	024)		co	2	BB	30.9	V	
<u> </u>			<u> </u>				<u> </u>	
<u> </u>								
			ļ					
ļ			<u> </u>		 			
<u> </u>								
 							<u> </u>	
<u> </u>			ļ					
 			<u> </u>					
 			ļ					
ļ	ļI							
 			 					
 								
-								
 					<u> </u>			
-								
							thos.	

LDC #: 54461 A36

VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration</u>

Page:_	1	_of_	1
Reviewer:_		F	Τ

METHOD: GC

HPLC

GCMS

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N/A Y (N) N/A Were continuing calibration standards analyzed at the required frequencies? Did the continuing calibration standards meet the %D / %R validation criteria?

Level IV Only

Were the retention times for all calibrated analytes within their respective acceptance windows?

		IN/A	were the retention	Detector/	linorated analytes	%D		Windows:	T
5/15/12 cev4 col Z BB 23.5 All Jul /A A 1924 Anoclor 1262	#	Date	Standard ID		Compound		RT (limit)	Associated Samples	Qualifications
1924 Qual AA, BB,		51512	cov4	col 2	BB	23,5		All	July /A AII NI
'					—				qual AA, BB,
Arodor [268				<u> </u>					VAro do 1 1262
									Arodor 1268
									-
									
							 		-
	-			<u> </u>					+
									-
			7000						
				ļ					
									
								,	
	\vdash		<u> </u>	 				<u> </u>	-

LDC#: 54461 A3b

VALIDATION FINDINDS WORKSHEET Surrogate Recovery

Page:_	_6f
eviewer:	FT

Are surrogates required by the method? Yes___ or No_

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN N/A Were surrogates spiked into all samples and blanks?

YN N/A Did all surrogate recoveries (%R) meet the QC limits?

	(N/N/A Did all surrogate recoveries (%R) meet the QC limits?											
#	Sample ID		Detect Colun		Surrogate Compound		%R (Limits	4	ŀ		0	ualifications
	BKE0008-			2	<u> </u>	十			-120)	114211		Jaincations
	BLK		201				92.4	2 2.	- 120 	-7 las 11		· · · · · · · · · · · · · · · · · · ·
-	DUFI											
┡═┽												
							(
						_)			
							()			
							()			
)			
							()			
							()			
							()			
							(,			
\vdash								 :	}			
 												
								····)			
 												
							()			
ļ				·/		_)			
							() [
	Surrogate Compo	und		Surrog	ate Compound		Surrogate Compound		Surrogate Co	mpound		
Α	Chlorobenzene (CB)	z)	G	0	ctacosane	М	Benzo(e)Pyrene	s	1-Chloro-3-Nitro	benzene	Υ	Tetrachloro-m- xylene
В	4-Bromofluorobenzene (BFB)		Н	Orti	no-Terphenyl	N	Terphenyl-D14	T	3,4-Dinitroto	luene	Z	2-Bromonaphthalene
C,	<u> </u>			Fluoro	benzene (FBZ)	0	Decachlorobiphenyl (DCB)	U	Tripentyl	tin	AA	Chloro-octadecane
D			J	n-	Triacontane	Р	1-methylnaphthalene	V	Tri-n-prop	yltin	ВВ	2,4-Dichlorophenylacetic acid
E	E 1,4-Dichlorobutane		_к		exacosane	Q	Dichlorophenyl Acetic Acid (DCAA)	w	Tributyl Phos		сс	2,5-Dibromotoluene
E	1.4-Difluorobenzene (D	DFB)		Bro	mobenzene	R	4-Nitrophenol	X	Triphenyl Pho	osphate		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Port of Bellingham

LDC Report Date:

September 6, 2022

Parameters:

Metals

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc., Tukwila, WA

Sample Delivery Group (SDG): 22D0380

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HS-01HA-0-1-220419(TCLP)	22D0380-01(TCLP)	Sediment	04/19/22
HS-01HA-1-2-220419(TCLP)	22D0380-02(TCLP)	Sediment	04/19/22
HS-02HA-0-0.39-220419	22D0380-03	Sediment	04/19/22
HS-01HA-0-1-220419(TCLP)MS	22D0380-01(TCLP)MS	Sediment	04/19/22
HS-01HA-0-1-220419(TCLP)DUP	22D0380-01(TCLP)DUP	Sediment	04/19/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the PRDI Work Plan Attachment C Quality Assurance Project Plan (October 2021) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (November 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Arsenic, Barium, Cadmium, Chromium, Cobalt, Copper, Lead, Selenium, Silver and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6010D Mercury by EPA SW 846 Method 7470A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Instrument Calibration

Initial and continuing calibrations were performed as required by the methods.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

III. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Cadmium Chromium Barium Zinc	0.0042 mg/L 0.0114 mg/L 0.0689 mg/L 0.0221 mg/L	HS-01HA-0-1-220419(TCLP) HS-01HA-1-2-220419(TCLP)
ICB/CCB	Arsenic Cobalt	0.005 mg/L 0.0006 mg/L	HS-02HA-0-0.39-220419
ICB/CCB	Cadmium Selenium Chromium	0.0009 mg/L 0.0086 mg/L 0.0036 mg/L	HS-01HA-0-1-220419(TCLP) HS-01HA-1-2-220419(TCLP)
ICB/CCB	Barium	0.0021 mg/L	HS-01HA-0-1-220419(TCLP)

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
HS-01HA-0-1-220419(TCLP)	Cadmium	0.002 mg/L	0.010U mg/L
	Barium	0.203 mg/L	0.203U mg/L
	Zinc	0.0969 mg/L	0.0969U mg/L
	Selenium	0.173 mg/L	0.250U mg/L
HS-01HA-1-2-220419(TCLP)	Cadmium	0.0043 mg/L	0.010U mg/L
	Barium	0.0978 mg/L	0.0978U mg/L

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Serial Dilution

Serial dilution was not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to laboratory blank contamination, data were qualified as not detected in two samples.

Port of Bellingham Metals - Data Qualification Summary - SDG 22D0380

No Sample Data Qualified in this SDG

Port of Bellingham Metals - Laboratory Blank Data Qualification Summary - SDG 22D0380

Sample	Analyte	Modified Final Concentration	A or P
HS-01HA-0-1-220419(TCLP)	Cadmium Barium Zinc Selenium	0.010U mg/L 0.203U mg/L 0.0969U mg/L 0.250U mg/L	А
HS-01HA-1-2-220419(TCLP)	Cadmium Barium	0.010U mg/L 0.0978U mg/L	А

LDC #: 54461A4b	VALIDATION COMPLETENESS WORKSHEET	Date: 8
SDG #: 22D0380	Stage 2B	Page:__of
Laboratory: Analytical Resource	s, Inc., Tukwila, WA	Reviewer: JM
METHOD: Metals (EPA SW-846	6 Method 6010D/7470A)	2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A/A	
11.	Instrument Calibration	Α	
111.	ICP Interference Check Sample (ICS) Analysis	A	
IV.	Laboratory Blanks	SWI	
V.	Field Blanks	2	
VI.	Matrix Spike/Matrix Spike Duplicates	Α	MS
VII.	Duplicate sample analysis	Α	
VIII.	Serial Dilution	2	
IX.	Laboratory control samples	Α	LCS
X.	Field Duplicates	2	
XI.	Target Analyte Quantitation	N	
XII	Overall Assessment of Data	A	

Note: A = Acceptable ND = No compounds detected D = Duplicate SB=Source blank
N = Not provided/applicable R = Rinsate TB = Trip blank OTHER:
SW = See worksheet FB = Field blank EB = Equipment blank

	Client ID	Lab ID	Matrix	Date
1	HS-01HA-0-1-220419(TCLP)	22D0380-01(TCLP)	Sediment	04/19/22
2	HS-01HA-1-2-220419(TCLP)	22D0380-02(TCLP)	Sediment	04/19/22
3	HS-02HA-0-0.39-220419	22D0380-03	Sediment	04/19/22
4	HS-01HA-0-1-220419(TCLP)MS	22D0380-01(TCLP)MS	Sediment	04/19/22
5	HS-01HA-0-1-220419(TCLP)DUP	22D0380-01(TCLP)DUP	Sediment	04/19/22
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				

LDC #: 54461A4b

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page 1 of 1 Reviewer: Jada Morales

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List
1-3	As,Cd,Cu,Zn
1-2	Ba,Cr,Pb,Se,Ag,Hg
3	Со
QC:	
4-5	As,Ba,Cd,Cr,Co,Cu,Pb,Se,Ag,Zn,Hg
	Analysis Method
ICP	As,Ba,Cd,Cr,Co,Cu,Pb,Se,Ag,Zn
ICP-MS	

ICP	As,Ba,Cd,Cr,Co,Cu,Pb,Se,Ag,Zn
ICP-MS	
CVAA	Hg

LDC #: 54461A4b

VALIDATION FINDINGS WORKSHEET <u>Laboratory Blank Contamination (PB/ICB/CCB)</u>

Page 1 of 2

Reviewer: Jada Morales

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)

Soil preparation factor applied (if applicable):

Sample Concentration, unless otherwise noted: mg/L

Associated Samples: 1-2

				Sample Identification							
Analyte	PB (mg/L)	Maximum ICB/CCB (units)	Action Level	1	2						
Cd	0.0042		0.021	0.002/0.010	0.0043/0.010	·					
Cr	0.0114		0.057								
Ва	0.0689		0.3445	0.203	0.0978						
Zn	0.0221		0.1105	0.0969		-					

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)

Soil preparation factor applied (if applicable): 50

Sample Concentration, unless otherwise noted: mg/Kg

Associated Samples: 3

		on, amos on		<u> </u>	Sample Identification						
Analyte	PB (units)	Maximum ICB/CCB (mg/L)	Action Level	No Qual							
As		0.005									
Со		0.0006									

LDC #: 54461A4b

VALIDATION FINDINGS WORKSHEET <u>Laboratory Blank Contamination (PB/ICB/CCB)</u>

Reviewer: Jada Morales

Page 2 of 2

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)

Soil preparation factor applied (if applicable): 50

Sample Concentration, unless otherwise noted: mg/L

Associated Samples: 1-2

						Sampl	le Identif	cation		
Analyte	PB (units)	Maximum ICB/CCB (mg/L)	Action Level	1	2	. **				
Cd		0.0009		0.002/0.010	0.0043/0.010					
Se		0.0086		0.173/0.250						
Cr		0.0036								

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)

Soil preparation factor applied (if applicable): 50

Sample Concentration, unless otherwise noted; mg/L

Associated Samples: 1

			101111100 1100	1	 7133001410	<u> </u>			
					Sampl	e Identifi	cation		
Analyte	PB (units)	Maximum ICB/CCB (mg/L)	Action Level	1					
Ва		0.0021		0.203					

Comments: The listed analyte concentration is the highest ICB or CCB detected in the analysis. The action level, when applicable, is established at 5X the highest ICB, CCB, or PB concentration.

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Port of Bellingham

LDC Report Date:

August 12, 2022

Parameters:

Wet Chemistry

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc., Tukwila, WA

Sample Delivery Group (SDG): 22D0380

Commis Idontification	Laboratory Sample	No.4	Collection
Sample Identification	Identification	Matrix	Date
HS-02HA-0-0.39-220419	22D0380-03	Sediment	04/19/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the PRDI Work Plan Attachment C Quality Assurance Project Plan (October 2021) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (November 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A

Total Solids by Standard Method 2540G

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- (Rejected): The sample results were rejected due to gross non-conformances R discovered during data validation. Data qualified as rejected is not usable.
- (Not Applicable): The non-conformance discovered during data validation NA demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples/Standard Reference Materials

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the methods. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Port of Bellingham Wet Chemistry - Data Qualification Summary - SDG 22D0380

No Sample Data Qualified in this SDG

Port of Bellingham Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 22D0380

No Sample Data Qualified in this SDG

SDG #	t:54461A6 VALIDA t:22D0380 atory:Analytical Resources, Inc., Tu	S	PLETENESS Stage 2B	WORKSHEET		Date: 8 1 2 Page: \(\) of \(\) eviewer: \(\) \(\) eviewer: \(\)
METH	IOD: (Analyte) TOC (EPA SW-846 I	Method 9060A)	, Total Solids (SM2540G)		
	amples listed below were reviewed for tion findings worksheets.	or each of the fo	ollowing valida	tion areas. Validation	n findings are n	oted in attached
	Validation Area			Comme	ents	
I.	Sample receipt/Technical holding times	A/A				
	Initial calibration	A				
III.	Calibration verification	A				
IV	Laboratory Blanks	A				
V	Field blanks	N				
VI.	Matrix Spike/Matrix Spike Duplicates	N				
VII.	Duplicate sample analysis	N				
VIII.	Laboratory control samples	A	LCS/SRM			
IX.	Field duplicates	12				
X.	Target Analyte Quantitation	N				
ΧI	Overall assessment of data	A				
Note:	N = Not provided/applicable R	ID = No compounds R = Rinsate B = Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Source OTHER;	e blank
	Client ID			Lab ID	Matrix	Date
1 I	HS-02HA-0-0.39-220419			22D0380-03	Sediment	04/19/22
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
						

Notes:

Anchor QEA, LLC 1201 Third Ave. Suite 2600 Seattle, WA 98101 ATTN: Ms. Delaney Peterson dpeterson@anchorgea.com

October 5, 2022

SUBJECT: Port of Bellingham - Data Validation

Dear Ms. Peterson,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on August 18, 2022. Attachment 1 is a summary of the samples that were reviewed for each analysis.

Revision: PAH

Added qualifiers due to cooler temperature and LCS/LCSD %R

PCB

Added a qualifier due to RPD between two colums for sample HS-13SS-0-12-220621

LDC Project #54841 RV1:

<u>SDG #</u>	Fraction
22F0420	Polynuclear Aromatic Hydrocarbons, Polychlorinated Biphenyls, Metals, Wet Chemistry

The data validation was performed under Stage 2B guidelines. The analyses were validated using the following documents, as applicable to each method:

- PRDI Work Plan Attachment C Quality Assurance Project Plan (October 2021)
- USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020)
- USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (November 2020)
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

Stella Cuenco

scuenco@lab-data.com

Project Manager/Senior Chemist

Attachment 1 330 pages-ADV LDC# 54841 (Anchor Environmental - Seattle, WA / Harris Ave. Shipyard, Port of Bellingham) Stage 2B EDD Total DATE DATE **PAHs PCBs** Metals TOC **Solids** DUE (8270E) (8082A) (6010D) (9060A) (2540G) SDG# REC'D LDC S w s w s Matrix: Water/Sediment 0 0 2 0 08/18/22 09/09/22 0 2 2 0 22F0420 0 0 TR/KK Total

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Port of Bellingham

LDC Report Date:

October 5, 2022

Parameters:

Polynuclear Aromatic Hydrocarbons

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc., Tukwila, WA

Sample Delivery Group (SDG): 22F0420

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HS-13SS-0-12-220621	22F0420-01	Sediment	06/21/22
HS-14SS-0-12-220621	22F0420-02	Sediment	06/21/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the PRDI Work Plan Attachment C Quality Assurance Project Plan (October 2021) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270E

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria with the following exceptions:

Sample	Analyte	Finding	Criteria	Flag	A or P
All samples in SDG 22F0420	All analytes	Cooler temperature was reported at 10.9°C upon receipt by the laboratory.	Cooler temperature must be 4±2°C.	J (all detects)	A

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check was performed at the required frequency.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all analytes.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
07/07/22	Fluoranthene Pyrene	83.7 49.4	All samples in SDG 22F0420	J (all detects) J (all detects)	A

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate Surrogates were added to all samples as required by the method. Surrogate recoveries (%R) were not within QC limits for sample HS-13SS-0-12-220621. Using professional judgment, no data were qualified when one surrogate %R was outside the QC limits and the %R was greater than or equal to 10%.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
BKF0667-LCS/LCSD (All samples in SDG 22F0420)	Benzo(g,h,i)perylene	45.8 (50-150)	49.7 (50-150)	J (all detects)	Р

Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to cooler temperature, continuing calibration %D, and LCS/LCSD %R, data were qualified as estimated in two samples.

Port of Bellingham Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 22F0420

Sample	Analyte	Flag	A or P	Reason
HS-13SS-0-12-220621 HS-14SS-0-12-220621	All analytes	J (all detects)	А	Cooler temperature
HS-13SS-0-12-220621 HS-14SS-0-12-220621	Fluoranthene Pyrene	J (all detects) J (all detects)	А	Continuing calibration (%D)
HS-13SS-0-12-220621 HS-14SS-0-12-220621	Benzo(g,h,i)perylene	J (all detects)	Р	Laboratory control samples (%R)

Port of Bellingham

Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification **Summary - SDG 22F0420**

No Sample Data Qualified in this SDG

SDG _abo	#: 54841A2a VALIDATIO #: 22F0420 ratory: Analytical Resources, Inc., Tukwila	s a <u>, WA</u>	tage 2B		WORKSHEET lethod 8270E)	R	Date: 8 31 Page: Lof Leviewer: Page: Leviewer: Page: Leviewer: Lev
	camples listed below were reviewed for ea ation findings worksheets.	ach of the fo	ollowing va	alidat	ion areas. Validati	on findings are r	noted in attached
	Validation Area				Comn	nents	
1.	Sample receipt/Technical holding times	ALLA					
II.	GC/MS Instrument performance check	Δ					
III.	Initial calibration/ICV	AIA	%	PSS) ± 20	W = 30	フ
IV.	Continuing calibration	لىي	· ·	•		W = 3 (W = 20)	
V.	Laboratory Blanks	٨					
VI.	Field blanks	N					
VII.	Surrogate spikes	ತಿ					
VIII.	Matrix spike/Matrix spike duplicates	N	es				
IX.	Laboratory control samples	لىسى	Les 10				
X.	Field duplicates	N				·	
XI.	Internal standards						
XII.	Target analyte quantitation	N					
XIII.	Target analyte identification	N					
XIV.	System performance	N_					
XV.	Overall assessment of data						
Note:	N = Not provided/applicable R = Ri	lo compounds nsate ield blank	s detected		D = Duplicate TB = Trip blank EB = Equipment bla	SB=Sourc OTHER: nk	ce blank
	Client ID				Lab ID	Matrix	Date
1	HS-13SS-0-12-220621				22F0420-01	Sediment	06/21/22
2	HS-14SS-0-12-220621				22F0420-02	Sediment	06/21/22
3							
4							
5							
6]			
7							
8							
g							
lotes:			T			 	 1
_	bkf0667			****			

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	I1. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o"-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	iii. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-taluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	OOOO. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachlorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether
X. Hexachlorocyclopentadiene	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2. Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2. Cypermethrin
AA. 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEEE. 1,1'-Biphenyl	G1. 2-Acetylaminofluorene	I2. Permethrin (cis/trans)
BB. 2-Nitroaniline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	J2. 5-Nitro-o-toluidine

LDC #: 54841 A-3D

VALIDATION FINDINGS WORKSHEET

Page: 1_of_1

Technical Holding Times

Reviewer Reviewer:

N Were all cooler temperatures within validation criteria?								
METHOD:	GC_	HPL						
Sample ID	Matrix	ĸ	Preserved	Sampling Date	Extraction date	Analysis date	Total # of Days	Qualifier
AII	w	ماه	d temp	= 10.9	e		pl	no qual
,			1	<u>'</u>			\	JIN V/H
				<u> </u>				
								all Det
						_		
			4 1	PC M	qual	F7		
	-				V			
	-							
	-							
						<u> </u>		

TECHNICAL HOLDING TIME CRITERIA

VOLATILES:

Water unpreserved:

Aromatic within 7 days, non-aromatic within 14 days of sample collection.

