

August 13, 2017 G-Logics Project Number 01-1140-B

Mr. Greg Rairdon 13009 NE 126th Pl Kirkland, WA 98034

Subject: Additional Soil and Groundwater Sampling

Auburn Way Property 3025 Auburn Way N Auburn, WA 98002

Dear Mr. Rairdon:

G-Logics was authorized by Rairdon Auto Group (Rairdon) to conduct soil and groundwater sampling at the subject property located at 3025 Auburn Way N in Auburn, WA (Property). The location of the property is shown on Figures 1 and 2.

This report documents soil and groundwater explorations intended to assess the possible presence of soil and/or groundwater contamination caused by automobile sales and/or service operations on the Property. The scope of this exploration work was based on the results of G-Logics report dated July 18, 2017 titled *Phase I Environmental Site* Assessment, *Auburn Way Property North Parcel*, Auburn, Washington.

Our work was performed in accordance with our workplan dated July 14, 2017 and subsequent telephone/e-mail communications. The results of our site explorations are subject to the presented limitations.

Background

The subject property historically has been occupied by an automobile dealership and a service garage since at least the early 1970s. Historical practices for handling and disposal of waste materials during that time are unknown. As summarized in the G-Logics Phase I report, a document prepared by GeoEngineers (March 22, 2002) indicates soil contamination associated with 14 former underground hoists was successfully removed in February 2002. These hoists had been located inside the former dealership building (see Figures 2 and 3 for this building location).

Additionally, a former 550-gallon used-oil UST was removed from an area located along the northern boundary of the Property, on the west side of the former building shown on Figures 2 and 3. A Phase II exploration was conducted in this area by Stemen Environmental, Inc. (SEI), as confirmed in a report dated December 20, 2012. Six soil samples and two groundwater grab samples were collected. None of the analyzed samples contained detectable concentrations of gasoline, diesel, oil-range hydrocarbons, or volatile organic compounds (VOCs). However, no samples were analyzed for metals, carcinogenic polycyclic-aromatic hydrocarbons (cPAHs), polychlorinated biphenyls (PCBs), or naphthalene. A copy of the SEI report is attached as Appendix A. A recent conversation with Mr. Stemen indicated multiple injections of bioremediation compounds were completed in the area on the adjacent property to the north in an area close to the former UST.

To provide additional data for the former UST area and areas shown on Figure 3, additional site explorations were conducted as described below.

Regulatory Background

The rules that guide the cleanup process at sites within Washington are known as the Model Toxics Control Act (MTCA) Cleanup Regulation, which is administered by the Washington Department of Ecology (Ecology). MTCA "establishes administrative processes and standards to identify, investigate, and cleanup facilities where hazardous substances have come to be located" (WAC 173-340-100).

Soil and groundwater Cleanup Levels promulgated under MTCA are often used as standards for deciding when additional investigation or cleanup is appropriate. For this project, we have compared analytical laboratory results to published MTCA Method A and/or B Cleanup Levels for soil and groundwater.

G-Logics Services

G-Logics completed nine soil borings (GLB-1 through GLB-9) and collected groundwater grab samples from temporary wells installed in four of the borings (GLB-1, GLB-5, GLB-6 and GLB-7). After the initial sampling, one groundwater monitoring well (GL-MW-1) was completed adjacent to GLB-5 and a groundwater sample was collected/analyzed.

Boring locations are shown on Figure 3. All borings were drilled by ESN Northwest using truck-mounted probe equipment (direct-push). The borings were advanced to depths ranging from approximately 12 to 15 feet below ground surface. These borings generally encountered a structural-fill material from the surface to approximately 4 to 5 feet.

The fill consisted of a silty sand and gravel mix. Fine-grain materials were encountered below the fill, generally consisting of silt with clay to a depth of 8 to 9 feet, followed by silty, fine grain sand to the bottom of the borings. Groundwater was encountered between approximately 6 and 9 feet below ground surface.

During drilling, soil samples were collected for soil identification and chemical analysis. A photoionization detector (PID) was used to screen for volatile organic compounds (VOCs) in the collected soil samples. The results, measured in parts per million by volume (ppmv), were noted on the soil data table (Table 1) and boring logs.

A G-Logics geologist was present during the exploration work to observe and document soil conditions. Please see our description of the field exploration methods in Appendix B. Boring logs and well construction information are presented in Appendix C.

Soil Sample Analyses

Based on PID readings and visual observations, selected soil samples were submitted to the analytical laboratory and analyzed for the following contaminants.

Analyses
Diesel Range Organics(DRO) / Heavy Oil Range Organics (ORO)
Gasoline (GRO)/BTEX
PCBs
Volatile Organic Compounds (VOC)
Polyaromatic Hydrocarbons (PAH)
Carcinogenic Polyaromatic Hydrocarbons (cPAHs)
MTCA-5 Metals (Pb, As, Cr, Cd, Hg)
Hexavalent Chromium

Results of these analyses are presented in Table 1 of this report. The analytical laboratory reports for the analyzed soil samples are attached as Appendix D. Chain-of custody forms are also included in Appendix D.

The findings of the analyzed soil samples are summarized below.

- Of the soils analyzed, and for the above-listed analyses, only ORO was detected at concentrations above MTCA cleanup level in two of the borings (GLB-1 and GLB-7).
- Interpretations of ORO in soil at the Site are presented on Figure 3a.
- To assess if the bioremediation compounds injected by SEI on the north-adjacent property had inflated ORO concentrations, several samples also were analyzed using silica-gel methods to remove polar non-petroleum hydrocarbons from the petroleum-hydrocarbon calculations. Based on the reanalysis results, also presented on Table 1, the initial samples remain valid for the detected ORO concentrations.

Groundwater Sample Analysis

Groundwater samples were collected from selected borings and the newly installed monitoring well (GL-MW-1) at the Site. Groundwater samples were submitted to the analytical laboratory and analyzed for the following contaminants.

Analyses
Diesel Range Organics(DRO) / Heavy Oil Range Organics (ORO)
Gasoline (GRO)/BTEX
PCBs
Volatile Organic Compounds (VOC)
Polyaromatic Hydrocarbons (PAH)
Carcinogenic Polyaromatic Hydrocarbons (cPAHs)
MTCA-5 Metals (Pb, As, Cr, Cd, Hg)
Total Arsenic
Dissolved Arsenic

Results of these analyses are presented in Table 2 of this report. The analytical laboratory reports for the analyzed groundwater samples are attached as Appendix D. Chain-of custody forms are also included in Appendix D.

The findings of the analyzed groundwater samples are summarized below.

- GRO, VOCs, PCBs, and PAHs were not detected in any of the analyzed-groundwater samples.
- DRO was detected above the MTCA cleanup level in one grab-groundwater sample from GLB-7 (1,200 mg/kg).
- ORO was detected at concentrations above the MTCA cleanup level in grab-groundwater samples collected from GLB-1, GLB-5, and GLB-7.
- A groundwater sample from monitoring well GL-MW-1 (same location as GLB-5) reported ORO concentrations below the MTCA cleanup level.
- Interpretations of ORO in groundwater at the Site are presented on Figure 3a.
- To further assess if the bioremediation compounds injected by SEI on the north-adjacent property had inflated DRO or ORO concentrations, several

- groundwater samples also were reanalyzed using silica-gel methods. Based on the reanalysis results, also presented on Table 2, the initial samples remain valid for the detected DRO or ORO concentrations.
- Total and dissolved concentrations of Arsenic were reported above the MTCA cleanup level in the grab-groundwater samples from GLB-5, GLB-7, and the groundwater sample collected from the monitoring well GL-MW-1.

Groundwater Depth Measurements

Groundwater was found at depths ranging from approximately 6 to 9 feet based on boring observations. Groundwater was measured in the temporary wells between 7.5 and 10.8 feet, but a groundwater-flow direction was not assessed. However, based on area topography, groundwater is expected to be flowing to the north.

Quality Assurance/Quality Control

Quality Assurance/Quality Control (QA/QC) during all G-Logics exploration efforts include generally accepted procedures for sample collection, storage, tracking, documentation, and analysis. G-Logics also completed appropriate chain-of-custody documentation during all exploration efforts.

The laboratory conducted matrix spike, matrix-spike duplicate, and method blank analyses. Laboratory QA/QC information is included with the laboratory report in Appendix D.

Conclusions

The completed work provides the following information.

- Soil borings encountered fill materials in shallow soils across the Property to a depth of 4-5 feet. Below the fill, several feet of fine-grain soils (silts and clays) cap a fine-grain sand unit that contains groundwater.
- ORO hydrocarbons (understood to be associated with the former used-oil UST were found exceeding the MTCA cleanup level in soils along the northern property boundary.
- Other possible contaminants, such as chlorinated solvents and PCBs, were either not detected in the analyzed samples or were below cleanup levels.
- The samples with elevated concentrations of ORO were reanalyzed using silica-gel methods to assess for possible interference by the nearby

bioremediation treatments. These reanalysis results indicated the microbe injections did not significantly change the identified contaminant concentrations.

- The grab-groundwater sample collected from the open boring GLB-5
 reported ORO hydrocarbons exceeding the MTCA cleanup level. Due to
 potential concerns regarding turbidity in the sample, which could yield and
 non-representative results, a groundwater-monitoring well (GL-MW-1) was
 installed in this area. Analysis of a non-turbid water sample from the well
 demonstrated that ORO concentrations are below the cleanup level.
- Analyzed-groundwater samples reported arsenic concentrations exceeding the MTCA cleanup levels (total and dissolved) in several locations. A groundwater sample from well GL-MW-1 also was collected and analyzed for arsenic to assess if turbidity in the original sample also yielded nonrepresentative results. These reanalysis results indicated arsenic appears to be elevated in the groundwater in this area.
- Groundwater was encountered between 6 to 9 feet at the Property. Based on local topography, groundwater is understood to be flowing in a northerly direction.

Discussion

While the used-oil UST was removed during the 1980s, the recent analytical results demonstrate that residual ORO contamination remains present near the former UST location. Soil and groundwater contaminants in this area could be treated by a variety of insitu methods. However, based on our experience with similar projects, soil excavation and off-site disposal is the preferred course of action in terms of providing permanence, protectiveness, and long-term effectiveness.

The nature and extent of arsenic reported in the analyzed-groundwater samples is not clearly defined. G-Logics understands that elevated concentrations of arsenic are common in the Puget Sound area, given the numerous volcanos and other natural sources. Additionally, no potential sources or historical uses of arsenic have been identified at this Property. If arsenic was released in the area of the used-oil UST, excavation in this area likely also would remove this contaminant.

For the arsenic identified in the groundwater from GL-MW-1, potential exposures are very limited. Specifically, this area is covered with buildings or asphalt, prohibiting direct contact with the groundwater. Furthermore, the shallow groundwater in this area likely

would be of low quality and would yield insufficient quantities to be considered to be a viable source of drinking water.

Recommendations

The following section presents our recommendations concerning the findings of this exploration.

- G-Logics recommends conducting a remedial excavation to remove petroleum-contaminants identified by the exploratory borings GLB-1, GLB-7, and S4 (former used-oil UST area). Additionally, removal of impacted shallow groundwater in the former UST area should be performed. In light of the anticipated location of contamination, we recommend that the remedial excavation extend onto the neighboring adjacent property to the north in order to remove any remaining petroleum-contaminants in soils and shallow groundwater.
- Additional groundwater monitoring wells should be installed to confirm the
 appropriate removal of the contaminants in the former UST area. These wells
 likely will be required for purposes of obtaining a No Further Action opinion
 from the Washington Department of Ecology (Ecology) or the Pollution
 Liability Insurance Agency (PLIA).
- Given the lack of an identified source of arsenic on or from the Property, the natural sources of arsenic in this area of Washington, and the very low risks presented by the identified groundwater concentrations, G-Logics does not believe cleanup work near GL-MW-1 regarding detected arsenic in shallow groundwater is warranted or would be cost effective. However, additional exploration efforts should be conducted to provide better information regarding the presence of arsenic in shallow groundwater at the Property. Specifically, the installation and sampling of additional groundwatermonitoring wells, and the collected soil and groundwater data, would support the decisions regarding further actions in this area of the Property.

Limitations

The scope of work on this project was presented in our identified workplan and subsequently approved by Rairdon. Please be aware our scope of work was limited to those items specifically identified in the workplan. Other activities not specifically included in the presented scope of work (in a workplan, correspondence, or this report) are excluded and are therefore not part of our services.

Land use, site conditions (both on-site and off-site), and other factors will change over time. Since site activities and regulations beyond our control could change at any time after the completion of this report, our observations, findings, and opinions can be considered valid only as of the date of the site visit.

The property owner is solely responsible for notifying all governmental agencies and the public at large of the existence, release, treatment, or disposal of any hazardous materials identified at the project site. G-Logics assumes no responsibility or liability whatsoever for any claim, loss of property value, damage, or injury which results from pre-existing hazardous materials being encountered or present on the project site, or from the discovery of such hazardous materials.

This report is prepared for the sole use of our client. The scope of services performed during this assessment may not be appropriate for the needs of other users. Re-use of this document or the findings, conclusions, or recommendations presented herein, are at the sole risk of said user(s). Our client and regulatory agencies also may make additional copies of this document for their internal and public use, or as required by law. All other users of this document must acknowledge our copyright and indicate that permission to use has been received from G-Logics and our Client. Any party other than our client who would like to use this report shall notify G-Logics of such intended use by executing the "Permission and Conditions for Use and Copying" contained in this document. Based on the intended use of the report, G-Logics may require that additional work be performed and that an updated report be issued. Non-compliance with any of these requirements will release G-Logics from any liability resulting from the use of this report by any unauthorized party.

No warranty, either express or implied, is made.

Closing

We appreciate this opportunity to provide our services to Rairdon. Please contact us at your convenience with any questions regarding our work or findings.

Sincerely,

G-Logics, Inc.

Rory L. Galloway, LG, LHG

Principal

Hydrogeclogist 6 2222 OS

JON STORDAHL

Karis Vandehey, LG, WSLWD

" wil Van why

Staff Geologist

Jon Stordahl Staff Geologist

FIGURES

Figure 1: Site Location Map Figure 2: Site Diagram

Figure 3: Site Diagram, Exploration Location

Figure 3a: Site Diagram, Approximate Impacted Areas

TABLES

Table 1 Soil Sample Analyses

Table 2 Groundwater Sample Analysis

APPENDICES

Appendix A: Stemen Environmental Inc. Limited Phase II Environmental Site Assessment, December

20, 2012

Appendix B: Exploration Field Methods

Appendix C: Boring Logs

Appendix D: Laboratory Data and Chain-of-Custody Documents

ATTACHMENTS

Attachment A: Permission and Conditions for Use and Copying

FIGURES

g-logics

Site Location Maps

Auburn Way Property North Parcel 3025 Auburn Way N Auburn, Washington Figure

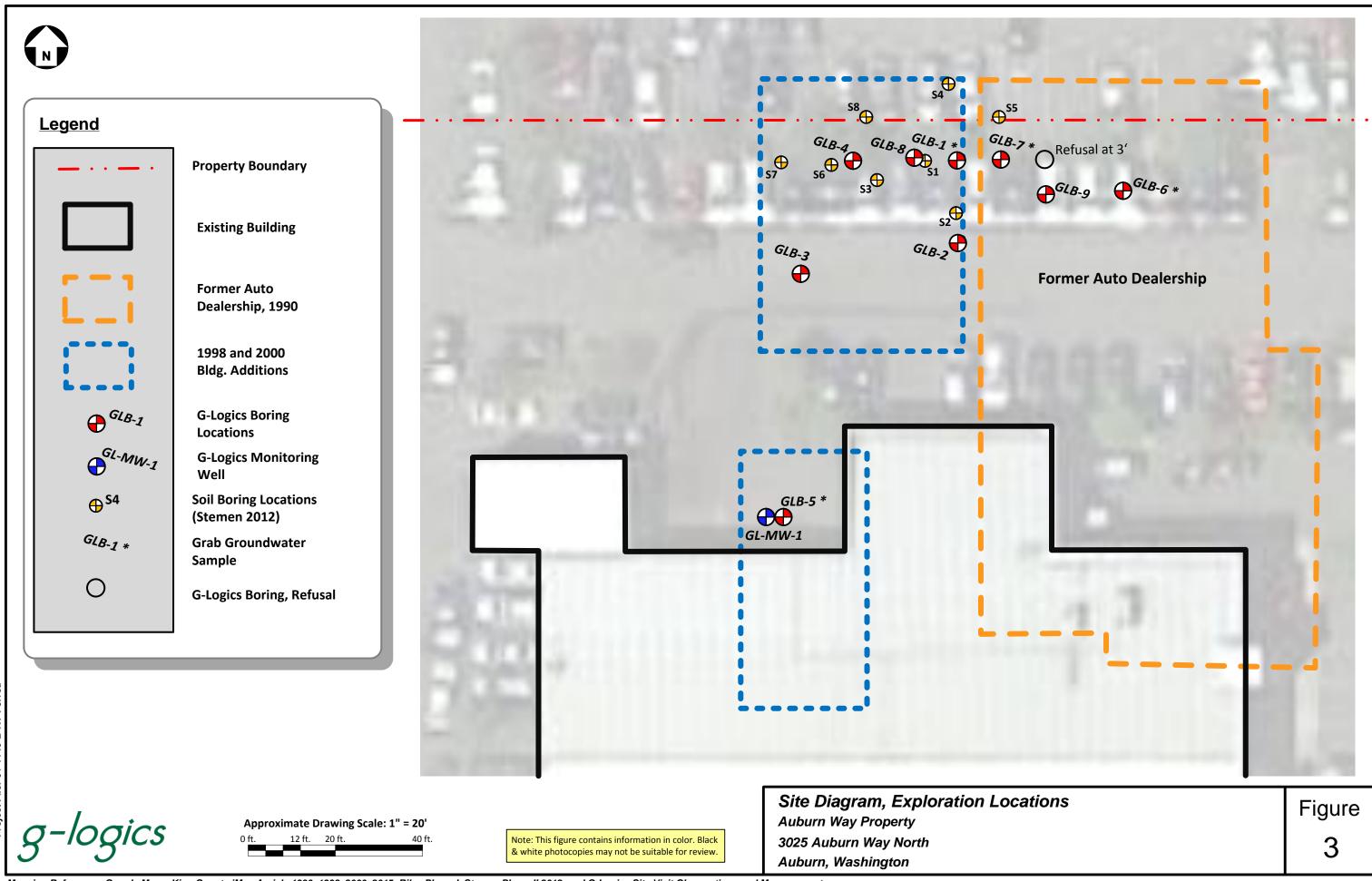
1

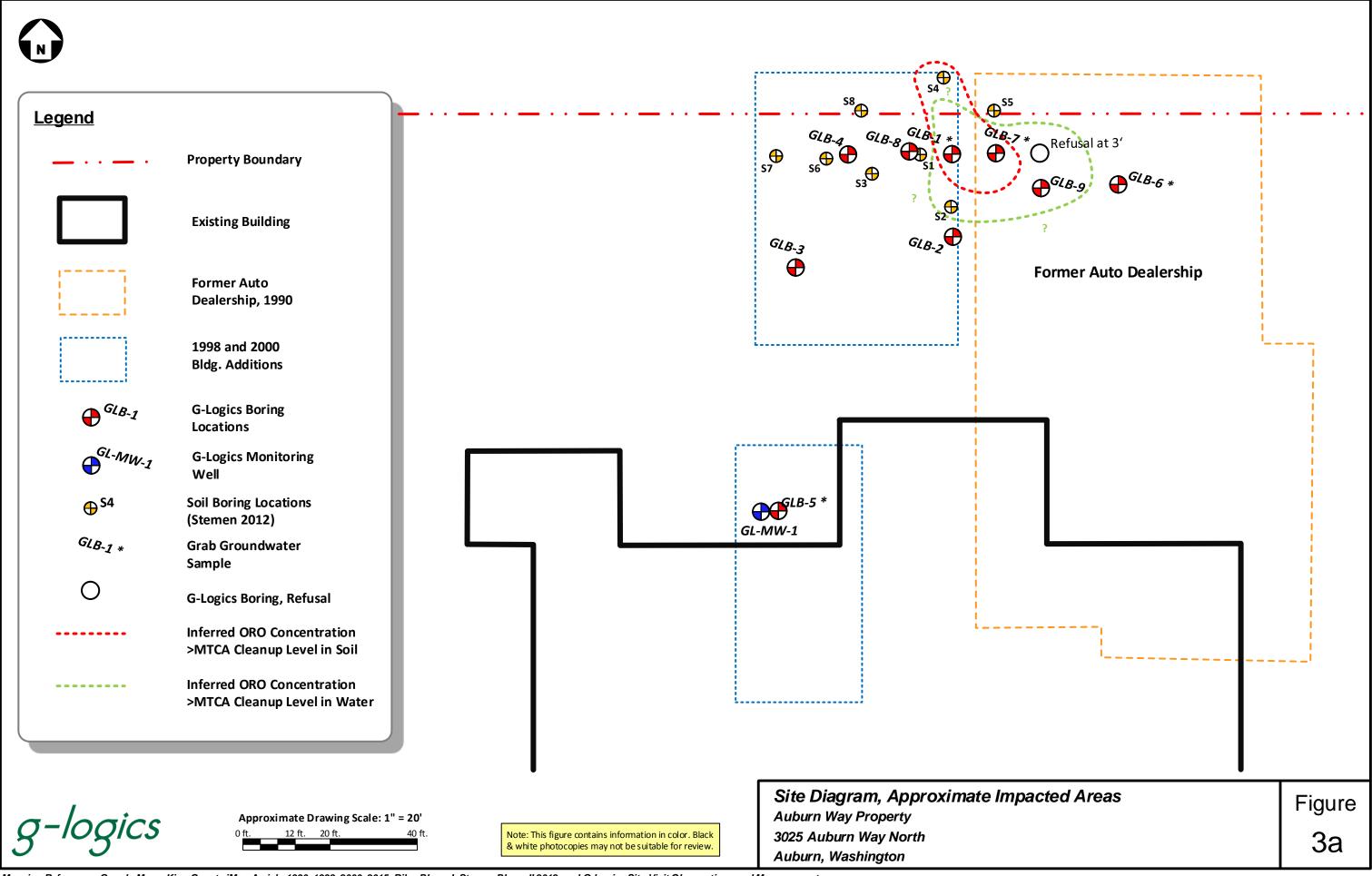
Project File: 01-1140-B-F1.vsd

See Figure 3 Auburn Way North Former Auto Dealership 30th Street Northwest

g-logics

Approximate Drawing Scale: 1" = 80'


0 ft. 48 ft. 80 ft. 160 ft


Note: This figure contains information in color. Black & white photocopies may not be suitable for review.

Site Diagram
Auburn Way Property
3025 Auburn Way North
Auburn, Washington

Figure

2

xploration ocation	Sample Sample Date Number	Sample Depth (ft)	o Dae	ading leginal	The Range Ortania	sange Organics	Ji Range Organice	n and depart	es dur	are trypart	age de la company de la compan	, rocker for to	arcide 1721 Acres	naria a madari	Ash monday the	Trouble trade	tater 1280 mocket	nector res	galacte s	Castrur	chroding the	Troming My red	a decur	iots		ntratere cereanti	ere arthur cere	a and a series of the series o	nest the second	indentification of the state of	Here Studentiere it	are " niteral	a the three trees	udere reterd	1.1.2.3.cdlpyrene	r dyere 40
TCA Cleanup Lonits in mg/kg)		Dopin (it)	NA -	100(a)/30(b) 2,000	2,000	2,000	0.03	7	6	9 1	14.3* **	**	**	** 0.0	5* 0.05*	**	* 1	20	2 2,0	00 19	250	2	Various (c)	** 4	1,800* 24,	000* 1.37	1.37*	13.7*	** 0.1	137*	0.137* 3	200* 3,200	* 1.37*	** :	2,400* 1
emen Enviror	nmental Inc.																																			
,	12/12/2012 S1-8 S1-12	8 12		<10 <10	<50 <50	<100 <100																														
	12/12/2012 S2-9	9		<10	<50	120																														
	12/12/2012 S3-9	9		<10	<50	<100																														
	12/12/2012 S4-8	8		500	<50	3,800																														
	12/12/2012 S5-9	9		<10	<50	<100																														
	12/12/2012 S6-9	9		<10	<50	<100																														
	12/12/2012 S7-8	8		<10	<50	<100																														
	12/12/2012 S8-8	8		<10	<50	<100																														
jics 2017	7/21/2017 GLB-1-5	5	8.4	<6.10	<26.2	6,110	5,990	<0.0244	4 <0.0244	<0.0305 <0	0.0610	0.132 <0.13	32 <0.132	0.132 <	0.132 <.0	132 <0.132	<0.132 <	:0.132 0.132	15.2	0.278 27	7.7 <0.68	2 91.8	<0.345	nd	<0.0525 <	0.0525 <0.	0525 <0.05	25 <0.0525	<0.0525 <0	0525 < 0.05	25 <0.0525 <	<0.0525 <0	.0525 <0.052	25 < 0.0525	<0.0525 <	<0.0525 nd
	GLB-1-10 GLB-1-14	10 14	0.4 0.3		<23.8 	<59.5 		-			-								_		 		=				 									
-2	7/21/2017 GLB-2-4 GLB-2-8 GLB-2-111	4 8 11	1.4 0.3 0.3		<24.3 	<60.7 	 					 						 		 	 						 			 			 	 		
-3	7/21/2017 GLB-3-4 GLB-3-8 GLB-3-11	4 8 11	0.8 0.5 0.4		<24.3 	<60.9 															 															
-4	7/21/2017 GLB-4-4 GLB-4-8 GLB-4-11	4 8 11	0.5 0.3 0.5		<23.9 	<59.9 	 		 			 	 				 	 			 			 	 		 			 	 		 			
-5	7/21/2017 GLB-5-8 GLB-5-12	8 12	0.4 0.4	<5.91 	<25.3	<63.4 		<0.0237	7 <0.0237 	<0.0296 <0	0.0591																									
-6	7/21/2017 GLB-6-4 GLB-6-8 GLB-6-11	4 8 11	0.6 0.5 0.4	<5.60 	<25.3 	<63.2 		<0.0224 	4 <0.0224 	<0.0280 <0	0.0560	 						 					==		 		 			 			 			
-7	7/21/2017 GLB-7-6 GLB-7-9 GLB-7-11	6 9 11	5.5 8.3 	<5.70 24.3 	<23.8 <26.1 <22.3	2,160 2,900 <55.7			8 <0.0228 1 <0.0241	<0.0285 0 <0.0302 <0		0.119 <0.11	 19 <0.119 	0.316 <(0.119 <0.	 119 <0.119 	<0.119 <	 :0.119 0.316 	3.47 	<0.222 20	 1.9	4.09 	<0.340	nd	 <0.0475 <	0.0475 <0.	 0475 <0.04 ⁻	 75 <0.0475 	<0.0475 <0	0475 <0.04	 75 <0.0475 < 	 <0.0475 <0 	.0475 <0.04	 75 <0.0475	 0.0651 0 	0.0701 nd
-8	7/21/2017 GLB-8-9	9			<22.3	<55.7																														
-9	7/21/2017 GLB-9-9	9			<26.9	<67.2																														

- Notes:
 (1) Refer to site diagram(s) for sampling locations. Refer to laboratory reports for analytical methods.
- Available Method A Cleanup Levels or Most Conservative Method B Cleanup Levels, MTCA, revised 2013. Exceeding Cleanup Levels does not necessarily trigger requirements for Cleanup Actions under MTCA. Refer to site diagram(s) for sampling locations.

 (3) Gasoline Analyses by Method NWTPH-Gx, Diesel and Heavy Oil by NWTPH-Dx/Dx Ext., MTCA 5 Metals by 6020/7471, Hex Chrome by 7196, VOCs by 8260C, PAH by 8270 (SIM), PCB by 8082.
- (a) Soil Cleanup Level For Gasoline With No Detectable Benzene In The Soil. (b) Soil Cleanup Level For Gasoline With Detectable Benzene In The Soil.
- (c) VOCs analyzed were not detected. See attached analytical laboratory reports for details.
 Method B Cleanup Level.
- ** Not researched, no available data.
- *** Carcinogenic Polyaromatic Hydrocarbons (cPAH)
- --- Sample not analyzed.
- < 50.0 Sample concentration below laboratory reporting limit.
- 27 Bold number(s) indicates contaminant detected, below cleanup level.
- Bout namine (s) mulicated in the detail of the detail
- SGT Silica Gel Treatment

TABLE 2 (1)
Groundwater Sample Analysis
Auburn Way Property
3025 Auburn Way North
Auburn, Washington

Exploration Location	Sample Date	Sample Number	Sample Depth (ft)	Gaedino	Reference Original States	Rande Ordanica Diesel Ra	ries sell of	Jedanics Olik	and seri	ntene Tolle	re tridien	ere k	Assente Hotali	senic Dissource	di Chr	Jestium Hossill	Merca	urd rotal	ASTR OF TOES	2. Met	Machinal Par
MTCA Cleanup Level (2)(3)				1,000	500	500	500	500			700 1,00	0 5	5	5	50	15	2	0.100	Various	32*	0.1
(units in ug/L)																					
Stemen Environmental Inc.																					
December, 2012																					
S1	12/12/2012	S1-W	8	<100	<250		<500		<1	<1	<1 <3								nd		
S4 (b)	12/12/2012	S4-W	8	<100	<250		<500		<1	<1	<1 <3	T									
S6	12/12/2012	S6-W	8	<100	<250		<500		<1	<1	<1 <3										
G-Logics																					
July, 2017																					
GLB-1-W	7/21/2017	GLB-1-W	9-14ft	<50	<49.9		1,670	1,210	<1	<1	<1 <1	2.44		<0.200	1.79	2.06	<0.100	<0.100	nd	<0.0997	nd
GLB-5-W	7/21/2017	GLB-5-W	9-14ft	<50	<49.7		700	599	<1	<1	<1 <1	20.7	5.19	<0.200	8.68	0.592	<0.100		nd		
GLB-6-W	7/21/2017	GLB-6-W	9-14ft	<50	<49.9		161		<1	<1	<1 <1	6.25		<0.200	2.00	1.32	<0.100		nd		
GLB-7-W	7/21/2017	GLB-7-W	9-14ft	<50	1,200	857	4,370	3,090	<1	<1	<1 <1	19.0	6.94	<0.200	1.87	1.89	<0.100	<0.999	nd	0.143	nd

TABLE 2 (1)
Groundwater Sample Analysis
Auburn Way Property
3025 Auburn Way North
Auburn, Washington

Exploration Location	Sample Date	Sample Number	Sample Depth (ft)	Cas dire	Azarde Ordanico Azarde Etable Diese		tearly of	Heary Orde	andescri	Lene Tollene	titule rue	e kara kara	nic Trotall	Dissolve	di Chr	rium Hotall		uri rota	PEBS (8)	2,16	atrylraphtratery graft	_ /	
MTCA Cleanup Level (2)(3)				1,000	500	500	500	500	5.00	1,000 700	0 1,000	5	5	5	50	15	2	0.100	Various	32*	0.1		
(units in ug/L)																							
GL-MW-1	7/31/2017	GL-MW-1	5-15ft		<49.9		426					25.0	20.7										
GL-MW-1(Dup.)	7/31/2017	GL-MW-100	0 5-15 ft		<49.8		375					27.9	21.1										

Notes:

- (1) Refer to site diagram(s) for sampling locations. Refer to laboratory reports for analytical methods.
- (2) Available Method A Cleanup Levels or Most Conservative Method B Cleanup Levels, MTCA, revised 2013. Exceeding Cleanup Levels does not necessarily trigger requirements for Cleanup Actions under MTCA. Refer to site diagram(s) for sampling locations.
- (3) Gasoline Analyses by Method NWTPH-Gx, Diesel and Heavy Oil by NWTPH-Dx/Dx Ext., MTCA 5 Metals by 200.8/245.1, VOCs by 8260C, PAH by 8270 (SIM), PCB by 8082.
- (a) Analytes were not detected. See attached analytical laboratory reports for details.
- (b) No analytical laboratory report included in the Stemen Environmental report to verify analytical data.
- * Method B Cleanup Level.
- ** Not researched, no available data.
- Sample not analyzed.
- nd Not Detected
- Dup. Duplicate Sample for QA/QC.
- < 50.0 Sample concentration below laboratory reporting limit.
- 27 Bold number(s) indicates contaminant detected, below cleanup level.
- Bold number(s) and yellow shading indicates concentration exceeds MTCA Cleanup Level.

 Reporting limits exceeds cleanup level.
- SGT Silica Gel Treatment

APPENDIX A

LIMITED PHASE II ENVIRONMENTAL SITE ASSESSMENT REPORT

DECEMBER 20, 2012

COMMERCIAL PROPERTY 3025 AUBURN WAY NORTH AUBURN, WASHINGTON TAX PARCEL #000400-0039

Prepared By

Paul W. Stemen

Stemen Environmental, Inc.

TABLE OF CONTENTS

1.0 SITE CHARACTERISTICS AND HISTORY	PAGE 1
2.0 INVESTIGATIVE SOIL SAMPLING	PAGE 3
3.0 SOIL SAMPLING, GROUNDWATER SAMPLING AND LABORATORY ANALYSES PROTOCOLS	PAGE 7
4.0 HEALTH AND SAFETY	PAGE 7
5.0 SUMMARY	PAGE 8

APPENDIX A - LABORATORY ANALYSES CHARTS, SAMPLING LOCATION MAP, SITE PHOTO AND TEST PIT LOGS

APPENDIX B - LABORATORY ANALYSES DATA AND BORING LOGS

APPENDIX C - LABORATORY ANALYSES CHARTS AND DATA FOR COMMERCIAL PROPERTY LOCATED AT 3109 AUBURN WAY NORTH, AUBURN, WA.

STEMEN ENVIRONMENTAL, INC.

P.O. BOX 3644 LACEY, WASHINGTON 98509-3644 CONTR. LIC. #STEMEE1081J9

Telephone 360-438-9521 Fax 360-412-1225

December 20, 2012

R&E Investments LLC c/o Mr. Roger Vermazen La Quinta, California 92253

Dear Mr. Vermazen:

LIMITED PHASE II ENVIRONMENTAL SITE ASSESSMENT FOR THE AUBURN SUBARU SITE LOCATED AT 3025 AUBURN WAY N., AUBURN, WASHINGTON. TAX PARCEL#000400-0039

1.0 SITE CHARACTERISTICS AND BACKGROUND

The subject property consists of approximately 2.95 acres of commercially zoned, and commercially developed land located 3025 Auburn Way, Auburn, Washington. The subject site is located at Latitude 47.33487 Longitude -122.2234, and in northeast 1/2 of the southeast 1/4 of Section 6, Township 21 North, Range 5 East. The subject property is listed by the King County Assessor's Office as Tax Parcel #000400-0039

The subject property is located on the western side of Auburn Way North.

The subject property is bordered on the east by Auburn Way N. and developed commercial properties, on the west by a storm water pond/ditch and developed commercial properties, on the south by developed commercial properties, on the north by developed commercial properties.

The subject property is located in an area that is primarily occupied by light industrial, commercial businesses, automobile dealerships, and retail businesses.

Current development of the subject site consists of one (1) single-story, 16,054 square foot commercial building constructed on the subject property in 2002.

Available information indicates the subject property was originally part of a 6.75 acre parent parcel. The parent parcel was comprised of the 2.95 acres of land listed as current Tax Parcel #000400-0039, the subject property, and the approximately 3.8 acres of land listed as Tax Parcel #000400-0041. The previous parent parcel was split into the two current parcels of land in 1999.

In 1971, a single story, 14,386 square foot automotive dealership building was constructed on the parent parcel. The buildings footprint extended a short distance beyond the current boundary/property line that separates the two (2) current parcels of land/properties. The

dealership's automotive service department was located in a portion of the building that extended beyond current property line.

Information contained in a Phase I Environmental Assessment Report issued by The Riley Group indicates that multiple underground hydraulic lift systems, and one (1) 550 gallon underground used oil storage tank were located within the boundaries of the service department's portion of the building.

Documents contained in the Phase I report confirm that the 550 gallon used oil tank was excavated and removed from the subject property by Joe Hall Construction Inc. under permit #BLD0661-89 issued by the City of Auburn Public Works Department. The document indicates that Dave Smith, an inspector with the City of Auburn Fire Department witnessed the tank removal project on 11/14/89 and noted that it "Looked Clean". A Notice of Permanent Closure of Underground Storage Tanks was submitted to the Department of Ecology. The Notice noted that Mr. Smith inspected the removal project, a Site Assessment was performed, and that no contamination was found. The Notice was issued on 11/14/89.

The reported previous burial location for the 550 gallon used oils now occupied by vehicle parking spaces and/or a landscaped median that runs along the northern property line of the subject property.

The service garage also was serviced by multiple underground hydraulic lift systems. In July of 2001, GeoEngineers performed a Phase II Study of the groundwater at selected locations down gradient from the locations of the underground hydraulic lifts/hoists. Diesel and heavy oil range hydrocarbons were not detected in the water samples obtained from nine (9) borings. A copy of this was not available for review by the Riley Group.

The above described dealership building was demolished in 2002. Information contained in an Environmental Services Report issued by GeoEngineers, fourteen (14) underground hydraulic lift cylinders were excavated and removed from the site as part of the building demolition project, the report states that approximately 70 cubic yards of petroleum contaminated soils were excavated and removed from the site. Laboratory analyses results for thirteen (13) confirmation soil samples obtained from the excavations by GeoEngineers reported no presence of diesel fuel and/or lube oil range hydrocarbons at levels exceeding MTCA Method A Clean Up Levels of 2000 mg/kg.

Based on the information reviewed by the Riley Group as part of the Phase I Environmental Assessment, they recommended the sampling of the subsurface soils at the former burial location of the previously removed 550 gallon used oil storage tank.

On December 12, 2012, a Limited Phase II Environmental Assessment of the subsurface soils and groundwater located along the southern perimeter of the commercial property located at 3109 Auburn Way North was performed. The purpose of the limited investigation was to assess the impacts of the presence and use of a 550 gallon underground used oil tank that was previous buried in close proximity to the southern perimeter of the property. The oil tank was excavated and removed on November 14, 1989. (See above for additional information on the property and the used oil tank)

The limited environmental investigation included the advancing of three (3) investigative boreholes at selected areas of interest along the southern perimeter of the property and in the reported immediate area where the underground used oil tank was previously buried.

A total of three (3) investigative soil samples and one (1) investigative groundwater sample were obtained from the boreholes and were submitted for appropriate laboratory analyses.

<u>Laboratory analyses results for investigative soil samples S5-9 and S8-8 reported no detectable presence of gasoline, diesel fuel and/or lube oil range T.P.H.</u>

<u>Laboratory</u> analyses results for investigative soil sample S4-8 reported the presence of gasoline range T.P.H. and lube oil range T.P.H. at levels that exceed MTCA Method A Clean Up Levels.

<u>Laboratory analyses results for investigative groundwater sample S4-W reported no detectable presence of gasoline range T.P.H., diesel fuel range T.P.H., and/or lube oil range T.P.H.</u>

The confirmed presence of gasoline and lube oil range T.P.H., at levels that exceed MTCA Method A Clean Up Levels, in the subsurface soils on the commercial property located at 3109 Auburn WAy North, Auburn, Washington, was properly reported to the Department of Ecology's Northwest Regional Office.

2.0 INVESTIGATIVE SOIL SAMPLING

The purpose of this limited on-site investigation of the subsurface soils beneath selected portions of the subject property was to assess the impacts of the presence of previously removed 550 gallon underground used oil storage tank on the current environmental integrity of the subject property.

Prior to the commencement of any on-site activities, I attended an on-site meeting with Mr. Mike Scarff, the current tenant of the subject property and Mr. Podgorski, a knowledgeable interested party that has been associated with the operations of the automobile related businesses on the subject property and the neighboring property to the north for 25+ years. During the on-site meeting, based on the review of various aerial photos and Mr. Podgorski's recollections, we all agreed on the immediate area where the 550 gallon used oil tank was previously buried.

Based on these findings, an investigative sampling plan was developed for sampling of the subsurface soils and/or groundwater in this immediate area.

Prior to the commencement of any on-site investigative sampling activities all underground utilities were located by Public and Private Underground Utility Locating Services.

On December 12, 2012, I supervised the advancing of five (5) investigative boreholes at selected locations on the subject property using a Direct Push Sampling System supplied and operated by a Licensed Geologist from ESN Northwest, Inc. of Olympia, Washington.

I obtained six (6) discreet soil samples and two (2) groundwater samples from the advanced boreholes and submitted the soil samples for appropriate laboratory analyses.

SAMPLING LOCATION S1

Sampling location S1 is present at Longitude 122' 13' 22" West Latitude 47'20'7" North and at a location directly adjacent to the northern perimeter of the subject property. The boring is located in the center (east/west) of the proposed sampling area and 15 feet south and 10 feet west of Sampling location S4 on the northerly neighboring property. The boring was advanced through the asphalt surface materials and advanced to an approximate depth of 12 feet b.g.s.

Soils removed from this soil boring possessed no noticeable signs (staining/odor) of being adversely impacted by petroleum products.

Asphalt and base gravels were present at depths of 1 foot b.g.s. (below ground surface) or less, tan/brown colored soils and gravels were present at depths ranging from 1-4 feet b.g.s., moist brown colored fine grain sand and silts at depths ranging from 4-8 feet b.g.s., and wet, dark brown fine grain sand and silts at depths ranging from 8-12 feet b.g.s.

Groundwater was present at a depth of 8 feet b.g.s. at this location.

Investigative soil sample S1-8 was obtained from moist dark colored sands present at a depth of 8 feet b.g.s. and just above the water level, while soil sample S1-12 was obtained from wet dark brown colored sands present at a depth of 12 feet b.g.s. (below ground surface).

Investigative groundwater sample S1-W was obtained from groundwater present at a depth of 8 feet b.g.s.

Investigative soil and groundwater samples were submitted for appropriate laboratory analyses.

Investigative groundwater sample S1-W was obtained from groundwater present at a depth of 8 feet b.g.s.

<u>Laboratory analyses results for investigative soil samples S1-4, and S1-12 reported no detectable presence of gasoline range T.P.H., diesel fuel range T.P.H. and/or lube oil range T.P.H. (total petroleum hydrocarbons).</u>

<u>Laboratory analysis results for investigative groundwater sample S1-W reported no detectable presence of gasoline range T.P.H., diesel fuel range T.P.H., lube oil range T.P.H. , and/or volatile organic compounds (VOCs).</u>

SAMPLING LOCATION S2

Sampling location S2 is present at Longitude 122' 13' 22" West Latitude 47'20'7" North and at a 12 feet south of the northern perimeter of the subject property. The boring is located approximately 10 feet east and 10 feet south of sampling location S1. The boring was advanced through the asphalt surface materials and advanced to an approximate depth of 12 feet b.g.s.

Soils removed from this soil boring possessed no noticeable signs (staining/odor) of being adversely impacted by petroleum products.

Asphalt and base gravels were present at depths of 1 foot b.g.s. (below ground surface) or less, tan/brown colored soils and gravels were present at depths ranging from 1-4 feet b.g.s., moist brown colored fine grain sand and silts at depths ranging from 4-8 feet b.g.s., and wet, dark brown fine grain sand and silts at depths ranging from 8-12 feet b.g.s.

Groundwater was present at a depth of 9 feet b.g.s.

Investigative soil sample S2-9 was obtained from moist dark colored sands present at a depth of 9 feet b.g.s. and just below the water level.

Investigative soil samples S2-9 was submitted for appropriate laboratory analyses.

<u>Laboratory analyses results for investigative soil samples S2-9 reported no detectable</u> presence of gasoline range T.P.H., diesel fuel range T.P.H. and/or lube oil range T.P.H.

SAMPLING LOCATION S3

Sampling location S2 is present at Longitude 122' 13' 21" West Latitude 47'20'6" North and at a 12 feet south of the northern perimeter of the subject property. The boring is located approximately 20 feet west of sampling location S2. The boring was advanced through the asphalt surface materials and advanced to an approximate depth of 12 feet b.g.s.

Soils removed from this soil boring possessed no noticeable signs (staining/odor) of being adversely impacted by petroleum products.

Asphalt and base gravels were present at depths of 1 foot b.g.s. (below ground surface) or less, tan/brown colored soils and gravels were present at depths ranging from 1-4 feet b.g.s., moist brown colored fine grain sand and silts at depths ranging from 4-8 feet b.g.s., and wet, dark brown fine grain sand with some gravel at depths ranging from 8-12 feet b.g.s.

Investigative soil sample S3-9 was obtained from moist dark colored sands present at a depth of 9 feet b.g.s. Due to the softness of the soils, we experienced poor recovery of soils from depths of 7-8 feet b.g.s.

Investigative soil sample S3-9 was submitted for appropriate laboratory analyses.

<u>Laboratory</u> analyses results for investigative soil sample S3-9, reported no detectable presence of gasoline range T.P.H., diesel fuel range T.P.H. and/or lube oil range T.P.H.

SAMPLING LOCATION S6

Sampling location S6 is present at Longitude 122' 13' 22" West Latitude 47'20'6" North and at a 2 feet south of the northern perimeter of the subject property. The boring is located approximately 20 feet west and 10 feet north of sampling location S3. The boring was advanced through the asphalt surface materials and advanced to an approximate depth of 12 feet b.g.s.

Soils removed from this soil boring possessed no noticeable signs (staining/odor) of being adversely impacted by petroleum products.

Asphalt and base gravels were present at depths of 1 foot b.g.s. (below ground surface) or less, tan/brown colored soils and gravels were present at depths ranging from 1-4 feet b.g.s., moist brown colored fine grain sand and silts at depths ranging from 4-8 feet b.g.s., and wet, dark brown fine grain sand with some gravel at depths ranging from 8-12 feet b.g.s.

Investigative soil sample S6-9 was obtained from moist dark colored sands present at a depth of 9 feet b.g.s. Due to the softness of the soils, we experienced poor recovery of soils from depths of 7-8 feet b.g.s.

Investigative water sample S6-W was obtained from groundwater present at depth of 8 feet b.g.s.

Investigative soil and groundwater samples were submitted for appropriate laboratory analyses.

<u>Laboratory analyses results for investigative soil sample S6-9, reported no detectable presence of gasoline range T.P.H., diesel fuel range T.P.H. and/or lube oil range T.P.H.</u>

Laboratory analyses results for investigative groundwater sample S6-W, reported no detectable presence of gasoline range T.P.H., diesel fuel range T.P.H. and/or lube oil range T.P.H.

SAMPLING LOCATION S7

Sampling location S7 is present at Longitude 122' 13' 22" West Latitude 47'20'7" North and at a 2 feet south of the northern perimeter of the subject property. The boring is located approximately 15 feet west of sampling location S6. The boring was advanced through the asphalt surface materials and advanced to an approximate depth of 12 feet b.g.s.

Soils removed from this soil boring possessed no noticeable signs (staining/odor) of being adversely impacted by petroleum products.

Asphalt and base gravels were present at depths of 1 foot b.g.s. (below ground surface) or less, tan/brown colored soils and gravels were present at depths ranging from 1-4 feet b.g.s., moist brown colored fine grain sand and silts at depths ranging from 4-8 feet b.g.s., and wet, dark brown fine grain sand with some gravel at depths ranging from 8-12 feet b.g.s.

Investigative soil sample S7-8 was obtained from moist dark colored sands present at a depth of 9 feet b.g.s.

Investigative soil samples S7-8 was submitted for appropriate laboratory analyses.

<u>Laboratory analyses results for investigative soil sample S7-8, reported no detectable</u> presence of gasoline range T.P.H., diesel fuel range T.P.H. and/or lube oil range T.P.H.

3.0 SOIL SAMPLING, GROUNDWATER SAMPLING, AND LABORATORY ANALYSES PROTOCOLS

3.1 SOIL SAMPLING PROTOCOLS

All discreet soil samples were obtained using a "Direct Push Sampling System" provided and operated by Licensed Drillers from Environmental Services Network Northwest, Olympia, Washington. Continuous soil corings were extended to depths of approximately 12 feet below ground surface (b.g.s.) or less. Continuous soil coring/samples, contained in liners, were laid out in order, by depth, on the surface to facilitate field screening and observation of the soils obtained from the boreholes.

The soil samples were immediately removed from the liner and placed in recommended sample jars using a stainless steel sampling spoon and an easy draw syringe.

EPA Method 5035 sampling protocols were practiced for sampling soils to be analyzed for VOCs.

All sampling tools/devices were properly cleaned between individual samples to prevent cross sample contamination. All soil samples were then tightly packed in recommended sample jars with no head space, properly refrigerated and transported with proper chain of custody forms, to Environmental Services Network Northwest, Inc. of Olympia, Washington, for appropriate laboratory analyses.

3.2 BOREHOLE GROUNDWATER SAMPLING PROTOCOLS

All discreet groundwater samples were obtained using a variable speed peristaltic pump set at the lowest flow level and the "Direct Push Sampling System". The system's sampling tube was purged of all collected waters and then allowed to recharge prior to the collection of these water samples. The sampled waters were transferred directly into laboratory supplied containers for temporary storage.

3.3 LABORATORY ANALYSES PROTOCOLS

Soil samples were analyzed for the presence of gasoline range T.P.H. (total petroleum hydrocarbons) using method NWTPH-Gx, diesel fuel range T.P.H., and lube oil range T.P.H. using method NWTPH-Dx/Dx Extended.

Groundwater samples were analyzed for the presence of gasoline range T.P.H. using method NWTPH-Gx, diesel fuel range T.P.H., and lube oil range T.P.H. using method NWTPH-Dx/Dx Extended, and volatile organic compounds (VOCs) using EPA method 8260.

All laboratory analyses methods and quality controls meet or exceed current Department of Ecology recommendations for Site Checks and Site Assessments.

4.0 HEALTH AND SAFETY

1. All on-site work was performed under the Health and Safety guidelines set forth in sections 29 CRF 1910.120 of the Federal Register and Chapter 296-62 WAC which provide

regulations for individuals who are engaged in activities involving hazardous substances, including petroleum, and who perform confined space entry during field activities, also Chapter 296-155 WAC which provides State safety standards for construction work.

- 2. All on-site workers were 40 hour Hazmat certified.
- 3. A copy of the Site Safety Plan was provided to all on-site employees. The contents of this plan and all potential on-site hazards were discussed during a personnel on-site safety meeting. Based on the contents of this safety plan all workers were required to wear at least Level D protection. First Aid materials and properly trained personnel were present on-site at all times.
- 4. The immediate perimeter of the work area was secured at all times by orange hazard cones.

5.0 SUMMARY

The results of this on-site investigation reported no detectable presence of gasoline range T.P.H., diesel fuel range T.P.H., and/or heavy oil range T.P.H. in the subsurface soil present at selected locations of concern along the northern perimeter of the subject property.

The results of this on-site investigation reported no detectable presence of, gasoline range T.P.H., diesel fuel range T.P.H., and/or heavy oil range T.P.H. and/or volatile organic compounds (VOCs) in the groundwater present at selected locations of concern along the northern perimeter of the subject property.

The results of this investigation indicate that reported previous presence and operation of an underground used oil storage tank in the areas of concern, has not had a significant adverse impact on the current environmental integrity of the subject property.

The results of this investigation indicate that the confirmed presence of gasoline and lube oil range T.P.H., at levels that exceed MTCA Method A Clean Up Levels, in the subsurface soils on the southern portion of the northerly neighboring property, have not had a significant adverse impact on the environmental integrity of the subject property.

All remedial investigations and/or remedial corrective actions performed on this site meet current industry and regulatory standards for these actions.

All opinions, observations, and statements set forth in this report are based on currently available information and current on-site conditions, and our company cannot predict or report on the impacts of future events and/or changing regulatory requirements on this site.

If you have any questions or need further information please feel free to contact us at the above phone number.

Sincerely,

Paul W. Stemen

Ecology-Registered Site Assessment Supervisor

ASTM Certified

IFCI #0874201-U2

APPENDIX A

LABORATORY ANALYSES CHARTS, SAMPLING LOCATION MAP, AND SITE PHOTOS

			DIESEL	LUBE OIL	GASOLINE	
SAMPLE	SAMPLE	SAMPLE	RANGE	RANGE	RANGE	
NUMBER	DATE	DEPTH	ORGANICS	ORGANICS	ORGANICS	
			mg/kg	mg/kg	mg/kg	
S1-8	12/12/2012	8'	ND	ND	ND	
S6-8	12/12/2012	8'	ND	ND	ND	
S1-12	12/12/2012	12'	ND	ND	ND	
S2-9	12/12/2012	9"	ND	ND	ND	
S3-9	12/12/2012	9*	ND	ND	ND	
S7-8	12/10/2012	10'	ND	ND	ND	
ETHOD REPOR	RTING LIMITS		50	100	10	
ETHOD "A" CLE	EAN UP LEVEL	S	2000	2000	100	

ANALYSIS OF DI	ESEL RANGE	ORGANICS	S, LUBE OIL R	ANG ORGAN	ICS, GASOLIN	E RANGE	ORGANICS
IN WATER BY M	ETHOD NWTP	H Dx/Dx E	XTENDED ANI	D METHOD N	WTPH-Gx		
			GASOLINE	DIESEL	LUBE OIL		
SAMPLE	SAMPLE		RANGE	RANGE	RANGE		
NUMBER	DATE	DEPTH	ORGANICS	ORGANICS	ORGANICS		
			ug/L	ug/L	ug/L		
S1-W	12/10/2012	8'	ND	ND	ND		
S6-W	12/10/2012	8'	ND	ND	ND		
REPORTING LIM	ITS		100	250	500		
METHOD "A" CLE	EAN UP LEVEL	S	800	2000	2000		

NALYSES OF VOLATILE ORG	ANIC COMPO	OUNDS IN	WATER BY METHOD 8260
SAMPLE-NUMBER		S1-W	
SAMPLE-NOMBER		31-00	
DATE	WATER	12/12/12	
	REPORTING		
	LEVELS		
		/!	
DICHLORODIFLUOROMETHANE	1	ug/L ND	
CHLOROMETHANE	1	ND	
VINYL CHLORIDE	0.2	ND	
BROMOMETHANE	1	ND	
CHLOROETHANE	1	ND	
TRICHLOROFLUOROMETHANE	1	ND	
ACETONE	10	ND	
1,1 DICHLOROETHENE	1	ND	
METHYLENE CHLORIDE	1	ND	
METHYL-T-BUTY ETHER (MTBE)	1	ND	
TRANS-1,2-DICHLOROETHENE	1	ND	
1,1 DICHLOROETHANE	1	ND	
2-BUTANONE (MEK) CIS-1,2 DICHLOROETHENE	1 10	ND ND	
2,2-DICHLOROPROPANE	10	ND	
CHLOROFORM	1	ND	
BROMOCHLOROMETHANE	1	ND	
1,1,1- TRICHLOROETHANE	1	ND	
1,2 DICHLOROETHANE (EDC)	1	ND	
1,1-DICHLOROPROPENE	1	ND	
CARBON TETRACHLORIDE	1	ND	
BENZENE	1	ND	
TRICHLOROETHENE (TCE)	1	ND	
1,2-DICHLOROPROPANE	1	ND	
DIBROMOMETHANE	1	ND	
BROMODICHLOROMETHANE	1	ND	
4-METHYL-2-PENANONE (MIBK)	1	ND	
CIS-1,3-DICHLOROPROPENE	1	ND	
TOLUENE	1	ND	
TRANS-1,3-DICHLOROPROPENE 1,1,2,-TRICHLOROETHANE	1	ND ND	
2-HEXANONE	1	ND	
1,3-DICHLOROPROPANE	1	ND	
DIBROMOCHLOROMETHANE	1	ND	
TETRACHLOROETHENE (PCE)	1	ND	
1,2-DIBROMOETHANE (EDB)	1	ND	
CHLOROBENZENE	1	ND	
1,1,1,2-TETRACHLOROETHANE	1	ND	
ETHYLBENZENE	1	ND	
XYLENES	3	ND	
STYRENE	1	ND	
BROMOFORM	1	ND	
1,1,2,2-TETRACHLOROETHANE	1	ND	
ISOPROPYLBENZENE	1	ND	
1,2,3-TRICHLOROPROPANE	1	ND	
BROMOBENZENE	1	ND	
n-PROPYLBENZENE	1	ND ND	
2-CHLOROTOLUENE 4-CHLOROTOLUENE	1	ND	
1,3,5-TRIMETHYLBENZENE	1	ND	
TERT-BUTYLBENZENE	1	ND	
1,2,4-TRIMETHYLBENZE	1	ND	
SEC-BUTYLBENZENE	1	ND	
1,3-DICHLOROBENZENE	1	ND	
1,4-DICHLOROBENZENE	1	ND	
ISOPROPYLTOLUENE	1	ND	
1,2-DICHLOROBENZENE	1	ND	
n-BUTYLBENZENE	1	ND	
2-DIBROMO-3-CHLOROPROPANE		ND	
		NID	
1,2,4-TRICHLOROBENZENE	1	ND	
1,2,4-TRICHLOROBENZENE NAPHTHALENE HEXACHLORO-1,3-BUTADIENE	1 1	ND ND	

SITE PHOTOS

SOUTHERN VIEW DIRECT PUSH SAMPLING AT SAMPLING LOCATION S1

EASTERN VIEW DIRECT PUSH SAMPLING AT SAMPLING LOCATION S1

SITE PHOTOS

EASTERN VIEW DIRECT PUSH SAMPLING AT SAMPLING LOCATION S3

NORTHERN VIEW DIRECT PUSH SAMPLING AT SAMPLING LOCATION S3

APPENDIX B LABORATORY ANALYSES DATA AND BORING LOGS

Stemen Environmental, Inc 3025 AUBURN WAY N PROJECT Auburn, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Gasoline Range Organics in Soil by Method NWTPH-Gx

Sample	Date	Date	Surrogate	Gasoline Range Organics
Number	Prepared	Analyzed	Recovery (%)	(mg/kg)
Method Blank	12/17/2012	12/17/2012	118	nd
LCS	12/17/2012	12/18/2012	118	93%
S1-8	12/18/2012	12/17/2012	109	nd
S1-12	12/17/2012	12/17/2012	114	nd
S2-9	12/18/2012	12/17/2012	115	nd
S3-9	12/18/2012	12/17/2012	116	nd
S7-8	12/17/2012	12/17/2012	121	nd
S6-9	12/17/2012	12/17/2012	115	nd
S6-9 Duplicate	12/17/2012	12/17/2012	118	nd
Reporting Limits				10

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE: 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

Stemen Environmental, Inc 3025 - AUBURN WAY N PROJECT Auburn, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Diesel Range Organics & Lube Oil Range Organics in Soil by Method NWTPH-Dx/Dx Extended

Sample	Date	Date	Surrogate	Diesel Range Organics	Lube Oil Range Organics
Number	Prepared	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)
Method Blank	12/14/2012	12/14/2012	103	nd	nd
LCS	12/14/2012	12/14/2012	132	115%	
S1-8	12/14/2012	12/14/2012	100	nd	nd
S1-12	12/14/2012	12/14/2012	77	nd	nd
S2-9	12/14/2012	12/14/2012	96	nd	120
S3-9	12/14/2012	12/14/2012	90	nd	nd
S7-8	12/14/2012	12/14/2012	79	nd	nd
S6-9	12/14/2012	12/14/2012	111	nd	nd
S6-9 Duplicate	12/14/2012	12/14/2012	118	nd	nd
Reporting Limits				50	100

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE: 50% TO 150%

[&]quot;int" Indicates that interference prevents determination.

Stemen Environmental, Inc 3025 - AUBURN WAY N PROJECT Auburn, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Diesel Range Organics & Lube Oil Range Organics in Water by Method NWTPH-Dx/Dx Extended

Sample Number	Date Prepared	Date Analyzed	Surrogate Recovery (%)	Diesel Range Organics (ug/L)	Lube Oil Range Organics (ug/L)
Method Blank	12/13/2012	12/13/2012	141	nd	nd
LCS	12/13/2012	12/13/2012	144	90%	
S1-W	12/13/2012	12/13/2012	120	nd	nd
S6-W	12/13/2012	12/13/2012	84	nd	nd
Reporting Limits				250	500

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE: 50% TO 150%

[&]quot;int" Indicates that interference prevents determination.

Stemen Environmental, Inc 3025 AUBURN WAY N PROJECT Auburn, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Gasoline Range Organics, BTEX in Water by Method NWTPH-Gx/8260

Sample	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Gasoline Range Organics	Surrogate
Number	Analyzed	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	Recovery (%)
Method Blank	12/14/2012	nd	nd	nd	nd	nd	121
LCS	12/14/2012	104%	107%	103%	100%	92%	105
LCSD	12/14/2012	102%	109%	108%	102%		106
S1-W	12/14/2012	nd	nd	nd	nd	nd	120
S1-W Duplicate	12/14/2012	nd	nd	nd	nd	nd	119
S6-W	12/14/2012	nd	nd	nd	nd	nd	125
Trip Blank	12/14/2012	nd	nd	nd	nd	nd	118
Reporting Limits		1.0	1.0	1.0	3.0	100	

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Bromoflurorbenzene) & LCS: 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

Stemen Environmental, Inc 3025 AUBURN WAY N PROJECT Auburn, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Volatile Organic Compounds in Water by Method 8260

	Reporting	MB	LCS	LCS	S-1-W
Date analyzed	Limits	12/14/12	12/14/12	12/14/12	12/14/12
	(ug/L)				
Dichlorodifluoromethane	1.0	nd			nd
Chloromethane	1.0	nd			nd
Vinyl chloride	0.2	nd	125%	121%	nd
Bromomethane	1.0	nd			nd
Chloroethane	1.0	nd			nd
Trichlorofluoromethane	1.0	nd			nd
Acetone	10.0	nd			nd
1,1-Dichloroethene	1.0	nd	126%	121%	nd
Methylene chloride	1.0	nd			nd
Methyl-t-butyl ether (MTBE)	1.0	nd			nd
trans-1,2-Dichloroethene	1.0	nd			nd
1,1-Dichloroethane	1.0	nd			nd
2-Butanone (MEK)	10.0	nd			nd
cis-1,2-Dichloroethene	1.0	nd			nd
2,2-Dichloropropane	1.0	nd			nd
Chloroform	1.0	nd	107%	102%	nd
Bromochloromethane	1.0	nd			nd
1,1,1-Trichloroethane	1.0	nd			nd
1,2-Dichloroethane (EDC)	1.0	nd			nd
1,1-Dichloropropene	1.0	nd			nd
Carbon tetrachloride	1.0	nd	130%	129%	nd
Benzene	1.0	nd	108%	112%	nd
Trichloroethene (TCE)	1.0	nd	112%	118%	nd
1,2-Dichloropropane	1.0	nd			nd
Dibromomethane	1.0	nd			nd
Bromodichloromethane	1.0	nd			nd
4-Methyl-2-pentanone (MIBK)	1.0	nd			nd
cis-1,3-Dichloropropene	1.0	nd			nd
Toluene	1.0	nd	110%	109%	nd
trans-1,3-Dichloropropene	1.0	nd			nd
1,1,2-Trichloroethane	1.0	nd			nd
2-Hexanone	1.0	nd			nd
1,3-Dichloropropane	1.0	nd			nd
Dibromochloromethane	1.0	nd			nd
Tetrachloroethene (PCE)	1.0	nd	115%	106%	nd
1,2-Dibromoethane (EDB)	1.0	nd			nd
Chlorobenzene	1.0	nd	99%	95%	nd
1,1,1,2-Tetrachloroethane		_nd	3376	2070	nd nd
Ethylbenzene	1.0	nd	104%	97%	nd
Xylenes	3.0	nd	97%	93%	nd
Styrene	1.0	nd	2170	7570	nd
Bromoform	1.0	nd			nd
1,1,2,2-Tetrachloroethane	1.0	nd			nd
Isopropylbenzene	1.0	nd			nd
1,2,3-Trichloropropane	1.0	nd			nd
Bromobenzene	1.0	nd			
DIGINODENZENE	1.0	na			nd

Stemen Environmental, Inc 3025 AUBURN WAY N PROJECT Auburn, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Volatile Organic Compounds in Water by Method 8260

	Reporting	MB	LCS	LCS	S-1-W
Date analyzed	Limits	12/14/12	12/14/12	12/14/12	12/14/12
	(ug/L)				
n-Propylbenzene	1.0	nd	7		nd
2-Chlorotoluene	1.0	nd			nd
4-Chlorotoluene	1.0	nd			nd
1,3,5-Trimethylbenzene	1.0	nd			nd
tert-Butylbenzene	1.0	nd			nd
1,2,4-Trimethylbenzene	1.0	nd			nd
sec-Butylbenzene	1.0	nd			nd
1,3-Dichlorobenzene	1.0	nd			nd
1,4-Dichlorobenzene	1.0	nd			nd
Isopropyltoluene	1.0	nd			nd
1,2-Dichlorobenzene	1.0	nd			nd
n-Butylbenzene	1.0	nd			nd
1,2-Dibromo-3-Chloropropane	1.0	nd			nd
1,2,4-Trichlorobenzene	1.0	nd			nd
Naphthalene	2.0	nd			nd
Hexachloro-1,3-butadiene	2.0	nd			nd
1,2,3-Trichlorobenzene	2.0	nd		-	nd
Surrogate recoveries					
Dibromofluoromethane		114%	110%	113%	109%
Toluene-d8		106%	102%	96%	108%
4-Bromofluorobenzene		118%	110%	108%	120%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135%

Acceptable RPD limit: 35%

CHAIN-OF-CUSTODY RECORD

CLIENT: STEMED									DA	ATE:	در	/12	12	10	2	Р	AGE	OF	1				
ADDRESS: 70 BOX 3644 LARDY, LIM									PROJECT NAME: 3005 - AUBURN GIAJ N.														
																ent.							
CLIENT PROJECT	#: 4	3205	2 2 617	PROJE	CT MA	NAG	ER:	Q4	WL 57	Em	ري	C	OLLE	CTC	DR:_	1	Dr.	14	5,	Em 2	DATE OF COLLECTION	N 12	42
					4	563/	TO S			/		//	8081			/		//	7,			ber	ber
O		_	Sample		AMAL	OR		00,10	C Serrivo		270 8	o o o		SHeigh	STA STOR	Suite O OR	Sulta	Suite	/			Total Nur	Laboratory Note Numb
Sample Number	Cepth	Time		Container Type	RR	187	6 /3	0,10	135/4	P/9	6/0	/87	<u> </u>	4°/1	2 C	100	AN.	//	/	NOTES		P 5	32
1. 31-8	8		Sur	TAL	_ X	QX_	-	+-1		╀-	-	-	-	+	\vdash	-	+	-	+				\sqcup
2. 51-12	12		1	1	(0)	X	_	+		1	-		_	_	\square	4	4	_	_				
3.32 - 9 4. \$3~9 5. \$7~ 8 6. \$6- 9	9				10	M.	-	+		-	-			+	-	_	4		_				\perp
4. 53~9	9			-	0	(X)		+		_		-	\perp	+-		_	4		_				\sqcup
5. 37 - 8			_,		مح	IX.	_	1.1		_	_	1	\perp	_		_	4						
6. S6 - 9	3		1		0	W	_	\perp		_					\sqcup	_	1						
7.						\sqcup	1	\perp		_	-						1						
8							1	1		1				1_			_		1				
9. SI-W 10. sb-W			1100	CLASS	1	S V	0	X		_						_	-						
10. sb - W			h	w	X	CY		\perp		1	_									1			
11.																							
12.																							
13.																							
14.																							
15.																							
16.																							
17.																							
18. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \																				•	PARTIE		
18. RELINQUIGHED BY (Signature) DATE/TIME RECEIVED BY (Signature) DATE/TIME								SAMP	LE RE	CEIP	T				LABORATORY NO	res:	-						
The 12/13/2012 NIX My 12:13:12 TOTAL						NUN	BER (OF CO	NTAI	VERS				For - add)-ons	12-17	10						
RELINQUISHED BY (Signa			TE/TIME	RECEIV	D BY (S	ignatu			TE/TIME		CHAIR	OF	CUSTO	DY SI	EALS	Y/N/N	IA			(1)	N CARL VAR.		
						S INTACT? YININA																	
SAMPLE DISPOSAL INSTRUCTIONS RECEIVED						IVED	GOOD	CON	D./CO	LD		T			02								
						Pickup)			-	NOTE	S:							7	Turn Around Time:	24 148 48	HR) 5	DAY
☐ ESN DISPOSAL @ \$2.00 each ☐ Return ☐ Pickup NOTES						-									-								

(SUBMIT ONE WELL REPORT PER W Construction/Decommission ("x" in box)		CURRENT	Notice of Intent No. <u>SE46949</u> Type of Well ("x in box)					
○ Construction			Resource Protection Geotech Soil Boring					
Decommission ORIGINAL INSTALLATION Notice of Intent	t Number	Property Owner P	& E Investments LLC					
ORIGINAL INSTALLATION Notice of Imen	i ivumber.							
Consulting Firm		Site Address 3025 Auburn Way N						
Unique Ecology Well IDTag No. NK12-			City <u>Auburn</u> County <u>King</u> Location <u>NE</u> 1/4-1/4 <u>SW</u> 1/4 Sec <u>6</u> Twn 21 R 5					
WELL CONSTRUCTION CERTIFICATIO		EWM \boxtimes or WWM \square						
accept responsibility for construction of this well, and i	ts compliance with all							
Washington well construction standards. Materials use reported above are true to my best knowledge and belie		Lat/Long (s, t, r still REQUIRED)	Lat Deg Min Sec Long Deg Min Sec					
☑ Driller ☐ Engineer ☐ Traina	- 1	Tax Parcel No.0004	1000039					
Name (Print Last, First Name) Knopf, Noel Driller/Engineer /Trainee Signature	MA	Cased or Uncased I	1000039 Diameter 2_"_ Static Level & '					
Driller or Trainee License No. 3117			on Start Date 12/12/2012					
70								
If trainee, licensed driller's Signature and	License Number:	work/Decommissio	on Completed Date 12/12/2012					
All and a second	****							
Construction Design	Well I	Data	Formation Description					
	Surface Seal: Drilling Method: Boring Diameter:	P.C.	0-12 sand					
	Backfill: # 8 ben	12'						
	SCALE: 1"= F	PAGE 1 OF 5						

RESOURCE PROTECTION (SUBMIT ONE WELL REPORT PER W		CURRENT Notice of Intent No. SE46949						
Construction/Decommission ("x" in box) Construction Decommission	BUD INGTRUDED)		Type of Well ("x in box) Resource Protection Geotech Soil Boring					
ORIGINAL INSTALLATION Notice of Intent	Number:	Property Owner R & E Investments LLC						
		Site Address 3025 A	Auburn Way N					
Consulting Firm		City Auburn	County King					
Unique Ecology Well IDTag No. NK12-	33	Location <u>NE</u> 1/4-1/4	<u>SW</u> 1/4 Sec <u>6</u> Twn <u>21</u> R <u>5</u>					
WELL CONSTRUCTION CERTIFICATION		EWM ⊠ or WWM						
accept responsibility for construction of this well, and in Washington well construction standards. Materials use reported above are true to my best knowledge and belief	d and the information	Lat/Long (s, t, r still REQUIRED)	Lat Deg MinSec					
		Tax Parcel No.0004	Long DegMinSec					
Name (Print Last, First Name) Knopf Noel Driller/Engineer / Trainee Signature	mh	Cased or Uncased D	Diameter Static Level 8					
Driller or Trainee License No. 3117	· ·		n Start Date 12/12/2012					
Te trained licensed driller's Cignoture and	License Number		n Completed Date 12/12/2012					
If trainee, licensed driller's Signature and	License Number:	WOLK Decommissio	in Completed Date 12/12/2012					
Construction Design	Well D	ata	Formation Description					
	Surface Seal: Drilling Method: Boring Diameter: Backfill: # 8 bent	sphalt D.P.	0-12 sand					
	Boring Depth:	2						
			4					

SCALE: 1"= ____ PAGE _ 2 OF _ 5

RESOURCE PROTECTION (SUBMIT ONE WELL REPORT PER W.		CURRENT Notice of Intent No. SE46949						
Construction/Decommission ("x" in box) Construction Decommission	euu Itsiaueu)		Type of Well ("x in box) ☐ Resource Protection ☐ Geotech Soil Boring					
ORIGINAL INSTALLATION Notice of Intent	Number:	Property Owner R & E Investments LLC						
		Site Address 3025 Auburn Way N						
Consulting Firm		City Auburn	County King					
Unique Ecology Well IDTag No. NK12-0	3.5	Location <u>NE</u> 1/4-1/4	4 <u>SW</u> 1/4 Sec <u>6</u> Twn <u>21</u> R <u>5</u>					
WELL CONSTRUCTION CERTIFICATION accept responsibility for construction of this well, and it		EWM 🛛 or WWM						
Washington well construction standards. Materials used reported above are true to my best knowledge and belief	I and the information	Lat/Long (s, t, r still REQUIRED)	Lat Deg Min Sec Long Deg Min Sec					
☑ Driller ☐ Engineer ☐ Traine	- 4	Tax Parcel No.0004						
Name (Print Last, First Name) Knopf, Noel Driller/Engineer / Trainee Signature	m/0	Cased or Uncased D	Diameter Static Level 8 ′					
Driller or Trainee License No. 3117		Work/Decommissio	on Start Date <u>12/12/2012</u>					
If trainee, licensed driller's Signature and	License Number:	Work/Decommissio	on Completed Date 12/12/2012					
Construction Design	Well I	Data	Formation Description					
			Tornation Description					
	Surface Seal:		0-12 sand					
	Drilling Method:	P.P.	C 12 Sana					
	Boring Diameter:	2"						
	Backfill: #8 ben	tonte						
	Buokim. A c ser.							
	, a							
	Boring Depth:	12'						
	SCALE: 1"= P/	AGE 3 OF 5						

RESOURCE PROTECTION V (SUBMIT ONE WELL REPORT PER WI		The state of the s					
Construction/Decommission ("x" in box)	1110 111222)		Type of Well ("x in box)				
Construction			Resource Protection Geotech Soil Boring				
Decommission ORIGINAL INSTALLATION Notice of Intent	Number	Property Owner R & E Investments LLC					
ONGINAL INSTALLATION Notice of Interior	aramoer.	Site Address 3025 Auburn Way N					
Consulting Firm	*		County King				
Unique Ecology Well IDTag No. NK12-0	57		SW1/4 Sec 6 Twn 21 R 5				
WELL CONSTRUCTION CERTIFICATION	N: I constructed and/or	EWM 🛛 or WWM	The state of the s				
accept responsibility for construction of this well, and its Washington well construction standards. Materials used	compliance with all	Lat/Long (s, t, r Lat Deg Min Sec					
eported above are true to my best knowledge and belief.		still REQUIRED)	Long DegMinSec				
☑ Driller ☐ Engineer ☐ Traine	4	Tax Parcel No.0004	000039				
Name (Print Last, First Name) Knoof, Noel Driller/Engineer / Trainee Signature	m/1	Cased or Uncased D	000039 Diameter 2 " Static Level 3 '				
Oriller or Trainee License No. 3117			n Start Date 12/12/2012				
f trainee, licensed driller's Signature and l	Licanca Number		n Completed Date 12/12/2012				
i trainee, ilcensed driller's Signature and i	License Number:	W One Decommission	in Completed Date 12/12/2012				
			F				
Construction Design	Well D	ata	Formation Description				
	Surface Seal:	sphalt					
	Drilling Method:	D.P.	0-12 sand				
		211					
	Boring Diameter:						
	Backfill: # 8 bent	onite.					
		1					
\bowtie	Boring Depth:	12					
	Dorning Deptili	Marie Transport Street Williams Annual Sharper Street					
		- 4 - 5					

RESOURCE PROTECTION (SUBMIT ONE WELL REPORT PER WI Construction/Decommission ("x" in box) Construction Decommission		Type of Well ("x in box) Resource Protection Geotech Soil Boring					
ORIGINAL INSTALLATION Notice of Intent	Number:	Property Owner R &	E Investments LLC				
	and the state of t	Site Address 3025 A	•				
Consulting Firm			County King				
Unique Ecology Well IDTag No. NK12-G	8		SW1/4 Sec 6 Twn 21 R 5				
WELL CONSTRUCTION CERTIFICATION		EWM ⊠ or WWM □					
accept responsibility for construction of this well, and its Washington well construction standards. Materials used reported above are true to my best knowledge and belief.	and the information	Lat/Long (s, t, r still REQUIRED)	Lat Deg Min Sec Long Deg Min Sec				
☑ Driller ☐ Engineer ☐ Trainee	o 1	Tax Parcel No.0004	000039				
Name (Print Last, First Name) Knopf, Noel Driller/Engineer / Trainee Signature	n)/1	Cased or Uncased D	iameter 2" Static Level 8				
Driller or Trainee License No. 3117	(Work/Decommission	n Start Date 12/12/2012				
If trainee, licensed driller's Signature and l	License Number:	Work/Decommission	n Completed Date <u>12/12/2012</u>				
Construction Design	Well D	ata	Formation Description				
	Surface Seal: a Drilling Method: F Boring Diameter: Backfill: # 8 bent	2"	0-12 sand				
-	SCALE: 1"= PAG	GE_5_OF_5_					

RESOURCE PROTECTION (SUBMIT ONE WELL REPORT PER WIN Construction/Decommission ("x" in box) Construction Decommission ORIGINAL INSTALLATION Notice of Intent SE46949	ELL INSTALLED)		Type of Well ("x in box) Resource Protection Geotech Soil Boring E Investments LLC
Consulting Firm			County King
Unique Ecology Well IDTag No. NK12	32		
WELL CONSTRUCTION CERTIFICATION accept responsibility for construction of this well, and its Washington well construction standards. Materials used reported above are true to my best knowledge and belief.	I: I constructed and/or compliance with all and the information	EWM or WWM. Lat/Long (s, t, r still REQUIRED) Tax Parcel No.0004	Lat Deg Min Sec Long Deg Min Sec
Name (Print Last, First Name) Knopf, Nell Driller/Engineer / Trainee Signature	27 11	Conned on Timesead T	Diameter 2 "Static Level 8
Driller/Engineer / Trainee Signature	VI /- 0		
Diffiel of Tramee License No Oft 7		Work/Decommission	on Start Date <u>12/12/2012</u>
If trainee, licensed driller's Signature and l	License Number:	Work/Decommission	on Completed Date 12/12/2012
Construction Design	Well D	loto	Formation Description
Construction Design	Well D	ala	Formation Description
	Removed all rods frobackfilled with bento	om boring and	0-12 'Sand
	Boring Depth: 12	-	
	SCALE: 1"= PA	GEI_OF_5	

RESOURCE PROTECTION (SUBMIT ONE WELL REPORT PER WING Construction/Decommission ("x" in box) Construction Decommission ORIGINAL INSTALLATION Notice of Intent SE46949 Consulting Firm Unique Ecology Well IDTag No. WELL CONSTRUCTION CERTIFICATION accept responsibility for construction of this well, and its Washington well construction standards. Materials used reported above are true to my best knowledge and belief. Driller Engineer Trainee Name (Print Last, First Name) Driller/Engineer /Trainee Signature Driller or Trainee License No 3117	Number: 33 N: I constructed and/or compliance with all and the information	Property Owner R & Site Address 3025 A City Auburn Location NE1/4-1/4 EWM Or WWM Lat/Long (s, t, r still REQUIRED) Tax Parcel No.00046 Cased or Uncased D	County <u>King</u> <u>SW</u> 1/4 Sec <u>6</u> Twn <u>21</u> R <u>5</u> Lat DegMinS Long DegMinS	ec
If trainee, licensed driller's Signature and 1	License Number:		n Completed Date 12/12/2012	
Construction Design	Well Da	ata	Formation Descrip	tion
	Boring Diameter:	m boring and	0-12 sand	
	SCALE: 1"= PAC	3E 2 OF 5		

RESOURCE PROTECTION (SUBMIT ONE WELL REPORT PER WILL CONSTRUCTION Decommission ("x" in box) Construction Decommission ORIGINAL INSTALLATION Notice of Intent SE46949 Consulting Firm Unique Ecology Well IDTag No. WELL CONSTRUCTION CERTIFICATION accept responsibility for construction of this well, and its Washington well construction standards. Materials used reported above are true to my best knowledge and belief. Driller Engineer Trainee Name (Print Last, First Name) Driller/Engineer /Trainee Signature Driller or Trainee License No 3117 If trainee, licensed driller's Signature and I	Number: 35 V: I constructed and/or compliance with all and the information	Property Owner R & Site Address 3025 A City Auburn Location NE1/4-1/4 EWM or WWM Lat/Long (s, t, r still REQUIRED) Tax Parcel No.0004 Cased or Uncased D Work/Decommission	County <u>King</u> <u>SW</u> 1/4 Sec <u>6</u> Twn <u>21</u> R <u>5</u>
Construction Design	Well D	ata	Formation Description
	Boring Diameter:	om boring and onite	0-12 Sand

SCALE: 1"= ____ PAGE __3_ OF _5_

RESOURCE PROTECTION (SUBMIT ONE WELL REPORT PER WI Construction/Decommission ("x" in box) Construction Decommission	ELL INSTALLED)		Notice of Intent No. AE20032 Type of Well ("x in box) ☐ Resource Protection ☐ Geotech Soil Boring
ORIGINAL INSTALLATION Notice of Intent Number:			& E Investments LLC
SE46949		Site Address 3025 A	Auburn Way N
Consulting Firm		City Auburn	County King
- 1 1: Water 11 1- 12 12 12 12 12 12 12 12 12 12 12 12 12			<u>SW</u> 1/4 Sec <u>6</u> Twn <u>21</u> R <u>5</u>
WELL CONSTRUCTION CERTIFICATION accept responsibility for construction of this well, and its Washington well construction standards. Materials used reported above are true to my best knowledge and belief	s compliance with all I and the information	EWM ⊠ or WWM Lat/Long (s, t, r still REQUIRED)	Lat Deg Min Sec Long Deg Min Sec
Driller Engineer Trainee		Tax Parcel No. 0004	000039
Name (Print Last, First Name) Knoff, Nell Driller/Engineer /Trainee Signature	N)-K	Cased or Uncased I	Diameter 2 "Static Level 3
Driller or Trainee License No 3117		Work/Decommission	on Start Date 12/12/2012
If trainee, licensed driller's Signature and	License Number:		on Completed Date 12/12/2012
Construction Design	Well I	Data	Formation Description
	Boring Diameter:	rom boring and ponite	0-12 Sand

SCALE: 1"= ____ PAGE _____ OF ____

RESOURCE PROTECTION (SUBMIT ONE WELL REPORT PER WELL CONSTRUCTION Decommission ("x" in box) Construction Decommission ORIGINAL INSTALLATION Notice of Intent SE46949 Consulting Firm Unique Ecology Well IDTag No. NK12- WELL CONSTRUCTION CERTIFICATION accept responsibility for construction of this well, and its Washington well construction standards. Materials used reported above are true to my best knowledge and belief. Driller Engineer Trainee Name (Print Last, First Name) Knopf, Nell Driller/Engineer /Trainee Signature Driller or Trainee License No 3117 If trainee, licensed driller's Signature and I	Number: State Installed Number: State I constructed and/or compliance with all and the information	Property Owner R & Site Address 3025 A City Auburn Location NE1/4-1/4 EWM or WWM Lat/Long (s, t, r still REQUIRED) Tax Parcel No.0004 Cased or Uncased E Work/Decommission	County <u>King</u> <u>SW</u> 1/4 Sec <u>6</u> Twn <u>21</u> R <u>5</u> Lat Deg Min Sec Long Deg Min Sec
Construction Design	Well D	"	Formation Description
	Boring Diameter: Removed all rods frobackfilled with bento	om boring and onite	0-12 Sand

SCALE: 1"= ____ PAGE _____ OF _____

Washington well construction standards. Materials used and the information reproted above are true to my best knowledge and belief. ☑ Driller ☐ Engineer ☐ Trainee Name (Print Last, First Name)	RESOURCE PROTECTION WELL REPORT (SUBMIT ONE WELL REPORT PER WELL INSTALLED) Construction/Decommission ("x" in box) Construction Decommission ORIGINAL INSTALLATION Notice of Intent Number: Consulting Firm Unique Ecology Well IDTag No. NK12-B WELL CONSTRUCTION CERTIFICATION: I constructed and/or accept responsibility for construction of this well, and its compliance with all Washington well construction standards. Materials used and the information		Property Owner R & Site Address 3025 & City Auburn Location NE1/4-1/4 EWM Or WWM Lat/Long (s, t, r	Type of Well (* ☐ Resource P ☐ Geotech So & E Investments Ll Auburn Way N ☐ County E 4 SW1/4 Sec 6 Twi 1 ☐	rotection il Boring LC King n 21 R 5
Drove a retractable stainless steel PVC creen down to depth and collected a water sample. Boring Depth: 12 Screen: 7/12 Screen: 7/12 Stot Size: 0.010 Type: 3/4" sch 80 PVC Removed all rods and casing from boring and backfilled with bentonite.	Driller ☐ Engineer ☐ Trainee Name (Print Last, First Name) Knoof Driller/Engineer / Trainee Signature Driller or Trainee License No. 3117		still REQUIRED) Long DegMinS Tax Parcel No.0004000039 Cased or Uncased Diameter2 '' Static Leve Work/Decommission Start Date 12/12/2012		MinSec
	Construction Design	Drove a retractable stainless steel Pt to depth and collect sample. Boring Depth: 12 Screen: 712 Slot Size: 0.010 Type: 3/4 sch 8 Removed all rods a boring and backfille	C screen down ed a water ο ο ο ν σ nd casing from d with bentonite.		

RESOURCE PROTECTION (SUBMIT ONE WELL REPORT PER WI		CURRENT	Notice of Intent No. EE04333
Construction/Decommission ("x" in box) Construction Decommission			Type of Well ("x in box) Resource Protection Geotech Soil Boring
ORIGINAL INSTALLATION Notice of Intent	Number:	Property Owner R &	& E Investments LLC
And the state of t		Site Address 3025	Auburn Way N
Consulting Firm		City Auburn	County King
Unique Ecology Well IDTag No. NK12	-84	Location NE1/4-1/4	4 <u>SW</u> 1/4 Sec <u>6</u> Twn <u>21</u> R <u>5</u>
WELL CONSTRUCTION CERTIFICATION		EWM 🛛 or WWM	
accept responsibility for construction of this well, and its Washington well construction standards. Materials used eported above are true to my best knowledge and belief	I and the information	Lat/Long (s, t, r still REQUIRED)	Lat Deg Min Sec Long Deg Min Sec
☑ Driller ☐ Engineer ☐ Trainee		Tax Parcel No.0004	
Name (Print Last, First Name) Knopf Nocel	$(-m)A_{\alpha}$		Diameter 2 " Static Level 9
Oriller or Trainee License No. 3117		Work/Decommission	on Start Date <u>12/12/2012</u>
f trainee, licensed driller's Signature and	License Number:	Work/Decommissio	on Completed Date 12/12/2012
Construction Design	Well I	Data	Formation Description
	Drove a retractable stainless steel Pto depth and collect sample. Boring Depth: 12 Screen: 712 Slot Size: 0.010 Type: 3/4 sch 8 Removed all rods ar boring and backfilled	vc screen down ed a water	0-12' sand

_ PAGE _ 2_ OF _ 3

SCALE: 1"=___

CY 050-12 (Rev. 7/06)

RESOURCE PROTECTION	WELL REPORT	CURRENT	Notice of Intent No. EE04333	
(SUBMIT ONE WELL REPORT PER WI	ELL INSTALLED)		Type of Wall ("in in Lan)	
Construction/Decommission ("x" in box)			Type of Well ("x in box) Resource Protection	
Decommission		Geotech Soil Boring		
ORIGINAL INSTALLATION Notice of Intent	Number:	Property Owner R &	& E Investments LLC	
		Site Address 3025 A	Auburn Way N	
Consulting Firm	21	City Auburn	County King	
Unique Ecology Well IDTag No. NK12-	36	Location NE1/4-1/4	<u>SW</u> 1/4 Sec <u>6</u> Twn <u>21</u> R <u>5</u>	
WELL CONSTRUCTION CERTIFICATION		EWM 🛛 or WWM		
accept responsibility for construction of this well, and its Washington well construction standards. Materials used reported above are true to my best knowledge and belief.	and the information	Lat/Long (s, t, r still REQUIRED)	Lat Deg Min Sec	
☑ Driller ☐ Engineer ☐ Trainee		Tax Parcel No.0004	Long DegMinSec	
Name (Print Last, First Name) Knopf Noted	n 1	Cased or Uncased F	Diameter Static Level g '	
Driller/Engineer / Trainee Signature	10			
			n Start Date <u>12/12/2012</u>	
If trainee, licensed driller's Signature and l	License Number:	Work/Decommissio	n Completed Date 12/12/2012	
Construction Design	Well D	ata	Formation Description	
	Drove a retractable stainless steel PV to depth and collecte sample. Boring Depth: 12 Screen: 7/12 Slot Size: 0.010 Type: 3/4 sch 80 Removed all rods and boring and backfilled	ed a water	o-12' sand	

SCALE: 1"= _____PAGE _____OF _____3

G W F	Number: 3 3 5: I constructed and/or compliance with all and the information	Property Owner R & Site Address 3025 A City Auburn Location NE1/4-1/4 EWM or WWM Lat/Long (s, t, r still REQUIRED) Tax Parcel No.0004 Cased or Uncased I Work/Decommission	County <u>King</u> 4 <u>SW</u> 1/4 Sec <u>6</u> Twn <u>21</u> R <u>5</u> I Lat Deg Min Sec Long Deg Min Sec
Construction Design	Well D)ata	Formation Description
	Boring Diameter: Removed all rods frobackfilled with bento	om boring and	0-12 sand

SCALE: 1"= PAGE OF 3

RESOURCE PROTECTION (SUBMIT ONE WELL REPORT PER WITCONSTRUCTION/Decommission ("x" in box) Construction Decommission	ELL INSTALLED)		Type of Well ("x in box) Resource Protection Geotech Soil Boring
ORIGINAL INSTALLATION Notice of Intent		The second second	& E Investments LLC
EE04333		Site Address 3025	Auburn Way N
Consulting Firm	21	City Auburn	County King
Unique Ecology Well IDTag No. NK12-	37	Location NE1/4-1/4	4 <u>SW</u> 1/4 Sec <u>6</u> Twn <u>21</u> R <u>5</u>
WELL CONSTRUCTION CERTIFICATION accept responsibility for construction of this well, and its Washington well construction standards. Materials used	s compliance with all	EWM ⊠ or WWM Lat/Long (s, t, r	1
reported above are true to my best knowledge and belief.		still REQUIRED)	Long DegMinSec
Name (Print Last, First Name) Knopf Noc	Q		4000039
Driller/Engineer /Trainee Signature	noth	Cased or Uncased I	Diameter 2 Static Level 8
Driller or Trainee License No. 3 117	/	Work/Decommission	on Start Date 12/12/2012
If trainee, licensed driller's Signature and	License Number	Work/Decommission	on Completed Date <u>12/12/2012</u>
If tramee, needsed dimer's Signature and	License Number.	World Decommission	on completed bate 12/12/2012
Construction Design	Well D	Data	Formation Description
	Boring Diameter:	2"	0-12 sand
	Removed all rods fro backfilled with bento	_	
	, a		
	Boring Depth:	12	
29	SCALE: 1"= PA	GE 2 OF 3	

RESOURCE PROTECTION V (SUBMIT ONE WELL REPORT PER WE Construction/Decommission ("x" in box) Construction Decommission	CLL INSTALLED)	Mar - workings	Notice of Intent No. AE20031 Type of Well ("x in box) ☐ Resource Protection ☐ Geotech Soil Boring
ORIGINAL INSTALLATION Notice of Intent		- A 1.2 /A	E Investments LLC
EE04333		Site Address 3025 A	
Consulting Firm	1 /	City Auburn	County King
Unique Ecology Well IDTag No. NK12-(50	Location NE1/4-1/4	<u>SW</u> 1/4 Sec <u>6</u> Twn <u>21</u> R <u>5</u>
WELL CONSTRUCTION CERTIFICATION accept responsibility for construction of this well, and its	compliance with all	EWM or WWM	
Washington well construction standards. Materials used reported above are true to my best knowledge and belief.		Lat/Long (s, t, r still REQUIRED)	Lat Deg Min Sec Long Deg Min Sec
Driller Engineer Trainee Name (Print Last, First Name) Koof Nov Driller/Engineer / Trainee Signature	7		000039
Driller/Engineer /Trainee Signature	mth	Cased or Uncased D	viameter Static Level _ 8
Driller or Trainee License No. 3 117	7 00		n Start Date 12/12/2012
If trainee, licensed driller's Signature and I	License Number:	Work/Decommission	n Completed Date 12/12/2012
Construction Design	Well D	ata	Formation Description
	4		
	Boring Diameter:	2"	0-12 sand
			0-12 Sand
	Processor and the Harris of the Processor Annual Conference of the Processor Annual Co	Inc. (S.C.) for the Bully Control (S.C.) Property and refer to the Sandard Control (S.C.)	
200000 200000	Removed all rods fro	-	
	backfilled with bento	nite	
00000			
9 000000			
33333			
23333			
0.0000			
200			
88888	Boring Depth:	2	
1000000 1000000	992 1 100000000		
20.0000 20.0000			
38888			
2			
	SCALE: 1"= PA	GE <u>3</u> OF <u>3</u>	

APPENDIX C

LABORATORY ANALYSES
CHARTS AND DATA FOR
COMMERCIAL PROPERTY
LOCATED 3109 AUBURN WAY
NORTH, AUBURN, WA.

FURIMEN, SMEET MAINE

II II-DA/DA LA	LINDLD, AIN	O O NOOLII	IL IVANOL ON	CANOO IIV C	SOILS BY METH	ODIVVII	TI-OX
			DIESEL	LUBE OIL	GASOLINE		
SAMPLE	SAMPLE	SAMPLE	RANGE	RANGE	RANGE		
NUMBER	DATE	DEPTH	ORGANICS	ORGANICS	ORGANICS		
			mg/kg	mg/kg	mg/kg		
S4-8	12/12/2012	8'	ND	3800	500		
S5-9	12/12/2012	9	ND	ND	NA		
S8-8	12/12/2012	12'	ND	ND	NA		
NA -	NOT ANALY	ZED					
THOD REPORT	ING LIMITS	0	50 2000	100 2000	10 100		

					_		
ANALYSIS OF DI	ESEL RANGE	ORGANICS	S, LUBE OIL R	ANG ORGAN	ICS, GASOLIN	IE RANGE	ORGANICS
IN WATER BY M	IETHOD NWTP	H Dx/Dx E	XTENDED ANI	D METHOD N	WTPH-Gx		
			GASOLINE	DIESEL	LUBE OIL		
SAMPLE	SAMPLE		RANGE	RANGE	RANGE		
NUMBER	DATE	DEPTH	ORGANICS	ORGANICS	ORGANICS		
			ug/L	ug/L	ug/L		
S4-W	12/12/2012 8		ND	ND	ND		
REPORTING LIMITS			100	250	500		
METHOD "A" CLE	EAN UP LEVEL	S	800	2000	2000		

And the second

Stemen Environmental 3109 AUBURN WAY NORTH PROJECT Auburn, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Gasoline Range Organics in Soil by Method NWTPH-Gx

Sample Number	Date Prepared	Date Analyzed	Surrogate Recovery (%)	Gasoline Range Organics (mg/kg)
Method Blank	12/14/2012	12/14/2012	118	nd
LCS	12/14/2012	12/14/2012	118	111%
S-4-8	12/14/2012	12/14/2012	117	500
S-4-8 Duplicate	12/14/2012	12/14/2012	117	270
Reporting Limits				10

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE: 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

Stemen Environmental 3109 AUBURN WAY NORTH PROJECT Auburn, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Gasoline Range Organics in Soil by Method NWTPH-Gx

Sample	Date	Date	Surrogate	Gasoline Range Organi			
Number	Prepared	Analyzed	Recovery (%)	(mg/kg)			
Method Blank	12/17/2012	12/17/2012	118	nd			
LCS	12/17/2012	12/18/2012	118	93%			
S5-9	12/17/2012	12/17/2012	125	nd			
S8-8	12/17/2012	12/17/2012	118	nd			
Reporting Limits				10			

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE: 65% TO 135%

[&]quot;int" Indicates that interference prevents determination.