Water preserved:

Both within 14 days of sample collection. Both within 14 days of sample collection.

Soils: Encores unpreserved:

Both within 48 hours of sample collection.

Encores preserved:

Both within 14 days of sample collection.

EXTRACTABLES:

Water:

Extracted within 7 days, analyzed within 40 days.

Soil:

Extracted within 14 days, analyzed within 40 days.

LDC#: 54841 A2a

Y N/N/N/A

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page:	of
Reviewer:_	FT

METHOD: GC/MS BNA (EPA SW 846 Method 8270 5)

Rlease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N/A
Was a continuing calibration standard analyzed at least once every 12 hours of sample analysis for each instrument?
Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's?

Were all %D and RRFs within the validation criteria of ≤20%D and ≥0.05 RRF?

		Standard ID	Compound	Finding %D (Limit: <20.0%)	Finding RRF (Limit: >0.05)	Associated Samples	Qualifications
	1/1/22	cc/	44	83.7		All	John /A all /
	1151		77	49.4		1,	
						V	
lacksquare							
 							
						, , , , , , , , , , , , , , , , , , ,	
-							
					-		
_							

LDC #: 5444 | A20

VALIDATION FINDINGS WORKSHEET Surrogate Recovery

Page:_	<u>of</u>	1
Reviewer:	_FT	

METHOD: GC/MS BNA (EPA SW 846 Method 8270)
Please see qualification below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N/A Were percent recoveries (%R) for surrogates within QC limits?

If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?

If any %R was less than 10 percent, was a reanalysis performed to confirm %R?

#	Sample ID	Surrogate	%R (Limi	ts)	Qualifications
	#	TPH	122	(37-120)	no qual
				()	
				()	
			 	()	
				()	
				()	
				()	
 				()	· · · · · · · · · · · · · · · · · · ·
_				()	
				()	
				()	
				()	
				()	
				()	
				()	
				(
				()	
				()	
				()	
				()	
 				()	
				()	The state of the s

(NBZ) = Nitrobenzene - d5

(FBP) = 2-Fluorobiphenyl (TPH) = Terphenyl - d14

(2FP) = 2-Fluorophenol

(TBP) = 2,4,6 -Tribromophenol (2CP) = 2-Chlorophenol - d4

LDC #: 54841 A20

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page:	of	
Reviewer:	FT	

METHOD: GC/MS BNA (EPA SW 846 Method 8270 E)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Not applicable questions are identified as "N/A". Was a LCS required?

Y (N) N/A Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	LCS/LCSD ID	Compound	L %R (I	CS Limits)	%R	(Limits)		RPD (Limits)	Asso	ciated Samples	Qualifica	ations
	BKF0667-	LLL	45.2	(50-150)	49.7	150-1	<u></u>	()	A	- 11	1 LUIL	Pet
	BKF0667-)	, -	()	()				
				()		()	()				
				()		()	()				
				()		()	()				
L				()		()	()				
				()		()	()				
L				()		()	()				
<u> </u>				()				()	 			
<u> </u>				()		()	()	ļ	***		
L_				()		()	()				
_			1	()		(_)	()				
ļ				()		()	()				
_				()		()	()				
				()		()	()				
L				()		()	()				
L				()		()	()			<u> </u>	
<u></u>						(()				
L				()		()	()				
				()		()	()				
				()		()	()				
				()		()	()				
				()		()	()				
				()		()	()				
						()	()				

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Port of Bellingham

LDC Report Date:

October 5, 2022

Parameters:

Polychlorinated Biphenyls

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc., Tukwila, WA

Sample Delivery Group (SDG): 22F0420

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HS-13SS-0-12-220621	22F0420-01	Sediment	06/21/22
HS-14SS-0-12-220621	22F0420-02	Sediment	06/21/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the PRDI Work Plan Attachment C Quality Assurance Project Plan (October 2021) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (November 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures were reported at 10.9°C upon receipt by the laboratory. No data was qualified based on cooler temperature.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Standard	Column	Analyte	%D	Associated Samples	Flag	A or P
04/15/22	ICV	ZB5	Aroclor-1260	25.1	All samples in SDG 22F0420	J (all detects)	Α
04/15/22	ICV	ZB35	Aroclor-1260	30.9	All samples in SDG 22F0420	J (all detects)	А

III. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Standard	Column	Analyte	%D	Associated Samples	Affected Analyte	Flag	A or P
07/05/22	CCV3	ZB35	Aroclor-1242	32.7	All samples in SDG 22F0420	Aroclor-1242	NA	-
07/06/22	CCV6	ZB35	Aroclor-1260	57.5	All samples in SDG 22F0420	Aroclor-1260 Aroclor-1262 Aroclor-1268	J (all detects) J (all detects) J (all detects)	Α

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

All internal standard areas and retention times were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	LCS %R (Limits)	LCSD %R (Limits)	Affected Analyte	Flag	A or P
BKF0674-LCS/LCSD (All samples in SDG 22F0420)	Aroclor-1260	157 (50-150)	154 (50-150)	Aroclor-1254 Aroclor-1260	J (all detects) J (all detects)	А
BKF0674-LCS/LCSD (All samples in SDG 22F0420)	Aroclor-1260	157 (50-150)	154 (50-150)	Aroclor-1248 Aroclor-1262 Aroclor-1268	NA	-

Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

The sample results for detected analytes from the two columns were within 40% relative percent difference (RPD) with the following exceptions:

Sample	Analyte	RPD	Flag	A or P
HS-13SS-0-12-220621	Aroclor-1260	90.8	J (all detects)	Α

Raw data were not reviewed for Stage 2B validation.

XI. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to ICV %D, continuing calibration %D, LCS/LCSD %R, and RPD between columns, data were qualified as estimated in two samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Port of Bellingham Polychlorinated Biphenyls - Data Qualification Summary - SDG 22F0420

Sample	Analyte	Flag	A or P	Reason
HS-13SS-0-12-220621 HS-14SS-0-12-220621	Aroclor-1260	J (all detects)	A	Initial calibration verification (%D)
HS-13SS-0-12-220621 HS-14SS-0-12-220621	Aroclor-1260 Aroclor-1262 Aroclor-1268	J (all detects) J (all detects) J (all detects)	Α	Continuing calibration (%D)
HS-13SS-0-12-220621 HS-14SS-0-12-220621	Aroclor-1254 Aroclor-1260	J (all detects) J (all detects)	Α	Laboratory control samples (%R)
HS-13SS-0-12-220621	Aroclor-1260	J (all detects)	Α	Target analyte quantitation (RPD between two columns)

Port of Bellingham Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 22F0420

No Sample Data Qualified in this SDG

SDG # Labora	#: 54841A3b VALIDATIO #: 22F0420 atory: Analytical Resources, Inc., Tukwil	Sta la, WA	age 2B	S WORKSHEE	R	Date: \$/3\ Page: of peviewer: peviewer:
	amples listed below were reviewed for e tion findings worksheets.	ach of the foll	lowing valida	ation areas. Valida	ition findings are n	oted in attached
	Validation Area			Com	nments	
l.	Sample receipt/Technical holding times	SMIA	-			
11.	Initial calibration/ICV	A 15W	%	PSD / 1CV =	:20	
111.	Continuing calibration	SW	•	cars	= 20	
IV.	Laboratory Blanks					
V.	Field blanks	N				
VI.	Surrogate spikes /\9	A				
VII.	Matrix spike/Matrix spike duplicates	N	45			
VIII.	Laboratory control samples	3W	ics 1	0		
IX.	Field duplicates	N				
Х.	Target analyte quantitation	SW				
XI.	Target analyte identification ·	N				
ווא	Overall assessment of data					
Note:	N = Not provided/applicable R = R	No compounds of the compound of the compounds of the compound of t	detected	D = Duplicate TB = Trip blank EB = Equipment b	SB=Source OTHER: olank	e blank
	Client ID			Lab ID	Matrix	Date
	HS-13SS-0-12-220621		***	22F0420-01	Sediment	06/21/22
	HS-14\$S-0-12-220621			22F0420-02	Sediment	06/21/22
3		·		<u> </u>		
4						
5						
4 5 6 7 8 9						
7		-		ļ		
8						
9						
10						
11						
12				·		
13						
Notes:						
-1	3KF0674	<u>-</u>				
						

VALIDATION FINDINGS WORKSHEET

METHOD: Pesticide/PCBs (EPASW 846 Method 8081/8082)

A. alpha-BHC	I. Dieldrin	Q. Endrin ketone	Y. Aroclor-1242	GG. Chlordane
B. beta-BHC	J. 4,4'-DDE	R. Endrin aldehyde	Z. Aroclor-1248	HH. Chlordane (Technical)
C. delta-BHC	K. Endrin	S. alpha-Chlordane	AA. Aroclor-1254	II. Aroclor 1262
D. gamma-BHC	L. Endosulfan II	T. gamma-Chlordane	BB. Aroclor-1260	JJ. Arocior 1268
E. Heptachior	M. 4,4'-DDD	U. Toxaphene	CC. 2,4'-DDD	KK. Oxychlordane
F. Aldrin	N. Endosulfan sulfate	V. Aroclor-1016	DD. 2,4'-DDE	LL. trans-Nonachlor
G. Heptachlor epoxide	O. 4,4'-DDT	W. Aroclor-1221	EE. 2,4'-DDT	MM. cis-Nonachlor
H. Endosulfan I	P. Methoxychlor	X. Aroclor-1232	FF. Hexachlorobenzene	NN.

Notes:		

LDC#: 5484(トラ

VALIDATION FINDINGS WORKSHEET <u>Technical Holding Times</u>

Page:	of/
Reviewer:	FT

All circled dates have exceeded the technical holding times.
YNN/A Were all cooler temperatures within validation criteria?

METHOD:GC HPLC							
Sample ID	Matrix	Preserved	Sampling Date	Extraction date	Analysis date	Total # of Days	Qualifier
all	woler	temp=	10.9°C				no qual
		}	1				U
							
	i						
							
							
							
			<u> </u>				
							
						<u></u>	
			{				

TECHNICAL HOLDING TIME CRITERIA

VOLATILES: Water unpreserved:

Water preserved:

Aromatic within 7 days, non-aromatic within 14 days of sample collection. Both within 14 days of sample collection.

Soils:

Both within 14 days of sample collection.

Encores unpreserved:

Both within 48 hours of sample collection. Both within 14 days of sample collection.

Encores preserved:

EXTRACTABLES:

Extracted within 7 days, analyzed within 40 days.

Water: Soil:

Extracted within 14 days, analyzed within 40 days.

LDC#: 54841 A35

VALIDATION FINDINGS WORKSHEET <u>Target Analyte Quantitation and Reported CRQLs</u>

Page:	b <u>f_</u>)
eviewer:	FT

METHOD: _/GC __ HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Level JV/D Only

Y N N/A Were CRQLs adjusted for sample dilutions, dry weight factors, etc.?

Did the reported results for detected target compounds agree within 10.0% of the recalculated results?

			1 0/2 8 PD Bet Z	
			0/0 RPD Bet Z Findings 40 = 40	
#	Associated Samples	Compound Name		Qualifications
	\	ን ን	90.8	Jet /A
			 	

Comments:	See sample calculation verification worksheet for recalculations
•	

LDC #: 54841 A37

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

Page:_	1	_of_	1_
Reviewer:		FT	

	V	
METHOD:	GC	HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

What type of initial calibration verification calculation was performed? ___%D or ___%R

Was an initial calibration verification standard analyzed after each ICAL for each instrument?

Y N/N/A Did the initial calibration verification standards meet the %D / %R validation criteria of <20.0% / 80-120%?

# Date	Standard ID	Standard ID Detector/ Column	Compound	%D (Limit ≤ 20.0)	Associated Samples	Qı	Qualifications		
415 22	101	そりら	25.		AV	Jat /A	qual BB) (g	
024		ZB35	30,9		1	3	0		
	· · · · · · · · · · · · · · · · · · ·								
			 						
- 									
							····		
									
									
	- 								
			_						
								-	
		note: Z	AA, Arod	er 1262 +	1268 has its				
-		10010- 2			1-00 V(45 172	<u>' </u>			
_			own la				·- ·- ·-		

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page:_	1	_of	1
Reviewer:		F	Г

LDC#: 54841 A3h

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Mat type of continuing calibration calculation was performed? %D or %R

N N/A Were continuing calibration standards analyzed at the required frequencies?

Y W N/A Did the continuing calibration standards meet the %D / %R validation criteria of ≤20.0% / 80-120%?

Level IV Only Y N N/A

Were the retention times for all calibrated compounds within their respective acceptance windows?

#	Date	Standard ID	Detector/ Column	Compound	%D (Limit ≤ 20.0)	RT (limit)	Associated Samples	Qualifications
	752	CEN 3	ZB 35	Ý	32.7	T	All	Idu / A qual Y
	1942							(00)
	111-							(, , , ,
	762	colle	2835	BB	97.5		All	Jour/A qual BB
 	005							Aroclor 1262 +
<u> </u>	-103							Aroclor 1268
<u> </u>				-				(30 7
 						 		(BB of for all)
<u> </u>						<u> </u>		
 -								
 						 		
⊩-						 		
 				T.		 		
				Note: B	nalytical	Batch V	ras 1248, 1254	ccv
					,		•	
<u> </u>							 	
<u> </u>						 		
 						 		
L							<u> </u>	

LDC #:_	54841 A3h	

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page: <u>1</u>	of1_
Reviewer:	FT

METHOD: VGC __ HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a laboratory control samples (LCS) and laboratory control sample duplicate (LCSD) analyzed for each matrix in this SDG?

Were the LCS percent recoveries (%R) and relative percent differences (RPD) within the QC limits?

Level IV/D Only

YNN(A)

Was an LCS analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

#	LCS/LCSD ID	Compound	LCS %R (Limits)	L %R	.CSD (Limits)	RPD (Limit	s)	Associated Samples	Qualifications
	BK F0674-	BB	157 (5)	0-150	154	(50-150))	All	Jau/P
	100117		()		()	()	qual	Z, AA, BBY
			()		()	()	Maro	6101 1267 - 1268
			()		()	()	/	AA +BB are)
			()		()	()		dut to (a)
			()		()	()		
			ì)		()	1	,		
			ì			<u>, , , , , , , , , , , , , , , , , , , </u>				
	-		()		()	()		
			()		()	()		
			()		()	()		
			()		()	()		
			()		()	()		
			()		()	(_)		
			()		()	()		
						()	(
			()		()	()		
			()		()	()		
			()		()	()		
			()		()	()		
			()		()	()		
			()		()	()		
			()		()	()		
			(()		1		

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Port of Bellingham

LDC Report Date:

September 2, 2022

Parameters:

Metals

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc., Tukwila, WA

Sample Delivery Group (SDG): 22F0420

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
HS-13SS-0-12-220621	22F0420-01	Sediment	06/21/22
HS-14SS-0-12-220621	22F0420-02	Sediment	06/21/22

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the PRDI Work Plan Attachment C Quality Assurance Project Plan (October 2021) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (November 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Arsenic, Cadmium, Copper, and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6010D

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Instrument Calibration

Initial and continuing calibrations were performed as required by the method.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

III. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Arsenic	0.476 mg/Kg	HS-13SS-0-12-220621 HS-14SS-0-12-220621

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration	
HS-13SS-0-12-220621	Arsenic	1.84 mg/Kg	9.98U mg/Kg	
HS-14SS-0-12-220621	Arsenic	2.84 mg/Kg	13.0U mg/Kg	

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Serial Dilution

Serial dilution was not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to laboratory blank contamination, data were qualified as not detected in two samples.

Port of Bellingham Metals - Data Qualification Summary - SDG 22F0420

No Sample Data Qualified in this SDG

Port of Bellingham Metals - Laboratory Blank Data Qualification Summary - SDG 22F0420

Sample	Analyte	Modified Final Concentration	A or P
HS-13SS-0-12-220621	Arsenic	9.98U mg/Kg	Α
HS-14SS-0-12-220621	Arsenic	13.0U mg/Kg	Α

LDC #: 54841A4b

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

SDG #: 22F0420

Laboratory: Analytical Resources, Inc., Tukwila, WA

METHOD: Metals (EPA SW-846 Method 6010D)

Reviewer: 2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	AA	
II.	Instrument Calibration	A	
111.	ICP Interference Check Sample (ICS) Analysis	A	·
IV.	Laboratory Blanks	SW	
V.	Field Blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	N	
VII.	Duplicate sample analysis	N	
VIII.	Serial Dilution	N	
IX.	Laboratory control samples	A	US
X.	Field Duplicates	N_	
XI.	Target Analyte Quantitation	N_	
ווצ	Overall Assessment of Data	LA_	

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

	Client ID	Lab ID	Matrix	Date
1	HS-13SS-0-12-220621	22F0420-01	Sediment	06/21/22
2	HS-14SS-0-12-220621	22F0420-02	Sediment	06/21/22
3				
4				
5				
6			·	
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				

Notes:

LDC #: 54841A4b

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page 1 of 1 Reviewer: LN

All elements are applicable to each sample as noted below.