Stemen Environmental 3109 AUBURN WAY NORTH PROJECT Auburn, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Diesel Range Organics & Lube Oil Range Organics in Soil by Method NWTPH-Dx/Dx Extended

Sample	Date	Date	Surrogate	Diesel Range Organics	Lube Oil Range Organics
Number	Prepared	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)
Method Blank	12/14/2012	12/14/2012	116	nd	nd
LCS	12/14/2012	12/14/2012	132	115%	
S4-8	12/14/2012	12/14/2012	89	nd	3800
S5-9	12/14/2012	12/14/2012	122	nd	nd
S8-8	12/14/2012	12/14/2012	98	nd	nd
Reporting Limits				50	100

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE: 50% TO 150%

[&]quot;int" Indicates that interference prevents determination.

CHAIN-OF-CUSTODY RECORD

CLIENT: STEME ENVIRONMENTE INC								D	ATE:	13	/22	-/	120	12	<u> </u>	PA	GE/	OF	1				
ADDRESS: Po	30	× S	649	h	mo,	wit					PI	ROJE	ECT	NAN	ΛE: .	3	10	9-	A	OBURNA	Ay W.		
PHONE: 3604	38	952	/	FA	X:						L	OCAT	ΓΙΟΝ	:		A	13	UR	ار.	, wh			
	3	109		2			- 0	C	702	γ	DATE OF									DATE OF	/		
CLIENT PROJECT	CLIENT PROJECT #: AND PROJECT MANAGER: DAIL STE-							COLLECTOR: WALV STEWNED COLLECTION 1									141	2					
Sample Number	Depth	Time	Sample Type	Container Type	AMALYS OTHICK	State of	OT SE	Si signi	olegi.	\$10 S	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ad to	5 Hed	\$ 18 8 C	0 0	o Sul	Suite			NOTES		otal Number f Containers	Laboratory Note Number
1. 34-8	V			Ton	777	70	730/3	97	1	970	7	- */	47	9		<u> </u>	\prec	$\overline{}$	$\overline{}$	NOTES		1-0	JZ
2559	9			1	6	X		++	+	+		+	+				\dashv	1	\neg			+-	\vdash
20818	17		l						+	+		\top	\dagger	\vdash			\dashv	\neg	\dashv				
2. 55-7 3. 58-8 4.	10							+	+	\top			+					1				+-	
5	1-		<u> </u>					1-1-	十	\top		\top					\neg					+	1
6. 5-4-W	1			1120	V.	a			\top								7						
7	1			4-23					T											***************************************		1	
8.																							
9.														*									
10.																							
11.																				\$			
12.																						11	
13.									\perp		1		_	_						•			
14.		ei .							\perp			\perp	_										
15.					\Box			1-1-	4	\perp			_	_				_					
16.				<u> </u>		\perp		1-1-	1				\perp	_									
17.								1	1					_									
18. RELINQUISHED BY (Sign		<u></u>						丄丄	丄	لبلم													
RELINQUISHED BY (Sign	ature)	DA	TE/TIME	BECEIV	ED BY (SI	gnature) D	ATE/TIM				SAMP	- 4				-		LA	BORATORY NOT	ES:		
/MIT 12	1 1 12/2 120 7 1 XILK 1						TOTAL				-	-	-	\dashv		-							
	RELINQUISHED BY (Signature) DATE/TIME RECEIVED BY (Signature) DATE/TIME CHA							ALS INTACT? YINNA										94					
	64	1401 =	DISBOS	U INCTOLIC	TIONS					RECE	VED	GOOD	CON	D./CC	OLD				1				
SAMPLE DISPOSAL INSTRUCTIONS							NOTE	-							Turn Around Time: 24 HB 48 HR 5 DAY								

APPENDIX B

APPENDIX B

FIELD EXPLORATION METHODS

G-Logics performed subsurface soil and shallow groundwater sampling during the assessment conducted on the subject property. The sampling activities will be conducted in general accordance with the Washington Department of Ecology (Ecology) guidelines and regulations.

Underground Utility Clearance

Before conducting the subsurface exploration, G-Logics contacted a service that notifies public utilities of proposed subsurface investigations. Additionally, on-site private utilities were located by a private locating company to identify on-site utilities as well as specific areas of concern. Consequently, the below-grade utility locations were identified by marking their inferred location on the ground surface. This information was used to aid in identifying sampling locations.

Quality Assurance Quality Control

Quality Assurance/Quality Control (QA/QC) for the presented scope of work included generally accepted procedures for sample collection, storage, tracking, and documentation. All sampling equipment was washed and rinsed before the collection of the samples. All samples were labeled with a sample number, date, time, and sampler name, and were stored in an ice chest containing frozen "blue ice". Appropriate chain-of-custody documentation was completed.

Direct-Push Soil Sampling

A probe subcontractor (ESN Northwest, Olympia, WA) performed the probe drilling at this site. The direct-push probe used for this work consisted of a 2-inch Macrocore sampler, in lengths of four or five feet. Continuous soil samples were obtained by driving/pushing this sampler, containing an acrylic liner, to the sampling depth. After reaching the required depth, the sampler was retrieved and opened. The collected soils contained within the acrylic liner were removed and placed into laboratory-provided glass jars. Samples were collected from the soil core using an Easy Draw Syringe and Powerstop Handle. The soil

plug was then extruded into a laboratory-supplied 40 ml VOA Vial containing methanol preservative. New liners were used for each sampling attempt.

Collected soil samples were evaluated for evidence of contamination by visible discoloration of the soil sample or VOCs detected by the photoionization detector (PID). Specifically, a portion of each soil sample was placed into a plastic zip-lock bag, and the vapors were drawn through the PID for qualitative screening of VOCs. The vapor readings were documented on the attached boring logs. A new plastic bag was used each time a sample was screened.

The soils were then observed and categorized for grain-size, color, moisture, odor, staining, sheen, and any other indications of contamination. This information was recorded on field boring logs (attached). Samples were collected where indications of contamination were observed or from where contamination would likely be present (i.e. at the groundwater interface).

Collected samples were labeled with a sample number, date, time, and sampler's name and stored in an ice chest containing frozen "blue ice". Chain-of-custody procedures were followed to document sample handling.

Upon completion of each soil boring the resulting hole was backfilled with bentonite (hydrated with a small amount of water) and the ground surface restored to match original. All soil cuttings were collected and placed into a waste drum for proper disposal (determined by analytical results).

Temporary Well Sampling, Direct-Push Method

Upon completion of the soil boring, well casing materials consisted of 1-inch PVC pipe with a five foot section of screen at the bottom, was placed in the open borehole. A 1/4 inch-diameter, disposable, flexible polyethylene tubing was lowered into the well casing for the collection of the groundwater sample. A peristaltic pump was used to purge and sample each well. Purging was performed to remove suspended sediments and to stabilize well-screen materials.

After purging was completed, groundwater was pumped directly into sample containers, which were then placed into an ice chest containing frozen "blue ice" for preservation. The samples were then forwarded to the analytical laboratory using proper Chain-of-Custody

procedures. All sample containers were labeled with sample identification numbers, the date, and the sampler's name. Sample containers prepared by the contract laboratory were used to conform to EPA-recommended preservation techniques for the analytes of concern. Sample containers were open only as long as necessary to collect the samples.

Upon completion of the groundwater sampling, all well material was extracted. The resulting hole was backfilled with bentonite (hydrated with a small amount of water) and the ground surface restored to match original surface.

Groundwater Monitoring-Well Construction, Direct-Push Methods

Soil borings completed as groundwater monitoring-wells were constructed in the following manner.

- To construct the well, 4" steel probe casing was driven to the desire depth for the well to be completed.
- The well casing materials consisted of 2-inch, inside diameter, flush-threaded, schedule 40 PVC pipe. Well screen intervals were constructed with 5-foot lengths of pre-pack well screen, as shown on the boring logs.
- The screened interval of the well casing was perforated with 0.010-inch factory-cut slots.
- The annular seal of the well consisted of bentonite chip.
- All PVC casing materials were factory-cleaned before installation.
- The bottom of the well casing was sealed with a threaded cap. Blank (non-slotted) riser casing was used to extend the well from the top of the screened interval to ground surface. The length of the screened interval is identified on the boring logs.
- Well construction was accomplished by lowering the well casing into the
 open probe casing. The probe casing was then withdrawn from the boring and
 the resulting annular space around the blank riser was backfilled with sand
 and granulated bentonite to the depth shown on the boring logs.
- The well casing was sealed at the ground surface with a watertight expansion cap.
- A tamper-resistant steel cover was set over the well, flush to the ground surface. The cover was grouted in place with concrete.
- A reference point was marked on the top of the PVC well casing for consistent groundwater-depth measurements.

• An Ecology well-identification tag was placed inside the well box.

Water-Level Measurements in Wells

Water-level measurements were referenced to the top of the well casing in permanent wells and ground surface in temporary wells. The static water-level was measured in each monitoring well using a conductivity type, water- level probe. The conductivity probe was lowered into the well until the instrument detected water. The tape on the probe was used to obtain a depth-to-water measurement, from the reference point, to within 0.01 feet.

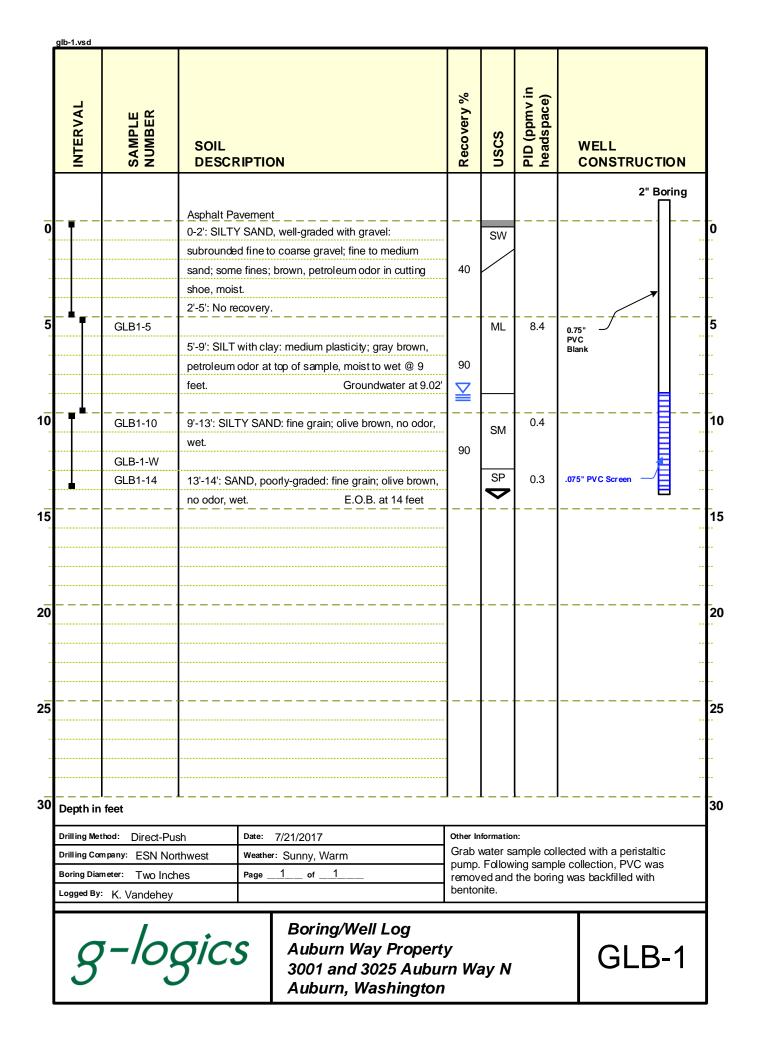
Well Development

After monitoring-well construction and prior to purging the wells for sampling, the wells were developed. Over pumping, or removing water from the well at a rapid rate, was the devolvement technique used. An in-well GeoTech "Geosquirt 12DVC Purge Pump" was lowered to near the bottom of the well screen, and connected to a 12-volt power source. A swab/surge development technique also was used. This movement was created by both lifting and lowering the pump, and by periodically turning the pump off and allowing the water to flow back into the well. Well development continued until the initially turbid water turned nearly clear. This process was repeated until approximately 20 gallons of groundwater had been removed.

Temporary/Monitoring-Well Sampling, Peristaltic-Pump Method

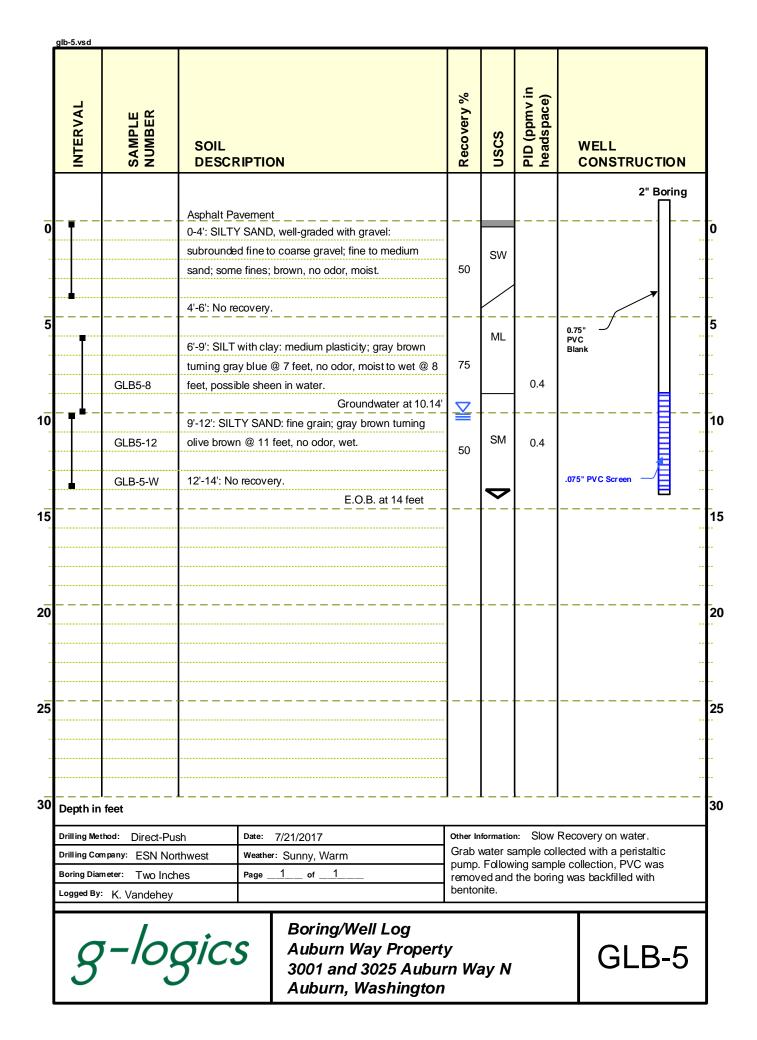
A G-Logics employee sampled groundwater wells in accordance with the following protocol.

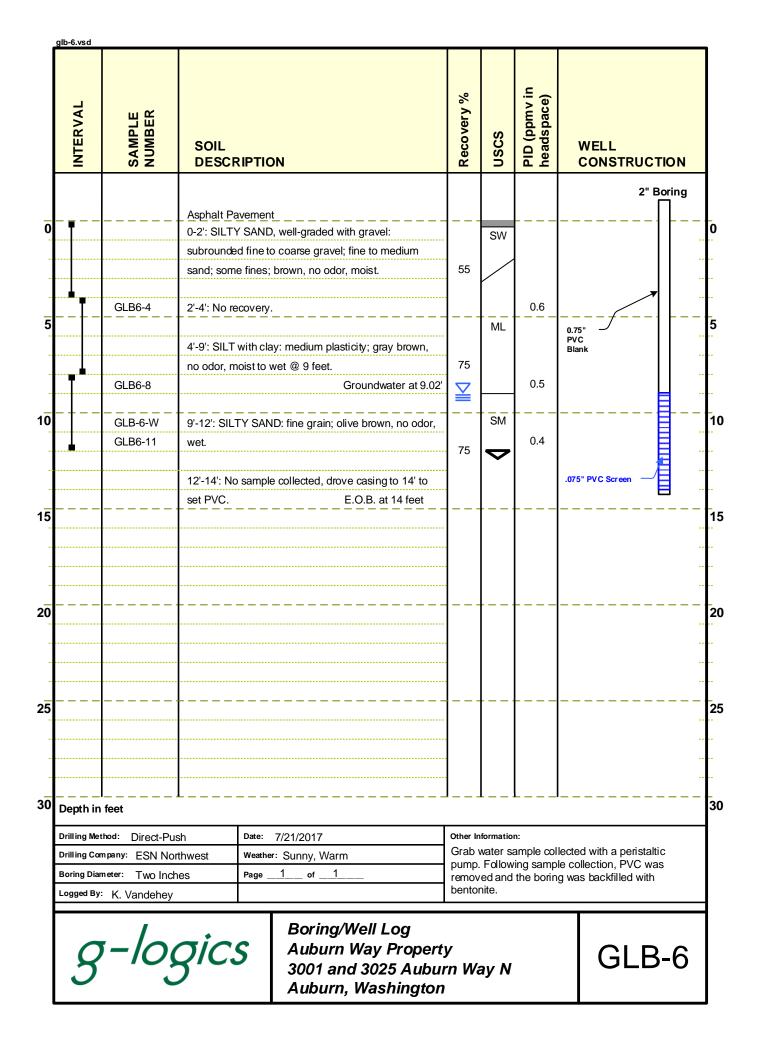
- The height of the water column within the well was calculated by subtracting the depth to water from the total depth of the well. The volume of this water column was calculated using the relationship V=3.14r²h. Where V is the volume of water in cubic feet, r is the radius of the well in feet and h is the height of the water column in feet.
- Based on these calculations, 3 to 5 volumes of water were removed from the well casing prior to collection of samples.
- All purge water was collected and placed into waste drums for proper disposal (determined by analytical results).
- The contract laboratory prepared the sample containers to conform to EPA-recommended preservation techniques for the analytes of concern.

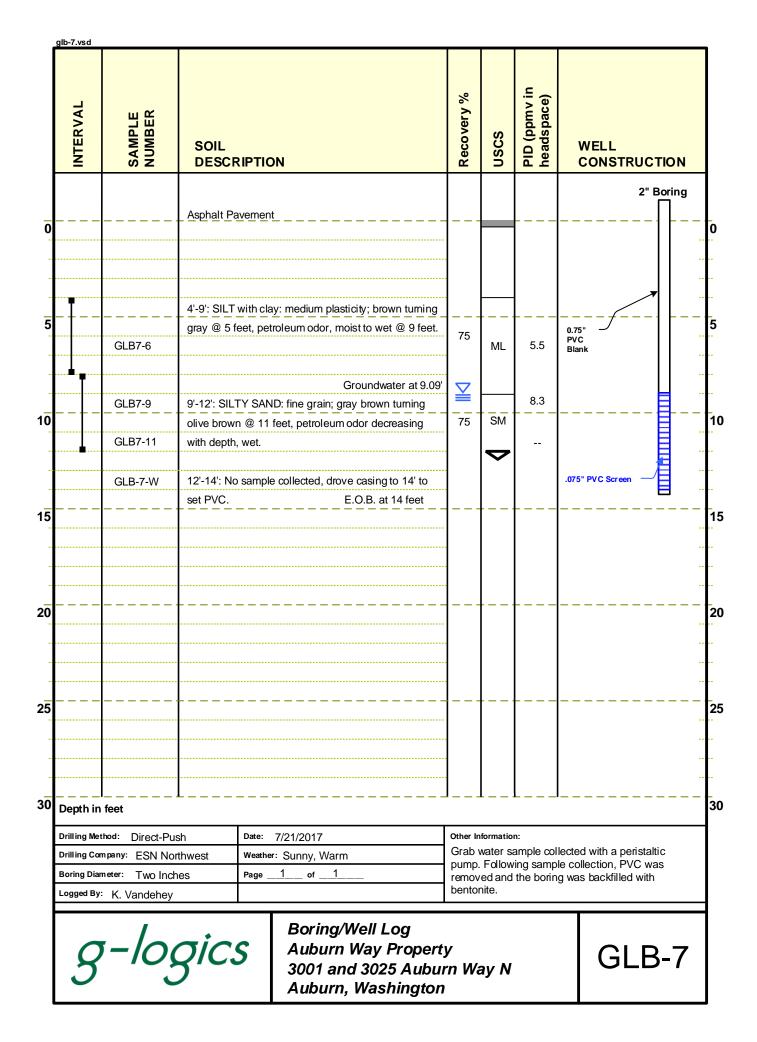


- Groundwater samples were collected with a peristaltic pump. Sample containers were open only as long as necessary to collect the samples.
- Sample bottles were labeled with a sample number, date, time, and G-Logics employee's name, and were stored in an ice chest containing frozen "blue ice". Chain-of-custody procedures were followed to document sample handling.
- Dedicated tubing was used at each sampling location.
- Before use, the sampling equipment was washed in a "Liquinox", rinsed with tap water, and given a final rinse with distilled water.

APPENDIX C

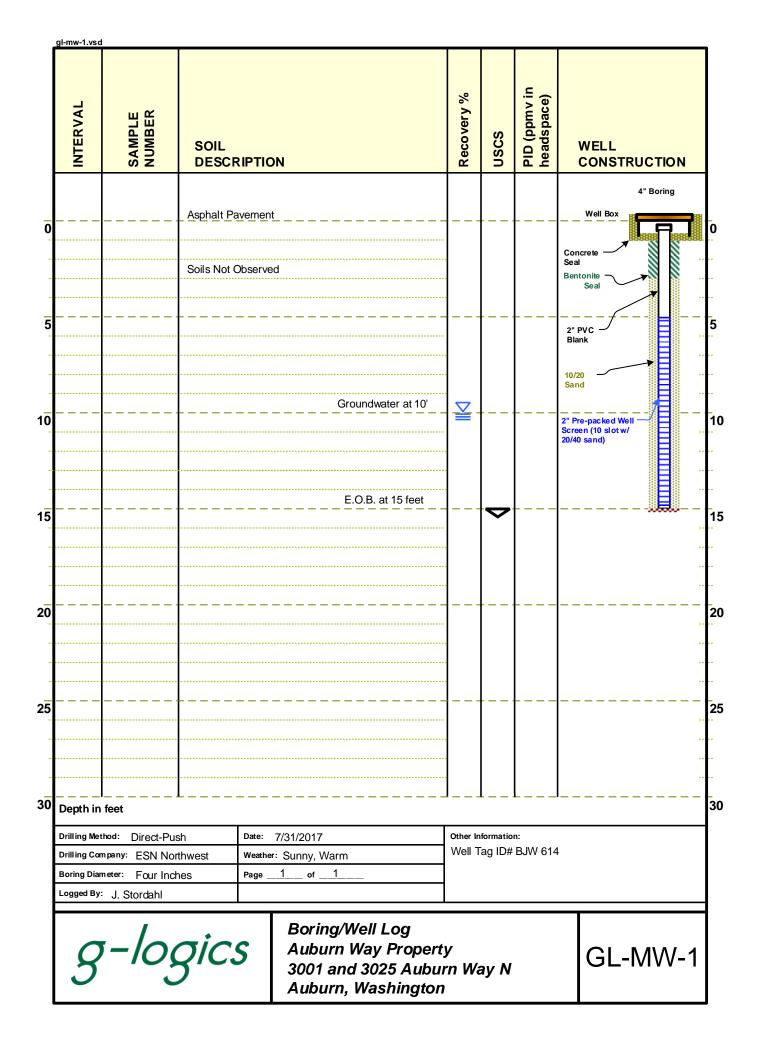

Unified Soil Classification System (USCS)										
PRIMARY DIV	ISIONS		SYMBOL	DESCRIPTIONS						
COARSE GRAINED	GRAVELS	CLEAN GRAVEL	GW	Well graded gravel, many different particle sizes, little or no fines						
SOILS	Over 50% of coarse material retained on #4	Less than 5% passing #200 sieve	GP	Poorly graded, few different particle sizes, little or no fines						
Sands & Gravels, Over 50% retained	sieve	GRAVEL WITH FINES	GM	Silty gravels, gravel-sand-silt mixtures						
on #200 sieve			GC	Clayey gravels, gravel-sand-clay mixtures						
	SAND	CLEAN SANDS	SW	Well graded gravel, many different particle sizes, little or no fines						
	Over 50% of coarse material passed #4	Less than 5% passing #200 sieve	SP	Poorly graded, few different particle sizes, little or no fines						
	sieve	SAND WITH FINES	SM	Silty gravels, gravel-sand-silt mixtures						
			SC	Clayey gravels, gravel-sand-clay mixtures						
FINE GRAINED SOILS	SILTS AND CLA	AYS	ML	Inorganic silts, slight to no plasticity						
	Liquid limit is les	s than 50 %	CL	Inorganic clays, low to moderate plasticity						
Silts & Clays, Over 50% passing the #200 sieve			OL	Organic silts and clays of low plasticity						
	SILTS AND CLA	AYS	MH	Inorganic silts, moderate to high plasticity						
	Liquid limit is mo	ore than 50 %	СН	Inorganic clays, high plasticity, fat clays						
			ОН	Organic silts and clays of high plasticity						
Highly Organic S	Soils		PT	Peat and other highly organic soils						
Soil Sai	mples_			Field Measurements						
Disturbed,	bag, bulk, or gra	ab sample	\sqsubseteq	Water Level Observed During Drilling						
			PID	Photoionization Detector						
Standard p	enetration split	spoon sample	ppmv	Parts Per Million by Volume						
Cuttings			ightharpoons	End of Boring (E.O.B)						
Continuous	s-Core Sample		spoon (2" OD) sa	foot is the number of blows used to drive a split- impler through the last 12 inches of an 18-inch One blow is a 30-inch fall of a 140-pound hammer.						
ExplorationLogLegend.pub			boundaries only. provided as to the locations. Logs re	eparating strata on the logs represents approximate. The actual transition may be gradual. No warranty is econtinuity of the strata between exploration expresent the soil section observed at the exploration ate of exploration only.						
g-log	pics		Explo	oration Log Legend						




	INTERVAL	SAMPLE NUMBER	SOIL DESC	RIPTIC	DN			Recovery %	nscs	PID (ppmv in headspace)	WEI CON	_L NSTRUCTIO	N
0			subround	Y SAND ed fine to	, well-graded coarse gra	d with gravel vel; fine to m			sw				
			sand; son 2'-4': No r		brown, no o	dor, moist.		40					
_	T	GLB2-4							ML	1.4			
5			-			plasticity; gra t, no odor, m Groundw		90					
	. .	GLB2-8								0.3			
10	-	 GLB2-11	8'-12': SIL wet.	TY SAN	D: fine grain	; olive browr	n, no odor,	90	<u>SM</u>	0.4			
						E.O.B. at	12 feet		~				
15												. – – – –	
20									-				
25													
30	Depth in	feet											
	Boring Dian	npany: ESN No	rthwest		7/21/2017 r: Sunny, Wa			Other Ir	lformatio	n:			
	9	1-10	qic.	S	Aubu	g/Well L rn Way and 302	Property		ay N			GLB-2	2

	glb-3.vsd													_
	INTERVAL	SAMPLE NUMBER	SOIL DESC	RIPTIC	DN			Recovery %	nscs	PID (ppmv in headspace)	WE COI	LL NSTRUC	TION	
0			subround	Y SAND led fine to), well-grade o coarse gra	ed with gravel:	lium	40	sw					0
	<u> </u>		2'-4': No		brown, no o	odor, moist.		40						
-		GLB3-4							ML	0.8				
5			-		ay: medium 7 feet, no o	plasticity; yellow dor, moist.	/ brown	80						5
-		GLB3-8	8'-12': SII wet @ 81		ID: fine grai	n; olive brown, r	no odor,	90	SM	0.5				
10		GLB3-11				Groundwate	er at 10.8'	\leq		0.4				10
			-			E.O.B. at 12	2 feet		\triangleright					
15														15
20									- — — -					20
			-											
25														25
30	 Depth in	 feet												30
	Drilling Met	hod: Direct-Pu			7/21/2017	/orm		Other In	formatio	n:				
	Boring Dian			Page _	er: Sunny, W 1 of									
		K. Vandehey	-											
	3	1-109	gic	S	Aubu 3001	ng/Well Lo Irn Way Pi and 3025 Irn, Washi	operty Aubur		ay N			GLE	3-3	

	gib 4.vou										_
	INTERVAL	SAMPLE NUMBER	SOIL DESCR	IPTIO	N		Recovery %	uscs	PID (ppmv in headspace)	WELL CONSTRUCTION	
0			subrounded sand; some	SAND, I fine to fines; I	well-graded with gra coarse gravel; fine to prown, no odor, mois	o medium	50	sw			0
	<u></u>	GLB4-4	2'-4': No red		/: medium plasticity;	olive brown			0.5		
5			no odor moi	ist to we	et @ 6 feet.	dwater at 7.54'	60	ML			5
-	•	GLB4-8			ve; gray, no odor, we				0.3		
10	_	GLB4-11	9'-12': SIL1' wet.	Y SANI	D: fine grain; olive bro	own, no odor,	80	SM	0.5		10
-					E.O.B	. at 12 feet					
15							 -				15
20											20
25								 -			25
30	 Depth in	feet									30
	Boring Dian	n pany: ESN Nor neter: Two Inch	rthwest	Weather	7/21/2017 Sunny, Warm		Other In	nformatio	n:		
	Logged By:	K. Vandehey								_	\exists
	3	-109	gics	5	Boring/Well Auburn Wa 3001 and 30 Auburn, Wa	y Property 025 Aubur	n Wa	ay N		GLB-4	



	glb-8.vsd												_
	INTERVAL	SAMPLE NUMBER	SOIL DESC	RIPTIC	ON			Recovery %	nscs	PID (ppmv in headspace)	/ELL ONSTRUC	CTION	
			Asphalt	Pavemer	ıt								
0													0
			41.51.011	TV 0 4 N I		-1	.1.	-					
	····•				D, well-grade			-	0)4/	-			
_	_ +		+		o coarse gra		nedium - — — —		SW		 		<u> </u>
5			-		brown, no o			70					5
-			•		clay: medium				ML				
	<u>.</u>		brown tu	ming gra	y @ 7 feet, n								
	<u>T</u>		6 feet.				ater at 9'						
		GLB8-9	9.5'-12':	SILTY S	AND: fine gra	ain; gray, no	odor, wet.	l	<u> </u>		 		. L.
10			<u> </u>					70	SM				10
	_												
		••••				E.O.B. a	t 12 feet						
			L					l	<u> </u>		 		. L
15			<u> </u>										15
_			L]	l	L	 		L
20													20
													T
													T
-													T
25			T					1	†		 		25
-													1
				•••••	•••••	•	•••••						-
													T
										l			T
30	Depth in	feet									 		30
	5	5: .5		1	7/04/0047			au 1					-
	Drilling Met			Date:	7/21/2017			Other II	nformatio	n:			
	Boring Dian	n pany: ESN No		Page _	er: Sunny, W								
		Meter: Two Inch K. Vandehey	ies	rage _									
		ix. variueriey											╡
		1			Borin	g/Well I	Log						
			Mic	'C			Propert	V			\bigcirc I Γ	0 0	1
	4	1-10g	7/0				25 Aubui		av N		GLE	o-Q	
							hington		,				1

	glb-9.vsd													•
	INTERVAL	SAMPLE NUMBER	SOIL DESC	RIPTIC	DN			Recovery %	nscs	PID (ppmv in headspace)	WE CO	LL NSTRUCT!	ON	
			Asphalt I	Pavemen	t									
0														0
			A' E' OII	TV CAN	D, well-grad	ad with area								
					•••••			-	SW					
_	_ +		+		o coarse gra		medium 							Ļ
5					brown, no o			70						5
-					h clay: medi				ML					ļ.
			brown tu	ming gra	y @ 7 feet, ı			_						ļ.
			9 feet.				vater at 9'	\sqsubseteq						ļ.
10		GLB9-9	9.5'-12':	SILTY SA	AND: fine gr	ain; gray, no	odor, wet.	l						10
10								70	SM					Γ'
-		••••				FOR a	it 12 feet	-						
						2.0.5.		-						ŀ
-								-						-
15			 											15
-			-											- 1
								1						ŀ
-								1						ŀ
-								-						ŀ
20			 						 					20
-														-
-								1						-
								•						ŀ
-								1						ŀ
25			†						† ·					25
-														ľ
		•						1						ľ
]						
]	l	Ll				
30	Depth in	feet												30
	Drilling Met	hod: Direct-Pu	sh	Date:	7/21/2017			Other In	nformatio	n:				1
		npany: ESN No			er: Sunny, W	/arm								
	Boring Dian	neter: Two Inch	nes	Page _										
	Logged By:	K. Vandehey			_	_								1
	3	1-109	gic	S	Aubu 3001	and 302	Log Propert 25 Aubui shington	rn W	ay N			GLB-	.9	i

APPENDIX D

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

G-LogicsRory Galloway
40 Second Ave. SE
Issaguah, WA 98027

RE: Auburn Subaru

Work Order Number: 1707217

August 07, 2017

Attention Rory Galloway:

Fremont Analytical, Inc. received 28 sample(s) on 7/22/2017 for the analyses presented in the following report.

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Dissolved Metals by EPA Method 200.8

Gasoline by NWTPH-Gx

Hexavalent Chromium by EPA Method 7196

Mercury by EPA Method 245.1

Mercury by EPA Method 7471

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Polychlorinated Biphenyls (PCB) by EPA 8082

Sample Moisture (Percent Moisture)

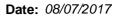
Total Metals by EPA Method 200.8

Total Metals by EPA Method 6020

Volatile Organic Compounds by EPA Method 8260C

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody


All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized) Mphlo. Ridge

Mike Ridgeway
Laboratory Director

CLIENT: G-Logics Work Order Sample Summary

Project: Auburn Subaru **Work Order:** 1707217

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1707217-001	GLB-1-5	07/21/2017 9:45 AM	07/22/2017 10:00 AM
1707217-002	GLB-1-10	07/21/2017 9:50 AM	07/22/2017 10:00 AM
1707217-003	GLB-1-14	07/21/2017 9:55 AM	07/22/2017 10:00 AM
1707217-004	GLB-2-4	07/21/2017 11:10 AM	07/22/2017 10:00 AM
1707217-005	GLB-2-8	07/21/2017 11:15 AM	07/22/2017 10:00 AM
1707217-006	GLB-2-11	07/21/2017 11:20 AM	07/22/2017 10:00 AM
1707217-007	GLB-3-4	07/21/2017 11:55 AM	07/22/2017 10:00 AM
1707217-008	GLB-3-8	07/21/2017 12:00 PM	07/22/2017 10:00 AM
1707217-009	GLB-3-11	07/21/2017 12:05 PM	07/22/2017 10:00 AM
1707217-010	GLB-4-4	07/21/2017 12:15 PM	07/22/2017 10:00 AM
1707217-011	GLB-4-8	07/21/2017 12:50 PM	07/22/2017 10:00 AM
1707217-012	GLB-4-11	07/21/2017 12:55 PM	07/22/2017 10:00 AM
1707217-013	GLB-5-8	07/21/2017 2:15 PM	07/22/2017 10:00 AM
1707217-014	GLB-5-12	07/21/2017 2:20 PM	07/22/2017 10:00 AM
1707217-015	GLB-6-4	07/21/2017 4:00 PM	07/22/2017 10:00 AM
1707217-016	GLB-6-8	07/21/2017 4:05 PM	07/22/2017 10:00 AM
1707217-017	GLB-6-11	07/21/2017 4:10 PM	07/22/2017 10:00 AM
1707217-018	GLB-7-6	07/21/2017 5:15 PM	07/22/2017 10:00 AM
1707217-019	GLB-7-9	07/21/2017 5:20 PM	07/22/2017 10:00 AM
1707217-020	GLB-7-11	07/21/2017 5:25 PM	07/22/2017 10:00 AM
1707217-021	GLB-8-9	07/21/2017 6:05 PM	07/22/2017 10:00 AM
1707217-022	GLB-9-9	07/21/2017 6:50 PM	07/22/2017 10:00 AM
1707217-023	GLB-1-W	07/21/2017 10:45 AM	07/22/2017 10:00 AM
1707217-024	GLB-5-W	07/21/2017 3:30 PM	07/22/2017 10:00 AM
1707217-025	GLB-6-W	07/21/2017 4:45 PM	07/22/2017 10:00 AM
1707217-026	GLB-7-W	07/21/2017 7:50 PM	07/22/2017 10:00 AM
1707217-027	Trip Blank	07/17/2017 12:51 PM	07/22/2017 10:00 AM
1707217-028	Trip Blank	07/17/2017 12:30 PM	07/22/2017 10:00 AM

Case Narrative

WO#: **1707217**Date: **8/7/2017**

CLIENT: G-Logics
Project: Auburn Subaru

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Prep Comments for METHOD (PREP-PCB-S), SAMPLE (1707217-001A) required Acid Cleanup Procedure (Using Method No 3665A).

Prep Comments for METHOD (PREP-PCB-S), SAMPLE (1707217-019A) required Acid Cleanup Procedure (Using Method No 3665A).

Prep Comments for METHOD (PREP-PCB-S), SAMPLE (1707217-001A) required Florisil Cleanup Procedure (Using Method No 3620C).

Prep Comments for METHOD (PREP-PCB-S), SAMPLE (1707217-019A) required Florisil Cleanup Procedure (Using Method No 3620C).

Prep Comments for METHOD (PREP-DX-W), SAMPLE (1707217-023B) required Silica Gel Cleanup Procedure (Using Method No 3630C).

Prep Comments for METHOD (PREP-DX-W), SAMPLE (1707217-024B) required Silica Gel Cleanup Procedure (Using Method No 3630C).

Prep Comments for METHOD (PREP-DX-W), SAMPLE (1707217-026B) required Silica Gel Cleanup Procedure (Using Method No 3630C).

Prep Comments for METHOD (PREP-DX-S), SAMPLE (1707217-001A) required Silica Gel Cleanup Procedure (Using Method No 3630C).

Prep Comments for METHOD (PREP-DX-S), SAMPLE (1707217-018A) required Silica Gel Cleanup Procedure (Using Method No 3630C).

Prep Comments for METHOD (PREP-DX-S), SAMPLE (1707217-019A) required Silica Gel Cleanup Procedure (Using Method No 3630C).

Qualifiers & Acronyms

WO#: **1707217**

Date Reported: 8/7/2017

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Work Order: **1707217**Date Reported: **8/7/2017**

Client: G-Logics Collection Date: 7/21/2017 9:45:00 AM

Project: Auburn Subaru

Lab ID: 1707217-001 **Matrix:** Soil

Client Sample ID: GLB-1-5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polychlorinated Biphenyls (PC	CB) by EPA 8082	2		Batch	n ID: 17	707 Analyst: SG
Aroclor 1016	ND	0.132		mg/Kg-dry	1	7/24/2017 3:15:18 PM
Aroclor 1221	ND	0.132		mg/Kg-dry	1	7/24/2017 3:15:18 PM
Aroclor 1232	ND	0.132		mg/Kg-dry	1	7/24/2017 3:15:18 PM
Aroclor 1242	0.132	0.132		mg/Kg-dry	1	7/24/2017 3:15:18 PM
Aroclor 1248	ND	0.132		mg/Kg-dry	1	7/24/2017 3:15:18 PM
Aroclor 1254	ND	0.132		mg/Kg-dry	1	7/24/2017 3:15:18 PM
Aroclor 1260	ND	0.132		mg/Kg-dry	1	7/24/2017 3:15:18 PM
Aroclor 1262	ND	0.132		mg/Kg-dry	1	7/24/2017 3:15:18 PM
Aroclor 1268	ND	0.132		mg/Kg-dry	1	7/24/2017 3:15:18 PM
Total PCBs	0.132	0.132		mg/Kg-dry	1	7/24/2017 3:15:18 PM
Surr: Decachlorobiphenyl	88.5	30.8 - 168		%Rec	1	7/24/2017 3:15:18 PM
Surr: Tetrachloro-m-xylene	93.9	30.1 - 143		%Rec	1	7/24/2017 3:15:18 PM
Diesel and Heavy Oil by NWTF	PH-Dx/Dx Ext.			Batch	n ID: 17	701 Analyst: SB
Diesel (Fuel Oil)	ND	525	DSGT	mg/Kg-dry	20	8/2/2017 6:53:45 AM
Diesel (Fuel Oil)	ND	26.2		mg/Kg-dry	1	7/24/2017 1:49:08 PM
Heavy Oil	5,990	1,310	DSGT	mg/Kg-dry	20	8/2/2017 6:53:45 AM
Heavy Oil	6,110	1,310	D	mg/Kg-dry	20	7/25/2017 1:55:01 AM
Surr: 2-Fluorobiphenyl	97.5	50 - 150		%Rec	1	7/24/2017 1:49:08 PM
Surr: o-Terphenyl	109	50 - 150		%Rec	1	7/24/2017 1:49:08 PM
NOTES: SGT - Silica Gel Treatment						
Polyaromatic Hydrocarbons b	y EPA Method 8	<u>3270 (SIM)</u>		Batch	1D: 17	700 Analyst: BT
Naphthalene	ND	52.5		μg/Kg-dry	1	7/24/2017 5:59:58 PM
2-Methylnaphthalene	ND	52.5		μg/Kg-dry	1	7/24/2017 5:59:58 PM
1-Methylnaphthalene	ND	52.5		μg/Kg-dry	1	7/24/2017 5:59:58 PM
Acenaphthylene	ND	52.5		μg/Kg-dry	1	7/24/2017 5:59:58 PM
Acenaphthene	ND	52.5		μg/Kg-dry	1	7/24/2017 5:59:58 PM
Fluorene	ND	52.5		μg/Kg-dry	1	7/24/2017 5:59:58 PM
Phenanthrene	ND	52.5		μg/Kg-dry	1	7/24/2017 5:59:58 PM
Anthracene	ND	52.5		μg/Kg-dry	1	7/24/2017 5:59:58 PM
Fluoranthene	ND	52.5		μg/Kg-dry	1	7/24/2017 5:59:58 PM
Pyrene	ND	52.5		μg/Kg-dry	1	7/24/2017 5:59:58 PM
Benz(a)anthracene	ND	52.5		μg/Kg-dry	1	7/24/2017 5:59:58 PM
Chrysene	ND	52.5		μg/Kg-dry	1	7/24/2017 5:59:58 PM

Work Order: **1707217**Date Reported: **8/7/2017**

Client: G-Logics Collection Date: 7/21/2017 9:45:00 AM

Project: Auburn Subaru

Lab ID: 1707217-001 **Matrix:** Soil

Client Sample ID: GLB-1-5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by	EPA Method 8	3270 (SIM)		Batch	ı ID:	17700 Analyst: BT
Benzo(j,k)fluoranthene	ND	52.5		μg/Kg-dry	1	7/24/2017 5:59:58 PM
Benzo(a)pyrene	ND	52.5		μg/Kg-dry	1	7/24/2017 5:59:58 PM
Indeno(1,2,3-cd)pyrene	ND	52.5		μg/Kg-dry	1	7/24/2017 5:59:58 PM
Dibenz(a,h)anthracene	ND	52.5		μg/Kg-dry	1	7/24/2017 5:59:58 PM
Benzo(g,h,i)perylene	ND	52.5		μg/Kg-dry	1	7/24/2017 5:59:58 PM
Surr: 2-Fluorobiphenyl	60.4	24.5 - 139		%Rec	1	7/24/2017 5:59:58 PM
Surr: Terphenyl-d14 (surr)	72.5	46.2 - 179		%Rec	1	7/24/2017 5:59:58 PM
Gasoline by NWTPH-Gx				Batch	ı ID:	17709 Analyst: MW
Gasoline	ND	6.10		mg/Kg-dry	1	7/25/2017 12:40:47 AM
Surr: Toluene-d8	95.7	65 - 135		%Rec	1	7/25/2017 12:40:47 AM
Surr: 4-Bromofluorobenzene	100	65 - 135		%Rec	1	7/25/2017 12:40:47 AM
Volatile Organic Compounds by	EPA Method	8260C		Batch	ı ID:	17709 Analyst: MW
Dichlorodifluoromethane (CFC-12)	ND	0.0244		mg/Kg-dry	1	7/25/2017 12:40:47 AM
Chloromethane	ND	0.0610		mg/Kg-dry	1	7/25/2017 12:40:47 AM
Vinyl chloride	ND	0.0305		mg/Kg-dry	1	7/25/2017 12:40:47 AM
Bromomethane	ND	0.0610		mg/Kg-dry	1	7/25/2017 12:40:47 AM
Trichlorofluoromethane (CFC-11)	ND	0.0244		mg/Kg-dry	1	7/25/2017 12:40:47 AM
Chloroethane	ND	0.0610		mg/Kg-dry	1	7/25/2017 12:40:47 AM
1,1-Dichloroethene	ND	0.0244		mg/Kg-dry	1	7/25/2017 12:40:47 AM
Methylene chloride	ND	0.0244		mg/Kg-dry	1	7/25/2017 12:40:47 AM
trans-1,2-Dichloroethene	ND	0.0244		mg/Kg-dry	1	7/25/2017 12:40:47 AM
Methyl tert-butyl ether (MTBE)	ND	0.0610		mg/Kg-dry	1	7/25/2017 12:40:47 AM
1,1-Dichloroethane	ND	0.0244		mg/Kg-dry	1	7/25/2017 12:40:47 AM
2,2-Dichloropropane	ND	0.122	Q	mg/Kg-dry	1	7/25/2017 12:40:47 AM
cis-1,2-Dichloroethene	ND	0.0244		mg/Kg-dry	1	7/25/2017 12:40:47 AM
Chloroform	ND	0.0244		mg/Kg-dry	1	7/25/2017 12:40:47 AM
1,1,1-Trichloroethane (TCA)	ND	0.0305		mg/Kg-dry	1	7/25/2017 12:40:47 AM
1,1-Dichloropropene	ND	0.0244		mg/Kg-dry	1	7/25/2017 12:40:47 AM
Carbon tetrachloride	ND	0.0305		mg/Kg-dry	1	7/25/2017 12:40:47 AM
1,2-Dichloroethane (EDC)	ND	0.0244		mg/Kg-dry	1	7/25/2017 12:40:47 AM
Benzene	ND	0.0244		mg/Kg-dry	1	7/25/2017 12:40:47 AM
	110					
		0.0244		mg/Kg-dry	1	7/25/2017 12:40:47 AM
Trichloroethene (TCE) 1,2-Dichloropropane	ND ND	0.0244 0.0244		mg/Kg-dry mg/Kg-dry	1 1	7/25/2017 12:40:47 AM 7/25/2017 12:40:47 AM
Trichloroethene (TCE)	ND			mg/Kg-dry mg/Kg-dry mg/Kg-dry	1 1 1	

Work Order: **1707217**Date Reported: **8/7/2017**

Client: G-Logics Collection Date: 7/21/2017 9:45:00 AM

Project: Auburn Subaru

Lab ID: 1707217-001 **Matrix:** Soil

Client Sample ID: GLB-1-5

RL Qual Units DF **Date Analyzed Analyses** Result **Volatile Organic Compounds by EPA Method 8260C** Batch ID: 17709 Analyst: MW ND cis-1,3-Dichloropropene 0.0244 mg/Kg-dry 1 7/25/2017 12:40:47 AM Toluene ND 0.0244 mg/Kg-dry 1 7/25/2017 12:40:47 AM ND trans-1,3-Dichloropropylene 0.0244 mg/Kg-dry 1 7/25/2017 12:40:47 AM 1.1.2-Trichloroethane ND 0.0244 1 7/25/2017 12:40:47 AM mg/Kg-dry 1,3-Dichloropropane ND 0.0305 mg/Kg-dry 1 7/25/2017 12:40:47 AM Tetrachloroethene (PCE) ND 0.0305 7/25/2017 12:40:47 AM mg/Kg-dry 1 Dibromochloromethane ND 0.0305 mg/Kg-dry 1 7/25/2017 12:40:47 AM 1,2-Dibromoethane (EDB) ND 0.00610 mg/Kg-dry 1 7/25/2017 12:40:47 AM Chlorobenzene ND 0.0305 1 7/25/2017 12:40:47 AM mg/Kg-dry 1,1,1,2-Tetrachloroethane ND 7/25/2017 12:40:47 AM 0.0305 1 mg/Kg-dry ND 7/25/2017 12:40:47 AM Ethylbenzene 0.0305 mg/Kg-dry 1 m,p-Xylene ND 0.0610 7/25/2017 12:40:47 AM mg/Kg-dry 1 o-Xylene ND 0.0305 mg/Kg-dry 1 7/25/2017 12:40:47 AM Styrene ND 0.0305 mg/Kg-dry 1 7/25/2017 12:40:47 AM ND 7/25/2017 12:40:47 AM Isopropylbenzene 0.0305 1 mg/Kg-dry **Bromoform** ND 0.0610 mg/Kg-dry 1 7/25/2017 12:40:47 AM 1,1,2,2-Tetrachloroethane ND 7/25/2017 12:40:47 AM 0.0244 mg/Kg-dry 1 n-Propylbenzene ND 0.0305 7/25/2017 12:40:47 AM mg/Kg-dry 1 ND Bromobenzene 0.0244 1 7/25/2017 12:40:47 AM mg/Kg-dry 1,3,5-Trimethylbenzene ND 0.0305 mg/Kg-dry 1 7/25/2017 12:40:47 AM ND 2-Chlorotoluene 0.0305 mg/Kg-dry 1 7/25/2017 12:40:47 AM 4-Chlorotoluene ND 0.0305 mg/Kg-dry 1 7/25/2017 12:40:47 AM ND tert-Butylbenzene 0.0305 mg/Kg-dry 1 7/25/2017 12:40:47 AM 1,2,3-Trichloropropane ND 0.0305 1 7/25/2017 12:40:47 AM mg/Kg-dry 1,2,4-Trichlorobenzene ND 0.0305 mg/Kg-dry 1 7/25/2017 12:40:47 AM sec-Butylbenzene ND 0.0610 mg/Kg-dry 1 7/25/2017 12:40:47 AM 4-Isopropyltoluene ND 0.0610 7/25/2017 12:40:47 AM mg/Kg-dry 1 ND 1,3-Dichlorobenzene 0.0244 1 7/25/2017 12:40:47 AM mg/Kg-dry ND 1,4-Dichlorobenzene 0.0244 mg/Kg-dry 1 7/25/2017 12:40:47 AM ND n-Butylbenzene 0.0305 mg/Kg-dry 1 7/25/2017 12:40:47 AM 1.2-Dichlorobenzene ND 0.0244 mg/Kg-dry 1 7/25/2017 12:40:47 AM 1,2-Dibromo-3-chloropropane ND 0.610 O mg/Kg-dry 1 7/25/2017 12:40:47 AM 1.2.4-Trimethylbenzene ND 0.0244 1 7/25/2017 12:40:47 AM mg/Kg-dry ND Hexachlorobutadiene 0.0610 mg/Kg-dry 1 7/25/2017 12:40:47 AM Naphthalene ND 7/25/2017 12:40:47 AM 0.0610 mg/Kg-dry 1 1.2.3-Trichlorobenzene ND 0.0244 mg/Kg-dry 1 7/25/2017 12:40:47 AM Surr: Dibromofluoromethane 56.5 - 129 94.5 %Rec 1 7/25/2017 12:40:47 AM Surr: Toluene-d8 108 64.5 - 151 %Rec 1 7/25/2017 12:40:47 AM Surr: 1-Bromo-4-fluorobenzene 96.3 63.1 - 141 %Rec 1 7/25/2017 12:40:47 AM

Batch ID: 17709

Batch ID: 17706

Work Order: **1707217**Date Reported: **8/7/2017**

Analyst: MW

Analyst: WF

Client: G-Logics Collection Date: 7/21/2017 9:45:00 AM

Project: Auburn Subaru

NOTES:

Lab ID: 1707217-001 **Matrix:** Soil

Client Sample ID: GLB-1-5

Analyses Result RL Qual Units DF Date Analyzed

Volatile Organic Compounds by EPA Method 8260C

•

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Mercury by EPA Method 7471

Mercury	ND	0.345	mg/Kg-dry 1	7/24/2017 4:08:45 PM
Total Metals by EPA Method 60	<u>20</u>		Batch ID:	17699 Analyst: TN
Arsenic	15.2	0.105	mg/Kg-dry 1	7/24/2017 3:14:06 PM
Cadmium	0.278	0.209	mg/Kg-dry 1	7/24/2017 3:14:06 PM
Chromium	27.7	0.105	mg/Kg-dry 1	7/24/2017 3:14:06 PM
Lead	91.8	0.209	mg/Kg-dry 1	7/24/2017 3:14:06 PM
Sample Moisture (Percent Mois	ture)		Batch ID:	R37550 Analyst: BB
Percent Moisture	27.6	0.500	wt% 1	7/24/2017 11:28:26 AM
Hexavalent Chromium by EPA	Method 7196		Batch ID:	17725 Analyst: MW
Chromium, Hexavalent	ND	0.682	mg/Kg-dry 1	7/25/2017 2:57:00 PM

Revision v1

Work Order: **1707217**Date Reported: **8/7/2017**

Client: G-Logics Collection Date: 7/21/2017 9:50:00 AM

Project: Auburn Subaru

Lab ID: 1707217-002 **Matrix:** Soil

Client Sample ID: GLB-1-10

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWT	TPH-Dx/Dx Ext.			Batch	ID: 1	7720 Analyst: SB
Diesel (Fuel Oil)	ND	23.8		mg/Kg-dry	1	7/25/2017 1:28:24 PM
Heavy Oil	ND	59.5		mg/Kg-dry	1	7/25/2017 1:28:24 PM
Surr: 2-Fluorobiphenyl	105	50 - 150		%Rec	1	7/25/2017 1:28:24 PM
Surr: o-Terphenyl	106	50 - 150		%Rec	1	7/25/2017 1:28:24 PM
Sample Moisture (Percent Mo	oisture)			Batch	ID: R	Analyst: BB
Percent Moisture	26.4	0.500		wt%	1	7/25/2017 1:43:19 PM

D. Miller A

Work Order: **1707217**Date Reported: **8/7/2017**

Client: G-Logics **Collection Date:** 7/21/2017 11:10:00 AM

Project: Auburn Subaru

Lab ID: 1707217-004 **Matrix:** Soil

Client Sample ID: GLB-2-4

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NW	ΓΡΗ-Dx/Dx Ext.			Batch	ı ID:	17701 Analyst: SB
Diesel (Fuel Oil)	ND	24.3		mg/Kg-dry	1	7/24/2017 6:14:08 PM
Heavy Oil	ND	60.7		mg/Kg-dry	1	7/24/2017 6:14:08 PM
Surr: 2-Fluorobiphenyl	90.4	50 - 150		%Rec	1	7/24/2017 6:14:08 PM
Surr: o-Terphenyl	97.1	50 - 150		%Rec	1	7/24/2017 6:14:08 PM
Sample Moisture (Percent M	oisture)			Batch	ID:	R37550 Analyst: BB
Percent Moisture	26.4	0.500		wt%	1	7/24/2017 11:28:26 AM

D. Miller A

Work Order: **1707217**Date Reported: **8/7/2017**

Client: G-Logics Collection Date: 7/21/2017 12:00:00 PM

Project: Auburn Subaru

Lab ID: 1707217-008 **Matrix:** Soil

Client Sample ID: GLB-3-8

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NW	ΓΡΗ-Dx/Dx Ext.			Batch	ID:	17701 Analyst: SB
Diesel (Fuel Oil)	ND	24.3		mg/Kg-dry	1	7/24/2017 6:47:15 PM
Heavy Oil	ND	60.9		mg/Kg-dry	1	7/24/2017 6:47:15 PM
Surr: 2-Fluorobiphenyl	87.4	50 - 150		%Rec	1	7/24/2017 6:47:15 PM
Surr: o-Terphenyl	95.9	50 - 150		%Rec	1	7/24/2017 6:47:15 PM
Sample Moisture (Percent M	oisture)			Batch	ID: I	R37550 Analyst: BB
Percent Moisture	30.7	0.500		wt%	1	7/24/2017 11:28:26 AM

D. Miller A

Work Order: **1707217**Date Reported: **8/7/2017**

Client: G-Logics Collection Date: 7/21/2017 12:50:00 PM

Project: Auburn Subaru

Lab ID: 1707217-011 **Matrix:** Soil

Client Sample ID: GLB-4-8

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NW	ΓΡΗ-Dx/Dx Ext.			Batch	ı ID:	17701 Analyst: SB
Diesel (Fuel Oil)	ND	23.9		mg/Kg-dry	1	7/24/2017 7:20:52 PM
Heavy Oil	ND	59.9		mg/Kg-dry	1	7/24/2017 7:20:52 PM
Surr: 2-Fluorobiphenyl	83.7	50 - 150		%Rec	1	7/24/2017 7:20:52 PM
Surr: o-Terphenyl	87.9	50 - 150		%Rec	1	7/24/2017 7:20:52 PM
Sample Moisture (Percent M	oisture)			Batch	ı ID:	R37550 Analyst: BB
Percent Moisture	27.3	0.500		wt%	1	7/24/2017 11:28:26 AM

Revision v1

Work Order: **1707217**Date Reported: **8/7/2017**

Client: G-Logics Collection Date: 7/21/2017 2:15:00 PM

Project: Auburn Subaru

Lab ID: 1707217-013 **Matrix:** Soil

Client Sample ID: GLB-5-8

Analyses	Result	RL	Qual	Units	DF	Date Analyzed		
Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.			Batch	ID:	17701 A	nalyst: SB		
Diesel (Fuel Oil)	ND	25.3		mg/Kg-dry	1	7/24/2017	7 7:53:36 PM	
Heavy Oil	ND	63.4		mg/Kg-dry	1	7/24/2017 7:53:36 PM		
Surr: 2-Fluorobiphenyl	86.4	50 - 150		%Rec	1	7/24/2017 7:53:36 PM		
Surr: o-Terphenyl	95.5	50 - 150		%Rec	1	7/24/2017	7:53:36 PM	
Gasoline by NWTPH-Gx				Batch	ID:	17709 A	nalyst: MW	
Gasoline	ND	5.91		mg/Kg-dry	1	7/25/2017	7 1:10:40 AM	
Surr: 4-Bromofluorobenzene	98.1	65 - 135		%Rec	1	1 7/25/2017 1:10:40 <i>F</i>		
Surr: Toluene-d8	98.2	65 - 135		%Rec	1	7/25/2017	7 1:10:40 AM	
Volatile Organic Compounds by EPA	A Method	8260C		Batch	ID:	17709 A	nalyst: MW	
Benzene	ND	0.0237		mg/Kg-dry	1	7/25/2017	7 1:10:40 AM	
Toluene	ND	0.0237		mg/Kg-dry	1	7/25/2017	7 1:10:40 AM	
Ethylbenzene	ND	0.0296		mg/Kg-dry	1	7/25/2017	7 1:10:40 AM	
m,p-Xylene	ND	0.0591		mg/Kg-dry	1	7/25/2017	7 1:10:40 AM	
o-Xylene	ND	0.0296		mg/Kg-dry	1	7/25/2017	7 1:10:40 AM	
Surr: Dibromofluoromethane	93.1	56.5 - 129		%Rec	1	7/25/2017	7 1:10:40 AM	
Surr: Toluene-d8	104	64.5 - 151		%Rec	1	7/25/2017	7 1:10:40 AM	
Surr: 1-Bromo-4-fluorobenzene	94.5	63.1 - 141		%Rec	1	7/25/2017	7 1:10:40 AM	
Sample Moisture (Percent Moisture)	!			Batch	ID:	R37550 A	nalyst: BB	
Percent Moisture	29.2	0.500		wt%	1	7/24/2017	7 11:28:26 AM	

Work Order: **1707217**Date Reported: **8/7/2017**

Client: G-Logics Collection Date: 7/21/2017 4:05:00 PM

Project: Auburn Subaru

Lab ID: 1707217-016 **Matrix:** Soil

Client Sample ID: GLB-6-8

Analyses	Result	RL	Qual	Units	DF	Date Analyzed		
Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.				Batch	ID:	17701 Analyst: Si	3	
Diesel (Fuel Oil)	ND	25.3		mg/Kg-dry	1	7/24/2017 8:26:58 P	М	
Heavy Oil	ND	63.2		mg/Kg-dry	1	7/24/2017 8:26:58 PM		
Surr: 2-Fluorobiphenyl	98.6	50 - 150		%Rec	1	7/24/2017 8:26:58 PI		
Surr: o-Terphenyl	108	50 - 150		%Rec	1	7/24/2017 8:26:58 P	M	
Gasoline by NWTPH-Gx				Batch	ID:	17709 Analyst: M	W	
Gasoline	ND	5.60		mg/Kg-dry	1	7/25/2017 2:10:22 A	М	
Surr: 4-Bromofluorobenzene	98.5	65 - 135		%Rec	1	7/25/2017 2:10:22 A	М	
Surr: Toluene-d8	97.7	65 - 135		%Rec	1	7/25/2017 2:10:22 A	M	
Volatile Organic Compounds by EPA	A Method	8260C		Batch	ID:	17709 Analyst: M	W	
Benzene	ND	0.0224		mg/Kg-dry	1	7/25/2017 2:10:22 A	М	
Toluene	ND	0.0224		mg/Kg-dry	1	7/25/2017 2:10:22 A	М	
Ethylbenzene	ND	0.0280		mg/Kg-dry	1	7/25/2017 2:10:22 A	M	
m,p-Xylene	ND	0.0560		mg/Kg-dry	1	7/25/2017 2:10:22 A	M	
o-Xylene	ND	0.0280		mg/Kg-dry	1	7/25/2017 2:10:22 A	M	
Surr: Dibromofluoromethane	92.6	56.5 - 129		%Rec	1	7/25/2017 2:10:22 A	M	
Surr: Toluene-d8	106	64.5 - 151		%Rec	1	7/25/2017 2:10:22 A	M	
Surr: 1-Bromo-4-fluorobenzene	94.8	63.1 - 141		%Rec	1	7/25/2017 2:10:22 A	M	
Sample Moisture (Percent Moisture)				Batch	ID:	R37550 Analyst: Bl	3	
Percent Moisture	28.8	0.500		wt%	1	7/24/2017 11:28:26	AM	

Revision v1

Work Order: **1707217**Date Reported: **8/7/2017**

Client: G-Logics Collection Date: 7/21/2017 5:15:00 PM

Project: Auburn Subaru

Lab ID: 1707217-018 **Matrix:** Soil

Client Sample ID: GLB-7-6

Analyses	Result	RL	Qual	Units DF		- Da	ate Analyzed
Diesel and Heavy Oil by NWTPH	-Dx/Dx Ext.			Batch	ID:	17701	Analyst: SB
Diesel (Fuel Oil)	ND	23.8		mg/Kg-dry	1	7/24	/2017 9:00:10 PM
Diesel (Fuel Oil)	ND	23.8	SGT	mg/Kg-dry	1	8/2/2	2017 7:58:51 AM
Heavy Oil	2,160	59.5		mg/Kg-dry	1	7/24	/2017 9:00:10 PM
Heavy Oil	2,500	59.5	SGT	mg/Kg-dry	(g-dry 1 8/2/2017 7:5		2017 7:58:51 AM
Surr: 2-Fluorobiphenyl	91.3	50 - 150		%Rec 1		7/24	/2017 9:00:10 PM
Surr: o-Terphenyl	93.4	50 - 150		%Rec 1		7/24	/2017 9:00:10 PM
NOTES:							
SGT - Silica Gel Treatment							
Gasoline by NWTPH-Gx				Batch	ID:	17709	Analyst: MW
Gasoline	ND	5.70		mg/Kg-dry	1	7/25	/2017 2:40:14 AM
Surr: 4-Bromofluorobenzene	99.7	65 - 135		%Rec	1	7/25	/2017 2:40:14 AM
Surr: Toluene-d8	96.4	65 - 135		%Rec	1	7/25	/2017 2:40:14 AM
Volatile Organic Compounds by	EPA Method	8260C		Batch	ID:	17709	Analyst: MW
Benzene	ND	0.0228		mg/Kg-dry	1	7/25	/2017 2:40:14 AM
Toluene	ND	0.0228		mg/Kg-dry	1	7/25	/2017 2:40:14 AM
Ethylbenzene	ND	0.0285		mg/Kg-dry	1	7/25	/2017 2:40:14 AM
m,p-Xylene	ND	0.0570		mg/Kg-dry	1	7/25	/2017 2:40:14 AM
o-Xylene	0.0468	0.0285		mg/Kg-dry	1	7/25	/2017 2:40:14 AM
Surr: Dibromofluoromethane	93.9	56.5 - 129		%Rec	1	7/25	/2017 2:40:14 AM
Surr: Toluene-d8	108	64.5 - 151		%Rec	1	7/25	/2017 2:40:14 AM
Surr: 1-Bromo-4-fluorobenzene	96.0	63.1 - 141		%Rec	1	7/25	/2017 2:40:14 AM
Sample Moisture (Percent Moist	ure)			Batch	ID:	R37550	Analyst: BB
Percent Moisture	25.3	0.500		wt%	1	7/24	/2017 11:28:26 AM

Work Order: **1707217**Date Reported: **8/7/2017**

Client: G-Logics Collection Date: 7/21/2017 5:20:00 PM

Project: Auburn Subaru

Lab ID: 1707217-019 **Matrix:** Soil

Client Sample ID: GLB-7-9

nalyses	Result	RL	Qual	Units	DF	Date Analyzed
Polychlorinated Biphenyls (PC	B) by EPA 8082	2		Batch	ı ID:	17707 Analyst: SG
Aroclor 1016	ND	0.119		mg/Kg-dry	1	7/24/2017 3:25:19 PM
Aroclor 1221	ND	0.119		mg/Kg-dry	1	7/24/2017 3:25:19 PM
Aroclor 1232	ND	0.119		mg/Kg-dry	1	7/24/2017 3:25:19 PM
Aroclor 1242	0.316	0.119		mg/Kg-dry	1	7/24/2017 3:25:19 PM
Aroclor 1248	ND	0.119		mg/Kg-dry	1	7/24/2017 3:25:19 PM
Aroclor 1254	ND	0.119		mg/Kg-dry	1	7/24/2017 3:25:19 PM
Aroclor 1260	ND	0.119		mg/Kg-dry	1	7/24/2017 3:25:19 PM
Aroclor 1262	ND	0.119		mg/Kg-dry	1	7/24/2017 3:25:19 PM
Aroclor 1268	ND	0.119		mg/Kg-dry	1	7/24/2017 3:25:19 PM
Total PCBs	0.316	0.119		mg/Kg-dry	1	7/24/2017 3:25:19 PM
Surr: Decachlorobiphenyl	86.3	30.8 - 168		%Rec	1	7/24/2017 3:25:19 PM
Surr: Tetrachloro-m-xylene	91.2	30.1 - 143		%Rec	1	7/24/2017 3:25:19 PM
Diesel and Heavy Oil by NWTP	PH-Dx/Dx Ext.			Batch	ı ID:	17701 Analyst: SB
Diesel (Fuel Oil)	ND	52.2	DSGT	mg/Kg-dry	2	8/2/2017 9:04:18 AM
Diesel (Fuel Oil)	ND	26.1		mg/Kg-dry	1	7/24/2017 10:06:18 PM
Heavy Oil	3,250	130	DSGT	mg/Kg-dry	2	8/2/2017 9:04:18 AM
Heavy Oil	2,900	130	D	mg/Kg-dry	2	7/25/2017 9:26:23 AM
Surr: 2-Fluorobiphenyl	108	50 - 150		%Rec	1	7/24/2017 10:06:18 PM
Surr: o-Terphenyl	119	50 - 150		%Rec	1	7/24/2017 10:06:18 PM
NOTES: SGT - Silica Gel Treatment						
Delveremetic Uvdreeshope b	v EDA Mathad ()270 (CIM)		Ratch	· ID·	17700 Analyst: RT
Polyaromatic Hydrocarbons by	y EPA Method 8	3270 (SIM)		Batch	ı ID:	17700 Analyst: BT
Polyaromatic Hydrocarbons by	y EPA Method 8	3270 (SIM) 47.5		Batch µg/Kg-dry	1 ID:	17700 Analyst: BT 7/24/2017 6:23:07 PM
						·
Naphthalene	ND	47.5		μg/Kg-dry	1	7/24/2017 6:23:07 PM
Naphthalene 2-Methylnaphthalene	ND ND	47.5 47.5		μg/Kg-dry μg/Kg-dry	1	7/24/2017 6:23:07 PM 7/24/2017 6:23:07 PM
Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene	ND ND ND	47.5 47.5 47.5		µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry	1 1 1	7/24/2017 6:23:07 PM 7/24/2017 6:23:07 PM 7/24/2017 6:23:07 PM
Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene	ND ND ND ND	47.5 47.5 47.5 47.5 47.5		µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry	1 1 1	7/24/2017 6:23:07 PM 7/24/2017 6:23:07 PM 7/24/2017 6:23:07 PM 7/24/2017 6:23:07 PM
Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene	ND ND ND ND	47.5 47.5 47.5 47.5		µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry	1 1 1 1	7/24/2017 6:23:07 PM 7/24/2017 6:23:07 PM 7/24/2017 6:23:07 PM 7/24/2017 6:23:07 PM 7/24/2017 6:23:07 PM
Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene	ND ND ND ND ND	47.5 47.5 47.5 47.5 47.5 47.5		µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry	1 1 1 1 1	7/24/2017 6:23:07 PM 7/24/2017 6:23:07 PM 7/24/2017 6:23:07 PM 7/24/2017 6:23:07 PM 7/24/2017 6:23:07 PM 7/24/2017 6:23:07 PM
Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene	ND ND ND ND ND ND	47.5 47.5 47.5 47.5 47.5 47.5 47.5		µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry	1 1 1 1 1 1	7/24/2017 6:23:07 PM 7/24/2017 6:23:07 PM 7/24/2017 6:23:07 PM 7/24/2017 6:23:07 PM 7/24/2017 6:23:07 PM 7/24/2017 6:23:07 PM 7/24/2017 6:23:07 PM
Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	ND ND ND ND ND ND 65.1 ND	47.5 47.5 47.5 47.5 47.5 47.5 47.5 47.5		µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry	1 1 1 1 1 1 1	7/24/2017 6:23:07 PM 7/24/2017 6:23:07 PM
Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	ND ND ND ND ND 65.1 ND ND	47.5 47.5 47.5 47.5 47.5 47.5 47.5 47.5		µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry	1 1 1 1 1 1 1 1	7/24/2017 6:23:07 PM 7/24/2017 6:23:07 PM
Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	ND ND ND ND ND ND 65.1 ND	47.5 47.5 47.5 47.5 47.5 47.5 47.5 47.5		µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry	1 1 1 1 1 1 1	7/24/2017 6:23:07 PM

Work Order: **1707217**Date Reported: **8/7/2017**

Client: G-Logics Collection Date: 7/21/2017 5:20:00 PM

Project: Auburn Subaru

Lab ID: 1707217-019 **Matrix:** Soil

Client Sample ID: GLB-7-9

Analyses	Result	RL	Qual	Units	DF	Date Analyzed			
Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)					Batch ID: 17700 Analyst: BT				
Benzo(j,k)fluoranthene	ND	47.5		μg/Kg-dry	1	7/24/2017 6:23:07 PM			
Benzo(a)pyrene	ND	47.5		μg/Kg-dry	1	7/24/2017 6:23:07 PM			
Indeno(1,2,3-cd)pyrene	ND	47.5		μg/Kg-dry 1		7/24/2017 6:23:07 PM			
Dibenz(a,h)anthracene	ND	47.5		μg/Kg-dry	1	7/24/2017 6:23:07 PM			
Benzo(g,h,i)perylene	ND	47.5		μg/Kg-dry	1	7/24/2017 6:23:07 PM			
Surr: 2-Fluorobiphenyl	71.2	24.5 - 139		%Rec	1	7/24/2017 6:23:07 PM			
Surr: Terphenyl-d14 (surr)	84.4	46.2 - 179		%Rec	1	7/24/2017 6:23:07 PM			
Gasoline by NWTPH-Gx				Batch	n ID: 17	7709 Analyst: MW			
Gasoline	24.3	6.04		mg/Kg-dry	1	7/25/2017 3:39:52 AM			
Surr: Toluene-d8	94.8	65 - 135		%Rec	1	7/25/2017 3:39:52 AM			
Surr: 4-Bromofluorobenzene	105	65 - 135		%Rec	1	7/25/2017 3:39:52 AM			
Volatile Organic Compounds by	EPA Method	8260C		Batch	1D: 1	7709 Analyst: MW			
Dichlorodifluoromethane (CFC-12)	ND	0.0241		mg/Kg-dry	1	7/25/2017 3:39:52 AM			
Chloromethane	ND	0.0604		mg/Kg-dry	1	7/25/2017 3:39:52 AM			
Vinyl chloride	ND	0.0302		mg/Kg-dry	1	7/25/2017 3:39:52 AM			
Bromomethane	ND	0.0604		mg/Kg-dry	1	7/25/2017 3:39:52 AM			
Trichlorofluoromethane (CFC-11)	ND	0.0241		mg/Kg-dry	1	7/25/2017 3:39:52 AM			
Chloroethane	ND	0.0604		mg/Kg-dry	1	7/25/2017 3:39:52 AM			
1,1-Dichloroethene	ND	0.0241		mg/Kg-dry	1	7/25/2017 3:39:52 AM			
Methylene chloride	ND	0.0241		mg/Kg-dry	1	7/25/2017 3:39:52 AM			
trans-1,2-Dichloroethene	ND	0.0241		mg/Kg-dry	1	7/25/2017 3:39:52 AM			
Methyl tert-butyl ether (MTBE)	ND	0.0604		mg/Kg-dry	1	7/25/2017 3:39:52 AM			
1,1-Dichloroethane	ND	0.0241		mg/Kg-dry	1	7/25/2017 3:39:52 AM			
2,2-Dichloropropane	ND	0.121	Q	mg/Kg-dry	1	7/25/2017 3:39:52 AM			
cis-1,2-Dichloroethene	ND	0.0241		mg/Kg-dry	1	7/25/2017 3:39:52 AM			
Chloroform	ND	0.0241		mg/Kg-dry	1	7/25/2017 3:39:52 AM			
1,1,1-Trichloroethane (TCA)	ND	0.0302		mg/Kg-dry	1	7/25/2017 3:39:52 AM			
1,1-Dichloropropene	ND	0.0241		mg/Kg-dry	1	7/25/2017 3:39:52 AM			
Carbon tetrachloride	ND	0.0302		mg/Kg-dry	1	7/25/2017 3:39:52 AM			
1,2-Dichloroethane (EDC)	ND	0.0241		mg/Kg-dry	1	7/25/2017 3:39:52 AM			
Benzene	ND	0.0241		mg/Kg-dry	1	7/25/2017 3:39:52 AM			
Trichloroethene (TCE)	ND	0.0241		mg/Kg-dry	1	7/25/2017 3:39:52 AM			
1,2-Dichloropropane	ND	0.0241		mg/Kg-dry	1	7/25/2017 3:39:52 AM			
Bromodichloromethane	ND	0.0241		mg/Kg-dry	1	7/25/2017 3:39:52 AM			
Dibromomethane	ND	0.0241		mg/Kg-dry	1	7/25/2017 3:39:52 AM			

Work Order: **1707217**Date Reported: **8/7/2017**

Client: G-Logics Collection Date: 7/21/2017 5:20:00 PM

Project: Auburn Subaru

Lab ID: 1707217-019 **Matrix**: Soil

Client Sample ID: GLB-7-9

RL Qual Units DF **Date Analyzed Analyses** Result **Volatile Organic Compounds by EPA Method 8260C** Batch ID: 17709 Analyst: MW ND 7/25/2017 3:39:52 AM cis-1,3-Dichloropropene 0.0241 mg/Kg-dry 1 Toluene ND 0.0241 mg/Kg-dry 1 7/25/2017 3:39:52 AM ND trans-1,3-Dichloropropylene 0.0241 mg/Kg-dry 1 7/25/2017 3:39:52 AM 1.1.2-Trichloroethane ND 0.0241 1 7/25/2017 3:39:52 AM mg/Kg-dry 1,3-Dichloropropane ND 0.0302 mg/Kg-dry 1 7/25/2017 3:39:52 AM Tetrachloroethene (PCE) ND 0.0302 7/25/2017 3:39:52 AM mg/Kg-dry 1 Dibromochloromethane ND 0.0302 mg/Kg-dry 1 7/25/2017 3:39:52 AM 1,2-Dibromoethane (EDB) ND 0.00604 mg/Kg-dry 1 7/25/2017 3:39:52 AM Chlorobenzene ND 0.0302 1 7/25/2017 3:39:52 AM mg/Kg-dry 1,1,1,2-Tetrachloroethane ND 0.0302 1 7/25/2017 3:39:52 AM mg/Kg-dry ND 7/25/2017 3:39:52 AM Ethylbenzene 0.0302 mg/Kg-dry 1 m,p-Xylene ND 0.0604 7/25/2017 3:39:52 AM mg/Kg-dry 1 o-Xylene ND 0.0302 mg/Kg-dry 1 7/25/2017 3:39:52 AM Styrene ND 0.0302 mg/Kg-dry 1 7/25/2017 3:39:52 AM ND 7/25/2017 3:39:52 AM Isopropylbenzene 0.0302 mg/Kg-dry 1 **Bromoform** ND 0.0604 mg/Kg-dry 1 7/25/2017 3:39:52 AM 1,1,2,2-Tetrachloroethane ND 7/25/2017 3:39:52 AM 0.0241 mg/Kg-dry 1 n-Propylbenzene ND 0.0302 7/25/2017 3:39:52 AM mg/Kg-dry 1 ND Bromobenzene 0.0241 1 7/25/2017 3:39:52 AM mg/Kg-dry 1,3,5-Trimethylbenzene ND 0.0302 mg/Kg-dry 1 7/25/2017 3:39:52 AM ND 2-Chlorotoluene 0.0302 mg/Kg-dry 1 7/25/2017 3:39:52 AM 4-Chlorotoluene ND 0.0302 mg/Kg-dry 1 7/25/2017 3:39:52 AM ND tert-Butylbenzene 0.0302 mg/Kg-dry 1 7/25/2017 3:39:52 AM 1,2,3-Trichloropropane ND 0.0302 1 7/25/2017 3:39:52 AM mg/Kg-dry 1,2,4-Trichlorobenzene ND 0.0302 mg/Kg-dry 1 7/25/2017 3:39:52 AM sec-Butylbenzene ND 0.0604 mg/Kg-dry 1 7/25/2017 3:39:52 AM 4-Isopropyltoluene ND 0.0604 7/25/2017 3:39:52 AM mg/Kg-dry 1 ND 1,3-Dichlorobenzene 0.0241 1 7/25/2017 3:39:52 AM mg/Kg-dry ND 1,4-Dichlorobenzene 0.0241 mg/Kg-dry 1 7/25/2017 3:39:52 AM ND n-Butylbenzene 0.0302 mg/Kg-dry 1 7/25/2017 3:39:52 AM 1.2-Dichlorobenzene ND 0.0241 mg/Kg-dry 1 7/25/2017 3:39:52 AM 1,2-Dibromo-3-chloropropane ND 0.604 O mg/Kg-dry 1 7/25/2017 3:39:52 AM 1,2,4-Trimethylbenzene ND 0.0241 1 7/25/2017 3:39:52 AM mg/Kg-dry ND Hexachlorobutadiene 0.0604 mg/Kg-dry 1 7/25/2017 3:39:52 AM Naphthalene ND 7/25/2017 3:39:52 AM 0.0604 mg/Kg-dry 1 1.2.3-Trichlorobenzene ND 0.0241 mg/Kg-dry 1 7/25/2017 3:39:52 AM 95.4 56.5 - 129 Surr: Dibromofluoromethane %Rec 1 7/25/2017 3:39:52 AM Surr: Toluene-d8 108 64.5 - 151 %Rec 1 7/25/2017 3:39:52 AM Surr: 1-Bromo-4-fluorobenzene 101 63.1 - 141 %Rec 1 7/25/2017 3:39:52 AM

Work Order: **1707217**Date Reported: **8/7/2017**

Client: G-Logics Collection Date: 7/21/2017 5:20:00 PM

Project: Auburn Subaru

Lab ID: 1707217-019 **Matrix:** Soil

Client Sample ID: GLB-7-9

Analyses Result RL Qual Units DF Date Analyzed

Volatile Organic Compounds by EPA Method 8260C

Batch ID: 17709 Analyst: MW

NOTES:

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Mercury by EPA Method 7471			Batch ID	: 17706	Analyst: WF
Mercury	ND	0.340	mg/Kg-dry 1	7/24	/2017 4:12:58 PM
Total Metals by EPA Method 6020			Batch ID	: 17699	Analyst: TN
Arsenic	3.47	0.111	mg/Kg-dry 1	7/24	/2017 3:18:07 PM
Cadmium	ND	0.222	mg/Kg-dry 1	7/24	/2017 3:18:07 PM
Chromium	20.9	0.111	mg/Kg-dry 1	7/24	/2017 3:18:07 PM
Lead	4.09	0.222	mg/Kg-dry 1	7/24	/2017 3:18:07 PM
Sample Moisture (Percent Moisture)		Batch ID	: R37550	Analyst: BB
Percent Moisture	27.9	0.500	wt% 1	7/24	/2017 11:28:26 AM

Revision v1

Work Order: **1707217**Date Reported: **8/7/2017**

Client: G-Logics Collection Date: 7/21/2017 5:25:00 PM

Project: Auburn Subaru

Lab ID: 1707217-020 **Matrix:** Soil

Client Sample ID: GLB-7-11

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NW	ΓΡΗ-Dx/Dx Ext.			Batch	ID:	17701 Analyst: SB
Diesel (Fuel Oil)	ND	22.3		mg/Kg-dry	1	7/24/2017 11:44:42 PM
Heavy Oil	ND	55.7		mg/Kg-dry	1	7/24/2017 11:44:42 PM
Surr: 2-Fluorobiphenyl	51.8	50 - 150		%Rec	1	7/24/2017 11:44:42 PM
Surr: o-Terphenyl	55.1	50 - 150		%Rec	1	7/24/2017 11:44:42 PM
Sample Moisture (Percent M	oisture)			Batch	ID:	R37550 Analyst: BB
Percent Moisture	21.4	0.500		wt%	1	7/24/2017 11:28:26 AM

Revision v1

Work Order: **1707217**Date Reported: **8/7/2017**

Client: G-Logics Collection Date: 7/21/2017 6:05:00 PM

Project: Auburn Subaru

Lab ID: 1707217-021 **Matrix:** Soil

Client Sample ID: GLB-8-9

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NW	ΓΡΗ-Dx/Dx Ext.			Batch	ID:	17701 Analyst: SB
Diesel (Fuel Oil)	ND	26.9		mg/Kg-dry	1	7/25/2017 12:17:21 AM
Heavy Oil	ND	67.2		mg/Kg-dry	1	7/25/2017 12:17:21 AM
Surr: 2-Fluorobiphenyl	87.6	50 - 150		%Rec	1	7/25/2017 12:17:21 AM
Surr: o-Terphenyl	95.2	50 - 150		%Rec	1	7/25/2017 12:17:21 AM
Sample Moisture (Percent M	oisture)			Batch	ID:	R37550 Analyst: BB
Percent Moisture	30.8	0.500		wt%	1	7/24/2017 11:28:26 AM

Work Order: **1707217**Date Reported: **8/7/2017**

Client: G-Logics Collection Date: 7/21/2017 6:50:00 PM

Project: Auburn Subaru

Lab ID: 1707217-022 **Matrix:** Soil

Client Sample ID: GLB-9-9

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NW	ΓΡΗ-Dx/Dx Ext.			Batch	1D: 17	7701 Analyst: SB
Diesel (Fuel Oil)	ND	24.3		mg/Kg-dry	1	7/25/2017 12:49:58 AM
Heavy Oil	ND	60.7		mg/Kg-dry	1	7/25/2017 12:49:58 AM
Surr: 2-Fluorobiphenyl	109	50 - 150		%Rec	1	7/25/2017 12:49:58 AM
Surr: o-Terphenyl	121	50 - 150		%Rec	1	7/25/2017 12:49:58 AM
Sample Moisture (Percent M	oisture)			Batch	ID: R	37550 Analyst: BB
Percent Moisture	28.5	0.500		wt%	1	7/24/2017 11:28:26 AM

Work Order: **1707217**Date Reported: **8/7/2017**

Client: G-Logics **Collection Date:** 7/21/2017 10:45:00 AM

Project: Auburn Subaru

Lab ID: 1707217-023 **Matrix:** Water

Client Sample ID: GLB-1-W

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polychlorinated Biphenyls (PC	B) by EPA 8082	2		Batch ID: 17702 Analyst: \$		
Aroclor 1016	ND	0.100		μg/L	1	7/25/2017 11:03:49 AM
Aroclor 1221	ND	0.100		μg/L	1	7/25/2017 11:03:49 AM
Aroclor 1232	ND	0.100		μg/L	1	7/25/2017 11:03:49 AM
Aroclor 1242	ND	0.100		μg/L	1	7/25/2017 11:03:49 AM
Aroclor 1248	ND	0.100		μg/L	1	7/25/2017 11:03:49 AM
Aroclor 1254	ND	0.100		μg/L	1	7/25/2017 11:03:49 AM
Aroclor 1260	ND	0.100		μg/L	1	7/25/2017 11:03:49 AM
Aroclor 1262	ND	0.100		μg/L	1	7/25/2017 11:03:49 AM
Aroclor 1268	ND	0.100		μg/L	1	7/25/2017 11:03:49 AM
Total PCBs	ND	0.100		μg/L	1	7/25/2017 11:03:49 AM
Surr: Decachlorobiphenyl	44.8	23.1 - 172		%Rec	1	7/25/2017 11:03:49 AM
Surr: Tetrachloro-m-xylene	57.1	10 - 125		%Rec	1	7/25/2017 11:03:49 AM
Diesel and Heavy Oil by NWTP	H-Dx/Dx Ext.			Bato	h ID:	17703 Analyst: SB
Diesel (Fuel Oil)	ND	49.9	SGT	μg/L	1	8/2/2017 10:10:16 AM
Diesel (Fuel Oil)	ND	49.9		μg/L	1	7/25/2017 6:13:15 AM
Heavy Oil	1,210	99.8	SGT	μg/L	1	8/2/2017 10:10:16 AM
Heavy Oil	1,670	99.8		μg/L	1	7/25/2017 6:13:15 AM
Surr: 2-Fluorobiphenyl	89.0	50 - 150		%Rec	1	7/25/2017 6:13:15 AM
Surr: o-Terphenyl	96.5	50 - 150		%Rec	1	7/25/2017 6:13:15 AM
NOTES: SGT - Silica Gel Treatment						
Polyaromatic Hydrocarbons by	y EPA Method 8	3270 (SIM)		Bato	h ID:	17704 Analyst: BT
Naphthalene	ND	0.0997		μg/L	1	7/24/2017 7:18:40 PM
2-Methylnaphthalene	ND	0.0997		μg/L	1	7/24/2017 7:18:40 PM
1-Methylnaphthalene	ND	0.0997		μg/L	1	7/24/2017 7:18:40 PM
Acenaphthylene	ND	0.0997		μg/L	1	7/24/2017 7:18:40 PM
Acenaphthene	ND	0.0997		μg/L	1	7/24/2017 7:18:40 PM
Fluorene	ND	0.0997		μg/L	1	7/24/2017 7:18:40 PM
Phenanthrene	ND	0.0997		μg/L	1	7/24/2017 7:18:40 PM
Anthracene	ND	0.0997		μg/L	1	7/24/2017 7:18:40 PM
Fluoranthene	ND	0.0997		μg/L	1	7/24/2017 7:18:40 PM
Pyrene	ND	0.0997		μg/L	1	7/24/2017 7:18:40 PM
Benz(a)anthracene	ND	0.0997		μg/L	1	7/24/2017 7:18:40 PM
Chrysene	ND	0.0997		μg/L	1	7/24/2017 7:18:40 PM
Benzo(b)fluoranthene	ND	0.0997		μg/L	1	7/24/2017 7:18:40 PM

Work Order: **1707217**Date Reported: **8/7/2017**

Client: G-Logics Collection Date: 7/21/2017 10:45:00 AM

Project: Auburn Subaru

Lab ID: 1707217-023 **Matrix:** Water

Client Sample ID: GLB-1-W

Analyses	Result	RL	Qual	Units	DF	Date Analyzed		
Polyaromatic Hydrocarbons by I	EPA Method 8	3270 (SIM)		Batc	Batch ID: 17704 Analyst: BT			
Benzo(j,k)fluoranthene	ND	0.0997		μg/L	1	7/24/2017 7:18:40 PM		
Benzo(a)pyrene	ND	0.0997		μg/L	1	7/24/2017 7:18:40 PM		
Indeno(1,2,3-cd)pyrene	ND	0.0997		μg/L	1	7/24/2017 7:18:40 PM		
Dibenz(a,h)anthracene	ND	0.0997		μg/L	1	7/24/2017 7:18:40 PM		
Benzo(g,h,i)perylene	ND	0.0997		μg/L	1	7/24/2017 7:18:40 PM		
Surr: 2-Fluorobiphenyl	98.5	31.2 - 159		%Rec	1	7/24/2017 7:18:40 PM		
Surr: Terphenyl-d14	107	21.9 - 122		%Rec	1	7/24/2017 7:18:40 PM		
Gasoline by NWTPH-Gx				Batc	h ID:	17715 Analyst: NG		
Gasoline	ND	50.0		μg/L	1	7/25/2017 2:20:00 AM		
Surr: Toluene-d8	103	65 - 135		%Rec	1	7/25/2017 2:20:00 AM		
Surr: 4-Bromofluorobenzene	94.7	65 - 135		%Rec	1	7/25/2017 2:20:00 AM		
Volatile Organic Compounds by	EPA Method	8260C		Bato	h ID:	17715 Analyst: NG		
Dichlorodifluoromethane (CFC-12)	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM		
Chloromethane	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM		
Vinyl chloride	ND	0.200		μg/L	1	7/25/2017 2:20:00 AM		
Bromomethane	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM		
Trichlorofluoromethane (CFC-11)	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM		
Chloroethane	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM		
1,1-Dichloroethene	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM		
Methylene chloride	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM		
trans-1,2-Dichloroethene	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM		
Methyl tert-butyl ether (MTBE)	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM		
1,1-Dichloroethane	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM		
2,2-Dichloropropane	ND	2.00	Q	μg/L	1	7/25/2017 2:20:00 AM		
cis-1,2-Dichloroethene	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM		
Chloroform	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM		
1,1,1-Trichloroethane (TCA)	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM		
1,1-Dichloropropene	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM		
Carbon tetrachloride	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM		
1,2-Dichloroethane (EDC)	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM		
Benzene	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM		
Trichloroethene (TCE)	ND	0.500		μg/L	1	7/25/2017 2:20:00 AM		
1,2-Dichloropropane	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM		
Bromodichloromethane	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM		
Dibromomethane	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM		

Work Order: **1707217**Date Reported: **8/7/2017**

Client: G-Logics Collection Date: 7/21/2017 10:45:00 AM

Project: Auburn Subaru

Lab ID: 1707217-023 **Matrix:** Water

Client Sample ID: GLB-1-W

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method	8260C		Batc	h ID: 17	715 Analyst: NG
cis-1,3-Dichloropropene	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM
Toluene	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM
trans-1,3-Dichloropropylene	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM
1,1,2-Trichloroethane	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM
1,3-Dichloropropane	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM
Tetrachloroethene (PCE)	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM
Dibromochloromethane	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM
1,2-Dibromoethane (EDB)	ND	0.250		μg/L	1	7/25/2017 2:20:00 AM
Chlorobenzene	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM
1,1,1,2-Tetrachloroethane	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM
Ethylbenzene	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM
m,p-Xylene	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM
o-Xylene	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM
Styrene	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM
Isopropylbenzene	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM
Bromoform	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM
n-Propylbenzene	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM
Bromobenzene	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM
2-Chlorotoluene	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM
4-Chlorotoluene	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM
tert-Butylbenzene	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM
1,2,3-Trichloropropane	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM
1,2,4-Trichlorobenzene	ND	2.00		μg/L	1	7/25/2017 2:20:00 AM
sec-Butylbenzene	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM
4-Isopropyltoluene	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM
1,3-Dichlorobenzene	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM
1,4-Dichlorobenzene	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM
n-Butylbenzene	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM
1,2-Dichlorobenzene	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM
1,2-Dibromo-3-chloropropane	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM
Hexachloro-1,3-butadiene	ND	4.00		μg/L	1	7/25/2017 2:20:00 AM
Naphthalene	ND	1.00		μg/L	1	7/25/2017 2:20:00 AM
1,2,3-Trichlorobenzene	ND	4.00		μg/L	1	7/25/2017 2:20:00 AM
Surr: Dibromofluoromethane	96.0	45.4 - 152		%Rec	1	7/25/2017 2:20:00 AM
Surr: Toluene-d8	97.8	40.1 - 139		%Rec	1	7/25/2017 2:20:00 AM
Surr: 1-Bromo-4-fluorobenzene	91.7	64.2 - 128		%Rec	1	7/25/2017 2:20:00 AM

Batch ID: 17715

μg/L

μg/L

1

Work Order: **1707217**Date Reported: **8/7/2017**

Analyst: NG

7/24/2017 1:53:48 PM

7/24/2017 1:53:48 PM

Client: G-Logics Collection Date: 7/21/2017 10:45:00 AM

Project: Auburn Subaru

Lab ID: 1707217-023 **Matrix:** Water

1.79

2.06

Client Sample ID: GLB-1-W

Analyses Result RL Qual Units DF Date Analyzed

Volatile Organic Compounds by EPA Method 8260C

NOTES:

Chromium

Lead

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Mercury by EPA Method 245.1			Batch ID: 17705 Analyst: WF
Mercury	ND	0.100	μg/L 1 7/24/2017 6:20:35 PM
Total Metals by EPA Method 200.8			Batch ID: 17698 Analyst: TN
Arsenic Cadmium	2.44 ND	1.00 0.200	μg/L 1 7/24/2017 1:53:48 PM μg/L 1 7/24/2017 1:53:48 PM

0.500

0.500

Work Order: **1707217**Date Reported: **8/7/2017**

Client: G-Logics Collection Date: 7/21/2017 3:30:00 PM

Project: Auburn Subaru

Lab ID: 1707217-024 **Matrix:** Water

Client Sample ID: GLB-5-W

Analyses	Result	RL	Qual	Units DF		Date Analyzed
Diesel and Heavy Oil by NWTPH-	Dx/Dx Ext.			Batc	h ID: 1	7703 Analyst: SB
Diesel (Fuel Oil)	ND	49.7	SGT	μg/L	1	8/2/2017 6:01:56 PM
Diesel (Fuel Oil)	ND	49.7		μg/L	1	7/25/2017 7:17:27 AM
Heavy Oil	599	99.4	SGT	μg/L	1	8/2/2017 6:01:56 PM
Heavy Oil	700	99.4		μg/L	1	7/25/2017 7:17:27 AM
Surr: 2-Fluorobiphenyl	80.2	50 - 150		%Rec	1	7/25/2017 7:17:27 AM
Surr: o-Terphenyl	90.4	50 - 150		%Rec	1	7/25/2017 7:17:27 AM
NOTES:						
SGT - Silica Gel Treatment						
Gasoline by NWTPH-Gx				Batc	h ID: 1	7715 Analyst: NG
Gasoline	ND	50.0		μg/L	1	7/25/2017 2:49:00 AM
Surr: Toluene-d8	105	65 - 135		%Rec	1	7/25/2017 2:49:00 AM
Surr: 4-Bromofluorobenzene	93.7	65 - 135		%Rec	1	7/25/2017 2:49:00 AM
Volatile Organic Compounds by	EPA Method	8260C		Batc	h ID: 1	7715 Analyst: NG
Dichlorodifluoromethane (CFC-12)	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
Chloromethane	ND	1.00		μg/L μg/L	1	7/25/2017 2:49:00 AM
Vinyl chloride	ND	0.200		μg/L	1	7/25/2017 2:49:00 AM
Bromomethane	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
Trichlorofluoromethane (CFC-11)	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
Chloroethane	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
1,1-Dichloroethene	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
Methylene chloride	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
trans-1,2-Dichloroethene	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
Methyl tert-butyl ether (MTBE)	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
1,1-Dichloroethane	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
2,2-Dichloropropane	ND	2.00	Q	μg/L	1	7/25/2017 2:49:00 AM
cis-1,2-Dichloroethene	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
Chloroform	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
1,1,1-Trichloroethane (TCA)	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
1,1-Dichloropropene	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
Carbon tetrachloride	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
1,2-Dichloroethane (EDC)	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
Benzene	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
Trichloroethene (TCE)	ND	0.500		μg/L	1	7/25/2017 2:49:00 AM
1,2-Dichloropropane	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
Bromodichloromethane	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM

Work Order: **1707217**Date Reported: **8/7/2017**

Client: G-Logics Collection Date: 7/21/2017 3:30:00 PM

Project: Auburn Subaru

Lab ID: 1707217-024 **Matrix:** Water

Client Sample ID: GLB-5-W

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds b	y EPA Method	8260C		Batc	h ID: 17	715 Analyst: NG
Dibromomethane	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
cis-1,3-Dichloropropene	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
Toluene	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
trans-1,3-Dichloropropylene	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
1,1,2-Trichloroethane	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
1,3-Dichloropropane	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
Tetrachloroethene (PCE)	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
Dibromochloromethane	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
1,2-Dibromoethane (EDB)	ND	0.250		μg/L	1	7/25/2017 2:49:00 AM
Chlorobenzene	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
1,1,1,2-Tetrachloroethane	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
Ethylbenzene	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
m,p-Xylene	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
o-Xylene	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
Styrene	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
Isopropylbenzene	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
Bromoform	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
n-Propylbenzene	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
Bromobenzene	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
2-Chlorotoluene	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
4-Chlorotoluene	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
tert-Butylbenzene	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
1,2,3-Trichloropropane	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
1,2,4-Trichlorobenzene	ND	2.00		μg/L	1	7/25/2017 2:49:00 AM
sec-Butylbenzene	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
4-Isopropyltoluene	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
1,3-Dichlorobenzene	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
1,4-Dichlorobenzene	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
n-Butylbenzene	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
1,2-Dichlorobenzene	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
1,2-Dibromo-3-chloropropane	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
Hexachloro-1,3-butadiene	ND	4.00		μg/L	1	7/25/2017 2:49:00 AM
Naphthalene	ND	1.00		μg/L	1	7/25/2017 2:49:00 AM
1,2,3-Trichlorobenzene	ND	4.00		μg/L	1	7/25/2017 2:49:00 AM
Surr: Dibromofluoromethane	95.5	45.4 - 152		%Rec	1	7/25/2017 2:49:00 AM
Surr: Toluene-d8	99.9	40.1 - 139		%Rec	1	7/25/2017 2:49:00 AM

Work Order: 1707217 Date Reported: 8/7/2017

7/24/2017 1:57:49 PM

Collection Date: 7/21/2017 3:30:00 PM Client: G-Logics

Project: Auburn Subaru

Lab ID: 1707217-024 Matrix: Water

0.592

Client Sample ID: GLB-5-W							
Analyses	Result	RL	Qual	Units	DF	- D	ate Analyzed
Volatile Organic Compounds by	EPA Method	8260C		Bato	h ID:	17715	Analyst: NG
Surr: 1-Bromo-4-fluorobenzene	91.1	64.2 - 128		%Rec	1	7/25	5/2017 2:49:00 AM
NOTES: Q - Indicates an analyte with a continuing or minimum RRF).	g calibration that o	does not meet e	established a	acceptance	criteria	a (<20%RSE), <20% Drift
Mercury by EPA Method 245.1				Bato	h ID:	17705	Analyst: WF
Mercury	ND	0.100		μg/L	1	7/24	1/2017 6:27:25 PM
Dissolved Metals by EPA Method	d 200.8			Bato	h ID:	17727	Analyst: TN
Arsenic	5.19	1.00		μg/L	1	7/26	5/2017 9:51:41 AM
Total Metals by EPA Method 200	<u>).8</u>			Bato	h ID:	17698	Analyst: TN
Arsenic	20.7	1.00		μg/L	1	7/24	1/2017 1:57:49 PM
Cadmium	ND	0.200		μg/L	1	7/24	1/2017 1:57:49 PM
Chromium	8.68	0.500		μg/L	1	7/24	1/2017 1:57:49 PM

0.500

μg/L 1

Lead

Work Order: **1707217**Date Reported: **8/7/2017**

Client: G-Logics Collection Date: 7/21/2017 4:45:00 PM

Project: Auburn Subaru

Lab ID: 1707217-025 **Matrix:** Water

Client Sample ID: GLB-6-W

Analyses	Result	RL	Qual	Units DF		Date Analyzed
Diesel and Heavy Oil by NWTPH	-Dx/Dx Ext.			Batc	h ID:	17703 Analyst: SB
Diesel (Fuel Oil)	ND	49.9		μg/L	1	7/25/2017 7:49:34 AM
Heavy Oil	161	99.8		μg/L	1	7/25/2017 7:49:34 AM
Surr: 2-Fluorobiphenyl	82.6	50 - 150		%Rec	1	7/25/2017 7:49:34 AM
Surr: o-Terphenyl	85.6	50 - 150		%Rec	1	7/25/2017 7:49:34 AM
Gasoline by NWTPH-Gx				Bato	h ID:	17715 Analyst: NG
Gasoline	ND	50.0		μg/L	1	7/25/2017 3:17:00 AM
Surr: Toluene-d8	100	65 - 135		%Rec	1	7/25/2017 3:17:00 AM
Surr: 4-Bromofluorobenzene	88.7	65 - 135		%Rec	1	7/25/2017 3:17:00 AM
Volatile Organic Compounds by	EPA Method 8	3260C		Batch ID:		17715 Analyst: NG
Dichlorodifluoromethane (CFC-12)	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
Chloromethane	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
Vinyl chloride	ND	0.200		μg/L	1	7/25/2017 3:17:00 AM
Bromomethane	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
Trichlorofluoromethane (CFC-11)	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
Chloroethane	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
1,1-Dichloroethene	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
Methylene chloride	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
trans-1,2-Dichloroethene	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
Methyl tert-butyl ether (MTBE)	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
1,1-Dichloroethane	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
2,2-Dichloropropane	ND	2.00	Q	μg/L	1	7/25/2017 3:17:00 AM
cis-1,2-Dichloroethene	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
Chloroform	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
1,1,1-Trichloroethane (TCA)	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
1,1-Dichloropropene	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
Carbon tetrachloride	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
1,2-Dichloroethane (EDC)	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
Benzene	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
Trichloroethene (TCE)	ND	0.500		μg/L	1	7/25/2017 3:17:00 AM
1,2-Dichloropropane	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
Bromodichloromethane	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
Dibromomethane	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
cis-1,3-Dichloropropene	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
Toluene	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
trans-1,3-Dichloropropylene	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM

DF

Units

Work Order: **1707217**Date Reported: **8/7/2017**

Date Analyzed

Client: G-Logics Collection Date: 7/21/2017 4:45:00 PM

RL

Qual

Project: Auburn Subaru

Analyses

Lab ID: 1707217-025 **Matrix:** Water

Result

Client Sample ID: GLB-6-W

Allalyses	Nesuit	NL.	Quai	Ullits	DF	Date Analyzeu
Volatile Organic Compounds by	EPA Method	8260C		Batc	h ID: 1	17715 Analyst: NG
1,1,2-Trichloroethane	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
1,3-Dichloropropane	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
Tetrachloroethene (PCE)	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
Dibromochloromethane	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
1,2-Dibromoethane (EDB)	ND	0.250		μg/L	1	7/25/2017 3:17:00 AM
Chlorobenzene	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
1,1,1,2-Tetrachloroethane	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
Ethylbenzene	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
m,p-Xylene	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
o-Xylene	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
Styrene	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
Isopropylbenzene	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
Bromoform	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
n-Propylbenzene	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
Bromobenzene	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
2-Chlorotoluene	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
4-Chlorotoluene	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
tert-Butylbenzene	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
1,2,3-Trichloropropane	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
1,2,4-Trichlorobenzene	ND	2.00		μg/L	1	7/25/2017 3:17:00 AM
sec-Butylbenzene	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
4-Isopropyltoluene	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
1,3-Dichlorobenzene	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
1,4-Dichlorobenzene	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
n-Butylbenzene	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
1,2-Dichlorobenzene	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
1,2-Dibromo-3-chloropropane	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
Hexachloro-1,3-butadiene	ND	4.00		μg/L	1	7/25/2017 3:17:00 AM
Naphthalene	ND	1.00		μg/L	1	7/25/2017 3:17:00 AM
1,2,3-Trichlorobenzene	ND	4.00		μg/L	1	7/25/2017 3:17:00 AM
Surr: Dibromofluoromethane	94.8	45.4 - 152		%Rec	1	7/25/2017 3:17:00 AM
Surr: Toluene-d8	98.8	40.1 - 139		%Rec	1	7/25/2017 3:17:00 AM
Surr: 1-Bromo-4-fluorobenzene	86.4	64.2 - 128		%Rec	1	7/25/2017 3:17:00 AM

NOTES:

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Work Order: **1707217**Date Reported: **8/7/2017**

Client: G-Logics Collection Date: 7/21/2017 4:45:00 PM

Project: Auburn Subaru

Lab ID: 1707217-025 **Matrix:** Water

Client Sample ID: GLB-6-W

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Mercury by EPA Method 245.1				Batc	h ID: 17	7705 Analyst: WF
Mercury	ND	0.100		μg/L	1	7/24/2017 6:29:06 PM
Total Metals by EPA Method 200.8				Batc	h ID: 17	7698 Analyst: TN
Arsenic	6.52	1.00		μg/L	1	7/24/2017 2:01:51 PM
Cadmium	ND	0.200		μg/L	1	7/24/2017 2:01:51 PM
Chromium	2.00	0.500		μg/L	1	7/24/2017 2:01:51 PM
Lead	1.32	0.500		μg/L	1	7/24/2017 2:01:51 PM

B. 1994 A

Work Order: 1707217 Date Reported: 8/7/2017

Collection Date: 7/21/2017 7:50:00 PM Client: G-Logics

Project: Auburn Subaru

Lab ID: 1707217-026 Matrix: Water

Client Sample ID: GLB-7-W

Analyses	Result RL Qual Units DF Date		Date Analyzo	ed			
Polychlorinated Biphenyls (PCE	3) by EPA 808	<u>2</u>		Batc	h ID:	17702 Analyst:	SG
Aroclor 1016	ND	0.0999		μg/L	1	7/25/2017 11:13:4	49 AM
Aroclor 1221	ND	0.0999		μg/L	1	7/25/2017 11:13:4	49 AM
Aroclor 1232	ND	0.0999		μg/L	1	7/25/2017 11:13:4	49 AM
Aroclor 1242	ND	0.0999		μg/L	1	7/25/2017 11:13:4	49 AM
Aroclor 1248	ND	0.0999		μg/L	1	7/25/2017 11:13:4	49 AM
Aroclor 1254	ND	0.0999		μg/L	1	7/25/2017 11:13:4	49 AM
Aroclor 1260	ND	0.0999		μg/L	1	7/25/2017 11:13:4	49 AM
Aroclor 1262	ND	0.0999		μg/L	1	7/25/2017 11:13:4	49 AM
Aroclor 1268	ND	0.0999		μg/L	1	7/25/2017 11:13:4	49 AM
Total PCBs	ND	0.0999		μg/L	1	7/25/2017 11:13:4	49 AM
Surr: Decachlorobiphenyl	43.9	23.1 - 172		%Rec	1	7/25/2017 11:13:4	49 AM
Surr: Tetrachloro-m-xylene	45.3	10 - 125		%Rec	1	7/25/2017 11:13:4	49 AM
Diesel and Heavy Oil by NWTPh	I-Dx/Dx Ext.			Bato	h ID:	17703 Analyst:	SB
Diesel (Fuel Oil)	ND	49.8		μg/L	1	7/25/2017 8:21:46	6 AM
Diesel (Fuel Oil)	ND	49.8	SGT	μg/L	1	8/4/2017 2:17:02	AM
Diesel Range Organics (C12-C24)	857	49.8	SGT	μg/L	1	8/4/2017 2:17:02	AM
Diesel Range Organics (C12-C24)	1,200	49.8		μg/L	1	7/25/2017 8:21:46	6 AM
Heavy Oil	4,370	1,990	D	μg/L	20	7/25/2017 10:31:0	09 AM
Heavy Oil	3,090	99.6	SGT	μg/L	1	8/4/2017 2:17:02	AM
Surr: 2-Fluorobiphenyl	112	50 - 150		%Rec	1	7/25/2017 8:21:46	6 AM
Surr: o-Terphenyl	108	50 - 150		%Rec	1	7/25/2017 8:21:46	6 AM
NOTES:							

DRO - Indicates the presence of unresolved compounds eluting from dodecane through tetracosane (C12-C24).

SGT - Silica Gel Treatment

Polyaromatic Hydrocarbons I	oy EPA Method 82	270 (SIM)	Batch I	D: ′	17704 Analyst: BT
Naphthalene	ND	0.0997	μg/L	1	7/24/2017 7:42:06 PM
2-Methylnaphthalene	0.143	0.0997	μg/L	1	7/24/2017 7:42:06 PM
1-Methylnaphthalene	ND	0.0997	μg/L	1	7/24/2017 7:42:06 PM
Acenaphthylene	ND	0.0997	μg/L	1	7/24/2017 7:42:06 PM
Acenaphthene	ND	0.0997	μg/L	1	7/24/2017 7:42:06 PM
Fluorene	ND	0.0997	μg/L	1	7/24/2017 7:42:06 PM
Phenanthrene	ND	0.0997	μg/L	1	7/24/2017 7:42:06 PM
Anthracene	ND	0.0997	μg/L	1	7/24/2017 7:42:06 PM
Fluoranthene	ND	0.0997	μg/L	1	7/24/2017 7:42:06 PM
Pyrene	ND	0.0997	μg/L	1	7/24/2017 7:42:06 PM

Work Order: **1707217**Date Reported: **8/7/2017**

Client: G-Logics Collection Date: 7/21/2017 7:50:00 PM

Project: Auburn Subaru

Lab ID: 1707217-026 **Matrix:** Water

Client Sample ID: GLB-7-W

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by	EPA Method 8	3270 (SIM)		Batc	h ID:	17704 Analyst: BT
Benz(a)anthracene	ND	0.0997		μg/L	1	7/24/2017 7:42:06 PM
Chrysene	ND	0.0997		μg/L	1	7/24/2017 7:42:06 PM
Benzo(b)fluoranthene	ND	0.0997		μg/L	1	7/24/2017 7:42:06 PM
Benzo(j,k)fluoranthene	ND	0.0997		μg/L	1	7/24/2017 7:42:06 PM
Benzo(a)pyrene	ND	0.0997		μg/L	1	7/24/2017 7:42:06 PM
Indeno(1,2,3-cd)pyrene	ND	0.0997		μg/L	1	7/24/2017 7:42:06 PM
Dibenz(a,h)anthracene	ND	0.0997		μg/L	1	7/24/2017 7:42:06 PM
Benzo(g,h,i)perylene	ND	0.0997		μg/L	1	7/24/2017 7:42:06 PM
Surr: 2-Fluorobiphenyl	81.5	31.2 - 159		%Rec	1	7/24/2017 7:42:06 PM
Surr: Terphenyl-d14	79.1	21.9 - 122		%Rec	1	7/24/2017 7:42:06 PM
Gasoline by NWTPH-Gx				Batc	h ID:	17715 Analyst: NG
Gasoline	ND	50.0		μg/L	1	7/25/2017 4:14:00 AM
Surr: Toluene-d8	105	65 - 135		%Rec	1	7/25/2017 4:14:00 AM
Surr: 4-Bromofluorobenzene	96.1	65 - 135		%Rec	1	7/25/2017 4:14:00 AM
Volatile Organic Compounds by	EPA Method	8260C		Bato	h ID:	17715 Analyst: NG
Dichlorodifluoromethane (CFC-12)	ND	1.00		μg/L	1	7/25/2017 4:14:00 AM
Chloromethane	ND	1.00		μg/L	1	7/25/2017 4:14:00 AM
Vinyl chloride	ND	0.200		μg/L	1	7/25/2017 4:14:00 AM
Bromomethane	ND	1.00		μg/L	1	7/25/2017 4:14:00 AM
Trichlorofluoromethane (CFC-11)	ND	1.00		μg/L	1	7/25/2017 4:14:00 AM
Chloroethane	ND	1.00		μg/L	1	7/25/2017 4:14:00 AM
1,1-Dichloroethene	ND	1.00		μg/L	1	7/25/2017 4:14:00 AM
Methylene chloride	ND	1.00		μg/L	1	7/25/2017 4:14:00 AM
trans-1,2-Dichloroethene	ND	1.00		μg/L	1	7/25/2017 4:14:00 AM
Methyl tert-butyl ether (MTBE)	ND	1.00		μg/L	1	7/25/2017 4:14:00 AM
1,1-Dichloroethane	ND	1.00		μg/L	1	7/25/2017 4:14:00 AM
2,2-Dichloropropane	ND	2.00	Q	μg/L	1	7/25/2017 4:14:00 AM
cis-1,2-Dichloroethene	ND	1.00		μg/L	1	7/25/2017 4:14:00 AM
Chloroform	ND	1.00		μg/L	1	7/25/2017 4:14:00 AM
1,1,1-Trichloroethane (TCA)	ND	1.00		μg/L	1	7/25/2017 4:14:00 AM
1,1-Dichloropropene	ND	1.00		μg/L	1	7/25/2017 4:14:00 AM
Carbon tetrachloride	ND	1.00		μg/L	1	7/25/2017 4:14:00 AM
1,2-Dichloroethane (EDC)	ND	1.00		μg/L	1	7/25/2017 4:14:00 AM
Benzene	ND	1.00		μg/L	1	7/25/2017 4:14:00 AM
Trichloroethene (TCE)	ND	0.500		μg/L	1	7/25/2017 4:14:00 AM

Work Order: **1707217**Date Reported: **8/7/2017**

Client: G-Logics Collection Date: 7/21/2017 7:50:00 PM

Project: Auburn Subaru

Lab ID: 1707217-026 **Matrix:** Water

Client Sample ID: GLB-7-W

1,2-Dichloropropane	Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Bromodichloromethane	Volatile Organic Compounds I	oy EPA Method 82	260C		Batc	h ID: 17	715 Analyst: NG
Bromodichloromethane	1,2-Dichloropropane	ND	1.00		μg/L	1	7/25/2017 4:14:00 AM
Dibromomethane		ND	1.00			1	7/25/2017 4:14:00 AM
cis-1,3-Dichloropropene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM Toluene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM trans-1,3-Dichloropropylene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 1,1,2-Trichloroethane ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 1,3-Dichloropropane ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 1-German (PCE) ND 1.00 µg/L 1 7/25/2017 4:14:00 AM Dibromochlane (EDB) ND 0.250 µg/L 1 7/25/2017 4:14:00 AM 1,2-Dibromoethane (EDB) ND 0.260 µg/L 1 7/25/2017 4:14:00 AM 1,1,1,2-Tetrachloroethane ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 1,1,1,2-Tetrachloroethane ND 1.00 µg/L 1 7/25/2017 4:14:00 AM ethylbenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM oxylene ND 1.00 µ	Dibromomethane	ND	1.00			1	7/25/2017 4:14:00 AM
Toluene	cis-1,3-Dichloropropene	ND	1.00			1	7/25/2017 4:14:00 AM
trans-1,3-Dichloropropylene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 1,1,2-Trichloroethane ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 1,3-Dichloropropane ND 1.00 µg/L 1 7/25/2017 4:14:00 AM Tetrachloroethane (PCE) ND 1.00 µg/L 1 7/25/2017 4:14:00 AM Dibromochloromethane (EDB) ND 0.250 µg/L 1 7/25/2017 4:14:00 AM Chlorobenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM Chlorobenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM Chlorobenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM Litylbenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM Ethylbenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM Styrene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM Isopropylbenzene ND 1.00 µg/L		ND	1.00			1	7/25/2017 4:14:00 AM
1,1,2-Trichloroethane ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 1,3-Dichloropropane ND 1.00 µg/L 1 7/25/2017 4:14:00 AM Tetrachloroethene (PCE) ND 1.00 µg/L 1 7/25/2017 4:14:00 AM Dibromochloromethane ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 1,2-Dibromoethane (EDB) ND 0.250 µg/L 1 7/25/2017 4:14:00 AM 1,1,1,2-Tetrachloroethane ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 1,1,1,2-Tetrachloroethane ND 1.00 µg/L 1 7/25/2017 4:14:00 AM Ethylbenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM o-Xylene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM Styrene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM Isopropylbenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM Isopropylbenzene ND 1.00 µg/L	trans-1,3-Dichloropropylene	ND	1.00			1	7/25/2017 4:14:00 AM
1,3-Dichloropropane ND 1.00 µg/L 1 7/25/2017 4:14:00 AM	1,1,2-Trichloroethane	ND	1.00			1	7/25/2017 4:14:00 AM
Tetrachloroethene (PCE) ND 1.00 μg/L 1 7/25/2017 4:14:00 AM	1,3-Dichloropropane	ND	1.00			1	7/25/2017 4:14:00 AM
Dibromochloromethane ND 1.00		ND	1.00			1	7/25/2017 4:14:00 AM
1,2-Dibromoethane (EDB)		ND	1.00			1	7/25/2017 4:14:00 AM
Chlorobenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 1,1,1,2-Tetrachloroethane ND 1.00 µg/L 1 7/25/2017 4:14:00 AM Ethylbenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM m,p-Xylene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM o-Xylene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM Styrene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM Isopropylbenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM Bromoform ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 1,1,2,2-Tetrachloroethane ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 1,1,2,2-Tetrachloroethane ND 1.00 µg/L 1 7/25/2017 4:14:00 AM n-Propylbenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM n-Propylbenzene ND 1.00 µg/L 1 7/25	1,2-Dibromoethane (EDB)	ND	0.250			1	7/25/2017 4:14:00 AM
1,1,1,2-Tetrachloroethane		ND	1.00			1	7/25/2017 4:14:00 AM
Ethylbenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM m,p-Xylene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM o-Xylene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM Styrene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM Isopropylbenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM Bromoform ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 1,1,2,2-Tetrachloroethane ND 1.00 µg/L 1 7/25/2017 4:14:00 AM n-Propylbenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM Bromobenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 1,3,5-Trimethylbenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 2-Chlorotoluene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 4-Chlorotoluene ND 1.00 µg/L 1 7/25/2017 4:14:00		ND	1.00			1	7/25/2017 4:14:00 AM
m,p-Xylene	Ethylbenzene	ND	1.00			1	7/25/2017 4:14:00 AM
o-Xylene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM Styrene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM Isopropylbenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM Bromoform ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 1,1,2,2-Tetrachloroethane ND 1.00 µg/L 1 7/25/2017 4:14:00 AM n-Propylbenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM Bromobenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM Bromobenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM Bromobenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 1,3,5-Trimethylbenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 4-Chlorotoluene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 4-Chlorotoluene ND 1.00 µg/L 1 7/25/2017 4:14:0	-	ND	1.00			1	7/25/2017 4:14:00 AM
Styrene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM Isopropylbenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM Bromoform ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 1,1,2,2-Tetrachloroethane ND 1.00 µg/L 1 7/25/2017 4:14:00 AM n-Propylbenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM Bromobenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM Bromobenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 1,3,5-Trimethylbenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 2-Chlorotoluene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 4-Chlorotoluene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 4-Chlorotoluene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 4-Chlorotoluene ND 1.00 µg/L 1 7/25/2		ND	1.00			1	7/25/2017 4:14:00 AM
Isopropylbenzene	-	ND	1.00			1	7/25/2017 4:14:00 AM
Bromoform ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,1,2,2-Tetrachloroethane ND 1.00 μg/L 1 7/25/2017 4:14:00 AM n-Propylbenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM Bromobenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,3,5-Trimethylbenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 2-Chlorotoluene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 4-Chlorotoluene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2,3-Trichloropropane ND 1.00 μg/L 1	Isopropylbenzene	ND	1.00			1	7/25/2017 4:14:00 AM
1,1,2,2-Tetrachloroethane ND 1.00 µg/L 1 7/25/2017 4:14:00 AM n-Propylbenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM Bromobenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 1,3,5-Trimethylbenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 2-Chlorotoluene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 4-Chlorotoluene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 4-Chlorotoluene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM tert-Butylbenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 1,2,3-Trichloroperopane ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 1,2,4-Trichlorobenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 4-Isopropyltoluene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 4,4-Dichlorobenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 1,4-Dichlorobenzene ND		ND	1.00			1	7/25/2017 4:14:00 AM
n-Propylbenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM Bromobenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 1,3,5-Trimethylbenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 2-Chlorotoluene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 4-Chlorotoluene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 4-Chlorotoluene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM tert-Butylbenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 1,2,3-Trichloropropane ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 1,2,4-Trichlorobenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM sec-Butylbenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 4-Isopropyltoluene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 1,3-Dichlorobenzene ND 1.00 µg/L	1,1,2,2-Tetrachloroethane	ND	1.00			1	7/25/2017 4:14:00 AM
Bromobenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,3,5-Trimethylbenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 2-Chlorotoluene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 4-Chlorotoluene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 4-Chlorotoluene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM tert-Butylbenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2,3-Trichloropropane ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2,4-Trichlorobenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM sec-Butylbenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 4-Isopropyltoluene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,3-Dichlorobenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,4-Dichlorobenzene ND 1.00 μg/L	n-Propylbenzene	ND	1.00			1	7/25/2017 4:14:00 AM
1,3,5-Trimethylbenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 2-Chlorotoluene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 4-Chlorotoluene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM tert-Butylbenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 1,2,3-Trichloropropane ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 1,2,4-Trichlorobenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM sec-Butylbenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 4-Isopropyltoluene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 1,3-Dichlorobenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 1,4-Dichlorobenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 1,2-Dichlorobenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 1,2-Dibromo-3-chloropropane ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 1,2,4-Trimethylbenzene		ND	1.00			1	7/25/2017 4:14:00 AM
2-Chlorotoluene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 4-Chlorotoluene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM tert-Butylbenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2,3-Trichloropropane ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2,4-Trichlorobenzene ND 2.00 μg/L 1 7/25/2017 4:14:00 AM sec-Butylbenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 4-Isopropyltoluene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 4-Isopropyltoluene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 4,3-Dichlorobenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,4-Dichlorobenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2-Dichlorobenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2-Dibromo-3-chloropropane ND 1.00 <	1,3,5-Trimethylbenzene	ND	1.00			1	7/25/2017 4:14:00 AM
4-Chlorotoluene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM tert-Butylbenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2,3-Trichloropropane ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2,4-Trichlorobenzene ND 2.00 μg/L 1 7/25/2017 4:14:00 AM sec-Butylbenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 4-Isopropyltoluene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,3-Dichlorobenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,4-Dichlorobenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM n-Butylbenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2-Dichlorobenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2-Dibromo-3-chloropropane ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2,4-Trimethylbenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM Hexachloro-1,3-butadiene	-	ND	1.00			1	7/25/2017 4:14:00 AM
tert-Butylbenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2,3-Trichloropropane ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2,4-Trichlorobenzene ND 2.00 μg/L 1 7/25/2017 4:14:00 AM sec-Butylbenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 4-Isopropyltoluene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,3-Dichlorobenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,4-Dichlorobenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM n-Butylbenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2-Dichlorobenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2-Dibromo-3-chloropropane ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2,4-Trimethylbenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM Hexachloro-1,3-butadiene ND 4.00 <td>4-Chlorotoluene</td> <td>ND</td> <td>1.00</td> <td></td> <td></td> <td>1</td> <td>7/25/2017 4:14:00 AM</td>	4-Chlorotoluene	ND	1.00			1	7/25/2017 4:14:00 AM
1,2,3-Trichloropropane ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2,4-Trichlorobenzene ND 2.00 μg/L 1 7/25/2017 4:14:00 AM sec-Butylbenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 4-Isopropyltoluene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,3-Dichlorobenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,4-Dichlorobenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM n-Butylbenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2-Dichlorobenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2-Dibromo-3-chloropropane ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2,4-Trimethylbenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM Hexachloro-1,3-butadiene ND 4.00 μg/L 1 7/25/2017 4:14:00 AM Naphthalene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM	tert-Butylbenzene	ND	1.00			1	7/25/2017 4:14:00 AM
1,2,4-Trichlorobenzene ND 2.00 μg/L 1 7/25/2017 4:14:00 AM sec-Butylbenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 4-Isopropyltoluene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,3-Dichlorobenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,4-Dichlorobenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM n-Butylbenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2-Dichlorobenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2-Dibromo-3-chloropropane ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2,4-Trimethylbenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM Hexachloro-1,3-butadiene ND 4.00 μg/L 1 7/25/2017 4:14:00 AM Naphthalene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM	-	ND	1.00			1	7/25/2017 4:14:00 AM
sec-Butylbenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 4-Isopropyltoluene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,3-Dichlorobenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,4-Dichlorobenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM n-Butylbenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2-Dichlorobenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2-Dibromo-3-chloropropane ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2,4-Trimethylbenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM Hexachloro-1,3-butadiene ND 4.00 μg/L 1 7/25/2017 4:14:00 AM Naphthalene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM	• •	ND	2.00			1	7/25/2017 4:14:00 AM
4-Isopropyltoluene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,3-Dichlorobenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,4-Dichlorobenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM n-Butylbenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2-Dichlorobenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2-Dibromo-3-chloropropane ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2,4-Trimethylbenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM Hexachloro-1,3-butadiene ND 4.00 μg/L 1 7/25/2017 4:14:00 AM Naphthalene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM		ND	1.00			1	7/25/2017 4:14:00 AM
1,3-Dichlorobenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,4-Dichlorobenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM n-Butylbenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2-Dichlorobenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2-Dibromo-3-chloropropane ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2,4-Trimethylbenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM Hexachloro-1,3-butadiene ND 4.00 μg/L 1 7/25/2017 4:14:00 AM Naphthalene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM	-	ND	1.00			1	7/25/2017 4:14:00 AM
1,4-Dichlorobenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM n-Butylbenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2-Dichlorobenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2-Dibromo-3-chloropropane ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2,4-Trimethylbenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM Hexachloro-1,3-butadiene ND 4.00 μg/L 1 7/25/2017 4:14:00 AM Naphthalene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM	,	ND	1.00			1	7/25/2017 4:14:00 AM
n-Butylbenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2-Dichlorobenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2-Dibromo-3-chloropropane ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2,4-Trimethylbenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM Hexachloro-1,3-butadiene ND 4.00 μg/L 1 7/25/2017 4:14:00 AM Naphthalene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM	1,4-Dichlorobenzene	ND	1.00			1	7/25/2017 4:14:00 AM
1,2-Dichlorobenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 1,2-Dibromo-3-chloropropane ND 1.00 µg/L 1 7/25/2017 4:14:00 AM 1,2,4-Trimethylbenzene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM Hexachloro-1,3-butadiene ND 4.00 µg/L 1 7/25/2017 4:14:00 AM Naphthalene ND 1.00 µg/L 1 7/25/2017 4:14:00 AM	n-Butylbenzene	ND	1.00			1	7/25/2017 4:14:00 AM
1,2-Dibromo-3-chloropropane ND 1.00 μg/L 1 7/25/2017 4:14:00 AM 1,2,4-Trimethylbenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM Hexachloro-1,3-butadiene ND 4.00 μg/L 1 7/25/2017 4:14:00 AM Naphthalene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM						1	7/25/2017 4:14:00 AM
1,2,4-Trimethylbenzene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM Hexachloro-1,3-butadiene ND 4.00 μg/L 1 7/25/2017 4:14:00 AM Naphthalene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM	1,2-Dibromo-3-chloropropane		1.00			1	7/25/2017 4:14:00 AM
Hexachloro-1,3-butadiene ND 4.00 μg/L 1 7/25/2017 4:14:00 AM Naphthalene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM							
Naphthalene ND 1.00 μg/L 1 7/25/2017 4:14:00 AM	-						
	•						
1,z,3-michioropenzene ND 4.00 µg/L 1 7/25/2017 4:14:00 AM	1,2,3-Trichlorobenzene	ND	4.00		μg/L	1	7/25/2017 4:14:00 AM

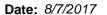
Work Order: 1707217 Date Reported: 8/7/2017

Client: G-Logics Collection Date: 7/21/2017 7:50:00 PM

Project: Auburn Subaru

Lab ID: 1707217-026 Matrix: Water

1.89


			•		
Result	RL	Qual	Units	DF	Date Analyzed
PA Method	8260C		Batc	h ID:	17715 Analyst: NG
95.3	45.4 - 152		%Rec	1	7/25/2017 4:14:00 AM
99.0	40.1 - 139		%Rec	1	7/25/2017 4:14:00 AM
93.2	64.2 - 128		%Rec	1	7/25/2017 4:14:00 AM
alibration that	does not meet e	established a	acceptance	criteria	ı (<20%RSD, <20% Drift
			Batc	h ID:	17705 Analyst: WF
ND	0.100		μg/L	1	7/24/2017 6:30:47 PM
8.00			Bato	h ID:	17727 Analyst: TN
6.94	1.00		μg/L	1	7/26/2017 10:07:47 AM
			Bato	h ID:	17698 Analyst: TN
19.0	1.00		μg/L	1	7/24/2017 2:05:52 PM
ND	0.200		μg/L	1	7/24/2017 2:05:52 PM
1.87	0.500		μg/L	1	7/24/2017 2:05:52 PM
	95.3 99.0 93.2 alibration that ND 00.8 6.94	95.3 45.4 - 152 99.0 40.1 - 139 93.2 64.2 - 128 Alibration that does not meet each of the second of	PA Method 8260C 95.3	PA Method 8260C 95.3	PA Method 8260C 95.3 45.4 - 152 %Rec 1 99.0 40.1 - 139 %Rec 1 93.2 64.2 - 128 %Rec 1 alibration that does not meet established acceptance criteria Batch ID: ND 0.100 μg/L 1 Batch ID: 19.0 1.00 μg/L 1 ND 0.200 μg/L 1

0.500

μg/L

Lead

7/24/2017 2:05:52 PM

Work Order: 1707217

QC SUMMARY REPORT

CLIENT: G-Logics

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Project: Auburn Sub	paru						Diesei	and neavy	Oll by NVV	וצח-טגו	DX EX
Sample ID MB-17701	SampType: MBLK			Units: mg/Kg		Prep Date	: 7/24/20)17	RunNo: 375	557	
Client ID: MBLKS	Batch ID: 17701					Analysis Date	: 7/24/20)17	SeqNo: 721	709	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	20.0									
Heavy Oil	ND	50.0									
Surr: 2-Fluorobiphenyl	17.7		20.00		88.3	50	150				
Surr: o-Terphenyl	18.9		20.00		94.5	50	150				
Sample ID LCS-17701	SampType: LCS			Units: mg/Kg		Prep Date	: 7/24/20)17	RunNo: 37 5	557	
Client ID: LCSS	Batch ID: 17701					Analysis Date	: 7/24/20)17	SeqNo: 721	708	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	481	20.0	500.0	0	96.1	65	135				
Surr: 2-Fluorobiphenyl	20.7		20.00		104	50	150				
Surr: o-Terphenyl	23.4		20.00		117	50	150				
Sample ID 1707218-002ADUP	SampType: DUP			Units: mg/Kg	-dry	Prep Date	: 7/24/20)17	RunNo: 375	557	
Client ID: BATCH	Batch ID: 17701					Analysis Date	: 7/24/20)17	SeqNo: 722	2133	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	18.1						0		30	
Heavy Oil	ND	45.4						0		30	
Surr: 2-Fluorobiphenyl	17.5		18.14		96.2	50	150		0		
Surr: o-Terphenyl	18.3		18.14		101	50	150		0		
Sample ID 1707217-001ADUP	SampType: DUP			Units: mg/Kg	-dry	Prep Date	: 7/24/20)17	RunNo: 37 5	557	
Client ID: GLB-1-5	Batch ID: 17701					Analysis Date	: 7/24/20)17	SeqNo: 722	2119	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	26.0						0		30	
									04.0	0.0	_
Heavy Oil	4,820	64.9						5,965	21.2	30	Ε

Revision v1 Page 38 of 109

Auburn Subaru

Work Order: 1707217

QC SUMMARY REPORT

CLIENT: G-Logics

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Sample ID 1707217-001ADUP	SampType: DUP			Units: mg/l	Kg-dry	Prep Da	te: 7/24/20)17	RunNo: 37	557	
Client ID: GLB-1-5	Batch ID: 17701					Analysis Da	te: 7/24/20	17	SeqNo: 722	2119	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: o-Terphenyl	24.2		25.98		93.2	50	150		0		

NOTES:

Project:

E - Estimated value. The amount exceeds the linear working range of the instrument.

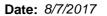
Sample ID 1707217-001AMS	SampType: MS			Units: mg/	Kg-dry	Prep Da	te: 7/24/20	17	RunNo: 375	557	
Client ID: GLB-1-5	Batch ID: 17701					Analysis Da	te: 7/24/20	17	SeqNo: 722	2120	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	564	26.5	662.5	19.29	82.3	65	135				
Surr: 2-Fluorobiphenyl	26.4		26.50		99.7	50	150				
Surr: o-Terphenyl	31.8		26.50		120	50	150				

Sample ID 1707217-001AMSD	SampType: MSD			Units: mg/	Kg-dry	Prep Dat	te: 7/24/20	17	RunNo: 375	557	
Client ID: GLB-1-5	Batch ID: 17701					Analysis Da	te: 7/24/20	17	SeqNo: 722	2121	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	579	25.5	638.0	19.29	87.7	65	135	564.2	2.58	30	
Surr: 2-Fluorobiphenyl	31.2		25.52		122	50	150		0		
Surr: o-Terphenyl	36.2		25.52		142	50	150		0		

Sample ID OIL-CCV-F-17701	SampType: CCV			Units: mg/Kg		Prep Dat	e: 8/2/201	7	RunNo: 375	557	
Client ID: CCV	Batch ID: 17701					Analysis Dat	e: 8/2/201	7	SeqNo: 726	396	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Heavy Oil	1,050	50.0	1,000	0	105	85	115				
Surr: 2-Fluorobiphenyl	20.8		20.00		104	50	150				
Surr: o-Terphenyl	22.2		20.00		111	50	150				

Revision v1 Page 39 of 109

Work Order: 1707217


QC SUMMARY REPORT

CLIENT: G-Logics

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Project:	Auburn Sub	oaru						Diesel	and Heavy	Oil by NW	/TPH-Dx/	Dx Ext.
Sample ID DX-C	CV-F-17701	SampType: CCV			Units: mg/Kg		Prep Da	te: 8/2/201	7	RunNo: 37	557	
Client ID: CCV		Batch ID: 17701					Analysis Da	te: 8/2/201	7	SeqNo: 726	6391	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)		492	20.0	500.0	0	98.3	85	115				
Surr: 2-Fluorob	iphenyl	18.9		20.00		94.6	50	150				
Surr: o-Terpher	nyl	21.2		20.00		106	50	150				

Page 40 of 109 Revision v1

Work Order: 1707217

QC SUMMARY REPORT

CLIENT: G-Logics

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

									-			
Sample ID MB-17703	SampType:				Units: µg/L			te: 7/24/20		RunNo: 37		
Client ID: MBLKW	Batch ID:	17703					Analysis Da	te: 7/25/20)17	SeqNo: 722	2255	
Analyte	R	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)		ND	50.0									
Heavy Oil		ND	100									
Surr: 2-Fluorobiphenyl		60.1		80.00		75.1	50	150				
Surr: o-Terphenyl		71.7		80.00		89.6	50	150				
Sample ID LCS-17703	SampType:	LCS			Units: µg/L		Prep Da	te: 7/24/20)17	RunNo: 37	583	
Client ID: LCSW	Batch ID:	17703					Analysis Da	te: 7/25/20)17	SeqNo: 722	2253	
Analyte	R	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)		711	49.7	993.3	0	71.6	65	135				
Surr: 2-Fluorobiphenyl		62.9		79.47		79.2	50	150				
Surr: o-Terphenyl		75.8		79.47		95.3	50	150				
Sample ID LCSD-17703	SampType:	LCSD			Units: µg/L		Prep Da	te: 7/24/20)17	RunNo: 37	583	
Client ID: LCSW02	Batch ID:	17703					Analysis Da	te: 7/25/20)17	SeqNo: 722	2254	
Analyte	R	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)		780	49.8	996.2	0	78.3	65	135	711.1	9.24	30	
Surr: 2-Fluorobiphenyl		67.3		79.70		84.5	50	150		0		
Surr: o-Terphenyl		78.8		79.70		98.9	50	150		0		
Sample ID 1707217-023BDUP	SampType:	DUP			Units: µg/L		Prep Da	te: 7/24/20)17	RunNo: 37	583	
Client ID: GLB-1-W	Batch ID:	17703					Analysis Da	te: 7/25/2 0)17	SeqNo: 722	2247	
Analyte	R	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)		ND	49.8						0		30	
Heavy Oil	1	,720	99.6						1,672	2.86	30	
Surr: 2-Fluorobiphenyl		74.8		79.67		93.9	50	150		0		
ouri. 2 i idolobipiichyi		7 4.0										

Page 41 of 109 Revision v1

Work Order: 1707217

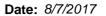
QC SUMMARY REPORT

CLIENT: G-Logics

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Project: Auburn Subaru

Sample ID 1707217-023BDUP SampType: DUP Units: μg/L Prep Date: 7/24/2017 RunNo: 37583


Client ID: **GLB-1-W** Batch ID: **17703** Analysis Date: **7/25/2017** SeqNo: **722247**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Sample ID OIL-CCV-F-17703	SampType: CCV			Units: µg/L		Prep Dat	te: 8/2/201	7	RunNo: 375	583	
Client ID: CCV	Batch ID: 17703					Analysis Dat	te: 8/2/201	7	SeqNo: 726	385	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Heavy Oil	1,030	100	1,000	0	103	85	115				
Surr: 2-Fluorobiphenyl	21.0		20.00		105	50	150				
Surr: o-Terphenyl	21.8		20.00		109	50	150				

Sample ID DX-CCV-F-17703	SampType: CCV			Units: µg/L		Prep Dat	te: 8/2/201	7	RunNo: 375	83	
Client ID: CCV	Batch ID: 17703					Analysis Dat	te: 8/2/201	7	SeqNo: 726	380	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	501	50.0	500.0	0	100	85	115				
Surr: 2-Fluorobiphenyl	19.7		20.00		98.4	50	150				
Surr: o-Terphenyl	21.3		20.00		106	50	150				

Revision v1 Page 42 of 109

Work Order: 1707217

QC SUMMARY REPORT

CLIENT: G-Logics

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Occupie ID AND ATTOO	0T			11-2 24		D D :	=10=100	4=	D No		
Sample ID MB-17720	SampType: MBLK			Units: mg/Kg			: 7/25/20		RunNo: 37 !		
Client ID: MBLKS	Batch ID: 17720					Analysis Date	: 7/25/20 ⁻	17	SeqNo: 72	2423	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	20.0									
Heavy Oil	ND	50.0									
Surr: 2-Fluorobiphenyl	21.4		20.00		107	50	150				
Surr: o-Terphenyl	21.3		20.00		106	50	150				
Sample ID LCS-17720	SampType: LCS			Units: mg/Kg		Prep Date	: 7/25/20°	17	RunNo: 37	594	
Client ID: LCSS	Batch ID: 17720					Analysis Date	: 7/25/20	17	SeqNo: 72	2424	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	548	20.0	500.0	0	110	65	135				
Surr: 2-Fluorobiphenyl	22.0		20.00		110	50	150				
Surr: o-Terphenyl	23.8		20.00		119	50	150				
Sample ID 1707219-001ADUP	SampType: DUP			Units: mg/Kg	-dry	Prep Date	e: 7/25/20	17	RunNo: 37	594	
Client ID: BATCH	Batch ID: 17720					Analysis Date	: 7/25/20	17	SeqNo: 72	3375	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	26.8						0		30	
Heavy Oil	ND	67.0						0		30	
Surr: 2-Fluorobiphenyl	29.5		26.80		110	50	150		0		
Surr: o-Terphenyl	29.0		26.80		108	50	150		0		
Sample ID 1707219-001AMS	SampType: MS			Units: mg/Kg	-dry	Prep Date	e: 7/25/20	17	RunNo: 37	594	
Client ID: BATCH	Batch ID: 17720					Analysis Date	: 7/25/20	17	SeqNo: 72 :	3315	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	746	25.9	646.9	0	115	65	135				
Surr: 2-Fluorobiphenyl	32.5		25.88		125	50	150				
	34.2		25.88		132	50	150				

Revision v1 Page 43 of 109

Work Order: 1707217

QC SUMMARY REPORT

CLIENT: G-Logics

Sample ID 1707219-001AMS

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Project: Auburn Subaru

SampType: MS Units: mg/Kg-dry Prep Date: 7/25/2017 RunNo: 37594

Client ID: **BATCH** Batch ID: **17720** Analysis Date: **7/25/2017** SeqNo: **723315**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Sample ID 1707219-001AMSD	SampType: MSD			Units: mg/K	g-dry	Prep Da	te: 7/25/20	117	RunNo: 37	594	
Client ID: BATCH	Batch ID: 17720					Analysis Da	te: 7/25/20	17	SeqNo: 72	3316	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	779	28.8	720.5	0	108	65	135	745.5	4.45	30	
Surr: 2-Fluorobiphenyl	30.8		28.82		107	50	150		0		
Surr: o-Terphenyl	33.5		28.82		116	50	150		0		

Revision v1 Page 44 of 109

Work Order: 1707217

QC SUMMARY REPORT

G-Logics **CLIENT:**

Project: Auburn Suk	oaru				Dissolved Metals by EPA Method 20	8.00
Sample ID MB-17722FB	SampType: MBLK			Units: µg/L	Prep Date: 7/26/2017 RunNo: 37611	
Client ID: MBLKW	Batch ID: 17727				Analysis Date: 7/26/2017 SeqNo: 722769	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qu	ıal
Arsenic NOTES: Filter Blank	ND	1.00				
Sample ID MB-17727	SampType: MBLK			Units: µg/L	Prep Date: 7/26/2017 RunNo: 37611	
Client ID: MBLKW	Batch ID: 17727				Analysis Date: 7/26/2017 SeqNo: 722770	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qu	ıal
Arsenic	ND	1.00				
Sample ID LCS-17727	SampType: LCS			Units: µg/L	Prep Date: 7/26/2017 RunNo: 37611	
Client ID: LCSW	Batch ID: 17727				Analysis Date: 7/26/2017 SeqNo: 722771	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qu	ıal
Arsenic	102	1.00	100.0	0	102 85 115	
Sample ID 1707217-024FDUP	SampType: DUP			Units: µg/L	Prep Date: 7/26/2017 RunNo: 37611	
Client ID: GLB-5-W	Batch ID: 17727				Analysis Date: 7/26/2017 SeqNo: 722773	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qu	ıal
Arsenic	4.41	1.00			5.192 16.3 30	
Sample ID 1707217-024FMS	SampType: MS			Units: µg/L	Prep Date: 7/26/2017 RunNo: 37611	
Client ID: GLB-5-W	Batch ID: 17727				Analysis Date: 7/26/2017 SeqNo: 722774	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qu	ıal
Arsenic	563	1.00	500.0	5.192	111 70 130	

Page 45 of 109 Revision v1

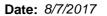
Auburn Subaru

Work Order: 1707217

QC SUMMARY REPORT

CLIENT: G-Logics

Project:


Dissolved Metals by EPA Method 200.8

Sample ID 1707217-024FMSD SampType: MSD Units: μg/L Prep Date: 7/26/2017 RunNo: 37611

Client ID: **GLB-5-W** Batch ID: **17727** Analysis Date: **7/26/2017** SeqNo: **722775**

%REC LowLimit HighLimit RPD Ref Val Result SPK value SPK Ref Val %RPD RPDLimit Qual Analyte RLArsenic 561 1.00 500.0 5.192 111 70 130 562.6 0.335 30