Sample ID	Target Analyte List
1,2	As, Cu, Cd, Zn
	Analysis Method
ICP	
ICP-MS	
CVAA	

LDC #: 54841A4b

VALIDATION FINDINGS WORKSHEET <u>Laboratory Blank Contamination (PB/ICB/CCB)</u>

Page 1 of 1 Reviewer: LN

METHOD: Trace Metals (EPA SW 846 Methods 6010/6020/7000)

Soil preparation factor applied (if applicable):

Sample Concentration, unless otherwise noted: mg/kg

Associated Samples: 1,2

						Sample	e Identificat	ion		
Analyte	PB (mg/kg)	Maximum ICB/CCB (units)	Action Level	1	2					
As	0.476		5.00	1.84/9.98 U	2.84/13.0U					
						 L				

Comments: U at RL

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name: Port of Bellingham

September 2, 2022 LDC Report Date:

Wet Chemistry Parameters:

Stage 2B Validation Level:

Analytical Resources, Inc., Tukwila, WA Laboratory:

Sample Delivery Group (SDG): 22F0420

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date		
HS-13SS-0-12-220621	22F0420-01	Sediment	06/21/22		
HS-14SS-0-12-220621	22F0420-02	Sediment	06/21/22		

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the PRDI Work Plan Attachment C Quality Assurance Project Plan (October 2021) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (November 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A

Total Solids by Standard Method 2540G

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ -(Non-detected estimated): The analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Port of Bellingham Wet Chemistry - Data Qualification Summary - SDG 22F0420

No Sample Data Qualified in this SDG

Port of Bellingham Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 22F0420

No Sample Data Qualified in this SDG

							- / -
	:54841A6	VALIDATION			S WORKSHEET		Date: 9/1/2
	: 22F0420		S	Stage 2B			Page: Lof L eviewer: VN
Labora	ntory: Analytical Resource	<u>ces, Inc., Tukwila,</u>	<u>WA</u>			R	eviewer: 10
						ZIIU K	eviewer:
МЕТН	OD: (Analyte) TOC (EP/	A SW-846 Method	19060A), Total Solids	(SM2540G)		

	imples listed below were ion findings worksheets.	reviewed for each	of the f	following valida	ation areas. Validati	on findings are r	noted in attache
valluat	I						
	Validation /		A A		Comr	nents	
I.	Sample receipt/Technical hol	ding times	A,A				
II	Initial calibration		<u> </u>				Action Control of the
111.	Calibration verification		A				
IV	Laboratory Blanks		A_				
V	Field blanks		N				
VI.	Matrix Spike/Matrix Spike Du	plicates	N				
VII.	Duplicate sample analysis		N				
VIII.	Laboratory control samples		A	W (N	old for Total	Solids)	
IX.	Field duplicates		N				
X.	Target Analyte Quantitation		N				
ΧI	Overall assessment of data		A				
Note:	A = Acceptable N = Not provided/applicable SW = See worksheet	ND = No c R = Rinsa FB = Field	te	s detected	D = Duplicate TB = Trip blank EB = Equipment bla	SB=Sourc OTHER: nk	e blank
C	Client ID				Lab ID	Matrix	Date
1 F	HS-13SS-0-12-220621				22F0420-01	Sediment	06/21/22
	IS-14SS-0-12-220621				22F0420-02	Sediment	06/21/22
3							
4							
5							
6							, , , , , , , , , , , , , , , , , , ,
7							
8							
9		310					
10							
11							
12							
13	~						
14							

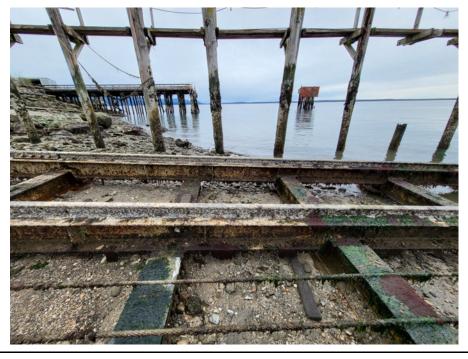
Notes:

LDC #: 54841A6

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

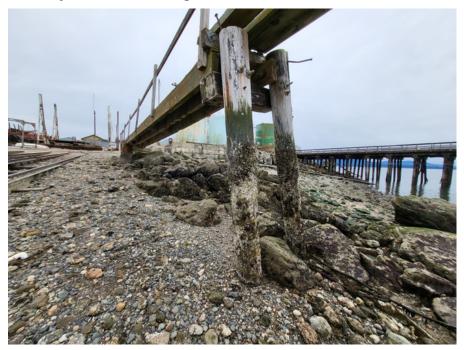
Page 1 of 1 Reviewer: LN

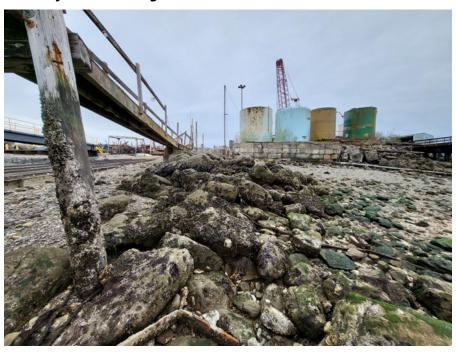
All elements are applicable to each sample as noted below.


Sample ID	Target Analyte List
1,2	Total Organic Carbon, Total Solids
-	

Shoreline Survey Photographs

SMU4A/SMU4B Area, North-Facing, 04/20/22


SMU4A/SMU4B Area, West-Facing, 04/20/22

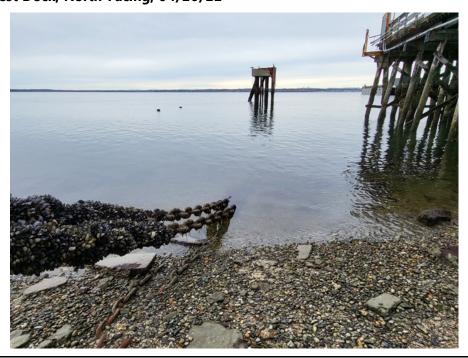


East Marine Walkway, Southwest-Facing, 04/20/22

East Marine Walkway, South-Facing, 04/20/22

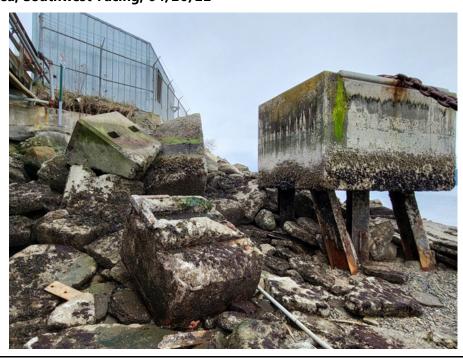
Shoreline Bulkhead Area, East-Facing, 04/20/22

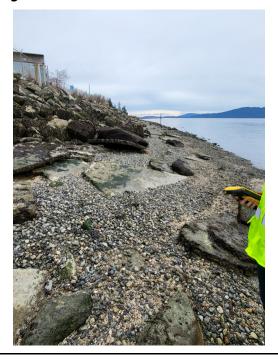
Shoreline Bulkhead Area, South-Facing, 04/20/22


Shoreline Bulkhead Area, Southeast-Facing, 04/20/22

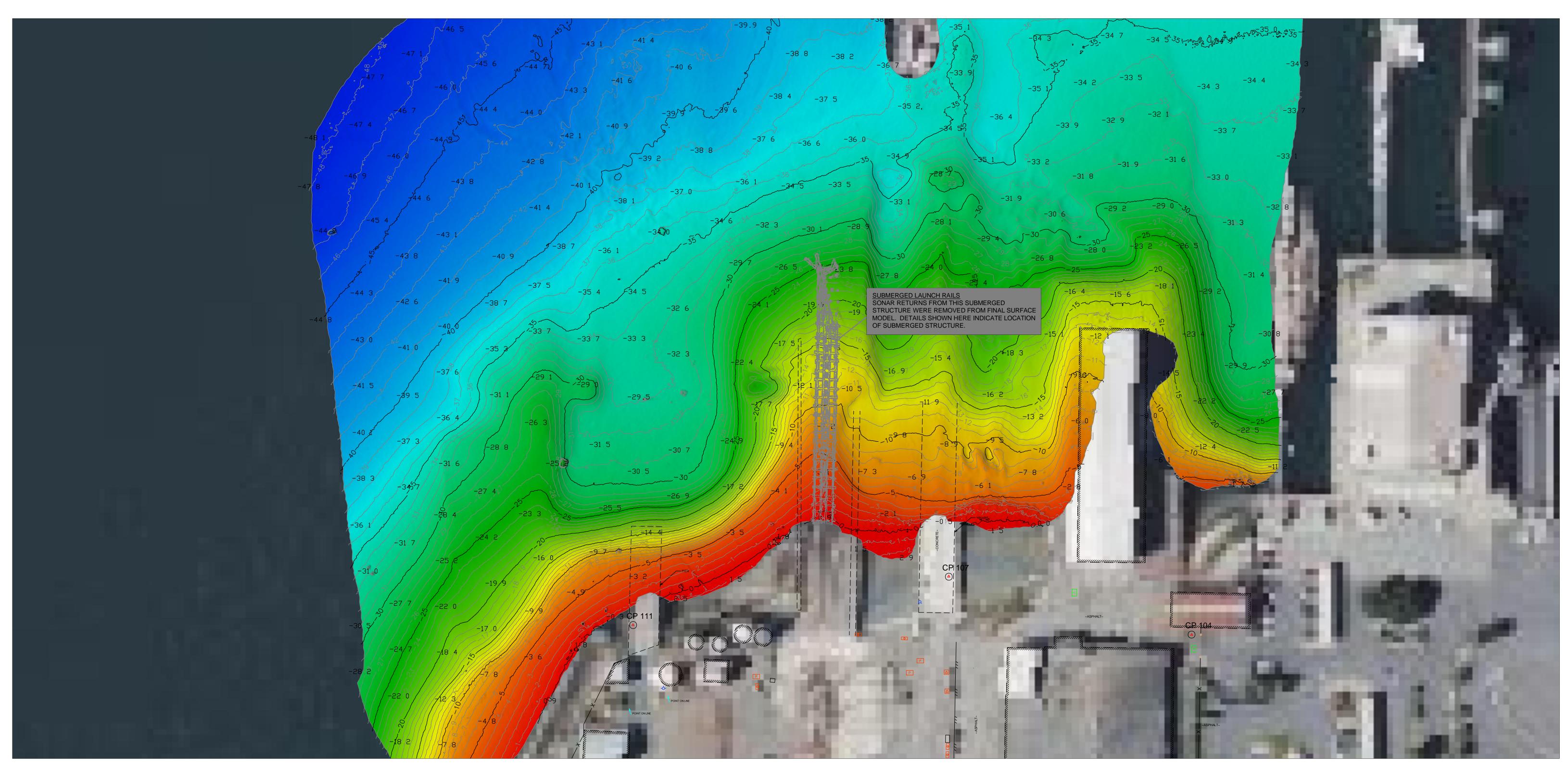
Under West Dock, East-Facing, 04/20/22

West of West Dock, North-Facing, 04/20/22


SMU 3b Area, South-Facing, 04/20/22


SMU 3b Area, South-Facing, 04/20/22

SMU 3b Area, Southwest-Facing, 04/20/22



HS-02HA Area, West-Facing, 04/20/22

PORT OF BELLINGHAM Harris Avenue Shipyard Bathymetry

Fairhaven, Washington
Data Collected August 29, 2022

NOTES:
1. HORIZONTAL DATUM: WASHINGTON STATE PLANE COORDINATES NAD83 (1998). COORDINATES BASED UPON PROJECT CONTROL MONUMENTS SUPPLIED BY PORT OF BELLINGHAM / WILSON ENGINEERING. (SEE CONTROL TABLE)

2. UNITS: U.S SURVEY FEET

3. VERTICAL DATUM: NAVD88. ELEVATIONS ARE IN FEET AND ARE BASED ON PROJECT MONUMENTS PROVIDED BY WILSON ENGINEERING. THE PROJECT NAVD88 VERTICAL CONTROL IS BASED ON CITY OF BELLINGHAM ELEVATION DATUM DATABASE. (SEE CONTROL TABLE)

4. CONTOUR INTERVAL: 1 FOOT.

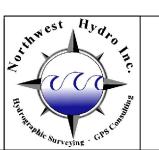
5. ALL HORIZONTAL POSITIONING AND VESSEL ATTITUDE WAS PROVIDED IN REAL TIME USING AN APPLANIX POS-MV RTK GPS AIDED INERTIAL SENSOR.

6. SOUNDINGS WERE COLLECTED USING A R2SONIC 2022 MULTIBEAM SONAR OPERATING AT 400 KHz. DATA PROCESSING WAS COMPLETED USING HYPACK HYWEEP SOFTWARE.

HYDROGRAPHIC SURVEY MANUAL EM-112-02-1003 (NOVEMBER 2013)

7. THIS BATHYMETRIC SURVEY IS REPRESENTATIVE OF THE GENERAL CONDITION OF THE SEABED AT THE TIME OF THE SURVEY. THE CONDITION OF THE BOTTOM MAY CHANGE AT ANY TIME AFTER THE DATE OF THIS SURVEY.

8. ALL BATHYMETRIC DATA WAS COLLECTED IN ACCORDANCE WITH THE U.S ARMY CORPS OF ENGINEERS


PROJECT SURVEY CONTROL (WILSON ENGINEERING)

 POINT NO
 NORTHING
 EASTING
 ELEV. (NAV

 CP 104
 632270.451
 1234854.697
 14.67

 CP 107
 632321.511
 1234642.035
 14.43

 CP 111
 632279.044
 1234365.615
 15.05

ATTACHMENT A-5 EELGRASS AND MACROALGAE SURVEY REPORT

Introduction

The eelgrass and macroalgae surveys were performed on June 21, 2022, by Anchor QEA, LLC; Gravity Marine Consulting, Inc.; and Global Diving Salvage, Inc. Eelgrass and macroalgae surveys were conducted using sonar, towed video, diver, and shoreline survey methods in planned shallow-water areas. The majority of the survey areas were accessible by survey boat and were performed using towed video and sonar. Diver surveys were performed in tandem with the debris survey in January 2022 where overwater cover was present (e.g., the main pier and the barge loading dock) and in areas where there was limited vessel access (e.g., the rail span structure interior, near mooring lines). Visibility was limited during the survey, so photograph or video documentation could not be recorded during the dive survey. The shoreline surveys were performed at low tide in late April 2022. A photograph summary of shoreline conditions is included in Attachment A-3 of the *Pre-Remedial Design Investigation In-Water Data Report* (In-Water Data Report).

The following sections summarize the eelgrass and macroalgae survey results. Sonar survey results are presented in Figure 1 of this survey report, and a summary figure of the sonar survey results with the debris survey results is included as Figure A-3 of the In-Water Data Report. A description of eelgrass, other aquatic vegetation, substrate, and wildlife documented during the surveys per survey area is presented in Table 1.

Results

Overall, native eelgrass (*Zostera marina*) beds were observed in two locations within the survey areas. Non-native eelgrass (*Nanozostera japonica*) was occasionally observed floating on the water surface during the surveys, but rooted non-native eelgrass was not observed within the survey areas.

Aquatic vegetation species observed during the surveys included sugar kelp (*Laminaria saccharina*), rockweed (*Fucus distichus*), sea lettuce (*Ulva lactuca*), epiphytic red algae (*Smithora naiadum*), and red algae (*Porphyra* spp. and *Rhodophyta* spp.) seaweed. These species were observed both attached to the substrate and unattached and floating in the water column or on the water surface during the surveys.

The vegetation sonar results are shown in Figure 1 of this survey report and Figure A-4 of the In-Water Data Report. As shown on these figures, the color coding of the sonar data identifies the presence and absence of eelgrass and the height of the eelgrass and other aquatic vegetation. Dark green and light green colors identify areas with no aquatic vegetation or vegetation species other than eelgrass, such as sea lettuce, iridescent seaweed, and red algae seaweed. Yellow, orange, and

red colors correspond to eelgrass presence with increasing height. Areas with taller eelgrass beds also typically correspond to higher eelgrass plant density. Analysis of the corresponding video survey data confirmed the eelgrass presence and absence identified by the sonar data.

Substrate in the survey areas consisted of a mixture of silt, sand, shell hash, gravel, cobbles, angular rock, and riprap. Gravel, silt, sand, and shell hash were the dominant substrate in the survey areas. Cobbles, angular rock, and riprap were common near the armored shorelines and interim action area.

Wildlife observed during the video survey included a sea star species, and Dungeness crab (*Metacarcinus magister*). Clam shells and clam holes in the substrate were present throughout the survey areas. A summary of the eelgrass results per survey area are presented in the following subsections and in Table 1.

Survey Area RDU-IA-2

The survey of Area RDU-IA-2 was performed using sonar and towed video. No eelgrass was observed in the survey area. The majority of the survey area is bare substrate with a few small patches of other aquatic vegetation present (Table 1).

Survey Area RDU-IA-4

The survey of Area RDU-IA-2 was performed using sonar and towed video. Moderately dense eelgrass beds were observed in the survey area (Figure 1; Figure A-4). Areas outside the eelgrass beds included a mix of bare substrate and other aquatic vegetation species (Table 1). Crabs were identified in the transition zone between the rocky shoreline and sandy silt bottom. Flatfish were identified in the portion of the survey area with sandy silt, shell fragments, and eelgrass.

Survey Area RDU 4A

The survey of Area RDU-4A was performed using sonar and towed video. No eelgrass was observed in the survey area. The majority of the survey area is bare substrate with a few small patches of other aquatic vegetation present (Table 1).

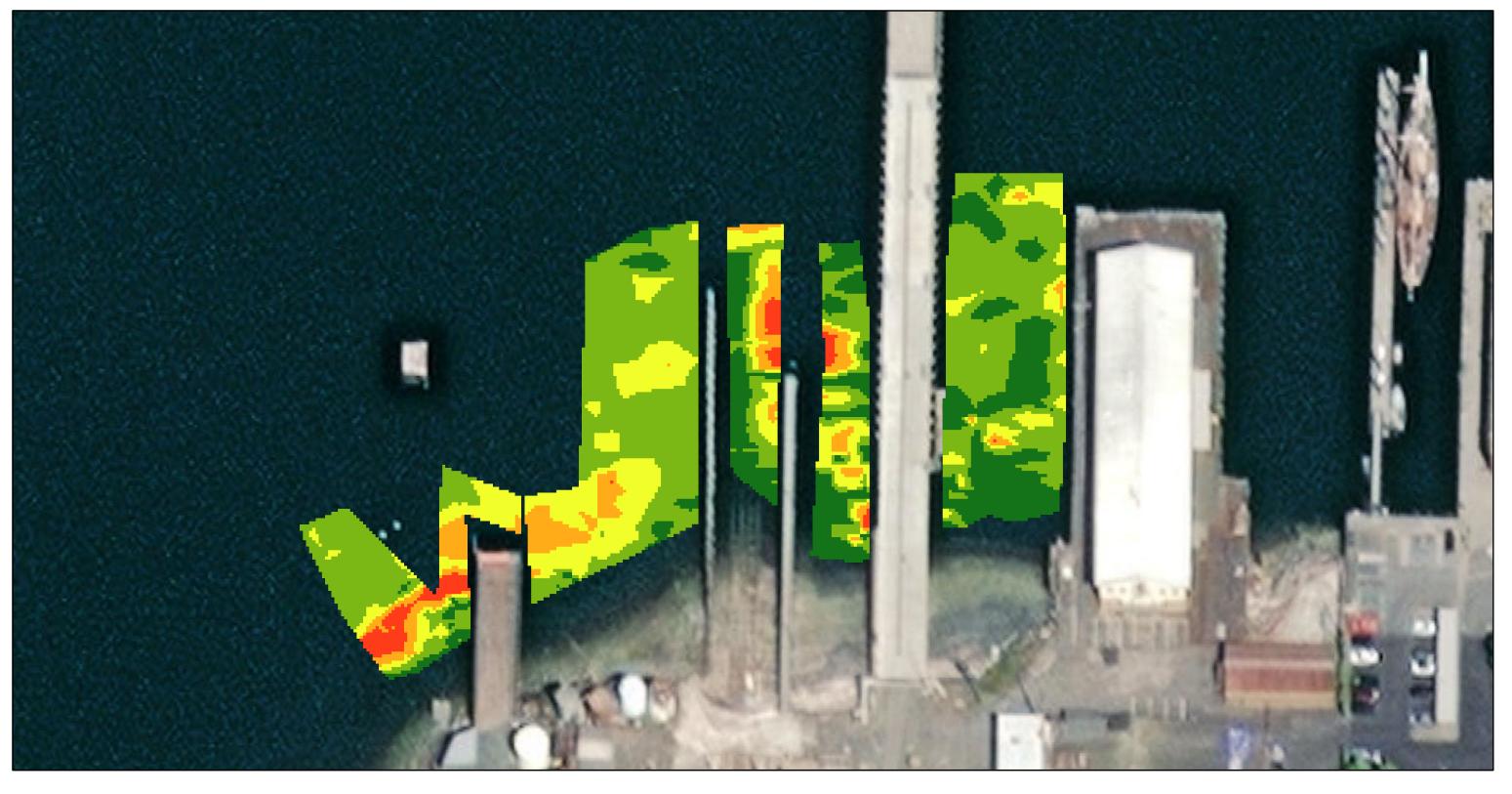
Survey Area RDU E

The survey of Area RDU-E was performed using sonar and towed video. No eelgrass was observed in the survey area. The majority of the survey area is bare substrate with a few small patches of other aquatic vegetation present (Table 1).