Revision v1 Page 46 of 109

Work Order: 1707217

CLIENT: G-Logics

QC SUMMARY REPORT

Gasoline by NWTPH-Gx

Project: Auburn Sub	oaru								Gasonn	e by NW	IPH-(
Sample ID LCS-17715	SampType: LCS			Units: µg/L		Prep Da	te: 7/24/2 0	017	RunNo: 37	585	
Client ID: LCSW	Batch ID: 17715					Analysis Da	te: 7/24/2 0	017	SeqNo: 72	2319	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	503	50.0	500.0	0	101	65	135				
Surr: Toluene-d8	25.5		25.00		102	65	135				
Surr: 4-Bromofluorobenzene	24.8		25.00		99.1	65	135				
Sample ID LCSD-17715	SampType: LCSD			Units: µg/L		Prep Da	te: 7/24/2 0	017	RunNo: 37	585	
Client ID: LCSW02	Batch ID: 17715					Analysis Da	te: 7/25/2 0	017	SeqNo: 72	2318	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	507	50.0	500.0	0	101	65	135	502.5	0.879	20	
Surr: Toluene-d8	25.1		25.00		100	65	135		0		
Surr: 4-Bromofluorobenzene	24.6		25.00		98.4	65	135		0		
Sample ID MB-17715	SampType: MBLK			Units: µg/L		Prep Da	te: 7/24/2 0	017	RunNo: 37	585	
Client ID: MBLKW	Batch ID: 17715					Analysis Da	te: 7/25/2 0	017	SeqNo: 722	2320	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	50.0									
Surr: Toluene-d8	25.5		25.00		102	65	135				
Surr: 4-Bromofluorobenzene	23.1		25.00		92.5	65	135				
Sample ID 1707217-025ADUP	SampType: DUP			Units: µg/L		Prep Da	te: 7/24/2 0)17	RunNo: 37	585	
Client ID: GLB-6-W	Batch ID: 17715					Analysis Da	te: 7/25/2 0	017	SeqNo: 72	2305	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Gasoline	ND	50.0						0		30	
Surr: Toluene-d8	25.9		25.00		103	65	135		0		

Page 47 of 109 Revision v1

Work Order: 1707217

QC SUMMARY REPORT

CLIENT: G-Logics Project:

Gasoline by NWTPH-Gx

Project: Auburn Sub	oaru								Gasolin	e by NW⊺	ГРН-Gx
Sample ID 1707219-023BDUP	SampType: DUP			Units: µg/L		Prep Da	te: 7/24/20)17	RunNo: 37	585	
Client ID: BATCH	Batch ID: 17715					Analysis Da	te: 7/25/20)17	SeqNo: 72	2315	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	50.0						0		30	
Surr: Toluene-d8	24.7		25.00		98.6	65	135		0		
Surr: 4-Bromofluorobenzene	24.0		25.00		95.8	65	135		0		

Page 48 of 109 Revision v1

Work Order: 1707217

CLIENT: G-Logics

Project: Auburn Subaru

QC SUMMARY REPORT

Gasoline by NWTPH-Gx

Sample ID LCS-17709	SampType: LCS			Units: mg/Kg		Prep Da	te: 7/24/2	017	RunNo: 37	582	
Client ID: LCSS	Batch ID: 17709					Analysis Da	te: 7/24/2	017	SeqNo: 722	2212	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	-		RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	21.6	5.00	25.00	0	86.3	65	135				
Surr: Toluene-d8	1.19		1.250		95.2	65	135				
Surr: 4-Bromofluorobenzene	1.30		1.250		104	65	135				
Sample ID MB-17709	SampType: MBLK			Units: mg/Kg		Prep Da	te: 7/24/2	017	RunNo: 37	582	
Client ID: MBLKS	Batch ID: 17709					Analysis Da	te: 7/24/2	017	SeqNo: 722	2213	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	5.00									
Surr: Toluene-d8	1.19		1.250		95.3	65	135				
Surr: 4-Bromofluorobenzene	1.27		1.250		101	65	135				
Sample ID 1707217-013BDUP	SampType: DUP			Units: mg/Kg-	dry	Prep Da	te: 7/24/2	017	RunNo: 37	582	
Client ID: GLB-5-8	Batch ID: 17709					Analysis Da	te: 7/25/2	017	SeqNo: 722	2202	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	5.91						0		30	
Surr: Toluene-d8	1.44		1.479		97.5	65	135		0		
Surr: 4-Bromofluorobenzene	1.45		1.479		98.3	65	135		0		
Sample ID 1707219-016BMS	SampType: MS			Units: mg/Kg-	dry	Prep Da	te: 7/24/2	017	RunNo: 375	582	
Client ID: BATCH	Batch ID: 17709					Analysis Da	te: 7/25/2	017	SeqNo: 722	2207	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Gasoline	35.9	9.16	45.82	0	78.4	65	135				
Surr: Toluene-d8	2.23		2.291		97.3	65	135				
Surr: 4-Bromofluorobenzene	2.32		2.291		101	65	135				

Revision v1 Page 49 of 109

Work Order: 1707217

QC SUMMARY REPORT

CLIENT: G-Logics

Gasoline by NWTPH-Gx

Project: Auburn Subaru

Sample ID 1707219-016BMSD	SampType: MSD			Units: mg/k	g-dry	Prep Dat	te: 7/24/20	17	RunNo: 375	582	
Client ID: BATCH	Batch ID: 17709					Analysis Da	te: 7/25/20	17	SeqNo: 722	2208	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	36.4	9.16	45.82	0	79.5	65	135	35.91	1.42	30	
Surr: Toluene-d8	2.32		2.291		101	65	135		0		
Surr: 4-Bromofluorobenzene	2.25		2.291		98.4	65	135		0		

Sample ID 1707219-003BDUP	SampType: DUP			Units: mg/l	Kg-dry	Prep Dat	e: 7/24/20	17	RunNo: 37	582	
Client ID: BATCH	Batch ID: 17709					Analysis Dat	e: 7/25/20	17	SeqNo: 722	2654	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	9.08						0		30	
Surr: Toluene-d8	2.19		2.270		96.5	65	135		0		
Surr: 4-Bromofluorobenzene	2.27		2.270		100	65	135		0		

Revision v1 Page 50 of 109

Work Order: 1707217

QC SUMMARY REPORT

CLIENT: G-Logics

Hexavalent Chromium by EPA Method 7196

Project: Auburn Subaru

Sample ID MB-17725	SampType: MBLK	Units: mg/Kg	Prep Date:	7/25/2017	RunNo:	37602
Client ID: MBLKS	Batch ID: 17725	An	alysis Date:	7/25/2017	SeqNo:	722539

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Chromium, Hexavalent ND 0.500

Sample ID LCS-17725	SampType: LCS			Units: mg/Kg		Prep Da	te: 7/25/20)17	RunNo: 376	602	
Client ID: LCSS	Batch ID: 17725					Analysis Da	te: 7/25/20	17	SeqNo: 722	2540	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	2.35	0.500	2.500	0	94.1	65	135				

Sample ID 1707217-001ADUP	SampType: DUP			Units: mg	/Kg-dry	Prep Da	te: 7/25/2 0)17	RunNo: 376	502	
Client ID: GLB-1-5	Batch ID: 17725					Analysis Da	te: 7/25/2 0)17	SeqNo: 722	2542	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	ND	0.683						0		30	

Sample ID 1707217-001AMS	SampType: MS			Units: mg	/Kg-dry	Prep Da	te: 7/25/2 0)17	RunNo: 370	602	
Client ID: GLB-1-5	Batch ID: 17725					Analysis Da	te: 7/25/20)17	SeqNo: 72	2543	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	ND	0.689	3.445	0.09548	3.75	65	135				S

NOTES:

S - Outlying spike recovery observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Sample ID 1707217-001AMSD	SampType: MSD			Units: mg	/Kg-dry	Prep Da	te: 7/25/20	17	RunNo: 376	602	
Client ID: GLB-1-5	Batch ID: 17725					Analysis Da	te: 7/25/20	17	SeqNo: 722	2544	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	ND	0.679	3.394	0.09548	-2.81	65	135	0		30	S

NOTES:

Revision v1 Page 51 of 109

S - Outlying spike recovery observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Work Order: 1707217

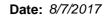
CLIENT: G-Logics **QC SUMMARY REPORT**

Mercury by EPA Method 245.1

Project: Auburn Sub	aru						ivier	cury by EPA Metho	u 245.
Sample ID MB-17705	SampType: MBLK			Units: µg/L		Prep Date:	7/24/2017	RunNo: 37549	
Client ID: MBLKW	Batch ID: 17705				A	Analysis Date:	7/24/2017	SeqNo: 722062	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury	ND	0.100							
Sample ID LCS-17705	SampType: LCS			Units: µg/L		Prep Date:	7/24/2017	RunNo: 37549	
Client ID: LCSW	Batch ID: 17705				A	Analysis Date:	7/24/2017	SeqNo: 722063	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury	2.43	0.100	2.500	0	97.2	85	115		
Sample ID 1707217-023CDUP	SampType: DUP			Units: µg/L		Prep Date:	7/24/2017	RunNo: 37549	
Client ID: GLB-1-W	Batch ID: 17705				A	Analysis Date:	7/24/2017	SeqNo: 722065	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury	ND	0.100					0	20	
Sample ID 1707217-023CMS	SampType: MS			Units: µg/L		Prep Date:	7/24/2017	RunNo: 37549	
Client ID: GLB-1-W	Batch ID: 17705				A	Analysis Date:	7/24/2017	SeqNo: 722066	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury	2.38	0.100	2.500	0.02100	94.4	70	130		
Sample ID 1707217-023CMSD	SampType: MSD			Units: µg/L		Prep Date:	7/24/2017	RunNo: 37549	
Client ID: GLB-1-W	Batch ID: 17705				,	Analysis Date:	7/24/2017	SeqNo: 722067	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury	2.89	0.100	2.500	0.02100	115	70	130 2.380	19.4 20	

Page 52 of 109 Revision v1

Work Order: 1707217


CLIENT: G-Logics

QC SUMMARY REPORT

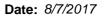
Mercury by EPA Method 7471

Project: Auburn Sub	oaru							Mer	cury by E	PA Metho	od 747
Sample ID MB-17706	SampType: MBLK			Units: mg/Kg	ı	Prep Date:	7/24/2017	7	RunNo: 37	548	
Client ID: MBLKS	Batch ID: 17706					Analysis Date:	7/24/2017	7	SeqNo: 72	1903	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	ND	0.236									
Sample ID LCS-17706	SampType: LCS			Units: mg/Kg	J	Prep Date:	7/24/2017	7	RunNo: 37	548	
Client ID: LCSS	Batch ID: 17706					Analysis Date:	7/24/2017	7	SeqNo: 72	1904	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	0.539	0.250	0.5000	0	108	80	120				
Sample ID 1707213-001ADUP	SampType: DUP			Units: mg/Kg	j-dry	Prep Date:	7/24/2017	7	RunNo: 37	548	
Client ID: BATCH	Batch ID: 17706					Analysis Date:	7/24/2017	7	SeqNo: 72	1906	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	ND	0.272						0		20	
Sample ID 1707213-001AMS	SampType: MS			Units: mg/Kg	j-dry	Prep Date:	7/24/2017	7	RunNo: 37	548	
Client ID: BATCH	Batch ID: 17706					Analysis Date:	7/24/2017	7	SeqNo: 72	1907	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	0.617	0.283	0.5665	0.07942	95.0	70	130				
Sample ID 1707213-001AMSD	SampType: MSD			Units: mg/Kg	j-dry	Prep Date:	7/24/2017	7	RunNo: 37	548	
Client ID: BATCH	Batch ID: 17706					Analysis Date:	7/24/2017	7	SeqNo: 72	1946	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	0.608	0.267	0.5344	0.07942	98.9	70	130	0.6175	1.52	20	

Revision v1 Page 53 of 109

Work Order: 1707217

QC SUMMARY REPORT


CLIENT: G-Logics Project:

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID MB-17704	SampType: MBLK			Units: µg/L		Prep Date:	7/24/20	17	RunNo: 37	574	
Client ID: MBLKW	Batch ID: 17704					Analysis Date:	7/24/20	17	SeqNo: 72	2082	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit Hi	ighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	0.0993									
2-Methylnaphthalene	ND	0.0993									
1-Methylnaphthalene	ND	0.0993									
Acenaphthylene	ND	0.0993									
Acenaphthene	ND	0.0993									
Fluorene	ND	0.0993									
Phenanthrene	ND	0.0993									
Anthracene	ND	0.0993									
Fluoranthene	ND	0.0993									
Pyrene	ND	0.0993									
Benz(a)anthracene	ND	0.0993									
Chrysene	ND	0.0993									
Benzo(b)fluoranthene	ND	0.0993									
Benzo(j,k)fluoranthene	ND	0.0993									
Benzo(a)pyrene	ND	0.0993									
Indeno(1,2,3-cd)pyrene	ND	0.0993									
Dibenz(a,h)anthracene	ND	0.0993									
Benzo(g,h,i)perylene	ND	0.0993									
Surr: 2-Fluorobiphenyl	1.60		1.986		80.5	31.2	159				
Surr: Terphenyl-d14	2.00		1.986		101	21.9	122				

Sample ID LCS-17704	SampType: LCS			Units: µg/L		Prep Da	te: 7/24/2 0)17	RunNo: 37	574	
Client ID: LCSW	Batch ID: 17704					Analysis Da	te: 7/24/2 0)17	SeqNo: 72	2083	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	2.71	0.0993	3.970	0	68.3	30.4	113				
2-Methylnaphthalene	3.27	0.0993	3.970	0	82.3	33.2	126				
1-Methylnaphthalene	2.80	0.0993	3.970	0	70.4	30.2	119				
Acenaphthylene	3.43	0.0993	3.970	0	86.5	34	133				
Acenaphthene	3.26	0.0993	3.970	0	82.1	31.8	127				

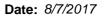
Page 54 of 109 Revision v1

Auburn Subaru

Work Order: 1707217

QC SUMMARY REPORT

CLIENT: G-Logics


Project:

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID LCS-17704	SampType: LCS			Units: µg/L		Prep Da	te: 7/24/2 0	017	RunNo: 37	574	
Client ID: LCSW	Batch ID: 17704					Analysis Da	te: 7/24/2 0	017	SeqNo: 72	2083	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Fluorene	3.55	0.0993	3.970	0	89.3	27.7	138				
Phenanthrene	3.26	0.0993	3.970	0	82.1	26.3	139				
Anthracene	3.71	0.0993	3.970	0	93.5	27	125				
Fluoranthene	3.49	0.0993	3.970	0	87.8	23.5	142				
Pyrene	3.48	0.0993	3.970	0	87.7	25.1	136				
Benz(a)anthracene	3.58	0.0993	3.970	0	90.1	42.8	125				
Chrysene	3.18	0.0993	3.970	0	80.2	32.3	120				
Benzo(b)fluoranthene	3.49	0.0993	3.970	0	88.0	25.9	132				
Benzo(j,k)fluoranthene	3.22	0.0993	3.970	0	81.0	25.1	118				
Benzo(a)pyrene	3.27	0.0993	3.970	0	82.4	18.7	120				
Indeno(1,2,3-cd)pyrene	3.07	0.0993	3.970	0	77.4	21.3	131				
Dibenz(a,h)anthracene	3.08	0.0993	3.970	0	77.6	21.3	137				
Benzo(g,h,i)perylene	3.10	0.0993	3.970	0	78.0	21.2	127				
Surr: 2-Fluorobiphenyl	1.82		1.985		91.8	31.2	159				
Surr: Terphenyl-d14	2.14		1.985		108	21.9	122				

Sample ID LCSD-17704	SampType: LCSD			Units: µg/L		Prep Da	te: 7/24/20)17	RunNo: 37	574	
Client ID: LCSW02	Batch ID: 17704					Analysis Da	te: 7/24/2 0	17	SeqNo: 722	2084	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	2.55	0.0993	3.973	0	64.3	30.4	113	2.712	5.96	30	
2-Methylnaphthalene	3.06	0.0993	3.973	0	77.1	33.2	126	3.269	6.53	30	
1-Methylnaphthalene	2.57	0.0993	3.973	0	64.6	30.2	119	2.796	8.53	30	
Acenaphthylene	3.12	0.0993	3.973	0	78.6	34	133	3.434	9.53	30	
Acenaphthene	2.97	0.0993	3.973	0	74.6	31.8	127	3.260	9.46	30	
Fluorene	3.24	0.0993	3.973	0	81.4	27.7	138	3.547	9.18	30	
Phenanthrene	3.00	0.0993	3.973	0	75.6	26.3	139	3.261	8.28	30	
Anthracene	3.37	0.0993	3.973	0	84.8	27	125	3.713	9.68	30	
Fluoranthene	3.22	0.0993	3.973	0	81.0	23.5	142	3.486	8.01	30	
Pyrene	3.17	0.0993	3.973	0	79.8	25.1	136	3.482	9.33	30	

Revision v1 Page 55 of 109

QC SUMMARY REPORT

CLIENT: G-Logics

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Project: Auburn S	Subaru										0 (SIM)
Sample ID LCSD-17704	SampType: LCSD			Units: µg/L		Prep Dat	e: 7/24/2 0	017	RunNo: 37	574	
Client ID: LCSW02	Batch ID: 17704					Analysis Dat	e: 7/24/2 0	017	SeqNo: 72	2084	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benz(a)anthracene	3.33	0.0993	3.973	0	83.8	42.8	125	3.575	7.09	30	
Chrysene	3.02	0.0993	3.973	0	76.0	32.3	120	3.182	5.23	30	
Benzo(b)fluoranthene	3.28	0.0993	3.973	0	82.6	25.9	132	3.495	6.30	30	
Benzo(j,k)fluoranthene	3.06	0.0993	3.973	0	77.1	25.1	118	3.217	4.88	30	
Benzo(a)pyrene	2.93	0.0993	3.973	0	73.8	18.7	120	3.273	11.0	30	
Indeno(1,2,3-cd)pyrene	3.19	0.0993	3.973	0	80.4	21.3	131	3.073	3.90	30	
Dibenz(a,h)anthracene	3.27	0.0993	3.973	0	82.3	21.3	137	3.082	5.93	30	
Benzo(g,h,i)perylene	3.16	0.0993	3.973	0	79.5	21.2	127	3.097	2.00	30	
Surr: 2-Fluorobiphenyl	1.95		1.986		98.2	31.2	159		0	0	
Surr: Terphenyl-d14	2.34		1.986		118	21.9	122		0	0	

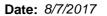
Sample ID 1707217-023EDUP	SampType: DUP			Units: µg/L		Prep Dat	e: 7/24/2	017	RunNo: 37	574	
Client ID: GLB-1-W	Batch ID: 17704					Analysis Dat	e: 7/24/2	017	SeqNo: 722	2370	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	0.0997						0		30	
2-Methylnaphthalene	ND	0.0997						0		30	
1-Methylnaphthalene	ND	0.0997						0		30	
Acenaphthylene	ND	0.0997						0		30	
Acenaphthene	ND	0.0997						0		30	
Fluorene	ND	0.0997						0		30	
Phenanthrene	ND	0.0997						0		30	
Anthracene	ND	0.0997						0		30	
Fluoranthene	ND	0.0997						0		30	
Pyrene	ND	0.0997						0		30	
Benz(a)anthracene	ND	0.0997						0		30	
Chrysene	ND	0.0997						0		30	
Benzo(b)fluoranthene	ND	0.0997						0		30	
Benzo(j,k)fluoranthene	ND	0.0997						0		30	
Benzo(a)pyrene	ND	0.0997						0		30	

Page 56 of 109 Revision v1

Auburn Subaru

Work Order: 1707217

QC SUMMARY REPORT


CLIENT: G-Logics

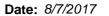
Project:

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID 1707217-023EDUP	SampType: DUP			Units: µg/L		Prep Dat	te: 7/24/20	17	RunNo: 37	574	
Client ID: GLB-1-W	Batch ID: 17704					Analysis Da	te: 7/24/20)17	SeqNo: 72	2370	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Indeno(1,2,3-cd)pyrene	ND	0.0997						0		30	
Dibenz(a,h)anthracene	ND	0.0997						0		30	
Benzo(g,h,i)perylene	ND	0.0997						0		30	
Surr: 2-Fluorobiphenyl	1.65		1.994		83.0	31.2	159		0		
Surr: Terphenyl-d14	1.89		1.994		94.6	21.9	122		0		

Revision v1 Page 57 of 109

QC SUMMARY REPORT


CLIENT: G-Logics

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Project: Auburn Su	baru				P	olyaromati	c Hydrocarbons	by EPA Method	8270 (SIN
Sample ID MB-17700	SampType: MBLK			Units: µg/Kg		Prep Date:	7/24/2017	RunNo: 37569	
Client ID: MBLKS	Batch ID: 17700					Analysis Date:	7/24/2017	SeqNo: 721891	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	lighLimit RPD Ref Va	%RPD RPD	Limit Qual
Naphthalene	ND	40.0							
2-Methylnaphthalene	ND	40.0							
1-Methylnaphthalene	ND	40.0							
Acenaphthylene	ND	40.0							
Acenaphthene	ND	40.0							
Fluorene	ND	40.0							
Phenanthrene	ND	40.0							
Anthracene	ND	40.0							
Fluoranthene	ND	40.0							
Pyrene	ND	40.0							
Benz(a)anthracene	ND	40.0							
Chrysene	ND	40.0							
Benzo(b)fluoranthene	ND	40.0							
Benzo(j,k)fluoranthene	ND	40.0							
Benzo(a)pyrene	ND	40.0							
Indeno(1,2,3-cd)pyrene	ND	40.0							
Dibenz(a,h)anthracene	ND	40.0							
Benzo(g,h,i)perylene	ND	40.0							
Surr: 2-Fluorobiphenyl	394		500.0		78.9	24.5	139		
Surr: Terphenyl-d14 (surr)	465		500.0		93.0	46.2	179		
Sample ID LCS-17700	SampType: LCS			Units: µg/Kg		Prep Date:	7/24/2017	RunNo: 37569	
Client ID: LCSS	Batch ID: 17700					Analysis Date:	7/24/2017	SeqNo: 721893	

Sample ID LCS-17700	1 21			Units: µg/Kg		Prep Da	te: 7/24/2 0	17	RunNo: 37569		
Client ID: LCSS	Batch ID: 17700					Analysis Da	te: 7/24/2 0	17	SeqNo: 721	1893	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	727	40.0	1,000	0	72.7	46.4	125				
2-Methylnaphthalene	721	40.0	1,000	0	72.1	45.1	135				
1-Methylnaphthalene	711	40.0	1,000	0	71.1	46.2	133				
Acenaphthylene	815	40.0	1,000	0	81.5	32.8	136				
Acenaphthene	726	40.0	1,000	0	72.6	38.7	129				

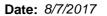
Page 58 of 109 Revision v1

Auburn Subaru

Work Order: 1707217

QC SUMMARY REPORT

CLIENT: G-Logics


Project:

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID LCS-17700	SampType: LCS			Units: µg/Kg		Prep Da	te: 7/24/2 0)17	RunNo: 37	569	
Client ID: LCSS	Batch ID: 17700					Analysis Da	te: 7/24/2 0)17	SeqNo: 72	1893	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Fluorene	750	40.0	1,000	0	75.0	41.4	144				
Phenanthrene	707	40.0	1,000	0	70.7	43.9	133				
Anthracene	783	40.0	1,000	0	78.3	44.2	136				
Fluoranthene	765	40.0	1,000	0	76.5	45.9	137				
Pyrene	739	40.0	1,000	0	73.9	46.2	137				
Benz(a)anthracene	759	40.0	1,000	0	75.9	41.2	141				
Chrysene	737	40.0	1,000	0	73.7	46.9	138				
Benzo(b)fluoranthene	729	40.0	1,000	0	72.9	41	155				
Benzo(j,k)fluoranthene	851	40.0	1,000	0	85.1	41.8	153				
Benzo(a)pyrene	774	40.0	1,000	0	77.4	30.2	171				
Indeno(1,2,3-cd)pyrene	721	40.0	1,000	0	72.1	31.3	159				
Dibenz(a,h)anthracene	699	40.0	1,000	0	69.9	28	158				
Benzo(g,h,i)perylene	722	40.0	1,000	0	72.2	32.4	144				
Surr: 2-Fluorobiphenyl	398		500.0		79.7	24.5	139				
Surr: Terphenyl-d14 (surr)	464		500.0		92.8	46.2	179				

Sample ID 1707213-001ADUP	SampType: DUP			Units: µg/Kg	j-dry	Prep Date	e: 7/24/2 0)17	RunNo: 375	569	
Client ID: BATCH	Batch ID: 17700					Analysis Date	e: 7/24/2 0)17	SeqNo: 721	1897	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	40.4						0		30	
2-Methylnaphthalene	ND	40.4						0		30	
1-Methylnaphthalene	ND	40.4						0		30	
Acenaphthylene	ND	40.4						0		30	
Acenaphthene	ND	40.4						0		30	
Fluorene	ND	40.4						0		30	
Phenanthrene	ND	40.4						0		30	
Anthracene	ND	40.4						0		30	
Fluoranthene	ND	40.4						0		30	
Pyrene	ND	40.4						0		30	

Revision v1 Page 59 of 109

Auburn Subaru

Work Order: 1707217

QC SUMMARY REPORT

CLIENT: G-Logics

Project:

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID 1707213-001ADUP	SampType: DUP			Units: µg/K	a-drv	Prep Da	te: 7/24/20)17	RunNo: 37	569	
Client ID: BATCH	Batch ID: 17700			oo. µg/1	g u.,	Analysis Da			SeqNo: 72		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benz(a)anthracene	ND	40.4						0		30	
Chrysene	ND	40.4						0		30	
Benzo(b)fluoranthene	44.4	40.4						30.80	36.2	30	
Benzo(j,k)fluoranthene	41.2	40.4						34.08	19.0	30	
Benzo(a)pyrene	41.5	40.4						31.66	26.8	30	
Indeno(1,2,3-cd)pyrene	ND	40.4						0		30	
Dibenz(a,h)anthracene	ND	40.4						0		30	
Benzo(g,h,i)perylene	ND	40.4						0		30	
Surr: 2-Fluorobiphenyl	313		505.3		62.0	24.5	139		0		
Surr: Terphenyl-d14 (surr)	377		505.3		74.5	46.2	179		0		

Sample ID 1707213-001AMS	SampType: MS			Units: µg/K	g-dry	Prep Date	e: 7/24/20	17	RunNo: 37 5	569	
Client ID: BATCH	Batch ID: 17700					Analysis Date	e: 7/24/20	17	SeqNo: 722	2077	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	709	41.9	1,048	0	67.6	42.9	138				
2-Methylnaphthalene	718	41.9	1,048	0	68.5	42.8	151				
1-Methylnaphthalene	702	41.9	1,048	0	67.0	41.6	148				
Acenaphthylene	819	41.9	1,048	0	78.2	32.6	160				
Acenaphthene	714	41.9	1,048	0	68.1	46.3	142				
Fluorene	732	41.9	1,048	0.7670	69.8	43.4	153				
Phenanthrene	705	41.9	1,048	10.48	66.3	45.5	140				
Anthracene	793	41.9	1,048	1.246	75.5	32.6	160				
Fluoranthene	816	41.9	1,048	28.91	75.1	44.6	161				
Pyrene	777	41.9	1,048	26.66	71.6	48.3	158				
Benz(a)anthracene	812	41.9	1,048	17.22	75.8	34.9	139				
Chrysene	735	41.9	1,048	31.01	67.2	45.2	146				
Benzo(b)fluoranthene	886	41.9	1,048	30.80	81.6	42.2	168				
Benzo(j,k)fluoranthene	822	41.9	1,048	34.08	75.2	34.8	147				
Benzo(a)pyrene	930	41.9	1,048	31.66	85.7	34.4	179				

Revision v1 Page 60 of 109

Auburn Subaru

Work Order: 1707217

QC SUMMARY REPORT

CLIENT: G-Logics

Project:

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID 1707213-001AMS	SampType: MS			Units: µg/l	Kg-dry	Prep Da	te: 7/24/2 0)17	RunNo: 37	569	
Client ID: BATCH	Batch ID: 17700					Analysis Da	te: 7/24/2 0)17	SeqNo: 72	2077	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Indeno(1,2,3-cd)pyrene	774	41.9	1,048	21.05	71.8	5	113				
Dibenz(a,h)anthracene	756	41.9	1,048	11.64	71.0	17.3	156				
Benzo(g,h,i)perylene	757	41.9	1,048	23.57	69.9	24.9	119				
Surr: 2-Fluorobiphenyl	394		524.0		75.1	24.5	139				
Surr: Terphenyl-d14 (surr)	473		524.0		90.2	46.2	179				

Sample ID 1707213-001AMSD	SampType: MSD			Units: µg/K	g-dry	Prep Da	te: 7/24/2 0	017	RunNo: 37	569	
Client ID: BATCH	Batch ID: 17700					Analysis Da	te: 7/24/2 0	017	SeqNo: 72	2078	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	724	43.9	1,098	0	66.0	42.9	138	708.8	2.17	30	
2-Methylnaphthalene	736	43.9	1,098	0	67.0	42.8	151	717.6	2.50	30	
1-Methylnaphthalene	718	43.9	1,098	0	65.4	41.6	148	702.0	2.30	30	
Acenaphthylene	837	43.9	1,098	0	76.2	32.6	160	819.3	2.13	30	
Acenaphthene	730	43.9	1,098	0	66.5	46.3	142	713.7	2.27	30	
Fluorene	757	43.9	1,098	0.7670	68.9	43.4	153	732.3	3.29	30	
Phenanthrene	725	43.9	1,098	10.48	65.1	45.5	140	705.1	2.73	30	
Anthracene	817	43.9	1,098	1.246	74.3	32.6	160	792.7	2.96	30	
Fluoranthene	854	43.9	1,098	28.91	75.2	44.6	161	816.4	4.53	30	
Pyrene	808	43.9	1,098	26.66	71.2	48.3	158	776.7	4.02	30	
Benz(a)anthracene	839	43.9	1,098	17.22	74.8	34.9	139	811.6	3.31	30	
Chrysene	768	43.9	1,098	31.01	67.1	45.2	146	735.2	4.39	30	
Benzo(b)fluoranthene	895	43.9	1,098	30.80	78.7	42.2	168	886.4	0.925	30	
Benzo(j,k)fluoranthene	904	43.9	1,098	34.08	79.3	34.8	147	822.4	9.47	30	
Benzo(a)pyrene	976	43.9	1,098	31.66	86.0	34.4	179	929.8	4.86	30	
Indeno(1,2,3-cd)pyrene	791	43.9	1,098	21.05	70.2	5	113	773.7	2.25	30	
Dibenz(a,h)anthracene	778	43.9	1,098	11.64	69.8	17.3	156	756.3	2.84	30	
Benzo(g,h,i)perylene	769	43.9	1,098	23.57	67.9	24.9	119	756.6	1.68	30	
Surr: 2-Fluorobiphenyl	400		548.9		72.9	24.5	139		0		
Surr: Terphenyl-d14 (surr)	476		548.9		86.8	46.2	179		0		

Revision v1 Page 61 of 109

Work Order: 1707217

QC SUMMARY REPORT

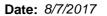
CLIENT: G-Logics

Project:

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID 1707213-001AMSD SampType: MSD

Auburn Subaru


Prep Date: **7/24/2017** RunNo: **37569**

Client ID: **BATCH** Batch ID: **17700** Analysis Date: **7/24/2017** SeqNo: **722078**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Units: µg/Kg-dry

Revision v1 Page 62 of 109

QC SUMMARY REPORT

CLIENT: G-Logics

Polychlorinated Biphenyls (PCB) by EPA 8082

Sample ID MB-17702	SampType: MBLK			Units: μg/L		Prep Dat	te: 7/24/2 0	017	RunNo: 375	587	
Client ID: MBLKW	Batch ID: 17702					Analysis Dat	te: 7/25/2 0	017	SeqNo: 722	2323	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	ND	0.0999									
Aroclor 1221	ND	0.0999									
Aroclor 1232	ND	0.0999									
Aroclor 1242	ND	0.0999									
Aroclor 1248	ND	0.0999									
Aroclor 1254	ND	0.0999									
Aroclor 1260	ND	0.0999									
Aroclor 1262	ND	0.0999									
Aroclor 1268	ND	0.0999									
Total PCBs	ND	0.0999									
Surr: Decachlorobiphenyl	342		399.6		85.7	23.1	172				
Surr: Tetrachloro-m-xylene	142		399.6		35.4	10	125				
Sample ID LCS1-17702	SampType: LCS			Units: µg/L		Prep Dat	te: 7/24/2 0	017	RunNo: 375	587	
Client ID: LCSW	Batch ID: 17702					Analysis Dat	te: 7/25/2 0	017	SeqNo: 722	2324	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	1.51	0.0995	1.991	0	76.0	32.4	133				
Aroclor 1260	1.82	0.0995	1.991	0	91.6	33.5	147				
Surr: Decachlorobiphenyl	350		398.1		88.0	23.1	172				
Surr: Tetrachloro-m-xylene	174		398.1		43.8	10	125				
Sample ID LCS1D-17702	SampType: LCSD			Units: µg/L		Prep Dat	te: 7/24/2 0	017	RunNo: 375	587	
Client ID: LCSW02	Batch ID: 17702					Analysis Dat	te: 7/25/2 0	017	SeqNo: 722	2325	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
		0.0998	1.996	0	76.2	32.4	133	1.513	0.524	20	
Aroclor 1016	1.52	0.0990									
	1.52 1.94	0.0998	1.996	0	97.2	33.5	147	1.823	6.19	20	
Aroclor 1016 Aroclor 1260 Surr: Decachlorobiphenyl				0	97.2 92.3	33.5 23.1	147 172	1.823	6.19 0	20	

Page 63 of 109 Revision v1

Work Order: 1707217

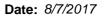
QC SUMMARY REPORT

CLIENT: G-Logics

Polychlorinated Biphenyls (PCB) by EPA 8082

Project: Auburn Subaru

Sample ID LCS1D-17702 SampType: LCSD Units: μg/L Prep Date: 7/24/2017 RunNo: 37587


Client ID: LCSW02 Batch ID: 17702 Analysis Date: 7/25/2017 SeqNo: 722325

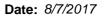
Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Sample ID 1707217-023DDUP	SampType: DUP			Units: µg/L		Prep Dat	e: 7/24/2 0)17	RunNo: 37	587	
Client ID: GLB-1-W	Batch ID: 17702					Analysis Dat	e: 7/25/2 0)17	SeqNo: 722	2328	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	ND	0.0996						0		30	
Aroclor 1221	ND	0.0996						0		30	
Aroclor 1232	ND	0.0996						0		30	
Aroclor 1242	ND	0.0996						0		30	
Aroclor 1248	ND	0.0996						0		30	
Aroclor 1254	ND	0.0996						0		30	
Aroclor 1260	ND	0.0996						0		30	
Aroclor 1262	ND	0.0996						0		30	
Aroclor 1268	ND	0.0996						0		30	
Total PCBs	ND	0.0996						0		30	
Surr: Decachlorobiphenyl	216		398.3		54.3	23.1	172		0		
Surr: Tetrachloro-m-xylene	232		398.3		58.2	10	125		0		

Sample ID LCS2-17702	SampType: LCS			Units: µg/L		Prep Dat	te: 7/24/20	17	RunNo: 37	587	
Client ID: LCSW	Batch ID: 17702					Analysis Da	te: 7/25/20	17	SeqNo: 722	2483	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	ND	0.0996	1.993	0	0	32.4	133				S
Aroclor 1254	1.65	0.0996	1.993	0	82.8	21.3	139				
Aroclor 1260	ND	0.0996	1.993	0	0	33.5	147				S
Surr: Decachlorobiphenyl	294		398.6		73.7	23.1	172				
Surr: Tetrachloro-m-xylene	175		398.6		43.8	10	125				

Revision v1 Page 64 of 109

QC SUMMARY REPORT


CLIENT: G-Logics Auburn Subaru

Project:

Polychlorinated Biphenyls (PCB) by EPA 8082

Sample ID MB-17707	SampType: MBLK			Units: mg/Kg		Prep Da	te: 7/24/2 0	017	RunNo: 37	571	
Client ID: MBLKS	Batch ID: 17707					Analysis Da	te: 7/24/2 0	017	SeqNo: 72	1923	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	ND	0.100									
Aroclor 1221	ND	0.100									
Aroclor 1232	ND	0.100									
Aroclor 1242	ND	0.100									
Aroclor 1248	ND	0.100									
Aroclor 1254	ND	0.100									
Aroclor 1260	ND	0.100									
Aroclor 1262	ND	0.100									
Aroclor 1268	ND	0.100									
Total PCBs	ND	0.100									
Surr: Decachlorobiphenyl	61.7		50.00		123	30.8	168				
Surr: Tetrachloro-m-xylene	57.0		50.00		114	30.1	143				
Sample ID LCS1-17707	SampType: LCS			Units: mg/Kg		Prep Da	te: 7/24/2 (017	RunNo: 37	571	
Client ID: LCSS	Batch ID: 17707					Analysis Da	te: 7/24/2 0	017	SeqNo: 72	1924	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	1.09	0.100	1.000	0	109	38.5	149				
Aroclor 1260	1.14	0.100	1.000	0	114	35.4	154				
Surr: Decachlorobiphenyl	59.4		50.00		119	30.8	168				
Surr: Tetrachloro-m-xylene	55.4		50.00		111	30.1	143				
Sample ID LCS2-17707	SampType: LCS			Units: mg/Kg		Prep Da	te: 7/24/2 0	017	RunNo: 37	571	
Client ID: LCSS	Batch ID: 17707					Analysis Da	te: 7/24/2 0	017	SeqNo: 72	1925	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Aroclor 1254	1.17	0.100	1.000	0	117	32.8	151				
Surr: Decachlorobiphenyl	57.2		50.00		114	30.8	168				
Surr: Tetrachloro-m-xylene	56.5		50.00		113	30.1	143				

Page 65 of 109 Revision v1

QC SUMMARY REPORT

CLIENT: G-Logics

Polychlorinated Biphenyls (PCB) by EPA 8082

Sample ID 1707213-002ADUP	SampType: DUP			Units: mg/h	(g-dry	Prep Date	e: 7/24/20	17	RunNo: 375	571	
Client ID: BATCH	Batch ID: 17707					Analysis Date	e: 7/24/20	17	SeqNo: 721	1927	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	ND	0.113						0		30	
Aroclor 1221	ND	0.113						0		30	
Aroclor 1232	ND	0.113						0		30	
Aroclor 1242	ND	0.113						0		30	
Aroclor 1248	ND	0.113						0		30	
Aroclor 1254	ND	0.113						0		30	
Aroclor 1260	ND	0.113						0		30	
Aroclor 1262	ND	0.113						0		30	
Aroclor 1268	ND	0.113						0		30	
Total PCBs	ND	0.113						0		30	
Surr: Decachlorobiphenyl	41.4		56.28		73.5	30.8	168		0		
Surr: Tetrachloro-m-xylene	39.6		56.28		70.4	30.1	143		0		
Sample ID 1707213-002AMS	SampType: MS			Units: mg/h	(g-dry	Prep Date	e: 7/24/20	17	RunNo: 375	571	
Client ID: BATCH	Batch ID: 17707					Analysis Date	e: 7/24/20	17	SeqNo: 721	1928	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	1.20	0.106	1.057	0	113	27.1	166				
Aroclor 1260	1.21	0.106	1.057	0	114	20.6	168				
Surr: Decachlorobiphenyl	37.5		52.85		70.9	30.8	168				
Surr: Tetrachloro-m-xylene	37.4		52.85		70.8	30.1	143				
Sample ID 1707213-002AMSD	SampType: MSD			Units: mg/F	(g-dry	Prep Date	e: 7/24/20	17	RunNo: 375	571	
Client ID: BATCH	Batch ID: 17707			_	-	Analysis Date	e: 7/24/20	17	SeqNo: 721		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	1.08	0.105	1.050	0	102	27.1	166	1.199	10.8	30	
Aroclor 1260	1.09	0.105	1.050	0	104	20.6	168	1.209	10.2	30	
									_		
Surr: Decachlorobiphenyl	40.0		52.50		76.3	30.8	168		0		

Page 66 of 109 Revision v1

Work Order: 1707217

QC SUMMARY REPORT

CLIENT: G-Logics

Polychlorinated Biphenyls (PCB) by EPA 8082

Project: Auburn Subaru
Sample ID 1707213-002AMSD S

SampType: MSD Units: mg/Kg-dry

RL

Prep Date: 7/24/2017

RunNo: 37571

Client ID: BATCH

Batch ID: 17707

. . .

Analysis Date: 7/24/2017

SeqNo: **721929**

Analyte

Daton ID. 17707

Result

SPK value SPK Ref Val

%REC LowLimit HighLimit RPD Ref Val

%RPD RPDLimit Qual

Revision v1 Page 67 of 109

Work Order: 1707217

QC SUMMARY REPORT

CLIENT: G-Logics

Sample Moisture (Percent Moisture)

Project: Auburn Subaru

Sample ID 1707210-003ADUP SampType: **DUP** Units: wt% Prep Date: 7/24/2017 RunNo: 37550 Client ID: BATCH Batch ID: R37550 Analysis Date: 7/24/2017 SeqNo: 721558 Analyte Result RLSPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Percent Moisture 7.20 0.500 4.91 20 7.565

Sample ID 1707217-022ADUP SampType: **DUP** Units: wt% Prep Date: 7/24/2017 RunNo: 37550 Client ID: GLB-9-9 Batch ID: R37550 Analysis Date: 7/24/2017 SeqNo: 721582 Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Analyte

Percent Moisture 28.6 0.500 28.47 0.338 20

Revision v1 Page 68 of 109

Work Order: 1707217

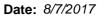
QC SUMMARY REPORT

Qual

G-Logics CLIENT:

Sample Moisture (Percent Moisture)

Project: Auburn Subaru


Sample ID 1707220-043ADUP SampType: **DUP** Units: wt% Prep Date: 7/25/2017 RunNo: 37593 Client ID: BATCH Batch ID: R37593 Analysis Date: 7/25/2017 SeqNo: 722403 Analyte Result SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit

Percent Moisture 22.2 0.500 0.436 20 22.33

Prep Date: 7/25/2017 Sample ID 1707223-011ADUP SampType: **DUP** Units: wt% RunNo: 37593 Client ID: BATCH Batch ID: R37593 Analysis Date: 7/25/2017 SeqNo: **722415** Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual 8.70

4.37 0.500 20 Percent Moisture 4.767

Page 69 of 109 Revision v1

CLIENT:

G-Logics

QC SUMMARY REPORT

Total Metals by EPA Method 200.8

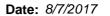
Project:	Auburn Sub	oaru							Total INC	tals by Er	Ailletilo	u 200.
Sample ID	MB-17698	SampType: MBLK			Units: µg/L		Prep Dat	e: 7/24/2	017	RunNo: 37	558	
Client ID:	MBLKW	Batch ID: 17698					Analysis Dat	e: 7/24/2	017	SeqNo: 72	1727	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		ND	1.00									
Cadmium		ND	0.200									
Chromium		ND	0.500									
Lead		ND	0.500									
Sample ID	LCS-17698	SampType: LCS			Units: µg/L		Prep Dat	e: 7/24/2	017	RunNo: 37	558	
Client ID:	LCSW	Batch ID: 17698					Analysis Dat	e: 7/24/2	017	SeqNo: 72	1728	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		103	1.00	100.0	0	103	85	115				
Cadmium		5.09	0.200	5.000	0	102	85	115				
Chromium		105	0.500	100.0	0	105	85	115				
Lead		53.0	0.500	50.00	0	106	85	115				
Sample ID	1707197-001BDUP	SampType: DUP			Units: µg/L		Prep Dat	e: 7/24/2	017	RunNo: 37	558	
Client ID:	ВАТСН	Batch ID: 17698					Analysis Dat	e: 7/24/2	017	SeqNo: 72	1730	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		4.44	1.00						4.742	6.61	30	
Cadmium		ND	0.200						0		30	
Chromium		1.41	0.500						1.420	1.03	30	
Lead		20.0	0.500						19.90	0.434	30	
Sample ID	1707197-001BMS	SampType: MS			Units: µg/L		Prep Dat	e: 7/24/2	017	RunNo: 37	558	
Client ID:	ВАТСН	Batch ID: 17698					Analysis Dat	e: 7/24/2	017	SeqNo: 72	1733	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		574	1.00	500.0	4.742	114	70	130				
Alselic												

Page 70 of 109 Revision v1

Work Order: 1707217

QC SUMMARY REPORT

CLIENT: G-Logics


Total Metals by EPA Method 200.8

Project:	Auburn Subaru

Sample ID 1707197-001BMS	SampType: MS			Units: µg/L		Prep Da	te: 7/24/20	17	RunNo: 37	558	
Client ID: BATCH	Batch ID: 17698					Analysis Da	te: 7/24/2 0	17	SeqNo: 72	1733	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium	564	0.500	500.0	1.420	112	70	130				
Lead	285	0.500	250.0	19.90	106	70	130				

Sample ID 1707197-001BMSD	SampType: MSD			Units: µg/L		Prep Da	te: 7/24/20	17	RunNo: 375	558	
Client ID: BATCH	Batch ID: 17698					Analysis Da	SeqNo: 721734				
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	543	1.00	500.0	4.742	108	70	130	573.9	5.52	30	·
Cadmium	26.0	0.200	25.00	0.1400	103	70	130	26.29	1.24	30	
Chromium	550	0.500	500.0	1.420	110	70	130	563.6	2.38	30	
Lead	284	0.500	250.0	19.90	105	70	130	284.8	0.399	30	

Revision v1 Page 71 of 109

Work Order: 1707217 G-Logics

CLIENT:

Analyte

Arsenic

Result

53.1

0.0872

QC SUMMARY REPORT

Total Motals by EDA Mothod 6020

%RPD RPDLimit Qual

Project:	Auburn Sub	oaru							Total Me	etals by El	PA Metho	od 602
Sample ID	MB-17699	SampType: MBLK			Units: mg/Kg		Prep Date	: 7/24/20	17	RunNo: 37	566	
Client ID:	MBLKS	Batch ID: 17699					Analysis Date	: 7/24/20	17	SeqNo: 72	1850	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		ND	0.0752									
Cadmium		ND	0.150									
Chromium		ND	0.0752									
Lead		ND	0.150									
Sample ID	LCS-17699	SampType: LCS			Units: mg/Kg		Prep Date	e: 7/24/20)17	RunNo: 37	566	
Client ID:	LCSS	Batch ID: 17699					Analysis Date	: 7/24/2 0	17	SeqNo: 72	1851	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		39.3	0.0763	38.17	0	103	80	120				
Cadmium		1.93	0.153	1.908	0	101	80	120				
Chromium		40.6	0.0763	38.17	0	106	80	120				
Lead		19.1	0.153	19.08	0	100	80	120				
Sample ID	1707213-001ADUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date	e: 7/24/20)17	RunNo: 37	566	
Client ID:	ВАТСН	Batch ID: 17699					Analysis Date	: 7/24/2 0	17	SeqNo: 72	1853	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		8.93	0.0872						9.657	7.87	20	
Cadmium		0.277	0.174						0.2893	4.18	20	
Chromium		39.6	0.0872						40.56	2.48	20	
Lead		74.0	0.174						58.20	24.0	20	R
NOTES : R - High		ethod is in control as indic	ated by the L	_CS.								
Sample ID	1707213-001AMS	SampType: MS			Units: mg/Kg-	dry	Prep Date	: 7/24/20)17	RunNo: 37	566	
Client ID:		Batch ID: 17699				-	Analysis Date			SeqNo: 72	1855	
Client ID.	BAICH	Dalch ID. 17699					Analysis Date	. //24/20	717	Sequo. 12	1855	

Page 72 of 109 Revision v1

9.657

%REC

99.8

SPK value SPK Ref Val

43.58

LowLimit HighLimit RPD Ref Val

125

75

Work Order: 1707217

QC SUMMARY REPORT

CLIENT: G-Logics

Total Metals by EPA Method 6020

Project:	Auburn Subaru
----------	---------------

Sample ID 1707213-001AMS	SampType: MS			Units: mg	/Kg-dry	Prep Da	te: 7/24/20	17	RunNo: 375	566	
Client ID: BATCH	Batch ID: 17699					Analysis Da	te: 7/24/20	17	SeqNo: 721	855	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Cadmium	2.59	0.174	2.179	0.2893	105	75	125	<u> </u>			
Chromium	92.1	0.0872	43.58	40.56	118	75	125				
Lead	65.1	0.174	21.79	58.20	31.7	75	125				S

NOTES:

S - Outlying spike recovery(ies) observed for Lead. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Sample ID 1707213-001AMSD	SampType: MSD			Units: mg/	Kg-dry	Prep Dat	e: 7/24/2 0)17	RunNo: 37	566	
Client ID: BATCH	Batch ID: 17699					Analysis Dat	e: 7/24/2 0)17	SeqNo: 72	1856	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	55.6	0.0872	43.58	9.657	105	75	125	53.15	4.44	20	
Cadmium	2.53	0.174	2.179	0.2893	103	75	125	2.586	2.02	20	
Chromium	99.4	0.0872	43.58	40.56	135	75	125	92.06	7.64	20	S
Lead	91.2	0.174	21.79	58.20	152	75	125	65.11	33.4	20	RS

NOTES:

Revision v1 Page 73 of 109

S - Outlying spike recovery(ies) observed for Lead. A duplicate analysis was performed with similar results indicating a possible matrix effect.

S - Outlying spike recovery(ies) observed for Chromium. A duplicate analysis was performed and recovered within range.

R - High RPD indicates a possible matrix interference. The method is in control as indicated by the Laboratory Control Sample (LCS).

Work Order: 1707217

QC SUMMARY REPORT

CLIENT: G-Logics

Volatile Organic Compounds by EPA Method 8260C

Project: Auburn Subaru

Sample ID LCS-17709	SampType: LCS			Units: mg/Kg		Prep Da	te: 7/24/2 0)17	RunNo: 37	580	
Client ID: LCSS	Batch ID: 17709					Analysis Da	te: 7/24/20)17	SeqNo: 722	2187	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	1.00	0.0200	1.000	0	100	14.3	167				
Chloromethane	1.25	0.0500	1.000	0	125	46	144				
Vinyl chloride	1.07	0.0250	1.000	0	107	43.4	151				
Bromomethane	1.01	0.0500	1.000	0	101	40.9	157				
Trichlorofluoromethane (CFC-11)	0.738	0.0200	1.000	0	73.8	36.9	156				
Chloroethane	0.560	0.0500	1.000	0	56.0	33.1	147				
1,1-Dichloroethene	0.678	0.0200	1.000	0	67.8	49.7	142				
Methylene chloride	0.946	0.0200	1.000	0	94.6	46.3	140				
trans-1,2-Dichloroethene	1.09	0.0200	1.000	0	109	68	130				
Methyl tert-butyl ether (MTBE)	1.23	0.0500	1.000	0	123	66.3	145				
1,1-Dichloroethane	1.17	0.0200	1.000	0	117	61.9	137				
2,2-Dichloropropane	1.52	0.100	1.000	0	152	35.5	186				
cis-1,2-Dichloroethene	1.19	0.0200	1.000	0	119	71.3	135				
Chloroform	1.15	0.0200	1.000	0	115	69	145				
1,1,1-Trichloroethane (TCA)	1.04	0.0250	1.000	0	104	69	132				
1,1-Dichloropropene	1.08	0.0200	1.000	0	108	72.7	131				
Carbon tetrachloride	0.896	0.0250	1.000	0	89.6	63.4	137				
1,2-Dichloroethane (EDC)	1.16	0.0200	1.000	0	116	50.9	162				
Benzene	1.12	0.0200	1.000	0	112	64.3	133				
Trichloroethene (TCE)	1.18	0.0200	1.000	0	118	65.5	137				
1,2-Dichloropropane	1.16	0.0200	1.000	0	116	63.2	142				
Bromodichloromethane	0.982	0.0200	1.000	0	98.2	53.4	131				
Dibromomethane	1.07	0.0200	1.000	0	107	60.1	146				
cis-1,3-Dichloropropene	1.16	0.0200	1.000	0	116	59.1	143				
Toluene	1.20	0.0200	1.000	0	120	67.3	138				
trans-1,3-Dichloropropylene	1.10	0.0200	1.000	0	110	49.2	149				
1,1,2-Trichloroethane	1.09	0.0200	1.000	0	109	56.9	147				
1,3-Dichloropropane	1.15	0.0250	1.000	0	115	56.1	153				
Tetrachloroethene (PCE)	1.17	0.0250	1.000	0	117	52.7	150				
Dibromochloromethane	0.900	0.0250	1.000	0	90.0	70.6	144				
1,2-Dibromoethane (EDB)	1.08	0.00500	1.000	0	108	50.5	154				

Revision v1 Page 74 of 109

Auburn Subaru

Work Order: 1707217

QC SUMMARY REPORT

CLIENT: G-Logics

Project:

Volatile Organic Compounds by EPA Method 8260C

Sample ID LCS-17709	SampType: LCS			Units: mg/Kg		Prep Da	te: 7/24/2 0)17	RunNo: 37	580	
Client ID: LCSS	Batch ID: 17709					Analysis Da	te: 7/24/2 0)17	SeqNo: 72	2187	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chlorobenzene	1.08	0.0250	1.000	0	108	76.1	123				
1,1,1,2-Tetrachloroethane	0.938	0.0250	1.000	0	93.8	65.9	141				
Ethylbenzene	1.10	0.0250	1.000	0	110	74	129				
m,p-Xylene	2.23	0.0500	2.000	0	111	70	124				
o-Xylene	1.09	0.0250	1.000	0	109	68.1	139				
Styrene	1.12	0.0250	1.000	0	112	73.3	146				
Isopropylbenzene	1.11	0.0250	1.000	0	111	70	130				
Bromoform	0.710	0.0500	1.000	0	71.0	67	154				
1,1,2,2-Tetrachloroethane	0.852	0.0200	1.000	0	85.2	44.8	165				
n-Propylbenzene	1.17	0.0250	1.000	0	117	74.8	125				
Bromobenzene	1.06	0.0200	1.000	0	106	49.2	144				
1,3,5-Trimethylbenzene	1.12	0.0250	1.000	0	112	74.6	123				
2-Chlorotoluene	1.06	0.0250	1.000	0	106	76.7	129				
4-Chlorotoluene	1.11	0.0250	1.000	0	111	77.5	125				
tert-Butylbenzene	1.12	0.0250	1.000	0	112	66.2	130				
1,2,3-Trichloropropane	0.903	0.0250	1.000	0	90.3	67.9	136				
1,2,4-Trichlorobenzene	1.20	0.0250	1.000	0	120	62.6	143				
sec-Butylbenzene	1.12	0.0500	1.000	0	112	75.6	133				
4-Isopropyltoluene	1.12	0.0500	1.000	0	112	76.8	131				
1,3-Dichlorobenzene	1.09	0.0200	1.000	0	109	72.8	128				
1,4-Dichlorobenzene	1.08	0.0200	1.000	0	108	72.6	126				
n-Butylbenzene	1.21	0.0250	1.000	0	121	65.3	136				
1,2-Dichlorobenzene	1.07	0.0200	1.000	0	107	72.8	126				
1,2-Dibromo-3-chloropropane	0.715	0.500	1.000	0	71.5	40.2	155				
1,2,4-Trimethylbenzene	1.13	0.0200	1.000	0	113	77.5	129				
Hexachlorobutadiene	1.25	0.0500	1.000	0	125	42	151				
Naphthalene	1.12	0.0500	1.000	0	112	58.4	160				
1,2,3-Trichlorobenzene	1.20	0.0200	1.000	0	120	54.8	143				
Surr: Dibromofluoromethane	1.24		1.250		99.5	56.5	129				
Surr: Toluene-d8	1.42		1.250		114	64.5	151				
Surr: 1-Bromo-4-fluorobenzene	1.31		1.250		105	63.1	141				

Revision v1 Page 75 of 109

Work Order: 1707217

QC SUMMARY REPORT

CLIENT: G-Logics

Volatile Organic Compounds by EPA Method 8260C

Project: Auburn Subaru

Sample ID LCS-17709 SampType: LCS Units: mg/Kg Prep Date: 7/24/2017 RunNo: 37580

Client ID: LCSS Batch ID: 17709 Analysis Date: 7/24/2017 SeqNo: 722187

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

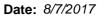
Sample ID MB-17709	SampType: MBLK			Units: mg/Kg		Prep Da	ite: 7/24/2 0	017	RunNo: 37	580	
Client ID: MBLKS	Batch ID: 17709					Analysis Da	ite: 7/24/2 0	017	SeqNo: 722	2188	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	0.0200									
Chloromethane	ND	0.0500									
Vinyl chloride	ND	0.0250									
Bromomethane	ND	0.0500									
Trichlorofluoromethane (CFC-11)	ND	0.0200									
Chloroethane	ND	0.0500									
1,1-Dichloroethene	ND	0.0200									
Methylene chloride	ND	0.0200									
trans-1,2-Dichloroethene	ND	0.0200									
Methyl tert-butyl ether (MTBE)	ND	0.0500									
1,1-Dichloroethane	ND	0.0200									
2,2-Dichloropropane	ND	0.100									Q
cis-1,2-Dichloroethene	ND	0.0200									
Chloroform	ND	0.0200									
1,1,1-Trichloroethane (TCA)	ND	0.0250									
1,1-Dichloropropene	ND	0.0200									
Carbon tetrachloride	ND	0.0250									
1,2-Dichloroethane (EDC)	ND	0.0200									
Benzene	ND	0.0200									
Trichloroethene (TCE)	ND	0.0200									
1,2-Dichloropropane	ND	0.0200									
Bromodichloromethane	ND	0.0200									
Dibromomethane	ND	0.0200									
cis-1,3-Dichloropropene	ND	0.0200									
Toluene	ND	0.0200									
										Dogo	76 of 10

Revision v1 Page 76 of 109

Auburn Subaru

Work Order: 1707217

QC SUMMARY REPORT


CLIENT: G-Logics

Project:

Volatile Organic Compounds by EPA Method 8260C

Sample ID MB-17709	SampType: MBLK			Units: mg/Kg		Prep Da	ite: 7/24/2 0	017	RunNo: 37	580	
Client ID: MBLKS	Batch ID: 17709					Analysis Da	ite: 7/24/2 0	017	SeqNo: 72	2188	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
trans-1,3-Dichloropropylene	ND	0.0200									
1,1,2-Trichloroethane	ND	0.0200									
1,3-Dichloropropane	ND	0.0250									
Tetrachloroethene (PCE)	ND	0.0250									
Dibromochloromethane	ND	0.0250									
1,2-Dibromoethane (EDB)	ND	0.00500									
Chlorobenzene	ND	0.0250									
1,1,1,2-Tetrachloroethane	ND	0.0250									
Ethylbenzene	ND	0.0250									
m,p-Xylene	ND	0.0500									
o-Xylene	ND	0.0250									
Styrene	ND	0.0250									
Isopropylbenzene	ND	0.0250									
Bromoform	ND	0.0500									
1,1,2,2-Tetrachloroethane	ND	0.0200									
n-Propylbenzene	ND	0.0250									
Bromobenzene	ND	0.0200									
1,3,5-Trimethylbenzene	ND	0.0250									
2-Chlorotoluene	ND	0.0250									
4-Chlorotoluene	ND	0.0250									
tert-Butylbenzene	ND	0.0250									
1,2,3-Trichloropropane	ND	0.0250									
1,2,4-Trichlorobenzene	ND	0.0250									
sec-Butylbenzene	ND	0.0500									
4-Isopropyltoluene	ND	0.0500									
1,3-Dichlorobenzene	ND	0.0200									
1,4-Dichlorobenzene	ND	0.0200									
n-Butylbenzene	ND	0.0250									
1,2-Dichlorobenzene	ND	0.0200									
1,2-Dibromo-3-chloropropane	ND	0.500									Q
1,2,4-Trimethylbenzene	ND	0.0200									

Revision v1 Page 77 of 109

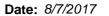
Auburn Subaru

Work Order: 1707217

QC SUMMARY REPORT

CLIENT: G-Logics

Project:


Volatile Organic Compounds by EPA Method 8260C

Sample ID MB-17709	SampType: MBLK		Units: mg/Kg			•				580	
Client ID: MBLKS	Batch ID: 17709					Analysis Dat	te: 7/24/20	17	SeqNo: 72	2188	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Hexachlorobutadiene	ND	0.0500									
Naphthalene	ND	0.0500									
1,2,3-Trichlorobenzene	ND	0.0200									
Surr: Dibromofluoromethane	1.10		1.250		88.2	56.5	129				
Surr: Toluene-d8	1.39		1.250		111	64.5	151				
Surr: 1-Bromo-4-fluorobenzene	1.22		1.250		97.5	63.1	141				
NOTES:											

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Sample ID 1707217-013BDUP	SampType: DUP			Units: mg/Kg-dry Prep Date: 7/24/2017				017	RunNo: 37	580	
Client ID: GLB-5-8	Batch ID: 17709					Analysis Da	te: 7/25/2 0	017	SeqNo: 722	2178	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	0.0237						0		30	
Chloromethane	ND	0.0591						0		30	
Vinyl chloride	ND	0.0296						0		30	
Bromomethane	ND	0.0591						0		30	
Trichlorofluoromethane (CFC-11)	ND	0.0237						0		30	
Chloroethane	ND	0.0591						0		30	
1,1-Dichloroethene	ND	0.0237						0		30	
Methylene chloride	ND	0.0237						0		30	
trans-1,2-Dichloroethene	ND	0.0237						0		30	
Methyl tert-butyl ether (MTBE)	ND	0.0591						0		30	
1,1-Dichloroethane	ND	0.0237						0		30	
2,2-Dichloropropane	ND	0.118						0		30	Q
cis-1,2-Dichloroethene	ND	0.0237						0		30	
Chloroform	ND	0.0237						0		30	
1,1,1-Trichloroethane (TCA)	ND	0.0296						0		30	
1,1-Dichloropropene	ND	0.0237						0		30	
Carbon tetrachloride	ND	0.0296						0		30	
1,2-Dichloroethane (EDC)	ND	0.0237						0		30	

Revision v1 Page 78 of 109

Auburn Subaru

Work Order: 1707217

QC SUMMARY REPORT

CLIENT: G-Logics

Project:

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1707217-013BDUP	SampType: DUP			Units: mg/l	(g-dry	Prep Da	te: 7/24/2 0	017	RunNo: 375	580	
Client ID: GLB-5-8	Batch ID: 17709					Analysis Da	te: 7/25/2 0	017	SeqNo: 72	2178	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	0.0237						0		30	
Trichloroethene (TCE)	ND	0.0237						0		30	
1,2-Dichloropropane	ND	0.0237						0		30	
Bromodichloromethane	ND	0.0237						0		30	
Dibromomethane	ND	0.0237						0		30	
cis-1,3-Dichloropropene	ND	0.0237						0		30	
Toluene	ND	0.0237						0		30	
trans-1,3-Dichloropropylene	ND	0.0237						0		30	
1,1,2-Trichloroethane	ND	0.0237						0		30	
1,3-Dichloropropane	ND	0.0296						0		30	
Tetrachloroethene (PCE)	ND	0.0296						0		30	
Dibromochloromethane	ND	0.0296						0		30	
1,2-Dibromoethane (EDB)	ND	0.00591						0		30	
Chlorobenzene	ND	0.0296						0		30	
1,1,1,2-Tetrachloroethane	ND	0.0296						0		30	
Ethylbenzene	ND	0.0296						0		30	
m,p-Xylene	ND	0.0591						0		30	
o-Xylene	ND	0.0296						0		30	
Styrene	ND	0.0296						0		30	
Isopropylbenzene	ND	0.0296						0		30	
Bromoform	ND	0.0591						0		30	
1,1,2,2-Tetrachloroethane	ND	0.0237						0		30	
n-Propylbenzene	ND	0.0296						0		30	
Bromobenzene	ND	0.0237						0		30	
1,3,5-Trimethylbenzene	ND	0.0296						0		30	
2-Chlorotoluene	ND	0.0296						0		30	
4-Chlorotoluene	ND	0.0296						0		30	
tert-Butylbenzene	ND	0.0296						0		30	
1,2,3-Trichloropropane	ND	0.0296						0		30	
1,2,4-Trichlorobenzene	ND	0.0296						0		30	
sec-Butylbenzene	ND	0.0591						0		30	

Revision v1 Page 79 of 109

Auburn Subaru

Work Order: 1707217

QC SUMMARY REPORT

CLIENT: G-Logics

Project:

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1707217-013BDUP	SampType: DUP			Units: mg/	Kg-dry	Prep Da	te: 7/24/2 0	017	RunNo: 37	580	
Client ID: GLB-5-8	Batch ID: 17709					Analysis Da	te: 7/25/2 0	017	SeqNo: 72	2178	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
4-Isopropyltoluene	ND	0.0591						0		30	
1,3-Dichlorobenzene	ND	0.0237						0		30	
1,4-Dichlorobenzene	ND	0.0237						0		30	
n-Butylbenzene	ND	0.0296						0		30	
1,2-Dichlorobenzene	ND	0.0237						0		30	
1,2-Dibromo-3-chloropropane	ND	0.591						0		30	Q
1,2,4-Trimethylbenzene	ND	0.0237						0		30	
Hexachlorobutadiene	ND	0.0591						0		30	
Naphthalene	ND	0.0591						0		30	
1,2,3-Trichlorobenzene	ND	0.0237						0		30	
Surr: Dibromofluoromethane	1.37		1.479		92.9	56.5	129		0		
Surr: Toluene-d8	1.56		1.479		106	64.5	151		0		
Surr: 1-Bromo-4-fluorobenzene	1.40		1.479		94.6	63.1	141		0		
NOTES:											

NOTES:

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

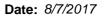
Sample ID 1707217-018BMS	SampType: MS			Units: mg/	Kg-dry	Prep Da	te: 7/24/2 0)17	RunNo: 375	580	
Client ID: GLB-7-6	Batch ID: 17709					Analysis Da	te: 7/25/2 0	17	SeqNo: 722	2181	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	1.19	0.0228	1.140	0	104	43.5	121				
Chloromethane	1.29	0.0570	1.140	0	113	45	130				
Vinyl chloride	1.25	0.0285	1.140	0	110	51.2	146				
Bromomethane	1.06	0.0570	1.140	0	93.3	21.3	120				
Trichlorofluoromethane (CFC-11)	1.01	0.0228	1.140	0	88.8	35	131				
Chloroethane	0.915	0.0570	1.140	0	80.3	31.9	123				
1,1-Dichloroethene	1.21	0.0228	1.140	0	106	61.9	141				
Methylene chloride	1.29	0.0228	1.140	0	113	54.7	142				
trans-1,2-Dichloroethene	1.27	0.0228	1.140	0	112	52	136				
Methyl tert-butyl ether (MTBE)	1.19	0.0570	1.140	0	104	54.4	132				
1,1-Dichloroethane	1.27	0.0228	1.140	0	112	51.8	141				

Revision v1 Page 80 of 109

Auburn Subaru

Work Order: 1707217

QC SUMMARY REPORT


CLIENT: G-Logics

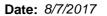
Project:

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1707217-018BMS	SampType: MS			Units: mg/	Kg-dry	Prep Da	te: 7/24/20)17	RunNo: 37	580	
Client ID: GLB-7-6	Batch ID: 17709					Analysis Da	te: 7/25/20	017	SeqNo: 72	2181	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
2,2-Dichloropropane	1.38	0.114	1.140	0	121	36	123				
cis-1,2-Dichloroethene	1.30	0.0228	1.140	0	114	58.6	136				
Chloroform	1.25	0.0228	1.140	0	109	53.2	129				
1,1,1-Trichloroethane (TCA)	1.16	0.0285	1.140	0	102	58.3	145				
1,1-Dichloropropene	1.18	0.0228	1.140	0	103	55.1	138				
Carbon tetrachloride	1.02	0.0285	1.140	0	89.5	53.3	144				
1,2-Dichloroethane (EDC)	1.24	0.0228	1.140	0	109	51.3	139				
Benzene	1.27	0.0228	1.140	0	111	63.5	133				
Trichloroethene (TCE)	1.23	0.0228	1.140	0	108	68.6	132				
1,2-Dichloropropane	1.24	0.0228	1.140	0	109	59	136				
Bromodichloromethane	1.09	0.0228	1.140	0	95.2	50.7	141				
Dibromomethane	1.12	0.0228	1.140	0	98.5	50.6	137				
cis-1,3-Dichloropropene	1.19	0.0228	1.140	0	104	50.4	138				
Toluene	1.27	0.0228	1.140	0	112	63.4	132				
trans-1,3-Dichloropropylene	1.13	0.0228	1.140	0	99.0	44.1	147				
1,1,2-Trichloroethane	1.13	0.0228	1.140	0	99.5	51.6	137				
1,3-Dichloropropane	1.19	0.0285	1.140	0	105	53.1	134				
Tetrachloroethene (PCE)	1.24	0.0285	1.140	0	109	35.6	158				
Dibromochloromethane	0.992	0.0285	1.140	0	87.0	55.3	140				
1,2-Dibromoethane (EDB)	1.11	0.00570	1.140	0	97.2	50.4	136				
Chlorobenzene	1.17	0.0285	1.140	0	103	60	133				
1,1,1,2-Tetrachloroethane	1.04	0.0285	1.140	0	90.9	53.1	142				
Ethylbenzene	1.20	0.0285	1.140	0	105	54.5	134				
m,p-Xylene	2.43	0.0570	2.280	0.03713	105	53.1	132				
o-Xylene	1.22	0.0285	1.140	0.04684	103	53.3	139				
Styrene	1.19	0.0285	1.140	0	105	51.1	132				
Isopropylbenzene	1.21	0.0285	1.140	0	106	58.9	138				
Bromoform	0.772	0.0570	1.140	0	67.7	57.9	130				
1,1,2,2-Tetrachloroethane	0.933	0.0228	1.140	0	81.8	51.9	131				
n-Propylbenzene	1.25	0.0285	1.140	0	109	53.6	140				
Bromobenzene	1.14	0.0228	1.140	0	100	54.2	140				

Revision v1 Page 81 of 109

QC SUMMARY REPORT


CLIENT: G-Logics

Volatile Organic Compounds by EPA Method 8260C

Project: Auburn Suba	aru					Volatile	Organio	c Compoun	ds by EP/	A Method	1 8260
Sample ID 1707217-018BMS	SampType: MS			Units: mg/l	Kg-dry	Prep Date	e: 7/24/2 0	17	RunNo: 37	580	
Client ID: GLB-7-6	Batch ID: 17709					Analysis Date	e: 7/25/2 0	17	SeqNo: 72	2181	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,3,5-Trimethylbenzene	1.20	0.0285	1.140	0	105	51.8	136				
2-Chlorotoluene	1.16	0.0285	1.140	0	102	51.6	136				
4-Chlorotoluene	1.19	0.0285	1.140	0	104	50.1	139				
tert-Butylbenzene	1.20	0.0285	1.140	0	105	50.5	135				
1,2,3-Trichloropropane	0.913	0.0285	1.140	0	80.1	50.5	131				
1,2,4-Trichlorobenzene	1.09	0.0285	1.140	0	95.6	50.8	130				
sec-Butylbenzene	1.18	0.0570	1.140	0	104	52.6	141				
4-Isopropyltoluene	1.17	0.0570	1.140	0	103	52.9	134				
1,3-Dichlorobenzene	1.20	0.0228	1.140	0	105	52.6	131				
1,4-Dichlorobenzene	1.19	0.0228	1.140	0	104	52.9	129				
n-Butylbenzene	1.26	0.0285	1.140	0	110	52.6	130				
1,2-Dichlorobenzene	1.18	0.0228	1.140	0	103	55.8	129				
1,2-Dibromo-3-chloropropane	0.710	0.570	1.140	0	62.3	40.5	131				
1,2,4-Trimethylbenzene	1.20	0.0228	1.140	0	105	50.6	137				
Hexachlorobutadiene	1.27	0.0570	1.140	0	111	40.6	158				
Naphthalene	0.983	0.0570	1.140	0	86.2	52.3	124				
1,2,3-Trichlorobenzene	1.09	0.0228	1.140	0	95.6	54.4	124				
Surr: Dibromofluoromethane	1.44		1.425		101	56.5	129				
Surr: Toluene-d8	1.56		1.425		109	64.5	151				
Surr: 1-Bromo-4-fluorobenzene	1.48		1.425		104	63.1	141				

Sample ID 1707217-018BMSD	SampType: MSD	Units: mg/Kg-dry			Prep Date: 7/24/2017			RunNo: 37			
Client ID: GLB-7-6	Batch ID: 17709		Analysis Date: 7/25/2017					17	SeqNo: 722	2182	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	1.12	0.0228	1.140	0	97.9	43.5	121	1.186	6.07	30	
Chloromethane	1.25	0.0570	1.140	0	110	45	130	1.287	2.57	30	
Vinyl chloride	1.17	0.0285	1.140	0	102	51.2	146	1.252	7.11	30	
Bromomethane	1.02	0.0570	1.140	0	89.3	21.3	120	1.064	4.48	30	
Trichlorofluoromethane (CFC-11)	1.10	0.0228	1.140	0	96.7	35	131	1.013	8.53	30	

Page 82 of 109 Revision v1

Auburn Subaru

Work Order: 1707217

QC SUMMARY REPORT

CLIENT: G-Logics

Project:

Volatile Organic Compounds by EPA Method 8260C

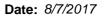
Sample ID 1707217-018BMSD	SampType: MSD			Units: mg/k	(g-dry	Prep Da	te: 7/24/2 0	017	RunNo: 37580			
Client ID: GLB-7-6	Batch ID: 17709					Analysis Da	te: 7/25/2 0	017	SeqNo: 722	2182		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Chloroethane	0.891	0.0570	1.140	0	78.1	31.9	123	0.9153	2.73	30		
1,1-Dichloroethene	1.14	0.0228	1.140	0	100	61.9	141	1.209	5.55	30		
Methylene chloride	1.24	0.0228	1.140	0	109	54.7	142	1.290	3.78	30		
trans-1,2-Dichloroethene	1.20	0.0228	1.140	0	105	52	136	1.275	6.23	30		
Methyl tert-butyl ether (MTBE)	1.17	0.0570	1.140	0	102	54.4	132	1.190	2.08	30		
1,1-Dichloroethane	1.21	0.0228	1.140	0	106	51.8	141	1.274	5.17	30		
2,2-Dichloropropane	1.32	0.114	1.140	0	116	36	123	1.380	4.36	30		
cis-1,2-Dichloroethene	1.23	0.0228	1.140	0	108	58.6	136	1.296	5.08	30		
Chloroform	1.19	0.0228	1.140	0	105	53.2	129	1.246	4.15	30		
1,1,1-Trichloroethane (TCA)	1.09	0.0285	1.140	0	95.8	58.3	145	1.159	5.95	30		
1,1-Dichloropropene	1.10	0.0228	1.140	0	96.5	55.1	138	1.180	6.91	30		
Carbon tetrachloride	0.948	0.0285	1.140	0	83.1	53.3	144	1.020	7.35	30		
1,2-Dichloroethane (EDC)	1.18	0.0228	1.140	0	104	51.3	139	1.240	4.88	30		
Benzene	1.20	0.0228	1.140	0	105	63.5	133	1.266	5.66	30		
Trichloroethene (TCE)	1.17	0.0228	1.140	0	103	68.6	132	1.232	5.29	30		
1,2-Dichloropropane	1.17	0.0228	1.140	0	103	59	136	1.239	5.30	30		
Bromodichloromethane	1.04	0.0228	1.140	0	91.4	50.7	141	1.085	4.10	30		
Dibromomethane	1.08	0.0228	1.140	0	94.9	50.6	137	1.123	3.71	30		
cis-1,3-Dichloropropene	1.15	0.0228	1.140	0	101	50.4	138	1.191	3.49	30		
Toluene	1.21	0.0228	1.140	0	106	63.4	132	1.273	5.05	30		
trans-1,3-Dichloropropylene	1.11	0.0228	1.140	0	97.5	44.1	147	1.129	1.56	30		
1,1,2-Trichloroethane	1.09	0.0228	1.140	0	95.6	51.6	137	1.134	3.99	30		
1,3-Dichloropropane	1.14	0.0285	1.140	0	99.7	53.1	134	1.193	4.79	30		
Tetrachloroethene (PCE)	1.16	0.0285	1.140	0	102	35.6	158	1.244	6.57	30		
Dibromochloromethane	0.945	0.0285	1.140	0	82.8	55.3	140	0.9920	4.89	30		
1,2-Dibromoethane (EDB)	1.08	0.00570	1.140	0	94.7	50.4	136	1.108	2.53	30		
Chlorobenzene	1.12	0.0285	1.140	0	98.6	60	133	1.175	4.41	30		
1,1,1,2-Tetrachloroethane	1.00	0.0285	1.140	0	87.7	53.1	142	1.036	3.57	30		
Ethylbenzene	1.13	0.0285	1.140	0	99.2	54.5	134	1.202	6.00	30		
m,p-Xylene	2.29	0.0570	2.280	0.03713	98.7	53.1	132	2.433	6.08	30		
o-Xylene	1.19	0.0285	1.140	0.04684	100	53.3	139	1.216	2.43	30		

Revision v1 Page 83 of 109

Auburn Subaru

Work Order: 1707217

QC SUMMARY REPORT


CLIENT: G-Logics

Project:

Volatile Organic Compounds by EPA Method 8260C

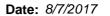
Sample ID 1707217-018BMSD	SampType: MSD			Units: mg/Kg-dry		Prep Dat	te: 7/24/20	17	RunNo: 37580		
Client ID: GLB-7-6	Batch ID: 17709					Analysis Dat	te: 7/25/20	17	SeqNo: 722182		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Styrene	1.15	0.0285	1.140	0	101	51.1	132	1.193	3.95	30	
Isopropylbenzene	1.14	0.0285	1.140	0	100	58.9	138	1.207	5.74	30	
Bromoform	0.767	0.0570	1.140	0	67.3	57.9	130	0.7725	0.714	30	
1,1,2,2-Tetrachloroethane	0.930	0.0228	1.140	0	81.6	51.9	131	0.9326	0.293	30	
n-Propylbenzene	1.17	0.0285	1.140	0	103	53.6	140	1.245	5.85	30	
Bromobenzene	1.11	0.0228	1.140	0	97.0	54.2	140	1.142	3.20	30	
1,3,5-Trimethylbenzene	1.14	0.0285	1.140	0	100	51.8	136	1.198	4.61	30	
2-Chlorotoluene	1.11	0.0285	1.140	0	97.7	51.6	136	1.160	4.11	30	
4-Chlorotoluene	1.14	0.0285	1.140	0	99.9	50.1	139	1.186	4.05	30	
tert-Butylbenzene	1.13	0.0285	1.140	0	99.5	50.5	135	1.200	5.64	30	
1,2,3-Trichloropropane	0.915	0.0285	1.140	0	80.2	50.5	131	0.9129	0.181	30	
1,2,4-Trichlorobenzene	1.16	0.0285	1.140	0	102	50.8	130	1.090	6.43	30	
sec-Butylbenzene	1.13	0.0570	1.140	0	98.8	52.6	141	1.184	5.01	30	
4-Isopropyltoluene	1.12	0.0570	1.140	0	98.4	52.9	134	1.174	4.55	30	
1,3-Dichlorobenzene	1.17	0.0228	1.140	0	103	52.6	131	1.200	2.55	30	
1,4-Dichlorobenzene	1.17	0.0228	1.140	0	103	52.9	129	1.190	1.54	30	
n-Butylbenzene	1.21	0.0285	1.140	0	106	52.6	130	1.256	3.74	30	
1,2-Dichlorobenzene	1.16	0.0228	1.140	0	102	55.8	129	1.176	1.47	30	
1,2-Dibromo-3-chloropropane	0.732	0.570	1.140	0	64.2	40.5	131	0.7103	3.06	30	
1,2,4-Trimethylbenzene	1.16	0.0228	1.140	0	102	50.6	137	1.196	3.04	30	
Hexachlorobutadiene	1.26	0.0570	1.140	0	111	40.6	158	1.271	0.611	30	
Naphthalene	1.12	0.0570	1.140	0	98.3	52.3	124	0.9829	13.2	30	
1,2,3-Trichlorobenzene	1.16	0.0228	1.140	0	102	54.4	124	1.090	6.43	30	
Surr: Dibromofluoromethane	1.46		1.425		103	56.5	129		0		
Surr: Toluene-d8	1.55		1.425		109	64.5	151		0		
Surr: 1-Bromo-4-fluorobenzene	1.48		1.425		104	63.1	141		0		

Revision v1 Page 84 of 109

Auburn Subaru

Work Order: 1707217

QC SUMMARY REPORT


CLIENT: G-Logics

Project:

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1707219-003BDUP	SampType: DUP			Units: mg/	Kg-dry	Prep Da	te: 7/24/2 0)17	RunNo: 375	80	
Client ID: BATCH	Batch ID: 17709					Analysis Da	te: 7/25/2 0	17	SeqNo: 722	613	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	0.0363						0		30	
Chloromethane	ND	0.0908						0		30	
Vinyl chloride	ND	0.0454						0		30	
Bromomethane	ND	0.0908						0		30	
Trichlorofluoromethane (CFC-11)	ND	0.0363						0		30	
Chloroethane	ND	0.0908						0		30	
1,1-Dichloroethene	ND	0.0363						0		30	
Methylene chloride	ND	0.0363						0		30	
trans-1,2-Dichloroethene	ND	0.0363						0		30	
Methyl tert-butyl ether (MTBE)	ND	0.0908						0		30	
1,1-Dichloroethane	ND	0.0363						0		30	
2,2-Dichloropropane	ND	0.182						0		30	Q
cis-1,2-Dichloroethene	ND	0.0363						0		30	
Chloroform	ND	0.0363						0		30	
1,1,1-Trichloroethane (TCA)	ND	0.0454						0		30	
1,1-Dichloropropene	ND	0.0363						0		30	
Carbon tetrachloride	ND	0.0454						0		30	
1,2-Dichloroethane (EDC)	ND	0.0363						0		30	
Benzene	ND	0.0363						0		30	
Trichloroethene (TCE)	ND	0.0363						0		30	
1,2-Dichloropropane	ND	0.0363						0		30	
Bromodichloromethane	ND	0.0363						0		30	
Dibromomethane	ND	0.0363						0		30	
cis-1,3-Dichloropropene	ND	0.0363						0		30	
Toluene	ND	0.0363						0		30	
trans-1,3-Dichloropropylene	ND	0.0363						0		30	
1,1,2-Trichloroethane	ND	0.0363						0		30	
1,3-Dichloropropane	ND	0.0454						0		30	
Tetrachloroethene (PCE)	ND	0.0454						0		30	
Dibromochloromethane	ND	0.0454						0		30	
1,2-Dibromoethane (EDB)	ND	0.00908						0		30	

Revision v1 Page 85 of 109

QC SUMMARY REPORT

CLIENT: G-Logics Auburn Subaru

Project:

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1707219-003BDUP	SampType: DUP			Units: mg/	Kg-dry	Prep Da	te: 7/24/2 0	017	RunNo: 37	580	
Client ID: BATCH	Batch ID: 17709					Analysis Da	te: 7/25/2 0	017	SeqNo: 722	2613	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chlorobenzene	ND	0.0454						0		30	
1,1,1,2-Tetrachloroethane	ND	0.0454						0		30	
Ethylbenzene	ND	0.0454						0		30	
m,p-Xylene	ND	0.0908						0		30	
o-Xylene	ND	0.0454						0		30	
Styrene	ND	0.0454						0		30	
Isopropylbenzene	ND	0.0454						0		30	
Bromoform	ND	0.0908						0		30	
1,1,2,2-Tetrachloroethane	ND	0.0363						0		30	
n-Propylbenzene	ND	0.0454						0		30	
Bromobenzene	ND	0.0363						0		30	
1,3,5-Trimethylbenzene	ND	0.0454						0		30	
2-Chlorotoluene	ND	0.0454						0		30	
4-Chlorotoluene	ND	0.0454						0		30	
tert-Butylbenzene	ND	0.0454						0		30	
1,2,3-Trichloropropane	ND	0.0454						0		30	
1,2,4-Trichlorobenzene	ND	0.0454						0		30	
sec-Butylbenzene	ND	0.0908						0		30	
4-Isopropyltoluene	ND	0.0908						0		30	
1,3-Dichlorobenzene	ND	0.0363						0		30	
1,4-Dichlorobenzene	ND	0.0363						0		30	
n-Butylbenzene	ND	0.0454						0		30	
1,2-Dichlorobenzene	ND	0.0363						0		30	
1,2-Dibromo-3-chloropropane	ND	0.908						0		30	Q
1,2,4-Trimethylbenzene	ND	0.0363						0		30	
Hexachlorobutadiene	ND	0.0908						0		30	
Naphthalene	ND	0.0908						0		30	
1,2,3-Trichlorobenzene	ND	0.0363						0		30	
Surr: Dibromofluoromethane	2.12		2.270		93.4	56.5	129		0		
Surr: Toluene-d8	2.30		2.270		101	64.5	151		0		
Surr: 1-Bromo-4-fluorobenzene	2.19		2.270		96.4	63.1	141		0		

Page 86 of 109 Revision v1

Auburn Subaru

Work Order: 1707217

QC SUMMARY REPORT

CLIENT: G-Logics

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1707219-003BDUP

SampType: **DUP**

Units: mg/Kg-dry

Prep Date: 7/24/2017

RunNo: 37580

Result

Analysis Date: 7/25/2017

SeqNo: 722613

Client ID: BATCH

Batch ID: 17709

%REC LowLimit HighLimit RPD Ref Val

%RPD RPDLimit Qual

NOTES:

Analyte

Project:

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

SPK value SPK Ref Val

Page 87 of 109 Revision v1

Auburn Subaru

Work Order: 1707217

QC SUMMARY REPORT

CLIENT: G-Logics

Project:

Volatile Organic Compounds by EPA Method 8260C

Sample ID LCS-17715	SampType: LCS			Units: µg/L		Prep Dat	te: 7/24/2 0	17	RunNo: 375		
Client ID: LCSW	Batch ID: 17715					Analysis Da	te: 7/24/2 0	17	SeqNo: 722	2282	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	25.8	1.00	20.00	0	129	18.7	171				
Chloromethane	21.8	1.00	20.00	0	109	38.5	171				
Vinyl chloride	21.4	0.200	20.00	0	107	48	145				
Bromomethane	21.7	1.00	20.00	0	109	32.5	184				
Trichlorofluoromethane (CFC-11)	21.2	1.00	20.00	0	106	43.5	149				
Chloroethane	20.4	1.00	20.00	0	102	43.8	168				
1,1-Dichloroethene	20.3	1.00	20.00	0	102	57.5	150				
Methylene chloride	19.8	1.00	20.00	0	99.0	67.1	131				
trans-1,2-Dichloroethene	20.4	1.00	20.00	0	102	71.7	129				
Methyl tert-butyl ether (MTBE)	19.0	1.00	20.00	0	95.1	58	138				
1,1-Dichloroethane	19.9	1.00	20.00	0	99.6	67.9	134				
2,2-Dichloropropane	17.2	2.00	20.00	0	86.0	26.5	185				
cis-1,2-Dichloroethene	20.6	1.00	20.00	0	103	70.2	139				
Chloroform	19.9	1.00	20.00	0	99.7	66.3	131				
1,1,1-Trichloroethane (TCA)	20.1	1.00	20.00	0	101	71	131				
1,1-Dichloropropene	19.9	1.00	20.00	0	99.4	69.9	124				
Carbon tetrachloride	19.6	1.00	20.00	0	97.8	66.2	134				
1,2-Dichloroethane (EDC)	19.3	1.00	20.00	0	96.5	67	126				
Benzene	20.1	1.00	20.00	0	101	69.3	132				
Trichloroethene (TCE)	19.9	0.500	20.00	0	99.3	65.2	136				
1,2-Dichloropropane	19.8	1.00	20.00	0	99.1	70.5	130				
Bromodichloromethane	19.5	1.00	20.00	0	97.6	67.2	137				
Dibromomethane	19.0	1.00	20.00	0	95.2	69.3	143				
cis-1,3-Dichloropropene	19.5	1.00	20.00	0	97.4	62.6	137				
Toluene	20.0	1.00	20.00	0	100	61.3	145				
trans-1,3-Dichloropropylene	19.1	1.00	20.00	0	95.4	56.5	163				
1,1,2-Trichloroethane	19.0	1.00	20.00	0	94.8	71.7	131				
1,3-Dichloropropane	19.7	1.00	20.00	0	98.6	73.5	127				
Tetrachloroethene (PCE)	20.0	1.00	20.00	0	100	47.5	147				
Dibromochloromethane	19.4	1.00	20.00	0	96.8	67.2	134				
1,2-Dibromoethane (EDB)	19.0	0.250	20.00	0	95.0	73.6	125				

Revision v1 Page 88 of 109

Auburn Subaru

Work Order: 1707217

QC SUMMARY REPORT

CLIENT: G-Logics

Project:

Volatile Organic Compounds by EPA Method 8260C

Sample ID LCS-17715	SampType: LCS			Units: µg/L		Prep Dat	e: 7/24/20	17	RunNo: 37584		
Client ID: LCSW	Batch ID: 17715					Analysis Dat	e: 7/24/20	17	SeqNo: 722	2282	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chlorobenzene	20.3	1.00	20.00	0	101	73.9	126				
1,1,1,2-Tetrachloroethane	19.7	1.00	20.00	0	98.5	76.8	124				
Ethylbenzene	20.6	1.00	20.00	0	103	72	130				
m,p-Xylene	40.9	1.00	40.00	0	102	70.3	134				
o-Xylene	20.6	1.00	20.00	0	103	72.1	131				
Styrene	20.4	1.00	20.00	0	102	64.3	140				
Isopropylbenzene	20.6	1.00	20.00	0	103	73.9	128				
Bromoform	17.9	1.00	20.00	0	89.4	55.3	141				
1,1,2,2-Tetrachloroethane	18.8	1.00	20.00	0	94.0	62.9	132				
n-Propylbenzene	21.1	1.00	20.00	0	105	74.5	127				
Bromobenzene	19.9	1.00	20.00	0	99.6	71	131				
1,3,5-Trimethylbenzene	20.5	1.00	20.00	0	102	73.1	128				
2-Chlorotoluene	20.5	1.00	20.00	0	102	70.8	130				
4-Chlorotoluene	20.3	1.00	20.00	0	102	70.1	131				
tert-Butylbenzene	20.5	1.00	20.00	0	103	68.2	131				
1,2,3-Trichloropropane	17.6	1.00	20.00	0	88.1	67.7	131				
1,2,4-Trichlorobenzene	19.4	2.00	20.00	0	97.2	51.8	152				
sec-Butylbenzene	20.6	1.00	20.00	0	103	72	129				
4-Isopropyltoluene	20.0	1.00	20.00	0	99.8	69.2	130				
1,3-Dichlorobenzene	20.8	1.00	20.00	0	104	80.4	124				
1,4-Dichlorobenzene	20.6	1.00	20.00	0	103	66.8	119				
n-Butylbenzene	20.6	1.00	20.00	0	103	73.8	127				
1,2-Dichlorobenzene	20.5	1.00	20.00	0	103	69.7	119				
1,2-Dibromo-3-chloropropane	17.2	1.00	20.00	0	85.9	63.1	136				
1,2,4-Trimethylbenzene	20.7	1.00	20.00	0	103	73.4	127				
Hexachloro-1,3-butadiene	20.4	4.00	20.00	0	102	58.6	138				
Naphthalene	19.4	1.00	20.00	0	97.2	41.8	165				
1,2,3-Trichlorobenzene	19.5	4.00	20.00	0	97.7	48.7	156				
Surr: Dibromofluoromethane	24.9		25.00		99.6	45.4	152				
Surr: Toluene-d8	25.1		25.00		100	40.1	139				
Surr: 1-Bromo-4-fluorobenzene	25.6		25.00		102	64.2	128				

Revision v1 Page 89 of 109

Work Order: 1707217

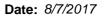
QC SUMMARY REPORT

CLIENT: G-Logics

Sample ID LCS-17715

Volatile Organic Compounds by EPA Method 8260C

Project: Auburn Subaru


SampType: LCS Units: µg/L Prep Date: 7/24/2017 RunNo: 37584

Client ID: **LCSW** Batch ID: **17715** Analysis Date: **7/24/2017** SeqNo: **722282**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

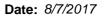
Sample ID MB-17715	SampType: MBLK Units: µg/L Prep Date:					ate: 7/24/2 0	017	RunNo: 37	584		
Client ID: MBLKW	Batch ID: 17715					Analysis Da	ate: 7/25/2 0	017	SeqNo: 722	2283	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	1.00									
Chloromethane	ND	1.00									
Vinyl chloride	ND	0.200									
Bromomethane	ND	1.00									
Trichlorofluoromethane (CFC-11)	ND	1.00									
Chloroethane	ND	1.00									
1,1-Dichloroethene	ND	1.00									
Methylene chloride	ND	1.00									
trans-1,2-Dichloroethene	ND	1.00									
Methyl tert-butyl ether (MTBE)	ND	1.00									
1,1-Dichloroethane	ND	1.00									
2,2-Dichloropropane	ND	2.00									Q
cis-1,2-Dichloroethene	ND	1.00									
Chloroform	ND	1.00									
1,1,1-Trichloroethane (TCA)	ND	1.00									
1,1-Dichloropropene	ND	1.00									
Carbon tetrachloride	ND	1.00									
1,2-Dichloroethane (EDC)	ND	1.00									
Benzene	ND	1.00									
Trichloroethene (TCE)	ND	0.500									
1,2-Dichloropropane	ND	1.00									
Bromodichloromethane	ND	1.00									
Dibromomethane	ND	1.00									
cis-1,3-Dichloropropene	ND	1.00									
Toluene	ND	1.00									

Revision v1

Auburn Subaru

Work Order: 1707217

QC SUMMARY REPORT


CLIENT: G-Logics

Project:

Volatile Organic Compounds by EPA Method 8260C

Sample ID MB-17715	SampType: MBLK			Units: µg/L		Prep Da	ate: 7/24/2 0	017	RunNo: 37	584	
Client ID: MBLKW	Batch ID: 17715					Analysis Da	ate: 7/25/2 0	017	SeqNo: 72	2283	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
trans-1,3-Dichloropropylene	ND	1.00									
1,1,2-Trichloroethane	ND	1.00									
1,3-Dichloropropane	ND	1.00									
Tetrachloroethene (PCE)	ND	1.00									
Dibromochloromethane	ND	1.00									
1,2-Dibromoethane (EDB)	ND	0.250									
Chlorobenzene	ND	1.00									
1,1,1,2-Tetrachloroethane	ND	1.00									
Ethylbenzene	ND	1.00									
m,p-Xylene	ND	1.00									
o-Xylene	ND	1.00									
Styrene	ND	1.00									
Isopropylbenzene	ND	1.00									
Bromoform	ND	1.00									
1,1,2,2-Tetrachloroethane	ND	1.00									
n-Propylbenzene	ND	1.00									
Bromobenzene	ND	1.00									
1,3,5-Trimethylbenzene	ND	1.00									
2-Chlorotoluene	ND	1.00									
4-Chlorotoluene	ND	1.00									
tert-Butylbenzene	ND	1.00									
1,2,3-Trichloropropane	ND	1.00									
1,2,4-Trichlorobenzene	ND	2.00									
sec-Butylbenzene	ND	1.00									
4-Isopropyltoluene	ND	1.00									
1,3-Dichlorobenzene	ND	1.00									
1,4-Dichlorobenzene	ND	1.00									
n-Butylbenzene	ND	1.00									
1,2-Dichlorobenzene	ND	1.00									
1,2-Dibromo-3-chloropropane	ND	1.00									
1,2,4-Trimethylbenzene	ND	1.00									

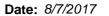
Revision v1 Page 91 of 109

Work Order: 1707217

QC SUMMARY REPORT

CLIENT: G-Logics

Project:


Volatile Organic Compounds by EPA Method 8260C

Sample ID MB-17715	SampType: MBLK			Units: µg/L		Prep Dat	e: 7/24/2017	RunNo: 37	584	
Client ID: MBLKW	Batch ID: 17715					Analysis Dat	e: 7/25/2017	SeqNo: 72	2283	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Hexachloro-1,3-butadiene	ND	4.00								
Naphthalene	ND	1.00								
1,2,3-Trichlorobenzene	ND	4.00								
Surr: Dibromofluoromethane	23.6		25.00		94.4	45.4	152			
Surr: Toluene-d8	24.8		25.00		99.1	40.1	139			
Surr: 1-Bromo-4-fluorobenzene NOTES:	22.4		25.00		89.6	64.2	128			