Survey Area RDU G

The survey of Area RDU-G was performed using sonar and towed video. No eelgrass was observed in the survey area. The majority of the survey area is bare substrate with a few small patches of other aquatic vegetation present (Table 1). The southern portion of the survey area, along the shoreline, was noted to be full of riprap, boulders, and wood debris during the diver survey.

Survey Area RDU 3B


The survey of Area RDU-3B was performed using sonar and towed video. Moderately dense eelgrass beds were observed in the survey area (Figure 1; Figure A-4). Areas outside the eelgrass beds included a mix of bare substrate and other aquatic vegetation species (Table 1). Crabs were identified in the eelgrass beds.

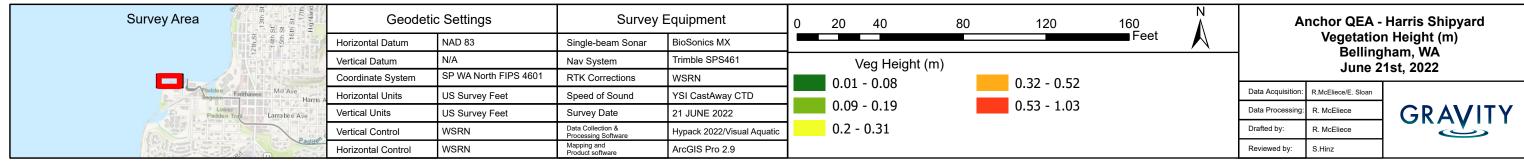

Table

Table 1
Eelgrass and Macroalgae Survey Results Summary

Survey Area	Eelgrass	Other Aquatic Vegetation	Substrate	Wildlife
RDU-IA-2	No eelgrass observed. Survey area is dominated by bare substrate with some small patches of other aquatic vegetation.	Sea lettuce, iridescent seaweed, epiphytic red algae, and red algae seaweed	Silt, sand, and shell hash	None
RDU-IA-4	Eelgrass was observed in a discrete portion of the survey area. The rest of the survey consists of a varied surface with patches of other aquatic vegetation as well as patches of bare substrate.	Sea lettuce, iridescent seaweed, epiphytic red algae, and red algae seaweed	Silt, sand, and shell hash	Crabs and flatfish present
RDU 4A	No eelgrass was observed. Other aquatic vegetation is present. Variation of vegetation and bare substrate are present within the survey area.	Sea lettuce, iridescent seaweed, epiphytic red algae, and red algae seaweed	Silt, sand, and shell hash	None
RDU E	No eelgrass was observed. Survey area is dominated by bare substrate with some small patches of other aquatic vegetation.	Sea lettuce, iridescent seaweed, epiphytic red algae, and red algae seaweed	Silt, sand, and shell hash	None
RDU G	No eelgrass was observed. Survey area is dominated by bare substrate with some small patches of other aquatic vegetation.	Sea lettuce, iridescent seaweed, epiphytic red algae, and red algae seaweed	Silt, sand, and shell hash; angular rock, cobble, and riprap along shoreline	None
RDU 3B	Eelgrass was observed in a discrete portion of the survey area. The rest of the survey consists of a varied surface with patches of other aquatic vegetation as well as patches of bare substrate.	Sea lettuce, iridescent seaweed, epiphytic red algae, and red algae seaweed	Silt, sand, and shell hash	Crab in eelgrass

Figure

Job: Job No No. of S Drive L Recove % Reco	Section ength ery:	100 ns: : 6.0 5 8	51170 17	Station ID: HS-01-SC Date/Time: 1-20-2022 Process Core Logged By: S. Smeth Attempt #: Type of Core Mudmole Vibra Diameter of Core (inches) y		144	DEA ST	
Recovered Length (ft)	Size % Gravel	Size % Sand	Size % Fines	Classification and Remarks (Density, Moisture, Color, Minor Constituent, MAJOR Constituent, with Additional Constituents, Sheen, Odor)	Recovered Length (ft)	ON Mr	Sample	Summary Sketch
		30 Fo	30	(0-2.1): SANDY STET: (ML) VITAY SOFT, WET, DAME GREY, FIRE-GRATHMY SATIND, THACE CHEATHER, SUFAIT HYDROGEN SUFAIE-LIKE COOK, (2.1-6) STUTY SAMD (SM). LOOSE, SATURATED, DAVID GREY, FIRE TO MEDIUM, PROMATELY FIRE, GRADE'S COMMSEN W/ NEPTH. (23-6): SHEW HASH + FRAZMENTS FREPHASING W/ DEPTH (5-2: DENSTING CHANGE TO MEDIUM DENSE			0-1 1-2 2-3 3-4 4-5	

* Compaction Connection: 58/6: 0.97 Friends Page 1 of

Job: Hamts Stap Job No. 2100 17 No. of Sections: 1 Drive Length: 6 29 Recovery: 3 9 57 Notes: 00005500	Station ID: #5-625C Date/Time: 1-20-2072 paviation for the processor of	Diver Core Diver Core	
Recovered Length (ft) Size % Gravel Size % Sand Size % Fines	Classification and Remarks (Density, Moisture, Color, Minor Constituent, MAJOR Constituent, with Additional Constituents, Sheen, Odor)	l & law	
30 70 1 2 3 4 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	VERY SOFT WET, DARW GREY, FARE GRAPHING SAND, CRADES COMPSIN W/ REPTH, SHEW HASH, MALL CHUMANCS, SUFWITH HYDORGEN SULFFACT LIKE COWO. @ 0.9:3" WOOD CHUMN W/ SHEEN @ 1.8: FAMPETHSE TO STANFFICANT SHEW HASH DESC. TO MED. DENSC, SATURATED, DARK GRADES COMMEN W/ DEPTH, SOME FAME SUB- ROUNDEN GRANELS, SHELL HASH @ 5: 22" SANDY STOLLENS! VELLY SOFT, WET, GREY (POSSERSE GW) LENS (CONTACT) @ 5.2-b: INCREASED GRAVET CONTENT, FAME TO MED SUB. PLUMMEN GRANELS, CAN OF COME (D (6 (3.4))	7-7 7-4 7-4 7-6 1-2 1-2 1-3 1-4 1-5 1-5	00.10

V Compactition Completition: FIGUREAUS (EACH FOOT) = 0.65 Page of

Sediment Core Job: HMARS SHEP YA Job No. 210007-0 No. of Sections: / Drive Length: & Fr Recovery: 2 9 F1 CN BA % Recovery: 48.31 CN Notes: PACES SM 22 /	Date/Time: 1-21-22 Macon Park Core Logged By: 5. STREET Attempt #: 02 Type of Core	uessev.	7 C	NCHC IEA == IOOO Diver Core		
Recovered Length (ft) Size % Gravel Size % Sand Size % Fines	Classification and Remarks (Density, Moisture, Color, Minor Constituent, MAJOR Constituent, with Additional Constituents, Sheen, Odor)	Recovered Length (ft)	X	Sample	Summary Sketch	
1	VOPO SOFT, WIT, DAME GREY, FFIVE - GAMENOD SAMO, GRANDES COMISÉVA, THATCE FAME SUJ-ANGULATRA GRANDES, SHEW ITAS H. (D. 6-1.6 NO STAVETURE, FLOWING, STET) (i.6-2.2) SAMO W/ STUT + GRANDE (SP) LOOSE, WET, DAME GREY, FFINE TO COMPSE SAMO, FINE SUB-ROLLMOD GRANDES, GRANDES COMPRENZ, SHEW ITASH, REFLERE LIKELY DUE TO FINEREASTA, GRANDES COMPONT. END OF COVIE Q 2.2			0-2.2		Flovani

out of sums arm stores, very lattle structure of sussay.

Page 1 of /

	Anus 21 Section ength: ery: 07	15. 2 ns: 5. 2 u Bot en h	5 Hz	Attempt #: 2 Type of Core Mudmole Vibra		1215	Diver Core		
Recovered Length (ft)	Size % Gravel	Size % Sand	Size % Fines	Classification and Remarks (Density, Moisture, Color, Minor Constituent, MAJOR Constituent, with Additional Constituents, Sheen, Odor)	Recovered Length (ft)	92 NA	Sample	Summary Sketch	
	5	60	70	(3-2) SAMOY SELT (ML) VORY SOFT, WET, DATELL AREY, FENE GAMENDO SAMO, TRACE FENE SUB-ROLLINGED EPARCE, THACE SHEEL HASH. (2.5:4NTHRO POLITAGE DEBRIS: MITAL FRAGMON (2.5:25) SILVY SAMO W/ GRAVEL (SM) LOOSE, WET, DATELL REY, FENE TO MITELIAM GIDATMEN, MOSTLY FAME -GAATHAN BAMO, FINE TO MITERIAM SUB-ROLLINGE GMANTEL, GRAVES COARSEN W/ NEPTH, SHELL HASH, SITGHT HYDROLLEN'SUFFINE - WHI ONUR. (2.5: 2" WOOD FORTHMENT (3.5: 14.2, 5: PERCOLL SHEEL CONTENT, UP TO 2" GRAVES SAM UF COME (D 5:25)			o-! 1-2 2-3 3-4 4-5-2-5	60 60 00 00 00 00 00 00 00 00 00 00 00 0	Flows No Struct nop 2

* COMPACTION CORVECTION: 34 REWARY /5-25 DREVE Page

= 0.65 INTERVALS IN C-4

THEN 4-5.25 FINN INTERVAL

S	edi	ime	nt (Cor	e Processing Log	1	All .	NCHC DEA 😂	OR		
	Job: HARRES Station ID: HS-0550										
Job	Job No. 210007-02001 Date/Time: 1-21-22 / pace 3509 1330										
	No. of Sections: 1 Drive Length: 6 5 5 Thett Attempt #: 1										
	Drive Length: 6 feet Attempt #: 7 Recovery: 4 7 Type of Core Mudmole Vibracore Diver Core										
			78	37.	Diameter of Core (inches) 4 "						
			SSET			78 7	WILM	uns			
Recovered	Length (ft)	Size % Gravel	Size % Sand	Size % Fines	Classification and Remarks (Density, Moisture, Color, Minor Constituent, MAJOR Constituent, with Additional Constituents, Sheen, Odor)	Recovered Length (ft)	Ar Piro	Sample	Summary		
1 2 3 4 5	7	Size	ZIS LO	70	(0-1.4) SFLT (ML) SOFT, WET, DARK GREY TO 0.3, THEN SAME SATURATED, GREY, SFUT (ML), SOME FAME GRAFMEN SAMO, QO-0.3: SHTULLESH QO.3-1.4: FARM CLAYETY SFUT WITH LOW PLASTICATLY (1.4-6) SFUTY SAMO (SM) LOUSE, SATURATED, DARK GREY, FAME TO MENTIN GRAFMEN SAMO, GRAMETS COANSEN WOEPPIH, THALE FAME SUB-MINISTER PUTTINES GRAMETS, SUTHINGS FAT ACT SHELL HASH + FRAGMENTS THYOM GEN-SULFAME LAKE USER. QO-0.3: SHTULLY UP TO 4", SUTAHT HYDONGEN-SULFAME LAKE USER. QO-0.3: SHTULLY UP TO 4", SUTAHT PROPORED SULFAME LAKE USER. END OF LOVE QUE 6			2-3 3-4 5-6	A DO A O V DO A O V DO A O O DO A		

				e Processing Log Station ID: # 5 - 06 50	V	21	DEA #	OR W	
Job: Job No No. of S Drive L Recove % Rec Notes:	Section engthery: overy:	2 0 ns: :	0 98 7	Date/Time: 1-21-72 PROCESSED Core Logged By: 5. Smeth Attempt #: 2 Type of Core	core		Diver Core		
Recovered Length (ft)	Size % Gravel	Size % Sand	Size % Fines	Classification and Remarks (Density, Moisture, Color, Minor Constituent, MAJOR Constituent, with Additional Constituents, Sheen, Odor)	Recovered Length (ft)	×A NA	Sample	Summary Sketch	
	10	30		(0-5.5) SANDY SFLT (ML) VERY SOFT, WET TO 1.5, THEN SOFT, SHOWARD, DARLY GREY, FENCE CHAPTER SAND, DRUMMICS: FEBRURS, MALE SITELL ITASH, SLEGHT HYDROGEN SUPPLE: COCK, C2.6; DUCK TAPE (55-6): STLLY SAND (SM) MORE DENSE, METST, BILLETSH CREY, FENCE TO MEDIUM GRAZNED SAND, SOME FAME TO MEDIUM SUB- MEMOLDO TO SUB-ANGULAN GRANEL.	F'		0-1 1-2 2-3 3-4 4-5		possing in

ANCHOR Sedin	nent Core Collectio	n Log
Job: Harris Ave. PRDi Job No: Field Staff: NS Contractor: Caranty Vertical Datum: ~	Station ID: H Attempt No. (Date: O(- Zi Logged By: N Horizontal Date	-22
Field Collection Coordinates: Lat/Northing: 632620-42	Long/Easting:	1234548-31
A. Water Depth DTM Depth Sounder: DTM Lead Line: 33-4 FF	B. Water Level Measurement Time: 16 38 Height: — Source: —	Recovery Measurements (prior to cuts)
Core Collection Recovery Details: Core Accepted: Yes / No Core Tube Length: Det Drive Penetration: Left Headspace Measurement: 7.7 Ft Recovery Measurement: 7.7 Ft Recovery Percentage: 38.87 Total Length of Core To Process: Drive Notes: Coff: Simp, Cliff Coff: Lend of Co		Sections To Process: A: MA B: C: D:
Core Field Observations and Descriptio		sture, color, minor modifier, MAJOR modifier, other constituents, g, anoxic layer, debris, plant matter, shells, biota
C-i Lt Black MS L-2HFt: Dense 1-2.3 Pt:		3 sand w/ gravel
Notes:	NS	

ANCHOR Sedin	nent Core	Collection L	og	Page 2 of 3
Job No: Field Staff: NS	- - -	Station ID: I+S- Attempt No. Z- Date: 01-71-2		
Contractor: Caracity Vertical Datum: -	-	Logged By: NS Horizontal Datum: I	NAD83 WA State Plane No	rth, feet
Field Collection Coordinates:			21552 11	
Lat/Northing: 632619 * 04	-		34552.01	
A. Water Depth DTM Depth Sounder: DTM Lead Line:	Time: (Le: Height: — Source: —	el Measurements	C. Mudline Elevation Recovery Measurements	(prior to cuts)
Core Collection Recovery Details: Core Accepted: Yes / No Core Tube Length: 10 Pt Drive Penetration: 10 Pt		-	(6.3)	
Recovery Measurement: 3 7 PT Recovery Percentage: 6 V /- Total Length of Core To Process: N/A		Core Tube Length	10 3-7	
Drive Notes:	rd drivi	Core Tub		
a lott. The of	anve		Section A: B:	ons To Process:
			C:	
Core Field Observations and Descriptio	n:		color, minor modifier, MAJOR modifi kic layer, debris, plant matter, shells	
0-2 Ft: Carry	Silt wit	in frace so	hell hash	
2-3.7 Pt: Chart of	vey der	ise sand i	ul gravel	
Notes: Core Jube	pent.			

ANCHOR Sedir	ment Core Collection	Log Page 3 of 3
Job: Hams Ave PRDI Job No:	Station ID: 1+S- Attempt No. 3	-07SC
Field Staff: NS	Date: - 2 -	
Contractor: Charity	Logged By: N3	
Vertical Datum:		: NAD83 WA State Plane North, feet
	-	
Field Collection Coordinates:		
Lat/Northing: 632621.96	Long/Easting: 2	-34552.94
A. Water Depth	B. Water Level Measurements	C. Mudline Elevation
DTM Depth Sounder:	Time: 17:25	to calculate
DTM Lead Line: 33.8 PA	Height: -	
	Source: -	Recovery Measurements (prior to cuts)
Core Collection Recovery Details:		† []
Core Accepted (Yes) No		59
Core Tube Length: 10 C4		
Drive Penetration: 10 DA		1 1
Headspace Measurement: 5.9 F+		
Recovery Measurement: 4.024		7
Recovery Percentage: La Tue (ole /-		
Total Length of Core To Process: 4.0	C+	
Drive Notes:		
		စ္
0 - 6 Ct. Slow, 0	100000111	3
0 - 6 Ct: Slow, C	11+ Cuct	
anna	9	
(e) left end	Of drive	Sections To Process:
	3	A: 0-10 F+
		B:
		C:
		D:
Core Field Observations and Description		, color, minor modifier, MAJOR modifier, other constituents, noxic layer, debris, plant matter, shells, biota
0-2 ft: Dan	& anew silt	
2-4.1 Ft: Cin	ey Silty sand	w/ shell fragments.
	0	0
(a) Bostom of	core tube: ver	y hard, dense
sand wit	h gravel and	snells
	,	
Notes:	/ns	
	/	
/		

Job: Job No. No. of S Drive Lo Recove	Section ength:	15 5 1000 15: 1	T 4.	Date/Time: 1-70-72 / Vibrasian Attempt #: // Type of Core Mudmole Vibra	on E	1100	DEA SOLVER CORE		
Recovered Length (ft)	Size % Gravel	Size % Sand	Size % Fines	Classification and Remarks (Density, Moisture, Color, Minor Constituent, MAJOR Constituent, with Additional Constituents, Sheen, Odor)	Recovered Length (ft)	A	Sample	Summary	A - SHEW
1 2 3 4 5 6		30		(0-1.1) SANDY STIT (ML): VERY SOFT, WET, BROWNISH GREY, TRACE ORGANIZES, SHEW HASH. (11-6): STITY SAND (SM): LUCSE, SATURATED, BROWNISH GREY, FINE TO MEDTUM SAND, MOSTLY FINE, GROTOES COARSER W/ OUTH, SHELL HASH + SHELL FIRAGMENTS UP to 2" ATMO SHELL FIRAGMENTS UP to 2" ATMO SHELL HASH (2.2: DEWSTRY CHANGE TO MED. DETVSE.			2-3	A. A	

of Compaction Correction: Internals 0.8

Page of

ANCHOR Sedi	ment Core	Collection L	og
Job: Ham'S Are PRDI Job No: Field Staff: NS Contractor: Caravity Vertical Datum: -		Station ID: HS-Attempt No. Date: 01-21-2 Logged By: NS Horizontal Datum: N	
Field Collection Coordinates: Lat/Northing: 632154.40	_	Long/Easting: 123	34608.89
A. Water Depth DTM Depth Sounder: DTM Lead Line: 40.5	2.	el Measurements	C. Mudline Elevation to calculate Recovery Measurements (prior to cuts)
Core Collection Recovery Details: Core Accepted: Yes / No Core Tube Length: Drive Penetration: Headspace Measurement: Recovery Measurement: Recovery Percentage: / 3 3 3 / Total Length of Core To Process: Drive Notes:		Core Tube Length	Sections To Process: A: MA B: C: D:
Core Field Observations and Descript	ion:		color, minor modifier, MAJOR modifier, other constituents, xic layer, debris, plant matter, shells, biota
0-8 pt: NS 0-3.5 ft: 3.5-8 ft: Notes:	Biack Grey 5	silt w/s	hell hash (malerate)

ment Core Collection L	og Page 7 of 3
Station ID: HS - Attempt No. 2 Date: 01 - 24 - 7 Logged By: NS Horizontal Datum: N	09SC
Long/Easting: /2	34606.51
ore Tube Length	C. Mudline Elevation +o calculate Recovery Measurements (prior to cuts) 4.1
	color, minor modifier, MAJOR modifier, other constituents, xic layer, debris, plant matter, shells, biota
ask grug silt	
	Station ID: HS - Attempt No. 2 Date: 01 - 24 - 7 Logged By: NS Horizontal Datum: I Long/Easting: /2 B. Water Level Measurements Time: 15: 54 Height: Source: Source:

ANCHOR Sedir	nent Core Collec		Page 2 of 3
Job: Hans Ave PPDI Job No: Field Staff: NS Contractor: Granty Vertical Datum:	Attempt N Date: O1 Logged B	-21-22	, feet
Field Collection Coordinates: Lat/Northing: U 32753.73	Long/East	ing: /234608.53	_
A. Water Depth DTM Depth Sounder: DTM Lead Line:	B. Water Level Measure Time: 16:09 Height: - Source: -	ments C. Mudline Elevation +o calculate Recovery Measurements (p	_
Core Collection Recovery Details: Core Accepted: Yes / No Core Tube Length: Details: Drive Penetration: 10 Headspace Measurement: Details: Recovery Measurement: Details: Recovery Percentage: Details: Recovery Percentage: Details: No Recovery Percentage: Details: N		Tight	
Drive Notes:	ay anno	Core Tube Length	
a loct end	1	-	s To Process:
		C:	
Core Field Observations and Description		e, moisture, color, minor modifier, MAJOR modifier, layering, anoxic layer, debris, plant matter, shells, b	
0-2.5 ft: Do 2.5-4.1 ft: gr	ark gruy s ey Silt wit	it h shell fragme	<u>-+5</u>
Bock in bottom	of core ju	be	
Notes:	/NS		

		Surface	Sediment Co	llection	Log	
Job:	Marris	Ship yards		Station:	45-0	156
Job No:	+70"113	JVIII GOILES			18.22	
Field St		(2)		Sample Met		6
Contrac		12 H		Proposed Co	oordinates:	Lat.
						Long.
Water F				Tide Measur		Sample Acceptability Criteria:
DTM De	epth Sounder:		•	Time:	1508	Overlying water is present
DT	- 4 1 5	1215		Usiabte	7.74	2) Water has low turbidity
DIMILE	ead Line:	30,0	,	neight.	1.77	Sampler is not overfilled Surface is flat
						5) Desired penetration depth
Natas		Mudline Elevation	(datum): calculated af	ter sampling		-
Notes:						
1						
Grab #	Time		rdinates (datum)	Sample Accept (Y/N)	Recovery Depth (in)	Comments: jaws close, good seal, winnowing, overlying water, surface intact, etc
		NAD 83 (N)	NAD 83 (E)			
1	15:00	632588,09	1234714.04	N	13	For STHATEFAM GARB
2	15:07	632592.48	1234717.44	Y	19	overlying water, flat surface
Sample	Description:	MAJOR CONSTITUENT minor constituents (%), pl odor. Structure description	lasticity. Amount and shap	content, density e of minor cons	/consistency, tituents (e.g.,	color, major constituent (%), wood, shells). Biota. Sheen,
0 -	0.5: he	7, Lovie, Brunn	SFET (5/95)	MALE +	EG SAW	2. SUFFICERY_
5	HFZCS / F	naquents, w	oon prons,	REOTA!	SMAT	15
						16-16
0-3	- Borrow	WET, 100	SE DAMIL ENER	7	STIT (ur	
- 5	TANTICO	AT SHELL IT	ASH, ORGANIS	15, Stro	N4 HZ	5 - lthe own.
Sample	Depth:	12cm, 12-				
Jampie	- Jopan () -	I WANT I T				
Sample	Containers:					
Analyse	es: 0-V2 CI	m:				

			Sediment Co			
Job:	Hoper	5 SHEPHAPOS		Station: H	5-02-	56
Job No:				Date: 1-	18-22	
Field St				Sample Met		
Contrac	tor:			Proposed Co	oordinates:	
107 1 1				Tide Manager		Long.
Water Height DTM Depth Sounder: DTM Lead Line:				Tide Measur Time: Height:	13:15	Sample Acceptability Criteria: 1) Overlying water is present 2) Water has low turbidity 3) Sampler is not overfilled
						4) Surface is flat
		▼Mudline Elevation	(datum): calculated af	ter sampling		5) Desired penetration depth
Notes:						
						1.
Grab #	Time		rdinates (datum)	Sample Accept (Y/N)	Recovery Depth (in)	Comments: jaws close, good seal, winnowing, overlying water, surface intact, etc
		NAD 83 (N)	NAD 83 (E)			OVER WITH LAND
#/	13:15	637398.37	1734715.18	Ϋ́	18	SURFACE PATACT
Sample	Description:	MAJOR CONSTITUENT minor constituents (%), plodor. Structure description	lasticity. Amount and shap	content, density, e of minor cons	/consistency, tituents (e.g.,	color, major constituent (%), wood, shells). Biota. Sheen,
	0-0.5:	WET LOOSE BAU		i) Stan	AFFERN	of settles, sitell
	Fortz mit	MS SHAWER	1 0	SNAFLS	-	
	1)	,			
	0.5- 5000	mi het, m.	DENSE DARKE	EPHY I SE	ery SAW	1 (70/30) FG to
	MEDGRA	Frey, Torret (IPANT, SITELL	11/154 6	RAD-3	COMPSER
				1		
Sample	Depth:	12m 12-17	cm			
		1				
Sample	Containers:					
	61.1	O. b. /		(A)	_	2
Analyse	es: PAH 5	PCB3 METALS	1 TOC 1TS ,	BIO ASSAU	1 (0-	()

(17-17); PAHS, PCBS, METALS, TS, TOC

		Surface	Sediment Co	ollection	Log	
Job:	HAMES	SHAPPYARDS		Station:	15 - 03	Sa
Job No:	7	10		Station: -	8-72	
Field St	aff: 55 /(8			Sample Met		
Contrac	etor: CRAVE	74		Proposed Co	oordinates:	
						Long.
Water I				Tide Measur		Sample Acceptability Criteria:
DIM D	epth Sounder:			ı ime:	19:00	1) Overlying water is present
DTM		18.3		Haight	7.35	2) Water has low turbidity
DIME	ead Line:	10.7		neight.		Sampler is not overfilled Surface is flat
l						5) Desired penetration depth
Notes:		Mudline Elevation	(datum): calculated af	ter sampling		-
110103.						Ti-
Grab #	Time	Confirmed Coo	ordinates (datum) NAD 83 (E)	Sample Accept (Y/N)	Recovery Depth (in)	Comments: jaws close, good seal, winnowing, overlying water, surface intact, etc
		11/10/00 (11)	NAD OO (L)	1		BULLEVYING WARE
#)	14:00	632454 24	1734671.76	У	18	SUFFACE FRACT
						_
Sample	Description:	minor constituents (%), p odor. Structure description	lasticity. Amount and shapons		tituents (e.g.,	color, major constituent (%), wood, shells). Biota. Sheen,
	-0.5 WE	1 LOOSE, BROWN	STU (AMM)	30/5/65/	scal	FIFTH GATES
	2-6" Sus	RND TO SUS A	NG , STENTYT C		7	LE FORA SULTITS.
A	MHRO DUSTS	5: WOOD CHANKS		no GUAS	5 BZ	OTA: CRABS
	STANFA	it, worms	TRACE SHEE			2 6 7 - 2 01.
0.5		m: hty cou		SAMMY	SFLT (30 (70) F9 SAM
Comple		thout, Freder	and mean bush	5 + Setro	they, It	79- ITKE ODOR.
Sample	рериі.					
Sample	Containers:					
Sample	COIRAINEIS.					
Analyse	es: 0-12	1				
	12-17	Ni .				

		Surface	Sediment Co	llection	Log				
A	1. 1/ 5	1		Station: 14	<- 04	56			
Job: +	tarris c	shipyards			9.22				
Job No:	"	N		Sample Meth					
	aff: SS > C			Proposed Co					
Contract	tor: Gravi	+4		Proposed Co	orumates.				
						Long.			
Water H	eight			Tide Measur		Sample Acceptability Criteria:			
DTM De	pth Sounder:			Time:	11:34	Overlying water is present			
	•		•			2) Water has low turbidity			
DTM Le	ad Line:	1 35.1f	}-	Height:	6. 12ft	3) Sampler is not overfilled			
		1 00.				4) Surface is flat			
i						5) Desired penetration depth			
1		Mudling Floyation	datum), calculated at	ter sampling	14				
Notes:	Notes: 11 ft west of station in Attempt #1. 10.69+ off station for #2.								
8									
						Comments: jaws close, good			
Ough #	Time	0.0	-1°4 (datuma)	Sample	Recovery	seal, winnowing, overlying			
Grab #	Time		rdinates (datum)	Accept (Y/N)	Depth (in)	water, surface intact, etc			
		NAD 83 (N)	NAD 83 (E)						
1	11:34	632616.97	1234615.27	N	12 cm	Low volume, Sloped Surface			
2	11:44	633670.23	1234614.95	Y	17cm	Overlying water and surface intact			
Sample	Description:	MAJOR CONSTITUENT minor constituents (%), p odor. Structure description	lasticity. Amount and sha	pe of minor cons	tituents (e.g.,	color, major constituent (%), wood, shells). Biota. Sheen,			
0-0.	S": Wet	loose, brown	sandy (5%)	5:14 (909	0 00	trace grave (5%)			
0.5"	- Bottom:	Wet, loose, d	lark arey fine	- med s		:1+(70%)			
5:	anificant			ments	(30%	1			
	15-1: ke	odor (Slaht		nd herm	it cra	bs.			
11.6	× - 11/00	Car Carra	,						
_									
Comple	Donth: -	10	d 12-16cm						
Sample	Depth: 5	-12cm an	a in I warm						
		2 H	11 0 7			13			
Sample	Containers:	802 Jan × &	, 160 300	5 × 7 , 3	gallen	Dag			
		A11 112	A rate name to at 1 and		10 - 1	• 0			
Analyse		cm: PCBs, pl	100	TS, TOC					

lob: lob No: leld Sta Contract	tarris S	1 1 -				
lob No: ield Sta		hipuchas		Station: HS	5-053	5 G
	_				9.22	
Contract	aff: 5 ≤ →	CB		Sample Met		
	or: Gravi	ty		Proposed Co	ordinates:	
		\				Long.
Water H DTM De	eight pth Sounder:		-	Tide Measur Time:	ements 10:38	Sample Acceptability Criteria: 1) Overlying water is present
OTM Lea	ad Line:	23344	-	Height:	7.25 F	Water has low turbidity Sampler is not overfilled Surface is flat
						5) Desired penetration depth
Notes:	Approx.	Mudline Elevation	(datum): calculated a	after sampling	ie to i	
	-11611	33.0				
Grab #	Time	Confirmed Coo NAD 83 (N)	ordinates (datum) NAD 83 (E)	Sample Accept (Y/N)	Recovery Depth (in)	Comments: jaws close, good seal, winnowing, overlying water, surface intact, etc
1	10:38	632499.41	1234600 38	Y	Hcm	Jans closed, overlying water
Sample	Description:	MAJOR CONSTITUENT minor constituents (%), and odor. Structure descript	plasticity. Amount and sh	e content, density ape of minor cons	/consistency, tituents (e.g.,	color, major constituent (%), wood, shells). Biota. Sheen,
0- 5	" - Wet	loose, brown	v 2:1+ (man)	1 Him Co	10 , s ek	nvel and trace sang
5.,-	Shein Signi	- Wet loose observed wi-	th HC-like of hash and	dors (s)	W C	sandy (30%) 5:11 and mod. Has-like o gments
	deile	t sticks				
Sample	Depth: 0	12 cm and	12-16cm			
Sample	Containers:	802 Jons 2	1603	Jar, 20	jollon	Bay

Dup: (1045 (HS-10055G WENDMA) : PCB'S, PAH S, METALS, TS, TOC, ARCHERE

		Surface	Sediment Co	llection	Log			
Job: Job No: Field St Contrac	aff: 55 +	phipyards		Station: H Date: 1 Sample Met	ター) V G		
Water F DTM De		18-3 +	•	Long. Tide Measurements Time: O 1 7 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2				
Notes:		Mudline Elevation	(datum): calculated af	ter sampling		•		
Grab #	Time	Confirmed Coo	rdinates (datum) NAD 83 (E)	Sample Accept (Y/N)	Recovery Depth (in)	Comments: jaws close, good seal, winnowing, overlying water, surface intact, etc		
1	09:10	632449.25	1234582.01	N	16th	Low volume, not enough stratified		
2	09:17	632448.08	1234585.88	2	15cm	Low Volume, not enough stratified		
3	09:25	632453H4	1234581.32	7		Rock stuck in Jaw, not a tight		
H	09:28	632457.54	1234587.52	2	-	More rocks stuck in Jan Notight seal.		
5	09:32	632442.43	1234586,35	7	Hcm	more rocks stuck in Jaw. Ne tight		
6	09:37	632444,96	1234582.27	2		Rocks Stuck in Jay, No fight Seal.		
Sample	Containers:	minor constituents (%), pl odor. Structure description	lasticity. Amount and shap	e of minor cons	/consistency,	Color, major constituent (%), wood, shells). Biota. Sheen,		

		Juliace	Sediment Co		_			
ob: \	Larris	Shipyards		Station: 1	5-06	SG		
ob No:				Date: \-	19.22			
ield St	aff: 55 +	CB		Sample Met		1 G		
Contrac	tor: Gravi	ty		Proposed Co	oordinates:			
		1				Long.		
Vater F				Tide Measur		Sample Acceptability Criteria:		
TM De	epth Sounder:			Time:	0917	Overlying water is present		
		110000			8 26 CI	2) Water has low turbidity		
TM Le	ad Line:	18.3 ft		Height:	8.39 ft	3) Sampler is not overfilled		
						4) Surface is flat		
						5) Desired penetration depth		
11.4		Mudline Elevation	(datum): calculated af	ter sampling		•		
Notes:								
				Comple	Recovery	Comments: jaws close, good		
Grab #	Time	Time	Time	Confirmed Coo	rdinates (datum)	Sample Accept (Y/N)	Depth (in)	seal, winnowing, overlying
		NAD 83 (N)	NAD 83 (E)		, , ,	water, surface intact, etc		
	0.8 . 111	100	100400	,		Rocks Stuck in Jaw.		
†	09:41	632458.00	1234580,22	N		Not a tight Seal		
						Not a tight Seal. FUNT SURFACE, OVERWANG WATER		
8	09:44	1 2 0	100		10	FUNT SULTACE,		
0	04.44	632448.87	1234578.19	l y	10cm	OVERLYTHS WATER		
						-		
	L							
ample	Description:	MAJOR CONSTITUENT	GROUP NAME. Moisture	content, density	/consistency,	color, major constituent (%), wood, shells). Biota. Sheen,		
ampic	Boodilpaoin	odor. Structure description	ons 7		ilidenia (c.g.,	wood, shelis). Diota. Oncen		
C	5.51 - W:	et loose bro	wn 5:1+ (50	one fele	1 trace	3and (5%), 20		
De	coer than	0-52- We		areurm	ied. are	MY sand (70) 3:1-		
	0.1	esent, worm	5, smails , s	shell fr	agmen	to 1425-like ado		
		1			7			
			10 10					
	Depth: 0 -	12 cm and	12-17cm					
ample								
	A							
	Containers:							
ample		PAHS. PCBs. M	ETHLS, TOC. TS	A.A. a short	. + ===	ASSA1		

* fine to med grain

	v		Sediment Co			
Job: H	210007-	Shipyred		Station: H5	-OIHA	
Job No:	210007-	01.02		Date: 4 19	22	
Field Sta	aff: NS DP	9		Sample Met	hod: Hen	I tooks (auger, shove)
Contract	tor: N/A			Proposed Co	oordinates:	: Lat.
	7					Long.
Water H	leight			Tide Measur		Sample Acceptability Criteria:
DTM De	epth Sounder:		z.	Time:		Overlying water is present
l						2) Water has low turbidity
DTM Le	ad Line:			Height:		3) Sampler is not overfilled
l						4) Surface is flat
l						5) Desired penetration depth
Notes:		Mudline Elevation	(datum): calculated at	fter sampling		•
Grab#	Time	Confirmed Coo	rdinates (datum) NAD 83 (E)	Sample Accept (Y/N)	Recovery Depth (in)	Comments: jaws close, good seal, winnowing, overlying water, surface intact, etc
١	j220	Collected	via GPS file	Υ	12"	Beach Sample
١	1305	7	1	Υ	12"	1
,						
			,			
			90			
	Description:	MAJOR CONSTITUENT minor constituents (%), p odor. Structure description	lasticity. Amount and shap ons	content, density be of minor cons	/consistency, tituents (e.g.,	color, major constituent (%), wood, shells). Biota. Sheen,
0-5				wsvave		
5"-1	L' WEL I	oose - c sand	wy svavel & Co	obdes Inc	VC WIN	fines w death.
		II (65)			0	, ,
Sample	Depth: O	- 1.Ft : HS-BIH	A-0-1-220419			
	1-1		1A-1-2-220419			
Sample	Containers:	1 each 81	oz jar			
			V			
Analyse	s: TCLP 1	uetals				