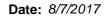
Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Sample ID 1707217-025ADUP	SampType: DUP			Units: µg/L		Prep Da	te: 7/24/2 0	017	RunNo: 375	584	
Client ID: GLB-6-W	Batch ID: 17715					Analysis Da	te: 7/25/2 0	017	SeqNo: 722	2268	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	1.00						0		30	
Chloromethane	ND	1.00						0		30	
Vinyl chloride	ND	0.200						0		30	
Bromomethane	ND	1.00						0		30	
Trichlorofluoromethane (CFC-11)	ND	1.00						0		30	
Chloroethane	ND	1.00						0		30	
1,1-Dichloroethene	ND	1.00						0		30	
Methylene chloride	ND	1.00						0		30	
trans-1,2-Dichloroethene	ND	1.00						0		30	
Methyl tert-butyl ether (MTBE)	ND	1.00						0		30	
1,1-Dichloroethane	ND	1.00						0		30	
2,2-Dichloropropane	ND	2.00						0		30	Q
cis-1,2-Dichloroethene	ND	1.00						0		30	
Chloroform	ND	1.00						0		30	
1,1,1-Trichloroethane (TCA)	ND	1.00						0		30	
1,1-Dichloropropene	ND	1.00						0		30	
Carbon tetrachloride	ND	1.00						0		30	
1,2-Dichloroethane (EDC)	ND	1.00						0		30	

Revision v1 Page 92 of 109

Work Order: 1707217

QC SUMMARY REPORT


CLIENT: G-Logics

Project:

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1707217-025ADUP	SampType: DUP			Units: µg/L		Prep Da	ite: 7/24/2 0	017	RunNo: 37	584	
Client ID: GLB-6-W	Batch ID: 17715					Analysis Da	ite: 7/25/2 0	017	SeqNo: 72	2268	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	1.00						0		30	
Trichloroethene (TCE)	ND	0.500						0		30	
1,2-Dichloropropane	ND	1.00						0		30	
Bromodichloromethane	ND	1.00						0		30	
Dibromomethane	ND	1.00						0		30	
cis-1,3-Dichloropropene	ND	1.00						0		30	
Toluene	ND	1.00						0		30	
trans-1,3-Dichloropropylene	ND	1.00						0		30	
1,1,2-Trichloroethane	ND	1.00						0		30	
1,3-Dichloropropane	ND	1.00						0		30	
Tetrachloroethene (PCE)	ND	1.00						0		30	
Dibromochloromethane	ND	1.00						0		30	
1,2-Dibromoethane (EDB)	ND	0.250						0		30	
Chlorobenzene	ND	1.00						0		30	
1,1,1,2-Tetrachloroethane	ND	1.00						0		30	
Ethylbenzene	ND	1.00						0		30	
m,p-Xylene	ND	1.00						0		30	
o-Xylene	ND	1.00						0		30	
Styrene	ND	1.00						0		30	
Isopropylbenzene	ND	1.00						0		30	
Bromoform	ND	1.00						0		30	
1,1,2,2-Tetrachloroethane	ND	1.00						0		30	
n-Propylbenzene	ND	1.00						0		30	
Bromobenzene	ND	1.00						0		30	
1,3,5-Trimethylbenzene	ND	1.00						0		30	
2-Chlorotoluene	ND	1.00						0		30	
4-Chlorotoluene	ND	1.00						0		30	
tert-Butylbenzene	ND	1.00						0		30	
1,2,3-Trichloropropane	ND	1.00						0		30	
1,2,4-Trichlorobenzene	ND	2.00						0		30	
sec-Butylbenzene	ND	1.00						0		30	

Revision v1 Page 93 of 109

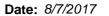
Work Order: 1707217

QC SUMMARY REPORT

CLIENT: G-Logics

Project:

Volatile Organic Compounds by EPA Method 8260C


Sample ID 1707217-025ADUP	SampType: DUP			Units: µg/L		Prep Da	te: 7/24/2	017	RunNo: 37	584	
Client ID: GLB-6-W	Batch ID: 17715					Analysis Da	te: 7/25/2	017	SeqNo: 72	2268	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
4-Isopropyltoluene	ND	1.00						0		30	
1,3-Dichlorobenzene	ND	1.00						0		30	
1,4-Dichlorobenzene	ND	1.00						0		30	
n-Butylbenzene	ND	1.00						0		30	
1,2-Dichlorobenzene	ND	1.00						0		30	
1,2-Dibromo-3-chloropropane	ND	1.00						0		30	
1,2,4-Trimethylbenzene	ND	1.00						0		30	
Hexachloro-1,3-butadiene	ND	4.00						0		30	
Naphthalene	ND	1.00						0		30	
1,2,3-Trichlorobenzene	ND	4.00						0		30	
Surr: Dibromofluoromethane	23.7		25.00		94.9	45.4	152		0		
Surr: Toluene-d8	24.1		25.00		96.3	40.1	139		0		
Surr: 1-Bromo-4-fluorobenzene	22.8		25.00		91.3	64.2	128		0		

NOTES:

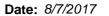
Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Sample ID 1707219-006BMS	SampType: MS			Units: µg/L		Prep Da	te: 7/24/2 0)17	RunNo: 37	584	
Client ID: BATCH	Batch ID: 17715					Analysis Da	te: 7/25/2 0	17	SeqNo: 722	2275	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	20.3	1.00	20.00	0	101	33.3	122				
Chloromethane	20.3	1.00	20.00	0	102	39.7	143				
Vinyl chloride	22.1	0.200	20.00	0	111	41	165				
Bromomethane	21.8	1.00	20.00	0	109	31.5	135				
Trichlorofluoromethane (CFC-11)	22.7	1.00	20.00	0	114	54.7	138				
Chloroethane	21.2	1.00	20.00	0	106	49.9	143				
1,1-Dichloroethene	22.0	1.00	20.00	0	110	51.6	164				
Methylene chloride	20.1	1.00	20.00	0	101	61.6	135				
trans-1,2-Dichloroethene	21.4	1.00	20.00	0	107	63.5	138				
Methyl tert-butyl ether (MTBE)	17.5	1.00	20.00	0	87.7	60.9	132				
1,1-Dichloroethane	20.5	1.00	20.00	0	103	55.7	151				

Revision v1 Page 94 of 109

Work Order: 1707217

QC SUMMARY REPORT


CLIENT: G-Logics

Project:

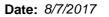
Volatile Organic Compounds by EPA Method 8260C

Sample ID 1707219-006BMS	SampType: MS			Units: µg/L		Prep Da	te: 7/24/2 0)17	RunNo: 37	584	
Client ID: BATCH	Batch ID: 17715					Analysis Da	te: 7/25/2 0)17	SeqNo: 72	2275	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
2,2-Dichloropropane	15.5	2.00	20.00	0	77.7	37.7	150				
cis-1,2-Dichloroethene	20.6	1.00	20.00	0	103	60	154				
Chloroform	20.4	1.00	20.00	0	102	48.1	140				
1,1,1-Trichloroethane (TCA)	21.4	1.00	20.00	0	107	64.2	146				
1,1-Dichloropropene	21.6	1.00	20.00	0	108	73.8	136				
Carbon tetrachloride	21.1	1.00	20.00	0	105	62.7	146				
1,2-Dichloroethane (EDC)	18.7	1.00	20.00	0	93.7	63.4	137				
Benzene	20.9	1.00	20.00	0	104	65.4	138				
Trichloroethene (TCE)	20.7	0.500	20.00	0	104	60.4	134				
1,2-Dichloropropane	20.1	1.00	20.00	0	100	62.6	138				
Bromodichloromethane	19.8	1.00	20.00	0	98.8	59.4	139				
Dibromomethane	18.9	1.00	20.00	0	94.6	58.7	148				
cis-1,3-Dichloropropene	19.2	1.00	20.00	0	95.8	63.8	132				
Toluene	20.0	1.00	20.00	0	100	52	147				
trans-1,3-Dichloropropylene	17.4	1.00	20.00	0	86.8	57.7	125				
1,1,2-Trichloroethane	18.3	1.00	20.00	0	91.4	57.5	153				
1,3-Dichloropropane	18.7	1.00	20.00	0	93.5	54.1	157				
Tetrachloroethene (PCE)	21.5	1.00	20.00	0	107	50.3	133				
Dibromochloromethane	19.4	1.00	20.00	0	97.2	61.6	139				
1,2-Dibromoethane (EDB)	18.5	0.250	20.00	0	92.5	63.2	134				
Chlorobenzene	20.9	1.00	20.00	0	105	65.8	134				
1,1,1,2-Tetrachloroethane	20.6	1.00	20.00	0	103	65.4	135				
Ethylbenzene	21.7	1.00	20.00	0	108	64.5	136				
m,p-Xylene	42.9	1.00	40.00	0	107	63.3	135				
o-Xylene	21.2	1.00	20.00	0	106	64.8	150				
Styrene	20.4	1.00	20.00	0	102	52.9	163				
Isopropylbenzene	22.1	1.00	20.00	0	111	56	147				
Bromoform	18.3	1.00	20.00	0	91.4	57.7	139				
1,1,2,2-Tetrachloroethane	19.1	1.00	20.00	0	95.3	59.8	146				
n-Propylbenzene	22.4	1.00	20.00	0	112	57.6	142				
Bromobenzene	20.3	1.00	20.00	0	101	69.3	157				

Revision v1 Page 95 of 109

Work Order: 1707217

QC SUMMARY REPORT


CLIENT: G-Logics Project:

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1707219-006BMS	SampType: MS			Units: µg/L		Prep Dat	e: 7/24/2 0)17	RunNo: 375	584	
Client ID: BATCH	Batch ID: 17715					Analysis Dat	e: 7/25/2 0)17	SeqNo: 722	2275	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,3,5-Trimethylbenzene	21.4	1.00	20.00	0	107	59.9	136				
2-Chlorotoluene	21.3	1.00	20.00	0	107	61.7	134				
4-Chlorotoluene	20.9	1.00	20.00	0	104	58.4	134				
tert-Butylbenzene	21.8	1.00	20.00	0	109	66.8	141				
1,2,3-Trichloropropane	17.1	1.00	20.00	0	85.4	62.4	129				
1,2,4-Trichlorobenzene	18.7	2.00	20.00	0	93.6	50.9	133				
sec-Butylbenzene	22.1	1.00	20.00	0	110	56	146				
4-Isopropyltoluene	21.0	1.00	20.00	0	105	56.4	136				
1,3-Dichlorobenzene	21.1	1.00	20.00	0	106	58.2	128				
1,4-Dichlorobenzene	20.9	1.00	20.00	0	104	60.1	123				
n-Butylbenzene	21.1	1.00	20.00	0	106	54.6	135				
1,2-Dichlorobenzene	20.5	1.00	20.00	0	103	65.4	133				
1,2-Dibromo-3-chloropropane	17.4	1.00	20.00	0	87.1	51.8	142				
1,2,4-Trimethylbenzene	21.1	1.00	20.00	0	106	63.7	132				
Hexachloro-1,3-butadiene	19.5	4.00	20.00	0	97.5	58.1	130				
Naphthalene	18.0	1.00	20.00	0	90.2	50.7	154				
1,2,3-Trichlorobenzene	18.6	4.00	20.00	0	92.8	57	131				
Surr: Dibromofluoromethane	24.7		25.00		98.8	45.4	152				
Surr: Toluene-d8	24.2		25.00		97.0	40.1	139				
Surr: 1-Bromo-4-fluorobenzene	25.4		25.00		102	64.2	128				

Sample ID 1707219-006BMSD	SampType: MSD			Units: µg/L		Prep Da	te: 7/24/2 0	17	RunNo: 37	584	
Client ID: BATCH	Batch ID: 17715					Analysis Da	te: 7/25/20	17	SeqNo: 722	2274	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	21.0	1.00	20.00	0	105	33.3	122	20.29	3.61	30	
Chloromethane	21.3	1.00	20.00	0	107	39.7	143	20.30	4.79	30	
Vinyl chloride	22.4	0.200	20.00	0	112	41	165	22.12	1.33	30	
Bromomethane	21.0	1.00	20.00	0	105	31.5	135	21.75	3.36	30	
Trichlorofluoromethane (CFC-11)	22.9	1.00	20.00	0	114	54.7	138	22.71	0.711	30	

Page 96 of 109 Revision v1

Work Order: 1707217

QC SUMMARY REPORT

CLIENT: G-Logics

Project:

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1707219-006BMSD	SampType: MSD			Units: µg/L		Prep Da	te: 7/24/20	17	RunNo: 375	584	
Client ID: BATCH	Batch ID: 17715					Analysis Da	te: 7/25/20	17	SeqNo: 722	2274	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloroethane	21.2	1.00	20.00	0	106	49.9	143	21.23	0.254	30	
1,1-Dichloroethene	22.1	1.00	20.00	0	110	51.6	164	21.97	0.527	30	
Methylene chloride	20.2	1.00	20.00	0	101	61.6	135	20.15	0.254	30	
trans-1,2-Dichloroethene	21.4	1.00	20.00	0	107	63.5	138	21.36	0.212	30	
Methyl tert-butyl ether (MTBE)	18.1	1.00	20.00	0	90.5	60.9	132	17.54	3.13	30	
1,1-Dichloroethane	20.7	1.00	20.00	0	103	55.7	151	20.51	0.753	30	
2,2-Dichloropropane	15.5	2.00	20.00	0	77.5	37.7	150	15.54	0.252	30	
cis-1,2-Dichloroethene	20.7	1.00	20.00	0	104	60	154	20.58	0.676	30	
Chloroform	20.3	1.00	20.00	0	102	48.1	140	20.37	0.179	30	
1,1,1-Trichloroethane (TCA)	21.6	1.00	20.00	0	108	64.2	146	21.45	0.716	30	
1,1-Dichloropropene	21.8	1.00	20.00	0	109	73.8	136	21.56	1.08	30	
Carbon tetrachloride	21.3	1.00	20.00	0	106	62.7	146	21.06	0.904	30	
1,2-Dichloroethane (EDC)	18.7	1.00	20.00	0	93.7	63.4	137	18.73	0.0231	30	
Benzene	20.8	1.00	20.00	0	104	65.4	138	20.88	0.433	30	
Trichloroethene (TCE)	20.5	0.500	20.00	0	102	60.4	134	20.71	1.08	30	
1,2-Dichloropropane	19.9	1.00	20.00	0	99.5	62.6	138	20.06	0.752	30	
Bromodichloromethane	19.7	1.00	20.00	0	98.4	59.4	139	19.76	0.417	30	
Dibromomethane	18.8	1.00	20.00	0	94.2	58.7	148	18.91	0.431	30	
cis-1,3-Dichloropropene	17.8	1.00	20.00	0	89.0	63.8	132	19.16	7.38	30	
Toluene	19.9	1.00	20.00	0	99.3	52	147	20.02	0.763	30	
trans-1,3-Dichloropropylene	17.9	1.00	20.00	0	89.5	57.7	125	17.37	3.06	30	
1,1,2-Trichloroethane	18.2	1.00	20.00	0	91.0	57.5	153	18.28	0.517	30	
1,3-Dichloropropane	18.6	1.00	20.00	0	92.9	54.1	157	18.70	0.638	30	
Tetrachloroethene (PCE)	21.2	1.00	20.00	0	106	50.3	133	21.49	1.25	30	
Dibromochloromethane	19.3	1.00	20.00	0	96.7	61.6	139	19.44	0.465	30	
1,2-Dibromoethane (EDB)	18.5	0.250	20.00	0	92.3	63.2	134	18.49	0.129	30	
Chlorobenzene	20.7	1.00	20.00	0	103	65.8	134	20.90	1.16	30	
1,1,1,2-Tetrachloroethane	20.3	1.00	20.00	0	101	65.4	135	20.55	1.46	30	
Ethylbenzene	21.4	1.00	20.00	0	107	64.5	136	21.66	1.37	30	
m,p-Xylene	42.2	1.00	40.00	0	105	63.3	135	42.90	1.68	30	
o-Xylene	21.0	1.00	20.00	0	105	64.8	150	21.17	0.856	30	

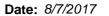
Revision v1 Page 97 of 109

Date: 8/7/2017

Auburn Subaru

Work Order: 1707217

QC SUMMARY REPORT


CLIENT: G-Logics

Project:

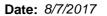
Volatile Organic Compounds by EPA Method 8260C

Sample ID 1707219-006BMSD	SampType: MSD			Units: µg/L		Prep Dat	te: 7/24/20	17	RunNo: 375	584	
Client ID: BATCH	Batch ID: 17715					Analysis Da	te: 7/25/20	17	SeqNo: 722	2274	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Styrene	20.1	1.00	20.00	0	100	52.9	163	20.43	1.64	30	
Isopropylbenzene	21.7	1.00	20.00	0	109	56	147	22.10	1.74	30	
Bromoform	18.1	1.00	20.00	0	90.3	57.7	139	18.28	1.26	30	
1,1,2,2-Tetrachloroethane	18.8	1.00	20.00	0	94.0	59.8	146	19.06	1.39	30	
n-Propylbenzene	22.0	1.00	20.00	0	110	57.6	142	22.42	1.86	30	
Bromobenzene	19.9	1.00	20.00	0	99.7	69.3	157	20.29	1.70	30	
1,3,5-Trimethylbenzene	20.9	1.00	20.00	0	105	59.9	136	21.37	2.12	30	
2-Chlorotoluene	20.9	1.00	20.00	0	105	61.7	134	21.35	2.11	30	
4-Chlorotoluene	20.6	1.00	20.00	0	103	58.4	134	20.85	1.12	30	
tert-Butylbenzene	21.5	1.00	20.00	0	107	66.8	141	21.77	1.28	30	
1,2,3-Trichloropropane	17.1	1.00	20.00	0	85.4	62.4	129	17.08	0.0190	30	
1,2,4-Trichlorobenzene	19.2	2.00	20.00	0	96.0	50.9	133	18.72	2.48	30	
sec-Butylbenzene	21.7	1.00	20.00	0	109	56	146	22.05	1.52	30	
4-Isopropyltoluene	20.6	1.00	20.00	0	103	56.4	136	20.96	1.73	30	
1,3-Dichlorobenzene	21.1	1.00	20.00	0	106	58.2	128	21.13	0.0497	30	
1,4-Dichlorobenzene	20.7	1.00	20.00	0	103	60.1	123	20.87	0.913	30	
n-Butylbenzene	21.2	1.00	20.00	0	106	54.6	135	21.14	0.357	30	
1,2-Dichlorobenzene	20.5	1.00	20.00	0	103	65.4	133	20.55	0.185	30	
1,2-Dibromo-3-chloropropane	17.5	1.00	20.00	0	87.7	51.8	142	17.42	0.676	30	
1,2,4-Trimethylbenzene	20.8	1.00	20.00	0	104	63.7	132	21.13	1.32	30	
Hexachloro-1,3-butadiene	19.6	4.00	20.00	0	98.2	58.1	130	19.50	0.741	30	
Naphthalene	19.4	1.00	20.00	0	97.0	50.7	154	18.04	7.33	30	
1,2,3-Trichlorobenzene	19.1	4.00	20.00	0	95.3	57	131	18.55	2.70	30	
Surr: Dibromofluoromethane	24.9		25.00		99.4	45.4	152		0		
Surr: Toluene-d8	24.2		25.00		97.0	40.1	139		0		
Surr: 1-Bromo-4-fluorobenzene	25.4		25.00		101	64.2	128		0		

Revision v1 Page 98 of 109

Work Order: 1707217

QC SUMMARY REPORT


CLIENT: G-Logics Auburn Subaru

Project:

Volatile Organic Compounds by EPA Method 8260C

	SampType: DUP			Units: µg/L		Prep Da	te: 7/24/2 0)17	RunNo: 37	584	
Client ID: BATCH	Batch ID: 17715					Analysis Da	ite: 7/25/2 0)17	SeqNo: 722	2456	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	1.00						0		30	
Chloromethane	ND	1.00						0		30	
Vinyl chloride	2.96	0.200						3.203	8.03	30	
Bromomethane	ND	1.00						0		30	
Trichlorofluoromethane (CFC-11)	ND	1.00						0		30	
Chloroethane	ND	1.00						0		30	
1,1-Dichloroethene	ND	1.00						0		30	
Methylene chloride	ND	1.00						0		30	
trans-1,2-Dichloroethene	ND	1.00						0		30	
Methyl tert-butyl ether (MTBE)	ND	1.00						0		30	
1,1-Dichloroethane	ND	1.00						0		30	
2,2-Dichloropropane	ND	2.00						0		30	Q
cis-1,2-Dichloroethene	1.84	1.00						1.997	8.41	30	
Chloroform	ND	1.00						0		30	
1,1,1-Trichloroethane (TCA)	ND	1.00						0		30	
1,1-Dichloropropene	ND	1.00						0		30	
Carbon tetrachloride	ND	1.00						0		30	
1,2-Dichloroethane (EDC)	ND	1.00						0		30	
Benzene	ND	1.00						0		30	
Trichloroethene (TCE)	ND	0.500						0		30	
1,2-Dichloropropane	ND	1.00						0		30	
Bromodichloromethane	ND	1.00						0		30	
Dibromomethane	ND	1.00						0		30	
cis-1,3-Dichloropropene	ND	1.00						0		30	
Toluene	ND	1.00						0		30	
trans-1,3-Dichloropropylene	ND	1.00						0		30	
1,1,2-Trichloroethane	ND	1.00						0		30	
1,3-Dichloropropane	ND	1.00						0		30	
Tetrachloroethene (PCE)	ND	1.00						0		30	
Dibromochloromethane	ND	1.00						0		30	
1,2-Dibromoethane (EDB)	ND	0.250						0		30	

Page 99 of 109 Revision v1

Work Order: 1707217

QC SUMMARY REPORT

CLIENT: G-Logics

Project:

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1707219-023BDUP	SampType: DUP			Units: µg/L		Prep Dat	e: 7/24/2 0	017	RunNo: 375	584	
Client ID: BATCH	Batch ID: 17715					Analysis Dat	e: 7/25/2 0	017	SeqNo: 722	2456	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chlorobenzene	ND	1.00						0		30	
1,1,1,2-Tetrachloroethane	ND	1.00						0		30	
Ethylbenzene	ND	1.00						0		30	
m,p-Xylene	ND	1.00						0		30	
o-Xylene	ND	1.00						0		30	
Styrene	ND	1.00						0		30	
Isopropylbenzene	ND	1.00						0		30	
Bromoform	ND	1.00						0		30	
1,1,2,2-Tetrachloroethane	ND	1.00						0		30	
n-Propylbenzene	ND	1.00						0		30	
Bromobenzene	ND	1.00						0		30	
1,3,5-Trimethylbenzene	ND	1.00						0		30	
2-Chlorotoluene	ND	1.00						0		30	
4-Chlorotoluene	ND	1.00						0		30	
tert-Butylbenzene	ND	1.00						0		30	
1,2,3-Trichloropropane	ND	1.00						0		30	
1,2,4-Trichlorobenzene	ND	2.00						0		30	
sec-Butylbenzene	ND	1.00						0		30	
4-Isopropyltoluene	ND	1.00						0		30	
1,3-Dichlorobenzene	ND	1.00						0		30	
1,4-Dichlorobenzene	ND	1.00						0		30	
n-Butylbenzene	ND	1.00						0		30	
1,2-Dichlorobenzene	ND	1.00						0		30	
1,2-Dibromo-3-chloropropane	ND	1.00						0		30	
1,2,4-Trimethylbenzene	ND	1.00						0		30	
Hexachloro-1,3-butadiene	ND	4.00						0		30	
Naphthalene	ND	1.00						0		30	
1,2,3-Trichlorobenzene	ND	4.00						0		30	
Surr: Dibromofluoromethane	24.0		25.00		95.9	45.4	152	_	0		
Surr: Toluene-d8	23.4		25.00		93.6	40.1	139		0		
Surr: 1-Bromo-4-fluorobenzene	23.1		25.00		92.6	64.2	128		0		

Revision v1 Page 100 of 109

Date: 8/7/2017

Auburn Subaru

Work Order: 1707217

QC SUMMARY REPORT

CLIENT: G-Logics

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1707219-023BDUP

SampType: **DUP**

Units: µg/L

Prep Date: 7/24/2017

RunNo: 37584

Result

Analysis Date: 7/25/2017

SeqNo: 722456

Client ID: BATCH

Batch ID: 17715

SPK value SPK Ref Val

%REC LowLimit HighLimit RPD Ref Val

%RPD RPDLimit Qual

NOTES:

Analyte

Project:

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Page 101 of 109 Revision v1

Sample Log-In Check List

Clier	nt Name:	GL	Work Order Numb	er: 1707217	
Logg	ged by:	Clare Griggs	Date Received:	7/22/2017	7 10:00:00 AM
Chain	of Custo	<u>ody</u>			
1. Is	Chain of Cu	ustody complete?	Yes 🗹	No \square	Not Present
2. H	ow was the	sample delivered?	Client		
Log lı	n				
_	oolers are p	resent?	Yes 🗸	No 🗌	NA 🗌
4. SI	hipping cont	ainer/cooler in good condition?	Yes 🗸	No \square	
		s present on shipping container/cooler? ments for Custody Seals not intact)	Yes 🗸	No 🗌	Not Required
6. W	/as an attem	npt made to cool the samples?	Yes 🗸	No 🗌	NA 🗌
7. W	ere all item	s received at a temperature of >0°C to 10.0°C*	Yes 🗸	No 🗆	NA \square
8. S	ample(s) in	proper container(s)?	Yes 🗹	No 🗌	
9. S	ufficient sam	nple volume for indicated test(s)?	Yes 🗸	No \square	
10. A	re samples ¡	properly preserved?	Yes 🗸	No \square	
11. W	/as preserva	ative added to bottles?	Yes	No 🗸	NA \square
12. ls	there heads	space in the VOA vials?	Yes	No 🗹	NA \square
13. D	id all sample	es containers arrive in good condition(unbroken)?	Yes 🗹	No \square	
14. D	oes paperwo	ork match bottle labels?	Yes 🗹	No \square	
15. A	re matrices	correctly identified on Chain of Custody?	Yes 🗸	No \square	
16. ls	it clear wha	at analyses were requested?	Yes 🗹	No \square	
17. W	ere all holdi	ing times able to be met?	Yes 🗹	No 🗌	
<u>Speci</u>	ial Handli	ng (if applicable)			
18. W	as client no	tified of all discrepancies with this order?	Yes	No \square	NA 🗸
	Person I	Notified: Date			
	By Who	m: Via:	eMail Pho	one 🗌 Fax	☐ In Person
	Regardir	ng:			
	Client In	structions:			
19. A		structions:			

Item Information

Item #	Temp °C
Cooler 1	7.6
Cooler 2	4.8
Sample 1	6.4
Sample 2	3.1
Temp Blank 1	8.2

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Sample Log-In Check List

Client Name: GL Work Order Number: 1707217

Logged by: Clare Griggs Date Received: 7/22/2017 10:00:00 AM

Item #	Temp ⁰C
Temp Blank 2	2.3

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

3600 Fremont Ave N.					Cha	ain	of C	Cus	toc	yk	Rec	orc	1&	Lak	ora	ato	ry Services A	greement
Fremo) III s	eattle, WA Tel: 206-352		Date:	7/2	11	7	a pi		Page:			of: 3	3	Lab	orator	y Project No (internal):	07217
Analy	tical	ax: 206-352	2-7178	Project !				0,0	•					•••••	Spe	cial Re	marks:	C-10 F (10 7
C-101-11				Project I										***************************************	- X	umpi	es from albeign	GLB-5, GLB-7 24/178
Client: G-106765	<i>C</i> 1					A .								***************************************	a	re	is knowing of) laty 1/24/178
Address: 40 Zmo Aviz	<u> </u>			Collecte			_			1.	,	4)						٥
City, State, Zip: TSSAQUAN	UM 98	500		Location	: 50	25	HU	1BU	pn	·	MY	10						7 Sizza and hardest (after 20 days)
Telephone:				Report To (PM): Rony G. + Kanss V. Sample Disposal: Return to client													Disposal by lab (after 30 days)	
Fax:	PM Ema			, ,				, ,						,,,,,,	387 X. M			
						/	//	//	4/2	HED IN	104	//	//	S	//	//		
					/	241	//	Ranic	diffication	Se Oregi	25 SIN	(80)	020 1200	1	//	//		
			Sample	,	CHELLY &	//	Range	100,10	A CO	ASTO	270 000	ST FEBR	Disgoli	110	//	//		
Comple Norma	Sample Date	Sample Time	Type (Matrix)*	100	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	\$ 68	HAGIOG	Cieselli		45 %	Net.	100	Priore f	REGIT	//	//		Comments
Sample Name 1 G-LB-1-5	7/21/17		SOIL	XX			X		X	X	X						4	
2 GLB-1-10	1,	0950	7000	1.1/	+				1	1-	1	\top				T		
	4	0955	4	++	+	\Box		T			\top	\top		1	\top	T		<u> </u>
3 GLB-1-14	٠,		1,	++	+	H	V	+			\dashv	+	\Box	\neg	\top	\dagger		
4 G-LB-7-4		1110	4	++	+	H	-	+	+-			+	\vdash	+	+	+		
5 GLB-2-8	-1	1115		++	+	H	+	+	+	Н		+	+	\dashv	+	+		
66LB-Z-11	(,	1120	4	++	+	\vdash	+	+	+	\vdash	+	+	+	+	+	+		
,GLB-3-4	4	1155	11	++	+		-/	+	+		+	+	+	-	+	+		
& GLB-3-8	1	1200	H	++	-	H	X	+	+			+		+	+	+		
· GLB-3-11	11	1205	(1	++	+		+	+	+		-	+	+	-	+	+		
10GLB-4-4	1	1572	11			Ш							Щ					Turn-around Time:
*Matrix: A = Air, AQ = Aqueous, B = Bull	***************************************																r, WW = Waste Water	
Metals (Circle): MTCA-5 RCRA-8 *Anions (Circle): Nitrate Nitri		Sulfate	Brom		O-Phosp		Fluori			ate+Ni							1	Standard
I represent that I am authorize	d to enter into t	his Agreer	nent wit	h Fremo	nt An	alytica	l on be	half	of the	Clier	ıt nam	ed ab	ove an	d that	I have	verif	ied Client's agreement t	o Day
each of the terms on the front/a	and backside of	this Agree	ment.			Recei		+)				Date/	-				2 Day
Relinquished x	7/1/1/	7100				Nece	11	M	_	_			71	22	1,-	10	:07)	Next Day
Relingaished	Date/Ti					Rece	ved	T					Date	Time	f-1	JL	U	Same Day
x ////		3.5				×												(specify)

	lve N.		Cł	nain	of	Cu	sto	dy	Rec	orc	3 k	La	bo	rat	ory Services	Agreement				
Fremor	Se 7	eattle, WA 1		Date:	7/	121	17			Page:	S	•	of:	3		Labora	tory Project No (internal):	8		
Analytic	cal F	ax: 206-352	-7178					an	, 50					•••••	3	Special	Remarks:	105 of 100		
Client: G-WGELS				Project			-114											9		
Address: 40 Zmp Ave Su	-			Collect	ed by:	K	AN	=5										P36		
City, State, Zip: ISAQUAJ4				Locatio	n:	3/	25	Y	Aus	ur	v I	MA	20 1	n,						
Telephone:		Location: 3025 Ausum Wy N. Report To (PM): Sample Disposal: Return to client												nt Disposal by lab (after 30 days)						
Fax:				PM Em	ail:															
8	Sample	Sample	Sample Type		ER POLE	SIGN S	zelle korl		\$ 100 00 00 00 00 00 00 00 00 00 00 00 00	10 10 10 10 10 10 10 10 10 10 10 10 10 1	OF STATES	3 (8) 3 (8) 1 (8)	Stille III					Comments		
Sample Name	Date	1250	(Matrix)*		Ť	Ť		ΧÍ	1		1		1		1	1	1	Comments		
2 GLB-4-11	TRIKE	The second second	4																	
3 (-LB-5-8	7/21/17	1416	ч		X			1										z		
6LB-5-12	7/2/17	1420	()															-1		
GL8-6-4	7/21/17	1600	(1																	
66LB-6-B	" 11	1605	6	1	X		•	X												
GLR-6-11	1.	1610	4																	
· 6LB-7-6	N	1715	4	\	X			X												
· 6LB-7-9	11	1720	9	X	X			X	X	X	X									
106-28-7-11	N	1725	11				1	X												
*Matrix: A = Air, AQ = Aqueous, B = Bulk, C	O = Other, P = P	roduct, S =		************														Turn-around Time:		
**Metals (Circle): MTCA-5 RCRA-8	Wetus (en es)									Fe H		g Mn	Mo Na	Ni F	Pb Sb	Se Sr	Sn Ti Tl U V Zn	Standard		
7	Contract of the Contract of th			-		sphate	-	oride oehal		-	-	ed ab	ove an	d tha	t I ha	ve ver	rified Client's agreeme	nt to 3 Day		
each of the terms on the front and	backside of	this Agree	ment.	ith Fremont Analytical on behalf of the Client named above and that I have verified Client's agree												2 Day				
Relinquished Relinquished	Date/Tir 17	2100		7/27/17 10:07) Received Date/Time											Next Day Same Day					
x //						×												(specify)		

Eromo:		Ch	ain	of C	ust	ody	Re	cord	1&1	.ab	ora	to	ry Services	Agreemen	it					
Fremo	IIL '	Seattle, WA Tel: 206-35		Date:		121				e:		of: 3				y Project No (internal):	- 2			
Analyti	ical	Fax: 206-35	2-7178	Projec	t Name:		MRC	wan	5	IAR	Ans	1		Speci	al Re	marks:				
Client: GL065CS		·,	Į.	7			140-			M								7		
Address: 40 Zmo Ave Si	<i>-</i>	·····	*			10	AU											5		
TULA	lina			1	ted by:															
City, State, Zip: 1914 (1), 1914	Location: 3025 Ausurn Way N																			
Telephone:	Telephone:							Report To (PM): Sample Disposal: Return to clien												
Fax:	PM En	nail:																		
	Sample	Sample	Sample	/	EN STED	SUN	26 66 15 15 15 15 15 15 15 15 15 15 15 15 15	order di	Series Co.	66 46 46 46 46 46 46 46 46 46 46 46 46 4	0 188 S	Display of the state of the sta	STILL STILL							
Sample Name	Date	Time	Type (Matrix)*	100	46	(SE)	KARLOSE PORTO	elle end	84 E	Co Mer			/	\angle	_		Comments			
1 GU3-8-9	7/21/17	1805	SOFE				X					13.00								
2GLB-9-9	4	1880	11				X													
3GLB-1-W	4	1045	Hes	X	4		X	X	X	X										
4GLB-5-W	11	1530	Hzo	X	X		X		T	V										
6-LB-6-W	11	1645	1	XI	X		X		T	X	1		T		\forall	74				
6-LB-7-W	1.	1950	Hn	XX	7		X	X	/ X	X	\top	\vdash	\top		\dashv					
7				1 1				- 1	1	/-			+	\vdash	\dashv					
0				$\dagger \dagger$	\top	ff	++	+	+	\vdash	+		+		\dashv			•		
8				++	+	\vdash	++	_	+	\vdash	-			\vdash	\dashv					
9				++	+	\vdash	++	+	+		+	\vdash	+	-	+					
10 *Matrix: A = Air, AQ = Aqueous, B = Bulk, O	= Other P = Pi	roduct. S = S	Soil. SD = S	Sediment	SI = So	lid W=	Water D	M - Drin	king W	ator 64	/ = Grow	d Water	SW - 6				Turn-around Ti	mai		
	Priority Pollutan			***************************************			***************************************	**************	************			***************************************		***************************************		Ti Tl U V Zn		me.		
***Anions (Circle): Nitrate Nitrite	Bromic)-Phosph		Fluoride		rate+Ni							Standard						
I represent that I am authorized to	onter into th	is Agreen	nent with	Fremo	nt Ana	lytical	on behal	f of the	e Clier	nt name	d abov	e and th	at I ha	ave ve	rifie	d Client's agreement	to 3 Day			
each of the terms on the front and l	, Date/Tim		ment.			Receive	d and)				Date/Time	9				2 Day			
× /m// mv/ 7/	/ /	2100				×	1/3	-	_		7	22	17	7 10:00 Au Next Day						
Reinquished X	Received Date/Time											Same Day								

THORSE	360	00 Fremont Ave N.	Cha	in of Cu	stody Rec	ord & La	boratory Services	Agreement
Fremo) III	eattle, WA 98103 Tel: 206-352-3790		71/17	Page: 3	of: 3	Laboratory Project No (internal):	707222
Analy Analy	ytical	Fax: 206-352-7178	Project Name:	AURUS	ew Surr		Special Remarks:	1-1-1
client: GLOGICS		1.	Project No: O	1-1140-B		Ar Sir Courter interpresentation (2011)		
Address: 40 Zmo Ave	SE	4	Collected by:	KARKI		***************************************	***************************************	
ity, State, Zip: JSAOUP		22M 84/211/44/5/1986/1985/1995/1996/1996/1996/1996	Location: 3	075 A	usupu l			
, ,		*******************************	Report To (PM):		V.	Sample Disposal: Return to client	Disposal by lab (after 30 days)	
[elephone:	***************************************	***************************************			***************************************			
ax:			PM Email:	777	1/8/8/	7777	7//////	
			/			10000		
			- 15 15 15 15 15 15 15 15 15 15 15 15 15		FILE 10 10 10 10 10 10 10 1			
	Sample	Sample Type	28 10 1				3///	
Sample Name	Date 7/	Time (Matrix	1 1 1 1	\$\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	3/ 4/ 4/ 4/	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Comments
G13-8-9	7/21/17	1801 SOFE				+	X Ada	malysis
GLB-9-9		1000	VV	1 3	////		7/24	117
GLB-1-W	4	1045 Hes	(1)	X	XXX		ASA	PTAT
GLB-5-W	11	1530 Hz		1	T X	1 1		-ALV
G-LB-6-W	1	1645 Hzv	(A)	1	V/V	1		MA
61B-7-W	- '	1950 Hw	1717	1	XXX	$++\Theta$,
			++++			++++	++-	
				-	+++	++++		
1			++++	-HH				
0								
Matrix: A = Air, AQ = Aqueous, B = Bull *Metals (Circle): MTCA-9 RCRA-8		***************************************					Sb Se Sr Sn Ti Tl U V Zn	Turn-around Time:
Anions (Circle): Nitrate Nitri		Sulfate Bron	************************************		Nitrate+Nitrite	WIN WIO HE HE FO	30 3e 3f 3f 1f 1f 0 4 2ff	Standard
I represent that I am authorize	d to enter into th	nis Agreement wi	h Fremont Anal	ytical on behalf	of the Client name	d above and that	I have verified Client's agreement	to 3 Day
each of the terms on the front a	nd backside of t		T	Received and)	Date/Time		2 Day
Relinguished X MM/ MW/	7/21/12	2100		×//*		7/22/1	7 10:00 Au	Next Day
Reinquished	Date/Tin	***************************************	***************************************	Received	***************************************	Date/Time		Same Day
. /				A				(specify)

	360	0 Fremont A			Ch	ain (of C	ust	od	y R	ecc			abo	rato	ry Services A	greement		
Fremo		eattle, WA 5 Tel: 206-352	-3790	Date:	7/2	1/1	2		<u>l</u> e	age:	1	of:	3			y Project No (internal):	121		
Analyt	ical F	Fax: 206-352	-7178			Au		200	Su	BA	RU				Secial Re	marks: les from GLB-1.G	LB-5.6LB-7		
lent: G- Works				Project	No: 6	1-11	40-	B							are	les from GLB-1, G 1st priority (*)	edity-7/24/17		
ddress: 40 Zno Aus S	Sé			Collect	ed by:	KA	NES						1 0						
Tuon and	State, Zip: ISIAQUAN WA 98586					25	Au	Buy	en	w	ay,	N							
					To (PM)	Disposal by lab (after 30 day													
elephone:	1			7				***************************************	J	***************************************									
ix:	1	T		PM En	iail:	7	7	//	1	B) 6	140	//	1	//	7	/////			
						//	//	15	Mon	organia o	2/2	/2/	12000	//	//	////			
					10	6 /	/	of Ber	St. Back	20/2	10,80	SO POU	Solve	//	//	///			
			Sample	/	25/20	//	R. C. S.	dor Hea			87 °	187 S			//	//			
ample Name	Sample Date	Sample Time	Type (Matrix)*	10		D 38	EN PLOY	Olegelikes	2	100	Netals,	Ola Pr	13/	*	//	4011	Comments		
GLB-1-5	7/21/17	0945	SOIL	X	X		X	_	X	(X)	X	\sqcup	a		_	HAMP 7/25	Hay		
G1-B-1-10	6	0950	4							_	\bot	\sqcup		$\perp \perp$,			
GLB-1-14	"	0955	ч				_	_		4	_	44		11	_				
6-1-B-7-4	٠,	1110	t,				X			_	_	\perp		\perp					
GL3-2-8	-,	1115	4/							_	_	44		44					
GLB-Z-11	t,	1120	4				_	_		_	\perp	\perp							
GLB-3-4	4	1155	Na.											\perp					
GLB-3-8	1	1200	H				X				\perp			\perp					
GLB-3-11	ti.	1205	10								_			\perp					
(1R-4-4	3	1245	11																
Matrix: A = Air, AQ = Aqueous, B = Bulk	, 0 = Other, P =	Product, 5 =	Soil, SD =	Sedime	nt, SL=	Solid, W	= Wate	, DW	= Drinki	ng Wat	er, GW	/ ≈ Grour	nd Water	, SW = St	torm Wat	er, WW = Waste Water	Turn-around Time:		
*Metals (Circle): MTCA-5 RCRA-8	Priority Polluta	ants TAL	Individ	lual: Ag	Al As	в ва ве	Ca C	d Co (Cr Cu	Fe Hg	K Mg	Mn M	lo Na N	li Pb Sb	Se Sr S	Sn Ti Ti U V Zn	Standard		
**Anions (Circle): Nitrate Nitrit	te Chloride	Sulfate	Brom		O-Phos		Fluor			te+Nitr		vl abor	to and t	hat I b	nvo vari	fied Client's agreement to	☐ 3 Day		
I represent that I am authorized	to enter into	this Agree	ment wit	h Fren	nont A	alytica	on D	enail (n ine	Chen	. name	u abus	e and t	mat I II	ATE VEII	ned Chent's agreement to	2 Day		
Relinquished	Date/T	THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW				Recei	red 7	1)	_		VI I	Date/Tir	ne	-10 4	10.84 The Late Control of			
x LMM MAN	7/21/17	> Z100	2			+	1	14	_			~	7/2	2/1	711	0:00	Next Day		
	Relingoished Date/Time					Recei	ved	1					Date/Tir	me I			Same Day (specify)		

	Ave N.		Ch	nain	of	Cı	ısto	od	y R	ec	ord	1&	La	bo	rat	ory Services A	greement	601		
Fremo	T s	eattie, WA Tel: 206-352		Date:	7/2	21/1	17			P	age:	1		of: ,	3		Laborat	tory Project No (internal):	07217	, Jo
Analyti	cal	Fax: 206-352	2-7178			P		IR,	v '			RU						Remarks:	al R-5 6 1 R-7	Page 109 of 109
Client: G- 206765				Projec	t No: (51-1	140	1-13	3	M					.0751444444		are	ples from GLB-1, c 1st priority (4)	1 1/1-7/24/17	Page
Address: 40 Zno Avis S	iż			Collec	ted by:	K	ANX	3			*******							1	cours fail.	p -
Address: 40 Zno Aus S City, State, Zip: ISSAOUAN U	M 94	1500		Locati	on: 3	250	H	uB	ups	V	W	ay.	N							
100 H		Report To (PM): Roay G. & Kanes V. Sample Disposal: Return to client												Disposal: Return to client	Disposal by lab (after 30 days)					
	Telephone:							PM Email:												
Fax: Sample Name	Sample Date	Sample Time	Sample Type (Matrix)*	10	SEPARE	old a	Page High	Se Cles	integral	A CONTROL OF THE PROPERTY OF T	SO S	Weight Weigh	Joseph Joseph	and 1200 bridges					Comments	
1 GLB-1-5	7/21/17	0945	SOIL	X	X		1	X	7	()	()				(1)			AGNA 725	17 ax	
GLB-1-10	1,	0950	4				(8		ľ	ľ							100 Add Der	K.V. ABAP H	25/17 0
3 GLB-1-14	4,1	0955	ч																	
4 G-LB-Z-4	٠,	1110	i,					X												
5 GLB-2-8	-1	1115	1/																	
66LB-Z-11	t,	1120	4					1	_	1	_		1							
, GLB-3-4	4,	1155),						_	_	_		_				_			
8 GLB-3-8	1	1200	H				1	X	_	1	_	_	1				_			
·GLB-3-11	17	1205	(1		_		\sqcup	1	_	_	+	_	1				_			
10GLB-4-4	1	1248	11																1	
*Matrix: A = Air, AQ = Aqueous, B = Bulk,	********************	******************************	******************************	*************	***********			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		***************************************						***************************************	***************************************	Turn-around Time:	
Metals (Circle): MTCA-5 RCRA-8 *Anions (Circle): Nitrate Nitrite	Priority Polluta Chloride	onts TAL Sulfate	Bromi		O-Phos		************	oride			+Nitrit		IVIET P	VIO IVA	191	PD 50	se sr	Sn Ti Ti U V Zn	Standard	
I represent that I am authorized to	o enter into	this Agreer	nent witl	h Fren	ont A	nalytic	al on l	beha	lf of t	he C	lient	name	d abo	ve an	d tha	t I ha	ve ver	ified Client's agreement to	☐ 3 Day	
each of the terms on the front and	backside of	this Agree	ment.					ar K	7						Time				2 Day	
Relinquished x	7/21/17	> Zive)	Received Date/Time											11	711	0:00	Next Day		
Relingdished x	Date/T	ime				x	ev€đ		1					Date/	rime	•			Same Day (specify)	

ATTACHMENTS

Permission and Conditions for Use and Copying Form

Additional Soil and Groundwater Sampling Auburn Way Property 3001 and 3025 Auburn Way N Auburn, WA 98002

G-Logics Project 01-1140-B August 13, 2017

G-Logics prepared the above-identified Document only for our Client and/or other user(s), as identified in the Document, for the purposes stated and subject to any identified and contractual limitations. Regulatory agencies may make additional "fair use" copies for internal and public use based on state and federal laws that do not violate copyright laws.

All other Requestors must obtain permission from G-Logics and our Client in order to avoid copyright violations. To request authorization for a copy of the Document, please read our conditions listed below, complete the Requestor section, and fax to G-Logics at 425-313-3074 for approval review.

- I recognize that G-Logics has prepared this Document only for their Client and/or other
 user(s), only for the purposes stated in the Document and subject to any identified and
 contractual limitations.
- My intended use of the Document is for general informational purposes only.
- I understand and accept that there may be limitations to the reliability of the Document's
 findings due to circumstances beyond the control of G-Logics, the limited scope of funding,
 and/or limitations inherent in the nature of the performed services.
- I agree not to rely on the Document as being comprehensive or inclusive of all possible site
 hazards and agree to defend, indemnify, and hold G-Logics harmless from and against any
 and all claims, damages, or liability which arise from or which are alleged to arise from my
 use of the Document. I also will compensate G-Logics for any time spent or expenses
 incurred by G-Logics in defense of any such claim.
- I am advised that the Document is a qualitative evaluation of site conditions and should not be used to estimate site-remediation costs. Remediation cost estimates would require additional data beyond what is presented in the Document.
- I agree not to provide the Document to any other person or organizations without prior authorization from G-Logics and their Client.

I, the Requestor, have reviewed the above-i	dentified conditions for copying/use of the Document, am familiar
with the presented limitations of the provide	ed services, and acknowledge my understanding and concurrence,
as indicated by my signature below.	
Requestor's Company	
Mailing Address	
City, State, Zip Code	
Contact Name & Title	
Signature & Date	
Telephone & Fax Numbers	
Planned Use of Document	
•	, please fax to G-Logics (425-313-3074) for approval review.
G-Logics will share your request with our C	Client for their approval.
Client Review and Acknowledgment of U	Se and Copying Request
Per the notification of G-Logics, I, the Clie	nt, have reviewed this request for copying/use of this Document,
have discussed the request with G-Logics, a	and grant my consent as indicated by my signature below.
Client Company	
Client Contact Name & Title	
Signature & Date	
Telephone & Fax Numbers	
G-Logics review and Acknowledgment o	f Use and Copying Request
Based on your concurrence with the above-	presented conditions, approval of our Client, and our review of the
information, G-Logics allows the Requestor	r to copy/use the above referenced Document for purposes stated.
Additional fees may apply.	
G-Logics Signature	
Title	
Date	

g-logics