10.00		Surface	Sediment Co	ollection	Log	
Job.	Arric Avo	Shipunal		Station: 41	3-02 HA	
Job No:	210007-0	1.02		Station: 4	5,22	`
Field St	aff: NS., Dr)		Sample Met	hod: Sh.	ave.
	tor: NA			Proposed Co		
Contrac	N/A					Long.
Water F	leight			Tide Measur	ements	Sample Acceptability Criteria:
	epth Sounder:				<u>omorko</u>	Overlying water is present
	spili Sourider.			11110.		2) Water has low turbidity
DTML	ad Line:	1		Height:		3) Sampler is not overfilled
D I M FE	au Lille.			r reignt.		4) Surface is flat
l						
l		Mudling Clayetian	detum i ealaulated of	tor compline		5) Desired penetration depth
Notes:		▼ Iviudiine Elevation	(datum): calculated af	ter sampling		
8						
						,
Grab #	Time	Confirmed Coo	rdinates (datum) NAD 83 (E)	Sample Accept (Y/N)	Recovery Depth (in)	Comments: jaws close, good seal, winnowing, overlying water, surface intact, etc
1	(400	Collected v	in las	7	0.39	Beach Saught
				de la companya de la		
			-			
	Description:	minor constituents (%), p odor. Structure description	lasticity. Amount and shap ons	e of minor cons	/consistency, tituents (e.g.,	color, major constituent (%), wood, shells). Biota. Sheen,
DA	up , 1005e	, grey & whit	e shelly saw	en.}) .		
		0 3	J			
Sample	Depth: ひき	35 "				
Sample	Containers:	2×802				
Janipio	20110110101	J				
Analyse	S. DAILI T	CBS Metals 7	-C TOT			
Allalyse	13. THUY, 1	CUS PICTAIS	3,100			

ob:	ARVIES SHI	20.00.00		Station:	HS -0	755
ob:	M-043 2 H	PHANDS			- 18 - 2	
	aff: SS /c	12		Sample Met		
Contrac	7 4	13		Proposed Co		
oritiac	tor. 9 PAVA	TY		тторооса с	oor an rateo.	Long. UM
Vater F	leight	0.4		Tide Measur	rements	Sample Acceptability Criteria:
	epth Sounder:	35.9			0915	Overlying water is present
) I IVI De	spili oddilaci.					2) Water has low turbidity
TMI	ad Line:	37.4		Height:	8.11	3) Sampler is not overfilled
) I IVI LC	ad Line.	- "	5			4) Surface is flat
						5) Desired penetration depth
		Mudline Elevation	(datum): calculated af	ter sampling		
Notes:		VIII CONTROLL CONTROL	(00.00.17)			•
10.00.						
				0	Pocoveni	Comments: jaws close, good
Grab #	Time	Confirmed Coo	rdinates (datum)	Sample Accept (Y/N)	Recovery Depth (in)	seal, winnowing, overlying
		NAD 83 (N)	NAD 83 (E)	7.000pt (1714)		water, surface intact, etc
				N/	2.221	JAWS CLUSE, WATER
01	0915	632517.65	1234891.35	l Y	8822	O VERLYTHING WATER
,	,				34.51	GOOD SOM
					1	
						_
		MAJOR CONSTITUENT	GROUP NAME. Moisture	content, density	/consistency	, color, major constituent (%),
ample	Description:	minor constituents (%), p	lasticity. Amount and shar	e of minor cons	stituents (e.g.,	, wood, shells). Biota. Sheen,
		odor. Structure description		1222	1.00	parts.
TOP	0.5 4	IFT, LOOSE, BRO		US + W	OR GANTE	+ FRENS
0,5	- Botting	ht7, 100501	DARK GREY 1.	SFIT (TR)	TE FE	w stry) 425-
Sample	Depth: 0	-17 CM				
ample	Depth: O	-17 CM	12) + BEO	ASTH		

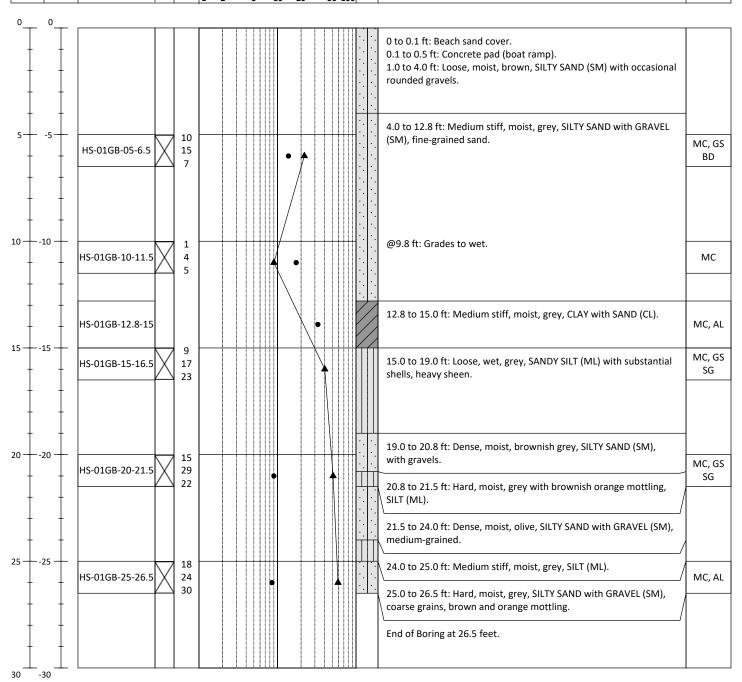
		Surface	Sediment Co	llection	Log	
Job:	HANNER	5 Hapy Apro S		Station:	5-08	355
Job No:	T. Files	JE HIGHTON			-18-2	
Field Sta	aff: 55/C			Sample Met		
	tor: appressi			Proposed Co		
001111100	011 01 102 10					Long.
Water H	eight			Tide Measur	ements	Sample Acceptability Criteria:
	pth Sounder:	36.7			1007	Overlying water is present
	par Councer.	***************************************	5			2) Water has low turbidity
TMIA	ad Line:	1 34 5		Height:	7.40	3) Sampler is not overfilled
J I WI LC	ad Line.		e.			4) Surface is flat
						5) Desired penetration depth
		Mudline Elevation	(datum): calculated af	ter sampling		0,2000000000000000000000000000000000000
Notes:	S1.020		*	tor outripling		·
NOICS.	SUPTALE	ANGLIN BECAUS	of Cape			
1	- 111					
) — — — — — — — — — — — — — — — — — — —				Commenter ious sless good
Grab #	Time	0.000	uultu akaa (dak)	Sample	Recovery	Comments: jaws close, good seal, winnowing, overlying
Clab #	Time		rdinates (datum)	Accept (Y/N)	Depth (in)	water, surface intact, etc
		NAD 83 (N)	NAD 83 (E)			70 S (1) 65
#	1007	632601.07	1734855-12	Y	طا	TAWS CLOSE, OVERLYTH WATER
Sample	Description:	minor constituents (%), p odor. Structure description	lasticity. Amount and sharons	e of minor cons	tituents (e.g.,	color, major constituent (%), wood, shells). Biota. Sheen,
top 1	0.5 WET,	LUCS: BROWN ST	of (unc) w/ site		MALE FER	
0,7	TO BOTTOM	1 mp 100%		FET (ail)	mara	FG SAMS, SUFELL-
	HASH, HZ	5 - LIKE ODM.	17-01	Aur	1	
	M-2	top		5 GAN/SFL	1	2
		05 - BOT	70m ; 5/85/10	GRAV 15	FU /5	trus
		1.0	A.77			
Sample	Depth: 0	12 cm				
	0.1:		0 - 10-1			
Sample	Containers:	1602,802,80	z, BICASSAY D	AG		
		2.46				
Analyse	s: PAHS, I	OCBS, METALS,	15) TOC , BLOWS	DM		
		41	SEC. 20			

SEG NEFECTIONE

Job:	HADRES SI	1797 APOS		Station: H	5-095	5	
Job No:	THIGHT SI	HAP JALLEDS		Date: 1-1	8-22		
Field Sta	ff: S5/CB			Sample Meth			
Contract		1		Proposed Co	ordinates:		
)		Tid. M		Long.	
Water He	<u>eight</u>	397		Tide Measur	lb.55	Sample Acceptability Criteria: 1) Overlying water is present	
D I M De	oth Sounder:			Time.	(0.7)	Water has low turbidity	
DTM Lea	ad Line:	39.5		Height:	7.03	3) Sampler is not overfilled	
D I WI LOC	id Eliio.					4) Surface is flat	
						5) Desired penetration depth	
	,	→ Mudline Elevation (datum): calculated af	ter sampling		-	
Notes:							ľ
2=							
Т						Comments: jaws close, good	
Grab #	Time	Confirmed Coor	dinates (datum)	Sample	Recovery	seal, winnowing, overlying	
Oldb #	, into	NAD 83 (N)	NAD 83 (E)	Accept (Y/N)	Depth (in)	water, surface intact, etc	
				1		thus close, overly and	
#1	10 54	622710.71	1734819.71	Y	28	WATER FIFT CORRE	
`	10 4 7 1	7.70				The last soul	CE
				-			
							ı
							1
							1
							1
							1
							1
							1
							l
							1
							1
Cample	Description:	MAJOR CONSTITUENT	GROUP NAME. Moisture	content, density	/consistency	, color, major constituent (%), , wood, shells). Biota. Sheen,	ı
Sample	Description.	odor. Structure description		Je of fillinor cons	ilitacitto (c.g.	()	
-	TOIP 0.5	: WET, LOOSE	BROWN SFUT	STOTA-	SMACS	, PLANT OFBRIS (5/95)	SAN
			, ,		/ / \		1
0,5	- Bottmi	WAT LOUSE DI	Bu BROWN , STO	TY SAMO	70/321)	FG-MED SAW,	-
	SIMU HAS	4, oransi	Farms				1
							1
Sample	Depth: 0 - 1	7 (m					1
Sample	Dehm. 0 (2					
Sample	Containers:	802 ARUHAVE	r SFURSSBy BI	49			1
							1

		Surface	Sediment Co	llection	Log	
Job: Job No: Field Sta		HAPP ARDS		Station: /- Date: /- Sample Met	18-21	55
Contrac				Proposed Co		
		7				Long.
	leight epth Sounder: ad Line:	40.00			11 30 b. 85	Sample Acceptability Criteria: 1) Overlying water is present 2) Water has low turbidity 3) Sampler is not overfilled 4) Surface is flat
Notes:	SUGHT	Mudline Elevation (datum): calculated af	ter sampling		5) Desired penetration depth
Grab #	Time	Confirmed Coor		Sample Accept (Y/N)	Recovery Depth (in)	Comments: jaws close, good seal, winnowing, overlying water, surface intact, etc
#	1130	NAD 83 (N)	NAD 83 (E)	Y	10 cm	overlying water, flat surface
						-
					-	
Sample		minor constituents (%), pla odor. Structure description	asticity. Amount and shar	e of minor cons	//consistency,	color, major constituent (%), wood, shells). Biota. Sheen,
	TOP 1":	! was last,	SAMMY STET (30)		s Francis	
Sample	Depth: 12	CM				
	Containers:					

		Surface	Sediment Co	ollection	Log	
Job:					15-11	55
Job No:					18- 22	
Field St		15		Sample Met		-
Contrac	tor: 💰 GRAV	FTY		Proposed Co	oordinates	: Lat.
		J				Long.
Water F	<u>leight</u>			Tide Measur		Sample Acceptability Criteria:
DTM De	epth Sounder:	continue.	ā	Time:	15-15	1) Overlying water is present
1		110 1			1 -	2) Water has low turbidity
DTM Le	ad Line:	1 43.1		Height:	6.79	3) Sampler is not overfilled
l						4) Surface is flat
1						5) Desired penetration depth
Notes:	×	Mudline Elevation	(datum): calculated af	ter sampling		-
Grab #	Time	Confirmed Coordinates (datum) Accept (Y/N) Depth (in		Recovery Depth (in)	Comments: jaws close, good seal, winnowing, overlying water, surface intact, etc	
		NAD 83 (N)	NAD 83 (E)			
#1	12:12	637803.97	1734667.69	γ	21	CVEXLYFIVE WATELY,
Sample	Description:	MAJOR CONSTITUENT minor constituents (%), p odor. Structure description	lasticity. Amount and shap	content, density be of minor cons	/consistency, tituents (e.g.,	color, major constituent (%), wood, shells). Biota. Sheen,
70	p 0.5 =	80' SHELLS SHELL	Fritting NTS, WE	T. LOUSE,	BRUNN, S.	FIT (5/95)
	BFOTA				FISH	.5
0	- BOTTON	y het was	- PAPER BRUNN,	SANMY S	Fla Cry	30/70
	STENITA		DEBRUSS / ItAK			/
			7-7-1-13			
Sample	Depth: 0~	12 cm				
Sample	Containers:					
Analyse	es: PAHS	, PCBS, METALS	T5, TOC.	BITA 435+	ALI	
	1				1	

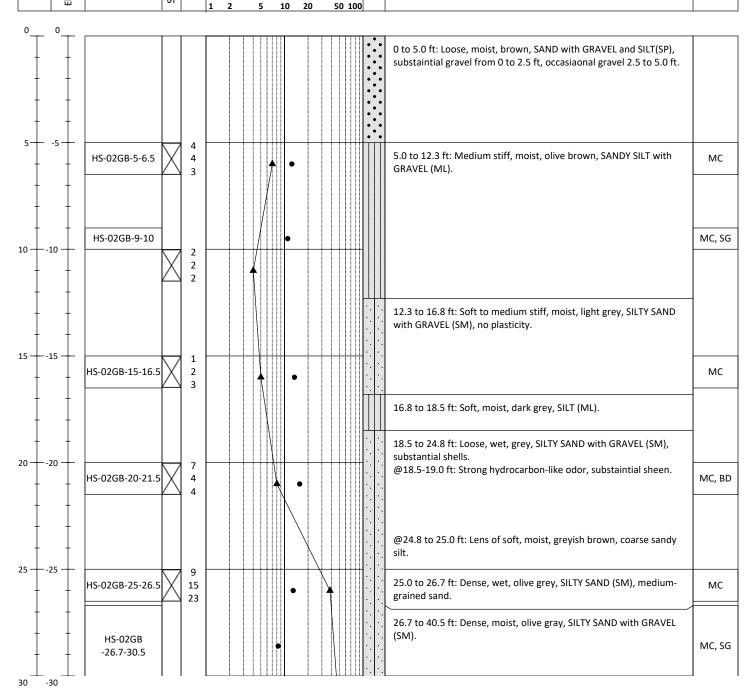

\bigcirc			Surface	Sediment Co	llection	Log		
	Job: Job No: Field Sta Contrac				Station: Date: /- Sample Met		G VIA VAMOR - POCK VES	አጊ
	Water H	leight epth Sounder:	I/18 Tide Measurements 1/19 10.5 Sample Acceptability Criteria: 1) Overlying water is present 2) Water has low turbidity 3) Sampler is not overfilled 4) Surface is flat 5) Desired penetration depth					
	Notes:	* NEED "	TEN. GOT SMA	(datum): calculated af	1-19-72		To kelless THIS	
	Grab #	Time		rdinates (datum) NAD 83 (E)	Sample Accept (Y/N)	Recovery Depth (in)	Comments: jaws close, good seal, winnowing, overlying water, surface intact, etc	
18-	#	12:12	632803.97	1734667.69	N	NA	HARD SURFACE,	15 FEE From STATTE
/19-	#2	15:28	637319.64	1234370.94	N	Mk	ROCKS FN JAW,	
ĺ	#3	15:37	632317.21	123436234	N	M	No RELEVENT	
	#4	15.40	637373.84	1234364.81	N	NA	ROCUSEN JAW,	
	#5	15:44	637315.82	1734363.24	Y	7 cm	324819 9610	
(19	#6	15:53	637377.16	1734364.58	N	NA	NO PLECULARY	
	0-0 2 0-25 9-8-0 Shee	- BOTTONI:	minor constituents (%), podor. Structure description of the structure of the	lasticity. Amount and sharpens THACE SAME THACE SAME SAME	oe of minor cons COS GRAN SHEU H COS STCT	tituents (e.g.,		
\cap	Analyse	Containers: PAS P	202, 802, 802 CBS, METALS	(NC BFOAS	sty)			

KUNDER DOCK IS LARGE COSSIES/BOULDERS/ MOOD AND OFFRES (WARD WHEEL). DEVER SAND NO CHANCE AT SAMPLE UNDER DOCK. ATTEMPTING AS CLOSE TO TARGET AS POSSEBLE. APPROXIM

Surface Sediment Collection Log										
Job: 👊	ams A	ve. Shipyare	1	Station: HS-1355						
Job No:	210007-0	2.01	Date: 6/11/22							
Field Sta	aff: NS			Sample Method: Van Veen						
Contrac	tor: Cyram	hy	Proposed Coordinates: Lat.							
14/ 1 1		.0		Long. Tide Measurements Sample Acceptability Criteria:						
Water F		-			Sample Acceptability Criteria:					
DIMDE	epth Sounder:		Time:		Overlying water is present Notes has less to the less to					
DTML	ad Line:	1 37. 8 Ft	Height:		Water has low turbidity Sampler is not overfilled					
DIME	au Line.	101:01.	rieignt.		4) Surface is flat					
						5) Desired penetration depth				
Mudline Elevation (datum): calculated after sampling Notes:										
Grab #	Time	Confirmed Coordinates (datum) NAD 83 (N) NAD 83 (E)		Sample Accept (Y/N)	Recovery Depth (in)	Comments: jaws close, good seal, winnowing, overlying water, surface intact, etc				
ĵ	14:03	632785.29		4	17cm	Jaws closed, overlying water				
						·				
			NS							
Sample	Description:		lasticity. Amount and shar			color, major constituent (%), wood, shells). Biota. Sheen,				
Wet, soft, dark gray, Silt (95%), fines fine sand (5%), non-										
plastic trace brotal (worms), no odor										
Sample Depth: 12										
Sample Depth: 0 - 12										
Sample Containers: 4× 8 62 1000										
Campie	Contamors.	4x 862 jars								
Analyses: TS/TOC, Metals PAHS PCBs										

Surface Sediment Collection Log											
Job:	Jams A	ve. Shipyar	Station: HS-14SS								
Job No:	210007 - C	2-01	Date: 6 21 22								
Field Sta			Sample Method: Van Veen								
Contrac	tor: Granis	4	Proposed Coordinates: Lat.								
		0		**** 1 B.A		Long.					
Water H				Tide Measurements Sample Acceptability Criteria:							
DIM DE	epth Sounder:			Time: 1) Overlying water is present							
DTM.	and Disease	40.8		2) Water has low turbidity							
DIMLE	ad Line:	10.0	Height:3) Sampler is not overfilled								
1				4) Surface is flat							
Mudline Elevation (datum): calculated after sampling											
Notes:											
						Comments: jaws close, good					
Grab #	Time	Confirmed Coo	rdinates (datum)	Sample	Recovery	seal, winnowing, overlying					
	1,,,,,	NAD 83 (N)	NAD 83 (E)	Accept (Y/N)	Depth (in)	water, surface intact, etc					
_		1010 00 (11)	10.12.00(2)			over					
1 \ I	11.00			۸.	182	المراتب					
'	14:29			\wedge	18+	penetration					
						61/01					
2	14:37			N	10.8	0,000					
	17,51			/ / /	18 m	peretration					
					150	N/ev					
3	14:49			$ \mathcal{N} $	18+	a he Airm					
	100			1,,	m	penetration					
,	,				18 +	Nev					
i-	14:58			 <i>N</i>							
					an	penetration					
	المعاسباتا		1211000 01	1 87		surface intact					
5	15.00	632143.15	1234880,91	l Y	17.5						
<u> </u>				 	· ·						
				9							
-											
MAJOR CONSTITUENT GROUP NAME. Moisture content, density/consistency, color, major constituent (%), minor constituents (%), plasticity. Amount and shape of minor constituents (e.g., wood, shells). Biota. Sheen, odor. Structure descriptions											
Wet, very soft, gray, sit (100%), non-plastic, trace bioxa											
(shells), one silver sheen flores (<1 cm diameter), no odor											
Sample Depth: 0-/2 cm											
	0 ()										
Sample	Containers: 4	× 802									
Anchia	Anchora Mala 18 AS ASS PAIS DOZZ										
Analyses: Metals, TS/TOC, PAHS, PCBS											

Soil Boring Log Sheet 1 of 1 Project #: 210007-02.01 Project: Harris Avenue Shipyard Cleanup Location: Bellingham, Washington Client: Port of Bellingham Logged By: Sam Giannakos N/LAT: 632265.795303 E/LONG: 1234499.842924 Horiz. Datum: Washington State Plane Feet Collection Date: 4/29/22 Contractor: Holt Services Vert. Datum: NAVD88 Total Depth (ft): 26.5 Method: Direct Push N/A Hammer: 140-lb Auto Hammer Sampler(s): 2-inch OD/1.375-inch ID Split Spoon Observed Water Table Depth (ft): Hammer Efficiency (%): UNKNOWN 2-inch Dual Tube Liner Ground Surface Elevation (ft): Sample Type £ **Uncorrected Standard Penetration** £ Lithology **Soil Description** Blow Counts Elevation Resistance (blows per foot) and Depth (Sample Name Samples and descriptions are in recovered depths. Moisture Content (%) . qe Classification scheme: USCS 10 20 50 100

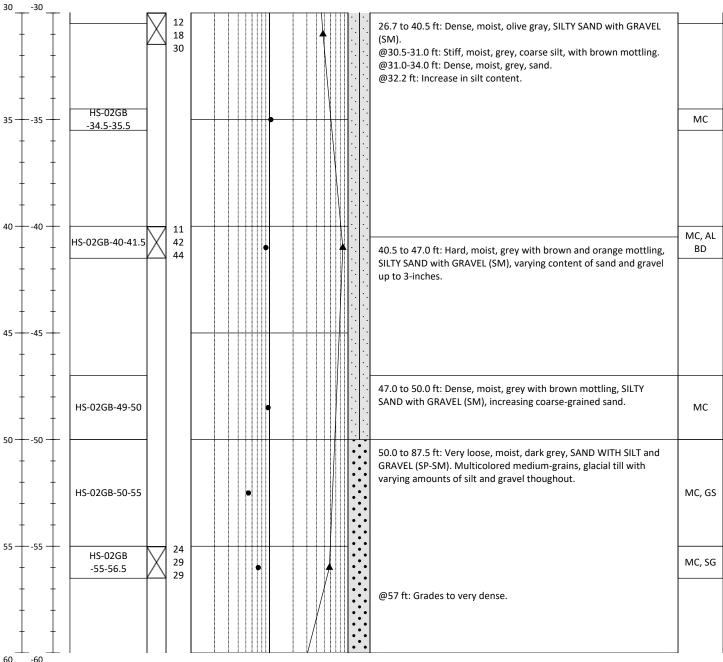

▲ SPT N-Value

Moisture Content (%)

Split Spoon

Notes: 1) MC: Moisture Content, GS: Grain Size, AL: Atterberg Limits, SG: Specific Gravity, OC: Organic Content. 2) 15-16.5 ft: No recovery in split spoon. Driller reports large gravel in shoe, blow counts unreliable.

Soil Boring Log Sheet 1 of 4 Project #: 210007-02.01 Project: Harris Avenue Shipyard Cleanup Location: Bellingham, Washington Client: Port of Bellingham Logged By: Sam Giannakos N/LAT: 632273.059396 E/LONG: 1234454.273134 Horiz. Datum: Washington State Plane Feet Collection Date: 4/28/22 Contractor: Holt Services Vert. Datum: NAVD88 Total Depth (ft): 101.5 Method: Direct Push Hammer: 140-lb Auto Hammer Sampler(s): 2-inch OD/1.375-inch ID Split Spoon Observed Water Table Depth (ft): Hammer Efficiency (%): UNKNOWN 2-inch Dual Tube Liner Ground Surface Elevation (ft): Sample Type £ **Uncorrected Standard Penetration** £ Lithology **Soil Description** Blow Counts Elevation Resistance (blows per foot) and Depth (Sample Name Samples and descriptions are in recovered depths. Moisture Content (%) . qe Classification scheme: USCS

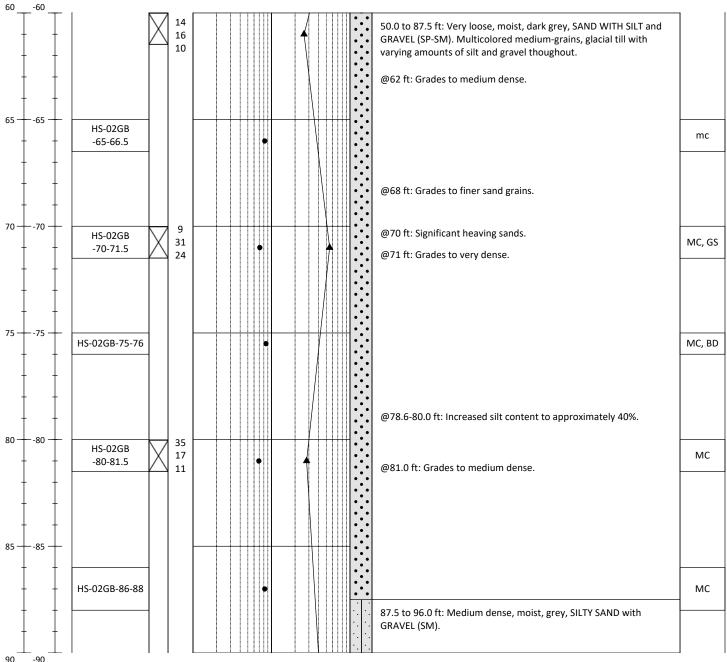

▲ SPT N-Value

Moisture Content (%)

Split Spoon

Notes: 1) MC: Moisture Content, GS: Grain Size, AL: Atterberg Limits, SG: Specific Gravity, OC: Organic Content. 2) 10-11.5 ft: No recovery in split spoon. Trace silty sand in shoe.

Soil Boring Log Sheet 2 of 4 Project #: 210007-02.01 Project: Harris Avenue Shipyard Cleanup Location: Bellingham, Washington Client: Port of Bellingham Logged By: Sam Giannakos N/LAT: 632273.059396 E/LONG: 1234454.273134 Horiz. Datum: Washington State Plane Feet Collection Date: 4/28/22 Contractor: Holt Services Vert. Datum: NAVD88 Total Depth (ft): 101.5 Method: Direct Push N/A Hammer: 140-lb Auto Hammer Sampler(s): 2-inch OD/1.375-inch ID Split Spoon Observed Water Table Depth (ft): Hammer Efficiency (%): UNKNOWN 2-inch Dual Tube Liner Ground Surface Elevation (ft): Sample Type £ **Uncorrected Standard Penetration** £ Lithology **Soil Description** Blow Counts Elevation Resistance (blows per foot) and Depth (Sample Name Samples and descriptions are in recovered depths. Moisture Content (%) ab T Classification scheme: USCS 10 20 50 100

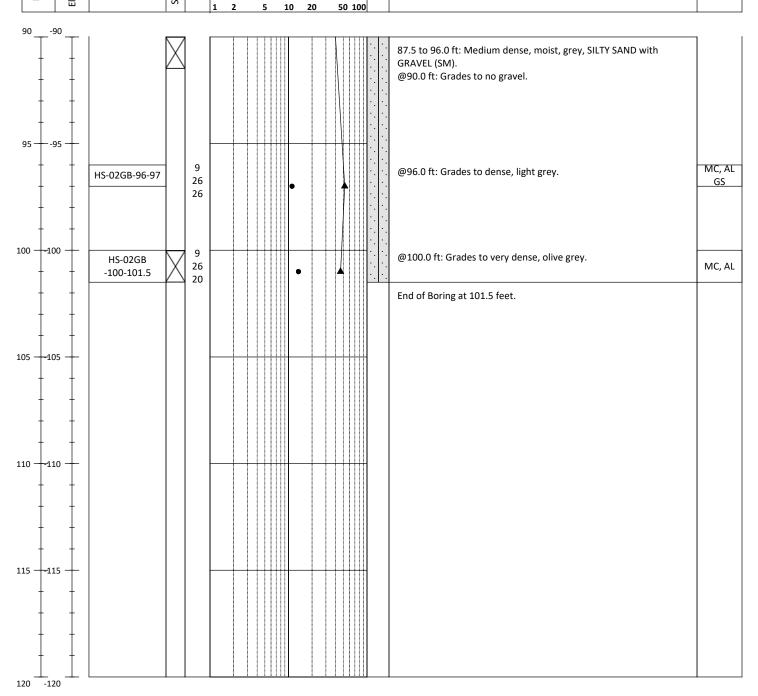

▲ SPT N-Value

Moisture Content (%)

Split Spoon

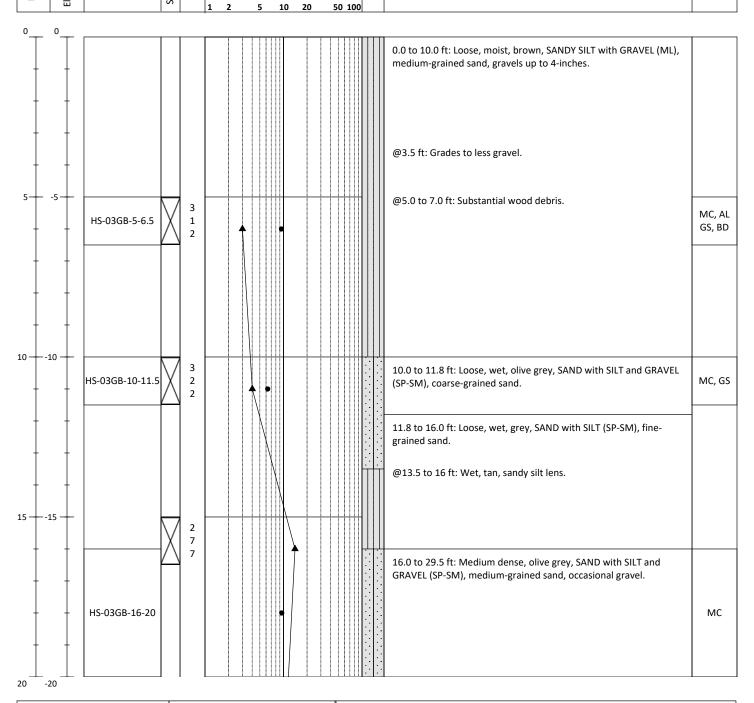
Notes: 1) MC: Moisture Content, GS: Grain Size, AL: Atterberg Limits, SG: Specific Gravity, OC: Organic Content. 2) 10-11.5 ft: No recovery in split spoon. Trace silty sand in shoe.

Soil Boring Log Sheet 3 of 4 Project #: 210007-02.01 Project: Harris Avenue Shipyard Cleanup Location: Bellingham, Washington N/LAT: 632273.059396 E/LONG: 1234454.273134 Client: Port of Bellingham Logged By: Sam Giannakos Horiz. Datum: Washington State Plane Feet Collection Date: 4/28/22 Contractor: Holt Services Vert. Datum: NAVD88 Total Depth (ft): 101.5 Method: Direct Push N/A Hammer: 140-lb Auto Hammer Sampler(s): 2-inch OD/1.375-inch ID Split Spoon Observed Water Table Depth (ft): Hammer Efficiency (%): UNKNOWN 2-inch Dual Tube Liner Ground Surface Elevation (ft): Sample Type £ **Uncorrected Standard Penetration** £ Lithology **Soil Description** Blow Counts Elevation Resistance (blows per foot) and Depth (Sample Name Samples and descriptions are in recovered depths. Moisture Content (%) ab T Classification scheme: USCS 10 20 50 100


SPT N-Value

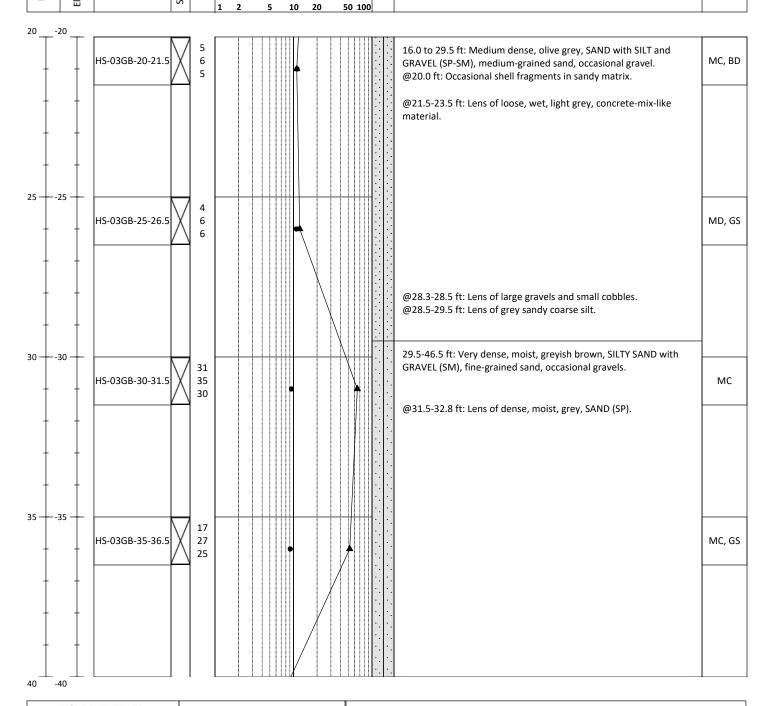
Moisture Content (%)

Split Spoon


Notes: 1) MC: Moisture Content, GS: Grain Size, AL: Atterberg Limits, SG: Specific Gravity, OC: Organic Content. 2) 10-11.5 ft: No recovery in split spoon. Trace silty sand in shoe.

Soil Boring Log Sheet 4 of 4 Project #: 210007-02.01 Project: Harris Avenue Shipyard Cleanup Location: Bellingham, Washington Logged By: Sam Giannakos N/LAT: 632273.059396 E/LONG: 1234454.273134 Client: Port of Bellingham Contractor: Holt Services Horiz. Datum: Washington State Plane Feet Collection Date: 4/28/22 Vert. Datum: NAVD88 Total Depth (ft): 101.5 Method: Direct Push N/A Hammer: 140-lb Auto Hammer Sampler(s): 2-inch OD/1.375-inch ID Split Spoon Observed Water Table Depth (ft): Hammer Efficiency (%): UNKNOWN 2-inch Dual Tube Liner Ground Surface Elevation (ft): Sample Type Ξ **Uncorrected Standard Penetration** 王 Lithology **Soil Description** Blow Counts Elevation Resistance (blows per foot) and Depth (Sample Name Samples and descriptions are in recovered depths. Moisture Content (%) Lab 7 Classification scheme: USCS

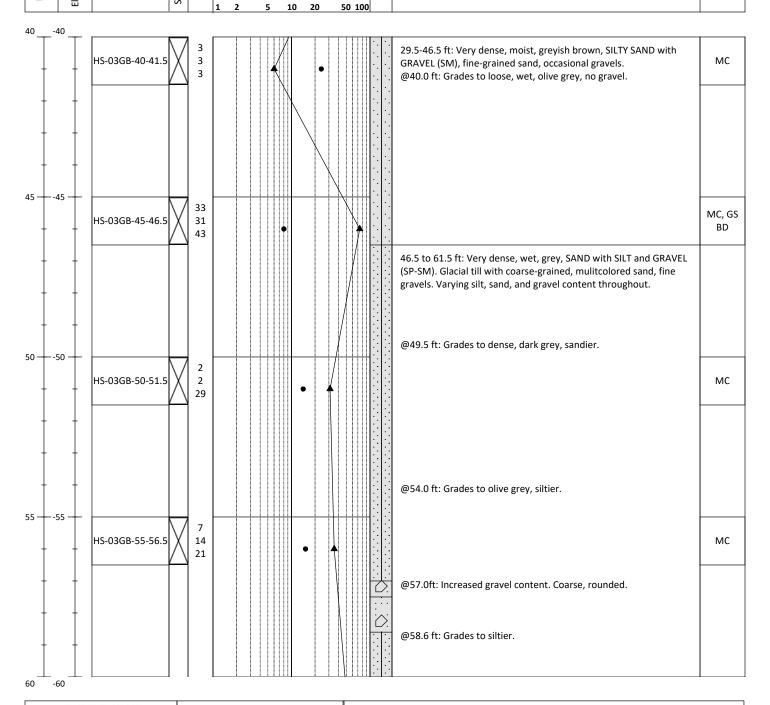
Soil Boring Log Sheet 1 of 4 Project #: 210007-02.01 Project: Harris Avenue Shipyard Cleanup Location: Bellingham, Washington N/LAT: **632265.494451** E/LONG: **1234416.846371** Client: Port of Bellingham Logged By: Sam Giannakos Contractor: Holt Services Horiz. Datum: Washington State Plane Feet Collection Date: 4/27/22 Vert. Datum: NAVD88 Total Depth (ft): 61.5 Method: Direct Push Observed Water Table Depth (ft): N/A Hammer: 140-lb Auto Hammer Sampler(s): 2-inch OD/1.375-inch ID Split Spoon 2-inch Dual Tube Liner Hammer Efficiency (%): UNKNOWN Ground Surface Elevation (ft): Sample Type Ξ **Uncorrected Standard Penetration** £ Lithology **Soil Description** Blow Counts Elevation Resistance (blows per foot) and Depth (Sample Name Samples and descriptions are in recovered depths. Moisture Content (%) ab T Classification scheme: USCS



- SPT N-Value
- Moisture Content (%)
 - Split Spoon

Notes: 1) MC: Moisture Content, GS: Grain Size, AL: Atterberg Limits, SG: Specific Gravity, OC: Organic Content.

Soil Boring Log Sheet 2 of 4 Project #: 210007-02.01 Project: Harris Avenue Shipyard Cleanup Location: Bellingham, Washington N/LAT: 632265.494451 E/LONG: 1234416.846371 Client: Port of Bellingham Logged By: Sam Giannakos Horiz. Datum: Washington State Plane Feet Collection Date: 4/27/22 Contractor: Holt Services Vert. Datum: NAVD88 Total Depth (ft): 61.5 Method: Direct Push N/A Hammer: 140-lb Auto Hammer Sampler(s): 2-inch OD/1.375-inch ID Split Spoon Observed Water Table Depth (ft): 2-inch Dual Tube Liner Hammer Efficiency (%): UNKNOWN Ground Surface Elevation (ft): Sample Type £ **Uncorrected Standard Penetration** £ Lithology **Soil Description** Blow Counts Elevation Resistance (blows per foot) and Depth (Sample Name Samples and descriptions are in recovered depths. Moisture Content (%) ab T Classification scheme: USCS

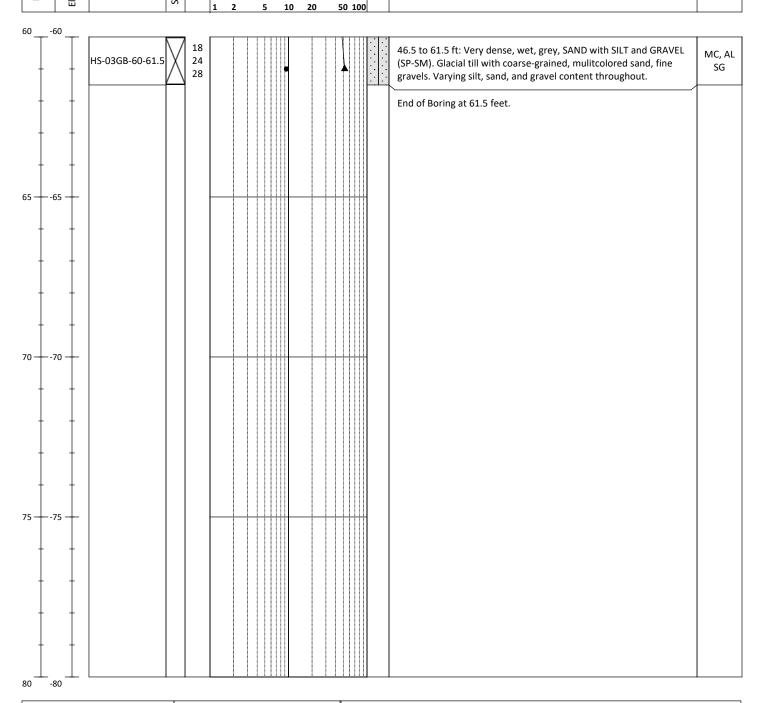

▲ SPT N-Value

Moisture Content (%)

Split Spoon

 $\textbf{Notes:}\ 1)\ \mathsf{MC:}\ \mathsf{Moisture}\ \mathsf{Content},\ \mathsf{GS:}\ \mathsf{Grain}\ \mathsf{Size},\ \mathsf{AL:}\ \mathsf{Atterberg}\ \mathsf{Limits},\ \mathsf{SG:}\ \mathsf{Specific}\ \mathsf{Gravity},\ \mathsf{OC:}\ \mathsf{Organic}\ \mathsf{Content}.$

Soil Boring Log Sheet 3 of 4 Project #: 210007-02.01 Project: Harris Avenue Shipyard Cleanup Location: Bellingham, Washington N/LAT: 632265.494451 E/LONG: 1234416.846371 Client: Port of Bellingham Logged By: Sam Giannakos Contractor: Holt Services Horiz. Datum: Washington State Plane Feet Collection Date: 4/27/22 Vert. Datum: NAVD88 Total Depth (ft): 61.5 Method: Direct Push N/A Hammer: 140-lb Auto Hammer Sampler(s): 2-inch OD/1.375-inch ID Split Spoon Observed Water Table Depth (ft): 2-inch Dual Tube Liner Hammer Efficiency (%): UNKNOWN Ground Surface Elevation (ft): Sample Type £ **Uncorrected Standard Penetration** £ Lithology **Soil Description** Blow Counts Elevation Resistance (blows per foot) and Depth (Sample Name Samples and descriptions are in recovered depths. Moisture Content (%) ab T Classification scheme: USCS


SPT N-Value

Moisture Content (%)

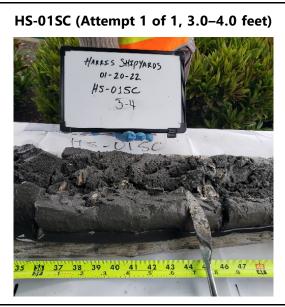
Split Spoon

 $\textbf{Notes:}\ 1)\ \mathsf{MC:}\ \mathsf{Moisture}\ \mathsf{Content},\ \mathsf{GS:}\ \mathsf{Grain}\ \mathsf{Size},\ \mathsf{AL:}\ \mathsf{Atterberg}\ \mathsf{Limits},\ \mathsf{SG:}\ \mathsf{Specific}\ \mathsf{Gravity},\ \mathsf{OC:}\ \mathsf{Organic}\ \mathsf{Content}.$

Soil Boring Log Sheet 4 of 4 Project #: 210007-02.01 Project: Harris Avenue Shipyard Cleanup Location: Bellingham, Washington Logged By: Sam Giannakos N/LAT: 632265.494451 E/LONG: 1234416.846371 Client: Port of Bellingham Contractor: Holt Services Horiz. Datum: Washington State Plane Feet Collection Date: 4/27/22 Vert. Datum: NAVD88 Total Depth (ft): 61.5 Method: Direct Push N/A Hammer: 140-lb Auto Hammer Sampler(s): 2-inch OD/1.375-inch ID Split Spoon Observed Water Table Depth (ft): Hammer Efficiency (%): UNKNOWN 2-inch Dual Tube Liner Ground Surface Elevation (ft): Sample Type Ξ **Uncorrected Standard Penetration** Depth (ft) Lithology **Soil Description** Blow Counts Elevation Resistance (blows per foot) and Sample Name Samples and descriptions are in recovered depths. Moisture Content (%) Lab T Classification scheme: USCS

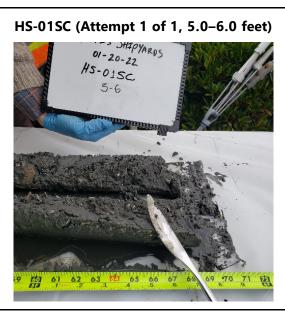
Sediment Core Photographs

HS-01SC (Attempt 1 of 1, 0.0-1.0 feet)



HS-01SC (Attempt 1 of 1, 1.0–2.0 feet)

HARRES SHEPYARDS
01-20-22
HS-01SC
1-2
157 13 14 15 163 17 18 19 20 21 22 23 65 25 26


HS-01SC (Attempt 1 of 1, 2.0-3.0 feet)

HS-01SC (Attempt 1 of 1, 4.0-5.0 feet)

HS-02SC (Attempt 2 of 2, 0.0-1.0 feet)

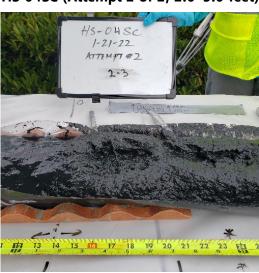

HS-02SC (Attempt 2 of 2, 2.0-3.0 feet)

HS-02SC (Attempt 2 of 2, 3.0-4.0 feet)

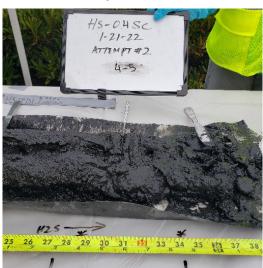
HS-02SC (Attempt 2 of 2, 4.0-5.0 feet)

HS-02SC (Attempt 2 of 2, 5.0-6.0 feet)

HS-03SC (Attempt 2 of 2, 0.0-2.2 feet)


HS-04SC (Attempt 2 of 2, 0.0-1.0 feet)

HS-04SC (Attempt 2 of 2, 1.0-2.0 feet)


HS-04SC (Attempt 2 of 2, 2.0-3.0 feet)

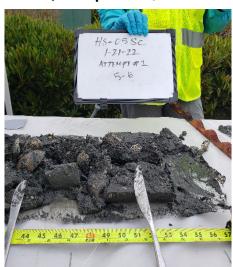
HS-04SC (Attempt 2 of 2, 3.0-4.0 feet)

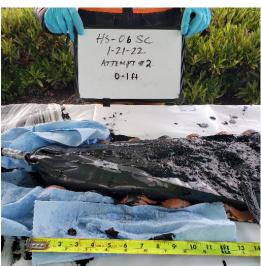
HS-04SC (Attempt 2 of 2, 4.0-5.25 feet)

HS-05SC (Attempt 1 of 1, 0.0-1.0 feet)

HS-05SC (Attempt 1 of 1, 1.0-2.0 feet)

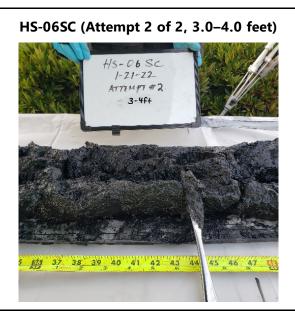
HS-05SC (Attempt 1 of 1, 2.0-3.0 feet)


HS-05SC (Attempt 1 of 1, 3.0-4.0 feet)

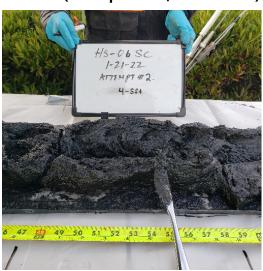

HS-05SC (Attempt 1 of 1, 4.0-5.0 feet)

HS-05SC (Attempt 1 of 1, 5.0-6.0 feet)

HS-06SC (Attempt 2 of 2, 0.0-1.0 feet)



HS-06SC (Attempt 2 of 2, 1.0–2.0 feet)


HS-06 Sc
1-21-22
ATTEMPT #2
1-24f

HS-06SC (Attempt 2 of 2, 2.0-3.0 feet)

HS-06SC (Attempt 2 of 2, 4.0-5.0 feet)

HS-07SC (Attempt 3 of 3, 0.0-2.0 feet)

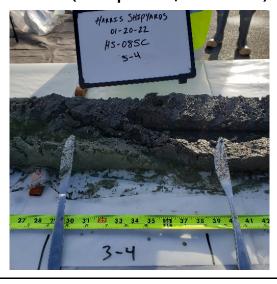
HS-07SC (Attempt 3 of 3, 2.0-4.0 feet)

HS-07SC (Attempt 3 of 3, 4.0-5.0 feet)

HS-07SC (Attempt 3 of 3, 5.0-6.0 feet)

1-22-22 Attempt #3 10:50

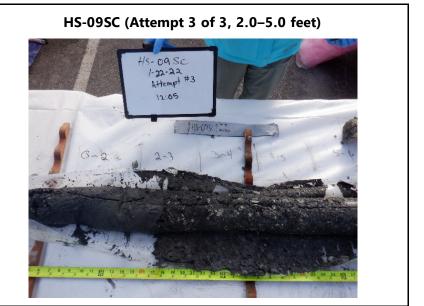
HS-08SC (Attempt 1 of 1, 0.0-1.0 feet)

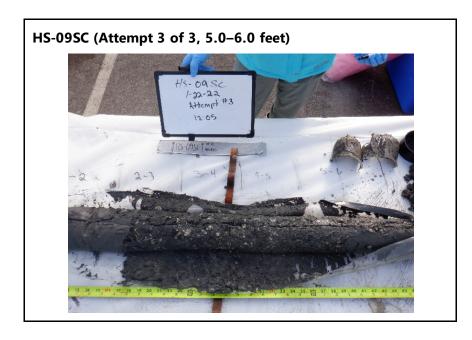

HS-08SC (Attempt 1 of 1, 1.0-2.0 feet)

HS-08SC (Attempt 1 of 1, 2.0-3.0 feet)

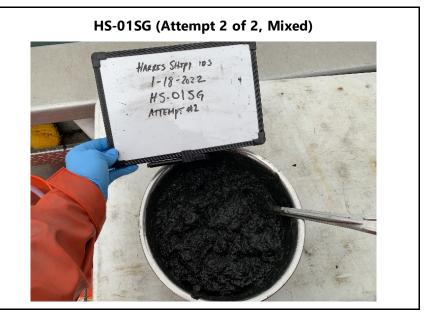
HS-08SC (Attempt 1 of 1, 3.0-4.0 feet)

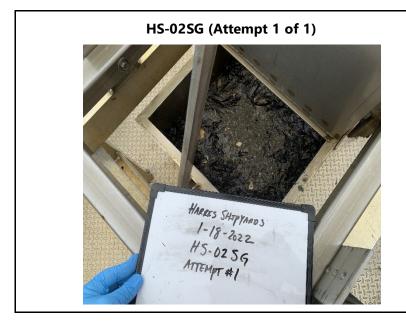
HS-08SC (Attempt 1 of 1, 4.0-5.0 feet)

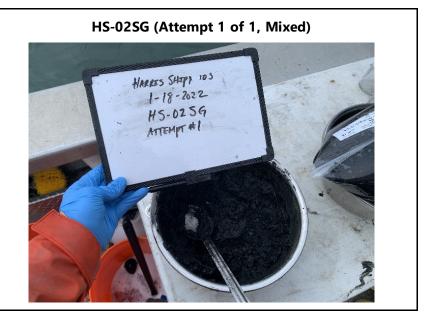


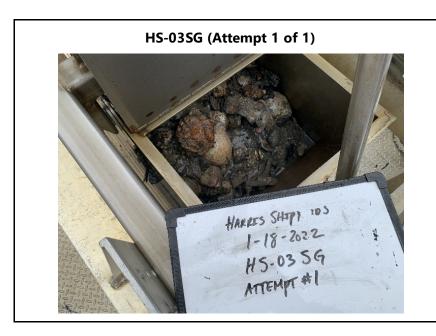

HS-08SC (Attempt 1 of 1, 5.0-6.0 feet)

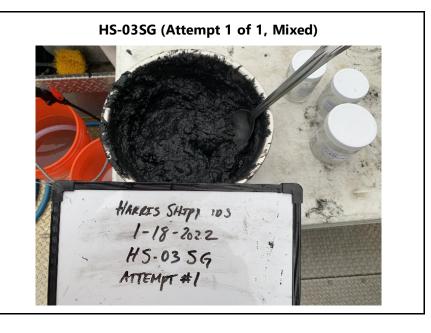
HS-09SC (Attempt 3 of 3, 0.0-2.0 feet)

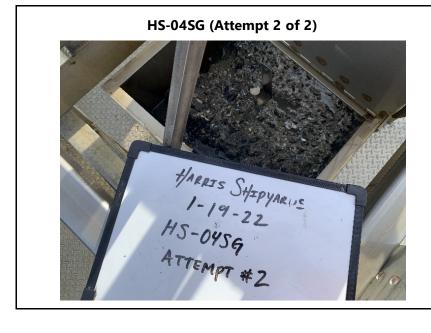


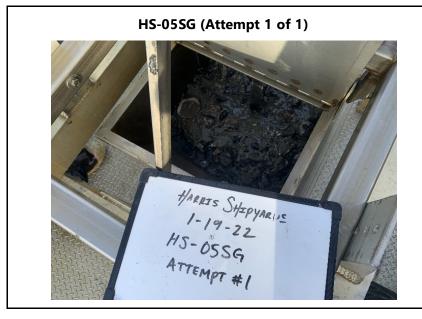


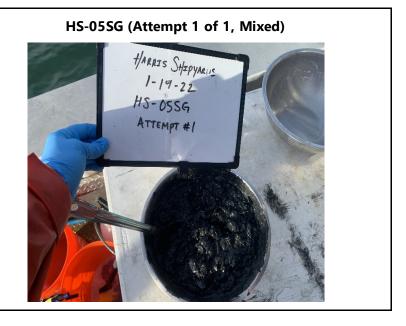


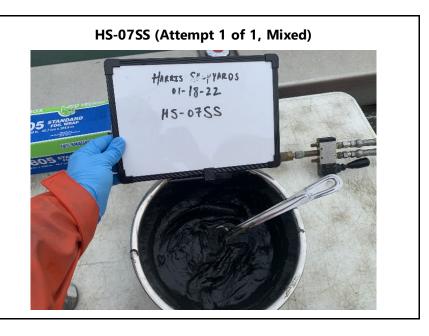

Grab Photographs

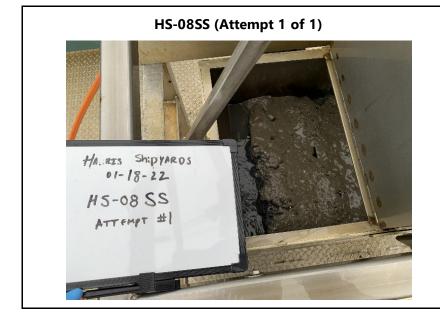


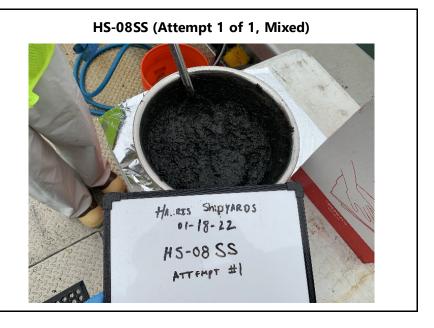


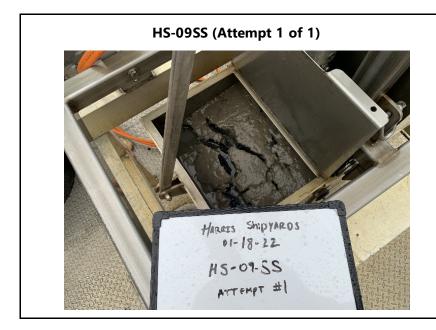


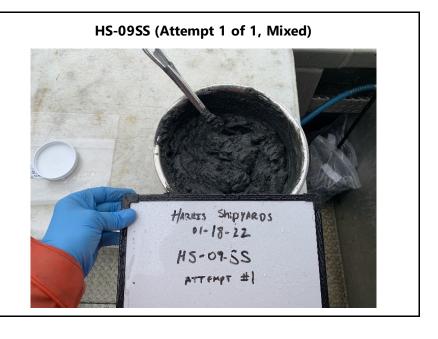


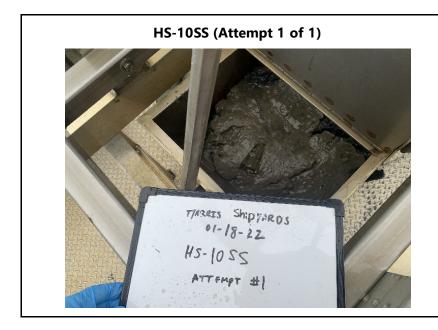


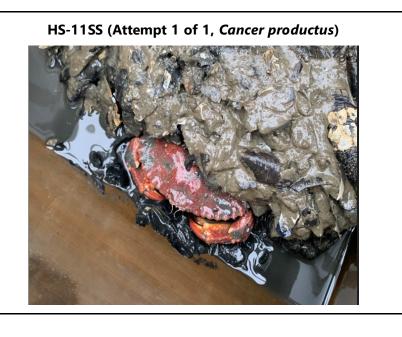


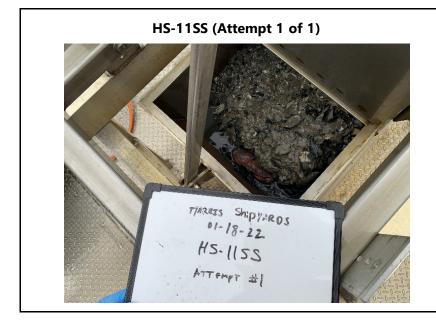


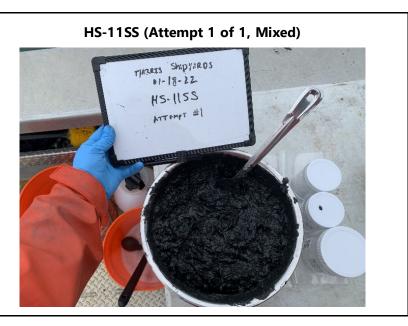












HS-12SS (Attempt 5 of 6)

HS-12SS (Attempt 5 of 6, Sediment Close-Up)

HS-13SS (Attempt 1 of 1)

HS-14SS (Attempt 5 of 5)

November 2023

10